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Chapter 4  

Discontinuous Approach to Concrete 

Abstract. The Chapter discusses discontinuous approaches to simulate cracks in 
concrete. Two approaches are described: a cohesive crack model using interface 
elements defined along finite element boundaries and eXtended Finite Element 
Method (XFEM) wherein cracks can occur arbitrarily in the interior of finite 
elements. 

4.1   Cohesive Crack Model 

A cohesive crack model for simulating macro-cracks as discontinuities was 
initiated from the Hilleborg’s fictitious crack model (Hilleborg et al. 1976) based 
on the idea of Dugdale (1960) and was further applied in conjunction with interface 
elements (cohesive elements) by Camacho and Ortiz (1996). No information on an 
initial crack needs to be known and the onset of crack initiation can be predicted 
within a preset cohesive zone, which is considered to be a potential crack 
propagation path. The cohesive crack model describes highly localized inelastic 
processes by traction-separation laws that link the cohesive traction transmitted by 
a discontinuity or surface to the displacement jump characterized by the separation 
vector (Needleman 1987, Camacho and Ortiz 1996, Ortiz and Pandolfi 1999, 
Chandra et al. 2002, Gálvez et al. 2002, Scheider and Brocks 2003, Zhou and 
Molinari 2004, de Lorenzis and Zavarise 2009). Cohesive elements are defined at 
the edges (interface) between standard finite elements to nucleate cracks and 
propagate them following the deformation process. They govern the separation of 
crack flanks in accordance with an irreversible cohesive law. Branching, crack 
coalescence, kinking and tortuousness (any material separation) are naturally 
handled by this approach. If the crack path is not known a priori, cohesive surfaces 
are placed between all finite elements. Interfacial normal and tangential tractions 
are non-linearly connected to the normal (mode-I) and tangential (mode-II) relative 
displacements on the interface. As the cohesive interface gradually separates, the 
magnitude of interfacial stresses at first increases, reaches a maximum, and then 
decreases with increasing separation, finally approaching zero. Thus, depending on 
the level of the interfacial relative displacements, the cohesive interface represents 
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the entire spectrum of the behaviour ranging from perfect bonding to complete 
separation. A shape of post-peak traction-opening is linked with the development 
of the so-called fracture process zone where many complex phenomena occur such 
as micro-cracking, interlocking, bridging, friction between surfaces and aggregates, 
etc. The fundamental material parameters in cohesive models for concrete are the 
fracture energy and the shape of the traction versus crack opening. The cohesive 
fracture energy is the external energy required to create and fully break a unit 
surface area of a cohesive crack and coincides with the area under the softening 
function. The crack models can be based on formulations of the classical plasticity 
(Gálvez et al. 2002) or damage mechanics (Omiya and Kishimoto 2010). The 
model is attractive since it is straightforward in implementation.  

The cohesive crack model provides an objective description of fully localized 
failure if the mesh is fine. The cohesive traction-separation law with softening 
does not need any adjustment for the element size because mesh refinement does 
not change the resolved crack pattern. However, the model possesses some 
restrictions. The crack paths are dominated by preferred mesh orientations (Zhou 
and Molinari 2004) and the mesh independence is questionable if the cracking 
pattern is diffuse (Bažant and Jirásek 2002). Moreover, stress multiaxiality in the 
fracture process zone is not captured (Bažant and Jirásek 2002). In models with 
interface elements inserted a priori, spurious elastic deformation occurs prior to 
cracking onset, so too high initial elastic normal stiffness can lead to spurious 
traction oscillations in the pre-cracking phase (de Borst and Remmers 2006). A 
dummy stiffness (theoretically infinite) is usually required to keep the inactive 
interface elements closed. The mesh dependency can be improved if the mesh is 
very fine, inertia forces and viscosity are included, a non-local formulation for the 
interface mode is used, a separation approximation in the process zone is enriched 
(de Borst and Remmers 2006, Samimi et al. 2009) or cohesive elements strength 
follows a stochastic distribution (Zhou and Molinari 2004, Yang and Xu 2008). 
Recently, Cazes et al. (2009) proposed a thermodynamic method for the 
construction of a cohesive law from a nonlocal damage model. 

The cohesive zone model includes 3 main steps: 

- the constitutive continuum modelling (usually by means of linear 
elasticity if tensile loading prevails), 

- the introduction of an initiation criterion for crack opening/growth 
(loading function), 

- the evolution equation for softening of normal/shear tractions. 

To take into account mixed mode loading conditions Camacho and Ortiz (1996) 
defined the effective crack opening displacement as 

 

                                                  2 2 2
eff n sδ ηδ δ= + ,                                   (4.1) 

 
wherein nδ  and sδ  are the normal crack opening displacement and tangential 

relative displacement (sliding), respectively, while the coefficient η takes into 
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account the coupling between the failure mode I and failure mode II. The loading 
function is defined as 

 

                                                    ( )eff efff δ ,κ δ -κ=                                     (4.2) 

 
with the history parameter κ equal to the maximum value of the effective 
displacement effδ  obtained during loading. The effective traction is 

 

                                  2 2 2
eff n st t tη −= + .                                      (4.3) 

 

The effective traction efft  is calculated with the aid of an exponential, bilinear or 

linear softening relationship. Finally, the normal and shear tractions are evaluated 
as 

 

              
eff

n n
e ff

t
t δ

δ
=                and                  

2 eff
s s

e ff

t
t η δ

δ
= .                  (4.4) 

 
Unloading takes place to the origin. In compression, the penalty stiffness is 
applied. 

We used a simple version of a cohesive crack model with interface elements 
placed ‘a priori’ between all finite elements of the FE mesh (Fig. 4.1). The bulk 
finite elements were modeled as linear elastic. In turn, in the interface elements, a 
damage constitutive relationship between the traction vector t=[tn, ts] and relative 
displacement vector δ=[δn, δs] was assumed 

 
                                    t ( ) 01 D E= − Iδ                                            (4.5) 

 
with the penalty (dummy) stiffness E0 and unit tensor I. To take into account both 
the normal and shear terms in the separation vector, an effective opening 
displacement was used by Eq. 4.1. To describe softening after cracking, an 
exponential law was assumed following Camacho and Ortiz (1996) 

 

                                             ( ) exp - t
eff t

0

f
t κ f β κ -

E

  
=      

,                            (4.6) 

 
where β is the model parameter. The crack was initiated if (Fig. 4.2) 

 

                                                      0
0

tf

E
κ δ= = .                                                (4.7) 
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Fig. 4.1 Bulk and cohesive (interface) elements in FE mesh (Bobiński and Tejchman 2008) 

 
The damage parameter was equal to 
 

                                   
0

1
1 eff

eff

t
D

E δ
= − .                                            (4.8) 

 

Fig. 4.2 Traction-separation cohesive law assumed for numerical calculations (Bobiński and 

Tejchman 2008) 

4.2   Extended Finite Element Method 

The Extended Finite Element Method (XFEM) is based on the Partition of Unity 
concept (Melenk and Babuska 1996) that allows for adding locally extra terms to 
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the standard FE displacement field approximation in order to capture displacement 
discontinuities. These extra terms are defined based on a known analytical 
solution of the problem. The idea is to enrich only selected nodes with additional 
terms. There is no need to modify the original FE mesh (Belytschko and Black 
1999) used to model cracks in elastic-brittle materials. To describe the stress field 
around the crack tip, Moes and Belytschko (1999) formulated a model with branch 
functions for elements with crack tip and Heaviside jump function for elements 
cut entirely by a crack. Later XFEM was extended to deal with branching and 
intersecting cracks (Daux et al. 2000) and to simulate three-dimensional problems 
(Sukumar et al. 2000). In turn, Samaniego and Belytschko (2005) simulated 
dynamic propagation of shear zones. The enrichment was defined only in 
tangential direction and no separation was allowed in normal direction. XFEM 
was also used to analyze problems with weak discontinuities (like material 
interfaces), and in fluid mechanics by modelling voids and holes, phase 
transformations, biofilms and dislocations. Wells and Sluys (2001) were the first 
to couple XFEM with cohesive cracks (only Heaviside jump function was defined 
to describe the displacement jump across the discontinuity). Moes and Belytschko 
(2002) used XFEM to simulate cohesive cracks. Zi and Belytschko (2003) 
formulated a new crack tip element using linear ramp functions for the description 
of the crack tip location. Mergheim et al. (2005) adopted the idea of Hansbo and 
Hansbo (2004) with no extra degrees of freedom in nodes. Any element with a 
crack was described by two overlapping standard finite elements with zero shape 
functions either on the left and on the right side of a discontinuity. Only 
displacement degrees of freedom were used, but extra phantom nodes had to be 
added in cracked elements to double standard nodes at the moment of cracking. 
This phantom node method turned out to be equivalent with the XFEM method. 
This approach later has been used by Song et al. (2006) to simulate cohesive shear 
zones. Rabczuk et al. (2008) extended the phantom node method for handling 
crack tips also inside of elements. To simulate shear zones in soils, a discrete 
Mohr-Coulomb law with softening was used by Bobiński and Brinkgreve (2010). 

The formulation used here follows (with some minor modifications) the 
original model proposed by Wells and Sluys (2001). In a body Ω crossed by a 
discontinuity Γu (Fig. 4.3), a displacement field u can be decomposed into a 
continuous part ucont and discontinuous part udisc. A displacement field can be 
defined as (Belytschko and Black 1999, Wells and Sluys 2001) 

 
                                   ( ) ( ) ( ) ( )ˆ,t ,t Ψ ,t= + u x u x x u x                              (4.9) 

 
with the continuous functions û  and u  and the generalized step function Ψ  

 

                                         ( ) 1
1

Ψ
+

−
 ∈ Ω= − ∈ Ω

xx
x

.                                      (4.10) 
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Other definitions can be also used here, e.g. the Heaviside step function. A 
collection of functions iφ associated with set of discrete points i (i=1, 2, …, n) 

constitutes the partition of unity if 
 

                                        ( )
1

1
n

i
i

φ
=

= x ,          Ω∈∀x .                               (4.11) 

 
A field u over body Ω can be interpolated as 

 

                            
1 1

n m

i i ij j
i i

a bφ γ
= =

 = + 
 

 u ,                                  (4.12) 

 
where ai and bij are the discrete nodal values, γj – the enhanced basis and m – the 
number of enhanced terms for a particular node. The finite element shape 
functions Ni also define the partition of unity concept since  

 

                           ( )
1

1
n

i
i

N
=

= x ,              ∀ ∈ Ωx .                         (4.13) 

 

 

Fig. 4.3 Body crossed by a discontinuity 

 
In a finite element format, Eq. 4.9 can be written as 
 

                                     ( ) ( ) ( ) ( )= +u x N x a Ψ x N x b ,                            (4.14) 

 
where N contains shape functions, a – standard displacements at nodes and b – 
enriched displacements (jumps) at nodes. Only nodes belonging to ‘cracked’ 
elements are enriched. Here a formulation by Belytschko et al. (2001) called the 
shifted-basis enrichment is used that assumes the following definition of the 
displacement field 
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                        ( ) ( ) ( ) ( )( ) ( )= + − Iu x N x a Ψ x Ψ x N x b                      (4.15) 

 
with the diagonal matrices ( )Ψ x  and ( )IΨ x  containing ( )xΨ  and ( )IxΨ , 

respectively ( Ix  is the position of the node I). The strain rate in the bulk 

continuum can be calculated as 
 

                       ( )I= + −  ε Ba Ψ Ψ Bb ,                                   (4.16) 

 
whereas the rate of the displacement jump [[ ]]u  at the discontinuity is defined as 

 
                                      2[[ ]] = u Nb .                                            (4.17) 

 
This formulation has two main advantages over the standard version (Eq. 4.9); the 
total displacements in nodes are equal to the standard displacements a and the 
implementation is simpler since two types of elements exist only. 

The weak form of the equilibrium equation 
 

                                        d d 0
u

s :
Ω Γ

∇ Ω − ⋅ Γ = η σ η t                                 (4.18) 

 
holds for all admissible displacement variations η  (body forces are neglected and 

t stands for tractions applied on the boundary Γu). After several transformations 
(Wells 2001, Bobiński and Brinkgreve 2010), the following discrete weak 
equations are obtained 
 

           ( ) ( ) 

 

Ω ΓΓ

Ω Γ

Γ−=Γ+Ω−

Γ=Ω

ud

u

T
I

TT
I

TT

dd2d

dd

tNΨΨtNσBΨΨ

tNσB

        (4.19) 

 
with the strain-nodal displacement matrix B. The linearized equations of the total 
system are 
 

                                    d
d

ext int
aa ab a a

ext int
ba bb b b

       = −            
K K f fa
K K b f f

                        (4.20) 
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with the blocks of the global stiffness matrix K defined as  
 

 
( )

( ) ( ) ( )

d d

d d 4 d
d

T T
aa ab I

T T T
ba I bb I I

Ω Ω

Ω Ω Γ

= Ω = − Ω

= − Ω = − − Ω + Γ

 
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K B DB K B DB Ψ Ψ

K Ψ Ψ B DB K Ψ Ψ B DB Ψ Ψ N TN
,  (4.21) 

 
where T is the stiffness matrix at the discontinuity. The force vectors are equal to 

 

 ( ) ( )
d

d d

d d 2 d
u

u

ext T int T
a a

ext T int T T
b I b I

f f

f f t
Γ Ω

Γ Ω Γ

= Γ = Ω

= − Γ = − Ω + Γ

 
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N t B σ

Ψ Ψ N t Ψ Ψ B σ N
.    (4.22) 

 
In un-cracked continuum, usually a linear elastic constitutive law between stresses 
and strains is assumed under tension. To activate a crack, the Rankine condition 
has to be fulfilled at least in one integration point in the element at the front of the 
crack tip 

 

                                          { }1 2 3 tmax , , fσ σ σ > ,                                  (4.23) 
 

where iσ  are the principal stresses and tf  is the tensile strength. This inequality 

can be also verified at the crack tip directly (Mariani and Perego 2003). A very 
important issue is a determination of the crack propagation direction. If this 
direction is known in advance, it can be assumed (fixed) directly. Otherwise a 
special criterion has to be used. The most popular criterion assumes that the 
direction of the crack extension is perpendicular to the direction of the maximum 
principal stress. To smooth the stress field around the crack tip, non-local stresses 

*σ  instead of local values can be taken to determine the crack direction (Wells 
and Sluys 2001) 

 

                                                 d*

V

w V= σ σ ,                                          (4.24) 

 

where the domain V is a semicircle at the front of the crack tip and a weight 
function w is defined as 

 

                                     
( )3 2 3

1
exp

2

2

/ 2

r
w

2 llπ
 

= − 
 

.                               (4.25) 

 

Here the length l is the averaging length (usually equal to 3 times the average 
element size) and r denotes the distance between the integration point and crack 
tip. This operation does not introduce non-locality connected to material 
microstructure into the model. Mariani and Perego (2003) used higher order  
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polynomials for a better description of the stress state (and also the displacement 
state) around the crack tip. Stresses in the crack tip were determined using an 
interpolation of nodal values. Oliver et al. (2004) formulated a global tracking 
algorithm, where propagation directions of cracks were determined globally by 
solving a stationary anisotropic heat conduction type problem. Moes and 
Belytschko (2002) assumed that cohesive tractions had no influence on the crack 
propagation direction and used the maximum circumferential stress criterion from 
Linear Elastic Fracture Mechanics (LEFM). Another important item of the 
formulation is a discrete cohesive law which links tractions t with displacement 
jumps [[u ]]  at a discontinuity. The simplest one assumes the following format of 

the loading function (Wells and Sluys 2001) 
 

                             ( )n nf [[ u ]], [[ u ]]-κ κ=                                 (4.26) 

 
with the history parameter κ equal to the maximum value of the displacement 
jump [[un]] achieved during loading. Softening of the normal component of the 
traction vector can be described using an exponential 

 

                                                  exp t
n t

f

f
t f

G

κ 
= −  

 
                                     (4.27) 

or a linear relationship 
 

             1n t
u

t f
κ
κ

 
= − 

 
,                   f

u
t

2 G

f
κ = ,                         (4.28) 

 
where Gf  denotes the fracture energy. During unloading, the secant stiffness is 
used with a return to the origin (damage format). In a compressive regime, a 
penalty elastic stiffness matrix is assumed. In a tangent direction, a linear 
relationship between a displacement jump and traction is defined with the stiffness 
Ts. Similar constitutive models were used by Remmers at al. (2003) and Mergheim 
et al. (2005). Alternatively, formulations based on effective displacements 
described in Chapter 4.1 may be used (Mariani and Perego 2003, Comi and 
Mariani 2007). Note that the cohesive crack formulation with the coefficient η=0 
(Eq. 4.1) is equivalent with the discontinuity model described above, if the 
stiffness Ts=0. To overcome convergence problems in situations when n[[u ]]  

changes its sign, Cox (2009) modified a linear softening curve in normal direction 
as 

 

                      1 1 expn t f
u u

t f d
κ κ
κ κ

    
= − − −         

,                       (4.29) 
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where df  is a drop factor. With increasing the value of df, the influence of the 
second term diminishes. The same modification was applied to an exponential 
softening curve. 

The inclusion of enriched displacements b requires several modifications in the 
standard FE code. The final number of extra degrees of freedom b is unknown at 
the beginning and it may grow during calculations. Therefore special techniques 
are required to handle the extra data. If an essential boundary condition has been 
specified at a node with enriched degrees of freedom, the additional condition b=0 
has to be added at this node. A new crack segment can be defined in the 
converged configuration only. After defining a new segment, a current increment 
has to be restarted. Moreover, nodes that share the edge with a crack tip may not 
be enriched. A definition of the crack segment geometry obeys the following 
rules: 

- a new crack segment is defined from one element side to another one  
(a crack tip cannot be placed inside elements), 

- segment end points cannot be placed at element vertices, 
- a crack segment is straight inside one element, 
- a crack is continuous across elements and adjacent segments share  

the same point. 

To avoid placing cracks at element’s vertices, three minimal distances are declared 
(Fig. 4.4): 

- minimum distance between the vertex and crack segment vmin, 
- minimum distance between the vertex and crack segment end point along 

the side lmin,  
- minimum distance between the triangle side not touched by a 

discontinuity and the crack segment end point smin. 
 

With the same values of vmin and lmin, the first condition is stronger, since it takes 
into account also the distance between the vertex and segment. Finally, a new 
scheme for calculating strains, stresses, internal forces and stiffness in a cracked 
 

 
 

Fig. 4.4 Minimal distances between crack segment and triangle vertices/sides 
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element is required. Due to an arbitrary location of a discontinuity segment inside 
an element, new coordinates of integration points have to be defined. To 
determine these coordinates a sub-division algorithm is proposed. The triangle 
sub-region is divided into 3 triangles and quad sub-region into 4 triangles. In each 
triangle, 3 integration points are defined. In total, a numerical integration requires 
21 integration points in the bulk and 2 points at the discontinuity (Wells and Sluys 
2001, Bobiński and Brinkgreve 2010). 
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