
Chapter 18

Global Seaweed Biogeography Under

a Changing Climate: The Prospected

Effects of Temperature

Inka Bartsch, Christian Wiencke, and Thomas Laepple

18.1 Introduction

Climate changes and concurrent changes in temperatures, atmospheric CO2 con-

centration, and other greenhouse gases have often occurred during the earth’s

history (Zachos et al. 2008) and it is well known that biogeographical distribution

patterns of species are directly controlled by climate (Pearson and Dawson 2003

and references therein). Considering only the last 740,000 years, we know of about

eight glaciations associated with strong variations in temperature, precipitation, and

thermohaline circulation worldwide (Augustin et al. 2004; Knutti et al. 2004). In the

past century, overall global warming was around 0.8�C (Hansen et al. 2006).

Changes are particularly strong in polar and cold-temperate regions of the northern

hemisphere (Levitus et al. 2000; Hansen et al. 2006). At the western Antarctic

Peninsula a recent rapid regional warming with a sea surface temperature (SST)

increase of 3.7�C century�1 has been recorded (Vaughan et al. 2003). Massive

retreat of icefronts and glaciers and an increase of melt water production has been

documented since 1956 (Braun and Gossmann 2002). For the Arctic, a similar

warming trend has been observed over recent decades. Monthly temperature

anomalies can be as large as 3–4�C (Turner et al. 2007). In cold- and warm-

temperate localities, the reported mean annual temperature increase was as high
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as >2�C depending on location and duration of time series within the last decades

(e.g., California: Sagarin et al. 1999, Portugal: Lima et al. 2007, North Sea:

Wiltshire et al. 2008, Baltic: Andersen et al. 2011, Australia: Poloczanska et al.

2011). Current warming is larger over landmasses than over the open ocean and is

larger in higher latitudes than in the tropical region. In the Equatorial Tropical

Atlantic and the Western Equatorial Pacific (WEP), the SST increase between 2001

and 2005 relative to 1870–1900 was 0.5–1�C, while the Eastern Equatorial Pacific

(EEP) did not show any temperature increase (Hansen et al. 2006). Whether the

increased temperature difference between the near-equatorial WEP and EEP may

be responsible for dampening or enhancing the frequency of El Niño-Southern

Oscillation (ENSO) activity is still in debate (e.g., Hansen et al. 2006; Collins et al.

2010). The two most pronounced ENSO events in the last 100 years took place in

1983 and 1998 accompanied by an unprecedented warming in the EEP (Hansen

et al. 2006).

Within the last two decades, there have been many attempts to develop

predictive modeling approaches to project present-day biogeographical distribu-

tion patterns into the future. Principally, two different directions have been

followed: (1) the “bioclimate envelope” models correlate species distributions

with climate variables including the knowledge about the physiological responses

of species to climate change (Pearson and Dawson 2003 and references therein).

A special form of these models is niche modeling which correlates the

macroecological preferences of a species at sample locations (e.g., demands for

temperature, substrate, light, etc.) with their distributional records. Niche models

predict potentially suitable habitats and the fundamental biogeographical niche

(Guisan and Thuiller 2005; Graham et al. 2007; Verbruggen et al. 2009). (2) On

the other hand, marine ecologists stressed the importance to also consider the

variety of biotic interactions between species which are mostly responsible for

shaping the realized niche. A recent review extensively summarizes possible

consequences of both the abiotic and biotic environment and their interactions

in coastal marine environments with respect to climate change (Harley et al.

2006). Although biotic interactions locally shape communities, they do not

explain global biogeographical patterns (Santelices et al. 2009). Recently, M€uller
et al. (2009, 2011) presented a new bioclimate envelope model comparing

observed winter and summer SSTs of 1980–1999 to model SSTs of 2080–2099

based on a moderate greenhouse gas emission scenario in order to predict future

distributional range shifts of selected polar and cold-temperate seaweed species of

both hemispheres. Here, we use the same approach providing a macroecological

view on seaweed distribution based on a worldwide model of present and future

oceanic isotherms, carving out the resulting changes in spatial extent of major

biogeographical coastal regions (after Briggs 1995) due to temperature change

and discussing expected changes of seaweed floras on a worldwide scale for the

end of the century.
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18.2 Coastal Marine Biogeographical Regions and Their

Relation to Oceanic Isotherms and Temperature

Responses of Seaweeds

Especially temperature changes had and will have strong effects in the geographical

distribution of seaweeds as temperature is the main abiotic factor directly

controlling geographic boundaries of seaweed species (van den Hoek 1982a;

L€uning 1990; Chap. 3 by Eggert) and also has recently been identified in shaping

global marine biodiversity pattern (Tittensor et al. 2010). Principally, the presence

of seaweeds in these regions is determined by the physiological tolerance of their

life cycle stages to temperature. There are two fundamentally different types of

temperature boundaries in seaweeds, lethal boundaries and growth or reproduction

boundaries (Breeman 1988; van den Hoek and Breeman 1989). Lethal boundaries

are determined by the capacity of the species to survive during the unfavorable

season, e.g., a cold-water alga in the summer season. Growth and/or reproduction

boundaries are determined by the ability of the species to grow and reproduce

during the favorable season, e.g., a cold-water alga in the winter/spring season.

Moreover, seaweed distribution is affected by temperature–daylength interactions

(Dring 1984; Molenaar 1996) affecting the coordinated timing between life cycle

stages.

Seven broad biogeographical regions have been recognized in coastal marine

zoogeography and phytogeography (Briggs 1974, 1995; L€uning 1990): the tropical

region of the Atlantic and Indo-Pacific, the cold- and warm-temperate regions of

both hemispheres, and the two Polar regions (for details see Chap. 3 by Eggert).

Although Spalding et al. (2007) recently proposed a new and more sophisticated

global system of marine ecoregions than Briggs (1995), the major biogeographical

boundaries along the continents are similar in both approaches. We therefore chose

the Briggs (1995) system as it is better suited for demonstrating the broad global

pattern of modeled future change. The boundaries between biogeographical regions

after Briggs (1995) are determined by fundamental changes in the composition of

coastal biota and have been defined by their degree of endemism (>10%; Spalding

et al. 2007). The transition between regions may be characterized by SSTs as

temperature is a major factor in shaping marine phytogeographical regions (e.g.,

van den Hoek 1982a, b; L€uning 1990). L€uning (1990) described the boundaries of

phytogeographical regions by intermediate mean summer and winter isotherms to

show the general broad pattern. The specific mean summer and winter isotherms

prevailing at the eastern and western coasts of the Oceans and in the northern and

southern hemisphere at the phytogeographic boundaries deviate, however, consid-

erably from these averages and are presented in Table 18.1 based on isotherm data

from 1980 to 1999 provided by M€uller et al. (2009).
The current tropical coastal biogeographical regions are broad and characterized

by summer isotherms between 24 and 29�C and winter isotherms between 18 and

23�C (Table 18.1, Figs. 18.1a and 18.2a). The adjacent warm-temperate regions are

much smaller and generally slightly compressed on the western sides of the Pacific

18 Global Seaweed Biogeography Under a Changing Climate 385

http://dx.doi.org/10.1007/978-3-642-28451-9_3
http://dx.doi.org/10.1007/978-3-642-28451-9_3


T
a
b
le
1
8
.1

B
io
g
eo
g
ra
p
h
ic
re
g
io
n
s
af
te
r
B
ri
g
g
s
(1
9
9
5
)
w
it
h
th
e
re
sp
ec
ti
v
e
n
o
rt
h
er
n
an
d
so
u
th
er
n
m
ea
n
o
ce
an
ic
se
a
su
rf
ac
e
is
o
th
er
m
s
li
m
it
in
g
th
e
re
sp
ec
ti
v
e

re
g
io
n
d
er
iv
ed

fr
o
m

g
lo
b
al

se
a-
su
rf
ac
e
is
o
th
er
m

m
ap
s
1
9
8
0
–
1
9
9
9
(M

€ ul
le
r
et

al
.
2
0
0
9
)

B
io
g
eo
g
ra
p
h
ic

re
g
io
n

A
tl
an
ti
c

P
ac
ifi
c

In
d
ic

W
es
te
rn

co
as
tl
in
es

E
as
te
rn

co
as
tl
in
es

W
es
te
rn

co
as
tl
in
es

a
E
as
te
rn

co
as
tl
in
es

W
es
te
rn

co
as
tl
in
es

c
E
as
te
rn

co
as
tl
in
es

W
in
te
r

S
u
m
m
er

W
in
te
r

S
u
m
m
er

W
in
te
r

S
u
m
m
er

W
in
te
r

S
u
m
m
er

W
in
te
r

S
u
m
m
er

W
in
te
r

S
u
m
m
er

N
o
rt
h
er
n
h
em

is
p
h
er
e

P
o
la
r-
A
rc
ti
c

S
B

<
0
� C

<
1
0
� C

<
0
/2

� C
b

<
9
� C

<
0
� C

<
9
� C

<
0
� C

<
9
� C

–
–

–
–

C
o
ld
-t
em

p
er
at
e

N
B

0
� C

1
0
� C

0
/2

� C
b

9
� C

0
� C

9
� C

0
� C

9
� C

–
–

–
–

S
B

1
0
� C

2
7
� C

1
0
� C

1
7
� C

1
2
/1
4
� C

c
2
6
� C

1
4
� C

1
8
� C

–
–

–
–

W
ar
m
-t
em

p
er
at
e

N
B

1
0
� C

2
7
� C

1
0
� C

1
7
� C

1
2
/1
4
� C

c
2
6
� C

1
4
� C

1
8
� C

–
–

–
–

S
B

2
3
� C

2
9
� C

2
1
� C

2
7
� C

2
2
� C

2
9
� C

2
0
� C

2
6
� C

–
–

–
–

T
ro
p
ic
al

N
B

>
2
3
� C

>
2
9
� C

>
2
1
� C

>
2
7
� C

>
2
2
� C

>
2
9
� C

>
2
0
� C

>
2
6
� C

–
–

–
–

S
o
u
th
er
n
h
em

is
p
h
er
e

S
B

>
2
2
� C

>
2
7
� C

>
1
8
� C

>
2
4
� C

>
2
1
� C

>
2
7
� C

>
2
1
� C

>
2
6
� C

2
0
� C

2
4
� C

2
1
� C

2
5
� C

W
ar
m
-t
em

p
er
at
e

N
B

2
2
� C

2
7
� C

1
8
� C

2
4
� C

2
1
� C

2
7
� C

2
1
� C

2
6
� C

2
0
� C

2
4
� C

2
1
� C

2
5
� C

S
B

1
0
� C

1
9
� C

–
–

1
4
� C

2
0
� C

1
1
� C

1
6
� C

–
–

1
4
� C

1
8
� C

C
o
ld
-t
em

p
er
at
e

N
B

1
0
� C

1
9
� C

–
–

1
4
� C

2
0
� C

1
1
� C

1
6
� C

–
–

1
4
� C

1
8
� C

S
B

–
–

–
–

–
–

–
–

–
–

–
–

P
o
la
r-
A
n
ta
rc
ti
c

N
B

W
in
te
r:
<
1
� C

/
S
u
m
m
er
:
<
4
� C

S
B
so
u
th
er
n
b
o
u
n
d
ar
y
,
N
B
n
o
rt
h
er
n
b
o
u
n
d
ar
y
,
–
n
o
ex
ac
t
d
at
a
av
ai
la
b
le
as

th
er
e
ar
e
n
o
fu
rt
h
er

la
n
d
m
as
se
s
so
u
th

o
f
th
e
co
n
ti
n
en
ts
in

th
e
so
u
th
er
n
h
em

is
p
h
er
e

o
r
in

th
e
ca
se

o
f
th
e
In
d
ia
n
O
ce
an

n
o
o
ce
an
-l
an
d
b
o
u
n
d
ar
ie
s
fu
rt
h
er

n
o
rt
h

a
T
h
e
b
o
rd
er

o
f
th
e
W
-P
ac
ifi
c
to

th
e
In
d
ia
n
O
ce
an

w
as

co
n
si
d
er
ed

to
b
e
lo
ca
te
d
in

ce
n
tr
al
A
si
a
(n
o
rt
h
er
n
h
em

is
p
h
er
e)

an
d
in

so
u
th
ea
st
er
n
A
u
st
ra
li
a
(s
o
u
th
er
n

h
em

is
p
h
er
e)

b
T
em

p
er
at
u
re

b
o
u
n
d
ar
ie
s
fo
r
B
ar
en
ts
S
ea
/N
o
rt
h
A
tl
an
ti
c

c
T
em

p
er
at
u
re

b
o
u
n
d
ar
ie
s
fo
r
K
o
re
a/
Ja
p
an

386 I. Bartsch et al.



Fig. 18.1 Changes in the extent of biogeographical regions after Briggs (1995) due to global

warming at the end of the twentieth century inferred from current (1980–1999) and future

(2080–2099) mean February sea surface isotherms. The mean February sea-surface isotherms

delimiting current biogeographical regions are depicted in figure a. The future extension of the

biogeographical regions (b) is based on the modeled change of the mean February sea surface

isotherms at the present boundaries of the respective regions. Projected changes are indicated by

bold coastal lines. Color code of biogeographical regions: turquoise: Polar regions, blue-green:
cold-temperate regions, yellow: warm-temperate regions, red: tropical regions. Color code of

isotherms: blue: winter isotherms, red: summer isotherms, gray: isotherms characterizing the

central tropics
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Fig. 18.2 Changes in the extent of biogeographical regions after Briggs (1995) due to global

warming at the end of the twentieth century inferred from current (1980–1999) and future

(2080–2099) mean August sea surface isotherms. The mean August sea-surface isotherms

delimiting current biogeographical regions are depicted in figure a. The future extension of the

biogeographical regions (b) is based on the modeled change of the mean August sea surface

isotherms at the present boundaries of the respective regions. Projected changes are indicated by

bold coastal lines. Color code of biogeographical regions: turquoise: Polar regions, blue-green:
cold-temperate regions, yellow: warm-temperate regions, red: tropical regions. Color code of

isotherms: blue: winter isotherms, red: summer isotherms, gray: isotherms characterizing the

central tropics

388 I. Bartsch et al.



and Atlantic compared to the eastern sides of the oceans. The boundary between the

warm- and cold-temperate regions is characterized by 16–29�C summer SSTs and

by 10–20�C winter SSTs. These extreme differences are attributed to the pro-

nounced compression of isotherms along the western part of the Atlantic and Pacific

in contrast to the eastern part of the oceans (see Figs 12.2, 12.3 in M€uller et al.
2011). When comparing both hemispheres pronounced differences become appar-

ent as well. The southern boundary of the Arctic region, for example, is described

by the 9–10�C summer isotherm, whereas the northern boundary of the Antarctic

region is the 4�C summer isotherm (Table 18.1, Figs. 18.1a and 18.2b). The

situation in the southern hemisphere might be partially attributed to missing

continuous land masses in the circumpolar Southern Ocean. Thus, the limit between

the polar and cold-temperate coastal regions in the southern hemisphere is not

clearly defined. The largest differences between northern and southern hemispheri-

cal biogeographic regions become apparent at the boundary of the warm- and cold-

temperate regions at the western coasts of both the Atlantic and the Pacific. In the

N-Atlantic, this boundary is situated at the 27�C summer isotherm. In contrast, in

the S-Atlantic it is located at the 19�C summer isotherm (Table 18.1, Figs. 18.1a

and 18.2a). At the west coasts of the Pacific the differences are smaller (26�C
August isotherm in the north to 20�C February isotherm in the south).

18.3 Responses of Seaweeds to Temperature Changes

18.3.1 General Responses

Seaweeds can principally respond to environmental changes in four ways which all

may result in distributional and diversity changes: on short timescales, they can

acclimate. On medium to long timescales they either adapt to new conditions or are

able to slowly migrate keeping pace with the changing environmental pressure.

Species unable to acclimate, adapt, or disperse may be captured in isolated refugia

or become extinct. Acclimation to temperature stress in seaweeds has been mostly

studied on the level of photosynthesis or growth (e.g., Davison et al. 1991; K€ubler
and Davison 1995; Eggert et al. 2006; see Chap. 3 by Eggert). Locally, the

acclimation potential of thermal traits can shape the vertical or seasonal distribution

pattern of species (Davison and Pearson 1996; Ateweberhan et al. 2005; Zardi et al.

2011) and on a broader scale eurythermal species have a broader distribution range

than stenothermal species (see also Chap. 3 by Eggert). Hitherto, it is unknown

whether species with a broad acclimation potential also had or will have a faster

genetic adaptation potential—a fact which would help to explain historical or future

biogeographical processes.

Adaptive processes on the physiological and molecular level are explained in

detail in Chap. 3 by Eggert. On the organism level, the adaptation processes to
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temperature changes have been identified by comparing the temperature

requirements of tropical and cold-water seaweeds from both hemispheres in relation

to the climatic history of the various regions (Wiencke et al. 1994). Since Mesozoic

times [251–65.5 million years before present (My)] there was a continuous warm

water girdle around the earth so that cold-water seaweed species probably only

evolved after the glaciation events in the Tertiary (65 My) (L€uning 1990). An upper
survival temperature of 33–35�C may still be found in representatives of temperate

and tropical seaweed species, indicating that this thermal trait is rather deeply

entrenched and not subject to fast adaptation (L€uning 1990). While strictly tropical

seaweed species are stenothermal and may survive 30–37�C and grow best between

25 and 30�C, they do not have the ability to live below temperatures of 7–12�C
(Pakker et al. 1995; Bischoff-B€asmann et al. 1997). The first steps in the adaptation

of seaweeds to lower temperatures are an increase in cold tolerance and an increase

of growth and reproduction rates at lower temperatures leading to eurythermal

species. This temperature trait is apparent in tropical to warm-temperate species

which acquired a better lower temperature tolerance with survival temperatures

between 6 and �1�C without losing the upper temperature tolerance (Yarish et al.

1984; Pakker et al. 1995; Bischoff-B€asmann et al. 1997). Later, the ability to survive

temperatures�20�C and to grow and reproduce at�15–20�C was lost. This type of

temperature response is typical for endemic Arctic and Arctic to cold-temperate

distributed seaweeds exposed to low temperatures for about 3 My (Briggs 1995).

The last steps in the adaptation to low temperatures are the loss of the ability to grow

and reproduce at �5–10�C and to survive temperatures �6–13�C (Wiencke et al.

1994; Bischoff-B€asmann and Wiencke 1996). This type of temperature response is

exemplified in endemic Antarctic species exposed to cold water for at least 14 My

(Crame 1993; Briggs 1995). So, the climatic history during species evolution

determines the temperature requirements of seaweeds in all biogeographical

regions. All these cases give moreover an insight into the time periods needed for

adaptation to changing temperatures. Physical barriers and differential environmen-

tal gradients along coastlines also may produce ecotypic adaptation. There has been

a wealth of studies tackling this question. It became evident that upper tolerance

limits seemingly are quite stable within several seaweed species (L€uning 1990 and

references therein). True temperature ecotypes have only been found in a few

species yet (e.g., Ectocarpus siliculosus: Bolton 1983, Saccharina latissima: Gerard
and Du Bois 1988).

18.3.2 Changes of Seaweed Distribution and Oceanic
Temperature in the Geological Past

Interesting examples for migration in the geological past are present-day

amphiequatorial species such as Acrosiphonia arcta (Chlorophyta) or the species

pair Desmarestia confervoides/D. viridis (Phaeophyceae), which are absent in the

390 I. Bartsch et al.



tropics. The fast evolving internal transcribed spacer region of the rDNA of

northern and southern hemisphere populations of both entities only exhibit minor

variation, suggesting that a migration across the equator took place at the maximum

of the W€urm/Wisconsin glaciation 18,000 years ago, the so-called last glacial

maximum (LGM; van Oppen et al. 1993). The hypothesized migrationist transit

of the tropics is supported by the temperature tolerance of both species which is

high enough (25�C) to survive a passage through the tropics at the LGM (Peters and

Breeman 1992; van Oppen et al. 1994; Bischoff and Wiencke 1995). Similarly it is

assumed that a common ancestor of the warm-temperate NE-Atlantic kelp species

Laminaria ochroleuca and its S-Atlantic sister species L. abyssalis and L. pallida
was able to survive the passage through the tropics during glacial lowering of

seawater temperatures by its gametophytic microstages being able to survive at

least 25�C (tom Dieck 1992; tom Dieck and de Oliveira 1993).

During the last glaciations, the Arctic ice cap extended south to ~45–55�N and

there was a considerable southward shift of the Gulf Stream (CLIMAP Project

members 1981; Bradley 1985) inducing major latitudinal dislocations of marine

biota in the N-Atlantic between glacial and interglacial periods (van den Hoek and

Breeman 1989; Breeman 1990). Some seaweed species were faced with an extreme

reduction in their distribution area. The conditions were particularly severe in the

NW-Atlantic, where distributions became excessively reduced. A pertinent exam-

ple is the cold-temperate green alga Cladophora sericea. By comparing tempera-

ture demands of the species with modeled glacial sea surface isotherms (van den

Hoek and Breeman 1989; Cambridge et al. 1990), it became evident that the

distribution area of the species was probably very strongly reduced during the

LGM in the NW-Atlantic. In the NE-Atlantic, the distribution was shifted from

the coasts of Scandinavia, Great Britain, and France to the Iberian Peninsula,

Northwest Africa, and even the Mediterranean became hospitable. These proposed

migrational shifts during the LGMwithin the N-Atlantic have been corroborated by

recent phylogeographic studies of diverse seaweed species, indicating the English

Channel Region as a primary refugium (e.g., Provan et al. 2005) from which species

redispersed to their current distributional range.

An example for a probable extinction during the LGM is the current restriction

of the kelp species Laminaria hyperborea to the NE-Atlantic. The much greater

compression of the distribution areas on the NW-Atlantic during the LGM—if

compared to the NE-Atlantic coasts—suggests that L. hyperborea was not able to

survive the inhospitable conditions in the NW-Atlantic during the LGM and

became locally extinct (van den Hoek and Breeman 1989). Other kelp species

possibly became isolated in cold-water pockets after the LGM. Examples are the

deep-water species L. rodriguezii (Huvé 1955; Žuljević et al. 2011) or the isolated
population of the southern European kelp L. ochroleuca in southern Italy (Giaccone
1972). Nowadays both species are only found below the thermocline in selected

Mediterranean habitats.

18 Global Seaweed Biogeography Under a Changing Climate 391



18.3.3 Changes of Oceanic Temperature and Seaweed
Distribution in the Future

Following M€uller et al. 2009, we analyzed the observed modern (1980–1999;

Rayner et al. 2003) and projected end of century (2080–2099) SST distribution

for February and August as representatives of summer and winter extreme

temperatures. The SST changes are based on the multimodel ensemble mean of

coupled climate model simulations prepared for phase 3 of the Coupled Model

Intercomparison Project (CMIP3; http://www-pcmdi.llnl.gov) using an emission

scenario which assumes a moderate increase of greenhouse gases (SRESA1B) (for

details, see M€uller et al. 2009). Both the global mean February and August SSTs are

projected to warm by 1.9�C until the end of the century (Fig. 18.3). The maximum

Fig. 18.3 Simulated future changes in sea surface temperature. The ensemble mean anomaly

for 2080–2099 relative to 1980–1999 is shown for February (a) and August (b)

392 I. Bartsch et al.
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warming of around 4�C is predicted for high latitudes of the northern hemisphere in

summer. The larger land area in the northern hemisphere leads to a stronger

response to the radiative forcing than in the southern hemisphere. Additionally,

the decrease in summer sea-ice cover amplifies the summer warming. In contrast,

minimum warming is predicted in the Southern ocean due to strong ocean heat

uptake in this region. In addition to this global scale pattern, some regional scale

patterns in the temperature changes become visible. As most climate models predict

a reduction in the thermohaline circulation as a response to the increasing green-

house gas concentration, the heat transport from the tropics to the Polar regions will

be affected in the northern hemisphere (Schmittner et al. 2005). This will result in a

local cooling in the Labrador Sea in winter and a reduced warming in summer

according to the model simulations (Fig. 18.3).

The simulated future changes in sea surface temperatures shown in Fig. 18.3 will

result in a general poleward movement of biogeographical regions (see Sect. 18.2)

until the end of the twentieth century. The extent of the present-day biogeographical

regions and the resulting future changes are shown in Figs. 18.1 and 18.2. This

projection is based on the location of modeled mean winter and summer sea surface

isotherms for the end of the twentieth century (M€uller et al. 2009, Appendix Figs. 1
and 2) characteristic for the current boundaries of the respective regions (see

Table 18.1, Figs. 18.1a and 18.2a). Despite the proven recent regional warming in

the western Antarctic Peninsula (Vaughan et al. 2003) there will be almost no

changes in the northern delimitation of the Antarctic region until the end of this

century based on our model. The Arctic region, in contrast, will shrink considerably

at its southern border, especially due to warmer winter temperatures while new ice-

free coastal Arctic habitats will become available in the north following the

retreating pack-ice border (1�C August isotherm) in summer (Fig. 18.2b; M€uller
et al. 2009). The current cold-temperate regions of both hemispheres will become

compressed as the warm-temperate regions are shifting polewards. The cold-

temperate regions will gain much new area at the expense of the Polar region only

in the N-Atlantic while in the S-Atlantic only the small sub-Antarctic islands will

become cold-temperate. The poleward expansion of the warm-temperate regions at

the expense of the cold-temperate regions is especially evident in western and

eastern S-America, in southeastern Australia and New Zealand, western N-America,

and along the European coastline. The warm-temperate regions themselves will lose

habitats at the expense of the projected widening of the tropical regions (Figs. 18.1

and 18.2). Recently, it was shown that this process has already started and five

different types of climatological measurements revealed a widening of the tropical

region of several degrees latitude since 1979 (Seidel et al. 2008). According to our

results, this future widening will be especially pronounced along the west and east

coast of S-America, along the northern and eastern coastlines of S-Africa and

Australia, in SE-Asia, W-Africa, and the Gulf of Mexico (Figs. 18.1 and 18.2).

It becomes apparent that the location of the boundary isotherms characterizing

present-day biogeographical regions (Table 18.1) will not move polewards at the

same pace according to the model simulations (Figs. 18.1 and 18.2). Thereby, the

annual mean temperature minima and maxima and the resulting temperature gradi-

ent will change along vast coastlines compared to present day. As a consequence,

some biogeographical regions will not be extended or reduced as a whole
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(Figs. 18.1 and 18.2). Two examples shall demonstrate resulting consequences.

Along the coast of China and Japan tropical winter temperatures will not change in

the future so that the 22�C February isotherm will stay at approx. 23�N (Fig. 18.1b).

In contrast, the corresponding 29�C summer isotherm characterizing the warm-

temperate/tropical boundary nowadays will move from approx. 23�N up to the

Yellow Sea and Strait of Korea to approx. 36�N (Fig. 18.2b). Hence, this whole area

will become a transitional region where biota will experience a reorganization

according to the individual growth, reproduction, and lethal limits of the species

present (van den Hoek 1982a, b; see Chap. 3 by Eggert). These temperature changes

will probably also have consequences for the intensive seaweed aquaculture industry

along the Chinese and Japanese coastlines (see Chap. 22 by Buchholz et al.). Another

prominent example of a future transitional region is the west coast of S-America. The

current austral 21�C winter and 26�C summer SST delimit the biogeographical

boundary between the warm-temperate and tropical regions approx. at a latitude of

5�S (northern Peru). According to our simulations, both isotherms will move south-

wards to approx. 10�S in future austral winter or to approx. 20�S (northern Chile) in

future austral summer. The difference between the current and future boundary region

thereby spans either 5� or 15� latitude (Figs. 18.1 and 18.2). Thus, a coastline of more

than 1,000 km length will become a biogeographical transition region and composi-

tion of biota will probably change. It should be noted, however, that due to the

influence of the cold Humboldt current and coastal upwelling regions in general,

biogeographical regions may not always correspond to the system developed by

Briggs (1995) and the model assumptions. Recent evidence, for example, suggests

that the northern boundary of the cold-temperate region along the western coastline of

S-America set to approx. 40�S by Briggs (1995) actually extends further north to

approx. 30�S (Camus 2001; see also Chap. 14 by Huovinen and Gómez).

In addition, the model data identify areas where winter and summer isotherms

and thereby possibly the whole biogeographical region will shift homogenously.

Examples are the warm-temperate region in eastern and western S-America or the

tropical region along eastern and western southern Africa (Figs. 18.1b and 18.2b).

Although it is not yet predictable whether minimal and maximal or mean annual

SST or altogether will be most responsible for shaping future phytogeographical

regions, our data obviously show that new correlations of biogeographical regions

with SSTs will establish.

18.3.4 Specific Effects of Oceanic Warming on Seaweed
Distribution and Ecology

18.3.4.1 Polar Regions

Since the late 1970s the glacial ice sheets have retreated by up to 2% per decade

(Serreze et al. 2007) and the Arctic will probably be ice free by the end of this
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century (Johannessen et al. 2004). In the Antarctic, 87% of the glaciers of the West

Antarctic Peninsula are retreating (Cook et al. 2005), the ice season has shortened

by about 90 days, and perennial ice does not occur any more at this location

(Martinson et al. 2008; Stammerjohn et al. 2008). In the Arctic, oceanic warming

leads to a retreat of the pack-ice border coinciding with the 1�C summer isotherm.

This will provide new habitats for algal colonization in the Arctic and Antarctic

along rocky coastlines (Fig. 18.1; M€uller et al. 2009, 2011). As ice-related pressures
on shallow water biota of the Arctic and Antarctic will be reduced, perennial

macroalgae, which are so far restricted mainly to the sublittoral, will be able to

colonize the eulittoral, resulting in an increase in biomass and diversity (Weslawski

et al. 2010, 2011). On the other hand, prolonged inflow of glacial melt water will

reduce salinity and increase turbidity of the water due to a higher sediment impact

(Campana et al. 2011). The concomitant reduction of the euphotic region will

change production rates (Pivovarov et al. 2003; Deregibus et al. personal commu-

nication; Spurkland and Iken 2011) and probably will cause an upward shift of the

depth limit of seaweeds. Biomass and seaweed cover already increased between

1988 and 2008 in the rocky littoral of Sorkappland (Svalbard; Weslawski et al.

2010) in the Arctic accompanied by an increase in air temperature and SST and a

marked decrease in the duration and extent of sea-ice cover. However, no “new”

species were detected but are expected in future (M€uller et al. 2009). The described
upward shift of seaweeds might though be counteracted by high levels of ultraviolet-

B radiation (UVBR) due to stratospheric ozone depletion (Weatherhead and

Andersen 2006; Zacher et al. 2011) which still prevails in the Arctic and Antarctica.

UVBR is one of the most important factors controlling the upper depth distribution

of seaweeds. Effects have been demonstrated from the cellular to the ecosystem

level, affecting community structure and diversity in the Arctic and Antarctic

(Bischof et al. 2006; Zacher et al. 2007; Campana et al. 2011; Karsten et al. 2011;

Fricke et al. 2011; see Chap. 20 by Bischof and Steinhoff). UVBR, turbidity, water

temperature, and sea-ice conditions are interdependent factors but multifactorial

interactive effects on polar biota have scarcely been investigated (M€uller et al. 2008;
Fredersdorf et al. 2009). Bifactorial experiments on Arctic kelp species indicated

that negative effects of UVBR can be mitigated by the interaction with increased

temperature. For example, germination of zoospores of the kelp Laminaria digitata
was inhibited almost completely by UVBR at 2�C, but not at 7�C (M€uller et al.
2008).

Compared to changes in the Arctic, the distributional changes of seaweeds in the

Antarctic will probably be minor (M€uller et al. 2009, 2011) as the model data predict

an SST increase of only 1�C throughout the year in the Antarctic region. Moreover,

only few cold-temperate species will be able to colonize present-day Antarctic

coasts. One example might be the brown alga Chordaria linearis, which has been

found already on two locations in West Antarctica (M€uller et al. 2009, 2011). The
estimation of minor changes for seaweed richness along the coastal West Antarctica

Peninsula under climate change conditions contrasts to demonstrated changes in the

respective pelagic ecosystem in response to rapid climate changes, which include a
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shift in phytoplankton biomass, in zooplankton community structure, and expected

effects on higher trophic levels (Schofield et al. 2010).

18.3.4.2 Temperate Regions

Within the last decades, an increase in SSTs of>2�C has been documented in many

cold- and warm-temperate regions (see Sect. 18.1). At many temperate European

coastlines, migrational shifts of benthic and pelagial species have already taken

place (e.g., benthos overview: Mieszkowska et al. 2006; Hawkins et al. 2008;

plankton: Beaugrand and Reid 2003; fish: Rijnsdorp et al. 2009). Climate driven

biomass changes or loss of kelp vegetation has recently been reported from many

local sites worldwide (e.g., Japan: Kirihara et al. 2006, Tasmania: Johnson et al.

2011, Norway: Andersen et al. 2011, Spain: Dı́ez et al. 2012). In contrast, no

evidence for broadscale latitudinal shifts of kelps since 1850 was found in the

transition region between the boreal and sub-arctic region in the NW-Atlantic

(Merzouk and Johnson 2011). A recent investigation into the decline of the sugar

kelp Saccharina latissima along southern Norwegian shorelines (Andersen et al.

2011) provides a good example for the complex interactions in the field. After

transplantation of S. latissima from healthy to impacted sites, normal growth and

maturation took place in winter and spring, but heavy fouling of epiphytes occurred

over summer followed by mortality. Although duration of periods with summer

temperatures >20�C increased in recent years, a temperature which is sublethal for

S. latissima (Bolton and L€uning 1982), mortality could not unequivocally be

correlated to high summer temperatures alone. Instead, Andersen et al. (2011)

assumed a cascade of reduced growth at sublethal temperatures, followed by

heavy epiphytism at locations with low wave activity leading to shading, thereby

causing a negative carbon balance and brittleness of thalli and finally mortality—all

factors together possibly preventing recruitment and recovery of the species at the

impacted sites. Successful recruitment is crucial for the continuous recovery of

boundary populations which becomes impacted if the environmental pressure

surpasses critical limits. Within a few years of unfavorable abiotic conditions, the

reproductive capacity was dramatically reduced in southern European marginal

populations of the intertidal brown alga Fucus serratus (Viejo et al. 2011).

Similarly, along the SST gradient in western Australia density of kelp recruits

was inversely related to increasing mean ocean temperature, suggesting an effect

of temperatures on either reproduction or recruits (Wernberg et al. 2010).

There are a few long-term case studies from temperate coastal regions

investigating possible ecological consequences of environmental warming for

rocky shore communities. Three examples are given here. A 10-year thermal outfall

of a power station which induced a long-lasting SST increase by up to 3.5�C
resulted in a complete change of the intertidal rocky shore community structure

at Diablo Potter Cove in California. The initial dense cover of foliose algae was

replaced by bare rocks, algal crusts, or turf algae and there was a major replacement

of species and decrease of algal richness (Schiel et al. 2004). A mean SST increase
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of 0.79�C in the intertidal of Monterey Bay California between 1931 and 1996 led

to a significant increase in southern species and a decrease of northern species

(Sagarin et al. 1999). In the northern Baltic, another monitoring study of long-

lasting warming in the sea (up to 10�C) diminished ice cover and thereby increased

light availability in winter. The situation also caused major changes in the quanti-

tative composition of species over the seasonal cycle. While growth of

cyanobacteria was promoted and red and brown algae decreased in abundance or

disappeared over summer, the latter had a prolonged growth season in autumn and

winter due to “better” winter temperatures. Generally, a species-specific response

was evident (Snoeijs and Prentice 1989). In future, we expect similar transitional

changes in rocky shore communities along all warm- and cold-temperate shorelines

possibly subjected to change according to our model results (Figs. 18.1 and 18.2).

18.3.4.3 Tropical Regions

Many coastal hard-bottom tropical and subtropical regions are characterized by

coral reefs which also inherit a high seaweed species richness (Diaz-Pulido et al.

2007). The abundance of macroalgae in reefs has been thought to be generally low

and controlled by grazing pressure of herbivorous fish (e.g., Wanders 1977;

Carpenter 1986; Hay 1997, see Chap. 16 by Mejia et al.). Only in recent years, it

was realized that tropical reefs are also algal reefs and a high coverage of

macroalgae among corals and natural variability of seaweed abundance on coral

reefs is not necessarily indicative of environmental degradation (Vroom et al. 2006,

2010; Vroom and Timmers 2009). Coral–algal interactions are manifold and it is

known that algae may inhibit or kill corals (e.g., Titlyanov et al. 2007; Rasher et al.

2011) and vice versa dead corals may negatively influence macroalgal growth (Liu

et al. 2009).

As tropical corals and seaweeds are currently living near to their lethal limit, a

slight temperature increase of 1–2�C above the mean summer temperatures as

predicted for the end of the twentieth century (Fig. 18.3) may already lead to

catastrophic events. Coral reefs worldwide have faced severe damage by periodic

heat waves especially through extreme ENSO activities since the 1980s inducing

so-called coral bleaching events which involve the loss of the symbiotic

zooxanthellae after thermal stress (Jokiel and Coles 1990). Baker et al. (2008)

describe in their extensive review all facets of this phenomenon. There is a

correlation between coral bleaching with maximum monthly SSTs (Manzello

et al. 2007). Temperature thresholds for coral bleaching are not uniform but site

specific and range from 27.5 to 32�C (Baker et al. 2008). Thereby, they are

generally above current mean tropical summer SST of 27–29�C (Fig. 18.2a; M€uller
et al. 2009, Appendix Figs. 1 and 2), but this will change in future when this region

will experience an unprecedented warming (Solomon et al. 2007) with annual mean

SSTs of 30–31�C over wide areas (Fig. 18.2b). A possible acclimation of corals to

increased temperatures has been observed in the Great Barrier Reef as threshold

temperatures increased over time (Berkelmans 2009) and up to now no coral
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species became extinct. Currently, reefs are still able to recuperate with highly

variable rates, indicating a differential recovery capacity. But full recovery of reefs

after thermal stress probably needs decades to centuries (Baker et al. 2008). As

growth of macroalgae is much faster and their temperature tolerance is several

degree Celsius higher than those of corals (Pakker et al. 1995; Bischoff-B€asmann

et al. 1997), a shift from coral to seaweed dominated coastal ecosystems has been

proposed for future tropical areas (Hoegh-Guldberg et al. 2007) and has already

been observed during recent decades (Rasher et al. 2011 and references therein).

Current warm-temperate coastlines which will become tropical in future

(Figs. 18.1 and 18.2) will not be able to compensate for the prospected loss of

reefs as rates needed to establish coral reefs are slow (Baker et al. 2008). Similarly

as corals, subtidal reef macroalgae potentially face local extinction if temperature

exceeds algal tolerance limits which are firmly set to 30–33�C (Pakker et al. 1995).

In contrast, eulittoral tropical macroalgae with their higher lethal temperature limits

of up 32–37�C (Bischoff-B€asmann et al. 1997) will be better able to withstand

future temperature increase in the central tropics. First local extinctions after

warming events have been recorded: In the Galapagos Archipelago six tropical

macroalgal species disappeared after the ENSO warming event in 1982/1983. Here

a transition of the macroalgal and coral habitats to heavily grazed reefs dominated

by crustose coralline “urchin barrens” was observed (Edgar et al. 2010). Addition-

ally to ocean warming, ocean acidification may decrease coralline abundance in

future which will enhance the cascade effect of decreasing coral recruitment,

opening space for turf algal species, and further inhibition of coral recruitment,

coral fecundity, and coral growth (Hoegh-Guldberg et al. 2007). Unfortunately, the

functional ecology and thermal traits of coralline red algae which are important

contributors to reef structure and facilitate settlement of corals are virtually

unknown (Nelson 2009).

As the tropical region will considerably extend polewards at the expense of the

current warm-temperate region (Figs. 18.1 and 18.2), substantial new transitional

areas will develop along rocky shore coastlines characterized, for example, by

assemblages dominated by tropical to subtropical members of the brown algal

order Dictyotales and not corals such as described for tropical to warm-temperate

transitional areas of the Canary Islands (Sangil et al. 2011). Locally, other factors

such as wave exposure, local currents, and physical barriers may be more important

than temperature for biogeographic distribution as has been observed along a

tropical to warm-temperate coastal transition region in E-Australia where species

distribution is still stable despite recent rapid warming (Poloczanska et al. 2011).

18.4 Assumptions for Global Seaweed Biodiversity

Global patterns of marine diversity differ from terrestrial habitats where species

numbers decrease moving away from the equator in both hemispheres (Pianka 1966;

Willig et al. 2003). Marine coastal taxa also show clear latitudinal trends, but overall
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seaweed genus diversity peaks in mid latitudes and not the tropical region (Kerswell

2006; Santelices et al. 2009; Tittensor et al. 2010). SST was identified as one

significant predictor of overall coastal species richness (Tittensor et al. 2010) and

high interannual temperature variability was proposed as explanation for the depau-

perate brown algal flora along the southwest African and north-central Chilean

coastline (Bolton 1996). Thus, the predicted changes in SST for the end of the

twentieth century will probably have a substantial effect not only on distribution of

seaweeds and marine communities in general, but also on global marine diversity.

Kerswell (2006) analyzed the latitudinal pattern of global seaweed genus diversity

and seaweed endemism in detail. As in other coastal taxonomic groups (Tittensor

et al. 2010) there is a band of high diversity in the northwestern Pacific surrounding

the Japanese archipelago and in the southwestern Pacific along the southern Austra-

lian coastline (Kerswell 2006). In the Atlantic, there is a major hotspot of diversity

along the European coastline (Kerswell 2006). All these regions inherit a high

seaweed genus diversity and have been identified by our model data to be impacted

by future warming. Thus, major changes in seaweed species richness, and the

functionality of assemblages through species extinctions, species invasions, and

changes in trophic relationships (Sala and Knowlton 2006) are expected especially

in these regions. Within the last decade, a wealth of cryptic seaweed species has

been described with the help of modern molecular biological tools (e.g., van der

Strate et al. 2002; Brodie et al. 2007; Verbruggen et al. 2009). Thus, species richness

of marine algae and genetic diversity of their populations probably is strongly

underestimated (Zuccarello et al. 2011) and thereby possibly also their adaptive

potential to change. But it is not yet clear whether genetic differentiation always

coincides with ecological differentiation (Tronholm et al. 2010).

18.5 Synopsis

Clearly, the prospected worldwide changes in SSTs will exert a differential pressure

on seaweed species and assemblages along biogeographical regions. As the ice-free

Arctic coastlines and all other regions will expand polewards, the tropical bio-

geographical region will widen considerably. In contrast, there will be almost no

change in the northern limit of the Antarctic region. Most effects on biota will be

expected in biogeographical transition regions which have been identified here, for

example along the warm- to cold-temperate European coastline or along the warm-

temperate to tropical coasts of SW and SE-America, Japan, or China. In these areas,

summer and winter SST will move polewards with a differential magnitude so that

annual temperature gradients will become more pronounced in some areas. Hence,

severe biotic changes are expected as the assemblages characterizing the biogeo-

graphic regions will not be able to shift as a whole. Rather, we predict differential

species-specific shifts depending on the respective temperature-dependent life

cycle characteristics of species which additionally will be shaped by other abiotic

and biotic factors. Comparison of coastal areas comprising present-day highest

18 Global Seaweed Biogeography Under a Changing Climate 399



seaweed genus diversity with future biogeographical transition areas revealed a

correlation in some cases, for example along western European, Japanese, or

southern Australian shorelines. In the future, it will be particularly interesting to

investigate the changing structure and function in these transitional biogeographical

regions to gain a better understanding of fast acclimation and adaptation rates on an

ecosystem level.
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