
Chapter 21

Bottom-Up Versus Top-Down Control

of Macroalgal Blooms

Mirta Teichberg, Paulina Martinetto, and Sophia E. Fox

21.1 Introduction

Macroalgal blooms are increasing worldwide and have many detrimental effects on

ecosystems, including more frequent occurrences of anoxia, and loss of seagrasses,

coral cover, and ecologically and commercially important species. The increased

occurrences of macroalgal blooms have been attributed primarily to increases in the

supply of the limiting nutrients, referred to as “bottom-up” control, and decreased

grazer abundance due to overfishing and habitat degradation, referred to as

“top-down” control. This chapter begins with an overview of the occurrence of

macroalgal blooms worldwide and their ecological consequences. It discusses

the role of coastal eutrophication and overfishing as the two main global drivers of

bloom formations. The relative role of bottom-up versus top-down control in struc-

turing ecological communities is controversial and has been heavily debated within

the scientific community. This chapter will provide an overview of the main

arguments of this debate in marine coastal waters. Specifically, scientific evidence

supporting bottom-up versus top-down controls in shallow estuaries and coastal bays,

coral reefs, and intertidal or subtidal rocky shores will be reviewed to understand how

systems differ in response to these controls. We will provide an outlook on the future
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trends of eutrophication and overfishing and their impact on algal blooms in combi-

nation with other global changes.Wewill conclude with a discussion onmanagement

options to help reduce the escalation of bloom occurrences worldwide.

21.2 Occurrence of Macroalgal Blooms and Their Ecological

Consequences

Macroalgal blooms are widespread along the coasts of the world (Table 21.1;

Morand and Merceron 2005; Ye et al. 2011), forming dense mats or canopies in

shallow estuaries and coastal lagoons (Valiela et al. 1992; Sfriso et al. 1992),

accumulating on beaches as wrack (Morand and Merceron 2005), overgrowing

corals (Smith 1981; Hughes 1994; Lapointe et al. 2005a, b), and affecting seagrass,

soft-bottom, and rocky shore benthic communities (Dı́az et al. 2002; Fox et al.

2009). Blooms of green, red, and brown macroalgae are common, although among

these there are a few cosmopolitan species belonging to the genera Ulva,
Chaetomorpha, Cladophora, Gracilaria, and Pylaiella (Table 21.1). Recent

reviews on green algal tides showed bloom occurrences in most marine water

bodies adjacent to highly urbanized or agricultural areas throughout Europe,

Australia, New Zealand, Asia, and North and Central America (Morand and

Merceron 2005; Teichberg et al. 2010; Ye et al. 2011). Some of the most famous

examples of macroalgal blooms include the drift mats of Ulva spp. in Brittany,

France (Morand and Merceron 2005) and Venice Lagoon (Sfriso et al. 1992; Sfriso

and Marcomini 1997), Cladophora spp. in Peel Harvey Estuary, Australia (Lavery

et al. 1991), and the more recent widely publicized Ulva prolifera blooms in the

Yellow Sea, China during the 2008 summer Olympics with an estimated biomass of

approximately 20 million wet tons (Liu et al. 2009; Gao et al. 2010; Ye et al. 2011).

Blooms of macroalgae have become amajor ecological and economic problem in

coastal habitats (Table 21.1, Fig. 21.1). Seaweed wrack accumulating on beaches

can produce foul odors and release toxic hydrogen sulfide gas (Wilce et al. 1982),

mats and deep canopies of seaweeds physically obliterate other primary producers

including seagrasses (Valiela et al. 1997; Hauxwell et al. 2001; McGlathery 2001)

and corals (Hughes 1994; Lapointe 1997; Lapointe et al. 2005a, b), and their decay

causes anoxic conditions that lead to fish and shellfish kills (D’Avanzo et al. 1996;

Valiela et al. 1997; Diaz 2001). Macroalgal blooms not only affect natural coastal

communities and ecosystem function (Duarte 1995), but have high economic

consequences by making coastal environments increasingly undesirable for recrea-

tional uses and threatening commercially important harvests (Valiela et al. 1992;

Raffaelli et al. 1998; Oesterling and Pihl 2001). Often, the macroalgal species that

form blooms are nonnative, such as Gracilaria vermiculophylla, Codium spp., and

Undaria pinnatifida, and have the ability to quickly adapt to new environments and

outcompete native species due to high stress tolerances, rapid nutrient uptake and

growth rates, and varying reproductive strategies (Smith et al. 2002; Piriz et al. 2003;
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Table 21.1 Examples of macroalgal blooms reported in different parts of the world’s coastlines

and some of their ecological and economic consequences (adapted from Teichberg et al. 2010)

Site Seaweed taxa Some effects References

North America

Gulf of California,

Mexico

Ulva, Gracilaria,
Cladophora

Anoxia, loss of species

diversity

Ochoa-Izaguirre et al.

(2002), Piñon-

Gimate et al. (2008)

Nahant Bay, USA Pilayella Noxious odor,

accumulated on

beaches, nuisance to

swimming and

fishing

Wilce et al. (1982),

Pregnall and Miller

(1988)

Waquoit Bay, USA Cladophora,
Gracilaria, Ulva

Replaced seagrasses,

anoxia, shell- and

fin-fish kills

Valiela et al. (1997),

Hauxwell et al.

(2001), Fox et al.

(2008)

Hog Island Bay,

USA

Ulva, Gracilaria,
Codium

Loss of species diversity Thomsen et al. (2006)

San Francisco Bay,

USA

Ulva Anoxia, replaced

benthic fauna

Fong et al. (1996)

Kaneohe Bay,

Hawaii

Dictyosphaeria Replaced corals Smith (1981)

Southeast Florida,

USA

Codium Impact coral reefs Lapointe et al. (2005a, b)

Bermuda Cladophora,
Laurencia,
Codium

Anoxia, reduced benthic

diversity and

commercial fisheries

Lapointe and O’Connell

(1989)

Southern California

lagoons, USA

Ulva Shifts in primary

producers, anoxic

conditions,

cascading effects up

food web

Kamer et al. (2001),

Fong and Kennison

(2010)

Europe

Laholm Bay,

Sweden NW

Baltic Sea

Ulva, Cladophora Replaced seagrasses,

nuisance to

swimming fishing

and boating

Baden et al. (1990),

Rosenberg et al.

(1990)

Maasholm Bay,

Germany

Ulva, Pilayella Replaced native

macroalgae, lowered

benthic diversity and

fishery yield,

nuisance to

swimming, fishing,

and boating

Lotze et al. (2000),

Worm et al. (1999)

Mondego Estuary,

Portugal

Ulva Replaced seagrasses,

reduced benthic

diversity

Martins et al. (2001),

Cardoso et al. (2004)

Venice Lagoon, Italy Ulva, Gracilaria,
Dictyota,

Anoxia, fish kills,

nutrient re-release,

phytoplankton

blooms

Sfriso et al. (1992),

Sfriso and

Marcomini (1997)

(continued)
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Lapointe et al. 2005a; Thomsen et al. 2006). Invasivemacroalgae have often become

nuisance species causing major damage to coastal benthic communities, reducing

marine biodiversity, and altering food webs (Schaffelke and Hewitt 2007, see

Chap. 12 by Andreakis and Schaffelke).

21.3 Coastal Eutrophication

One of the main triggers of macroalgal blooms is increased nutrient loading due to

rapid urbanization and development of the coastal zone (Howarth 2008). Coastal

eutrophication can be described as the increase in organic matter, including exten-

sive blooms of phytoplankton and ephemeral macroalgae, due to nutrient loading

along the coast (Nixon 1995; Cloern 2001). Cloern (2001) provides a detailed

review and conceptual model of the rapidly changing problem of coastal eutrophi-

cation. This conceptual model describes both direct and indirect responses to

increased nutrient loading along the coast, including increases in phytoplankton

and macroalgal biomass, and changes in biogeochemistry, water transparency, and

Table 21.1 (continued)

Site Seaweed taxa Some effects References

South America

Nuevo Gulf and San

Antonio Bay,

Patagonia,

Argentina

Ulva, Undaria Accumulated on

beaches, interferes

with recreational

uses

Dı́az et al. (2002), Piriz

et al. (2003),

Teichberg et al.

(2010), Martinetto

et al. (2011)

Asia

Quingdao, China Ulva Loss of species

diversity,

accumulated on

beaches and

nuisance for

recreational

activities

Liu et al. (2007, 2009)

Seto Inland Sea,

Japan

Ulva Replaced seagrasses Sugimoto et al. (2007)

Australia

Peel-Harvey

Estuary, Western

Australia

Cladophora, Ulva,
Chaetomorpha

Accumulated on

beaches

Lavery et al. (1991)

Tuggerah Lakes

Estuary, New

South Wales

Ulva Replaced seagrasses,

reduced benthic

diversity

Cummins et al. (2004)

Africa

Saldanha Bay, South

Africa

Ulva Competed with other

commercial use

algae

Anderson et al. (1996),

Monteiro et al.

(1997)
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Fig. 21.1 Macroalgal blooms in estuaries and coral reefs habitats: (a) blooms of Ulva lactuca
(photo by Ylva Olsen) and (b) Cladophora variegata (photo by Gabrielle Tomasky Holmes) along

the subestuaries of Waquoit Bay, Cape Cod, USA; (c) Ulva spp. blooms attached to the walls in

Venice Lagoon, Italy (photo by Mirta Teichberg) and (d) in the intertidal channel of San Antonio

Bay, Argentina (photo by Paulina Martinetto); (e) Lobophora variegata, overgrowing coral reefs

in Curaçao, Netherland Antilles (photo by Anna Fricke); (f) blooms of the green and brown

macroalgae Chaetomorpha and Dictoya spp. on reef flats of Spermonde Archipelago, Indonesia

(photo by Mirta Teichberg)
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habitat quality. Most large occurrences of algal blooms have been associated with

increased nutrient enrichment, primarily nitrogen, although phosphorus may also

play a role (Howarth 2008; Teichberg et al. 2010). Here, we focus primarily on

occurrences of macroalgal blooms reported worldwide that are linked to coastal

eutrophication. Ecophysiological uptake and utilization mechanisms of nutrients,

nitrogen and phosphorus limitation, assimilation of carbon, and the role of nutrient

availability in stimulating macroalgal growth rates are reviewed in the Chap. 4

by Gordillo.

In the USA, approximately 65% of estuaries surveyed showed moderate to high

levels of eutrophic conditions, influenced primarily by land-based nutrient loads

from human activities (Bricker et al. 2008). In many of these estuaries, extensive

chlorophyte and rhodophyte blooms are prevalent and have caused anoxic

conditions (Bricker et al. 2008) and changes in the benthic community (Table 21.1).

Waquoit Bay, in Cape Cod, Massachusetts, serves as a good example of how

increased urbanization has led to drastic changes in the marine community structure

over the past six decades (Valiela et al. 1992, 1997; Hauxwell et al. 1998, 2001; Fox

et al. 2008). Macroalgal blooms of Cladophora, Gracilaria, and Ulva spp. have

been directly linked to increased nitrogen loading rates in the subestuaries of

Waquoit Bay predominantly due to increases in wastewater nitrate from septic

systems that enters the estuary via groundwater (Valiela 2006; Fox et al. 2008;

Fig. 21.1). Along the Florida coast, blooms of green macroalgae, including invasive

species of Codium and Caulerpa, and drift red macroalgae have also been linked to

increasing in nutrient inputs from sewage, shown through their high tissue N and P

content and heavier nitrogen isotopic signatures that reflect that of wastewater

nitrogen (Lapointe et al. 2005a, b; Lapointe and Bedford 2007, 2010).

Outside of North America, frequency of macroalgal blooms driven by high

nutrient loads has also been reported (Table 21.1). Most sites where macroalgal

blooms reach a remarkably high standing crop are locations where waters are

enriched with nutrients as a result of urban growth in surrounding areas.

A 20-year study in Peel Harvey Estuary, Australia, showed how large blooms of

Cladophora, Ulva, and Chaetomorpha spp. have been caused by high nutrient

loading, with interannual differences in biomass associated with nutrient and light

conditions (Lavery et al. 1991). In San Antonio Bay, Argentina, high wastewater

nitrogen and phosphorus inputs have been linked to high growth rates and biomass

of Ulva lactuca that forms extensive blooms in the main channel of the bay

(Teichberg et al. 2010; Martinetto et al. 2011; Fig. 21.1). Other sites known for

macroalgal blooms that have been linked to coastal pollution include Venice

Lagoon, Italy and Mondego Estuary, Portugal (Table 21.1, Fig. 21.1). In these

sites,Ulva blooms persist under high nutrient loads (Sfriso et al. 1992; Martins et al.

2001; Teichberg et al. 2010).
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21.4 Overfishing

Drastic changes in consumer abundance due to the overharvesting of commercially

and recreationally important fish, mammal, and invertebrate species have occurred

in many marine ecosystems throughout history (Jackson et al. 2001). A recent study

shows approximately 90% of predatory fish stocks have been removed by fishing

fleets worldwide (Myers and Worm 2003) with cascading effects down to lower

trophic levels (Hughes 1994; Jackson et al. 2001; Mumby et al. 2006). Here, we

focus on the role overfishing plays in the occurrence of macroalgal blooms in

marine coastal waters. A classification of the different type of seaweed grazers

and an overview of algal–herbivore interactions can be found in detail in Chap. 8

by Iken.

Most cases where overfishing has directly impacted macroalgal growth occur in

coral reef and kelp ecosystems. This is due primarily to the number of relatively

larger and ecologically important consumers that have been removed from these

ecosystems compared to others (Jackson et al. 2001). Overharvesting of herbivo-

rous fish, marine mammals, and invertebrates that directly graze on macroalgae

have led to increased occurrence of macroalgal blooms in coral reefs (Hughes 1994;

Jackson et al. 2001; Mumby et al. 2006). The opposite trend has occurred in kelp

forests, where the removal of large consumers has often led to increases in inverte-

brate grazer abundance which then reduce macroalgal cover in these systems

(Estes and Duggins 1995; Jackson et al. 2001).

It has been argued that shifts in benthic and pelagic communities due to

overfishing long predated coastal eutrophication problems in marine systems

(Jackson et al. 2001; Lotze and Milewski 2004; Heck and Valentine 2007).

A review paper by Heck and Valentine (2007) stressed the importance of

overfishing in regulating ecosystem structure by indirectly leading to altered food

webs. They support that many of the negative effects on coastal ecosystems

attributed to coastal eutrophication may actually be confounded by indirect effects

of historical changes in consumer abundances. They state that most manipulative

experiments that test the importance of nutrients and consumers on benthic

ecosystems today are doing so in ecosystems that have already been long devoid

of apex predators and many other consumers lower in the food web. Another study

(Eriksson et al. 2009) showed that declines in predatory fish were promoting

blooms of macroalgae in the Baltic Sea through cascading effects down the food

web. Through surveys they showed that macroalgal cover was highest when

abundances of large piscivorous fish were low, which led to higher abundances of

smaller fish that feed on invertebrate grazers. Further manipulative experiments

supported the notion that these predators when abundant exerted a strong top-down

forcing on the food web (Eriksson et al. 2009).
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21.5 Bottom-Up Versus Top-Down Control in Marine Coastal

Ecosystems

There are an overwhelming number of studies focusing on bottom-up versus top-

down controls of primary producer biomass and community structure in marine

coastal waters (Hauxwell et al. 1998; Lapointe 1999; Balducci et al. 2001; Lotze

et al. 2001; Smith et al. 2010; Martinetto et al. 2011; Fox et al. 2012). Marine

communities are, in general, naturally regulated by bottom-up and top-down forces;

however, the increase in anthropogenic activities in the coastal zone has influenced

the relative strength of bottom-up and top-down controls on these communities.

In many instances, increased nutrient inputs seem to be the main driver of

macroalgal blooms (Valiela et al. 1997; Hauxwell et al. 1998; Lapointe 1999),

while in others changes in grazing pressure are thought to be responsible (Hughes

1994; Smith et al. 2010).

In order to determine the relative influence of these two factors, many experi-

mental manipulations of nutrients and grazing have been carried out in marine

habitats under a range of different in situ conditions. Recent metaanalyses by

Burkepile and Hay (2006) and Gruner et al. (2008) have compiled the results of

these experimental studies to see whether any general patterns can be deduced

regarding the relative influence of top-down and bottom-up controls on these

ecosystems. They found that in most cases nutrients and grazers independently

affected producer biomass, but that the relative role of top-down versus bottom-up

control is context dependent, that is, it may differ by latitude, by type of marine

habitat, by the functional groups of algae or type of grazers in the system, by the

productivity of the ecosystem, or by the sampling method of producer response

(Burkepile and Hay 2006; Gruner et al. 2008). They also found that in some cases

there were interactive or synergistic effects, in which nutrient enrichment in the

absence of herbivores showed the highest productivity and percent cover of

macroalgae (Gruner et al. 2008; Burkepile and Hay 2006).

21.5.1 Latitudinal Patterns

Most reports from temperate latitudes addressing the forces behind macroalgal

blooms appear to suggest that nutrients were involved (Baden et al. 1990; Valiela

et al. 1992; Sfriso et al. 1992; Raffaelli et al. 1998), with the exception of rocky

shores (Lubchenco 1978; Lotze and Worm 2000). Similar studies from tropical

latitudes place less emphasis on nutrients and suggest large impacts of grazing on

macroalgal blooms (Lewis 1986; Hughes 1994), but opinions differ (Lapointe

1997; Littler et al. 2006). The metaanalysis of Burkepile and Hay (2006) showed

that in tropical marine habitats, macroalgae responded independently to both

nutrient enrichment and herbivore removal by increasing biomass or cover. Nutri-

ent effects were, however, smaller than the grazing effects, and only important

456 M. Teichberg et al.



when herbivores were absent. This was not the case for temperate marine habitats,

which tended to vary in the relative effects of bottom-up and top-down control

based on the nutrient status of the system. In high nutrient environments bottom-up

effects were stronger, while in low nutrient environments top-down effects were

more significant (Burkepile and Hay 2006).

One of the main explanations for these latitudinal differences in the control of

macroalgal blooms is the types and sizes of grazers and their grazing rates. Other

possible explanations may be the extent of nutrient loading, the macroalgal taxa

involved in different systems, the length of the growing season, and the range in

light intensity in temperate versus tropical coastal waters.

21.5.2 Dominant Control in Different Habitats

In this section, we provide some key examples from the literature defining the

relative roles of bottom-up and top-down controls within different marine habitats,

including estuaries and coastal bays, coral reefs, and intertidal and subtidal rocky

shores. Through these examples, we show the variation in macroalgal responses to

their controls, and also try to include some of the studies, which have paved the way

or stimulated the debate in this field.

21.5.2.1 Estuaries and coastal bays

The relative roles of bottom-up and top-down controls in estuarine systems have

been thoroughly studied due to the high degree of disturbance found in these

ecosystems as a consequence of coastal urbanization and development. This over-

development leads to higher nutrient inputs from point and nonpoint sources of

wastewater and fertilizers into coastal waters, while wetlands and forests that

generally buffer and act as a filter along the coastline are being removed at

alarming rates. Most sites receiving high nutrient enrichment generally are found

to be bottom-up controlled, whereas undisturbed low nutrient environments are

often found to be top-down controlled (Hauxwell et al. 1998; Burkepile and

Hay 2006; Fox et al. 2012).

This general model of the relative importance of bottom-up and top-down

controls on macroalgal blooms in estuaries is again exemplified by the Waquoit

Bay example. Waquoit Bay macroalgal blooms are stimulated by high nitrogen

loading to its receiving subestuaries (Valiela et al. 1997; Hauxwell et al. 1998; Fox

et al. 2008). In the high nitrogen loaded sites of Waquoit Bay, macroalgal growth

rates and biomass were highest (Hauxwell et al. 1998). Additionally, more frequent

hypoxic events lowered the abundance of small crustaceans, the dominant grazers,

and therefore, grazing rates were too low to compensate for the increase in algal

biomass (Hauxwell et al. 1998; Fox et al. 2009, 2012). In contrast, in the low

nitrogen loaded site macroalgal growth rates and biomass were lower, grazers were
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very abundant, and macroalgae were easily controlled by consumption rates

(Hauxwell et al. 1998; Fox et al. 2009, 2012).

Another well-studied case of bottom-up and top-down controls of macroalgal

blooms is that of Venice Lagoon. In the 1970s and 1980s, the lagoon received

inputs of nutrients from urbanized areas in and around Venice from agricultural,

industrial, and treated and untreated sewage effluent sources (Sfriso et al. 1992).

With high nutrient loading came noticeable changes in benthic community struc-

ture driven by large blooms of Ulva rigida and other green macroalgae (Sfriso et al.

1987, 1992). Between 1987 and 1998, macroalgal standing crop in Venice Lagoon

declined to only 1.6% of what was present in 1987 (Sfriso et al. 2003). This

dramatic reduction was initially thought to be due to a combination of changes in

climate, sedimentation fluxes, and management of nutrient loading entering the

lagoon. Additionally, as macroalgal growth declined, fewer anoxic events allowed

for the recovery of invertebrate grazers, which were able to help control macroalgae

blooms from the top-down (Balducci et al. 2001).

Other biotic and abiotic factors, however, may affect the relative roles of

bottom-up and top-down controls of macroalgal communities in estuarine systems.

For example, reproduction and recruitment of early life history stages of

macroalgae may respond differently under nutrient enrichment and grazing pres-

sure than adult life stages (Lotze et al. 1999, 2000, 2001; Lotze and Worm 2000).

Lotze et al. (1999) found that the bottom-up and top-down controls on early life

stages may act as a bottleneck for bloom-forming species of macroalgae in some

cases. Lotze et al. (2001), however, showed that total recruit density of ephemeral

bloom-forming macroalgae Ulva and Pilayella spp. in the Baltic Sea was positively
influenced by nutrient enrichment, while grazing only limited recruitment and

growth of the more palatable of the two species without changing the total recruit-

ment (Lotze et al. 2001).

Macroalgal community structure may also influence the strength of bottom-up

and top-down controls. In the presence of canopy-forming macroalgal species, such

as Fucus vesiculosus, the response of ephemeral algae to nutrients was found to be

limited by as much as 90% compared to those without canopies due to a reduction

in light availability (Eriksson et al. 2007). In contrast, the presence of epiphytes

growing on macroalgae may actually stimulate macroalgal growth if epiphytes are

preferentially consumed by grazers (Kamermans et al. 2002; see also Chap. 11 by

Potin). Furthermore, on a smaller spatial scale, the presence of grazers within the

macroalgal canopy may also be an additional source of nutrients through their

excretion (Taylor and Rees 1998, see also Chap. 4 by Gordillo).

Hydrodynamics can also alter the strength of bottom-up and top-down controls

on a system. For example, in Mondego Estuary, Portugal, mitigation measures to

improve the hydrodynamics of the estuary have been found to alleviate macroalgal

blooms occurrences caused by high nutrient loading by increasing the circulation

and diverting inflow of nutrient-rich waters (Lillebø et al. 2005). In San Antonio

Bay, Argentina, high nutrient loads enter the bay exposing macroalgae to

elevated nutrient concentrations during low tide and supporting a large macroalgal

biomass (Teichberg et al. 2010; Martinetto et al. 2010, 2011). Additionally, large
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tidal flushing helps to remove anoxic waters and nutrients from the system,

minimizing hypoxia-related stress on grazers and negative cascading effects up

the food web (Martinetto et al. 2010, 2011). Therefore, the high biomass of

nutrient-rich macroalgae can provide a large quantity of food with higher

nutritional quality to grazers and support higher grazer abundances (Martinetto

et al. 2010, 2011).

21.5.2.2 Coral reefs

In the last four to five decades, there has been an increasing trend of macroalgal

blooms in coral reefs coinciding with a decrease in coral cover (Hughes 1994;

McManus and Polsenberg 2004; Nugues and Bak 2008). This shift from coral to

macroalgal-dominated reefs, known as coral–algal phase shifts, has stimulated

much of the debate in the relative role of top-down and bottom-up controls in

marine habitats. Some studies have shown that the removal of the dominant

herbivores, through overfishing or natural causes, has been more important as a

control on macroalgal growth than nutrient enrichment (Hughes 1994; Hughes et al.

1999; Burkepile and Hay 2006; Sotka and Hay 2009). Others state that recent

increases in nutrient inputs from land to coastal reefs have triggered macroalgal

blooms (Lapointe 1997; Lapointe et al. 2005a, b). And then there are those studies

that support both top-down and bottom-up controls as important influencing factors

(McClanahan et al. 2003; Littler et al. 2006; Smith et al. 2001). In this chapter, we

do not attempt to provide a comprehensive review of the current extensive literature

on coral–algal phase shifts in coral reefs, but rather focus on a few specific studies

that examine the effects of top-down and bottom-up controls on macroalgal growth.

In Hughes (1994), one of the first long-term studies of coral reef decline in the

Caribbean reported large-scale natural and human disturbances were linked to

coral–algal phase shifts. In most of the reefs around Jamaica, the driving factors

of these phase shifts were thought to be the increase in human population, which

drove an increase in overfishing, followed by the mass mortality of the sea urchin

Diadema antillarum. Without herbivorous fish and D. antillarum, the dominant

grazers of macroalgae on the reefs, blooms of filamentous macroalgae began to

overgrow corals, which were then replaced by late successional stage species, such

as Dictyota, Lobophora, Halimeda, and Sargassum spp. These macroalgae

inhibited coral reef recovery by effectively competing for open space needed for

recruitment of coral larvae (Hughes 1994). Lapointe (1997) introduced another

potential trigger of macroalgal blooms on these Jamaican reefs by showing that

bottom-up control also played a role. It was demonstrated that dissolved inorganic

nitrogen from wastewater entered the reefs through groundwater discharge and

elevated reef nutrient water concentrations sufficiently to sustain macroalgal

blooms in these habitats (Lapointe 1997). These studies spurred a debate as to the

relative role of bottom-up and top-down controls on coral reefs (Hughes et al. 1999;

Lapointe 1999).
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Since this debate began, a few studies have demonstrated how both top-down

and bottom-up controls can be important. Littler et al. (2006) developed a concep-

tual model, the Relative Dominance Model, to describe the process of bloom

formation on reefs under independent and combined factors of nutrients and

grazing pressure. Results of manipulative experiments, bioassays, and surveys of

communities showed that: (1) under reduced nutrients alone fleshy algae grow

when herbivory is low, (2) under high herbivory alone fleshy algae grow when

nutrients are high, (3) reduced nutrients and high herbivory prevent blooms of

macroalgae (Littler et al. 2006). It has also been found that different controls are

important for different groups of algae; for example, McClanahan et al. (2003)

found that turf algae were positively affected by nutrients and negatively affected

by herbivory, while frondose brown algae grew better under low nutrients and low

herbivory. Vermeij et al. (2010) also found that turf algae can overgrow corals

under high nutrients, but that herbivores are not able to control their growth under

these conditions.

Despite the evidence that bottom-up control does play a role in triggering

macroalgal bloom formations on reefs, the majority of studies support that top-

down control is the primary driving factor (Thacker et al. 2001; Burkepile and Hay

2006; Sotka and Hay 2009). A recent study in a pristine fisheries management area

along a Hawaiian reef revealed that in the absence of herbivores, fleshy macroalgal

abundance was higher than in any other treatment, while in the presence of

herbivores corals and crustose coralline algae were more abundant (Smith et al.

2010). The effects of nutrient enrichment supported slightly higher macroalgal

percent cover than in nonenriched treatments, but the species composition

depended on the herbivore treatment. After reexposure to natural conditions, the

effects of enrichment and herbivore absence disappeared over a relatively short

time frame, supporting the notion that increasing herbivore populations is critical to

reduce macroalgal blooms on reefs (Smith et al. 2010).

Based on the variable results of studies examining top-down and bottom-up

controls of macroalgal blooms on coral reefs, the relative role of these controls is

still not fully resolved. Only through larger scale changes in fishing regulations and

better management of nutrient inputs to coastal reefs will we be able to better

distinguish which of these or the combination of both is the causal factor.

21.5.2.3 Rocky Intertidal and Subtidal Ecosystems

Much of the knowledge defining the role of top-down controls on macroalgal

community dynamics began with the well-known classical ecological studies in

rocky intertidal and subtidal communities (Paine and Vadas 1969; Lubchenco 1978,

1983; Estes et al. 1978; Lubchenco and Menge 1978). These studies showed how

removal of the dominant grazers or predators influenced macroalgal diversity and

community structure directly or indirectly through cascading effects from the top-

down. In the experimental study by Paine and Vadas (1969), the removal of the sea

urchin Strongylocentrotus purpuratus resulted in an increase in the biomass of
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brown algae (Hedophyllum sessile and Laminaria complanata) in intertidal pools

and subtidally on the rocky coast of Washington, USA. Lubchenco (1978) showed

that when snails were removed from tide pools where Chondrus crispus dominated,

green ephemeral species settled quickly and outgrew C. crispus.
Only more recently has the role of bottom-up control, in terms of nutrient supply,

been explored in rocky shores (Menge 1992; Nielsen 2003; Bokn et al. 2003;

Korpinen et al. 2007a, b). A review by Menge (1992) discusses some of the reasons

the role of bottom-up controls on rocky shores has been neglected for so long,

including the overemphasis of physical stress in these environments, logistical and

methodological constraints of experiments, and different training backgrounds of

marine benthic ecologists. Possible explanations of how nutrient enrichment

cascades up the food web and affects the community structure of rocky shores

were also discussed using a case study along the Oregon Coast. In this environment,

nutrient loading from upwelling was thought to increase primary production and lead

to higher abundances of filter-feeding prey that then supported higher abundances

and feeding rates of predators (Menge 1992). Further studies have also shown that

increased phytoplankton due to upwelling events and nearshore hydrography drives

this bottom-up regulation of the benthic community (Menge et al. 1997).

The relative effects of bottom-up and top-down control on the rocky shore

macrophyte community along the same rocky shoreline were later experimentally

tested in intertidal pools by Nielson (2003). Small increases in nutrient supply

strongly increased the total percent cover of macroalgae and the diversity of benthic

macrophytes under low herbivore abundance, but not under high herbivore abun-

dance. This response in the macrophyte community was primarily due to an increase

in the functional group of corticated algae. The results of this study suggest that open-

coast marine intertidal communities are more sensitive to fluctuations in nutrient

regimes than previously thought, and that nutrient effects are likely to be amplified

where consumers are overexploited or naturally low in abundance (Nielsen 2003).

In both the above cases, bottom-up control of intertidal communities was driven

by natural sources of nutrients from upwelling events rather than anthropogenic

sources. However, other scientists have linked changes in the macroalgal commu-

nity structure of rocky shores to coastal eutrophication, where macroalgal

assemblages nearer to urbanized areas consisted of higher abundances of the

opportunistic chlorophyte Ulva spp. than in control sites (Dı́az et al. 2002; Worm

and Lotze 2006). Overall the consensus is that top-down controls are dominant on

rocky shores but that bottom-up controls can interact with top-down controls to

change patterns in macrophyte community structure and food web interactions.

21.6 Conclusion

There may be no general solution to the bottom-up top-down debate in macroalgal

communities, but rather different responses based on species or functional groups,

physical and chemical environments, and types of grazers. The fact that so many
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rigorous experimental studies have found conflicting results shows that both factors

are important under different circumstances and often interact simultaneously.

The human population is projected to steadily increase, which will result in

further anthropogenic pressure on coastal marine systems. It is likely that nutrient

loading rates and fishing pressure will intensify, despite management efforts. The

impacts of nutrient loading and overfishing will also be exacerbated by other global

changes, such as rising seawater temperatures, sea level rise, and ocean acidifica-

tion. Nutrients in combination with warmer waters may promote more occurrences

of macroalgal blooms, as photosynthesis, growth rates of macroalgae, and recruit-

ment are thought to be positively affected by an interaction of these factors

(Longstaff et al. 2002; Lotze and Worm 2002; Bintz et al. 2003; Tsai et al. 2005).

Additionally, enhanced CO2 conditions have been shown to benefit some ephemeral

bloom-forming macroalgal species over other slower growing species (Gordillo

et al. 2001; Wootton et al. 2008), while negatively impacting many benthic

invertebrates (Fabry et al. 2008). Additionally, the increase in invasions by nonna-

tive macroalgal species to new coastal habitats may promote blooms of macroalgae

that are better adapted to changing environmental conditions (Thomsen et al. 2006).

Cascading effects up or down the food web and, thus, the strength of bottom-up and

top-down controls acting on macroalgal communities will likely be altered due to

these shifts in species composition and environmental change (Fox et al. 2010).

Management of all aspects (nutrients, fishing, habitat protection, reduction of

CO2 emissions) is important, and choosing one management practice over another

will not be successful at controlling macroalgal blooms. The management and

removal of nitrogen and phosphorus is necessary as a first step. Wastewater treat-

ment plants and improvements in septic systems have shown significant positive

effects on water quality through the removal of the bulk of nutrients prior to entering

the coast or groundwater. Reduction of fertilizer use and phosphate-free detergents

can also reduce the amount of nutrients entering these systems. Preservation and

restoration of wetlands will help to filter nutrient inputs before they enter rivers and

coastal waters. Additionally, improving hydrodynamics of low-flow systems by

increasing tidal flushing could help to mitigate nutrient effects. Increases in fishing

regulations and protected areas with no take zones may help to increase fish and

invertebrate populations. This will impact food web communities in multiple ways

and will strengthen top-down controls on macroalgal growth.

In many cases, these management practices may not be enough to facilitate

recovery of marine habitats to their natural state prior to disturbances, and much is

still unknown as to how bottom-up and top-down controls will interact with future

global change projections. It is very likely that macroalgal blooms will continue to

become more frequent and severe in coastal systems before conditions improve.

A better understanding of how these controls will interact under predicted future

conditions is critical to develop tools to mitigate these changes.

462 M. Teichberg et al.



References

Anderson RJ, Monteiro PMS, Levitt GJ (1996) The effect of localized eutrophication on competi-

tion between Ulva lactuca (Ulvaceae, Chlorophyta) and a commercial resource of Gracilaria
verrucosa (Gracilariaceae, Rhodophyta). Hydrobiologia 326(327):291–296

Baden SP, Loo LO, Pihl L, Rosenberg R (1990) Effects of eutrophication on benthic communities

including fish: Swedish west coast. Ambio 19:113–122

Balducci C, Sfriso A, Pavoni B (2001) Macrofauna impact on Ulva rigida C Ag. Production and

relationship with environmental variables in the lagoon of Venice. Mar Environ Res 52:27–49

Bintz JC, Nixon SW, Buckley BA, Granger SL (2003) Impacts of temperature and nutrients on

coastal lagoon plant communities. Estuaries 76:765–776

Bokn TL, Duarte CM, PedersenMF, Marba N, Moy FE, Barrón C, Bjerkeng B, Borum J, Christie H,

Engelbert S, Fotel FL, Hoell EE, Karez R, Kersting K, Kraufvelin P, Lindblad C, Olsen M,

Sanderud KA, Sommer U, Sørensen K (2003) The response of experimental rocky shore

communities to nutrient additions. Ecosystems 6:577–594

Bricker SB, Longstaff B, Dennison W, Jones A, Boicourt K, Wicks C, Woerner J (2008) Effects of

nutrient enrichment in the nation’s estuaries: a decade of change. Harmful Algae 8:21–32

Burkepile DE, Hay ME (2006) Herbivore vs. nutrient control of marine primary producers:

context-dependent effects. Ecology 87:3128–3139

Cardoso PG, Pardal MA, Lillebø AI, Ferreira SM, Raffaelli D, Marques JC (2004) Dynamic

changes in seagrasses assemblages under eutrophication and implications for recovery. J Exp

Mar Biol Ecol 302:233–248

Cloern JE (2001) Our evolving conceptual model of the coastal eutrophication problem. Mar Ecol

Prog Ser 210:223–253

Cummins SP, Roberts DE, Zimmerman KD (2004) Effects of the green macroalga Enteromorpha
intestinalis on macrobenthic and seagrass assemblages in a shallow coastal estuary. Mar Ecol

Prog Ser 266:77–87

D’Avanzo C, Kremer JN, Wainright SC (1996) Ecosystem production and respiration in response

to eutrophication in shallow temperate estuaries. Mar Ecol Prog Ser 141:263–274

Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30:275–281
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