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Chapter 3 
Continuous Approach to Concrete 

Abstract. This Chapter presents continuous models to describe concrete behaviour 
in a quasi-static regime during monotonic and cyclic loading. In the case of 
monotonic loading, isotropic elasto-plastic, isotropic damage and smeared crack 
model, and in the case of cyclic loading elasto-plastic-damage models are described. 
An integral-type non-local and a second gradient approaches to model strain 
localization are introduced. In addition, bond-slip laws are presented.  
 
The concrete behaviour can be modelled with different continuum models, e.g.: 
within non-linear elasticity (Palaniswamy and Shah 1974), linear fracture 
mechanics (Bažant and Cedolin 1979, Hilleborg 1985), endochronic theory (Bažant 
and Bhat 1976, Bažant and Shieh 1978), micro-plane theory (Bažant and Ožbolt 
1990, Jirásek 1999), plasticity (Willam and Warnke 1975, Ottosen 1977, Hsieh et 
al. 1982, Pietruszczak et al. 1988, Pramono and Willam 1989, Etse and Willam 
1994, Menétrey and Willam 1995, Winnicki et al. 2001, Lade and Jakobsen 2002, 
Majewski et al. 2008), damage (Dragon and Mróz 1979, Peerlings et al. 1998, Chen 
1999, Ragueneau et al. 2000, Marzec et al. 2007) and discrete ones using  
e.g.: interface elements with cohesive fracture constitutive laws (Carol et al. 2001, 
Caballero et al. 2006, 2007), a lattice approach (Herrmann et al. 1989, Vervuurt  
et al. 1994, Schlangen and Garboczi 1997, Cusatis et al. 2003, Bolander and 
Sukumar 2005, Kozicki and Tejchman 2007) and a discrete element method 
(DEM) (Sakaguchi and Mühlhaus 1997, Donze at al. 1999, D’Addetta et al. 2002, 
Hentz et al. 2004). 

We used different popular non-linear continuous constitutive models to 
simulate the concrete behaviour under monotonic loading. 

3.1   Local Models for Monotonic Loading 

3.1.1   Isotropic Elasto-Plastic Model 

Failure for elasto-plastic materials with isotropic hardening/softening is described 
by a condition 

                                                        ( , ) 0ijf σ κ =                                               (3.1) 

3



50 3   Continuous Approach to Concrete
 

with σij - stress tensor and κ - hardening/softening parameter (in general there may 
be several hardening/softening parameters). If f<0, the material behaves 
elastically. If f≥0, the material behaves plastically. The stresses have to remain on 
the failure surface (consistency condition) 

                                      ( , ) 0 : :ij ij

ij

f f
f σ κ σ κ

σ κ
• • •∂ ∂= = +

∂ ∂
.                             (3.2) 

Very often Equation 3.1 can be simplified by 

( , ) ( ) ( ) 0ij ij yf Fσ κ σ σ κ= − = ,                                   (3.3) 

where F is the function of stress tensor invariants and σy is the yield stress. The 
strain increment is equal to the sum of elastic and plastic strain increments 

                                          e p
ij ij ijd d dε ε ε= + .                                               (3.4) 

The stress increment is related to the increment of elastic strain 

e e
ij ijkl kld C dσ ε= ,                                                (3.5) 

where Ce
ijkl is the elastic stiffness tensor 

( )e
ijkl ij kl ik jl il jkC λδ δ μ δ δ δ δ= + + .                                (3.6) 

λ and μ are the Lame’a constants that are connected to the modulus of elasticity E 
and Poisson’s ratio ν 
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               (3.7) 

and δij is a Kronecker delta. The increment of plastic strain is determined with the 
flow rule 
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d d

σ
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                                            (3.8) 

with g as the potential function and dλ as the positive factor of proportionality. If 
f=g, the flow rule is associated. The condition of loading and unloading is equal to 

             0dλ ≥ ,                       ( , ) 0ijf σ κ ≤ ,                ( , ) 0ijd fλ σ κ =           (3.9) 

During plastic deformation, a stress state remains on the boundary of the 
elastic/plastic region 

                                            ( , ) 0ij ijf d dσ σ κ κ+ + = .                                     (3.10) 
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Equation 3.10 may be rewritten in a rate form as (similarly to Eq. 3.2) 

                                            0ij

ij

df df
d d

d d
σ κ

σ κ
+ = .                                       (3.11) 

Equations 3.10 and 3.11 are known as consistency conditions and allow to 
determine the magnitude of the plastic strain increment.  

The elasto-plastic stiffness matrix Cep
ijkl is calculated as 
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where  
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.                                          (3.13) 

The proportionality factor dλ is equal to 
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The parameter ξ=1, if f=0 and κ>0, otherwise ξ=0. The stiffness matrix Cep
ijkl may 

be non-symmetric due to f≠g. The stress increment can be calculated from 

               ( )e
ij ijkl kl

ij

f
d C d dσ ε λ

σ
∂= −

∂
.                                    (3.15) 

Usually 

                                  d dλ η κ= .                                               (3.16) 

when η is a constant dependent upon the model. 
The constitutive models use the different stress and stress tensor invariants  

                                               1 11 22 33I σ σ σ= + + ,                                      (3.17) 

2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 31

1 1
[( ) ( ) ( ) ]

2 6ij ijJ s s σ σ σ σ σ σ σ σ σ= = − + − + − + + + ,   (3.18) 

3

1

3 ij jk kiJ s s s= ,                                                (3.19) 
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1 11 22 33I ε ε ε ε= + + ,                                             (3.20) 

   2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 31

1 1
[( ) ( ) ( ) ]

2 6ij ijJ e eε ε ε ε ε ε ε ε ε ε= = − + − + − + + + ,   (3.21) 

                                                 3

1

3 ij jk kiJ e e eε = ,                                               (3.22) 

 

where I1 - first stress tensor invariant, J2 – second deviatoric stress tensor 
invariant, J3 – third deviatoric stress tensor invariant, I1

ε – the first strain tensor 
invariant, J2

ε – second deviatoric strain tensor invariant and J3
ε – third deviatoric 

strain tensor invariant. In turn, J1 (first deviatoric stress tensor invariant) and J1
ε 

(first deviatoric strain tensor invariant) are always 

1 11 22 33 0J s s s= + + = ,                                               (3.23) 

1 11 22 33 0J e e eε = + + = ,                                               (3.24) 

The stress deviator sij and strain deviator eij are calculated as 

1

3ij ij ij

I
s σ δ= − ,                                                   (3.25) 

1

3ij ij ij

I
e

ε

ε δ= − .                                                   (3.26) 

To describe the behaviour of concrete, a simplified elasto-plastic model was 
assumed. In the compression regime, a shear yield surface based on a linear 
Drucker-Prager criterion and isotropic hardening and softening was used 
(Bobiński 2006, Marzec et al. 2007, Majewski et al. 2008) (Fig. 3.1) 

                                    tan ( tan ) ( )1 c 1

1
f q p 1

3
ϕ ϕ σ κ= + − − .                         (3.27) 

where q - Mises equivalent deviatioric stress, p – mean stress and ϕ – internal 
friction angle. The material hardening/softening was defined by the uniaxial 
compression stress σc(κ1), wherein κ1 is the hardening/softening parameter 
corresponding to the plastic vertical normal strain during uniaxial compression. 
The friction angle ϕ was assumed as (ABAQUS 1998) 

                                
3(1 )

tan
1 2
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bc

r

r

σ

σϕ −
=

−
,                                               (3.28) 

wherein rbc
σ denotes the ratio between uniaxial compression strength and biaxial 

compression strength (rbc
σ=1.2). The invariants q and p were defined as  

                                        
3

2 ij ijq s s= ,                             
1

3 kkp σ= ,              (3.29) 
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The flow potential was assumed as 

                                  tan1g q p ψ= + ,                                             (3.30) 

 

where ψ is the dilatancy angle (ψ≠φ). The increments of plastic strains p
ijdε  were 

calculated as 

                 1 1 1 ( tan )
1 1

1 tan 1 tan
3 3

p
ij

ij ij ij

d g d q p
d

κ κε ψ
σ σ σψ ψ

∂ ∂ ∂= = +
∂ ∂ ∂− −

.                (3.31) 

 
                                    a)                                                       b)              

Fig. 3.1 Drucker-Prager criterion in the space of principal stresses (a) and on the plane q-p (b) 

In turn, in the tensile regime, a Rankine criterion was used with the yield 
function f2 using isotropic hardening and softening defined as (Bobiński 2006, 
Marzec et al. 2007, Majewski et al. 2008) (Fig. 3.2) 

                                         { } ( )2 1 2 3 2max , , tf σ σ σ σ κ= − ,                         (3.32) 

where σi – principal stresses, σt – tensile yield stress and κ2 – softening parameter 
(equal to the maximum principal plastic strain 1

pε ). The associated flow rule was 

assumed.  
The edge and vertex in the Rankine yield function were taken into account by 

the interpolation of 2-3 plastic multipliers according to the Koiter’s rule (Pramono 
1988). The same procedure was adopted in the case of combined tension (Rankine 
criterion) and compression (Drucker-Prager criterion). 

This simple isotropic elasto-plastic model for concrete (Eqs. 3.27-3.32) requires 
two elastic constants: modulus of elasticity E and Poisson’s ratio υ, two plastic 
constants: internal friction angle ϕ and dilatancy angle ψ, one compressive yield 
stress function σc=f(κ1) with softening and one tensile yield stress function  
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σt=f(κ2) with softening. The disadvantages of the model are the following: the 
shape of the failure surface in a principal stress space is linear (not paraboloidal as 
in reality). Thus, it is certainly not suitable in a compression regime if a large 
range of stress is concerned. In deviatoric planes, the shape is circular (during 
compression) and triangular (during tension); thus it does not gradually change 
from a curvilinear triangle with smoothly rounded corners to nearly circular with 
increasing pressure. The strength is similar for triaxial compression and extension, 
and the stiffness degradation due to strain localization and non-linear volume 
changes during loading are not taken into account. 

3.1.2   Isotropic Damage Model 

Continuum damage models initiated by the pioneering work of Katchanov (1986) 
describe a progressive loss of the material integrity due to the propagation and 
coalescence of micro-cracks and micro-voids. Continuous damage models (Simo 
and Ju 1987, Lemaitre and Chaboche 1990) are constitutive relations in which the 
mechanical effect of cracking and void growth is introduced with internal state 
variables which act on the degradation of the elastic stiffness of the material. They 

 

  
 

Fig. 3.2 Rankine criterion: π-plane, tensile and compressive meridian planes, σ1-σ2 plane, 
σxx-σxy plane (σi - principal stresses, σxx - normal stress, σxy - shear stress ft - tensile 
strength, ξ - hydrostatic axis, ρ - deviatoric axis, ρt - deviatoric length) 
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can be relatively simple - isotropic (Pijaudier-Cabot 1995, Peerlings et al. 1998, 
Geers, et al. 1998, Huerta et al. 2003, Jirásek 2004a) or more complex - anistropic 
(Zhou et al. 2002, Krajcinovic and Fonseka 1981, Kuhl and Ramm 2000). The 
damage variable defined as the ratio between the damage area and the overall 
material area can be chosen as a scalar, several scalars, a second order tensor, a 
fourth order tensor and an eight order tensor. 

A simple isotropic damage continuum model describes the material degradation 
with the aid of only a single scalar damage parameter D growing monotonically 
from zero (undamaged material) to one (completely damaged material). The 
stress-strain relationship is represented by  

 

               (1 ) e
ij ijkl klD Cσ ε= − ,                                      (3.33) 

 

where e
ijklC  is the linear elastic stiffness matrix (including modulus of elasticity E 

and Poisson’s ratio υ) and klε  is the strain tensor. Thus, the damage parameter D 

acts as a stiffness reduction factor (the Poisson’s ratio is not affected by damage) 
between 0 and 1. The growth of damage is controlled by a damage threshold 
parameter κ which is defined as the maximum equivalent strain measureε  
reached during the load history up to time t. The loading function of damage is 

 
                     { }0( , ) max ,f ε κ ε κ κ= −  ,                                 (3.34) 

 
where 0κ  denotes the initial value of κ  when damage begins. If the loading 

function f is negative, damage does not develop. During monotonic loading, the 
parameter κ grows (it coincides with ε ) and during unloading and reloading it 
remains constant. To define the equivalent strain measure ε , different criteria can 
be used. In the book, we applied 4 different equivalent strain measures ε . First, a 
Rankine failure type criterion by Jirásek and Marfia (2005) was adopted 

 

                                                
}{max eff

i

E

σ
ε = ,                                           (3.35) 

 

where eff
iσ  are the principal values of the effective stress 

 
eff e
i ijkl klσ σ ε= .                                               (3.36) 

 

Second, a modified Rankine failure type criterion was applied 
 

1 2
eff effc

E

σ σ
ε

− −
=                                            (3.37) 
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with 1 2
eff effσ σ>  and a non-negative coefficient c. This formulation is equivalent 

to Eq. 3.35 in a tension-tension regime, but it behaves in a different way in a 
mixed tension-compression regime (the coefficient c reflects the influence of the 
principal compressive stress). With the coefficient c=0, Eq. 3.35 is recovered.  

Third, we considered a modified von Mises definition of the equivalent strain 
measure ε  in terms of strains (de Vree et al. 1995, Peerlings et al. 1998)  

 

                     
( ) ( )

2

1 1 22

1 1 1 12

2 1 2 2 1 2 1

k k k
I I J

k k
ε εε

ν ν ν
− − = + + − −  +

 .            (3.38) 

 
The parameter k in Eq. 3.38 denotes the ratio between compressive and tensile 
strength of the material. A two-dimensional representation of Eq. 3.38 is given in 
Fig. 3.3 for k=10.  

Finally, a equivalent strain measure ε  following Häuβler-Combe and Pröchtel 
(2005), based on the failure criterion by Hsieh-Ting-Chen (Hsieh et. al 1982), was 
assumed 

 

( )2

2 2 3 1 4 1 2 2 3 1 4 1 1 2

1
4

2
c J c c I c J c c I c Jε ε ε ε εε ε ε
 

= + + + + + +  
 

 .           (3.39) 

 
where 1ε  is the maximum principal total strain, c1, c2, c3 and c4 are the coefficients 

depending on α1=ft/fc=k, α2=fbc/fc=rbc
σ and α3 and γ are the multipliers of the 

material strength in triaxial compression. The other definition of the equivalent 
strain measure ε  was used for concrete by Mazars and Pijaudier-Cabot (1989) 
using principal strains. 

To describe the evolution of the damage parameter D in the tensile regime, the 
exponential softening law by (Peerlings et al. 1998) was mainly used (Fig. 3.4)  

 

( )( )001 1D e β κ κκ α α
κ

− −= − − + ,                            (3.40) 

 
where α and β are the material constants. The alternative forms of the damage 
evolution law were proposed by Geers et al. (1998), Zhou et al. (2002), Huerta  
et al. (2003) and Jirásek (2004a).  

The damage evolution law determines the shape of the softening curve, i.e. 
material brittleness. The material softening starts when the when the equivalent 
strain measure reaches the initial threshold κ0 (material hardening is neglected). 
The parameter β determines the rate of the damage growth (larger value of β 
causes a faster damage growth). In one dimensional problems, for ε → ∞  
(uniaxial tension), the stress approaches the value of 0(1 )Eα κ−  (Fig. 3.4b). 
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The constitutive isotropic damage model for concrete requires the following 5 
material constants: E, υ, κ0, α and β (Eq. 3.35 and 3.40), 6 material constants: E, υ, 
κ0, α, β and c (Eq. 3.37 and 3.40), 6 material constants: E, υ, k, κ0, α and β  
(Eq. 3.38 and 3.40) or 9 material constants E, υ, 0κ , α, β, α1, α2, α3 and γ (Eq. 3.39 

and 3.40). The model is suitable for tensile failure (Marzec et al. 2007, Skarżyński 
et al. 2011) and mixed tensile-shear failure (Bobiński and Tejchman 2010). 
However, it cannot realistically describe irreversible deformations, volume 
changes and shear failure (Simone and Sluys 2004). 

3.1.3    Anisotropic Smeared Crack Model 

In a smeared crack approach, a discrete crack is represented by cracking strain 
distributed over a finite volume (Rashid 1968, Cope et. al. 1980, Willam et al. 
1986, de Borst and Nauta 1985, de Borst 1986, Rots 1988, Rots and 
Blaauwendraad 1989). The model is capable of properly combining crack 
formation and a non-linear behaviour of concrete between cracks and of handling 
secondary cracking owing to rotation of the principal stress axes after primary 
crack formation. A secondary crack is allowed if the major principal stress 
exceeds tensile strength and/or if the angle between the primary crack and 
secondary crack exceeds a threshold angle. Since the model takes into account the 
crack orientation, it reflects the crack-induced anisotropy. 

The total strain rate ijε
•

 is composed of a concrete strain rate 
con

ijε
•

 and several 

cracks strain rates 
I

ijε
•

, 
II

ijε
•

etc. (de Borst 1986) 

 
con I II

ij ij ij ijε ε ε ε
• • • •

= + + .                                         (3.41) 

 

 

Fig. 3.3 Equivalent strain definition in principal strain space (dashed lines represent 
uniaxial stress paths) (Peerlings et al. 1998) 
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                                   a)                                                              b) 
 
Fig. 3.4 Damage model: a) damage variable as a function of κ, b) homogeneous stress-
strain behaviour during uniaxial tension (E –modulus of elasticity) (Peerlings et al. 1998) 

 
The concrete strain rate is assumed to be related to some stress rate 

 
con

con
ij klijklCσ ε

• •
= .                                              (3.42) 

 
It may take into account elastic and plastic stress rates. The relation between the 

stress rate in the crack 
'

ijσ
•

 and the crack strain rate 
'

klε
•

 in the primary crack is 

given by  
 

' '
'

ij klijklCσ ε
• •

= .                                               (3.43) 

 
where the primes signify that the stress rate and the crack strain components of the 
primary crack are taken with respect to the coordinate system of the crack. The 

tensor '
ijklC  represents the stress-strain relation within the primary crack. 

Analogously, we have for a secondary crack  
 

'' ''
''

ij klijklCσ ε
• •

= .                                             (3.44) 

 
The double primes signify mean that the stress rate and the crack strain 
components of the secondary crack are taken with respect to the coordinate system 
of the crack. If αik are the direction cosines of the global coordination system with 
respect to the coordinate system of the primate crack, and if βik are the direction 
cosines of the global coordination system with respect to the coordinate system of 
the secondary crack 
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'I

ij klik jlε α α ε
• •

= ,                                         (3.45) 

''II

ij klik jlε β β ε
• •

= ,                                          (3.46) 

ij klki ljσ α α σ
• •

= ,                                          (3.47) 

''

ij klki ljσ β β σ
• •

= .                                          (3.48) 

 
After a transformation of crack strain rates in global coordinates, one obtains the 
following relationship  

 
' ''

( )con
kl mn op opklmn mo np mo npDσ ε α α ε β β ε

• • • •
= − − .                (3.49) 

Next, after some arrangements, a relationship between ijσ


 and klε


 is derived. A 

crack is initiated if the major principal stress exceeds the tensile strength. The 
crack direction is usually assumed to be orthogonal to the principal tensile major 
stress. Between stresses and strains in the crack plane z’-y’ (Fig. 3.5), we have the 
following relationship during loading 
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                       (3.50) 

and during unloading 

'

'
'

'

' '

0 0

0 0

0 0

xx
xx

xy xy

xz
xz

S

G

G

σ
ε

σ β ε
β εσ

•

•

•

 
           =               
  

,                       (3.51) 

where the tangent modulus C represents the relation between the normal crack 
strain increment and normal stress increment during loading, S is the secant 
modulus of the unloading branch (Fig. 3.6), G is the elastic shear modulus and β is 
the shear stiffness reduction factor (the term βG account for effects like aggregate 
interlock). In addition, a threshold angle is introduced which allows new cracks to 
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form only when the angle between the current direction of the major principal 
stress and the normal to the existing cracks is exceeded. When a crack fully closes, 
the stiffness of the uncracked concrete is again inserted.  

The model has two variants: 1) the so-called fixed crack model, in which the 
crack orientation is fixed when the maximum principal stress attains the tensile 
strength (de Borst 1986), and 2) the so-called rotating crack model, in which the 
crack orientation is rotated so as to always remain perpendicular to the maximum 
principal strain direction (Rots and Blaauwendraad 1989).  

In our calculations, we assumed a simplified smeared crack approach. The 
total strains ijε  were decomposed into the elastic e

ijε  and inelastic crack strains 
cr
ijε  

 
                                                        e cr

ij ij ijε ε ε= + .                                        (3.52) 

 
The concrete stresses were related to the elastic strains via 

 
                                                    e e

ij ijkl klCσ ε= ,                                           (3.53) 

 
Between the concrete stresses and cracked strains, the following relationship was 
valid (in a local coordinate system) 

 
                                                      cr cr

ij ijkl klCσ ε=                                             (3.54) 

 
with the secant cracked stiffness matrix cr

ijklC  (defined only for open cracks). 

 
 

Fig. 3.5 Local coordinate system of a crack (de Borst 1986) 
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Fig. 3.6 Relationships between normal crack stress versus normal crack strain in softening range 

during loading, unloading and reloading (de Borst 1986) 

 
The matrix cr

ijklC  was assumed to be diagonal. A crack was created when the 

maximum tensile stress exceeded the tensile strength ft. To define softening in a 
normal direction under tension, a curve by Hordijk (1991) was adopted 

 

                         ( ) ( ) ( ) ( )( )3

1 2 31 expcr cr cr
t t i i if A A Aσ κ κε ε ε= + − −               (3.55) 

with 

                       31 2
1 2 3 1 2

1
, , (1 )exp( )

nu nu nu

b b
A A A b b

ε ε ε
= = = + − ,       (3.56) 

 
where εi

cr is the normal cracked strain in a local i-direction, nuε  denotes the 

ultimate cracked strain in tension and the material constants are b1=3.0 and 
b2=6.93, respectively. 

The shear modulus G was reduced by the shear reduction factor β according to 
Rots and Blaauwendraad (1989) 

 

                                                    1
pcr

i

su

εβ
ε

 
= − 
 

,                                       (3.57) 

 
where suε  is the ultimate cracked strain in shear and p is the material parameter. 

Combining Eqs. 3.51-3.54, the following relationship between stresses and total 
strains (in a local coordinate system) was derived 
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                                                    s
ij ijkl klCσ ε=                                            (3.58) 

 

with the secant stiffness matrix s
ijklC  as 

 

                                        1( )s e e e cr e
ijkl ijkl ijrs rstu rstu tuklC C C C C C−= − + .               (3.59) 

 

After cracking, the isotropic elastic stiffness matrix was replaced by the 
orthotropic one (in a local coordinate system). Two different formulations were 
investigated: a rotating crack model and a multi-fixed orthogonal crack model. In 
the first approach (rotating crack), only one crack was created which could rotate 
during deformation. To keep the principal axis of total strains and stresses aligned, 
the secant stiffness coefficient was calculated according to  

 

                                               ( )2
ii jjs

ijij

ii jj

C
σ σ

ε ε
−

=
−

.                                      (3.60) 

 

The second formulation (fixed crack model) allowed one a creation of three 
mutually orthogonal cracks in 3D-problems (and two orthogonal cracks in 2D 
simulations, respectively). The orientation of the crack was described by its 
primary inclination at the onset, i.e. the crack did not rotate during loading. 

The constitutive smeared crack model for concrete requires the following 8 
material parameters: E, υ, p, c1, c2, ft, εsu and εnu. 

3.2   Local Coupled Models for Cyclic Loading 

An analysis of concrete elements under quasi-static cyclic loading under 
compression, tension and bending is complex mainly due to a stiffness degradation 
caused by fracture (Karsan and Jirsa 1969, Reinhardt et al. 1986, Hordijk 1991, 
Perdikaris and Romeo 1995). To take into account a reduction of both strength and 
stiffness, irreversible (plastic) strains and degradation of stiffness, a combination of 
plasticity and damage theories is in particular physically appealing since plasticity 
considers the first three properties and damage considers a loss of material strength 
and deterioration of stiffness. Within continuum mechanics, plasticity and damage 
couplings were analyzed by many researchers using different ideas (e.g. Lemaitre 
1985, Mazars 1986, Simo and Ju 1987, Klisinski and Mróz 1988, Lubliner et al. 
1989, Hansen and Schreyer 1994, Meschke et al. 1998, Pamin and de Borst 1999, 
Carol et al. 2001, Hansen and Willam 2001, Gatuingt and Pijaudier-Cabot 2002, 
Ibrahimbegovic et al. 2003, Salari et al. 2004, Bobiński and Tejchman 2006, 
Grassl and Jirásek 2006, Voyiadjis et al. 2009). An alternative to the cyclic 
concrete behaviour by elasto-plastic-damage models, is the application of an 
endochronic theory which deals with the plastic response of materials by means of 
memory integrals, expressed in terms of memory kernels (Bažant 1978, Khoei er al. 
2003). 
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Below, the capability of 4 different coupled elasto-plastic damage continuum 
models to describe strain localization and stiffness degradation in a concrete 
beams subjected to quasi-static cyclic loading under tensile failure was 
investigated. The coupled elasto-plastic damage models proposed by Pamin and 
de Borst (1999), by Carol et al. (2001) and by Hansen and Willam (2001), by 
Meschke et al. (1998) and Marzec and Tejchman (2009, 2011) were taken into 
account.  

The first model (Pamin and de Borst 1999) combines non-local damage with 
hardening plasticity based on effective stresses and a strain equivalence concept 
(Katchanov 1986, Simo and Ju 1987). The total strains are namely equal to strains 
in an undamaged skeleton between micro-cracks. Plastic flow can occur only in an 
undamaged specimen, therefore an elasto-plastic model is defined in terms of 
effective stresses. In the second model (Carol et al. 2001 and Hansen and Willam 
2001) plasticity and damage are connected by two loading functions describing 
the behaviour of concrete in compression and tension. The onset and progression 
of material degradation is based upon the strain energy associated with the 
effective stress and strain. A damage approach (based on second-order tensors) 
simulates the behaviour of concrete under tension while plasticity describes the 
concrete behaviour under compression. A failure envelope is created by 
combining a linear Drucker-Prager formulation in compression with a damage 
formulation based on a conjugate force tensor and a pseudo-log damage rate in 
tension. In turn, in the third formulation (Meschke et al. 1998), an elasto-plastic 
criterion is enriched by new components including stiffness degradation. 
Degradation is written in the form of a Rankine’a criterion with hyperbolic 
softening. Following the partitioning concept of strain rates, an additional scalar 
internal variable is introduced into a constitutive formulation. Thus, the splitting 
of irreversible strains into components associated with plasticity and damage is 
obtained. Finally, based on an analysis of three initially presented formulations, an 
improved coupled formulation connecting plasticity and damage is presented 
using a strain equivalence hypothesis (Pamin and de Borst 1999). The plasticity is 
described with both a Drucker-Prager and a Rankine criterion in compression and 
tension, respectively. To describe the evolution of damage, a different definition is 
assumed for tension and compression. Finally to take into account a stiffness 
recovery at a crack closure and inelastic strains due to damage, combined damage 
in tension and compression based on stress weight factors is introduced.  

 
Constitutive coupled model by Pamin and de Borst (1999) 
The first formulation (called model ‘1’) according to Pamin and de Borst (1999) 
combines elasto-plasticity with scalar damage assuming that total strains ijε  are 

equal to strains in an undamaged skeleton (called effective strains eff
ijε ). Elasto-

plastic deformation occurs only in an undamaged specimen and is defined  
 

                                               eff e
ij ijkl klCσ ε= ,                                          (3.61) 
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The following failure criterion to describe a material response in an elasto-plastic 
regime is used 
 

                                            ( ) ( )eff
ep y pf F σ κ= −σ ,                                (3.62) 

 
wherein yσ  - the yield stress and pκ  - the hardening parameter equal to plastic 

strain during uniaxial tension. As an elasto-plastic criterion in Eq. 3.62, the failure 
criterion by von Mises or Drucker-Prager may be used defined by effective 
stresses. Next, the material degradation is calculated with the aid of an isotropic 

damage model (3.38 and 3.40). The equivalent strain measure ε  can be defined in 
terms of total strains εij or elastic strains e

ijε .  

The local coupled elasto-plastic-damage model ‘1’ requires the following 6 
material constants to capture the cyclic tensile behaviour: E, ν, 0κ , α, β, k and one 

hardening yield stress function. In the case of linear hardening, 8 material 
constants are totally needed (in addition, the initial yield stress σyt

o at κp=0 and 
hardening plastic modulus Hp).  
 
Constitutive coupled model by Carol et al (2001) and Hansen and Willam (2001) 
In the second model (called model ‘2’), a two-surface isotropic damage/plasticity 
model combining damage mechanics and plasticity in a single formulation is used 
(Carol et al. 2001 and Hansen and Willam 2001). A plastic region in compression 
is described with the aid of a linear Drucker-Prager criterion. The material 
experiences permanent deformation under sustained loading with no loss of the 
material stiffness. In turn in tension, damage is formulated in the spirit of 
plasticity by adopting the concept of a failure condition and a total strain rate 
decomposition into the elastic strain rate ijd eε  and degrading strain rate ijd dε  (as a 

result of the decreasing stiffness) 
 

                                                       d d de d
ij ij ijε ε ε= + .                                   (3.63) 

 
The boundary between elastic and progressive damage is governed by a failure 
criterion 
 

                                                 ( ),d ij df f qσ= ,                                   (3.64) 

 
where qd is the damage history variable describing the evolution of the damage 
surface. The stress rate is equal to as 
 

                                                 ( )d d ds d
ij ijkl kl klCσ ε ε= −                              (3.65) 
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with s
ijklC as the secant stiffness matrix connected with a material damage 

parameter D via 
 

                                                  ( )1s e
ijkl ijklC D C= − .                                     (3.66) 

 

The application of the secant stiffness is central to the idea that the degraded 
strains and stresses are reversible, since the material stiffness must degrade to 
make this idea possible (Carol et al. 2001, Hansen and Willam 2001). The 
degrading strain rate was defined as the excess strain rate beyond the value that 
corresponded to the stress increment according to the current secant stiffness.  

The effective stress and effective strain are again experienced by the 
undamaged material between cracks. Assuming the energy equivalence, the 
mutual relationship between the nominal (observed externally) and effective stress 
and strain is taken as 
 

                        1 eff
ij ijDσ σ= −                    and                    1eff

ij ijDε ε= −   (3.67) 

and 
 

                                                       eff eff
ij ij ij ijσ ε σ ε= ,                                          (3.68) 

with 

                         eff e eff
ij ijkl klCσ ε=                   and              ( )1 e

ij ijkl klD Cσ ε= − .     (3.69) 
 

The loading function (Eq. 3.64) for the Rankine-type anistropic damage model is 
defined in terms of the modified principal tensile conjugate forces 
 

                                                    ( )( ) ( )
3

ˆd i
i

f f y r L= − − ,                              (3.70) 

 

where ( )ˆ
iy−  - the principal components of the tensile conjugate forces tensor and 

( )r L
 - the resistance function as the complementary energy. The conjugate force 

( )ˆ
iy−  is a second order energy tensor written with aid of the effective stresses and 

strains by assuming linear isotropic elasticity 
 

                                                     ( )
1

ˆ
2

eff eff
i iiy σ ε− = ,                                  (3.71) 

where •  is the Macauley bracket. Originally, Carol et al. (2001) and by Hansen 

and Willam (2001) proposed the following resistance function with two 
parameters Gf  and ro  
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                                                   ( )
o

fg

o

r
L

r L r e
−

= ,                                       (3.72) 

with gf - the fracture energy and r0 – the elastic strain energy at the peak of the 
uniaxial tension test (E - isotropic elastic modulus) 
 

                                                       
( )2

2
t

o

f
r

E
= .                                            (3.73) 

 
The parameter L in Eq. 3.72 denotes the pseudo-log damage variable and is 
calculated with the aid of Eqs. 3.71 and 3.72 
 

                                     
1

ln
1-

L
D

=  ,                        ( )1 LD e−= − .                 (3.74) 

 
The rate of L is 
 

                                                     
1-

D
L

D
=

 .                                              (3.75) 

 
However, Eq. 3.72 poorly influences the post-peak behaviour. Therefore, we 
proposed a new resistance function with also 2 parameters 
 

                                    ( ) ( )2
0

21
exp

2

L
r L E

β
κ

β
− 

=  
 

,                                 (3.76) 

 
wherein κ0 - the threshold strain value and β - the parameter describing softening. 
The resistance function adopted by Nguyen (2005) was used in numerical 
simulations as well 
 

                                    ( )
2

21

2

t

t

L n
ptt

L nL
pt

E E ef
r L

E Ee E e

− ⋅

− ⋅−

 +
=   + 

,                             (3.77) 

 
with ft - the tensile strength, Ept - the damaged stiffness modulus and nt - the rate 
of the stiffness modulus.  

When simultaneously considering both damage and plasticity, the total strain 
rate becomes the sum of the elastic, damage and plastic rate 
 

                                           d d d de d p
ij ij ij ijε ε ε ε= + + .                                     (3.78) 
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The plastic strains are permanent while elastic and damage strains were reversible. 
Therefore, the elastic-damage strain d ed

ijε  is introduced in the total value 

 
                                                  d d ded p

ij ij ijε ε ε= + .                                        (3.79) 

 
The local coupled elasto-plastic-damage model requires the material constants: E, 
ν, φ, ψ, gf and r0 (Eq. 3.72), E, ν, φ, ψ, κ0 and β (Eq. 3.76), E, ν, φ, ψ, ft, Ept, nt 
(Eq. 3.77) and one compressive hardening/softening yield stress function. 
 
Constitutive coupled model by Meschke et al. (1998) 
In the third model (called model ‘3’), another concept of coupling was introduced. 
An elasto-plastic criterion is enhanced by a new component describing the 
stiffness degradation (Meschke et al. 1998). The permanent strain rate 
decomposition is assumed as 
 

                                                    d d dpd p d
ij ij ijε ε ε= + .                                       (3.80) 

 

The plastic damage strain rate d pd
ijε  is calculated as in classical plasticity. The 

component associated with degradation and plasticity is obtained by introducing a 
scalar constant γ between zero and one (0≤γ≤1) 
 

                  ( )d 1 dp pd
ij ijε γ ε= −                     and                      d dd pd

ij ijε γ ε= .    (3.81) 
 

The parameter γ enables one a simple splitting of effects connected with an 
inelastic slip process (which caused an increase of plastic strain) and a deterioration 
of microstructure (which contributed to an increase of the compliance tensor). The 
evolution law for the compliance tensor is (dλ - proportionality factor) 
 

                                            

T

T

f f

d
f

γ λ

∂ ∂ 
 ∂ ∂ = ×

∂ 
 ∂ 

 σ σ

σ
σ

D .                                     (3.82) 

 

The stresses are updated analogously to the standard plasticity theory. To simulate 
concrete softening in tension, a hyperbolic softening law is chosen 
 

                                                ( ) 2

0

1

t
t

fσ κ
κ
κ

=
 

+ 
 

,                                      (3.83) 

 

where κ0 - the parameter adjusted to the fracture energy. 
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This coupled elasto-plastic-damage model requires in tension the following 5 
parameters: E, υ, ft, κ0 and γ. 

 
Improved coupled elasto-plastic-damage model (Marzec and Tejchman 2010) 
In order to describe the cyclic concrete behaviour under both tension and 
compression, an improved coupled model (called model ‘4’) was proposed based 
on the model ‘1’ by Pamin and de Borst (1999) (which combines elasto-plasticity 
with a scalar damage assuming a strain equivalence hypothesis). The elasto-plastic 
deformation is defined in terms of effective stresses according to Eq. 3.61. Two 
criteria are used in an elasto-plastic regime (Marzec et al. 2007, Majewski et al. 
2008): a linear Drucker-Prager criterion with a non-associated flow rule in 
compression and a Rankine criterion with an associated flow rule in tension 
defined by effective stresses (Chapter 3.1). Next, the material degradation is 
calculated within damage mechanics, independently in tension and compression 
using one equivalent strain measure ε  proposed by Mazars (1986) (εi - principal 
strains) 

 

                                                    
2

i
i

ε ε=  .                                           (3.84) 

 

In tension, the same damage evolution function by Peerlings et al. (1998) as in the 
model ‘1’ is chosen (Eq. 3.40). In turn, in compression, the definition by Geers 
(1997) is adopted 

 

                           
( )1 2

0 0 0 01 1 0.01cD e
η η

δ κ κκ κ κ
κ κ κ

− −    − − −    
    

= ,                (3.85) 

 

where η1, η2 and δ are the material constants. Equation 3.85 allows for 
distinguishing different stiffness degradation under tension and under compression. 
Damage under compression starts to develop later than under tension that is 
consistent with experiments. The damage term ‘1-D’ (Eq. 3.33) is defined as in 
ABAQUS (1998) following Lubliner et al. (1989) and Lee and Fenves (1998a) 
 

                                               ( ) ( )( )1 1 1c t t cD s D s D− = − − ,                           (3.86) 

 
with two splitting functions st and sc controlling the magnitude of damage  
 

                    ( )1 eff
t ts a w= − σ              and             ( )( )1 1 eff

c cs a w= − − σ ,   (3.87) 

 

where at and ac are the scale factors and ( )effw σ  denotes the stress weight 

function which may be determined with the aid of principal effective stresses 
according to Lee and Fenves (1998a) 
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                                     ( )
0                if 0

  otherwise

eff
eff i

eff
i

w
σ

σ

=

= 






σ

σ .                           (3.88) 

 

For relatively simple cyclic tests (e.g. uniaxial tension, bending), the scale factors 
at and ac can be at=0 and ac=1, respectively. Thus, the splitting functions are: 

1.0ts =  and ( )eff
cs w= σ . For uniaxial loading cases, the stress weight function 

becomes 
 

                                                  ( ) 1  if  0

0 if  0

eff
eff

eff
w

σ
σ

σ
 >= 

<
.                              (3.89) 

 
Thus, under pure tension the stress weight function 1.0w =  and under pure 
compression 0w = . 

Our constitutive model with a different stiffness in tension and compression and 
a positive-negative stress projection operator to simulate crack closing and crack re-
opening is thermodynamically consistent. It shares main properties of the model 
by Lee and Fenves (1998a), which was proved to not violate thermodynamic 
principles (plasticity is defined in the effective stress space, isotropic damage is 
used and the stress weight function is similar). Moreover Carol and Willam (1996) 
showed that for damage models with crack-closing-re-opening effects included, 
only isotropic formulations did not suffer from spurious energy dissipation under 
non-proportional loading (in contrast to anisotropic ones). 

Our local coupled elasto-plastic-damage model requires the following 10 
material constants E, ν, 0κ , α, β, η1, η2, δ, at, ac and 2 hardening yield stress 

functions (the function by Rankine in tension and by Drucker-Prager in 
compression). If the tensile failure prevails, one yield stress function by Rankine 
can be used only.  

The quantities σy (in the hardening function) and 0κ  are responsible for the 

peak location on the stress-strain curve and a simultaneous activation of a plastic 
and damage criterion (usually the initial yield stress in the hardening function 
σy

0=3.5-6.0 MPa and 0κ =(8-15)×10-5 under tension). The shape of the stress-

strain-curve in softening is influenced by the constant β in tension (usually β=50-
800), and by the constants δ and η2 in compression (usually δ=50-800 and η2=0.1-
0.8). The parameter η2 influences also a hardening curve in compression. In turn, 
the stress-strain-curve at the residual state is affected by the constant α (usually 
α=0.70-0.95) in tension and by η1 in compression (usually η1=1.0-1.2). Since  
the parameters α and η1 are solely influenced by high values of κ , they can  
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arbitrarily be assumed for softening materials. Thus, the most crucial material 

constants are σy
0, 0κ , β, δ and η2. In turn, the scale factors at and ac influence the 

damage magnitude in tension and compression. In general, they vary between zero 
and one. There do not exist unfortunately the experimental data allowing for 
determining the magnitude of at and ac. Since, the compressive stiffness is 
recovered upon the crack closure as the load changes from tension to compression 
and the tensile stiffness is not recovered due to compressive micro-cracks, the 
parameters ac and at can be taken for the sake of simplicity as ac=1.0 and at=0 for 
many different simple loading cases as e.g. uniaxial tension and bending. The 
equivalent strain measure ε  can be defined in terms of total strains or elastic 
strains. The drawback of our formulation is the necessity to tune up constants 
controlling plasticity and damage to activate an elasto-plastic criterion and a 
damage criterion at the same moment. As a consequence, the chosen yield stress 
σy may be higher than this obtained directly in laboratory simple monotonic 
experiments.  

The material constants E, ν, 0κ , β, α, η1, η2, δ and two hardening yield stress 

functions can be determined for concrete with the aid of 2 independent simple 
monotonic tests: uniaxial compression test and uniaxial tension (or 3-point 
bending) test. However, the determination of the damage scale factors at and ac 
requires one full cyclic compressive test and one full cyclic tensile (or 3-point 
bending) test. 

Table 3.1 shows a short comparison between four coupled models. The major 
drawback of first 3 formulations is the lack of the damage differentiation in 
tension and compression, stiffness recovery associated with crack closing and 
relationship between the tensile and compression stiffness during a load direction 
change. To describe these phenomena, additional material constants have to be 
included.  

The damage hardening/softening laws assumed in constitutive models have 
been fully based on experimental data from uniaxial compression and uniaxial 
tension tests which in turn strongly depend on the concrete nature, specimen size 
and boundary and loading conditions. It means that they are not physically based. 
This fact reveals the necessity to derive macroscopic laws in a softening regime 
from real micro-structure evolutions in materials during homogeneous tests using 
e.g. a discrete element model (Widulinski et al. 2011). 

The coupled model ‘1’ can be enriched by the crack-closure effect in a  
similar way as our model ‘4’. For the models ‘2’ and ‘3’ due to their different 
structure, the crack-closure effect can be incorporated by introducing a projection 
operator (model ’2’) or by modifying the evolution law for the compliance tensor 
(model ‘3’). 
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Table 3.1 Comparison between four local coupled elasto-plastic damage formulations to 
describe concrete behaviour (Marzec and Tejchman 2009, 2011) 
 

Nr. 
Plastic 

strains in  

tension/compression 

Stiffness  

degradation 

Unique strain 

division 

Stiffness  

recovery 

Number of  

material  

parameters 

Model ‘1’ Yes Yes No No 

Elastic: 2 

Plastic: 1 (tens.) 

3 (compr.) 

Damage: 4 

 

 

Model ‘2’ 

Yes  

(only in 

compression) 

Yes  

(only in 

tension) 

Yes No 

Elastic: 2 

Plastic: 3 

Damage: 3-4 

 

 

Model ‘3’ Yes Yes Yes No 

Elastic: 2 

Plastic: 2 

Damage: 1 

 

 

Model ‘4’ Yes Yes No Yes 

Elastic: 2 

Plastic: 1 (tension), 

3 (compression) 

Damage:2 (tension), 

3 (compression) 

Scale factors: 2 

3.3   Regularization Techniques 

Classical FE-simulations of the behaviour of materials with strain localization 
within continuum mechanics are not able to describe properly both the thickness 
of localization and distance between them. They suffer from mesh sensitivity (its 
size and alignment) and produce unreliable results. The strains concentrate in one 
element wide zones and the computed force-displacement curves are mesh-
dependent (especially in a post-peak regime). The reason is that differential 
equations of motion change their type (from elliptic to hyperbolic in static 
problems) and the rate boundary value problem becomes ill-posed (de Borst et al. 
1992). Thus, classical constitutive continuum models require an extension in the 
form of a characteristic length to properly model the thickness of localized zones. 
Such extension can be by done within different theories: a micro-polar (Mühlhaus 
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1986, Sluys 1992, Tejchman and Wu 1993, Tejchman et al. 1999), a strain 
gradient (Zbib and Aifantis 1989, Mühlhaus and Aifantis 1991, Pamin 1994, de 
Borst and Pamin 1996, Pamin 2004, Sluys and de Borst 1994, Peerlings et al. 
1998, Meftah and Reynouard 1998, Pamin and de Borst 1998, Chen et al. 2001, 
Zhou et al. 2002, Askes and Sluys 2003), a viscous (Sluys 1992, Sluys and de 
Borst 1994, Neddleman 1988, Loret and Prevost 1990, Lodygowski and Perzyna 
1997, Winnicki et al. 2001, Pedersen et al. 2008, Winnicki 2009) and a non-local 
(Pijaudier-Cabot and Bažant 1987, Bažant and Lin, 1988, Brinkgreve 1994, de 
Vree et al. 1995, Strömberg and Ristinmaa 1996, Marcher and Vermeer 2001, 
Maier 2002, 2003, di Prisco et al. 2002, Bažant and Jirásek 2002, Jirásek and 
Rolshoven 2003, Tejchman 2004).  

Other numerical technique which also enables to remedy the drawbacks of a 
standard FE-method and to obtain mesh-independency during formation of cracks, 
are approaches with strong discontinuities which enrich continuous displacement 
modes of the standard finite elements with additional discontinuous displacements 
(Belytschko et al. 2001, 2009, Simone et al. 2002, Asferg et al. 2006, Oliver et al. 
2006) or approaches with cohesive (interface) elements (Ortiz and Pandolfi 1999, 
Zhou and Molinari 2004) (Chapters 4.1 and 4.2). In the first approaches, 
discontinuity paths are placed inside the elements irrespective of the size and 
specific orientation. In the latter approaches, discontinuity paths are defined at the 
edges between standard finite elements. The most realistic approach to concrete (a 
continuous-discontinuous approach) was used by Moonen et al. (2008).  

Below two different regularization methods (integral-type non-local and 
explicit second-gradient) are described in detail. 

3.3.1   Integral-Type Non-local Approach 

A non-local model of the integral type (so called “strongly non-local model”) was 
used as a regularisation technique:  

a)  to properly describe strain localization (width and spacing),  
b)  to preserve the well-posedness of the boundary value problem,  
c)  to obtain mesh-independent results, 
d)  to take into account material heterogeneity and  
e) to include a characteristic length of micro-structure for simulations of a  
     deterministic size effect (Pijaudier-Cabot and Bažant 1987, Bažant and Jirásek  
     2002, Bobiński and Tejchman 2004).  
 

It is based on a spatial averaging of tensor or scalar state variables in a certain 
neighbourhood of a given point (i.e. material response at a point depends both on 
the state of its neighbourhood and the state of the point itself). Thus, a 
characteristic length lc can be incorporated and softening can spread over material 
points. It is in contrast to classical continuum mechanics, wherein the principle of 
local action holds (i.e. the dependent variables in each material point depend only 
upon the values of the independent variables at the same point), and softening at 
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one material point does not affect directly the yield surfaces of other points. It has 
a physical motivation due to the fact the distribution of stresses in the interior of 
concrete is strongly non-uniform (Fig. 2.1b). Polizzotto et al. (1998) laid down a 
thermodynamic a consistent formulation of non-local plasticity. In turn, Borino et 
al. (2003) and Nguyen (2008) laid down a thermodynamic consistent formulation 
of non-local damage mechanics. 

Usually it is sufficient to treat non-locally only one variable controlling material 
softening or degradation (Brinkgreve 1994, Bažant and Jirásek 2002, Huerta et al. 
2003).  

A full non-local model assumes a relationship between average stresses ijσ  and 

averaged strains ijε  defined as 
 

                                   ( ) ( ) 1 2 3

1
ij ijx x d d d

V
σ ω ξ σ ξ ξ ξ ξ−= −                    (3.90) 

 

and 
 

                                  ( ) ( ) 1 2 3

1
ij ijx x d d d

V
ε ω ξ ε ξ ξ ξ ξ
−

−= −                     (3.91) 

 

where ijσ
−

(x) and ijε
−

(x) are the non-local softening parameters, x are the 
coordinates of the considered point, ξ are the coordinates of the surrounding 

points, ω denotes the weighting function and V
−

 denotes the weighed body 
volume 
 

                                           ( ) 1 2 3V x d d dω ξ ξ ξ ξ
−

= − .                             (3.92) 

 

In general, it is required that the weighting function ω should not alter a uniform 
field which means that it must satisfy the normalizing condition (Bažant and 
Jirásek 2002).  

As a weighting function ω (called also an attenuation function or a non-local 
averaging function), a Gauss distribution function was used which is in 2D 
calculations 
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1
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r e
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π

 
−  
 =                                      (3.93) 

with 
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(r) dr 1ω
∞
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= .                                             (3.94) 
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where the parameter lc is a characteristic length of micro-structure and r is a 
distance between two material points. The averaging in Eq. 3.93 is restricted to a 
small representative area around each material point (the influence of points at the 
distance of r=3lc is only of 0.01%) (Fig. 3.7). A characteristic length is usually 
related to the micro-structure of the material (e.g. maximum aggregate size and 
crack spacing in concrete, pore and grain size in granulates, crystal size in metals). 
It is determined with an inverse identification process of experimental data (Geers 
et al. 1996, Mahnken and Kuhl 1999, Le Bellego et al. 2003). 

 

 

Fig. 3.7 Region of the influence of characteristic length lc and weighting function ω 
(Bobiński and Tejchman 2004) 

 
However, the determination of a representative characteristic length of micro-

structure lc is very complex in concrete since strain localization can include a 
mixed failure mode (cracks and shear zones) and a characteristic length (which is 
a scalar value) is related to the fracture process zone with a certain volume which 
changes during a deformation (the width of the fracture process zone increases 
according to e.g. Pijaudier-Cabot et al. 2004, but decreases after e.g. Simone and 
Sluys 2004). In turn, other researchers conclude that the characteristic length is not 
a constant, and it depends on the type of the boundary value problem and the 
current level of damage (Ferrara and di Prisco 2001). Thus, a determination of lc 
requires further numerical analyses and measurements, e.g. using a Digital Image 
Correlation (DIC) technique (Bhandari and Inoue 2005). FE simulations of tests 
with measured load-displacement curves and widths of fracture process zones for 
different boundary value problems and specimen sizes are of importance. 
According to Pijaudier-Cabot and Bažant (1987), Bažant and Oh (1983), it is in 
concrete approximately 3×da

max, where da
max is the maximum aggregate size.  

Other representations can be also used for the function ω (Ožbolt 1995, 
Akkermann 2000, Jirásek 2004a, di Prisco et al. 2002, Bažant and Jirásek 2002); 
e.g. the polynomial bell-shaped function reads 
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2

2
2

(1 )
r

R
ω = − ,                                           (3.95) 

 
where R (interaction radius) is a parameter related to a characteristic length. To 
improve the behaviour of a non-local averaging in the vicinity of the boundary of 
a finite body, Polizzotto (2002) proposed the weight distribution preserving a 
uniform field and symmetry: 
 

                                         ( ) [1 ( ) ] ( )
V

r r dr rω ω ω δ= + −  ,                             (3.96) 

 
where δ denotes the Dirac distribution. This function is corrected by a suitable 
multiple of the local value to compensate for boundary effects. The FE-results by 
Jirásek et al. (2004b) show that the type of a non-local averaging near boundaries 
influences the peak of the load-displacement curve; the averaging with a 
symmetric local correction by Eq. 3.96 results in a lower resistance.  

Our FE calculations were carried out mainly with the characteristic length 
lc=1.5 mm (for fine-grained concrete) and lc=5 mm (usual concrete) based on DIC 
tests (Skarżynski et al. 2011, Syroka 2011). 

 
Monotonic loading 
In the calculations within elasto-plasticity (Eqs. 3.27-3.32), the softening 
parameters κi (i=1, 2) were assumed to be a linear combination of the local and 
non-local values (independently for both yield surfaces fi) (so called ‘over-
nonlocal’ formulation, Brinkgreve 1994, Bobiński and Tejchman 2004) 
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where iκ (x) are the non-local softening parameters and m is the additional non-

local parameter controlling the size of the localized plastic zone. For m=0, a local 
approach is obtained and for m=1, a classical non-local model is recovered 
(Pijaudier-Cabot and Bažant 1987, Bažant and Lin 1988). If the parameter m>1, 
the influence of the non-locality increases and the localized plastic region reaches 
a finite mesh-independent size (Brinkgreve 1994, Bažant and Jirásek 2002, 
Bobiński and Tejchman 2004). Brinkgreve (1994) derived an analytical formula 
for the thickness of a localized zone in an one-dimensional bar during tension with 
necking using a modified non-local approach by Eq. 3.97. According to this 
formula, if the non-local parameter was m=1, the thickness of the localized zone 
was equal to zero (similarly as in an usual local approach). The enhanced  
non-local elasto-plastic model has in addition two material parameters m and lc.  
 



76 3   Continuous Approach to Concrete
 

The softening non-local parameters near boundaries were calculated also on the 
basis of Eqs. 3.93-3.95 (which satisfy the normalizing condition). During a FE-
analysis, the integral in Eq. 3.96 was replaced by a summation operator 
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where np is the number of all integration points in the whole body, xj stand for co-
ordinates of the integration point in each element and Vj is the actual element 
volume.  

In the calculations within isotropic damage mechanics (Chapters 5 and 7), the 

equivalent strain measure ε  (Eqs. 3.35, 3.37, 3.38 and 3.39) was replaced by its 
non-local definition (Marzec et al. 2007) 
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It is to note, that in some other damage formulations, the use of a this non-local 
variable causes problems with energy dissipation can lead to an improper solution 
(Jirásek 1998, Jirásek and Rolshoven 2003, Borino et al. 2003). This case occurs 
in the coupled elasto-plastic-damage model ‘2’. 

In the smeared crack approach, the secant matrix s
ijklC  (Eqs. 3.52-3.60) was 

calculated with the non-local strain tensor klε  defined (independently for all tensor 

components) as (Jirásek and Zimmermann 1998)  
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Thus, the resulting stresses were calculated from the relationship 

 

                                                   ( )s
ij ijkl kl klCσ ε ε= .                                   (3.101) 

 
Cyclic loading  
In the first coupled elasto-plastic damage model (model ‘1’), non-locality was 
applied in damage (softening was not allowed in elasto-plasticity). The equivalent 
strain measure was replaced by its non-local counterpart (Eq. 3.94). In the second  
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coupled model, non-locality was prescribed in tension to the energy release Y 
(Marzec and Tejchman 2009) 
 

                                                       
1

2
e

ij ijkl klY Cε ε= ,                                        (3.102) 

 
which is a component of the loading function in Eq. 3.70. The non-local damage 
energy was composed of a local and non-local term calculated in the current (i) 
and previous iteration (i-1) (Strömberg and Ristinmaa 1996, Rolshoven 2003) 
 

                                    ( ) ( )( ) ( ) ( 1) ( 1)1i kl i i i klY m mA Y m Y Y A∗
− −= − + + − ,             (3.103) 

 
wherein m – the non-local parameter controlling the size of the localized plastic 
zone and distribution of the plastic strain and Akl - the component of a non-local 
matrix 
 

                                            
( ) ( )
( ) ( )

1

k l l

kl k j j

j

x x V x
A

x x V x

ω

ω
=

−
=

−
,                             (3.104) 

 
where V(xl) is the volume associated to the integration point l. In the third model, 
the rates of the softening parameter were averaged according to the Brinkreve’s 
formula (Eq. 3.97) during both tension and compression. Finally, in the improved 
coupled formulation (model ‘4’), the non-locality was introduced similarly as in 
the model ‘1’ i.e. local plasticity was combined with non-local damage. However 
another possibility non-local plasticity combined with local damage was also 
considered. In this case for both tension and compression, the non-locality was 
applied according to the Brinkreve’s formula (Eq. 3.97). 

A numerical problem in non-local elasto-plastic models is the way how to 
calculate non-local terms since the plastic rates are unknown in advance. The 
plastic strain rates can be approximated by the total strain rates dε (Brinkgreve 
1994) or calculated iteratively in an exact way according to the algorithm given by 
Strömberg and Ristinmaa (1996), and Jirásek and Rolshoven (2003). To simplify 
the calculations, the non-local rates were replaced by their approximation Δκi

est 
calculated on the basis of the known total strain increment values (Brinkgreve 
1994): 
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The plastic strain rates can be approximated by the total strain rates dε. Eq. 3.105 
enables one to ‘freeze’ the non-local influence of the neighbouring points and to 
determine the actual values of the softening parameters using the same procedures 
as in a local formulation. The strain rates can be calculated in all integration points 
of the specimen, in the integration points where only plastic strains occur or only 
in the integration points where both plastic strains and softening simultaneously 
occur. The FE-results show an insignificant influence of the calculation method of 
non-local plastic strain rates. An approximate method proposed by Brinkgreve 
(1994) is less time consuming (by ca.30%) (Bobiński and Tejchman 2004).  

3.3.2   Second-Gradient Approach 

Second gradient models have often been used for ductile materials (metals) (Fleck 
and Hutchinson 1993, Menzel and Steinmann 2000), quasi-brittle materials (rock, 
concrete) (Sluys 1992, and Pamin 1994) and granular materials (Vardoulakis and 
Aifantis 1991, Chambon et al. 2001, Maier 2002, Tejchman 2004). The gradient 
terms are thought to reflect the fact that below a certain size scale the interaction 
between the micro-structural carriers of deformation is non-local (Aifantis 2003). 
The constitutive models capture gradients in different ways. They usually involve 
the second gradient of a plastic strain measure (Laplacian) in the yield or potential 
function (plasticity) or in the damage function (damage mechanics). The plastic 
multiplier which is connected to the plastic strain measure is considered as a 
fundamental unknown and is computed at global level simultaneously with the 
displacement degrees of freedom (de Borst and Mühlhaus 1992) (in the classical 
theory of plasticity, the plastic multiplier is determined from a simple algebraic 
equation, Chapter 3). Such gradient model obviously requires a C1-continuous 
interpolation of the plastic multiplier field. This requirement is fulfilled by e.g. 
element with the 8-nodal serendipity interpolation of displacements and 4-nodal 
Hermitian interpolation of plastic strain with 2×2 Gaussian integration (Pamin 
1994). Alternatively, all strain gradients can be taken into account (Zervos et al 
2001). The stress is conjugate to the strain rate, and the so-called double stress is 
conjugate to its gradient. To preserve that the derivatives are continuous across 
two-dimensional element boundaries, a triangular element of C1 continuity with 
36 degrees of freedom can be used (Maier 2002). The degrees of freedom at each 
node for each displacement are the displacement itself, its both first order 
derivatives and all three second order derivatives. The model requires a 
relationship between the double stress and strain gradient. The gradient terms can 
be evaluated not only by using additional complex shape functions but also by 
applying explicit method in the form of a standard central difference scheme.  

Gradient–type regularization can be derived from non-local models. By 
expanding an arbitrary state variable κ(x+r) into a Taylor series around the point 
r=0, choosing the error function ω as the weighting function and neglecting the 
terms higher than the second order, the following relationship is obtained for a 
non-local gradient of κ for one-dimensional problems (Pamin 1994): 
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For two-dimensional problems, the enhanced variable κ* is 
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The odd derivative can be canceled because of the implicit assumption of isotropy 
(de Borst et al. 1992). Thus, the enhanced variable κ* is equal to 
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Instead of using complex shape functions to describe the evolution of the second 
gradient of κ, a central difference scheme was applied (di Prisco et al. 2002). The 
advantages of such approach are: simplicity of computation, little effort to modify 
each commercial FE-code and high computation efficiency. To take into account 
the effect of not only adjacent elements (as in the standard difference method), one 
assumed in the book a polynomial interpolation of the function κ of the fourth 
order in both directions: 

 

                                          4 3 2( )x Ax Bx Cx Dx Eκ = + + + + ,                       (3.109) 

                                          4 3 2( )y Ay By Cy Dy Eκ = + + + + ,                      (3.110) 

 
where A, B, C, D and E are constants. From the theory of a finite difference 
method (when the difference steps dx and dy are infinitesimal), the second 
derivatives of the variable κ can be approximated in each triangular element of the 
quadrilateral composed of 4 triangles, e.g. in the triangle ‘13’ of Fig. 3.8 (for a 
mesh regular in the vertical and horizontal direction) as 
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where the lower subscript at the variable κ denotes the number of the triangular 
element in the specified quadrilateral (Fig. 3.8), and dx and dy are the distances 
between the triangle centres in the neighbouring quadrilaterals in a horizontal and 
vertical direction, respectively. The calculations of the second derivatives of the 
variable κ in other triangles are similar. Thus, the effect of neighbouring elements 
near each element is taken into account. In FE calculations, the mixed derivative 
(Eq. 3.113) was neglected to reproduce the Laplacian of the variable κ only. 

The advantage of a gradient approach is that it is suitable (as a non-local 
approach) for both shear and tension (decohesion) dominated applications. The 
explicit second-gradient strain isotropic damage approach (Eqs. 3.111 and 3.112) 
was used for reinforced concrete beams under monotonic loading. 

The non-local and second-gradient model were implemented in the commercial 
finite element code ABAQUS (1998) for efficient computations. Such implementa-
tion can be performed with two methods. In the first one, two identical overlapping 
meshes are used. The first mesh allows to gather the information about coordinates 
of integration points in the entire specimen, area of all finite elements and total 
strain rates in each element. The elements in this mesh are defined by the user in 
the UEL procedure. They do not influence the results of stresses in the specimen 
body since they have no stiffness. The information stored is needed to calculate 
non-local variables with the aid of the second mesh which includes standard 
elements from the ABAQUS library (1998). The constitutive law is defined by the 
UMAT procedure. During odd iterations, the information is gathered in the 
elements of the first mesh. During even iterations, the stresses in the elements of 
the second mesh (including standard elements) are determined with taking into  
 



3.3   Regularization Techniques 81
 

account non-local variables and a non-linear finite element equation is solved. 
Between odd and even iterations, the same element configuration is imposed. In the 
second method, only one mesh is used which contains user’s elements (defined by 
the UEL procedure). During odd iterations, the information about the elements is 
stored, and during even iterations, the stresses within a non-local theory are 
determined. As compared to the first method, the second one consumes less time. 
However, it is less comfortable for the user due to the need of the definition of the 
stiffness matrix and out-of-balance load vector in finite elements. 

 

 
 

Fig. 3.8 Diagram for determination of the gradient of the constitutive variable κ in triangular 

finite elements using a central difference method (Tejchman 2004) 

 
For the solution of the non-linear equation of motion governing the response of 

a system of finite elements, the initial stiffness method was used with a symmetric 
elastic global stiffness matrix instead of applying a tangent stiffness matrix (the 
choice was governed by access limitations to the commercial software ABAQUS 
(1998). To satisfy the consistency condition f=0 in elasto-plasticity, the trial stress 
method (linearized expansion of the yield condition about the trial stress point) 
using an elastic predictor and a plastic corrector with the return mapping algorithm 
(Ortiz and Simo 1986) was applied. The calculations were carried out using a 
large-displacement analysis (ABAQUS 1998). In this method, the current 
configuration of the body was taken into account. The Cauchy stress was taken as 
the stress measure. The conjugate strain rate was the rate of deformation. The 
rotations of the stress and strain tensor were calculated with the Hughes-Winget 
method (Hughes and Winget 1988). The non-local averaging was performed in the 
current configuration. This choice was governed again by the fact that element 
areas in this configuration were automatically calculated by ABAQUS (1998). 
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3.4   Bond-Slip Laws 

Different bond-slip laws were assumed when modelling reinforced concrete 
elements. However, there does not exist an universal slip-bond law for reinforced 
concrete elements since it depends upon boundary conditions of the entire system 
(Chapter 2). To consider bond-slip, an interface with a zero thickness was 
assumed along a contact, where a relationship between the shear traction and slip 
was introduced. In the book, 4 different bond-slip laws were applied. 

First, the simplest bond-slip proposed by Dörr (1980) without softening was 
used (Fig. 3.9) 
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     if      0<u≤u0,               (3.114) 

                                      max 1.9 tfτ τ= =                if        u>u1,                    (3.115) 

 

wherein τ denotes the bond stress, τmax is the bond resistance, ft is the tensile 
strength of concrete and u1 is the displacement at which perfect slip occurs 
(u1=0.06 mm).  

 

 
 

Fig. 3.9 Bond-slip law between concrete and reinforcement by Dörr (1980) 

 
Second, the bond-slip law suggested by CEB-FIB (1992) was applied  

(Fig. 3.10) 
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where u1=0.06 mm. 
 

 
Fig. 3.10 Bond stress-slip relationship between concrete and reinforcement by CEB-FIP 
(1992) 

 
Third, the bond-slip law by Haskett et al. (2008) on the basis of Eqs. 3.116-

3.119 was used (Fig. 3.11) 
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where u1=1.5 mm is slip corresponding to the peak. 

 

 

Fig. 3.11 Bond-slip relationship between concrete and reinforcement proposed by Haskett 
et al. (2008) 
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Finally, the bond-slip law was used which distinguishes pull-out failure where 
the bond strength is in the contact zone is exceeded, and a splitting failure which is 
caused by an insufficient concrete cover throughout (due to occurrence of radial 
cracks). Den Uijl and Bigaj (1996) and Akkermann (2000) proposed a bond model 
for ribbed bars based on concrete confinement. The bond model is formulated in 
the terms of a radial stress-radial strain relation (Fig. 3.12). The radial stresses are 
equal to the bond stresses. For the splitting failure, the radial strains are linear 
dependent on the slip, and for the pull-out failure, they are nonlinear dependent. If 
the radial stresses σr are smaller than the maximum slip stressesτmax=5ft, a splitting 
failure takes places (τmax/σr>1), otherwise a pull-out failure takes place (τmax/σr≤1). 
The maximum radial stress and strain are at failure, respectively 
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where Eo is the modulus of elasticity and c denotes the concrete cover. The bond 
stress is coupled with the radial stress by the friction angle. 

 
a)                                               b) 

 
Fig. 3.12 Selected bond-slip laws between concrete and reinforcement: a) splitting failure, b) 

pull-out failure (τ – bond stress, u – slip, εr – radial strain) (den Uijl and Bigaj 1996) 
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