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Chapter 1 
Introduction 

Abstract. In this chapter, a process of concrete fracture is briefly described. 
Methods and aspects of numerical modelling of concrete fracture using the finite 
element method are discussed. The outline of the book is given. 

 
Fracture process is a fundamental phenomenon in quasi-brittle materials like 
concrete (Bažant and Planas 1998). It is a major reason of their damage under 
mechanical loading contributing to a significant degradation of the material 
strength which may lead to a total loss of load-bearing capacity. During a fracture 
process, micro-cracks first arise which change gradually into dominant 
macroscopic discrete cracks up to rupture. Thus, a fracture process is subdivided 
in general into 2 main stages: appearance of narrow regions of intense deformation 
(including micro-cracks) and occurrence of macro-cracks. Within continuum 
mechanics, strain localization can be numerically captured by a continuous 
approach and discrete macro-cracks can be modelled by a discontinuous one. 
Usually, to describe the fracture behaviour of concrete, one type approach is used.  

Localization of deformation can occur as tensile zones, shear zones or mixed 
tensile-shear zones. Localized zones have a certain volume being not negligible as 
compared to the specimen size. Thus, an understanding of the mechanism of the 
formation of localized zones is of a crucial importance since they influence  
the bearing capacity of the specimen and act as a precursor of macro-cracks. The 
phase of localization of deformation has to be modelled in a physically consistent 
and mathematically correct manner. Classical FE-analyses within a continuum 
mechanics are not able to describe properly both the thickness of localized zones 
and distance between them since they do not include a characteristic length of 
micro-structure (Tejchman 1989, 2008). Thus, they suffer from a pathological 
mesh-dependency on the fineness of the spatial discretisation (its size and 
orientation), because differential equations of motion change their type (from 
elliptic to hyperbolic during quasi-static calculations) and the rate boundary value 
problem becomes mathematically ill-posed (Mühlhaus 1986, de Borst et al. 1992, 
1993). Deformations tend to localize in a zero thickness zone in an analytical 
analysis and in one element wide region in FE calculations (the strain-softening 
domain is limited to a point and no energy dissipation takes place). As a result, 
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computed load-displacement curves are severely mesh-dependent (in particular, in 
a post-peak regime). Thus, classical constitutive laws require an extension by a 
characteristic length of micro-structure to accurately capture the formation of 
strain localization, to obtain an objective solution upon mesh refinement, to take 
into account microscopic inhomogeneities triggering strain localization (e.g. 
aggregate size, cement grain size) and to describe an energetic (deterministic) size 
effect. In turn, macro-cracks can be captured as a jump in a continuum field by 
means of discontinuous methods including e.g. cohesive elements (interfaces) 
defined along finite element edges (Ortiz and Pandolfi 1999, Gálvez et al. 2002, 
Zhou and Molinari 2004) or strong discontinuities using elemental or nodal 
enrichments wherein cracks can arbitrarily propagate through finite elements 
(Belytschko et al. 1988, Jirásek 2000, Belytschko et al. 2001, Simone and Sluys 
2004, Oliver et al. 2006), which offers more flexibility for the crack path than 
interface elements. In un-cracked material, a linear elastic constitutive law is 
usually assumed under tensile loading. To activate a crack, a criterion for crack 
opening/growth is introduced. Continuous and discontinuous approaches can be 
used both at macro-level (concrete is described as one-phase material) and at 
micro-level (concrete is described as a three-phase material composed of 
aggregate, cement and interfacial transitional zones). 

The main intention of the book is to analyze a quasi-static fracture process in the 
form of localization of deformation in plain concrete and reinforced concrete at 
macro- and meso-level by means of enhanced continuum constitutive models 
formulated within continuum mechanics. The analyses were performed for 
monotonic and cyclic loading using a finite element method. In the case of 
monotonic loading, three different popular continuum models: isotropic elasto-
plastic, isotropic damage and smeared crack one were used. For cyclic loading, four 
various coupled elasto-plastic-damage formulations were applied. Constitutive 
models were equipped with a characteristic length of micro-structure with the aid 
of a non-local or a second-gradient theory. So they could describe both: the 
formation of localized zones with a certain thickness and spacing and a related 
deterministic size effect (Pamin 1994, Bažant and Jirásek 2002). FE-contours of 
localized zones converged to a finite size upon mesh refinement and boundary 
value problems became mathematically well-posed at the onset of strain 
localization. In addition, mesh-objective FE results of fracture in the form of 
macro-cracks in plain concrete under quasi-static loading using a discontinuous 
continuum approach with cohesive (interface) elements and XFEM were presented.  

2D finite element analyses were performed with plain concrete elements under 
monotonic loading using continuous approaches (uniaxial compression, uniaxial 
tension, tensile bending and mixed shear-extension) and discontinuous approaches 
(uniaxial tension, tensile bending and mixed shear-extension). Plain concrete 
elements under cyclic loading were simulated using coupled elasto-plastic-damage 
formulations. In the case of reinforced concrete specimens, 2D and 3D FE 
calculations were carried out with bars, slender and short beams, columns, corbels 
and tanks under monotonic loading within enhanced both elasto-plasticity and 
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damage mechanics. Tensile and shear failure mechanisms were studied. Attention 
was paid to the width and spacing of localized zones. A stochastic and 
deterministic size effect was carefully analyzed in plain concrete by taking into 
account strain localization and random spatially correlated tensile strength. They 
were compared with existing size effect laws. Meso-scale FE calculations of strain 
localization were also carried out with plain concrete (described as a three-phase 
material) under monotonic loading during uniaxial tension and bending. 
Numerical results with respect to the load-displacement diagram and geometry of 
localized zones were compared with corresponding both laboratory and large-
scale tests from the scientific literature and some own tests. 

The book includes 10 Chapters. After a short introduction in Chapter 1, 
Chapter 2 summarizes the most important properties of concrete and reinforced 
concrete. In Chapter 3, enhanced continuum constitutive models used for FE 
analyses are described. Discontinuous approaches with cohesive zones and XFEM 
are outlined in Chapter 4. Results of two-dimensional FE modelling of strain 
localization in concrete elements for monotonic quasi-static loading (uniaxial 
tension, uniaxial compression, bending and mixed shear-tension mode) and cyclic 
quasi-static loading (bending) are shown in Chapters 5 and 6, respectively. In 
Chapter 7, 2D and 3D results of FE modelling of strain localization in reinforced 
concrete elements and structures (bars, slender and short beams, columns, corbels 
and tanks) for monotonic quasi-static loading are demonstrated. Results of a 
deterministic and statistical size effect in plain concrete are included in Chapter 8. 
Chapter 9 shows results of mesoscopic modelling of strain localization in  
plain concrete during unaxial tension and three-point bending. Finally, general 
conclusions from the research and future research directions are enclosed  
(Chapter 10). 
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Chapter 2 

Concrete and Reinforced Concrete Behaviour 

Abstract. This chapter describes briefly the most important mechanical properties 
of concrete, reinforcement and reinforced concrete elements in a static and 
dynamic regime. In addition, bond-slip between reinforcement and concrete is 
discussed. Attention is laid on a size effect in concrete and reinforced concrete 
elements. 
 
Concrete is still the most widely used construction material in terms of volume 
since it has the lowest ratio between cost and strength as compared to other 
available materials. It is a composite phase-material consisting mainly of 
aggregate, cement matrix and voids containing water or air (Fig. 2.1a). As a 
consequence, the concrete structure is strongly heterogeneous (Fig. 2.1b). 
Concrete properties depend strongly on the cement and aggregate quality and the 
ratio between cement and water. Classical concretes are divided into 3 groups 
depending upon the volumetric weight γ: heavy concretes γ=28-50 kN/m3, normal 
concretes γ=20-28 kN/m3 and light concretes γ=12-20 kN/m3. Plain concrete is a 
brittle or quasi-brittle material, i.e. its bearing capacity strongly and rapidly falls 
down during compression and tension, and localized zones and macro-cracks are 
created. Its behaviour is mainly non-linear (a linear behaviour is limited to a very 
small range of deformation). Concrete has two undesirable properties, namely: 
low tensile strength and large brittleness (low energy absorption capacity) that 
cause collapse to occur shortly after the formation of the first crack. Therefore, the 
application of concrete subjected to impact, earth-quaking and fatigue loading is 
strongly limited. To improve these two negative properties, reinforcement in the 
form of bars and stirrups is mainly used. 

 
Uniaxial Compression of Concrete 
Typical curves for concrete during uniaxial compression are shown in Fig. 2.2. The 
material elastically behaves up to 30% of its compressive strength. Above this point, 
the behaviour starts to be non-linear. In the vicinity of the peak on the stress-strain 
curve, damage begins and the curve falls down until complete failure is reached. The 
cracks are parallel to the loading direction. During compression, first the volume 
decreases linearly then non-linearly reaching its minimum at the point M of Fig. 2.2. 
Next, the material is subjected to dilatancy due to formation and propagation of 
cracks. The Poisson’s ratio remains constant (0.15-0.22) up to 0.8fc (fc – uniaxial 
compressive strength). At failure, it may even exceed 0.5 (Fig. 2.3). The compressive 
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strength depends on the specimen size and shape (Fig. 2.4). It decreases with 
increasing slenderness ratio h/b (or h/d) (h – specimen height, b – specimen width, d 
– specimen diameter). It is larger for plates than for prisms and cylinders. 

The higher is the compressive strength of concrete, the larger is the material 
brittleness (ratio between the energy consumed after and before the stress-strain 
peak) (Fig. 2.5).  

 

 
a) 

 
b) 

Fig. 2.1 Concrete: a) non-uniform phase-structure, b) stress distribution in concrete subjected 
to compression by Dantu (1958) (Godycki-Ćwirko 1982, Klisiński and Mróz 1988) 

Uniaxial Tension of Concrete 
A typical stress-displacement diagram is shown in Fig. 2.6. The tensile strength of 
concrete is about 10 times lower that its compressive strength. A linear behaviour 
of concrete takes place up to 60% of the tensile strength ft. A micro-crack is 
perpendicular to the loading direction. The material undergoes dilatancy only. 
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Influence of Strain Rate on Concrete 
The concrete strength increases when strain rate increases due to confinement by 
inertial lateral restraint, shorter time for cracks to be created and viscosity of free 
water (Rossi 1991, Zheng and Li 2004) (Figs. 2.7 and 2.8). The material brittleness 
decreases with increasing strain rate. During impact loading, the compressive 
strength also increases; however, the material behaviour after the peak can be very 
different (Figs. 2.9 and 2.10). The strength of concrete after drying is not sensitive to 
loading rate. 

 

  

 

Fig. 2.2 Typical stress-strain diagram and volume changes during uniaxial vertical 
compression for concrete (σ - compressive normal stress, ε1 – vertical normal strain, ε2,3 – 
horizontal normal strains, εv – volumetric strain, fc – uniaxial compressive strength) 
(Klisiński and Mróz 1988) 
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Biaxial Tests of Concrete 
The stress-strain curves are shown in Fig. 2.11 and limit curves are depicted in 
Fig. 2.12. In addition, Fig. 2.13 presents volume changes. The largest increase of 
compressive strength during biaxial compression (by about 25%) is achieved for 
the ratio of the principal stresses equal to 0.6. If this ratio is equal to 1, the strength 
increase is about 16%. 

 

Fig. 2.3 Typical change of Poisson’s ratio ν with normalized compressive stress σ/fc during 
uniaxial compression (Klisiński and Mróz 1988) 

 

Fig. 2.4 Relationship between compressive strength of concrete prisms and compressive 
strength of concrete cubes α against slenderness ratio of concrete specimen h/d or h/b 
(Leonhard 1973) 
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Fig. 2.5 Effect of uniaxial compression strength fc on stress-strain relationship σ-ε (Klisiński 
and Mróz 1988) 

 

Fig. 2.6 Typical normalized stress-displacement curve during uniaxial extension for 
concrete (σ - vertical normal stress, u – vertical crack displacement, ft - uniaxial tensile 
strength) (Klisiński and Mróz 1988) 

Triaxial Tests of Concrete 
Figure 2.14 demonstrates the results of monotonic usual triaxial experiments with 
concrete. The cylindrical specimens were initially loaded under hydrostatic 
confining pressure till the required value was reached. After that, horizontal 
confining pressure was kept constant and the specimen was subjected to 
increasing (Fig. 2.14) or decreasing vertical loading (Fig. 2.15). Concrete strength 
evidently increases with increasing confining pressure. Fig. 2.16 shows the 
material behaviour during hydrostatic loading, where fast material hardening is  
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noticeable. Fig. 2.17 shows a limit curve in plane of the octahedral and hydrostatic 
stress for different confining pressures, which is parabolic. In turn, Fig. 2.18 
depicts the results of cyclic true triaxial tests with rectangular prismatic specimens 
loaded in three orthogonal directions performed by Scavuzzo et al. (1983).  

 

 

a) 

 

b) 

Fig. 2.7 Log-log scale of relative compressive strength increase versus strain rate (a) and 
relative tensile strength increase versus strain rate (b) (Bischoff and Perry 1991) 
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Fig. 2.8 Effect of loading velocity on concrete behaviour: load-displacement diagram 
during three-point bending (Zhang et al. 2009). 

 

Fig. 2.9 Effect of strain rate on evolution of compressive normal stress versus normal 
strain: a) dε/dt=700 s-1, b) dε/dt=500 s-1, c) dε/dt=300 s-1 (Gary 1990). 
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a) 

 
b) 

 
c) 

Fig. 2.10 Effect of loading velocity on stress-strain curve during impact loading (a-c): 
a) concrete 30 MPa, impactor mass 31.6 kg, impactor velocity 8.2 m/s, dε/dt=9.0 1/s, b) 
concrete 50 MPa, impactor mass 31.6 kg, impactor velocity 5.3 m/s, dε/dt=5.2 1/s, c) 
concrete 50 MPa, impactor mass 78.3 kg, impactor velocity 5.3 m/s, dε/dt=5.6 1/s (Bischoff 
and Perry 1995) 
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a) 

 
b) 

 
c) 

Fig. 2.11 Stress-strain curves from experiments by Kupfer et al. (1969): a) biaxial 
compression, b) axial compression and axial tension, c) biaxial extension (Klisiński and 
Mróz 1988) 
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Fig. 2.16 Stress-volume strain during hydrostatic compression (Klisiński and Mróz 1998) 

 

Fig. 2.17 Failure surface in plane τo-σo from usual triaxial experiments by Kotsovos (1980) 
(τo - octahedral stress, σo – hydrostatic stress, fc - compressive strength) (Klisiński and 
Mróz 1988)  

Cyclic Behaviour of Concrete 
During quasi-static cyclic loading, concrete shows pronounced stiffness degradation 
due to fracture during both compression, tension and bending (Fig. 2.20). A 
hysteresis loop occurs during each cycle whose shape depends upon loading type. 

 
Reinforcement of Concrete 
The reinforcement co-operates with concrete during loading by carrying principal 
tensile and compressive stresses. A stress-strain diagram for different classes of 
reinforcement steel during uniaxial tension is shown in Fig. 2.21. A plastic region 
decreases with increasing tensile strength. During cyclic loading, compressive 
strength slightly decreases and tensile strength slightly increases (the so-called 
Bauschinger’s effect) (Fig. 2.22). 
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Fig. 2.18 Experimental results of cyclic true triaxial tests by Scavuzzo et al. (1983) for 
different stress paths (Klisiński and Mróz 1988) 
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a) 

 

b) 

Fig. 2.19 Failure surface for concrete in space of principal stresses σi (a) and in deviatoric 
plane (θ - Lode angle) (Klisiński and Mróz 1988, Pivonka et al. 2003) 
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Fig. 2.21 Stress-strain diagram for reinforcement steel during uniaxial tension (Klisiński 
and Mróz 1988) 

 

Fig. 2.22 Stress-strain diagram for reinforcement steel during cyclic loading (Klisiński and 
Mróz 1988) 

Size Effect in Concrete Elements 
Comprehensive investigations of the effect of the element size and boundary 
conditions along lateral surfaces during uniaxial compression were performed by 
van Vliet and van Mier (1995, 1996) (Fig. 2.23-2.28). The experimental results 
show that the both strength and ductility considerably increase with decreasing 
element size when large friction exists along horizontal lateral surfaces. If friction 
is small, the strength increase is non-significant. Fracture pattern strongly depends 
on boundary conditions. For large friction, cracks occur at horizontal edges only 
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(the mid-region remains uncracked). In the case of small friction, a macro-crack is 
created in the form of shear zones whose number increases with a reduction of the 
element size.  

A pronounced size effect was observed during multi-axial compression  
in hollow-cylinder tests using different pressures (Elkadi and van Mier 2006)  
(Fig. 2.29). The compressive strength reduced with increasing element size. 

 

Fig. 2.23 Peak stresses and corresponding strains of the normal strength concrete during 
uniaxial compression specimens depending upon friction along horizontal edges (van Vliet 
and van Mier 1996) 

 

Fig. 2.24 Compressive stress-strain curves of the normal strength concrete specimens with 
different heights h and high friction boundary conditions along horizontal edges (van Vliet 
and van Mier 1996) 
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Fig. 2.25 Compressive curves for 100 mm cube specimens (normal strength concrete) 
loaded under high and low friction boundary conditions along horizontal edges (van Vliet 
and van Mier 1996) 

 

Fig. 2.26 Post-peak deformations of normal strength concrete specimens with different 
boundary conditions along horizontal edges (van Vliet and van Mier 1996) 

A strong deterministic size effect occurred in concrete during uniaxial 
extension (van Vliet and van Mier 2000) (Figs. 2.30-2.32) and three-point bending 
(Le Bellego et al. 2003) (Figs. 2.33-2.35). In addition, a strong stochastic size 
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effect was observed in experiments with concrete beams of the same height and 
different span at the same load (Koide et al. 1998, 2000) (Fig. 2.36), i.e. the 
maximum bending moment clearly decreased with increasing bending span. 

 
                            a)                                                                  b) 

Fig. 2.27 Axial strain against lateral strain for normal strength concrete cubes with: a) high 
friction and b) low friction along horizontal edges (van Vliet and van Mier 1996) 

 
(a) 

 
(b) 

Fig. 2.28 Crack patterns of normal strength concrete specimens with high (A) and low (B) 
friction boundary conditions for different specimen heights h (van Vliet and van Mier 1996) 
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Size Effect in Reinforced Concrete Elements  
A size effect occurs also in reinforced concrete elements when the failure by 
yielding of longitudinal steel bars is excluded in advance (brittle failure takes then 
place in a compressive concrete zone).  

Figure 2.37 shows a size effect in reinforced concrete beams of the same 
slenderness without shear reinforcement in experiments by Leonhardt and Walther 
(1962). The size of beams was in a proportion 1:2:3:4. The reinforcement included 
always 2 steel bars. The reinforcement ratio was 1.35%. The bearing capacity of 
beams decreased with increasing beam size. 

Comprehensive investigations on a size effect were carried out by Walraven 
and Lehwalter (1994) for different reinforced concrete beams. First, slender 
reinforced concrete beams loaded in shear without stirrups were investigated  
(Fig. 2.38). The beams were made of normal gravel concrete and lightweight 
concrete. The experiments were carried out with 3 different beams with the same 
thickness of b=200 mm: h=150 mm, l=2300 mm (small size beam ‘1’), h=450 
mm, l=4100 mm (medium size beam ‘2’) and h=750 mm, l=6400 mm (large size 
beam ‘3’). The reinforcement ratio was 0.79-0.83%: 1×φs8 and 2×φs10 (beam ‘1’), 
1×φs20 and 2×φs14 (beam ‘2’) and 3×φs22 (beam ‘3’). 

Second, short reinforced concrete beams loaded in shear without and with shear 
reinforcement were investigated (Fig. 2.39). The beam length L varied between 
680 mm and 2250 mm and the height h was between 200 mm and 1000 mm (the 
beam width b was always 250 mm). In the tests, the span-to-depth ratio was 
always 1. The reinforcement ratio of the specimens was 1.1% (the failure by 
yielding of longitudinal steel bars was again excluded in advance). The shear 
reinforcement ratio was 0%, 0.15% and 0.30%, respectively. 

The experiments show that the shear beam bearing capacity of slender and 
short reinforced concrete beams decreases with increasing beam size 
independently of stirrups (Figs. 2.40-2.42). 

Size effect tests on reinforced concrete beams were recently carried out by 
Belgin and Sener (2008). The beams were similar in one-, two- and three-
dimensions, which means that the beam width, cover thickness, bar diameter and 
depth of reinforcement were all proportional to the beam span and length. In all of 
the specimens, the uniform bending moment was obtained between the loads. 
Beam lengths and widths were constant 4.6 m and 0.11 m, respectively, for the 
one-dimensional similarity (group I, Fig. 2.43a). Beam lengths of L=1.15 m,  
2.3 m, and 4.6 m, beam widths of b=0.055 m, 0.11 m and 0.22 m, beam heights of 
h=0.075 m, 0.15 m, 0.30 m were used for the three-dimensional similarity (group 
II, Fig. 2.43b). For the two-dimensional similarities, two types of tests were 
carried out. For group III beam heights of h=0.15 m, 0.30 m and 0.60 m were used 
and a beam width was constant b=0.11 m (Fig. 2.44a). For group IV beam widths 
of b=0.055 m, 0.11 m and 0.22 m, beam heights of h=0.075 m, 0.15 m and 0.30 m 
were used and beam length was constant L=2.30 m (Fig. 2.44b). The 
reinforcement ratio was 3% in order to induce brittle failure. 



2   Concrete and Reinforced Concrete Behaviour 25
 

 

 

Fig. 2.29 Hollow-cylinder experiments: mean values and standard deviations for log σ 
versus log Di for two different concretes (σo - outer stress, Di - inner-hole diameter) (Elkadi 
and van Mier 2006) 
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Fig. 2.30 Specimens for size effect tests during uniaxial tension (van Vliet and van Mier 2000) 

 
a)                                                                    b) 

Fig. 2.31 Experimental force-deformation curves during uniaxial tension for specimens A, 
B, C (a) and D, E, F (b) of Fig. 2.30 (van Vliet and van Mier 2000) 
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a)                                                                      b) 

Fig. 2.32 Individual values (a) and mean values with standard deviations (b) of nominal 
concrete strength logσN versus specimen size D during uniaxial tension (van Vliet and van 
Mier 2000) 

 

Fig. 2.33 Geometry of three-point bending size effect tests with 3 different notched beams: 
D1=80 mm, D2=160 mm, D3=320 mm (Le Bellego et al. 2003) (D – beam height) 
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a) 

 

b) 

 

c) 

Fig. 2.34 Three point bend testing of notched beams: experimental results of vertical force 
versus deflection u for small- (a), medium- (b) and large-size beam (c) (Le Bellego et al. 
2003) 
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Fig. 2.35 Experimental results of size effect in three-point bending tests (points – 
experimental results, line – size effect law by Bažant (Bažant and Planas 1998), D – specimen 
size, Do – characteristic size, B – parameter, ft – tensile strength) (Le Bellego et al. 2003) 

 
The beams under the constant bending moment failed by crushing of a 

compression zone around the peak load. Some local cracks were seen prior to 
crushing. The experimental results clearly confirmed the existence of a significant 
size effect on the nominal bending strength in beam accompanied by an increase 
of failure brittleness with the beam size. Figure 2.45 shows the size effect plots for 
the combined test results for all four groups. In the case of the two-dimensional 
similarity (group III and IV) tests, the maximum strengths were significantly 
higher than those for the one and three-dimensional similarity (group I–II) tests. 
For the bending tests of two-dimensional similarity (group III), the slope was e.g. 
3.6 times as high as that for the three-dimensional similarity (group II) tests. 
Smaller beams showed a ductile behaviour compared to larger beams. The load-
deflection diagrams were almost straight lines up to the peak load, after which a 
steeper descending branch was observed for large beams. The load-deflection 
diagrams for larger beams were stiffer than those for smaller beams, confirming an 
increase of brittleness in response to an increasing size. The post-peak behaviour 
was completely governed by the behaviour of concrete in a compression zone.  
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Fig. 2.36 Experimental tests with concrete beams of bending span 200 mm, 400 mm and 
600 mm and measured stochastic size effect expressed by maximum bending moment 
against bending span (Koide et al. 1998, 2000) 
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Fig. 2.37 Crack pattern and normalized failure moment against beam sizes h and l 
(Leonhardt and Walther 1962) 
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Fig. 2.38 Slender reinforced concrete beams without shear reinforcement (Walraven and 
Lehwalter 1994) 

 
Bond-slip between Concrete and Reinforcement 
A good bond between concrete and reinforcement is necessary for a reinforced 
concrete element to carry loads. A bond phenomenon was investigated by several 
researchers (e.g. Dörr 1980, Malvar 1992, Bolander et al. 1992, Azizinamini et al. 
1993, Darwin and Graham 1993, Uijl and Bigaj 1996, Haskett et al. 2008). The 
experiments show that the bond stress depends on the bar roughness, bar diameter, 
bar location, bar ending, concrete class, bar anchorage length, direction of 
concrete mixing and failure mechanism (splitting or pulling out) (Idda 1999). 

Fracture in concrete with a ribbed bar during a pull-out test is demonstrated in 
Fig. 2.46. Primary and secondary cracks occur due to the lack of bond and 
crushing. The effect of the bar roughness, bar location and bar ending on the 
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evolution of the bond stress is shown in Figs. 2.47-2.49. The bond stress increases 
with increasing bar roughness. It is the largest if the bar is pulled out parallel to 
the direction of concrete mixing (Fig. 2.48). The effect of the bar ending is also of 
importance (Fig. 2.49). 

Figure 2.50 shows a non-linear distribution of shear stresses in the contact zone 
between concrete and reinforcement. With increasing pull-out force, the maximum 
shear stress point moves into the specimen interior. 

 

Fig. 2.39 Short reinforced concrete beams (Walraven and Lehwalter 1994) 
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Fig. 2.40 Size effect for slender reinforced concrete beams of gravel and lightweight concrete 
without shear reinforcement: nominal shear strength versus effective height d (Vu - ultimate 
vertical force, b - beam width, fct - tensile strength) (Walraven and Lehwalter 1994) 

 

Fig. 2.41 Size effect for short reinforced concrete beams of normal concrete without shear 
reinforcement: nominal shear strength versus effective height d during cracking and failure 
(Vu - ultimate vertical force, b - beam width, fc - compressive strength) (Walraven and 
Lehwalter 1994) 
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The bond mechanism is described in Fig. 2.51. It is accompanied by primary 
crack formation, bending of concrete corbels, crushing of concrete corbels 
connected to dilatancy and slip of separate surfaces connected to contractancy. 

In turn, the experimental evolutions of the pull-out force versus slip are 
presented in Figs. 2.52 and 2.53. The evolution curve includes a hardening and 
softening phase. The pull-out force depends upon the bar diameter.  

Finally, Figs. 2.54-2.57 show the effect of the reinforcement ratio, bar 
roughness and reinforcement cover thickness on the force-displacement curve 
during bending.  

 

Fig. 2.42 Size effect for short reinforced concrete beams of normal concrete with shear 
reinforcement ratio ρw: nominal shear strength versus effective height d during cracking 
and failure (Vu - ultimate vertical force, b - beam width, fc - compressive strength) 
(Walraven and Lehwalter 1994) 

The results indicate that the peak and near post-peak behaviour of reinforced 
concrete elements are controlled by three factors: reinforcement ratio, bond-slip 
properties and reinforcement cover. Material softening decreases with increasing 
reinforcement ratio (for very low reinforcement ratios) and increases with 
increasing reinforcement ratio (for very high reinforcement ratios). It also 
decreases with increasing bar roughness. If the reinforcement cover is large 
enough, the specimen load exhibits a peak before the fracture zone reaches the 
reinforcement, then after some load decrease, the growing fracture zone reaches 
the reinforcement and is arrested, thus engendering hardening followed by a 
second peak and further softening. 
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a) 

 

b) 

Fig. 2.43 Test reinforced concrete beams for group I (a) and group II (b) (Belgin and Sener 
2008) 
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a) 

 

b) 

Fig. 2.44 Test reinforced concrete beams for group III (a) and group IV (b) (Belgin and 
Sener 2008) 
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Fig. 2.45 Test results on size effect for all groups (LEFM - linear elastic fracture 
mechanics) (Belgin and Sener 2008) 

 

Fig. 2.46 Crack formation during pull-out test of ribbed bars (Leonhardt 1973) 
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Fig. 2.47 Effect of bar roughness on evolution of bond stress τ (fR - roughness parameter): 
a) very rough bars, b) smooth bars (Leonhardt 1973) 
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Fig. 2.50 Distribution of shear stresses τ in contact zone between concrete and rein- 
forcement for increasing pull-out force P (Klisiński and Mróz 1988) 

 

Fig. 2.51 Bond mechanism: 1. primary crack formation, 2) bending of concrete corbels, 3) 
crushing of concrete corbels connected to dilatancy, 4) slip of separate surfaces connected 
to contractancy (Idda 1999) 
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Fig. 2.52 Experimental pull-out force against slip displacement (bar diameter dr=16 mm) 
(Idda 1999) 

 

Fig. 2.53 Pull-out force versus slip for two bars with different diameter: 10 mm (HA10) and 
12 mm (HA12) (Dahou et al. 2009) 
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Fig. 2.54 Influence of reinforcement ratio ρ on load-deflection curve for different beam 
effective heights and lengths (Bažant and Planas 1998) 

 



44 2   Concrete and Reinforced Concrete Behaviour
 

 

Fig. 2.55 Influence of reinforcement ratio μ on relationship between bending moment and 
curvature (Klisiński and Mróz 1988) 

 

Fig. 2.56 Influence of bar roughness on load-displacement curve in reinforced concrete 
beams (Bažant and Planas 1998) 
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Fig. 2.57 Influence of a relatively thick cover on load-deflection curve in reinforced 
concrete beams (Bažant and Planas 1998) 
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Chapter 3 
Continuous Approach to Concrete 

Abstract. This Chapter presents continuous models to describe concrete behaviour 
in a quasi-static regime during monotonic and cyclic loading. In the case of 
monotonic loading, isotropic elasto-plastic, isotropic damage and smeared crack 
model, and in the case of cyclic loading elasto-plastic-damage models are described. 
An integral-type non-local and a second gradient approaches to model strain 
localization are introduced. In addition, bond-slip laws are presented.  
 
The concrete behaviour can be modelled with different continuum models, e.g.: 
within non-linear elasticity (Palaniswamy and Shah 1974), linear fracture 
mechanics (Bažant and Cedolin 1979, Hilleborg 1985), endochronic theory (Bažant 
and Bhat 1976, Bažant and Shieh 1978), micro-plane theory (Bažant and Ožbolt 
1990, Jirásek 1999), plasticity (Willam and Warnke 1975, Ottosen 1977, Hsieh et 
al. 1982, Pietruszczak et al. 1988, Pramono and Willam 1989, Etse and Willam 
1994, Menétrey and Willam 1995, Winnicki et al. 2001, Lade and Jakobsen 2002, 
Majewski et al. 2008), damage (Dragon and Mróz 1979, Peerlings et al. 1998, Chen 
1999, Ragueneau et al. 2000, Marzec et al. 2007) and discrete ones using  
e.g.: interface elements with cohesive fracture constitutive laws (Carol et al. 2001, 
Caballero et al. 2006, 2007), a lattice approach (Herrmann et al. 1989, Vervuurt  
et al. 1994, Schlangen and Garboczi 1997, Cusatis et al. 2003, Bolander and 
Sukumar 2005, Kozicki and Tejchman 2007) and a discrete element method 
(DEM) (Sakaguchi and Mühlhaus 1997, Donze at al. 1999, D’Addetta et al. 2002, 
Hentz et al. 2004). 

We used different popular non-linear continuous constitutive models to 
simulate the concrete behaviour under monotonic loading. 

3.1   Local Models for Monotonic Loading 

3.1.1   Isotropic Elasto-Plastic Model 

Failure for elasto-plastic materials with isotropic hardening/softening is described 
by a condition 

                                                        ( , ) 0ijf σ κ =                                               (3.1) 
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with σij - stress tensor and κ - hardening/softening parameter (in general there may 
be several hardening/softening parameters). If f<0, the material behaves 
elastically. If f≥0, the material behaves plastically. The stresses have to remain on 
the failure surface (consistency condition) 

                                      ( , ) 0 : :ij ij

ij

f f
f σ κ σ κ

σ κ
• • •∂ ∂= = +

∂ ∂
.                             (3.2) 

Very often Equation 3.1 can be simplified by 

( , ) ( ) ( ) 0ij ij yf Fσ κ σ σ κ= − = ,                                   (3.3) 

where F is the function of stress tensor invariants and σy is the yield stress. The 
strain increment is equal to the sum of elastic and plastic strain increments 

                                          e p
ij ij ijd d dε ε ε= + .                                               (3.4) 

The stress increment is related to the increment of elastic strain 

e e
ij ijkl kld C dσ ε= ,                                                (3.5) 

where Ce
ijkl is the elastic stiffness tensor 

( )e
ijkl ij kl ik jl il jkC λδ δ μ δ δ δ δ= + + .                                (3.6) 

λ and μ are the Lame’a constants that are connected to the modulus of elasticity E 
and Poisson’s ratio ν 

                            
(1 )(1 2 )

Eνλ
ν ν

=
+ −

,                             
2(1 )

Eμ
ν

=
+

               (3.7) 

and δij is a Kronecker delta. The increment of plastic strain is determined with the 
flow rule 

                                           
( )ijp

ij
ij

g
d d

σ
ε λ

σ
∂

=
∂

                                            (3.8) 

with g as the potential function and dλ as the positive factor of proportionality. If 
f=g, the flow rule is associated. The condition of loading and unloading is equal to 

             0dλ ≥ ,                       ( , ) 0ijf σ κ ≤ ,                ( , ) 0ijd fλ σ κ =           (3.9) 

During plastic deformation, a stress state remains on the boundary of the 
elastic/plastic region 

                                            ( , ) 0ij ijf d dσ σ κ κ+ + = .                                     (3.10) 
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Equation 3.10 may be rewritten in a rate form as (similarly to Eq. 3.2) 

                                            0ij

ij

df df
d d

d d
σ κ

σ κ
+ = .                                       (3.11) 

Equations 3.10 and 3.11 are known as consistency conditions and allow to 
determine the magnitude of the plastic strain increment.  

The elasto-plastic stiffness matrix Cep
ijkl is calculated as 

                            

( )( )

( ) ( )

e T e
ijmn pqkl

mn pqep e
ijkl ijkl

T e
ijkl

ij kl

f g
C C

C C
f g

C H

σ σ
ξ

σ σ

∂ ∂
∂ ∂

= −
∂ ∂ +

∂ ∂

,                           (3.12) 

where  

                                                            ( )
f

H
κ

∂= −
∂

.                                          (3.13) 

The proportionality factor dλ is equal to 

                                        

( )

( ) ( )

T e
ijkl kl
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T e
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ij kl
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C d

d
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C H

ε
σ
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σ σ
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∂
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The parameter ξ=1, if f=0 and κ>0, otherwise ξ=0. The stiffness matrix Cep
ijkl may 

be non-symmetric due to f≠g. The stress increment can be calculated from 

               ( )e
ij ijkl kl

ij

f
d C d dσ ε λ

σ
∂= −

∂
.                                    (3.15) 

Usually 

                                  d dλ η κ= .                                               (3.16) 

when η is a constant dependent upon the model. 
The constitutive models use the different stress and stress tensor invariants  

                                               1 11 22 33I σ σ σ= + + ,                                      (3.17) 

2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 31

1 1
[( ) ( ) ( ) ]

2 6ij ijJ s s σ σ σ σ σ σ σ σ σ= = − + − + − + + + ,   (3.18) 

3

1

3 ij jk kiJ s s s= ,                                                (3.19) 
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1 11 22 33I ε ε ε ε= + + ,                                             (3.20) 

   2 2 2 2 2 2
2 11 22 22 33 33 11 12 23 31

1 1
[( ) ( ) ( ) ]

2 6ij ijJ e eε ε ε ε ε ε ε ε ε ε= = − + − + − + + + ,   (3.21) 

                                                 3

1

3 ij jk kiJ e e eε = ,                                               (3.22) 

 

where I1 - first stress tensor invariant, J2 – second deviatoric stress tensor 
invariant, J3 – third deviatoric stress tensor invariant, I1

ε – the first strain tensor 
invariant, J2

ε – second deviatoric strain tensor invariant and J3
ε – third deviatoric 

strain tensor invariant. In turn, J1 (first deviatoric stress tensor invariant) and J1
ε 

(first deviatoric strain tensor invariant) are always 

1 11 22 33 0J s s s= + + = ,                                               (3.23) 

1 11 22 33 0J e e eε = + + = ,                                               (3.24) 

The stress deviator sij and strain deviator eij are calculated as 

1

3ij ij ij

I
s σ δ= − ,                                                   (3.25) 

1

3ij ij ij

I
e

ε

ε δ= − .                                                   (3.26) 

To describe the behaviour of concrete, a simplified elasto-plastic model was 
assumed. In the compression regime, a shear yield surface based on a linear 
Drucker-Prager criterion and isotropic hardening and softening was used 
(Bobiński 2006, Marzec et al. 2007, Majewski et al. 2008) (Fig. 3.1) 

                                    tan ( tan ) ( )1 c 1

1
f q p 1

3
ϕ ϕ σ κ= + − − .                         (3.27) 

where q - Mises equivalent deviatioric stress, p – mean stress and ϕ – internal 
friction angle. The material hardening/softening was defined by the uniaxial 
compression stress σc(κ1), wherein κ1 is the hardening/softening parameter 
corresponding to the plastic vertical normal strain during uniaxial compression. 
The friction angle ϕ was assumed as (ABAQUS 1998) 

                                
3(1 )

tan
1 2

bc

bc

r

r

σ

σϕ −
=

−
,                                               (3.28) 

wherein rbc
σ denotes the ratio between uniaxial compression strength and biaxial 

compression strength (rbc
σ=1.2). The invariants q and p were defined as  

                                        
3

2 ij ijq s s= ,                             
1

3 kkp σ= ,              (3.29) 
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The flow potential was assumed as 

                                  tan1g q p ψ= + ,                                             (3.30) 

 

where ψ is the dilatancy angle (ψ≠φ). The increments of plastic strains p
ijdε  were 

calculated as 

                 1 1 1 ( tan )
1 1

1 tan 1 tan
3 3

p
ij

ij ij ij

d g d q p
d

κ κε ψ
σ σ σψ ψ

∂ ∂ ∂= = +
∂ ∂ ∂− −

.                (3.31) 

 
                                    a)                                                       b)              

Fig. 3.1 Drucker-Prager criterion in the space of principal stresses (a) and on the plane q-p (b) 

In turn, in the tensile regime, a Rankine criterion was used with the yield 
function f2 using isotropic hardening and softening defined as (Bobiński 2006, 
Marzec et al. 2007, Majewski et al. 2008) (Fig. 3.2) 

                                         { } ( )2 1 2 3 2max , , tf σ σ σ σ κ= − ,                         (3.32) 

where σi – principal stresses, σt – tensile yield stress and κ2 – softening parameter 
(equal to the maximum principal plastic strain 1

pε ). The associated flow rule was 

assumed.  
The edge and vertex in the Rankine yield function were taken into account by 

the interpolation of 2-3 plastic multipliers according to the Koiter’s rule (Pramono 
1988). The same procedure was adopted in the case of combined tension (Rankine 
criterion) and compression (Drucker-Prager criterion). 

This simple isotropic elasto-plastic model for concrete (Eqs. 3.27-3.32) requires 
two elastic constants: modulus of elasticity E and Poisson’s ratio υ, two plastic 
constants: internal friction angle ϕ and dilatancy angle ψ, one compressive yield 
stress function σc=f(κ1) with softening and one tensile yield stress function  
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σt=f(κ2) with softening. The disadvantages of the model are the following: the 
shape of the failure surface in a principal stress space is linear (not paraboloidal as 
in reality). Thus, it is certainly not suitable in a compression regime if a large 
range of stress is concerned. In deviatoric planes, the shape is circular (during 
compression) and triangular (during tension); thus it does not gradually change 
from a curvilinear triangle with smoothly rounded corners to nearly circular with 
increasing pressure. The strength is similar for triaxial compression and extension, 
and the stiffness degradation due to strain localization and non-linear volume 
changes during loading are not taken into account. 

3.1.2   Isotropic Damage Model 

Continuum damage models initiated by the pioneering work of Katchanov (1986) 
describe a progressive loss of the material integrity due to the propagation and 
coalescence of micro-cracks and micro-voids. Continuous damage models (Simo 
and Ju 1987, Lemaitre and Chaboche 1990) are constitutive relations in which the 
mechanical effect of cracking and void growth is introduced with internal state 
variables which act on the degradation of the elastic stiffness of the material. They 

 

  
 

Fig. 3.2 Rankine criterion: π-plane, tensile and compressive meridian planes, σ1-σ2 plane, 
σxx-σxy plane (σi - principal stresses, σxx - normal stress, σxy - shear stress ft - tensile 
strength, ξ - hydrostatic axis, ρ - deviatoric axis, ρt - deviatoric length) 
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can be relatively simple - isotropic (Pijaudier-Cabot 1995, Peerlings et al. 1998, 
Geers, et al. 1998, Huerta et al. 2003, Jirásek 2004a) or more complex - anistropic 
(Zhou et al. 2002, Krajcinovic and Fonseka 1981, Kuhl and Ramm 2000). The 
damage variable defined as the ratio between the damage area and the overall 
material area can be chosen as a scalar, several scalars, a second order tensor, a 
fourth order tensor and an eight order tensor. 

A simple isotropic damage continuum model describes the material degradation 
with the aid of only a single scalar damage parameter D growing monotonically 
from zero (undamaged material) to one (completely damaged material). The 
stress-strain relationship is represented by  

 

               (1 ) e
ij ijkl klD Cσ ε= − ,                                      (3.33) 

 

where e
ijklC  is the linear elastic stiffness matrix (including modulus of elasticity E 

and Poisson’s ratio υ) and klε  is the strain tensor. Thus, the damage parameter D 

acts as a stiffness reduction factor (the Poisson’s ratio is not affected by damage) 
between 0 and 1. The growth of damage is controlled by a damage threshold 
parameter κ which is defined as the maximum equivalent strain measureε  
reached during the load history up to time t. The loading function of damage is 

 
                     { }0( , ) max ,f ε κ ε κ κ= −  ,                                 (3.34) 

 
where 0κ  denotes the initial value of κ  when damage begins. If the loading 

function f is negative, damage does not develop. During monotonic loading, the 
parameter κ grows (it coincides with ε ) and during unloading and reloading it 
remains constant. To define the equivalent strain measure ε , different criteria can 
be used. In the book, we applied 4 different equivalent strain measures ε . First, a 
Rankine failure type criterion by Jirásek and Marfia (2005) was adopted 

 

                                                
}{max eff

i

E

σ
ε = ,                                           (3.35) 

 

where eff
iσ  are the principal values of the effective stress 

 
eff e
i ijkl klσ σ ε= .                                               (3.36) 

 

Second, a modified Rankine failure type criterion was applied 
 

1 2
eff effc

E

σ σ
ε

− −
=                                            (3.37) 
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with 1 2
eff effσ σ>  and a non-negative coefficient c. This formulation is equivalent 

to Eq. 3.35 in a tension-tension regime, but it behaves in a different way in a 
mixed tension-compression regime (the coefficient c reflects the influence of the 
principal compressive stress). With the coefficient c=0, Eq. 3.35 is recovered.  

Third, we considered a modified von Mises definition of the equivalent strain 
measure ε  in terms of strains (de Vree et al. 1995, Peerlings et al. 1998)  

 

                     
( ) ( )

2

1 1 22

1 1 1 12

2 1 2 2 1 2 1

k k k
I I J

k k
ε εε

ν ν ν
− − = + + − −  +

 .            (3.38) 

 
The parameter k in Eq. 3.38 denotes the ratio between compressive and tensile 
strength of the material. A two-dimensional representation of Eq. 3.38 is given in 
Fig. 3.3 for k=10.  

Finally, a equivalent strain measure ε  following Häuβler-Combe and Pröchtel 
(2005), based on the failure criterion by Hsieh-Ting-Chen (Hsieh et. al 1982), was 
assumed 

 

( )2

2 2 3 1 4 1 2 2 3 1 4 1 1 2

1
4

2
c J c c I c J c c I c Jε ε ε ε εε ε ε
 

= + + + + + +  
 

 .           (3.39) 

 
where 1ε  is the maximum principal total strain, c1, c2, c3 and c4 are the coefficients 

depending on α1=ft/fc=k, α2=fbc/fc=rbc
σ and α3 and γ are the multipliers of the 

material strength in triaxial compression. The other definition of the equivalent 
strain measure ε  was used for concrete by Mazars and Pijaudier-Cabot (1989) 
using principal strains. 

To describe the evolution of the damage parameter D in the tensile regime, the 
exponential softening law by (Peerlings et al. 1998) was mainly used (Fig. 3.4)  

 

( )( )001 1D e β κ κκ α α
κ

− −= − − + ,                            (3.40) 

 
where α and β are the material constants. The alternative forms of the damage 
evolution law were proposed by Geers et al. (1998), Zhou et al. (2002), Huerta  
et al. (2003) and Jirásek (2004a).  

The damage evolution law determines the shape of the softening curve, i.e. 
material brittleness. The material softening starts when the when the equivalent 
strain measure reaches the initial threshold κ0 (material hardening is neglected). 
The parameter β determines the rate of the damage growth (larger value of β 
causes a faster damage growth). In one dimensional problems, for ε → ∞  
(uniaxial tension), the stress approaches the value of 0(1 )Eα κ−  (Fig. 3.4b). 
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The constitutive isotropic damage model for concrete requires the following 5 
material constants: E, υ, κ0, α and β (Eq. 3.35 and 3.40), 6 material constants: E, υ, 
κ0, α, β and c (Eq. 3.37 and 3.40), 6 material constants: E, υ, k, κ0, α and β  
(Eq. 3.38 and 3.40) or 9 material constants E, υ, 0κ , α, β, α1, α2, α3 and γ (Eq. 3.39 

and 3.40). The model is suitable for tensile failure (Marzec et al. 2007, Skarżyński 
et al. 2011) and mixed tensile-shear failure (Bobiński and Tejchman 2010). 
However, it cannot realistically describe irreversible deformations, volume 
changes and shear failure (Simone and Sluys 2004). 

3.1.3    Anisotropic Smeared Crack Model 

In a smeared crack approach, a discrete crack is represented by cracking strain 
distributed over a finite volume (Rashid 1968, Cope et. al. 1980, Willam et al. 
1986, de Borst and Nauta 1985, de Borst 1986, Rots 1988, Rots and 
Blaauwendraad 1989). The model is capable of properly combining crack 
formation and a non-linear behaviour of concrete between cracks and of handling 
secondary cracking owing to rotation of the principal stress axes after primary 
crack formation. A secondary crack is allowed if the major principal stress 
exceeds tensile strength and/or if the angle between the primary crack and 
secondary crack exceeds a threshold angle. Since the model takes into account the 
crack orientation, it reflects the crack-induced anisotropy. 

The total strain rate ijε
•

 is composed of a concrete strain rate 
con

ijε
•

 and several 

cracks strain rates 
I

ijε
•

, 
II

ijε
•

etc. (de Borst 1986) 

 
con I II

ij ij ij ijε ε ε ε
• • • •

= + + .                                         (3.41) 

 

 

Fig. 3.3 Equivalent strain definition in principal strain space (dashed lines represent 
uniaxial stress paths) (Peerlings et al. 1998) 
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                                   a)                                                              b) 
 
Fig. 3.4 Damage model: a) damage variable as a function of κ, b) homogeneous stress-
strain behaviour during uniaxial tension (E –modulus of elasticity) (Peerlings et al. 1998) 

 
The concrete strain rate is assumed to be related to some stress rate 

 
con

con
ij klijklCσ ε

• •
= .                                              (3.42) 

 
It may take into account elastic and plastic stress rates. The relation between the 

stress rate in the crack 
'

ijσ
•

 and the crack strain rate 
'

klε
•

 in the primary crack is 

given by  
 

' '
'

ij klijklCσ ε
• •

= .                                               (3.43) 

 
where the primes signify that the stress rate and the crack strain components of the 
primary crack are taken with respect to the coordinate system of the crack. The 

tensor '
ijklC  represents the stress-strain relation within the primary crack. 

Analogously, we have for a secondary crack  
 

'' ''
''

ij klijklCσ ε
• •

= .                                             (3.44) 

 
The double primes signify mean that the stress rate and the crack strain 
components of the secondary crack are taken with respect to the coordinate system 
of the crack. If αik are the direction cosines of the global coordination system with 
respect to the coordinate system of the primate crack, and if βik are the direction 
cosines of the global coordination system with respect to the coordinate system of 
the secondary crack 
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'I

ij klik jlε α α ε
• •

= ,                                         (3.45) 

''II

ij klik jlε β β ε
• •

= ,                                          (3.46) 

ij klki ljσ α α σ
• •

= ,                                          (3.47) 

''

ij klki ljσ β β σ
• •

= .                                          (3.48) 

 
After a transformation of crack strain rates in global coordinates, one obtains the 
following relationship  

 
' ''

( )con
kl mn op opklmn mo np mo npDσ ε α α ε β β ε

• • • •
= − − .                (3.49) 

Next, after some arrangements, a relationship between ijσ


 and klε


 is derived. A 

crack is initiated if the major principal stress exceeds the tensile strength. The 
crack direction is usually assumed to be orthogonal to the principal tensile major 
stress. Between stresses and strains in the crack plane z’-y’ (Fig. 3.5), we have the 
following relationship during loading 
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and during unloading 
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           =               
  

,                       (3.51) 

where the tangent modulus C represents the relation between the normal crack 
strain increment and normal stress increment during loading, S is the secant 
modulus of the unloading branch (Fig. 3.6), G is the elastic shear modulus and β is 
the shear stiffness reduction factor (the term βG account for effects like aggregate 
interlock). In addition, a threshold angle is introduced which allows new cracks to 
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form only when the angle between the current direction of the major principal 
stress and the normal to the existing cracks is exceeded. When a crack fully closes, 
the stiffness of the uncracked concrete is again inserted.  

The model has two variants: 1) the so-called fixed crack model, in which the 
crack orientation is fixed when the maximum principal stress attains the tensile 
strength (de Borst 1986), and 2) the so-called rotating crack model, in which the 
crack orientation is rotated so as to always remain perpendicular to the maximum 
principal strain direction (Rots and Blaauwendraad 1989).  

In our calculations, we assumed a simplified smeared crack approach. The 
total strains ijε  were decomposed into the elastic e

ijε  and inelastic crack strains 
cr
ijε  

 
                                                        e cr

ij ij ijε ε ε= + .                                        (3.52) 

 
The concrete stresses were related to the elastic strains via 

 
                                                    e e

ij ijkl klCσ ε= ,                                           (3.53) 

 
Between the concrete stresses and cracked strains, the following relationship was 
valid (in a local coordinate system) 

 
                                                      cr cr

ij ijkl klCσ ε=                                             (3.54) 

 
with the secant cracked stiffness matrix cr

ijklC  (defined only for open cracks). 

 
 

Fig. 3.5 Local coordinate system of a crack (de Borst 1986) 
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Fig. 3.6 Relationships between normal crack stress versus normal crack strain in softening range 

during loading, unloading and reloading (de Borst 1986) 

 
The matrix cr

ijklC  was assumed to be diagonal. A crack was created when the 

maximum tensile stress exceeded the tensile strength ft. To define softening in a 
normal direction under tension, a curve by Hordijk (1991) was adopted 

 

                         ( ) ( ) ( ) ( )( )3

1 2 31 expcr cr cr
t t i i if A A Aσ κ κε ε ε= + − −               (3.55) 

with 

                       31 2
1 2 3 1 2

1
, , (1 )exp( )

nu nu nu

b b
A A A b b

ε ε ε
= = = + − ,       (3.56) 

 
where εi

cr is the normal cracked strain in a local i-direction, nuε  denotes the 

ultimate cracked strain in tension and the material constants are b1=3.0 and 
b2=6.93, respectively. 

The shear modulus G was reduced by the shear reduction factor β according to 
Rots and Blaauwendraad (1989) 

 

                                                    1
pcr

i

su

εβ
ε

 
= − 
 

,                                       (3.57) 

 
where suε  is the ultimate cracked strain in shear and p is the material parameter. 

Combining Eqs. 3.51-3.54, the following relationship between stresses and total 
strains (in a local coordinate system) was derived 
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                                                    s
ij ijkl klCσ ε=                                            (3.58) 

 

with the secant stiffness matrix s
ijklC  as 

 

                                        1( )s e e e cr e
ijkl ijkl ijrs rstu rstu tuklC C C C C C−= − + .               (3.59) 

 

After cracking, the isotropic elastic stiffness matrix was replaced by the 
orthotropic one (in a local coordinate system). Two different formulations were 
investigated: a rotating crack model and a multi-fixed orthogonal crack model. In 
the first approach (rotating crack), only one crack was created which could rotate 
during deformation. To keep the principal axis of total strains and stresses aligned, 
the secant stiffness coefficient was calculated according to  

 

                                               ( )2
ii jjs

ijij

ii jj

C
σ σ

ε ε
−

=
−

.                                      (3.60) 

 

The second formulation (fixed crack model) allowed one a creation of three 
mutually orthogonal cracks in 3D-problems (and two orthogonal cracks in 2D 
simulations, respectively). The orientation of the crack was described by its 
primary inclination at the onset, i.e. the crack did not rotate during loading. 

The constitutive smeared crack model for concrete requires the following 8 
material parameters: E, υ, p, c1, c2, ft, εsu and εnu. 

3.2   Local Coupled Models for Cyclic Loading 

An analysis of concrete elements under quasi-static cyclic loading under 
compression, tension and bending is complex mainly due to a stiffness degradation 
caused by fracture (Karsan and Jirsa 1969, Reinhardt et al. 1986, Hordijk 1991, 
Perdikaris and Romeo 1995). To take into account a reduction of both strength and 
stiffness, irreversible (plastic) strains and degradation of stiffness, a combination of 
plasticity and damage theories is in particular physically appealing since plasticity 
considers the first three properties and damage considers a loss of material strength 
and deterioration of stiffness. Within continuum mechanics, plasticity and damage 
couplings were analyzed by many researchers using different ideas (e.g. Lemaitre 
1985, Mazars 1986, Simo and Ju 1987, Klisinski and Mróz 1988, Lubliner et al. 
1989, Hansen and Schreyer 1994, Meschke et al. 1998, Pamin and de Borst 1999, 
Carol et al. 2001, Hansen and Willam 2001, Gatuingt and Pijaudier-Cabot 2002, 
Ibrahimbegovic et al. 2003, Salari et al. 2004, Bobiński and Tejchman 2006, 
Grassl and Jirásek 2006, Voyiadjis et al. 2009). An alternative to the cyclic 
concrete behaviour by elasto-plastic-damage models, is the application of an 
endochronic theory which deals with the plastic response of materials by means of 
memory integrals, expressed in terms of memory kernels (Bažant 1978, Khoei er al. 
2003). 
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Below, the capability of 4 different coupled elasto-plastic damage continuum 
models to describe strain localization and stiffness degradation in a concrete 
beams subjected to quasi-static cyclic loading under tensile failure was 
investigated. The coupled elasto-plastic damage models proposed by Pamin and 
de Borst (1999), by Carol et al. (2001) and by Hansen and Willam (2001), by 
Meschke et al. (1998) and Marzec and Tejchman (2009, 2011) were taken into 
account.  

The first model (Pamin and de Borst 1999) combines non-local damage with 
hardening plasticity based on effective stresses and a strain equivalence concept 
(Katchanov 1986, Simo and Ju 1987). The total strains are namely equal to strains 
in an undamaged skeleton between micro-cracks. Plastic flow can occur only in an 
undamaged specimen, therefore an elasto-plastic model is defined in terms of 
effective stresses. In the second model (Carol et al. 2001 and Hansen and Willam 
2001) plasticity and damage are connected by two loading functions describing 
the behaviour of concrete in compression and tension. The onset and progression 
of material degradation is based upon the strain energy associated with the 
effective stress and strain. A damage approach (based on second-order tensors) 
simulates the behaviour of concrete under tension while plasticity describes the 
concrete behaviour under compression. A failure envelope is created by 
combining a linear Drucker-Prager formulation in compression with a damage 
formulation based on a conjugate force tensor and a pseudo-log damage rate in 
tension. In turn, in the third formulation (Meschke et al. 1998), an elasto-plastic 
criterion is enriched by new components including stiffness degradation. 
Degradation is written in the form of a Rankine’a criterion with hyperbolic 
softening. Following the partitioning concept of strain rates, an additional scalar 
internal variable is introduced into a constitutive formulation. Thus, the splitting 
of irreversible strains into components associated with plasticity and damage is 
obtained. Finally, based on an analysis of three initially presented formulations, an 
improved coupled formulation connecting plasticity and damage is presented 
using a strain equivalence hypothesis (Pamin and de Borst 1999). The plasticity is 
described with both a Drucker-Prager and a Rankine criterion in compression and 
tension, respectively. To describe the evolution of damage, a different definition is 
assumed for tension and compression. Finally to take into account a stiffness 
recovery at a crack closure and inelastic strains due to damage, combined damage 
in tension and compression based on stress weight factors is introduced.  

 
Constitutive coupled model by Pamin and de Borst (1999) 
The first formulation (called model ‘1’) according to Pamin and de Borst (1999) 
combines elasto-plasticity with scalar damage assuming that total strains ijε  are 

equal to strains in an undamaged skeleton (called effective strains eff
ijε ). Elasto-

plastic deformation occurs only in an undamaged specimen and is defined  
 

                                               eff e
ij ijkl klCσ ε= ,                                          (3.61) 
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The following failure criterion to describe a material response in an elasto-plastic 
regime is used 
 

                                            ( ) ( )eff
ep y pf F σ κ= −σ ,                                (3.62) 

 
wherein yσ  - the yield stress and pκ  - the hardening parameter equal to plastic 

strain during uniaxial tension. As an elasto-plastic criterion in Eq. 3.62, the failure 
criterion by von Mises or Drucker-Prager may be used defined by effective 
stresses. Next, the material degradation is calculated with the aid of an isotropic 

damage model (3.38 and 3.40). The equivalent strain measure ε  can be defined in 
terms of total strains εij or elastic strains e

ijε .  

The local coupled elasto-plastic-damage model ‘1’ requires the following 6 
material constants to capture the cyclic tensile behaviour: E, ν, 0κ , α, β, k and one 

hardening yield stress function. In the case of linear hardening, 8 material 
constants are totally needed (in addition, the initial yield stress σyt

o at κp=0 and 
hardening plastic modulus Hp).  
 
Constitutive coupled model by Carol et al (2001) and Hansen and Willam (2001) 
In the second model (called model ‘2’), a two-surface isotropic damage/plasticity 
model combining damage mechanics and plasticity in a single formulation is used 
(Carol et al. 2001 and Hansen and Willam 2001). A plastic region in compression 
is described with the aid of a linear Drucker-Prager criterion. The material 
experiences permanent deformation under sustained loading with no loss of the 
material stiffness. In turn in tension, damage is formulated in the spirit of 
plasticity by adopting the concept of a failure condition and a total strain rate 
decomposition into the elastic strain rate ijd eε  and degrading strain rate ijd dε  (as a 

result of the decreasing stiffness) 
 

                                                       d d de d
ij ij ijε ε ε= + .                                   (3.63) 

 
The boundary between elastic and progressive damage is governed by a failure 
criterion 
 

                                                 ( ),d ij df f qσ= ,                                   (3.64) 

 
where qd is the damage history variable describing the evolution of the damage 
surface. The stress rate is equal to as 
 

                                                 ( )d d ds d
ij ijkl kl klCσ ε ε= −                              (3.65) 
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with s
ijklC as the secant stiffness matrix connected with a material damage 

parameter D via 
 

                                                  ( )1s e
ijkl ijklC D C= − .                                     (3.66) 

 

The application of the secant stiffness is central to the idea that the degraded 
strains and stresses are reversible, since the material stiffness must degrade to 
make this idea possible (Carol et al. 2001, Hansen and Willam 2001). The 
degrading strain rate was defined as the excess strain rate beyond the value that 
corresponded to the stress increment according to the current secant stiffness.  

The effective stress and effective strain are again experienced by the 
undamaged material between cracks. Assuming the energy equivalence, the 
mutual relationship between the nominal (observed externally) and effective stress 
and strain is taken as 
 

                        1 eff
ij ijDσ σ= −                    and                    1eff

ij ijDε ε= −   (3.67) 

and 
 

                                                       eff eff
ij ij ij ijσ ε σ ε= ,                                          (3.68) 

with 

                         eff e eff
ij ijkl klCσ ε=                   and              ( )1 e

ij ijkl klD Cσ ε= − .     (3.69) 
 

The loading function (Eq. 3.64) for the Rankine-type anistropic damage model is 
defined in terms of the modified principal tensile conjugate forces 
 

                                                    ( )( ) ( )
3

ˆd i
i

f f y r L= − − ,                              (3.70) 

 

where ( )ˆ
iy−  - the principal components of the tensile conjugate forces tensor and 

( )r L
 - the resistance function as the complementary energy. The conjugate force 

( )ˆ
iy−  is a second order energy tensor written with aid of the effective stresses and 

strains by assuming linear isotropic elasticity 
 

                                                     ( )
1

ˆ
2

eff eff
i iiy σ ε− = ,                                  (3.71) 

where •  is the Macauley bracket. Originally, Carol et al. (2001) and by Hansen 

and Willam (2001) proposed the following resistance function with two 
parameters Gf  and ro  
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                                                   ( )
o

fg

o

r
L

r L r e
−

= ,                                       (3.72) 

with gf - the fracture energy and r0 – the elastic strain energy at the peak of the 
uniaxial tension test (E - isotropic elastic modulus) 
 

                                                       
( )2

2
t

o

f
r

E
= .                                            (3.73) 

 
The parameter L in Eq. 3.72 denotes the pseudo-log damage variable and is 
calculated with the aid of Eqs. 3.71 and 3.72 
 

                                     
1

ln
1-

L
D

=  ,                        ( )1 LD e−= − .                 (3.74) 

 
The rate of L is 
 

                                                     
1-

D
L

D
=

 .                                              (3.75) 

 
However, Eq. 3.72 poorly influences the post-peak behaviour. Therefore, we 
proposed a new resistance function with also 2 parameters 
 

                                    ( ) ( )2
0

21
exp

2

L
r L E

β
κ

β
− 

=  
 

,                                 (3.76) 

 
wherein κ0 - the threshold strain value and β - the parameter describing softening. 
The resistance function adopted by Nguyen (2005) was used in numerical 
simulations as well 
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with ft - the tensile strength, Ept - the damaged stiffness modulus and nt - the rate 
of the stiffness modulus.  

When simultaneously considering both damage and plasticity, the total strain 
rate becomes the sum of the elastic, damage and plastic rate 
 

                                           d d d de d p
ij ij ij ijε ε ε ε= + + .                                     (3.78) 
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The plastic strains are permanent while elastic and damage strains were reversible. 
Therefore, the elastic-damage strain d ed

ijε  is introduced in the total value 

 
                                                  d d ded p

ij ij ijε ε ε= + .                                        (3.79) 

 
The local coupled elasto-plastic-damage model requires the material constants: E, 
ν, φ, ψ, gf and r0 (Eq. 3.72), E, ν, φ, ψ, κ0 and β (Eq. 3.76), E, ν, φ, ψ, ft, Ept, nt 
(Eq. 3.77) and one compressive hardening/softening yield stress function. 
 
Constitutive coupled model by Meschke et al. (1998) 
In the third model (called model ‘3’), another concept of coupling was introduced. 
An elasto-plastic criterion is enhanced by a new component describing the 
stiffness degradation (Meschke et al. 1998). The permanent strain rate 
decomposition is assumed as 
 

                                                    d d dpd p d
ij ij ijε ε ε= + .                                       (3.80) 

 

The plastic damage strain rate d pd
ijε  is calculated as in classical plasticity. The 

component associated with degradation and plasticity is obtained by introducing a 
scalar constant γ between zero and one (0≤γ≤1) 
 

                  ( )d 1 dp pd
ij ijε γ ε= −                     and                      d dd pd

ij ijε γ ε= .    (3.81) 
 

The parameter γ enables one a simple splitting of effects connected with an 
inelastic slip process (which caused an increase of plastic strain) and a deterioration 
of microstructure (which contributed to an increase of the compliance tensor). The 
evolution law for the compliance tensor is (dλ - proportionality factor) 
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The stresses are updated analogously to the standard plasticity theory. To simulate 
concrete softening in tension, a hyperbolic softening law is chosen 
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where κ0 - the parameter adjusted to the fracture energy. 
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This coupled elasto-plastic-damage model requires in tension the following 5 
parameters: E, υ, ft, κ0 and γ. 

 
Improved coupled elasto-plastic-damage model (Marzec and Tejchman 2010) 
In order to describe the cyclic concrete behaviour under both tension and 
compression, an improved coupled model (called model ‘4’) was proposed based 
on the model ‘1’ by Pamin and de Borst (1999) (which combines elasto-plasticity 
with a scalar damage assuming a strain equivalence hypothesis). The elasto-plastic 
deformation is defined in terms of effective stresses according to Eq. 3.61. Two 
criteria are used in an elasto-plastic regime (Marzec et al. 2007, Majewski et al. 
2008): a linear Drucker-Prager criterion with a non-associated flow rule in 
compression and a Rankine criterion with an associated flow rule in tension 
defined by effective stresses (Chapter 3.1). Next, the material degradation is 
calculated within damage mechanics, independently in tension and compression 
using one equivalent strain measure ε  proposed by Mazars (1986) (εi - principal 
strains) 

 

                                                    
2

i
i

ε ε=  .                                           (3.84) 

 

In tension, the same damage evolution function by Peerlings et al. (1998) as in the 
model ‘1’ is chosen (Eq. 3.40). In turn, in compression, the definition by Geers 
(1997) is adopted 
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= ,                (3.85) 

 

where η1, η2 and δ are the material constants. Equation 3.85 allows for 
distinguishing different stiffness degradation under tension and under compression. 
Damage under compression starts to develop later than under tension that is 
consistent with experiments. The damage term ‘1-D’ (Eq. 3.33) is defined as in 
ABAQUS (1998) following Lubliner et al. (1989) and Lee and Fenves (1998a) 
 

                                               ( ) ( )( )1 1 1c t t cD s D s D− = − − ,                           (3.86) 

 
with two splitting functions st and sc controlling the magnitude of damage  
 

                    ( )1 eff
t ts a w= − σ              and             ( )( )1 1 eff

c cs a w= − − σ ,   (3.87) 

 

where at and ac are the scale factors and ( )effw σ  denotes the stress weight 

function which may be determined with the aid of principal effective stresses 
according to Lee and Fenves (1998a) 
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For relatively simple cyclic tests (e.g. uniaxial tension, bending), the scale factors 
at and ac can be at=0 and ac=1, respectively. Thus, the splitting functions are: 

1.0ts =  and ( )eff
cs w= σ . For uniaxial loading cases, the stress weight function 

becomes 
 

                                                  ( ) 1  if  0
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.                              (3.89) 

 
Thus, under pure tension the stress weight function 1.0w =  and under pure 
compression 0w = . 

Our constitutive model with a different stiffness in tension and compression and 
a positive-negative stress projection operator to simulate crack closing and crack re-
opening is thermodynamically consistent. It shares main properties of the model 
by Lee and Fenves (1998a), which was proved to not violate thermodynamic 
principles (plasticity is defined in the effective stress space, isotropic damage is 
used and the stress weight function is similar). Moreover Carol and Willam (1996) 
showed that for damage models with crack-closing-re-opening effects included, 
only isotropic formulations did not suffer from spurious energy dissipation under 
non-proportional loading (in contrast to anisotropic ones). 

Our local coupled elasto-plastic-damage model requires the following 10 
material constants E, ν, 0κ , α, β, η1, η2, δ, at, ac and 2 hardening yield stress 

functions (the function by Rankine in tension and by Drucker-Prager in 
compression). If the tensile failure prevails, one yield stress function by Rankine 
can be used only.  

The quantities σy (in the hardening function) and 0κ  are responsible for the 

peak location on the stress-strain curve and a simultaneous activation of a plastic 
and damage criterion (usually the initial yield stress in the hardening function 
σy

0=3.5-6.0 MPa and 0κ =(8-15)×10-5 under tension). The shape of the stress-

strain-curve in softening is influenced by the constant β in tension (usually β=50-
800), and by the constants δ and η2 in compression (usually δ=50-800 and η2=0.1-
0.8). The parameter η2 influences also a hardening curve in compression. In turn, 
the stress-strain-curve at the residual state is affected by the constant α (usually 
α=0.70-0.95) in tension and by η1 in compression (usually η1=1.0-1.2). Since  
the parameters α and η1 are solely influenced by high values of κ , they can  
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arbitrarily be assumed for softening materials. Thus, the most crucial material 

constants are σy
0, 0κ , β, δ and η2. In turn, the scale factors at and ac influence the 

damage magnitude in tension and compression. In general, they vary between zero 
and one. There do not exist unfortunately the experimental data allowing for 
determining the magnitude of at and ac. Since, the compressive stiffness is 
recovered upon the crack closure as the load changes from tension to compression 
and the tensile stiffness is not recovered due to compressive micro-cracks, the 
parameters ac and at can be taken for the sake of simplicity as ac=1.0 and at=0 for 
many different simple loading cases as e.g. uniaxial tension and bending. The 
equivalent strain measure ε  can be defined in terms of total strains or elastic 
strains. The drawback of our formulation is the necessity to tune up constants 
controlling plasticity and damage to activate an elasto-plastic criterion and a 
damage criterion at the same moment. As a consequence, the chosen yield stress 
σy may be higher than this obtained directly in laboratory simple monotonic 
experiments.  

The material constants E, ν, 0κ , β, α, η1, η2, δ and two hardening yield stress 

functions can be determined for concrete with the aid of 2 independent simple 
monotonic tests: uniaxial compression test and uniaxial tension (or 3-point 
bending) test. However, the determination of the damage scale factors at and ac 
requires one full cyclic compressive test and one full cyclic tensile (or 3-point 
bending) test. 

Table 3.1 shows a short comparison between four coupled models. The major 
drawback of first 3 formulations is the lack of the damage differentiation in 
tension and compression, stiffness recovery associated with crack closing and 
relationship between the tensile and compression stiffness during a load direction 
change. To describe these phenomena, additional material constants have to be 
included.  

The damage hardening/softening laws assumed in constitutive models have 
been fully based on experimental data from uniaxial compression and uniaxial 
tension tests which in turn strongly depend on the concrete nature, specimen size 
and boundary and loading conditions. It means that they are not physically based. 
This fact reveals the necessity to derive macroscopic laws in a softening regime 
from real micro-structure evolutions in materials during homogeneous tests using 
e.g. a discrete element model (Widulinski et al. 2011). 

The coupled model ‘1’ can be enriched by the crack-closure effect in a  
similar way as our model ‘4’. For the models ‘2’ and ‘3’ due to their different 
structure, the crack-closure effect can be incorporated by introducing a projection 
operator (model ’2’) or by modifying the evolution law for the compliance tensor 
(model ‘3’). 

 
 
 



3.3   Regularization Techniques 71
 

Table 3.1 Comparison between four local coupled elasto-plastic damage formulations to 
describe concrete behaviour (Marzec and Tejchman 2009, 2011) 
 

Nr. 
Plastic 

strains in  

tension/compression 

Stiffness  

degradation 

Unique strain 

division 

Stiffness  

recovery 

Number of  

material  

parameters 

Model ‘1’ Yes Yes No No 

Elastic: 2 

Plastic: 1 (tens.) 

3 (compr.) 

Damage: 4 

 

 

Model ‘2’ 

Yes  

(only in 

compression) 

Yes  

(only in 

tension) 

Yes No 

Elastic: 2 

Plastic: 3 

Damage: 3-4 

 

 

Model ‘3’ Yes Yes Yes No 

Elastic: 2 

Plastic: 2 

Damage: 1 

 

 

Model ‘4’ Yes Yes No Yes 

Elastic: 2 

Plastic: 1 (tension), 

3 (compression) 

Damage:2 (tension), 

3 (compression) 

Scale factors: 2 

3.3   Regularization Techniques 

Classical FE-simulations of the behaviour of materials with strain localization 
within continuum mechanics are not able to describe properly both the thickness 
of localization and distance between them. They suffer from mesh sensitivity (its 
size and alignment) and produce unreliable results. The strains concentrate in one 
element wide zones and the computed force-displacement curves are mesh-
dependent (especially in a post-peak regime). The reason is that differential 
equations of motion change their type (from elliptic to hyperbolic in static 
problems) and the rate boundary value problem becomes ill-posed (de Borst et al. 
1992). Thus, classical constitutive continuum models require an extension in the 
form of a characteristic length to properly model the thickness of localized zones. 
Such extension can be by done within different theories: a micro-polar (Mühlhaus 
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1986, Sluys 1992, Tejchman and Wu 1993, Tejchman et al. 1999), a strain 
gradient (Zbib and Aifantis 1989, Mühlhaus and Aifantis 1991, Pamin 1994, de 
Borst and Pamin 1996, Pamin 2004, Sluys and de Borst 1994, Peerlings et al. 
1998, Meftah and Reynouard 1998, Pamin and de Borst 1998, Chen et al. 2001, 
Zhou et al. 2002, Askes and Sluys 2003), a viscous (Sluys 1992, Sluys and de 
Borst 1994, Neddleman 1988, Loret and Prevost 1990, Lodygowski and Perzyna 
1997, Winnicki et al. 2001, Pedersen et al. 2008, Winnicki 2009) and a non-local 
(Pijaudier-Cabot and Bažant 1987, Bažant and Lin, 1988, Brinkgreve 1994, de 
Vree et al. 1995, Strömberg and Ristinmaa 1996, Marcher and Vermeer 2001, 
Maier 2002, 2003, di Prisco et al. 2002, Bažant and Jirásek 2002, Jirásek and 
Rolshoven 2003, Tejchman 2004).  

Other numerical technique which also enables to remedy the drawbacks of a 
standard FE-method and to obtain mesh-independency during formation of cracks, 
are approaches with strong discontinuities which enrich continuous displacement 
modes of the standard finite elements with additional discontinuous displacements 
(Belytschko et al. 2001, 2009, Simone et al. 2002, Asferg et al. 2006, Oliver et al. 
2006) or approaches with cohesive (interface) elements (Ortiz and Pandolfi 1999, 
Zhou and Molinari 2004) (Chapters 4.1 and 4.2). In the first approaches, 
discontinuity paths are placed inside the elements irrespective of the size and 
specific orientation. In the latter approaches, discontinuity paths are defined at the 
edges between standard finite elements. The most realistic approach to concrete (a 
continuous-discontinuous approach) was used by Moonen et al. (2008).  

Below two different regularization methods (integral-type non-local and 
explicit second-gradient) are described in detail. 

3.3.1   Integral-Type Non-local Approach 

A non-local model of the integral type (so called “strongly non-local model”) was 
used as a regularisation technique:  

a)  to properly describe strain localization (width and spacing),  
b)  to preserve the well-posedness of the boundary value problem,  
c)  to obtain mesh-independent results, 
d)  to take into account material heterogeneity and  
e) to include a characteristic length of micro-structure for simulations of a  
     deterministic size effect (Pijaudier-Cabot and Bažant 1987, Bažant and Jirásek  
     2002, Bobiński and Tejchman 2004).  
 

It is based on a spatial averaging of tensor or scalar state variables in a certain 
neighbourhood of a given point (i.e. material response at a point depends both on 
the state of its neighbourhood and the state of the point itself). Thus, a 
characteristic length lc can be incorporated and softening can spread over material 
points. It is in contrast to classical continuum mechanics, wherein the principle of 
local action holds (i.e. the dependent variables in each material point depend only 
upon the values of the independent variables at the same point), and softening at 
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one material point does not affect directly the yield surfaces of other points. It has 
a physical motivation due to the fact the distribution of stresses in the interior of 
concrete is strongly non-uniform (Fig. 2.1b). Polizzotto et al. (1998) laid down a 
thermodynamic a consistent formulation of non-local plasticity. In turn, Borino et 
al. (2003) and Nguyen (2008) laid down a thermodynamic consistent formulation 
of non-local damage mechanics. 

Usually it is sufficient to treat non-locally only one variable controlling material 
softening or degradation (Brinkgreve 1994, Bažant and Jirásek 2002, Huerta et al. 
2003).  

A full non-local model assumes a relationship between average stresses ijσ  and 

averaged strains ijε  defined as 
 

                                   ( ) ( ) 1 2 3

1
ij ijx x d d d

V
σ ω ξ σ ξ ξ ξ ξ−= −                    (3.90) 

 

and 
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−= −                     (3.91) 

 

where ijσ
−

(x) and ijε
−

(x) are the non-local softening parameters, x are the 
coordinates of the considered point, ξ are the coordinates of the surrounding 

points, ω denotes the weighting function and V
−

 denotes the weighed body 
volume 
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−

= − .                             (3.92) 

 

In general, it is required that the weighting function ω should not alter a uniform 
field which means that it must satisfy the normalizing condition (Bažant and 
Jirásek 2002).  

As a weighting function ω (called also an attenuation function or a non-local 
averaging function), a Gauss distribution function was used which is in 2D 
calculations 
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where the parameter lc is a characteristic length of micro-structure and r is a 
distance between two material points. The averaging in Eq. 3.93 is restricted to a 
small representative area around each material point (the influence of points at the 
distance of r=3lc is only of 0.01%) (Fig. 3.7). A characteristic length is usually 
related to the micro-structure of the material (e.g. maximum aggregate size and 
crack spacing in concrete, pore and grain size in granulates, crystal size in metals). 
It is determined with an inverse identification process of experimental data (Geers 
et al. 1996, Mahnken and Kuhl 1999, Le Bellego et al. 2003). 

 

 

Fig. 3.7 Region of the influence of characteristic length lc and weighting function ω 
(Bobiński and Tejchman 2004) 

 
However, the determination of a representative characteristic length of micro-

structure lc is very complex in concrete since strain localization can include a 
mixed failure mode (cracks and shear zones) and a characteristic length (which is 
a scalar value) is related to the fracture process zone with a certain volume which 
changes during a deformation (the width of the fracture process zone increases 
according to e.g. Pijaudier-Cabot et al. 2004, but decreases after e.g. Simone and 
Sluys 2004). In turn, other researchers conclude that the characteristic length is not 
a constant, and it depends on the type of the boundary value problem and the 
current level of damage (Ferrara and di Prisco 2001). Thus, a determination of lc 
requires further numerical analyses and measurements, e.g. using a Digital Image 
Correlation (DIC) technique (Bhandari and Inoue 2005). FE simulations of tests 
with measured load-displacement curves and widths of fracture process zones for 
different boundary value problems and specimen sizes are of importance. 
According to Pijaudier-Cabot and Bažant (1987), Bažant and Oh (1983), it is in 
concrete approximately 3×da

max, where da
max is the maximum aggregate size.  

Other representations can be also used for the function ω (Ožbolt 1995, 
Akkermann 2000, Jirásek 2004a, di Prisco et al. 2002, Bažant and Jirásek 2002); 
e.g. the polynomial bell-shaped function reads 
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2

2
2

(1 )
r

R
ω = − ,                                           (3.95) 

 
where R (interaction radius) is a parameter related to a characteristic length. To 
improve the behaviour of a non-local averaging in the vicinity of the boundary of 
a finite body, Polizzotto (2002) proposed the weight distribution preserving a 
uniform field and symmetry: 
 

                                         ( ) [1 ( ) ] ( )
V

r r dr rω ω ω δ= + −  ,                             (3.96) 

 
where δ denotes the Dirac distribution. This function is corrected by a suitable 
multiple of the local value to compensate for boundary effects. The FE-results by 
Jirásek et al. (2004b) show that the type of a non-local averaging near boundaries 
influences the peak of the load-displacement curve; the averaging with a 
symmetric local correction by Eq. 3.96 results in a lower resistance.  

Our FE calculations were carried out mainly with the characteristic length 
lc=1.5 mm (for fine-grained concrete) and lc=5 mm (usual concrete) based on DIC 
tests (Skarżynski et al. 2011, Syroka 2011). 

 
Monotonic loading 
In the calculations within elasto-plasticity (Eqs. 3.27-3.32), the softening 
parameters κi (i=1, 2) were assumed to be a linear combination of the local and 
non-local values (independently for both yield surfaces fi) (so called ‘over-
nonlocal’ formulation, Brinkgreve 1994, Bobiński and Tejchman 2004) 
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where iκ (x) are the non-local softening parameters and m is the additional non-

local parameter controlling the size of the localized plastic zone. For m=0, a local 
approach is obtained and for m=1, a classical non-local model is recovered 
(Pijaudier-Cabot and Bažant 1987, Bažant and Lin 1988). If the parameter m>1, 
the influence of the non-locality increases and the localized plastic region reaches 
a finite mesh-independent size (Brinkgreve 1994, Bažant and Jirásek 2002, 
Bobiński and Tejchman 2004). Brinkgreve (1994) derived an analytical formula 
for the thickness of a localized zone in an one-dimensional bar during tension with 
necking using a modified non-local approach by Eq. 3.97. According to this 
formula, if the non-local parameter was m=1, the thickness of the localized zone 
was equal to zero (similarly as in an usual local approach). The enhanced  
non-local elasto-plastic model has in addition two material parameters m and lc.  
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The softening non-local parameters near boundaries were calculated also on the 
basis of Eqs. 3.93-3.95 (which satisfy the normalizing condition). During a FE-
analysis, the integral in Eq. 3.96 was replaced by a summation operator 
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where np is the number of all integration points in the whole body, xj stand for co-
ordinates of the integration point in each element and Vj is the actual element 
volume.  

In the calculations within isotropic damage mechanics (Chapters 5 and 7), the 

equivalent strain measure ε  (Eqs. 3.35, 3.37, 3.38 and 3.39) was replaced by its 
non-local definition (Marzec et al. 2007) 
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It is to note, that in some other damage formulations, the use of a this non-local 
variable causes problems with energy dissipation can lead to an improper solution 
(Jirásek 1998, Jirásek and Rolshoven 2003, Borino et al. 2003). This case occurs 
in the coupled elasto-plastic-damage model ‘2’. 

In the smeared crack approach, the secant matrix s
ijklC  (Eqs. 3.52-3.60) was 

calculated with the non-local strain tensor klε  defined (independently for all tensor 

components) as (Jirásek and Zimmermann 1998)  
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Thus, the resulting stresses were calculated from the relationship 

 

                                                   ( )s
ij ijkl kl klCσ ε ε= .                                   (3.101) 

 
Cyclic loading  
In the first coupled elasto-plastic damage model (model ‘1’), non-locality was 
applied in damage (softening was not allowed in elasto-plasticity). The equivalent 
strain measure was replaced by its non-local counterpart (Eq. 3.94). In the second  
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coupled model, non-locality was prescribed in tension to the energy release Y 
(Marzec and Tejchman 2009) 
 

                                                       
1

2
e

ij ijkl klY Cε ε= ,                                        (3.102) 

 
which is a component of the loading function in Eq. 3.70. The non-local damage 
energy was composed of a local and non-local term calculated in the current (i) 
and previous iteration (i-1) (Strömberg and Ristinmaa 1996, Rolshoven 2003) 
 

                                    ( ) ( )( ) ( ) ( 1) ( 1)1i kl i i i klY m mA Y m Y Y A∗
− −= − + + − ,             (3.103) 

 
wherein m – the non-local parameter controlling the size of the localized plastic 
zone and distribution of the plastic strain and Akl - the component of a non-local 
matrix 
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where V(xl) is the volume associated to the integration point l. In the third model, 
the rates of the softening parameter were averaged according to the Brinkreve’s 
formula (Eq. 3.97) during both tension and compression. Finally, in the improved 
coupled formulation (model ‘4’), the non-locality was introduced similarly as in 
the model ‘1’ i.e. local plasticity was combined with non-local damage. However 
another possibility non-local plasticity combined with local damage was also 
considered. In this case for both tension and compression, the non-locality was 
applied according to the Brinkreve’s formula (Eq. 3.97). 

A numerical problem in non-local elasto-plastic models is the way how to 
calculate non-local terms since the plastic rates are unknown in advance. The 
plastic strain rates can be approximated by the total strain rates dε (Brinkgreve 
1994) or calculated iteratively in an exact way according to the algorithm given by 
Strömberg and Ristinmaa (1996), and Jirásek and Rolshoven (2003). To simplify 
the calculations, the non-local rates were replaced by their approximation Δκi

est 
calculated on the basis of the known total strain increment values (Brinkgreve 
1994): 
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The plastic strain rates can be approximated by the total strain rates dε. Eq. 3.105 
enables one to ‘freeze’ the non-local influence of the neighbouring points and to 
determine the actual values of the softening parameters using the same procedures 
as in a local formulation. The strain rates can be calculated in all integration points 
of the specimen, in the integration points where only plastic strains occur or only 
in the integration points where both plastic strains and softening simultaneously 
occur. The FE-results show an insignificant influence of the calculation method of 
non-local plastic strain rates. An approximate method proposed by Brinkgreve 
(1994) is less time consuming (by ca.30%) (Bobiński and Tejchman 2004).  

3.3.2   Second-Gradient Approach 

Second gradient models have often been used for ductile materials (metals) (Fleck 
and Hutchinson 1993, Menzel and Steinmann 2000), quasi-brittle materials (rock, 
concrete) (Sluys 1992, and Pamin 1994) and granular materials (Vardoulakis and 
Aifantis 1991, Chambon et al. 2001, Maier 2002, Tejchman 2004). The gradient 
terms are thought to reflect the fact that below a certain size scale the interaction 
between the micro-structural carriers of deformation is non-local (Aifantis 2003). 
The constitutive models capture gradients in different ways. They usually involve 
the second gradient of a plastic strain measure (Laplacian) in the yield or potential 
function (plasticity) or in the damage function (damage mechanics). The plastic 
multiplier which is connected to the plastic strain measure is considered as a 
fundamental unknown and is computed at global level simultaneously with the 
displacement degrees of freedom (de Borst and Mühlhaus 1992) (in the classical 
theory of plasticity, the plastic multiplier is determined from a simple algebraic 
equation, Chapter 3). Such gradient model obviously requires a C1-continuous 
interpolation of the plastic multiplier field. This requirement is fulfilled by e.g. 
element with the 8-nodal serendipity interpolation of displacements and 4-nodal 
Hermitian interpolation of plastic strain with 2×2 Gaussian integration (Pamin 
1994). Alternatively, all strain gradients can be taken into account (Zervos et al 
2001). The stress is conjugate to the strain rate, and the so-called double stress is 
conjugate to its gradient. To preserve that the derivatives are continuous across 
two-dimensional element boundaries, a triangular element of C1 continuity with 
36 degrees of freedom can be used (Maier 2002). The degrees of freedom at each 
node for each displacement are the displacement itself, its both first order 
derivatives and all three second order derivatives. The model requires a 
relationship between the double stress and strain gradient. The gradient terms can 
be evaluated not only by using additional complex shape functions but also by 
applying explicit method in the form of a standard central difference scheme.  

Gradient–type regularization can be derived from non-local models. By 
expanding an arbitrary state variable κ(x+r) into a Taylor series around the point 
r=0, choosing the error function ω as the weighting function and neglecting the 
terms higher than the second order, the following relationship is obtained for a 
non-local gradient of κ for one-dimensional problems (Pamin 1994): 
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For two-dimensional problems, the enhanced variable κ* is 
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The odd derivative can be canceled because of the implicit assumption of isotropy 
(de Borst et al. 1992). Thus, the enhanced variable κ* is equal to 
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Instead of using complex shape functions to describe the evolution of the second 
gradient of κ, a central difference scheme was applied (di Prisco et al. 2002). The 
advantages of such approach are: simplicity of computation, little effort to modify 
each commercial FE-code and high computation efficiency. To take into account 
the effect of not only adjacent elements (as in the standard difference method), one 
assumed in the book a polynomial interpolation of the function κ of the fourth 
order in both directions: 

 

                                          4 3 2( )x Ax Bx Cx Dx Eκ = + + + + ,                       (3.109) 

                                          4 3 2( )y Ay By Cy Dy Eκ = + + + + ,                      (3.110) 

 
where A, B, C, D and E are constants. From the theory of a finite difference 
method (when the difference steps dx and dy are infinitesimal), the second 
derivatives of the variable κ can be approximated in each triangular element of the 
quadrilateral composed of 4 triangles, e.g. in the triangle ‘13’ of Fig. 3.8 (for a 
mesh regular in the vertical and horizontal direction) as 
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where the lower subscript at the variable κ denotes the number of the triangular 
element in the specified quadrilateral (Fig. 3.8), and dx and dy are the distances 
between the triangle centres in the neighbouring quadrilaterals in a horizontal and 
vertical direction, respectively. The calculations of the second derivatives of the 
variable κ in other triangles are similar. Thus, the effect of neighbouring elements 
near each element is taken into account. In FE calculations, the mixed derivative 
(Eq. 3.113) was neglected to reproduce the Laplacian of the variable κ only. 

The advantage of a gradient approach is that it is suitable (as a non-local 
approach) for both shear and tension (decohesion) dominated applications. The 
explicit second-gradient strain isotropic damage approach (Eqs. 3.111 and 3.112) 
was used for reinforced concrete beams under monotonic loading. 

The non-local and second-gradient model were implemented in the commercial 
finite element code ABAQUS (1998) for efficient computations. Such implementa-
tion can be performed with two methods. In the first one, two identical overlapping 
meshes are used. The first mesh allows to gather the information about coordinates 
of integration points in the entire specimen, area of all finite elements and total 
strain rates in each element. The elements in this mesh are defined by the user in 
the UEL procedure. They do not influence the results of stresses in the specimen 
body since they have no stiffness. The information stored is needed to calculate 
non-local variables with the aid of the second mesh which includes standard 
elements from the ABAQUS library (1998). The constitutive law is defined by the 
UMAT procedure. During odd iterations, the information is gathered in the 
elements of the first mesh. During even iterations, the stresses in the elements of 
the second mesh (including standard elements) are determined with taking into  
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account non-local variables and a non-linear finite element equation is solved. 
Between odd and even iterations, the same element configuration is imposed. In the 
second method, only one mesh is used which contains user’s elements (defined by 
the UEL procedure). During odd iterations, the information about the elements is 
stored, and during even iterations, the stresses within a non-local theory are 
determined. As compared to the first method, the second one consumes less time. 
However, it is less comfortable for the user due to the need of the definition of the 
stiffness matrix and out-of-balance load vector in finite elements. 

 

 
 

Fig. 3.8 Diagram for determination of the gradient of the constitutive variable κ in triangular 

finite elements using a central difference method (Tejchman 2004) 

 
For the solution of the non-linear equation of motion governing the response of 

a system of finite elements, the initial stiffness method was used with a symmetric 
elastic global stiffness matrix instead of applying a tangent stiffness matrix (the 
choice was governed by access limitations to the commercial software ABAQUS 
(1998). To satisfy the consistency condition f=0 in elasto-plasticity, the trial stress 
method (linearized expansion of the yield condition about the trial stress point) 
using an elastic predictor and a plastic corrector with the return mapping algorithm 
(Ortiz and Simo 1986) was applied. The calculations were carried out using a 
large-displacement analysis (ABAQUS 1998). In this method, the current 
configuration of the body was taken into account. The Cauchy stress was taken as 
the stress measure. The conjugate strain rate was the rate of deformation. The 
rotations of the stress and strain tensor were calculated with the Hughes-Winget 
method (Hughes and Winget 1988). The non-local averaging was performed in the 
current configuration. This choice was governed again by the fact that element 
areas in this configuration were automatically calculated by ABAQUS (1998). 
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3.4   Bond-Slip Laws 

Different bond-slip laws were assumed when modelling reinforced concrete 
elements. However, there does not exist an universal slip-bond law for reinforced 
concrete elements since it depends upon boundary conditions of the entire system 
(Chapter 2). To consider bond-slip, an interface with a zero thickness was 
assumed along a contact, where a relationship between the shear traction and slip 
was introduced. In the book, 4 different bond-slip laws were applied. 

First, the simplest bond-slip proposed by Dörr (1980) without softening was 
used (Fig. 3.9) 
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                                      max 1.9 tfτ τ= =                if        u>u1,                    (3.115) 

 

wherein τ denotes the bond stress, τmax is the bond resistance, ft is the tensile 
strength of concrete and u1 is the displacement at which perfect slip occurs 
(u1=0.06 mm).  

 

 
 

Fig. 3.9 Bond-slip law between concrete and reinforcement by Dörr (1980) 

 
Second, the bond-slip law suggested by CEB-FIB (1992) was applied  

(Fig. 3.10) 
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where u1=0.06 mm. 
 

 
Fig. 3.10 Bond stress-slip relationship between concrete and reinforcement by CEB-FIP 
(1992) 

 
Third, the bond-slip law by Haskett et al. (2008) on the basis of Eqs. 3.116-

3.119 was used (Fig. 3.11) 
 

                          0.4
max

1

( )
u

u
τ τ= ,                 10 u u≤ ≤ ,                                  (3.120) 

 

where u1=1.5 mm is slip corresponding to the peak. 

 

 

Fig. 3.11 Bond-slip relationship between concrete and reinforcement proposed by Haskett 
et al. (2008) 
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Finally, the bond-slip law was used which distinguishes pull-out failure where 
the bond strength is in the contact zone is exceeded, and a splitting failure which is 
caused by an insufficient concrete cover throughout (due to occurrence of radial 
cracks). Den Uijl and Bigaj (1996) and Akkermann (2000) proposed a bond model 
for ribbed bars based on concrete confinement. The bond model is formulated in 
the terms of a radial stress-radial strain relation (Fig. 3.12). The radial stresses are 
equal to the bond stresses. For the splitting failure, the radial strains are linear 
dependent on the slip, and for the pull-out failure, they are nonlinear dependent. If 
the radial stresses σr are smaller than the maximum slip stressesτmax=5ft, a splitting 
failure takes places (τmax/σr>1), otherwise a pull-out failure takes place (τmax/σr≤1). 
The maximum radial stress and strain are at failure, respectively 
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where Eo is the modulus of elasticity and c denotes the concrete cover. The bond 
stress is coupled with the radial stress by the friction angle. 

 
a)                                               b) 

 
Fig. 3.12 Selected bond-slip laws between concrete and reinforcement: a) splitting failure, b) 

pull-out failure (τ – bond stress, u – slip, εr – radial strain) (den Uijl and Bigaj 1996) 
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Chapter 4  

Discontinuous Approach to Concrete 

Abstract. The Chapter discusses discontinuous approaches to simulate cracks in 
concrete. Two approaches are described: a cohesive crack model using interface 
elements defined along finite element boundaries and eXtended Finite Element 
Method (XFEM) wherein cracks can occur arbitrarily in the interior of finite 
elements. 

4.1   Cohesive Crack Model 

A cohesive crack model for simulating macro-cracks as discontinuities was 
initiated from the Hilleborg’s fictitious crack model (Hilleborg et al. 1976) based 
on the idea of Dugdale (1960) and was further applied in conjunction with interface 
elements (cohesive elements) by Camacho and Ortiz (1996). No information on an 
initial crack needs to be known and the onset of crack initiation can be predicted 
within a preset cohesive zone, which is considered to be a potential crack 
propagation path. The cohesive crack model describes highly localized inelastic 
processes by traction-separation laws that link the cohesive traction transmitted by 
a discontinuity or surface to the displacement jump characterized by the separation 
vector (Needleman 1987, Camacho and Ortiz 1996, Ortiz and Pandolfi 1999, 
Chandra et al. 2002, Gálvez et al. 2002, Scheider and Brocks 2003, Zhou and 
Molinari 2004, de Lorenzis and Zavarise 2009). Cohesive elements are defined at 
the edges (interface) between standard finite elements to nucleate cracks and 
propagate them following the deformation process. They govern the separation of 
crack flanks in accordance with an irreversible cohesive law. Branching, crack 
coalescence, kinking and tortuousness (any material separation) are naturally 
handled by this approach. If the crack path is not known a priori, cohesive surfaces 
are placed between all finite elements. Interfacial normal and tangential tractions 
are non-linearly connected to the normal (mode-I) and tangential (mode-II) relative 
displacements on the interface. As the cohesive interface gradually separates, the 
magnitude of interfacial stresses at first increases, reaches a maximum, and then 
decreases with increasing separation, finally approaching zero. Thus, depending on 
the level of the interfacial relative displacements, the cohesive interface represents 
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the entire spectrum of the behaviour ranging from perfect bonding to complete 
separation. A shape of post-peak traction-opening is linked with the development 
of the so-called fracture process zone where many complex phenomena occur such 
as micro-cracking, interlocking, bridging, friction between surfaces and aggregates, 
etc. The fundamental material parameters in cohesive models for concrete are the 
fracture energy and the shape of the traction versus crack opening. The cohesive 
fracture energy is the external energy required to create and fully break a unit 
surface area of a cohesive crack and coincides with the area under the softening 
function. The crack models can be based on formulations of the classical plasticity 
(Gálvez et al. 2002) or damage mechanics (Omiya and Kishimoto 2010). The 
model is attractive since it is straightforward in implementation.  

The cohesive crack model provides an objective description of fully localized 
failure if the mesh is fine. The cohesive traction-separation law with softening 
does not need any adjustment for the element size because mesh refinement does 
not change the resolved crack pattern. However, the model possesses some 
restrictions. The crack paths are dominated by preferred mesh orientations (Zhou 
and Molinari 2004) and the mesh independence is questionable if the cracking 
pattern is diffuse (Bažant and Jirásek 2002). Moreover, stress multiaxiality in the 
fracture process zone is not captured (Bažant and Jirásek 2002). In models with 
interface elements inserted a priori, spurious elastic deformation occurs prior to 
cracking onset, so too high initial elastic normal stiffness can lead to spurious 
traction oscillations in the pre-cracking phase (de Borst and Remmers 2006). A 
dummy stiffness (theoretically infinite) is usually required to keep the inactive 
interface elements closed. The mesh dependency can be improved if the mesh is 
very fine, inertia forces and viscosity are included, a non-local formulation for the 
interface mode is used, a separation approximation in the process zone is enriched 
(de Borst and Remmers 2006, Samimi et al. 2009) or cohesive elements strength 
follows a stochastic distribution (Zhou and Molinari 2004, Yang and Xu 2008). 
Recently, Cazes et al. (2009) proposed a thermodynamic method for the 
construction of a cohesive law from a nonlocal damage model. 

The cohesive zone model includes 3 main steps: 

- the constitutive continuum modelling (usually by means of linear 
elasticity if tensile loading prevails), 

- the introduction of an initiation criterion for crack opening/growth 
(loading function), 

- the evolution equation for softening of normal/shear tractions. 

To take into account mixed mode loading conditions Camacho and Ortiz (1996) 
defined the effective crack opening displacement as 

 

                                                  2 2 2
eff n sδ ηδ δ= + ,                                   (4.1) 

 
wherein nδ  and sδ  are the normal crack opening displacement and tangential 

relative displacement (sliding), respectively, while the coefficient η takes into 
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account the coupling between the failure mode I and failure mode II. The loading 
function is defined as 

 

                                                    ( )eff efff δ ,κ δ -κ=                                     (4.2) 

 
with the history parameter κ equal to the maximum value of the effective 
displacement effδ  obtained during loading. The effective traction is 

 

                                  2 2 2
eff n st t tη −= + .                                      (4.3) 

 

The effective traction efft  is calculated with the aid of an exponential, bilinear or 

linear softening relationship. Finally, the normal and shear tractions are evaluated 
as 

 

              
eff

n n
e ff

t
t δ

δ
=                and                  

2 eff
s s

e ff

t
t η δ

δ
= .                  (4.4) 

 
Unloading takes place to the origin. In compression, the penalty stiffness is 
applied. 

We used a simple version of a cohesive crack model with interface elements 
placed ‘a priori’ between all finite elements of the FE mesh (Fig. 4.1). The bulk 
finite elements were modeled as linear elastic. In turn, in the interface elements, a 
damage constitutive relationship between the traction vector t=[tn, ts] and relative 
displacement vector δ=[δn, δs] was assumed 

 
                                    t ( ) 01 D E= − Iδ                                            (4.5) 

 
with the penalty (dummy) stiffness E0 and unit tensor I. To take into account both 
the normal and shear terms in the separation vector, an effective opening 
displacement was used by Eq. 4.1. To describe softening after cracking, an 
exponential law was assumed following Camacho and Ortiz (1996) 

 

                                             ( ) exp - t
eff t

0

f
t κ f β κ -

E

  
=      

,                            (4.6) 

 
where β is the model parameter. The crack was initiated if (Fig. 4.2) 

 

                                                      0
0

tf

E
κ δ= = .                                                (4.7) 
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Fig. 4.1 Bulk and cohesive (interface) elements in FE mesh (Bobiński and Tejchman 2008) 

 
The damage parameter was equal to 
 

                                   
0

1
1 eff

eff

t
D

E δ
= − .                                            (4.8) 

 

Fig. 4.2 Traction-separation cohesive law assumed for numerical calculations (Bobiński and 

Tejchman 2008) 

4.2   Extended Finite Element Method 

The Extended Finite Element Method (XFEM) is based on the Partition of Unity 
concept (Melenk and Babuska 1996) that allows for adding locally extra terms to 
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the standard FE displacement field approximation in order to capture displacement 
discontinuities. These extra terms are defined based on a known analytical 
solution of the problem. The idea is to enrich only selected nodes with additional 
terms. There is no need to modify the original FE mesh (Belytschko and Black 
1999) used to model cracks in elastic-brittle materials. To describe the stress field 
around the crack tip, Moes and Belytschko (1999) formulated a model with branch 
functions for elements with crack tip and Heaviside jump function for elements 
cut entirely by a crack. Later XFEM was extended to deal with branching and 
intersecting cracks (Daux et al. 2000) and to simulate three-dimensional problems 
(Sukumar et al. 2000). In turn, Samaniego and Belytschko (2005) simulated 
dynamic propagation of shear zones. The enrichment was defined only in 
tangential direction and no separation was allowed in normal direction. XFEM 
was also used to analyze problems with weak discontinuities (like material 
interfaces), and in fluid mechanics by modelling voids and holes, phase 
transformations, biofilms and dislocations. Wells and Sluys (2001) were the first 
to couple XFEM with cohesive cracks (only Heaviside jump function was defined 
to describe the displacement jump across the discontinuity). Moes and Belytschko 
(2002) used XFEM to simulate cohesive cracks. Zi and Belytschko (2003) 
formulated a new crack tip element using linear ramp functions for the description 
of the crack tip location. Mergheim et al. (2005) adopted the idea of Hansbo and 
Hansbo (2004) with no extra degrees of freedom in nodes. Any element with a 
crack was described by two overlapping standard finite elements with zero shape 
functions either on the left and on the right side of a discontinuity. Only 
displacement degrees of freedom were used, but extra phantom nodes had to be 
added in cracked elements to double standard nodes at the moment of cracking. 
This phantom node method turned out to be equivalent with the XFEM method. 
This approach later has been used by Song et al. (2006) to simulate cohesive shear 
zones. Rabczuk et al. (2008) extended the phantom node method for handling 
crack tips also inside of elements. To simulate shear zones in soils, a discrete 
Mohr-Coulomb law with softening was used by Bobiński and Brinkgreve (2010). 

The formulation used here follows (with some minor modifications) the 
original model proposed by Wells and Sluys (2001). In a body Ω crossed by a 
discontinuity Γu (Fig. 4.3), a displacement field u can be decomposed into a 
continuous part ucont and discontinuous part udisc. A displacement field can be 
defined as (Belytschko and Black 1999, Wells and Sluys 2001) 

 
                                   ( ) ( ) ( ) ( )ˆ,t ,t Ψ ,t= + u x u x x u x                              (4.9) 

 
with the continuous functions û  and u  and the generalized step function Ψ  

 

                                         ( ) 1
1

Ψ
+

−
 ∈ Ω= − ∈ Ω

xx
x

.                                      (4.10) 
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Other definitions can be also used here, e.g. the Heaviside step function. A 
collection of functions iφ associated with set of discrete points i (i=1, 2, …, n) 

constitutes the partition of unity if 
 

                                        ( )
1

1
n

i
i

φ
=

= x ,          Ω∈∀x .                               (4.11) 

 
A field u over body Ω can be interpolated as 

 

                            
1 1

n m

i i ij j
i i

a bφ γ
= =

 = + 
 

 u ,                                  (4.12) 

 
where ai and bij are the discrete nodal values, γj – the enhanced basis and m – the 
number of enhanced terms for a particular node. The finite element shape 
functions Ni also define the partition of unity concept since  

 

                           ( )
1

1
n

i
i

N
=

= x ,              ∀ ∈ Ωx .                         (4.13) 

 

 

Fig. 4.3 Body crossed by a discontinuity 

 
In a finite element format, Eq. 4.9 can be written as 
 

                                     ( ) ( ) ( ) ( )= +u x N x a Ψ x N x b ,                            (4.14) 

 
where N contains shape functions, a – standard displacements at nodes and b – 
enriched displacements (jumps) at nodes. Only nodes belonging to ‘cracked’ 
elements are enriched. Here a formulation by Belytschko et al. (2001) called the 
shifted-basis enrichment is used that assumes the following definition of the 
displacement field 
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                        ( ) ( ) ( ) ( )( ) ( )= + − Iu x N x a Ψ x Ψ x N x b                      (4.15) 

 
with the diagonal matrices ( )Ψ x  and ( )IΨ x  containing ( )xΨ  and ( )IxΨ , 

respectively ( Ix  is the position of the node I). The strain rate in the bulk 

continuum can be calculated as 
 

                       ( )I= + −  ε Ba Ψ Ψ Bb ,                                   (4.16) 

 
whereas the rate of the displacement jump [[ ]]u  at the discontinuity is defined as 

 
                                      2[[ ]] = u Nb .                                            (4.17) 

 
This formulation has two main advantages over the standard version (Eq. 4.9); the 
total displacements in nodes are equal to the standard displacements a and the 
implementation is simpler since two types of elements exist only. 

The weak form of the equilibrium equation 
 

                                        d d 0
u

s :
Ω Γ

∇ Ω − ⋅ Γ = η σ η t                                 (4.18) 

 
holds for all admissible displacement variations η  (body forces are neglected and 

t stands for tractions applied on the boundary Γu). After several transformations 
(Wells 2001, Bobiński and Brinkgreve 2010), the following discrete weak 
equations are obtained 
 

           ( ) ( ) 

 

Ω ΓΓ

Ω Γ

Γ−=Γ+Ω−

Γ=Ω

ud

u

T
I

TT
I

TT

dd2d

dd

tNΨΨtNσBΨΨ

tNσB

        (4.19) 

 
with the strain-nodal displacement matrix B. The linearized equations of the total 
system are 
 

                                    d
d

ext int
aa ab a a

ext int
ba bb b b

       = −            
K K f fa
K K b f f

                        (4.20) 
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with the blocks of the global stiffness matrix K defined as  
 

 
( )

( ) ( ) ( )

d d

d d 4 d
d

T T
aa ab I

T T T
ba I bb I I

Ω Ω

Ω Ω Γ

= Ω = − Ω

= − Ω = − − Ω + Γ

 
  

K B DB K B DB Ψ Ψ

K Ψ Ψ B DB K Ψ Ψ B DB Ψ Ψ N TN
,  (4.21) 

 
where T is the stiffness matrix at the discontinuity. The force vectors are equal to 

 

 ( ) ( )
d

d d

d d 2 d
u

u

ext T int T
a a

ext T int T T
b I b I

f f

f f t
Γ Ω

Γ Ω Γ

= Γ = Ω

= − Γ = − Ω + Γ

 
  

N t B σ

Ψ Ψ N t Ψ Ψ B σ N
.    (4.22) 

 
In un-cracked continuum, usually a linear elastic constitutive law between stresses 
and strains is assumed under tension. To activate a crack, the Rankine condition 
has to be fulfilled at least in one integration point in the element at the front of the 
crack tip 

 

                                          { }1 2 3 tmax , , fσ σ σ > ,                                  (4.23) 
 

where iσ  are the principal stresses and tf  is the tensile strength. This inequality 

can be also verified at the crack tip directly (Mariani and Perego 2003). A very 
important issue is a determination of the crack propagation direction. If this 
direction is known in advance, it can be assumed (fixed) directly. Otherwise a 
special criterion has to be used. The most popular criterion assumes that the 
direction of the crack extension is perpendicular to the direction of the maximum 
principal stress. To smooth the stress field around the crack tip, non-local stresses 

*σ  instead of local values can be taken to determine the crack direction (Wells 
and Sluys 2001) 

 

                                                 d*

V

w V= σ σ ,                                          (4.24) 

 

where the domain V is a semicircle at the front of the crack tip and a weight 
function w is defined as 

 

                                     
( )3 2 3

1
exp

2

2

/ 2

r
w

2 llπ
 

= − 
 

.                               (4.25) 

 

Here the length l is the averaging length (usually equal to 3 times the average 
element size) and r denotes the distance between the integration point and crack 
tip. This operation does not introduce non-locality connected to material 
microstructure into the model. Mariani and Perego (2003) used higher order  
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polynomials for a better description of the stress state (and also the displacement 
state) around the crack tip. Stresses in the crack tip were determined using an 
interpolation of nodal values. Oliver et al. (2004) formulated a global tracking 
algorithm, where propagation directions of cracks were determined globally by 
solving a stationary anisotropic heat conduction type problem. Moes and 
Belytschko (2002) assumed that cohesive tractions had no influence on the crack 
propagation direction and used the maximum circumferential stress criterion from 
Linear Elastic Fracture Mechanics (LEFM). Another important item of the 
formulation is a discrete cohesive law which links tractions t with displacement 
jumps [[u ]]  at a discontinuity. The simplest one assumes the following format of 

the loading function (Wells and Sluys 2001) 
 

                             ( )n nf [[ u ]], [[ u ]]-κ κ=                                 (4.26) 

 
with the history parameter κ equal to the maximum value of the displacement 
jump [[un]] achieved during loading. Softening of the normal component of the 
traction vector can be described using an exponential 

 

                                                  exp t
n t

f

f
t f

G

κ 
= −  

 
                                     (4.27) 

or a linear relationship 
 

             1n t
u

t f
κ
κ

 
= − 

 
,                   f

u
t

2 G

f
κ = ,                         (4.28) 

 
where Gf  denotes the fracture energy. During unloading, the secant stiffness is 
used with a return to the origin (damage format). In a compressive regime, a 
penalty elastic stiffness matrix is assumed. In a tangent direction, a linear 
relationship between a displacement jump and traction is defined with the stiffness 
Ts. Similar constitutive models were used by Remmers at al. (2003) and Mergheim 
et al. (2005). Alternatively, formulations based on effective displacements 
described in Chapter 4.1 may be used (Mariani and Perego 2003, Comi and 
Mariani 2007). Note that the cohesive crack formulation with the coefficient η=0 
(Eq. 4.1) is equivalent with the discontinuity model described above, if the 
stiffness Ts=0. To overcome convergence problems in situations when n[[u ]]  

changes its sign, Cox (2009) modified a linear softening curve in normal direction 
as 

 

                      1 1 expn t f
u u

t f d
κ κ
κ κ

    
= − − −         

,                       (4.29) 
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where df  is a drop factor. With increasing the value of df, the influence of the 
second term diminishes. The same modification was applied to an exponential 
softening curve. 

The inclusion of enriched displacements b requires several modifications in the 
standard FE code. The final number of extra degrees of freedom b is unknown at 
the beginning and it may grow during calculations. Therefore special techniques 
are required to handle the extra data. If an essential boundary condition has been 
specified at a node with enriched degrees of freedom, the additional condition b=0 
has to be added at this node. A new crack segment can be defined in the 
converged configuration only. After defining a new segment, a current increment 
has to be restarted. Moreover, nodes that share the edge with a crack tip may not 
be enriched. A definition of the crack segment geometry obeys the following 
rules: 

- a new crack segment is defined from one element side to another one  
(a crack tip cannot be placed inside elements), 

- segment end points cannot be placed at element vertices, 
- a crack segment is straight inside one element, 
- a crack is continuous across elements and adjacent segments share  

the same point. 

To avoid placing cracks at element’s vertices, three minimal distances are declared 
(Fig. 4.4): 

- minimum distance between the vertex and crack segment vmin, 
- minimum distance between the vertex and crack segment end point along 

the side lmin,  
- minimum distance between the triangle side not touched by a 

discontinuity and the crack segment end point smin. 
 

With the same values of vmin and lmin, the first condition is stronger, since it takes 
into account also the distance between the vertex and segment. Finally, a new 
scheme for calculating strains, stresses, internal forces and stiffness in a cracked 
 

 
 

Fig. 4.4 Minimal distances between crack segment and triangle vertices/sides 
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element is required. Due to an arbitrary location of a discontinuity segment inside 
an element, new coordinates of integration points have to be defined. To 
determine these coordinates a sub-division algorithm is proposed. The triangle 
sub-region is divided into 3 triangles and quad sub-region into 4 triangles. In each 
triangle, 3 integration points are defined. In total, a numerical integration requires 
21 integration points in the bulk and 2 points at the discontinuity (Wells and Sluys 
2001, Bobiński and Brinkgreve 2010). 
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Chapter 5 

Continuous and Discontinuous Modelling of 
Fracture in Plain Concrete under Monotonic 
Loading 

Abstract. This Chapter presents the FE results of continuous and discontinuous 
modelling of fracture in plain concrete under monotonic loading. Tests of uniaxial 
compression, uniaxial extension, bending and shear –extension were simulated.  

5.1   Uniaxial Compression and Extension 

FE results within elasto-plasticity and damage mechanics 
 

The initial plane strain FE-calculations (Bobiński and Tejchman 2004) were 
performed with a specimen b=4 cm wide and h=14 cm high subjected to uniaxial 
compression and extension (Fig. 5.1) using the Drucker-Prager constitutive model 
with non-local softening (Eqs. 3.27-3.30, 3.93 and 3.97). The lower and upper edge 
were both smooth. All nodes along the lower edge of the specimen were fixed in a 
vertical direction. To preserve the stability of the specimen, the node in the middle 
of the lower edge was also kept fixed in a horizontal direction. The deformation 
was initiated through constant vertical displacement increments prescribed to 
nodes along the upper edge of the specimen.  

Figure 5.2 shows a relationship between the yield stress σy and equivalent 
plastic strain εp in a compressive regime. In the simulations, localization was 
induced by one small material imperfection in the form of a weak element at mid-
height of the specimen side (where the yield stress at peak σy

max of Fig. 5.2 was 
diminished by 2%). In addition, the calculations were carried out with three initial 
weak elements of a different size and spacing and with one initial strong element 
(where the cohesion yield stress at peak σy

max was increased by 2%). 
To investigate the effect of the mesh size on the results, a various discretization 

was used: coarse (8×28), medium (16×56) and fine (24×84), where each 
quadrilateral was composed of four diagonally crossed triangular elements with 
linear shape functions (mesh inclination against the bottom was fixed and equal to 
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θ=45o). To examine the influence of the mesh alignment on the results, two other 
types of meshes were used: with a mesh inclination θ smaller than 45º: θ=26.6º 
(8×56), θ=36.9º (12×56), θ=33.7º (16×84) and θ=39.8º (20×84), and with a mesh 
inclination θ greater than 45º θ=56.3º (12×28), θ=63.5º (16×28), θ=51.3º (20×56) 
and θ=56.3º (24×56).  

 

 
 
Fig. 5.1 Geometry of the specimen, boundary conditions and location of the imperfection 
for elasto-plastic calculations (Bobiński and Tejchman 2004) 
 
 

 
 
Fig. 5.2 Relationship between cohesion yield stress σy and equivalent plastic strain εp in a 
compressive regime for elasto-plastic calculations (Bobiński and Tejchman 2004) 

 
First, an elasto-plastic analysis was carried out without non-local terms (local 

formulation) during uniaxial compression. Figure 5.3 shows deformed meshes for 
a various mesh refinement (θ=45o) with ϕ=0o and ψ=0o (Fig. 5.3a) and ϕ=25o and 
ψ=10o (Fig. 5.3b). The deformations localize always in one element wide shear 
zone with the inclination of 45º (equal to the mesh inclination). The load-
displacement curves are strongly dependent upon the discretization size in the 
softening regime. 
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          8×28                16×54               24×84                   8×28               16×54 

                                 a)                                                                     b) 
 

Fig. 5.3 Deformed meshes during uniaxial compression with local elasto-plastic model (non-
locality parameter m=0): a) ϕ=0o and ψ=0o, b) ϕ=25o and ψ=10o (Bobiński and Tejchman 
2004) 

 

 
                   8×28                                                 16×54                                        

  
                          24×84 
 

Fig. 5.4 Deformed meshes and contours of non-local equivalent plastic strains (elasto-
plastic model with non-local softening, m=2, lc=7.5 mm, ϕ=25o and ψ=10o) (Bobiński and 
Tejchman 2004) 
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Figures 5.4-5.7 depict the FE-results with an elasto-plastic model with non-
local softening during uniaxial compression (with the mesh alignment of θ=45o). 
As compared to the conventional elasto-plastic analysis, two additional constants 
were taken into account: a non-locality parameter m=2 and a characteristic length 
lc=7.5 mm. The calculated deformed meshes and non-local equivalent plastic 
strains are shown in Fig. 5.4. The load-displacement diagrams are presented in 
Fig. 5.5. In turn, Fig. 5.6 demonstrates the distribution of the equivalent plastic 
strains across the shear zone. The evolution of the equivalent non-local plastic 
strain is shown in Fig. 5.7. 

During compression, two shear zones are simultaneously created expanding 
outward from the weak element on the left side (Fig. 5.7). They occur directly before 
the peak of the resultant vertical force on the top. After the peak, and up to the end, 
only one shear zone dominates. The complete shear zone is noticeable shortly after 
the peak. The shear zone is wider than one finite element (Fig. 5.4). The thickness of 
a shear zone is approximately ts=2.4 cm (3.2×l) and does not depend upon the mesh 
size. The inclination of the shear zone against the bottom is equal to θ=44.8º, 44.8º 
and 46.8º with a coarse, medium and fine mesh, respectively. These values are in a 
good agreement with an inclination of a shear zone (θ=46º) obtained from an 
analytical formula based on a bifurcation theory (Sluys 1992) 
 

                               
( )
( )

1 3 22

2 3 2

9 1 3
tan

9 1 3

( s s ) ( ) J

( s s ) ( ) J

ν ν ϕ ψ
Θ

ν ν ϕ ψ
+ + + +

= −
+ + + +

,                   (5.1) 

 
where si are the components of the deviatoric principle stress tensor, J2 denotes the 
second invariant of the deviatoric stress tensor and ν is the Poisson’s ratio. 

 

 

Fig. 5.5 Load–displacement curves for different mesh discretizations (elasto-plastic model 
with non-local softening, m=2, lc=7.5 mm, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 
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The calculated inclinations of the shear zone against the bottom (using a 
medium mesh) with other values of ϕ and ψ: ϕ=40o and ψ=10o, and ϕ=40o and 
ψ=25o were equal to 48.6o and 52.0o, respectively. These values again agree well 
with Eq. 5.1 (48.1o and 50.2o, respectively). The growth of the internal friction 
angle and dilatancy angle obviously increases the inclination of the shear zone 
against the bottom.  

The evolution of the vertical force along the top before and after the peak is the 
same for a various discretization (Fig. 5.5). The maximum vertical force, 1.95 MN 
(corresponding to the compressive strength 49 MPa), occurs at the vertical 
displacement of 0.4 mm. The distribution of non-local equivalent plastic strains in 
a section perpendicular to the shear zone is fully uniform (Fig. 5.6). Due to that a 
non-locality parameter is larger than 1, the difference between the non-local and 
local plastic strains results in a constant value of the plastic strain (Jirásek and 
Rolshoven 2003). Separately, the non-local and local plastic strains have an 
exponential shape. 

 
 

Fig. 5.6 Non-local equivalent plastic strains in a shear zone different mesh discretization 
(elasto-plastic model with non-local softening, m=2, lc=7.5 mm, ϕ=25o and ψ=10o) (Bobiński 
and Tejchman 2004) 

 
The FE-calculations were also performed with a mesh alignment lower than 

45º. The width of the shear zone was equal to ts=2.4 cm for all meshes except for 
the coarsest one (8×56) where the localization zone was equal to ts=3.6 cm. The 
inclination of the shear zone was: 44.0º (8×56, θ=26.6º), 43.9º (12×56, θ=36.9º), 
47.6º (16×84, θ=33.7º) and 45.2º (20×84, θ=39.8º). The load-displacement 
diagrams were similar using all mesh discretizations. In the FE-studies assuming a 
mesh inclination greater than 45o, the width of the shear zone was again 2.4 cm 
with the meshes 20×56 and 24×56, and 2.9 cm with the meshes 12×28 and 16×28.  
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Fig. 5.7 Evolution of non-local equivalent plastic strains in the specimen during uniaxial 
compression (elasto-plastic model with non-local softening, m=2, lc=7.5 mm, ϕ=25o and 
ψ=10o) (Bobiński and Tejchman 2004) 

 
The inclination of the shear zone was 50.3º (12×28, θ=56.3º), 47.2º (16×28, 
θ=47.2º), 50.1º (20×56, θ=50.1º) and 49.1º (24×56, θ=56.3º). The FE-results 
showed that the evolution of the vertical force along the top and thickness of the 
spontaneous shear zone did not depend upon mesh refinement within a modified 
non-local continuum. The effect of the mesh alignment on the inclination of the 
shear zone was negligible. 

The FE-results with a classical non-local model, m=1, are demonstrated in  
Figs. 5.8-5.10 (using meshes with an inclination lower θ than 45o), and in  
Figs. 5.11-5.13 (using meshes with an inclination θ  greater than 45o). The 
calculations show that the results are only partly mesh-independent. The evolution 
of the vertical force on the top edge was only slightly different in a softening 
regime (Figs. 5.9 and 5.12). However, the width of the localized zone was 
different: ts=2.7 cm (12×56 and 16×84) and ts=1.9 cm (20×84) at θ<45o (Fig. 5.10). 
The shear zone using a mesh 8×56 was very wide and had an opposite direction. 
The inclination of the shear zone was similar: 43.6º (12×56, θ=36.9º), 43.8º 
(16×84, θ=33.7º) and 45.5º (20×84, θ=39.8º). When the mesh alignment was 
larger than 45o, the width of the shear zone was again different: L=2.7 cm, 3.3 cm, 
1.2 cm and 1.7 cm for meshes 12×28, 16×28, 20×56 and 24×56 mesh, respectively 
(Fig. 5.12). Its inclination was varied: 55.2º (12×28, θ=56.3º), 47.5º (16×28, 
θ=47.2º), 51.3º (20×56, θ=50.1o) and 50.6º (24×56, θ=56.3o). The results confirm 
that classical non-local model (m=1) is able to regularize force–displacement 
diagram only. 
 
Effect of imperfections 
To investigate the effect of imperfections on the material behaviour during 
uniaxial plane strain compression, in addition, the simulations were carried out 
with one initial strong element and few initial weak elements with a different size 
and spacing. 
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8×56                                               12×56 

 

 
 

16×84                                                   20×84 
 

Fig. 5.8 Deformed meshes and contours of non-local equivalent plastic strains (elasto-plastic 
model with non-local softening, θ<45o, m=1, lc=20 mm, ϕ=25o and ψ=10o) (Bobiński and 
Tejchman 2004) 

 
Figure 5.14 presents the results with one strong element in the middle of the left 

side of the specimen. The location of the shear zone is not connected with the 
position of the imperfection. The shear zone (reflected from the rigid bottom) is 
created in the lower part of the specimen. 

The evolution of non-local plastic strains in the specimen with three initial 
weak elements distributed at the same distance along the left side is demonstrated 
in Fig. 5.15. Before the peak, two shear zones are created at each week element. 
The shear zones propagate towards both the top and bottom of the specimen. After 
the peak, only one shear zone dominates in the whole specimen. The location of 
this shear zone is, however, different as compared to the results with one weak 
element at mid-height. The other calculations showed that the size and number of 
weak elements and distance between them did not influence the thickness and 
inclination of the shear zone, and the load-displacement curve. Only the location 
of the shear zone was affected. This result is in contrast to FE-calculations by Shi 
and Chang (2003) wherein the thickness of a shear zone was influenced by the 
imperfection spacing. 
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Fig. 5.9 Load–displacement curves (elasto-plastic model with non-local softening, θ<45o, 
m=1, lc=20 mm, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 

 
 

Fig. 5.10 Distribution of non-local equivalent plastic strains in a shear zone (elasto-plastic 
model with non-local softening, θ<45o, m=1, lc=20 mm, ϕ=25o and ψ=10o) (Bobiński and 
Tejchman 2004) 
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12×28                                             16×28 

 
 

20×56                                                 24×56 
 

Fig. 5.11 Deformed meshes and contours of non-local equivalent plastic strains with 
various meshes (elasto-plastic model with non-local softening, θ>45o, m=1, lc=20 mm, 
ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 

 

 

Fig. 5.12 Load–displacement curves (elasto-plastic model with non-local softening, 
θ>45o,m=1, lc=20 mm, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 
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Fig. 5.13 Distribution of non-local equivalent plastic strains in a shear zone (non-local elasto-
plastic model, θ>45o, m=1, lc=20 mm, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 

 

 

Fig. 5.14 Evolution of non-local equivalent plastic strains in the specimen during uniaxial 
compression (elasto-plastic model with non-local softening, one initial strong element, 
m=2, lc=7.5 mm, ϕ=25o and ψ=10o) 

 

 
Fig. 5.15 Evolution of non-local equivalent plastic strains in the specimen during uniaxial 
compression (elasto-plastic model with non-local softening, three initial weak elements, 
m=2, lc=7.5 mm, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 

 
Effect of direction of deformation 
Figure 5.16 shows the numerical results during uniaxial plane strain extension of 
the specimen with one weak element at mid-height. Similarly, as during uniaxial 
compression, the results do not depend on the mesh discretization. The thickness 
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of the shear zone is approximately equal to ts=1.7 cm (2.2×l). Thus, the thickness 
of the shear zone during extension is smaller by 30% than during compression. 
The inclination of the shear zone against the bottom is 45.4º and 45.2º with a 
coarse and fine mesh, respectively. 
 
Effect of characteristic length and non-locality parameter 
The effect of the parameters m (m=2-5) and lc (lc=2-12 mm) on the width of shear 
localization was investigated using the medium mesh (16×56, θ=45o) during 
uniaxial compression and extension. 

 

     
                                  8×28                                                 24×84           

 
Fig. 5.16 Deformed meshes and contours of non-local equivalent plastic strains during 
uniaxial extension (elasto-plastic model with non-local softening, m=2, lc=7.5 mm, ϕ=25o, 
ψ=10o) (Bobiński and Tejchman 2004) 

 
The results show that the larger the parameters lc and m, the wider the shear zone 

ts (Tab. 5.1). The parameters m and lc strongly influence the load-displacement 
curves in a post-peak regime (Fig. 5.17). The larger l, the smaller is the drop of the 
curves after the peak. However, they have no influence on the maximum vertical 
force on the top due to the presence of very smooth horizontal boundaries. The 
width of the shear zone ts during uniaxial compression (Tab. 5.1) can be 
approximately co-related with the parameters m and lc by a following relation 
 
                                                1 2 1 6s ct ( . . )m l≅ − × .                                          (5.2) 

 
However, during uniaxial extension, the width of the shear zone is described by a 
different relation: 
 
                                                0 8 1 2s ct ( . . )m l≅ − × .                                          (5.3) 

 
The thickness of the shear zone is obviously dependent upon the boundary 
conditions of the entire system expressed by e.g. the specimen geometry and 
loading conditions. 
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Table 5.1 The calculated width within enhanced elasto-plasticity of the shear zone ts [cm] 
during uniaxial compression (Bobiński and Tejchman 2004) 
 

lc [mm] m 
 2.0 3.0 4.0 5.0 

2 1 element 1.2 1.2 1.5 
4 1.4 2.0 2.3 2.5 
6 2.1 2.7 3.2 3.6 
8 2.7 3.5 4.0 4.7 

10 3.2 4.6 diffuse diffuse 
12 3.8 diffuse diffuse diffuse 

 
Finally, the effect of the boundary roughness was investigated in concrete 

elements (a weak element was inserted at the lower left corner) (Fig. 5.18). In this 
case, the horizontal displacements along horizontal boundaries were fixed. With 
smooth boundaries, the strength is always the same. When the boundaries are very 
rough, the strength increases with increasing characteristic length. The brittleness 
increases as usually with decreasing lc independently of the boundary roughness. 
 

 
 

Fig. 5.17 Load–displacement curves with a different characteristic length (elasto-plastic 
model with non-local softening, m=2, ϕ=25o and ψ=10o) (Bobiński and Tejchman 2004) 

 
Next, the problem of a symmetric double notched concrete specimen under 

uniaxial tension was numerically studied with a Rankine’a constitutive model 
(Eqs. 3.32, 3.93 and 3.97) (Bobiński and Tejchman 2006). Experimentally it was 
investigated by Hordijk (1991). The geometry of the concrete specimen (width 
b=60 mm, height h=125 mm, thickness in the out-of-plane direction t=50 mm) and 
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boundary conditions are presented in Fig. 5.19. Two symmetric notches 5×5 mm2 
were located at the mid-point of both sides of the specimen. Three different FE-
meshes were used: coarse (1192 triangular elements), medium (1912 triangular 
elements) and fine (4168 triangular elements), Fig. 5.20. When calculating non-
local quantities close to the notch, the so-called “shading effect” was considered 
(i.e. the averaging procedure considers the notch as an internal barrier that is 
shading the non-local interaction, Jirásek and Rolshoven 2003). 
 

a) 
 

b) 

Fig. 5.18 Calculated load-displacement curves for a specimen under uniaxial compression 
for different characteristic length and roughness of horizontal boundaries (b=10 cm): (a) 
smooth boundaries with h=5 cm, b)-d) very rough boundaries with h=5 cm (b), h=10 cm (c) 
and h=20 cm (d) (elasto-plastic model with non-local softening) (Bobiński and Tejchman 
2006) 
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c) 

d) 
 
Fig. 5.18 (continued) 
 

The modulus of elasticity was equal to E=18.0 GPa, the Poisson’s ratio was 
υ=0.2 and the tensile strength was ft=3.2 MPa. The elasto-plastic calculations were 
carried out with 3 different diagrams describing the tensile plastic stress σt versus 
the softening parameter κ2 (Fig. 5.21). A linear and non-linear relationship σt=f(κ2) 
was assumed in the softening tensile regime. In the case of linear softening, two 
different softening modules were used: Ht=3.2/(2.4×10-3)≈1300 MPa and 
Ht=3.2/(1.5×10-3)≈2100 MPa. In addition, a curvilinear exponential softening 
curve proposed by Hordijk (1991) was taken into account in the tensile regime 
(Eqs. 3.55 and 3.56) with κu=0.007 (κu – ultimate value of the softening 
parameter) and b1=3.0 and b2=6.93. The non-locality parameter was m=2 (Bobiński  
and Tejchman 2004). In turn, the following parameters were chosen for the 
damage model: κ0=2.2×10-4, α=0.96, β=600 and k=10 (von Mises failure criterion 
in terms of strains, Eqs. 3.38 and 3.40) and κ0=1.7×10-4, α=0.96 and β=900 
(Rankine’a failure criterion, Eqs. 3.35 and 3.40). A characteristic length lc was 
assumed to be 5 mm.  
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Fig. 5.19 Geometry and boundary conditions of a specimen with symmetric 2 notches 
under uniaxial tension (dimensions are given in mm) (Bobiński and Tejchman 2006) 

 

              
                                   a)                          b)                              c) 
 
Fig. 5.20 FE-meshes used for elasto-plastic calculations of uniaxial tension: a) coarse, b) 
medium, c) fine (Bobiński and Tejchman 2006) 

 
Figure 5.22 presents the nominal stress–elongation tensile curves for all meshes 

as compared to the experimental curve by Hordijk (1991). The elongation δ in  
Fig. 5.22 denotes the elongation of the specimen above and below both notches at 
the height of 35 mm, Fig. 5.19. It was measured experimentally by 4 pairs of 
extensometers with a gauge length of 35 mm. The vertical normal stress was 
calculated by dividing the calculated resultant vertical force by the specimen 
cross-section of 50×50 mm2. The calculated load-displacement curves of Fig. 5.22 
practically coincide for the different meshes and different models (in particular for 
damage models). They are also in a satisfactory agreement with the experimental 
curve (Hordijk 1991) (in particular, both damage curves and one elasto-plastic 
curve with linear softening using Ht=2100 MPa). 
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Fig. 5.21 Assumed curve σt=f(κ2) in tensile regime using the elasto-plastic model for 
uniaxial tension with linear softening modulus Ht=2300 MPa (σt – tensile plastic stress, κ2 – 
softening parameter) (Bobiński and Tejchman 2006) 

 

a) 

b) 
 

Fig. 5.22 Calculated stress–elongation diagrams for a specimen under uniaxial tension with 
different FE-meshes compared to the experimental diagram by Hordijk (1991): a) elasto-
plastic model with non-local linear softening (softening modulus Ht=1300 MPa), b) elasto-
plastic model with non-local linear softening (Ht=2300 MPa), c) elasto-plastic model with 
non-local exponential softening, d) damage model with non-local softening (Eq. 3.38), e) 
damage model with non-local softening (Eq. 3.35) (Bobiński and Tejchman 2006) 
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c) 

d) 
                                                

 e) 
 
Fig. 5.22 (continued) 
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The calculated contours of the non-local parameter 2κ
−

 in the specimen are 
shown in Fig. 5.23 at residual state for δ=0.05 mm. The width of the localization 

zone between two notches wlz (determined from the distribution of 2κ
−

) is similar 

for both damage models, wlz=25 mm (5.0×lc). In turn within elasto-plasticity, the 
width of the localization zone is approximately 25 mm for a coarse mesh, 20 mm 
for a medium mesh and 15 mm (3.0×lc) for a fine mesh. The width of the localized 
zone is not influenced in elasto-plasticity by the rate of softening (Fig. 5.24). 

In addition, the influence of the characteristic length lc of micro-structure on the 
specimen behaviour was investigated. The FE-calculations were performed with lc 
in the range from 2.5 mm up to 10.0 mm. The obtained load-displacement curves 
are presented in Fig. 5.25. The larger the characteristic length lc (up to lc=7.5 mm), 
the higher the maximum tensile stress (this effect is stronger within damage 
mechanics). The slope of all curves to the horizontal after the peak becomes 
smaller with increasing lc (the material becomes more ductile with increasing lc). 
The calculated contours of the non-local parameter κ  in the specimen are shown 
in Fig. 5.26 at residual state for a fine mesh of Fig. 5.20c. In general, the width of 
the localized zone, wlz, increased with increasing lc; it was 10 mm (4.0×lc for 
lc=2.5 mm), and 15 mm (3.0×lc for lc=5 mm), 15 mm (2.0×lc for lc=7.5 mm) and 
15 mm (1.5×lc for lc=10 mm) using the elasto-plastic model, and 15 mm (6.0×lc 
for lc=2.5 mm), 25 mm (5.0×lc for lc=5 mm), 35 mm (4.7×lc for lc=7.5 mm) and 35 
mm (3.7×lc for lc=10 mm) using an isotropic damage model. 

The results are qualitatively in a good accordance with the FE-results by 
Gutierrez and de Borst (2003) with the second-gradient elasto-plastic model and 
Peerlings et al. (1998) and Pamin (2004) using the second-gradient damage model 
in respect to the effect of a characteristic length on the width of strain localization 
and load-displacement curve. 

The maximum normalized loads obtained from FE-simulations for notched 
concrete specimens within damage and elasto-plasticity during uniaxial tension 
were compared with a deterministic (energetic) size effect law given by Bažant for 
structures with pre-existing notches or large stress-free cracks growing in a stable 
manner prior to the maximum load (Bažant 2003) (Chapter 8)  
 

1 / 0

Bft
N

D D
σ =

+
,                                           (5.5) 

 

where σN – the nominal strength, B – the dimensionless geometry-dependent 
parameter (depending on the geometry of the structure and of the crack), D – the 
specimen size (equal to the specimen height h) and D0 – the size-dependent  
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A) 

  

B) 

   

C) 

   

 a) b) c) 

Fig. 5.23 Calculated contours of the non-local parameter 2κ
−

 in a specimen under uniaxial 
tension for a) coarse, b) medium and c) fine mesh: A) elasto-plastic model with non-local 
softening (softening modulus Ht=1300 MPa), B) damage model with non-local softening  
(Eq. 3.38), C) damage model with non-local softening (Eq. 3.35) (Bobiński and Tejchman 2006) 

 

       
                                         a)                      b)                     c) 

Fig. 5.24 Calculated contours of the non-local parameter 2κ
−

 in a specimen under uniaxial 
tension for fine mesh within elasto-plasticity with non-local softening: a) linear softening 
(Ht=1300 MPa), b) linear softening (Ht=2300 MPa), c) curvilinear softening by Eq. 3.55 
(Bobiński and Tejchman 2006) 
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a) 

 
                        b)  

 

Fig. 5.25 Calculated vertical stress–elongation diagrams using different characteristic 
lengths lc for a specimen under uniaxial tension using a fine mesh: a) elasto-plastic model 
with non-local linear softening (Ht=1300 MPa), b) damage model with non-local softening 
(Eq. 3.38) (Bobiński and Tejchman 2006) 

 
parameter called transitional size. To find the parameters B and Do from FE-
analyses, a linear regression was used. Figure 5.27 presents a comparison between 
FE-result and the size effect law by Bažant (2003). A good agreement was 
obtained. The normalized strength decreases almost linearly with increasing size 
ratio h/lc in the considered range. 

In addition, similar elasto-plastic calculations (using the Rankine’s failure 
criterion, Eq. 3.32) were carried out with a concrete specimen under uniaxial 
tension possessing one non-symmetric notch (Fig. 5.28). The tensile strength was 
equal to ft=3 MPa, the softening modulus in tension Ht=1.0 GPa, the non-local 
parameter m=2 and the characteristic length lc=15 mm. Figure 5.29 presents a 
normalized load-displacement diagrams for 3 different geometrically similar  
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A) 

 
  

B) 

   
 a) b) c) d) 

 

Fig. 5.26 Calculated contours of the parameter 2κ
−

 in a specimen under uniaxial tension for 

fine mesh: a) lc=2.5 mm, b) lc=5 mm, c) lc=7.5 mm, d) lc=10 mm: A) elasto-plastic model 
with non-local softening, B) damage model with non-local softening (Eq. 3.38) (Bobiński 
and Tejchman 2006) 

 
 

concrete specimens. The strength and ductility increase with decreasing size. The 
contours of a nonlocal hardening tensile parameter near the notch are shown in 
Fig. 5.30. The calculated width of the localized zone increased with increasing 
specimen size and was equal to 5.0 cm (3×l), 6.0 cm (4×l) and 7.0 cm (4.6×l) for a 
small, medium and large specimen, respectively. 
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a) 

b) 
Fig. 5.27 Relationship between calculated normalized loads: P/(Eκobt) and P/(ftbt) during 
uniaxial tension (with lc=5 mm) and ratio h/lc as compared to size effect law by Bažant 
(2003) within: a) damage mechanics, b) elasto-plasticity (Bobiński and Tejchman 2006) 

 

 
 

Fig. 5.28 Geometry and boundary conditions of specimen with one notch under uniaxial 
tension for elasto-plastic calcualtions  (Bobiński and Tejchman 2006) 
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Fig. 5.29 Normalized load-displacement diagrams for a specimen with one notch under 
uniaxial tension (specimen b×h: small: 5×10 cm2, medium: 10×20 cm2, large: 20×40 cm2) 
(elasto-plastic model with non-local softening) (Bobiński and Tejchman 2006) 

 

       
                                   a)                            b)                           c) 
 

Fig. 5.30 Calculated contours of the nonlocal parameter 2κ near the notch during uniaxial 

tension for small (a), medium (b) and large specimen (c) (increased by a factor 4 (small), 2 
(medium) and 1 (large)) (elasto-plastic model with non-local softening) (Bobiński and 
Tejchman 2005) 

 
FE results with XFEM 
In the calculations using XFEM (Chapter 4.2), the size of the specimen subjected 
to uniaxial tension was 100 mm (width) and 150 mm (height), Fig. 5.31. All nodes 
along the bottom were fixed in a vertical direction. The vertical tensile 
deformation was imposed by enforcing the vertical displacement of all nodes 
along the upper edge by the amount of u=0.1 mm. To preserve the stability of the 
specimen, the node in the middle of bottom was fixed in a horizontal direction. 
The starting point of the crack propagation was defined in the middle of the left 
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edge. The modulus of elasticity was equal to E=30 GPa and the Poisson’s ratio 
was ν=0.2. The tensile strength was taken as ft=3 MPa and fracture energy as 
Gf=100 N/m. The exponential softening in a normal direction was assumed. A 
fixed horizontal crack propagation was assumed in advance. To investigate the 
mesh insensitivity, three different FE meshes were defined: coarse, medium and 
fine with 600, 2400 and 5400 3-node triangular elements, respectively. Plane 
stress state was assumed. The calculated force – displacement diagrams are shown 
in Fig. 5.32. The curves are almost identical, only a small discrepancy for a fine 
mesh can be seen. The deformed meshes with a discrete horizontal crack are 
depicted in Fig. 5.33. 

 

 
 

Fig. 5.31 Geometry and boundary conditions of concrete specimen during uniaxial tension 
test in calculations with XFEM of Chapter 4.2 (Bobiński and Tejchman 2011) 

 

 
 

Fig. 5.32 Calculated force–displacement curves during uniaxial tension (using XFEM of 
Chapter 4.2) (Bobiński and Tejchman 2011) 
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Fig. 5.33 Calculated horizontal crack for different meshes during uniaxial tension using 
XFEM of Chapter 4.2 (Bobiński and Tejchman 2011) 

 
The following conclusions can be derived: 

• The FE-calculations on strain localization demonstrate that conventional elasto-
plastic models suffer from a mesh-dependency when material softening is 
included. The thickness and inclination of localized zones inside a specimen, and 
load-displacement diagram in a post-peak regime depend strongly upon the mesh 
discretisation.  
• An elasto-plastic model with modified non-local softening and a damage model 
with usual non-local softening cause a full regularisation of the boundary value 
problem during uniaxial compression and extension. A finite and the same size of 
the strain localization zone is obtained upon mesh refinement. The load-
displacement curves are similar. The effect of the mesh alignment on the 
inclination of localized zone is negligible. 
• The thickness of localized zones increases with increasing characteristic length 
and non-local parameter. The thickness of a shear zone during uniaxial 
compression is larger than during uniaxial extension.  
• The size and number of imperfections, and the distance between them do not 
influence the thickness and inclination of the localized zone. 
• The vertical force on the top during uniaxial compression and tension increases 
in the softening regime with increasing characteristic length and non-local 
parameter. The effect of a characteristic length on the maximum vertical force is 
noticeable only in the case of very rough boundaries (using a weak element). The 
influence of a characteristic length on the maximum vertical force is stronger  
with non-symmetric notches than with symmetric ones in the case of smooth 
boundaries.  
• The larger the ratio between the characteristic length of micro-structure and the 
specimen size, the higher usually both the specimen strength and the ductility of 
the specimen during extension and bending.  
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• The width of the localized zone is larger in FE-analyses with a damage model 
than with an elasto-plastic model using a similar lc. For uniaxial tension, the width 
of the localized strain zone is about (1.5-4.0)×lc within elasto-plasticity, whereas it 
is (3.7-6.0)×lc within damage mechanics. The width of the localized zone does not 
depend on the rate of softening in elasto-plasticity. 
• The width of the localized zone grows during the entire deformation process 
within damage mechanics, whereas it is almost constant within elasto-plasticity. 
• The size effect decreases almost linearly with decreasing ratio between the 
specimen size and characteristic length. The calculated deterministic size effect in 
concrete elements during tension is in agreement with the corresponding size 
effect law by Bažant (2003). 
• The results with XFEM are mesh objective. 

5.2   Bending 

FE results within elasto-plasticity and damage mechanics 
 
The behaviour of a symmetric concrete beam with a notch at the bottom at mid-
span and free ends during three-point bending was simulated. This behaviour was 
experimentally investigated by Le Bellego at al. (2003), and later numerically 
simulated by Le Bellego et al. (2003) and Rodriguez-Ferran et al (2002) with a 
non-local damage approach. Three different beams were used in laboratory tests: 
small (h=8 cm), medium (h=16 cm) and large one (h=32 cm). The beam span was 
L=3h. The geometry and boundary conditions of the beam are presented in  
Fig. 5.34. The loading was prescribed at the top edge in the mid-span via the 
vertical displacement.  

Three different FE-meshes were assumed: with 1534, 2478 and 4566 triangular 
elements for a small, medium and large specimen, respectively (Fig. 5.35). Due to 
the symmetry of the problem, only the left half of the beam was modelled. 

 

 
 

Fig. 5.34 Geometry of notched beam and boundary conditions in laboratory tests by Le 
Bellego et al. (2003) 
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In the elasto-plastic simulations, the modulus of elasticity was taken as E=38.5 
GPa and the Poisson ratio as ν=0.2. In the tensile regime of the elasto-plastic 
model, the Rankine criterion with the exponential curve by Hordijk (1991) was 
used (Eqs. 3.32, 3.55, 3.93 and 3.97). Two different internal lengths were chosen in 
the FE-analysis: lc=5 mm and lc=10 mm. Due to two different lc, two sets of the 
material parameters were also chosen in Eq. 3.55 (with m=2): ft=3.6 MPa, 
κu=0.005 for lc=5 mm, and ft=3.3 MPa, κu=0.003 for lc=10 mm to obtain the best 
agreement between the load-displacement diagrams from FE-analyses and 
laboratory tests (Le Bellego et al. 2003). The internal friction angle was equal to 
ϕ=10° (Eq. 3.27) and the dilatancy angle ψ=5° (Eq. 3.30). The compressive 
strength was equal to fc=40 MPa. A linear softening modulus in compression was 
Hc=0.8 MPa. The effect of material parameters in compression was found to be 
insignificant on the FE-results. In the case of a damage model with the Rankine 
criterion (Eqs. 3.35, 3.40, 3.93 and 3.99), two sets of material parameters were 
again chosen for two different lc: κ0=7·10-5, α=0.99, β=600 for lc=5 mm, and 
κ0=6.25·10-5, α=0.99, β=1000 for lc=10 mm.  

 

 
a) 

  
                                   b)                                                  c) 

 
Fig. 5.35 FE meshes used for calculations of bending: a) coarse, b) medium, c) fine (elasto-

plastic model with non-local softening) (Bobiński and Tejchman 2006) 

 
Figure 5.36 presents load-displacement curves for all beams obtained from FE-

calculations using the characteristic length lc=5 mm and lc=10 mm, respectively 
(compared to experiments). A satisfactory agreement with experiments was 
achieved. The FE-results overestimate slightly the load bearing capacity of the 
small and medium beam and underestimate the maximum load for the large beam. 
The ratio between the specimen strength of the large and medium beam and of the 
medium and small beam is similar. The same numerical results were obtained by 
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Le Bellego et al. (2003) and Rodriguez-Ferran et al. (2002), although they used 
different definitions of the equivalent strain ε~  and evolution laws. Other 
calculations demonstrate that the larger the characteristic length, the higher the 
beam strength (in particular in damage mechanics) (Bobiński and Tejchman 2005). 

Figures 5.37 and 5.38 show the distribution of a non-local parameter 
2κ

−
above 

the notch. The width of the localization zone w was at the residual state: within 
elasto-plasticity about 25 mm (5×lc) for lc=5 mm and all beams, and 50 mm (5×lc) 
(small beam), 50 mm (5×lc) (medium beam) and 45 mm (4.5×lc) (large beam) for 
lc=10 mm, respectively. In the case of the damage model, it was equal to 40 mm 
(8×lc) for lc=5 mm, and 65 mm (6.5× lc) (small beam), 75 mm (7.5×lc) (medium 
beam) and 90 mm (9×lc) (large beam) for lc=10 mm, respectively. It did not 
depend on the mesh size. 

 
                A) 

a) 
 

b) 

Fig. 5.36 Load-displacement curves from experiments (Le Bellego et al. 2003) and FE-
simulations: a) lc=5 mm, b) lc=10 mm, A) elasto-plastic model with non-local softening, B) 
damage model with non-local softening (Bobiński and Tejchman 2006) 
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                B) 

a) 
 

b) 

Fig. 5.36 (continued) 

 
Figure 5.39 presents the evolution of the localized zone during deformation. 

The width of the localized zone increases at the beginning of deformation after 
the peak, and next it remains almost the same with advanced deformation  
within elasto-plasticity, however, its continuous increase takes place within 
damage mechanics. This outcome is in accordance with FE-calculations by 
Pamin (2004, 2005) using a second–gradient elasto-plastic and second-gradient 
damage model. 

Finally, Fig. 5.40 shows the influence of the parameters α, β and κo on the 
force-displacement curve using an isotropic damage model (Eqs. 3.35, 3.40,  
3.93 and 3.99). The parameter κo influences strongly the peak on the load-
displacement. In turn, the parameter β  affects the slope of the curve in the 
softening regime and the parameter α has a large effect on the residual value. 
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        a)         b)                  a)                   b)                        a)                      b) 

           A)                                 B)                                          C) 

Fig. 5.37 Calculated contours of the non-local parameter 2κ
−

 along the beam height at the 
left side of notch: a) lc=5 mm, b) lc=10 mm, A) h=80 mm, B) h=160 mm, C) h=320 mm 
(elasto-plastic model with non-local softening) (Bobiński and Tejchman 2006) 

 

    
 

      a)      b)           a)                   b)                          a)                             b) 
               A)                         B)                                             C) 

Fig. 5.38 Calculated contours of the non-local parameter 2κ
−

 along the beam height at the 

left side of notch: a) lc=5 mm, b) lc=10 mm, A) h=80 mm, B) h=160 mm, C) h=320 mm 
(damage model with non-local softening, Eqs. 3.35 and 3.40) (Bobiński and Tejchman 
2006) 
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A) 

 
                  B) 

 

Fig. 5.39 Evolution of non-local parameter 2κ
−

 (a) and damage parameter D above the 

notch (right side of the beam) (b) (lc=10 mm, h=160 mm): A) elasto-plastic model with 
non-local softening, B) damage model with non-local softening (Eqs. 3.35 and 3.40) 
(Bobiński and Tejchman 2006) 

 
Figure 5.41 presents a comparison between FE-result and the size effect law  

by Bažant (2003) - a good agreement was obtained. The normalized strength 
decreases almost linearly with increasing size ratio h/lc in the considered range. 

The problem of a notched beam under three-point bending was experimentally 
studied by Kormeling and Reinhardt (1983) and numerically simulated by Jirásek 
(2004) using a non-local damage continuum model. The geometry of the beam 
with a depth of t=100 mm is shown in Fig. 5.42 (span length L=450 mm, height 
h=100 mm). The deformation was obtained by imposing the vertical displacement 
to the top at the mid-span of the beam. The elastic properties were: E=20 GPa and 
υ=0.2. The following damage parameters were chosen: κ0=1.2×10-4, α=0.96, 
β=200, and k=10 (Eqs. 3.38, 3.40, 3.93 and 3.99). A characteristic length was lc=5 
mm. The calculations were carried out also with β=500. A coarse (2120 elements), 
medium (2300 elements) and fine (4380 elements) mesh was used.  
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a) 

b) 

c) 

 
Fig. 5.40 Influence of the parameters α, β and κo on load-displacement curve using damage 
model (lc=5 mm, h=160 mm) (Eqs. 3.35and 3.40) (Bobiński and Tejchman 2006) 

 
The calculated contours of the damage parameter κ at residual state are shown 

in Fig. 5.43. The results are mesh-independent. The width of the localisation zone 
is approximately equal to 23 mm (4.5×lc). In turn, Fig. 5.44 presents the calculated 
load–displacment curves for different meshes which are almost indentical  
and match well with the experimental curves (Kormeling and Reinhardt 1983) 
(they lie between them) for the parameter β=200. The effect of β on the  
 



5.2   Bending 141
 

load-displacement diagram is strong. The larger β, the smaller the beam strength. 
The results with different characteristic lengths lc (lc=2-10 mm), indicate that the 
beam strength increases with increasing lc (Fig. 5.45). Thus, a pronounced size 
effect caused by the ratio lc/L (L - specimen size) occurs. With increasing 
characteristic length, the behaviour of the material after the peak becomes more 
ductile. The results are in a good agreement with the FE-results by Jirásek (2004). 

 

a) 

b) 
 

Fig. 5.41 Relationship between the calculated normalized loads: (PL)/(Eκoh
2t) and (PL)/(fth

2t) 
during bending (with lc=5mm) and the ratio h/lc as compared to the size effect law by Bažant 
(2003) within: a) damage mechanics, b) elasto-plasticity (Bobiński and Tejchman 2006) 
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Fig. 5.42 Geometry and boundary conditions of the beam under three-point bending 
(dimensions are given in mm) (Bobiński and Tejchman 2005) 

 

           
                            a)                                  b)                                 c) 
 
Fig. 5.43 Calculated contours of damage parameter near the notch of the beam under three-
point bending for: a) coarse, b) medium and c) fine mesh (Bobiński and Tejchman 2005) 

 
In turn, the problem of a notched beam under four-point bending was 

experimentally investigated by Hordijk (1991) and numerically simulated by both 
Pamin (2004) with second-gradient plasticity and Simone et al. (2002) with a 
second-gradient damage model. The geometry of the specimen is given in Fig. 5.46 
(span length L=450 mm, height h=100 mm). The beam had the 5×10 mm2 notch at 
the mid-span. The thickness of the beam in out-of-plane direction was t=50 mm. 
The deformation was induced by imposing a vertical displacement in two nodes at 
the top in the central part of the beam. The modulus of elasticity was E=40 GPa 
and the Poisson’s ratio υ=0.2. The remaining material parameters were: 
κ0=0.75×10-4, α=0.92, β=200, k=10 and lc=5 mm (Eqs. 3.32, 3.55, 3.93 and 3.99). 
The FE-analyses were carried out with a coarse (2152 elements), medium (2332 
elements) and fine (4508 elements) mesh. 
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The calculated contours of the damage parameter are shown in Fig. 5.47. The 
obtained results do not depend on the mesh size. The width of the localisation 
zone is approximately equal to 26 mm (5.2×lc). Figure 5.48 depicts the load–
displacment curves for various FE-meshes which are almost indentical. They are 
also close to the experimental curve by Eq. 3.55 (Hordijk 1991). In addition, the 
influence of the characteristic length in the range of lc=2.5-10.0 mm was analyzed 
(Fig. 5.49). The results of Fig. 5.49 show that the effect of the characteristic length 
on the load-displacement diagrams is pronounced. The results are close to those 
by Pamin (2004) and Simone et al. (2002). 

 

 
 
Fig. 5.44 Calculated load–displacement diagrams within damage mechanics for beam under 
three-point bending with different FE-meshes compared to the experimental curves by 
Kormeling and Reinhardt (1983) (Bobiński and Tejchman 2005) 

 

 
 
Fig. 5.45 Calculated load–displacement diagrams for different characteristic lengths lc 
within damage mechanics (beam under three-point bending) (Bobiński and Tejchman 2005) 
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Fig. 5.46 Geometry and boundary conditions of beam under four-point bending 
(dimensions are given in mm) (Bobiński and Tejchman 2005) 
 

           
                            a)                                  b)                                 c) 
 

Fig. 5.47 Calculated contours of damage parameter near the notch for a beam under four-
point bending for different FE-meshes: a) coarse, b) medium and c) fine mesh (Bobiński 
and Tejchman 2005) 

 

Fig. 5.48 Calculated load displacement diagrams for beam under four-point bending within 
damage mechanics for different meshes compared to experiment (Bobiński and Tejchman 2005) 
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Fig. 5.49 Calculated load–displacement diagrams for different characteristic lengths lc 
within damage mechanics (beam under four-point bending) (Bobiński and Tejchman 2005) 

 
Figure 5.50 shows the normalized strength Pl/Eκ0h

2t against the ratio h/lc from 
FE-studies. The force decreases almost linear with h/lc. The relationship can be 
approximated by Bažant’s size effect formula (Eq. 5.5), wherein the parameters 
were calculated using a linear regression. 

 

 
 

Fig. 5.50 Relationship between strength Pl/Eκ0h
2t and ratio lc/h during four-point bending 

within damage mechanics as compared to size effect law by Bažant (2003) (Bobiński and 
Tejchman 2005)  

 
FE results with cohesive elements 
The three-point bending tests with notched beams by Le Bellego et al. (2003) were 
investiagated with cohesive elements of Chapter 4.1 (Bobiński and Tejchman 
2008). The elastic material patameters were: E=38.5 GPa and ν=0.24 and the 
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cohesive data were: ft=3.5 MPa, η=0.0 and β=45000. The FE meshes consisted of 
3068, 4956 and 9132 3-node triangles. Interface elements were placed only along 
the expected crack trajectory, i.e. along the vertical symmetry line.  

Figures 5.51 and 5.52 show the numerical results with cohesive elements for 
three different beams from laboratory experiments by Le Bellego et al. (2003). 
The outcomes indicate that the cohesive elements are able to realistically describe 
a deterministic size effect and a vertical crack above the beam notch. 

 

 

 

 

Fig. 5.51 Calculated load-displacement curves from experiments by Le Bellego et al. 
(2003) with 3 different notched beams and calculated size effect in FE-simulations with 
cohesive elements of Chapter 4.1 (Bobiński and Tejchman 2008) 
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Fig. 5.52 Defomed medium-size notched beam with vertical crack in FE-simulations with 

cohesive elements of Chapter 4.1 (Bobiński and Tejchman 2008) 

 
FE results with XFEM 
The geometry of the specimen during three-point bending was taken from 
Häussler-Combe (2002). The beam was deformed by prescribing a vertical 
displacement at the upper edge of the beam at its mid-span up to the final value 
u=0.4 mm (Fig. 5.53). The starting point of the crack was defined in the middle of 
the bottom edge. The Young modulus was equal to E=30 GPa and the Poisson’s 
ratio was v=0.2. The tensile strength was taken as ft=3 MPa. The fracture energy 
Gf=120 N/m with exponential softening was defined. The fixed vertical crack was 
assumed (Chapter 4.2). The simulations were performed with three FE meshes 
with 410, 1620 and 3630 3-node triangles (Bobiński and Tejchman 2011). A plane 
stress state was assumed. The odd number of finite elements between supports 
was defined to locate the crack starting point in the middle of the elements’ edge. 
Figure 5.54 shows the calculated force – displacement curves which are similar. 
For a coarse mesh, several drops in the force evolution were obtained which are 
caused by an edge-like crack propagation (crack tip can be placed at finite element 
edge only). With decreasing element size this phenomenon disappears. The 
obtained deformed coarse mesh is shown in Fig. 5.55 (displacements were scaled 
20 times). It should be noted here that the use of the crack direction propagation 
criterion based on the maximum principal stress resulted in a sudden unrealistic 
change of the crack direction at the certain stage of deformation. The reason was 
an isotropic stress stage (biaxial tension) attained at the front of the crack tip. 
Next, the vertical tensile stresses become larger than horizontal ones and the crack 
turned by 90 degrees in the left (or right) direction. 

A beam with a notch under three-point bending was also analyzed according to 
experiments by Le Bellego et al. (2003). The Young modulus and the Poisson’s 
ratio were taken as E=38.5 GPa and v=0.24, respectively. The tensile strength was 
equal to ft=3.2 MPa. The exponential softening with fracture energy Gf=80 N/m 
was defined. A fixed vertical crack was assumed again in advance. Three different 
meshes with 3068, 4956 and 9132 triangles were defined for a small, medium and 
large beam, respectively. The crack starting points were located at the left side 
near the node at the symmetry of the each beam. 
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Fig. 5.53 Geometry and boundary conditions of concrete beam during bending test using 
XFEM of Chapter 4.2 (Bobiński and Tejchman 2011) 

 

 
 

Fig. 5.54 Calculated force–displacement curves during bending test using XFEM of 
Chapter 4.2 (Bobiński and Tejchman 2011) 

 

 
 

Fig. 5.55 Calculated crack for coarse mesh during bending test using XFEM of Chapter 4.2 
(Bobiński and Tejchman 2011) 

 
Figure 5.56 shows the calculated force-displacement diagrams as compared 

with experimental curves. A satisfactory agreement was achieved and the 
experimental size effect was well reproduced. The obtained mesh for a small beam 
with a propagating vertical crack is presented in Fig. 5.57. 
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Fig. 5.56 Calculated force–displacement curves during bending test using XFEM of Chapter 
4.2 compared to experiments by Le Bellego et al. (2003) (Bobiński and Tejchman 2011) 

 

 
 

Fig. 5.57 Calculated vertical crack for small beam during bending test using XFEM of 
Chapter 4.2 (Bobiński and Tejchman 2011) 

 
The following conclusions can be derived from FE simulations of beam bending: 

• The larger the ratio between the characteristic length of micro-structure and the 
specimen size, the higher both the specimen strength and the ductility of the 
specimen during bending.  
• The width of the localized strain zone is about (4.5-5.0)×lc within elasto-
plasticity and (6.5-9.0)×lc within damage mechanics.  
• The width of the localized zone grows during the entire deformation process 
within damage mechanics, whereas it is almost constant within elasto-plasticity. 
• The size effect decreases almost in a hyperbolic way with decreasing ratio 
between the specimen size and characteristic length. The calculated deterministic 
size effect in notched concrete elements during bending is in agreement with the 
corresponding size effect law by Bažant (2003). 
• The size effect is more pronounced during beam bending than during uniaxial 
tension. 
 



150 5   Continuous and Discontinuous Modelling of Fracture in Plain Concrete
 

• The larger value of the damage parameterβ, the faster the damage growth. The 
parameter β is not uniated versal for all boundary value problems.  
• The cohesive crack model and XFEM are able to describe a deterministic size 
effect and a propagating crack. The FE results do not depend on the mesh size. 

5.3    Shear-Extension 

In this chapter, two different boundary value problems were numerically studied 
under combined shear and tension: a double-edge notched concrete specimen and 
a single-edge notched concrete beam. 

 
Double-edge notched 
A double-edge notched (DEN) specimen under various different loading paths of 
combined shear and tension was experimentally investigated by Nooru-Mohamed 
(1992). The dimensions of the largest specimen and boundary conditions are 
presented in Fig. 5.58. The length and height of the element was 200 mm. The 
thickness was 50 mm. Two notches with dimensions of 25×5 mm2 were placed in 
the middle of the vertical edges. The loading was prescribed by rigid steel frames 
glued to concrete. During one of the loading paths (called ‘4’), a shear force Ps 
was applied until it reached a specified value, while the horizontal edges were 
free. At the second stage, the shear force remained constant and the vertical tensile 
displacement was prescribed. In the experiment, two curved cracks with an 
inclination depending on the shear force (for a small value of Ps – almost 
horizontal, for a large value of Ps – highly curved, Fig. 5.58) were obtained. 

The following elastic material parameters were chosen in the FE-analyses: 
E=32.8 GPa and v=0.2. A FE-mesh was composed of 12600 3-node triangular 
finite elements. 

 
FE-results within elasto-plasticity 
The tensile strength was assumed as ft=2.6 MPa and the parameter κu=0.033 when 
using linear softening (Eqs. 3.32, 3.93 and 3.97). A characteristic length was equal 
to lc=1 mm and the non-local parameter was m=2. Figure 5.59 presents the 
obtained FE results with the shear force Ps=5 kN (path ‘4a’). A very good 
agreement was achieved with respect to both the force-displacement curve and 
geometry of localized zones, although the calculated maximum force P was too 
large. The FE-results for the path ‘4b’ (Ps=10 kN) are shown in Fig. 5.60. The 
force-displacement curve is satisfactorily reproduced. Two curved localized zones 
were numerically obtained again, but they were too flat as compared to the 
experiment (wherein they were more curved and the distance between them was 
larger). 

 



5.3    Shear-Extension 151
 

 
 

Fig. 5.58 Geometry of DEN specimen (dimensions in mm) and experimental curved cracks 
during loading path ‘4c’ (Nooru–Mohamed 1992) 

 

  
 

Fig. 5.59 The force-displacement curves and the contour map of non-local parameter κ  for 
shear force Ps=5 kN within elasto-plasticity (lc=1 mm) (Bobiński and Tejchman 2010) 

 
 

FE-results within damage mechanics 
First, the Rankine definition of the equivalent strain measure ε  was used  
(Eqs. 3.35, 3.40, 3.93 and 3.99). The following material parameters were assumed: 
κ0=7×10-5, α=0.92, β=100 and lc=0.5 mm. Figure 5.61 presents results at the shear 
force Ps=10 kN. The force-displacement curve overestimated the maximum value, 
and its slope after the peak was too high. Two localized zones were numerically 
obtained, however their curvature was not smooth.  
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Fig. 5.60 Calculated force-displacement curves and contour map of non-local parameter κ  
for shear force Ps=10 kN within elasto-plasticity (lc=1 mm) (Bobiński and Tejchman 2010) 

 
To improve the behaviour of the damage model, the modified Rankine 

definition (Eq. 3.37) was also used. The coefficient c was taken as 0.15. The 
pattern of localized zones and force-displacement diagram (Fig. 5.62) reflect the 
experimental results much better than those with a standard Rankine definition by 
Eq. 3.35 (Fig. 5.61). 

 

 

Fig. 5.61 Calculated force-displacement curves and contour map of damage parameter D for 
shear force Ps=10 kN within damage mechanics (Eq. 3.35) (Bobiński and Tejchman 2010) 
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Fig. 5.62 Calculated force-displacement curves and contour map of damage parameter D 
for shear force Ps=10 kN within damage mechanics (modified Rankine definition by Eq. 3.37) 
(Bobiński and Tejchman 2010) 

 
Afterwards, the modified von Mises definition was used (Eqs. 3.38, 3.40, 3.93 

and 3.99) with the same set of parameters as for the Rankine definition (k=10). 
Both the force-displacement curve and pattern of localized zones are in good 
agreement with the experimental results (Fig. 5.63).  

 
FE results with smeared crack model 
A characteristic length was equal to lc=2 mm. The tensile strength was taken as 
ft=2.6 MPa and the ultimate normal crack strain εnu=0.02. For a fixed crack model, 
the shear retention parameters were assumed as: εsu=0.02 and p=8 (Eqs. 3.52-3.60, 
Chapter 3.1.3). Figure 5.64 shows results obtained with a multi-orthogonal fixed 
crack model. The force-displacement curve is reproduced quite well. One obtains 
two straight localized zones similarly as in the experiment. The calculations with a 
rotating crack model were also carried out, but they were not successful. Serious 
numerical problems with convergence took place shortly after the peak. The 
obtained localization pattern was similar to that obtained with a damage model 
using a Rankine’a definition of the equivalent strain measure (one horizontal 
localized zone or two almost horizontal localized zones were created). 
 
FE-results with cohesive elements 
The cohesive cracks were described by the tensile strength ft=2.2 MPa and 
parameters η=0.0 and β=30000 (Chapter 4.1). The FE mesh with 10184 3-node 
triangles was defined. Cohesive elements were placed between elements in the 
central horizontal region of the specimen. 

Figures 5.65 and 5.65 show the results obtained for the shear force Ps of 5 kN 
and 10 kN, respectively. In both cases, a very good agreement was obtained 
between experimental and numerical crack patterns and force-displacement curves 
(it should be noted that the tensile strength was slightly decreased as compared to 
the experimental value). 
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Fig. 5.63 Calculated force-displacement curves and contour map of parameter D for shear 
force Ps=10 kN within damage mechanics (Eq. 3.38) (Bobiński and Tejchman 2010) 

 
The influence of cohesive parameters η and β is indicated in Figs. 5.67 and 

5.68 (at Ps=5 kN). The larger the value of η and β, the larger softening of the force 
– displacement curve was obtained (Fig. 5.67). The effect of these parameters on 
the maximum force was not significant. With increasing value of the parameter η, 
calculated cracks became more horizontal (Fig. 5.68). 

 

 
 

Fig. 5.64 Calculated force-displacement curves and the contour map of strain for shear 
force Ps=5 kN with smeared crack model of Chapter 3.1.3 (Bobiński and Tejchman 2010) 

 
FE-results with XFEM 
The following constants were assumed in elasticity: Young modulus E=38.2 GPa 
and Poisson’s ratio v=0.2. The tensile strength was equal to ft=3 MPa. The 
exponential softening and the fracture energy Gf=100 N/m were assumed for 
cohesive cracks. Simulations were performed in the plane stress conditions. Two 
crack starting points were defined near the notch corners. To calculate the crack 
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propagation direction, the criterion based on a direction of the maximum principal 
stress was used. The stress averaging length was taken as l=1 cm (Chapter 4.2). 
The FE mesh included 3840 3-node triangles. 

Figure 5.69 shows the results obtained for the loading path ‘4a’ (shear force 
Ps=5 kN). Two inclined cracks were obtained (too strongly curved as compared to 
the experiment). The calculated force – displacement curve indicated unphysical 
rehardening caused by a self-locking of both cracks due to their sudden direction 
change. Crack tips were located at the edges of the earlier cracked elements and 
the crack evolution was stopped.  

The results for the path ‘4b’ (shear force Ps=10 kN) are presented in Fig. 5.70. 
Too slightly curved cracks were again obtained. Moreover, a strange jump in the 
crack trajectory was observed in each crack. Despite this fact a good agreement 
was observed with respect to the force – displacement diagram.  

 

 
 

Fig. 5.65 The force-displacement curves and deformed specimen for shear force Ps=5 kN 
using cohesive elements of Chapter 4.1 (Bobiński and Tejchman 2010) 

 

 

Fig. 5.66 Calculated force-displacement curves and cracks for shear force Ps=10 kN using 
cohesive elements of Chapter 4.1 (Bobiński and Tejchman 2010) 
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Single-edge notched (SEN) concrete beam 
A single-edge notched (SEN) concrete beam under four-point shear loading (anti-
symmetric loading) was analyzed (Schlangen 1993) (Fig. 5.71). The length and 
height of the beam were equal to 440 mm and 100 mm, respectively. The depth of 
the notch was equal to 20 mm and its thickness was 5 mm. In the experiments, a 
curved crack starting from the lower-right part of the notch towards a point to the 
right of the lower right support was obtained. 

 
 

 

 
 

Fig. 5.67 Calculated force – displacement curves for different values of η and β using 
cohesive elements of Chapter 4.1 at shear force Ps=5 kN 
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FE results within elasto-plasticity 
Figure 5.72 demonstrates the results obtained with the elasto-plastic model (ft=3 
MPa, κu=0.040 and lc=1 mm), Eqs. 3.32, 3.40, 3.93 and 3.97. The localized zone 
was curved and its shape matched well the experiment. A satisfactory agreement 
between a numerical and experimental force-displacement diagram was also 
achieved. 

A FE-mesh consisted of 6556 3-node triangle finite elements. The modulus of 
elasticity was taken as E=35 GPa and the Poisson ratio as ν=0.2. The deformation 
was induced by linearly increasing the distance δ2 (due to the snap-back behaviour 
of vertical displacements at the points where the forces were applied) (Fig. 5.72) 
(Chapter 8).  

 

 
η=0.0 η=0.5 η=1.0 

 
  

 
Fig. 5.68 Crack patterns for different values of η using cohesive elements of Chapter 4.1 at 
shear force Ps=5 kN  

 

 

 
Fig. 5.69 Calculated force – displacement curves and deformed mesh for shear force 
Ps=5 kN (displacements were scaled 20 times) using XFEM of Chapter 4.2 (Bobiński and 
Tejchman 2011) 
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Fig. 5.70 Calculated force – displacement curves and deformed mesh for shear force 
Ps=10 kN (displacements were scaled 20 times) using XFEM of Chapter 4.2 (Bobiński and 
Tejchman 2011) 

 

 
 

Fig. 5.71 Geometry of SEN specimen (dimensions in mm) and experimental curved crack 
(Schlangen 1993)  

 
FE results within damage mechanics 
The numerical calculations were performed with the Rankine definition of the 
equivalent strain measure (Eqs. 3.35, 3.40, 3.93 and 3.99). The following material 
parameters were assumed: lc=1 mm, κ0=8.5×10-5, α=0.92 and β=150. Both the 
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force displacement-diagram and strain localization differ significantly from the 
experimental outcome (Fig. 5.73). To obtain a better agreement with the 
experiment, the modified von Mises definition (Eqs. 3.38, 3.40, 3.93 and 3.99) of 
the equivalent strain measure was used with the following parameters: lc=1 mm, 
κ0=8.0×10-5, α=0.92, β=150 and k=10. Although, the slope of the calculated force-
displacement curve was too sharp, the shape of the localized zone was properly 
reproduced (Fig. 5.74). 

The results of our FE simulations within continuum mechanics of the concrete 
behaviour under mixed mode conditions have shown that a proper choice of a 
constitutive law is a very important issue. The models show a different capability 
to capture the localized zone phenomenon. In general, an elasto-plastic model with 
the Rankine failure criterion is the most effective among continuous models. The 
usefulness of an isotropic damage model depends on the definition of the 
equivalent strain measure. The influence of the material description in the tensile-
compression regime had to be taken into account (e.g. by a non-realistic increase  
 

 

 

 

Fig. 5.72 The force-displacement curves and contour map of non-local parameter κ  in 
central part of beam within elasto-plasticity (lc=1 mm) (Bobiński and Tejchman 2010) 
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Fig. 5.73 The force-displacement curves and contour map of damage parameter D in central 
part of beam within damage mechanics (with Rankine equivalent strain definition by  
Eqs. 3.35) (Bobiński and Tejchman 2010) 

 
of strength). A fixed smeared crack model was not able to reproduce curved 
localized zones (the worst results were obtained with a rotating smeared  
crack model). In general, the approach with cohesive elements provided the best 
approximation of experiments. The calculations using XFEM indicated the 
importance of the crack propagation criterion defined to realistically model a 
crack trajectory (the crack evolution was sometimes blocked using an 
conventional criterion based on a direction of the maximum principal stress). 
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Fig. 5.74 The force-displacement curves and contour map of damage parameter D in central 
part of beam within damage mechanics (with modified von Mises equivalent strain 
definition by Eqs. 3.38) (Bobiński and Tejchman 2010) 
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Chapter 6 

Continuous Modelling of Fracture in Plain 
Concrete under Cyclic Loading 

Abstract. The enhanced coupled elasto-plastic damage models with non-local 
softening proposed by Pamin and de Borst (1999) (called model ‘1’), by Carol et 
al. (2001) and by Hansen and Willam (2001) (called model ‘2’), by Meschke et al. 
(1998) (called model ‘3’) and Marzec and Tejchman (2009, 2010, 2011) (called 
model ‘4’) described in detail in Chapter 3.2 were used in FE calculations. Quasi-
static FE results were compared with corresponding laboratory tests on concrete 
specimens: dog-bone shaped specimen under monotonic uniaxial tension (van 
Vliet and van Mier 2000) and notched beams under cyclic loading (Hordijk 1991, 
Perdikaris and Romeo 1995).  
 

Initial Results for Monotonic Uniaxial Tension 
In the first step, the numerical calculations were carried out for concrete 
specimens under monotonic uniaxial tension. The main purpose was to check the 
effectiveness of a different non-local techniques used for each model. The 
experimental data presented by van Vliet and van Mier (2000) served as the 
reference data. In the experiments, a size effect in concrete with two-dimensional 
dog-bone shaped concrete specimens under quasi-static uniaxial tension (Fig. 6.1) 
was investigated. The five different specimen types (from ‘A’ to ‘E’) were used. 
Their height varied from 75 mm up to 2400 mm. In the numerical calculations, 
three different specimen sizes were considered only, namely: ‘A’, ‘B’ and ‘C’ 
(Tab. 6.1) with the height varying between 75 mm and 300 mm. The deformation 
was induced by imposing a vertical displacement at the node at the top part of the 
specimen. The number of triangular finite elements (with linear shape functions) 
was equal to 246, 1018 and 4102 for the specimen ‘A’, ‘B’ and ‘C’, respectively 
(with characteristic length lc=5 mm). The modulus of elasticity was E=49.0 GPa 
and the Poisson’s ratio was ν=0.2. 

In the coupled model ‘1’ by Pamin and de Borst (1999) (Chapter 3.2), the von 
Mises yield criterion with linear hardening was assumed in a plastic region (with the 
yield stress σyt

0=2.6 MPa and linear hardening modulus Hp=E/2). In a damage 
regime, the following material parameters were assumed: κ0=7.9×10-5, α=0.91, 

β=350 and k=10. The damage formulation was based on the total strain ( )ijε ε .  
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In the coupled model ‘2’ by Carol et al. (2001) and by Hansen and Willam (2001) 
(Chapter 3.2), the following parameters: Ept=45 GPa, nt=0.13 and ft=2.54 MPa were 
assumed to describe the resistance function by Eq. 3.77. In turn the following 
parameters were chosen in the coupled model ‘3’ by Meschke et al. (1998) (Chapter 
3.2): ft=2.85 MPa, κ0=3.0×10-3 and β=0.15. For the coupled model ‘4’ by Marzec 
and Tejchman (2010) (Chapter 3.2), the Rankine yield criterion with the yield stress 
σ0

y=2.5 MPa was assumed in plasticity. A linear hardening parameter (Hp=E/2) was 
chosen. In a damage regime, the following material parameters were taken: 
κ0=9×10-5, α=0.95 and β=230. The damage formulation was based on the total 
strains according to Eq. 3.84. The stiffness reduction factors were at=1 and ac=1.  

 

Fig. 6.1 Geometry of dog-bone shaped specimen (Vliet and van Mier 2000) 

Table 6.1 Dimensions of dog-bone shaped specimens under uniaxial tension of Fig. 6.1 
(van Vliet and van Mier 2000) 

 

Specimen 
type (Fig. 6.1) 

‘A’ ‘B’ ‘C’ 

D [mm] 50 100 200 

r [mm] 36.25 72.50 145 

 
Figure 6.2 shows the calculated localized zone with four coupled models in the 

specimen A, B and C of Tab. 6.1. In turn, the calculated load-displacement 
diagrams for the concrete specimen ‘B’ of Tab. 6.1 with 4 coupled models 
compared to the experiment are demonstrated in Fig. 6.3. A satisfactory agreement 
with the experiment was obtained. 

The calculated width of a localized zone is 2.2÷2.3 cm (4-5)×lc (model ‘1’ and 
‘4’), 2.7 cm (5-6)×lc (model ‘2’) and 1.7 cm (3-4)×lc (model ‘3’). The calculated 
evolution of the vertical force at the top is almost the same for each formulation 
and close to the experimental data.  

Figure 6.4 presents a comparison of calculated and experimental values of the 
nominal strength σN versus the specimen size D (σN was calculated by dividing the 
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ultimate vertical force at the top by the smallest specimen cross-section equal to 
0.6 bD, b – specimen thickness, D – specimen width of Fig. 6.1. The numerical 
results were compared with the corresponding experimental mean values (and 
standard deviations).  

 

                               A) 

                                 a)                           b                            c) 

               B) 

                            a)                                b)                                c) 

      C) 
                    a)                                       b)                                       c) 

Fig. 6.2 Calculated contours of localized zones (for u=100 μm) with different enhanced 
coupled models: a) model ‘1’ and ‘4’, b) model ‘2’ and c) model ‘3’ for specimen sizes  
of Tab. 6.2: A) type A, B) type B and C) type C (Vliet and van Mier 2000) (specimens are 
not scaled) 

Figure 6.5 shows the effect of a different resistance function (Eqs. 3.72, 3.76 
and 3.77) in the coupled model ‘2’ on results in a post-peak regime. The function 
of Eq. 3.72 gives limited possibilities to control the material behaviour in a 
softening regime (Fig. 6.5a), since a significant change of gf/ro slightly influences 
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the load-displacement curve. The proposition in Eq. 3.36 describes a wider range 
of the post-peak behaviour with the same amount of parameters as the previous 
function (Fig. 6.5b). The third resistance function of Eq. 3.77 can the best control 
the rate of softening and the shape of the function in the post-peak regime with the 
help of one additional parameter (Fig. 6.5c). 

 

Fig. 6.3 Calculated load-displacement diagrams for four coupled elasto-plastic-damage 
models as compared with experimental data for specimen ‘B’ (Vliet and van Mier 2000) 

 
Fig. 6.4 Comparison between calculated and experimental values of nominal strength σN 
versus specimen size D of Fig. 6.1 for dog-bone shaped specimens (Vliet and van Mier 2000) 
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The experimental size effect on strength was well reflected in numerical 
calculations except the smallest specimen ‘A’ wherein a strong boundary effect 
took place in the experiment (the coarseness of the applied concrete mixture was 
simple too large in relation to the specimen dimensions, Vorechovsky 2007).  
 
FE Results for Four-point Cyclic Bending of Notched Concrete Beams 
The comparative numerical plane strain simulations were performed with a 
concrete notched beam under four-point cycling bending subjected to tensile 
failure (Hordijk 1991) (Fig. 6.6). The length of the beam was 0.5 m and the height 
0.1 m. The deformation was induced by imposing a vertical displacement at two 
nodes at the top of the beam. In the calculations, the modulus of elasticity was 
E=40 GPa, Poisson ratio ν=0.2 and characteristic length lc=5 mm. The tensile 
strength from experiments was varied between ft=2.49 MPa and ft=4.49 MPa. The 
calculations were performed with 7634 triangular finite elements. The size of 
elements was not greater than (2-3)×lc to obtain objective FE results (Bobiński and 
Tejchman 2004, Marzec et al. 2007). The force-displacement diagrams P=f(u) are 
shown in Fig. 6.7. In turn, Fig. 6.8 presents the calculated contours of a localized 
zone above the notch. The evolution of non-local parameters: equivalent strain 
measure (model ‘1’ and ‘4’), pseudo-log damage variable (model ‘2’) and 
softening parameter (model ‘3’) is demonstrated in Fig. 6.9.  

For the first enhanced coupled model (model ‘1’) with one surface in 
hardening plasticity, the von Mises criterion with the yield stress σyt

0=6.5 MPa 
(total strains) and σyt

0=5.9 MPa (elastic strains) was assumed with a linear 
hardening parameter (Hp=E/2). Since, an elasto-plastic model is not directly 
responsible for the evolution of the failure mechanism, the von Mises criterion 
was chosen for concrete in elasto-plasticity for the sake of simplicity (the 
application of the criterion by Drucker-Prager does not affect FE results).  
The following material constants were used: κ0=9.5×10-5, α=0.92 and β=140 with 

the total strains ( )ijε ε , and κ0=8.6×10-5, α=0.92 and β=170 with the elastic 

strains ( )e
ijε ε . The parameter set is different in both cases due to a varying 

coupling between plasticity and damage (via elastic or total strains).  
Figure 6.7a shows the calculated load-displacement curves with a coupled 

elasto-plastic damage model using total strains. The load reversals exhibit a 
gradual decrease of the elastic stiffness, however calculated stiffness degradation 
is overestimate, especially for high values of κ. The calculated vertical force is 
close to experiment. The slope of the load-displacement curve is realistically 
reflected. The width of a localized zone above the notch in the beam is about 2.4 
cm (4.8×lc) (Fig. 6.9a). 
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a) 

 

b) 

 

c) 

Fig. 6.5 Calculated load-displacement curves with resistance functions: a) of Eq. 3.72 for 
different ratios gf/r0, b) of Eq. 3.76 for different parameter α and c) of Eq. 3.77 for different 
parameters Ept and nt compared with experimental data for specimen ‘B’ (Vliet and van 
Mier 2000) 
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c) 
 

Fig. 6.5 (continued) 

 

 
 
Fig. 6.6 Geometry and boundary conditions of a notched beam under four-point bending 

(Hordijk 1991) 

 
Using the second enhanced coupled model, the resistance function by Nguyen 

(2005) was assumed with Ept=37 GPa, nt=0.175, ft=2.85 MPa and m=1.2. The 
numerical results agree well with the experimental data only in the case of  
the ultimate vertical force and softening slope in the post-peak regime (Fig. 6.7b). 
The calculated stiffness degradation is significantly too high than in the 
experiment. As a consequence, the width of a localized zone increases up to 3.2 
cm (6.4×lc) (Fig. 6.9b). The similar results are obtained with the resistance function 
by Eq. 3.76 (Marzec 2009). 

In the third enhanced coupled model, the calculated ultimate vertical force 
(with the parameters: ft=2.85 MPa, κ0=1.85×10-3, γ=0.2 and m=2) again very 
similar as compared with the experimental value (Fig. 6.7c). Also the softening 
behaviour is realistically reflected. The slope of the experimental and numerical  
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curve is almost the same. The calculated stiffness degradation exhibits a proper 
gradual decrease and it is close to experiment. The width of the localized zone 
above the notch is 1.4 cm (2.8×lc) (Fig. 6.9c).  

 

a) 

b) 
 

Fig. 6.7 Experimental and calculated force-displacement curves using 4 different coupled 
elasto-plastic-damage models with non-local softening during quasi-static four-point cyclic 
bending under tensile failure (Hordijk 1991): a) model ‘1’ (damage based on total strains), 
b) model ‘2’, c) model ‘3’ and d) model ‘4’ (damage based on elastic strains) (Marzec and 
Tejchman 2009, 2010) 
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c) 

d) 
 
Fig. 6.7 (continued) 

 
In the fourth enhanced model, the constants σyt

0=6.5 MPa, Hp=E/2, κ0=4.3×10-5, 
β=650, α=0.90,  η1=1.2, η2=0.15, δ=450, at=0 and ac=1 were used (damage was 
based on elastic strains). The calculated force-displacement curve exhibits good 
agreement with experimental outcomes (Fig. 6.7d). The bearing capacity of the 
beam is very well captured. The post-peak behaviour is close to experiment, 
however the softening slope is slightly worst reflected as in the model ‘3’. In turn 
a calculated stiffness decrease is almost the same as in the experiment. Thus, an 
evident improvement as compared to the model ‘1’ with respect to the magnitude 
of the stiffness reduction was achieved. The calculated contours of a non-local 
variable describing the shape of a localized zone are similar as in the model ‘1’ 
(Fig. 6.8d). The results of Figs. 6.8 and 6.9 demonstrate that the shape of a localized 
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zone above the notch is different due to the material stiffness in a softening regime 
induced by the material formulation. The shape of a localized zone in the models 
‘1’ and ‘4’ is the same due to a similar model formulation, and is typical for other 
solutions within damage mechanics (e.g. Peerlings 1999, Pamin and de Borst 
1999).  

 

    
                   a)                         b)                           c)                              d) 
 
Fig. 6.8 Calculated contours of localized zone near notch in a beam under four-point 
bending with 4 different coupled elasto-plastic-damage models with non-local softening 
during four-point bending: a) model ‘1’, b) model ‘2’, c) model ‘3’ and d) model ‘4’ (at 
deflection u=0.15 mm) (Marzec and Tejchman 2010) 

 
Summarized, the coupled models ‘1’, ‘3’ and ‘4’ are capable to satisfactorily 

capture the cyclic concrete behaviour under tensile failure. 
 
FE results for three-point cyclic bending of notched concrete beams 
In order to check the capability of the improved coupled model ‘4’ to simulate a 
deterministic size effect observed experimentally in brittle materials (van Vliet 
and van Mier, 2000), the FE-calculations were performed in addition with 
concrete notched beams under three-point cycling loading (Fig. 6.10 Tab. 6.2) 
(Perdikaris and Romeo 1995). The number of triangular finite elements was equal 
to 2292, 5213 and 9211 for a small-, medium- and large-size beam, respectively. 
The size of elements was again not greater than 3×lc. The deformation was 
induced by imposing a vertical displacement at the mid-node at the beam top. The 
modulus of elasticity was E=45.6 GPa and the Poisson ratio was ν=0.2 and. To 
match the numerical results with the experimental ones, the same material 
constants for all three beams were chosen: σ0

y=6.5 MPa, Hp=E/2, κ0=9.0×10-5, 
β=1550, α=0.99, η1=1.2, η2=0.15, δ=950, at=0 and ac=1 and lc=5 mm (equivalent 
strain measure based on elastic strains). As compared to FE calculations on four-
point cyclic bending, the same constants σy, Hp, η1, η2, at and ac were assumed. 
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                                       a)                                                      b) 
 

 
      c) 

  
Fig. 6.9 Evolution of non-local parameter above notch in beam under four-point bending 
with 4 different coupled elasto-plastic-damage models with non-local softening: a) model 
‘1’, b) model ‘2’ and c) model ‘3’ (at deflection u=0.15 mm) (Marzec and Tejchman 2009) 

 
Figures 6.11a and 6.11b demonstrate the calculated force-displacement 

diagrams for a small- and large-size beam compared with the experimental data. 
The stiffness degradation is again realistically captured by the model. The 
calculated ultimate force as compared to experiments is higher by 10-15%. To 
obtain a better agreement between ultimate forces and calculated stiffness, the 
material constant should be better calibrated (in particular κ0 and parameters 
controlling the damage evolution β, δ and η2).  
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Fig. 6.10 Geometry and boundary conditions of a notched beam under three-point cyclic 
bending (Perdikaris and Romeo 1995) 

 
Table 6.2 Beam dimensions in cyclic tests by Perdikaris and Romeo (1995) 
 

Beam 
Size 

Depth 
d 

Width 
b 

Span 
S 

Notch 
a 

[mm] [mm] [mm] [mm] 

Small 64 127 254 20 

Medium 128 127 508 39 

Large 254 127 1016 78 

 
Next, the calculated results of a deterministic size effect with respect to the 

ultimate vertical force were confronted with the size effect law by Bažant (Eq. 5.5) 
for notched beams (Bažant and Planas 1998, Bažant 2003). The FE results show 
good agreement with the experimental data (Fig. 6.12). 

First, simple cyclic uniaxial element tests were numerically performed to show 
the behaviour of the model ‘4’ (with 4-node quadrilateral elements). Figure 6.13 
shows the load-displacement diagrams under cyclic uniaxial tension and cyclic 
uniaxial compression for different influential material constants β, δ, η2 and κ0 
(which were independently changed). The effect of the constant α (α=0.7-0.99) 
and η1 (η1=1.0-1.2) was negligible. The modulus of elasticity was E=40 GPa and 
the Poisson ratio was ν=0.18. In tension, the constants σ0

y=4.0 MPa and Hp=E/2 
(Rankine criterion), and in compression σ0

y=40 MPa, Hp=E/2, φ=20º and ψ=10º 
(Drucker-Prager criterion) were chosen. The equivalent strain measure was based 
on total strains. The material constants varied in the following ranges: β=200-
1100, δ=200-900, η2=0.15-0.45 and κ0=(15-25)×10-5 (with α=0.95, η1=1.2, at=0.0 
and ac=1.0). The force-displacement results indicate that the effect of κ0 is 
significant in tension and the effect of δ, η2 and κ0 in compression. The parameter 

0κ is responsible for a peak location and a simultaneous activation of a plastic and 

damage criterion. The parameters β, δ and η2 affect a model response in softening  
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a) 

b) 

Fig. 6.11 Experimental (Perdikaris and Romeo 1995) and calculated load-displacement 
curves with enhanced coupled model ‘4’ with damage based on elastic strains (quasi-static 
cyclic three-point bending): a) small-size beam, b) large-size beam (at=0.0 and ac=1.0) 
(Marzec and Tejchman 2010) 

 
during tension and compression, and the parameter η2 influences a hardening 
curve in compression. The effect of two other parameters (α and η1) describing 
the stress-strain curve at the residual state is negligible.  

 
Cyclic behaviour of concrete under compression and tension 
Next, a simple cyclic tension-compression-tension element test was calculated 
(Fig. 6.14) (σyt

0=4 MPa, σyc
0=40 MPa, Hp=E/2, φ=20º , ψ=10º, β=550, δ=950, 

κ0=8.5×10-5, α=0.95, η1=1.2, η2=0.15, at=0.0 and ac=1.0). The results show 
obviously the different stiffness degradation during compression and tension (that 
is stronger in tension). A recovery of the compressive stiffness upon crack closure 
and un-recovery of the tensile stiffness as the load changes between tension and 
compression is satisfactorily reflected. The evident difference between a pure 



176 6   Continuous Modelling of Fracture in Plain Concrete under Cyclic Loading
 

damage model (without plastic strains) and coupled one (with plastic strains) 
during one uniaxial load cycle is demonstrated in Fig. 6.15. 

The effect of the damage scale factors at and ac on the load-displacement 
diagram under tension-compression-tension is described in Fig. 6.16 by assuming 
at=0.2 and ac=0.8. This change of both factors is stronger in compression. 

 

 
 
Fig. 6.12 Calculated deterministic size effect for concrete notched beams subjected to 
quasi-static cyclic three-point bending (using coupled model ‘4’) as compared with size 
effect law by Bažant  (Eq. 5.5) (Bažant 2003) (t – beam thickness, d - beam height, S – 
beam span) 

 
Finally, Fig. 6.17 demonstrates the 2D FE results with the model ‘4’ for a 

concrete specimen subjected to uniaxial cyclic compression by taking strain 
localization into account. All nodes at the lower edge of a rectangular specimen 
were fixed in a vertical direction. The size of the specimen was arbitrarily chosen: 
15 cm (height) and 5 cm (width). To preserve the stability of the specimen, the 

node in the middle of the lower edge was kept fixed. The deformations were 

initiated through constant vertical displacement increments prescribed to nodes 

along the upper edge of the specimen. The lower and upper edges were smooth. 

The number of triangular finite elements was 896 (the size of elements was not 

greater than 3×lc). The material constants were: E=30 GPa, ν=0.18, σyc
0=20 MPa, 

φ=25º , ψ=10º, η1=1.2, η2=0.7, δ=800, lc=5 mm, at=0.0 and ac=1.0. To induce 
strain localization, a weak element was inserted in the middle of height, on edge of 
the specimen. Due to the lack of the initial experimental data, the calculated 
stress-strain curve was qualitatively compared with the experimental one by 
Karsan and Jirsa (1969) (Fig. 6.17). 
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A) 

  

 
B) 

Fig. 6.13 Effect of different material constants on uniaxial response of coupled elasto-plastic-
damage model ‘4’ for concrete under: A) cyclic uniaxial tension and B) cyclic uniaxial 
compression (with damage scale factors at=0.0 and ac=1.0) (Marzec and Tejchman 2010) 
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Fig. 6.14 Calculated load-displacement curve with coupled model ‘4’ (with damage scale 
factors at=0.0 and ac=1.0) during uniaxial tension-compression-tension (Marzec and 
Tejchman 2010) 

 

 
 

Fig. 6.15 Calculated load-displacement curves with coupled model ‘4’ during uniaxial 
tension-compression-tension with and without plastic strains (Marzec and Tejchman 2010) 

 
The calculated stress-strain curve (Figs. 6.17c and 6.17d) is qualitatively the 

same as in a cyclic compressive test by Karsan and Jirsa (1969) (Figs. 6.17c and 
6.17e) with respect to material softening and stiffness degradation. The calculated 
thickness of a localized zone is 3.4 cm (6.8×lc) and the inclination to the 
horizontal is about 45o (Fig. 6.17a and 6.17b). These results are very similar to 
those within elasto-plastic calculations (Bobiński and Tejchman 2004). The shear 
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zone inclination is significantly higher (and more realistic) than that obtained with 
a simple non-local isotropic damage model (Simone et al. 2002), which was 
smaller than 35o-40o. 

 
 
Fig. 6.16 Uniaxial response of coupled elasto-plastic-damage model ‘4’ for concrete under 
tension-compression-tension for different damage scale factors at and ac (Marzec and 
Tejchman 2010) 

 
The following conclusions can be derived: 

• The FE calculations show that the coupled elasto-plastic damage models used 
enhanced by a characteristic length of micro-structure in a softening regime can 
properly reproduce the experimental load-displacement diagrams and strain 
localization in plain concrete notched beams under tensile loading during quasi-
static cyclic bending. All models ‘1-4’ properly capture material softening and the 
width of a localized zone. The models ‘1’, ‘3’ and ‘4’ are also able to correctly 
describe the stiffness degradation. The drawback of the model ‘2’ is the lack of 
possibility to simulate simultaneously both plastic deformation and stiffness 
degradation during cyclic loading. The model ‘3’ has the smallest number of 
material constants to be calibrated. The coupled models ‘3’ and ‘4’ indicate the 
best agreement with cyclic bending experiments under tensile failure. In general, 
the models 1, 3 and 4 show similar results under tension. The shape and thickness 
of a localized zone above the notch in concrete beams under tension depends on 
the coupled formulation.  
• A choice of a suitable local state variable for non-local averaging strongly 
depends on the model used. It should be carefully checked to avoid problems with 
non-sufficient regularization. 
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           a)                    b)                                         c) 

 
 d) 

 
e) 

 

Fig. 6.17 Response of coupled elasto-plastic-damage model ‘4’ for concrete specimen under 
uniaxial cyclic compression from FE calculations (with damage scale factors at=0.0 and 
ac=1.0): a) deformed FE mesh, b) contours of calculated non-local parameter, c) calculated 
and experimental stress-strain curve by Karsan and Jirsa (1969), d) calculated stress-strain 
stress-strain curve, e) experimental stress-strain curve by Karsan and Jirsa (1969) 
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• The improved model ‘4’ captures in addition plastic strains and stiffness 
degradation in both tension and compression, and stiffness recovery effect during 
cyclic loading by means of a strain equivalence hypothesis (thus the coupling 
between damage and plasticity is different than in ABAQUS 2004). It is able to 
properly describe strain localization under both tension and compression due to a 
presence of a characteristic length of micro-structure. Its drawback is no clear 
distinction between elastic, plastic and damage strain rates, and a relatively large 
number of material constants to be calibrated. Most of material constants may be 
calibrated independently with a monotonic uniaxial compression and tension 
(bending) test. Standard uniaxial cyclic tests are needed to calibrate damage scale 
factors. 

References 

ABAQUS, Theory Manual, Version 5.8, Hibbit. Karlsson & Sorensen Inc. (1998) 
Bažant, Z.P., Planas, J.: Fracture and size effect in concrete and other quasibrittle materials. 

CRC Press LLC (1998) 
Bažant, Z.P.: Scaling of Structural Strength. Hermes-Penton, London (2003) 
Bobiński, J., Tejchman, J.: Numerical simulations of localization of deformation in quasi 

brittle materials within non-local softening plasticity. Computers and Concrete 1(4), 
433–455 (2004) 

Carol, I., Rizzi, E., Willam, K.: On the formulation of anisotropic elastic degradation. Int. J. 
of Solids and Structures 38(4), 491–518 (2001) 

Hansen, N.R., Schreyer, H.L.: A thermodynamically consistent framework for theories of 
elastoplasticity coupled with damage. International Journal of Solids and 
Structures 31(3), 359–389 (1994) 

Hansen, E., Willam, K.: A two-surface anisotropic damage-plasticity model for plane 
concrete. In: de Borst, R. (ed.) Procceedings Int. Conf. Fracture Mechanics of Concrete 
Materials, Paris, Balkema, pp. 549–556 (2001) 

Hordijk, D.A.: Local approach to fatigue of concrete. PhD Thesis. Delft University of 
Technology (1991) 

Karsan, D., Jirsa, J.O.: Behaviour of concrete under compressive loadings. Journal of the 
Structural Division (ASCE) 95(12), 2543–2563 (1969) 

Marzec, I.: Application of coupled elasto-plastic-damage models with non-local softening 
to concrete cyclic behaviour. PhD Thesis, Gdańsk University of Technology (2009) 

Marzec, I., Bobiński, J., Tejchman, J.: Simulations of crack spacing in reinforced concrete 
beams using elastic-plastic and damage with non-local softening. Computers and 
Concrete 4(5), 377–403 (2007) 

Marzec, I., Tejchman, J.: Modeling of concrete behaviour under cyclic loading using 
different coupled elasto-plastic-damage models with non-local softening. In: Oñate, E., 
Owen, D.R.J. (eds.) X International Conference on Computational Plasticity-
COMPLAS X, pp. 1–4. CIMNE, Barcelona (2009) 

Marzec, I., Tejchman, J.: Application of enhanced elasto-plastic damage models to concrete 
under quasi-static and dynamic cyclic loading. In: Bicanic, N., de Borst, R., Mang, H., 
Meschke, G. (eds.) Modelling of Concrete Structures, pp. 529–536. Taylor and Francis 
Group, London (2010) 



182 6   Continuous Modelling of Fracture in Plain Concrete under Cyclic Loading
 

Marzec, I., Tejchman, J.: Application of coupled elasto-plastic-damage models with non-
local softening to cyclic concrete behaviour. Archives of Mechanics (2011) (under 
review) 

Meschke, G., Lackner, R., Mang, H.A.: An anisotropic elastoplastic-damage model for 
plain concrete. International Journal for Numerical Methods in Engineering 42(4), 702–
727 (1998) 

Nguyen, G.D.: A thermodynamic approach to constitutive modelling of concrete using 
damage mechanics and plasticity theory, PhD Thesis, Trinity College, University of 
Oxford (2005) 

Pamin, J., de Borst, R.: Stiffness degradation in gradient-dependent coupled damage-
plasticity. Archives of Mechanics 51(3-4), 419–446 (1999) 

Peerlings, R.H.J.: Enhanced damage modeling for fracture and fatigue. PhD Thesis, TU 
Eindhoven, Eindhoven (1999) 

Perdikaris, P.C., Romeo, A.: Size effect on fracture energy of concrete and stability issues 
in three-point bending fracture toughness testing. ACI Material Journal 92(5), 483–496 
(1995) 

Simone, A., Wells, G.N., Sluys, L.J.: Discontinuous modelling of crack propagation in a 
gradient enhanced continuum. In: Proc. of the Fifth World Congress on Computational 
Mechanics, WCCM V, Vienna (2002) 

van Vliet, M.R.A., van Mier, J.G.M.: Experimental investigation of size effect in concrete 
and sandstone under uniaxial tension. Engineering Fracture Mechanics 65(2-3), 165–
188 (2000) 

Vorechovsky, M.: Interplay of size effects in concrete specimens under tension studied via 
computational stochastic fracture mechanics. International Journal of Solids and 
Structures 44(9), 2715–2731 (2007) 



J. Tejchman, J. Bobiński: Continuous & Discontinuous Modelling of Fracture, SSGG, pp. 183–296. 
springerlink.com                                                                © Springer-Verlag Berlin Heidelberg 2013 

Chapter 7 

Modelling of Fracture in Reinforced Concrete 
under Monotonic Loading  

Abstract. In this Chapter, the numerical analyses of reinforced concrete bars, 
beams, columns, corbels and tanks were performed using three enhanced 
constitutive continuum approaches for concrete: isotropic elasto-plastic model, 
isotropic damage model and smeared crack model with non-local softening 
(Chapters 3.1 and 3.3). Attention was paid to strain localization developed in 
concrete. 

7.1   Bars 

The 3D elasto-plastic calculations were performed with a horizontal reinforced 
concrete bar subjected to tension (Małecki et al. 2007, Widuliński et al. 2009) 
using a large-displacement analysis by Hughes and Winget 1980 (ABAQUS 
1998). The element was l=100 cm long, mainly with a cross-section of 100×100 
mm2. Totally, 1250 cube elements were used (Fig. 7.1). The calculations were 
performed also with elements with a cross-section of 200×200=40000 mm2 (using 
5000 cube elements) and 400×400=160000 mm2 (using 2500 cube elements). The 
rod was fixed at the left side. Concrete was modelled with an elasto-plastic 
constitutive law with non-local softening. A Rankine criterion with non-local 
isotropic softening and associated flow rule was adopted in a tensile regime of 
concrete (Eqs. 3.32, 3.40, 3.93 and 3.99). The following material parameters were 
assumed for concrete: Ec=30.0 GPa, υc=0.20 and ft=2.0 MPa. The tensile strength 
ft was assumed according to a Gaussian (normal) distribution around the mean 
value 2 MPa using a standard deviation sd=0.05 MPa and a cut-off ct=±0.1 MPa. 
To obtain a Gaussian distribution of the concrete strength, a polar form of the so-
called Box-Muller transformation (1958) was used. The curves describing the 
evolution of the tensile yield stress σt versus the softening parameter κ2 are shown 
in Fig. 7.2A. A linear relationship σt=f(κ2) (Fig. 7.2A) or a non-linear relationship 
σt=f(κ2) according to Hordijk (1991) (Fig. 7.2B) were assumed. Most of the 
calculations were carried out with the linear softening curve ‘a’ of Fig. 7.2A with 
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the softening modulus in tension of Ht=0.67 GPa and the parameter κu=0.003, 
wherein κu – ultimate value of κ associated with a total loss of the load bearing 
capacity. The fracture energy for 3 different linear softening functions was 
approximately: Gf=gf×wc=0.075÷0.750 N/mm (gf – area under the softening 
function, wf=25-40 mm - localized zone width for lc=5 mm). In turn, for non-linear 
softening, it was equal to Gf=0.90 N/mm. A characteristic length was assumed in 
the range of lc=5-15 mm. The non-locality parameter was chosen as m=2. The 
reinforcement (modelled as 1D-elements) was located in the middle of the 
concrete bar. An elasto-perfect plastic constitutive law was assumed to model the 
reinforcement behaviour with Es=210 GPa, σy=440 MPa and υs=0.3 (σy - yield 
stress). The calculations were carried out with perfect bond and bond-slip. In the 
first case, the same displacements along the contact line were assumed for 
concrete and reinforcement. In the case of bond-slip, the analyses were carried out 
with an assumption between the bond shear stress τb and slip u using two the bond 
law according to Dörr (1980) (Eqs. 3.114 and 3.115). The results with the bond 
law by den Uijl and Bigaj (1996) (Chapter 3.4) were similar due to the fact that 
bond traction values were far from the limiting value (thus, the shape of the law 
after the peak was unimportant). To consider bond-slip, an interface with a zero 
thickness was assumed along the contact surface where a relationship between the 
shear traction and slip was introduced.  
 
          a) 
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           b) 

 
 
Fig. 7.1 Reinforced concrete bar in pure tension: a) schematically (units in mm), b) FE-
mesh (Widuliński et al. 2009) 
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Effect of characteristic length lc 
Figure 7.3 shows the load-displacement curves for the reinforcement ratio ρ=0.5% 
using a bond-slip bond by Dörr (1980) with uo=0.06 mm (Eqs. 3.114 and 3.115) 
(u0 - displacement at which perfect slip occurs) at the beginning of a tensile test up 
to u=4.5 mm assuming the different characteristic lengths lc=5-15 mm (using a 
linear softening curve ‘a’ of Fig. 7.2A and assuming a stochastic distribution of the 
tensile strength). 

The horizontal tensile force increases with increasing characteristic length. The 
width of localized zones wc increases with increasing lc and is about wc=5×lc=25 
mm for lc=5 mm, wc=4×lc=40 mm for lc=10 mm and wc=3.5×lc=52 mm for lc=15 
mm. In turn, the spacing sc of localized zones also increases and is sc=11×lc=55 mm 
for lc=5 mm, sc=10×lc=100 mm for lc=10 mm and sc=9×lc=137 mm for lc=15 mm. 

 
 

 
 
A) 
 
 
 
 
 
 
 
B) 
 
 
 
 
 
 
 
 
 
 
Fig. 7.2 Assumed softening curves σt=f(κ2) in tensile regime (σt – tensile yield stress, κ2 – 
softening parameter): A) curves with linear softening, B) curve with non-linear softening by 
Hordijk (1991) (Widuliński et al, 2009)  

 
The calculated spacing of localized zones sc was compared with the average crack 
spacing s according to CEB-FIP Model Code (1991) 
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Eurocode 2 (1991) 
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and the formula by Lorrain et al. (1998) 
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wherein φs=8 mm is the reinforcing bar diameter, ρ=2% denotes the reinforcement 
ratio, ki are the coefficients and c denotes the concrete cover. The calculated 
spacing of localized zones with lc=5 mm (sc=11×lc=55 mm) is too small and with 
lc=10 mm (sc=10×lc=100 mm) and lc=15 mm (sc=9.5×lc=137 mm) is too large with 
the average crack spacing according to Eq. 7.1. In the case of a direct comparison 
with Eqs. 7.2 and 7.3, the best agreement was achieved with lc=10-15 mm, 
respectively. 
 

 
a) 

 
b) 

 
c) 

 

Fig. 7.3 Calculated lad-displacement curves and distributions of nonlocal softening 
parameter within elasto-plasticity for different characteristic lengths at u=1 mm (ρ=0.5%, 
uo=0.06 mm): a) lc=5 mm, b) lc=10 mm, c) lc=15 mm (Widuliński et al, 2009)  
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Effect of reinforcement ratio 
The effect of reinforcement ratio ρ  in the range of 0.01%-2.0% on the load-
displacement curves and spacing of localized zones is depicted in Figs. 7.4A and 7.5 
for lc=5 mm (softening curve ‘a’ of Fig. 7.2A, uo=0.06 mm). An increase of the 
reinforcement ratio increases the overall horizontal tensile force P. The width of 
localized zones does not depend on ρ  (it is about wc=5×lc). In the case of ρ=0.01%, 
a localized zone occurs only at the right side of the bar. The distance between 
localized zones slightly increases with decreasing ρ at the beginning of deformation 
at u=1 mm (it is approximately sc=11×lc for ρ =0.5% and sc=10×lc for ρ =2.0%).  

The resultant horizontal force with the Poisson’s ratio for reinforcement υs=0.3 
was by 10% larger than in the case of υs=0 due to the assumption of plane strain 
(Fig. 7.4B).  
 

A) 

B) 

Fig. 7.4 Load-displacement curves within elasto-plasticity for different reinforcement 
ratios: A) for horizontal displacements u=0-1.5 mm (a) lc=5 mm, uo=0.06 mm, ρ=0.01%, b) 
ρ=0.5%, c) ρ=2.0%), B) for u=0-10 mm (a) (lc=15 mm, uo=0.06 mm, ρ=2.0%, υs=0.3, 
υs=0) (Małecki et al. 2007, Widuliński et al. 2009) 
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a) 

 
b) 

 
c) 

 
 

Fig. 7.5 Distributions of the nonlocal softening parameter within elasto-plasticity for 
different reinforcement ratios at u=1 mm (lc=5 mm, uo=0.06 mm): a) ρ=0.01%, b) ρ=0.5%, 
c) ρ=2.0% (Widuliński et al. 2009) 

 
Effect of cross-section size 
The effect of the cross-section on both the horizontal normalized tensile force and 
spacing of localized zones is insignificant. 
 
Effect of confining compressive pressure 
The calculations were performed with ρ=2.0%, lc=5 mm and uo=0.06 mm  
(Fig. 7.6). The effect of confining compressive pressure on both the horizontal 
tensile force and spacing of localized zones is insignificant. 
 
Effect of non-locality parameter 
The calculations were performed with ρ=2.0%, lc=5 mm (uo=0.06 mm) and two 
different non-locality parameters m: m=2 and m=3 (Fig. 7.7). An increase of the 
parameter m causes an increase of P, wc (from wc=4×lc=20 mm for m=2 up to 
wc=8×lc=40 mm for m=3) and sc (sc=33 mm for m=2 and sc=38 mm for m=3).  
 
Effect of distribution of tensile strength 
Figure 7.8 shows the influence of the distribution of the tensile strength on the 
load displacement curve (lc=5 mm, ρ =2.0%, m=2, uo=0.06 mm). The calculations 
were carried out with a uniform distribution of the tensile strength. The results 
indicate that the distribution of the tensile strength practically does not affect the 
overall horizontal tensile force and the width and spacing of localized zones 
(wc=5×lc and sc=11×lc). However, if the distribution of the tensile strength is 
uniform, the localized zones develop later.  
 
Effect of softening curve shape 
The FE-results for two different softening functions: linear (function ‘a’ of  
Fig. 7.2A) and non-linear one by Hordijk (1991) (Fig. 7.2B) are demonstrated  
in Fig. 7.9 (lc=5 mm, ρ=2.0%, uo=0.06 mm). In both cases, the area under the  
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softening functions was the same. The overall horizontal tensile force is slightly 
larger with linear softening. The spacing of localized zones increases from 9×lc for 
linear softening ‘a’ of Fig. 7.2A up to 11×lc for non-linear softening of Fig. 7.2B. 
The localized zone width remains similar (5×lc). 
 

 

Fig. 7.6 Load-displacement curves for different confining pressures (ρ=2.0%, lc=5 mm, 
uo=0.06 mm): a) 0 MPa, b) 5 MPa, c) 10 MPa (Widuliński et al. 2009) 

 

 
 
Fig. 7.7 Load-displacement curves for different non-local parameters m (lc=5 mm, ρ=2.0%, 
uo=0.06 mm): a) m=2, b) m=3 (Widuliński et al. 2009) 
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Fig. 7.8 Load-displacement curves for different tensile strength distributions (lc=5 mm, ρ=2.0%, 

uo=0.06 mm): a) uniform, b) stochastic with standard deviation sd=0.05 MPa, c) stochastic with 

standard deviation sd=0.03 MPa, d) stochastic with standard deviation sd=0.01 MPa (Widuliński 

et al. 2009) 

 
Effect of stiffness of bond-slip 
The effect of the initial bond stiffness in the bond-slip law by Dörr (1980)  
(Fig. 7.10) for lc=5 mm and ρ=2.0% (uo=0.06-0.6 mm) was investigated  
(Fig. 7.11). Since the bond traction values are far from the limiting value, the 
cracking process is influenced by the initial bond stiffness only (i.e. by uo).  

The overall horizontal tensile force P increases with increasing initial bond 
stiffness. The spacing of localized zones increases with decreasing initial bond 
stiffness (from 10×lc for the curve ‘a’ of Fig. 7.10 up to 16×lc for the curve ‘e’ of 
Fig. 7.10). In turn, the width of localized zones increases only for the lowest initial 
bond stiffness from 5×lc for the curves ‘a-d’ of Fig. 7.10 up to 6×lc for the curve ‘e’ 
of Fig. 7.10. 
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a) 

 
b) 

 
 
Fig. 7.9 Load-displacement curves and distributions of the nonlocal softening parameter for 
different softening curves at u=1 mm (lc=5 mm, ρ=2.0%, uo=0.06 mm): a) linear softening 
of Fig. 7.2A with κu=0.0015, b) non-linear softening by Hordijk (1991) (Fig. 7.2B) 
(Widuliński et al. 2009) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.10 Bond-slip law by Dörr (1980) with different initial bond stiffness (ft=2.0 MPa): a) 
uo=0.03 mm, b) uo=0.06 mm, c) uo=0.12 mm, d) uo=0.24 mm, e) uo=0.48 mm (u0 - 
displacement at which perfect slip occurs) (Widuliński et al. 2009) 
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a) 

 
d) 

 
e) 

 
 

Fig. 7.11 Load-displacement curves and distribution of non-local softening parameter for 
different initial stiffness of bond slip law by Dörr (1980) at u=1 mm (lc=5 mm, ρ=2.0%): a) 
curve ‘a’ of Fig. 7.10 (uo=0.03 mm), b) curve ‘b’ of Fig. 7.10 (uo=0.06 mm), c) curve ‘c’ of 
Fig. 7.10 (uo=0.12 mm), d) curve ‘d’ of Fig. 7.10 (uo=0.24 mm), e) curve ‘e’ of Fig. 7.10 
(uo=0.48 mm) (Widuliński et al. 2009) 

 
Effect of tensile fracture energy 
Figure 7.12 presents the effect of 3 different fracture energies of Fig. 7.2A for lc=5 
mm and ρ=2.0% (uo=0.06 mm). The higher the fracture energy, the larger is the 
overall horizontal tensile force and the smaller the spacing of localized zones. The 
crack spacing decreases from 12×lc for the curve ‘a’ of Fig. 7A (Gf=0.075 N/mm) 
down to 8×lc for the curve ‘c’ of Fig. 7.2A (Gf=0.75 N/mm). The width of 
localized zones remains similar (5×lc). 

 
Effect of stirrups  
Figure 7.13 presents the reinforced concrete bar with stirrups (the spacing was 10-
20 cm). The results of Fig. 7.14 show the effect of stirrups on the load-displacement 
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curve and spacing of localized zones (one assumed perfect bond between concrete 
and stirrups,). The results demonstrate that this effect is negligible. 

The obtained FE-results are quantitatively in good agreement with numerical 
results by Pamin and de Borst (1998) dealing with a similar problem. Our results 
show that if the tensile strength of concrete is distributed stochastically, the results 
become similar with perfect bond and bond-slip. Only a significantly larger slip 
displacement is required for localized zones to evolve in the case of perfect bond. 
As compared to two-dimensional results under plane strain conditions (Malecki et 
al. 2007), the differences in FE results are negligible.  

 

 

Fig. 7.12 Load-displacement curves for different softening rates at u=1 mm (lc=5 mm, 
ρ=2.0%, uo=0.06 mm): a) curve ‘a’ of Fig. 7.2A, b) curve ‘b’ of Fig. 7.2A, c) curve ‘c’ of 
Fig. 7.2A (Widuliński et al. 2009) 
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Fig. 7.13 Reinforced concrete bar with stirrups in pure tension (units in mm) (Widuliński  
et al. 2009) 
 



194 7   Modelling of Fracture in Reinforced Concrete under Monotonic Loading
 

 

 

Fig. 7.14 Effect of stirrups: load-displacement curve for and distribution of non-local 
softening parameter (Widuliński et al. 2009) 

 
The calculations revealed the following points: 

• The maximum force increases with increasing reinforcement ratio, characteristic 
length, initial stiffness of the bond-slip, fracture energy and confining compressive 
pressure. It is insignificantly influenced by the distribution of the tensile strength 
in the considered range of the standard deviation and stirrups. 
• The width of localized zones increases with increasing characteristic length and 
non-locality parameter. It increases insignificantly with initial bond stiffness. It 
does not depend on the reinforcement ratio, shape of the softening curve, 
distribution of the tensile strength and compressive confining pressure.  
• The spacing of localized zones increases with increasing characteristic length, 
non-locality parameter and softening modulus, and decreasing reinforcement ratio, 
fracture energy and initial bond stiffness. It does not depend on the distribution of 
the tensile strength and stirrups.  
• The width and spacing of localized zones are similar for perfect bond and usual 
bond-slip laws if the tensile strength is distributed stochastically. However, the 
localized zones occur later for perfect bond. 
• The spacing of localized zones with lc=5-10 mm seems to be in satisfactory 
agreement with code recommendations of CEB-FIP for the crack spacing. 
 
 



7.2   Slender Beams 195
 

7.2   Slender Beams 

Quasi-static plane strain FE simulations of strain localization in long reinforced 
concrete beams without stirrups were carried out (Marzec et al. 2007). The 
material was modelled with two different isotropic continuum models: an elasto-
plastic and a damage one (Chapters 3.1 and 3.2). A non-local and second-gradient 
model were used as regularization techniques (Chapter 3.3). The numerical results 
were compared with the corresponding experimental ones by Walraven (1978). 

Several tests were carried out for beams with free ends without shear 
reinforcement (Walraven 1978, Walraven and Lehwalter 1994) (Chapter 2). The 
experiments were carried out with 3 different beams with the same width of b=200 
mm: h=150 mm, l=2300 mm (small-size beam ‘1’), h=450 mm, l=4100 mm 
(medium-size beam ‘2’) and h=750 mm, l=6400 mm (large-size beam ‘3’). The 
average cube crushing strength of concrete was 34.2-34.8 MPa. In turn,  
the average cube splitting strength was 2.49-2.66 MPa. The maximum size of the 
aggregate in concrete was da=16 mm. The concrete cover measured from the bar 
centre to the concrete surface was 25 mm (beam 1) and 30 mm (beam ‘2’ and ‘3’), 
respectively. The effective beam height d was: d=125 mm (beam ‘1’), d=420 mm 
(beam ‘2’) and d=720 mm (beam ‘3’), respectively. The longitudinal 
reinforcement consisted of uncurtailed bars of deformed cold-drawn steel ratio 
(with the yielding strength of 440 MPa and reinforcement ratio of 0.79-0.83%): 
1×φs8 and 2×φs10 (beam ‘1’), 1×φs20 and 2×φs14 (beam ‘2’) and 3×φs22 (beam 
‘3’). The beams were incrementally loaded by two symmetric vertical forces at the 
distance of 1000 mm at the shear span ratio of a/d=3 (a – distance between the 
vertical forces and beam supports: a=375 mm (beam ‘1’), a=1250 mm (beam ‘2’) 
and a=2160 mm (beam ‘3’).  

In all beams, the shear-tension type of failure was observed. First, vertical 
cracks appeared at the beginning of loading. They opened perpendicularly first 
while later an increasing shear displacement was observed. The arising of an 
inclined crack leaded to failure. The ultimate vertical forces were: V=29.8 kN 
(beam ‘1’), V=70.6 kN (beam ‘2’) and V=100.8 kN (beam ‘3’), respectively. Thus, 
a pronounced size effect took place since the normalized shear resistance force 
Vn=V/bd was decreasing (almost linearly) with increasing effective height d: 
Vn=1.26 MPa (beam ‘1’), Vn=0.84 MPa (beam ‘2’) and Vn=0.79 MPa (beam ‘3’). 
Due to that, the cracking pattern developed significantly faster in larger beams. In 
the experiments, main (high) and secondary (low) cracks appeared. The average 
spacing of main and secondary cracks was: 85 mm and 65 mm (small size beam), 
180 mm and 60 mm (medium size beam) and 200 mm and 85 mm (large size 
beam), respectively. 

The plane strain calculations were performed with 3 reinforced concrete beams 
without stirrups. 3200-22500 quadrilateral elements (composed of four diagonally 
crossed triangles) were used to avoid volumetric locking (Groen 1997), Fig. 7.15. 
The maximum element height, 15 mm, and element width, 23 mm, were not 
greater there than 3×lc (lc=10-30 mm) in the region of strain localization in all 
beams to achieve mesh-objective results. 
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a) 
 
 
b) 
 
 
c) 
 
 
 
 
 
 

Fig. 7.15 FE-meshes used for calculations: a) small-size beam 1, b) medium-size beam 2, c) 
large-size beam 3 (Marzec et al. 2007) 

 
FE results within isotropic elasto-plasticity with non-local softening 
The following elastic material parameters were assumed for concrete: Ec=28.9 
GPa and υc=0.20. To simplify calculations, linear relationships between the 
compressive σc and hardening and softening parameter κ1, and linear softening 
between tensile stress σt versus softening parameter κ2 were assumed within 
elasto-plasticity (Fig. 7.16). In the case of a tensile regime, 2 different linear 
softening curves were assumed with κ2

u=0.003 and κ2
u=0.006 (κ2

u – ultimate 
value of κ2 associated with a total loss of the load bearing capacity). The internal 
friction angle was equal to ϕ=12° (Eq. 3.27) and the dilatancy angle ψ=8°.  
(Eq. 3.30). The compressive strength was equal to fc=34.2 MPa. The tensile 
strength ft was taken from a Gaussian (normal) distribution around the mean value 
2.49 MPa with a standard deviation 0.05 MPa and a cut-off ±0.1 MPa. To obtain a 
Gaussian distribution of the concrete strength, a polar form of the so-called Box-
Muller transformation (1958) was used. The tensile fracture energy was 
Gf=gf×wc=0.07-0.80 N/mm; gf – area under the softening tensile function and 
wc≈3.5×lc - crack zone width with lc=5-30 mm. A characteristic length lc was 
assumed in the range of lc=5-30 mm. The non-locality parameter was m=2.  

The reinforcement was assumed mainly as 2D elements. An elasto-perfectly 
plastic constitutive law by von Mises was assumed to model the reinforcement 
behaviour with Es=210 GPa, ν=0.3, and σy=440 MPa (σy - yield stress). Thus, the 
size of these elements (hr×br) was 5×44 mm2 (beam ‘1’), 8.8×70 mm2 (beam ‘2’) 
and 11×100 mm2 (beam ‘3’). The width br was equal to the total perimeter of bars 
divided by 2 due to a contact from the both sides. The calculations were carried 
out mainly with bond-slip by Dőrr (1980) (Eqs. 3.114 and 3.115). The comparative 
calculations were also performed with reinforcement modelled as bar elements 
and as solid 2D-elements assuming the Poisson’s ratios as υc=0 and υs=0 (to 
approximately induce a plane stress state). 
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                                       a)                                                          b) 

 
Fig. 7.16 Assumed curves σc=f(κ1) in compressive (a) and σt=f(κ2) in tensile regime (b)  
(σc – compressive stress, σt – tensile stress, κi – hardening-softening parameter) (Marzec  
et al. 2007) 

 
Effect of characteristic length and fracture energy 
Figures 7.17, 7.19 and 7.21 show the load-displacement curves for a medium, 
small and large size beam using the bond-slip law by Dörr (1980) for different 
characteristic lengths (lc=5-30 mm) and two different fracture energies of  
Fig. 7.16b with κ2

u=0.003 and κ2
u=0.006 as compared to the experiments. The 

reinforcement was assumed as 2D-elements. The distribution of a nonlocal 
parameter in the beams is depicted in Figs. 7.18, 7.20 and 7.22 as compared to the 
experimental crack distribution at the ultimate load (Walraven 1978).  

The calculated load-displacements curves are in a satisfactory agreement with 
the experimental ones, in particular for a smaller fracture energy (κ2

u=0.003, 
Gf≈0.13 N/mm) and a smaller characteristic length (lc=10 mm). The calculated 
ultimate vertical forces are always larger by 5-10% than the experimental ones. 
The bearing capacity of the beams increases with increasing lc and fracture energy 
Gf. The geometry of strain localization is approximately in agreement with 
experiments (in particular with respect to main localized zones). There exist 
vertical and inclined localized zones, and high and low localized zones. The width 
of the localized zones is about wc=(3-4)×lc. In turn, the calculated average spacing 
s of main (high) zones is approximately s=120 mm (12×lc) for a small-size beam, 
s=190-210 mm ((7-9)×lc) for a medium-size beam and s=190-300 mm ((15-19)×lc) 
for a large-size beam with κ2

u=0.003. N/mm. It is s=75-100 mm ((10-15)×lc) for a 
small-size beam and s=160-210 mm ((7-16)×lc) for a medium-size beam at 
κ2

u=0.006. Thus, the spacing of localized zones increases with increasing 
characteristic length and beam height, and decreasing fracture energy. In contrast 
to experiments, the height of localized zones is in FE-analyses slightly smaller and 
the number of inclined zones is also smaller. 
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The FE-results for a small-, medium- and large-size beam with ρ=0.75%, lc=10 
mm, κ2

u=0.003 and reinforcement assumed as a 1D bar element are given in  
Figs. 7.23 and 7.24. In this case, the agreement with experimental results is even 
better. The calculated normalized ultimate shear resistance are: Vn

c=1.29 MPa 
(small size beam), Vn

c=0.90 MPa (medium size beam) and Vn
c=0.61 (large size 

beam) (Fig. 7.23). Thus, the ultimate forces differ only by 5% for all beams. Thus, 
the size effect is satisfactorily reproduced in the FE-analysis. The average spacing 
of main localized zones (lc=10 mm, κ2

u=0.003) is: s=70 mm (7×lc) (small-size 
beam), s=170 mm (17×lc) (medium-size beam) and s=190 mm (19×lc) for a large-
size beam is also close to the experimental outcomes: 85 mm (small-size beam), 
160 mm (medium-size beam) and 200 mm (large-size beam). In the case of a 
large-size beam, except of main localized zones, secondary ones can be observed. 
The spacing of all (main and secondary) localized zones is about 90 mm (19×lc) 
which is also in a good accordance with the experiment (85 mm).  

The calculated spacing of localized zones s was also compared with the average 
crack spacing according to CEB-FIP Model Code (1991) 
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and the formula by Lorrain et al. (1998) 
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wherein φs=9 mm, φs=16 mm and φs=22 mm are the mean reinforcing bar 
diameters in a small, medium and large beam, ρ=0.75% denotes the reinforcement 
ratio and c denotes the concrete cover. The calculated and experimental spacing of 
localized zones is significantly smaller than these obtained with different 
analytical formulas. The effect of a characteristic length and fracture energy on the 
spacing of localized zones is similar as in the calculations of by Pamin and de 
Borst (1998) for a medium-size beam using a second gradient-enhanced crack 
model with a Rankine failure surface approximated by a circular function in the  
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A) 

 
 
B) 
 
 
 
 
 

 
 
 
 
 
 

Fig. 7.17 Calculated load-displacement curves for medium-size beam (h=450 mm, bond-
slip of by Dörr (1980), ρ=0.75%, a/d=3) as compared to experiments by Walraven (1978) 
(P – vertical resultant force, u – vertical displacement): A) κu=0.003, B) κu=0.006, a) lc=10 
mm, b) lc=20 mm, c) lc=30 mm (Marzec et al. 2007) 

 
tension-tension regime under plane stress conditions. The geometry of localized 
zones is also similar. 
 
Effect of tensile strength 

The calculations were carried out with the different tensile strength ft using a 
linear softening curve ‘a’ of Fig. 7.16b (bond-slip by Dörr (1980), a/d=3, medium 
beam, lc=20 mm, κ2

u=0.003, ρ=0.75%, reinforcement as 2D elements). The tensile 
strength was ft=2.49 MPa, ft=2.66 MPa and ft=2.90 MPa, respectively. An increase 
of the tensile strength obviously causes a linear increase of the ultimate shear 
force; from Vu=75.5 kN (ft=2.49 MPa) and Vu=77.5 kN (ft=2.66 MPa) up to 
Vu=80.0 kN (ft=2.9 MPa). Such linear dependency is in accordance with 
experiments (Kani 1966). 
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A) 
a) 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 
c) 
 
 
 
 
B) 
a) 
 
 
 
b) 
 
 
 
 
c) 
 
 

 
C) 
 
 
 
 
Fig. 7.18 Distribution of non-local softening parameter in medium-size beam at vertical 
displacement of u=8.5 mm (h=450 mm, bond-slip by Dörr (1980), ρ=0.75%, a/d=3) 
compared to experiments by Walraven (1978) (C): A) κu=0.003, B) κu=0.006, a) lc=10 mm, 
b) lc=20 mm, c) lc=30 mm (Marzec et al. 2007) 
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Effect of reinforcement ratio 
The effect of the reinforcement ratio in a medium beam for lc=20 mm (using the 
bond-slip law by Dörr (1980) and curve ‘b’ of Fig. 7.16b) was investigated for 
ρ=1.5% and ρ=2.0%. The spacing of localized zones decreases with increasing ρ 
(s=190 mm for ρ=0.75%, s=160 mm for ρ=1.5% and s=140 mm for ρ=2.0%). 
Thus, the effect of ρ on s is significantly stronger than in the bar (Chapter 7.1). 
The width of localized zones is always the same (3-4)×lc. 

The FE calculations were also performed with υs=0 (ρ=0.75%) and υc=0 and 
υs=0 (ρ=1.50%). In the first case, the ultimate shear resistance was smaller by 5% 
(from 70 kN down to 67 kN) and in the second case was reduced by 10% (from 
119.2 kN down to 110.1 kN). 
 
A) 

 
 
 
 
 
 
 
 

 
 
 
 
B) 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. 7.19 Calculated load-displacement curves for small-size beam (h=150 mm, bond-slip 
by Dörr (1980), ρ=0.75%, a/d=3) as compared to experiments by Walraven (1978) (P – 
vertical resultant force, u – vertical displacement, ‘e’ – experiment by Walraven, 1978): A) 
κu=0.003, B) κu=0.006, a) lc=5 mm, b) lc=10 mm (Marzec et al. 2007) 
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Effect of shear span ratio 
The effect of the shear span ratio in the range of a/d=2-3.5 on the distribution of 
localized zones is shown in Fig. 7.25 for a medium beam using a bond-slip by Dörr 
(1980) (ρ=0.75%, lc=20 mm, κ2

u=0.003, reinforcement as 2D elements). 
The ultimate shear resistance force V obviously decreases with increasing 

distance of vertical forces from the supports a/d (from Vu=95.1 kN for a/d=2, 
Vu=75.5 kN for a/d=3 down to Vu=60 kN for a/d=3.5). The dependency is 
parabolic what is in accordance with experiments (Kani 1966) and calculations 
(Jia et al. 2006).  

 
A) 
b) 
 

c) 
 
 
 
 

B) 
a) 

 
b) 
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Fig. 7.20 Distribution of non-local softening parameter in small-size beam at vertical 
displacement of u=8.5 mm (h=150 mm, bond-slip by Dörr, ρ=0.75%, a/d=3) compared to 
experiments by Walraven (1978) (C): A) κu=0.003, B) κu=0.006, a) lc=5 mm, b) lc=10 mm, 
c) lc=20 mm, C) experiment (Marzec et al. 2007) 
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Fig. 7.21 Calculated load-displacement curves for large-size beam (h=750 mm, bond-slip 
by Dörr (1980), ρ=0.75%, a/d=3, κu=0.003) as compared to experiments by Walraven 
(1978) (P – vertical resultant force, u – vertical displacement, ‘e’ – experiment by 
Walraven, 1978): a) lc=10 mm, b) lc=20 mm, c) experiment (Marzec et al. 2007) 

 
a) 
 
 
b) 
 
 
 
c) 
 
 
 
 

 

Fig. 7.22 Distribution of non-local softening parameter in large-size beam at vertical 
displacement of u=8.5 mm (h=750 mm, bond-slip by Dörr (1980), ρ=0.75%, a/d=3, 
κu=0.003) compared to experiments by Walraven (1978): a) lc=10 mm, b) lc=20 mm, c) 
experiment (Marzec et al. 2007) 

 
The width of localized zones slightly increases with increasing a/d (from 

w=3×lc with a/d=2, w=3.5×lc with a/d=3, up to w=4×lc with a/d=3.5). In turn, the 
spacing of localized zones slightly increases with increasing a/d (from s=170 mm 
with a/d=2, s=190 mm with a/d=3-3.5).  
 
Effect of bond-slip 
The type of the bond law insignificantly influences the load-displacement curve 
and width and spacing of localized zones. Since the bond traction values are far 
from the limiting value, the cracking process is influenced by the initial bond 
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stiffness only. The effect of the stiffness of bond-slip by Dörr (1980) (Eqs. 3.114 
and 3.115) (in the range of uo=0.06-0.24 mm) on the distribution of localized 
zones is shown in Fig. 7.26 for a medium-size beam (ρ=0.75%, lc=20 mm, 
κ2

u=0.003). 
 

 
 

a) 
 
 
 
 
 
 
 
 
 

b) 

 
c) 

 
 

Fig. 7.23 Calculated load-displacement curves (a/d=3, ρ=0.75%, κu=0.003, lc=10 mm, 
bond-slip by Dörr (1980), reinforcement as 1D element) as compared to experiments by 
Walraven (1978): a) small beam, b) medium beam, c) large beam (Marzec et al. 2007) 
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The spacing of localized zones increases with decreasing initial bond stiffness; 
from s=190 mm (12×lc) for uo=0.06 mm, s=340 mm (17×lc) for uo=0.12 mm up to 
s=480 mm (24×lc) for uo=0.24 mm. In turn, the width of localized zones decreases 
with decreasing initial bond stiffness from 3.5×lc (uo=0.06 mm) down to 3×lc 
(uo=0.12-0.24 mm). 

Figures 7.27 and 7.28 demonstrate the results with perfect bond (medium beam, 
(ρ=0.75%, lc=20-30 mm, κ2

u=0.003). The ultimate vertical force is larger for 
perfect bond by 5%. The spacing of localized zones is slightly smaller for perfect 
bond (s=180 mm). Their width is similar. 
 

a) 
 
 
b) 

 
 
c) 
 

 
 
 
Fig. 7.24 Distribution of non-local softening parameter κ2 (a/d=3, ρ=0.75%, κu=0.003, 
lc=10 mm, bond-slip by Dörr (1980), reinforcement as 1D element) in: a) small beam, b) 
medium beam, c) large beam (Marzec et al. 2007) 

 
a) 
 
 
 

b) 

 
 
 

c) 
 

 
 
 

Fig. 7.25 Distribution of the non-local softening parameter κ2 in medium size beam at 
vertical displacement of u=8.5 mm (bond-slip of Eqs. 3.114 and 3.115, lc=20 mm, ρ=0.75%, 
κu=0.003) for different ratios a/d: a) a/d=2, b) a/d=3, c) a/d=3.5 (Marzec et al. 2007) 
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a) 

 
 

b) 
 
 

c) 
 
 
 
 
 

 
 
 
 
 
 

 
 

                    a)                                          b)                                                  c) 
 
Fig. 7.26 Distribution of non-local softening parameter in medium-size beam at vertical 
displacement of u=8.5 mm (bond-slip by Eqs. 3.114-3.115), lc=20 mm, ρ=0.75%, 
κu=0.003): a) uo=0.06 mm, b) uo=0.12 mm, c) uo=0.24 mm (Marzec et al. 2007) 

 
 

 
 
 
 
 
 
 
 
 
Fig. 7.27 Calculated and experimental load-displacement curves for medium-size beam 
(a/d=3, ρ=0.75%, κu=0.003, lc=20 mm): a) perfect bond, b) bond-slip (Marzec et al. 2007) 
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Fig. 7.28 Distribution of non-local softening parameter in medium-size beam at vertical 
displacement of u=8.5 mm (perfect bond, a/d=3, ρ=0.75%, κu=0.003, lc=20 mm) (Marzec 
et al. 2007) 

 
FE-results within isotropic damage mechanics with non-local softening 
In the case of the isotropic damage model, the following parameters were 
assumed: κ0=8.62·10-5, α=0.96, β=200 and lc=10 mm (Eqs. 3.35, 3.40, 3.93 and 
3.99). Figure 7.29 shows the load-displacement curves for a medium, small and 
large size beam using the bond-slip law by Dörr (1980) (Eqs. 3.114 and 3.115) and 
a characteristic lengths of lc=10 mm as compared to the experiments. The 
reinforcement was assumed as 2D-elements. The distribution of a nonlocal 

parameter ε
−

 in beams is depicted in Fig. 7.30. 

The evolution of the vertical force is very similar as in the experiment  
(Fig. 7.29). The agreement with experiments is even better than within elasto-
plasticity since the calculated ultimate vertical forces differ only by 3% from the 
experimental ones. The calculated normalized ultimate shear forces are: Vu=1.20 
MPa (small size beam), Vu=0.86 MPa (medium size beam) and Vu=0.64 (large size 
beam) respectively. 

The calculated average spacing of main localized zones s is approximately 
s=100 mm (10×lc) for a small-size beam, s=160 mm (16×lc) for a medium-size 
beam and s=240 mm (24×lc) for a large-size beam (Fig. 7.30). Thus, the spacing of 
localized zones is similar for a medium beam and larger in the case of a small and 
large beam as compared to elasto-plastic solutions.  
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Fig. 7.29 Load-displacement curves (a/d=3, ρ=0.75%, lc=10 mm, bond-slip, reinforcement 
as 2D elements) as compared to experiments by Walraven (1978): a) small beam, b) 
medium beam, c) large beam (damage mechanics) (Marzec et al. 2007) 
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a) 
 
 
b) 
 
 
c) 

 
 
 
 

Fig. 7.30 Distribution of the non-local softening parameter (a/d=3, ρ=0.75%, lc=10 mm, 
bond-slip, reinforcement as 2D elements) in: a) small beam, b) medium beam, c) large 
beam (damage mechanics) (Marzec et al. 2007) 

 
FE-results with explicit second-gradient strain isotropic damage approach  
The explicit second-gradient strain approach of Chapter 3.3.2 was used. The same 
material parameters were assumed for concrete when using a damage approach: 
E=28.9 GPa, νc=0.20, κ0=8.62×10−5, α=0.96, β=200 and k=10. Three different 
characteristic lengths were assumed: lc=5 mm, 10 mm and 12.5 mm. An elasto-
perfect plastic constitutive law was again assumed to model the reinforcement 
behaviour. The reinforcement was assumed as 1D bar elements with the cross-
section corresponding to the reinforcement area. The bars were fixed at ends. The 
bond law by Dörr (1980) was used between concrete and reinforcement  
(Eqs. 3.114 and 3.115). 

Figure 7.31 shows the load-displacement curves as compared to the 
corresponding laboratory tests by Walraven (1978). The evolution of the vertical 
forces is similar as in the experiment. The calculated normalized shear resistance 
forces Vn

c=V/bd, 1.24 MPa (small beam) and 0.89 MPa (medium beam), match 
well with the experimental values of 1.26 MPa and 0.84 MPa, respectively. A 
pronounced size effect obviously takes place since the normalized shear resistance 
force decreases (almost linearly) with increasing effective height. The calculated 
average spacing of main localized zones varies from 110 mm up to 130 mm (lc=5 
mm) (Fig. 7.32), which is in satisfactory agreement with experiments and 
calculations with a non-local model.  

Due to its explicit character, the FE calculations were shorter by ca. 30% as 
compared to the corresponding ones with a non-local approach (Marzec et al. 
2007). 
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A) 

B) 
 

Fig. 7.31 Calculated and experimental load-displacement curve in reinforced concrete beam 
for small-size beam (A) and medium-size beam (B): lc=5 mm (a), lc=10 mm (b), lc=12.5 
mm (c) using explicit second-gradient strain isotropic damage approach (Małecki and 
Tejchman 2009) 

 

a) 
 

                      b) 
 
Fig. 7.32 Calculated localized zones in reinforced concrete medium-size beam for different 
characteristic lengths: lc=5 mm (a), lc=10 mm (b) using explicit second-gradient strain 
isotropic damage approach (Małecki and Tejchman 2009) 
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The FE-analyses of reinforced concrete slender beams under bending revealed the 
following points: 

• in spite of the simplicity of the used models, the calculated normalized material 
strength and spacing of main localized zones are in a satisfactory agreement with 
experiments. The evolution of load-displacement curves is also similar. The 
differences concern the height and shape of localized zones, 
• the FE-results are similar within two different continuum crack models, although 
a slightly better agreement with experiments was achieved with a damage model,  
• the beam strength increases mainly with increasing reinforcement ratio, 
characteristic length, tensile strength, fracture energy and decreasing beam size 
and shear span ratio. It is not affected by the type of the bond-slip, 
• the calculated ultimate forces differ by about 5 % as compared to experimental 
ones when lc=10 mm. To a achieve a better agreement, the characteristic length 
and fracture energy should be smaller (lc<10 mm, Gf<0.10 N/mm). However this 
will be connected to a larger computation time, 
• the size effect is realistically captured, the load bearing capacity increases with 
decreasing element size, 
• the width of primary localized zones increases strongly with increasing 
characteristic length lc. The width is about (3-4)×lc, 
• the spacing of localized zones increases with increasing characteristic length lc, 
tensile softening modulus and decreasing fracture energy, reinforcement ratio and 
initial bond stiffness. It is not affected by the type of the bond-slip. The spacing is 
about (7-24)×lc. In the case of main pronounced cracks, it is in a good agreement 
with experiments and is smaller than this given by different analytical formulas, 
• the reinforcement can be modelled as 2D and 1D elements. 
• the results within non-local and second-gradient mechanics are similar. The  
FE calculations within second-gradient mechanics are shorter by ca. 30% as 
compared to the non-local approach. 

7.3   Short Beams 

Chapter presents quasi-static FE-simulations of strain localization in short 
reinforced concrete beams without shear reinforcement loaded in shear 
(Skarżyński et al. 2010). Concrete was modelled with 3 different constitutive 
models. First, an isotropic elasto-plastic model with a Drucker-Prager criterion 
defined in compression and with a Rankine criterion defined in tension was used 
(Chapter 3.1.1). Next, an isotropic damage model and an anisotropic smeared 
crack model were applied (Chapters 3.1.2 and 3.1.3). All models were enhanced in 
a softening regime by a characteristic length of micro-structure by means of a non-
local theory (Chapter 3.3.1). The numerical results were compared with the 
corresponding laboratory tests by Walraven and Lehwalter (1994). 
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Laboratory tests were carried out with five different short reinforced concrete 
beams without shear reinforcement and free at ends (Walraven and Lehwalter 
1994) (Chapter 2). The geometry of the specimens is shown in Fig. 7.33. The length 
varied between 680 mm and 2250 mm and height was between 200 mm and 1000 
mm (the beam width b was always 250 mm). The cylinder crushing strength of 
concrete was about fc=20 MPa. In turn, the cylinder splitting strength was about 
ft=2 MPa. The maximum aggregate size in concrete was da

max=16 mm. The 
concrete cover measured from the bar centre to the concrete surface was 40 mm for 
the smallest beam and 70 mm for the largest one. In the all tests the span-to-depth 
ratio was 1. The reinforcement ratio of the specimens was 1.1% (to avoid the 
failure by yielding of bars). The longitudinal reinforcement consisted of uncurtailed 
bars of deformed cold-drawn steel (with yielding strength of 420 MPa). To obtain a 
geometrically similar cross-sectional area, various combinations of bar sizes were 
used (diameters 16, 18, 20 mm). The ratio between the width of the loading plate k 
and the effective depth d was kept constant (k/d=0.25). The beams were 
incrementally loaded by a vertical force situated in the middle of beam length. 
Firstly, at about 40% of the failure load, bending cracks appeared. Afterwards, at 
about 45-50% of the failure load, the first inclined crack occurred. Contrary to 
slender beams (Walraven 1978, Walraven and Lehwalter 1994), failure occurred in 
a gradual gentle way in shear compression by crushing concrete adjacent to the 
loading plate initiated by the formation of short parallel inclined cracks.  

A pronounced size effect took place since the normalized shear resistance force 
Vn=V/bd was decreasing with increasing effective height d (V – ultimate vertical 
force): Vn=4.75 MPa (beam V711), Vn=3.20 MPa (beam V022), Vn=2.85 MPa 
(beam V511) and Vn=2.30 MPa (beam V411). The cracks developed apparently 
significantly faster in larger beams. The details of the beams, shear cracking loads 
Vc and shear failure loads Vn are given in Tab. 7.1.  

The two-dimensional FE calculations were performed with 4 reinforced 
concrete beams (h=200-800 mm). The regular meshes with 2720 (h=200 mm) up 
to 16560 (h=800 mm) quadrilateral elements composed of four diagonally crossed 
triangles were used to avoid volumetric locking. The maximum finite element 
height, 15 mm, and finite element width, 10 mm, were not greater than 3×lc (lc=5-
20 mm) to achieve mesh-objective results. The comparative 3D calculations were 
performed for the beam of h=200 mm. The mesh with 16320 eight-nodded solid 
elements was used. The maximum sizes of finite elements were again not greater 
than 3×lc (lc=10-20 mm). The following elastic material parameters were assumed 
for concrete: E=28.9 GPa (modulus of elasticity) and υ=0.20 (Poisson’s ratio). 
The cylinder compressive strength was fc=20 MPa and the tensile strength was 
ft=2 MPa. The deformation was induced by prescribing a vertical displacement at 
the mid-point of the beam top. 
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Fig. 7.33 Geometry of reinforced concrete beams used in laboratory tests (Walraven and 
Lehwalter 1994) 

 
Table 7.1 Specimen properties and failure loads (Skarżyński et al. 2010) 

beam 

specimen 
h [mm] d [mm] 

L 

[mm] 

Lt 

[mm] 

Asl 

[mm2] 

reinforcement 

 

bars 

fc 

[N/mm2] 

Vc 

[kN] 

Vn 

[kN] 

V711 200 160 320 680 606 3ø16 18.1 70 165 

V022 400 360 720 1030 1020 4ø18 19.9 125 270 

V511 600 560 1120 1380 1570 5ø20 19.8 150 350 

V411 800 740 1480 1780 2040 2 (4ø18) 19.4 225 365 

V211 1000 930 2250 1860 2510 2 (4ø18) 20.0 240 505 

 
The calculations were carried out with bond-slip using a relationship between 

the bond shear stress τb and slip u according to Dörr (1980) (Eqs. 3.114 and 3.115) 
due to the fact that bond traction values were far from the limiting value (thus, the 
shape of the bond law after the peak was unimportant). To investigate the effect of 
the bond stiffness, several numerical tests were carried out with a different value 
of u0 changing from 0.06 mm (Dörr 1980) up to 1.0 mm (Haskett et al. 2008). 

 
FE results with enhanced elasto-plastic model 
Preliminary FE calculations have shown a certain effect of a characteristic length 
of micro-structure, compressive fracture energy, tensile fracture energy, softening 
rate in tension and compression, softening type (linear and non-linear) and 
stiffness of end-slip on both the nominal beam strength, width and spacing of 
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localized zones (Tabs.7.2 and 7.3). The beam load bearing capacity increased with 
increasing characteristic length, tensile fracture energy and compressive fracture 
energy. In turn, the spacing of localized zones increased with increasing 
characteristic length and softening rate, and decreasing tensile fracture energy, 
compressive fracture energy and bond stiffness. The calculated width of localized 
tensile and compressive zones increased with increasing characteristic length lc 
and was equal approximately to (1.5-4)×lc with lc=5-20 mm. The ultimate vertical 
force P was smaller for the 3D model by 5% only. 

On the basis of our preliminary calculations, the further analyses were 
performed with a 2D model, using a characteristic length of lc=5 mm, a non-local 
parameter m=2, linear hardening and softening in compression and linear 
softening in tension (Fig. 7.34). The tensile fracture energy was Gf=50 N/m and 
compressive fracture energy was Gc=1500 N/m. The tensile fracture energy was 
calculated as Gf=gf×wf; gf – area under the entire softening function (with wf≈4×lc 
– width of tensile localized zones, lc=5 mm). In turn, the compressive fracture 
energy was calculated as Gc=gc×wc (gc– area under the entire softening/hardening 
function up to κ1=0.006, wc≈4×lc – width of compressive localized zones, lc=5 
mm). The internal friction angle was φ=14° and the dilatancy angle was chosen as 
ψ=8°. The displacement uo at which perfect slip occurred was assumed as 0.24 
mm (Eqs. 3.114 and 3.115). The distribution of material parameters was uniform in 
all beams. 

Figure 7.35 shows the calculated force-displacement curves (P – vertical force 
at the mid-point of the beam top, u – vertical displacement of this mid-point) for 
the beams of h=200-800 mm. The distribution of a non-local tensile and 
compressive softening parameter is depicted in Figs. 7.36 and 7.37 at the beam 
failure. In addition, the distribution of non-local tensile softening parameter is 
shown at the normalized vertical force of V/(bdfc)=0.10 as compared to the 
experimental crack pattern (Fig. 7.38).  

 

 
a)                                                         b) 

Fig. 7.34 Assumed hardening/softening functions for FE-calculations: a) σc=f(κ1) in 

compression, b) σt=f(κ2) in tension (σt – tensile stress, σc – compressive stress, κi – 

hardening/softening parameter) (Skarżyński et al. 2010) 



7.3   Short Beams 215
 

The calculated failure forces are in a satisfactory agreement with the 
experimental ones (Tab. 7.3), but are always larger by 10%–20% (the differences 
increase with increasing beam size). The geometry of localized zones matches 
well the experimental crack pattern (Fig. 7.38). The vertical and inclined long and 
short localized zones were numerically obtained. The experimental crack pattern 
was obviously non-symmetric. The widths of calculated tensile and compressive 
localized zones were about wf=wc=4×lc (Figs. 7.36 – 7.38). In turn, the calculated 
average spacing s of main localized tensile zones was: s=80 mm (h=200 mm), 
s=90 mm (h=400 mm), s=170 mm (h=600 mm) and s=150 mm (h=800 mm), 
respectively.  

The calculated spacing of localized zones s was again compared with the 
average crack spacing according to CEB-FIP Model Code (1991):  
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and the formula by Lorrain et al. (1998): 
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wherein øs is the mean bar diameter, ρ=1.1% denotes the reinforcement ratio and c 
denotes the concrete cover. The spacing of localized zones obtained from 
numerical simulations is significantly smaller than these obtained with analytical 
formulas.  
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Table 7.2 Summary of FE-input data (Skarżyński et al. 2010) 
 

 

FE simulation 

Nr. 

beam 

height 

h [mm] 

width of tensile 

localized zones 

wf [mm] 

tensile 

fracture 

energy Gf 

[N/m] 

width of 

compressive 

localized 

zones 

wc [m] 

compressive 

fracture energy 

Gc [N/m] 

charact. 

length 

lc [mm] 

bond 

model 

1a 

200 

15 50 20 1500 5 

bs 1b 15 50 20 1500 10 

1c 35 50 25 1750 20 

2a 

200 

15 100 20 1500 5 

bs 2b 20 100 20 1500 10 

2c 40 100 25 1750 20 

3a 

200 

15 200 20 1500 5 

bs 3b 35 200 25 1750 10 

3c 60 200 25 1750 20 

4a 
400 

15 50 15 1500 5 
bs 

4b 35 50 25 1750 10 

5a 
400 

20 100 15 1500 5 
bs 

5b 40 100 25 1750 10 

6a 
600 

15 50 15 1500 
5 bs 

6b 15 100 25 1750 

7a 
800 

15 50 15 1500 
5 bs 

7b 15 100 25 1750 

8a 

200 

15 50 20 1500 

5 

bs 

8b 15 50 20 1500 bs (u0=0.12 mm) 

8c 15 50 20 1500 bs (u0=0.24 mm) 

8d 15 50 20 1500 bs (u0=1 mm) 

9a 

400 

40 100 25 1750 

10 

bs 

9b 40 100 25 1750 bs (u0=0.12 mm) 

9c 40 100 25 1750 bs (u0=0.24 mm) 

9d 40 100 25 1750 bs (u0=1 mm) 

10a 
200 

15 50 20 1500 
10 

pb 

10b 15 50 20 1500 bs 
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Table 7.2 (continued) 
 

11a 
400 

40 100 25 1750 
10 

pb 

11b 40 100 25 1750 bs 

12a 

200 

15 50 15 900  

5 
bs 12b 15 50 20 1500 

12c 15 50 20 1800 

13a 

400 

15 50 20 900  

10 

 
bs 13b 35 50 25 1750 

13c 35 50 25 2250 

14a 200 35 50 25 1750 20 3D, bs 

14b 200 20 100 20 1400 10 3D, bs 

15 200 35 50 25 1750 20 
3D 

bs (u0=1 mm) 

 
 

‘bs’ – bond slip (u0=0.06 mm), ‘pb’ – perfect bond. 

 
Table 7.3 Data summary of experiments, FE-results and analytical formulae (crack 
spacing) (Skarżyński et al. 2010) 

 

Nr. of 

FE-simulation 

(Tab. 2) 

beam 

height h 

[mm] 

failure vertical 

force 

(experiments) 

[kN] 

failure vertical 

force (FEM) 

[kN] 

spacing of 

localized 

tensile zones 

from FEM 

s [mm] 

crack spacing by 

CEB-FIP model 

(1991) [mm] 

crack spacing by 

Lorrain et al. 

(1998) [mm] 

1a 

200 165 

182 105 

270 193 1b 185 105 

1c 187 160 

2a 

200 165 

186 80 

270 193 2b 190 80 

2c 193 160 

3a 

200 165 

190 105 

270 193 3b 192 105 

3c 197 160 

4a 
400 270 

285 180 
303 210 

4b 287 145 

5a 
400 270 

291 60 
303 210 

5b 295 90 

 7.
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Table 7.3 (continued) 
  

6a 
600 350 

400 110 
337 227 

6b 405 170 

7a 
800 365 

425 85 
303 240 

7b 435 150 

8a 

200 165 

182 105 

270 193 
8b 178 105 

8c 187 105 

8d 175 105 

9a 

400 270 

295 145 

303 210 
9b 296 145 

9c 297 145 

9d 275 230 

10a 
200 165 

195 80 
270 193 

10b 190 80 

11a 
400 270 

305 145 
303 210 

11b 295 180 

12a 

200 165 

170 80 

270 193 12b 182 105 

12c 185 80 

13a 

400 270 

275 360 

303 210 13b 295 145 

13c 297 180 

14a 
200 165 

195 160 270 193 

14b 220 80 270 193 

15 200 165 175 160 270 193 

 

 
FE results with enhanced smeared crack model and enhanced damage model 
The following parameters were assumed in both models: E=28.9 GPa, υ=0.2, 
κ0=10-4, α=0.95 and β=500 (isotropic damage approach Eqs. 3.35 and 3.40), 
E=28.9 GPa, υ=0.2, κ0=10-4, α=0.95, β=500 and k=10 (isotropic damage approach 
Eqs. 3.38 and 3.40), E=28.9 GPa, υ=0.2, κ0=10-4, α=0.95, β=500, α1=0.1, α2=1.16, 
α3=2.0 and γ=0.2 (isotropic damage approach Eq. 3.39 and 3.40) and E=28.9 GPa, 
υ=0.2, p=4.0, b1=3.0, b2=6.93, ft=2.0 MPa, εsu=0.006 and εnu=0.006 (smeared 
crack approach, Chapter 3.1.3). The results are shown in Figs. 7.39 and 7.40 with 
a smeared rotating crack model and in Figs. 7.41 and 7.42 with damage models 
(the results using Eq. 3.38 were similar to those by Eq. 3.35). 
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The force-displacement curves are very similar as those obtained with an 
elasto-plastic model. The calculated forces at failure are usually larger by 2%–
20% than the experimental ones.  

The calculated geometry of localized zones within a smeared crack approach is 
similar as this within elasto-plasticity except of beams with h>400 mm where the 
localized zones are more diffuse. The effect of crack type assumed in the model 
(fixed or rotating crack model) was insignificant. In turn, large discrepancies 
occur in the distribution of localized zones when using the damage model. The 
inclined localized zones were not obtained in FE analyses (only one vertical at 
bottom mid-point of a tensile type).  

 
a) b) 

 
 
c) d) 

 

 

Fig. 7.35 Calculated force-displacement curves within elasto-plasticity (as compared to the 
experimental maximum vertical force) for different beams: a) h=200 mm, b) h=400 mm, c) 
h=600 mm, d) h=800 mm (P – resultant vertical force, u – vertical displacement) 
(Skarżyński et al. 2010) 
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      a) 
 

     b) 
 

   c) 
 

 d) 
 

Fig. 7.36 Distribution of calculated non-local tensile softening parameter 2κ  within elasto-

plasticity in beams at failure for different beams: a) h=200 mm, b) h=400 mm, c) h=600 
mm, d) h=800 mm (the beams are not proportionally scaled) (Skarżyński et al. 2010) 
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a) 

 
 

b) 

 
 

c) 

 

d) 

 
Fig. 7.37 Distribution of the non-local compressive softening parameter 1κ  within elasto-

plasticity for different beams at vertical displacement of u=10 mm: a) h=200 mm, b) h=400 
mm, c) h=600 mm, d) h=800 mm (the beams are not appropriately scaled) (Skarżyński et 
al. 2010) 
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a)                                                                   b) 

 

 
 

 
                                  c)                                                                     d) 

 
Fig. 7.38 Comparison of distribution of non-local tensile softening parameter 2κ  within 

elasto-plasticity in short reinforced concrete beams at the normalized vertical force 
V/(bdfc)=0.10 with experimental crack patterns for different beams: a) h=200 mm, b) 
h=400 mm, c) h=600 mm, d) h=800 mm (the beams are not proportionally scaled) 
(Skarżyński et al. 2010) 
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a) b) 

 
c) d) 

Fig. 7.39 Calculated force-displacement curves with smeared crack approach (Chapter 
3.1.3) (as compared to the experimental maximum vertical force) for different beams: a) 
h=200 mm, b) h=400 mm, c) h=600 mm, d) h=800 mm (P – resultant vertical force, u – 
vertical displacement) (Skarżyński et al. 2010) 

 
Figure 7.43 shows a comparison between the calculated (with 3 continuum 

models) and experimental size effect: the relative shear stress V/(bdfc) at failure as 
a function of the effective beam depth. In addition, the size effect law by Bažant 
(Bažant and Planas 1998) (being valid for structures with large cracks) is enclosed 
(Eq. 5.5). The experimental and theoretical beam strength shows a strong size 
dependence. The experimental and theoretical results are close to the size effect 
law by Bažant (Bažant and Planas 1998).  
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     a) 

   b) 

  c) 

 d) 
 
Fig. 7.40 Distribution of calculated non-local strain within smeared crack approach 
(Chapter 3.1.3) in different beams at failure: a) h=200 mm, b) h=400 mm, c) h=600 mm, d) 
h=800 mm (the beams are not proportionally scaled) (Skarżyński et al. 2010) 
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                            A)                                                                  B) 
 

Fig. 7.41 Calculated force-displacement curves within damage mechanics (as compared to 
the experimental maximum vertical force) for 2 beams: A) h=400 mm, B) h=600 mm, a) 
equivalent strain measure by Eq. 3.35, b) equivalent strain measure by Eq. 3.39 (P – 
resultant vertical force, u – vertical displacement) (Skarżyński et al. 2010) 

 
A) 

 
 a) b) 

B) 

 
 a) b) 

 
Fig. 7.42 Distribution of calculated non-local equivalent strain measure within damage 
mechanics in two beams at failure: A) h=400 mm, B) h=600 mm, a) equivalent strain 
measure by Eq. 3.35, b) equivalent strain measure by Eq. 3.39 (Skarżyński et al. 2010) 
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Fig. 7.43 Calculated size effect in reinforced concrete beams from FE-analyses compared 
to experiments (Walraven and Lehwalter 1994) and to the size effect law by Bažant (Bažant 
and Planas 1998) (b – beam width, d – effective beam height, fc – compressive strength of 
concrete, Vu – ultimate vertical force): a) experiments, b) FE-calculations (elasto-plasticity), 
c) FE-calculations (smeared crack model, Chapter 3.1.3), d) FE-calculations (damage 
mechanics, Eqs. 3.35 and 3.40), e) size effect law by Bažant (Skarżyński et al. 2010) 

 
The FE-simulations have shown that three different simple continuum crack 

models enhanced by non-local softening are able to capture a deterministic size 
effect in short reinforced concrete beams without shear reinforcement subjected to 
shear-tension failure. From the obtained results the following conclusions can be 
drawn: 

• the calculated material strength in reinforced concrete beams of a different 
size was always higher by 2%-20% as compared to experimental ones. Thus, 
the models need an improvement, 

• the geometry of localized zones was in a good agreement within elasto-
plasticity, in a medium agreement within a smeared crack approach and a 
completely false within damage mechanics. Thus, the isotropic damage model 
needs improvements to describe localized shear zones in reinforced concrete 
elements under shear-tension failure, 

• the calculated spacing of localized tensile zones increased with increasing 
characteristic length, softening rate and beam height and decreasing fracture 
energy and bond stiffness. The calculated and experimental spacing was 
significantly smaller than this from analytical formulae. 

7.4   Columns 

Reinforced concrete columns supporting slabs and beams and subject to eccentric 
compression belong to the most important structure elements. Their role still 
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grows due to the increasing size of multi-story high buildings. In particular, 
nowadays the use of high-strength concrete columns and concrete-filled steel 
tubular columns (Kim and Yang 1995, Kilpatrick and Rangan 1999) is becoming 
very popular worldwide. The buckling behaviour of reinforced concrete columns 
depends upon many different factors as: column slenderness, load eccentricity, 
boundary conditions at ends, area and shape of the cross-section of concrete, area 
and spacing of the vertical and horizontal reinforcement, reinforcement ratio, 
compressive and tensile strength of concrete, strength of reinforcement, type and 
character of load (short or long–term, monotonic or cycling), concrete shrinkage 
and creep. To calculate the optimum concrete and reinforcement area, and thus to 
decrease building costs and increase net floor space, a realistic prediction of the 
effect of these factors on stresses in the entire column element is needed. 
However, the buckling behaviour of reinforced concrete columns is a complex 
phenomenon due to cracks in concrete. 

There have been many experimental studies on reinforced concrete columns. 
The effect of the load eccentricity was investigated on columns by Makovi (1969), 
Gruber and Menn (1978), Kiedroń (1980), Billinger and Symons (1995) and 
Lloyd and Rangan (1996). In turn, Billinger and Symons (1995), and Kim and 
Yang (1995) studied the effect of the slenderness of columns. Szuchnicki (1973) 
analysed the influence of the cross-section area. In turn, the effect of creep was 
investigated by Kordina and Warner (1975), the effect of lateral pre-stressing by 
Gardner et al. (1992), the effect of the vertical reinforcement by Lloyd and 
Rangan (1996), Saenz and Martin (1963), Martin and Olivieri (1966) and Kim and 
Yang (1995), and the effect the horizontal reinforcement by Oleszkiewicz et al. 
(1973), Korzeniowski (1997) and Nemecek and Bittnar (2004). In turn, the 
influence of the concrete strength was shown in tests by Kiedroń (1980), Billinger 
and Symons (1995), Lloyd and Rangan (1996), Saenz and Martin (1963), and Kim 
and Yang (1995). A deterministic size effect was investigated by Bažant and 
Kwon (1994). The results of experiments have evidently shown that bearing 
capacity of columns decreases with increasing load eccentricity, slenderness, ratio 
of the end fixing and creep. The increase of concrete strength influences 
significantly the bearing capacity for small eccentricities. The lateral pre-stressing 
and horizontal reinforcement increase the bearing capacity of cylindrical elements. 
The failure load exhibits a strong size effect (the bearing capacity decreases as the 
column size increases). 

There exist several theoretical models to calculate the bearing capacity of 
elements under eccentric compression on the basis of analytical assumptions and 
FEM (Kim and Yang 1995, Bromst and Viest 1958, Pfrang and Siess 1964, 
Bažant et al. 1991, El-Metwally and Chen 1989, Xie et al. 1997, Fragomeni and 
Mendis 1997, Baglin and Scott 2000, Mendis 2000).  

The intention of calculations is to numerically predict the behaviour of 
reinforced concrete columns subject to eccentric compression with consideration of 
cracks (Majewski et al. 2008, 2009). The analysis was carried out with a finite 
element method based on elasto-plasticity with non-local softening (Eqs. 3.27-3.32, 
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3.93 and 3.99). The effect of the load eccentricity, column slenderness, area of the 
vertical longitudinal reinforcement, bond between concrete and reinforcement, 
fracture energy, distribution of the tensile strength and characteristic length of 
micro-structure on the failure strength of columns was studied. Two-dimensional 
plane strain and three dimensional FE-simulations were carried out. The theoretical 
results of failure forces were mainly compared with corresponding comprehensive 
experiments carried out by Kim and Yang (1995). In addition, they were compared 
with experiments by Kim and Lee (2000), Hsu (1988), Lloyd and Rangan (1996) 
and Bažant and Kwon (1994). 
 
Experiments on columns by Kim and Yang (1995) 
A series of laboratory tests was carried out for 30 tied reinforced columns with a 
square cross-section of b×h=80×80 mm2 and 3 slenderness ratios λ of 10, 60 and 
100 (Fig. 7.44). The corresponding column heights were l=0.24 m, l=1.44 m and 
l=2.40 m, respectively. Three different concrete compressive strengths of 25.5 
MPa, 63.5 MPa and 86.2 MPa and 2 different longitudinal steel ratios of 1.98% 
(4φ6) and 3.95% (8φ6) using a symmetric reinforcement were applied. The 
splitting tensile strength of concrete was 3.4 MPa, 5.5 MPa and 6.2 MPa, 
respectively. The maximum size of the aggregate in concrete was dmax=13 mm. 
The concrete cover measured from the bar centre to the concrete surface was 15 
mm. The ties made of 3 mm plain steel bars had a spacing of 60 mm (reduced to 
30 mm at ends). The boundary conditions at the ends were both hinged. The steel 
end plates were fixed at the column ends with bolts. Each end plate had a groove 
(the initial load eccentricity was always e=24 mm). The rate of loading was 
controlled by a constant increment rate of the vertical displacement. 

Most of columns with the slenderness ratio λ=10 failed at the mid-height of 
columns by increased compressive strain in concrete. The failure of the columns 
with λ=60 and λ=100 occurred due to increased tensile steel strain near the mid-
height. The increment of the ultimate load decreased with a growth of the 
slenderness ratio. An increase of the longitudinal steel ratio was more effective in 
slender columns with a higher compressive strength than in short columns with a 
low compressive strength. 

The FE analyses were mainly performed for the slenderness ratio of λ=100, 
compressive strength of concrete of fc=25.5 MPa, reinforcement ratio of ρ=1.98% 
and eccentricity of e=24 mm (Kim and Yang 1995). One assumed mainly that 
lc=h/20=4.0 mm. For 2D-calculations, quadrilateral elements (composed of four 
diagonally crossed triangles) were always used. Totally, 2900 (for l=0.24 m), 7200 
(for l=1.44 m) and 15000 (for l=2.40 m) triangular elements were used. The mesh 
was refined in the middle of the columns for l=1.44-2.40 m. Thus, the maximum 
element size, 8 mm, was not greater there than 3×lc in all columns to get mesh-
objective results. In the case of 3D computations (only for λ=100), about 18000 8-
noded solid elements were used (8×5×442). The maximum element size was also 
8 mm along the height. The column was hinged at the both ends. The deformation  
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was induced by increments of the vertical displacement prescribed to both ends 
through steel plates with a large stiffness. In 2D plane strain calculations, the 
vertical reinforcement was assumed mainly in the form of 2D 3-node triangular 
elements. The width of each steel column composed of 2D elements was assumed 
to be 2.0 mm and their length in the direction perpendicular to the deformation 
plane was 32 mm for ρ=1.98% and 64 mm for ρ=3.95%. In 2D calculations, one 
simulation was also performed with vertical 2-node truss elements (describing 
reinforcement) with a diameter of 9.0 mm. In turn, in 3D calculations, one used 
always vertical 2-node truss elements with a circular cross-section and diameter of 
6 mm. The vertical reinforcement was fixed to the horizontal edge steel plates. 
The stirrups were not taken into account since the FE-study concerned mainly the 
column behaviour up to peak (their influence is very important in the post-peak 
regime). A bond-slip law by Dörr (1980) was assumed (Eqs. 3.114 and 3.115).  

 

 
0.08

0.08

 
              a)                 b)                     c)                                                 

α-α 
 

Fig. 7.44 Geometry of reinforced concrete columns in experiments by Kim and Yang 
(1995): a) λ=10, b) λ=60, c) λ=100  
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The assumed diagram describing the evolution of uniaxial compressive yield 
stress σc versus a hardening-softening parameter κ1 is shown in Fig. 7.45a. The 
evolution of the curve up to the peak is according to the Polish Standard (2002). 
The modulus of elasticity was equal to E=23.665 GPa and Poisson’s ratio was 
υ=0.20. The internal friction angle was assumed to be ϕ=14° and the dilatancy 
angle was taken as ψ=8°. The assumed diagram describing the evolution of the 
tensile yield stress σt versus the softening parameter κ2 (assumed in most of our 
calculations) is shown in Fig. 7.45b (it follows the proposition of Hordijk (1991) 
Eq. 3.55). One assumed that the tensile strength was equal to ft=0.1×fc=2.295 MPa. 
The plastic strain associated with a total loss of load-carrying capacity of the 
material in tension was about κ2

u=0.0035. The fracture energy was, thus, 
approximately Gf=gf×wc≈0.02 N/mm (gf – area under the softening function, 
wc=12 mm - width of a localized zone). The non-local parameter was chosen m=2. 
An elasto-perfect plastic constitutive law by von Mises was assumed to model the 
reinforcement behaviour with Es=210 GPa, υc=0.3 and fyd=387 MPa (fyd - yield 
stress). The volume weight of the concrete column was not taken into account.  
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Fig. 7.45 Assumed curves: a) σc=f1(κ1) in the compressive regime and b) curve σt=f2(κ2) in 
the tensile regime (σc – compressive yield stress, σt – tensile yield stress, κi – hardening 
(softening) parameter, i=1, 2) (Majewski et al. 2008) 
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Effect of slenderness ratio λ 
Figure 7.46 shows the calculated evolution of the vertical force versus the vertical 
displacement of the top edge u for 3 different slenderness ratios of λ=10, λ=60 
and λ=100 using a characteristic length lc=4.0 mm, perfect bond between concrete 
and reinforcement, reinforcement ratio ρ=1.98%, eccentricity e=24 mm and 
uniform distribution of the tensile strength ft. In turn, Fig. 7.47 compares the 
calculated curves with experimental ones (the sign ‘+’ for ε11 denotes a tensile 
strain and the sign‘-‘for ε11 stands for a compressive strain). A comparison 
between the calculated and measured ultimate load and lateral deflection at the 
column mid-height is given in Tab. 7.4. The evolution of vertical normal stresses in 
the concrete and reinforcement along the cross-section at the height of H=l, 
H=0.75l and H=0.5l (measured from the bottom) versus the vertical displacement 
is demonstrated in Fig. 7.48 (for λ=100). The distribution of the non-local 

parameter 2κ
−

 along the column length at the tensile reinforcement is depicted  

in Fig. 7.49. 
The ultimate load obviously decreases with increasing slenderness ratio. A 

comparison between the numerical predictions and the experimental results shows 
a fair agreement in the ultimate load and lateral deflection (Tab. 7.4). The maximum 
differences in the ultimate load P are about 10%. The height of the tensile zone at 
mid-height is approximately 4 cm. The symmetric reinforcement is not optimum 
since the normal stress in the reinforcement of the tensile zone is far below the 
yield stress (Fig. 7.48). The width of the localized zones wc is about wc=5×lc=20 mm 
(λ=10) and wc=3×lc=12 mm (λ=60-100). In turn, the spacing sc (on the basis of the 

non-local parameter 2κ
−

 by counting the peaks) is approximately sc=8×lc=32 mm 

(λ=10) and sc=6.5×lc=26 mm (λ=60 and λ=100) (Fig. 7.49).  
In the computations, the columns failed similarly as in experiments. The 

column with λ=10 failed by increased compressive strain in concrete. The failure 
of the columns with λ=60 and λ=100 took place due to increased tensile strain in 
reinforcement near the mid-height. 
 
Effect of reinforcement ratio ρ 
The effect of the reinforcement ratio in the range 0.6%-5.26% is shown in  
Figs. 7.50 and 7.51 and Tab. 7.5 using perfect bond, uniform distribution of ft, lc=4 
mm, e=24 mm and λ=100. The ultimate load increases obviously with increasing 
reinforcement ratio. The width of the localized zones, wc=3×lc=12 mm, does not 
depend on ρ. In turn, the distance between localized zones at mid-region decreases 
with increasing ρ up to ρ=3.95%; it is approximately sc=32 mm (8×lc) for 
ρ=0.65%, sc=26 mm (6.5×lc) for ρ=1.98%, and sc=24 mm (6×lc) for both ρ=3.95% 
and ρ=5.26%. The difference between calculations and experiments increases with 
increasing ρ. For ρ=3.95%, it is rather large, namely 30%. This difference is 
mainly due to an assumption of plane strain conditions; the maximum 
compressive normal stress in concrete (for ρ=3.95%), 38 MPa, is larger than its 
uniaxial compressive strength fc=25.5 MPa. Thus, the ultimate load is larger. An 
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extreme maximum of 
2κ

−
 in Figs. 7.51c and 7.51d was obtained at the place of the 

change of the element size. 
 

 

Fig. 7.46 Load-displacement curves for different slenderness: a) λ=10, b) λ=60, c) λ=100 
(ρ=1.98%, e=24 mm, lc=4 mm, P – load, u – vertical displacement of the top edge) 
(Majewski et al. 2008) 
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Fig. 7.47 Calculated load-strain curves (solid lines) versus experimental results by Kim and 
Yang (1995) for a different slenderness: a) λ=10, b) λ=60, c) λ=100 (ρ=1.98%, e=24 mm, 
lc=4 mm, P – vertical load, ε11 – vertical strain in reinforcement at the mid-height) 
(Majewski et al. 2008) 
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Effect of characteristic length lc 

Figure 7.52 demonstrates the effect of a characteristic length on strain localization 
(using perfect bond, uniform distribution of ft, λ=100, e=24 mm, lc=4-24 mm and 
ρ=1.98%). The ultimate force slightly increases from 42.28 kN (lc=4 mm) up to 
44.40 kN (lc=24 mm). Several localized zones occur in the tensile zone only for 
lc<8 mm. If lc≥8 mm, one large localized zone appears in the tensile zone at the 
column mid-height; e.g. for lc=14 mm, its width is about 200 mm (8.5×lc)  
(Fig. 7.52d). In all cases, one localized zone occurs in the compression zone  
(Figs. 7.52a and 7.52c). 
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a) 

Fig. 7.48 Evolution of vertical normal stresses σ22 against vertical displacement in concrete 
(index ‘c’) and steel (index ‘s’) in horizontal section at the height H=l (a), H=0.75l (b), and 
H=0.5l (c) for λ=100 (ρ=1.98%, e=24 mm, lc=4 mm, fyd=387 MPa – yield stress) 
(Majewski et al. 2008) 
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Fig. 7.48 (continued) 
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Fig. 7.48 (continued) 
 

a) 

b) 

Fig. 7.49 Distribution of non-local parameter 2κ
−

 along column length l for ultimate load 

with different slenderness: a) λ=10, b) λ=60, c) λ=100 (ρ=1.98%, e=24 mm, lc=4 mm) 
(Majewski et al. 2008) 
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c) 

                                            
                  a)                                   b)                                          c) 
 
Fig. 7.49 (continued) 

 
Table 7.4 Ultimate loads and lateral deflections at mid-height for different slenderness 
ratios (ρ=1.98%) from experiments and 2D-simulations (Majewski et al. 2008) 
 

Slenderness 
λ 

Ultimate load 
N [kN] 

Experiments  

Ultimate load 
N [kN] 

2D-
calculations 

Lateral 
deflection 

[mm] 
Experiments 

Lateral 
deflection 

[mm] 
2D-

calculations 
10 

 
60 

 
100 

83.1 
 

63.7-65.7 
 

35.0-38.2 

82.1 
 

75.3 
 

42.3 

0.4 
 

14.9-16.2 
 

29.8-32.7 

0.4 
 

14.9 
 

40.7 
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Fig. 7.50 Calculated load-displacement curves for different reinforcement ratios: a) 
ρ=0.65%, b) ρ=1.98%, c) ρ=3.95%, d) ρ=5.26% (e=24 mm, lc=4 mm, λ=100, P – load, u – 
vertical displacement of the top edge) (Majewski et al. 2008) 

 
Effect of eccentricity e 
The effect of eccentricity on FE-results is depicted in Fig. 7.53 (using perfect bond, 
uniform distribution of ft, λ=100, ρ=1.98% and lc=4 mm). The ultimate load 
decreases obviously with increasing eccentricity. The width of localized fracture 
zones is similar, 12 mm (4×lc). The spacing increases with increasing e; from 26 
mm (6.5×lc) at e=12 mm up to 30 mm (7.5×lc) at e=40 mm. 
 
Effect of distribution of tensile strength 

The calculations were carried out with a stochastic distribution of the tensile 
strength using perfect bond (λ=100, e=24 mm, ρ=1.98% and lc=4 mm). The 
tensile strength was taken from a normal (Gaussian) distribution around the mean 
value 2.25 MPa with a standard deviation sd=0.05 MPa and a cut-off ct=±0.1 MPa. 
To obtain a Gaussian distribution of the concrete strength, a polar form of the so-
called Box-Muller transformation (1958) was used. 

The results indicate that the distribution of the tensile strength does not affect 
the ultimate load and width of localized zones (wc=3×lc) for the assumed 
stochastic parameters sd and ct. The spacing of localized zones is slightly larger; 
about 32 mm (8×lc) against 26 mm (6.5×lc) in the case of the uniform distribution 
of ft. 
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a) 

b) 

c) 

d) 
 

Fig. 7.51 Distribution of non-local parameter 2κ
−

 along the column length l for ultimate 

load at different reinforcement ratios: a) ρ=0.65%, b) ρ=1.98%, c) ρ=3.95%, d) ρ=5.26% 
(λ=100, e=24 mm, lc=4 mm) (Majewski et al. 2008) 
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a)             b)           c)          d) 

Fig. 7.51 (continued) 

 
Table 7.5 Ultimate loads and lateral deflections at mid-height for different reinforcement 
ratios (λ=100) from experiments and 2D-simulations (Majewski et al. 2008) 
 

Reinforcement 

ratio 

ρ 

Ultimate load 

N [kN] 

Experiments 

Ultimate load 

N [kN] 

2D-calculations 

Lateral 

deflection [mm] 

Experiments 

Lateral 

deflection [mm] 

2D-calculations 

0.6 

 

1.32 

 

1.98 

 

2.63 

 

3.95 

 

5.26 

(-) 

 

(-) 

 

35.0-38.2 

 

(-) 

 

47.0-49.0 

 

(-) 

29.0 

 

34.8 

 

42.23 

 

49.4 

 

62.6 

 

75.0 

(-) 

 

(-) 

 

29.84-32.72 

 

(-) 

 

36.2-38.2 

 

(-) 

28.8 

 

37.6 

 

40.7 

 

42.7 

 

49.0 

 

43.4 

(-) - experiments were not performed. 
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Effect of bond-slip 
The influence of the bond-slip stiffness by Dörr (1980) (Eqs. 3.114 and 3.115) on 
the results is shown in Figs. 7.54 and 7.55 for λ=100, ρ=1.98%, e=24 mm lc=4 mm 
and uniform distribution of ft. The simulations were carried out with uo=0.06 mm 
and uo=0.3 mm (Eqs. 3.93 and 3.94). The ultimate load, about 40-41 kN, is smaller 
in both cases by about 5% as compared to perfect bond. The crack width is similar 
(3×lc=12 mm). The cracks spacing is larger for bond-slip than for perfect bond and 
grows with decreasing bond stiffness. It increases from sc=26 mm (6.5×lc) for 
perfect bond up to sc=54 mm (13.5×lc) for bond-slip with uo=0.06 mm and up to 
sc=250 mm (62×lc) for bond-slip with uo=0.3 mm.  

 
Effect of fracture energy 

The calculations were carried out with a larger fracture energy, namely Gf=0.05 
N/mm assuming λ=100, ρ=1.98%, e=24 mm, lc=4 mm, perfect bond and uniform 
distribution of ft. 

 

A)              B) 
                                     a)        b)                           c)        d) 

Fig. 7.52 Distribution of non-local parameters 1κ
−

 (a) and 2κ
−

 (b) along column length l for 

ultimate load with different characteristic lengths: A) lc=4 mm, B) lc=14 mm (ρ=1.98%, 
e=24 mm, λ=100) (Majewski et al. 2008) 
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Fig. 7.53 Load-displacement curves for different eccentricities: a) e=0 mm, b) e=12 mm, c) 
e=24 mm, d) e=40 mm (ρ=1.98%, lc=4 mm, λ=100, P – load, u – vertical displacement of 
the top edge) (Majewski et al. 2008) 

 

 
 
Fig. 7.54 Load-displacement curves: using bond-slip by Dörr (1980) (Eqs. 3.114 and 3.115): 
a) uo=0.06 mm, b) uo=0.3 mm (ρ=1.98%, lc=4 mm, λ=100, e=24 mm, P – load, u – vertical 
displacement of the top edge) (Majewski et al. 2008) 

 
The larger fracture energy (smaller softening rate), the larger the ultimate load 

by ca. 6%. In turn, the crack spacing becomes slightly smaller, i.e. 22-24 mm 
(6×lc) (Fig. 7.56a). 
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Effect of reinforcement type 

Figure 7.57 presents the results for 2κ
−

 with reinforcement assumed as 1D 
elements for λ=100, ρ=1.98%, e=24 mm, lc=4 mm, perfect bond and uniform 
distribution of ft. 

The ultimate vertical force is the same as for the 2D reinforcement model. 
However, the spacing of localized zones increases from sc=26 mm (6.5×lc) up to 
sc=38 mm (9.5×lc). It is caused by a different distribution of stresses in 
reinforcement elements and concrete ones near the reinforcement.  

 

a) 

b) 

Fig. 7.55 Distribution of non-local parameter 2κ
−

 along column length l for ultimate load  

using bond-slip by Dörr (1980) a) uo=0.06 mm, b) uo=0.3 mm (ρ=1.98%, lc=4 mm, λ=100, 
e=24 mm) (Majewski et al. 2008) 
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a) 

b) 

Fig. 7.56 Distribution of non-local parameter 2κ
−

 along column length l for ultimate load 

using: a) fracture energy with non-linear softening (Gf=0.05 N/mm), b) fracture energy with 
non-linear softening (Gf=0.02 N/mm), (ρ=1.98%, lc=4 mm, λ=100, e=24 mm, P – load, u – 
vertical displacement of the top edge) (Majewski et al. 2008) 

 

 
 

Fig. 7.57 Distribution of non-local parameter 2κ
−

 along column length l for ultimate load 

with reinforcement assumed as 1D elements (ρ=1.98%, lc=4 mm, λ=100, e=24 mm, perfect 
bond, κ2

u=0.035) (Majewski et al. 2008) 
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Fig. 7.58 Load-displacement curves from 3D calculations: a) λ=10, perfect bond, ρ=1.98%, 
b) λ=60, perfect bond, ρ=1.98%, c) λ=100, perfect bond, ρ=1.98%, d) λ=100, bond-slip, 
ρ=1.98%, e) λ=100, perfect bond, ρ=3.95%, f) λ=100, bond-slip, ρ=3.95% (e=24 mm, lc=4 
mm, P – load, u – vertical displacement of the top edge) (Majewski et al. 2008) 
 
Effect of 3D-calculations  
The 3D calculations were carried out for e=24 mm, lc=4 mm, ρ=1.98% (λ=10-
100) and ρ=3.95% (λ=100) assuming perfect bond and an uniform distribution of 
ft. In addition, two calculations were carried out with bond-slip by Dörr (1980) for 
uo=0.06 mm (λ=100, ρ=1.98% and 3.95%). Figure 7.58 shows the calculated load-
displacement curves. In turn, the distribution of the non-local parameter κ2 along 
the column length for the ultimate load is demonstrated in Fig. 7.59. Table 7.5 
compares the numerical results with experimental ones. 

All calculated buckling loads differ by only 10% from experimental ones. The 
buckling load for bond-slip is slightly larger than perfect bond. For perfect bond, 
the crack spacing is larger in 3D-simulations than in 2D-simulations; it is about 40 
mm (10×lc) for λ=10 and λ=60, and 42 mm (10.5×lc) for λ=100 at ρ=1.98%, and 
35 mm (8.8×lc) for λ=100 at ρ=3.95%. For bond-slip and λ=100, it is 44 mm 
(11×lc) for ρ=1.98% and ρ=3.95%. By going from 2D to 3D calculations, the 
approximation of the ultimate load improves for a medium and slender column but 
gets worse for a stocky one due to slightly different failure mechanisms in stocky 
columns (Figs. 7.59a and 7.59a). In the slender columns, the failure mechanism is 
similar (Figs. 7.59bc and 7.59b-f). The incorporation of bond slip leads to a 
decrease of the ultimate load in 2D simulations and to its increase in 3D analyses. 
It is caused by a different model of reinforcement assumed in calculations. 

The calculated spacing of fracture process zones from 3D calculations for 
perfect bond and bond-slip at ρ=1.98%, sc=40-42 mm, was compared with the 
average crack spacing sc according to 3 different formulas: a) by CEB-FIP Model 
Code (1991) 
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2 2 6

56
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 mm,                    (7.18) 

 
b) by Eurocode 2 (1991) 
 

                            1 2

6
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4 4 0.0198
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×

 mm,         (7.19) 

 

a) 

b) 

c) 
 

Fig. 7.59 Distribution of non-local tensile parameter along the column length for the 
ultimate load from 3D calculations: a) λ=10, perfect bond, ρ=1.98%, b) λ=60, perfect bond, 
ρ=1.98%, c) λ=100, perfect bond, ρ=1.98%, d) λ=100, bond-slip, ρ=1.98%, e) λ=100, 
perfect bond, ρ=3.95%, f) λ=100, bond-slip, ρ=3.95% (e=24 mm, lc=4 mm) (Majewski et 
al. 2008)  
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d) 

e) 

f) 
 

Fig. 7.59 (continued) 
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a)     b)     c)     d)     e)     f) 
 

Fig. 7.59 (continued) 
 
 
c) by Lorrain et al. (1998) 

                       
6

1.5 0.1 1.5 15 0.1 53
0.0198

s
cs c

φ
ρ

= + = × + =  mm,                   (7.20) 

 
wherein φs=6 mm is the reinforcing bar diameter, ρ=1.98% denotes the 
reinforcement ratio, ki are the coefficients and c denotes the concrete cover. Thus, 
the calculated spacing of localized zones with lc=4 mm (sc=42 mm) is in good 
agreement with the average crack spacing according to CEB-FIP Model Code 
(1991) and Lorrain et al. (1998). In the case of ρ=3.95% and bond-slip, the match 
between the calculations (sc=44 mm) and analytical formula (sc=38 mm) is even in 
a better agreement. 
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Table 7.6 Ultimate loads and lateral deflections at mid-height for different slenderness 
ratios from experiments and 3D-simulations (Majewski et al. 2008) 
 

Slenderness 

λ 

Ultimate load 

N [kN] 

Experiments 

Ultimate load  

N [kN] 

3D-calculations 

Lateral 

deflection [mm] 

Experiments 

Lateral deflection 

[mm] 

3D- calculations 

10 (ρ=1.98%) 

(perfect bond) 

 

60 (ρ=1.98%) 

(perfect bond) 

 

100 (ρ=1.98%) 

(perfect bond) 

 

100 (ρ=3.95%) 

(perfect bond) 

 

100 (ρ=1.98%) 

(bond-slip) 

 

100 (ρ=3.95%) 

(bond-slip) 

 

83.1 

 

63.7-65.7 

 

 

35.0-38.2 

 

 

47.0-49.0 

 

 

35.0-38.2 

 

 

47.0-49.0 

 

94.6 

 

62.9 

 

 

36.0 

 

 

44.0 

 

 

37.4 

 

 

46.0 

 

0.403 

 

14.9-16.2 

 

 

29.8-32.7 

 

 

36.2-38.2 

 

 

29.8-32.7 

 

 

36.2-38.2 

 

0.55 

 

16.2 

 

 

36.0 

 

 

43.7 

 

 

30.0 

 

 

41.7 

 
Table 7.7 summarizes some numerical and analytical results with respect to the 

spacing of localized zones. 

 
Table 7.7 Spacing of localized zones from FE-calculations and analytical formulae 
(Majewski et al. 2008) 
 

Slender-

ness 

λ 

Reinforce-ment 

ratio 

ρ 

Eccentri-city 

e 

[mm] 

Bond CEB-FIB  

Model Code 

(1991) 

[mm] 

Eurocode  

(1991) 

[mm] 

Lorrain et al. 

(1998) 

[mm] 

FEM 

2D 

[mm] 

FEM 

3D 

[mm] 

10 

60 

100 

100 

100 

100 

100 

100 

100 

100 

1.98 

1.98 

1.98 

0.65 

3.95 

5.26 

1.98 

1.98 

1.98 

1.98 

24 

24 

24 

24 

24 

24 

12 

40 

24 

24 

pb 

pb 

pb 

pb 

pb 

pb 

pb 

pb 

bs-1 

bs-2 

56 

56 

56 

171 

28 

21 

56 

56 

56 

56 

111 

111 

111 

235 

80 

73 

111 

111 

111 

111 

53 

53 

53 

115 

38 

34 

53 

53 

53 

53 

32 

26 

26 

32 

24 

24 

26 

30 

54 

250 

40 

40 

42 

- 

35 

- 

- 

- 

44 

-  
pb – perfect bond, bs – bond slip, bs-1 - uo=0.06 mm, bs-2 - uo=0.30 mm. 
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FE analysis of experimental tests with columns by Kim and Lee (2000), Hsu 
(1988), Lloyd and Rangan (1996) and Bažant and Kwon (1994) 
The geometries of selected experimental reinforced concrete columns subjected to 
numerical analyses are given in Fig. 7.60 and Tab. 7.8. The maximum size of finite 
elements in all columns was not greater there than 3×lc to get mesh-objective 
results (lc=4 mm). All columns were hinged at the both ends. The deformation was 
induced by imposing increments of a vertical displacement prescribed to both ends 
through steel plates with a large stiffness. The assumed diagrams describing the 
uniaxial compressive yield stress σc versus the vertical total strain ε and tensile 
yield stress σt versus a softening parameter κ2 are shown in Fig. 7.61. The internal 
friction angle was always assumed to be ϕ=14° and the dilatancy angle was taken 
as ψ=10° (Eq. 3.27). In the case of the lack of information on the tensile strength in 
experiments (Hsu 1988), one assumed the tensile strength equal to ft≈1.73 MPa 
(=0.08×fc). The fracture energy in tension was mainly Gf=gf×wc≈100 N/mm (gf – 
area under the softening function, wc=3×lc mm – width of localized zones). The 
non-local parameter was equal to m=2. The vertical and horizontal reinforcement 
were assumed in the form of 2-node truss elements. The vertical reinforcement was 
composed of 4 or 6 bars which were fixed at ends (as in experiments). The volume 
weight of the concrete column was not taken into account. In the case of 
calculations including stirrups, a perfect bond was assumed between concrete and 
ties. The Poisson’s ratio of concrete was 0.20. The modulus of elasticity of 
reinforcement was Es=200 GPa. The stirrups were taken in into account only in the 
calculations of a size effect for reinforced columns by Bažant and Kwon (1994). 

The numerical results compared to the experimental ones have been 
summarized in Tab. 7.9. In addition the values of the buckling forces according to 
the Polish Standard (2002) were enclosed. 
 
Experiments on columns by Kim and Lee (2000) 
The FE-analyses were performed for one square column 100×100 mm2 with the 
slenderness ratio of λ=45 undergoing uniaxial bending (denoted as SS0) and 
biaxial bending (denoted as SS45). The eccentricity was 40 mm (in one direction 
during uniaxial bending or in two directions during biaxial bending). The 
maximum size of the aggregate in concrete was da

max=8 mm. The ties made of 4.7 
mm plain steel bars were at a distance of 100 mm (reduced to 50 mm at ends). 
About 19500 8-noded solid elements were used (8×8×304).  

The evolution of the calculated vertical force versus the lateral deflection as 
compared to experiment is shown in Fig. 7.62. The calculated failure force of 
124.9 kN for uniaxial bending is comparable to the experimental values of 119-
126 kN (Tab. 7.9). In the case of biaxial bending, the calculated failure force of 
114.4 kN is larger than the experimental forces of 103-106 kN by 10% (Tab. 7.9). 
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             a)                                b)                                       c)                        

 
d) 

 
Fig. 7.60 Geometry of reinforced concrete columns in experiments by: a) Kim and Lee 
(2000), b) Hsu (1988), c) Lloyd and Rangan (1996) and d) Bažant and Kwon (1994) 
(Majewski et al. 2009) 
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a)                      b)                           c) 

 
                                                              d) 

 
Fig. 7.60 (continued) 

 
Moreover, the calculated shape of the load-displacement curve after peak is 

different, viz. the calculated behaviour of columns is too ductile. The distribution of 

a non-local parameter 2κ
−

along the column length at the tensile reinforcement is 

depicted in Fig. 7.63. The calculated mean spacing of localized zones is 40 mm 
(uniaxial bending) and 36 mm (biaxial bending), and is smaller than the average 
crack spacing according to: CEB-FIP Model Code (1991), 62 mm, Eurocode 2 
(1991), 127 mm, and Lorrain et al. (1998), 73 mm. The calculated deflections at 
ultimate load (mid-height), 15 mm (uniaxial bending) and 13 mm (biaxial 
bending), are comparable to the measured value of 16-18 mm for uniaxial bending 
and 8.5-9.5 mm (biaxial bending), respectively (Tab. 7.9). 

In the computations, the columns failed similarly as in experiments. The failure 
took place in the compressive part of concrete at mid-height. 

The effect of a smaller fracture energy in tension (Gf=50 N/mm) on FE-results 
was insignificant. The calculated failure forces were similar. In turn, the calculated 
mean spacing of localized zones was slightly larger (by 10%). 
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Fig. 7.61 Assumed curve σc=f1(ε) in the compressive regime (A) and tensile regime (B) for 
experiments by: a) Kim and Yang (1995), b) Kim and Lee (2000), c) Hsu (1988), d) Lloyd 
and Rangan (1996) and e) Bažant and Kwon (1994) (Majewski et al. 2009) 
 
 
 
 
 
 
 
 
 
 



7.4   Columns 253
 

Table 7.8 Details of test columns by Kim and Lee (2000), b) Hsu (1988), c) Lloyd and 
Rangan (1996) and d) Bažant and Kwon (1994) (Majewski et al. 2009) 
 

Tests Cross-section 

area 

b×d [mm2] 

Length 

l 

[m] 

Slender-ness 

 

Eccentricity 

[mm] 

Reinforce-ment 

(ratio [%]/number 

and diameter [mm]) 

1a, 1b [1] 100×100 1.30 45 40 2.14 (4φ 8.3) 

2a [2] 102×102 1.53 52 127 2.75 (4φ 9.5) 

2b [2] 102×102 1.53 52 76.2 2.75 (4φ 9.5) 

3a [3] 102×305 1.68 57 30 1.44 (6φ 12) 

3b [3] 102×305 1.68 57 40 1.44 (6φ 12) 

4a [4] 25.4×25.4 0.146 19.9 6.35 4.91 (4φ 3.2) 

4b [4] 25.4×25.4 0.273 37.2 6.35 4.91 (4φ 3.2) 

4c [4] 25.4×25.4 0.400 54.6 6.35 4.91 (4φ 3.2) 

Tests Concrete cover 

[mm] 

Concrete 

compres-sive 

strength 

[MPa] 

Concrete 

Tensile strength 

[MPa] 

Modulus of 

elasticity of 

concrete 

[GPa] 

Yield stress in 

vertical reinforce-

ment 

[MPa] 

1a, 1b [1] 23 27.0 3.4 24.30 436 

2a [2] 24 23.6 1.73 30.04 307 

2b [2] 24 23.6 1.73 30.04 307 

3a [3] 15 58. 2.71 38.392 430 

3b [3] 15 58. 2.71 38.392 430 

4a [4] 5.1 29 1.98 32.5 552 

4b [4] 5.1 29 1.98 32.5 552 

4c [4] 5.1 29 1.98 32.5 552  
[1] Kim and Lee (2000), [2] Hsu (1988), [3] Lloyd and Rangan (1996), [4] Bažant and Kwon (1994). 

 
Experiments on columns by Hsu (1988)  
The FE-analyses were performed for 2 square columns 102×102 mm2 with the 
slenderness ratio of λ=52 (denoted by HS). The eccentricities were: e=76.2 mm 
and e=127 mm. About 5000 8-noded solid elements were used (5×5×200).  

The evolution of the calculated vertical force versus the lateral deflection as 
compared to experiment is shown in Fig. 7.64. The calculated failure loads of 29.4 
kN (e=76.2 mm) and 53.4 kN (e=127 mm) agree with the corresponding 
experimental values 28.7 kN and 53 kN, respectively (Tab. 7.9). The distribution of 

a non-local parameter 2κ
−

 along the column length in concrete (at the tensile 

reinforcement) is depicted in Fig. 7.65. The calculated spacing of localized zones 
(sc=58 mm) is in good agreement with the average crack spacing according to 
CEB-FIP Model Code (1991), 64 mm, and Lorrain et al. (1998), 70 mm. 

In the computations, the columns failed similarly as in experiments. The failure 
took place due to increased tensile strain in reinforcement near the mid-height. 
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Table 7.9 Data summary of tests, FE-analysis and standard values (forces, mid-height 
deflections, spacing of localized zones); experiments by Kim and Lee (2000), b) Hsu (1988), 
c) Lloyd and Rangan (1996) and d) Bažant and Kwon (1994) (Majewski et al. 2009) 

 
Tests Failure 

peak force 

(experiment) 

[kN] 

Failure peak 

force 

(FEM) 

[kN] 

Failure peak force 

(Polish Standard 

2002) 

[kN] 

Deflection at 

maximum load 

(experiment) 

[mm] 

Deflection at 

maximum load 

(FEM) 

[mm] 

1a [1] 119-126 124.9 103.6 16.0-18.1 15 

1b [1] 103-106 114.4 77.0 8.4-9.5 13 

2a [2] 28.7 29.9 25.9 - 12 

2b [2] 54 53.4 41.7 - 11 

3a [3] 471 528.9 342.9 32.1 15 

3b [3] 422 354.3 281.2 27.6 15 

4a [4] 10.3-13.0 13.32 9.55 0.97-1.24 1.67 

4b [4] 11.7-12.6 10.8 8.9 2.01-2.41 2.19 

4c [4] 10.5-11.1 8.6 8.0 3.76-4.78 4.2 

Tests Spacing of localized 

zones (FEM) 

[mm] 

Crack spacing 

(standard CEB-

FIP 1991) 

Crack spacing 

(standard Eurocode 

1991) 

Crack spacing 

(Lorrain et al. 1998) 

1a [1] 40 62 127 73 

1b [1] 36 62 127 73 

2a [2] 58 64 119 70 

2b [2] 58 84 119 70 

3a [3] 47 152 214 105 

3b [3] 50 152 214 105 

4a [4] * 12 63 14 

4b [4] * 12 63 14 

4c [4] * 12 63 14  
[1] Kim and Lee (2000), [2] Hsu (1988), [3] Lloyd and Rangan (1996), [4] Bažant and Kwon (1994). 

(*) – one localized zone. 
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Fig. 7.62 Calculated load-deflection curves (solid lines) versus experimental results by Kim 
and Lee (2000) (λ=45, ρ=2.85%, e=40 mm, lc=4 mm): a) uniaxial bending, b) biaxial 
bending (Majewski et al. 2009) 

 
Experiments on columns by Lloyd and Rangan (1996) 
The FE-analyses were performed for 2 selected rectangular columns 102×305 
mm2 (denoted as IVA and IVB) with the slenderness ratio of λ=57 using the 
eccentricities e=30 mm and e=40 mm. The maximum size of the aggregate in 
concrete was dmax=7-10 mm. The ties made of 4 mm plain steel bars were at a 
distance of 60 mm. About 15000 8-noded solid elements were used (8×10×190). 
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   a) 

   b) 
 

Fig. 7.63 Distribution of non-local tensile parameter along column length l for ultimate  
load (λ=45, ρ=2.85%, e=40 mm, lc=4 mm) in experiments by Kim and Lee (2000):  
a) uniaxial bending, b) biaxial bending (2 perpendicular side surfaces were shown) 
(Majewski et al. 2009) 

 
The evolution of the calculated vertical force versus the lateral deflection as 

compared to experiment is shown in Fig. 7.66. The calculated failure loads of 529 
kN (e=30 mm) and 354 kN (e=40 mm) significantly differ from the corresponding 
experimental values of 471 kN and 422 kN, respectively. The distribution of a  
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non-local parameter 
2κ

−
along the column length in concrete (at the tensile 

reinforcement) is depicted in Fig. 7.67. The mean spacing of localized zones is 47 
mm (e=30 mm) and 50 mm (e=40 mm), respectively, and is 3 times smaller than 
the average crack spacing according to CEB-FIP Model Code (1991), 154 mm. 
The calculated mid-height deflection at ultimate load, 15 mm, is slightly smaller 
than the measured value of 27.6-32.1 mm (Tab. 7.9). 
 

 
 

Fig. 7.64 Calculated load-deflection curves for experiments by Hsu (1988) (λ=52, 
ρ=2.95%, lc=5 mm): a) e=127 mm, b) e=76.2 mm; experimental peak values: 28.7 kN 
(e=127 mm) and 54 kN (e=76.2 mm) (Majewski et al. 2009) 
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   a) 

   b) 
 

Fig. 7.65 Distribution of non-local tensile parameter along column length l for ultimate load 
(λ=52, ρ=2.95%, lc=5 mm) in tests by Hsu (1988): a) e=76.2 mm, b) e=127 mm (Majewski 
et al. 2009) 

 
In the computations, the columns failed similarly as in experiments; they broke 

at mid-length in the compressive zone.  
 
Experiments on columns by Bažant and Kwon (1994) 
The FE-analyses were performed for 3 square columns 25.4×25.4 mm2 (denoted 
by M1, M2 and M3) with the slenderness ratio of λ=19.2, 35.8 and 52.5, 
respectively. The maximum size of the aggregate in concrete was dmax=3.35 mm. 
The ties made of 1.59 mm plain steel bars were at a distance of 15.2 mm (reduced 
to 10.2 mm at ends). In the experiment, the columns broke right at mid-length. In 
the calculations, the stirrups were taken into account. About 15200 8-noded solid 
elements were used (5×5×200). 
 



7.4   Columns 259
 

 
 

Fig. 7.66 Calculated load-deflection curves for experiments by Lloyd and Rangan (1996)  
as compared to experimental ultimate loads (λ=58, ρ=1.44%, lc=5 mm): a) e=30 mm,  
b) e=40 mm 

 
The evolution of the calculated vertical forces versus the lateral deflection as 

compared to experiment is shown in Fig. 7.68. The calculated failure forces of 13.3 
kN (λ=19.2), 10.8 kN (λ=35.8) and 8.6 kN (λ=52.5) differ only by 10%-20% from 
the corresponding experimental values 10.3 kN - 13.3 kN (λ=19.2), 11.7 kN - 12.6 
kN (λ=35.8) and 10.5-11.1 kN (λ=52.5), respectively (Tab. 7.9). Thus, a 
deterministic size effect was properly captured. The distribution of the non-local 

parameter 
2κ

−
 along the column length at the tensile reinforcement is depicted in 

Fig. 7.69. Only one diffuse localized zone was obtained. The calculated spacing of 
fracture process according to CEB-FIP Model Code (1991) is 12 mm. The 
calculated deflections at ultimate load, 1.67 mm (λ=19.2 mm), 2.19 mm (λ=35.8 
mm) and 4.2 mm (λ=52.5 mm) compare well with the measured value of 0.97-
1.24 mm (λ=19.2 mm), 2.01-2.41 mm (λ=35.8 mm) and 3.76-4.78 mm (λ=52.5 
mm) (Tab. 7.9). 
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a) 

    
b) 

 
Fig. 7.67 Distribution of non-local parameter along column length l for ultimate load 
(λ=58, ρ=1.4%, lc=5 mm) in tests by Lloyd and Rangan (1996): a) e=30 mm, b) e=40 mm 
(Majewski et. 2009) 

 
In the computations, the columns failed similarly as in experiments; they broke 

at mid-length in the compressive zone.  
The difference between the calculated and standard failure force by PN-B-

03264 (2002) was higher by 25%-30% (Tab. 7.9). 
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Fig. 7.68 Calculated load-deflection curves for experiments by Bažant and Kwon (1994) 
(e=6.35 mm, ρ=4.91%, lc=5 mm): a) λ=19.2, b) λ=35.8, c) λ=52.5 (Majewski et al. 2009) 

 
 
The following conclusions can be drawn from the FE-analysis of the behaviour 

of reinforced concrete elements under eccentric compression: 

• the numerical results of buckling loads and lateral deflections are in 
satisfactory accordance with almost all experiments. Only in the case of 
tests by Lloyd and Rangan, the differences were significant (about 17% 
for the force and 50% for the deflection), 

• the standard buckling forces are always smaller than the test results, 
• the numerical results of buckling loads and lateral deflections are in a 

satisfactory accordance with experimental results, in particular for three-
dimensional simulations. The 2D results of the buckling strength are 
larger than experimental values for a larger reinforcement ratio due to the 
assumption of plane strain conditions in reinforcement and concrete, 

• the buckling strength of columns increases mainly with decreasing 
slenderness, eccentricity and increasing reinforcement area. In turn, the 
effect of a characteristic length lc is smaller than 5% (the strength 
increases with increasing characteristic length of micro-structure), In the 
case of perfect bond, the strength can be slightly larger (2D-analysis) or 
slightly smaller (3D-analysis) as compared to bond-slip, 

• the width of localized zones at ultimate load in a tensile zone increases 
with increasing characteristic length and decreasing slenderness ratio. The 
width of zones lies in the range of (3.0-8.5)×lc, 
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a) 

b) 

c) 
 

Fig. 7.69 Distribution of non-local parameter along column length l for ultimate load 
(e=6.35 mm, ρ=4.91%, lc=5 mm) in experiments by Bažant and Kwon (1994): a) λ=19.2, 
b) λ=35.8, c) λ=52.5 (Majewski et al. 2009) 

 
• the spacing of localized zones in a tensile zone is (8-12)×lc. The spacing 

of localized zones in a tensile zone increases with increasing 
characteristic length and eccentricity, and decreasing reinforcement ratio, 
fracture energy and initial bond stiffness. It is larger for the reinforcement 
modelled as 1D elements and a stochastic distribution of the tensile 
strength. The spacing decreases with increasing (2D-analyses) and 
decreasing slenderness ratio (3D – analyses) when perfect bond is 
assumed. The spacing is about (6-14)×lc, 
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• the spacing of localized zones in 3D-simulations is larger than in 2D-
simulations for perfect bond and smaller for bond-slip, 

• the average crack spacing according to CEB-FIP Model Code (1991) and 
the formula by Lorrain et al. (1998) is well reproduced by numerical 
analyses, 

• the effect of stirrups and fracture energy in tension and compression on 
the ultimate load is negligible. 

7.5   Corbels 

Corbels are structural members widely used in practical engineering. They occur 
as reinforced concrete elements additionally strengthened by steel fibers or FRP 
sheets. Although they are very popular structural elements, the detailed 
information about their complex behaviour is still lacking. Codes contain only 
simplified relationships which are not able to describe strain localization 
connected closely to both ductile flexural and shear brittle failure mode.  

Extensive experimental and theoretical studies on the behaviour of corbels were 
performed in the last decade. The earliest analytical concept for reinforced 
concrete corbels was proposed by Niedenhoff (1961) using a so-called strut-and-
tie model (called also a ‘truss analogy’ approach). Later this model was improved 
among others by Mehmel and Backer (1965) who proposed a statistically 
indeterminate five-bar truss and by Hagberg (1983) who allowed in the truss for 
the depth variability of a compression zone. In turn, the experiments were carried 
out by e.g. Kriz and Raths (1965), Robinson (1969), Mattock et al. (1976), Yong 
and Balaguru (1994), Foster et al. (1996), Nagrodzka-Godycka (2001), Campione 
et al. (2005) and Souza (2010), which significantly contributed to an identification 
of different failure mechanisms occurring in corbels. In the case of the FEM, the 
behaviour of reinforced concrete corbels was investigated among others by Will et 
al. (1972), van Mier (1987), Renuka Prasad et al. (1993), Strauss et al. (2006) and 
Manzoli et al. (2008). Van Mier (1987) used a smeared crack approach by Rots et 
al. (1985) assuming an elasto-plastic Mohr-Coulomb yield criterion in 
compression. Renuka Prasad et al. (1993) analysed corbels with a smeared-fixed 
crack model using a constitutive model by Channakeshava and Iyengar (1988). In 
turn, Strauss et al. (2006) modelled the experiments by Kriz and Raths (1965) and 
by Fattuhi (1990) by taking into account the advantage of a smeared crack 
approach with a yield surface by Menétrey and Willam in compression available 
in the programme ATENA (Červenka1985). A simplified regularization technique 
in the form of a crack-band model was introduced. It allowed one to obtain mesh-
insensitive force-displacements curve only, but it did not preseve the well-
posedness of the boundary value problem. In turn, the three-dimensional RC  
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corbels in tests by Mehmel and Freitag (1967) were modelled by Manzoli et al. 
(2008) by means of a strong discontinuity approach to obtain mesh-independent 
results. The constitutive concrete behaviour was described with an isotropic 
damage model. The best agreement between numerical and experimental results 
with respect to the load bearing capacity of corbels was achieved by Strauss et al. 
(2006) for 2D calculations (the difference between the experimental and numerical 
failure force was 7%), and by Manzoli et al. (2008) for 3D calculations where the 
numerical ultimate load was higher by 11% than the experimental one. 
Concerning the crack pattern, the best agreement with experiments was achieved 
again by Manzoli et al. (2008).  

The aim of the present research is to properly describe a load-displacement 
curve and strain localization in reinforced concrete corbels using relatively simple 
continuum models for concrete (with respect to implementation and calibration) 
enhanced by a characteristic length of micro-structure by means of a non-local 
theory. The initial 2D calculations were performed within enhanced elasto-
plasticity to model tests by Fattuhi (1990) and by Mehmel and Freitag (1967) in 
order to compare our numerical results with those by Strauss et al. (2006) and  
by Manzoli et al. (2008). Next, the numerical 2D and 3D results were 
comprehensively compared with the corresponding tests by Campione et al. (2005) 
using 3 different enhanced continuum models: an isotropic elasto-plastic, an 
isotropic damage and an anisotropic smeared crack model. Such comprehensive 
comparative analysis of the mixed tensile-shear failure mode has not been 
performed yet.  

 
Tests by Mehmel and Freitag (1967)  
The numerical calculations were carried out with a corbel with horizontal stirrups 
of Fig. 7.70a. The shear span-depth ratio was a/h=0.77 and the reinforcement ratio 
ρ=0.46%. The main longitudinal reinforcement consisted of two 14 mm and four 
16 mm bars. The reinforcement had the ultimate strength of 430 MPa. The 
concrete parameters were as follows: compressive strength fc=22.6 MPa and 
tensile strength ft=2.26 MPa.  
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a) 

 
b) 

 
c) 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 7.70 Geometry of reinforced concrete corbels in different tests: a) by Mehmel and 
Freitag (1967), b) by Fattuhi (1990), c) by Campione et al. (2005)  

 
 



266 7   Modelling of Fracture in Reinforced Concrete under Monotonic Loading
 

Tests by Fattuhi (1990) 
The corbel denoted as ‘F25’ without shear reinforcement was subjected to 
numerical calculations (Fig. 7.70b). The shear span-depth ratio was equal to 
a/h=0.74 and the reinforcement ratio was ρ=0.99%. The two 12 mm bars had the 
yield strength of 452 MPa and ultimate strength of 684 MPa. The compressive and 
tensile concrete strengths were fc=36.1 MPa and ft=3.02 MPa, respectively. 

 
Tests by Campione (2005) 
Laboratory tests were carried out among others with short corbels with shear 
reinforcement (Fig. 7.70c). The shear span-effective depth ratio was a/d=0.93. 
The maximum compressive strength of concrete was f’c=48.5 MPa and maximum 
splitting tensile strength was f’t=4.09 MPa. The reinforcement ratio was ρ=0.7%. 
The 10 mm bars had the yield strength of 488 MPa.  

 
Analytical truss model 
Ultimate failure forces in RC corbels were also analytically calculated on the basis 
of a strut-and-tie model frequently used in the engineering practice. This model 
(Hagberg 1983) (Fig. 7.71) takes into account the variability depth of a 
compression zone and the shear span-effective depth ratio (a/d) 

 

                                     
1 2tan tan tanV

s sw xF F F
F

β β β
= + = ,                                   (7.21) 

 
where Fv – ultimate vertical force, Fx=Fs+Fsw - reinforcement force ( s s ysF A f=  - 

force in bars and ,sw s y swF A f=  - force in stirrups). The value of tanβ was 

calculated as 
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,                      (7.22) 

 

where b is the corbel width. In turn, the angles β1 and β2 denote the inclination of 
compressive members. 

 
FE input data 
Tests by Mehmel and Freitag (1967)  

 
The 2D calculations were carried out with the elasto-plastic model only (Eqs. 3.27-
3.32, 3.93 and 3.99). A regular mesh with 1194 quadrilateral elements composed 
of four diagonally crossed triangles was used by taking into account the symmetry 
of the system. The 3-node constant strain triangles were used. Concrete was 
assumed as a uniform material. The finite element height and width were equal to 
25 mm and were not greater than 3×lc (lc=25 mm) to achieve mesh-objective 
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results (Bobiński and Tejchman 2004). The elastic constants for concrete were: 
E=21.9 GPa and vc=0.20. The compressive and tensile strengths were fc=22.6 
MPa and ft=2.26 MPa, respectively. The internal friction angle was φ=20° and the 
dilatancy angle was ψ=10°. In the case of tension, the parameter κ2

u=0.0017 was 
assumed (Fig. 7.72Aa). Thus, the tensile fracture energy was Gf =100 N/m. It was 
calculated as Gf=gf×wf; gf – area under the entire softening function (with wf

≈ 2lc 
– width of tensile localized zones with lc=5-10 mm). In the case of compression 
(Fig. 7.72Ab), we assumed κ1

u=0.0085. Thus, the compressive fracture energy Gc 
was 5000 N/m. The non-locality parameter was chosen as m=2 on the basis of 
other calculations (Bobiński and Tejchman 2004). 
 

 
Fig. 7.71 Forces in corbel with horizontal stirrups using strut-and tie model by Hagberg 
(1983) 

 
The bars and stirrups were assumed as 1D truss elements. The perfect bond was 

assumed between concrete and bars and between concrete and stirrups. The 
reinforcement behaviour was described by an elasto-plastic model according to 
Gonzales-Vidosa et al. (1988) (Fig. 7.72c) with Es=206 GPa, σy=430 MPa for bars 
and strirrups (σy – yield stress). The deformation was induced by a vertical 
displacement applied in the middle of the bearing plate situated on the column.  

 
Tests by Fattuhi (1990) 
The 2D calculations were carried out with the elasto-plastic model only (Eqs. 3.27-
3.32). A regular mesh with four-noded elements composed of a cross-diagonal 
patch of four three-nodal constant strain triangles was used (in total 1860 
elements). The symmetry of the system was taken into account. The finite element 
height and width were equal to 5 mm and were not greater than 3×lc (lc=5 mm).  
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The following material constants were assumed for concrete: Ec=33.5 GPa and 
νc=0.20, fc=36.1 MPa, ft=3.02 MPa, φ=20°, ψ=10°, Gf =100 N/m, Gc=5000 N/m, 
lc=10 mm and m=2 with compressive and tensile yield relationships shown in  
Fig. 7.72B. The reinforcement consisting of bars only was assumed as 1D elements 
fixed at ends. The reinforcement behaviour was described by the elasto-plastic 
idealization by Gonzales-Vidosa et al. (1988) (Fig. 7.72c) with Es=200 GPa and 
σy=452 MPa. The perfect bond was assumed. 

 
Tests by Campione (2005) 
In the case of 2D calculations, regular meshes with 1860 quadrilateral elements 
composed of four diagonally crossed triangles were used. In turn, a 3D model 
included 5376 cube-shaped elements (the 8-node elements with 8 integration 
points and a selectively reduced-integration technique were applied (Abaqus 
1998). A symmetry of the system was assumed. The finite element height and 
width were equal to 5 mm and were not greater than 3×lc. The material constants 
were for concrete: Ec=34.7 GPa, νc=0.20, fc=48.5 MPa, ft=3.7 MPa (calculated as 
ft=0.9×ft

’), φ=20°, ψ=10°, lc=5-10 mm and m=2. The calculations were carried out 
with various hardening-softening parameters. In the case of tension, the following 
parameters were assumed: κ2

u=0.0018 and κ2
u=0.0036 (Fig. 7.72Ca). Thus, the 

tensile fracture energy was Gf =50 N/m or Gf =100 N/m. In the case of 
compression (Fig. 7.72Cb), we assumed κ1

u=0.0135 or κ1
u=0.027. Thus, the 

compressive fracture energy was Gc=5000 N/m or Gc=10000 N/m, respectively. 
The input data for FE-analyses with the elasto-plastic concrete model are included 
in Tab. 7.10.  

In the case of the isotropic damage model, we used the following material 
constants: E=34.7 GPa, vc=0.20, α=0.96, β=200, and κ0=1.06×10-4 (Eqs. 3.35, 
3.93 and 3.99), and E=34.7 GPa, v=0.2, 0κ =1.06×10-4, α=0.96, β=200, α1=0.1, 

α2=1.16, α3=2.0 and γ=0.2 (Eqs. 3.39, 3.93 and 3.99). 
When the smeared crack approach was used, the following material constants 

were assumed: E=34.7 GPa, v=0.2, p=2.0, b1=3.0, b2=6.93, ft=2.0 MPa, εsu=0.1 
and εnu=0.00182 (Eqs. 3.52-3.60, 3.93 and 3.101). 
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                                    a)                                                                b) 
 

A) 
 

B) 
 

 
                           C) 

 
Fig. 7.72 Assumed curves in FE-calculations: a) tensile stress versus non-local parameter 

2( )t fσ κ
−

=  for concrete, b) compressive stress versus non-local parameter 2( )c fσ κ
−

=  

for concrete, c) yield stress σy versus strain ε for reinforcement according to Gonzales-
Vidosa et al. for tests by Mehmel and Freitag (1967) (A), Fattuhi (1990) (B) and Campione 
et al. (2005) (C) 
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c) 
 

 
 
Fig. 7.72 (continued) 

 
The horizontal bars and stirrups were assumed as 1D elements. The steel 

behaviour was described by the elasto-plastic law following Gonzales-Vidosa et 
al. (1988) (Fig. 7.72c) with Es=200 GPa, σy=488 MPa for bars and σy=445 MPa for 
stirrups. Either perfect bond or bond-slip according to CEB-FIP (1990) or Dörr 
(1980) (Eq. 3.114-3.119) was assumed between bars and concrete. In calculations 
with slip-bond, the same displacements were enforced between reinforcement 
(truss) and concrete (solid) elements in nodes at the specimen surfaces. 

 
Initial FE results within elasto-plasticity with non-local softening for corbels 
by Mehmel and Freitag (1967) and by Fattuhi (1990) 
The numerical results show a satisfactory agreement with experimental results for 
reinforced concrete corbels by Mehmel and Freitag (1967) (Figs. 7.73 and 7.74) 
and Fattuhi (1990) (Figs. 7.75 and 7.76) with respect to the geometry of localized 
zones and vertical failure forces.  

The calculated failure force in our model was even better reproduced than the 
calculated one by Manzoli et al (2008) as compared to the experiment by Mehmel 
and Freitag (1967) (Fig. 7.73). In turn, the calculated failure force, initial stiffness 
and softening rate with reference to the corbel by Fattuhi (1990) were also  
more precisely captured by our model than by the model by Strauss et al. (2005) 
(Fig. 7.75).  
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Table 7.10 The summary of the input data for FE-analyses with elasto-plastic concrete 
model in 2D simulations (tests by Campione et al. 2005) 

 
FE simulation Reinforcement lc [mm] Gf [N/m] Gc [N/m] Bond model 

 

1 2∅10+4∅6 10 100 10000 
CEB-FIP 

(1990) 

2 2∅10+4∅6 5 100 10000 
CEB-FIP 

(1990) 

3 2∅10+4∅6 5 50 5000 
CEB-FIP 

(1990) 

4 2∅10+4∅6 5 100 5000 
CEB-FIP 

(1990) 
5 2∅10+4∅6 5 100 10000 Dörr (1980) 
6 2∅10+4∅6 5 100 10000 perfect bond 

7 2∅10 5 100 5000 
CEB-FIP 

(1990) 
8 - 5 50 5000 - 

 
The main localized zones were better captured in our calculations than by other 

authors (Figs. 7.74 and 7.76) as compared to experiments (in particular to tests by 
Mehmel and Freitag (1967)). First, a vertical localized zone appeared due to 
bending and next several inclined ones developed due to shear from the bottom 
tensile edge to the upper compressive corner. In the case of tests by Fattuhi 
(1990), the experimental inclined localized zone is more curved, but the general 
strain distribution was properly reproduced. The calculated vertical localized zone 
was shorter than the experimental one.  

The difference between numerical and experimental vertical failure forces for 
test by Mehmel and Freitag (1967) and test by Fattuhi (1990) was in the range of 
1%. As compared to the theoretical value by a strut-and-tie model (Eqs. 7.21 and 
7.22), the experimental maximum vertical force in the test by Mehmel and Freitag 
(1967) was lower by 8%, while in the test by Fattuhi (1990) was higher by 6% 
(Tab. 7.11). 
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Fig. 7.73 Load-displacement curves from 2D calculations using elasto-plastic model (a) as 
compared with experimental result by Mehmel and Freitag (1967) (b) and numerical result 
by Manzoli (2008) (c) (Syroka et al. 2011) 

 
FE results within elasto-plasticity with non-local softening for corbels by 
Campione et al. (2005) 

 
Effect of characteristic length and fracture energy 
Figure 7.77 shows the calculated 2D load-displacement curves (F - vertical force 
at the support, u - vertical displacement at the support) for reinforced concrete 
corbels by Campione et al. (2005) possessing shear reinforcement with the 
different characteristic length of micro-structure (lc=5 mm or lc=10 mm), various 
tensile fracture energy (Gf=50 N/m or Gf=100 N/m) and compressive fracture 
energy (Gc=5000 N/m or Gc=10000 N/m) and the bond-slip law for bars of  
Fig. 3.13 (note that by varying lc, the softening curve can be scaled in order to keep 
the fracture energy Gf unchanged). The experimental curve was also attached. The 

distribution of a non-local tensile softening parameter 2κ
−

 during 3 subsequent 

phases (for the vertical force equal to 50 kN, 100 kN and at the peak, respectively) 
is depicted in Fig. 7.78 (lc=5 mm and lc=10 mm, Gf=50 N/m, Gc=10000 N/m).  
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a)                                                             b) 

 
c) 

 
Fig. 7.74 Calculated pattern of localized zones from our 2D calculations with elasto-plastic 
model (a) as compared to experimental result by Mehmel and Freitag (1967) (b) and 
numerical result of displacement contours by Manzoli (2008) (c) (Syroka et al. 2011) 
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Fig. 7.75 Load-displacement curves from our 2D calculations using elasto-plastic model (a) 
compared with experimental result by Fattuhi (1990) (b) and numerical results by Strauss et 
al. (2006) (c) (Syroka et al. 2011) 

 
The calculated 2D geometry of localized zones is in a satisfactory agreement 

with the experimental one. There exist vertical and inclined localized zones as in 
the experiment. The sequence of the formation of localized tensile zones during 
loading is close to laboratory results (Fig. 7.79). An increase of the characteristic 
length causes a growth of the width of localized zones w by 30% (w=20 mm with 
lc=5 mm). However, a strong discrepancy between FE analyses and experiments 
with respect to the evolution of the load-displacement curve is evident. Firstly, the 
calculated maximum vertical force is higher by 20%. Secondly, the calculated 
initial stiffness of the specimen is significantly larger than the experimental one. 
This difference is probably caused by an inaccurate measurement of the vertical 
displacement during initial loading in the test (the elastic modulus of concrete was 
assumed in FE analyses the same as in the experiment). 

The influence of the tensile fracture energy on the load bearing capacity is 
negligible. The lower tensile fracture energy causes a small increase of the width 
of localized zones. The load bearing capacity of corbels increases with increasing 
compressive fracture energy. For Gc=10000 N/m, the ultimate force is higher by 
5% than for Gc=5000 N/m. The pattern of localized zones is not affected by the 
variation of the tensile and compressive fracture energy. An inclined localized 
zone propagating from the support zone reaches the upper corner earlier for the 
lower compressive fracture energy.  

The experimental vertical forces were also compared to the theoretical one 
calculated on the basis of a strut-and-tie model (Eqs. 7.21 and 7.22). The 
theoretical value was higher (similarly as the numerical one) than the experimental 
one by 16% (Tab. 7.11).  
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                                           a)                                                                   b) 

 
c) 

 
Fig. 7.76 Calculated pattern of localized zones from our 2D calculations with elasto-plastic 
model (a) compared to experimental results by Fattuhi (1990) (b) and numerical results by 
Strauss et al. (2006) (c) (Syroka et al. 2011) 

 
Afterwards, FE results were compared for 3 different bond definitions between 

concrete and reinforcement: perfect bond, bond-slip by Dörr (1980) (Eqs. 3.114 
and 3.115) or by CEB-FIP (1990) (Eqs. 3.116-3.119). The effect of the bond-slip 
law on the pattern of localized zones and a load-displacement diagram was  
found to be negligible in contrast to FE calculations with reinforced concrete 
beams (Marzec et al. 2007), where the spacing of localized zones increased with 
decreasing initial bond stiffness. 
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Table 7.11 Data summary of failure force from experiments, 2D FE results with elasto-
plastic concrete model and analytical formula using strut-and-tie model by Hagberg (1983)  

 

FE 
simulation 
of Tab. 7.8 

Maximum 
vertical force 

from FE 
analyses FN 

[kN] 

Maximum 
vertical force 

from 
experiments 

FE [kN] 

FN /FE

Maximum 
vertical force 

from truss 
model 

FT [kN] 

FN 
/FT 

Campione et al (2007) 
1 129.51 98.83 1.31 114.54 1.13 
2 128.50 98.83 1.30 114.54 1.12 
3 121.95 98.83 1.23 114.54 1.06 
4 122.02 98.83 1.23 114.54 1.07 
5 128.43 98.83 1.3 114.54 1.12 
6 128.35 98.83 1.3 114.54 1.12 
7 79.68 77.60 1.03 76.59 1.04 
8 14.01 13.35 1.05 - - 

Mehmel and Freitag (1967) 
1 933.29 933 1.00 1020.39 0.92 

Fattuhi (1990) 
1 109.55 108.5 1.01 103.52 1.06 

 
Effect of horizontal bars and stirrups 
Figure 7.80 presents the numerical and experimental 2D results for concrete 
corbels and for reinforced concrete with and without shear reinforcement (lc=5 
mm, Gf=100 N/m, Gc=5000 N/m). The presence of shear reinforcement improves 
material ductility and increases the load bearing capacity of reinforced concrete 
corbels by 50% (Tab. 7.11). In turn, the presence of bending reinforcement 
increases about six times the load bearing capacity of concrete corbels (Tab. 7.11). 
The calculated ultimate force for the reinforced concrete corbel without shear 
reinforcement and for the concrete corbel is nearly the same as the experimental 
one (Tab. 7.11). However, the calculated initial stiffness is too large. The 
reinforced concrete corbel without stirrups failed due to the appearance of a 
vertical (flexural) and an inclined (shear) localized zone (Fig. 80Bb) as in the 
experiment. The concrete corbel failed due to the appearance of a vertical 
localized zone as in the experiment (Fig. 80Bd).  
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Fig. 7.77 Load-displacement curves for different characteristic lengths and various 
compressive and tensile fracture energy from 2D calculations (solid lines) compared to the 
experiments by Campione et al. (2005): a) lc=5 mm, Gf=100 N/m, Gc=10000 N/m, b) lc=10 
mm, Gf=100 N/m, Gc=10000 N/m, c) lc=5 mm, Gf=100 N/m, Gc=5000 N/m, d) lc=5 mm, 
Gf=50 N/m, Gc=5000 N/m (bond-slip law by CEB-FIP 1990) (Syroka et al. 2011) 

 
 

Effect of 3D conditions 
The load bearing capacity (Fig. 7.81) and geometry of localized zones (Fig. 7.82) in 
3D analyses are similar as in 2D simulations. The width of localized zones is also 
similar. A decrease of compressive fracture energy reduces the load bearing 
capacity of reinforced concrete corbels. The calculated slope of softening is in 
good agreement with the experiment. 

 
FE results within damage mechanics and smeared crack approach with  
non-local softening for corbels by Campione et al. (2005) 
Figures 7.83-7.85 demonstrate the FE results for two remaining constitutive 
models (Chapters 3.1.2 and 3.1.3) (lc=5 mm, perfect bond) for reinforced concrete 
corbels with shear reinforcement by Campione et al. (2005) (the results with a 
rotating and a fixed crack approach were similar).  
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     A)                                                           B) 

   a) 

   b) 

     c) 
 

Fig. 7.78 Distribution of non-local softening tensile parameter 2κ
−

 for different 

characteristic lengths from 2D calculations for tests by Campione et al. (2005): A) lc=5 mm, 
B) lc=10 mm (Gf=100 N/m, Gc=10000 N/m, bond-slip law by CEB-FIP (1990), a) F=50 
kN, b) F=100 kN, c) at peak (Syroka et al. 2011) 

 
In the case of the isotropic damage model, the agreement with experiments is 

satisfactory, although the vertical localized zone continuously develops and the 
inclined zone is too steep (Fig. 7.84). In the case of the modified von Mises 
definition of the equivalent strain measure ε  (Eq. 3.38), the vertical localized zone 
first appears and next separately the inclined one. In turn, with the definition of the 
equivalent strain measure ε  by Haüsler-Combe (Eq. 3.39), the inclined zone is  
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Fig. 7.79 Experimental crack pattern for reinforced concrete corbels with shear 
reinforcement (Campione et al. 2005) 

 
connected with the vertical one. The width of the vertical strain localization in the 
first stage is similar in both cases and larger by 10% than for the elasto-plastic 
constitutive model. The calculated load bearing capacities are 20% higher than in 
the experiment. Both curves exhibit similar softening as in the experiment.  

The smeared crack approach is also able to properly capture the propagation of 
localized zones (Fig. 7.85). The sequence of localized zones (first, the vertical and 
next, the inclined one) is similar to the one observed in the experiment. As 
compared with the elasto-plastic model, the width of vertical zone is much larger 
for the smeared crack approach, moreover it has a different slope. The calculated 
maximum vertical force (Fig. 7.85) is significantly too high as compared to the 
experiment (by 45%). A similar outcome in the form of a high calculated vertical 
failure force with the smeared crack model was also obtained by Souza (2010).  
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A) 

 
B) 

a)      b) 

(c  

 
d) 

 
Fig. 7.80 The calculated 2D load-displacement curves (A) and distribution of non-local 

softening tensile parameter 2κ
−

 (B) for corbels as compared to experiments (Campione et 

al. 2005): a) reinforced concrete corbel without shear reinforcement (experiment), b) 
reinforced concrete corbel without shear reinforcement (FEM), c) concrete corbel 
(experiment), d) plain concrete corbel (FEM) (Syroka et al. 2011) 
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Fig. 7.81 Load-displacement curves from 3D FE calculations with different compressive 
fracture energies: a) Gc=10000 N/m, b) Gc=5000 N/m (Gf=50 N/m, lc=5 mm, perfect bond) 
for tests of Campione et al. (2005) (Syroka et al. 2011) 

 

 

Fig. 7.82 Distribution of non-local softening parameter 2κ
−

 from 3D simulations with 

elasto-plastic model with non-local softening (Gc=5000 N/m, Gf=50 N/m lc=5 mm, perfect 
bond) for tests of Campione et al. (2005) (Syroka et al. 2011) 
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Fig. 7.83 Load-displacement curves from 2D calculations for various concrete models 
(solid lines) with non-local softening compared to the experimental curve (dashed line): a) 
elasto-plastic model, b) damage model with modified von Misses equivalent strain measure 
(Eq. 3.38), c) damage mechanics with equivalent strain measure by Häussler-Combe  
(Eq. 3.39), d) smeared fixed crack approach (for tests of Campione et al. (2005) (Syroka et 
al. 2011) 

 
The following conclusions can be derived from the comprehensive FE analysis 

of reinforced concrete corbels under a mixed tensile-shear failure mode: 

• The best agreement with experimental results was obtained using the elasto-
plastic model with non-local softening (with the compressive fracture energy 
Gc=5000 N/m and characteristic length of lc=5 mm) with respect to a load-
displacement diagram and a geometry of localized zones. A perfect agreement in 
the case of a vertical failure force was achieved with the elasto-plastic model for 
experiments by Mehmel and Freitag (1967) and by Fattuhi (1990). In the case of 
tests by Campione et al. (2005), the calculated ultimate force was higher by 20% 
within both elasto-plasticty and isotropic damage mechanics and by 45% with the 
anisotropic smeared crack model. 
• The effect of tensile fracture energy on the ultimate vertical force was 
insignificant. A decrease of the compressive fracture energy slightly reduced the 
ultimate vertical force.  
• An increase of a characteristic length slightly increased the ultimate vertical 
force and significantly width of localized zones. The characteristic length did not 
influence the pattern of localized zones. 
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a) 

 
 

 
b) 

 
Fig. 7.84 Calculated pattern of localized zones with continuum damage model assuming: a) 
modified von Misses equivalent strain measure (Eq. 3.38) and b) equivalent strain measure 
by Häussler-Combe (Eq. 3.39) (for tests of Campione et al. 2005) (Syroka et al. 2011) 
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Fig. 7.85 Calculated pattern of localized zones with smeared fixed crack approach (for tests 
of Campione et al. 2005) (Syroka et al. 2011) 

 
• The presence of horizontal stirrups increased the vertical failure force (by 50%) 
and ductility of reinforced concrete corbels.  
• The calculated load bearing capacity was similar in 2D and 3D calculations. 
• Concerning the simulated geometry of localized zones, the most satisfactory 
agreement was achieved with the elasto-plastic model, next with the damage 
model and finally with the smeared fixed crack model.  
• The theoretical failure force by a strut-and-tie model was larger by 7% as 
compared to the experimental results by Campione et al. (2005), by 8% lower as 
compared to tests by Mehmel and Freitag (1967) and by 6% higher as compared to 
tests by Fattuhi (1990). 

7.6   Tanks 

Frame or wall corners belong to very important structural elements. Their 
dimensioning is not straightforward due to a complex stress caused by possible 
failure modes (e.g. reinforcement yielding, concrete splitting, concrete failure in 
compression and anchorage failure). Numerous experiments on reinforced 
concrete frame corners (Nilsson 1973, Stroband and Kolpa 1981, 1983, Kordina 
1984, Akkermann 2000) show that the stress state and related crack distribution 
depend strongly on the direction of a loading bending moment: negative (closing) 
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or positive (opening). The reinforcement detail in corners usually chosen for 
negative moments is unsafe for positive ones. There still exist standards (e.g. 
Polish Standard 2002) which do not distinguish the type of reinforcement between 
these two different moments.  

Chapter shows an example of failure of a wall corner in full-scale reinforced 
concrete sewage water tanks subjected to a positive bending moment. Initially, the 
wall corner was dimensioned within linear elasticity without distinguishing a sign 
of a bending moment (negative or positive). The calculations were carried out an 
isotropic elasto-plastic model by Rankine (Eq. 3.32) with non-local softening 
(Eqs. 3.93 and 3.99). Numerical results were compared with measured wall 
displacements and deformation of concrete samples taken from the tank corner. 
Finally, an effective repairing method of failed tanks was proposed. 

Three rectangular reinforced concrete tanks were constructed in a sewage 
treatment plant. Their length was 120.45 m, width 42 m and height 6.48 m. Each 
tank was 5.28 m sunken in the soil which was strengthened with gravel columns. 
The tanks were composed of 4 separate technological cells located on a foundation 
slab of 40 cm thick. Each tank was divided into 5 segments. The wall thickness 
varied between 35 cm (top) - 50 cm (bottom). The used material was: concrete 
C30/37 and steel bars AII and AIIIN. During a design phase, the internal forces in 
the tanks were calculated using FEM for a full 3D model within linear elasticity. 
Fig. 7.86 shows the reinforcement detail of the wall corner constructed. The 
reinforcement was assumed according to the Polish Standard (2002), except of the 
fact that the bents of vertical bars in vertical walls were inserted into a foundation 
slab in an opposite direction to simplify reinforcement works. 

During the virgin water filling of one tank (at this moment, the tank walls were 
not covered with soil from the outside), an excessive horizontal displacement of 
vertical walls occurred. The maximum displacement of the exterior wall at the top 
was 75 mm at the water height of 5.7 m. The shape of the displacement curve 
indicated a wall rotation against the bottom. The maximum settlement of tanks 
was about 30 mm. The filling process was stopped and the tank was emptied. 
After tank emptying, a maximum permanent horizontal wall displacement at the 
top reduced to 20 mm. 

 

 
 

Fig. 7.86 Reinforcement detail of wall bottom corner (Bobiński and Tejchman 2009) 
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No surface cracks were found on the walls and slabs. The soil investigations by 
a CPT probe confirmed its proper densification.  

The plane strain calculations were performed with a tank fragment embracing 
the wall corner shown in Fig. 7.87. The tank was located on an elastic space. 
Totally, 23’000 triangular elements were used: 15’000 for concrete, 2’000 for 
reinforcement and 6’000 for soil. The number of finite elements in the corner was 
10’000 (Fig. 7.88). The maximum finite element size was not greater than 3×lc 
(lc=10 mm) to achieve mesh-objective results. The following elastic material 
parameters were assumed for concrete: Ec=28.9 GPa and νc=0.20. The tensile 
strength ft was 2 MPa and the tensile fracture energy was Gf=50 N/m-200 N/m as 
the plastic parameters (Eq. 3.32). The reinforcement bars were assumed as 1D-
elements. For the reinforcement, an elasto-perfect plastic constitutive law was 
assumed with Es=210 GPa and σy=420 MPa (σy – yield stress). Our calculations 
were carried out with bond-slip. The analyses were carried out with a relation 
between the bond shear stress τb and slip u using a simple bond law according to 
Dörr (1980) (Eqs. 3.114 and 3.115). The elastic constants of springs simulating the 
sub-soil stiffness were so adjusted to obtain the measured soil settlement during 
the virgin water filling.  

The behaviour of the structure was analyzed during initial tank filling for 4 
different variants of reinforcement in the wall corner subjected to a positive 
(opening) bending moment (Fig. 7.89). The bearing capacity of the structure and 
wall displacements were calculated. Next, water loading was increased in the 
calculations up to the structure failure (assumed as a begin of material softening). 
Depending upon the reinforcement variant, a different bearing capacity was 
obtained (Tab. 7.12). 

 

 
Fig. 7.87 Tank fragment assumed for plane strain FE calculations (Bobiński and Tejchman 
2009) 
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Fig. 7.88 FE mesh for wall corner (Bobiński and Tejchman 2009) 

 

 
                                  a)                                                           b) 

   
                                   c)                                                           d) 
 

Fig. 7.89 4 different variants of reinforcement of wall corner assumed in FE calculations 
(Bobiński and Tejchman 2009) 

 
In all cases, a diagonal interior crack occurred (Fig. 7.90) what contributed to a 

successive wall rotation. It occurred perpendicularly to the angle bisector between 
the vertical wall and horizontal slab, at the distance of 20 cm from the interior 
corner. The distribution of cracks in concrete samples taken from the wall corner 
(Fig. 7.91) confirmed the numerical results with respect to strain localization. The 
reversal bars (case c) or diagonal bars (case d) improved the bearing capacity by 
15% only. The calculated bending moment carried by the failed corner with strain 
localization was about 250 kNm (on the basis of the distribution of normal stresses). 
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Table 7.12 Numerical results for different reinforcement variants of tank wall corner 
(Bobiński and Tejchman 2009) 
 

Reinforcement 
variant 

of Fig. 7.89 

Horizontal 
displacement 
of wall top 
with 5.7 m 

water 

Strength 
increase 

during water 
loading 

Horizontal 
displacement of 

wall top for 
increased during 

water loading 
(strength limit) 

 

 [mm] [%] [mm] 

a) 8 117 40 

b) 7 135 60 

c) 7 132 60 

d) 7 207 80 

 
To repair the tanks, they were strengthened with 3 horizontal beams fixed at the 

wall top at the height of 5.5 m (Fig. 7.92). The cracked structure was numerically 
analyzed during repeated filling after strengthening (plane strain). Figure 7.93 
shows the calculated deformation. The existing diagonal localized zone did not 
grow. No additional localized zones occurred. The bearing capacity of the tank 
increased by 50%. 
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 a) 

b) 
 

Fig. 7.90 Formation of strain localization in the wall corner during strength limit for two 

reinforcement variants of Fig. 7.89: a) variant ‘a’, b) variant ‘d’ (Bobiński and Tejchman 2009) 

 

  
 
Fig. 7.91 Concrete samples taken from wall corner (Bobiński and Tejchman 2009) 
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Fig. 7.92 Method for tank strengthening (Bobiński and Tejchman 2009) 

 

a) 

b) 
 

Fig. 7.93 Formation of strain localization in the wall corner during: a) initial water filling, 
b) repeated water filling, c) strength limit after repeated filling (Bobiński and Tejchman 
2009) 
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c) 
 

Fig. 7.93 (continued) 
 
 

Next, the 3D analysis was carried out with the tank after strengthening within 
linear elasticity (500’000 elements were used). The corner stiffness was decreased 
20-40 times. The numerical results showed that: a) the crack width was smaller 
than 0.1 mm, b) the maximum wall displacement was smaller than 1.0 cm, c) 
bending moments in the corner were smaller than the permissible bending moment 
in the cracked corner estimated to be 250 kNm, d) the bending moments (which 
changed in the wall due the wall fixing by horizontal beams at the top) were 
carried by the existing vertical and horizontal wall reinforcement.  

During tank filling after its strengthening, strains and displacement were 
measured along the wall. The measured maximum horizontal displacement of the 
wall top was 1.4 cm. The measured maximum tensile stresses in concrete, 2.4 
MPa, were smaller than the mean tensile strength of concrete 2.9 MPa. 

The numerical analysis of a reinforced concrete sewage tank wherein corners 
were subjected to a positive bending moment showed: 
• linear elastic analysis is not always suitable for a proper engineering calculation 
of reinforced concrete structures. In contrast, a non-linear elasto-plastic analysis is 
capable to realistically capture strain localization, 
• dimensioning of wall corners loaded by a negative bending moment can 
significantly differ from this with a positive bending moment. 
• independently of the reinforcement detail, a diagonal interior crack always 
occurs in corners subjected to a negative moment, 
• a diagonal crack in the interior of the corner has to be absolutely covered by 
reinforcement. 

The results on strain localization in reinforced concrete elements and structures 
(Chapter 7) show that the most realistic numerical results are provided by an 
elasto-plastic approach with non-local softening.  
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Chapter 8  

Deterministic and Statistical Size Effect in Plain 
Concrete 

Abstract. The numerical FE investigations of a deterministic and stochastic size 
effect in concrete beams of a similar geometry under three point bending were 
performed within an elasto-plasticity with a non-local softening. The FE analyses 
were carried out with four different sizes of notched and unnotched beams. 
Deterministic calculations were performed with a uniform distribution of the 
tensile strength. In turn, in stochastic calculations, the tensile strength took the 
form of random correlated spatial fields described by a truncated Gaussian 
distribution. In order to reduce the number of stochastic realizations without losing 
the calculation accuracy, Latin hypercube sampling was applied. The numerical 
outcomes were compared with the size effect law by Bažant and by Carpinteri. 

 
A size effect phenomenon (nominal strength varies with the size of structure) is an 
inherent property of the behaviour of many engineering materials. In the case of 
concrete materials, both the nominal strength and material brittleness (ratio 
between the energy consumed during the loading process after and before the 
stress-strain peak) always decrease with increasing element size under tension 
(Bažant 1984, Carpinteri 1989, Bažant and Planas 1998). Thus, concrete becomes 
perfectly brittle on a sufficiently large scale. The results from laboratory tests 
which are scaled versions of the actual structures cannot be directly transferred to 
them. The physical understanding of size effects is of major importance for civil 
engineers who try to extrapolate experimental outcomes at laboratory scale to 
results which can be used in big scale situations. Since large structures are beyond 
the range of testing in laboratories, their design has to rely on a realistic 
extrapolation of testing results with smaller element sizes. 

Two size effects are of a major importance in quasi-brittle and brittle materials: 
deterministic and statistical one (the remaining size effects are: boundary layer 
effect, diffusion phenomena, hydration heat or phenomena associated with 
chemical reactions and fractal nature of crack surfaces) (Bažant and Planas 1998). 
Currently there exist two different theories of size effect in quasi-brittle structures: 
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the energetic-statistical theory (Bažant and Planas 1998, Bažant 2004) and fractal 
theory (Carpinteri et al. 1994, 1995).  

According to Bažant and Planas (1998) and Bažant (2004) the deterministic 
size effect is caused by the formation of a region of intense strain localization with 
a certain volume (micro-crack region - called also fracture process zone FPZ) 
which precedes macro-cracks and cannot be appropriately scaled in laboratory 
tests. Strain localization volume is not negligible to the cross-section dimensions 
and is large enough to cause significant stress redistribution in the structure and 
associated energy release. The specimen strength increases with increasing ratio 
lc/D (lc – characteristic length of the micro-structure influencing both the size and 
spacing of localized zones, D – characteristic structure size). In turn, a statistical 
(stochastic) effect is caused by the spatial variability/randomness of the local 
material strength. The first statistical theory was introduced by Weibull (1951) 
(called also the weakest link theory) which postulates that a structure is as strong 
as its weakest component. The structure fails when its strength is exceeded in the 
weakest spot, since stress redistribution is not considered. The Weibull’s size 
effect model is a power law and is of particular important for large structures that 
fail as soon as a macroscopic fracture initiates in one small material element. It is 
not however able to account for a spatial correlation between local material 
properties, does not include any characteristic length of micro-structure (i.e. it 
ignores a deterministic size effect) and it underestimates the experimental size 
effect. Combining the energetic theory with the Weibull statistical theory led to a 
general energetic-statistical theory (Bažant and Planas 1998). The deterministic 
size effect was obtained for not too large structures and the Weibull statistical size 
effect was obtained as the asymptotic limit for very large structures. In turn, 
according to Carpinteri et al. (1994, 1995, 2007), the size effect is caused by the 
multi-fractality of a fracture surface only which increases with a spreading 
disorder of the material in large structures (stress redistribution and energy release 
during strain localization and cracking are not considered). 

Two size effects laws proposed by Bažant (Bažant and Planas 1998, Bažant 
2004) (called Size Effect Laws SEL) for geometrically similar structures allow to 
take into account a size difference by determining the tensile strength of structures 
without notches and pre-existing large cracks (the so-called type 1 size effect law) 
and of notched structures or structures with pre-existing cracks (the so-called type 
2 size effect law) (Fig. 8.1). In the first type structures, the maximum load is 
reached as soon as a macroscopic crack initiates from the fully formed localized 
region of non-negligible size developed at a smooth surface. In the second type 
structures, cracks grow in a stable manner prior to the maximum load. Only the 
first type of structures is significantly affected by material randomness causing a 
pronounced statistical size effect. The material strength is bound for small sizes by 
a plasticity limit whereas for large sizes the material follows linear elastic fracture 
mechanics.  

The following analytical formulae for a deterministic size effect predicted by 
asymptotic matching were proposed by Bažant (Bažant and Planas 1998) 
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where σN is the nominal strength, D is the characteristic structure size, fr
∞, Db and 

r denote the positive constant representing unknown empirical parameters to be 
determined; fr

∞ represents the solution of the elastic-brittle strength reached as the 
nominal strength for large structures, r controls the curvature and shape of the law 
and Db is the deterministic characteristic length having the meaning of the 
thickness of the cracked layer (if Db=0, the behaviour is elastic-brittle, Eq. 8.1). In 
turn, in Eq. 8.2, ft denotes the tensile strength, B is the dimensionless geometry-
dependent parameter (depending on the geometry of the structure and crack) and 
Do denotes the size-dependent parameter called transitional size (both unknown 
parameters to be determined). 
 

 
 
 
 
 
 
 
 

a)                                        a) 
 
 
 
 
 
 
 
 
 
 
 
                                                                                                                b) 

Fig. 8.1 Size effect models SEL by Bažant (2004) in logarithmic scale with σN - nominal 
strength, D – element size: a) type 1 (structures without notches and pre-existing large 
cracks), b) type 2 (notched structures) (material strength is bound for small sizes by 
plasticity limit whereas for large sizes, the material follows Linear Elastic Fracture 
Mechanics LEFM) 
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Another approach to the size effect was proposed by Carpinteri et al. (1994, 
1995, 2007) (called Multi-Fractal Scaling Law MFSL) (Fig. 8.2). In this fractal 
approach, the nominal strength σN under tension decreases in a hyperbolic form 
with increasing characteristic structure size D 
 

                                      ( )N 1 2D A ( A / D ),σ = +                                           (8.3) 
 

where A1 and A2 are the empirical constants. The approach does not distinguish 
between a deterministic or statistical size effect. The MFSL behaviour in the 
bilogarithmic plane lnσN versus lnD is non-linear and shows two asymptotes with 
slope -1/2 for small structures and slope zero for the largest ones, respectively. It 
predicts a transition from a disordered regime at the smallest scales to an ordered 
regime at the largest scales. According to Bažant and Yavari (2005, 2007c), the 
cause of a size effect is certainly energetic-statistical not fractal and the multi-
fractal scaling law is a purely empirical formula and good enough only for  
the type 1 size effect (at crack initiation) and only for sizes not so large that the 
Weibull statistical size effect would intervene (MFSL does not capture a transition 
to the Weibull size effect for very large sizes). The disadvantage of both size 
effect laws is that they do not explicitly present the empirical constants to 
calculate the size effect in advance. In addition, a transition between two size 
effect types by Bažant remains still to be challenge. 

The fits of the size effect law by Bažant (2004) and the multi-fractal scaling 
law by Carpintieri et al. (1994) to experimental data for concrete elements (van 
Vliet 2000) and reinforced concrete beams failing by shear (Bažant and Yavari 
2007 c) show that both laws are only similar for experiments at laboratory scale 
but can significantly differ when the structure is very small or very large (Fig. 8.3) 
that can have serious consequences in the second case.  

In spite of many experiments exhibiting the noticed size effect in concrete and 
reinforced concrete elements under different loading types (Walraven and 
Leihwalter 1994, Wittmann et al.1990, Elices et al. 1992, Bažant and Chen 1997, 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8.2 Size effect by Carpintieri et al (1994): nominal strength σN versus specimen size D 
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Bažant and Planas 1998, Koide et al. 1998, van Vliet 2000, Chen et al. 2001,  
Le Bellego et al. 2003, van Mier and van Vliet 2003, Bažant 2004, Bažant and 
Yavari 2005, Vorechovsky 2007, Yu 2007), the scientifically (physically) based 
size effect is not taken into account in a practical design of engineering structures, 
that may contribute to their failure (Bažant and Planas 1998, Yu 2007). Instead, a 
purely empirical approach is sometimes considered in building codes which is 
doomed to yield an incorrect formula since physical foundations are lacking.  

The goal of the numerical simulations is to investigate a deterministic and 
statistical size effect mainly in flexural resistance of notched and un-notched beam 
elements of a similar geometry under quasi-static three-point bending by 
considering the influence of strain localization. A finite element method with an 
elasto-plastic constitutive model using a Rankine’a criterion with non-local 
softening (Eqs. 3.32, 3.93 and 3.97) was used. Two-dimensional calculations were 
performed with four different concrete beam sizes of a similar geometry. 
Deterministic calculations were performed assuming constant values of tensile 
strength. In turn, statistical analyses were carried out with spatially correlated 
homogeneous distributions of tensile strength which were assumed to be random. 
Truncated Gaussian random tensile strength fields were generated using a 
conditional rejection method (Walukiewicz et al. 1997) for correlated random 
fields. The approximated results were obtained using a Latin hypercube sampling 
method (McKay et al. 1979, Bažant and Lin 1985, Florian 1992, Huntington and 
Lyrintzis 1998) belonging to a group of variance reduced Monte Carlo methods 
(Hurtado and Barbat 1998). This approach enables one a significant reduction of 
the sample number without losing the accuracy of calculations. The numerical 
results of load-displacements diagrams with notched beams were compared with 
corresponding laboratory tests performed by Le Bellego et al. (2003). The effect 
of the correlation length was also investigated. The FE results were compared with 
the size effect law SEL by Bažant and MFSL by Carpinteri. 

The combined statistical and deterministic size effects were simulated by 
Carmeliet and Hens (1994), Frantziskonis (1998), Gutierrez and de Borst (1998), 
Gutierrez (2006), Vorechovsky (2007), Bažant et al. (2007a, 2007b), Yang and Xu 
(2008) and Bobiński et al. (2009). The most comprehensive combined calculations 
were performed by Vorechovsky (2007) for unnotched concrete specimens under 
uniaxial tension with a micro-plane material model and crack band model using 
Latin hypercube sampling. A squared exponential autocorrelation function with a 
correlation length of 80 mm was used. His results showed that the strength of 
many specimens, which parameters were obtained from random sampling, could 
be larger than a deterministic one in small specimens in contrast to large 
specimens which rather obeyed the weakest link model. The difference between a 
deterministic material strength and a mean statistical strength grew with increasing 
size. The structural strength exhibited a gradual transition from Gaussian 
distribution to Weibull distribution at increasing size. As the ratio of 
autocorrelation length and specimen size decreased, the ratio of spatial fluctuation 
of random field realizations grew. In the work by Yang and Xu (2008), a 
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heterogeneous cohesive crack model to predict macroscopic strength of materials 
based on meso-scale random fields of fracture properties was proposed. A 
concrete notched beam subjected to mixed-mode fracture was modeled. Effects of 
various important parameters on the crack paths, peak loads, macroscopic ductility 
and overall reliability (including the variance of random fields, the correlation 
length, and the shear fracture resistance) were investigated and discussed. 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

A) 
 

B) 

Fig. 8.3 Fits of the Size Effect Law by Bažant (2003) (SEL) and the Multi Fractal Scaling 
Law by Carpintier et al (1994) (MFSL) to experimental data: A) for concrete elements (van 
Vliet 2000) and B) for reinforced concrete beams failing by shear (Bažant and Yavari 
2007c) 
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Our calculations with beams follow the research presented by Vorechovsky 
(2004, 2007) by using an alternative stochastic approach. In contrast to his 
simulations: a) free-supported concrete beams under bending were analyzed, b) a 
more sophisticated regularization technique was used in the softening regime, 
namely non-local theory, which ensured entirely mesh–independent results with 
respect to load-displacement diagrams and widths of localized zones (in contrast 
to the crack band model which provides only mesh-independent load-
displacement diagrams), c) an original method of the random field generation with 
a different homogeneous correlation function was used.  

In addition, a deterministic effect was examined in concrete during uniaxial 
compression using a Drucker-Prager’s criterion with non-local softening  
(Eqs. 3.27-3.30, 3.93 and 3.97). 

8.1   Notched Beams 

Deterministic and statistical calculations 
The two-dimensional FE-calculations (Bobiński et al. 2009) of free supported 
notched beams with free ends under bending (assuming constant values of tensile 
strength ft) were performed with 4 different beam sizes of a similar geometry h×Lt: 
8×32 cm2 (called small-size beam), 16×64 cm2 (called medium-size beam), 
32×128 cm2 (called large-size beam) and 192×768 cm2 (called very large-size 
beam) (h – beam height, Lt – total beam length). The span length L was equal to 
3h for all beams (Fig. 8.4). The size of the first 3 beams was similar as in 
corresponding experiments carried out by Le Bellego et al. (2003). The 
quadrilateral elements divided into triangular elements were used to avoid 
volumetric locking. 7628 triangular (small-size beam), 14476 (medium-size 
beam), 28092 (large size beam) and 104310 (large-size beam) triangular elements 
were used, respectively. The mesh was particularly very fine in the region of a 
notch (Fig. 8.5) to properly capture strain localization in concrete (where the finite 
element size was equal to 1/3×lc, lc=5 mm). The ratio between the width of this 
fine region and beam length was always the same.  

 

 
 

Fig. 8.4 Notched concrete beams used for calculations (L=3×h) (Bobiński et al. 2009) 
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To describe the behaviour of concrete under tension during three-point bending, 
a Rankine criterion was used with a yield function with isotropic softening  
(Eq. 3.32). To model the concrete softening under tension, the exponential curve 
by Hordijk (1991) with the tensile strength of the concrete of ft=3.6 MPa was 
assumed (κu=0.005 b1=3.0, b2=6.93) (Eq. 3.55). The modulus of elasticity was 
assumed to be E=38.5 GPa and the Poisson ratio was υ=0.24 (Le Bellego et al. 
2003). The calculations were performed under plane strain conditions (the 
differences between the results obtained within Rankine plasticity under plane 
stress and plane strain conditions are insignificant). A large-displacement analysis 
available in the ABAQUS finite element code (1998) was used (although the 
influence of such analysis was negligible). In this method, the current 
configuration of the body was taken into account. The Cauchy stress was taken as 
the stress measure. The conjugate strain rate was the rate of deformation. The 
rotation of the stress and strain tensor was calculated with the Hughes-Winget 
method (1980). The non-local averaging was performed in the current 
configuration. 

 

 
 

Fig. 8.5 FE mesh in the case of a medium-size beam (Bobiński et al. 2009) 

 
A quasi-static deformation of a small, medium and large beam was imposed 

through a constant vertical displacement increment Δu prescribed at the upper 
mid-point of the beam top. To capture a snap-back behaviour in a very large size 
beam, the so-called arc-length technique was used. The actual load vector P was 
defined as λPmax where λ – multiplier and Pmax – maximum constant load vector. 
In general, the determination of the length of the arc the P–u space (u – 
displacement vector) involves the displacements of all nodes (as e.g. the Riks 
method available in ABAQUS Standard 1998). However, for problems involving 
strain localization, it is more suitable to use an indirect displacement control 
method, where only selected nodal displacements are considered to formulate an 
additional condition in the P–u space. The horizontal distance between two nodes 
lying on the opposite sides of the notch was chosen as a control variable CMOD 
(crack mouth open displacement). The indirect displacement algorithm was 
implemented with the aid of two identical and independent FE-meshes and some 
additional node elements to exchange the information about the displacements 
between these meshes.  

The Monte Carlo method was used in statistical calculations. Application of 
the method in stochastic problems of mechanics requires the following steps: 
simulation of random variables or fields describing the problem under 
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consideration (variability of material parameters, initial imperfections in structure 
geometrics and others), solution of the problem for each simulated realization, 
creation of a set of results and its statistical description. Contrary to stochastic 
finite element codes, the Monte Carlo method does not impose any restriction to 
the solved random problems. Its only limitation is the time of calculations. For 
example, to reproduce exactly the input random data of initial geometric 
imperfection of a shell structure problem, at least 2000 random samples should be 
used (Bielewicz and Górski 2002). Any nonlinear calculations for such number of 
initial data are, however, impossible due to excessive computation times. To 
determine a minimal, but sufficient number of samples (which allows one to 
estimate the results with a specified accuracy), a convergence analysis of the 
outcomes was proposed (Górski 2006). It was estimated that in case of various 
engineering problems only ca. 50 realizations had to be considered. For example 
in the shell structure limit load analysis (Górski 2006), the change of the error of 
limit load mean values between 50 and 150 samples equaled 2% and the standard 
deviations error was 12%. A further decrease of sample numbers can be obtained 
using Monte Carlo variance reduction methods.  

In the papers by Tejchman and Górski (2007, 2008), two methods: a stratified 
and a Latin sampling method were considered. It should be pointed out that these 
methods were not used for the generation of two-dimensional random fields as, for 
example, in the paper by Vorechovsky (2007), but for their classification. For that 
reason, the single realization was generated according to the initial data, i.e. the 
theoretical mean value and the covariance matrix was exactly reproduced. The 
statistical calculations according to the proposed version of the Latin sampling 
method were performed in two steps (Tejchman and Górski 2007, 2008). First, an 
initial set of random samples was generated in the same way as in the case of a 
direct Monte Carlo method. Next, the generated samples were classified and 
arranged in increasing order according to the chosen parameters (i.e. their mean 
values and the gap between the lowest and the highest values of the fields). From 
each subset defined in this way, only one sample was chosen for the analysis. The 
selection was performed in agreement with the theoretical background of the Latin 
sampling method. The numerical calculations were performed only for these 
samples. It was proved that using the Latin sampling variance reduction method 
the results can be properly estimated by several realizations only (e.g. 12-15) 
(Tejchman and Górski 2007, 2008). 

To generate the random field, the original conditional-rejection method 
described by Walukiewicz et al. (1997), Bielewicz and Górski (2002), Górski 
(2006), Tejchman and Górski (2007), and Tejchman and Górski (2008) was used. 
The method makes it possible to simulate any homogeneous or non-homogeneous 
truncated Gaussian random field described on regular or irregular spatial meshes. 
An important role in the calculations was played by the propagation base scheme 
covering sequentially the mesh points and the random field envelope which 
allowed one to fulfill the geometric and boundary conditions of the structure of the 
model. Random fields of practically unlimited sizes could be generated. 
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Various properties of concrete may be considered as randomly distributed. In 
the present work, only fluctuations of its tensile strength were taken into account. 
Two parameters described the random field should be chosen, i.e. the distribution 
of the random variable in a single point of the field and a function defining the 
correlation between these points. The distribution of a single random variable took 
the form of a truncated Gaussian function with the mean concrete tensile strength 

of 3.6tf
−

=  MPa. Additionally, it was assumed that the concrete tensile strength 

values changed between ft=1.6 MPa and ft=5.6 MPa ( 3.6 2.0tf = ± MPa). To fulfil 

this condition, the standard deviation 0.424
tf

s =  MPa was used in the 

calculations. The coefficient of variations describing the field scattering was 

cov / 0.118
tf ts f= =  ( tf =3.6 MPa - the mean tensile strength). Since 

5 5 0.424 2.12
tf

s = × = MPa, the cut of variables did not change the theoretical Gauss 

distribution distinctly (Fig. 8.6). The Irvin's characteristic length (EGf)/ft
2 (Gf  - 

tensile fracture energy) which controls the length of the fracture process zone 
(Bažant and Planas 1998) varied between 0.100 m and 0.351 m. 

Randomness of tensile strength ft has to be described by a correlation function. 
For lack of the appropriate data, the correlation function is usually chosen 
arbitrarily. It is evident that the fluctuation of any material parameters should be 
described by a homogeneous function, which confirms that the correlation 
between random material variables vanishes when the random point distance 
increases. Any non-homogeneous correlation function, for example Wiener or 
Brown, defines strong correlation between every point of the field, and such a 
definition of material parameters is unrealistic. The simplest choice is a standard 

first order correlation function 1 2 21
1 2( , ) x x

x xK x x e e
λ λ− Δ − Δ= . Here, the following (more 

general) second order and homogeneous correlation function was adopted 
(Bielewicz and Gorski 2002) 
 

                  1 2 21

1 2

2
1 2 1 2( , ) (1 ) (1 ),x x

t

x x
f x xK x x s e x e x

λ λλ λ− Δ − ΔΔ Δ = × + Δ + Δ            (8.4) 

 
where Δx1 and Δx2 is are the distances between two field points along the 
horizontal axis x1 and vertical axis x2, λx1 and λx2 are the decay coefficients 
(damping parameters) characterizing a spatial variability of the specimen 
properties (i.e. describe the correlation between the random field points). The 
second order homogeneous function (Eq. 8.4) was proved to be very useful in 
engineering calculations (Knabe et al. 1998). 

In finite element methods, continuous correlation function (Eq. 8.4) has to be 
represented by the appropriate covariance matrix. For this purpose, the procedure 
of local averages of the random fields proposed by Vanmarcke (1983) was  
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adopted. After an appropriate integration of the function (Eq. 8.4), the following 
expressions describing the variances Dw and covariances Kw were obtained (Knabe 
et al. 1998) 
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Fig. 8.6 Distribution of the concrete strength values for a single point of the mesh (Bobiński 
et al. 2009) 

 
We took mainly into account a strong correlation of the tensile strength ft in a 

horizontal direction λx1=1 1/m and a weaker in a vertical direction λx2=3 1/m in 
Eq. 8.4 (due to the way of specimen’s preparation). In this way, the layers 
forming during the concrete placing were modeled. The range of significant 
correlation was approximately 80 mm in the horizontal direction and 30 mm in 
the vertical direction (Fig. 8.7). The smaller the λ parameter, the shorter is the 
correlation range. The dimension of the random field was identical as the finite 
element mesh. The same random values were assumed in 4 neighboring 
triangular elements.  
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Fig. 8.7 The correlation distances for different coefficients λ [1/m] (Bobiński et al. 2009) 

 
Using the conditional-rejection method, 2000 field realizations of the tensile 

strength were generated. Next, the generated fields were classified according to 
two parameters: the mean value of the tensile strength and the gap between the 
lowest and the highest value of the tensile strength. The joint probability 
distribution (so-called “ant hill”) is presented in Fig. 8.8. One dot represents one 
random vector described by its mean value and the difference between its extreme 
values. The two variable domains were divided in 12 intervals of equal 
probabilities (see vertical and horizontal lines in Fig. 8.8). Next, according to the 
Latin hypercube sampling assumptions, 12 random numbers in the range 1-12 
were generated (one number appeared only once) using the uniform distribution. 
The generated numbers formed the following 12 pairs: 1 – 4, 2 – 7, 3 – 3, 4 – 11, 5 
– 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12. According to these 
pairs, the appropriate areas (subfields) were selected (they are presented as 
rectangles in Fig. 8.9). From each subfield only one realization was chosen and 
used as the input data for FEM calculations. In this way, the results of 12 
realizations were analyzed. Figure 8.9 shows a stochastic distribution of the tensile 
strength in one arbitrary concrete beam in the area close to the notch. 

 
FE results of deterministic size effect 
Figure 8.10 shows the evolution of the calculated normalized vertical force 
PL/tft(0.9h)2 versus the normalized vertical beam displacement u/h for four 
different beam heights h: 8 cm, 16 cm, 32 cm and 192 cm with constant values of 
the tensile strength of ft=3.6 MPa. The thickness of the specimen was equal to t=4 
cm (as in laboratory experiments). A distribution of the non-local softening 
parameter is shown close to the notch (Fig. 8.11). Moreover, the numerical results 
of a deterministic size effect compared to the size effect model SEL 2 by Bažant 
for notched concrete specimens (Bažant and Planas 1998) (Eq. 8.2) are shown  
(Fig. 8.12).  
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Fig. 8.8 Selection of 12 pairs of random samples using Latin hypercube sampling: 1 – 4, 2 
– 7, 3 – 3, 4 – 11, 5 – 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Bobiński  
et al. 2009) 

 
The beam strength and beam brittleness obviously increased with increasing 

beam size. This pronounced deterministic size effect is in agreement with the size 
effect model by Bažant of Fig. 8.1b (Bažant and Planas 1998). For a very large size 
beam, a so-called snap-back behaviour occurred (decrease of strength with 
decreasing deformation). The mean width of a localized zone above the notch was 
15.08 mm (h=8 cm), 15.10 mm (h=16 cm), 18.02 mm (h=32 cm) and 18.05 mm 
(h=192 cm) at u/h=1.000‰, 0.494‰, 0.234‰ and 0.105‰, respectively.  

The calculated vertical forces for a small, medium and large beam are in good 
accordance with the experiments by la Bellego et al. 2003 (Fig. 8.13). The 
calculated width of the localized zone is similar as in experiments, i.e. about 20 
mm (on the basis of acoustic emission, Pijaudier-Cabot et al. 2004). 
 
FE results of statistical size effect 
12 selected random samples using Latin hypercube sampling are shown in  
Fig. 8.8 (λx1=1 1/m, λx2=3 1/m, 0.424

tf
s = ). The 12 different evolutions of the 

vertical normalized force versus the vertical normalized displacement are shown 
in Fig. 8.14 for 3 different beam heights h: 8 cm (small beam), 32 cm (large 
beam) and 192 cm (very large beam), respectively. Figure 8.15 demonstrates  
the calculated width of a localized zone. In turn, 5 arbitrary deformed  
FE-meshes for a small-size beam are shown in Fig. 8.16. The size effect is 
shown in Fig. 8.17. 
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Fig. 8.9 Stochastic distribution of tensile strength ft close to the notch in small-size beam 
(strong correlation, small standard deviation) (Bobiński et al. 2009) 

 
The normalized maximum vertical force decreases with decreasing beam height 

h (Fig. 8.14). For h=8 cm, it changes between 2.92-3.38 kN. The mean stochastic 
Pmax=3.08 kN (with the standard deviation of 0.126 kN) is practically the same as 
the deterministic value Pmax=3.13 kN (it is smaller by only 2%). If the beam height 
is h=32 cm, the maximum vertical force varies between 7.73-8.85 and the mean 
stochastic force Pmax=8.30 kN (with the standard deviation of 0.334 kN) is smaller 
by only 0.6% than the deterministic value (Pmax=8.35 kN). For the beam height of 
h=192 cm, the maximum vertical force varies between 26.05-28.72 kN and the 
mean stochastic force Pmax=27.56 kN is again smaller by only 0.6% than the 
deterministic value of Pmax=27.72 kN (the standard deviation equals 0.692 kN).  

 

 

Fig. 8.10 Normalized force-displacement curves with constant values of tensile strength for 
4 notched beams under three-point bending (Bobiński et al. 2009) 
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            a)                           b)                          c)                            d) 
 

Fig. 8.11 Calculated contours of non-local softening parameter κ  above the notch for 

three-point bending of small (a), medium (b) large (c) and very large (d) notched concrete 
beam with constant values of tensile strength (Bobiński et al. 2009) 

 
The stochastic size effect in notched concrete beams is very small; the 

difference between the deterministic material strength and mean statistical 
strength is practically negligible. 

The load-displacement curves for a very large beam are not smooth in 
softening regime when the tensile strength is distributed stochastically. The scatter 
of the maximum vertical force around its mean value is similar for all beam sizes 
(Fig. 8.17). The deformation field above the notch is strongly non-symmetric  
(Fig. 8.16). The mean width of the localized zone above the notch is slightly 
higher than the deterministic value, namely: w=16.56 mm (h=8 cm), w=18.88 mm 
(h=32 cm) and w=19.67 mm (h=192 cm), Fig. 8.15.  

 

 
 

Fig. 8.12 Relationship between calculated normalized concrete strength lnσ=ln[PL/(fth
2t)] 

and ratio ln(h/lc) compared to size effect law by Bažant of Fig. 8.1b (Bažant and Planas 
1998) for constant values of tensile strength (h- beam height, lc - characteristic length) 
(Bobiński et al. 2009) 
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Fig. 8.13 The load-displacement curves from FE-calculations with constant values of 
tensile strength compared to the experiments by Le Bellego et al. (2003) with 3 notched 
concrete beams: h=8 cm (lower curves), h=16 cm (medium curves) and h=32 cm (upper 
curves) (Bobiński et al. 2009) 

 
Our results are close to those given by Vorechovsky (2007). However, in 

contrast to his results, the difference between stochastic and deterministic values 
and the scatter of stochastic values in our calculations are similar independently of 
the beam size. In contrast to simulations by Yang and Xu (2008), which were 
performed with one notched beam only, the strong tortuousness of crack 
trajectories was not obtained for a small beam. Beside this fact, the evolution of 
stochastic load-displacement curves was similar. 

 
Effect of sample number 
The calculations were carried out with a small size beam using a direct Monte 
Carlo method with 30 samples (Fig. 8.18) (λx1=1 1/m, λx2=3 1/m, 

tf
s =0.424 

MPa). Almost similar results (mean Pmax=3.07 kN with 
tf

s =0.138 MPa) were 

obtained as in the case of Latin hypercube sampling with 12 samples (mean 
Pmax=3.06 kN). 

 
Effect of correlation range 
In addition, the calculations were carried out with a small-size beam assuming a 
very small correlation length of 10 mm (Fig. 8.7) by assuming λx1=10 1/m, λx2=10 
1/m and 0.424

tf
s =  MPa in Eq. 8.3. The results (Figs. 8.19 and 8.20) show that the 

mean stochastic vertical force, Pmax=3.08 kN, and mean width of the localized 
zone, w=16.56 mm, are similar as the results with λx1=1 1/m and λx2=3 1/m. 
However, the scatter of forces is significantly smaller. 
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a) 

b) 

c) 
 

Fig. 8.14 Normalized force-displacement curves in the case of deterministic (red dashed 
lines) and random calculation (solid lines) for 3 notched beams under three-point bending: 
a) small-size beam (h=8 cm), b) large-size beam (h=32 cm), c) very large-size beam (h=192 
cm) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński et al. 2009) 
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a) 
 

b) 
 

c) 

Fig. 8.15 Distribution of non-local softening parameter above the notch in the case of 
deterministic (red dashed lines) and random calculation (solid lines) for 3 notched beams 
under three-point bending: a) small-size beam (h=8 cm), b) large-size beam (h=32 cm),  
c) very large-size beam (h=192 cm) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński  
et al. 2009) 

8.2   Unnotched Beams 

Very similar deterministic and stochastic calculations were carried out with 
concrete beams of Chapter 8.1 without notch using the similar input and material 
data (Syroka et al. 2011). The two-dimensional FE-analysis of free-supported 
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Fig. 8.16 Five arbitrary deformed FE meshes for a small-size beam (h=8 cm, u/h=0.25%) 
with random distribution of tensile strength (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) 
(Bobiński et al. 2009) 

 

 
 

Fig. 8.17 Relationship between calculated normalized concrete strength ln σ=ln [PL/(fth
2t)] 

and ratio ln (h/lc) compared to the size effect law by Bažant (Bažant and Planas 1998) for 
stochastic values of tensile strength (Bobiński et al. 2009) 
 
unnotched beams was mainly performed with 4 different beam sizes of a similar 
geometry D×Lt: 8×32 cm2 (called small-size beam), 16×64 cm2 (called medium-
size beam), 32×128 cm2 (called large-size beam), 192×768 cm2 (called very  
large-size beam) (D – beam height, Lt – beam length), Fig. 8.21. The span length L 
was equal to 3D for all beams. The depth of the specimens was t=4 cm. The size 
D×Lt×t of the first 3 beams was similar as in the corresponding experiments 
carried out by Le Bellego et al. (2003) and Skarżyński et al. (2009). The 
quadrilateral elements divided into triangular elements were used to avoid 
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volumetric locking. Totally, 13’820 (small-size beam), 39’900 (medium-size 
beam), 104’780 (large-size beam) and 521’276 (very large-size beam) triangular 
elements were used, respectively The computation time varied between 3 hours 
(small-size beam) and 3 days (very large beam) using PC 3.2 MHz. 

 

a) 

b) 

Fig. 8.18 Small size beam with random distribution of tensile strength (h=8 cm) using a 
direct Monte Carlo method with 30 samples: maximum vertical force with expected values 
(a) and standard deviation (b) (λx1=1 1/m, λx2=3 1/m, sft=0.424 MPa) (Bobiński et al. 2009) 

 



8.2   Unnotched Beams 317
 

 
 

Fig. 8.19 Normalized force–displacement curves with and random distribution of tensile 
strength for notched small beam under three-point bending (h=8 cm) for smaller correlation 
length (λx1=10 1/m, λx2=10 1/m, 0.424

tf
s = MPa) (Bobiński et al. 2009) 

 

 
 

Fig. 8.20 Distribution of non-local softening parameter random distribution of tensile 
strength for notched small beam under three-point bending (h=8 cm) for small correlation 
length (λx1=10 1/m, λx2=10 1/m, 0.424

tf
s = MPa) (Bobiński et al. 2009) 
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Fig. 8.21 Geometry of free-supported unnotched concrete beams subjected to three-point 
bending (F – vertical force) (Syroka et al. 2011) 

 
All specimens had again the constant uniformly distributed tensile strength 

ft=3.6 MPa. In order to properly capture strain localization in concrete, the mesh 
was very fine in the mid-part of the beam (Fig. 8.21) (where the element size was 
not greater than 3×lc). The width of this region s of Fig. 8.22 was determined with 
preliminary calculations: s=12 cm (D=8 cm), s=18 cm (D=16 cm), s=24 cm 
(D=32 cm) and s=192 cm (D=192 cm). A quasi-static deformation of a small and 
medium beam was imposed through a constant vertical displacement increment Δu 
prescribed at the upper mid-point of the beam top.  

 

 
Fig. 8.22 Assumed FE mesh in small-size beam (s – width of region with finer mesh) 
(Syroka et al. 2011) 

 
Correlated random fields describing a fluctuation of the tensile strength were 

used to capture a stochastic size effect. The distribution of this single random 
variable ft took the form of a truncated Gaussian function with the mean concrete 
tensile strength of 3.6 MPa (as in calculations with notched beams, Fig. 8.6). The 
concrete tensile strength values again changed between 1.6 MPa and 5.6 MPa 
( 3.6 2.0tf = ± MPa). The homogeneous correlation function by Eq. 8.4 was 

adopted (Bielewicz and Górski 2002). We took again into account a stronger 
correlation of the tensile strength ft in a horizontal direction λx1=1.0 1/m and a 
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weaker correlation in a vertical directions λx2=3.0 1/m in Eq. 8.4 (due to the way of 
the specimen preparation by means of layer-by-layer from the same concrete 
block). The dimension of the random field was identical as the finite element 
mesh. The same random values were assumed in four neighbouring triangular 
elements. To generate the random fields, the conditional-rejection method was 
again used. The selection was performed by the Latin sampling method (Fig. 8.23). 
The generated numbers formed the following 12 pairs: 1 – 4, 2 – 7, 3 – 3, 4 – 11, 5 
– 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Fig. 8.23). Figure 8.24 
shows the distribution of the concrete tensile strength in a small-size (Fig. 8.24a) 
and very large-size concrete beam (Fig. 8.24b). 
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Fig. 8.23 Selection of 12 pairs of random samples using Latin hypercube sampling: 1 – 4, 2 
– 7, 3 – 3, 4 – 11, 5 – 5, 6 – 8, 7 – 1, 8 – 6, 9 – 2, 10 – 9, 11 – 10 and 12 – 12 (Syroka  
et al. 2011) 

 
Deterministic size effect 
The evolution of the normalized vertical force 1.5FL/(ftD

2t) versus the normalized 
deflection u/D for four different beam sizes with the constant values of the tensile 
strength ft is shown in Fig. 8.25. The distribution of non-local softening parameter 
κ  in the mid-region of beams is demonstrated in Fig. 8.26. In Fig. 8.27, our FE 

results were confronted with FE results for similar notched beams of Chapter 8.1 
(Bobiński et al. 2009).  

The maximum deterministic vertical forces were: Fmax=3.83 kN (D=8 cm), 
Fmax=6.75 kN (D=16 cm), Fmax=12.57 kN (D=32 cm) and Fmax=66.18 kN (D=192 
cm), respectively. The strength and ductility strongly increased with decreasing 
beam height. The normalized nominal (flexural) strength σN/ft=1.5FmaxL/(D2tft) 
varied between 1.1 (D=192 cm) and 1.5 (D=8 cm). For the large and very large-
size beam, the snap-back behaviour occurred. (the strength’s decrease with 
decreasing deformation). It was in particular very strong for the very large-size 
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beam. Note that the snap-back behaviour happened in notched very large concrete 
beams only (Bobiński et al. 2009). 

The width of a localized zone for all beam sizes was about w=1.5 cm (at the 
same normalized flexural stress of 1.0, Fig. 8.25). In turn, the height of the 
localized zone h measured at the peak load increased non-linearly with increasing 
beam height D, i.e.: 24 mm, 34 mm, 40 mm, and 48 mm for the small 
(D = 80 mm), medium (D = 160 mm), large (D = 320 mm) and very large beam 
(D=1920 mm), respectively. The larger the beam, the lower was the ratio of the 
localized zone height to the beam height h/D: 0.3 (D=80 mm), 0.212 (D=160 
mm), 0.125 (D=320 mm) and 0.025 (D=1920 mm). 

A pronounced deterministic size effect took place in computations (Fig. 8.27). 
The deterministic size effect is significantly stronger than in notched concrete 
beams.  

When comparing the numerical results with the size effect model by Bažant 
(Eq. 8.1), the best fit was achieved with a high parameter r=4 (with fr

∞=3.55 MPa 
and Db=112 mm). However, based on the recent results by Bažant et al. (2007a, 
2007b), the parameter r (which controls both the curvature and slope of the size 
effect curve) seems to be close to 1. Therefore, a second deterministic 
characteristic length lp was introduced (Bažant et al. 2007a, 2007b) to better 
describe the size effect law by taking into account a perfect plastic rage for 
extremely small structure sizes D 
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This formula represents the full size range transition from the perfectly plastic 
behaviour (for D→0, D≤lp) to the elastic brittle behaviour (for D→∞, D>>Db) 
through the quasi-brittle one. The second deterministic characteristic length lp 
governs the transition to plasticity for small sizes D. The case lp≠0 shows the 
plastic limit for vanishing size D. This case is asymptotically equivalent to the 
case of lp=0 for large D.  

The asymptotic prediction for small and large sizes leads to 
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The parameter lp equals 
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with ηp - the ratio between the maximum plastic and elastic strength. 
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b) 
a) 

Fig. 8.24 Distribution of concrete tensile strength in small-size concrete beam D=8 cm 
(region 8×12 cm2) (a) and in very large-size concrete beam D=192 cm (region 24×48 cm2) 
(b) (Syroka et al. 2011) 

 

Fig. 8.25 Normalized horizontal normal (flexural) stress-deflection curves 
1.5FL/(ftD

2t)=f(u/D) under 3-point bending with constant values of tensile strength for 4 
different concrete beam heights: small D=8 cm (dashed line ‘a’), medium D=16 cm 
(dotted-dashed line ‘b’), large D=32 cm (dotted line ‘c’), very large D=192 cm (solid line 
‘d’) (F – vertical force, L – beam length, D – beam height, t- beam thickness, ft - tensile 
strength) (Syroka et al. 2011) 
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a) b) c) 

d) 
 
Fig. 8.26 Distributions of non-local softening parameter κ in concrete beams (mid-region) 

from deterministic calculations sizes at σN=0.45 MPa in: a) small D=8 cm, b) medium 
D=16 cm, c) large D=32 cm and d) very large-size beam D=192 cm (figure ‘d’ is not 
appropriately scaled) (Syroka et al. 2011) 

 
The parameter lp was determined with additional FE calculations for D→0 and 

D→∞. Thus, four additional geometrically similar concrete elements were 
numerically analyzed by us with D=0.2 cm, D=2 cm, D=4 cm and D=384 cm. On 
the basis of the nonlinear regression method by Leveneberg-Marquardt, the 
following parameters were found to fit Eq. 8.7: fr

∞=3.782 MPa, Db=40 mm, lp= 
13.6 mm, r=1.0. The agreement of our FE results for 8 elements with Eq. 8.7 is 
almost perfect (Fig. 8.28). 

 
Statistical size effect 
The 12 different evolutions of the normalized vertical force FL/(ftD

2t) versus the 
normalized vertical deflection u/D from stochastic calculations are shown in  
Fig. 8.29 (the deterministic curve is also attached).  
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Fig. 8.27 Calculated nominal strength versus beam height from deterministic FE 
calculations for notched concrete beams (Bobiński et al. 2009, Chapter 8.1) (green 
diamonds) and unnotched beams (red circles) (Syroka et al. 2011) 

 

Fig. 8.28 Calculated normalized flexural tensile strength fr/ft=1.5FmaxL/(ftD
2t) versus beam 

height D in unnotched concrete beams from deterministic FE calculations (red circles) 
versus beam height D compared with the deterministic size effect model by Bažant (blue 
dashed line by Eq. 8.1 with r=1, green dotted line by Eq. 8.1 with r=4 and red solid line by 
Eq. 8.7 with r=1) (Syroka et al. 2011) 

 
The deterministic normalized vertical force is located in the range of stochastic 

values for a small and medium-size beam or is the maximum values for a large 
and very large-size beam. For the height of D=8 cm, the maximum vertical force 
changes between 3.267-4.08 kN, and the mean value Fmean=3.72 kN is by 3% 
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smaller than the deterministic value F=3.83 kN (the coefficient of variation 
cov=0.063). If the beam height is D=16 cm, the maximum vertical force varies 
between 5.61-6.82 kN and the mean stochastic force Fmean=6.25 kN (with the 
coefficient of variation cov=0.057) is smaller by 7% than the deterministic value 
(F=6.75 kN). For the both beams, the single maximum stochastic vertical force 
can be higher than the deterministic one. If the beam height is D=32 cm, the 
maximum vertical force changes between 10.31-12.25 kN, and the mean 
stochastic Fmean=11.07 kN (with the coefficient of variation cov=0.053) is smaller 
by 12% than the deterministic value of F=12.57 kN. Finally, in the case of the 
very large-size beam D=192 cm, the maximum vertical force changes between 
54.32-59.18 kN and the mean stochastic Fmean=57.14 kN (the variation coefficient 
equals cov=0.027) is smaller by 14% than the deterministic value of F=66.18 kN. 
Thus, both the mean stochastic nominal strength and coefficient of variation 
always decrease with increasing size D and the influence of the random 
distribution of the tensile strength on the nominal strength is stronger for larger 
structures (Fig. 8.30). In addition, the calculations were carried out with a small-
size beam, assuming a correlation length lower than the dimension of a single 
finite element. A scatter of the vertical force was small (the coefficient of variation 
strongly depends on the correlation range of correlation). 

Figures 8.31-8.33 show some results for a localized zone from stochastic 
analyses (concerning the propagation way through finite elements with the 
different tensile strength – Fig. 8.31, zone height – Fig. 8.33 and zone width -  
Fig. 8.32). The random fields of ft do not affect the mean width of a localized zone, 
which is again about 1.5 cm for all beam sizes (Fig. 8.32). A localized zone can be 
strongly non-symmetric and curved (Figs. 8.31). It occurs at the mean distance of 
about 2.0 cm (small-size beam) and of about 40 cm (very large-size beam) from 
the beam-centre (Fig. 8.31). The mean height of localized zones h at peak was 
closed to the deterministic outcomes. 
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a) 

b) 

c) 

d) 

Fig. 8.29 Normalized vertical force-deflection curves with constant (dashed red line) and 
random (solid lines) value of tensile strength for 4 different beam heights: a) small D=8 cm, 
b) medium D=16 cm, c) large D=32 cm, d) very large-size beam D=192 cm (Syroka et al. 
2011) 
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Fig. 8.30 Calculated normalized nominal strength N r( D ) / fσ ∞  versus beam height D from 

deterministic (circles) and stochastic (triangles) FE calculations for unnotched concrete 
beams (Syroka et al. 2011) 
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                                                           a) 

 
                                                             b) 

 
 

                                 c)                        d) 
 
 
 
 
 
 
 
 
 

Fig. 8.31 Contours of non-local softening parameter κ against distribution of tensile 

strength from stochastic FE calculations in 2 large-size beams D=192 cm and 2 small-size 
beams D=8 cm (cases ‘a’ and ‘c’ correspond to maximum vertical force, cases ‘b’ and ‘d’ 
correspond to minimum vertical force) (tensile strength values are expressed by colour 
scale) (Syroka et al. 2011) 
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a) 

b) 

c) 

d) 
Fig. 8.32 Distribution of non-local softening parameter along beam length for deterministic 
(dashed lines) and stochastic calculations (solid lines) for 4 beams under three-point 
bending: a) small D=8 cm, b) medium D=16 cm, c) large D=32 m and d) very large-size 
beam D=192 cm (Syroka et al. 2011) 
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a) 

b) 
 

Fig. 8.33 Relationship between non-local softening parameter and localized zone height 
from deterministic (dashed lines) and stochastic (solid lines) calculations for: a) small D=8 
cm, b) medium D=16 cm, c) large D=32 cm and d) very large-size beam D=192 cm 
(Syroka et al. 2011) 
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c) 

d) 

Fig. 8.33 (continued) 

 
The maximum vertical force in concrete beams strongly depends on the 

position of a localized zone. This position is connected with the distribution and 
magnitude of the tensile strength at the place of a localized zone (within the area 
w×h) and the magnitude of the horizontal normal stress due to bending σ11. The 

maximum vertical force increases with increasing ratio 11tf ( w h ) / σ× . A 

localized zone is created, where the mean local tensile strength tf  in the localized 

area w×h is minimum. In a small-size beam (Figs. 8.31c and 8.31d), the beam mid-
region where a localized zone can be created is very limited due to the assumed 
standard deviation of the tensile strength and correlation range (3 cm in a vertical 
direction and 8 cm in a horizontal direction). In this limited beam region (with a 
small number of weak spots, Figs. 8.31c and 8.31d), the tensile strengths are 
strongly correlated and can be higher or lower than its mean value ft=3.6 MPa. 
Therefore, the vertical normal tensile force can be smaller or larger than this in the 
deterministic study (depending on the spot choice by a localized zone for 
propagation). With an increase of the beam size, the number of weaker local spots 
increases with the correlation range assumed (Figs. 8.31a and 8.31b) and the beam 
mid-region where a localized zone can propagate is significantly larger. In this 
wide beam region, the tensile strengths are weaker correlated than in a small-size 
beam. So there exists a very high probability to achieve a smaller vertical force 
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than in a small beam due to the great number of weak spots with the tensile 
strength smaller than ft=3.6 MPa, which can be chosen by a localized zone for 
propagation (Figs. 8.31a and 8.31b).  

An extended universal formula for a coupled deterministic-stochastic size effect 
law involves a deterministic scaling length Db and a stochastic scaling length Lo 
(Bažant et al. 2007a, 2007b) 
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where m is the Weibull modulus (responsible for the slope of a large-size 
asymptote) and n is the number of spatial dimensions (n=2 for 2D problems). 
Thus, the mean size effect is separately divided into a stochastic part and 
deterministic. The parameter Db drives the transition from elastic-brittle to quasi-
brittle and Lo drives it from constant property to local Weibull via strength random 
field. The simplest choice for analyses is usually Lo=Db. Equation 8.10 satisfies 3 
asymptotic conditions: a) for small sizes D→0, it asymptotically reaches the 
deterministic size effect law (Eq. 8.7), b) for large sizes D→∞, it asymptotically 
reaches the dominating Weibull size effect with the slope equal to –n/m and c) for 
m→∞ and Lo→∞, it is equal to the deterministic size effect law. Thus, Eq. 8.10 can 
be regarded as the asymptotic matching of small-size deterministic and large-size 
stochastic size effects. With respect to the largest beam, the optimum match for 
the parameter m is the value of 48 calculated from the coefficient of variation cov 
(with cov=0.027) - driven by m only 
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However, the modulus m in other stochastic FE analyses was equal either to m=24 
(Bažant and Novak 2001) or even m=8 (Vorechovsky 2007) with different other 
parameters (e.g. fr

∞=3.68-3.76 MPa, Lo=Db=15.53-48.66 mm and r=1.14-1.28, 
Bažant and Novak 2001). Thus, the stochastic size effect was slightly weaker in 
our numerical analyses (m=48) being independent of the correlation length. This 
can be mainly caused by the different loading type (bending versus uniaxial 
tension), correlation function and sampling type.  

Figure 8.34 presents a comparison between our numerical results and size 
effect law by Bažant (Eqs. 8.7 and 8.10) using the following parameters: Lo= Db= 
30.37 mm, n=2, lp=0, r =1, m=48 and fr

∞=3.90 MPa with the related asymptotes 
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assuming the Weibull modulus m=12-48. The stochastic outcomes indicate a 
further decrease of the nominal strength with increasing element size while the 
deterministic ones reach their lower limit. Our deterministic-statistical results 
present also a satisfactory agreement with the size effect law by Bažant by 
assuming the recommended value of m=24 (Lo=Db=16.95 mm, lp=0, r=1 and 
fr

∞=4.753 MPa). However, the Weibull modulus m=48 solely enables a transition 
from a pure deterministic to a coupled deterministic-statistical size effect. The 
value m=12 underestimates the calculated deterministic-statistical flexural tensile 
strength. 

 

 

Fig. 8.34 Calculated normalized flexural tensile strength fr/ft=1.5FmaxL/(ftD
2t) 

versus beam height D from deterministic (circles) and stochastic (triangles) FE 
calculations compared with deterministic (line ‘a’, Eq. 8.7) and deterministic-
stochastic size effect law by Bažant (Eq. 8.10) for various Weibull moduli m and 
constant deterministic parameters (line ‘b’- m=48, line ‘c’- m=24, line ‘d’ - m=12) 
(Syroka et al. 2011) 

 
All size effect results of the normalized nominal (flexural) strength 

σN/ft=1.5FmaxL/(D2tft) for unnotched and notched concrete beams (Bobiński et al. 
2009) are summarized in Fig. 8.35 as compared to the size effect laws by Bažant 
(Eqs. 8.2, 8.7 and 8.10): Eq. 8.10  with Db=40 mm, lp=13.6 mm, r=1.0, fr

∞= 
3.78 MPa, n=2, Eq. 8.7 with m=48, Lo=Db=40 mm, lp=13.6 mm, r=1, fr

∞=3.78 
MPa, n=2 and Eq. 8.2 with B=1.48 and Do=0.15 m. For notched structures, a 
random distribution of the tensile strength has obviously no effect on the nominal 
strength. 
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a) 
 

b) 

Fig. 8.35 Calculated normalized nominal (flexural) strength σN/ft (σN=1.5FmaxL/(D2t)) 
versus beam height D for: a) unnotched concrete beams from deterministic (red circles) and 
stochastic (blue triangles); b) for notched concrete beams from deterministic (green 
squares) and stochastic (green diamonds) FE calculations compared with deterministic size 
effect law by Bažant (Eq. 8.7) (red solid line), deterministic-stochastic size effect law by 
Bažant (Eq. 8.10) (blue dashed line) and deterministic size effect law by Bažant (Eq. 8.2) 
(green dotted-dashed line) (Syroka et al. 2011) 

 

Figures 8.36 and 8.37 compare our FE results on the normalized nominal 
(flexural) strength with unnotched beams of a coupled deterministic-stochastic 
size effect with size effect law SEL by Bažant (Eq. 8.10) and MFSL by Carpinteri 
(Eq. 8.3). In the considered size range of unnotched beams, both size effect laws 
show almost the same results. In the case of notched beams, there exists, however, 
a strong discrepancy between the size effect law MFSL (Eq. 8.3 with A1=2.46 and 
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A2=1385.9) and our earlier FE results (Bobiński et al. 2009, Fig. 8.35) for very 
small (D<0.1 m) and large beams (D>1.0 m) that confirms the conclusions by 
Bažant and Yavari (2007c) that the size effect law MFSL is not always realistic. 

 

 

Fig. 8.36 Calculated normalized nominal (flexural) strength fr/ft=1.5FmaxL/(ftD
2t)  versus 

beam height D from coupled deterministic-stochastic FE calculations (circles) for 
unnotched beams compared with two size effect laws: SEL by Bažant (Eq. 8.10) – solid line 
and MFSL by Carpinteri et al. (Eq. 8.3) – dashed line (Syroka et al. 2011) 

B) 

Fig. 8.37  Calculated normalized nominal (flexural) strength σN/ft (σN=1.5FmaxL/(D2t)) versus 
beam height D from coupled deterministic-stochastic FE calculations (circles) for notched 
beams (Bobiński et al. 2009) compared with two size effect laws: SEL by Bažant (Eq. 8.2) – 
solid line and MFSL by Carpinteri et al. (Eq. 8.3) – dashed line (Syroka et al. 2011) 

8.3   Elements under Compression  

Finally, the effect of an imperfection or notches on a deterministic size effect was 
investigated during uniaxial compression of a concrete specimen with smooth 
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boundaries (Skuza and Tejchman 2007). Figure 8.38 presents a hardening-
softening curve assumed in compression (Drucker-Prager criterion) (Eqs. 3.27-
3.30, 3.93 and 3.97). The Young modulus was E=18000 MPa, Poisson’s ratio 
ν=0.2, compressive strength 32 MPa, non-locality parameter m=2, characteristic 
length lc=5 mm, hardening/softening parameter κu2=3×10-3, internal friction angle 
ϕ=14o and dilatancy angle ψ=8o.  

 

 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.38 Hardening/softening curve assumed in compression (Skuza and Tejchman 2007) 
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Fig. 8.39 Geometry and boundary conditions of a concrete specimen subjected to uniaxial 
compression (Skuza and Tejchman 2007) 

 
The FE analyses were performed with 3 different specimens subjected to 

uniaxial compression: 10×5 cm2, 10×10 cm2 and 10×20 cm2 (Fig. 8.39). The 
specimens had a weak element or a single notch (mid-point along the left edge). A 
small deterministic size effect with respect to the strength was obtained in a 
specimen with a single non-symmetric notch only (Figs. 8.40 and 8.41) due to the 
fact that damage localization develops faster and is created before the material 
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strength is attained. This outcome is in agreement with calculations by Cusatis and 
Bažant (2006) using a 3D lattice model for concrete specimens under uniaxial 
compression. In concrete specimen under compression, shear zones were obtained 
during a deformation process (Fig. 8.41). In small specimens, they had a tendency 
to be reflected from rigid boundaries. 

The following conclusions can be drawn from our non-linear FE-investigations 
of a deterministic and statistical size effect under quasi-static conditions: 

• The FE results are in agreement with the size effect law by Bažant (notched and 
unnotched beams) and by Carpinteri (unnotched beams). However, fractality is not 
needed to induce a size effect, since the stress redistribution and energy release 
during strain localization cause a size effect (thus, fractality can contribute to a 
certain refinement of a size effect but not to its replacement). The size effect 
model by Bažant is universal and has physical foundations and can be introduced 
into design codes.  
• The deterministic size effect (nominal strength decreases with increasing 
specimen size) is very pronounced in notched and unnotched concrete beams (it is 
stronger in notched beams). It is caused by occurrence of a straight tensile 
localized zone with a certain width. The material ductility increases with 
decreasing specimen size. A pronounced snap-back behaviour occurs for very 
large-size notched beams (h/lc≈400) and for large and very large-size unnotched 
beams (h/lc≈8). The width of the localized zone is similar for all beam sizes. 
• The solution of random non-linear problems on the basis of several samples is 
possible. The statistical size effect is strong in unnotched concrete beams and 
negligible in notched concrete beams (due to the same position of the localized 
zone). The larger the beam, the stronger is the influence of a stochastic 
distribution on the nominal strength due to the presence of a larger number of 
local weak spots (i.e. the mean stochastic bearing capacity is always smaller than 
the deterministic one). The stochastic bearing capacity is larger in some 
realizations with small and medium-large beams than the deterministic value. The 
randomness of the tensile strength does not change the mean width of the 
localized zone. The localized zone can be curved and non-symmetric. This 
position of the localized zone is connected with the distribution and magnitude of 
the tensile strength in a localized zone at peak and the magnitude of the horizontal 
normal stress due to bending. 
• The calculated stochastic effect is slightly weaker than in works by Bažant, 
Novak and Vorechovsky (2006, 2007). This can be mainly caused by the loading 
type, correlation length, correlation function and sampling type assumed in 
stochastic calculations. The results obtained with the help of Latin hypercube 
sampling are strongly influenced by the definition of the beam zone where the 
tensile strength distribution is statistically described. Our FE results match well 
the combined deterministic-statistical size effect law by Bažant with the Weibull 
modulus m=24-48. In turn, a prediction of the combined deterministic-statistical 
size effect based on deterministic results only is possible with the modulus m=48. 
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• The deterministic size effect can be observed on specimens under uniaxial 
compression in presence of non-symmetric notches only. In turn, an increase of 
ductility with decreasing specimen can be observed in all specimens 
independently of the imperfection type. 
 
 
a) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b) 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 8.40 Normalized load-displacement diagrams during uniaxial compression (a) 
specimen with one weak element, b) specimen with one notch, 1) small-size specimen, 2) 
medium-size specimen. 3) large-size specimen) (Skuza and Tejchman 2007)  
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                                                                 A) 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 
                                                           B) 
 
Fig. 8.41 Deformed meshes and contours of non-local softening parameter during uniaxial 
compression at residual state for small-size, medium-size and large-size concrete specimen: 
A) unnotched specimens with imperfection, B) specimens with single notch (Skuza and 
Tejchman 2007) 
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Chapter 9 

Mesoscopic Modelling of Strain Localization  
in Plain Concrete 
Mesoscopic Modelling of Strain Localizat ion in Plain Concrete 

Abstract. The Chapter deals with modelling of strain localization in concrete at 
meso-scale. Concrete was considered as a composite material by distinguishing 
three phases: cement matrix, aggregate and interfacial transition zones. For FE 
calculations, an isotropic damage model with non-local softening was used.  The 
simulations were carried out with concrete specimens under uniaxial tension and 
bending. The effect of aggregate density, aggregate size, aggregate distribution, 
aggregate shape, aggregate stiffness, aggregate size distribution, characteristic 
length and specimen size was investigated. The representative volume element 
was also determined. 

A mechanism of strain localization strongly depends upon a heterogeneous 
structure of materials over many different scales, which changes e.g. in concrete 
from the few nanometers (hydrated cement) to the millimetres (aggregate 
particles). Therefore, to take strain localization into account, material composition 
(micro-structure) has to be taken into account (Nielsen et al. 1995, Bažant and 
Planas 1998, Sengul et al. 2002, Lilliu and van Mier 2003, Du and Sun 2007, 
Kozicki and Tejchman 2008, He et al. 2009, Skarżyński and Tejchman 2010). At 
the meso-scale, concrete can be considered as a composite material by 
distinguishing three important phases: cement matrix, aggregate and interfacial 
transition zones ITZs. In particular, the presence of aggregate and ITZs is 
important since the volume fraction of aggregate can be as high as 70-75% in 
concrete and ITZs are always the weakest regions in concrete. The concrete 
behaviour at the meso-scale fully determines the macroscopic non-linear 
behaviour. The advantage of meso-scale modelling is the fact that it directly 
simulates micro-structure and can be used to comprehensively study local 
phenomena at the micro-level such as the mechanism of the initiation, growth and 
formation of localized zones and cracks (He 2010, Kim and Abu Al-Rub 2011, 
Shahbeyk et al. 2011). Through that the mesoscopic results allow for a better 
calibration of continuum models enhanced by micro-structure and an optimization 
design of concrete with enhanced strength and ductility. The disadvantages are: 
very high computational cost, inability to model aggregate shape accurately  
and the difficulty to experimentally measure the properties of ITZs. All FE 
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investigations of a heterogeneous three-phase concrete material at the meso-level 
encompassing cement matrix, aggregates and an interfacial transition zone (ITZ) 
between the cement matrix and aggregates were performed with an isotropic 
damage constitutive model with non-local softening using a Rankine failure type 
criterion to define the equivalent strain measure ε  (Eqs. 3.35-3.40). The inclusions 
were assumed to be mainly in a circular shape randomly distributed according to a 
sieve curve (Fig. 9.1) and embedded in a homogeneous cement matrix. There are 
two widely used methods for the generation of randomly situated aggregate 
inclusions. The first one allows one to obtain a dense packing of aggregates in 
two-dimensional body of concrete using a Fuller distribution (van Mier et al. 
1995): 

 

                                                      
max

100
D

p
D

= ,                                       (9.1) 

 

where p is the percentage weight of particles passing a sieve with the diameter D 
and Dmax is the size of a largest particle. Furthermore by using a cumulative 
distribution for a two-dimensional cross-section, the circle diameters for a 
concrete can be generated. The second method of particle generation used by 
Eckardt and Konke (2006) is more straightforward. First, a grading curve is 
chosen (based on experimental measurements). Next, the certain amounts of 
particles with defined diameters d1, d2 … dn are generated according to this curve. 
In our book, the latter method was used. The circles were randomly placed in the 
prescribed area starting with the largest ones and preserving a certain mutual 
distance (van Mier et al. 1995): 
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where D is the distance between two neighbouring particle centers, and D1 and D2 are 
the diameters of two neighboring aggregate particles. In the next step, the generated 
particle structure was overlaid with an irregular mesh of triangles. The finite elements 
belonging to cement matrix, aggregate inclusions and bond zones, respectively, had 
own different properties. It was assumed that the inclusions and bond zones had the 
highest and the lowest stiffness, respectively (van Mier et al. 1995). 

9.1   Uniaxial Tension 

The properties of the cement matrix, aggregate inclusions and bond zones used for 
FE calculations using an isotropic damage model with non-local softening are 
shown in Tab. 9.1 (Skarżyński and Tejchman 2009). The size of inclusions varied 
from amin=2.5 mm up to amax=5 mm. The size of bond zone elements, 0.25 mm 
(equal to 0.1×amin), was smaller than the size of cement matrix elements. The 
mesoscopic characteristic length of micro-structure was lc=0.5 mm. 
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Fig. 9.1 Approximation of non-linear grading curve with discrete numbers of aggregate 
sizes (Skarżyński and Tejchman 2010) 

Table 9.1 Material parameters assumed for uniaxial tension (Skarżyński and Tejchman 
2009) 

Material parameters Inclusions Cement matrix ITZ 
Modulus of elasticity 

E [GPa] 
30 25 20 

Poisson’s ratio  
ν [-] 

0.2 0.2 0.2 

Crack initiation strain parameter  
κ0 [-] 

0.5 8×10-5 5×10-5 

Residual stress level parameter  
α [-] 

0.95 0.95 0.95 

Slope of softening parameter  
β [-] 

500 500 500 

 
The calculations were carried out with periodic boundary conditions and 

material periodicity to avoid the effect of walls (van der Sluis 2001, Gitman 2006, 
Gitman et al. 2008). In the first case, the positions of nodes along corresponding 
specimen boundaries were the same before and after deformation. This is 
illustrated in Fig. 9.2, where an arbitrary periodically deformed unit cell under 
uniaxial extension conditions is shown. The deformation of each boundary pair is 
the same and the stresses are opposite in sign for each pair. The displacement 
boundary conditions are  

 

                                                 12 4 11 1u u u u− = − ,                                         (9.3) 

                                                22 1 21 2u u u u− = − ,                                         (9.4) 

                                                3 2 2 1u u u u− = − ,                                            (9.5) 
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where iju is the displacement for any material point along the boundary ijΓ  and 

iu  is the node displacement. From the periodicity equations (Eqs. 9.3-9.5) can be 

observed that the independent entities are 11Γ , 21Γ , 1u , 2u  and 4u , whereas the 

tied dependent entities are 22Γ , 12Γ  and 3u . 

In addition, to eliminate wall effects, the periodicity of the material was 
assumed (Gitman 2006). Figure 9.3 presents samples different unit cells A-F in a 
concrete specimen. The cells A, B, D and E are valid in the context of material 
periodicity. However, the cells C and F experience wall-effects since some edges 
are crossed by inclusions. In our calculations, we avoided inclusions penetrating 
through the unit cell boundaries by letting them re-appear at the opposite edge 
(Fig. 9.4).  

 

 

Fig. 9.2 Periodically deformed unit cell with boundaries RΓ  and nodes iv  (van der Sluis 

2001) 

 

Fig. 9.3 Distribution of different unit cells in a concrete specimen (Gitman 2006) 

A two-dimensional uniaxial tension test (Fig. 9.5) was performed with quadratic 
concrete specimens representing unit cells (Figs. 9.6-9.8) with periodicity of 
boundary conditions and material. For periodic boundary conditions, the 
displacements were suppressed in the node ‘1’ (Fig. 9.2). Furthermore, in the  
node ’2’, a non-zero displacement was prescribed in a horizontal direction while 
the displacement a vertical direction was suppressed. The displacement 
components of the node ‘3’ and ‘4’ were free and tied together. The vertical 
normal stress was obtained from the resultant vertical force along the top 
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boundary divided by the cross-sectional area (B×1 m, where B is the width of the 
cell) and the strain as the vertical displacement of the top boundary divided by the 
cell width B.  

First, concrete specimens of five different sizes were investigated. The smallest 
and the largest unit cells were 10×10 mm2 and 25×25 mm2, respectively (Fig. 9.6). 
For each specimen, five different stochastic realizations were performed (Fig. 9.7) 
with the aggregate density ρ kept constant (ρ=30%, ρ=45% and ρ=60%) (Fig. 9.8). 
Next, the calculations were carried out with a different characteristic length of 
micro-structure varying between lc=0.1 mm-2.0 mm. Later, the effect of an 
aggregate density (ρ=30%, ρ=45% and ρ=60%) on strain localization was 
investigated. In the final comparative calculations, non-locality was prescribed to 
the cement matrix only. 

 

 

Fig. 9.4 Simulation of material periodicity (Gitman 2006) 

 

Fig. 9.5 Uniaxial tension test (Skarżyński and Tejchman 2009) 

Effect of specimen size and realization 
Figures 9.9-9.11 present the resultant mean macroscopic stress-strain relationships 
for various specimen sizes and random distributions of aggregate with the material 
constants from Tab. 9.1 (lc=0.5 mm). The aggregate densities were ρ=30%, ρ=45% 
or ρ=60%, respectively. In turn, the influence of the specimen size on the 
evolution of the stress-strain curves for different aggregate densities is 
demonstrated in Fig. 9.12. The results evidently show that the stress-strain curves 
are the same independently of the specimen size, aggregate density and 
distribution of inclusions in an elastic regime only (almost up to the peak). 
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However, they are completely different in a softening regime after the peak is 
reached. An increase of the specimen size causes an increase of the material 
brittleness. The differences in the evolution of stress-strain curves in a softening 
regime are caused by strain localization contributing to a loss of the material 
homogeneity (Fig. 9.13). Strain localization in the form of a localized zone 
propagates between aggregates and can be strongly curved. The width of the 
calculated zone is about wc=(4×lc)=2 mm (with lc=0.5 mm). 

 

                     
 
                    a)             b)               c)                       d) 

Fig. 9.6 Different size of concrete specimens: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 
mm2, d) 25×25 mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 

Fig. 9.7 Different stochastic distribution of aggregate for a concrete specimen of 15×15 
mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

           
                       a)                              b)                          c) 

Fig. 9.8 Different aggregate density ρ in concrete specimens: a) ρ=30%, b) ρ=45%, c) 
ρ=60% (Skarżyński and Tejchman 2009) 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 9.9 Stress-strain curves with various sizes of concrete specimen and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 
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The results indicate that the RVE can be determined in a linear-elastic regime 
only (due to the lack of differences in the evolution of the stress-strain curves). 
However, it cannot be determined in a softening regime due to strain localization 
(Gitman et al. 2008).  

 
Effect of characteristic length of micro-structure 
The effect of a characteristic length of micro-structure on the stress-strain curve 
and strain localization is shown in Figs. 9.14-9.17. Figures 9.14 and 9.16 
demonstrate the influence of lc on the evolution of stress-strain curves with two 
different specimen sizes: 10×10 mm2 and 25×25 mm2, respectively. In turn,  
Figs. 9.15 and 9.17 present the distribution of a non-local softening strain measure 
for various lc changing between 0.1 mm and 2.0 mm.  

With increasing characteristic length, both specimen strength and width of a 
localized zone increase. On the other hand, softening decreases and material 
behaves more ductile. Thus, a pronounced size effect occurs. The width of a 
localized zone is about wc=4×lc independently of lc. A localized zone propagating 
in a cement matrix between aggregates is strongly curved with lc=0.25 mm-1.0 
mm, whereas becomes more straight for lc>1.0 mm (Fig. 9.17e).  

 
Effect of aggregate density 
Figure 9.18 demonstrates the effect of the aggregate density on the stress-strain 
curves for two specimen sizes: 20×20 mm2 and 25×25 mm2, respectively (ρ=30%, 
ρ=45% or ρ=60% with lc=0.5 mm).  

A localized zone is also influenced by aggregate spacing. With increasing 
aggregate density, a localized zone becomes slightly narrower (Fig. 9.19). This 
means that a characteristic length of micro-structure may not be related to the 
aggregate size only but also to the grain size of the cement matrix.  

 
Effect of non-locality range 
Figure 9.20 shows the influence of the range of non-locality on the stress-strain 
relationship. In contrast to above studies, where non-locality was prescribed to all 
3 phases of concrete, here, a cement matrix was solely assumed to be non-local 
due to fact that strain localization occurred only there. A characteristic length was 
again 0.5 mm. 

The effect of the non-locality range on results turned out to be insignificant 
since the range of averaging slightly decreased (Figs. 9.20 and 9.21).  
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a) 

 
b) 

 
c) 

Fig. 9.10 Stress-strain curves for various sizes of concrete specimens and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=45%) (Skarżyński and Tejchman 2009) 
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                                                                 d) 

Fig. 9.10 (continued) 

 
                                                                 a) 

 
  b) 

Fig. 9.11 Stress-strain curves for various sizes of concrete specimens and random distributions 
of aggregates: a) 10×10 mm2, b) 15×15 mm2, c) 20×20 mm2, d) 25×25 mm2 (characteristic 
length lc=0.5 mm, aggregate density ρ=60%) (Skarżyński and Tejchman 2009) 



9.1   Uniaxial Tension 353
 

 
  c) 

 
  d) 

Fig. 9.11 (continued) 

 
  a) 

Fig. 9.12 Stress-strain curves for various sizes specimen sizes of concrete specimens and 
aggregate densities ρ: a) ρ=30%, b) ρ=45%, c) ρ=60% (characteristic length lc=0.5 mm) 
(Skarżyński and Tejchman 2009) 
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  b) 

 
  c) 

Fig. 9.12 (continued) 

 

Fig. 9.13 Distribution of non-local strain measure for different specimen sizes with two 
different stochastic realizations of aggregate density: a) 10×10 mm2, b) 15×15 mm2, c) 
20×20 mm2, d) 25×25 mm2 (characteristic length lc=0.5 mm, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2009) 
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a)                     b)                             c)                                           d) 

Fig. 9.13 (continued) 

 

Fig. 9.14 Stress-strain curves for different characteristic lengths: a) lc=0.1 mm, b) lc=0.25 
mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm (specimen size 10×10 mm2, aggregate 
density ρ=30%) (Skarżyński and Tejchman 2009) 

 
         a)                      b)                        c)                          d)                        e) 

Fig. 9.15 Distribution of non-local softening strain measure for different characteristic 
lengths lc: a) lc=0.1 mm, b) lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm 
(specimen size 10×10 mm2, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 
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Fig. 9.16 Stress-strain curves for different values of a characteristic length: a) lc=0.1 mm, b) 
lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm (specimen size 25×25 mm2, 
aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 
a)                         b)                        c)                        d)                        e) 

Fig. 9.17 Distribution of non-local softening strain measure for different values of a 
characteristic length: a) lc=0.1 mm, b) lc=0.25 mm, c) lc=0.5 mm, d) lc=1.0 mm, e) lc=2.0 mm 
(specimen size 25×25 mm2, aggregate density ρ=30%) (Skarżyński and Tejchman 2009) 

 
  A) 

Fig. 9.18 Stress-strain curves for aggregate densities: (a) ρ=30%, (b) ρ=45%, (c) ρ=60% and 
cell sizes: (A) 20×20 mm2 (B) 25×25 mm2 (lc=0.5 mm) (Skarżyński and Tejchman 2009) 



9.2   Bending 357
 

 
B) 

Fig. 9.18 (continued) 

9.2   Bending 

If the meso-structure of concrete is taken into account, such FE modeling is 
connected with a very large number of finite elements. To solve the problem 
practically, a macro-meso connection is used. It is done in a direct way, where a 
region with strain localization is considered at the meso-scale and a remaining 
region at the macro-level using a constitutive model. Alternatively, a 
computational homogenization is made using a multi-scale approach (Gitman et 
al. 2008, Geers et al. 2010, Kaczmarczyk et al. 2010). In this approach, the macro-
meso connection is used as a constitutive equation on the macro-level. Thus, 
instead of an explicit formulation of the stress-strain relation, the data from the 
meso-level is taken into account. The idea of such technique is as follows: the 
strain from the macro-level goes in the form of boundary conditions to the meso-
level, where a heterogeneous material behaviour is modeled, after which the 
reaction forces to boundary conditions are transformed by means of a 
homogenization technique (by changing the macro-level constitutive tangent 
stiffness) as stresses back to the macro-level. Different models for concrete can be 
used at meso-scale, e.g. discrete (interface element models (Carol et al. 2001), 
lattice approaches (Kozicki and Tejchman 2008), discrete element models DEM 
(Donze at al. 1999)) or continuum models (with cohesive elements (Kaczmarczyk 
et al. 2010), enhanced by a characteristic length of micro-structure (Gitman et al. 
2008) or using displacement discontinuities (Belytschko et al. 2001, 2009).  
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A) 

 
B) 

                          a)                                 b)                                   c) 

Fig. 9.19 Distribution of non-local softening strain measure for different aggregate 
densities: a) ρ=30%, b) ρ=45%, c) ρ=60% and specimen sizes: A) 20×20 mm2, B) 25×25 
mm2 (lc=0.5 mm) (Skarżyński and Tejchman 2009) 

 

 
      A) 

Fig. 9.20 Stress-strain curves for 2 different specimen sizes: A) 15×15 mm2, B) 25×25 mm2 
with a) non-locality prescribed to three phases and b) non-locality prescribed to cement 
matrix (aggregate density ρ=30%, characteristic length lc=0.5 mm) (Skarżyński and 
Tejchman 2009) 
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      B) 

Fig. 9.20 (continued) 

 
           a)                                              b) 

Fig. 9.21 Distribution of non-local softening strain measure for 2 different specimen sizes: 
A) 15×15 mm2, B) 25×25 mm2 with a) non-locality prescribed to three phases and b) non-
locality prescribed to cement matrix (aggregate density ρ=30%, characteristic length lc=0.5 
mm) (Skarżyński and Tejchman 2009) 

Experiments 
The three-point bending laboratory tests were carried out with concrete beams of a 
different size D×L (D - beam height, L=4×D - beam length) with free ends 
(Skarzyński et al. 2011), Fig. 9.22a. The beams were geometrically similar in two 
dimensions only for 2 reasons: a) to reduce the number of finite elements and the 
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related computation time in FE calculations at meso-scale (two-dimensional 
analyses were carried out instead of three-dimensional ones) and b) to avoid 
differences in the hydration heat effects which are proportional to the thickness of 
the member (Bažant and Planas, 1998). The following concrete beams were used: 
a) small-size beams 80×320 mm2, b) medium-size beams 160×640 mm2 and c) 
large-size beams 320×1280 mm2  (Fig. 9.22a). The thickness of beams was always 
the same b=40 mm, and the beams’ span was equal to 3×D. A notch with a height 
of D/10 mm was located at the mid-span of the beam bottom. The beams were 
subjected to a vertical displacement in the mid-point at a very slow rate. Two 
different fine-grained concrete mixes were composed of ordinary Portland cement, 
water and fine sand (with a mean aggregate diameter d50=0.5 mm and maximum 
aggregate diameter dmax=3.0 mm) or sand (d50=2.0 mm, dmax=8.0 mm) (Fig. 9.22b). 
The width and shape of a localized zone above the notch on the surface of beams 
was determined with a Digital Image Correlation (DIC) method which is an 
optical way to visualize surface displacements by successive post-processing of 
 

 
                                                                    a) 

 
        b) 

Fig. 9.22 Geometry of experimental concrete beams subjected to three-point bending: a) 
geometry (Le Bellěgo et al. 2003, Skarżyński et al. 2011), b) grading curve for fine sand 
(continuous line) and sand (discontinuous line) used for concrete (Skarżyński et al. 2011) 
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digital images taken at a constant time increment from a professional digital 
camera (based on displacements, strains can be calculated) (White et al. 2003). 
The experimental set-up and results were described in detail by Skarżyński et al. 
(2011). The beams of the same size were also used by Le Bellěgo et al. (2003). 

Figure 9.23 shows the formation of a localized zone on one side of the surface 
of a fine-grained small-size concrete beam above the notch from laboratory tests  
 

 

Fig. 9.23 Formation of localized zone with mean width of wc=3.5-4.0 mm directly above 
notch in 3 different experiments (‘a’, ‘b’ and ‘c’) with small-size notched fine-grained 
concrete beam 80×320×40 mm3 using DIC (vertical and horizontal axes denote coordinates 
in [mm] and colour scales strain intensity) (Skarżyński et al. 2011) 
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using a DIC (Skarżyński et al. 2011). A localized zone occurred always before the 
peak on the force-deflection diagram and was strongly curved. In some cases, it 
branched. The measured width of a localized zone above the notch increased 
during deformation due to concrete dilatancy (Fig. 9.24A) up to wc=3.5-4.0 mm 
(≤dmax) in the range of the deflection u=0.01-0.04 mm until a macro-crack was 
created. The maximum height of a localized zone above the notch was about 
hc=50-55 mm at u=0.04 mm (Fig. 9.24B). The width of a localized zone did not 
depend upon the concrete mix type and beam size (Skarżyński et al. 2011).  

 

 

Fig. 9.24 Evolution of width wc (A) and height hc (B) of localized zone with deflection u 
directly above notch in experiments with small-size notched beam 80×320×40 mm3 of fine-
grained concrete using DIC: a) aggregate d50=2 mm and dmax=8 mm, b) aggregate d50=0.5 
mm and dmax=3 mm (× - maximum vertical force, • - formation of macro-crack) 
(Skarżyński et al. 2011) 

FE results  
The FE-meshes including 12’000-1’600’000 triangular elements were assumed 
(Skarżyński and Tejchman 2010). The calculations were carried out with one set 
of material parameters for usual concrete only which was prescribed to finite 
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elements corresponding to a specified concrete phase (Tab. 9.2) using an isotropic 
damage model with non-local softening. The interface was again assumed to be 
the weakest component. In general, the material constants should be determined 
through laboratory tensile tests for each phase (that is certainly possible for 
aggregate and cement matrix but not feasible for ITZs). Since the material 
constants for aggregate and cement matrix were not separately determined with 
laboratory experiments, other relationships between material constants E and κ0 
were also possible to obtain a satisfactory agreement between experiments and FE 
analyses. 

Table 9.2 Material parameters assumed for three-point bending (Skarżyński and Tejchman 
2010) 

Material parameters Inclusions Cement 
matrix 

Interface 

Modulus of elasticity 
E [GPa] 

40 35 30 

Poisson’s ratio  
ν [-] 

0.2 0.2 0.2 

Crack initiation strain parameter  
κo [-] 

0.5 1×10-4 7×10-5 

Residual stress level parameter 
α [-] 

0.95 0.95 0.95 

Slope of softening parameter 
β [-] 

200 200 200 

 
 
Four different fine-grained concrete mixes were numerically analysed  

(Fig. 9.25). To reduce the number of aggregate grains in calculations, the size of 
the smallest inclusions had to be limited (Fig. 9.25). The aggregate size varied 
between the minimum value dmin=2 mm and maximum value dmax=8 mm with the 
mean value of d50=2 mm (aggregate size distribution curve ‘a’ of Fig. 9.25 
corresponding to the experimental one for sand concrete of Fig. 9.22b), dmin=2 mm 
and dmax=10 mm with d50=4 mm (aggregate size distribution curve ‘b’ of  
Fig. 9.25), dmin=2 mm and dmax=6 mm with d50=4 mm (aggregate size distribution 
curve ‘c’ of Fig. 9.25) and dmin=0.5 mm and dmax=3 mm with d50=0.5 mm 
(aggregate size distribution curve ‘d’ of Fig. 9.25 corresponding to the 
experimental one for fine sand concrete of Fig. 9.22b). 

The width of ITZs was assumed to be tb=0-0.75 mm. The size of finite elements 
was small enough to obtain objective results: sa=0.5 mm (aggregate), scm=0.1-0.2 
mm (cement matrix) and sITZ=0.05-0.1 mm (ITZ). The calculation time was about 
2-5 days using PC with CPU Q6600 2×2.4 GHz and 4 GB RAM. The aggregate 
density was ρ=30%, ρ=45% or 60%, respectively. 
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Fig. 9.25 Aggregate size distribution curves assumed for FE calculations (note that small 
aggregates were cut off to reduce the computation time) 

The following numerical calculation program was assumed. First, three beams 
of a different size of sand concrete were modeled: as a partially homogeneous and 
partially heterogeneous with a meso-section in the notch neighborhood and as an 
entirely heterogeneous beam at meso-scale. The width of a heterogeneous meso-
scale section bms varied between D/2 (40 mm) and D (80 mm) (D - beam height). 
These analyses allowed us to determine a representative width of a required 
heterogeneous region close to the notch. Next, the effect of different parameters 
was studied in a small-size beam. Finally, calculations were carried out with 
partially heterogeneous beams of a different size to determine a deterministic size 
effect. Three-five different stochastic realizations were usually performed for the 
same case. The width of the fracture process zone above the notch in all beams 
was determined at the deflection of u=0.15 mm on the basis of a non-local 
softening strain measure. As the cut-off value, minε =0.025 was always assumed at 

the maximum mid-point value of maxε =0.08-0.13. 
Our combined macro-mesoscopic simulations (Skarżyński and Tejchman 2010) 

are similar to a multi-scale approach using a Coupled Volume method where the 
size of a macro-element equals the size of a meso-cell (to avoid the assumption of 
any size of RVE) (Gitman et al. 2008). However, our simulations are faster 
because there is no need to continuously move between 2 calculation levels (the 
effect of an insignificant number of finite elements in a homogeneous beam region 
on the computation time is practically negligible).  

First, the macro-scale calculations were carried out. Concrete was treated as an 
entirely homogeneous one phase-material with the following material constants: 
E=38500 MPa, υ=0.2, κ0=1.3×10-4, α=0.95, β=400 and lc=2 mm. Totally, 12’000-
92’000 triangular elements were assumed. The size of triangular finite elements 
was s=1.5 mm (in the nearest neighbourhood of the notch). Figure 9.26 presents 
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the FE results of the nominal strength 21.5 /( )n Pl bDσ =  of 3 different concrete 
beams versus the normalized deflection u/D (P - vertical force, u - beam 
deflection, D - beam height, b - beam width, l=3×D - beam span) as compared to 
laboratory tests by Le Bellěgo et al. (2003). Figure 9.27 shows the distribution of a 
non-local softening strain measure in beams.  

 

 

Fig. 9.26 Calculated and experimental nominal strength 1.5Pl/(bD2) versus normalised 
beam deflection u/D (u - beam deflection, D - beam height): A) FE-results, B) experiments 
by Le Bellěgo et al. (2003), 1) small-size beam, 2) medium-size beam, 3) large-size beam 
(homogeneous one-phase material, lc=2 mm) (Skarżyński and Tejchman 2010) 

 

Fig. 9.27 Distribution of non-local strain measure above notch from numerical calculations 
with homogeneous one-phase material (at u/D=0.5) for small-size (top row), medium-size 
(medium row) and large-size beam (bottom row) (Skarżyński and Tejchman 2010) 
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The numerical strength results are in a satisfactory agreement with tests by Le 
Bellěgo et al. (2003). The size effect is realistically described (nominal strength 
and material ductility increase with decreasing beam size). The width of a 
localized zone above the notch is about wc=6.0 mm=3×lc=4×s (at u/D=0.5) and 
approximately corresponds to the measured maximum value of wc (5.5 mm) by 
DIC. However, in contrast to experiments, the calculated localized zones are 
always straight (an assumption of a stochastic spatially correlated distribution of 
tensile strength in the beam did not significantly affect their shape, Chapter 8).  

 
Effect of width of meso-scale region 
Figure 9.28 demonstrates the load-deflection curves obtained for two different 
aggregate distributions to determine a realistic width of a meso-scale region close 
to the notch (to reduce computation time). Concrete was treated in a meso-scale 
region as a random three-phase heterogeneous material with circularly-shaped 
aggregate using material constants from Tab. 9.2. In the remaining region, the 
material was homogeneous one-phase material (E=38500 MPa, υ=0.2, κ0=1.3× 
10-4, α=0.95, β=200). The beam size was 80×320 mm2. The width of a meso-scale 
region was bms=40 mm or bms=80 mm (Fig. 9.29). Totally 65’000-110’000 finite 
elements were assumed. The characteristic length was lc=1.5 mm and the 
aggregate density 30%. An entirely heterogeneous beam with 365000 elements 
served as the reference beam. For a comparison, a stochastic distribution of 
aggregate was always the same in a meso-scale section. Figure 9.30 shows the 
distribution of a non-local softening parameter above the notch.  

The results show that the effect of the width of the meso-scale region on the 
results can be significant if bms≤D/2. However, if the width of a meso-scale region 
close to the notch equals D=80 mm, the results of forces and strains with an 
entirely and a partially heterogeneous beam are similar. In further calculations to 
save computational time, a representative meso-scale section was assumed to be 
always equal to the beam height bms=D (i.e. 80 mm for a small-size beam, 160 
mm for a medium-size beam and 320 mm for a large-size beam).  

 

 

Fig. 9.28 Calculated force-deflection curves for two different random distributions of 
aggregate in small-size beam 80×320 mm2 of sand concrete (d50=2 mm, dmax=8 mm, lc=1.5 
mm): a) entirely heterogeneous beam, b) partially heterogeneous beam with width of meso-
scale section of bms=80 mm, c) partially heterogeneous beam with width of the meso-scale 
section of bms=40 mm (Skarżyński and Tejchman 2010) 
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Fig. 9.29 FE mesh: three-phase heterogeneous concrete in notch neighbourhood with round 
shaped aggregate, cement matrix and interfacial transition zones ITZ and one-phase 
homogeneous concrete in remaining region (Skarżyński and Tejchman 2010) 

 

 
a) 

 
b) 

Fig. 9.30 Calculated distribution of non-local strain measure above notch (small size beam 
80×320 mm2, lc=1.5 mm) for gravel concrete (d50=2 mm, dmax=8 mm): a) entirely 
heterogeneous beam, b) partially heterogeneous beam with width of meso-scale section of 
bms=80 mm, c) partially heterogeneous beam with width of the meso-scale section of 
bms=40 mm (Skarżyński and Tejchman 2010) 
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c) 

Fig. 9.30 (continued) 

Next the numerical 2D effect of different parameters such as the aggregate 
distribution, aggregate volume, aggregate shape, aggregate stiffness, bond 
thickness, notch size and characteristic length on the material behaviour (load-
deflection curve and strain localization) was investigated for the small concrete 
beam 80×320 mm2. The parameters were varied independently. 

 
Effect of stochastic aggregate distribution 
The effect of a random distribution of round-shaped aggregate particles in the 
concrete beam on the force-deflection diagram and width of a localized zone is 
shown in Figs. 9.31 and 9.32. The aggregate volume was ρ=45% using two 
aggregate size distribution curves ‘a’ (d50=2 mm, dmax=8 mm) and ‘d’ (d50=0.5 
mm, dmax=3 mm) of Fig. 9.25, respectively. The ITZ thickness was tb=0.25 mm. 

All stochastic force-deflection curves are obviously the same in the almost 
entire elastic regime. However, they are significantly different at and after the 
peak (Fig. 9.31) due to a localized zone propagating between aggregate 
distributed at random, which is always non-symmetric and curved (Fig. 9.32). 
The difference in the strength is about 10-20%. The calculated width of a 
localized zone is approximately wc=4.5 mm=3×lc=9×scm independently of dmax 
and d50 (as in our tests, Skarżyński et al. 2011). The calculated localized zone is 
created at about u/D=0.0003 (u=0.024 mm) and its width increases during the 
deformation process. 

A similar strong stochastic effect was also observed in FE calculations by 
Gitman et al. (2007) and He (2010). Surprisingly, a negligible stochastic effect 
was found in FE simulations by Kim and Abu Al-Rub (2011). 
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Fig. 9.3l Calculated force-deflection curves for fine-grained concrete beam (lc=1.5 mm, 
ρ=45%, tb=0.25 mm): A) with aggregate size distribution curve ‘a’ of Fig. 9.25 (d50=2 mm and 
dmax=8 mm) and B) with aggregate size distribution curve ‘d’ of Fig. 9.25 (d50=0.5 mm and 
dmax=3 mm) for three random distributions of circular aggregates (curves ‘a’, ‘b’ and ‘c’)  

Effect of aggregate shape and aggregate size distribution 
To model the effect of the aggregate shape, four different grain shapes were taken 
into account, namely: circular, octagonal, irregular (angular) and rhomboidal  
(Fig. 9.33) keeping always the volume fraction and centres of grains constant 
(lc=1.5 mm, ρ=60%, tb=0.25 mm).  
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Fig. 9.32 Calculated localized zone in fine-grained concrete beam in notch region based on 
distribution of non-local strain measure corresponding to load-deflection curves ‘a’, ‘b’ and 
‘c’ of Figs. 9.31A and 9.31B (lc=1.5 mm, ρ=45%, tb=0.25 mm) 

The aggregate shape can have a different influence on the beam ultimate 
strength depending upon the aggregate size distribution (Figs. 9.34 and 9.35). For 
the aggregate size distribution of Fig. 9.25a, the ultimate beam strength is the 
highest for rhomboidal-shaped particles and the lowest for octagonal-shaped 
particles (Figs. 9.33a, 9.35B and 9.35D). This difference equals even 30%. In the 
case of the aggregate size distribution curve of Fig. 9.25b, the ultimate beam 
strength is similar for all assumed particle shapes (Fig. 9.34B). For the aggregate 
size distribution of Fig. 9.25c, angular-shaped inclusions have the lower tensile 
strength than circular grains (Fig. 9.35C). From simulations follows that the mean 
tensile strength is usually higher with the larger mean grain size and the narrower 
grain range (Figs. 9.34A, 9.34B, 9.34C and 9.35).  
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Fig. 9.33 Aggregate shape assumed in calculations: a) circular, b) octagonal, c) irregular 
(angular), d) rhomboidal 

 

Fig. 9.34 Calculated force-deflection curves for different aggregate shape of Fig. 9.33: a) 
circular, b) octagonal, c) irregular (angular), d) rhomboidal (fine-grained concrete beam 
80×320 mm2, lc=1.5 mm, ρ=60%, tb=0.25 mm) and different aggregate size distributions of 
Fig. 9.25: A) d50=2 mm and dmax=8 mm (curve ‘a’), B) d50=4 mm and dmax=10 mm (curve 
‘b’), C) d50=4 mm and dmax=6 mm (curve ‘c’) 
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The width of a localized zone equals approximately wc=3 mm for ρ=60% and is 
not influenced by the aggregate shape, aggregate distribution, mean and maximum 
grain size (Fig. 9.36). In turn, the form of a localized zone is strongly affected by 
the aggregate shape contributing thus to the different strength. The calculated 
width of a localized zone is in good agreement with our experiments with fine-
grained concrete (Figs. 9.23 and 9.24A). Our outcome is in contrast to statements 
by Bažant and Pijauder-Cabot (1989), and Bažant and Oh (1983) wherein the 
width of a localized zone in usual concrete was estimated to be dependent upon 
dmax. It is also in contrast to experimental results by Mihashi and Nomura (1996) 
which showed that the width of a localized zone in usual concrete increased with 
increasing aggregate size. The differences between our and the experimental 
results (Bažant and Oh 1983, Mihashi and Nomura 1996) lie probably in a 
different concrete mix, specimen size and loading type. For instance, in our other 
tests with large reinforced concrete beams 6.0 m long without shear reinforcement 
under bending, the width of a localized zone in usual concrete was about 15 mm 
indicating that lc=5 mm (Syroka and Tejchman 2011). This problem merits further 
experimental and numerical investigations. 

 

 

Fig. 9.35 Calculated force-deflection curves for different aggregate shape of Fig. 9.33: A) 
circular, B) octagonal, C) irregular (angular), D) rhomboidal (fine-grained concrete beam 
80×320 mm2, lc=1.5 mm, ρ=60%, tb=0.25 mm) and different aggregate size distribution of 
Fig. 9.25: a) d50=2 mm and dmax=8 mm (curve ‘a’), b) d50=4 mm and dmax=10 mm (curve 
‘b’), c) d50=4 mm and dmax=6 mm (curve ‘c’) 
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According to Kim and Abu Al-Rub (2011) the aggregate shape has a weak 
effect on the ultimate strength of concrete and on the strain to damage-onset, but 
significantly affects the crack initiation, propagation and distribution. The stress 
concentrations at sharp edges of polygonal particles cause that the ultimate tensile 
strength and strain at the damage onset are the highest for circular grains model. 
Similar conclusions were derived by He et al. (2009) and He (2010).  

 

 

Fig. 9.36 Calculated localized zone based on distribution of non-local strain measure in 
fine-grained concrete beam in notch region corresponding to load-deflection curves ‘a’, ‘b’, 
‘c’ and ‘d’ of Figs. 9.34A, 9.34B and 9.34C (lc=1.5 mm, ρ=60%, tb=0.25 mm) 

Effect of volume fraction of aggregate 
Circular grains with the volume of ρ=30%, ρ=45% and ρ=60% were used (lc=1.5 
mm, tb=0.25 mm), Fig. 9.37. Figures 9.38 and 9.39 demonstrate the effect of the 
aggregate volume in fine-grained concrete beam with the aggregate size 
distributions ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm) and ‘d’ of Fig. 9.25 (d50=0.5 
mm, dmax=3 mm). 

In our FE simulations, the Young modulus and ultimate beam strength increase 
with increasing aggregate density in the range of 30%-60% (Fig. 9.38). This 
increase certainly depends on material parameters assumed for separated concrete 
phases, in particular for ITZs being always the weakest parts in concrete. 
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The width and shape of a localized zone are influenced by the aggregate 
volume; a localized zone becomes narrower with increasing aggregate volume: 
wc=6 mm at ρ=30%, wc=4.5 mm at ρ=45% and wc=3 mm at ρ=60% (Fig. 9.39).  

 

 

Fig. 9.37 Concrete beams with different volume fraction of aggregate ρ in region close to 
notch: a) ρ=30%, b) ρ=45% and c) ρ=60% using grain size distribution ‘a’ of Fig. 9.25 

According to Kim and Abu Al-Rub (2011) the Young modulus linearly 
increases with increasing aggregate volume, and the tensile strength decreases 
with increasing aggregate density up to ρ=40% and increases next from ρ=40% up 
to ρ=60%. The strain at the damage linearly decreases with increasing aggregate 
volume. He et al. (2009) and He (2010) concluded that concrete with a higher 
packing density of aggregate up to 50% has a decreasing tensile strength (due to a 
higher number of very weak interfacial transitional zones around aggregate). It 
seems that the property of ITZ (stiffness, strength and width) is essential for the 
global strength versus ρ.  

 
Effect of ITZ thickness 
The interfacial transition zone (ITZ) is a special region of the cement paste around 
particles, which is perturbed by their presence. Its origin lies in the packing of the 
cement grains against the much larger aggregate which leads to a local increase in 
porosity (micro-voids) and a presence of smaller cement particles. A paste with 
lower w/c (higher packing density) or made with finer cement particles leads to  
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ITZ of smaller extent. This layer is highly heterogeneous and damaged and thus 
critical for the concrete behaviour (Srivener et al. 2004, Mondal et al. 2009). An 
accurate understanding of the properties and behaviour of ITZ is one of the most 
important issues in the meso-scale analysis because damage is initiated at the 
weakest region and ITZ is just this weakest link in concrete. We assumed that 
ITZs have the reduced stiffness and strength as compared to the cement matrix 
(Tabl.9.2). 

 

 

Fig. 9.38 Calculated load-deflection curves for different volume fractions ρ of circular 
aggregate: a) ρ=30%, b) ρ=45% and c) ρ=60% (concrete beam 80×320 mm2, lc=1.5 mm, 
tb=0.25 mm, A) aggregate size distribution ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm), B) 
aggregate size distribution ‘d’ of Fig. 9.25 (d50=0.5 mm, dmax=3 mm) 

Figures 9.40 and 9.41 demonstrate the effect of the ITZ thickness in a fine-
grained concrete beam of circular grains with the aggregate size distribution ‘a’ of 
Fig. 9.25 (d50=2 mm, dmax=8 mm) assuming the aggregate volume fraction ρ=45% 
and ρ=60% (lc=1.5 mm). Since there is very limited data on the thickness of ITZ, 
the thickness tb in our study was assumed to be 0 mm, 0.05mm (He et al. 2011,  
He 2010), 0.25 mm (Gitman et al. 2007) and 0.75 mm. 
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Fig. 9.39 Calculated localized zone based on distribution of non-local strain measure in 
fine-grained concrete beam 80×320 mm2 (lc=1.5 mm, tb=0.25 mm) corresponding to load-
deflection curves ‘a', 'b' and 'c' of Figs. 9.38A and 9.38B 

The results show that the thickness and strength of ITZs strongly affect both the 
load-displacement response and shape of localized zone. Since ITZ is the weakest 
phase, the ultimate beam strength decreases with increasing bond thickness  
(Fig. 9.40). This result is in agreement with those by He et al. (2009), He (2010) 
and Kim and Abu Al-Rub (2011). However, the residual strength rather increases 
with increasing bond thickness as in calculations by Kim and Abu Al-Rub (2011). 
The width of a localized zone is wc=4.5 mm (ρ=45%) and wc=3 mm (ρ=60%) and 
is not affected by the ITZ size tb (Fig. 9.41).  

 
Effect of notch size 
Figures 9.42 and 9.43 demonstrate the effect of the notch size on the load-
deflection diagram and strain localization in a fine-grained concrete beam with a 
random distribution of aggregate ‘a’ of Fig. 9.25 (d50=2 mm to dmax=8 mm) using 
circular aggregate volume ρ=30% and ρ=60% (lc=1.5 mm, tb=0.25 mm). The 
notch size was 0×0 mm2, 3×3 mm2 and 6×3 mm2 (width×height), respectively. 
The beam without notch was modelled as entirely heterogeneous to be sure that a 
localized zone occurs in a meso-region. 
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The ultimate beam strength is higher with decreasing notch size (Fig. 9.42). The 
notch size has no influence on the width of a localized zone (wc=6 mm at ρ=30% 
and wc=3 mm at ρ=60% (Fig. 9.43). 

 

 
Fig. 9.40 Numerical effect of different ITZ thickness tb in FE calculations on load-
deflection curve: a) tb=0 mm, b) tb=0.05 mm, c) tb=0.25 mm and d) tb=0.75 mm, A) ρ=45%, 
B) ρ=60% (fine-grained concrete beam 80×320 mm2, lc=1.5 mm, circular grains with size 
distribution ‘a’ of Fig. 9.25 (d50=2 mm, dmax=8 mm) 

Effect of aggregate stiffness 
Figure 9.44 shows the effect of the aggregate stiffness in a small size beam 
(80×320 mm2, d50=4 mm and dmax=10 mm, ρ=60%, tb=0.25 mm, lc=1.5 mm). The 
calculations were carried out with weak aggregate (which had the same properties 
as ITZ of Tab. 9.2).  

For the weak aggregate, a localized zone can propagate through weak grains. 
The vertical force is obviously smaller and the width of a localized zone is higher 
as compared to the results with the strong aggregate (strong aggregate - wc=3.3 
mm, weak aggregate - wc=5.8 mm). 
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Fig. 9.41 Numerical effect of different bond thickness tb in FE calculations on distribution 
of non-local strain measure close to beam notch corresponding to load-deflection curves 
‘a’, ‘b’, ‘c’ and ‘d’ of Figs. 9.40A and 9.40B 

Effect of characteristic length of micro-structure 
The effect of a characteristic length of micro-structure on the load-deflection 
diagram and strain localization is shown in Figs. 9.45 and 9.46 using the same 
stochastic distribution of circular aggregate (lc changed between 0.5 mm and  
5 mm). 

With increasing characteristic length, both beam strength and width of a 
localized zone strongly increase since the material softening decreases and 
material becomes more ductile. A pronounced deterministic size effect occurs. A 
localized zone propagating in a cement matrix between aggregate grains is 
strongly curved at lc=0.5-2.5 mm, whereas it becomes more straight at lc>2.5 mm. 
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It is about: wc=2.9-17.6 mm=(3.5-5.9)×lc=(5.8-35.2)×d50 at ρ=30%, wc=2.5-16.7 
mm=(3.0-5.0)×lc=(1.25-8.35)×d50 at ρ=45% and wc=2.4-13.9 mm=(2.3-
4.7)×lc=(0.6-3.47)×d50 at ρ=60% (Tab. 9.3). It always decreases with increasing ρ 
(Tab. 9.3). A characteristic length of micro-structure is not uniquely connected to 
the aggregate size.  
 

 

Fig. 9.42 Numerical effect of notch size on force-deflection curve for two different 
aggregate densities: a) 0×0 mm2, b) 3×3 mm2 and c) 6×3 mm2, A) ρ=30%, B) ρ=60% (fine-
grained concrete beam 80×320 mm2, lc=1.5 mm, circular aggregate distribution ‘a’ of  
Fig. 9.25 with d50=2 mm and dmax=8 mm) 

Figure 9.47 shows the evolution of the width and height of the localized zone 
from FE calculations. The FE results of Fig. 9.47 are similar as in the experiments 
(Fig. 9.25). The calculated maximum width is 3.25 mm (3.5-4.0 mm in tests) and 
height 55 mm (50-55 mm in tests) at u=0.2 mm. The calculated localized zone 
strongly forms (linearly) before and after the maximum vertical force in the range 
of u=0.025-0.05 mm (width) and of u=0.025-0.1 mm (length). The mean 
propagation rate of the calculated localized zone versus the beam deflection is 
similar as in experiments, although is more uniform (Fig. 9.48). In the experiments, 
a macro-crack occurred at about u=0.04 mm, which cannot be captured by our 
model. In order to numerically describe a macro-crack, a discontinuous approach 
has to be used (e.g. XFEM or cohesive crack model, Chapter 4). 
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Fig. 9.43 Numerical effect of notch size on distribution of non-local strain measure close to 
beam notch corresponding to load-deflection curves ‘a’, ‘b’ and ‘c’ of Figs. 9.42A and 
9.42B 

Effect of beam size 
The effect of the beam size is presented in Figs. 9.49 and 9.50. Figure 9.49 shows 

the numerical results of the nominal strength 21.5 /( )n Pl bDσ =  versus the 

normalized deflection u/D for three different concrete beams compared to tests by 
Le Bellěgo et al. (2003). Concrete was treated as an one-phase material with a 
heterogeneous three-phase section close to the notch (bms=D) using material 
constants from Tab. 9.2. The following amount of triangular finite elements was 
used: 110’000 (small beam), 420’000 medium beam and 1’600’000 (large beam). 
In turn, Figure 9.50 presents the distribution of a non-local softening strain 
measure in beams. The calculations were carried out with gravel concrete of 
dmax=8 mm, aggregate density of ρ=30% and a characteristic length of lc=1.5 mm.  
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Fig. 9.44 Effect of aggregate stiffness on force-deflection curve and distribution of non-
local strain measure close to beam notch: a) strong circular aggregate, b) weak circular 
aggregate (fine-grained concrete beam 80×320 mm2, lc=1.5 mm, circular aggregate 
distribution ‘c’ of Fig. 9.25 with d50=4 mm and dmax=10 mm, ρ=60%) 

The numerical results are in a satisfactory agreement with tests by Le Bellěgo 
et al. (2003). The deterministic size effect is realistically modelled in calculations. 
The width of the localized zone above the notch at u/D=0.5 is 6 mm (ρ=30%) for 
all beam sizes. The localized zone propagating between aggregate is always 
strongly curved, what satisfactorily reflects the experimental results. 
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Fig. 9.45 Calculated load-deflection curves for different characteristic lengths lc: a) 
lc=0.5 mm, b) lc=1.5 mm, c) lc=2.5 mm and d) lc=5 mm (concrete beam 80×320 mm2, 
ITZ thickness tb=0.25 mm), A) volume fraction of circular aggregate ρ=30% (concrete 
mix ‘d’ of Fig. 9.25 with d50=0.5 mm and dmax=3 mm), B) volume fraction of circular 
aggregate ρ=45% (concrete mix ‘a’ of Fig. 9.25 with d50=2 mm and dmax=8 mm),  
C) volume fraction of angular aggregate ρ=60% (concrete mix ‘b’ of Fig. 9.25 with d50=4 
mm and dmax=10 mm) 

Figure 9.51 shows a comparison between the measured and calculated size 
effect for concrete beams. In addition, the results of a deterministic size effect law 
by Bažant, Eq. 5.5 (Bažant and Planas 1998, Bažant 2004) are enclosed (which is 
valid for structures with pre-existing notches, Chapter 8). The experimental and 
theoretical beam strength shows a strong parabolic size dependence. The 
experimental and numerical results match quite well the size effect law by Bažant 
(Bažant and Planas 1998). 
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Fig. 9.46 Calculated localized zone based on distribution of non-local strain measure for 
different characteristic lengths lc: a) lc=0.5 mm, b) lc=1.5 mm, c) lc=2.5 mm and d) lc=5 mm 
(concrete beam 80×320 mm2, bond thickness tb=0.25 mm), A) volume fraction of circular 
aggregate ρ=30% (concrete mix ‘d’ of Fig. 9.25 with d50=0.5 mm and dmax=3 mm), B) 
volume fraction of circular aggregate ρ=45% (concrete mix ‘a’ of Fig. 9.25 with d50=2 mm 
and dmax=8 mm), C) volume fraction of angular aggregate ρ=60% (concrete mix ‘b’ of  
Fig. 9.25 with d50=4 mm and dmax=10 mm) 

Table 9.3 Calculated width of localized zone with different characteristic length lc and 
volume fraction ρ  
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Fig. 9.47 The calculated evolution of width (A) wc and height hc (B) of localized zone 
versus beam deflection u: a) concrete mix ‘a’ of Fig. 9.25 with d50=2 mm and dmax=8 mm, 
irregular aggregate, ρ=60%, lc=1.5 mm, b) concrete mix ‘b’ of Fig. 9.25 with d50=4 mm and 
dmax=10 mm, octagonal aggregate, ρ=60%, lc=1.5 mm, c) concrete mix ‘c’ of Fig. 9.25 with 
d50=4 mm and dmax=6 mm, circular aggregate, ρ=60%, lc=1.5 mm, d) concrete mix ‘a’ of 
Fig. 9.25 with d50=2 mm and dmax=8 mm, circular aggregate, ρ=60%, beam without notch, 
lc=1.5 mm (• - maximum vertical force) 
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Fig. 9.48 Comparison between measured (a) and calculated (b) evolution of width of 
localized zone wc versus beam deflection u (maximum vertical force occurs at deflection 
u=0.035 mm) 

 

 

Fig. 9.49 Calculated nominal strength 1.5Pl/(bD2) versus normalised beam deflection 
u/D (u - beam deflection, D - beam height): A) FE-results, B) experiments by Le 
Bellěgo et al. (2003): 1) small-size beam, (2) medium-size beam, (3) large-size beam 
(three-phase random heterogeneous material close to notch, bms=D) (Skarżyński and 
Tejchman 2010) 
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Fig. 9.50 Calculated distribution of non-local strain measure above notch from numerical 
calculations (at u/D=0.5) in small-size, medium-size and large-size beam (random 
heterogeneous three-phase material close to notch, bms=D) (Skarżyński and Tejchman 
2010) 

 

 

Fig. 9.51 Calculated and measured size effect in nominal strength 1.5Pl/(bD2) versus beam 
height D for concrete beams of a similar geometry (small-, medium- and large-size beam): 
a) our laboratory experiments, b) our FE-calculations (homogeneous one-phase material), 
c) our FE-calculations (heterogeneous material close to notch, bms=D), d) size effect law by 
Bažant (2004), Eq. 5.5, e) experiments by Le Bellěgo et al. (2003) (Skarżyński and 
Tejchman 2010) 
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9.3   Representative Volume Element 

Thus, the most important issue in multi-scale analyses is determination of an 
appropriate size for a micro-structural model, so-called representative volume 
element RVE. The size of RVE should be chosen such that homogenized 
properties become independent of micro-structural variations and a micro-
structural domain is small enough such that separation of scales is guaranteed. 
Many researchers attempted to define the size of RVE in heterogeneous materials 
with a softening response in a post-peak regime (Hill 1963, Bažant and Pijauder-
Cabot 1989, Drugan and Willis 1996, Evesque 2000, van Mier 2000, Bažant and 
Novak 2003, Kanit et al. 2003, Kouznetsova et al. 2004, Gitman et al. 2007, 
Skarżyński and Tejchman 2009). The last outcomes in this topic show, however, 
that RVE cannot be defined in softening quasi-brittle materials due to strain 
localization since the material loses then its statistical homogeneity, Chapter 9.1 
(Gitman et al. 2007, Skarżyński and Tejchman 2009, 2010). Thus, each multi-
scale approach always suffers from non-objectivity of results with respect to a cell 
size. RVE solely exists for linear and hardening regimes. 

The intention of our FE investigations is to determine RVE in concrete under 
tension using two alternative strategies (one of them was proposed by Nguyen et 
al. 2010) (Skarżyński and Tejchman al. 2012). Concrete was assumed at meso-
scale as a random heterogeneous material composed of three phases. The FE 
calculations of strain localization were carried out again with a scalar isotropic 
damage with non-local softening (Tab. 9.4). The interface was assumed to be the 
weakest component (Lilliu and van Mier 2003) and its width was 0.25 mm 
(Gitman et al. 2007). For the sake of simplicity, the aggregate was assumed in the 
form of circles. The number of triangular finite elements changed between 4’000 
(the smallest specimen) and 100’000 (the largest specimen). The size of triangular 
elements was: sa=0.5 mm (aggregate), scm=0.25 mm (cement matrix) and sitz=0.1 
mm (interface). To analyze the existence of RVE under tension, a plane strain 
uniaxial tension test was performed with a quadratic concrete specimen 
representing a unit cell with the periodicity of boundary conditions and material 
periodicity (Chapter 9.1), Fig. 9.52.  

The unit cells of six different sizes were investigated b×h: 5×5 mm2, 10×10 
mm2, 15×15 mm2, 20×20 mm2, 25×25 mm2 and 30×30 mm2, respectively. For 
each specimen, three different stochastic realizations were performed with the 
aggregate density of ρ=30% (the results for ρ=45% and ρ=60% showed the same 
trend). A characteristic length of micro-structure was assumed to be lc=1.5 mm 
based on DIC and numerical studies with an isotropic damage model (Chapter 
9.2). Thus, the maximum finite element size in 3 different concrete phases was not 
greater than 3×lc to obtain mesh-objective results (Bobiński and Tejchman 2004, 
Marzec et al. 2007). 
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Table 9.4 Material properties assumed for FE calculations of 2D random heterogeneous 
three-phase concrete material (Skarżyński and Tejchman 2012) 

Parameters Aggregate Cement matrix ITZ 

Modulus of elasticity E 
[GPa] 

30 25 20 

Poisson's ratio υ [-] 0.2 0.2 0.2 

Crack initiation strain κ0 [-] 0.5 8×10-5 5×10-5 

Residual stress level α [-] 0.95 0.95 0.95 

Slope of softening β [-] 200 200 200 

 

 

Fig. 9.52 Deformed three-phase concrete specimen with periodicity of boundary conditions 
and material periodicity (Skarżyński and Tejchman 2012) 

Standard averaging approach 
The standard averaging is performed in the entire specimen domain (Chapter 9.1). 
The homogenized stress and strain are defined in two dimensions as 

                   
int
yf

b
σ< >=                     and                       u

h
ε< >= ,                (9.4) 

where int
yf  denotes the sum of all vertical nodal forces in the ‘y’ direction along 

the top edge of the specimen (Fig. 9.5), u is the prescribed vertical displacement in 
the ‘y’ direction and b and h are the width and height of the specimen. 

Figure 9.53 presents the stress-strain relationships for various cell sizes and two 
random aggregate distributions with the material constants of Tab. 9.5 (lc= 
1.5 mm). In the first case, the aggregate distribution was similar and in the second 
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case it was at random in different unit cells. The results show that the stress-strain 
curves are the same solely in an elastic regime independently of the specimen size, 
aggregate density and aggregate distribution. However, they are completely 
different at the peak and in a softening regime. An increase of the specimen size 
causes a strength decrease and an increase of material brittleness (softening rate). 
The differences in the evolution of stress-strain curves in a softening regime are 
caused by strain localization (in the form of a curved localized zone propagating 
between aggregates, Figs. 9.54 and 9.55) contributing to a loss of material 
homogeneity (due to the fact that strain localization is not scaled with increasing 
specimen size). The width of a calculated localized zone is approximately wc=3 
mm=2×lc=12×scm (unit cell 5×5 mm2), wc=5 mm=3.33×lc=20×scm (unit cell 10×10 
mm2) and wc=6 mm=4×lc=24×scm (unit cells larger than 10×10 mm2).  

Figure 9.56 presents the expectation value and standard deviation of the tensile 
fracture energy Gf versus the specimen height h for 3 different realizations. The 
fracture energy Gf was calculated as the area under the strain-stress curves gf 
multiplied by the width of a localized zone wc 

                                     
2

1

( d )

a

f f c c

a

G g w wσ ε= × = < > < > × .                         (9.4) 

The integration limits ‘a1’ and ‘a2’ are 0 and 0.001, respectively. The fracture energy 
decreases with increasing specimen size without reaching an asymptote, i.e. the size 
dependence of RVE exists (since a localized zone does not scale with the specimen 
size). Thus, RVE cannot be found for softening materials and a standard averaging 
approach cannot be used in homogenization-based multi-scale models. 

 

 
a) 

Fig. 9.53 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using standard averaging procedure 
(characteristic length lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 
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b) 

Fig. 9.53 (continued) 
 

 

Fig. 9.54 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves of Fig. 9.53a using standard averaging procedure (characteristic length 
lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 



9.3   Representative Volume Element 391
 

 
 

Fig. 9.55 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves of Fig. 9.53b using standard averaging procedure (characteristic length 
lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

 

 

Fig. 9.56 Expected value and standard deviation of tensile fracture energy Gf versus 
specimen height h using standard averaging (aggregate density ρ=30%) (Skarżyński and 
Tejchman 2012) 
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Localized zone averaging approach 
Recently, the existence of RVE for softening materials was proved (based on 
Hill’s averaging principle) for cohesive and adhesive failure by deriving a 
traction-separation law (for a macro crack) instead of a stress-strain relation from 
microscopic stresses and strains (Verhoosel et al. 2010a, 2010b). This was 
indicated by the uniqueness (regardless of a micro sample size) of a macro 
traction-separation law which was obtained by averaging responses along 
propagating micro discrete cracks. Prompted by this approach and the fact that a 
localized zone does not scale with the micro specimen size, Nguyen et al. (2010) 
proposed an approach where homogenized stress and strain were averaged over a 
localized strain domain in softening materials rather (which is small compared 
with the specimen size) than over the entire specimen. We used this method in this 
paper. In this approach, the homogenized stress and strain are 

            
1

m z
z Az

dA
A

σ σ< >=                   and              
1

z

m z
z A

dA
A

ε ε< >=  ,        (9.5) 

where Az is the localized zone area and σm and εm are the meso-stress and meso-
strain, respectively. The localized zone area Az is determined on the basis of a 

distribution of the non-local equivalent strain measure ε . As the cut-off value 

min 0.005ε =  is always assumed at the maximum mid-point value usually equal to 

max 0.007 0.011ε = − . Thus, a linear material behaviour is simply swept out 
(which causes the standard stress-strain diagrams to be specimen size dependent), 
and an active material plastic response is solely taken into account. 

Figure 9.57 presents the stress-strain relationships for various specimen sizes 
and two random aggregate distributions with the material constants from Tab. 9.5 
(lc=1.5 mm) for the calculated localized zones of Figs. 9.54 and 9.55. These stress-
strain curves in a softening regime (for the unit cells larger than 10×10 mm2) are 
in very good accordance with respect to their shape. In this case, the statistically 
representative volume element exists and is equal to 15×15 mm2.  

Figure 9.58 presents the expectation value and standard deviation of the tensile 
fracture energy Gf versus the specimen height h for 3 different realizations. The 
integration limits were a1=0 and a2=0.004. The fracture energy decreases with 
increasing specimen size approaching an asymptote when the cell size is 15×15 
mm2. Thus, the homogenized stress-strain relationships obtained are objective 
with respect to the micro sample size. RVE does not represent the entire material 
in its classical meaning, but the material in a localized zone. 

 
Varying characteristic length approach 
With increasing characteristic length, both specimen strength and width of a 
localized zone increase. On the other hand, softening decreases and material 
behaves more ductile. Taking these two facts into account, a varying characteristic  
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length related to the reference specimen size (assumed as 15×15 mm2 or 30×30 
mm2) is introduced (to scale the width of a localized zone with varying specimen 
height) according to the formula  

                                          15 15

15
v
c c

h
l l ×= × [mm]

[mm]
                                         (9.6) 

or 

                                               30 30

30
v
c c

h
l l ×= × [mm]

[mm]
,                                  (9.7) 

where lc
15×15=lc

30×30=1.5 mm is a characteristic length for the reference unit cell 
15×15 mm2 or 30×30 mm2 and h is the unit cell height. A larger unit cell than 
30×30 mm2 can be also used (the width of a localized zone in the reference unit 
cell cannot be too strongly influenced by boundary conditions, as e.g.. the cell size 
smaller than 10×10 mm2). The characteristic length lv

c is no longer a physical 
parameter related to non-local interactions in the damaging material, but an 
artificial parameter adjusted to the specimen size.  

The stress-strain relationships for various specimen sizes and various 
characteristic lengths are shown in Figs. 9.59 and 9.60. A characteristic length 
varies between lc=0.5 mm for the unit cell 5×5 mm2 and lc=3.0 mm for the unit 
cell 30×30 mm2 according to Eq. 9.6, and between lc=0.25 mm for the unit cell 
5×5 mm2 and lc=1.5 mm for the unit cell 30×30 mm2 according to Eq. 9.7. The 
width of a calculated localized zone (for the reference unit cell 15×15 mm2) is 
approximately wc=2 mm=4×lc=8×scm (cell 5×5 mm2), wc=4 mm=4×lc=16×scm 
(cell 10×10 mm2), wc=6 mm=4×lc=24×scm (cell 15×15 mm2), wc=8 
mm=4×lc=32×scm (cell 20×20 mm2), wc=10 mm=4×lc=40×scm (cell 25×25 mm2) 
and wc=12 mm=4×lc=48×scm (cell 30×30 mm2) (Figs. 9.61 and 9.62). The width 
of a calculated localized zone (for the reference unit cell 30×30 mm2) is 
approximately wc=1 mm=4×lc=4×scm (cell 5×5 mm2), wc=2 mm=4×lc=8×scm (cell 
10×10 mm2), wc=3 mm=4×lc=12×scm (cell 15×15 mm2), wc=4 mm=4×lc=16×scm 
(cell 20×20 mm2), wc=5 mm=4×lc=20×scm (cell 25×25 mm2) and wc=6 
mm=4×lc=24×scm (cell 30×30 mm2) (Figs. 9.63 and 9.64). A localized zone is 
scaled with the specimen size. Owing to that the material does not lose its 
homogeneity and its response during softening is similar for the cell 15×15 mm2 
and larger ones. Thus, the size of the representative volume element is again 
equal to 15×15 mm2. 

The expected value and standard deviation of the unit fracture energy gf=Gf/wc 
versus the specimen height h are demonstrated in Fig. 9.65. With increasing cell 
size, the value of gf stabilizes for the unit cell of 15×15 mm2. 
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a) 

 

 
b) 

Fig. 9.57 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using localized zone averaging procedure 
(characteristic length lc=1.5 mm, aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

 

Fig. 9.58 Expected value and standard deviation of tensile fracture energy Gf versus 
specimen height h using localized zone averaging (aggregate density ρ=30%) (Skarżyński 
and Tejchman 2012) 
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a) 

 
b) 

Fig. 9.59 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using varying characteristic length approach 
(reference unit size 15×15 mm2, characteristic length according to Eq. 9.6, aggregate density 
ρ=30%) (Skarżyński and Tejchman 2012) 
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a) 

 

 
b) 

Fig. 9.60 Stress-strain curves for various sizes of concrete specimens and two different 
random distributions of aggregate (a) and (b) using varying characteristic length approach 
(reference unit size 30×30 mm2, characteristic length according to Eq. 9.7, aggregate density 
ρ=30%) (Skarżyński and Tejchman 2012) 
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Fig. 9.61 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.59a using varying characteristic length approach (reference 
unit size 15×15 mm2,  characteristic length according to Eq. 9.6, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.62 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.59b using varying characteristic length approach (reference 
unit size 15×15 mm2,  characteristic length according to Eq. 9.6, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.63 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.60a using varying characteristic length approach (reference 
unit size 30×30 mm2,  characteristic length according to Eq. 9.7, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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Fig. 9.64 Distribution of non-local softening strain measure for various specimen sizes and 
stress-strain curves from Fig. 9.60b using varying characteristic length approach (reference 
unit size 30×30 mm2, characteristic length according to Eq. 9.7, aggregate density ρ=30%) 
(Skarżyński and Tejchman 2012) 
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       a) 

 
      b) 

Fig. 9.65 Expected value and standard deviation of unit fracture energy gf versus specimen 
height h using varying characteristic length approach: a) reference cell size 15×15 mm2, b)  

reference cell size 30×30 mm2 (aggregate density ρ=30%) (Skarżyński and Tejchman 2012) 

The following conclusions can be drawn from our mesoscopic non-linear FE-
investigations of strain localization in concrete under tensile loading: 

• The 2D representative volume element (RVE) can be determined in quasi-
brittle materials using both a localized zone averaging approach and a varying 
characteristic length approach. In the first case, the averaging is performed over 
the localized domain rather than over the entire domain, by which the material 
contribution is swept out. In the second case, the averaging is performed over 
the entire domain with a characteristic length of micro-structure being scaled 
with the specimen size. In both cases, convergence of the stress-strain diagrams 
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for different RVE sizes of a softening material is obtained for tensile loading. 
The size of a two-dimensional statistically representative volume element is 
approximately equal to 15×15 mm2. 

• An isotropic continuum damage model with non-local softening is able to 
capture the mechanism of evolution of strain localization in concrete under 
tensile loading treated at the meso-scale as a heterogeneous three-phase 
material. 

• Material micro-structure on the meso-scale has to be taken into account in 
calculations of strain localization to obtain a proper shape of a localized zone. 

• The representative volume element (RVE) cannot be defined in quasi-brittle 
materials with a standard averaging approach (over the entire material domain) 
due to occurrence of a localized zone whose width is not scaled with the 
specimen size. The shape of the stress-strain curve depends on the specimen 
size beyond the elastic region. RVE can be found in homogeneous materials 
only. 

• The 2D representative volume element (RVE) can be determined in quasi-
brittle materials using both a localized zone averaging approach and a varying 
characteristic length approach. In the first case, the averaging is performed over 
the localized domain rather than over the entire domain, by which the material 
contribution is swept out. In the second case, the averaging is performed over 
the entire domain with a characteristic length of micro-structure being scaled 
with the specimen size. In both cases, convergence of the stress-strain diagrams 
for different RVE sizes of a softening material is obtained for tensile loading. 
The size of a two-dimensional statistically representative volume element is 
approximately equal to 15×15 mm2. 

• The calculated strength, width and geometry of the localized zone are in a 
satisfactory agreement with experimental measurements when a characteristic 
length is about 1.5 mm. 

• The load-displacement evolutions strongly depend on material parameters 
assumed for separated concrete phases and a statistical distribution of 
aggregate. The ultimate beam strength certainly increases with increasing 
characteristic length, aggregate stiffness, mean aggregate size and decreasing 
ITZ thickness. It may increase with increasing volume fraction of aggregate. It 
is also dependent upon aggregate shape. 

• Tensile damage is initiated first in the ITZ region. This region is found to have 
a significant impact on the fracture behaviour and strength of concrete. 

• The width of a localized zone increases with increasing characteristic length 
and decreasing aggregate volume. It may increase if it propagates through weak 
grains. It is not affected by the aggregate size, aggregate shape, stochastic 
distribution, ITZ thickness and notch size. The width of a calculated localized 
zone above the notch changes from about 2×lc (ρ=60%) up to 4×lc (ρ=30%) at 
lc=1.5 mm. If lc=5 mm, the width of a calculated localized zone above the notch 
changes from 2.8×lc (ρ=60%) up to 3.5×lc (ρ=30%). 

• The calculated increment rate of the width of a localized zone is similar as in 
experiments. 
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• Concrete softening is strongly influenced by the statistical distribution of 
aggregate, characteristic length, volume fraction of aggregate, aggregate shape, 
aggregate stiffness and ITZ thickness. 

• Beams strength increases with increasing characteristic length, aggregate 
density and aggregate roughness and decreasing beam height. It depends also 
on the aggregate distribution. 

• The localized zone above the notch is strongly curved with lc=1.0-2.5 mm. 

The mesoscopic modelling allows for a better understanding of the mechanism of 
strain localization. However, it cannot be used for engineering problems due to a 
long computation time and too small knowledge on both properties of meso-phases 
in concrete and a stochastic distribution of aggregate which are of a major 
importance. A direct link between a characteristic length and material micro-
structure remains still open. To realistically describe the entire fracture process in 
concrete, a combined continuous-discontinuous numerical approach has to be used. 
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Chapter 10  

Final Conclusions and Future Research 
Directions 

The book analyzes quasi-static fracture in plain concrete and reinforced concrete 
by means of constitutive models formulated within continuum mechanics. A 
continuous and discontinuous modelling approach was used. Using a continuous 
approach, analyses were performed using a finite element method and four 
different continuum concrete models: enhanced isotropic elasto-plastic, enhanced 
isotropic damage, enhanced anisotropic smeared crack and enhanced coupled 
elasto-plastic-damage model. The models were equipped with a characteristic 
length of micro-structure by means of a non-local and a second-gradient theory, so 
they could describe the formation of localized zones with a certain thickness and 
spacing and a related deterministic size effect. FE results converged to a finite size 
of localized zones via mesh refinement. In addition, numerical results of cracks in 
plain concrete using a discontinuous approach including cohesive (interface) 
elements and XFEM were presented which were also properly regularized. 
Numerical results were compared with corresponding laboratory tests from the 
scientific literature and own tests. 

The following the most important conclusions can be derived on the basis of 
our quasi-static FE simulations of plain concrete specimens under monotonic and 
cyclic loading and of reinforced concrete specimens under monotonic loading: 
 
Plain Concrete 
• The calculations on strain localization in concrete demonstrate that conventional 
constitutive continuum models suffer from a mesh-dependency when material 
softening is included. The thickness and inclination of localized zones inside 
specimens, and load-displacement diagram in a post-peak regime depend strongly 
upon the mesh discretization. In turn, the continuum models enhanced by a 
characteristic length of micro-structure cause a full regularisation of the boundary 
value problem. Numerical results converge to a finite size of the strain localization 
upon mesh refinement. The load-displacement curves are similar. The effect of the 
mesh alignment on the inclination of localized zones is negligible. 
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• A choice of a suitable local state variable for non-local averaging strongly 
depends on the model used. It should be carefully checked to avoid problems with 
non-sufficient regularization. 
• The representative volume element (RVE) cannot be defined in quasi-brittle 
materials with a standard averaging approach (over the entire material domain) 
due to occurrence of a localized zone whose width is not scaled with the specimen 
size. The shape of the stress-strain curve depends on the specimen size beyond the 
elastic region.  
• The 2D representative volume element (RVE) can be determined in quasi-brittle 
materials using both a localized zone averaging approach and a varying 
characteristic length approach. In the first case, the averaging is performed over 
the localized domain rather than over the entire domain, by which the material 
contribution is swept out. In the second case, the averaging is performed over the 
entire domain with a characteristic length of micro-structure being scaled with the 
specimen size. In both cases, convergence of the stress-strain diagrams for 
different RVE sizes of a softening material is obtained for tensile loading. The size 
of a two-dimensional statistically representative volume element under tensile 
loading is approximately equal to 15×15 mm2. 
• The material micro-structure on the meso-scale has to be taken into account in 
calculations of strain localization to obtain a proper shape of localized zones. The 
load-displacement evolutions strongly depend on material parameters assumed for 
separated concrete phases and a statistical distribution of aggregate. The ultimate 
material strength certainly increases with increasing characteristic length, 
aggregate stiffness, mean aggregate size and decreasing ITZ thickness. It may 
increase with increasing volume fraction of aggregate. It is also dependent upon 
aggregate shape. The calculated strength, width and geometry of the localized 
zone are in a satisfactory agreement with experimental measurements when a 
characteristic length is about 1.5 mm. Tensile damage is initiated first in the ITZ 
region. This region is found to have a significant impact on the fracture behaviour 
and strength of concrete. The width of a localized zone increases with increasing 
characteristic length and decreasing aggregate volume. It may increase if it 
propagates through weak grains. It is not affected by the aggregate size, aggregate 
shape, stochastic distribution, ITZ thickness and notch size. The width of a 
calculated localized zone above the notch in fine-grained concrete changes from 
about 2×lc (ρ=60%) up to 4×lc (ρ=30%) at lc=1.5 mm. Concrete softening is 
strongly influenced by the statistical distribution of aggregate, characteristic 
length, volume fraction of aggregate, aggregate shape, aggregate stiffness and ITZ 
thickness. The material strength increases with increasing characteristic length, 
aggregate density and aggregate roughness and decreasing specimen height. It 
depends also on the aggregate distribution. 
• The enhanced continuous models show a different capability to capture localized 
zones during complex shear-extension tests. In general, the elasto-plastic model 
with the Rankine’s failure criterion is the most effective among continuous 
models. The usefulness of an isotropic damage model strongly depended on the 
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definition of the equivalent strain measure. The influence of the material 
description in a tensile-compression regime has to be taken into account to 
improve results. A smeared crack model is not able to reproduce curved cracks 
(the worst results are obtained with a rotating smeared crack model). An approach 
with cohesive elements provides the best approximation of experiments under a 
mixed shear-tension mode. However, the crack propagates along the mesh edges 
only. The calculations using XFEM are also realistic if the crack evolution is not 
blocked when using an conventional criterion based on a direction of the 
maximum principal stress). 
• The width of the localized zone is larger in FE-analyses with a damage model 
than with an elasto-plastic model using a similar characteristic length of micro-
structure during extension and bending. The width of localized zones grows 
during the entire deformation process within damage mechanics, whereas it is 
almost constant within elasto-plasticity. It increases with increasing characteristic 
length. 
• The normalized strength of concrete specimens increases with increasing 
characteristic length and non-locality parameter and decreasing specimen size. 
The larger the ratio between a characteristic length of micro-structure and the 
specimen size, the higher usually both the specimen strength and the ductility of 
the specimen during extension and bending.  
• The size and number of imperfections, and the distance between them do not 
influence the thickness and inclination of localized zones. 
• An enhanced coupled elasto-plastic-damage describing plastic strains and 
stiffness degradation in tension and compression and stiffness recovery is able to 
reproduce the concrete behaviour during quasi-static cyclic loading. Its drawback 
is no clear distinction between elastic, plastic and damage strain rates, and a 
relatively large number of material constants to be calibrated. Most of material 
constants may be calibrated independently with a monotonic uniaxial compression 
and tension (bending) test. Cyclic simple tests are needed to calibrate damage 
scale factors.  
• The deterministic size effect (nominal strength decreases with increasing 
specimen size) is very pronounced in notched and unnotched concrete under 
bending (it is stronger in notched beams). It is caused by occurrence of a straight 
tensile localized zone with a certain width. Therein the material ductility increases 
with decreasing specimen size. A pronounced snap-back behaviour occurs for 
large-size beams. The deterministic size effect can be observed on specimens 
under uniaxial compression in presence of non-symmetric notches only. A 
deterministic size effect can be also captured by the cohesive crack model and 
XFEM. 
• The statistical size effect is strong in unnotched concrete beams and negligible in 
notched concrete beams. The larger the beam, the stronger is the influence of a 
stochastic distribution on the nominal strength due to the presence of a larger 
number of local weak spots (i.e. the mean stochastic bearing capacity is always 
smaller than the deterministic one). The stochastic bearing capacity is larger in 
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some realizations with small and medium-large beams than the deterministic 
value. This position of the localized zone is connected with the distribution and 
magnitude of the tensile strength in a localized zone at peak and the magnitude of 
the horizontal normal stress due to bending.  
• The calculated combined deterministic-statistical size effect is in agreement with 
the size effect law by Bažant and by Carpintieri for unnotched beams and the size 
effect law by Bažant for notched beams (in the considered size range). Our 
numerical results with beams match well the combined deterministic-stochastic 
size effect law by Bažant with the Weibull modulus equal to 24-48. The fractality 
is not needed to induce a size effect (it can contribute to its certain refinement but 
not to its replacement). The size effect model by Bažant has physical foundations 
and can be introduced into design codes. 
 
Reinforced concrete 
• The normalized strength of reinforced concrete specimens increases with 
increasing reinforcement ratio, characteristic length, non-locality parameter, initial 
stiffness of the bond-slip, tensile and compressive fracture energy and confining 
compressive pressure and decreasing specimen size. The width of localized zones 
increases with increasing characteristic length and non-locality parameter. It 
increases insignificantly with initial bond stiffness. It does not depend on the 
reinforcement ratio, shape of the softening curve, distribution of tensile strength, 
cross-section size and compressive confining pressure. The spacing of localized 
zones increases with increasing characteristic length, non-locality parameter and 
softening modulus, and decreasing reinforcement ratio, fracture energy and initial 
bond stiffness. It does not depend on the distribution of the tensile strength and 
stirrups. It is also not affected by the type of the bond-slip. 
• For reinforced concrete elements, the enhanced continuum models provide a 
satisfactory agreement with experiments when the tensile failure mode is 
considered. In the case of a mixed shear-tension mode, the isotropic damage 
model cannot always reproduce the experimental geometry of localized zones (e.g. 
in short reinforced concrete beams).  
• The results for reinforced concrete within a non-local and second-gradient 
approach are similar. The computational time of FE calculations within second-
gradient mechanics is shorter by ca. 30%. 
• The calculated and experimental spacing of localized zones in reinforced 
concrete elements is significantly smaller than this from analytical formulae. 
• Linear elastic analysis is not always suitable for a proper engineering 
dimensioning of reinforced concrete structures (e.g. in the case of wall corners 
loaded by positive bending moments). In contrast, a non-linear elasto-plastic 
analysis is capable to capture strain localization. An internal diagonal crack in the 
corner region under positive bending moments has to be covered by 
reinforcement. 
• The enhanced elasto-plastic model is the most realistic with respect to strain 
localization in reinforced concrete described at macro-level.  
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We will continue the FE calculations. Continuous models will be connected with a 
discontinuous one by means of XFEM (Moonen et al. 2008, Moonen 2009) to 
properly describe the entire fracture process within a single macroscopic 
framework. To obtain a better match with experiments, more refined continuum 
models should be used at macro-level to take into account strain localization. A 
more advanced concrete model in compression can be implemented in elasto-
plasticity (e.g. model proposed by Menétrey and Willam (1995)). In addition, the 
evolution of internal friction and dilatancy against plastic deformation should be 
taken into account. In the case of damage mechanics, anisotropy will be 
considered. Within a smeared crack approach, plastic strains can be added (de 
Borst 1986). The calculations will be also carried out at meso-scale. The effect of 
aggregate shape, aggregate density, aggregate roughness, aggregate size, bond, 
cement particle size and reinforcement will be studied. The representative volume 
element (RVE) will be determined for shear and mixed mode loading. Two-scale 
approach will be used to link a meso-level with macro-level by means of a 
Coupled–Volume Approach (Gitman et al. 2008, Chapter 9) or a novel mixed 
computational homogenization technique, where at small-scale level concrete 
micro-structure will be considered (simulated using the discrete element method), 
and at macroscopic level, the finite element method will be used (Nitka et al. 
2011, Nitka and Tejchman 2011). The up-scaling technique will take into account 
a discrete model at each Gauss point of the FEM mesh to derive numerically an 
overall constitutive response. The dynamic behaviour of plain concrete and 
reinforced concrete will be also simulated by taking into account inertial forces 
and elastic and plastic viscosity (Ožbolt et al. 2006, Pedersen et al, 2008, Pedersen 
2010). The numerical results will be checked by own laboratory experiments. 
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Symbol 
 

Description 

amin 

amax 

b 
c 

Ce 

Cep 
s
ijklC

 
cr
ijklC

 
d 

da
max 
D 
e 
E 
Ec 
Es 
E0 
f 
ft 
fc 
fbc 

g 
G 
Gf 
Gc 

Ht, Hc 

h 
I1 
J2 
J3 

minimum aggregate diameter 
maximum aggregate diameter 
specimen width 
concrete cover 
elastic stiffness matrix 
elasto-plastic stiffness matrix 

secant stiffness matrix  

secant cracked stiffness matrix 

effective height 

maximum aggregate size  
damage parameter, specimen size 
strain deviator, eccentricity 
modulus of elasticity  
modulus of elasticity of concrete 
modulus of elasticity of steel  
penalty (dummy) stiffness 
failure function 
tensile strength 
compressive strength , 
biaxial compressive strength 
potential function 
shear modulus  
tensile fracture energy 
compressive fracture energy 
softening modulus in tension and compression 
height 
first stress tensor invariant 
second deviatoric stress tensor invariant 
third deviatoric stress tensor invariant 
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I1
ε 

J2
ε 

J3
ε 

k 
l 
lc 
m 

rbc
σ 

s 
sij 

sc, s 
p 
q 

efft
 

t 
u 
w 
V 
α 
β 
γ 
δij 

δeff 

δn 
δs 

εe, εe
ij 

εp, εpl
ij 

εcr, 
cr
ijε  

ε kl  
ε  

nuε
 

suε
 

εr 
φs 
ϕ 
η 
κi 

iκ
 

κ0 

first strain tensor invariant 
second deviatoric strain tensor invariant 
third deviatoric strain tensor invariant  
ratio between compressive and tensile strength 
length  
characteristic length of micro-structure 
non-locality parameter 
ratio between uniaxial and biaxial compression strength 
standard deviation  
deviatoric stress tensor 
crack spacing, spacing of localized zones 
mean stress 
von Mises equivalent deviatoric stress 
 

effective traction 

out-plane thickness 
slip  
localized zone width 
volume 
damage evolution law parameter 
damage evolution law parameter, shear retention parameter 
volumetric weight 
Kronecker delta  

effective crack opening displacement 
normal crack opening displacement 
sliding crack opening displacement  
elastic strain tensor 
plastic strain tensor 

crack strain 

non-local strain tensor  

equivalent strain measure 

ultimate cracked strain in tension  

ultimate cracked strain in shear 

radial strain 

reinforcing bar diameter 

internal friction angle 

cohesive zone approach parameter 

local hardening/softening parameters 

non-local softening parameters 

initial threshold value of parameter κ 
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λxi, λ 
 

μ 
ν 
θ 
ρ 
ρt 
σi 

σ, σij 

eff
iσ  

σc 

σt 
σy 
τb 

ξ 
ω 
ψ 

CMOD 
DIC 
FPZ 

decay coefficients, factor of proportionality, Lame’s 
constant, slenderness 

Lame’s constant  
Poisson’s ratio 
mesh inclination 
deviatoric axis, reinforcement ratio, weight 
deviatoric length 
principal stresses 
stress tensor 

effective stress tensor 

compressive yield stress  

tensile yield stress 

yield stress  

bond stress  
hydrostatic axis 
weighting function 
dilatancy angle 
crack mouth opening displacements 
digital image correlation 
fracture process zone 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Summary 

Fracture process is a fundamental phenomenon in concretes. It is a major reason of 
damage under mechanical loading contributing to a significant degradation of the 
material strength leading to a total loss of load-bearing capacity. During fracture 
process first micro-cracks arise which change gradually into macro-cracks. Thus, 
the entire fracture process includes two main stages: narrow zones of intense 
deformation (where micro-cracks are created) and discrete macro-cracks. Strain 
localization can be captured by a continuous approach and macro-cracks by a 
discontinuous one. Usually, to describe the behavior of concrete, one type 
approach is used.  

The book analyzes a quasi-static fracture process in concrete and reinforced 
concrete by means of constitutive models formulated within continuum 
mechanics. A continuous and discontinuous modeling approach was used. Using a 
continuous approach, numerical analyses were performed using a finite element 
method and four different enhanced continuum models: isotropic elasto-plastic, 
isotropic damage, anisotropic smeared crack and isotropic coupled elasto-plastic-
damage one. The models were equipped with a characteristic length of micro-
structure by means of a non-local and a second-gradient theory. So they could 
properly describe the formation of localized zones with a certain thickness and 
spacing and a related deterministic size effect. FE results converged to a finite size 
of localized zones via mesh refinement and boundary value problems became 
mathematically well-posed at the onset of strain localization. Using a 
discontinuous FE approach, numerical results of cracks using a cohesive crack 
model and XFEM were presented which were also properly regularized. Finite 
element analyses were performed with concrete elements under monotonic 
uniaxial compression, uniaxial tension, bending and shear-extension. Concrete 
beams under cyclic loading were simulated using a coupled elasto-plastic-damage 
approach as well. Numerical simulations were performed at macro- and meso-
level. In the case of reinforced concrete specimens, FE calculations were carried 
out with bars, slender and short beams, columns, corbels and tanks. Tensile and 
shear failure mechanisms were studied. A stochastic and deterministic size effect 
was carefully investigated in plain concrete. Numerical results were compared 
with results from corresponding own and known in the scientific literature 
laboratory and full-scale tests. 
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