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Abstract. The language Csp-Casl combines specifications of data and
processes. We give an institution based semantics to Csp-Casl that al-
lows us to re-use the institution independent structuring mechanisms of
Casl. Furthermore, we extend Csp-Casl with a notion of refinement
that reconciles the differing philosophies behind the refinement notions
for Csp and Casl. We develop a compositional proof calculus for re-
finement along the Casl structuring mechanisms, and demonstrate that
compositional proof techniques along parallel process composition from
the context of Csp lifts to structured Csp-Casl specifications.

1 Introduction

Distributed computer applications like flight booking systems, web services, and
electronic payment systems such as the EP2 standard [1] involve the parallel
processing of data. Consequently, these systems exhibit concurrent aspects (e.g.,
deadlock freedom) as well as data aspects (e.g., functional correctness). Often,
these aspects depend on each other. In [20], we present the language Csp-Casl,
which is tailored to the specification of distributed systems. Csp-Casl inte-
grates the process algebra Csp [10, 21] with the algebraic specification language
Casl [15].

In [8] we apply Csp-Casl to the EP2 standard and demonstrate that Csp-
Casl can deal with problems of industrial strength. Interestingly enough, Csp

alone is not expressive enough to model the EP2 standard: The abstract system
descriptions included in this standard require loose semantics of data. However,
the exercise in [8] also demonstrates the need to enrich Csp-Casl by means for
specification in the large: While the Casl structuring mechanisms are available
for data to be plugged into a Csp-Casl specification, this has yet no counterpart
on the process side.

Based on an institution for Csp [14], here we extend this language by loose
processes and give it an institution-based semantics. The institutional setting [9]
allows for specifications with loosely specified data and process parts. Moreover,
the institution independent structuring mechanisms of Casl can be applied in
the process algebraic setting in a methodologically meaningful way.

Furthermore, we study refinement in the context of Csp-Casl. Refinement in
Casl is usually reduced to simple model class inclusion, given the power of the
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Casl structuring mechanisms that can be used to massage the involved speci-
fications if needed. We show that a similar approach can be used for capturing
Csp’s traditional notion of refinement also in the setting of loose semantics.
Moreover, we show that reasoning about refinements can be done in a modular
way, using the Casl structuring mechanisms.

Csp-Casl also inherits from the process algebraic side: For Csp, [18] presents
a compositional approach for deadlock analysis on networks of processes. We lift
this technique to Csp-Casl, and show by means of an extended example, how
to use it in combination with the structuring constructs inherited from Casl.

To the best of our knowledge, we were the first to suggest loose process spec-
ifications in [14]. Here, we combine this idea with loose data specifications. Ac-
cordingly, our notion of refinement for loose data and processes is new as well.
Other approaches of combining data and processes, e.g., Csp-M [23], Csp-Z [7],
and Csp-OZ [24], use tight semantics of both data and processes and provide
only limited structuring. The Wright architectural description language [2] al-
lows reasoning on typed processes for a sublanguage of Csp; semantically, it
is restricted to a single Csp model. Moreover, Wright does not cover data
refinement. Temporal logics offer a declarative approach to the specification of
reactive behaviour. Here, [25] studies structuring of reactive systems using Casl

architectural specifications over an institution of transition systems and CTL∗

formulae. This again differs from our work, as we consider structured specifica-
tion with loose semantics (classes of models), whereas architectural specifications
focus on the structuring of individual models. In other reactive Casl extensions,
e.g., modalCasl [12] or Casl-LTL [19], the concept of refinement and its in-
teraction with structuring has not been studied yet.

Our paper is organised as follows: In Section 2 we motivate our notion of
“loose processes”. Then we develop, to some extent, institutions for Csp-Casl:
one institution for each of the main Csp models, namely the Csp traces model,
the Csp failures/divergences model, and the Csp stable failures model. Section 4
defines Csp-Casl refinement and gives compositional proof rules along the Casl

structuring mechanisms. Then we discuss how to lift a compositional deadlock
analysis rule from the Csp context to Csp-Casl. We conclude the paper with
an extended example.

We assume that the reader is familiar with Csp ([10, 21] provide introductions)
and with Casl ([4] is a gentle introduction). Moreover, we use the notion of
institutions [9] as a formalisation of the notion of logical system. The reader
unfamiliar with institutions should be able to understand most parts of this
paper when replacing the word “institution” by “logical system”.

2 Loose Process Semantics

Csp-Casl [20] is a novel specification language which combines processes written
in Csp [10, 21] with the specification of data types in Casl [15]. The general idea
is to describe reactive systems in the form of processes based on Csp operators,
where the communications of these processes are the values of data types, which
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are loosely specified in Casl. All standard Csp operators are available, such as
multiple prefix, the various parallel operators, operators for non-deterministic
choice, and communication over channels. Concerning Casl features, the full
language is available to specify data types, namely many-sorted first order logic
with sort-generation constraints, partiality, and subsorting.

Csp-Casl supports the three main Csp semantics: The traces model T , in
which one can verify safety properties; the failures/divergences model N , which
allows one to study the phenomenon of livelock, i.e., the possibility that the
system can indefinitely engage in internal actions only; and the stable failures
model F , which is best suited for deadlock analysis. The traces model T records
only the possible traces of a process; the failures/divergences model records
two different behaviours: The failures – i.e., action sets which a process can
refuse after executing a trace – and the divergences – i.e., traces that lead to a
livelock; the stable failures model, finally, records two behaviours: The system
traces exactly like the traces model, and the failures for “stable” states, i.e.,
states which can’t perform an internal action. The main means of verification
in Csp is to prove that one process, say P , refines to another one, say Q, in
signs P � Q. Each Csp model gives rise to one notion of refinement. Here,
the following relations have been established: �N��T , �F��T , �N �⊆�F , and
�F �⊆�N , see [21].

In this paper, we extend the setting of Csp-Casl as defined in [20] by adding
loose semantics for processes, following the ideas of [14]. Loose process semantics
offers advantages in terms of methodology, furthermore, it is required for generic
specifications and instantiation.

For the methodological aspect, consider the specification Arch Customer of
the customer of an electronic shop, see Figure 1 – in the context of our example,
to be discussed in more detail in Section 6 – we call this the “architectural level”.
The data part written in Casl provides a type system, namely that LoginReq
(“Login Request”) and Logout are subsorts of D C (“Data Customer”), which
comprises of all data the customer can deal with. The customer communicates to
the outside world over a channel C C (“Channel Customer”), which allows for
messages of type D C. The suffix def on sort names excludes the “error” element
of the sort, i.e., we are specifying the system under the assumption that only
valid messages are exchanged.1 In the process part, the customer’s behaviour
is described in terms of several processes, devoted to different activities. The
purpose of the architectural level is to describe how to combine these activities in
order to describe the customer. The detailed description of such an activity, e.g.,
Customer GoodLogin, however, is postponed to a later design step. We only state
that there is a process Customer GoodLogin, whose behaviour is underspecified,
i.e., in semantical terms it is “loose”.

With such loose specifications available for the customer, warehouse, pay-
ment system, and the coordinator, we can model the whole shop as their par-
allel composition over various channels, see the process part of the specification
Arch Shop. Here, the specifications Arch Customer, Arch Warehouse,

1 For simplicity we refrain from error handling.
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Arch PaymentSystem and Arch Coordinator serve as parameters in a
generic construction. They provide the names and properties of data and pro-
cesses involved. But what instances do we want to allow? Obviously, any refine-
ment of these parameters shall be possible. To this end, we define an operator
RefCl – to be discussed in detail in Section 4 – which closes the model class of
a Csp-Casl specification under refinement.

Loose or underspecified processes differ from non-deterministic processes in
Csp. The process P = a → Stop � b → Stop is non deterministic. For this
equation, there is only one denotation possible for P which makes the equation
true. In the traces model T , e.g., this is the interpretation I(P ) = {〈〉, 〈a〉, 〈b〉}.
Specifying a loose process Q by saying Q shall be any process that refines to P ,
written Q � P , however, leads to infinitely many different possible denotations
of Q. In the traces model T , e.g., we have the interpretations J(Q) = I(P ) and
K(Q) = {〈〉, 〈a〉, 〈a, a〉, 〈b〉}. Note that this example also demonstrates that the
set of interpretations of loose processes is not necessarily refinement closed: {〈〉}
is not a possible interpretation for Q, however it is an element of every refinement
closed set in T .

spec Arch Customer =
data sorts LoginReq, Logout < D C
channel C C : D C
process Customer : C C ; Customer GoodLogin : C C ;

Customer BadLogin : C C ; Customer AddItem : C C ;
Customer Body : C C ; Customer Quit : C C ; . . .
Customer = C C ! x :: LoginReq def →

(Customer GoodLogin ; Customer Body �

Customer BadLogin ; Customer)
Customer Quit = C C ! x :: Logout def → SKIP
Customer Body = Customer AddItem � . . .� Customer Quit

end

spec Arch Shop [RefCl(Arch Customer)] [RefCl(Arch Warehouse)]
[RefCl(Arch PaymentSystem)] [RefCl(Arch Coordinator)] =
process System : C C, C W, C PS ;

System = Coordinator |[ C C, C W, C PS || C C, C W, C PS ]|
(Customer |[ C C || C W, C PS ]|

(Warehouse |[ C W || C PS ]| PaymentSystem))
end

Fig. 1. Selections of Csp-Casl specifications of our online shop example

3 CSP-CASL Institutions for Different CSP Models

In order to give a precise semantics to (possibly structured) Csp-Casl specifi-
cations, we formalise Csp-Casl as an institution [9]; to be more precise: three
institutions – one for each of the main Csp models, namely: the Csp traces
model, the Csp failures/divergences model, and the Csp stable failures model.
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These institutions share the notions of signatures and sentences. Their respec-
tive model categories and satisfaction relations are defined following a common
scheme. We only sketch the institutions, for full details see [16]. The institutions
for Csp-Casl are naturally based on institutions for Casl [15] and for Csp [14],
using the ideas for the Csp-Casl semantics [20] for the combination.

3.1 Signatures

A Csp-Casl signature ΣCC is a pair ΣCC = (ΣData, ΣProc) where:

– ΣData = (S,TF ,PF , P,≤) is a subsorted first-order signature consisting of
a set of sort symbols S, a set of total functions symbols TF , a set of partial
function symbols PF , a set of predicate symbols P , and a reflexive and
transitive subsort relation ≤ ⊆ S × S – see [15] for details – where the set
of sorts S is finite and the subsort relation has local top elements, i.e., if
u, u′ ≥ s then there exists t ∈ S with t ≥ u, u′, see [20].

– ΣProc = (Nw,comms)w∈S∗,comms∈S↓ is a family of finite sets of process names.
Such a process name n is typed in the sort symbols S of the data signature
part:
• a string w = 〈s1, . . . , sk〉, si ∈ S for 1 ≤ i ≤ k, k ≥ 0, which is n’s param-

eter type. A process name without parameters has the empty sequence
〈〉 as its parameter type.

• a set comms ⊆ S which collects all types of events in which the process n
can possibly engage in. We require the set comms to be downward closed
under the subsort relation, i.e., comms ∈ S↓ = {X ⊆ S | X = ↓ X},
where ↓ X = {y ∈ S | ∃x ∈ X : y ≤ x} for X ⊆ S.

Given Csp-Casl signatures ΣCC = (ΣData, ΣProc), Σ′
CC = (Σ′

Data, Σ′
Proc),

with S as the sort set of ΣData and S′ as the sort set of Σ′
Data, a Csp-Casl

signature morphism is a pair θ = (σ, ν) : ΣCC → Σ′
CC where:

– σ : ΣData → Σ′
Data is a Casl signature morphism for which the following

additionally hold:
refl σS(s1) ≤S′ σS(s2) implies s1 ≤S s2 for all s1, s2 ∈ S

(reflection of the subsort relation), and
weak non-extension σS(s1) ≤S′ u′ and σS(s2) ≤S′ u′ implies that there

exists a sort t ∈ S with s1 ≤S t, s2 ≤S t and σS(t) ≤S′ u′.2
– ν = (νw,comms)w∈S∗,comms∈S↓ is a family of functions such that νw,comms :

Nw,comms → ∪comms′∈(↓(σ(comms)))↓N
′
σ(w),comms′ is a mapping of process

names. Another way to express this is that a process name n ∈ Nw,comms is
mapped to νw,comms(n) = n′, where n′ ∈ N ′

σ(w),comms′ and ∀y ∈ comms′ :
∃x ∈ comms : y ≤S′ σ(x) (“the target is dominated by the source”). We also
write ν(n : w, comms) = n′ : σ(w), comms′.

2 [20] works with the condition ‘non-extension’. One can show however that the results
of [20] also hold with the more liberal notion that we use here. The difference from
the original version is the more liberal choice of sort t (originally, we have required t
to be a pre-image of u′). Further note that for s1 = s2, the condition trivially holds.
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The conditions on process translations ensure that both the parameter types as
well as the communication set, are translated with the signature morphism σ of
the data part. While preserving the parameter structure, the communication set
is allowed to “shrink”. This “non-expansion” of the communication sets – see
also [14] – guarantees that the reduct functor is defined and that the satisfaction
condition holds. In [16] we demonstrate that our notion of a signature morphisms
is quite liberal. All morphisms arising in our shop example fulfil these conditions.

3.2 Sentences

Sentences are either data or process sentences. A ΣCC-data sentence is a Casl

sentence over (S, TF, PF, P,≤). A ΣCC -process sentence is a process definition

n(x1, . . . , xk) = pt

where n ∈ N〈s1,...,sk〉,comms, xi are global variables of type si, 1 ≤ i ≤ k, and
pt is a process term such that sorts(pt) ⊆ comms, i.e., the process term pt
communicates only in events which are allowed for n. For further details see [16].

3.3 The Alphabet Construction

The alphabet construction takes a data (i.e., Casl) model and uses its elements
as alphabet letters, which then form the alphabet for Csp. Csp-Casl’s alpha-
bet construction takes the subsort structure into account in order to determine
whether two events are equal or not. More precisely, given a Casl model M , its
corresponding alphabet

Alph(M) = (
⊎

s∈S

Ms ∪ {⊥s})/∼M

is constructed by taking the disjoint union of all its carrier sets extended by
a bottom element ⊥, but identifying carriers along subsort injections (this is
captured by the equivalence relation ∼M ). This map Alph extends to a functor
from the model category to the category Set.

Given a Casl model M , we use the shorthand M⊥ for the totalised version
of M , i.e., carrier sets include a bottom element M⊥(s) = M(s)∪ {⊥s} and the
interpretation of function and predicate symbols is strictly extended. Given a
sort symbol s, a Casl model M , and x ∈ M⊥(s) we write xs

M to denote the
alphabet element [(s, x)]∼M . Further more we lift this notation to sorts, namely
sM = {xs

M | x ∈ M⊥(s)} ⊆ Alph(M) for the set of communications that can
arise from the sort s in the model M . Finally, given a set of sorts X , we write
XM =

⋃
s∈X sM . We drop the subscripts M and superscripts s when clear from

the context.

3.4 Models and Satisfaction

A Csp-Casl model consists of a data (i.e., Casl) model and a collection of in-
terpretations for processes. Concerning the interpretation of processes, let D(A)
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be a Csp domain constructed relatively to some alphabet of communications A.
Examples of such domains D(A) include T (A) of the Csp traces model, N (A) of
the Csp failures/divergences model, and F(A) of the Csp stable failures model,
see [21] for details. Each of these domains gives rise to a different institution.
Actually, D extends to an endofunctor on the category Set.

Given a Csp-Casl signature ΣCC = (ΣData, ΣProc), a ΣCC -model is a pair
(M, I), where M is a Casl model for ΣData and I gives type correct inter-
pretations of the process signature in the Csp domain D(Alph(M)). All Csp

models describe, which traces a process can execute. In the following we denote
these traces with the function cT r.3 Type correctness of (M, I) requires that the
interpretation map I applied to a process name n ∈ N〈s1,...,sk〉,comms for all pa-
rameters ai ∈ si, 1 ≤ i ≤ k, yields an interpretation with cT r(I(n(a1, . . . , ak))) ∈
T (comms). It is this type correctness condition which allows us to define the
reduct functor and to prove the satisfaction condition.

Satisfaction of data sentences w.r.t. a ΣCC-model is inherited from Casl.
Satisfaction of a process sentence n(x1, . . . , xk) = pt over signature ΣCC and
global variable system XG with respect to a ΣCC-model (M, I) is defined as
follows:

(M, I) |=ΣCC (n(x1, . . . , xk) = pt)
if and only if

for all variable valuations μG : XG → M⊥ :
I(n(μG(x1)M , . . . , μG(xk)M )) = ��pt�(M,I),μG,∅�D.

Here, �pt�(M,I),μG,μL
is the evaluation of process term pt according to Casl

with respect to model (M, I) and global and local variable valuations μG and
μL. �pt′�D is the denotation of process term pt′ in the Csp domain D. For further
details and also the definition and discussion of model morphisms see [16].

3.5 Pushouts and Amalgamation

The existence of pushouts and amalgamation properties shows that an institution
has good modularity properties. Amalgamation is a major technical assumption
in the study of specification semantics [6, 22]. An institution is said to be semi-
exact, if for any pushout of signatures

Σ
σ1

����
��

��
�� σ2

���
��

��
��

�

Σ1

θ1 ���
��

��
��

� Σ2

θ2����
��

��
��

Σ′

3 The controlled traces are the traces as given as denotations in the traces model – in
F , they are directly given, in N , they can be computed out of the divergences and
failures.
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any pair (M1, M2) ∈ Mod(Σ1)×Mod(Σ2) that is compatible, in the sense that
M1 and M2 reduce to the same Σ-model, can be amalgamated to a unique Σ′-
model M (i.e., there exists a unique M ∈ Mod(Σ′) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 1. Csp-Casl signature morphisms between signatures with acyc-
lic subsort relations are injective on sorts. Thus, CspCaslSig does not have
pushouts.

As in [14], there is a way out: Let CspCaslSigplain be CspCaslSig with the
reflection and weak non-extension restriction dropped. Then we have:

Proposition 2. CspCaslSigplain has pushouts, and any such pushout of a span
in CspCaslSig actually is a square in CspCaslSig (although not a pushout in
CspCaslSig).

Pushouts in CspCaslSigplain give us an amalgamation property:

Proposition 3. CspCaslSigplain-pushouts of CspCaslSig-morphisms have the
semi-exactness property for the traces model and the stable failures model.

In fact, this result generalises easily to multiple pushouts. Moreover, the initial
(i.e., empty) signature has the terminal model category. Since all colimits can
be formed by the initial object and multiple pushouts, this shows that we even
have exactness (when colimits are taken in CspCaslSigplain).

Altogether, Proposition 3 shows that Casl-style parameterisation, Casl ar-
chitectural specifications and much more also work for Csp-Casl.

3.6 CSP-CASL with Channels

We often use channels in Csp-Casl. This leads to further institutions, with
extended notions of signatures and sentences. Most prominently, the notion of a
signature is extended by a third component C:

(ΣData, C, ΣProc)

Here, C is a finite set of names typed by non-empty lists over S. We require
C to be closed under the subsort relation4 ≤∗ i.e., if c : 〈s1, . . . , sk〉 ∈ C and
〈u1, . . . , uk〉 ≤∗ 〈s1, . . . , sk〉 then c : 〈u1, . . . , uk〉 ∈ C.

Csp-Casl with channels can be reduced to Csp-Casl (without channels) as
follows: each Csp-Casl signature with a channel component is translated to a
Csp-Casl theory Φ(Σ), where each channel is coded as a new sort (isomorphic
to the sort of the channel) and each Csp-Casl Σ-sentence ϕ is translated to a
Csp-Casl Φ(Σ)-sentence α(ϕ) by reducing channel communication to ordinary
communication using the new channel sorts. Models and satisfaction can then be
easily borrowed from Csp-Casl by letting ModCC(Σ) := ModCC(Φ(Σ)) and
M |=CC

Σ ϕ iff M |=CC
Φ(Σ) α(ϕ). This is an instance of borrowing logical structure

in the sense of [5].
In the rest of the paper we use the term Csp-Casl to represent Csp-Casl

with channels.
4 ≤∗ stands for the pointwise extension of ≤ to strings of sorts.
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4 Refinement and a Structured Proof Calculus

Refinement allows us to develop systems in a stepwise manner. Here we discuss
refinement for Csp-Casl as well as its proof calculus on structured specifications.

4.1 Refinement

Csp has a notion of refinement between individual processes, e.g., in the traces
model, pt � pt′ means that pt′ has fewer traces than pt, i.e., traces(pt′) ⊆
traces(pt). In the context of this paper we write pt � pt′ for pt �D pt′ if the
specific choice of D ∈ {T ,N ,F} does not matter. Similarly, the Casl family
of languages uses model class inclusion as the simplest notion of refinement [3]:
SP1 � SP2 if SP2 has fewer models than SP1, i.e., Mod(SP2) ⊆ Mod(SP1).
To cater for renaming, this notion can be extended by a signature morphism σ.
In this case one defines SP1 �σ SP2 if the reduct of SP2 has fewer models than
SP1, i.e., Mod(SP2)|σ ⊆ Mod(SP1). When combining these worlds through
institution theory, one has to recognise that these two refinement notions fol-
low different ideas: While Csp refinement talks about refinement of individual
models, Casl refinement talks about refinement of model classes.

This should become clear with the following notion: A Csp-Casl specifica-
tion SP is single-valued, if there is no looseness in the processes, that is, any two
SP -models with the same data part coincide. Now, traditional Csp refinement
is about refinement between different single-valued process specifications – re-
ducing the amount of internal non-determinism – whereas model class inclusion
mainly captures different degrees of looseness of specifications.

How can we reconcile these two worlds? Here, we want to capture different
degrees of looseness not only for data, but also for processes! Hence we adopt the
model class inclusion notion of refinement, applied to the Csp-Casl institution.
However, in order to capture Csp refinement between different single-valued
processes (which alone, would obviously never lead to model class inclusion), we
also provide a notion of refinement closure (and here, “refinement” is meant in
the Csp sense, not in the model class inclusion sense).

Given a Csp-Casl specification SP with signature (ΣData, ΣProc), its refine-
ment closure RefCl(SP ) is defined as follows:

– the signature of RefCl(SP ) is that of SP ,
– the model class of RefCl(SP ) consists of those Csp-Casl models (M ′, I ′)

for which there exists a model (M, I) of SP such that
• M = M ′, i.e., they have the same data part,
• for each n ∈ ΣProc and all suitable data elements a1, . . . , ak,

I(n(a1, . . . , ak)) � I ′(n(a1, . . . , ak))

in the sense of Csp.

Alternatively, the semantics of RefCl(SP ) can be expressed as a structured spec-
ification

SP then p1 � q1, . . . , pn � qn hide p1, . . . , pn with q1 �→ p1, . . . , qn �→ pn
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Alg(SigData(SP ))

ProjData(Mod(SP ))

Casl Model M

Process Denotations in
Alph(M)

ProjM (Mod(SP ))

I

I′

ProjM (Mod(RefCl(SP )))

Fig. 2. A diagram showing refinement between Csp-Casl models

where p1, . . . , pn are the process names of SP (we assume here that all of them
are unparameterised), q1, . . . , qn are new process names, and p � q stands for
p = p � q.

Figure 2 depicts the notion of refinement closure. Given a model M of the
data part of SP , we consider all of its possible “partners” relative to SP :
ProjM (Mod(SP )) = {I | (M, I) ∈ Mod(SP )} – this is represented by the
rectangle. The refinement closure includes all I ′ such that there exists some
I ∈ ProjM (Mod(SP )) that refines to I ′.

With this notion, we are ready to define a notion of refinement that is suitable
for Csp-Casl:

SP1 �θ
D SP2 iff ModD(SP2)|θ ⊆ ModD(RefCl (SP1))

for D ∈ {T ,N ,F}. We omit D if it is clear from the context and we also omit
θ if it is the identity signature morphism. We write |θ to denote the Csp-Casl

reduct functor. This notion reconciles Casl refinement based on model class
inclusion with Csp refinement based on inclusion of trace sets, failure sets, etc.
Two specifications SP1 and SP2 are equivalent, written SP1 ≡ SP2, if their
signatures and model classes coincide.

Proposition 4 (Basic Refinement Properties).

1. RefCl is monotonic, that is: if Mod(SP1) ⊆ Mod(SP2),
then Mod(RefCl(SP1)) ⊆ Mod(RefCl(SP2)).

2. RefCl is idempotent, that is RefCl(SP ) ≡ RefCl(RefCl(SP )).
3. � is reflexive and transitive.
4. If SP1 � SP2 and SP2 � SP1, then RefCl(SP1) ≡ RefCl(SP2).
5. If SP1 � SP2, SP2 � SP1, and both are single-valued, then SP1 ≡ SP2.

Following ideas given in [11] we obtain a decomposition theorem for basic (or
unstructured) specifications. This allows us to (syntactically) decompose a basic
Csp-Casl specification5 SP into a data part (D) and a process part (P ), which
we shortly write as (D, P ).

5 Such a specification may have a structured Casl specification as the data part D.
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Proposition 5 (Decomposition).

Mod(D′)|σ ⊆ Mod(D) (D′, θ(P )) �D (D′, P ′)

(D, P ) �θ
D (D′, P ′)

where θ = (σ, ν) is a Csp-Casl signature morphism, and D ∈ {T ,N ,F}.
The above proposition allows us to decompose a Csp-Casl refinement to a Casl

refinement (i.e., Mod(D′)|σ ⊆ Mod(D)) and a process refinement (D′, θ(P )) �D
(D′, P ′). Here, θ(P ) is the renaming of the process part along θ. The former proof
obligation can be discharged using Casl’s proof tool, namely Hets [13]. The
latter can be proven using the tool Csp-Casl-Prover [17].

4.2 Compositional Proof Rules along Structuring

The results of Section 3 allow us to re-use institution independent structuring
operations of Casl [15, 22], which are defined in terms of signatures and models:

Presentations: For any Csp-Casl signature ΣCC and finite set Γ ⊆ Sen(ΣCC)
of ΣCC -sentences, the presentation 〈ΣCC , Γ 〉 is a specification with:

Sig(〈ΣCC , Γ 〉) := ΣCC

Mod(〈ΣCC , Γ 〉) := {(M, I) ∈ Mod(ΣCC) | (M, I) |= Γ}

Union: For any Csp-Casl signature ΣCC and any ΣCC-specifications SP1 and
SP2, their union SP1 and SP2 is the specification with:

Sig(SP1 and SP2) := ΣCC

Mod(SP1 and SP2) := Mod(SP1) ∩ Mod(SP2)

Translation: For any signature morphism θ : ΣCC → Σ′
CC and ΣCC-specifica-

tion SP , SP rename θ is the specification with:
Sig(SP rename θ) := Σ′

CC

Mod(SP rename θ) := {(M ′, I ′) ∈ Mod(Σ′
CC) | (M ′, I ′)|θ ∈ Mod(SP )}

Hiding: For any signature morphism θ : ΣCC → Σ′
CC and Σ′

CC -specification
SP ′, SP ′ hide θ is the specification with:

Sig(SP ′ hide θ) := ΣCC

Mod(SP ′ hide θ) := {(M ′, I ′)|θ | (M ′, I ′) ∈ Mod(SP ′)}

As a first proof of concept, we show that the specification building operators are
monotonic w.r.t. the structuring operations, cf. [3]. This requires, in our case,
certain side conditions, most prominently for the structured union operation
on specifications. Here, the conditions deal with the following non-monotonic
situation of Csp-Casl refinement: There exist Csp-Casl specifications SP1, SP ′

1

and SP2 with6

SP1 � SP ′
1, Mod(SP1 and SP2) = ∅, Mod(SP ′

1 and SP2) �= ∅.
6 Consider over the traces model SP1 = (D, P = a → Stop), SP2 = (D, P = Stop),

and SP ′
1 = (D, P = Stop) where D is a consistent Casl specification that declares

a constant a. Then SP1 and SP2 is inconsistent, SP1 �T SP ′
1, and SP ′

1 and SP2

has models (M, I) with I(P ) = {〈〉} and M ∈ Mod(D).
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Definition 6. Two Csp-Casl specifications SP1 and SP2 over the same sig-
nature are process consistent, written as proc-consistent(SP1, SP2) if for all
M ∈ (ProjData(Mod(SP1)) ∩ ProjData(Mod(SP2))), there exists (M, J) ∈
Mod(SP1) ∩ Mod(SP2).

Proposition 7. The following proof rules7 are sound over T , N , and F :

SP1 � SP ′
1 proc-consistent(SP1, SP2) single-valued (SPi) for i = 1 ∨ i = 2

(SP1 and SP2) � (SP ′
1 and SP2)

SP1 � SP ′
1 SP1 ≡ RefCl(SP1)

(SP1 and SP2) � (SP ′
1 and SP2)

SP � SP ′ θ is injective on process names
(SP rename θ) � (SP ′ rename θ)

SP � SP ′

(SP hide θ) � (SP ′ hide θ)

where θ : ΣCC → Σ′
CC.

The rules for and involve rather strong preconditions, where we hope that it
will be possible to obtain better results in the future.

Renaming and refinement involving the same signature morphism can be ex-
changed:

Proposition 8. The following implications hold:

1. (SP rename θ) � SP ′ implies SP �θ SP ′.
2. Provided that θ is injective on process names, we also have:

SP �θ SP ′ implies (SP rename θ) � SP ′.

5 Compositional Verification of Deadlock Freedom

Our new version of Csp-Casl extends Csp-Casl as was presented in [11] with
loose processes. However, our definitions and semantical constructions coincide
for single valued specifications.

The deadlock analysis presented in [11] is practically limited to dealing with a
small number of processes in parallel. It involves the construction of a so-called
sequential process – which has a size that is exponential in the number of parallel
components involved. Here we prove deadlock freedom in a far more elegant way.

For the rest of this section, as usual for deadlock analysis in the context of
Csp, we work in the stable failures model F only. Furthermore we assume all
processes and process terms to be divergence free.
7 Note that θ being injective on process names can have restrictions on the data part

of the signature morphism as data forms part of the identity of process names.
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5.1 Deadlock Freedom in Structured Specifications

We first define what it means for a process term to be deadlock free in the context
of a specification (be it basic or structured). We then present a collection of proof
rules for deadlock freedom over the structuring operators.

Definition 9 (Deadlock freedom). Let SP be a Csp-Casl specification with
signature ΣCC, XG and XL be global and local variable systems respectively over
ΣCC, and let pt be a process term over signature ΣCC with variable systems XG

and XL. We say: pt is deadlock free in specification SP , written as

pt isDFin SP

if for all models (M, I) ∈ Mod(SP ), for all variable valuations μG : XG →
M⊥ and μL : XL → M⊥, and for all traces s ∈ Alph(M)∗ it holds that
(s,Alph(M)�) /∈ failures(�pt�(M,I),μG,μL

).

Deadlock freedom is compatible with the structuring operations:

Proposition 10. The following proof rules are sound:

SP �θ
F SP ′ pt isDFin SP

θ(pt) isDFin SP ′
pt isDFin SP1

pt isDFin (SP1 and SP2)

pt isDFin SP

θ(pt) isDFin (SP rename θ)
θ(pt) isDFin SP ′

pt isDFin (SP ′ hide θ)

where θ : ΣCC → Σ′
CC.

The above proof rules allow one to show deadlock freedom by decomposing
structured specifications. However, it may still be a difficult task to prove dead-
lock freedom for complex systems involving parallel processes. We describe a
technique for dealing with this situation in the following section.

5.2 Composing Networks

In order to study networks of processes, we lift a definition, originally formulated
over Csp in [18], to Csp-Casl. This captures the notion of processes being
responsive to one and another, i.e., not causing deadlock to occur.

Definition 11. Assume the setting of Definition 9. Let P and Q be process
terms over signature ΣCC with variable systems XG and XL. Let AP and AQ

be downward and upward closed super sets of the constituent alphabet sort set of
the process terms P and Q respectively (i.e., sorts(P ) ⊆ AP , ↓ AP = AP , and
↑ AP = AP , similar for AQ)8, and let J = AP ∩ AQ be the set of all shared
communications sorts. Let J ′ ∈ J↓ and X = J ′ ∪ {�}. Then we define:

Q :: AQ ResToLive� P :: AP on J ′ in SP

8 Upward closure is defined in the obvious way: ↑ X = {y ∈ S | ∃x ∈ X : x ≤ y}.
The condition “upward and downward closed” is required due to Casl subsorting.
It ensures that the sort set J comprises all shared communications.
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if for all models (M, I) ∈ Mod(SP ), all variable valuations μG : XG → M⊥ and
μL : XL → M⊥, and for all traces s ∈ Alph(M)� it holds that

(s, X) ∈ failures(�P |[ J ]|Q�(M,I),μG,μL
) =⇒ (s, X) ∈ failures(�P �(M,I),μG,μL

)

In this definition, Q can be seen as a server and P as a client. The server
is responsive to the client if whenever the client needs participation from the
server, the server is prepared to engage in it.

A network is a special way of defining a process in Csp. Formally, a network
V is a finite set of pairs {(Pi, Ai) | i ∈ G}, where G is a nonempty, finite index
set, Pi is a Csp process, and Ai ⊆ A is the set of communications which Pi can
engage in, for all i ∈ G. The process defined by such a network V is

Network(V ) := ‖i∈G (Pi, Ai)

where ‖i∈G (Pi, Ai) is the replicated alphabetised parallel operator of Csp. As
the semantics of ‖i∈G is independent of the order of its arguments, it is suffi-
cient to define networks over index sets. A network Network({P}) over a single
process P is equivalent to the process P itself. Note that the process System
in Figure 1 is defined as the network consisting of the processes Coordinator,
Customer, Warehouse, and PaymentSystem with suitable communication sets.
Deadlock freedom of such networks can be proven in a compositional way:

Proposition 12. Given a Csp-Casl specification SP and process terms Pi for
1 ≤ i ≤ k and a process term Q. Let Ai and AQ be downward and upwards closed
supersets of the constituent alphabet of Pi for 1 ≤ i ≤ k and Q respectively. If

– Ai ∩ Aj ∩ AQ = ∅ for all i and j where 1 ≤ i, j ≤ k and i �= j,
– Ai ∩ AQ �= ∅ for at least one i where 1 ≤ i ≤ k,
– Network({(P1, A1), . . . , (Pk, Ak)}) isDFin SP , and
– Q :: AQ ResToLive� Pi :: Ai on (Ai∩AQ) in SP for each i where 1 ≤ i ≤ k

and Ai ∩ AQ �= ∅

then Network({(P1, A1), . . . , (Pk, Ak), (Q, AQ)}) isDFin SP .

This proposition provides an elegant proof technique: The network under consid-
eration becomes smaller; the property “responds to live” has a characterisation
in terms of refinement and thus can be proven, e.g., by Csp-Casl-Prover; the
conditions concerning communication alphabets can be proven algorithmically.
In order to lift this proof technique to structured specifications, we provide a
proof calculus with regards to the property “responds to live”:

Proposition 13. The following proof rules are sound:

Q :: AQ ResToLive� P :: AP on J ′ in SP1

Q :: AQ ResToLive� P :: AP on J ′ in (SP1 and SP2)

Q :: AQ ResToLive� P :: AP on J ′ in SP

θ(Q) :: σ(AQ) ResToLive� θ(P ) :: σ(AP ) on σ(J ′) in (SP rename θ)
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θ(Q) :: σ(AQ) ResToLive� θ(P ) :: σ(AP ) on σ(J ′) in SP ′

Q :: AQ ResToLive� P :: AP on J ′ in (SP ′ hide θ)

where θ = (σ, ν) : ΣCC → Σ′
CC .

The above propositions illustrate the successful application of techniques from
Csp together with the institution independent structuring mechanisms. We ex-
pect other techniques from Csp also to lift successfully to Csp-Casl.

6 Example: Online-Shop

In this section we present a proof typical for our calculus. It concerns an online
shopping system as has been studied in the literature several times.

6.1 The Specification in Detail

The online shop is a typical distributed system. It has several components,
namely a customer, a warehouse, a payment system, and a coordinator. The
communication structure is pointwise only: The coordinator communicates with
the three other components in a star like network. The customer, warehouse and
payment system only communicate with the coordinator.

The customer may ask the coordinator to perform actions such as: To login, to
add an item to the basket, to remove an item from the basket, to checkout, etc.
The coordinator then responds to the customer with an appropriate response
message. All communication (on a channel) follows this pattern of a request
message followed by a response message (except for the Logout message, which
is more of a command). The coordinator may ask the warehouse to reserve an
item, to release an item that has previously been reserved, and to dispatch the
reserved items. The payment system allows the coordinator to take payments
for goods.

We specify the shop on various levels of abstraction. The architectural shop
(see Figure 1) describes the network layout, which remains unchanged in the
development. The development is restricted to individually refining the four
components. Here we present the first two levels of abstraction for our example,
namely: The architectural level for describing the basic interfaces, and the ab-
stract component level (ACL) for specifying the type system and its interplay
with process behaviour. Each component contains a ‘main’ process as its starting
point.

Within the rest of this section we use C to denote customer, Co to denote
coordinator, W to denote warehouse and PS to denote payment system. We also
drop the communications sets within the network construction and take them to
be the declared communications sets of the process names implicitly, for instance:
by Network({Customer}), we mean Network({(Customer, C C)}).
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spec ACL Customer =
data sorts LoginReq, Logout, GoodLoginRes, BadLoginRes,

AddItemReq, AddItemRes, . . . < D C
channel C C : D C
process Customer : C C ; Customer GoodLogin : C C ;

Customer BadLogin : C C ; Customer AddItem : C C ;
Customer Body : C C ; Customer Quit : C C ; . . .
Customer = C C ! x :: LoginReq def →

(Customer GoodLogin ; Customer Body �

Customer BadLogin ; Customer)
Customer GoodLogin = C C ? x :: GoodLoginRes def → SKIP
Customer BadLogin = C C ? x :: BadLoginRes def → SKIP
Customer AddItem = C C ! x :: AddItemReq def →

C C ? y :: AddItemRes def →
Customer Body

. . .
Customer Quit = C C ! x :: Logout def → SKIP
Customer Body = Customer AddItem � . . .

� Customer Quit
end

spec ACL Coordinator =
data . . .
channels C C : D C ; C W : D W ; C PS : D PS
process . . .

Coordinator AddItem = C C ? x :: AddItemReq def →
C W ! y2 :: ReserveItemReq def →
C W ? x2 :: ReserveItemRes def →
C C ! y :: AddItemRes def →
Customer Body

Coordinator Body = Coordinator AddItem � . . .
� Coordinator Quit

end

Fig. 3. Specification of the ACL customer and coordinator specifications

6.2 Deadlock Analysis

We illustrate how to prove deadlock freedom using the technique presented in
Section 5. We discuss the core part of the proof, and explain how to scale it up
for the whole system. The proof rule from Proposition 12 reduces the network
of processes step by step. We start at the point where the network has been
reduced to two processes only:

spec Reduced Arch Shop [RefCl (Arch C)] [RefCl(Arch Co)] =
process System′ : C C ;

System′ = Coordinator |[ C C || C C ]| Customer
end
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The specification Reduced Arch Shop instantiated with ACL components is
semantically equivalent to the following specification (without parameterisation):

Reduced ACL Shop =
(( (ReflCl(Arch C) rename θ1) and

(ReflCl(Arch Co) rename θ2) and Body

) rename θ3) and (ACL C rename θ4) and (ACL Co rename θ5)

Here all signature morphisms involved are embeddings and the specification
Body is a basic specification with the signature equal to the union of the sig-
natures of the ACL customer and coordinator along with the new process name
System′, and where the only axiom is that of

System′ = Coordinator |[ C C || C C ]| Customer.

Our aim is to prove that the process term bound to System′ is deadlock free
within the specification Reduced ACL Shop. To this end, we apply Proposi-
tion 12 and obtain:

Network({Customer, Coordinator}) isDFin Reduced ACL Shop

if (a) C isDFin Reduced ACL Shop and
(b) Co :: C C ResToLive� C :: C C on C C in Reduced ACL Shop

To discharge obligation (a), we apply the and rule from Proposition 10 several
times and reduce it to (C isDFin ACL C rename θ4). Applying the renaming
rule (also from Proposition 10) results in (C isDFin ACL C). As ACL C is
a basic specification and the customer process does not involve any parallel
operator we can easily discharge this obligation with Csp-Casl-Prover.

Concerning obligation (b), we apply the and rule from Proposition 13 several
times and reduce it to:

Co :: C C ResToLive� C :: C C on C C in
((ACL C rename θ4) and (ACL Co rename θ5))

As ACL C and ACL Co are basic Csp-Casl specifications we can discharge
the proof obligation by applying the flattening operation and then using Csp-
Casl-Prover. This obligation holds because the coordinator allows the customer
to choose the initial action (a request message) and then provides a response
message to the customer for this particular type of request (possibly after further
communications with other components).

The full proof of deadlock freedom has the same structure. Proposition 12 re-
duces Network({Customer, Coordinator, PaymentSystem, Warehouse}) down
to Network({Customer}) by removing first Warehouse, then PaymentSystem,
and – as shown above – Customer from the network. The resulting obligations
can then be reduced to a format where they can be discharged with Csp-Casl-
Prover.

7 Conclusion and Future Work

We have presented institutions for Csp-Casl, where we added the new feature of
loose process semantics. This setting allowed us to define and study structuring,
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parameterisation and refinement of Csp-Casl specifications. We gave several
proof calculi for compositional reasoning along the structure of Csp-Casl spec-
ifications: One dedicated to refinement, the other for deadlock analysis.

Future work will include the development of further proof rules for structured
operations: We intend to improve the refinement rules for and, and we want to
develop proof rules for the structured free operation, with a special emphasis
on connection with the Csp fixed point theory. Furthermore, we plan to apply
structuring to our EP2 case study, and to implement the presented calculi within
the standard proof tool for Casl, namely, Hets [13].
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