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Chapter 8  

Deterministic and Statistical Size Effect in Plain 
Concrete 

Abstract. The numerical FE investigations of a deterministic and stochastic size 
effect in concrete beams of a similar geometry under three point bending were 
performed within an elasto-plasticity with a non-local softening. The FE analyses 
were carried out with four different sizes of notched and unnotched beams. 
Deterministic calculations were performed with a uniform distribution of the 
tensile strength. In turn, in stochastic calculations, the tensile strength took the 
form of random correlated spatial fields described by a truncated Gaussian 
distribution. In order to reduce the number of stochastic realizations without losing 
the calculation accuracy, Latin hypercube sampling was applied. The numerical 
outcomes were compared with the size effect law by Bažant and by Carpinteri. 

 
A size effect phenomenon (nominal strength varies with the size of structure) is an 
inherent property of the behaviour of many engineering materials. In the case of 
concrete materials, both the nominal strength and material brittleness (ratio 
between the energy consumed during the loading process after and before the 
stress-strain peak) always decrease with increasing element size under tension 
(Bažant 1984, Carpinteri 1989, Bažant and Planas 1998). Thus, concrete becomes 
perfectly brittle on a sufficiently large scale. The results from laboratory tests 
which are scaled versions of the actual structures cannot be directly transferred to 
them. The physical understanding of size effects is of major importance for civil 
engineers who try to extrapolate experimental outcomes at laboratory scale to 
results which can be used in big scale situations. Since large structures are beyond 
the range of testing in laboratories, their design has to rely on a realistic 
extrapolation of testing results with smaller element sizes. 

Two size effects are of a major importance in quasi-brittle and brittle materials: 
deterministic and statistical one (the remaining size effects are: boundary layer 
effect, diffusion phenomena, hydration heat or phenomena associated with 
chemical reactions and fractal nature of crack surfaces) (Bažant and Planas 1998). 
Currently there exist two different theories of size effect in quasi-brittle structures: 
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the energetic-statistical theory (Bažant and Planas 1998, Bažant 2004) and fractal 
theory (Carpinteri et al. 1994, 1995).  

According to Bažant and Planas (1998) and Bažant (2004) the deterministic 
size effect is caused by the formation of a region of intense strain localization with 
a certain volume (micro-crack region - called also fracture process zone FPZ) 
which precedes macro-cracks and cannot be appropriately scaled in laboratory 
tests. Strain localization volume is not negligible to the cross-section dimensions 
and is large enough to cause significant stress redistribution in the structure and 
associated energy release. The specimen strength increases with increasing ratio 
lc/D (lc – characteristic length of the micro-structure influencing both the size and 
spacing of localized zones, D – characteristic structure size). In turn, a statistical 
(stochastic) effect is caused by the spatial variability/randomness of the local 
material strength. The first statistical theory was introduced by Weibull (1951) 
(called also the weakest link theory) which postulates that a structure is as strong 
as its weakest component. The structure fails when its strength is exceeded in the 
weakest spot, since stress redistribution is not considered. The Weibull’s size 
effect model is a power law and is of particular important for large structures that 
fail as soon as a macroscopic fracture initiates in one small material element. It is 
not however able to account for a spatial correlation between local material 
properties, does not include any characteristic length of micro-structure (i.e. it 
ignores a deterministic size effect) and it underestimates the experimental size 
effect. Combining the energetic theory with the Weibull statistical theory led to a 
general energetic-statistical theory (Bažant and Planas 1998). The deterministic 
size effect was obtained for not too large structures and the Weibull statistical size 
effect was obtained as the asymptotic limit for very large structures. In turn, 
according to Carpinteri et al. (1994, 1995, 2007), the size effect is caused by the 
multi-fractality of a fracture surface only which increases with a spreading 
disorder of the material in large structures (stress redistribution and energy release 
during strain localization and cracking are not considered). 

Two size effects laws proposed by Bažant (Bažant and Planas 1998, Bažant 
2004) (called Size Effect Laws SEL) for geometrically similar structures allow to 
take into account a size difference by determining the tensile strength of structures 
without notches and pre-existing large cracks (the so-called type 1 size effect law) 
and of notched structures or structures with pre-existing cracks (the so-called type 
2 size effect law) (Fig. 8.1). In the first type structures, the maximum load is 
reached as soon as a macroscopic crack initiates from the fully formed localized 
region of non-negligible size developed at a smooth surface. In the second type 
structures, cracks grow in a stable manner prior to the maximum load. Only the 
first type of structures is significantly affected by material randomness causing a 
pronounced statistical size effect. The material strength is bound for small sizes by 
a plasticity limit whereas for large sizes the material follows linear elastic fracture 
mechanics.  

The following analytical formulae for a deterministic size effect predicted by 
asymptotic matching were proposed by Bažant (Bažant and Planas 1998) 
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where σN is the nominal strength, D is the characteristic structure size, fr
∞, Db and 

r denote the positive constant representing unknown empirical parameters to be 
determined; fr

∞ represents the solution of the elastic-brittle strength reached as the 
nominal strength for large structures, r controls the curvature and shape of the law 
and Db is the deterministic characteristic length having the meaning of the 
thickness of the cracked layer (if Db=0, the behaviour is elastic-brittle, Eq. 8.1). In 
turn, in Eq. 8.2, ft denotes the tensile strength, B is the dimensionless geometry-
dependent parameter (depending on the geometry of the structure and crack) and 
Do denotes the size-dependent parameter called transitional size (both unknown 
parameters to be determined). 
 

 
 
 
 
 
 
 
 

a)                                        a) 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                b) 

Fig. 8.1 Size effect models SEL by Bažant (2004) in logarithmic scale with σN - nominal 
strength, D – element size: a) type 1 (structures without notches and pre-existing large 
cracks), b) type 2 (notched structures) (material strength is bound for small sizes by 
plasticity limit whereas for large sizes, the material follows Linear Elastic Fracture 
Mechanics LEFM) 
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Another approach to the size effect was proposed by Carpinteri et al. (1994, 
1995, 2007) (called Multi-Fractal Scaling Law MFSL) (Fig. 8.2). In this fractal 
approach, the nominal strength σN under tension decreases in a hyperbolic form 
with increasing characteristic structure size D 
 

                                      ( )N 1 2D A ( A / D ),σ = +                                           (8.3) 
 

where A1 and A2 are the empirical constants. The approach does not distinguish 
between a deterministic or statistical size effect. The MFSL behaviour in the 
bilogarithmic plane lnσN versus lnD is non-linear and shows two asymptotes with 
slope -1/2 for small structures and slope zero for the largest ones, respectively. It 
predicts a transition from a disordered regime at the smallest scales to an ordered 
regime at the largest scales. According to Bažant and Yavari (2005, 2007c), the 
cause of a size effect is certainly energetic-statistical not fractal and the multi-
fractal scaling law is a purely empirical formula and good enough only for  
the type 1 size effect (at crack initiation) and only for sizes not so large that the 
Weibull statistical size effect would intervene (MFSL does not capture a transition 
to the Weibull size effect for very large sizes). The disadvantage of both size 
effect laws is that they do not explicitly present the empirical constants to 
calculate the size effect in advance. In addition, a transition between two size 
effect types by Bažant remains still to be challenge. 

The fits of the size effect law by Bažant (2004) and the multi-fractal scaling 
law by Carpintieri et al. (1994) to experimental data for concrete elements (van 
Vliet 2000) and reinforced concrete beams failing by shear (Bažant and Yavari 
2007 c) show that both laws are only similar for experiments at laboratory scale 
but can significantly differ when the structure is very small or very large (Fig. 8.3) 
that can have serious consequences in the second case.  

In spite of many experiments exhibiting the noticed size effect in concrete and 
reinforced concrete elements under different loading types (Walraven and 
Leihwalter 1994, Wittmann et al.1990, Elices et al. 1992, Bažant and Chen 1997, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2 Size effect by Carpintieri et al (1994): nominal strength σN versus specimen size D 
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Bažant and Planas 1998, Koide et al. 1998, van Vliet 2000, Chen et al. 2001,  
Le Bellego et al. 2003, van Mier and van Vliet 2003, Bažant 2004, Bažant and 
Yavari 2005, Vorechovsky 2007, Yu 2007), the scientifically (physically) based 
size effect is not taken into account in a practical design of engineering structures, 
that may contribute to their failure (Bažant and Planas 1998, Yu 2007). Instead, a 
purely empirical approach is sometimes considered in building codes which is 
doomed to yield an incorrect formula since physical foundations are lacking.  

The goal of the numerical simulations is to investigate a deterministic and 
statistical size effect mainly in flexural resistance of notched and un-notched beam 
elements of a similar geometry under quasi-static three-point bending by 
considering the influence of strain localization. A finite element method with an 
elasto-plastic constitutive model using a Rankine’a criterion with non-local 
softening (Eqs. 3.32, 3.93 and 3.97) was used. Two-dimensional calculations were 
performed with four different concrete beam sizes of a similar geometry. 
Deterministic calculations were performed assuming constant values of tensile 
strength. In turn, statistical analyses were carried out with spatially correlated 
homogeneous distributions of tensile strength which were assumed to be random. 
Truncated Gaussian random tensile strength fields were generated using a 
conditional rejection method (Walukiewicz et al. 1997) for correlated random 
fields. The approximated results were obtained using a Latin hypercube sampling 
method (McKay et al. 1979, Bažant and Lin 1985, Florian 1992, Huntington and 
Lyrintzis 1998) belonging to a group of variance reduced Monte Carlo methods 
(Hurtado and Barbat 1998). This approach enables one a significant reduction of 
the sample number without losing the accuracy of calculations. The numerical 
results of load-displacements diagrams with notched beams were compared with 
corresponding laboratory tests performed by Le Bellego et al. (2003). The effect 
of the correlation length was also investigated. The FE results were compared with 
the size effect law SEL by Bažant and MFSL by Carpinteri. 

The combined statistical and deterministic size effects were simulated by 
Carmeliet and Hens (1994), Frantziskonis (1998), Gutierrez and de Borst (1998), 
Gutierrez (2006), Vorechovsky (2007), Bažant et al. (2007a, 2007b), Yang and Xu 
(2008) and Bobiński et al. (2009). The most comprehensive combined calculations 
were performed by Vorechovsky (2007) for unnotched concrete specimens under 
uniaxial tension with a micro-plane material model and crack band model using 
Latin hypercube sampling. A squared exponential autocorrelation function with a 
correlation length of 80 mm was used. His results showed that the strength of 
many specimens, which parameters were obtained from random sampling, could 
be larger than a deterministic one in small specimens in contrast to large 
specimens which rather obeyed the weakest link model. The difference between a 
deterministic material strength and a mean statistical strength grew with increasing 
size. The structural strength exhibited a gradual transition from Gaussian 
distribution to Weibull distribution at increasing size. As the ratio of 
autocorrelation length and specimen size decreased, the ratio of spatial fluctuation 
of random field realizations grew. In the work by Yang and Xu (2008), a 
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heterogeneous cohesive crack model to predict macroscopic strength of materials 
based on meso-scale random fields of fracture properties was proposed. A 
concrete notched beam subjected to mixed-mode fracture was modeled. Effects of 
various important parameters on the crack paths, peak loads, macroscopic ductility 
and overall reliability (including the variance of random fields, the correlation 
length, and the shear fracture resistance) were investigated and discussed. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) 
 

B) 

Fig. 8.3 Fits of the Size Effect Law by Bažant (2003) (SEL) and the Multi Fractal Scaling 
Law by Carpintier et al (1994) (MFSL) to experimental data: A) for concrete elements (van 
Vliet 2000) and B) for reinforced concrete beams failing by shear (Bažant and Yavari 
2007c) 
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Our calculations with beams follow the research presented by Vorechovsky 
(2004, 2007) by using an alternative stochastic approach. In contrast to his 
simulations: a) free-supported concrete beams under bending were analyzed, b) a 
more sophisticated regularization technique was used in the softening regime, 
namely non-local theory, which ensured entirely mesh–independent results with 
respect to load-displacement diagrams and widths of localized zones (in contrast 
to the crack band model which provides only mesh-independent load-
displacement diagrams), c) an original method of the random field generation with 
a different homogeneous correlation function was used.  

In addition, a deterministic effect was examined in concrete during uniaxial 
compression using a Drucker-Prager’s criterion with non-local softening  
(Eqs. 3.27-3.30, 3.93 and 3.97). 

8.1   Notched Beams 

Deterministic and statistical calculations 
The two-dimensional FE-calculations (Bobiński et al. 2009) of free supported 
notched beams with free ends under bending (assuming constant values of tensile 
strength ft) were performed with 4 different beam sizes of a similar geometry h×Lt: 
8×32 cm2 (called small-size beam), 16×64 cm2 (called medium-size beam), 
32×128 cm2 (called large-size beam) and 192×768 cm2 (called very large-size 
beam) (h – beam height, Lt – total beam length). The span length L was equal to 
3h for all beams (Fig. 8.4). The size of the first 3 beams was similar as in 
corresponding experiments carried out by Le Bellego et al. (2003). The 
quadrilateral elements divided into triangular elements were used to avoid 
volumetric locking. 7628 triangular (small-size beam), 14476 (medium-size 
beam), 28092 (large size beam) and 104310 (large-size beam) triangular elements 
were used, respectively. The mesh was particularly very fine in the region of a 
notch (Fig. 8.5) to properly capture strain localization in concrete (where the finite 
element size was equal to 1/3×lc, lc=5 mm). The ratio between the width of this 
fine region and beam length was always the same.  

 

 
 

Fig. 8.4 Notched concrete beams used for calculations (L=3×h) (Bobiński et al. 2009) 
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To describe the behaviour of concrete under tension during three-point bending, 
a Rankine criterion was used with a yield function with isotropic softening  
(Eq. 3.32). To model the concrete softening under tension, the exponential curve 
by Hordijk (1991) with the tensile strength of the concrete of ft=3.6 MPa was 
assumed (κu=0.005 b1=3.0, b2=6.93) (Eq. 3.55). The modulus of elasticity was 
assumed to be E=38.5 GPa and the Poisson ratio was υ=0.24 (Le Bellego et al. 
2003). The calculations were performed under plane strain conditions (the 
differences between the results obtained within Rankine plasticity under plane 
stress and plane strain conditions are insignificant). A large-displacement analysis 
available in the ABAQUS finite element code (1998) was used (although the 
influence of such analysis was negligible). In this method, the current 
configuration of the body was taken into account. The Cauchy stress was taken as 
the stress measure. The conjugate strain rate was the rate of deformation. The 
rotation of the stress and strain tensor was calculated with the Hughes-Winget 
method (1980). The non-local averaging was performed in the current 
configuration. 

 

 
 

Fig. 8.5 FE mesh in the case of a medium-size beam (Bobiński et al. 2009) 

 
A quasi-static deformation of a small, medium and large beam was imposed 

through a constant vertical displacement increment Δu prescribed at the upper 
mid-point of the beam top. To capture a snap-back behaviour in a very large size 
beam, the so-called arc-length technique was used. The actual load vector P was 
defined as λPmax where λ – multiplier and Pmax – maximum constant load vector. 
In general, the determination of the length of the arc the P–u space (u – 
displacement vector) involves the displacements of all nodes (as e.g. the Riks 
method available in ABAQUS Standard 1998). However, for problems involving 
strain localization, it is more suitable to use an indirect displacement control 
method, where only selected nodal displacements are considered to formulate an 
additional condition in the P–u space. The horizontal distance between two nodes 
lying on the opposite sides of the notch was chosen as a control variable CMOD 
(crack mouth open displacement). The indirect displacement algorithm was 
implemented with the aid of two identical and independent FE-meshes and some 
additional node elements to exchange the information about the displacements 
between these meshes.  

The Monte Carlo method was used in statistical calculations. Application of 
the method in stochastic problems of mechanics requires the following steps: 
simulation of random variables or fields describing the problem under 
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consideration (variability of material parameters, initial imperfections in structure 
geometrics and others), solution of the problem for each simulated realization, 
creation of a set of results and its statistical description. Contrary to stochastic 
finite element codes, the Monte Carlo method does not impose any restriction to 
the solved random problems. Its only limitation is the time of calculations. For 
example, to reproduce exactly the input random data of initial geometric 
imperfection of a shell structure problem, at least 2000 random samples should be 
used (Bielewicz and Górski 2002). Any nonlinear calculations for such number of 
initial data are, however, impossible due to excessive computation times. To 
determine a minimal, but sufficient number of samples (which allows one to 
estimate the results with a specified accuracy), a convergence analysis of the 
outcomes was proposed (Górski 2006). It was estimated that in case of various 
engineering problems only ca. 50 realizations had to be considered. For example 
in the shell structure limit load analysis (Górski 2006), the change of the error of 
limit load mean values between 50 and 150 samples equaled 2% and the standard 
deviations error was 12%. A further decrease of sample numbers can be obtained 
using Monte Carlo variance reduction methods.  

In the papers by Tejchman and Górski (2007, 2008), two methods: a stratified 
and a Latin sampling method were considered. It should be pointed out that these 
methods were not used for the generation of two-dimensional random fields as, for 
example, in the paper by Vorechovsky (2007), but for their classification. For that 
reason, the single realization was generated according to the initial data, i.e. the 
theoretical mean value and the covariance matrix was exactly reproduced. The 
statistical calculations according to the proposed version of the Latin sampling 
method were performed in two steps (Tejchman and Górski 2007, 2008). First, an 
initial set of random samples was generated in the same way as in the case of a 
direct Monte Carlo method. Next, the generated samples were classified and 
arranged in increasing order according to the chosen parameters (i.e. their mean 
values and the gap between the lowest and the highest values of the fields). From 
each subset defined in this way, only one sample was chosen for the analysis. The 
selection was performed in agreement with the theoretical background of the Latin 
sampling method. The numerical calculations were performed only for these 
samples. It was proved that using the Latin sampling variance reduction method 
the results can be properly estimated by several realizations only (e.g. 12-15) 
(Tejchman and Górski 2007, 2008). 

To generate the random field, the original conditional-rejection method 
described by Walukiewicz et al. (1997), Bielewicz and Górski (2002), Górski 
(2006), Tejchman and Górski (2007), and Tejchman and Górski (2008) was used. 
The method makes it possible to simulate any homogeneous or non-homogeneous 
truncated Gaussian random field described on regular or irregular spatial meshes. 
An important role in the calculations was played by the propagation base scheme 
covering sequentially the mesh points and the random field envelope which 
allowed one to fulfill the geometric and boundary conditions of the structure of the 
model. Random fields of practically unlimited sizes could be generated. 
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Various properties of concrete may be considered as randomly distributed. In 
the present work, only fluctuations of its tensile strength were taken into account. 
Two parameters described the random field should be chosen, i.e. the distribution 
of the random variable in a single point of the field and a function defining the 
correlation between these points. The distribution of a single random variable took 
the form of a truncated Gaussian function with the mean concrete tensile strength 

of 3.6tf
−

=  MPa. Additionally, it was assumed that the concrete tensile strength 

values changed between ft=1.6 MPa and ft=5.6 MPa ( 3.6 2.0tf = ± MPa). To fulfil 

this condition, the standard deviation 0.424
tf

s =  MPa was used in the 

calculations. The coefficient of variations describing the field scattering was 

cov / 0.118
tf ts f= =  ( tf =3.6 MPa - the mean tensile strength). Since 

5 5 0.424 2.12
tf

s = × = MPa, the cut of variables did not change the theoretical Gauss 

distribution distinctly (Fig. 8.6). The Irvin's characteristic length (EGf)/ft
2 (Gf  - 

tensile fracture energy) which controls the length of the fracture process zone 
(Bažant and Planas 1998) varied between 0.100 m and 0.351 m. 

Randomness of tensile strength ft has to be described by a correlation function. 
For lack of the appropriate data, the correlation function is usually chosen 
arbitrarily. It is evident that the fluctuation of any material parameters should be 
described by a homogeneous function, which confirms that the correlation 
between random material variables vanishes when the random point distance 
increases. Any non-homogeneous correlation function, for example Wiener or 
Brown, defines strong correlation between every point of the field, and such a 
definition of material parameters is unrealistic. The simplest choice is a standard 

first order correlation function 1 2 21
1 2( , ) x x

x xK x x e e
λ λ− Δ − Δ= . Here, the following (more 

general) second order and homogeneous correlation function was adopted 
(Bielewicz and Gorski 2002) 
 

                  1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),x x

t

x x
f x xK x x s e x e x

λ λλ λ− Δ − ΔΔ Δ = × + Δ + Δ            (8.4) 

 
where Δx1 and Δx2 is are the distances between two field points along the 
horizontal axis x1 and vertical axis x2, λx1 and λx2 are the decay coefficients 
(damping parameters) characterizing a spatial variability of the specimen 
properties (i.e. describe the correlation between the random field points). The 
second order homogeneous function (Eq. 8.4) was proved to be very useful in 
engineering calculations (Knabe et al. 1998). 

In finite element methods, continuous correlation function (Eq. 8.4) has to be 
represented by the appropriate covariance matrix. For this purpose, the procedure 
of local averages of the random fields proposed by Vanmarcke (1983) was  
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adopted. After an appropriate integration of the function (Eq. 8.4), the following 
expressions describing the variances Dw and covariances Kw were obtained (Knabe 
et al. 1998) 
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Fig. 8.6 Distribution of the concrete strength values for a single point of the mesh (Bobiński 
et al. 2009) 

 
We took mainly into account a strong correlation of the tensile strength ft in a 

horizontal direction λx1=1 1/m and a weaker in a vertical direction λx2=3 1/m in 
Eq. 8.4 (due to the way of specimen’s preparation). In this way, the layers 
forming during the concrete placing were modeled. The range of significant 
correlation was approximately 80 mm in the horizontal direction and 30 mm in 
the vertical direction (Fig. 8.7). The smaller the λ parameter, the shorter is the 
correlation range. The dimension of the random field was identical as the finite 
element mesh. The same random values were assumed in 4 neighboring 
triangular elements.  
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Fig. 8.7 The correlation distances for different coefficients λ [1/m] (Bobiński et al. 2009) 

 
Using the conditional-rejection method, 2000 field realizations of the tensile 

strength were generated. Next, the generated fields were classified according to 
two parameters: the mean value of the tensile strength and the gap between the 
lowest and the highest value of the tensile strength. The joint probability 
distribution (so-called “ant hill”) is presented in Fig. 8.8. One dot represents one 
random vector described by its mean value and the difference between its extreme 
values. The two variable domains were divided in 12 intervals of equal 
probabilities (see vertical and horizontal lines in Fig. 8.8). Next, according to the 
Latin hypercube sampling assumptions, 12 random numbers in the range 1-12 
were generated (one number appeared only once) using the uniform distribution. 
The generated numbers formed the following 12 pairs: 1 – 4, 2 – 7, 3 – 3, 4 – 11, 5 
– 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12. According to these 
pairs, the appropriate areas (subfields) were selected (they are presented as 
rectangles in Fig. 8.9). From each subfield only one realization was chosen and 
used as the input data for FEM calculations. In this way, the results of 12 
realizations were analyzed. Figure 8.9 shows a stochastic distribution of the tensile 
strength in one arbitrary concrete beam in the area close to the notch. 

 
FE results of deterministic size effect 
Figure 8.10 shows the evolution of the calculated normalized vertical force 
PL/tft(0.9h)2 versus the normalized vertical beam displacement u/h for four 
different beam heights h: 8 cm, 16 cm, 32 cm and 192 cm with constant values of 
the tensile strength of ft=3.6 MPa. The thickness of the specimen was equal to t=4 
cm (as in laboratory experiments). A distribution of the non-local softening 
parameter is shown close to the notch (Fig. 8.11). Moreover, the numerical results 
of a deterministic size effect compared to the size effect model SEL 2 by Bažant 
for notched concrete specimens (Bažant and Planas 1998) (Eq. 8.2) are shown  
(Fig. 8.12).  
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Fig. 8.8 Selection of 12 pairs of random samples using Latin hypercube sampling: 1 – 4, 2 
– 7, 3 – 3, 4 – 11, 5 – 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Bobiński  
et al. 2009) 

 
The beam strength and beam brittleness obviously increased with increasing 

beam size. This pronounced deterministic size effect is in agreement with the size 
effect model by Bažant of Fig. 8.1b (Bažant and Planas 1998). For a very large size 
beam, a so-called snap-back behaviour occurred (decrease of strength with 
decreasing deformation). The mean width of a localized zone above the notch was 
15.08 mm (h=8 cm), 15.10 mm (h=16 cm), 18.02 mm (h=32 cm) and 18.05 mm 
(h=192 cm) at u/h=1.000‰, 0.494‰, 0.234‰ and 0.105‰, respectively.  

The calculated vertical forces for a small, medium and large beam are in good 
accordance with the experiments by la Bellego et al. 2003 (Fig. 8.13). The 
calculated width of the localized zone is similar as in experiments, i.e. about 20 
mm (on the basis of acoustic emission, Pijaudier-Cabot et al. 2004). 
 
FE results of statistical size effect 
12 selected random samples using Latin hypercube sampling are shown in  
Fig. 8.8 (λx1=1 1/m, λx2=3 1/m, 0.424

tf
s = ). The 12 different evolutions of the 

vertical normalized force versus the vertical normalized displacement are shown 
in Fig. 8.14 for 3 different beam heights h: 8 cm (small beam), 32 cm (large 
beam) and 192 cm (very large beam), respectively. Figure 8.15 demonstrates  
the calculated width of a localized zone. In turn, 5 arbitrary deformed  
FE-meshes for a small-size beam are shown in Fig. 8.16. The size effect is 
shown in Fig. 8.17. 
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Fig. 8.9 Stochastic distribution of tensile strength ft close to the notch in small-size beam 
(strong correlation, small standard deviation) (Bobiński et al. 2009) 

 
The normalized maximum vertical force decreases with decreasing beam height 

h (Fig. 8.14). For h=8 cm, it changes between 2.92-3.38 kN. The mean stochastic 
Pmax=3.08 kN (with the standard deviation of 0.126 kN) is practically the same as 
the deterministic value Pmax=3.13 kN (it is smaller by only 2%). If the beam height 
is h=32 cm, the maximum vertical force varies between 7.73-8.85 and the mean 
stochastic force Pmax=8.30 kN (with the standard deviation of 0.334 kN) is smaller 
by only 0.6% than the deterministic value (Pmax=8.35 kN). For the beam height of 
h=192 cm, the maximum vertical force varies between 26.05-28.72 kN and the 
mean stochastic force Pmax=27.56 kN is again smaller by only 0.6% than the 
deterministic value of Pmax=27.72 kN (the standard deviation equals 0.692 kN).  

 

 

Fig. 8.10 Normalized force-displacement curves with constant values of tensile strength for 
4 notched beams under three-point bending (Bobiński et al. 2009) 
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            a)                           b)                          c)                            d) 
 

Fig. 8.11 Calculated contours of non-local softening parameter κ  above the notch for 

three-point bending of small (a), medium (b) large (c) and very large (d) notched concrete 
beam with constant values of tensile strength (Bobiński et al. 2009) 

 
The stochastic size effect in notched concrete beams is very small; the 

difference between the deterministic material strength and mean statistical 
strength is practically negligible. 

The load-displacement curves for a very large beam are not smooth in 
softening regime when the tensile strength is distributed stochastically. The scatter 
of the maximum vertical force around its mean value is similar for all beam sizes 
(Fig. 8.17). The deformation field above the notch is strongly non-symmetric  
(Fig. 8.16). The mean width of the localized zone above the notch is slightly 
higher than the deterministic value, namely: w=16.56 mm (h=8 cm), w=18.88 mm 
(h=32 cm) and w=19.67 mm (h=192 cm), Fig. 8.15.  

 

 
 

Fig. 8.12 Relationship between calculated normalized concrete strength lnσ=ln[PL/(fth
2t)] 

and ratio ln(h/lc) compared to size effect law by Bažant of Fig. 8.1b (Bažant and Planas 
1998) for constant values of tensile strength (h- beam height, lc - characteristic length) 
(Bobiński et al. 2009) 
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Fig. 8.13 The load-displacement curves from FE-calculations with constant values of 
tensile strength compared to the experiments by Le Bellego et al. (2003) with 3 notched 
concrete beams: h=8 cm (lower curves), h=16 cm (medium curves) and h=32 cm (upper 
curves) (Bobiński et al. 2009) 

 
Our results are close to those given by Vorechovsky (2007). However, in 

contrast to his results, the difference between stochastic and deterministic values 
and the scatter of stochastic values in our calculations are similar independently of 
the beam size. In contrast to simulations by Yang and Xu (2008), which were 
performed with one notched beam only, the strong tortuousness of crack 
trajectories was not obtained for a small beam. Beside this fact, the evolution of 
stochastic load-displacement curves was similar. 

 
Effect of sample number 
The calculations were carried out with a small size beam using a direct Monte 
Carlo method with 30 samples (Fig. 8.18) (λx1=1 1/m, λx2=3 1/m, 

tf
s =0.424 

MPa). Almost similar results (mean Pmax=3.07 kN with 
tf

s =0.138 MPa) were 

obtained as in the case of Latin hypercube sampling with 12 samples (mean 
Pmax=3.06 kN). 

 
Effect of correlation range 
In addition, the calculations were carried out with a small-size beam assuming a 
very small correlation length of 10 mm (Fig. 8.7) by assuming λx1=10 1/m, λx2=10 
1/m and 0.424

tf
s =  MPa in Eq. 8.3. The results (Figs. 8.19 and 8.20) show that the 

mean stochastic vertical force, Pmax=3.08 kN, and mean width of the localized 
zone, w=16.56 mm, are similar as the results with λx1=1 1/m and λx2=3 1/m. 
However, the scatter of forces is significantly smaller. 
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a) 

b) 

c) 
 

Fig. 8.14 Normalized force-displacement curves in the case of deterministic (red dashed 
lines) and random calculation (solid lines) for 3 notched beams under three-point bending: 
a) small-size beam (h=8 cm), b) large-size beam (h=32 cm), c) very large-size beam (h=192 
cm) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński et al. 2009) 
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a) 
 

b) 
 

c) 

Fig. 8.15 Distribution of non-local softening parameter above the notch in the case of 
deterministic (red dashed lines) and random calculation (solid lines) for 3 notched beams 
under three-point bending: a) small-size beam (h=8 cm), b) large-size beam (h=32 cm),  
c) very large-size beam (h=192 cm) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński  
et al. 2009) 

8.2   Unnotched Beams 

Very similar deterministic and stochastic calculations were carried out with 
concrete beams of Chapter 8.1 without notch using the similar input and material 
data (Syroka et al. 2011). The two-dimensional FE-analysis of free-supported 
 



8.2   Unnotched Beams 315
 

 

 
 

Fig. 8.16 Five arbitrary deformed FE meshes for a small-size beam (h=8 cm, u/h=0.25%) 
with random distribution of tensile strength (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) 
(Bobiński et al. 2009) 

 

 
 

Fig. 8.17 Relationship between calculated normalized concrete strength ln σ=ln [PL/(fth
2t)] 

and ratio ln (h/lc) compared to the size effect law by Bažant (Bažant and Planas 1998) for 
stochastic values of tensile strength (Bobiński et al. 2009) 
 
unnotched beams was mainly performed with 4 different beam sizes of a similar 
geometry D×Lt: 8×32 cm2 (called small-size beam), 16×64 cm2 (called medium-
size beam), 32×128 cm2 (called large-size beam), 192×768 cm2 (called very  
large-size beam) (D – beam height, Lt – beam length), Fig. 8.21. The span length L 
was equal to 3D for all beams. The depth of the specimens was t=4 cm. The size 
D×Lt×t of the first 3 beams was similar as in the corresponding experiments 
carried out by Le Bellego et al. (2003) and Skarżyński et al. (2009). The 
quadrilateral elements divided into triangular elements were used to avoid 
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volumetric locking. Totally, 13’820 (small-size beam), 39’900 (medium-size 
beam), 104’780 (large-size beam) and 521’276 (very large-size beam) triangular 
elements were used, respectively The computation time varied between 3 hours 
(small-size beam) and 3 days (very large beam) using PC 3.2 MHz. 

 

a) 

b) 

Fig. 8.18 Small size beam with random distribution of tensile strength (h=8 cm) using a 
direct Monte Carlo method with 30 samples: maximum vertical force with expected values 
(a) and standard deviation (b) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński et al. 2009) 
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Fig. 8.19 Normalized force–displacement curves with and random distribution of tensile 
strength for notched small beam under three-point bending (h=8 cm) for smaller correlation 
length (λx1=10 1/m, λx2=10 1/m, 0.424

tf
s = MPa) (Bobiński et al. 2009) 

 

 
 

Fig. 8.20 Distribution of non-local softening parameter random distribution of tensile 
strength for notched small beam under three-point bending (h=8 cm) for small correlation 
length (λx1=10 1/m, λx2=10 1/m, 0.424

tf
s = MPa) (Bobiński et al. 2009) 
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Fig. 8.21 Geometry of free-supported unnotched concrete beams subjected to three-point 
bending (F – vertical force) (Syroka et al. 2011) 

 
All specimens had again the constant uniformly distributed tensile strength 

ft=3.6 MPa. In order to properly capture strain localization in concrete, the mesh 
was very fine in the mid-part of the beam (Fig. 8.21) (where the element size was 
not greater than 3×lc). The width of this region s of Fig. 8.22 was determined with 
preliminary calculations: s=12 cm (D=8 cm), s=18 cm (D=16 cm), s=24 cm 
(D=32 cm) and s=192 cm (D=192 cm). A quasi-static deformation of a small and 
medium beam was imposed through a constant vertical displacement increment Δu 
prescribed at the upper mid-point of the beam top.  

 

 
Fig. 8.22 Assumed FE mesh in small-size beam (s – width of region with finer mesh) 
(Syroka et al. 2011) 

 
Correlated random fields describing a fluctuation of the tensile strength were 

used to capture a stochastic size effect. The distribution of this single random 
variable ft took the form of a truncated Gaussian function with the mean concrete 
tensile strength of 3.6 MPa (as in calculations with notched beams, Fig. 8.6). The 
concrete tensile strength values again changed between 1.6 MPa and 5.6 MPa 
( 3.6 2.0tf = ± MPa). The homogeneous correlation function by Eq. 8.4 was 

adopted (Bielewicz and Górski 2002). We took again into account a stronger 
correlation of the tensile strength ft in a horizontal direction λx1=1.0 1/m and a 
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weaker correlation in a vertical directions λx2=3.0 1/m in Eq. 8.4 (due to the way of 
the specimen preparation by means of layer-by-layer from the same concrete 
block). The dimension of the random field was identical as the finite element 
mesh. The same random values were assumed in four neighbouring triangular 
elements. To generate the random fields, the conditional-rejection method was 
again used. The selection was performed by the Latin sampling method (Fig. 8.23). 
The generated numbers formed the following 12 pairs: 1 – 4, 2 – 7, 3 – 3, 4 – 11, 5 
– 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Fig. 8.23). Figure 8.24 
shows the distribution of the concrete tensile strength in a small-size (Fig. 8.24a) 
and very large-size concrete beam (Fig. 8.24b). 
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Fig. 8.23 Selection of 12 pairs of random samples using Latin hypercube sampling: 1 – 4, 2 
– 7, 3 – 3, 4 – 11, 5 – 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Syroka  
et al. 2011) 

 
Deterministic size effect 
The evolution of the normalized vertical force 1.5FL/(ftD

2t) versus the normalized 
deflection u/D for four different beam sizes with the constant values of the tensile 
strength ft is shown in Fig. 8.25. The distribution of non-local softening parameter 
κ  in the mid-region of beams is demonstrated in Fig. 8.26. In Fig. 8.27, our FE 

results were confronted with FE results for similar notched beams of Chapter 8.1 
(Bobiński et al. 2009).  

The maximum deterministic vertical forces were: Fmax=3.83 kN (D=8 cm), 
Fmax=6.75 kN (D=16 cm), Fmax=12.57 kN (D=32 cm) and Fmax=66.18 kN (D=192 
cm), respectively. The strength and ductility strongly increased with decreasing 
beam height. The normalized nominal (flexural) strength σN/ft=1.5FmaxL/(D2tft) 
varied between 1.1 (D=192 cm) and 1.5 (D=8 cm). For the large and very large-
size beam, the snap-back behaviour occurred. (the strength’s decrease with 
decreasing deformation). It was in particular very strong for the very large-size 
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beam. Note that the snap-back behaviour happened in notched very large concrete 
beams only (Bobiński et al. 2009). 

The width of a localized zone for all beam sizes was about w=1.5 cm (at the 
same normalized flexural stress of 1.0, Fig. 8.25). In turn, the height of the 
localized zone h measured at the peak load increased non-linearly with increasing 
beam height D, i.e.: 24 mm, 34 mm, 40 mm, and 48 mm for the small 
(D = 80 mm), medium (D = 160 mm), large (D = 320 mm) and very large beam 
(D=1920 mm), respectively. The larger the beam, the lower was the ratio of the 
localized zone height to the beam height h/D: 0.3 (D=80 mm), 0.212 (D=160 
mm), 0.125 (D=320 mm) and 0.025 (D=1920 mm). 

A pronounced deterministic size effect took place in computations (Fig. 8.27). 
The deterministic size effect is significantly stronger than in notched concrete 
beams.  

When comparing the numerical results with the size effect model by Bažant 
(Eq. 8.1), the best fit was achieved with a high parameter r=4 (with fr

∞=3.55 MPa 
and Db=112 mm). However, based on the recent results by Bažant et al. (2007a, 
2007b), the parameter r (which controls both the curvature and slope of the size 
effect curve) seems to be close to 1. Therefore, a second deterministic 
characteristic length lp was introduced (Bažant et al. 2007a, 2007b) to better 
describe the size effect law by taking into account a perfect plastic rage for 
extremely small structure sizes D 
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This formula represents the full size range transition from the perfectly plastic 
behaviour (for D→0, D≤lp) to the elastic brittle behaviour (for D→∞, D>>Db) 
through the quasi-brittle one. The second deterministic characteristic length lp 
governs the transition to plasticity for small sizes D. The case lp≠0 shows the 
plastic limit for vanishing size D. This case is asymptotically equivalent to the 
case of lp=0 for large D.  

The asymptotic prediction for small and large sizes leads to 
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The parameter lp equals 
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with ηp - the ratio between the maximum plastic and elastic strength. 
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b) 
a) 

Fig. 8.24 Distribution of concrete tensile strength in small-size concrete beam D=8 cm 
(region 8×12 cm2) (a) and in very large-size concrete beam D=192 cm (region 24×48 cm2) 
(b) (Syroka et al. 2011) 

 

Fig. 8.25 Normalized horizontal normal (flexural) stress-deflection curves 
1.5FL/(ftD

2t)=f(u/D) under 3-point bending with constant values of tensile strength for 4 
different concrete beam heights: small D=8 cm (dashed line ‘a’), medium D=16 cm 
(dotted-dashed line ‘b’), large D=32 cm (dotted line ‘c’), very large D=192 cm (solid line 
‘d’) (F – vertical force, L – beam length, D – beam height, t- beam thickness, ft - tensile 
strength) (Syroka et al. 2011) 
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a) b) c) 

d) 
 
Fig. 8.26 Distributions of non-local softening parameter κ in concrete beams (mid-region) 

from deterministic calculations sizes at σN=0.45 MPa in: a) small D=8 cm, b) medium 
D=16 cm, c) large D=32 cm and d) very large-size beam D=192 cm (figure ‘d’ is not 
appropriately scaled) (Syroka et al. 2011) 

 
The parameter lp was determined with additional FE calculations for D→0 and 

D→∞. Thus, four additional geometrically similar concrete elements were 
numerically analyzed by us with D=0.2 cm, D=2 cm, D=4 cm and D=384 cm. On 
the basis of the nonlinear regression method by Leveneberg-Marquardt, the 
following parameters were found to fit Eq. 8.7: fr

∞=3.782 MPa, Db=40 mm, lp= 
13.6 mm, r=1.0. The agreement of our FE results for 8 elements with Eq. 8.7 is 
almost perfect (Fig. 8.28). 

 
Statistical size effect 
The 12 different evolutions of the normalized vertical force FL/(ftD

2t) versus the 
normalized vertical deflection u/D from stochastic calculations are shown in  
Fig. 8.29 (the deterministic curve is also attached).  
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Fig. 8.27 Calculated nominal strength versus beam height from deterministic FE 
calculations for notched concrete beams (Bobiński et al. 2009, Chapter 8.1) (green 
diamonds) and unnotched beams (red circles) (Syroka et al. 2011) 

 

Fig. 8.28 Calculated normalized flexural tensile strength fr/ft=1.5FmaxL/(ftD
2t) versus beam 

height D in unnotched concrete beams from deterministic FE calculations (red circles) 
versus beam height D compared with the deterministic size effect model by Bažant (blue 
dashed line by Eq. 8.1 with r=1, green dotted line by Eq. 8.1 with r=4 and red solid line by 
Eq. 8.7 with r=1) (Syroka et al. 2011) 

 
The deterministic normalized vertical force is located in the range of stochastic 

values for a small and medium-size beam or is the maximum values for a large 
and very large-size beam. For the height of D=8 cm, the maximum vertical force 
changes between 3.267-4.08 kN, and the mean value Fmean=3.72 kN is by 3% 
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smaller than the deterministic value F=3.83 kN (the coefficient of variation 
cov=0.063). If the beam height is D=16 cm, the maximum vertical force varies 
between 5.61-6.82 kN and the mean stochastic force Fmean=6.25 kN (with the 
coefficient of variation cov=0.057) is smaller by 7% than the deterministic value 
(F=6.75 kN). For the both beams, the single maximum stochastic vertical force 
can be higher than the deterministic one. If the beam height is D=32 cm, the 
maximum vertical force changes between 10.31-12.25 kN, and the mean 
stochastic Fmean=11.07 kN (with the coefficient of variation cov=0.053) is smaller 
by 12% than the deterministic value of F=12.57 kN. Finally, in the case of the 
very large-size beam D=192 cm, the maximum vertical force changes between 
54.32-59.18 kN and the mean stochastic Fmean=57.14 kN (the variation coefficient 
equals cov=0.027) is smaller by 14% than the deterministic value of F=66.18 kN. 
Thus, both the mean stochastic nominal strength and coefficient of variation 
always decrease with increasing size D and the influence of the random 
distribution of the tensile strength on the nominal strength is stronger for larger 
structures (Fig. 8.30). In addition, the calculations were carried out with a small-
size beam, assuming a correlation length lower than the dimension of a single 
finite element. A scatter of the vertical force was small (the coefficient of variation 
strongly depends on the correlation range of correlation). 

Figures 8.31-8.33 show some results for a localized zone from stochastic 
analyses (concerning the propagation way through finite elements with the 
different tensile strength – Fig. 8.31, zone height – Fig. 8.33 and zone width -  
Fig. 8.32). The random fields of ft do not affect the mean width of a localized zone, 
which is again about 1.5 cm for all beam sizes (Fig. 8.32). A localized zone can be 
strongly non-symmetric and curved (Figs. 8.31). It occurs at the mean distance of 
about 2.0 cm (small-size beam) and of about 40 cm (very large-size beam) from 
the beam-centre (Fig. 8.31). The mean height of localized zones h at peak was 
closed to the deterministic outcomes. 
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a) 

b) 

c) 

d) 

Fig. 8.29 Normalized vertical force-deflection curves with constant (dashed red line) and 
random (solid lines) value of tensile strength for 4 different beam heights: a) small D=8 cm, 
b) medium D=16 cm, c) large D=32 cm, d) very large-size beam D=192 cm (Syroka et al. 
2011) 
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Fig. 8.30 Calculated normalized nominal strength N r( D ) / fσ ∞  versus beam height D from 

deterministic (circles) and stochastic (triangles) FE calculations for unnotched concrete 
beams (Syroka et al. 2011) 
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                                                           a) 

 
                                                             b) 

 
 

                                 c)                        d) 
 
 
 
 
 
 
 
 
 

Fig. 8.31 Contours of non-local softening parameter κ against distribution of tensile 

strength from stochastic FE calculations in 2 large-size beams D=192 cm and 2 small-size 
beams D=8 cm (cases ‘a’ and ‘c’ correspond to maximum vertical force, cases ‘b’ and ‘d’ 
correspond to minimum vertical force) (tensile strength values are expressed by colour 
scale) (Syroka et al. 2011) 
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a) 

b) 

c) 

d) 
Fig. 8.32 Distribution of non-local softening parameter along beam length for deterministic 
(dashed lines) and stochastic calculations (solid lines) for 4 beams under three-point 
bending: a) small D=8 cm, b) medium D=16 cm, c) large D=32 m and d) very large-size 
beam D=192 cm (Syroka et al. 2011) 
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a) 

b) 
 

Fig. 8.33 Relationship between non-local softening parameter and localized zone height 
from deterministic (dashed lines) and stochastic (solid lines) calculations for: a) small D=8 
cm, b) medium D=16 cm, c) large D=32 cm and d) very large-size beam D=192 cm 
(Syroka et al. 2011) 
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c) 

d) 

Fig. 8.33 (continued) 

 
The maximum vertical force in concrete beams strongly depends on the 

position of a localized zone. This position is connected with the distribution and 
magnitude of the tensile strength at the place of a localized zone (within the area 
w×h) and the magnitude of the horizontal normal stress due to bending σ11. The 

maximum vertical force increases with increasing ratio 11tf ( w h ) / σ× . A 

localized zone is created, where the mean local tensile strength tf  in the localized 

area w×h is minimum. In a small-size beam (Figs. 8.31c and 8.31d), the beam mid-
region where a localized zone can be created is very limited due to the assumed 
standard deviation of the tensile strength and correlation range (3 cm in a vertical 
direction and 8 cm in a horizontal direction). In this limited beam region (with a 
small number of weak spots, Figs. 8.31c and 8.31d), the tensile strengths are 
strongly correlated and can be higher or lower than its mean value ft=3.6 MPa. 
Therefore, the vertical normal tensile force can be smaller or larger than this in the 
deterministic study (depending on the spot choice by a localized zone for 
propagation). With an increase of the beam size, the number of weaker local spots 
increases with the correlation range assumed (Figs. 8.31a and 8.31b) and the beam 
mid-region where a localized zone can propagate is significantly larger. In this 
wide beam region, the tensile strengths are weaker correlated than in a small-size 
beam. So there exists a very high probability to achieve a smaller vertical force 
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than in a small beam due to the great number of weak spots with the tensile 
strength smaller than ft=3.6 MPa, which can be chosen by a localized zone for 
propagation (Figs. 8.31a and 8.31b).  

An extended universal formula for a coupled deterministic-stochastic size effect 
law involves a deterministic scaling length Db and a stochastic scaling length Lo 
(Bažant et al. 2007a, 2007b) 
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where m is the Weibull modulus (responsible for the slope of a large-size 
asymptote) and n is the number of spatial dimensions (n=2 for 2D problems). 
Thus, the mean size effect is separately divided into a stochastic part and 
deterministic. The parameter Db drives the transition from elastic-brittle to quasi-
brittle and Lo drives it from constant property to local Weibull via strength random 
field. The simplest choice for analyses is usually Lo=Db. Equation 8.10 satisfies 3 
asymptotic conditions: a) for small sizes D→0, it asymptotically reaches the 
deterministic size effect law (Eq. 8.7), b) for large sizes D→∞, it asymptotically 
reaches the dominating Weibull size effect with the slope equal to –n/m and c) for 
m→∞ and Lo→∞, it is equal to the deterministic size effect law. Thus, Eq. 8.10 can 
be regarded as the asymptotic matching of small-size deterministic and large-size 
stochastic size effects. With respect to the largest beam, the optimum match for 
the parameter m is the value of 48 calculated from the coefficient of variation cov 
(with cov=0.027) - driven by m only 
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However, the modulus m in other stochastic FE analyses was equal either to m=24 
(Bažant and Novak 2001) or even m=8 (Vorechovsky 2007) with different other 
parameters (e.g. fr

∞=3.68-3.76 MPa, Lo=Db=15.53-48.66 mm and r=1.14-1.28, 
Bažant and Novak 2001). Thus, the stochastic size effect was slightly weaker in 
our numerical analyses (m=48) being independent of the correlation length. This 
can be mainly caused by the different loading type (bending versus uniaxial 
tension), correlation function and sampling type.  

Figure 8.34 presents a comparison between our numerical results and size 
effect law by Bažant (Eqs. 8.7 and 8.10) using the following parameters: Lo= Db= 
30.37 mm, n=2, lp=0, r =1, m=48 and fr

∞=3.90 MPa with the related asymptotes 
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assuming the Weibull modulus m=12-48. The stochastic outcomes indicate a 
further decrease of the nominal strength with increasing element size while the 
deterministic ones reach their lower limit. Our deterministic-statistical results 
present also a satisfactory agreement with the size effect law by Bažant by 
assuming the recommended value of m=24 (Lo=Db=16.95 mm, lp=0, r=1 and 
fr

∞=4.753 MPa). However, the Weibull modulus m=48 solely enables a transition 
from a pure deterministic to a coupled deterministic-statistical size effect. The 
value m=12 underestimates the calculated deterministic-statistical flexural tensile 
strength. 

 

 

Fig. 8.34 Calculated normalized flexural tensile strength fr/ft=1.5FmaxL/(ftD
2t) 

versus beam height D from deterministic (circles) and stochastic (triangles) FE 
calculations compared with deterministic (line ‘a’, Eq. 8.7) and deterministic-
stochastic size effect law by Bažant (Eq. 8.10) for various Weibull moduli m and 
constant deterministic parameters (line ‘b’- m=48, line ‘c’- m=24, line ‘d’ - m=12) 
(Syroka et al. 2011) 

 
All size effect results of the normalized nominal (flexural) strength 

σN/ft=1.5FmaxL/(D2tft) for unnotched and notched concrete beams (Bobiński et al. 
2009) are summarized in Fig. 8.35 as compared to the size effect laws by Bažant 
(Eqs. 8.2, 8.7 and 8.10): Eq. 8.10  with Db=40 mm, lp=13.6 mm, r=1.0, fr

∞= 
3.78 MPa, n=2, Eq. 8.7 with m=48, Lo=Db=40 mm, lp=13.6 mm, r=1, fr

∞=3.78 
MPa, n=2 and Eq. 8.2 with B=1.48 and Do=0.15 m. For notched structures, a 
random distribution of the tensile strength has obviously no effect on the nominal 
strength. 
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a) 
 

b) 

Fig. 8.35 Calculated normalized nominal (flexural) strength σN/ft (σN=1.5FmaxL/(D2t)) 
versus beam height D for: a) unnotched concrete beams from deterministic (red circles) and 
stochastic (blue triangles); b) for notched concrete beams from deterministic (green 
squares) and stochastic (green diamonds) FE calculations compared with deterministic size 
effect law by Bažant (Eq. 8.7) (red solid line), deterministic-stochastic size effect law by 
Bažant (Eq. 8.10) (blue dashed line) and deterministic size effect law by Bažant (Eq. 8.2) 
(green dotted-dashed line) (Syroka et al. 2011) 

 

Figures 8.36 and 8.37 compare our FE results on the normalized nominal 
(flexural) strength with unnotched beams of a coupled deterministic-stochastic 
size effect with size effect law SEL by Bažant (Eq. 8.10) and MFSL by Carpinteri 
(Eq. 8.3). In the considered size range of unnotched beams, both size effect laws 
show almost the same results. In the case of notched beams, there exists, however, 
a strong discrepancy between the size effect law MFSL (Eq. 8.3 with A1=2.46 and 
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A2=1385.9) and our earlier FE results (Bobiński et al. 2009, Fig. 8.35) for very 
small (D<0.1 m) and large beams (D>1.0 m) that confirms the conclusions by 
Bažant and Yavari (2007c) that the size effect law MFSL is not always realistic. 

 

 

Fig. 8.36 Calculated normalized nominal (flexural) strength fr/ft=1.5FmaxL/(ftD
2t)  versus 

beam height D from coupled deterministic-stochastic FE calculations (circles) for 
unnotched beams compared with two size effect laws: SEL by Bažant (Eq. 8.10) – solid line 
and MFSL by Carpinteri et al. (Eq. 8.3) – dashed line (Syroka et al. 2011) 

B) 

Fig. 8.37  Calculated normalized nominal (flexural) strength σN/ft (σN=1.5FmaxL/(D2t)) versus 
beam height D from coupled deterministic-stochastic FE calculations (circles) for notched 
beams (Bobiński et al. 2009) compared with two size effect laws: SEL by Bažant (Eq. 8.2) – 
solid line and MFSL by Carpinteri et al. (Eq. 8.3) – dashed line (Syroka et al. 2011) 

8.3   Elements under Compression  

Finally, the effect of an imperfection or notches on a deterministic size effect was 
investigated during uniaxial compression of a concrete specimen with smooth 
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boundaries (Skuza and Tejchman 2007). Figure 8.38 presents a hardening-
softening curve assumed in compression (Drucker-Prager criterion) (Eqs. 3.27-
3.30, 3.93 and 3.97). The Young modulus was E=18000 MPa, Poisson’s ratio 
ν=0.2, compressive strength 32 MPa, non-locality parameter m=2, characteristic 
length lc=5 mm, hardening/softening parameter κu2=3×10-3, internal friction angle 
ϕ=14o and dilatancy angle ψ=8o.  

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.38 Hardening/softening curve assumed in compression (Skuza and Tejchman 2007) 
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Fig. 8.39 Geometry and boundary conditions of a concrete specimen subjected to uniaxial 
compression (Skuza and Tejchman 2007) 

 
The FE analyses were performed with 3 different specimens subjected to 

uniaxial compression: 10×5 cm2, 10×10 cm2 and 10×20 cm2 (Fig. 8.39). The 
specimens had a weak element or a single notch (mid-point along the left edge). A 
small deterministic size effect with respect to the strength was obtained in a 
specimen with a single non-symmetric notch only (Figs. 8.40 and 8.41) due to the 
fact that damage localization develops faster and is created before the material 
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strength is attained. This outcome is in agreement with calculations by Cusatis and 
Bažant (2006) using a 3D lattice model for concrete specimens under uniaxial 
compression. In concrete specimen under compression, shear zones were obtained 
during a deformation process (Fig. 8.41). In small specimens, they had a tendency 
to be reflected from rigid boundaries. 

The following conclusions can be drawn from our non-linear FE-investigations 
of a deterministic and statistical size effect under quasi-static conditions: 

• The FE results are in agreement with the size effect law by Bažant (notched and 
unnotched beams) and by Carpinteri (unnotched beams). However, fractality is not 
needed to induce a size effect, since the stress redistribution and energy release 
during strain localization cause a size effect (thus, fractality can contribute to a 
certain refinement of a size effect but not to its replacement). The size effect 
model by Bažant is universal and has physical foundations and can be introduced 
into design codes.  
• The deterministic size effect (nominal strength decreases with increasing 
specimen size) is very pronounced in notched and unnotched concrete beams (it is 
stronger in notched beams). It is caused by occurrence of a straight tensile 
localized zone with a certain width. The material ductility increases with 
decreasing specimen size. A pronounced snap-back behaviour occurs for very 
large-size notched beams (h/lc≈400) and for large and very large-size unnotched 
beams (h/lc≈8). The width of the localized zone is similar for all beam sizes. 
• The solution of random non-linear problems on the basis of several samples is 
possible. The statistical size effect is strong in unnotched concrete beams and 
negligible in notched concrete beams (due to the same position of the localized 
zone). The larger the beam, the stronger is the influence of a stochastic 
distribution on the nominal strength due to the presence of a larger number of 
local weak spots (i.e. the mean stochastic bearing capacity is always smaller than 
the deterministic one). The stochastic bearing capacity is larger in some 
realizations with small and medium-large beams than the deterministic value. The 
randomness of the tensile strength does not change the mean width of the 
localized zone. The localized zone can be curved and non-symmetric. This 
position of the localized zone is connected with the distribution and magnitude of 
the tensile strength in a localized zone at peak and the magnitude of the horizontal 
normal stress due to bending. 
• The calculated stochastic effect is slightly weaker than in works by Bažant, 
Novak and Vorechovsky (2006, 2007). This can be mainly caused by the loading 
type, correlation length, correlation function and sampling type assumed in 
stochastic calculations. The results obtained with the help of Latin hypercube 
sampling are strongly influenced by the definition of the beam zone where the 
tensile strength distribution is statistically described. Our FE results match well 
the combined deterministic-statistical size effect law by Bažant with the Weibull 
modulus m=24-48. In turn, a prediction of the combined deterministic-statistical 
size effect based on deterministic results only is possible with the modulus m=48. 
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• The deterministic size effect can be observed on specimens under uniaxial 
compression in presence of non-symmetric notches only. In turn, an increase of 
ductility with decreasing specimen can be observed in all specimens 
independently of the imperfection type. 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.40 Normalized load-displacement diagrams during uniaxial compression (a) 
specimen with one weak element, b) specimen with one notch, 1) small-size specimen, 2) 
medium-size specimen. 3) large-size specimen) (Skuza and Tejchman 2007)  
 
 
 
 
 
 
 



338 8   Deterministic and Statistical Size Effect in Plain Concrete
 

 
 
 
 
 
 
 
 
 
 
 
 
 

                                                                 A) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
                                                           B) 
 
Fig. 8.41 Deformed meshes and contours of non-local softening parameter during uniaxial 
compression at residual state for small-size, medium-size and large-size concrete specimen: 
A) unnotched specimens with imperfection, B) specimens with single notch (Skuza and 
Tejchman 2007) 
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