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Chapter 6 

Continuous Modelling of Fracture in Plain 
Concrete under Cyclic Loading 

Abstract. The enhanced coupled elasto-plastic damage models with non-local 
softening proposed by Pamin and de Borst (1999) (called model ‘1’), by Carol et 
al. (2001) and by Hansen and Willam (2001) (called model ‘2’), by Meschke et al. 
(1998) (called model ‘3’) and Marzec and Tejchman (2009, 2010, 2011) (called 
model ‘4’) described in detail in Chapter 3.2 were used in FE calculations. Quasi-
static FE results were compared with corresponding laboratory tests on concrete 
specimens: dog-bone shaped specimen under monotonic uniaxial tension (van 
Vliet and van Mier 2000) and notched beams under cyclic loading (Hordijk 1991, 
Perdikaris and Romeo 1995).  
 

Initial Results for Monotonic Uniaxial Tension 
In the first step, the numerical calculations were carried out for concrete 
specimens under monotonic uniaxial tension. The main purpose was to check the 
effectiveness of a different non-local techniques used for each model. The 
experimental data presented by van Vliet and van Mier (2000) served as the 
reference data. In the experiments, a size effect in concrete with two-dimensional 
dog-bone shaped concrete specimens under quasi-static uniaxial tension (Fig. 6.1) 
was investigated. The five different specimen types (from ‘A’ to ‘E’) were used. 
Their height varied from 75 mm up to 2400 mm. In the numerical calculations, 
three different specimen sizes were considered only, namely: ‘A’, ‘B’ and ‘C’ 
(Tab. 6.1) with the height varying between 75 mm and 300 mm. The deformation 
was induced by imposing a vertical displacement at the node at the top part of the 
specimen. The number of triangular finite elements (with linear shape functions) 
was equal to 246, 1018 and 4102 for the specimen ‘A’, ‘B’ and ‘C’, respectively 
(with characteristic length lc=5 mm). The modulus of elasticity was E=49.0 GPa 
and the Poisson’s ratio was ν=0.2. 

In the coupled model ‘1’ by Pamin and de Borst (1999) (Chapter 3.2), the von 
Mises yield criterion with linear hardening was assumed in a plastic region (with the 
yield stress σyt

0=2.6 MPa and linear hardening modulus Hp=E/2). In a damage 
regime, the following material parameters were assumed: κ0=7.9×10-5, α=0.91, 

β=350 and k=10. The damage formulation was based on the total strain ( )ijε ε .  
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In the coupled model ‘2’ by Carol et al. (2001) and by Hansen and Willam (2001) 
(Chapter 3.2), the following parameters: Ept=45 GPa, nt=0.13 and ft=2.54 MPa were 
assumed to describe the resistance function by Eq. 3.77. In turn the following 
parameters were chosen in the coupled model ‘3’ by Meschke et al. (1998) (Chapter 
3.2): ft=2.85 MPa, κ0=3.0×10-3 and β=0.15. For the coupled model ‘4’ by Marzec 
and Tejchman (2010) (Chapter 3.2), the Rankine yield criterion with the yield stress 
σ0

y=2.5 MPa was assumed in plasticity. A linear hardening parameter (Hp=E/2) was 
chosen. In a damage regime, the following material parameters were taken: 
κ0=9×10-5, α=0.95 and β=230. The damage formulation was based on the total 
strains according to Eq. 3.84. The stiffness reduction factors were at=1 and ac=1.  

 

Fig. 6.1 Geometry of dog-bone shaped specimen (Vliet and van Mier 2000) 

Table 6.1 Dimensions of dog-bone shaped specimens under uniaxial tension of Fig. 6.1 
(van Vliet and van Mier 2000) 

 

Specimen 
type (Fig. 6.1) 

‘A’ ‘B’ ‘C’ 

D [mm] 50 100 200 

r [mm] 36.25 72.50 145 

 
Figure 6.2 shows the calculated localized zone with four coupled models in the 

specimen A, B and C of Tab. 6.1. In turn, the calculated load-displacement 
diagrams for the concrete specimen ‘B’ of Tab. 6.1 with 4 coupled models 
compared to the experiment are demonstrated in Fig. 6.3. A satisfactory agreement 
with the experiment was obtained. 

The calculated width of a localized zone is 2.2÷2.3 cm (4-5)×lc (model ‘1’ and 
‘4’), 2.7 cm (5-6)×lc (model ‘2’) and 1.7 cm (3-4)×lc (model ‘3’). The calculated 
evolution of the vertical force at the top is almost the same for each formulation 
and close to the experimental data.  

Figure 6.4 presents a comparison of calculated and experimental values of the 
nominal strength σN versus the specimen size D (σN was calculated by dividing the 
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ultimate vertical force at the top by the smallest specimen cross-section equal to 
0.6 bD, b – specimen thickness, D – specimen width of Fig. 6.1. The numerical 
results were compared with the corresponding experimental mean values (and 
standard deviations).  

 

                               A) 

                                 a)                           b                            c) 

               B) 

                            a)                                b)                                c) 

      C) 
                    a)                                       b)                                       c) 

Fig. 6.2 Calculated contours of localized zones (for u=100 μm) with different enhanced 
coupled models: a) model ‘1’ and ‘4’, b) model ‘2’ and c) model ‘3’ for specimen sizes  
of Tab. 6.2: A) type A, B) type B and C) type C (Vliet and van Mier 2000) (specimens are 
not scaled) 

Figure 6.5 shows the effect of a different resistance function (Eqs. 3.72, 3.76 
and 3.77) in the coupled model ‘2’ on results in a post-peak regime. The function 
of Eq. 3.72 gives limited possibilities to control the material behaviour in a 
softening regime (Fig. 6.5a), since a significant change of gf/ro slightly influences 
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the load-displacement curve. The proposition in Eq. 3.36 describes a wider range 
of the post-peak behaviour with the same amount of parameters as the previous 
function (Fig. 6.5b). The third resistance function of Eq. 3.77 can the best control 
the rate of softening and the shape of the function in the post-peak regime with the 
help of one additional parameter (Fig. 6.5c). 

 

Fig. 6.3 Calculated load-displacement diagrams for four coupled elasto-plastic-damage 
models as compared with experimental data for specimen ‘B’ (Vliet and van Mier 2000) 

 
Fig. 6.4 Comparison between calculated and experimental values of nominal strength σN 
versus specimen size D of Fig. 6.1 for dog-bone shaped specimens (Vliet and van Mier 2000) 
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The experimental size effect on strength was well reflected in numerical 
calculations except the smallest specimen ‘A’ wherein a strong boundary effect 
took place in the experiment (the coarseness of the applied concrete mixture was 
simple too large in relation to the specimen dimensions, Vorechovsky 2007).  
 
FE Results for Four-point Cyclic Bending of Notched Concrete Beams 
The comparative numerical plane strain simulations were performed with a 
concrete notched beam under four-point cycling bending subjected to tensile 
failure (Hordijk 1991) (Fig. 6.6). The length of the beam was 0.5 m and the height 
0.1 m. The deformation was induced by imposing a vertical displacement at two 
nodes at the top of the beam. In the calculations, the modulus of elasticity was 
E=40 GPa, Poisson ratio ν=0.2 and characteristic length lc=5 mm. The tensile 
strength from experiments was varied between ft=2.49 MPa and ft=4.49 MPa. The 
calculations were performed with 7634 triangular finite elements. The size of 
elements was not greater than (2-3)×lc to obtain objective FE results (Bobiński and 
Tejchman 2004, Marzec et al. 2007). The force-displacement diagrams P=f(u) are 
shown in Fig. 6.7. In turn, Fig. 6.8 presents the calculated contours of a localized 
zone above the notch. The evolution of non-local parameters: equivalent strain 
measure (model ‘1’ and ‘4’), pseudo-log damage variable (model ‘2’) and 
softening parameter (model ‘3’) is demonstrated in Fig. 6.9.  

For the first enhanced coupled model (model ‘1’) with one surface in 
hardening plasticity, the von Mises criterion with the yield stress σyt

0=6.5 MPa 
(total strains) and σyt

0=5.9 MPa (elastic strains) was assumed with a linear 
hardening parameter (Hp=E/2). Since, an elasto-plastic model is not directly 
responsible for the evolution of the failure mechanism, the von Mises criterion 
was chosen for concrete in elasto-plasticity for the sake of simplicity (the 
application of the criterion by Drucker-Prager does not affect FE results).  
The following material constants were used: κ0=9.5×10-5, α=0.92 and β=140 with 

the total strains ( )ijε ε , and κ0=8.6×10-5, α=0.92 and β=170 with the elastic 

strains ( )e
ijε ε . The parameter set is different in both cases due to a varying 

coupling between plasticity and damage (via elastic or total strains).  
Figure 6.7a shows the calculated load-displacement curves with a coupled 

elasto-plastic damage model using total strains. The load reversals exhibit a 
gradual decrease of the elastic stiffness, however calculated stiffness degradation 
is overestimate, especially for high values of κ. The calculated vertical force is 
close to experiment. The slope of the load-displacement curve is realistically 
reflected. The width of a localized zone above the notch in the beam is about 2.4 
cm (4.8×lc) (Fig. 6.9a). 
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a) 

 

b) 

 

c) 

Fig. 6.5 Calculated load-displacement curves with resistance functions: a) of Eq. 3.72 for 
different ratios gf/r0, b) of Eq. 3.76 for different parameter α and c) of Eq. 3.77 for different 
parameters Ept and nt compared with experimental data for specimen ‘B’ (Vliet and van 
Mier 2000) 
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c) 
 

Fig. 6.5 (continued) 

 

 
 
Fig. 6.6 Geometry and boundary conditions of a notched beam under four-point bending 

(Hordijk 1991) 

 
Using the second enhanced coupled model, the resistance function by Nguyen 

(2005) was assumed with Ept=37 GPa, nt=0.175, ft=2.85 MPa and m=1.2. The 
numerical results agree well with the experimental data only in the case of  
the ultimate vertical force and softening slope in the post-peak regime (Fig. 6.7b). 
The calculated stiffness degradation is significantly too high than in the 
experiment. As a consequence, the width of a localized zone increases up to 3.2 
cm (6.4×lc) (Fig. 6.9b). The similar results are obtained with the resistance function 
by Eq. 3.76 (Marzec 2009). 

In the third enhanced coupled model, the calculated ultimate vertical force 
(with the parameters: ft=2.85 MPa, κ0=1.85×10-3, γ=0.2 and m=2) again very 
similar as compared with the experimental value (Fig. 6.7c). Also the softening 
behaviour is realistically reflected. The slope of the experimental and numerical  
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curve is almost the same. The calculated stiffness degradation exhibits a proper 
gradual decrease and it is close to experiment. The width of the localized zone 
above the notch is 1.4 cm (2.8×lc) (Fig. 6.9c).  

 

a) 

b) 
 

Fig. 6.7 Experimental and calculated force-displacement curves using 4 different coupled 
elasto-plastic-damage models with non-local softening during quasi-static four-point cyclic 
bending under tensile failure (Hordijk 1991): a) model ‘1’ (damage based on total strains), 
b) model ‘2’, c) model ‘3’ and d) model ‘4’ (damage based on elastic strains) (Marzec and 
Tejchman 2009, 2010) 
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c) 

d) 
 
Fig. 6.7 (continued) 

 
In the fourth enhanced model, the constants σyt

0=6.5 MPa, Hp=E/2, κ0=4.3×10-5, 
β=650, α=0.90,  η1=1.2, η2=0.15, δ=450, at=0 and ac=1 were used (damage was 
based on elastic strains). The calculated force-displacement curve exhibits good 
agreement with experimental outcomes (Fig. 6.7d). The bearing capacity of the 
beam is very well captured. The post-peak behaviour is close to experiment, 
however the softening slope is slightly worst reflected as in the model ‘3’. In turn 
a calculated stiffness decrease is almost the same as in the experiment. Thus, an 
evident improvement as compared to the model ‘1’ with respect to the magnitude 
of the stiffness reduction was achieved. The calculated contours of a non-local 
variable describing the shape of a localized zone are similar as in the model ‘1’ 
(Fig. 6.8d). The results of Figs. 6.8 and 6.9 demonstrate that the shape of a localized 
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zone above the notch is different due to the material stiffness in a softening regime 
induced by the material formulation. The shape of a localized zone in the models 
‘1’ and ‘4’ is the same due to a similar model formulation, and is typical for other 
solutions within damage mechanics (e.g. Peerlings 1999, Pamin and de Borst 
1999).  

 

    
                   a)                         b)                           c)                              d) 
 
Fig. 6.8 Calculated contours of localized zone near notch in a beam under four-point 
bending with 4 different coupled elasto-plastic-damage models with non-local softening 
during four-point bending: a) model ‘1’, b) model ‘2’, c) model ‘3’ and d) model ‘4’ (at 
deflection u=0.15 mm) (Marzec and Tejchman 2010) 

 
Summarized, the coupled models ‘1’, ‘3’ and ‘4’ are capable to satisfactorily 

capture the cyclic concrete behaviour under tensile failure. 
 
FE results for three-point cyclic bending of notched concrete beams 
In order to check the capability of the improved coupled model ‘4’ to simulate a 
deterministic size effect observed experimentally in brittle materials (van Vliet 
and van Mier, 2000), the FE-calculations were performed in addition with 
concrete notched beams under three-point cycling loading (Fig. 6.10 Tab. 6.2) 
(Perdikaris and Romeo 1995). The number of triangular finite elements was equal 
to 2292, 5213 and 9211 for a small-, medium- and large-size beam, respectively. 
The size of elements was again not greater than 3×lc. The deformation was 
induced by imposing a vertical displacement at the mid-node at the beam top. The 
modulus of elasticity was E=45.6 GPa and the Poisson ratio was ν=0.2 and. To 
match the numerical results with the experimental ones, the same material 
constants for all three beams were chosen: σ0

y=6.5 MPa, Hp=E/2, κ0=9.0×10-5, 
β=1550, α=0.99, η1=1.2, η2=0.15, δ=950, at=0 and ac=1 and lc=5 mm (equivalent 
strain measure based on elastic strains). As compared to FE calculations on four-
point cyclic bending, the same constants σy, Hp, η1, η2, at and ac were assumed. 
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                                       a)                                                      b) 
 

 
      c) 

  
Fig. 6.9 Evolution of non-local parameter above notch in beam under four-point bending 
with 4 different coupled elasto-plastic-damage models with non-local softening: a) model 
‘1’, b) model ‘2’ and c) model ‘3’ (at deflection u=0.15 mm) (Marzec and Tejchman 2009) 

 
Figures 6.11a and 6.11b demonstrate the calculated force-displacement 

diagrams for a small- and large-size beam compared with the experimental data. 
The stiffness degradation is again realistically captured by the model. The 
calculated ultimate force as compared to experiments is higher by 10-15%. To 
obtain a better agreement between ultimate forces and calculated stiffness, the 
material constant should be better calibrated (in particular κ0 and parameters 
controlling the damage evolution β, δ and η2).  
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Fig. 6.10 Geometry and boundary conditions of a notched beam under three-point cyclic 
bending (Perdikaris and Romeo 1995) 

 
Table 6.2 Beam dimensions in cyclic tests by Perdikaris and Romeo (1995) 
 

Beam 
Size 

Depth 
d 

Width 
b 

Span 
S 

Notch 
a 

[mm] [mm] [mm] [mm] 

Small 64 127 254 20 

Medium 128 127 508 39 

Large 254 127 1016 78 

 
Next, the calculated results of a deterministic size effect with respect to the 

ultimate vertical force were confronted with the size effect law by Bažant (Eq. 5.5) 
for notched beams (Bažant and Planas 1998, Bažant 2003). The FE results show 
good agreement with the experimental data (Fig. 6.12). 

First, simple cyclic uniaxial element tests were numerically performed to show 
the behaviour of the model ‘4’ (with 4-node quadrilateral elements). Figure 6.13 
shows the load-displacement diagrams under cyclic uniaxial tension and cyclic 
uniaxial compression for different influential material constants β, δ, η2 and κ0 
(which were independently changed). The effect of the constant α (α=0.7-0.99) 
and η1 (η1=1.0-1.2) was negligible. The modulus of elasticity was E=40 GPa and 
the Poisson ratio was ν=0.18. In tension, the constants σ0

y=4.0 MPa and Hp=E/2 
(Rankine criterion), and in compression σ0

y=40 MPa, Hp=E/2, φ=20º and ψ=10º 
(Drucker-Prager criterion) were chosen. The equivalent strain measure was based 
on total strains. The material constants varied in the following ranges: β=200-
1100, δ=200-900, η2=0.15-0.45 and κ0=(15-25)×10-5 (with α=0.95, η1=1.2, at=0.0 
and ac=1.0). The force-displacement results indicate that the effect of κ0 is 
significant in tension and the effect of δ, η2 and κ0 in compression. The parameter 

0κ is responsible for a peak location and a simultaneous activation of a plastic and 

damage criterion. The parameters β, δ and η2 affect a model response in softening  
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a) 

b) 

Fig. 6.11 Experimental (Perdikaris and Romeo 1995) and calculated load-displacement 
curves with enhanced coupled model ‘4’ with damage based on elastic strains (quasi-static 
cyclic three-point bending): a) small-size beam, b) large-size beam (at=0.0 and ac=1.0) 
(Marzec and Tejchman 2010) 

 
during tension and compression, and the parameter η2 influences a hardening 
curve in compression. The effect of two other parameters (α and η1) describing 
the stress-strain curve at the residual state is negligible.  

 
Cyclic behaviour of concrete under compression and tension 
Next, a simple cyclic tension-compression-tension element test was calculated 
(Fig. 6.14) (σyt

0=4 MPa, σyc
0=40 MPa, Hp=E/2, φ=20º , ψ=10º, β=550, δ=950, 

κ0=8.5×10-5, α=0.95, η1=1.2, η2=0.15, at=0.0 and ac=1.0). The results show 
obviously the different stiffness degradation during compression and tension (that 
is stronger in tension). A recovery of the compressive stiffness upon crack closure 
and un-recovery of the tensile stiffness as the load changes between tension and 
compression is satisfactorily reflected. The evident difference between a pure 
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damage model (without plastic strains) and coupled one (with plastic strains) 
during one uniaxial load cycle is demonstrated in Fig. 6.15. 

The effect of the damage scale factors at and ac on the load-displacement 
diagram under tension-compression-tension is described in Fig. 6.16 by assuming 
at=0.2 and ac=0.8. This change of both factors is stronger in compression. 

 

 
 
Fig. 6.12 Calculated deterministic size effect for concrete notched beams subjected to 
quasi-static cyclic three-point bending (using coupled model ‘4’) as compared with size 
effect law by Bažant  (Eq. 5.5) (Bažant 2003) (t – beam thickness, d - beam height, S – 
beam span) 

 
Finally, Fig. 6.17 demonstrates the 2D FE results with the model ‘4’ for a 

concrete specimen subjected to uniaxial cyclic compression by taking strain 
localization into account. All nodes at the lower edge of a rectangular specimen 
were fixed in a vertical direction. The size of the specimen was arbitrarily chosen: 
15 cm (height) and 5 cm (width). To preserve the stability of the specimen, the 

node in the middle of the lower edge was kept fixed. The deformations were 

initiated through constant vertical displacement increments prescribed to nodes 

along the upper edge of the specimen. The lower and upper edges were smooth. 

The number of triangular finite elements was 896 (the size of elements was not 

greater than 3×lc). The material constants were: E=30 GPa, ν=0.18, σyc
0=20 MPa, 

φ=25º , ψ=10º, η1=1.2, η2=0.7, δ=800, lc=5 mm, at=0.0 and ac=1.0. To induce 
strain localization, a weak element was inserted in the middle of height, on edge of 
the specimen. Due to the lack of the initial experimental data, the calculated 
stress-strain curve was qualitatively compared with the experimental one by 
Karsan and Jirsa (1969) (Fig. 6.17). 
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A) 

  

 
B) 

Fig. 6.13 Effect of different material constants on uniaxial response of coupled elasto-plastic-
damage model ‘4’ for concrete under: A) cyclic uniaxial tension and B) cyclic uniaxial 
compression (with damage scale factors at=0.0 and ac=1.0) (Marzec and Tejchman 2010) 
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Fig. 6.14 Calculated load-displacement curve with coupled model ‘4’ (with damage scale 
factors at=0.0 and ac=1.0) during uniaxial tension-compression-tension (Marzec and 
Tejchman 2010) 

 

 
 

Fig. 6.15 Calculated load-displacement curves with coupled model ‘4’ during uniaxial 
tension-compression-tension with and without plastic strains (Marzec and Tejchman 2010) 

 
The calculated stress-strain curve (Figs. 6.17c and 6.17d) is qualitatively the 

same as in a cyclic compressive test by Karsan and Jirsa (1969) (Figs. 6.17c and 
6.17e) with respect to material softening and stiffness degradation. The calculated 
thickness of a localized zone is 3.4 cm (6.8×lc) and the inclination to the 
horizontal is about 45o (Fig. 6.17a and 6.17b). These results are very similar to 
those within elasto-plastic calculations (Bobiński and Tejchman 2004). The shear 
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zone inclination is significantly higher (and more realistic) than that obtained with 
a simple non-local isotropic damage model (Simone et al. 2002), which was 
smaller than 35o-40o. 

 
 
Fig. 6.16 Uniaxial response of coupled elasto-plastic-damage model ‘4’ for concrete under 
tension-compression-tension for different damage scale factors at and ac (Marzec and 
Tejchman 2010) 

 
The following conclusions can be derived: 

• The FE calculations show that the coupled elasto-plastic damage models used 
enhanced by a characteristic length of micro-structure in a softening regime can 
properly reproduce the experimental load-displacement diagrams and strain 
localization in plain concrete notched beams under tensile loading during quasi-
static cyclic bending. All models ‘1-4’ properly capture material softening and the 
width of a localized zone. The models ‘1’, ‘3’ and ‘4’ are also able to correctly 
describe the stiffness degradation. The drawback of the model ‘2’ is the lack of 
possibility to simulate simultaneously both plastic deformation and stiffness 
degradation during cyclic loading. The model ‘3’ has the smallest number of 
material constants to be calibrated. The coupled models ‘3’ and ‘4’ indicate the 
best agreement with cyclic bending experiments under tensile failure. In general, 
the models 1, 3 and 4 show similar results under tension. The shape and thickness 
of a localized zone above the notch in concrete beams under tension depends on 
the coupled formulation.  
• A choice of a suitable local state variable for non-local averaging strongly 
depends on the model used. It should be carefully checked to avoid problems with 
non-sufficient regularization. 
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           a)                    b)                                         c) 

 
 d) 

 
e) 

 

Fig. 6.17 Response of coupled elasto-plastic-damage model ‘4’ for concrete specimen under 
uniaxial cyclic compression from FE calculations (with damage scale factors at=0.0 and 
ac=1.0): a) deformed FE mesh, b) contours of calculated non-local parameter, c) calculated 
and experimental stress-strain curve by Karsan and Jirsa (1969), d) calculated stress-strain 
stress-strain curve, e) experimental stress-strain curve by Karsan and Jirsa (1969) 
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• The improved model ‘4’ captures in addition plastic strains and stiffness 
degradation in both tension and compression, and stiffness recovery effect during 
cyclic loading by means of a strain equivalence hypothesis (thus the coupling 
between damage and plasticity is different than in ABAQUS 2004). It is able to 
properly describe strain localization under both tension and compression due to a 
presence of a characteristic length of micro-structure. Its drawback is no clear 
distinction between elastic, plastic and damage strain rates, and a relatively large 
number of material constants to be calibrated. Most of material constants may be 
calibrated independently with a monotonic uniaxial compression and tension 
(bending) test. Standard uniaxial cyclic tests are needed to calibrate damage scale 
factors. 
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