


Lecture Notes in Computer Science 7137
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Till Mossakowski Hans-Jörg Kreowski (Eds.)

Recent Trends
in Algebraic
Development Techniques

20th International Workshop, WADT 2010
Etelsen, Germany, July 1-4, 2010
Revised Selected Papers

13



Volume Editors

Till Mossakowski
DFKI – Deutsches Forschungszentrum für künstliche Intelligenz
Cyber-Physical Systems
28359 Bremen, Germany
E-mail: till.mossakowski@dfki.de

Hans-Jörg Kreowski
Universität Bremen
Fachbereich Mathematik und Informatik
28359 Bremen, Germany
E-mail: kreo@informatik.uni-bremen.de

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28411-3 e-ISBN 978-3-642-28412-0
DOI 10.1007/978-3-642-28412-0
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012931155

CR Subject Classification (1998): F.3, D.2.4, D.3.1, F.4, I.1, C.2.4

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains three invited papers and 15 selected papers from the 20th
International Workshop on Algebraic Development Techniques (WADT 2010)
which took place at Schloss Etelsen, a castle near Bremen, at the beginning of
July 2010 (see also the picture on p. 16).

The algebraic approach to system specification encompasses many aspects of
the formal design of software systems. Originally born as a formal method for
reasoning about abstract data types, it now covers new specification frameworks
and programming paradigms (such as object-oriented, aspect-oriented, agent-
oriented, logic and higher-order functional programming) as well as a wide range
of application areas (including information systems, concurrent, distributed and
mobile systems). The workshop provided an opportunity to present recent and
ongoing work, to meet colleagues, and to discuss new ideas and future trends.
Typical topics of interest are:

– Foundations of algebraic specification
– Other approaches to formal specification including process calculi and models

of concurrent, distributed and mobile computing
– Specification languages, methods, and environments
– Semantics of conceptual modeling methods and techniques
– Model-driven development
– Graph transformations, term rewriting and proof systems
– Integration of formal specification techniques
– Formal testing and quality assurance validation, and verification

The workshop took place under the auspices of IFIP WG 1.3 and was spon-
sored by the University of Bremen. The event was organized by the Com-
puter Science Department of the University of Bremen and DFKI Bremen group
Safe and Secure Cognitive Systems. The local organizers were Mihai Codescu,
Hans-Jörg Kreowski (Chair), Christian Maeder, Till Mossakowski (Chair), Sylvie
Rauer, and Lutz Schröder.

The scientific program consisted of three invited talks by Hans-Dieter Ehrich,
Jan Kofron, and Martin Wirsing and 32 presentations based on selected ab-
stracts. After the workshop, all authors were invited to submit full papers, which
underwent a thorough refereeing process, using EasyChair. Each paper was re-
viewed by three reviewers. We would like to thank both the Program Committee
(PC) and the additional reviewers for their work. Special thanks go to José Luiz
Fiadeiro, who on behalf of the PC Chairs handeled the PC Chair function of
EasyChair, in order to keep the reviewing process strictly anonymous to all au-
thors. Moreover, we are very grateful to Alfred Hofmann and his team at Springer
for the excellent cooperation once again.



VI Preface

As this was the 20th ADT Workshop, some reminiscing may be allowed. The
workshop series started at Sorpesee (Germany) in 1982, and further
events took place in Passau (Germany, 1983), Bremen (Germany, 1984), Braun-
schweig (Germany, 1986), Gullane (UK, 1987), Berlin (Germany, 1988), Wuster-
hausen (Germany, 1990), Dourdan (France, 1991), Caldes de Malavella (Spain,
1992), S. Margherita Ligure (Italy, 1994), Oslo (Norway, 1995), Tarquinia (Italy,
1997), Lisbon (Portugal, 1998), Château de Bonas (France, 1999), Genova
(Italy, 2001), Frauenchiemsee (Germany, 2002), Barcelona (Spain, 2004), La
Roche en Ardenne (Belgium, 2006), and Pisa (Italy, 2008). The 8th to 11th
WADT events were held jointly with the COMPASS Workshops, the yearly
meetings of the ESPRIT Basic Research Working Group A Compehensive Al-
gebraic Approach to System Specification and Development. Starting with the
12th WADT, the name was changed from Workshop on Abstract Data Types
to Workshop on Algebraic Development Techniques while keeping the acronym.
While the workshop series started as a regular meeting of the abstract data
type community, it soon became clear that this was a too narrow objective. The
new name reflects the widening scope and the broadening range of topics of the
workshop. It should also be noted that the ADT workshops took place under
the auspices of the IFIP Working Group 1.3 (Foundation of System Specifica-
tions) for nearly two decades. Since 2005, the CMCS and WADT communities
have jointly organized the biannual conference CALCO together in turn with
their ordinary workshops.

The first, second, fourth, and sixth proceedings appeared as technical re-
ports, the third proceedings as Informatik-Fachberichte 116 under the title Re-
cent Trends in Data Type Specification, the fifth volume and all proceedings from
the seventh on were published as Springer Lecture Notes volumes (332, 534, 655,
785,906, 1130, 1376, 1589, 1827, 2267, 2755, 3423, 4409, 5486). With the name
of the workshop, the proceedings were renamed as Recent Trends in Algebraic
Development Techniques.

Altogether, it is quite justified to call WADT an ongoing success story. There-
fore we wish it at least 20 further editions.

October 2011 Till Mossakowski
Hans-Jörg Kreowski
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José Luiz Fiadeiro University of Leicester, UK
Fabio Gadducci Università di Pisa, Italy
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Cı̂rstea, Corina
Dietrich, Dominik
Ehrig, Hartmut
Gı̂rlea, Codruţa
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Serbanuta, Traian
Ulidowski, Irek
van Breugel, Franck
Vandin, Andrea
Wasowski, Andrzej
Wolter, Uwe



Table of Contents

Invited Talks

Building a Modal Interface Theory for Concurrency and Data . . . . . . . . . 1
Sebastian S. Bauer, Rolf Hennicker, and Martin Wirsing

My ADT Shrine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Hans-Dieter Ehrich

Evolving SOA in the Q-ImPrESS Project . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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Building a Modal Interface Theory

for Concurrency and Data�

Sebastian S. Bauer, Rolf Hennicker, and Martin Wirsing

Ludwig-Maximilians-Universität München, Germany

Abstract. Treating control and data in an integrated way is an impor-
tant issue in system development. We discuss a compositional approach
for specifying concurrent behavior of components with data states on the
basis of interface theories. The dynamic aspects of a system are speci-
fied by modal I/O-transition systems, whereas changes of data states are
specified by pre- and postconditions. In this setting we study refinement
and behavioral compatibility of components. We show that refinement
is compositional and that compatibility is preserved by refinement; thus
the requirements for interface theories are satisfied. As a consequence,
our approach supports independent implementability and reusability of
concurrently interacting components with data states.

1 Introduction: Basic Principles of System Design

Algebraic development techniques support the rigorous construction of verifiable
software systems. Having their origin in the algebraic specification of abstract
data types, algebraic techniques have been particularly valuable for the formal
development of function-oriented systems; in particular, they provide them with
a precise mathematical semantics based on isomorphically closed classes of al-
gebras. In the simplest case an algebraic specification consists just of a pair
(Σ, E) where Σ is an algebraic signature, determining sorts and function sym-
bols, and E is a set of equations describing the required properties of a program.
For building specifications of complex systems algebraic structuring operators
have been introduced, most importantly for combining smaller specifications to
larger ones or for parametrized specifications and their instantiations [12,25].
Several variations of structuring operators have been realized in algebraic speci-
fication languages like, e.g., OBJ [15], ASL [24], ACT-ONE and ACT TWO [11],
Maude [8] and CASL [1], for an overview see [26].

Structuring specifications is important to cope with the complexity of large
scale software systems. It is often called the “horizontal” dimension of software
development. But for constructing correct implementations from abstract speci-
fications, it is equally important to be able to refine specifications in a stepwise

� This work has been partially sponsored by the EU project ASCENS, 257414. The
first author has been partially supported by the German Academic Exchange Service
(DAAD), grant D/10/46169.

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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manner. Moving from abstract to concrete specifications is often called the “ver-
tical” dimension of software development. Algebraic specifications come with
formally defined refinement relations and corresponding verification techniques.

Depending on the features of concrete specification languages and on their
underlying semantics, e.g. initial, loose or observational, various formal refine-
ment relations have been proposed. For instance, the idea of the loose semantics
approach goes back to Hoare 1972 [17] with the meaning that a specification
describes all its correct implementations. In this case the semantics of a spec-
ification S is given by the class Mod(S) of all models of the specification and
refinement is simply defined by model class inclusion.

Refinement:
S′ refines S, written S′ ≤ S, if Mod(S′) ⊆ Mod(S).

Of course, for stepwise program development it is crucial that refinements can
be vertically composed, i.e. that the refinement relation is transitive. In the loose
case this is a trivial consequence of the definition.

For applying structuring and refinement concepts in a methodologically useful
way it is essential that these concepts fit properly together, i.e. that refinement
is compatible with composition. For instance, assume that ⊗ denotes a binary
operator for the combination of specifications. Then the principle of horizontal
composition expresses the following requirement, for specifications S, S′, T and
T ′.

Horizontal composition:
If S′ ≤ S and T ′ ≤ T , then S′ ⊗ T ′ ≤ S ⊗ T .

Horizontal and vertical composition are indispensable prerequisites for so-
called compositional system development where a system is composed of inde-
pendently developed parts. This ”holy grail”of compositionality has been proven
to hold for several algebraic specification formalisms including the ACT TWO
and the ASL languages (see e.g. [12,24]).

These algebraic specification approaches are highly developed tools for con-
structing systems with functional behavior; but they are not tailored towards
the specification and analysis of systems exhibiting a dynamic and concurrent
behavior as it is typical, e.g., for reactive components. For this purpose tech-
niques based on execution traces, automata, Petri nets or (nondeterministic)
rewriting are more appropriate. On the other hand, refinement and composition
are obviously important principles for the development of dynamic systems as
well. The methodological requirements of vertical and horizontal composition
remain valid in this context. But these properties are not sufficient in the case of
reactive systems which heavily rely on interactions of components with the en-
vironment. For such systems, it is essential that no communication errors occur
when components interact. This is ensured by a compatibility property which
is usually formulated on the level of the interfaces of the components (and not
on components directly) in order to abstract from the the particular realizations
of the components. For compositionality one has to guarantee that components
which are correct w.r.t. their interface specifications are interacting properly with
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each other [10], i.e. refinement of interface specifications must preserve interface
compatibility.

Horizontal compositionality and preservation of interface compatibility are
fundamental properties of any formalism that is supposed to support indepen-
dent implementability of interface specifications for reactive components. In ad-
dition we require that compatibility of two interface specifications implies that
they can actually be composed. These principles can be formally captured by
the following notion of an interface theory (inspired by [10]).

An interface theory is a tuple (A,⊗,≤, �) consisting of a class A of interface
specifications, a partial composition operator ⊗ : A × A → A, a reflexive and
transitive refinement relation ≤ ⊆ A×A, and a symmetric compatibility relation
� ⊆ A×A, such that the following conditions are satisfied. Let S, S′, T, T ′ ∈ A
be specifications.

(1) Compatibility implies composability
If S � T then S ⊗ T is defined.

(2) Compositional refinement
If S′ ≤ S and T ′ ≤ T and S ⊗ T is defined,
then S′ ⊗ T ′ is defined and S′ ⊗ T ′ ≤ S ⊗ T .

(3) Preservation of compatibility
If S � T and S′ ≤ S and T ′ ≤ T , then S′ � T ′.

In the following we will present a compositional approach - called MIOD - for
the specification of interfaces for concurrently running reactive components with
encapsulated data states. We model interfaces of reactive components by modal
I/O-transition systems (as introduced in [18]) enhanced by data constraints (as
in [4]) and show that the MIOD approach forms an interface theory, i.e. it sat-
isfies the vertical and horizontal composition properties and preserves interface
compatibility.

2 Modal Input/Output Automata with Data Constraints
and Their Refinement

Components interact with the environment by accepting inputs and sending
outputs which both are modeled by incoming or outgoing operation calls, for
provided and required operations resp. An I/O-operation signature O = Oprov �
Oreq � Oint consists of pairwise disjoint sets of provided, required, and internal
operations, resp. An I/O-state signature V = V prov � V req � V int consists of
pairwise disjoint sets of provided, required and internal state variables, resp.
State variables are used to model data states of components. The provided and
the internal state variables together form the “local” variables of a component,
denoted by V loc = V prov � V int ; the required state variables are used to access
the visible data states of the environment. An I/O-signature is a pair Σ = (V, O)
consisting of an I/O-state signature V and an I/O-operation signature O.

We extend modal I/O-transition systems (MIOs) introduced in [18] to take
into account constraints on data states. The resulting transition systems, called
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MIODs, provide interface specifications for components with data states. They
do not only specify the control flow of behaviors but also the effect on data states
in terms of pre- and postconditions. Moreover, the modalities stemming from
MIOs allow additionally to distinguish may and must transitions thus supporting
a flexible concept for refinement.

For specifying pre- and postconditions we assume given a set S(W, X) of state
predicates and a set T (W, W ′, X) of transition predicates. State predicates, often
denoted by ϕ, refer to single states and transition predicates, often denoted by
π, to pairs of states (pre- and poststates). Given an I/O-signature Σ = (V, O),
the set L(Σ) of Σ-labels consists of the following expressions where operations
(of any kind) are surrounded by pre- and postconditions which may contain the
operation’s formal parameters, denoted by par(op), as logical variables (being
disjoint from the state variables).

– [ϕ]op?[π] with ϕ ∈ S(V, par(op)), op ∈ Oprov , π ∈ T (V, V loc, par(op)).
– [ϕ]op![π] with ϕ ∈ S(V, par(op)), op ∈ Oreq , π ∈ T (V, V req , par(op)).
– [ϕ]op; [π] with ϕ ∈ S(V, par(op)), op ∈ Oint , π ∈ T (V, V loc, par(op)).

The symbols “?” (“!”,“;”) are just used as decorations to emphasize that op is a
provided (required, internal) operation, resp. An input label [ϕ]op?[π] models
that a provided operation op can be invoked under the precondition ϕ and then
the postcondition π will hold after the execution of op. The postcondition π of
an input is a transition predicate which must only specify changes of data states
for local state variables. An output label [ϕ]op![π] models that a component
issues a call to a required operation op if the precondition ϕ is satisfied and after
execution of the invoked operation the component expects that the postcondition
π holds. The postcondition of an output is a transition predicate which must only
specify the expected changes of the visible data states in the environment, i.e.
for required state variables. Hence, outputs are not expected to alter the data
state of the calling component itself. Finally, an internal label [ϕ]op; [π] stands
for the execution of an internal operation op.

Definition 1 (MIOD). A modal I/O automaton with data constraints (MIOD)

S = (Σ,St , init , ϕ0, Δmay, Δmust)

consists of an I/O-signature Σ, a finite set of states St, the initial (control)
state init ∈ St, the initial (data) state predicate ϕ0 ∈ S(V loc, ∅), a finite may
transition relation Δmay ⊆ St ×L(Σ) × St, and a finite must transition relation
Δmust ⊆ Δmay. The class of all MIODs is denoted by Md.

Example 1. We exemplify MIODs by specifying a simple protocol of a robot leg,
see Fig. 1 (for a more elaborated description of this example, see [3]). Provided
and required operations are indicated by incoming arrows on the left border and
outgoing arrows on the right border of the frame respectively. The operations
swing(a) and update(x ) have the parameters a and x respectively which are the
logical variables used in predicates. Primed variables refer to the value in the
poststate. We assume the initial state predicate true (omitted in the figure).



Building a Modal Interface Theory for Concurrency and Data 5

init()? lift()?

[a ≤ maxStep]
swing(a)?

[currStep ′ = a]

[a > maxStep]
swing(a)?
[currStep ′ ≤ a]

drop()?retract()?

[x = currStep]
update(x)!

update(x)

init()

lift()

swing(a)

drop()

retract()

V prov = {currStep,maxStep}, V req = ∅, V int = ∅

Fig. 1. Specification of a robot leg

Preconditions are written above/in front of and postconditions below/after op-
eration names; conditions of the form [true] are omitted. As usual, must (may)
transitions are drawn with solid (dashed) arrows, and may transitions originating
from must transitions are not drawn.

The leg component has two provided variables maxStep (for the leg’s maximal
step size) and currStep (for the current step size). The locomotion of a robot leg
usually proceeds in four phases: (1) the leg is lifted, (2) the leg is swung forward,
(3) the leg is dropped, and finally (4) the leg is pulling the robot’s body forward
by retracting the leg. After the first phase (lifting the leg) the leg component
must accept all calls to swing(a)? for which a ≤ maxStep; then the guarantee of
the leg component is that in the next state the current step size equals a. The leg
component may, however, also accept inputs swing(a)? for which a > maxStep.
In this case, the guarantee is the weaker condition maxStep′ ≤ a. �

In [4] we have provided a semantic foundation of our approach where any MIOD
is equipped with a model-theoretic semantics describing the class of all its cor-
rect implementations. Implementations are modeled by guarded I/O-transition
systems where concrete data states are simply algebras assigning values to state
variables. For implementation correctness we have defined in [4] a particular sim-
ulation relation taking into account the satisfaction of data constraints before
and after a transition has been fired. If a given MIOD has a correct implemen-
tation, i.e. its model class is not empty, then the MIOD is consistent.

Let us now turn again to the syntactical aspects of MIODs. For the definition
of a (syntactic) refinement relation between MIODs, we follow the basic idea of
modal refinement [19] where must transitions of an abstract specification must
be respected by the concrete specification and, conversely, may transitions of
the concrete specification must be allowed by the abstract one. Concerning the
impact of data constraints, every must transitions of an abstract MIOD, say T ,
with a precondition ϕT must be simulated by a corresponding must transition
of a more concrete MIOD, say S, whose precondition does not require more
than ϕT does. This condition is formalized by the first item of condition 1 in
Def. 2 (by taking into account that it is sufficient if the precondition on a must
transition of T is matched by the disjunction of several preconditions distributed
over different transitions of S which all maintain the simulation relation). This
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condition is independent of the kind of the labels. Concerning postconditions the
situation is different, because postconditions are not related to the executability
of transitions but rather to the specification of admissible poststates after a
transition has fired. In this case, if the must transition of T concerns input or
internal labels, the corresponding must transition of the refinement S should
lead to a postcondition which guarantees the postcondition πT of T . This is
formalized by the second item of condition 1 in Def. 2 (by taking into account
the splitting into different transitions as explained above). If a must transition of
T concerns an output label, then the postcondition πT expresses the expectation
of T about the next state of the environment. Then, obviously, the postcondition
of the refinement should not be stronger than πT which is formalized, again for
the general case of splitting transitions, in the third item of Def. 2(1).

When moving from concrete to abstract specifications concrete may transi-
tions must be allowed by the abstract specification which is formalized in con-
dition 2 of Def. 2. In this case, a similar splitting of transitions is possible just
the other way round.

Definition 2 (Modal Refinement). Let S and T be two MIODs with the
same I/O-signature. A binary relation R ⊆ StS × StT is a modal refinement
between the states of S and T iff for all (s, t) ∈ R,

1. from abstract to concrete
if (t, [ϕT ]op[πT ], t′) ∈ Δmust

T and ϕT is satisfiable
then there exists N ≥ 0 and transitions (s, [ϕS,i]op[πS,i], s′i) ∈ Δmust

S ,
0 ≤ i ≤ N , such that
– � ϕT ⇒

∨
i ϕS,i

– for all i, if op ∈ Oprov � Oint then � ϕT ∧ ϕS,i ∧ πS,i ⇒ πT

– for all i, if op ∈ Oreq then � ϕT ∧ ϕS,i ∧ πT ⇒ πS,i

– for all i, (s′i, t
′) ∈ R

are satisfied.
2. from concrete to abstract

if (s, [ϕS ]op[πS ], s′) ∈ Δmay
S and ϕS is satisfiable

then there exists N ≥ 0 and (t, [ϕT,i]op[πT,i], t′i) ∈ Δmay
T , 0 ≤ i ≤ N ,

such that
– � ϕS ⇒

∨
i ϕT,i

– for all i, if op ∈ Oprov � Oint then � ϕS ∧ ϕT,i ∧ πS ⇒ πT,i

– for all i, if op ∈ Oreq then � ϕS ∧ ϕT,i ∧ πT,i ⇒ πS

– for all i, (s′, t′i) ∈ R
are satisfied.

A state s ∈ StS refines a state t ∈ StT , written s ≤md t, iff there exists a
modal refinement between the states of S and T containing (s, t). S is a modal
refinement of T , written S ≤md T , iff initS ≤md initT and � ϕ0

S ⇒ ϕ0
T .

It can be easily verified that ≤md is a reflexive and transitive relation on the class
of all MIODs. Moreover, we have shown in [4], that modal refinement implies
inclusion of model classes of two MIODs in the sense of the refinement relation
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[a ≤ maxStep] swing(a)? [currStep ′ = a]

[a > maxStep] swing(a)? [currStep ′ ≤ a]

≤md

[a ≤ maxStep + maxStep/10]
swing(a)?

[currStep ′ = a]

Fig. 2. Refinement of the swing phase of the robot leg

for algebraic specifications with loose semantics discussed in Sect. 1. This is in
general not true the other way round such that it remains still a challenge to
investigate in syntactic approximations of semantic refinement.

Example 2. In the following we will rather focus on the treatment of data con-
straints than on the treatment of the control flow. Fig. 2 shows two excerpts of
two MIODs specifying the swing phase of the robot leg; the abstract one on the
right hand side is like in Fig. 1.

The concrete MIOD on the left hand side refines the abstract MIOD on
the right hand side by requiring that the leg component must receive calls to
swing(a)? for values of the parameter a exceeding the maximal step size at most
by ten percent; for all other values of the parameter a the reception is not al-
lowed. Note that the postcondition is the same for the precondition a ≤ maxStep;
for the precondition maxStep < a ≤ maxStep +maxStep/10 the postcondition is
strengthened to currStep′ = a. �

3 Compositionality and Compatibility Results

MIODs can be composed to specify the behavior of concurrent systems of in-
teracting components with data states. The composition operator extends the
synchronous composition of MIOs [18,5]. The composition is only defined if syn-
tactic restrictions requiring composability of I/O-signatures are satisfied. We
require that overlapping of operations only happens on complementary types
and that the same holds for state variables. Two composable I/O-signatures
ΣS = (VS , OS) and ΣT = (VT , OT ) can be composed to the I/O-signature
ΣS ⊗ΣT = (OS ⊗OT , VS ⊗ VT ) where shared variables as well as shared opera-
tions are internalized.

The synchronous composition S ⊗d T of two (composable) MIODs S and T
synchronizes transitions whose labels refer to shared operations. For instance,
a transition with label [ϕS ]op![πS ] of S is synchronized with a transition with
label [ϕT ]op?[πT ] of T which results in a transition with label [ϕS ∧ ϕT ]op[πT ]
where the original preconditions are combined by logical conjunction and only
the postcondition πT of the input is kept. Since the postcondition πS of the
output expresses an assumption on the environment and since input and output
actions synchronize to an internal action, πS is irrelevant for the composition.
Transitions whose labels concern shared operations which cannot be synchro-
nized are dropped (as usual) while all other transitions are interleaved in the
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composition. Concerning modalities we follow the usual modal composition op-
erator [18] which yields a must transition if two must transitions are synchro-
nized and a may transition otherwise. For the precise formal definition of MIOD
composition and for the proof of the next theorem see [4].

The following theorem shows that modal refinement is a precongruence with
respect to the composition of MIODs which provides our first compositionality
result.

Theorem 1. Let S, S′, T, T ′ be MIODs and let S and T be composable. Then
S′ ≤md S and T ′ ≤md T imply S′ ⊗d T ′ ≤md S ⊗d T .

When we want to compose two MIODs we have seen that it is first necessary
to check composability which is a purely syntactic condition. But then it is of
course important that the two components work properly together without com-
munication errors, i.e. are behaviorally compatible. The following compatibility
notion builds upon (strong) modal compatibility as defined in [5]. From the con-
trol point of view (strong) compatibility requires that in any reachable state of
the product S⊗dT of two MIODs S and T , if one MIOD may issue an output (in
its current control state) then the other MIOD is in a control state where it must
be able to take the corresponding input.1 In the context of data states we have
the additional requirement that the data constraints of the two MIODs S and T
must be compatible. This is respected in condition 1(a) of Def. 3 which requires
that the operation call to op issued by S under the condition that ϕS holds,
must be accepted by T , hence there must exist accepting transitions in T such
that the disjunction of their preconditions is not stronger than ϕS . Condition
1(b) of Def. 3 requires that the postcondition πS of the caller S is respected: for
any may transition with a corresponding input label the assumption πS is not
stronger than the guarantee πT .

For practical verification of compatibility of MIODs, we go through all
syntactically reachable states of S⊗d T and check whether the pre- and postcon-
ditions of synchronizing transitions match. The set of the syntactically reach-
able states of S is given by R(S) =

⋃∞
n=0 Rn where R0(S) = {initS} and

Rn+1(S) = {s′ | ∃s ∈ Rn(S), ∃� ∈ L(Σ) : (s, �, s′) ∈ Δmay
S }. Note that tak-

ing the syntactically reachable states is, of course, an over-approximation of the
(semantically) reachable states in the composition of implementation models.

Definition 3 (Modal Compatibility of MIODs). Let S and T be two com-
posable MIODs. S and T are modally compatible, denoted by S �d T , iff for
all reachable states (s, t) ∈ R(S ⊗d T ),

1. for all op ∈ Oreq
S ∩ Oprov

T , whenever (s, [ϕS ]op![πS ], s′) ∈ Δmay
S and ϕS is

satisfiable then
(a) there exists (t, [ϕT,i]op?[πT,i], t′i) ∈ Δmust

T , 0 ≤ i ≤ N , such that � ϕS ⇒∨
i ϕT,i, and

1 We follow the “pessimistic” approach to compatibility where two components should
be compatible in any environment, in contrast to the “optimistic” approach pursued
in [10,18] which relies on the existence of a “helpful” environment.
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(b) for all (t, [ϕT ]op?[πT ], t′) ∈ Δmay
T , it holds that � ϕS ∧ ϕT ∧ πT ⇒ πS;

2. symmetrically for all op ∈ Oreq
T ∩ Oprov

S .

We can now state that compatibility of MIODs is preserved by refinement, which
in combination with Theorem 1 shows, that MIODs together with their syn-
chronous composition, modal refinement and modal compatibility form an inter-
face theory as defined in Sect. 1.

Theorem 2. Let S, S′, T, T ′ be MIODs such that S and T are composable. Then
S �d T , S′ ≤md S and T ′ ≤md T imply S′ �d T ′.

Corollary 1. The algebra of all MIODs (Md,⊗d,≤md, �d) forms an interface
theory.

[a ≤ maxStep] swing(a)? [currStep ′ = a]

[a > maxStep] swing(a)? [currStep ′ ≤ a]

�d

[a ≤ maxStep ]
swing(a)!

[currStep ′ = a]

≤
m

d

≤
m

d

[a ≤ maxStep + maxStep/10]
swing(a)?

[currStep ′ = a]�d

[a = min(remain, maxStep)]
swing(a)!

[currStep ′ = a]

Fig. 3. Independent implementability: leg controller and leg specification

Example 3. In Fig. 3, the principle of independent implementability is illustrated
in terms of our running example showing small excerpts of four MIODs. We
start from the two abstract specifications in the first row of the figure where the
left hand side specifies a possible leg controller and the right hand side stems
from the already known specification of the leg component (see Fig. 1). We can
easily verify their compatibility: for the output swing(a)! of the leg controller,
there exists an input in the leg specification which is required to appear in
any implementation, and the expected change of currStep is respected. Note
that in case of a > maxStep the postcondition currStep′ ≤ a would not meet
the caller’s expectation currStep′ = a; however the leg controller guarantees to
send the output only for a ≤ maxStep. Then we refine both independently of
each other by the MIODs shown in the second row. The variable remain in the
precondition in the refined specification of the leg controller stores the remaining
distance to be gone. First, Thm. 1 ensures that the composition of the refined
specifications refine the composition of the abstract specifications, and second,
Thm. 2 guarantees that the refined specifications are compatible again. �
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4 Related Work

Specifications of interaction behavior and of changing data states are often con-
sidered separately from each other. Complex interaction behavior can be well
specified by process algebraic approaches [6,20]; sequence diagrams (see e.g. [7])
or basic message sequence charts (see e.g. [16]) are popular formalisms to specify
the temporal ordering of messages, and pre/postconditions are commonly used
to specify the effects of operations w.r.t. data states. Though approaches like
CSP-OZ [14] or Circus [23,27] offer means to specify interaction and data as-
pects, they do, however, not support modalities expressing allowed and required
behavior and compatibility. Other related approaches are based on symbolic
transition systems (STS) [13,2], but STS are mainly focusing on model check-
ing and not on (top down) development of concurrent systems by refinement.
Closely related to our work is the study of Mouelhi et al. [21] who consider an
extension of the theory of interface automata [10] to data states. However, they
do neither consider modal refinements nor the contract principle between inter-
face specifications regarding data which, in our case, is based on a careful and
methodologically important separation of provided, internal and required state
variables. Sociable interfaces [9] are another data-oriented extension of interface
automata which support n-ary communication but do not consider modalities
and modal refinement. On the other hand, existing work on modal transition
systems and their use as specification formalism for component interfaces [18,22]
does not take into account explicit data states.

5 Conclusion

We have described an interface theory for concurrently running components with
encapsulated, local data states. Interface specifications are formalized by modal
input/output automata with data constraints; the refinement and compatibility
notions extend those for modal I/O-transition systems to take into account data
states. We have shown that our approach satisfies the ”holy grail” of stepwise
compositional development: refinement of MIODs is transitive, MIOD compo-
sition is monotone w.r.t. refinement, and MIOD compatibility implies compos-
ability and is preserved under refinement. Thus MIODs possess the properties
of vertical and horizontal composition which are required for compositional al-
gebraic specification approaches; moreover, MIODs satisfy also the additional
compatibility requirements for ensuring safe interaction of reactive components.

Currently our approach assumes atomic execution of transitions but, apart
from this, we have allowed arbitrary interference of behaviors. We believe that
more powerful refinement relations utilizing postconditions of previous computa-
tion steps can be obtained if we assume certain interference-freeness constraints;
but this is left for further investigation. Of course, modal refinement should be
extended to take into account data refinement in order to establish refinements
between MIODs with different I/O-state signatures. Also, more elaborated veri-
fication techniques for refinement and compatibility of MIODs are envisaged, so
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that they get closer to semantic refinement and semantic compatibility. More-
over, we plan to study more operators on MIODs, like conjunction and quotient,
and to implement our framework, for a particular assertion language, in the MIO
Workbench [5], a verification tool for modal input/output automata.
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7. Cengarle, M.V., Knapp, A., Mühlberger, H.: Interactions. In: Lano, K. (ed.) UML
2 Semantics and Applications, pp. 205–248 (2009)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.: All About Maude - A High-Performance Logical Framework, How to Spec-
ify, Program and Verify Systems in Rewriting Logic. LNCS, vol. 4350. Springer,
Heidelberg (2007)

9. de Alfaro, L., da Silva, L.D., Faella, M., Legay, A., Roy, P., Sorea, M.: Sociable
Interfaces. In: Gramlich, B. (ed.) FroCos 2005. LNCS (LNAI), vol. 3717, pp. 81–
105. Springer, Heidelberg (2005)

10. de Alfaro, L., Henzinger, T.A.: Interface Theories for Component-Based Design.
In: Henzinger, T.A., Kirsch, C.M. (eds.) EMSOFT 2001. LNCS, vol. 2211, pp.
148–165. Springer, Heidelberg (2001)

11. Ehrig, H., Claßen, I., Boehm, P., Fey, W., Korff, M., Löwe, M.: Algebraic Concepts
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Abstract. The 20th WADT 2010 is put into perspective by giving af-
terglows of the 1st WADT 1982 in Langscheid near Dortmund, and the
10th WADT 1994 in Santa Margherita near Genova. First encounters
with pioneers in the field are recalled, in particular with the ADJ group
who initiated the initial-algebra approach. The author’s contributions at
that time are put in this context. Around 1982, the emphasis of his work
moved to databases and information systems, in particular conceptual
modeling. His group used a triple of layers to model information systems,
data—objects—systems, where the focus of interest now was on objects
and systems. The interest in data issues paled in comparison. There were
cases, however, where benefits could be drawn from the early work on
ADTs and the foundations established in this field.

1 Opening the Shrine

In March 1982, Udo Lipeck and the author organized a workshop on Alge-
braic Specification in Langscheid, Sorpesee, near Dortmund. It took place in
the Heimvolkshochschule Sorpesee, an institution of adult education. Figure 1
shows its logo at that time.

There were 29 participants coming from 9 universities, 8 German and 1 Dutch.
Table 1 shows the list grouped by universities and ordered by alphabet.

As for the Dortmund group: at the time of the workshop, Volker Lohberger
had left for Essen, Gregor Engels for Osnabrück, and Udo Pletat for Stuttgart.
Klaus Drosten, the author, Martin Gogolla, and Udo Lipeck were about to leave
for Braunschweig. Many of the other participants moved as well more or less
shortly after the workshop. So the group felt that the event should be repeated
in order to remain in contact.

This way, the Langscheid workshop became the 1st WADT. It was followed by
WADTs in Passau (2nd:1983), Bremen (3rd:1984), Warberg Castle near Braun-
schweig (4th:1986), Gullane near Edinburgh (5th:1987), Berlin (6th:1988), Wuster-
hausen near Berlin (7th 1990), Dourdan near Paris (8th:1991), and Caldes de
Malavella near Barcelona (9th:1992).

The 10th WADT was held from May 30 to June 6, 1994, in Santa Margherita
Ligure near Genova, together with the 5th COMPASS Workshop. Figure 2 gives
a view of the beautiful location (left) and the organizer, Egidio Astesiano (right),
on an excursion to Genova.

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 13–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. Site of the 1st WADT

Table 1. Participants of the 1st WADT

Aachen Herbert Klaeren, Heiko Petzsch
Berlin Hartmut Ehrig, Werner Fey, Horst Hansen, Klaus-Pe-

ter Hasler, Hans-Jörg Kreowski, Michael Löwe, Peter
Padawitz, Michaela Reisin

Bonn Christoph Beierle, Peter Raulefs, Angelika Voß
Bremen Herbert Weber
Dortmund Klaus Drosten, Hans-Dieter Ehrich, Gregor Engels, Mar-

tin Gogolla, Udo Lipeck, Volker Lohberger, Udo Pletat,
Axel Poigné

Karlsruhe Heinrich C. Mayr
Leiden Jan Bergstra
München Harald Ganzinger, Peter Pepper, Martin Wirsing
Saarbrücken Claus-Werner Lermen, Jacques Loeckx

90 participants were registered at the workshop, the author refrains from list-
ing them. The program offered 62 presentations. Selected papers were published
after the conference in the LNCS 906 volume entitled Recent Trends in Data
Type Specification. It was edited by Egidio Astesiano, Gianna Reggio and An-
drzej Tarlecki, and it was published in 1995 after the conference.

The author’s contribution to this volume, coauthored by Amilcar Sernadas,
was a paper entitled Local Specification of Distributed Families of Sequential
Objects [12]. So he was away from the ADT field by then—in fact, already for
nearly ten years.
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Fig. 2. Left: Santa Margherita Ligure, the site of the 10th WADT; Right: Egidio Aste-
siano speaking to participants on an excursion to Genova

It should be mentioned that the 10thWADT/5thCOMPASS Workshop was the
starting point of the “Common Framework Initiative for algebraic specification
and development” (CoFI, the homepage is [5]) to unify and standardize the
algebraic specification languages that were around at that time. There were
quite a few. At least the main concepts to be incorporated were thought to
be clear—although it was realized that it might not be so easy to agree on a
common language to express these concepts. And so it was. The result of the
efforts are published in two LNCS volumes [1,22].

Actually, WADT proceedings were continuously published in the Springer
LNCS series from the 1987 Gullane meeting on, with a precursor in 1984 when
the Bremen WADT proceedings were published in the Springer Informatik Fach-
berichte1.

The author was very pleased when he was invited to give a retrospect lecture
at the 20th anniversary WADT in Schloss Etelsen near Bremen. Figure 3 gives
a view of that beautiful place. The author hadn’t attended any of the WADT’s
since 1995, the 11th one, in Oslo.

For his presentation, the author was very generously given one full hour. But
still, there was a need to concentrate on what was felt most essential and what
could be of interest for the audience. So the author had to select and to simplify
more than he had wished to. Also, his selection of topics was quite personal,
guided by the material that he had readily available or could easily retrieve, and
it was certainly also guided by vanity. So the selection is neither complete nor
fairly balanced.

Since this paper is an elaboration of that presentation, it naturally suffers from
the same problems: oversimplification, overselectivity, vanity bias. The author is
aware that much more work along the ideas outlined here was going on at that
time, all over the world. Historical completeness and balance is not among his
intentions, though.

1 Informatics Technical Reports.
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Fig. 3. Schloss Etelsen near Bremen, site of the 20th WADT

2 Early Treasures

2.1 ADT Roots

It was in the mid to late nineteen hundred and seventies when the author became
aware of the seminal ADJ2 papers [20] and [19].

In [20], ADJ address programming language semantics, not abstract data
types yet: the syntax of a programming language L is represented as an algebraic
signature L = (S, Σ) where S is a set of sorts and Σ = {Σx,s}x∈S∗,s∈S is
an S∗ × S-sorted operator signature, i.e., a collection of operators ω ∈ Σx,s

also written ω : s1 × . . . × sn → s, where x = s1 . . . sn ∈ S∗ and s ∈ S.3

Interpretation is given in the category Algc
Σ of continuous Σ-algebras where

fixpoint equations can be solved. This category has initial algebras which form an
isomorphism class, with the term algebra TΣ as a natural representative. TΣ may
be seen as the abstract syntax of the programming language. “Abstract” here
means concentrating on the structure of the syntax and disregarding the concrete
symbols written by the programmer. Mathematical semantics is given implicitly

2 The acronym ADJ denoted a group of authors consisting of varying subsets of {Jim
Thatcher, Eric Wagner, Jesse Wright, Joseph Goguen}; the group aimed at estab-
lishing an adjunction between category theory and computer science.

3 Throughout this paper, a coherent notation is used which may deviate from the
notations in the papers referred to.
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by writing equations over Σ that are supposed to hold. A set of Σ-equations
E determines the subcategory Algc

Σ,E of algebras satisfying these equations.
This subcategory also has initial algebras, with a natural representative TΣ,E ,
the quotient term algebra TΣ/ ∼E where ∼E is the congruence relation induced
by E. By initiality, there is a unique morphism μ : TΣ → TΣ,E. This initial
morphism gives meaning to each syntactic construct by interpreting it in the
semantic algebra. This way, it establishes the semantics [[L]] of the programming
language L. This approach has been termed algebraic semantics4.

In [19], ADJ carried this elegant approach over to the specification of abstract
data types, concentrating on finitary algebras. The essentials are well-known.

– a data type is an algebra
– an abstract data type is an isomorphism class of algebras
– the syntax of an abstract data type is given by a specification D = (S, Σ, E)

where S is a set of sorts, Σ is an S∗ × S-sorted set family of operators, and
E is a set of Σ-equations

– the semantics of such a specification is defined in two steps

1. the Σ-equations E determine a category of Σ-algebras satisfying these
axioms

2. the isomorphism class of initial (Σ, E)-algebras (or any representative in
it) is suggested as the abstract data type specified “up to isomorphism”
by the equational specification D.

– under natural conditions, there is an operational semantics in the form of a
term rewriting system that operates precisely in an initial algebra (the term
normal form algebra).

This is the basis. There are extensions and ramifications in many respects.

Fig. 4. Left: IBM Research Yorktown Heights in 1981; right, from left: Jim Thatcher,
Eric Wagner, NN, the author, Wolfgang Wechler at MFCS’81 in S̆trbské Pleso in the
High Tatras (then Czechoslovakia, now Slowakia)

4 As opposed to denotational, operational, and axiomatic sematics.
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Figure 4 shows photographs of early encounters with members of the ADJ
group. Their ideas spread over to Europe, Germany in particular, and gave rise
to the 1982 Langscheid workshop, to become the 1st WADT, in order to give
the emerging discussions about abstract data types a forum.

Early cooperation of ADJ with the Berlin group is witnessed by [14]. ADJ’s
influence on the author’s own work is best shown in what he considers to be a
special treasure in his shrine, namely [6]—not the first but probably the most
important of his early publications in prestigious journals.

In this paper, the concepts of implementation and parameterization of ab-
stract data types are explored on the syntactic level of specifications D =
(S, Σ, E). A specification morphism f : D1 → D2 is a pair (fS , fΣ) where
fS : S1 → S2 is a map, and fΣ : Σ1 → Σ2 is an S∗ × S-indexed set family
of maps {fΣ,x,s : Σ1,x,s → Σ2,x,s}x∈S∗,s∈S such that, for every equation l = r in
E1, f(l) = f(r) is in E∗

2 , the closure of E2. We trust that the reader has an idea
how f is applied to the left and right hand side terms of an equation (to every
term operator recursively), and what the “closure” of an equation system is5.

Referring to Figure 5, specification D1 implements specification D0 if there is a
specification D2 with two specification morphisms f : D1 → D2 and t : D0 → D2,
such that D0 is embedded “truely” into D2 wrt t, and D1 is embedded “fully” into
D2 wrt f . As for the precise definitions and their variants, we refer to the paper.

D1 D0

implements

D2

f t

X D(X)

A D(A)

p

h h∗

p∗

p.o.

Fig. 5. Implementation (left) and parameterization (right)

A parameterized abstract data type p : X ↪→ D is given by an inclusion
morphism p embedding a formal parameter part X into a specification D, written
D(X). A parameter assignment is given by a morphism h : X → A where A
is an actual parameter specification. h says which formal parameter sorts and
operators are to be replaced by which actual ones, while equations in X act as
constraints that have to be obeyed by the actual parameter A. The result of
substituting X by A is given by a pushout in the category of specifications and
specification morphisms: the specification D(A) where X is replaced by A, with
p∗ showing the embedding of the actual parameter in the result, and h∗ showing
the extension of h to the entire specification.

The author’s approach to parameter replacement was an adaptation and
simplification of Ehrig, Pfender and Schneider’s categorial treatment of graph

5 The expert reader may wonder what is meant here: the deductive closure or the
entailment closure. It does not matter, they coincide in equational theories.
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replacements [15]. (Co)limits as a mathematical tool for describing system inte-
gration had been used at about the same time by Joseph Goguen [17]. The se-
mantics of Clear [4] makes extensive use of colimit constructions, also pushouts
for handling parameter replacement, albeit on the level of semantic algebras.

There were also other approaches to abstract data type specification, some
using categories and some not, some using initial semantics and some not. [2]
gives a nice overview of abstract data type models at that time.

2.2 Algebraic Domain Equations

The 1983 paper [11], coauthored by the author and Udo Lipeck, sadly didn’t find
due attention, but the author always kept a warm remembrance of it. The idea was
stimulated by Dana Scott’s work on data types as lattices where data types (do-
mains) are characterized implicitly as solutions of domain equations [23].Was there
an analogue in the realm of algebraic data types? What could the term “domain
equation” possibly mean here? The authors’ basic idea was to remodel a domain
equation as a parametric specification p : X ↪→ D(X) with a further morphism
e : X → D(X) with the idea that the targets of p and e had to be merged.

X = D(X) vs. X
p−→−→
e

D(X)

In order to give a flavour of the approach, here are a couple of examples. With
appropriate definitions of X , ×, +1, p and e (the details of which can be found
in [11]), we have, for example, natural numbers specified by X −→−→X +1, stacks

with data of sort S specified by X −→−→X × S + 1, binary trees with data of sort

S at each node specified by X −→−→X ×X ×S + 1, binary trees with data of sort

S at the leaves specified by X −→−→X × X + S, etc.6.
In order to give an idea of how it works, we expand the first example, natural

numbers, specified by X
p−→−→
e

X + 1.7 X has one sort which we also denote by

X , and one constant x0 :→ X . “+1” adds one new sort N , one new constant
n0 :→ N , and a “construction” operator σ : X → N which connects the sorts.
Let p : X → X +1 be the embedding sending all items in X to the ones in X +1
with the same denotaton. Let e : X → X +1 send sort X to sort N and constant
x0 to constant n0. Then the coequalizer of p and e identifies the two sorts, let
us denote the resulting sort by IN , and also the two constants, let us denote the
resulting constant by 0. If we suggestively rename the operator σ by succ, then
its signature is succ : IN → IN . So we have the basic specification of the natural
numbers with one sort, constant 0 and the successor operator.8

6 However, there are no interesting counterparts of Scott’s reflexive domain X = XX

and his powerset domain X = 2X .
7 This example is a simplification of example 7.1 in [11].
8 A slightly more complex version of this example adds to “+1” a “projection” operator

π : N → X and the (not too far fetched) equationπ(σ(x)) = x. In the coequalizer, these
thenbecome thepredecessor operatorpred : IN → IN and the equationpred(succ(n)) =
n. There is no equation for pred(0), so this value is left undefined.
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The semantics of algebraic domain equations roughly works as follows. As
is well-known, each specification morhism f : D1 → D2 gives rise to adjoint
functors F : D1-alg → D2-alg, the free functor, and F̄ : D2-alg → D1-alg, the

forgetful functor. An Algebraic Domain Equation X
p−→−→
e

D(X) then defines the

pair X-alg
P−→←−̄
E

D-alg of functors.

Let (c, Q) be the coequalizer of p and e, X
p−→−→
e

D
c−→ Q. Referring to the

functors X-alg
P−→←−̄
E

D-alg C̄←− Q-alg, the fixpoints of ĒP are precisely the alge-

bras AC̄ for algebras A ∈ Q-alg. These are the solutions of an Algebraic Domain

Equation X
p−→−→
e

D(X). Apparently, any initial Q-algebra is an initial solution of

the Algebraic Domain Equation.
Fascinating work must be mentioned that has been influential in one or the

other way, although there is no room for giving detailed references. Smyth’s and
Plotkin’s work on a categorial solution for recursive domain equations [24] was of
great interest when working on the above. Burstall’s and Goguen’s work on the
ADT specification language Clear [3,4], and Goguen’s work on OBJ beginning
with [18] were continuing sources of inspiration, also later on when the author
worked on database conceptual modeling languages.

Initial semantics was a great idea that guided the author quite a bit in the
early ADT days. It soon became apparent, though, that initiality was not enough.
In 1984, Martin Gogolla, Klaus Drosten, Udo Lipeck, and the author published
a paper [16] supporting all forms of error handling: error introduction, error
propagation, and error recovery; there is an initial semantics which coincides with
the term-rewriting semantics if the latter is finite Church-Rosser; a specification-
correctness criterion allows for non-initial models—loosely speaking, they are
“initial on the ok values” and “loose on the error values”. This means that
carrier sets are partitioned into an ok part and an error part, and the initial
morphisms must be injective on the former while there are no constraints for the
latter. In specification, operators are classified into those which introduce errors
in normal situations and those which preserve ok states. Two types of variables
are introduced, one for non-error situations only and the others for ok states and
exceptional states.

3 Drifting Away

When moving from Dortmund to Braunschweig where the author took the chair
of databases and information systems, conceptual modeling became his major
interest. ADTs were largely unknown in this community, and there was disap-
pointment in the beginning that they were of little help. The author expressed
that in his contribution to the 3rd WADT 1984 in Bremen [7].

This marked the beginning of the author’s drifting away from the ADT area.
Rather, object concepts caught his interest. Corresponding concepts have been
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dealt with in the ADT community as well, probably first by Joseph Goguen [17]
who made objects fundamental in his OBJ series of languages [18]. Although
OBJ has found practical applications in interesting projects, the author thinks
it is fair to say that the ADT-related object concepts did not find their way into
everyday practice. Practice in conceptual modeling, and in software engineering
at large, came to be heavily dominated by UML which did not succeed in raising
much enthusiasm among ADT theorists—so far.

But of course, it is not easy to abandon an Old Love; the author made attempts
to use ADT theory for database aspects. An example is [8]. In brief, the ideas
are as follows:

– the data in a database are organized in ADTs—but they are usually stan-
dard, not open to user specification

– database objects are identified by keys specified, for instance, in the context
of relational tables; keys are usually immutable

– database keys are organized in ADTs which are extensions of the data-level
ADTs

– for their specification, a final algebra approach is appropriate, relative to the
initial-algebra data layer.

Ironically, the term abstract data type had always been used in the programming
area in the sense that later would become standard as object, namely a stateful
unit of state-based operations reading and writing data.

So the author’s migration from data types to object types (this is the title of
[13]) was, in a way, a turn back to the programming roots. Although substan-
tial agreement has been achieved in practice, there is still no coherent “theory
of objects” which copes with all aspects, including interaction, aggregation, in-
heritance, types, classes, specification, implementation, correctness, verification,
. . . , and which can provide a sufficiently rich and reliable basis for designing,
implementing, and using object-oriented languages and systems.

The problem is not that there is no theory. The problem is that there are so
many. And that they are so diverse.

4 Visits Home

Writing textbooks takes time. So the book [9]9 appeared long after initiating the
project, when all three authors had abandoned the ADT area for years. They
were relieved when the book was finished, and they did not find the push to
work on an English version. Unfortunately.

So the author was quite glad when Jacques Loeckx asked him years later to
coauthor an English textbook on abstract data types where the basic material
in [9] could be reused [21]10. In order to find wider distribution, this textbook
does not use categories. Figure 6 shows the covers of the textbooks.

9 Authored by the author, Martin Gogolla and Udo Lipeck.
10 Authored by Jacques Loeckx, the author and Markus Wolf.
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Fig. 6. Textbooks [9] and [21]

Another visit home—in the sense of using categories and cooperating with
an ADT pioneer, not exactly in the sense of working on an ADT subject—was
[10], coauthored with Joseph Goguen and Amı́lcar Sernadas. It is an amalgama-
tion of two approaches, Joseph’s objects–as–sheaves approach and Amilcar’s and
the author’s objects as observed processes approach. So it put two of the many
theories of objects into relationship.

A moment of commemoration is in order. Joseph Amadee Goguen passed
away on July 3, 2006. We owe him a lot.

5 Closing the Shrine

After having been away from the WADT community for most of the last 20
years, the author felt during WADT 2010 that the subjects covered were not
that far away from what he had been doing in the more theoretical parts of his
work. Partly, at least. So he could as well have stayed. . .

For the future, the author feels inspired by the following citation from a tragedy
of German classic literature: Johann Wolfgang von Goethe, Die natürliche Tochter.
Trauerspiel, 1. Akt, Herzog.11

“. . .
Und heute noch, verwahrt im edlen Schrein,
Erhältst du Gaben, die du nicht erwartet.
. . . ”

“. . . / And still today, coffered in a noble shrine /
You receive gifts that you did not expect. / . . . ” 12

Indeed—that happens all the time. For instance when the author was invited
to the 20th WADT. He was surprised. And pleased that the WADT community
remembered him. So he now feels encouraged to keep in closer touch.
11 The Natural Daughter, Tragedy, 1st Act, Duke.
12 Translation: the author.
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And it goes on:

“. . .
Hier ist der Schlüssel! Den verwahre wohl!
Bezähme deine Neugier! Öffne nicht,
Eh’ ich dich wieder sehe, jenen Schatz.
Vertraue niemand, sei es, wer es sei.
Die Klugheit rät’s, der König selbst gebeut’s.
. . . ”

“. . . / Here is the key! Keep it well under lock! /
Restrain your curiosity! Do not open / That shrine
before we meet again / Trust nobody, whoever
it may be / Judiciousness suggests it, the king
himself demands it. / . . . ”

The conclusion is that the author shall not reopen the shrine. Never! Well,
. . . certainly not before the 30th WADT!

Acknowledgements. Warmest thanks are due to the organizers of the 20th

anniversary WADT and the editors of this volume. In the final reviewing process,
the three anonymous referees were very friendly and helped a lot to improve the
paper. Many thanks to them! It goes without saying that the author admits
responsibility for all remaining deficiencies.
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Model-driven development has become a popular approach to designing modern
application. On the other hand, there are a vast number of legacy applications
spread over the enterprise systems that are poorly documented and for which
no models exist in order to help understand particular aspects of the system,
including its architecture and behaviour of individual parts. If a need for an
extension of such a system arises, it is difficult to envision the impact of necessary
modifications, in particular in terms of performance, cost, and the man power
needed to implement the desired changes.

The Q-ImPrESS project [1] is a medium-sized research project (STREP)
funded under the European Union’s Seventh Framework Programme (FP7),
within the ICT Service and Software Architectures, Infrastructures and
Engineering priority. Its goal is to provide a platform for reasoning about (extra-
functional) properties of the system under modification (SOA), comparing dif-
ferent alternatives of introducing a modification and implementing just the best
one, while knowing its properties in advance, i.e., before the system is deployed
and run.

In the project, the system is viewed as a set of interacting services forming ser-
vice architecture. The envisioned workflow supports multiple scenarios and con-
sists of several steps. First, a model of the system needs to be created; the model
is an instance of a newly proposed Service Architecture Meta-Model (SAMM)
capturing information on the static structure (architecture), behaviour of par-
ticular services (in the sense of both extra-functional properties, e.g., response
time, and functional ones, e.g., requiring other services to complete the request),
deployment (i.e., assignment to particular hardware nodes), and properties of
the hardware on which the services are run (e.g., processor speed, connection
bandwidth). In general, such models are created either using a reverse engineer-
ing tool chain, where Java and C/C++ languages are supported, or manually
in the case of a new system. Once a model is available, particular modifications
of it can be examined in order to explore different ways in which the new de-
sired functionality can be achieved. Thus, the system architect is encouraged to
create at the model level several alternatives realizing the goal, perform their

� This work was funded in the context of the Q-ImPrESS research project
(http://www.q-impress.eu) by the European Union under the ICT priority of the
7th Research Framework Programme.

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 25–26, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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comparison, and select just the most suitable one for implementation. After per-
forming a modification, a dedicated tool for verification of consistency between
the code (in Java) and behaviour models is to be used to check whether it is
necessary to further modify either the model or the code.

The proposed method is supported by the Q-ImPrESS IDE, which is a devel-
opment environment based on Eclipse. Inside the IDE, all the phases of the afore-
mentioned method are supported, mostly in a fully automatized way. Graphical
and textual editors exist for entire SAMM. For reasoning about properties of the
service architecture, existing tools have been extended and integrated [2,3,4,5]
and new ones (e.g., the tool for trade-off analysis) have been proposed and im-
plemented.

Currently, this three-year project is in its final year; the tools have reached
the beta stage and are freely available for download from the project page.
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Abstract. The graph rewriting calculus is an extension of the ρ-calculus,
handling graph like structures, with explicit sharing and cycles, rather
than simple terms. We study a reduction strategy for the graph rewriting
calculus which is intended to maintain the sharing in the terms as long as
possible. We show that the corresponding reduction relation is adequate
w.r.t. the original semantics of the graph rewriting calculus, formalising
the intuition that the strategy avoids useless unsharing.

1 Introduction

The lambda-calculus [6], with its solid mathematical theory, has been classically
taken as a foundation for functional languages (e.g., it inspired the development
of Lisp). On the other hand, term rewriting [3] is a well known formal framework
for analysing the behaviour of functional and rewrite-based languages. Along the
years, in order to get closer to the practice of functional programming language
design, the two formalisms have enriched one another by combining their features
(see, e.g., the recent [17] which considers a lambda calculus with patterns and
references therein).

In particular, the rewriting calculus (ρ-calculus) [11] has been introduced in
the late nineties as a generalisation of term rewriting and of the λ-calculus. The
notion of ρ-reduction of the ρ-calculus generalises β-reduction by considering
matching on patterns which can be more elaborated than simple variables.

For improving the efficiency of implementations, terms, which would naturally
correspond to trees, are often seen as graphs [7]. As an example, consider a
rewrite system for multiplication R = {x ∗ 0 → 0, x ∗ s(y) → (x ∗ y) + x}. By
using term graphs, the second rule can duplicate the reference to x instead of
duplicating x itself (see Fig. 1 (a)).

The use of graphical structures with explicit sharing is useful for the optimiza-
tion of functional and declarative language implementation [19]. For example,
graph rewriting is explicitly used in order to get an efficient implementation of
the functional language Clean [22]. The theoretical bases are provided by suit-
able results proving that term-graph rewriting is adequate for term rewriting
(see, e.g., [20,15,13]). Additionally, the use of graphs naturally leads to consider
cyclic structures. This brings an increased expressive power that allows one to
represent easily regular (i.e., with a finite number of different substructures) in-
finite data structures [7,1,14,21]. For example, the circular list ones = 1 : ones,
� Supported by the projects SisteR (MIUR) and AVIAMO (University of Padova).

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 27–41, 2012.
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Fig. 1. (a) Rule for multiplication (b) Infinite list of ones

where “:” denotes the concatenation operator, can be represented by the cyclic
graph of Fig. 1 (b).

The graph rewriting calculus (ρg-calculus), introduced in [8], combines the
features of the cyclic λ-calculus [2] and the ρ-calculus [11], providing a framework
where pattern matching, graphical structures and higher-order capabilities are
primitive. In the ρg-calculus matching problems arising from rule applications
are solved at the level of the calculus. The substitution arising from a successful
match is computed, step by step, in the form of a set of equality constraints of
the kind x = G, where x is a variable and G a ρg-term. The “application” of a
substitution is then captured by explicit substitution rules. Matching equalities
naturally allow the ρg-calculus to express various forms of sharing and cycles (as
equalities can be recursive). The calculus, under suitable linearity constraints for
patterns, has been shown to be confluent [4] and expressive enough for simulating
the cyclic λ-calculus and term graph rewriting.

In the ρg-calculus, the loss of sharing is caused by the application of the
substitution rules, which create copies of (sub)terms of a ρg-term. Indeed, during
the computation, some unsharing can be unavoidable, for example for making
a rule application explicit or for solving a matching constraint. However, in the
basic formulation of the ρg-calculus, substitution rules can be used freely, so
that, at any time, terms could be unnecessarily duplicated.

With the aim of improving the efficiency of the ρg-calculus, building on some
preliminary work in [5], we study a strategy which is intended to maintain the
sharing information as long as possible. Intuitively, the strategy prevents the
application of substitution rules (responsible for unsharing) when they are not
useful for activating new redexes. The strategy is obviously sound w.r.t. the
original semantics of the ρg-calculus, i.e., any reduction in the strategy is a valid
reduction in the original calculus. Moreover, we prove an adequacy result: for any
reduction in the original calculus we can find a reduction in the strategy which
produces essentially the same term, up to unsharing and possibly additional re-
ductions for shared terms. As a consequence, we can show that whenever a term
is normalising in the strategy, in the produced normal form sharing is maxi-
mal (in a suitably defined sense). The paper generalises and complements [5],
where the focus was on confluence and a form of completeness for the strategy
was proved only for the subclass of terms normalising in the ρg-calculus, which
excludes, in particular, all those terms representing cyclic graphs.
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Terms
G,P ::= X (Variables)

| K (Constants)
| P → G (Abstraction)
| G G (Functional application)
| G � G (Structure)
| G[C] (Constraint application)

Constraints
C ::= ε (Empty constraint)

| X = G (Recursion equation)
| P � G (Match equation)
| C, C (Conjunction)

Fig. 2. Syntax of the ρg-calculus

The paper is organized as follows. In Section 2 we review the ρg-calculus. In
Section 3 we present the reduction strategy ∇ proposed for preserving sharing
in ρg-calculus terms. In Section 4 we show the adequacy of strategy ∇ for ρg-
calculus and a maximal sharing property. We conclude in Section 5 by presenting
some perspectives of future work. Some proofs are omitted for space limitations.

2 The Graph Rewriting Calculus

The syntax of the ρg-calculus is presented in Fig. 2. The symbols G, H, P . . .
range over the set G of terms, x, y, . . . range over the set X of variables, a, b, . . .
range over the set K of constants and E, F, . . . range over the set C of constraints.

As in the ρ-calculus, λ-abstraction is generalized by a rule abstraction P → G.
There are two different application operators: functional application, denoted
simply by concatenation, and constraint application, denoted by “ [ ]”. As for-
malised later in the semantics, a functional application (P → G)H evaluates to
a constraint application G[H � P ], the intuition being that solving the match
will produce a substitution to be applied to G.

Terms can be grouped together into structures built using the operator “ � ”.
This is useful for representing the (non-deterministic) application of a set of
rewrite rules and consequently, the non-deterministic result.

In the ρg-calculus constraints are conjunctions (built using the operator “ , ”)
of match equations of the form P � G and recursion equations of the form
x = G. The empty constraint is denoted by ε. The operator “ , ” is supposed to
be associative, commutative, with ε as neutral element.

We assume that the application operator associates to the left, while the other
operators associate to the right. To simplify the syntax, operators have different
priorities. Here are the operators ordered from higher to lower priority: “ ”,
“ → ”, “ � ”, “ [ ]” , “ � ”, “ = ” and “ , ”.

Following [12,1], we denote by • (black hole) a constant representing “unde-
fined” terms that correspond to the expression x[x = x] (self-loop). The notation
x =◦ x is an abbreviation for the sequence x = x1, . . . , xn = x. We write C( )
for a context with exactly one hole . A ρg-term is called acyclic if it contains no
sequence of constraints of the form C0(x0) �� C1(x1), C2(x1) �� C3(x2), . . . ,
Cm(xn) �� Cm+1(x0), with n, m ∈ N and ��∈ {=,�}.
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A term is called algebraic if it is of the form (((f G1) G2) . . .) Gn, with f ∈ K
and Gi ∈ X ∪ K or Gi algebraic for i ∈ {1, . . . , n}, and we usually write it as
f(G1, G2, . . . , Gn). It is called linear if each variable occurs free at most once.

Interesting properties for the calculus, like confluence, are obtained by imposing
suitable requirements on the patternsP occurring as left-hand sides of abstractions
and match equations. Following [4], we require such patterns to be acyclic and lin-
ear algebraic terms in normal form. E.g., the ρg-term f(y)[y = g(y)] → a is not
allowed since it is an abstraction with a cyclic left-hand side.

The notions of free and bound variables of ρg-terms take into account the three
binders of the calculus: abstraction, recursion and match. Intuitively, variables on
the left hand-side of any of these operators are bound by the operator. As usual, we
work modulo α-conversion. The set of free variables of a ρg-term G is denoted by
FV(G). Moreover, given a constraint C we will refer to the set DV(C), of variables
“defined” in C. This set includes, for any recursion equationx = G in C, the variable
x and for any match P � G in C, the set of free variables of P .

We define next an order over variables bound by a match or an equation. This
order will be later used in the definition of the substitution rule of the calculus,
which will allow one only “upward” substitutions, a constraint which is essential
for the confluence of the calculus (see [4]). We denote by ≤ the least pre-order
on recursion variables such that x ≥ y if x = C(y), for some context C( ). The
equivalence induced by the pre-order is denoted ≡ and we say that x and y are
cyclically equivalent (x ≡ y) if x ≥ y ≥ x (they lie on a common cycle). We
write x > y if x ≥ y and x �≡ y.

Example 1 (some ρg-terms).

1. In the rule (2 ∗ f(x)) → ((y + y)[y = f(x)]) the sharing in the right-hand
side avoids the copying of the object instantiating f(x), when the rule is
applied to a ρg-term.

2. The ρg-term x[x = cons(0, x)] represents an infinite list of zeros.
3. The ρg-term f(x, y)[x = g(y), y = g(x)] is an example of twisted sharing

that can be expressed using mutually recursive constraints (to be read as a
letrec construct). We have that x ≥ y and y ≥ x, hence x ≡ y.

The set of reduction rules of the ρg-calculus is presented in Fig. 3. As in the
plain ρ-calculus, in the ρg-calculus the application of a rewrite rule to a term
is represented as the application of an abstraction. A redex can be activated
using the ρ rule in the Basic rules, which creates the corresponding matching
constraint. The computation of the substitution which solves the matching is
then performed explicitly by the Matching rules and, if the computation is
successful, the result is a recursion equation added to the list of constraints of
the term. This means that the substitution is not applied immediately to the
term but it is kept in the environment for a delayed application or for deletion
if useless, as expressed by the Graph rules.

More in detail, in the Graph rules, the substitution rules copy a ρg-term
associated to a recursion variable into a variable in the scope of the corresponding
constraint. This is needed to make a redex explicit (e.g., in x a[x = a → b]) or
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Basic rules:

(ρ) (P → G2)[E] G3 →ρ G2[P � G3, E]

(δ) (G1 � G2)[E] G3 →δ (G1 G3 � G2 G3)[E]

Matching rules:

(propagate) P � (G[E]) →p P � G, E if P �= x

(decompose) K(G1, . . . , Gn) � K(G′
1, . . . , G

′
n) →dk G1 � G′

1, . . . , Gn � G′
n

with n ≥ 0

(solved) x � G, E →s x = G, E if x �∈ DV(E)

Graph rules:

(external sub) C(y)[y = G, E] →es C(G)[y = G, E]

(acyclic sub) G[P �� C(y), y = G1, E] →ac G[P �� C(G1), y = G1, E]
if G1 is a variable or (x>y,∀x∈FV(P ))
where ��∈ {=,�}

(black hole) C(x)[x =◦ x, E] →bh C(•)[x =◦ x, E]

G[P �� C(y), y =◦ y, E] →bh G[P �� C(•), y =◦ y, E]
if x > y, ∀x ∈ FV(P )

Fig. 3. Semantics of the ρg-calculus

or to solve a match equation (e.g., in a[a � x, x = a]). As already mentioned,
substitutions are allowed only upwards with respect to the order defined on
the variables of ρg-terms. The black hole rules replace the undefined ρg-terms,
intuitively corresponding to self-loop graphs, with the constant •.

Differently from [4], in order to simplify the presentation, we do not have
explicit garbage collection rules for getting rid of recursion equations that repre-
sent non-connected parts of a term. Instead, we assume that a term of the kind
G[E, x = G′], with x �∈ FV(E)∪FV(G) is automatically simplified to G[E], and
we identify the terms G[ε] and G.

We denote by �→ the relation induced by the set of rules of Fig. 3 and by �→→
its reflexive and transitive closure. For any two rules r and s in this set, we will
write �→→r,s to denote a sequence �→r �→s.

As mentioned above, the ρg-calculus, with linear algebraic patterns, has been
shown to be confluent [4]. A term G is in normal form if no of the rules in Fig. 3
is applicable to G. A reduction of a term H into its normal form G, when it
exists, is denoted by H �→→! G.

Example 2 (simple reduction). An example of reduction in the ρg-calculus is
reported below. The equality in the last line arise from garbage collection.

(f(a, a) → a) (f(y, y)[y = a])
�→ρ a[f(a, a) � f(y, y)[y = a]]
�→p a[f(a, a) � f(y, y), y = a]
�→dk a[a � y, y = a]
�→ac a[a � a, y = a]
�→dk a[y = a] = a
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Example 3 (reduction to normal form). Consider the term G = f(y, y)[y = z
f(a), z = f(x) → x]. We show one of the possible reductions of G to its normal
form (remind that garbage collection is implicit).

f(y, y)[y = z f(a), z = f(x) → x]
�→ac f(y, y)[y = (f(x) → x) f(a), z = f(x) → x]
�→ρ f(y, y)[y = x[f(x) � f(a)]]
�→→dk,s f(y, y)[y = x[x = a]]
�→es f(y, y)[y = a[x = a]]
�→es f(a, y)[y = a]
�→es f(a, a)

3 A Sharing Strategy for the ρg-calculus

In the ρg-calculus substitutions can be used freely and this can lead to useless and
expensive (both in terms of time and space) duplications of terms. For instance,
consider the reduction

f(x, x)[x = (a → g(b))a]
�→es f((a → g(b))a, x)[x = (a → g(b))a]
�→es f((a → g(b))a, (a → g(b))a)[x = (a → g(b))a]
�→→ρ f(g(b)[a � a], g(b)[a � a])[x = (a → g(b))a]
�→dk f(g(b), g(b))

The same result could be obtained more efficiently with the following reduction

f(x, x)[x = (a → g(b))a]
�→ρ f(x, x)[x = g(b)[a � a]] �→dk f(x, x)[x = g(b)]

For this reason, in this section we study a reduction strategy that aims at
keeping the sharing as long as possible in ρg-terms. Intuitively, the strategy de-
lays as much as possible the application of the substitution rules (external sub)
and (acyclic sub).

The underlying idea is quite simple: we constrain substitution rules to be ap-
plied only if they are needed for generating new redexes for the basic or matching
rules. For instance, we allow the application of the (external sub) rule to the
terms x a[x = f(x) → x] or x a[x = a � (a → b)], since this is useful for creating,
respectively, a new (ρ) redex and a new (δ) redex. Instead, (external sub) can-
not be applied to the terms f(x, x)[x = g(x)] or x[x = f(x)] which are actually
considered in normal form in the strategy. As observed in [5], capturing the no-
tion of “substitution needed for generating a new redex” is not straightforward
since more than one substitution step can be needed to generate a new redex for
the basic or matching rules. This happens, e.g., in the reduction below, where
the generated redex is underlined:

y[y = x f(a), x = f(z) → y] �→es x f(a)[y = x f(a), x = f(z) → y]
�→es (f(z) → y) f(a)[y = x f(a), x = f(z) → z]
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A single step would suffice to generate the redex if we removed the constraint
that (acyclic sub) can be performed only upward, thus allowing the reduction

y[y = x f(a), x = f(z) → y] �→y [y = (f(z) → y) f(a), x = f(z) → y]

The definition of the strategy for the ρg-calculus will rely on the fact, formally
proved in [5], that this is a completely general situation: at most two substitutions
are needed to generate a new redex (one would suffice removing the constraint
on (acyclic sub)).

An additional case in which we want to apply the substitution rules is when
there are trivial recursion equations of the kind x = y where both sides are
single variables, like in x ∗ y + x[x = z, y = z, z = 1]. In this situation, the term
is simplified to (z ∗ z + z)[z = 1] in which useless names have been eliminated
by garbage collection.

Hereafter, we call basic redex any term of the shape (P → G2)[E] G3 or
(G1 � G2)[E] G3, which is reducible using the Basic rules in Fig. 3. Similarly,
a matching redex is any term which can be reduced using the Matching rules.

Definition 1 (sharing strategy). The reduction strategy ∇ is defined by the
following clauses:

1. All the reduction rules but (external sub) and (acyclic sub) are applicable
without any restriction.

2. The rules (external sub) and (acyclic sub) are applied to a term G if
(a) they replace a variable by a variable (variable renaming), or
(b) they create (in one step) a basic or a matching redex, or
(c) the term G has the form C′′(x)[x = C(y), y = C′(z), E], where x ≡ y

and C(C′(x)) includes a basic or a matching redex, and the reduction is
G �→es C′′(C(y))[x = C(y), y = C′(z), E].

A reduction obeying the strategy ∇ is called a ∇-reduction and denoted by �→→∇.

In other words the rules (external sub) and (acyclic sub) are thus applied when
their application leads to

– the instantiation of a variable by a variable (condition 2a);
– the instantiation of an active variable, i.e., a variable which appears free in

the left-hand side of an application, by an abstraction or a structure, which
produces a basic redex (condition 2b);

– the instantiation of a variable in a match equation, which produces a match-
ing redex, i.e., which enables a decomposition or constraint propagation w.r.t.
the match equation (condition 2b).

Additionally, condition 2c captures the fact that, given G[E] if a cyclic sub-
stitution in E would generate a redex, then one is allowed to apply external
substitutions in order to reproduce the same redex in G, in two steps.

The strategy ∇ is a mild variation of the one in [5], the difference being that
here non-substitution rules have no priority over the substitution rules. As a
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consequence, we do not need to completely reduce a basic or matching redex
(using e.g. the matching rules) before activating a new redex by means of a
substitution rule. This choice allows us to simplify the presentation, retaining
the adequacy and maximal sharing results of Section 4.

Example 4 (multiplication). Let us use an infix notation for the constant “∗”.
The following ρg-term corresponds to the application of the rewrite rule R =
x ∗ s(y) → (x ∗ y + x) to the term 1 ∗ s(1) where the constant 1 is shared.

(x ∗ s(y) → (x ∗ y + x)) (z ∗ s(z)[z = 1])
�→ρ x ∗ y + x[x ∗ s(y) � (z ∗ s(z)[z = 1])]
�→p x ∗ y + x[x ∗ s(y) � z ∗ s(z), z = 1]
�→→dk,s x ∗ y + x[x = z, y = z, z = 1]
�→→es (z ∗ z + z)[x = z, y = z, z = 1] (allowed by Definition 1(2a))
= (z ∗ z + z)[z = 1] (garbage collection)

Notice that the term (z ∗ z + z)[z = 1] is in normal form w.r.t. the strategy ∇
but it can be further reduced to (1 ∗ 1 + 1) in the plain ρg-calculus.

Example 5 (reduction to normal form). We consider the term G of Example 3
and we reduce it following the strategy ∇. We obtain:

f(y, y)[y = z f(a), z = f(x) → x]
�→ac f(y, y)[y = (f(x) → x) f(a), z = f(x) → x] (by Definition 1(2b))
�→ρ f(y, y)[y = x[f(x) � f(a)]]
�→dk,s f(y, y)[y = x[x = a]]
�→p f(y, y)[y = x, x = a]
�→ac f(y, y)[y = a] (by Definition 1(2a))

Note that the normal form w.r.t. ∇, i.e., the term f(y, y)[y = a], represents a
graph where the arguments of f are shared. Instead, as shown in Example 3, the
reduction in the ρg-calculus with no reduction strategy leads to the term f(a, a)
where the arguments of f are duplicated.

Example 6. Consider the ρg-term G = f(y)[y = x a, x = y � b]. Notice that x ≡
y, thus the (acyclic sub) rule cannot be applied. We have instead the reduction:

f(y)[y = x a, x = y � b] �→es f(x a)[y = x a, x = y � b] �→es

f((y � b) a)[y = x a, x = y � b] �→δ f((y a � b a))[y = x a, x = y � b]

This is a valid ∇-reduction, since there exists a cyclic substitution step which
transforms x a into a basic redex (y � b) a. Hence, the first (external sub) rule
step can be performed according to Definition 1(2c). The second (external sub)
rule step creates the basic redex (y � b) a, thus it is allowed for Definition 1(2b).
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4 Properties of the Sharing Strategy

In this section we will show some basic properties of the ρg-calculus with the
reduction strategy ∇. After observing its confluence, we prove that the strategy
∇ is adequate for the ρg-calculus. Relying on adequacy, we can prove that ∇-
reductions maximize (in a suitable sense) the sharing.

4.1 Adequacy

In this section we prove that the reduction strategy ∇ is adequate w.r.t. the
semantics of the ρg-calculus presented in Section 2. This means that given a
reduction G �→→ H there exists a reduction in the strategy G �→→∇ G′ which per-
forms essentially the same steps, but avoiding useless unsharing. More precisely,
G′ unshares to a term H ′, reachable from H in the strategy.

In the following we will denote by �→s a step using a substitution rule. Sub-
stitutions which violate the strategy will be denoted by �→su (the subscript “u”
stand for “useless”), while those obeying the strategy will be denoted �→s∇ .
Finally, non-substitution steps will be denoted by �→n.

A first observation is that it is not possible to create a basic or matching redex
by further reducing a term that is in normal form w.r.t. the reduction strategy.
This is proved in [5] and using this property we immediately obtain the result
below.

Proposition 1. If a ρg-term G is in normal form w.r.t. the strategy ∇, then
for any reduction G �→→s G′, the term G′ is in normal form w.r.t. ∇.

We next observe that the calculus with the strategy ∇ is confluent. Additionally,
we give some easy commutation results for reductions constrained by the strategy
and involving only subsets of rules. Recall that two sets of rules A and B are
called commuting if for any pair of reductions G1 �→→A G2 and G1 �→→B G3 there
exists a diagram:

G1
� A 

 



�
B ����

G2�
B����

G3
�

A


 

 G4

Lemma 1 (confluence and commutation). The reduction relations �→∇ and
�→s∇ are confluent. Moreover the following pairs of reduction relations are com-
muting:

1. �→∇ and �→n

2. �→∇ and �→s

3. �→su and �→s∇
4. �→n and �→s

The next result shows that substitutions can be reordered, by putting those
which obey the strategy first.
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Lemma 2 (reordering substitutions). Given a reduction G1 �→→s G2 there
exists

G1�

s∇
����

� s 

 

 G2�

s∇
����

G′
1

�
su



 

 G′
2

Next we show that if an n-reduction step follows some substitutions which violate
the strategy, then the n-reduction step can be performed first. This is quite
intuitive as substitutions which violate the strategy cannot create new n-redexes.

Lemma 3 (anticipating n-reductions). Given a reduction G1 �→→su G2 �→n

G3 there exists:
G1�

n

��

� su 

 

 G2
� n 

 G3�

n
����

G′
1

�
s



 

 G′
3

Note that, in general, the lemma above does not hold for a reduction involving
many n-redexes. For instance let H = (a → (a → b)) a. Then the reduction

x a[x = H ] �→su H a[x = H ] �→→n (a → b) a[x = H ] �→→n b[x = H ]

cannot be factorised as desired. This is due to the fact that the first substitution,
when exchanged with the first n-reduction step becomes a substitution in the
strategy, which creates the n-redex reduced immediately after.

The next lemma identifies a situation in which the generalisation of Lemma 3
to multiple n-reduction steps holds. This is the case when the multiple n-redexes
are residuals of a single one.

Lemma 4 (anticipating n-reductions - generalisation). Given a diagram
of reductions as follows:

G2
� n 



�

∇
����

G3�

∇
����

G′
1

� su 

 

 G′
2

� n 

 

 G′
3

there exists:
G2

� n 


�

∇
����

G3�

∇
����

G′
1�

n
����

� su 

 

 G′
2

� n 

 

 G′
3�

n
����

G′′
1

�
s



 

 G′′
3
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The next lemma provides a way of “exchanging” a reduction violating the strat-
egy with one which obeys the strategy.

Lemma 5 (exchanging reductions). Given a reduction G1 �→→su G2 �→→∇ G3

there exists:

G1�

∇
����

� su 

 

 G2
� ∇ 

 

 G3�

∇
����

G′
1

�
su



 

 G′
3

We are now ready to show that for any reduction G1 �→→ G2 in the ρg-calculus,
we can find a reduction obeying the strategy which performs “essentially” the
same reduction steps, up to unsharing and reductions of shared terms. More
precisely, we can find a reduction G1 �→→∇ G′

1 such that the unsharing of G′
1

is reachable from G2 in the strategy (intuitively, since the strategy forces the
reduction of shared subterms, from G2 additional reduction steps may be needed
on duplicated terms).

Theorem 1 (adequacy). Given a ρg-term G1, if G1 �→→ G2 in the ρg-calculus,
then there exists ρg-terms G′

1 and G′
2 such that G1 �→→∇ G′

1 in the ρg-calculus
with the strategy ∇, with G′

1 �→→su G′
2 and G2 �→→∇ G′

2.

G1
� ∇ 

 



�

����

G′
1�

su

����
G2

�
∇



 

 G′
2

Proof. We proceed by induction on the length of the reduction G1 �→→ G2. The
base case is trivial. For the inductive case, if the reduction is of the shape G1 �→→
G3 �→ G2, by inductive hypothesis we obtain the diagram:

G
� ∇ 

 



�

����

G′
1�

su

����
G3

�
∇



 


�

��

G′
3

G2

Then we distinguish two cases according to the nature of the last step.
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– G3 �→n G2 (the last step is not a substitution)
In this case we can construct the following diagram:

G1
� ∇ 

 



�

����

G′
1�
su

����
(II)

� n 

 

 G′′
1

� ∇ 

 


�

s

����

G′′′
1�

su

����

G3
� ∇ 

 



(I)

�

n

��

G′
3�

n
����

(III)

G2
�

∇


 

 G′

2
�

n


 

 G′

2
�

∇


 

 G′′′

2

where square (I) is justified by Lemma 1(1), square (II) is given by Lemma 4
and square (III) is constructed using Lemma 2.

– G3 �→s G2 (the last step is a substitution)
In this case we can construct the following diagram:

G1
� ∇ 

 



�

����

G′
1

(II)

�

su

����

� ∇ 

 

 G′′
1�

su

����

G3
� ∇ 

 



(I)

�

s

��

G′
3�

s
����

G2
�

∇


 

 G′

2
�

∇


 

 G′′

2

where squares (I) and (II) are justified by Lemma 1(2) and Lemma 2, re-
spectively. ��

For instance, take G1 = f(x, x)[x = (a → b) a] and consider the following
reduction: G1 �→es f((a → b) a, x)[x = (a → b) a] �→→ρ,dk f(b, x)[x = (a → b) a].
Then the reductions provided by the adequacy theorem are as follows:

f(x, x)[x = (a → b) a] � ∇ 

 


�

����

f(x, x)[x = b]
�

su

����
f(b, x)[x = (a → b) a] �

∇


 

 f(b, b)

4.2 Maximal Sharing

We can now prove that the strategy guarantees a maximal sharing property. More
specifically, we start by showing that if a term G1 of the ρg-calculus reduces to a
(possibly non-normalising) term G2 where only substitutions can be performed,
then, according to the strategy, G1 is normalising and, if its ∇-normal form is
G′

2, then G2 is an “unsharing” of G′
2.
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Theorem 2 (maximal sharing/1). If G1 �→→ G2 and the only possible reduc-
tion steps from G2 are substitutions, then G1 is normalising in the ρg-calculus
with the strategy ∇, i.e., G1 �→→!

∇ G′
2 and G′

2 �→→su G2.

G1
� 

 


�

∇
!

�� ��

G2
�

s


 

 . . .

G′
2

�
su

����

Proof. This is a consequence of Theorem 1. In fact, by such theorem there exists:

G1�

∇
����

� 

 

 G2�

∇
����

G′
1

�
su



 

 G′
2

Since starting from G2 only substitutions can be performed, these will all be
su-substitutions, not obeying the strategy. Hence the reduction G2 �→→∇ G′

2 must
be empty, i.e., G2 and G′

2 are the same. This concludes the proof. ��

As an example, consider the term G1 = x[x = (f(a) → f(x)) f(a)] and its
infinite reduction: G1 �→→ f(x)[x = f(x)] �→→s . . ..

Then the reductions provided by the maximal sharing theorem are as follows:

x[x = (f(a) → f(x)) f(a)] � 

 


	

∇
!

 

f(x)[x = f(x)] �
s



 

 . . .

x[x = f(x)]
�
s

����

As a simple consequence, for any term G1 normalising in the ρg-calculus, we
deduce that G1 is normalising in the ρg-calculus with the strategy ∇, and its
normal form is as “shared” as possible. This is expressed by saying that for any
way of factorising the normalising reduction of G1 as G1 �→→ G2 �→→!

s G3, we have
that G2 is an unsharing of the ∇-normal form of G1.

Corollary 1 (maximal sharing/2). Given a normalising ρg-term G1 and a
reduction G1 �→→ G2 �→→!

s G3 in the ρg-calculus, there exists a ρg-term G′
2 such

that G1 �→→!
∇ G′

2 in the ρg-calculus with the strategy ∇ and G′
2 �→→su G2.

G1
� 

 


�

∇
!

�� ��

G2
�

s

! 

 

 G3

G′
2

�
su

����

For instance, take the ρg-term G1 = f(y, y)[y = z f(a), z = f(x) → x] and its
reductions of Example 3 and 5. The maximal sharing theorem diagram is the
following
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G1
� 

 





∇
!

�� ��

f(a, y)[y = a] �
s

! 

 

 f(a, a)

f(y, y)[y = a]
�
su

����

5 Conclusions

We have studied a reduction strategy ∇ for the ρg-calculus, an extension of
the ρ-calculus able to express shared and cyclic terms. The strategy aims at
maintaining the sharing information as long as possible in the ρg-terms. We
have presented an adequacy result w.r.t. the standard ρg-calculus, and, relying
on this, we formalised a maximal sharing property for the strategy.

In the literature, a notion of adequacy and corresponding results have been
developed for formalising the relation between (first order) term-graph rewriting
and term rewriting [20,15,13]. This gave a solid basis for the use of term-graph
rewriting as an “efficient implementation” of term rewriting. Although the for-
mal framework is different, our adequacy result is conceptually similar to these
results, with substitution rules playing the role of the unravelling function.

The ρ-calculus has been used for giving an operational semantics to rewrite-
based languages like Elan [10] or XSLT [16], thus providing a conceptual guide
for their implementation. The ρg-calculus, with the adequacy result for strategy
∇, can be seen as an “efficient version” of the ρ-calculus and as such it can can
serve as a basis for improving the implementation of rewrite-based languages.

There are several interesting directions for future research. The ρ-calculus
can be seen as a higher-order rewriting system. This is proved e.g. in [9] and
used to deduce some relevant properties for the ρ-calculus, like a standardisation
theorem. In the same way, it would be interesting to formally view the ρg-calculus
as a higher-order term graph rewriting system, trying to import results already
available in this general setting (the relation with first-order term rewriting and
the cyclic λ-calculus is preliminarly investigated in [4,8]).

We also intend to investigate the issue of optimality for the reduction strategy,
where the notion of “optimal” has to be formally defined, for example in terms
of time or space. In this case a natural reference to compare with would be the
work on optimal reduction for lambda calculus [18].

Acknowledgements. We are grateful to Andrea Corradini, Fabio Gadducci
and Stef Joosten for insightful suggestions on a preliminary version of the work.

References

1. Ariola, Z.M., Klop, J.W.: Equational term graph rewriting. Fundamenta Informat-
icae 26(3-4), 207–240 (1996)

2. Ariola, Z.M., Klop, J.W.: Lambda calculus with explicit recursion. Information
and Computation 139(2), 154–233 (1997)



Sharing in the Graph Rewriting Calculus 41

3. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York (1998)

4. Baldan, P., Bertolissi, C., Cirstea, H., Kirchner, C.: A rewriting calculus for cyclic
higher-order term graphs. Mathematical Structures in Computer Science 17(3),
363–406 (2007)

5. Baldan, P., Bertolissi, C., Cirstea, H., Kirchner, C.: Towards a sharing strategy for
the graph rewriting calculus. In: Proceedings of WRS 2007. Electr. Notes Theor.
Comput. Sci., vol. 204, pp. 111–127. Elsevier (2008)

6. Barendregt, H.: The Lambda-Calculus, its syntax and semantics, 2nd edn. Studies
in Logic and the Foundation of Mathematics. North Holland, Amsterdam (1984)

7. Barendregt, H.P., van Eekelen, M.C.J.D., Glauert, J.R.W., Kennaway, J.R.,
Plasmeijer, M.J., Sleep, M.R.: Term Graph Rewriting. In: de Bakker, J.W.,
Nijman, A.J., Treleaven, P.C. (eds.) PARLE 1987. LNCS, vol. 259, pp. 141–158.
Springer, Heidelberg (1987)

8. Bertolissi, C.: The graph rewriting calculus: properties and expressive capabilities.
Thèse de Doctorat d’Université, INPL, Nancy, France (2005)
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Abstract. We propose new denotational (trace-based) and operational
semantics for parallel Sagas with interruption, prove the correspondence
between the two and assess their merits w.r.t. existing proposals. The
new semantics is realistic, in the sense that it guarantees that distributed
compensations may only be observed after a fault actually occurred.
Moreover, the operational semantics is defined in terms of (1-safe) Petri
nets and hence retains causality and concurrency information about the
events that can occur, not evident in the standard trace semantics.
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1 Introduction

Compensations are a well-known and widely used mechanism to ensure the con-
sistency and correctness of long-running transactions in the area of databases,
e.g. when locks cannot be enforced for too long or when perfect roll-back is
unrealistic. More recently, several compensable workflow languages and calculi
emerged in the area of business process modeling, service-oriented and global
computing to provide the necessary formal ground for compensation primitives
like those exploited in orchestration languages like WS-BPEL [18]. The focus
of this work is on the semantics of the workflow-based calculus Sagas [4] and
its compensation policy for parallel branches. The choice of the right strategy
allows the user to prevent unnecessary actions in case of an abort. Fixing a fully
satisfactory formal account of this policy is the main problem we address.

In the past different policies have emerged. A thorough analysis is presented
in [3] by comparing the Sagas calculus with compensating CSP [7] (cCSP). Both
Sagas and cCSP focus on a core set of operations, namely compensation pairs
A÷B for two basic activities A and B, sequential composition of (compensable)
processes PP ; QQ as well as the parallel composition PP |QQ and a transaction
scope {[PP ]} (called saga). Basic (compensable) activities include, e.g. skipp
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Näıve Sagas

�������	5
��������⊆

���������
��������� ⊆

�����������

���������

Interruption �������	3
⊆





Original cCSP

�������	4
Revised Sagas

Fig. 1. Compensation policies (arrows stand for trace inclusion)

(vacuous activity) and throww (fault issuing). The key idea is that for a pair
A÷B the successful execution of A installs the compensation B, to be executed
for “undoing” A in case the transaction is aborted later on. In case of sequential
composition compensations are unfolded in the reverse order of installation, i.e.
the activity executed last is the first to be compensated. Intuitively, this corre-
sponds to having some sort of compensation stack where activities are pushed in
as the normal flow of execution progresses and popped out to be executed when
a fault occurs. The stack is cleared when the whole normal flow enclosed in a
transaction scope is executed without faults. Different strategies emerge when
handling compensations in a concurrent setting, because of two main aspects.
One aspect concerns the interruption of siblings in case of an abort (interruption
or no interruption). The other depends on whether compensations are started at
the same time (centralized) or siblings can start their compensation on their own
(distributed). The relation between the different policies is displayed in Fig. 1,
where double lines mark the contribution in this paper.

To clarify the differences between the above policies, we present the different
sets of traces obtained for the process {[(A ÷ A′; B ÷ B′)|(C ÷ C′; throww )]}.
It may stand for example for a workflow for ordering products: A stands for
choosing the product, B for filling in an address form while C is the credit card
check, and each compensation is the sending of failure message by email. A fault
is issued after the credit card check. The example also shows that all semantic
inclusions in Fig. 1 are strict for the particular process under consideration.

For case one, centralized compensation without interruption, the resulting set
of traces is S1 ≡ (AB|||C); (B′A′|||C′), where actions are serialized by juxta-
position, the symbol ||| stands for the interleaving of (sets of) traces and ; for
sequential composition of (sets of) traces. Actual traces also have a final �, de-
noting success (see Section 2), omitted here for the sake of readability. Roughly,
all branches are fully executed forward and only then their (interleaved) com-
pensation is started.

For case two, distributed compensation without interruption, the set of traces
is S2 ≡ ABB′A′|||CC′. Here C may be compensated without waiting for the
completion of the first branch. Moreover, the interleaving of ABB′A′ and CC′

includes traces where compensation B′ is observed before the throww is issued.
For case three, we have S3 ≡ CC′ ∪ (A|||C); (A′|||C′)∪ (AB|||C); (B′A′|||C′),

i.e., the branch for the activities A and B may be interrupted, however
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compensation is started only when each branch is ready, i.e., all forward ac-
tivities precede all compensating activities.

The fourth strategy, distributed interruption, is the most liberal. It allows the
set of traces S4 ≡ CC′ ∪AA′|||CC′ ∪ABB′A′|||CC′. Note that, like in case two,
compensation A′ may be executed before C, i.e., before the error occurred.

As it turns out, none of the four originally defined semantics is entirely satis-
factory. Strategies one to three are too restrictive: it is important to have the
possibility to stop a sibling branch and to activate compensations as soon as
possible, because typically activities and compensations have a cost. Without
interruption (cases one and two) sibling branches finish their execution anyway,
even though they will have to compensate. In case three, branches might have to
wait until they are allowed to continue together with their siblings. The second
and fourth strategies on the other hand are unrealistic: they allow a guessing
mechanism where a branch may start its compensation even though the error has
not occurred yet. An optimal, realistic semantics should be more “permissive”
(i.e., allowing more traces) than strategy three but less than four.

In this paper, we propose new operational and denotational semantics for
parallel Sagas with interruption and prove the correspondence between the two.
The new semantics is “optimal”, in the sense that it guarantees that distributed
compensations may only be started after an error actually occurred, but com-
pensations can start as soon as possible. In our new semantics, the traces of the
above example are S ≡ S3 ∪ (CC′AA′) ∪ (AB|||CC′); B′A′.

Structure of the paper. In Section 2 we fix the notation and recall the formaliza-
tion of the four different semantics from [3], in denotational style. In Section 3
we define the denotational semantics for the new policy we propose, we compare
it with the semantics in Section 2 and we describe some tool support that has
been useful to develop the new semantics. The content of Section 3 is taken from
the Master Thesis of the last author [20]. In Section 4 we give an operational
and logic account of the new semantics. In particular, we define a concurrent
operational model based on Petri nets, we prove that it satisfies the properties
we expect to hold for workflow components, and we give a correspondence the-
orem w.r.t. the denotational semantics. Note that the operational semantics is
best suited for traceability of faults for which denotational semantics alone is
not satisfactory. In Section 5 we discuss related work and in Section 6 we draw
some concluding remarks. Proofs are collected in Appendix A.

2 Background on Parallel Sagas

The compensating CSP (cCSP) [7] and the Sagas calculus [4] were developed in-
dependently to study flow composition in long-running transactions with
compensations. The two calculi had similar syntax but were presented under
different semantic styles: denotational semantics for cCSP and big-step opera-
tional semantics for Sagas. Moreover, for Sagas two different semantics for par-
allel composition were already considered in [4], called näıve and revised. The
comparison in [3] considered a common fragment, that of parallel Sagas, and
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provided a classification scheme for the three existing semantics according to
the possibility of interrupting parallel branches or not and of handling compen-
sation in a distributed manner or not (see Fig. 1). A fourth semantics emerged
from the scheme (centralized compensation and no interruption) and each policy
was accounted for in both the denotational and the operational style.

Below we start by presenting parallel Sagas under the denotational semantics
of original cCSP (centralized with interruption). Then we show how to modify
the semantics for defining the other three policies and report the main theorem
from [3]. For brevity, the different policies are numbered from 1 to 4 as illus-
trated in Fig. 1. We index the equivalence symbol = by the policy number to
disambiguate the notation when needed. Note that parallel Sagas leave out sev-
eral advanced features present in the original presentation of cCSP and Sagas,
like exception handling and nesting: their presence is not relevant for the main
result of the paper and their inclusion would just compromise the readability.

Definition 1 (Parallel Sagas). Let Σ be an alphabet of actions, ranged over by
A, B, .... The set of parallel Sagas processes is defined by the following grammar:

(standard) P, Q ::= A | P ; Q | P |Q | {[PP ]} | skip | throw

(compensable) PP, QQ ::= A ÷ B | PP ; QQ | PP |QQ | skipp | throww

A standard process is either a basic activity A, the sequential composition P ; Q
of processes, the parallel composition P |Q, the empty process skip, the raise
of an interruption throw , or a transaction block {[PP ]}. A basic compensable
process is a compensation pair A ÷ B where A is an atomic activity and B
is its compensation. Other basic processes are skipp, the basic process with
no behavior and no compensation, and throww , the basic process that always
raises an interrupt (and has no compensation). Compensable processes can be
composed either in sequence PP ; QQ or in parallel PP |QQ.

Policy #3: Interruption and centralized compensation (original cCSP). The de-
notational semantics for policy #3 is in Fig. 2. A trace for a standard process
is a string s〈ω〉, where s ∈ Σ∗ is said the observable flow and ω ∈ Ω is the final
event, with Ω = {�, !, ?} and Σ ∩ Ω = ∅ (� stands for success, ! for fail, and ?
for yield to an interrupt). Note that ? appears only in traces of compensable pro-
cesses, not of standard ones. We let ε denote the empty observable flow. Slightly
abusing the notation, we let p, q, ... range over traces and also observable flows.

The definition for the traces of standard processes is straightforward. The
most interesting case is the one of a transaction block {[PP ]}. Note that any
trace of a compensable process PP is a pair (p, q), where p is the forward trace
and q is a compensation trace for p. Then, {[PP ]} selects all successful forward
traces s〈�〉 of PP , and the traces sq, corresponding to failed forward flows s〈!〉
followed by their compensations q.

The sequential composition of standard traces p; q concatenates the observable
flows of p and q only when p terminates with success, otherwise it is p. The
composition of two concurrent traces p〈ω〉||q〈ω′〉 corresponds to the set p|||q of
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Traces of standard processes

A �3 {A〈�〉} for A ∈ Σ skip �3 {〈�〉}
P ; Q �3 {p; q | p ∈ P ∧ q ∈ Q} throw �3 {〈!〉}
P |Q �3 {r | r ∈ (p||q) ∧ p ∈ P ∧ q ∈ Q}

{[PP ]} �3 {s〈�〉 | (s〈�〉, q) ∈ PP} ∪ {sq | (s〈!〉, q) ∈ PP}

Composition of standard traces

Sequential
{ p〈�〉; q �3 pq

p〈ω〉; q �3 p〈ω〉 when ω �= �

Parallel p〈ω〉||q〈ω′〉 �3 {r〈ω&ω′〉 | r ∈ (p|||q)}, where

ω ! ! ! ? ? �
ω′ ! ? � ? � �

ω&ω′ ! ! ! ? ? �
and

{
p|||ε �3 ε|||p �3 {p}

Ap|||Bq �3 {Ar | r ∈ (p|||Bq)} ∪ {Br | r ∈ (Ap|||q)}

Traces of compensable processes

A ÷ B �3 {(A〈�〉, B〈�〉), (〈?〉, 〈�〉)} skipp �3 {(〈�〉, 〈�〉), (〈?〉, 〈�〉)}
PP ; QQ �3 {pp; qq | pp ∈ PP ∧ qq ∈ QQ} throww �3 {(〈!〉, 〈�〉), (〈?〉, 〈�〉)}
PP |QQ �3 {rr | rr ∈ (pp||qq) ∧ pp ∈ PP ∧ qq ∈ QQ}

Composition of compensable traces

Sequential
{ (p〈�〉, p′); (q, q′) �3 (pq, q′; p′)

(p〈ω〉, p′); (q, q′) �3 (p〈ω〉, p′) when ω �= �
Parallel (p, p′)||(q, q′) �3 {(r, r′) | r ∈ (p||q) ∧ r′ ∈ (p′||q′)}

Fig. 2. Denotational semantics #3 of parallel Sagas

all possible interleavings of the observable flows, with final event ω&ω′, where
& is associative and commutative.

When composing compensable traces in series instead, the forward trace cor-
responds to the sequential composition of the original forward traces, while the
compensation trace starts by the second compensation followed by the first one.
The parallel composition is defined pairwise as all possible interleavings of the
forward flows and those of the backward flows.

Our compensations never fail, thus the final event of all the compensation
traces is �. Adding failures to compensations requires to add throw as a possible
compensation, but this is orthogonal to the aspects we want to highlight here.

Policy #1: No interruption and centralized compensation. The simplest compen-
sation policy differs from policy #3 just by excluding the possibility to interrupt
sibling branches. Therefore we discard the possibility to yield from basic com-
pensable processes, which is enough to exclude the presence of yielding traces:

A ÷ B �1 {(A〈�〉, B〈�〉)}

Policy #4: Interruption and distributed compensation (revised Sagas). Policy
#4 handles the compensation of parallel branches in a fully distributed manner.
It differs from policy #3 only by the following definition of parallel composition
of compensable traces:
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(p〈�〉, p′)||(q〈�〉, q′) �4 {(r〈�〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)} ∪
{(r〈?〉, 〈ω〉) | r〈ω〉 ∈ (pp′||qq′)}

(p〈ω〉, p′)||(q〈ω′〉, q′) �4 {(r〈ω&ω′〉, 〈ω′′〉) | r〈ω′′〉 ∈ (pp′||qq′)} if ω&ω′ �= �

Policy #2: No interruption and distributed compensation (näıve Sagas). Policy
#2 excludes the possibility to yield from basic compensable processes (like policy
#1), but allows the presence of yielding traces within parallel composition (like
policy #4). It differs from policy #3 by combining the above changes together.

Theorem 1 (cf. [3]). Let PP be a compensable process, and let {[PP ]}i de-
note the set of traces of the saga {[PP ]} according to policy #i. Then, we have
{[PP ]}1 ⊆ {[PP ]}2 ⊆ {[PP ]}4 and {[PP ]}1 ⊆ {[PP ]}3 ⊆ {[PP ]}4. Moreover, if PP
is sequential (i.e., it contains no occurrence of |), then {[PP ]}1 = {[PP ]}4.

The process {[(A÷A′; B÷B′)|(C ÷C′; throww)]} considered in the introduction
is such that all semantic inclusions between the different policies are strict and
it shows that policies #2 and #3 are not comparable in general.

3 New Semantics for Parallel Sagas

The policies #1 and #2 are of little interest for us, because they disregard
interruption: we refer to activities and compensations that may have a cost,
hence they should be avoided whenever possible. The absence of interruption
may cause the unnecessary execution of forward activities after a sibling’s fault:
they need to be compensated later on. The policy #3 is not entirely satisfactory,
because it is not distributed: a faulty process must wait for its siblings before
starting the compensation. On the other end, policy #4 is unrealistic, because
it considers traces where a process can be interrupted and its compensation can
start before any sibling actually fails. This can be justified either by assuming the
availability of an extremely powerful guessing mechanism (some sort of oracle)
or by taking asynchronous observations, where the execution order of activities
run by parallel processes cannot be detected and is therefore irrelevant.1

In this Section we show how to fix the denotational semantics of parallel Sagas
so to obtain a fully satisfactory account of distributed interruptions. We call this
policy coordinated compensation.

Policy #5: Coordinated compensation. Policy #5 differs from policy #3 by
slightly changing the semantics of compensation pairs, so to allow a success-
fully completed activity to yield, and the semantics of parallel composition, to
allow distributed compensation without any guessing mechanism:
1 For example, if one process runs in Pisa, a second one in Tokyo and the observer is

in Lisbon, then it may happen that the process running in Pisa is interrupted and
compensates before the observer can log the activities executed in Tokyo.
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A ÷ B �5 {(A〈�〉, B〈�〉), (〈?〉, 〈�〉), (A〈?〉, B〈�〉)}
(p〈�〉, p′)||(q〈�〉, q′) �5 {(r〈�〉, r′) | r ∈ (p|||q) ∧ r′ ∈ (p′||q′)}
(p〈ω〉, p′)||(q〈ω′〉, q′) �5 itp((p〈ω〉, p′), (q〈ω′〉, q′)) ∪

itp((q〈ω′〉, q′), (p〈ω〉, p′)) when ω, ω′ �= �
(p〈ω〉, p′)||(q〈ω′〉, q′) �5 ∅ otherwise

itp((p〈ω〉, p′), (q〈ω′〉, q′)) �5 {((p|||q1)〈ω〉, (p′||q2q
′)) | q = q1q2}

Let pp = (p〈ω〉, p′) and qq = (q〈ω′〉, q′) with ω, ω′ �= �. The function itp(pp, qq)
returns the set of all compensable traces obtained by interleaving the activities
of p with that of any prefix q1 of q as forward activities, together with the inter-
leaving of p′ with the residual q2q

′ of qq (after removing the prefix q1). Several
cases are possible. If ω =! and ω′ =?, then it means that qq will be interrupted
by the fault raised from pp, which is ok, because qq will yield after all activities
in p have been observed. The resulting forward traces have ! as final event. If
ω =? and ω′ =!, then it means that pp is yielding to a sibling different from qq,
and therefore pp can legitimately start compensating without waiting for qq to
raise the fault. In this case the resulting forward traces have ? as final event. If
ω = ω′ =? then it means that pp receives the interrupt before qq. If ω = ω′ =!
then it just means that pp is the first to raise the fault.

Comparison. Our first result establishes a formal relation with policies #1–4.

Theorem 2. Let PP be a compensable process, and let {[PP ]}i denote the de-
notational semantics of saga {[PP ]} (i.e., its set of traces) according to policy
#i. Then we have: {[PP ]}3 ⊆ {[PP ]}5 ⊆ {[PP ]}4.

Proof. The inclusion {[PP ]}3 ⊆ {[PP ]}5 follows by proving (by structural induc-
tion) the following implications for any p, p′ and any ω ∈ {?, !}:

(p〈�〉, p′) ∈3 PP ⇒ (p〈�〉, p′) ∈5 PP ∧ (p〈?〉, p′) ∈5 PP
(p〈ω〉, p′) ∈3 PP ⇒ (p〈ω〉, p′) ∈5 PP

where ∈i denotes membership according to policy #i.
The inclusion {[PP ]}5 ⊆ {[PP ]}4 follows by proving that for any p, p′:

(p〈�〉, p′) ∈5 PP ⇒ (p〈�〉, p′) ∈4 PP
(p〈!〉, p′) ∈5 PP ⇒ ∃q, q′ (pq〈!〉, q′) ∈4 PP with p′ = qq′

(p〈?〉, p′) ∈5 PP ⇒ ∃q, q′, ω (pq〈ω〉, q′) ∈4 PP with p′ = qq′ and ω ∈ {?, !}

The first implication is quite trivial (from the definition of policies #4 and #5).
The other two implications are proved by structural induction. ��

The process {[(A÷A′; B÷B′)|(C÷C′; throww)]} from the introduction witnesses
that all semantic inclusions between the different policies can be strict.

Corollary 1. If PP is a sequential process (i.e., it contains no parallel compo-
sition operator), then {[PP ]}5 = {[PP ]}4.
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Proposition 1. The policies #2 and #5 are not comparable by inclusion.

Proof. We show that there exists a process PP such that neither {[PP ]}2 ⊆
{[PP ]}5 nor {[PP ]}5 ⊆ {[PP ]}2 hold. Take PP = {[A ÷ A′ | (B ÷ B′; throww )]}.
Then the trace p = AA′BB′〈�〉 ∈ {[PP ]}2, but p �∈ {[PP ]}5, because A′ is
observed before B (and therefore before the fault occurs). Moreover, the trace
q = BB′〈�〉 ∈ {[PP ]}5, but q �∈ {[PP ]}2, because it involves the interruption of
process A ÷ A′, not allowed in policy #2. ��

Maude support. Given the combinatorial explosion in handling the interleaving
of parallel processes, we exploited the rewrite engine of Maude [9] to experiment
with the different policies and validate our results. The tool has been developed
using the Eclipse plugin Maude Development Tools MOMENT2 [2] and it al-
lows, e.g., to derive the semantics of a process under the policies #1–5, to test
for membership of a particular trace under a particular semantics, to test the in-
clusion between sets of traces and to test for the presence of a particular activity
in a set of traces. The tool consists of six Maude functional modules: one for the
definitions common to all policies, plus one extension for each policy #1–5. The
main advantage in using Maude is the reduced representation distance between
the mathematical specifications of the policies and their Maude encoding, which
makes immediate the correspondence check. As an additional feature, the eval-
uation of the semantics of a process is parametric to an environment assigning
success and failure to each activity. We remark that the tool has been very useful
to assess and refine policy #5 before proving the main correspondence theorem
(Th. 2). For more details and source code see [20].

4 Operational and Logical Account

In this section we introduce an operational characterization of the coordinated se-
mantics, and we prove a correspondence result between the operational semantics
presented here and the denotational semantics of previous section. Furthermore
we show that the semantics satisfies some expected high-level properties.

Petri nets basics. We base our operational semantics on a mapping of sagas into
Petri nets [19]. On one side, Petri nets are a well-known model of concurrency
and allow us to give a simple account of the interactions between the different
activities in a saga. On the other side, this mapping allows us to exploit the
well-developed theory of Petri nets and the related tools.

Definition 2 (Petri net). A Petri net graph is a triple (P, T, F ), where: P is
a finite set of places; T is a finite set of transitions, disjoint from P ; and the
flow relation F ⊆ (P × T ) ∪ (T × P ) is a set of edges.

Given a Petri net graph, a marking U for the net is a multiset of places:
U : P → N. We call Petri net any net N equipped with an initial marking UN .

The preset of a transition t is the set of its input places: •t = {p | (p, t) ∈ F}; its
postset is the set of its output places: t• = {p | (t, p) ∈ F}. We denote the empty
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U : P → N

U : U → U ∈ T (N)

t ∈ TN

t : •t → t• ∈ T (N)

r : U → V, r′ : U ′ → V ′ ∈ T (N)

r + r′ : U + U ′ → V + V ′ ∈ T (N)

r : U → V, s : V → W ∈ T (N)

r; s : U → W ∈ T (N)

Fig. 3. Inference rules for T (N)

multiset by 0, multiset union by +, multiset difference by −, multiset inclusion
by ⊆ and write a ∈ U if U(a) > 0.

Definition 3 (Firing). Given a Petri net graph (P, T, F ) and a marking U a
transition t is enabled in U if •t ⊆ U . A transition t enabled in U can fire
leading to the marking V = U − •t + t•.

A multiset of transitions can fire concurrently, if U contains enough tokens to
cover all their presets. After [17], we denote computations over a Petri net as
terms of the algebra T (N) freely generated by the inference rules in Fig. 3
modulo the axioms below (whenever both sides are well-defined):2

monoid: (p + q) + r = p + (q + r) r + r′ = r′ + r 0 + r = r
category: (p; q); r = p; (q; r) r; V = r = U ; r

functorial: (p; p′) + (q; q′) = (p + q); (p′ + q′)

Each term r : U → V ∈ T (N) defines a concurrent computation over N , from
the marking U to the marking V . We write N

∗−→ V and say that V is reachable
in N , if there exists a computation r : UN → V ∈ T (N). A Petri net N is 1-safe
if for any place a and for any reachable marking V we have V (a) ≤ 1. We say
that r : UN → V ∈ T (N) is maximal if no transition is enabled in V .

From Sagas to Petri nets. We define the Petri net graph associated to a saga
by structural induction on the saga syntax. At the high-level view, each com-
pensable process is a black box with six external places to be interfaced with the
environment (Fig. 4a). Places F1 and F2 are used for propagating the forward
flow of execution: a token in F1 starts the execution and a token in F2 indicates
that the execution has ended successfully. Places R1 and R2 control the reverse
flow: a token in R1 starts the compensation, a token in R2 indicates that the
compensation has ended successfully. The place I1 is used to interrupt the pro-
cess from the outside while a token in I2 is used to inform the environment that
an error has occurred. The figure highlights that three auxiliary transitions will
be present in any process: two of them handle the catching of the interrupt and
reversal of the flow, one handles the disposal of the interrupt in case the process
already produced a fault (garbage collection). A standard process such as the
saga in Fig. 4e instead has just three places to interact with the environment:
F1 starts its flow, F2 signals successful termination, and E raises a fault.

2 For category-minded theorists, the computations form a freely generated, strictly
symmetric, strict monoidal category.
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(a) A compensable
process PP

(b) A compensation pair
A ÷ B

(c) The primitive throww

(d) Sequential composi-
tion PP ; QQ

(e) A saga {[PP ]} (f) Parallel composition PP |QQ

Fig. 4. Petri nets for the encoding of processes
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Intuitively, for standard processes, a computation starting in F1 will lead
either to F2 or to E, while for compensable processes we expect to have the
following kinds of computations:

Successful (forward) computation: from marking F1 the net reaches F2

Compensating (backward) computation: from R1 the net reaches R2.
Aborted computation: from F1 the net reaches R2 + I2.
Interrupted computation: from F1 + I1 the net reaches R2.

We will formalize this behavior and prove that our model behaves accordingly.
The nets for processes are depicted in Fig. 4. When drawing transitions we use

larger boxes for representing sagas activities and thinner, black filled boxes for
auxiliary transitions. For a compensation pair A÷B (Fig. 4b) there is a transition
called A that consumes a token in F1 and produces a token in F2 representing the
execution of the forward flow, as well as a transition B that consumes a token in
R1 and produces a token in R2 corresponding to the reverse flow. Furthermore
the process can be interrupted at the beginning with the transition X and at the
end with the transition X ′. The net for skipp is similar (A and B are replaced
by vacuous silent activities).

The net for the primitive throww is displayed in Figure 4c. The transition K
models the abort of the transaction. It consumes the token F1 for the forward
flow and produces a token in R2 for the continuation of the reverse flow and in
I2 to inform the environment of the abort.

In the net for the sequential composition for a process PP ; QQ (Figure 4d)
the token in F3 produced by PP for the forward flow is passed on to start
the execution of the process QQ. Equally the token in R3 for the reverse flow
produced by QQ is passed on to PP to start its compensation. Both PP and
QQ share also the places for I1 and I2.

For the parallel composition PP |QQ (Figure 4f) we use two subnets for the
two processes, with places F ′

1, F
′
2, . . . and F ′′

1 , F ′′
2 , . . . respectively. The upper part

of the figure highlights the transitions used in absence of interruptions while
the lower part concentrates on transitions exploited by interruption. To start
the execution of the forward flow there is a fork transition producing tokens
in F ′

1 and F ′′
1 as well as an additional token MEX working as a semaphore.

Without an error or an interrupt it is collected together with the tokens in F ′
2

and F ′′
2 at the end of the execution in the transition join producing a token

in F2. A fork-and-join mechanism is used also for the reverse flow, however no
additional tokens are produced. If an interrupt is received, i.e. there is a token
in I1, it is split using the transition Iin into I ′1 and I ′′1 which are processed
by PP and QQ. Here we need the semaphore MEX to guarantee that the
interrupt is only split during the execution of the parallel composition. If an
error occurs inside one of the processes PP or QQ, the places I ′2 and I ′′2 are used
to inform its sibling and the environment: the transition Iprop′ ( resp. Iprop′′)
consumes a token from I ′2 (resp. I ′′2 ) and produces a token in I2 and in I ′′1 (resp.
I2 and in I ′1). The semaphore MEX is used here to guarantee that only one
branch sends the interrupt to the environment, and that no interrupt is sent if
an external interrupt has been already received. As usual we have the transition
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X : F2 + I1 → R1, for aborting after completion of the two branches, and the
garbage collecting transition.

In Figure 4e the Petri net for a saga is shown. Outside of the transaction
block there is no reverse flow, thus only places F1 and F2 are considered, while
the other places are only needed inside the transaction block. Then a token in
F2 signals that the transaction has reached a consistent state again. This does
not necessarily mean that the transaction was successful, it might as well have
failed and executed its compensation. The nets for skip, throw , sequential and
parallel composition of sagas are straightforward and thus omitted here.

Theorem 3. Given a compensable process PP and the corresponding net NPP

with external places F1, F2 for the forward flow, R1, R2 for the reverse flow and
I1, I2 for interrupts, we can state the following properties:

1. Every maximal execution of the net NPP with initial marking F1 is either
of the form fPP : F1 → F2 (successful computation), or of the form aPP :
F1 → R2 + I2 (aborted computation);

2. Every maximal execution of the net NPP with initial marking R1 is of the
form rPP : R1 → R2 (backward computation);

3. Every maximal execution of the net NPP with initial marking F1 + I1 is of
the form iPP : F1 + I1 → R2 (interrupted computation).

Proof. The proof is by structural induction (see appendix). ��

Note that we call interrupted any computation that consumes the token I1: it
may as well happen that the net autonomously aborts (due to some throww),
and the token I1 is consumed by the garbage collection transition.

In order to show the correspondence of the denotational and operational se-
mantics we need to introduce some kind of observation for the latter.

Definition 4. Let PP be a compensable process and NPP its corresponding net.
For any f ∈ T (NPP ) we define the set label(f) of action sequences as follows:

label(A) = {A} for any basic activity A
label(K) = {K} for any throw transition K

label(f1; f2) = label(f1)label(f2)
label(f1 + f2) = label(f1)|||label(f2)

label(f) = ε otherwise

where juxtaposition and interleaving are defined elementwise.

It is immediate to check that the function label is well-defined, in the sense
that it is invariant w.r.t. the equivalence axioms on T (N). Moreover we define
a function filter(p) that removes every K from a label p. Using this definition
we can now formulate the correspondence theorem.

Theorem 4 (Correspondence). Let PP be a compensable process and NPP

the corresponding net. The correspondence of denotational and (maximal com-
putations of the) operational semantics is given as follows:
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1. (p〈�〉, q〈�〉) ∈5 PP iff there is a computation f : F1 → F2 ∈ T (NPP ) with
p ∈ label(f) and a computation r : R1 → R2 ∈ T (NPP ) with q ∈ label(r).

2. (p〈!〉, q〈�〉) ∈5 PP iff there is a computation a : F1 → I2 + R2 ∈ T (NPP )
with label pKq′ ∈ label(a) for some q′ such that q = filter(q′).

3. (p〈?〉, q〈�〉) ∈5 PP iff there is a marking U and two computations f : F1 →
U, i : U + I1 → R2 ∈ T (NPP ) such that p ∈ label(f) and q = filter(q′) for
some q′ ∈ label(i).

Proof. The proof is similar to the one of Theorem 3 (see appendix). ��

Proposition 2. Let PP be a compensable process and NPP the corresponding
net with external places F1, F2, R1, R2, I1, I2. Then: (i) NPP with initial marking
F1 +I1 is 1-safe, and (ii) NPP with initial marking R1 +I1 is 1-safe.3 Moreover,
let P be a standard process and let NP be its corresponding net with external
places F1, F2, E and initial marking F1. Then, NP is 1-safe.

Proof. The proof is by structural induction on PP and P . ��

The main results can be extended to standard processes as follows.

Corollary 2. Let P be a standard process and let NP its corresponding net with
external places F1, F2, E and initial marking F1. Then: (i) any maximal execu-
tion of NP leads either to F2 or to E; (ii) p〈�〉 ∈5 P iff there is a computation
f : F1 → F2 ∈ T (NP ) with p ∈ label(f) ending in marking F2 and (iii) p〈!〉 ∈5 P
iff there is a computation a : F1 → E ∈ T (NP ) with p ∈ label(a).

Logical Properties. We show now that Sagas {[PP ]} satisfy some basic logical
properties following their intuitive behavior. First, following [4], we define the
concept of order of the activities in a Saga. To this end we need activities with
a unique name. Also, we consider throww as a forward activity and use sub-
scripts to distinguish between multiple occurrences of the same activity, like in
{[throww1|A1 ÷ B; A2 ÷ C; throww 2]}.

We let A(S) be the set of activities of a Saga (including throww).

Definition 5 (Order of a Saga). The order of a Saga S is the least transitive
relation ≺S such that:

1. if A ÷ A′ occurs in S then A ≺S A′;
2. if PP ; QQ occurs in S then A ≺S B for each forward activity A occurring

in PP and any forward activity B in QQ;
3. if A ÷ A′ and B ÷ B′ occur in S and A ≺S B then B′ ≺S A′.

We let predS(A) � {B ∈ A(S) |B ≺S A} be the set of the predecessors of the
activity A w.r.t. the order ≺S. We say a sequence A1A2...An respects the order
≺S if Ai ≺S Aj for any 1 ≤ i < j ≤ n.

3 This implies that NPP is 1-safe when the initial marking is F1 or R1.
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Theorem 5 (Completion). Let S = {[PP ]} be a saga. If PP contains no
throww activities, then it will succeed. In this case there exists a unique maximal
computation f ∈ T (NPP ) with initial marking F1 and it leads to F2. Further-
more, label(f) is the set of possible interleavings of all forward activities in A(S)
that respect ≺S.

Proof. By induction on the structure of the process inside the Saga S. ��

Theorem 6 (Successful compensation). Let S = {[PP ]} be a saga. If PP
contains at least a throww activity, then it will abort and it will be compensated.
In this case all the maximal computations in the net NPP with initial marking
F1 end in R2 + I2. Then, for any such computation a : F1 → R2 + I2 we have
that each possible label in filter(label(a)) satisfies the conditions below:

1. activities in the label respect the order ≺S;
2. any activity A such that A ≺S throww i for all throww i in A(S), occurs in

the label;
3. no forward activity A such that there exists throww i in A(S) with throww i ≺S

A, occurs in the label;
4. if activity A′ is the compensation of activity A, then A occurs in the label iff

A′ occurs in the label;
5. there exists at least one throww i such that all activities in predS(throww i)

appear in the label and they precede each compensation activity A′ appearing
in the label.

Moreover, for any action sequence q satisfying conditions 1–5) above, there exists
a maximal computation a : F1 → R2 + I2 such that q ∈ filter(label(a)).

Proof. See appendix. ��

Conditions 1 to 4 correspond to some of the conditions in [4], while condition
5 does not hold in [4]: it characterizes the fact that our semantics allows only
realistic traces, where compensations are not started before a fault is actually
executed. Since faults are removed from labels, we consider that a fault can be
executed when all the observable activities preceding it have been executed, thus
enabling it. Consider the Saga S = {[C ÷C′ | (A; throww 1) | (B; throww 2)]}. Here
we have predS(throww 1) = {A} and predS(throww 2) = {B}. Then the trace
CC′AB can not be observed, since C′ is preceded by neither A nor B. This
trace is valid according to the semantics #4.

5 Discussion and Related Work

In this section we overview other process algebraic approaches that model long-
running transactions and compensations. The concept of a Saga was first men-
tioned in the context of database theory in [12]. The process description language
StAC [6] is among the first to transfer this concept to process algebras. It provides
an implementation and an operational semantics given in a richer intermediate
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language called StACi. However the syntax included too many primitives, and
its semantics was quite intricate, having to deal with spurious aspects.

Both Sagas [4] and cCSP [7] were developed as refinements of StAC, focusing
just on a core set of operations combined in well-disciplined ways. In [11] it has
been shown that Sagas can be implemented on top of an event-based middle-
ware via a semantic preserving encoding. A more recent approach to sagas is
presented in [15] (extended with nesting in [13]), but the compensation policy
is expressed at a less abstract level, including spurious mechanisms closer to the
implementation. Moreover it is not distributed, as the order of the execution of
compensations depends on the total order of activities in the forward flow. We
also mention [8], that shows an encoding of cCSP into the Conversation Calcu-
lus [22] (CC), even though CC does not include explicit compensation handlers.

This paper focused on different policies for executing compensations. However
there are also different strategies for installing compensations, as shown in [14].
Roughly, we distinguish static, parallel and dynamic compensation definitions.
Here we considered the static case, where compensations are known from the
beginning. In the parallel case, new items of compensation can be added at
runtime, in parallel w.r.t. the old ones. The dynamic case allows fully general
updating of compensations. In contrast to our approach which is more focused
on the control flow between components, [14] focuses on communicating com-
ponents. This kind of proposals is based on extensions of the π-calculus, such
as webπ [16], dcπ [21] and ATc [1], of the Join calculus, such as cJoin [5], or of
CCS, such as CommTrans [10].

6 Conclusion

We have formally defined a novel policy of distributed compensation with inter-
ruption and compared it with existing policies. The new one improves them by
allowing autonomous activation of compensation (as opposed to policies #1 and
#3) and by discarding unrealistic traces (as opposed to policies #2 and #4).
Moreover, the operational semantics defined in terms of Petri nets paves the way
to the straightforward derivation of richer semantic domains than traces, where
causal dependencies between events are recorded. This can have e.g. practical
consequences in the tracking of the faults that triggered a compensation.

In the future we plan to extend the core language of parallel Sagas with choice
and some form of iteration. For the denotational semantics this can be easily
accomplished. For the Petri net semantics, choice can be handled with some care,
while iteration might require a more sophisticated variant of Petri nets, where
the finite sequence of actions performed while unfolding the iteration must be
recorded in the net to derive a proper compensation: a finite 1-safe net will not
be able to store such information, unless it is equipped with some mechanism
for dynamic generation of new net items. Together with the above extension, we
plan to develop a small suite of prototypical tools based on Maude, to support
the theoretical studies and the experimentation. This includes the generation of
Petri net layouts from sagas processes and the use of an LTL model checker.
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A Proofs of Main Results

Proof (Theorem 3). The proof is by structural induction. The theorem holds triv-
ially for compensation pairs as well as for the primitives skipp and throww . For
the sequential composition the proof follows from the induction
hypothesis.

Consider parallel composition. Assume a token is in F1. Using fork we create
a marking F ′

1 + F ′′
1 + MEX . We have then a case analysis according to the

behavior of the subnets. If both succeed then the join transition creates a token
in F2 and removes all the other tokens as desired. Note that a transition like
fPP1 + fPP2 , due to the distributive law given in [17], corresponds to all the
possible interleavings of the two transitions. Assume now that PP1 aborts first
(the case where PP2 aborts first is symmetric). By inductive hypothesis this
creates a token in I ′′1 , thus for PP2 we go to the case of interrupted computation.
Thus we will end up with R′

2+R′′
2 . The thesis follows using the transition Rjoin.

The case of backward computation is easy: the transitions Rfork and Rjoin
are triggered, satisfying the hypothesis.

Finally, consider the case of interrupted computation: if I1 is still there after
MEX has been consumed, then X is taken, producing a token in R1. This goes
back to the previous case. Assume instead that transition Iin is taken, producing
as marking F ′

1 + F ′′
1 + I ′1 + I ′′1 . We can apply inductive hypothesis to reach a

marking R′
2 + R′′

2 , satisfying the hypothesis executing transition Rjoin. ��

Proof (Theorem 4). The proof is by induction on the structure of process (which
corresponds to an induction on the structure of the corresponding net), with a
case analysis similar to the one of Theorem 3.

The theorem holds trivially for compensation pairs, skipp and throww .
Let us consider sequential composition. We have two kinds of traces: the ones

where PP succeeds, and the ones where it does not. Let us consider the first
case. By inductive hypothesis we have a computation fPP : F1 → F3 with
label(fPP ) = p. Then we have again a case analysis according to the behavior of
QQ. We consider just the case of success, the other being similar. In this case, by
inductive hypothesis we have a computation fQQ : F3 → F2 with label(fQQ) = p′

and then computations rQQ : R1 → R3 with label(rQQ) = q′ and rPP : R3 →
R2 with label(rPP ) = q. Thus the two computations fPP ; fQQ and rQQ; rPP

satisfy the thesis. The case where PP does not succeed is trivial by inductive
hypothesis.



A New Strategy for Distributed Compensations 59

Let us consider now parallel composition. We have again two possibilities:
either both PP1 and PP2 succeed, or not. Let us consider the first case. Op-
erationally, first transition fork is executed. Then the inductive hypothesis is
applied to the two subnets for the forward flow. Finally transition join is exe-
cuted. The analysis of the backward flow is similar. It is easy to see that labels
are the desired ones. Let us consider the other case. First transition fork is
executed. We have then a case analysis according to the behavior of the two
subnets. Assume PP1 aborts. By inductive hypothesis there is a computation
aPP1 : F ′

1 → I ′2 + R′
2. Assume that PP2 is interrupted. Again by inductive hy-

pothesis, there are computations i′PP2
: F ′′

1 → N and i′′PP2
: N + I ′′1 → R′′

2 . The
only constraint on the possible interleavings is that i′′PP2

may only start after I ′2
has been produced. This is the behavior captured by function itp. In the case
of double abort the two subnets start compensating on their own, thus there is
no synchronization constraint to be satisfied (both the sets defining function itp
become not empty). The two notifications are garbage collected. The case of ex-
ternal interrupt is similar. The only difference is that if the interrupt is processed
after the two processes have finished their computations successfully, then tran-
sition X ′ is used. In the denotational semantics there is no clause corresponding
to this, but this produces the same traces of two yielding computations (and we
always have a yielding computation for each successful one). ��

Proof (Theorem 6). First we prove by structural induction (using Theorem 3)
that any maximal computation starting from F1 ends in R2 + I2 with no token
ever appearing in F2 (needed for proving property 3, below). Next, we take any
a : F1 → R2 + I2 and q ∈ filter(label(a)) and show that 1–5) hold for q.

Properties 1) and 4) are proved by structural induction on PP .
For property 2), since A ≺S throww i for all throww i, there must exist PP ′ and

QQ′ such that PP = C[PP ′; QQ′] for some context C[·], where PP ′ contains
A and QQ′ contains all throww i. Then, we conclude by structural induction on
the shape of the context C[·], by applying Theorem 5 to PP ′.

For property 3), let throww i be such that throww i ≺S A, therefore there exist
PP ′ and QQ′ such that PP = C[PP ′; QQ′] for some context C[·], where PP ′

contains throww i and QQ′ contains A. Therefore by applying the first argument
of this proof to PP ′ we know that activities in QQ′ are never enabled.

For property 5) we proceed by contradiction. Suppose that there exists a
compensation activity A′ such that for any activity throww i an activity Bi ∈
predS(throww i) can be found such that A′ precedes Bi in q. Without loss of
generality, let A′ be the leftmost such activity appearing in q. Hence q =
A1 · · ·AnA′q′ for some forward activities A1, . . . , An and sequence q′ that con-
tains all Bi’s. But then the firing of A1 · · ·An leads to a marking where no
throww i is enabled and therefore A′ cannot be enabled, which is absurd.

For the last part, let q be any action sequence that satisfies conditions 1–5)
and let A1 · · ·An be the subsequence of q formed by forward activities. By con-
dition 4), their backward activities A′

1, . . . , A
′
n are the only other activities that

appear in q and we let A′
i1 , . . . , A

′
in

be the corresponding subsequence of q. By
conditions 1–3) the sequence of transitions A1 · · ·An can be fired (possibly firing
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additional fork and join) starting from F1. By condition 5) there is a throww i

such that all activities in predS(throww i) are in A1, . . . , An and therefore the
transition K associated with throww i is enabled after the firing of A1 · · ·Am for
some m ≤ n, which is a prefix of q. Note that the propagation of interrupts by
transitions lin, lprop′ and lprop′′ can be delayed until An is fired. Therefore the
sequence of transitions A1 · · ·AnA′

i1 · · ·A
′
in

is fireable, which induces a compu-
tation a : F1 → R2 + I2. It remains to show that q ∈ filter(label(a)), which
can be done by induction on the number of action switches needed to transform
A1 · · ·AnA′

i1
· · ·A′

in
to q exploiting the functorial axiom. Note, in fact, that one

has to swap only some forward actions Ai (for i > m) and some backward ac-
tions A′

j (possibly with the interrupt propagation transitions that enables A′
j),

such that Ai �≺S A′
j (by condition 1). ��
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Abstract. In this article we describe a first-order extension of the deontic logic
introduced in [1]. The main useful and interesting characteristic of this extended
logic is that it not only provides the standard quantifiers of first-order logic, but
it also has similar algebraic operators for actions as for the propositional ver-
sion of [1]. Since the pioneering works of Hintikka and Kanger, little advance
has been made in developing first-order deontic logics. Furthermore, to the best
of our knowledge, the introduction of quantifiers in deontic action logics (i.e.,
deontic action logics where predicates are applied only to actions) has not been
investigated in detail in the literature. This paper represents a significant step
in addressing these problems. We also demonstrate the application of this novel
logic to fault-tolerance by means of a simple example.

1 Introduction

Deontic logics are focused on the study of the logical properties of operators such as
permission, obligation and prohibition. Since these notions are closely related to the
concept of violation or error, some computer science researchers have proposed the use
of this kind of logic to specify fault-tolerant systems (see [2]). We have proposed a
deontic logic to reason about fault-tolerance in [1] and we have investigated the appli-
cation of this logic to practical examples in [3]. The logic introduced in these papers is a
propositional logic, extended with temporal operators. However, for more complex ap-
plications, first-order quantifiers might be needed, in particular when we need to reason
about infinite domains or complex data structures.

Deontic logics can be divided into ought-to-be logics and ought-to-do logics. The
former apply deontic operators to predicates, and these are perhaps the ones normally
investigated by deontic logicians. On the other hand, ought-to-do deontic logics use de-
ontic predicates to state properties of actions. These logics are very similar to dynamic
logics [4], where we have formulae of the form: � � [�]�, � and � being predicates,
and � being an action. This formula can be read as saying that if � is true, then after the
execution of �, � becomes true. These formulae can be used to specify systems in the
same way as in Hoare logic, i.e., thinking of � as a precondition and � as a postcondi-
tion of �. Some authors have proposed the reduction of deontic action logic to dynamic
logic [5]; in this case, permitted actions are those for which there are some ways of ex-
ecuting them such that no violation is introduced. We have proposed a di�erent deontic
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action logic in [1,3], where deontic operators are not related (a priori) to modalities.
Also, we consider boolean operators�combinators for actions. The union of actions can
be thought of as a non-deterministic choice, the intersection as a parallel execution and
the complement as the execution of some alternative action. In addition, we consider
two versions of permission: P(�), which is called strong permission and asserts that any
execution of � is allowed, and Pw(�), which is called weak permission and can be read
as saying that only some executions of � are allowed. Using these operators we can
define other deontic operators, e.g., obligation or prohibition. We have given a sound
and complete axiomatic system for this logic in [1].

Some interesting questions arise when the first-order operators are introduced. For
example, the proof of completeness in the propositional case relies on the fact that
the underlying boolean algebra of terms (denoting actions) is atomic, and therefore the
atoms in this algebra can be used to build a canonical model. It is not straightforward (at
first sight) to ensure preservation of this property when the quantifiers are added; adding
parameters to actions produces a boolean algebra of terms which is not atomic. To solve
this problem, we have added to the logic a generalized boolean operator:

�
x �(x), which

can be understood as the non-deterministic choice between all the possible executions
of � with di�erent parameters. Some restrictions are needed to again obtain an atomic
boolean algebra; in particular, we need to rule out the parallel execution of the same
action with di�erent parameters. (But we do not rule out the parallel execution of dif-
ferent actions.) Adding this restriction, we obtain an atomic boolean algebra of terms.
We give an axiomatic system for this logic in section 3 and we outline the proofs of its
consistency and completeness.

An inspiring discussion about the intuitive properties that quantified deontic opera-
tors should exhibit can be found in the seminal works of Hintikka [6] and Stinger [7].
We will rehearse this discussion investigating the properties that quantifiers and deontic
operators enjoy in our logic.

We expect to use this logic to specify and verify fault-tolerant software or systems.
Possible applications are systems that use data structures that cannot be dealt with using
the propositional version of the logic, in particular, in those cases where complex or
infinite domains are involved. In section 5 we exhibit an example of a fault-tolerant
memory system specified with this logic; we intend to demonstrate by means of this
small example the usefulness of this logic in practice.

The paper is structured as follows. In the next section we describe the syntax and
semantics of the logic and we propose an axiomatic system, and then we prove the
soundness and completeness of this deductive system. In section 4 we disccuss the main
properties relating quantifiers with deontic operators. Finally, we show an example of
application and describe some conclusions and future work.

2 Syntax and Semantics

We start by describing the syntax of the language. A language has a set of rigid and
flexible functions and variables; in addition, it has a finite set of action symbols, each
with an associated arity. For the sake of simplicity, we do not consider sorts and relation
symbols in our logic, although it is straightforward to express these notions in the logic
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described below. Rigid symbols are intended to be used to denote elements of primitive
datatypes, instead flexible terms are related to the notion of attribute. From now on, we
assume that we have an enumerable set of variables denoted by X.

Definition 1. A language or vocabulary is a tuple ��0� F0�R0� where, �0 is a finite set
of action symbols, each of them with an associated arity. F0 is an enumerable set of
flexible function symbols, each of them with an associated arity. R0 is an enumerable
set of rigid function symbols, each of them with an associated arity.

As usual the functions with arity 0 are called constants. Given a language L we can
define the set of terms over L; this set is denoted by TL(X) (or T (X) when L is clear by
context) and it is defined as follows:

Definition 2. Given a language L � ��0� F0�R0�, the set of terms over this language is
defined as follows:

1. If x � X, then x � TL(X).
2. If f � F0 or f � R0 with arity n and t1� � � � � tn � TL(X), then f (t1� � � � � tn) � TL(X).
3. No other element belongs to TL(X).

In a similar way we can define the set of action terms. Since the definition of action
terms and formulae are mutually dependent, we first define the concept of formula,
assuming a set �(X) of action terms over X, and then we define the set of action terms.
The set � of formulae is defined as follows.

Definition 3. Given a language L � ��0� F0�R0�, the set of formulae over this language
is defined as follows:

1. If t1� t2 � TL(X), then t1 � t2 � �.
2. If �1� �2 � �(X), then �1 �act �2 � �.
3. If �� � � �, then �� and �� � � �.
4. If � � � and � � �(X), then [�]� � �, P(�) � � and Pw(�) � �.
5. If � � � and x � X, then (�x : �) � �.

The notions of bound variable, free variable and sentence (closed formula) are defined
as usual in first-order logic (see [8], for example). Given a formula �, we denote by
FV(�) the set of free variables of �, similarly we can define FV(t), for terms. When
convenient, we write �(x1� � � � � xn) when FV(�) � �x1� � � � � xn�. If a term t � T (X)
is made up of rigid symbols or variables, we say that it is rigid, otherwise we say
that t is flexible. As explained above, flexible terms are used to represent the notion
of programming variables and related notions, and rigid terms are used to represent
primitive datatypes. Note that we have two equalities: one for standard terms (�) and
one for actions (�act).

On the other hand, the set of action terms is defined as follows.

Definition 4. Given a language L � ��0� F0�R0�, the set of action terms (denoted by
�(X)) over this language is defined as follows:

1. 	�U � �(X).
2. If a � �0 with arity n and t1� � � � � tn � TL(X), then a(t1� � � � � tn) � �(X).
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3. If � and � � �(X), then � 
 �, � � � and � � �(X).
4. If � is an action term and x � X, then (

�

x

�) � �(X).

The constant actions 	 and U denote an impossible action and the universal choice of
any action, respectively. In the following we use the notation FV(�); the notion of free
variable can be extended straightforwardly to action terms as follows:

1. FV(a(t1� � � � � tn)) � FV(t1) �    � FV(tn).
2. FV(� � �) � FV(�) � FV(�).
3. FV(� 
 �) � FV(�) � FV(�).
4. FV(�) � FV(�).
5. FV(

�

x

�) � FV(�) � �x�.

That is, we treat the
�

operator as a quantifier. Note that we have not introduced the
dual of this operator (i.e.,

�
), but it can be obtained from

�
using the complement.

The intuition behind each action term is as explained in [1]. � 
 � can be thought
of as being a non-deterministic choice between actions � and �. � � � is the parallel
execution of actions � and �, and � can be thought of as the execution of an alter-
native action to � with its actual parameters. In contrast to the propositional version
of the logic, we have actions with parameters; this allows us to capture the usual no-
tion of procedure or command of programming languages. The novel part of the action
algebra is the quantifier over variables appearing in an action term. The intuition be-
hind this construction is to allow non-deterministic choices between the parameters
of an action. Roughly speaking, the action term:

�
xi
�(x1� � � � � xn) can be thought of

as the execution of an action �(x1� � � � � xn) where we choose non-deterministically the
value of the i-th parameter. Sometimes, we use some syntactic sugar and, for example,
instead of writing:

�
x1

a(x1� � � � � xn) we write: a(?� � � � � xn) where the symbol ? indi-
cates that the corresponding parameter is non-deterministically selected. Obviously, we
can quantify over many parameters of an action term. In this case, instead of writing:�

x1
  
�

xn
�(x1� � � � � xn) we write:

�
x1�����xn

�(x1� � � � � xn) and using the syntactic sugar
we can write this in short form: �(?� � � � � ?).

Here we understand that, in �, every occurrence of xi is replaced with the symbol ?.
Another useful action term is:

�
y1�����yn

�(y1� � � � � yn) � �[y1 � t1� � � � � yn � tn] (recall that
the expression �(x1� � � � � xn) means that the free variables in � are x1� � � � � xn) Roughly
speaking, it says that the action � is executed with some parameters di�erent from
t1� � � � � tn. We use the following notation in this case: �(? � t1� � � � � ? � tn).

Given a language L � ��0� F0�R0�, and a set �a1� � � � � an� � �0, we are interested in
action terms of the form:

a1(t1
1� � � � � t

1
k1

) �    � an(tn
1� � � � � t

n
kn

) � b1(?� � � � � ?) �    � bm(?� � � � � ?)

where b1� � � � � bm � �0 � �a1� � � � � an�. Note that, in these kinds of terms, we divide the
set of primitive actions �0 into two sets: �a1� � � � � an� and �b1� � � � � bm�. The elements of
the latter set appear negated (i.e., under a complement) indicating that these actions
are not executed, while the elements in the former set are used to point out that these
actions are executed with some determined parameters. We shall see later on that these
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are the atoms of the boolean algebra in the canonical model. The set of these action
terms is denoted by At(�0). For the sake of simplicity we denote these kinds of terms
with letters: Æ0� Æ1� Æ2� � � � . From now on, we call them atomic action terms. There are
some interesting properties of this kind of action terms. Intuitively, each atomic action
term denotes a unique event in the semantic structure. Before going into the details, we
need to introduce the concept of semantic structures.

In the following, we use the notation ��a to denote a tuple of elements (a1� � � � � an) �
An; using this notation, when convenient we use f (��x ) to denote the application of a
given function f to (x1� � � � � xn).

Definition 5. Given a language L � ��0� F0�R0�, an L-Structure is a tuple �������

������ where:

– � is a domain of elements. From now on, for any element d � �, we denote by
d : � � � the constant function: d(w) � d, for every w � �; and we use D to
denote the set of these constant functions.

– � is a set of worlds or states.
– � � ��w � w � �� is a a collection of non-empty set of names of events.
– � �����

�
w�� � is an �-labeled relation between states. We require that, if

(w�w�� e)� (w�w��� e) � �, then w� � w�� and (w�w�� e) � e � �w.
– � is an interpretation function such that:

� For each n-ary flexible function symbol f , �( f ) : (���)n � (���).
� For each n-ary rigid function symbol g, �(g) : (� � �)n � (� � �),

such that it satisfies: �(g)(d1� � � � � dn) � d, for every d1� � � � � dn � � and some
d � �.

� For each n-ary primitive action symbol a, �(a) : �n�� � 	(
�
�), satisfying

�(a)(
��
d �w) � �w for each w � � and

��
d � �n.

such that the following conditions are fulfilled:

I1 For every e � � and w � �, there is no n-ary a � �0 and
��
d ,
��
d� � �n such that

e � �(a)(
��
d �w) � �(a)(

��
d��w) and

��
d �

��
d�.

I2 For every a � �0, w � � and any
��
d � �n we have that:

������(a)(
��
d �w) �

�
��(b)(

��
d��w) � b � �0 � �a� and

��
d� � �m�

����� � 1

I3 If e � �(a)(
��
d �w) � �(b)(

��
d��w) where a� b � �0 and a � b, then we have:

�e� �
�
��(a)(

��
d �w) � a � �0�

��
d � �n and e � �(a)(

��
d �w)�

I4
�
��(b)(

��
d��w) � b � �0 and

��
d� � �m and w � �� � �w

– � � � �
�
� is a relation that states which events are permitted in each state, it

satisfies �(w� e) � e � �w .

Notice that flexible constant symbols are interpreted as functions of the type � � �,
these elements are called intensional objects in modal logic [9]. The intuition is that we
use references (in the programming sense) instead of using values of the domain. How-
ever, note that variables and rigid constant terms are interpreted as constant functions
(i.e., elements of �). We extend this idea to other terms: every function symbol takes
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as parameter functions of the type � � D and returns a function of this type. Roughly
speaking, the condition on the interpretation of rigid function symbols says that rigid
functions return constants when evaluated over elements of the domain. Given a struc-
ture, we need to assign values to variables; this is done by an assignment v : X � D.
Given such an assignment we can define a function �v : T (X) � (���) as follows:

�v(x)
def
� v(x), �v( f (t1� � � � � tn))

def
� �( f )(�v(t1)� � � � ��v(tn)). Now, given any state w � �

we define a function �v�w : T (X) � � as follows: �v�w(t)
def
� �v(t)(w), which evaluates

any terms in a given state. In the following we denote by v[x �� j] a function which
coincides with v at every point except in the variable x, for which v[x � j](x) � j.

Now, we can extend this function to deal with action terms as follows:

– �w�v(a(x1� � � � � xn))
def
� �(a)(�w�v(x1)� � � � ��w�v(xn)�w),

– �w�v(� 
 �)
def
� �w�v(�) � �w�v(�),

– �w�v(� � �)
def
� �w�v(�) � �w�v(�),

– �w�v(�)
def
� �w � �

w�v(�),
– �w�v(

�
x �)

def
�
�

j�D �
w�v[x �� j](�).

Roughly speaking, a structure provides a domain of discourse together with an inter-
pretation for function symbols. This structure is similar to the ones used in first-order
modal logics [9]. Note that we have some topological requirements on the interpretation
of actions (which are interpreted as sets of events). Item I1 says that it is not possible
to execute the same action with di�erent parameters at the same time. Although this re-
quirement seems too strong at first sight, it is a consequence of the concurrency model
that we assume: only events from di�erent components can be executed concurrently in
a system. Within a component, events must be executed sequentially. Here we follow
the ideas of [10] where components are captured as logical theories, and events identify,
or witness, a set of primitive actions of the language of a theory�component. Note that
an event may witness more than one internal action of the component. So, in this sense,
our computational model includes concurrency between di�erent actions within a com-
ponent. Moreover, the seemingly strict restriction that disallows concurrent execution
of the same action with di�erent parameters within a component can be overcome by
using a number of standard modeling techniques. For instance, if we are modeling the
action of paying taxes, and we consider two di�erent persons Mary and John, we have
that pay(Mary) � pay(John) cannot be executed in a component. Alternately, we con-
sider two di�erent components Mary and John and we have one instance of action pay
for each component, i.e., we have two actions Mary�pay and John�pay . The structuring
of components can be achieved by means of morphisms as done in [10].

I2 says that the isolated execution of an action generates either a unique event or
no event at all. We assume that any non-determinism comes from the combination of
external and internal actions. I3 says that the parallel execution of all the actions which
generate an event produces this unique event. In other words, for each event there is a
maximal set of actions which observe this event. Finally, I4 expresses the requirement
that the set of all the events are generated by the actions in the vocabulary. Further
commments and intuitions about requirements I2-I4 can be found in [1].

Our first property says that the interpretation of atomic action terms is either the
empty set or a singleton set.
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Theorem 1. Given a language L and a L-Structure M, for any atomic action term Æ,
valuation v and world w, we have that ��v�w(Æ)� � 1.
Proof. The proof is straightforward using conditions I1, I2 and I3, and taking into
account that atoms in the algebra of actions are monomials made up of primitive actions
or complements of primitive actions.

The relation of satisfaction � between models, valuations and formulae is defined in-
ductively as follows:

– w��� v � t1 � t2 i� �v�w(t1) � �v�w(t2).
– w��� v � a1 �act a2 i� �v�w(a1) � �v�w(a2).
– w��� v � �� i� not w��� v � �.
– w��� v � �� � i� w��� v � �� or w��� v � � or both.
– w�� � [�]� i� for all e � �v(�), if w

e
� w�, then w���� v � �.

– w��� v � �x : � i� for every d � � we have w��� v[x �� d] � �.
– w��� v � P(�) � �e � �v�w(�) : �(w� e).
– w��� v � Pw(�) �  e � �v�w(�) : �(w� e).

The obligation operator can be defined using the other deontic constructs as follows:
O(�) � P(�)!�Pw(�). Roughly speaking, an action is obliged when it is allowed to be
executed in any context and it is forbidden to execute any other action.

3 An Axiomatic System

In this section we exhibit an axiomatic system for the logic described in the previous
section. We write �[x � t] for the formula obtained by replacing all the free occurrences
of x by the term t. We say that t is free for x in � when x does not occur in the scope of
a quantifier Qy and y is free in t. We consider the following set of axioms:

- The set of propositional tautologies, the equational theory of boolean algebra, and
axioms for equality for �act and �, see below.

A1. �x : � "
�

x �, for all actions �.
A2. (�x : � " �) �

�
x � " �, for all actions � and �, where x is not free in �.

A3. (�x : P(�)) � P(
�

x �)
A4. ( x : Pw(�)) � Pw(

�
x �)

A5. (�x : [�]�) � [
�

x �]�
A6. [	]�
A7. ���� ! [�]�� ���(� ! �)
A8. [� 
 ��]�# [�]� ! [��]�
A9. P(	)
A10. P(� 
 �) # P(�) ! P(�)
A11. �Pw(	)
A12. Pw(� 
 �) # Pw(�)
A13. P(�) ! � � 	 � Pw(�)
A14. Pw(Æ) � P(Æ), where Æ � At(�0)
A15. a1(?� � � � � ?) 
    
 an(?� � � � � ?) �act U
A16. �Æ��� [Æ]�, where Æ � At(�)
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A17. ���x ���y : ��x �
��y � a(��x ) � a(��y ) �act 	, for all a � �0.

Subs. �[�] ! (� �act �
�) � �[� � ��]

FOLSub. (�x : �) � �[x � t], where t is free for x in �.
Barcan. (�x : [�]�) � [�](�x : �)

And the following deduction rules:

MP. If $ � and $ � � �, then $ �
GEN. If $ �, then $ [�]�
FOL-GEN. If $ �, then $ �x : �

Axioms Subs, FOLSub and rule FOL-GEN are usual for first-order logics. Rule Bar-
can is standard in first-order modal logics; it expresses that the domain of discourse
is not a�ected by modalities. Axioms A3-A17 expresses basic properties of modalities
and permissions; axioms A6-A16 are also common for the propositional part of the
logic, see [1]; for further comments and intuitions about these axioms. The novel ax-
ioms are A1 and A2; these axioms say that the actions of the form

�
� are least upper

bounds. On the other hand, axioms A3-A5 express the relationship between quantifiers
and the universal non-deterministic choice. We come back to these properties in section
4. For equalities involving only rigid terms we consider the theory LNI described in
[9], whereas for equalities involving some flexible terms (and for �act) we consider the
theory CI of contingent identity, which contains reflexivity and a restricted version of
the schema of replacement of equals for equals.

It is interesting to note the role of atomic action terms. Axiom A14 expresses that,
if an atomic action term is weakly allowed, then it is strongly allowed. In the semantic
model this is true since atomic action terms are interpreted as a unique event. Another
way of reading this axiom is as saying that each event is either allowed or forbidden.
This is a benefit with respect to the work of Segerberg [11] where a boolean algebra of
actions is used, but the property that, if an event is not allowed, then it is forbidden is
not expressible, since the algebra lacks atoms.

3.1 Soundness and Completeness

In this section we prove the soundness and the completeness of the axiomatic system
presented above. The relationship $� 	(�)�� is defined as usual in modal logic, taking
into account that only the deduction rule MP is allowed to be applied to assumptions.

Theorem 2. The axiomatic system is sound, i.e., $ � implies � �.
Proof. We first prove the validity of the axioms. Axioms A6-A13 are straightforward
following the proofs given for the propositional version of the logic [1]. Axioms A14
and A16 are direct taking into account that the interpretation of Æ terms are singleton
or empty sets (theorem 1). Axiom A15 is valid because of condition I4, and A17 because
of condition I1. Finally, A3 and A4 are straightforward using the semantical definition
of strong and weak permission.

On the other hand, FOLSub is a standard axiom of first-order logics. The validity
of Subs can be proven in the same way that it is proved for the propositional case (see
[1]). The algebra of actions in any model is defined over sets using union, intersection
and set complement, and therefore it is a boolean algebra. For axioms A1 and A2, note
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that the operator
�

is interpreted as the union of a collection of sets, which obviously
satisfies A1 and A2. The other axioms are standard for quantified normal modal logics.

Now, we tackle the more diÆcult problem of completeness. First, we define a canonical
model using well-known techniques coming from modal first-order logic: we extend the
language with an enumerable number of new variables and we use the set of terms as the
domain of discourse1 (the basic idea is presented in [9]). As usual, we use maximal con-
sistent sets of formulae in this language (which satisfy standard requirements) as states,
and then we define relations between these states in such a way that the relationship
between states is consistent with the properties of the necessity modality and the action
operators; the atoms of the boolean algebra of action terms (modulo some equational
theory) are the labels of these relations. In the following we sketch this proof.

Let us define a boolean algebra whose elements are equivalence classes of action
terms obtained using the equivalence relation �act (i.e., we build a Lindenbaum alge-
bra) modulo some equational theory denoted by 
. For any action term � consider
[�]� � �� � 
 $ � �act �� (i.e., its equivalence class under the relation �act and the
equational theory 
). We denote this set of elements by ��
, when 
 is empty (i.e.,
we only consider the basic axioms for �) we write �� �act. Now, we define the fol-

lowing operators over this set of elements: [�]� 
[] [�]�
def
� [� 
 �]� , [�]� �[] [�]�

def
�

[� � �]� , �[�]�
def
� [�]� . It is straightforward to prove that ���
�
[]��[]� [U]�� [	]�� is

a boolean algebra. It is important to note that [
�

x �]� is the least upper bound of the set
�[�[x � t]]� � t � TL(X)�. Let us prove this result.

Theorem 3. [
�

x

�]� is the least upper bound of the set �[�[x � t]]� � t � TL(X)�.

Proof. We have $ �x : � "
�

x �, and therefore by FOLSub we obtain $ (� "
�

x �)[x�t]
for any t. Since x is not free in

�
x �, this is equivalent to: $ �[x� t] "

�
x �. On the other

hand, suppose that $ �[x � t] " � for any term t. (Let us suppose that x is not free in
�, otherwise we can replace x by another variable to obtain a term which is equivalent
to �.) Therefore we have $ � " �, and using FOL-GEN we obtain $ �x : � " �, and
therefore by axiom A2 we get: $

�
x � " �.

Another useful result is the following. This result shows that the Lindenbaum algebra
defined above is atomic.

Theorem 4. Given any language L � ��0� F�R�. The Lindenbaum boolean algebra
described above is atomic. Furthermore, the set of all atoms is given by: �[Æ]� � Æ �

At(�0)�
�.
Proof. Each action term is equivalent to a term in DNF, where each clause is a mono-
mial or a non-deterministic choice over the parameters of a primitive action term. These
kinds of terms are bounded above by Æ-terms. On the other hand, note that if we join a
primitive action term to a Æ-term, this new action term becomes equal to the impossible
action, since the primitive action term appears negated or with a di�erent parameter in
the Æ-term.

1 In [9] only variables are used as the domain of the canonical model, we extend this idea to
encompass the rigid and flexible terms.
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Using these properties, we tackle the completeness of the axiomatic system. We use
these atoms for giving the canonical model. Given a language L, consider the collection
of maximal consistent sets of formulae, i.e.:

MCS � �� � � is a maximal consistent set of formulae ��

We use the standard technique of adding an infinite enumerable set of variables to L:
y0� y1� y2� � � � We call this language L�. It is not hard to see that the elements of MCS
are consistent sets in the language L�, and also L� preserves the theorems of L (this is a
standard result of first-order logics). As usual, for each formula � of L we can consider
a formula: ��x : �� ��[x�c], where c is one of the new constant symbols. We denote
this set of formulae by . Now, for each � � MCS we can consider the set � �  and
extend it until we obtain a maximal consistent set in L�; we call this set ��. Now, we
define a new collection of sets of formulae as follows: MCS� � �� � � � � MCS�.

The idea is that we provide a canonical model for L�; the completeness of the calculus
follows. But since the theorems of L are preserved for L� (see below) we obtain the
completeness of L too. In the following we consider a fixed enumeration of terms such
that rigid terms appear before flexible terms.

Definition 6. �� is made up of:

– ��

def
� ��� � �� � MCS�

– ��
def
� ��w � w � ���, where for each w � � we define:

�w � �[Æ]� � [Æ]� � AtL� (�)�
 and 
 is the set of equations in w�

– ��

def
� T (X � �y1� y2� � � � �).

– ��
def
�
�
����w�w� � w�w� � �� ! � � � ! (�� � � : [�]� � w � � � w�)�, where

R��w�w�

def
� �w

[Æ]
� w� � �[Æ] � �w and (w $ Æ " �)�.

– ��
def
�
�
��w�� � w � �� ! P(�) � w�, where: �w��

def
� �(w� [Æ]BA) � �[Æ] �

�w and (w $ Æ " �)�.

– ��(ai)(x1� � � � � xn�w)
def
� �[Æ] � �w � (w $ Æ " ai(x1� � � � � xn))�.

– If f is function symbol (rigid or flexible), and t�1 : � � �� � � � � t�n : � � � then

��( f )(t�1� � � � � t
�
n)(w)

def
� t, with t being the first term in the enumeration such that

t � f (t�1(w)� � � � � t�n(w)) � w.

Some notes about this canonical model may be useful. The set �� is made up of sets
�w and each of these sets contains all the atoms of the action term algebra modulo the
equational theory in w, and these elements are used as labels of the transition system.
�� is the set of worlds, where each world is a maximal consistent set of formulae, as
explained above. �� is made up suitable terms in the domain. The relationship �� is
defined using the sets �w and taking into account the formulae of the form [�]� in each
world. The predicate�� is defined using the deontic formulae belonging to each world.
On the other hand, the interpretation �� for each action gives us the corresponding set
of atoms of the boolean algebra of actions. The conditions I1-I4 are satisfied as a conse-
quence of the properties of the Lindenbaum Algebra; this is shown for the propositional
case in [1], and a similar proof can be obtained for this canonical model. Note that the
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enumeration given ensures us that rigid terms will denote the same value in every state,
no equation between rigid terms can be added in any state as a consequence of the sys-
tem LNI. The following lemma says that valuations over the canonical model preserve
the order of the algebra of actions.

Lemma 1. For every valuation v, we have: �� � ���[Æ] � �
v�w
�

(�) : w $ Æ " �[x1 �

t1� � � � � xn � tn], where x1� � � � � xn are the free variables appearing in � and we have
v(x1)(w) � t1� � � � � v(xn)(w) � tn.
Proof. The proof is by structural induction over the action term �. For the primitive
action terms the proof is straightforward by definition of �. For the operators 
, � and
� the proof is as shown for the propositional logic in [1]. Let us prove the theorem for
the least upper bound operators.

Suppose that � �
�

xi

��. Suppose that [Æ] � �v�w
C (�). By definition of �C we have that

[Æ] � �v[x ��i]�w(��) for some term t � i(w). But then, by induction, we obtain that

w $ [Æ] " �[xi � t� x1 � t1� � � � � xn � tn]�

On the other hand, using axiom A1, FOL-Sub and FOL-Gen we obtain: $ �[xi � t� x1 �

t1� � � � � xn � tn] " (
�

x �)[x1 � t1� � � � � xn � tn] and then using the equation above together
with the transitivity of " we obtain: $ Æ " (

�
x �)[x1 � t1� � � � � xn � tn]

In the following, we use the valuation v�, which given a variable x and a state s, it
returns the first term t such that x � t � w.

Now, we prove the following truth lemma:

Lemma 2. For every �, � � w i� w��C� v� � �.
Proof. The proof is by induction on �. The base cases are as follows.

Suppose t1 � t2 � w; by definition of the canonical model we know that �vC �w
C (t1)

returns the first term t such that t � t1 � w, but we get that t � t2 � w and therefore
�

vC �w
C (t1) � t, so w��C� v� � t1 � t2. The inductive cases are as follows. The standard

operators are dealt with as usual. We provide proofs for the new ones.
For strong permission, suppose that we have P(�) � w; an induction on the structure

of � shows that � is equal to Æ�1 
    
 Æ�n where each Æ� is a atomic action term, or is
obtained from a Æ term using the big choice (

�
). Now, since P(�) � w, we have that

P(Æ�1 
    
 Æ�n) � w; using axiom A10 we get P(Æ�i) � w, for each Æ�i . If Æ�i is equal to
some Æi(an atomic action term) then we get, by definition of ��: ���w� v� � P(Æ�i). If
Æ�i �

�
x Æi, for some Æi, we get, by axiom A10 and FOLGen, that (�x : P(Æi)) � w, and

by definition of �� we obtain: ���w� v� � �x : P(Æi) and this by axiom A3 implies
���w� v� � P(

�
x Æi). That is, we have ���w� v� � P(Æ�1 
    
 Æ�n), and therefore

���w� v� � P(�). The other direction is similar.
The proof for weak permission is analogous to the proof given for strong permission,

but using axiom A4 instead of axiom A3.
Now, suppose [�]� � w; therefore, for any $ Æ " �, we have, by axiom A8, [Æ]� � w.

By definition we know that for every w� such that w
[Æ]
� w� we have � � w�; by induction

this implies w����� v� � �, and therefore w���� v� � [Æ]�. Using the boolean property
introduced above that an action can be rewritten as the union of its atoms, we get
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w���� v� � [�]�. Now, suppose [�]� � w; by properties of maximal consistent sets,
we have ����� � w and, therefore, by the properties of the canonical model (see [1]),

there is a state w� such that w
[Æ]
� w� such that w����� v� � ��, and then, we obtain

w���� v� � �Æ���; here, using axiom A8, we have w���� v� � ������

If �x : � � w, let v�x ��t be a variation of v�. By axiom FOLSub we have �[x � t] � w,
and therefore w���� v� � �[x � t]; this implies that: w���� v�[x �� t] � �. Since this
is true for every variation of v[x �� t], we have that: w��C� v� � �x : �. The other
direction is similar using FOL-GEN.

We have obtained a canonical model for the language L�, but since L� is conservative
with respect to the theorems of L (which can be verified checking the axioms and the
deduction rules), we also obtain the completeness of the axiomatic system in L.

4 Related Logics

In this section we briefly compare the logic developed in this paper with related log-
ics. To the authors’ knowledge, the generalized non-deterministic choice and the gen-
eralized parallel execution have not been investigated in the literature of dynamic or
boolean logics [4,12]. It is worth mentioning that dynamic logic [4] provides a non-
deterministic assignment x :�? which can be thought of as an instance of the more
general operator introduced here (we have followed Harel’s notation throughout this
paper). Deontic action logics with boolean operators have been widely investigated in
the literature [11,5,13,14,15]. However, it seems that first-order operators have only
been used in [14,15], where a sound and complete axiomatic system is not provided.

On the other hand, some notes about the interplay between deontic operators and
quantifiers may be useful for understanding the characteristics of the logic obtained.
Hintikka and Kanger agreed that some properties relating quantifiers and deontic oper-
ators are not intuitively true. The logics proposed by these authors are more expressive
than the one introduced here. For example, the predicate Ax : O(Px), is a quantification
over actions; the intuitive meaning of this expression is: every action of type P is obliged
to be executed. In the same way, we can write: O(Ax : Px) which must be read as: it is
obliged that every act of type A is performed. The formula Ax : O(Px) � O(Ax : Px)
is discarded with intuitive examples of the style: In some settings, everyone ought to
pay fines, but it is not true, in every deontically perfect world, that every one should
pay fines. Our logic is di�erent: we can only quantify over parameters. It is straight-
forward to prove the following properties: (1)  x : Pw(�(x)) # Pw(

�
x �(x)), (2)

�x : P(�(x)) # P(
�

x �(x)). These valid formulae expose the existential (formula
(1)) and universal character (formulae (2)) of weak and strong permission, respectively.
Note that similar properties for obligation are not true in our setting. That is, neither
of the following formulae is a theorem in our logic: (3)  x : O(�(x)) # O(

�
x �(x)),

(4)�x : O(�(x)) # O(
�

x �(x)).
Let us illustrate this by means of a simple example. Let push be the action of pushing

an element onto a stack; the formula �x : O(push(x)) means that we are obliged to push
every element onto the stack; this equivalent to the formula: �x : P(push(x)) ! �x :
�Pw(push(x)), which means that we are allowed to push any x onto the stack, and it
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is forbidden to not push some element onto the stack. In contrast, O(
�

x push(x)) is
equivalent to: P(

�
x push(x)) ! �Pw(

�
x push(x)), which can be read as saying that we

are allowed to push any x onto the stack and that some element should be pushed onto
the stack. A similar analysis can be done for the existential formula. It is important to re-
mark that our model of parallelism implies that statements of the type �x : O(push(x))
can only be fulfilled when either pushing an element is impossible or the domain is a
singleton. Let us remark that the logic is intended to be used for specifying computer
systems, where components are captured as logical theories (as done in [10]), and there-
fore categorical constructions can be used to manage components (see [16]). A more
expressive logic can be obtained if requirement I1 is dropped, but in this case it is not
clear whether strong completeness could be preserved; we leave this as further work.

5 An Example

In this section we describe a simple example to illustrate the use of this logic in practice.
We consider the scenario of a fault-tolerant memory. Roughly speaking, we have a
database where errors may occur while writing, and therefore inconsistent data may
be stored. To avoid this situation, we have two memories which are coordinated with
respect to writing: if they disagree in some position, then a rollback is executed to return
the memories to a safe state. In the example shown below, we consider types or sorts to
make the specification more appealing, although we have not considered types or sorts
in our logic; as usual we can express them using predicates. We have the following
types:

– Val denotes the set of values that can be written in the memories.
– Pos denotes the set of positions of the memories.

We consider components m1 and m2 that are instances of a specification Mem. We
consider the following actions:

– mk�Set(i : Pos� v : Value) denotes the action of writing the memory mk in position
i with value v.

– mi�RBack denotes the action of taking memory mi to a safe state.
– mi�Fail denotes the failure of memory mi.

We also have flexible functions mk�Get : Pos � Val, these functions return the value in
a given position of a memory. We use the usual notation in computer science, indicating
the parameters of the actions by means of names of variables. We also consider pred-
icates Init and V, which are used to indicate the beginning of time and a state of error,
respectively. In the following we exhibit some axioms and their intuitive reading:

A1 �i � Pos� v � Val : [mk�Set(i� v)�mk�Fail]mk�Get(i) � v, where k � 1� 2; this axiom
says that, when there is no error, the action Get behaves correctly.

A2 [mk�Fail]V , where k � 1� 2; this axiom expresses that after a failure we have a
violation.

A3 V � O(m1�RBack � m2�Rback), this axiom says that, when we have a violation,
then we ought to execute the roll back in both memories. If executed, this ensures
that we go into a safe state.
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A4 �i � Pos� v1� v2 � Val : v1 � v2 � F(m1�Set(i� v1) � m2�Set(i� v2)), this formula
says that it is forbidden to write di�erent values at the same position in the two
memories.

A5 �i � Pos� v � Val : F(m2�Set(i� v) � m1�Set(i� v)), this axiom expresses the require-
ment that it is forbidden to write in m2 and not in m1.

A6 �i � Pos� v � Val : F(m1�Set(i� v) � m2�Set(i� v), this axiom is the symmetric case
of axiom A5.

A7 �i : Pos� v � Val : mk�Get(i) � v � [mk�Set(i� v) 
 mk�Fail]mk�Get(i) � v, this
axiom says that when the memories are not written and there is no failure, then the
state of the memories is preserved.

A8 Init � �V , this axiom says that at the beginning there is no violation.
A9 F(�) � [�]V , this axiom says that, if we execute a forbidden action, then we go

into an error state. Note that it is an axiomatic schema.
A10 �i � Pos : [m1�Rback � m2�Rback]m1�Get(i) � m2�Get(i), this axiom says that,

after a rollback both memories reach the same state.

The predicate F(�) is the prohibition predicate, and it is defined as F(�)
def
� �Pw(�).

Axioms A4-A6 are interesting as they contain deontic prescriptions. Roughly speaking,
these axioms state what the ideal behaviour of the system is, although some errors or
failures may cause the system to behave in a di�erent way.

The deontic component of the logic allows us to perform di�erent analyses over the
specification. For example, we can prove properties over the scenarios where the system
behaves as expected (that is, when the deontic prescriptions are followed). In this case
a desirable property is that, when there is no violation, both memories contain the same
data. On the other hand, we can also prove properties over erroneous or faulty behaviors
(for example, when data is written in only one memory); in this case one interesting
property to prove is that both memories reach a safe state (i.e., a state where they contain
the same information). We have shown some examples of proofs and specifications
in [1,3]. In the case of the first-order logic shown here, in order to prove interesting
properties, it is necessary to have some implementation of the axiomatic system in a
semi-automatic prover; this will facilitate the task of proving properties. We leave this
as further work.

6 Conclusions and Further Remarks

In this paper we have presented a first-order extension of a deontic action logic whose
propositional version we have presented in [1]. Deontic action logics and modal action
logics (or dynamic logics) have been extensively investigated by several authors. How-
ever, first-order extensions of deontic logics have not enjoyed any substantial advance
since the seminal works of Hintikka and Kanger. This is in part because the intuitive
properties of deontic predicates and quantifiers are hard to capture in a formal setting,
see [17] for detailed discussions about these diÆculties. Here we restrict ourselves to
first-order quantification, and then we show how a sound and complete calculus is ob-
tained. It is important to clarify the fact that we intend to use this logic for the spec-
ification and verification of computing systems, in particular for the specification and
verification of fault-tolerant systems. We have shown a small example of application
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where a fault-tolerant memory system is specified. The modal operators allow us to
express pre and post-conditions, as done in dynamic logics, and the deontic operators
allow us to distinguish the expected or ideal behaviour of our system from the unex-
pected or erroneous behaviour. On the other hand, we intend to use techniques similar
to those introduced in [10] to be able to modularize specifications. This will allow us to
facilitate the analysis of specifications, and to obtain a more appealing software engi-
neering framework. Note that the restriction that we cannot execute in parallel the same
action (with di�erent parameters) can be circumvented if we consider two instances of a
specification; each one can be thought of as being an instance of the component running
on its own processor. Summarizing, modularization techniques are needed to apply this
logic framework to more complex and interesting examples.
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Abstract. In this paper we present a part of Casl-Mdl, a visual mod-
elling notation based on Casl-Ltl (an extension for dynamic system
of the algebraic specification language Casl). The visual constructs of
Casl-Mdl have been borrowed from the UML, thus existing editors may
be used. A Casl-Mdl model is a set of diagrams but it corresponds to
a Casl-Ltl specification, thus Casl-Mdl is a suitable means to eas-
ily read and write large and complex Casl-Ltl specifications. We use
as a running example a case study that describes the functioning of a
consortium of associations.

1 Introduction

The aim of our work is to reshape the formal specification language Casl-
Ltl [11] (a Casl [7] extension for dynamic systems) as a visual modelling nota-
tion, and this requires to provide a visual syntax to the Casl-Ltl specifications.
This work is motivated by the fact that in our opinion the currently available
modelling notations have some problematic aspects, for example the lack of a
formal semantics if not of a well-defined syntax.

We decided to attempt this experiment for the following reasons:
- Casl-Ltl is very suitable to specify/model different kinds of dynamic systems,
and at different levels of abstraction. Indeed, it has been used to specify the use-
case based requirements [2], the main features (the domain, the requirements
and the machine) for the basic problem frames [3], and recently it has been used
to specify the services in the field of SOA (Service Oriented Architecture) [6].
- A modelling (specification) method for Casl-Ltl was developed [4], where
the modelling is guided by the use of simple ingredients/concepts as data types,
dynamic system, elementary interaction, and cooperations between systems.
- Casl-Ltl is extremely expressive (it includes a powerful first-order temporal
logic), allows different styles of specification/modelling (e.g., property oriented
and constructive [4]), while still based on a limited number of constructs,
- it is not object-oriented, and this may be an advantage, whenever the models
are not used for developing object-oriented software (e.g., when using SOA),
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- and obviously it has a well-defined semantics, and there exists software tools
to help the formal verification of its specifications.

However, the textual, quite verbose syntax, may prevent to use Casl-Ltl
for large specifications, needless to say that this threatens the acceptance by
the non-academic modellers. A visual syntax for Casl-Ltl will help to keep
the dimension of the models quite reasonable, and obviously will ease the under-
standing and the production of models, even by people without a deep know-how
in logics and algebraic specifications.

In [4] we already made a first attempt to give a visual presentation to some
Casl-Ltl specifications, using ad hoc graphical symbols and icons. The attempt
was successful for what concerns the compactness of the specifications and the
ease to produce them, but further applications and extensive experimentations
were prevented by the lack of supporting software tools, e.g., an editor. Obviously
these tools could be developed but to produce high quality tools requires really
a large effort. Moreover, the graphics of this first attempt of a visual syntax
needed to be improved for a better legibility.

In [10] we find the same concern to ease the use of formal specifications by
providing a graphical/visual notation for it, and they use both class diagrams
and constraints diagrams to represent Z specifications. In [9], constraint diagrams
and VisualOCL are compared as a means to visualize OCL expressions. Clearly,
our approach here is not to propose a formal semantics to the UML [12], thus
we do not refer to the numerous works of that field [1].

Our present work with Casl-Mdl relies on borrowing visual constructs of the
UML to build a visual syntax for Casl-Ltl. This choice has some advantages:
- the graphical constructs are widely known, and were introduced in the UML
by pre-existing notations, and now have been tested by a huge number of users
for a long time; thus they are familiar and may be easily understood
- some peculiar characteristics of the UML, as its flexibility and the easiness to
define variants of itself, and the very loose static semantics, make it possible to
define the concrete visual syntax of Casl-Ltl as a variant of the UML (that is
as a UML profile)
- software tools for editing the UML models are widely available, and many good
ones are free.

However, an issue is that, when looking at a Casl-Mdl model, some people
may be confused between UML and Casl-Mdl, and perhaps may use Casl-
Mdl with the UML intuition. To overcome this we use the profile mechanism
to stress the semantic differences; for example a CASL predicate is depicted as
a UML operation without return value stereotyped by <<pred>>. A definitive
answer about the fact that the borrowed syntax may lead to confusions can
only be given by means of rigorous experiments, as proposed by the empirical
software engineering, where people knowing both UML and Casl-Mdl would
be asked to interpret and to produce some models in a controlled way.

Let us remind of a famous occurrence of “syntax borrowing” that resulted in
a big success, i.e., the definition of the Java programming language, where the
syntax of the C language was kept on purpose whenever possible even if their
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semantics are totally different. In this case it seems that no confusion arose and
also that the familiar aspects of the new language helped its acceptance.

Not any specifications of Casl-Ltl will have a visual counterpart, but only a
subset, however large enough to include all the specifications produced following
the method of [4].

In Casl-Mdl we have a type diagram, introducing the datatypes and the
dynamic types, which are types of dynamic system (either simple or structured),
used in the model. Constraints allow one to express properties on the introduced
types (i.e., on the corresponding values or dynamic systems) using first-order
and temporal logics. Interaction diagrams express visually properties on the
interactions among the components of a structured dynamic systems using the
same constructs as the UML sequence diagrams. The behaviour of the dynamic
systems of a given type is modelled by interaction machines, using the same
constructs as the UML state machines.

The definition of Casl-Mdl is an ongoing work and in this paper we will
present only the type diagrams and the interactions diagrams, while in [5] we de-
scribe also the interaction machines, the constraints, and the constructive defini-
tion of data types. Up to know we have not introduced in Casl-Mdl diagrams
for modelling the workflow, as the UML activity diagrams or the BPMN process
diagrams, which would be very useful for using Casl-Mdl for business modelling
and the modelling of business processes; we are currently working on that.

In Sect. 2 we introduce the Casl-Mdl models, in Sect. 3 and in Sect. 4
the type diagrams and the interaction diagrams respectively, and finally in the
Sect. 5 the conclusions and the future works.

In the paper we use as a running example the modelling of ASSOC, a case
study that describes the functioning of a consortium of associations where as-
sociations have boards with a chair and several members, and board meetings
take place, to communicate informations or to take decisions via voting. ASSOC
has been used as a paradigmatic case study to present a method for the business
modelling based on the UML, and thus we think that it may be a good work-
bench to test the modelling power of Casl-Mdl. Fragments of the model of
ASSOC will be used to illustrate the various Casl-Mdl constructs, an organic
presentation of this model can be found in [5].

2 CASL-MDL Models

A Casl-Mdl model represents the modelled item in terms of values and of dy-
namic systems, and we use the term “entity” to denote something that may be a
value or a dynamic system; similarly an entity type defines a type of entities. In
Fig. 1 we present the structure of a Casl-Mdl model, by means of its “concep-
tual” metamodel expressed using the UML1. The corresponding concrete syntax
will be expressed by means of a UML profile, allowing to use the UML tools for
editing and for model transformations (e.g., into the corresponding textualCasl-
Ltl specifications). Thus Casl-Mdl has both a conceptual and a

1 In the UML the black diamond denotes composition and the big arrow specialization.
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Fig. 1. Structure of the Casl-Mdl models ( “conceptual” metamodel)

concrete metamodel, the first will be used by the human to grasp the notation,
and the latter by the computers to produce and elaborate the Casl-Mdlmodels.

A Casl-Mdl model consists of entity type declarations (EntityType), of re-
lationships between entity types such as extension and subtyping, of properties
about some of those entities and of definitions describing completely some of
those entities. In this paper for lack of space we consider only the highlighted
parts.

A Casl-Mdl model corresponds to a Casl-Ltl specification with at least
a sort for each declared entity type, whereas the properties are a set of axioms
and the definitions in subspecifications built by the Casl-Ltl “free” construct.

Translation
TModel : Model → Casl-Ltl-Specification

TModel(mod) =
specmod.name = TETypes(mod.entityType)2 then axioms TProps(mod.property)

The translation of the entity types (at least one must be present in a
Casl-Mdl model) yields a Casl-Ltl specification declaring all the sorts corre-
sponding to the types, plus some auxiliary sorts, and obviously all the declared
operations and predicates.

A property in Casl-Mdl corresponds to some Casl-Ltl formulas on some
of the entities introduced in the model, which will be used to extend the spec-
ification resulting from the type declarations. A Casl-Mdl model having only
properties will in the end correspond to a loose Casl-Ltl specification.

A property may be a constraint consisting of a Casl-Ltl formula written
textually, similarly to the UML constraints expressed using the OCL, but in
Casl-Mdl constraints are suitable to express also properties on the behaviour
of the dynamic systems, whereas OCL roughly corresponds to first-order logic.
In Casl-Mdl it is also possible to visually present some properties having a
specific form, for examples some formulas on the interactions among the parts

2 In the UML the name of the target class with low case initial letter is used to navigate
along an association, thus mod.entityType denotes the set of the elements of class
EntityType associated with mod.
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Fig. 2. Structure of Type and the Entity types (metamodel)

of a structured system may be expressed visually by diagrams denoted as UML
sequence diagrams, and other formulas may be represented by diagrams similar
to the UML activity diagrams. In this paper we consider only the properties of
kind constraint and interaction properties.

Visually a Casl-Mdl model is a set of diagrams including at least a Type-
Diagram presenting the entity types together with the associated constraints,
and part of the definitions, whereas the other diagrams correspond to the re-
maining kind of definitions and to the properties having a visual counterpart. In
this paper a Casl-Mdl model consists of a type diagram made by entity type
declarations and constraints and of a set of interaction properties.

The TypeDiagram may become quite large and thus hard to read and to
produce, so in Casl-Mdl it is possible to split a TypeDiagram in several ones
to describe parts of the types and of the constraints. Furthermore some features,
as operations and predicates, of a type may be present in one diagram and others
in another one. This possibility is like the one offered by the UML with several
class diagrams in a model (a class may appear in several of them, and some of its
features - operations and attributes - are in one diagram and some in another).

3 Entity Types and Type Diagrams

A type may be either predefined or an entity type (declaration) which, as shown
in Fig. 2, defines a datatype or a dynamic type. In Sect. 3.1 we describe the
datatypes, and in Sect. 3.2 the dynamic types.

The predefined datatypes of Casl-Mdl are those introduced by the Casl
libraries and includes the datatypes, e.g., Nat, Int, List and Set.

Translation
TETypes : EntityType∗ → Casl-Ltl-Specification

TETypes(et1 . . . etn) =
Library then
Basic(et1 .name) and . . . and Basic(etn .name) then
Detail(et1 ); . . .Detail(etn);

where Library is a Casl specification corresponding to all the predefined
datatypes (parameterized or not) defined by the Casl libraries [7].
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Fig. 3. Datatype Structure (metamodel)

The translation of a set of entity types consists of a Casl-Ltl specification
corresponding to the predefined types, enriched with the basic specifications of all
the types of the model (defined by the function Basic) and after with the details
of each type defined by the Detail function. The Basic function introduces the
sort corresponding to the identifier passed as argument. Splitting the translation
of a Casl-Mdl type allows one to have that a type in the type diagram may
use all the other types present in the same diagram to define its features.

3.1 Datatypes

Casl-Mdl allows to declare new datatypes using the construct Datatype, and
their metamodel is presented in Fig. 33.

The datatypes may have predicates and operations, which must have at least
an argument typed as the datatype itself, and the operations have a return type.

The structure of a datatype of Casl-Mdl may be defined in two different
ways, using either generators or attributes.

In the first case the datatype values are denoted using generators (as in
Casl).4 The arguments of the generators may be typed using the predefined
types (corresponding to those of theCasl library) and the user defined datatypes
and dynamic types present in the same TypeDiagram.

The other possibility is to define the datatype values in terms of attributes,
similarly to UML. An attribute attr: T of a datatype D corresponds to a Casl
operation .attr: D → T. In this case there is a standard generator named as
the type itself having as many arguments as the attributes, but it is introduced
when defining the datype by an appropriate definition.

3 Note that for the UML diagrams we follow the convention that a multiplicity equal
to 1 is omitted, thus an attribute has exactly one type.

4 We prefer to use the term generator instead of constructor used in the OO world to
make clear that in our notation we have datatypes with values and not classes with
objects.
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(a) Schematic datatype with attributes (b) Schematic datatype with generators

(c) Alternative visual presentation of an attribute

Fig. 4. Visual notation for datatypes

Fig. 4 presents the visual notation for the two forms of datatypes by means
of two schematic examples, one with attributes and one with generators
(<< pred >> marks the predicates and << gen >> the generators).

The attributes may have a multiplicity, and its meaning is that the type of
the attribute is a set of the associated type and that its values satisfy an implicit
constraint [5] about the size of their set values (e.g., multiplicity 0..1 means that
the attribute may be typed by the empty set or by a singleton, * that may
be typed by any set also empty, and 1..* by any nonempty set). Multiplicity 1
is omitted and corresponds to type the attribute with the relative type. This
construct of the Casl-Mdl motivates the implicit definition of the finite sets
for each type in the translation of the entity types given in the following.

Obviously anonymous casting operations converting values into singleton sets
and vice versa are available.

An attribute attr [m]: T of a dataype D may be also visually presented by
means of an oriented association as in Figure 4(c).

The modellers are free to use plain attributes or their visual counterpart,
but notice that using the arrows shows the structuring relationships among the
various types.

Notice that it is possible that only the name of the datatype is provided
(no generator or attribute, no predicate or operation), and visually it is simply
represented by a box including the name of the datatype.

Translation
Basic : Datatype → Casl-Ltl-Specification

Basic(dat) = FiniteSet[sort dat.name]
The basic part of the translation of a datatype is the Casl specification of

the finite sets of elements of sort dat.name (sort dat.name is declared in the
specification). The need for an implicit declaration of a finite set type for each
datatype (as well as for the dynamic types) is motivated by the possibility to
associate a multiplicity to the attributes, which corresponds to implicitly declare
their type as a set.
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Fig. 5. ASSOC: Type Diagram containing some dataypes

Detail : DatatypeAttributes → Casl-Ltl-Specification
Detail(datA) = TAttributes(datA.attribute, datA.name) ;

TPredicates(datA.predicate) ; TOperations(datA.operation) ;
Below we give part Detail of the translation of the schematic example of

datatype with attributes of Fig. 4(a).

op .attr1 : DataA → T1 ; %% an operation corresponding to an attribute
. . .

pred pr : T1 ′ × . . .× Tk ′; %% a predicate . . .
op opr : T1 ′′ × . . .× Tm ′′ → T ′′; %% an operation . . .

Notice that at this point the standard generator for the sort DataA has not
been introduced, the type has only some selector like operations corresponding
to the attributes (this allows to refine the datatype with more attributes).

Detail : DatatypeGenerators → Casl-Ltl-Specification
Detail(datG) = TGenerators(datG.generator, datG.name) ;

TPredicates(datG.predicate) ; TOperations(datG.operation) ;

Below we give part Detail of the translation of the schematic example of
datatype with generators of Fig. 4(b).

type DataG ::= gen(T1 ; . . .Th) | . . . ;
pred pr : T1 ′ × . . .× Tk ′; %% a predicate . . .
op opr : T1 ′′ × . . .× Tm ′′ → T ′′; %% an operation . . .

ASSOC Model: Datatypes
Fig. 5 presents a Type Diagram of the Casl-Mdl model of ASSOC contain-
ing only datatypes. It includes some enumerated types, precisely MeetingStatus
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and Vote (they are a special case of datatype having only generators without
arguments considered as literal [5]).

Time is a datatype where no detail is given (it just corresponds to the in-
troduction of the type name). Similarly, no generator is available for BallotRule
however a predicate, check, given the votes and the number of voters says if the
voting result was positive or not (Int and List are the predefined Casl datatypes
for integers and lists). There are some generators for the Item datatype, together
with some predicates. Then there are two examples of datatypes with attributes.
A Document has a title and some items (possibly zero), and this is expressed
by the textual attribute title typed by the predefined String and by items rep-
resented by an arrow. A Meeting always has a status, a date and the maximum
number of participants (textual attributes in the picture), and optionally it may
have an agenda and/or minutes (visual attributes with multiplicity 0..1).

Here there is theCasl-Ltl specification fragment corresponding to partDetail
of those types translation.

free type Vote ::= yes | no | null ; %% enumerated type
free type MeetingStatus ::= scheduled | open | failed | closed ;

%% at this stage no generator available for the sort BallotRule
pred check : BallotRule × List [Vote]× Int ;
type Item ::= mkCommunication(String ; String)

| mkDiscussion(String ; String ;BallotRule);
%% An item is a communication or a discussion with a ballot rule

pred isACommunication : Item;
pred approved : Item;
op .status : Meeting → MeetingStatus ; %% corresponds to an attribute . . .
op .agenda : Meeting → Set(Document); . . .
axiom ∀ m : Meeting • size(m.agenda) ≤ 1 ∧ size(m.minutes) ≤ 1

Notice that in this part of the translation there is nothing concerning the
datatype Time, since the corresponding sort has been already introduced in the
basic part of the translation of the types (FiniteSet[sort Time]).

3.2 Dynamic Types

In Casl-Ltl and thus in Casl-Mdl the dynamic systems represent any kind of
dynamic entities, i.e., entities with a dynamic behaviour without making further
distinctions (such as reactive, proactive, autonomous, passive behaviour, inner
decomposition in subsystems), and are formally considered as labelled transition
systems, that we briefly summarize below.

A labelled transition system (lts for short) is a triple (State,Label,→), where
State denotes the set of states and Label the set of transition labels, and →⊆
State × Label × State is the transition relation. A triple (s , l , s ′) ∈→ is said to

be a transition and is usually written s
l−−→ s ′.

Given an lts we can associate with each s0 ∈ State a tree (transition tree)

with root s0 , such that, when it has a node n decorated with s and s
l−−→ s ′,

then it has a node n ′ decorated with s ′ and an arc decorated with l from n to
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Fig. 6. Dynamic Type Structure (metamodel)

n ′. A dynamic system is thus modelled by a transition tree determined by an lts
(State,Label,→) and an initial state s0 ∈ State.

Casl-Ltl has a special construct dsort state label label to declare the two
sorts state and label , and the associated predicate

-- --> : state × label × state
for the transition relation.

Thus a value of a dynamic sort corresponds to a dynamic system, precisely
to the labelled transition tree having such value as root, and thus a Casl-Ltl
specification with a dynamic sort may be truly considered as a dynamic type.

The labels of the transitions of a dynamic system are named in this paper
interactions and are descriptions of the information flowing in or out the system
during the transitions, thus they truly correspond to interactions of the system
with the external world5.

In Fig. 6 we present the structure of the Casl-Mdl declaration of dynamic
types (i.e., types of dynamic systems) by means of its metamodel,6 and later we
will detail the two cases of simple and structured dynamic types.

Simple Dynamic Types. The simple dynamic systems do not have dynamic
subsystems, and in the context of this work, the interactions of the simple sys-
tems are either of kind sending or receiving (with a naming convention ! xx and
? yy, for sending and receiving interactions resp.) and are characterized by a
name and a possibly empty list of typed parameters. These simple interactions
correspond to basic acts of either sending out or of receiving something, where
the something is defined by the arguments. Obviously, a send act will be matched
by a receive act of another simple system and vice versa, and again quite obvi-
ously the matching pairs of interactions ! xx (v1 , . . . , vn) and ? xx (v1 , . . . , vn).

5 Obviously, a transition may also correspond to some internal activity not requiring
any exchange with the external world, in that case the transition is labelled by a
special TAU value.

6 DynamicType is a specialization of Type (see also Fig. 2) which has a link to Part.
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Fig. 7. A schematic Simple Dynamic Type

The states of simple systems are characterized by a set of typed attributes
(precisely the states of the associated labelled transition system), similarly to
the case of datatypes with attributes (and, as for each attribute, there is the
corresponding operation). A dynamic type DT has also an extra implicit at-
tribute .id: ident DT containing the identity of the specific considered instance;
the identity values are not further detailed. Obviously the identity is preserved
by the transitions and no structured dynamic system will have two subsystems
with the same identity. Notice how the treatment of the identity in Casl-Mdl
is completely different from the one of the UML, where the elements of the
type associated with a class are just their identities, because Casl-Mdl is not
object-oriented.

Fig. 6 shows that a simple dynamic type (i.e., a type of simple systems) is
determined by a set of elementary interactions (EInteraction) and by a set of
attributes; notice that it has also a name since SimpleDynamicType specializes
EntityType, see Fig. 2.

In Fig. 7 we present the visual notation for the simple dynamic types by the
help of a schematic example.

Translation
Basic : SimpleDynamicType → Casl-Ltl-Specification

Basic(simpDT ) =
FiniteSet[sort simpDT .name ] and Ident with ident �→ ident

simpDT.name

The basic translation of a simple dynamic type includes also the declaration of
a datatype for the identity of the dynamic systems having such type.

Detail : SimpleDynamicType → Casl-Ltl-Specification
Detail(simpDT) =

dsort simpDT .name label label simpDT .name
op .id : simpDT.name → ident simpDT.name
TAttributes(simpDT.attribute, simpDT .name);
TEInteractions(simpDT.eInteraction, label simpDT .name);

ASSOC Model: Simple Dynamic Types
Fig. 8 presents a type diagram including two declarations of simple dynamic
types. Notice that the type Member has other elementary interactions, e.g.,
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Fig. 8. ASSOC Example: a type diagram including simple dynamic types

! vote(Item,Vote,Ident Member) concerning taking part in a meeting not reported
here, they are visible in the complete type diagram [5]).

The simple dynamic type Association models the various associations, char-
acterized by a name and by their members (given by the attributes name and
members, the latter represented visually as an arrow). We have used a dynamic
system and not a datatype since we are interested in the dynamic behaviour
of an association. The elementary interaction ? scheduleMeeting corresponds to
receive a request to schedule a new meeting of the association board, and the
last two parameters correspond to the meeting date and agenda, whereas the
first, typed by Ident Association is the identity of the association itself. ! Ok and
! Ko correspond respectively to answer positively and negatively to that request.

Part Detail of the translation of the simple type Association is as follows.
dsort Association label label Association
op .id : Association → ident Association
op .name : Association → String
op ? scheduleMeeting : ident Association × Time ×Document →

label Association
op ! Ok , ! Ko,TAU :→ label Association

TAU is a special implicit element used to label the transitions that do not
require any exchange of information with the external world, thus without any
interaction. Notice that the sorts Association and ident Association have been
already introduced by the basic part of the type translation.

Structured Dynamic Types. We recall that a structured system (cf. Fig. 6)
is characterized by its parts, or subsystems (that are in turn other simple or
structured dynamic systems), and has its own elementary interactions and name.

In Fig. 9 we present the visual syntax by the above schematic structured
dynamic type; its parts are depicted by the dashed boxes (in this case all of
them have multiplicity one); DType1, DType2, . . . , DTypeN are dynamic types
(i.e., types corresponding to dynamic systems, simple or structured, defined in
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Fig. 9. A schematic Structured Dynamic Type

the same model) and P1, P2, . . . , PN are the optional names of the parts. At this
level we only say that there will be at least those parts, but nothing is said about
the way they interact with each other and on the behaviour of the whole system.
We use two different boxes for the elementary interactions and the structure in
terms of parts to keep the internal structuring encapsulated.

A structured dynamic type has a predefined predicate isPart checking if it
has a part having a given identity.

Translation
Basic : StructuredDynamicType → Casl-Ltl-Specification

Basic(structDT) =
FiniteSet[sort structDT.name] and
Ident with ident �→ ident structDT.name and LocalInteractions

LocalInteractions specifies the local interactions sets of the structured dy-
namic systems defined by structDT, where a local interaction is a pair consisting
of the identity and of an elementary interaction of one of the parts of structDT ;
the local interactions are added to the labels of the associated labelled transition
system to record the activities of the parts.

Detail : StructuredDynamicType → Casl-Ltl-Specification
Detail(structDT ) =

dsort structDT.name label label structDT.name
op .id : structDT.name → ident structDT.name
pred isPart : structDT.name× ident all
TParts(structDT .part, structDT .name);
TEInteractionsStruct(structDT .eInteraction, label structDT .name,

localInteractions structDT .name);

ident all is an extra auxiliary sort having as subsorts the identity sorts of all the
dynamic systems in the model.

ASSOC Model: Structured Dynamic System
The whole world of ASSOC is modelled as a structured dynamic system ASSOC
having as parts the associations, the members and the chairs, any number of
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Fig. 10. ASSOC Example: a type diagram including a structured dynamic type

them (see the multiplicity * on the three parts). ASSOC is a closed system,
that is it does not interact with its external world and so it has no elementary
interactions, and all the transitions of the associated labelled system will be
labelled by the special null interaction TAU .

The Casl-Ltl specification fragment corresponding to the detail part of the
translations of the structured dynamic type ASSOC is given below.

dsort ASSOC label label ASSOC
op .id : ASSOC → ident ASSOC
op associations : ASSOC → Set [Association]
op members : ASSOC → Set [Member ]
op chairs : ASSOC → Set [Chair ]
pred isPart : ASSOC × ident all
op TAU : localInteractions ASSOC → label ASSOC

where LocalInteractions= FiniteSet[LocalInteraction] and
LocalInteraction =
free type = LocalInteraction ::=
< > (ident Association; label Association) |
< > (ident Member ; label Member) |
< > (ident Chair ; label Chair)

4 Interaction Properties

The metamodel of Casl-Mdl interaction properties is given in Fig. 11.
An interaction property describes the way parts of a structured dynamic sys-

tem (that are in turn dynamic systems) interact. Thus, first of all it should be
anchored to a specific structured dynamic system represented by an expression
typed by a structured dynamic type, which may have free variables, correspond-
ing to express a property on more than one dynamic system. Furthermore an
interaction property includes a context defining the other free variables (univer-
sally and existentially quantified) that may appear in it.

In Casl-Mdl, contrary to UML sequence diagrams, an interaction property
explicitly states if it expresses a property of all possible lives of the anchor, or if
there exists at least one life of the anchor satisfying that property. It also states
whether the property about the interactions must hold in all possible instants of
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Fig. 11. Interaction Properties structure (metamodel)

those lives, or if eventually there will be an instant in which it will hold. Thus an
interaction property has a modality, that may assume four values, see Fig. 11.

The Interaction part expresses the required pattern on the interactions among
the parts of the anchor and it may be a basic interaction, or a structured in-
teraction built by some combinators (in this paper we consider only alternative,
sequential composition and implication).

As shown in Fig. 12, an interaction property is visually presented by reusing
the UML sequence diagrams (any v1:T1,. . . ,vn:Tn, one v’ 1:T’ 1,. . . ,v’ m:T’ m is
the context).

The BasicInteraction, defined in Fig. 13, is the simplest form of Interaction
and just corresponds to assert that a series of elementary interaction occurrences
happen in some order among some generic roles for dynamic systems parts of
the anchor (lifelines), where an interaction occurrence is the simultaneous per-
forming of a pair of matching input and output elementary interactions by two
lifelines.

A lifeline is characterized by a name (just an identifier) and a (dynamic) type
and defines a role for a participant to the interaction. An elementary interaction
occurrence connects two lifelines in specific points (represented by the lifeline

Fig. 12. Visual presentation of a generic Casl-Mdl interaction property
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Fig. 13. Structure of Basic Interactions (metamodel)

fragments); the ordering of the interaction points of the various lifelines must
determine a partial order on the interaction occurrences. An interaction occur-
rence is characterized by the name of an elementary interaction s.t. the source
type owns it with kind “send” and the target type owns the matching one with
the kind “receive”, and a set of arguments represented by expressions whose
types are in accord with the parameters of the two elementary interactions.

Visually a lifeline is depicted as a box containing its name and type, and
by a dashed line summarizing all its fragments, whereas an interaction occur-
rence is depicted as a horizontal arrow with filled head from the source lifeline
to the target one. An elementary interaction occurrence arrow is labelled by
inter(exp1. . . ,expn) where ! inter is the send interaction of T1, ? inter the receive
interaction of T2, and exp1 . . . , expn are expressions whose types are in order
those of the arguments of ! inter, that are the same of those of ? inter. Fig. 14
shows a generic case of two lifelines and of an elementary interaction occurrence.

As in the UML the relative distance between two elementary interaction oc-
currences has no meaning, similarly the only guaranteed ordering is among the
the occurrences attached to a single lifeline (due to the ordering of its fragments),
whereas in the other cases the visual ordering between two occurrences has no
meaning. In Fig. 15 we show two different basic interactions that are, however,
perfectly equivalent determining both the partial order listed at the bottom;
notice that there are many other ones visually different but still equivalent.

An interaction property corresponds to a Casl-Ltl formula.

Translation
TIntProp : InteractionProperty → Casl-Ltl-Formula

Fig. 14. Generic example of elementary interaction occurrence
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Fig. 15. Two perfectly equivalent basic interactions

TIntProp(iPr) =
∀ freeVarsTContext(iPr.context) • (∧x∈iPr.lifeline isPart(x .id , iPr.anchor)) ⇒

TModal(iPr.modality, iPr.anchor,TInteract(iPr.interaction, true))
where freeVars are all the free variables appearing in the anchor expression and
those corresponding to the lifelines.

TModal : Modality× Exp×Casl-Ltl-PathFormula→ Casl-Ltl-Formula
TModal(in any case always, dexp,PF ) = in any case(dexp, always PF )

similarly for the other three cases
TInteract : Interaction×Casl-Ltl-PathFormula→ Casl-Ltl-PathFormula
The translation of an interaction is defined by cases, depending on its par-

ticular type, and takes as argument a path-formula that will play the role of a
continuation; this technical trick allows to correctly translate sequential compo-
sitions of interactions.
TInteract(basicInt, cont) =
∨eIOci1 ...eIOcin admissible ordering of eIOc1 ,...,eIOcn

TIntOcc(eIOci1 ) ∧ eventually (TIntOcc(eIOci2 ) ∧ (eventually . . .

Fig. 16. ASSOC: scheduling a new meeting (successful case)
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(TIntOcc(eIOcin ) ∧ eventually cont) . . .))
where basicInt.eInteractionOccurence = eIOc1 , . . . , eIOcn

TIntOcc : InteractionOccurrence → Casl-Ltl-PathFormula
TIntOcc(eIOc) =

(x .id:! inter(exp1 , . . . , expn) ∧ y.id:? inter(exp1 , . . . , expn))7

where eIOc has the form in Fig. 14.
Fig. 16 shows an interaction property with a basic interaction modelling a

successful scheduling a new meeting. This diagram presents a sample of a possible
way to execute the successful scheduling of a meeting, precisely the chair asks
the association to schedule a new meeting passing the date and the agenda, the
association answers ok, and then informs the board members of the new meeting.

Fig. 11 presents also the structured interactions. We can see that it is possible
to express:

– the sequential composition of two interactions, with the intuitive meaning to
require that the interaction pattern described by the before argument is followed
by the interaction pattern described by the after argument;

– the choice among several guarded alternatives, subsuming conditional and
nondeterministic choices; one of the interaction patterns corresponding to the
alternatives with the true guard must be performed, if no guards is true it
corresponds to require nothing on the interactions;

– the fact that the happening of some elementary interactions matching a
given pattern (represented by a basic interaction) must be followed mandatory
by some elementary interactions matching another pattern.

The visual representation of these structured interactions is illustrated in
Fig. 17 and Fig. 18.

To model that the answer of the association may be also negative (elemen-
tary interaction ko) we need the structured interactions built with the sequential
and alternative combinators, and this corresponds to give just some samples of
successful and of failed executions, whereas to represent that after a request of
scheduling a new meeting there will be surely an answer by the association we
need the implication combinator. Fig. 17 and Fig. 18 presents the interaction
properties, with a structured interaction part, corresponding to those cases. In
Fig. 17 we have the sequential combination of a basic interaction consisting just
of the elementary interaction occurrence scheduleMeet(A.id,when,ag) followed by
the alternative among two basic interactions, where the guards are both true
corresponding to the pure nondeterministic choice. Again this diagram presents
sample of the execution of the scheduling procedure, making explicit that there
are two possibilities, a successful one and a failing one; but this diagram does
not require that any request to an association will be followed by an answer.
Fig. 18 instead shows that an occurrence of the elementary interaction schedule-
Meet(A.id,when,ag) will be eventually either followed by an occurrence of ko() or
of ok(). Notice that the modality of this interaction property is different, it says
that whenever the scheduling request occurs it will be followed by an answer.

7 Recall that .id is the standard attribute returning the identity of a dynamic system,
and that id: interact is a local interaction atom.
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Fig. 17. ASSOC: scheduling a new meeting (sequence and alternative combinator)

Fig. 18. ASSOC: scheduling a new meeting (implies combinator)

Translation
TInteract: Interaction×Casl-Ltl-PathFormula→ Casl-Ltl-Formula

TInteract(altInt, cont) =
∧J⊆{1 ,...,n} ((∧j∈J opj .guard ∧ ∧i∈{1 ,...,n}−J ¬ opi .guard) ⇒

∨j∈J TInteract(opj .interaction, cont))
where altInt.operand = op1 , . . . , opn
TInteract(seqInt, cont) = TInteract(seqInt.before,TInteract(seqInt.after, cont))
TInteract(implInt, cont) =
∧eIOci1

...eIOcin admissible ordering of eIOc1 ,...,eIOcn

(TIntOcc(eIOci1 ) ⇒ next always (TIntOcc(eIOci2 ) ⇒ next always (. . .
(TIntOcc(eIOcin ) ⇒ next eventually TInteract(implInt.consequence,

cont)) . . .)))
where implInt.premise.eInteractionOccurence = eIOc1 , . . . , eIOcn
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Here there is the Casl-Ltl formula corresponding to the interaction property
of Fig. 17 after some simplifications due to the fact that the guards are both
equal to true:

∀ AX: Assoc,when: Time, ag: Document ,CH: Chair ,A: Association,M: Member
∃ meet: Meeting •
(isPart(CH .id ,AX ) ∧ isPart(A.id ,AX ) ∧ isPart(M .id ,AX )) ⇒
in one case(AX , eventually
(CH .id :! scheduleMeet(A.id ,when, ag) ∧ A.id :? scheduleMeet(A.id ,when,

ag) ∧
(eventually

(A.id:! ok() ∧ CH .id:? ok() ∧ eventually
(A.id :! newMeet(A.name,meet) ∧ M .id :? newMeet(A.name,

meet)))
∨ (A.id:! ko() ∧ CH .id:? ko())))

The Casl-Ltl formula corresponding to the interaction property of Fig. 18
can be found in [5].

5 Conclusions and Future Work

In this paper we present a part of Casl-Mdl, a visual modelling notation based
on Casl-Ltl (the extension for dynamic system of the algebraic specification
languageCasl developed by the Cofi initiative). The visual constructs of Casl-
Mdl have been borrowed to the UML, so as to use professional visual editors;
in this paper for example we used Visual Paradigm for UML8.

A Casl-Mdl model is a set of diagrams but it corresponds to a Casl-Ltl
specification, thus Casl-Mdl is a suitable means to easily read and write large
and complexCasl-Ltl specifications; furthermore the quite mature technologies
for UML model transformation may be used to automatize the transformation
of the Casl-Mdl models into the corresponding Casl-Ltl specifications.

Casl-Mdl may be used by people familiar with Casl-Ltl to produce in an
easier way specifications written with it with the help of an editor. However,
the corresponding specifications are readable and can be modified directly, for
example if there is the need of fine tuning for automatic verification.

We present here a part of Casl-Mdl, the type diagram and the interaction
diagrams, [5] presents also constraints, definitions for datatypes (which make
precise their structure and the meaning of their operations and predicates),
definitions of structured dynamic types, which fix their structures and the way
their parts interact among them, and interaction machines, which are diagrams
visually similar to the UML state machines, modelling the behaviour of the
simple dynamic types.

8 http://www.visual-paradigm.com/product/vpuml/
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We are currently working out the relationships among the types, and consider
the introduction of workflow-like diagrams similar to the UML activity diagrams
to visualize formulas on the behaviour of groups of dynamic systems.

UML is the most relevant visual modelling notation, thus it is important to
asses the common aspects and the differences with Casl-Mdl.

Casl-Mdl and UML are visually alike, but they are quite different, first of
all because Casl-Mdl is not object-oriented and has a simple “native” formal
semantics, and because the semantics of syntactically similar constructs is not
exactly the same. Consider for example the Casl-Mdl interaction diagrams
visually similar to the UML sequence diagrams; the interaction diagrams allow
also to express implications among the interactions (message exchanges in the
UML), thus they are more powerful than the UML sequence diagrams, and closer
to the live charts of Harel and Damm [8]. The appendix compares in a tabular
form the features of Casl-Mdl and of UML.

We think that a careful investigation of the differences and relationships be-
tween Casl-Mdl and UML may have as a result a better understanding of some
of the UML constructs and perhaps some suggestions for possible evolutions.

As regards the relationships between the UML andCasl-Mdl let us note that
Casl-Mdl is not a semantics of the UML expressed in Casl-Ltl, and that it is
not true that a Casl-Mdl model may be transformed into an equivalent UML
model.
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A Comparison between Casl-Mdl and UML

Casl-Mdl UML

datatypes

user defined attribute style + +
user defined with
constructors a la ML +
explicit predicates +
partial operations + exceptions?

OCL ?

property oriented invariants, pre-post conditions invariants
definition on operations plus any kind pre-post conditions

of first order formulas about on operations
operations, constructors
and attributes

constructive definition rule-based definitions of methods associated
operations and constructors with operations

dynamic entities

dynamic systems active objects

communication mechanism execution of groups of matching operation call and
elementary interactions signal sending

property oriented definition branching time temporal logic invariants,
formulas (e.g., invariants, pre-post conditions
safety and liveness) on operations

constructive definition interaction machine state machine
(reactive, proactive, passive (reactive behaviour)
and internal behaviour)

objects as a special kind of passive native objects
dynamic systems

structured dynamic structured dynamic systems standard community
entities of all objects,

structured classes

specification of the interaction properties sequence diagrams
interaction among (possibility of expressing (samples of message
components of liveness and safety properties) exchanges)
structured entities

workflow under development activity diagrams

.............
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Abstract. CASL architectural specifications provide a way to specify
the structure of the implementations of software systems. Their
semantics has been introduced in two manners: the first is purely model-
theoretic and the second attempts to discharge model semantics condi-
tions statically based on a diagram of dependencies between components
(extended static semantics). In the case of lambda expressions, which are
used to define the way generic units are built, the two semantics do not
agree. We present a number of situations of practical importance when
the current situation is unsatisfactory and propose a series of changes to
the extended static semantics to remedy this.

1 Introduction

An idealized view on the process of software development would be to start with
a requirement specification (most likely structured) and then to proceed with
an architectural design describing the expected structure of the implementation
(which can be different from the one of the specification). Architectural speci-
fications in CASL [3] have been introduced as means of providing structure for
the implementation: each architectural specification contains a number of com-
ponents together with a linking procedure which describes how to combine the
components to obtain an implementation of the overall system. (In contrast, the
models of a structured specification are monolithic and have no more structure
than models of basic specifications).

SP � k

⎧⎪⎨⎪⎩
U1 : SP1

...
Un : SPn

In the figure on the right, SP is the initial specifica-
tion, U1, . . . Un are the components of the architectural
specifications with their specifications SP1, . . . , SPn and
k is the linking procedure involving the units, while the
refinement relation is denoted �. The specification of
each component can then play the role of requirement
specification and the entire process repeats until specifications that can be eas-
ily translated into a program are reached. The only interaction allowed between
components is the one contained in the architectural specification they are part
of, that acts as an interface for them; this allows for a separation of implemen-
tation tasks, which can be performed independently.

The semantics of architectural specifications relies on compatibility checks
between units as prerequisite for combining them. The intuitive idea is that

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 98–117, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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shared symbols must be interpreted in the same way for two models to be put
together. The rules have been presented in two ways: the first is to define a basic
static semantics and model semantics in a purely model-theoretical fashion and
the compatibility checks are required in the model semantics whenever needed,
while the second is an extended static semantics analysis which builds a graph
of dependencies between units and discards the compatibility conditions stati-
cally. We briefly recall the two semantics and the relationships between them in
Section 2. Units of an architectural specification can be generic [10], with the
intended intuitive meaning that the implementation of the result specification
depends on the implementations of the arguments (e.g. some auxiliary func-
tions). Generic units are built using generic unit expressions, written in CASL

using the λ-notation: λ X1 : SP1, . . . , Xn : SPn . UT , where UT is a unit term
which contains X1, . . . Xn .

The motivation of this paper is rather technical: the extended static semantics
rule for generic unit expression does not keep track of the dependencies between
the units used in the unit term UT . This is unsatisfactory for a number of
reasons that we give in detail in Section 3: first, the completeness theorem for
extended static semantics (Theorem 5.4 in [4]) no longer holds when the language
is extended with definitions of parametric units. Moreover, unit imports are
known to be introducing complexity in semantics and verification of architectural
specifications. One way to reduce complexity is to replace unit imports with an
equivalent construction as below, provided that M is made visible locally in the
anonymous architectural specification:

units M : SP1;
N : SP2 given M;
...

is equivalent to

units M : SP1;
N : arch spec {

units F : SP1 → SP2
result F[M]};

...

If N would be a generic unit, then the result of the architectural specification in
the right side would be a λ-expression and the two constructions would no longer
be equivalent because they treat differently the dependency between M and N .
In Section 4 we present our proposed changes for the extended static semantics
of architectural specifications, followed by a discussion in Section 4.1 on how the
completeness result can be extended to cover lambda expressions as well. Section
4.2 further extends the changes to parametric architectural specifications i.e.
those having lambda expressions as result, while in Section 5 we present a larger
example motivating the introduction of the new rules, involving refinement of
units with imports. Section 6 concludes the paper.

2 CASL Architectural Specifications

As mentioned above, CASL architectural specifications describe how the im-
plementation is structured into component units. Each unit is given a name
and assigned a specification; the intended meaning is to provide a model of
the specification. Units can be generic, taking a list of specifications as argu-
ments and having a result specification; such units denote partial functions that
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take as arguments models of the parameter specifications and return a model of
the result specification. The result is required to preserve the parameters (per-
sistency), with the intuition that the program of the parameter must not be
re-implemented, and the function is only defined on compatible models, mean-
ing that the implementation of the parameters must be the same on common
symbols. Units are combined in unit expressions with operations like renaming,
hiding, amalgamation and applications of generic units. Again, terms are only
defined for compatible models, in the sense that common symbols must be in-
terpreted in the same way. Let us mention that architectural specifications are
independent of the underlying formalism used for basic specifications, which is
modelled as an institution [5].

An architectural specification consists of a list of unit definitions and decla-
rations followed by a result unit expression. Fig. 1 presents a fragment of the
grammar of the CASL architectural language that is relevant for the examples of
this paper; the complete grammar can be found in [4]. Notice that we allow the
specification of a unit to be itself architectural (named or anonymous) and that
for units declarations there is an optional list of imported units (marked with
<_>). The list must be empty when USP is architectural. Moreover, in Fig. 1
A is a unit name, S is a specification name, SP is a structured specification and
σ is a signature morphism. We denote ιΣ⊆Σ′ the injection of Σ in Σ′ when Σ′

is a union of signatures with Σ among them.

ASP ::= units UDD1 . . . UDDn

result UE
UDD ::= UDEFN | UDECL
UDECL ::= A : USP < given UT1, · · ·UTn >
USP ::= SP | SP1 × · · · × SPn → SP |

arch spec S | arch spec {ASP}
UDEFN ::= A = UE
UE ::= UT | λ A1 : SP1, . . . , An : SPn • UT
UT ::= A | A [FIT1] . . . [FITn] | UT and UT | UT with σ : Σ → Σ′ |

UT reduction σ : Σ → Σ′ | local UDEFN1 . . . UDEFNn within UT
FIT ::= UT | UT fit σ : Σ → Σ′

Fig. 1. Restricted language of architectural specifications

The CASL semantics produces for any specification a signature and a class of
models over that signature. This is not different for architectural specifications:
the basic static semantics yields an architectural signature, while the model
semantics produces an architectural model. We give definitions of this notions
and a brief overview of the two semantics below.

An architectural signature consists of a unit signature for the result together
with a static unit context, describing the signatures of each unit. A unit signature
can be either a plain signature or a list of signatures for the arguments and a
signature for the result. Starting with the initial empty static unit context, the
static semantics for declarations and definitions adds to it the signature of each



Lambda Expressions in Casl Architectural Specifications 101

new unit and the static semantics for unit terms and expressions does the type-
checking in the current static context. For any architectural specification ASP ,
we denote |ASP | the specification obtained by removing everything but the
signature from the specifications used in declarations.

Model semantics is assumed to be run only after a successful run of the basic
static semantics and it produces an architectural model over the resulting archi-
tectural signature. Model semantics of an individual unit is either simply a model
of the specification, for non-generic units, or a partial function taking compatible
models of the argument specifications to a model of the result specification. The
result is required to protect the parameters when reduced back to a model of
the corresponding signature. Generic units can be interpreted as total functions
by introducing an additional value ⊥ - this ensures consistency of generic unit
specifications in |ASP | whenever the unit specification is already consistent in
an architectural specification ASP and is called partial model semantics in [4],
Section IV:5. An architectural model over an architectural signature consists of
a result unit over the result unit signature and a collection of units over the sig-
natures given in the static context, named by their unit names. Model semantics
produces a unit context, which is a class of unit environments - maps from unit
names to units, and a unit evaluator, which is a map that gives a unit when
given a unit environment in the unit context. The analysis starts with the unit
context of all environments and each declaration and definition enlarges the unit
context, adding a new constraint. Finally, the semantics of unit terms produces
a unit evaluator for a given unit context.

Pst(F ) = τ : Σ → Σ′

Cst � T � ΣA

σ : Σ → ΣA

(σR, τR, ΣR) is the pushout of (σ, τ )

Pst, Cst � F [T fit σ] � ΣR

C � T � UEv
for each E ∈ C, UEv(E)|σ ∈ domE(F ) (i)

for each E ∈ C, there is a unique M ∈ Mod(ΣR) such that
M |τR = UEv(E) and M |σR = E(F )(UEv(E)|σ) (ii)

UEvR = {E �→ M |E ∈ C, M |τR = UEv(E), M |σR = E(F )(UEv(E)|σ)}
C � F [T fit σ] � UEvR

Fig. 2. Basic static and model semantics rules for unit application

Fig. 2 presents the basic static semantics and model semantics rules for unit
application (notice that we simplify to the case of units with just one argument).
The static semantics rule produces the signature of the term T and returns as
signature of F [T ] the pushout ΣR of the span (σ, τ), where τ is the unit signature
of F stored in the list of parameterized unit signatures Pst.

The model semantics rule first analyzes the argument T and gives a unit
evaluator UEv. Then, provided that the conditions (i) the actual parameter
actually fits the domain and (ii) the models UEv(E) and E(F )(UEv(E)|σ) can
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be amalgamated to a ΣR-model M hold, the result unit evaluator UEvR gives
the amalgamation M for each E ∈ C.

Typically one would expect that conditions (ii) would be discarded statically.
For this purpose, an extended static semantics was introduced in [11], where the
dependencies between units are tracked with the help of a diagram of signatures.
The idea is that we can now verify that the interpretation of two symbols is the
same by looking for a “common origin” in the diagram, i.e. a symbol which is
mapped via some paths to both of them. We will present in this paper only the
relevant rules of extended static semantics in Section 3. We are going to make
use of the following notions. A diagram D is a functor from a small category to
the category of signatures of the underlying institution. In the following, let D
be a diagram. A family of models M = {Mp}p∈Nodes(D) indexed by the nodes
of D is consistent with D if for each node p of D, Mp ∈Mod(D(p)) and for each
edge e : p → q, Mp = Mq|D(e). A sink α on a subset K of nodes consists of a
signature Σ together with a family of morphisms {αp : D(p)→ Σ}p∈K . We say
that D ensures amalgamability along α = (Σ, {αp : D(p)→ Σ}p∈K) if for every
model family M consistent with D there is a unique model M ∈Mod(Σ) such
that for all p ∈ K, M |αp = Mp.

The two semantics of architectural specifications are related by a soundness
result [11]: if the extended semantics of an architectural specification is defined,
then so is the basic semantics and the latter gives the same result. In [4], com-
pleteness is also proved for a simplified variant of the architectural language1

and with a modified model semantics. We will discuss this in more detail in
Section 4.1.

3 Semantics of Generic Unit Expressions

We present now the extended static semantic rule for generic unit expressions,
with the help of a typical example of a dependency between the unit term of a
lambda expression and the generic unit defined by it. Such dependencies are not
tracked in the diagram built with the rules for extended static semantics defined
in [4].

Example 1. Let us consider the CASL architectural specification from Fig. 3. The
unit term L1[A1] and L2[A2] is ill-formed w.r.t. the rules of extended static
semantics for architectural specifications because in the diagram in the Fig. 4
(built using the extended static semantics rules for generic unit expressions and
unit applications, which are presented in Fig. 5 and Fig. 6 respectively) the sort
s can not be traced to a common origin (which should be the node M). ��

The rule for analysis of generic unit expressions (Fig. 5) introduces a node p
for the unit term of the lambda expression that keeps track of the sharing in-
formation of the terms involved. However, this node p is not further used in
1 It is nevertheless argued that the generalization to the full features of CASL archi-

tectural language is of no genuine complexity, excepting the case of imports. Our
approach covers the imports as well.
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spec S = sort s
spec S1 = sort s1
spec S2 = sort s2
arch spec ASP =
units M : S; A1 : S1; A2 : S2;

L1 = λ X1 : S1 • M and X1;
L2 = λ X2 : S2 • M and X2;

result L1 [A1] and L2 [A2]

Fig. 3. Lost sharing

Fig. 4. Diagram of ASP

application of lambda expressions. In the extended static context, the entry cor-
responding to the lambda expression only contains a new node labeled with the
empty signature, denoted z in Fig. 5, as node of imports, and this new node is
isolated. Notice also that the purpose of inserting the node q and the edges from
nodes pi to q is to ensure compatibility of the formal parameters when making
the analysis of the unit term.

Using this version of the rules raises a series of problems. First, there is no
methodological justification for making terms like the one in our example illegal
by not keeping track of the unit M in the lambda expressions. Moreover, ASP
has a denotation w.r.t. the basic semantics (it is easy to see that the specification
type-checks) and |ASP | has a denotation w.r.t. the model semantics (there is
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Γs � UNIT-BIND-1 � (UN1, Σ1) . . . Γs � UNIT-BIND-n � (UNn, Σn)
Σa = 〈Σ1, .., Σn〉 and Σ = Σ1 ∪ ... ∪ Σn

UN1, . . . , UNn are new names
D′ extends dgm(CS) by new node q with D′(q) = Σ,

nodes pi and edges ei : pi → q with D′(ei) = ιΣi⊆Σ for i ∈ 1, . . . , n
C′

s = ({}, {UN1 → p1, . . . , UNn → pn}, D′)
Γs, Cs + C′

s � UNIT-TERM � (p,D′′)
D′′ ensures amalgamability along (D′′(p), 〈idD′′(p), ιΣi⊆D′′(p)〉i∈1,...,n)

D′′′ extends D′′ by new node z with D′′′(z) = ∅
Γs, Cs � unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERM�

(z, Σa → D′′(p),D′′′)

Fig. 5. Extended static semantics rule for unit expressions (CASL Ref. Manual)

Cs = (Ps, Bs, D)
Ps(UN) = (pI , (Σ1, ..., Σn → Σ))

ΣF = D(pI) ∪ Σ1 ∪ ... ∪ Σn

Σi, Γs, Cs � FIT-ARG-i � (σi : Σi → ΣA
i , pA

i , Di) for i ∈ 1, . . . , n
D1, .., Dn disjointly extend D

let DA = D1 ∪ .. ∪ Dn

ΣA = D(pI) ∪ ΣA
1 ... ∪ ΣA

n

σA = (idD(pI) ∪ σ1 ∪ .. ∪ σn) : ΣF → ΣA

σA(Δ) : Σ → (ΣA ∪ ΣA(Δ)), where Δ : ΣF → Σ is the signature extension
ΣR = ΣA ∪ ΣA(Δ)

DA ensures amalgamability along (ΣA, 〈ιD(pI)⊆ΣA , ιΣA
i

⊆ΣA 〉i∈1,...,n)

D′ extends DAby new node qB, edge eI : pI → qB with D′(eI) = ιD(pI⊆Σ),

nodes pF
i and edges eF

i : pF
i → qB with D′(eF

i ) = ιΣi⊆Σ

and ei : pF
i → pA

i with D′(ei) = σi for i ∈ 1, . . . , n
D′ ensures amalgamability along (ΣR, 〈σA(Δ), ιΣA

i ⊆ΣR〉i∈1,...,n)

D′′ extends D′ by new node q, edge e′ : qB → q with D′′(e′) = σA(Δ)
and edges e′i : pA

i → q with D′′(e′i) = ιΣA
i ⊆ΣR for i ∈ 1, . . . , n

Γs, Cs � unit-appl UN FIT-ARG-1,..,FIT-ARG-n � (q, D′′)

Fig. 6. Extended static semantics rules for unit application (CASL Ref. Manual)

no problem in amalgamating M with a model of specifications S1 or S2, since
there are no shared symbols, and when making the amalgamation of L1[A1]
with L2[A2] the symbol s is interpreted in the same way by construction). Thus,
since one would expect that the completeness result of [4] should still hold for the
entire architectural language, ASP should have a denotation w.r.t. the extended
static semantics.

Another reason to consider the current rules unsatisfactory is the relation
between units with imports and generic units. A unit declaration with imports
has been informally explained in the literature as a generic unit instantiated
once, like in the following example.
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Example 2. The following unit declarations, taken from the architectural speci-
fication of a steam boiler control system (Chapter 13 of [2]):

B : Basics;
MR : Value → Messages_Received given B;

can be expressed as a generic unit instantiated once (notice that the linear
visibility of units, required in [4], is assumed to be extended):

B : Basics;
MR : arch spec {

units F : Basics × Value → Messages_Received

result λ X : Value • F [B] [X]}; ��

The two declarations in Example 2 are not equivalent because the former traces
the dependency between MR and B while the latter does not. However it has
been noticed that to be able to write down refinements of units with imports
using the CASL refinement language designed in [8], this equivalence must become
formal. This can only be the case if the second construction also tracks the
dependency of B with MR.

Notice that in general the unit imported may be written as a more complex
unit term and then its specification is no longer available directly. Moreover, as
remarked in [7], it is not always possible to find a specification that captures
exactly the class of all models that may arise as the result of the imported unit
term. It is however possible to use the proof calculus for architectural specifica-
tions defined in [6] and Section IV.5.3 of [4] to generate a structured specification
that includes this model class among its models. Another advantage of making
the equivalence formal is that the completeness result for extended static se-
mantics and the proof calculus for architectural specifications cover imports as
well, since they can now be regarded only as “syntactic sugar” for the equivalent
construction.

4 Adding Dependency Tracking

The proposed changes are based on the following observation: in the rule for unit
application(Fig. 6), new nodes are needed for the formal parameters and for the
result (labeled pF

i and qB respectively). However, for lambda expressions the
nodes pi and p in Fig. 5 have already been introduced with the same purpose.
This symmetry can be exploited when making the applications of a lambda
expression and we will therefore need to keep track of the mentioned nodes.

Recall that an extended static unit context consists of a triple (Ps, Bs, D),
where Bs ∈ UnitName → Item and stores the corresponding nodes in the
diagram for non-generic units, Ps ∈ UnitName → Item × ParUnitSig and
stores the parameterized unit signature of a generic unit together with the node
of the imports, such that both Bs and Ps are finite maps and have disjoint
domains and D is the signature diagram that stores the dependencies between
units.
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Firstly, we need to modify the definition of extended static unit contexts such
that Ps maps now unit names to pairs in [Item]×ParUnitSig, to be able to store
the nodes of the parameters and of the result for lambda expressions. Notice that
a lambda expression must have at least one formal parameter, so the list of items
contains either the node of the union of the imports in the case of generic units or
at least two elements in the case of definitions of lambda expressions. Moreover,
unit declarations of form UN : arch spec ASP where ASP is an architectural
specification whose result unit is a lambda expression also should store the nodes
for parameters and the result. The rule changes needed for this latter case are not
straightforward and will be addressed separately in section 4.2. In Section 4.2 we
will also make use of this list of nodes for a different purpose, namely tracking de-
pendencies between different levels of visibility for units.

Γs � UNIT-BIND-i � (UNi, Σi) for i ∈ 1, . . . , n
Σa = 〈Σ1, .., Σn〉 and Σ = Σ1 ∪ ... ∪ Σn

UNi are new names
D′ extends dgm(CS) by new node q with D′(q) = Σ,

nodes pi with D′(pi) = Σi

and edges ei : pi → q with D′(ei) = iΣi⊆Σ for i ∈ 1, . . . , n
C′

s = ({}, {UNi → pi|i ∈ 1, . . . , n}, D′)
Γs, Cs + C′

s � UNIT-TERM � (r,D′′)
D′′ ensures amalgamability along(D′′(r), 〈idD′′(r), ιΣi⊆D′′(r)〉)

D′′′ extends D′′by new node z with D′′′(z) = ∅
D′′′ removes from D′′ the node q and its incoming edges

Γs, Cs � unit-expr UNIT-BIND-1,..,UNIT-BIND-n UNIT-TERM�
([r, p1, ..pn], Σa → D′′′(r), D′′′)

Fig. 7. Modified extended static semantics rule for unit expressions

Fig. 7 presents the modified static semantics rule for generic unit expressions,
which introduces new nodes pi for the parameters and a node q to ensure their
compatibility during the analysis of the unit term. Then, the result node of the
unit term p together with the nodes for parameters are returned as result of
the analysis of the lambda expression, together with the diagram resulting by
removing the node q and the edges from the nodes pi to q from the diagram
obtained after the analysis of the unit term. The reason why the node q must
be removed is that the nodes of the formal parameters will be connected to the
actual parameters and their compatibility must be rather checked than ensured.

We also have to make a case distinction in the rule of unit application. In
the case of generic units, we can use the existing rule for unit applications. The
rule for application of lambda expressions is similar with the one used in the
first case, but it puts forward the idea that the nodes for formal parameters
and result that were stored in the analysis of the lambda expression should be
used when making the application. However, this requires special care, as we will
illustrate with the help of some examples.

Example 3. Repeated applications of the same lambda expression. Let us consider
the definition F = λX : SP . X and M where we assume that SP and the
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specification of M do not share symbols and M1, M2 : SP . If we use the stored
nodes for parameters and result at every application of F , we obtain the diagram
in Fig. 8, resulting after applying F to M1 and M2. Notice that the edges from
X to M1 and M2 respectively introduce a sharing requirement between the
actual parameters, which is not intended. ��

Fig. 8. Unwanted sharing

The solution to this problem is to copy at every
application the nodes introduced in the diagram
during the analysis of the term of the lambda ex-
pression. The copy can be obtained starting with
the stored nodes pi by marking their copies as new
formal parameter nodes and going along their out-
going edges: for each new node accessible from pi,
we introduce a copy of it in the diagram together
with copies of its incoming edges - this last step
copies also the dependencies of the unit term of
the lambda expression with the outer units (in
the example, the edge from the node of M to the node of M and X is copied).
The copying stops when all nodes have been considered, and the copy of the
result node is then marked as new result node. Let us denote the procedure
described above copyDiagram, which takes as inputs the nodes for result and
formal parameters of the lambda expression and the current diagram and returns
the copied nodes for formal parameters and result and the new diagram. The
procedure described works as expected because the diagram created during the
analysis of the unit term of the lambda expression consists of exactly the nodes
accesible from the formal parameter nodes and it has no cycles; moreover, no
new dependencies involving these nodes are ever added in the diagram.

Example 4. Tracking dependencies of the actual parameters with the
environment.

Let us consider the architectural specification in Fig. 9, where the actual
parameter and the unit A used in the term of the lambda expression share the
sort symbol s, which can be traced in the dependency diagram to a common
origin, which is the node of P - see Fig. 10. This application should be therefore
considered correct. ��

Refering to the rule in Fig. 6, the generic unit is given by the inclusion Δ :
ΣF → Σ of its formal parameters into the body and at application, the fitting
arguments give a signature morphism σA : ΣF → ΣA from the formal parame-
ters to the actual parameters. Then, ΣA ∪ ΣA(Δ) results by making the union
of the fitting arguments with the body translated along the signature extension
σA(Δ) : Σ → ΣA ∪ ΣA(Δ). Originally, an application has been considered not
well-formed if the result signature is not a pushout of the body and argument
signatures (this is hidden in the use of the notation σA(Δ), see [4]) and notice
that this is indeed not the case in Example 4. We can drop this requirement
in the case of lambda expressions and rely on the condition that the diagram
should ensure amalgamability; indeed, in this case the application is correct if
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spec S = sort x
spec T = sorts s, t
spec U = sorts s, u
arch spec ASP =

units
P : {sort s};
A : T given P;
L = λ X : S • A and X;
B : U given P
result L [B fit x �→ u]

Fig. 9. Sharing between arguments and ac-
tual parameter

Fig. 10. Diagram of Example 4 be-
fore application

whenever a symbol is present both in the body and in the argument signatures,
the symbol can be traced in the diagram to a common origin which need not be
the node of the formal parameter, like in the case of sort s above.

Taking into account the observations in Examples 3 and 4, the rule of for
application of lambda expressions is presented in Fig. 11.

Cs = (Ps, Bs, Ls, D0)
Ls(UN) = ([p, p1, . . . , pn], (Σ1, . . . , Σn → Σ))

([r, f1, . . . , fn], D) = copyDiagram([p, p1, . . . , pn], D0)

ΣF = Σ1 ∪ ... ∪ Σn

Σi, Γs, Cs � FIT-ARG-i � (σi : Σi → ΣA
i , pA

i , Di) for i ∈ 1, . . . , n
D1, .., Dn disjointly extend D

let DA = D1 ∪ .. ∪ Dn

ΣA = ΣA
1 ... ∪ ΣA

n

σA = (σ1 ∪ .. ∪ σn) : ΣF → ΣA

σA(Δ) : Σ → (ΣA ∪ ΣA(Δ)), where Δ : ΣF → Σ is the signature extension
and the pushout condition for ΣA ∪ ΣA(Δ) is dropped

ΣR = ΣA ∪ ΣA(Δ)
DA ensures amalgamability along (ΣA, 〈ιΣA

i ⊆ΣA〉i∈1,...,n)

D′ extends DA with edges ei : fi → pA
i with D′(ei) = σi, for i ∈ 1, . . . , n

D′ ensures amalgamability along (ΣR, 〈σA(Δ), ιΣA
i ⊆ΣR〉i∈1,...,n)

D′′ extends D′ by new node q, edge e′ : r → q with D′′(e′) = σA(Δ)
and edges e′i : pA

i → q with D′′(e′i) = ιΣA
i ⊆ΣR , for i ∈ 1, . . . , n

Γs, Cs � unit-appl UN FIT-ARG-1,..,FIT-ARG-n � (q, D′′)

Fig. 11. Extended static semantics rule for unit application of lambda expressions
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Fig. 12 presents the diagram of the architectural specification ASP in Exam-
ple 1 using the modified rules of Fig. 7 and 112; notice that in this diagram the
sort s can be traced to a common origin and thus the amalgamation is correct.
Moreover, when making the application of the lambda expression, the diagram
of the term M and X is copied such that no dependency between the actual
parameters is incorrectly introduced by edges from the formal parameter node
and copying the diagram does not duplicate the node M .

Fig. 12. Diagram of Example 1 with the new rules

4.1 Completeness of Extended Static Semantics

In this section we will extend the soundness and completeness result from [4] to
the architectural specification language obtained by adding definitions of generic
units to the original fragment language in Section IV.5 of [4], i.e. unit definitions
assign to unit names unit expressions instead of unit terms. Comparing with the
language in Fig. 1, the differences are that this language does not mix declara-
tions and definitions of units, i.e. all declarations are done locally in the local
. . . within construction, unit declarations do not have imports and unit specifi-
cations are never architectural. Also we only restrict to lambda expressions with
a single parameter. Notice that these differences do not modify the language in
an essential way. The soundness and completeness result is formulated as follows.

Theorem 1. For any architectural specification ASP in which no generic unit
is applied more than once we have that ASP has a denotation w.r.t. the extended
static semantics iff ASP has a denotation w.r.t. the static semantics and |ASP |
has a denotation w.r.t. the partial model semantics.

The requirement that no generic unit is applied more than once is a simplifying
assumption for achieving a generative semantics, i.e. repeated applications of a
generic unit to same arguments no longer yields the same result.
2 Note that we omitted the nodes of the term of the lambda expression that are copied

at each application and only kept the significant ones.
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The theorem is proved using a quite technical lemma (Lemma 5.6 in [4])
which we don’t present in full detail here. Intuitively, it says that the extended
static semantics for a unit term is successful if and only if the static and model
semantics are successful as well and if it is the case, the signatures match and the
environment obtained in the model semantics can be represented as a family of
models compatible with the diagram obtained in the extended static semantics.
The proof of this lemma is done by induction on the structure of the unit term.
In order to extend the proof to cover lambda expressions as well, we have two
new cases to consider: applications of lambda expressions and local declarations
of generic units. The new proof is quite long and tedious, but follows very closely
the existing proof. Therefore, we only sketch here the proof idea. For applications
of lambda expressions, we simply repeat the proof for unit applications but use
this time the copies of the nodes for arguments and result that are stored in the
context instead of introducing arbitrary distinguished ones. For local declarations
of generic units, the proof is similar to the one of local declarations of non-
generic units, only that now we have to spell out the rules for lambda expressions
before applying the inductive step for the unit term in the lambda expression.
The introduced dependency between the lambda expression and its unit term is
essential when proving compatibility of the environment with the diagram.

4.2 Parametric Architectural Specifications

Further changes are needed when considering the complete language in
Fig. 1. The result unit of an architectural specification ASP can be itself a
lambda expression. In this case the architectural specification is called para-
metric. Notice that the grammar of the architectural language also covers the
case when the specification of a unit is itself architectural (either named or
anonymous). For such units, we must ensure that designated nodes for formal
parameters and result exist in the diagram, since they are required in the rule
of unit application of generic units.

Let us first consider the case of anonymous parametric architectural spec-
ifications. For the specification below, the static analysis of the architectural
specification is currently done in the empty extended static context and thus
the nodes for formal parameters and result, which are introduced when mak-
ing the analysis of the result lambda expression, are no longer present in the
diagram at the global level. Notice that the dependency between M and F
must be tracked in the diagram in order to ensure correctness of the term
F [M1 fit t �→ u] and F [M2 fit t �→ v].

spec S = sort s
spec T = sort t
spec U = sort u
spec V = sort v
arch spec ASP2 =

units
F : arch spec {
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units M : S

result λ X : T • M and X

};
M1 : U; M2 : V;
result F [M1 fit t �→ u] and F [M2 fit t �→ v ]

The way we overcome this problem is by making the analysis of the inner ar-
chitectural specification in the existing global context instead of using an empty
global context. After the analysis, we will keep in the global context the dia-
gram resulting from the analysis of the locally-declared units. Thus, the nodes
introduced locally become available for further references. Moreover, the units
declared locally will not be kept in the global extended context, since we do not
want to extend their scope. By making the analysis of the local specification in
the global context, the visibility of units declared at the global level is extended
to the local context as well (remember that we assumed this extension of vis-
ibility in Example 2) and the dependencies of the global units with the local
environment are tracked by keeping the entire resulting diagram at the global
level.

The second case to consider is the one of unit declarations of form U :
arch spec ASP , when ASP is a named parametric architectural specification.
In this case, ASP cannot refer to units other than those declared within itself
and therefore its diagram does not carry any dependency information relevant
for the global level. Therefore, instead of adding the diagram of ASP to the
global diagram, we only need to introduce new nodes for formal parameters and
edges to a new result node. This abstracts away the dependencies of the result
node of ASP with the units declared locally (which we don’t need) and only
keeps the dependencies of the result node with the parameter nodes along the
new edges, which will be then copied as diagram of the unit term of the lambda
expression at each application of U .

The modifications of the extended static semantics rules are presented in
figures 13 to 21 and can be summarized as follows. At the library level, the
analysis of an architectural specification (Fig. 13) starts in the empty extended
static unit context. The analysis of an architectural specification (Fig. 14), we
need to extend the diagram for anonymous parametric architectural specifica-
tions (first rule) and named parametric architectural specifications (third rule).
In the latter case, we also need to return the (new) nodes for formal parameters
and result (r, p1, · · · , pn). The rule for basic architectural specifications (Fig. 15)
analyzes the list of declarations and definitions in the context received as pa-
rameter rather than in the empty context like before. Thus the diagrams built
locally will be added to the global diagram and the visibility of global units is
extended. The rule for result unit (Fig. 17) makes a case distinction for each of
the four alternatives in Fig. 1. When the specification of the unit is not archi-
tectural (first two rules), the imported units are analyzed, a new node p labelled
with the signature union of all imports is introduced in the diagram and the
dependency between the declared unit and the imports is tracked either via the
edge from p to q in the first case, or by storing the node p as node of imports in
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the second case. When the specification of the unit is a parametric architectural
specification (third rule), the nodes of formal parameters and results are saved
and the unit will be applied using the rule for lambda expressions. Finally, when
the specification of the unit is a non-parametric architectural specification (last
rule), we set the pointer for the unit to the node of the result unit of the ar-
chitectural specification to be able to trace its dependencies. Notice that in the
last two cases there are no imports so the node p will always be labeled with the
empty signature. The changes made for unit specifications (Figures 18 to 20) are
just meant to propagate the results.

ΓS = (Gs, Vs, As, Ts)
ASN is a new name

Γs, C0 � ARCH-SPEC � (nodes, AΣ,D′)

ΓS � arch-spec-defn ASN ARCH-SPEC � (Gs, Vs, As ∪ {ASN �→ AΣ}, Ts)

Fig. 13. Rule for architectural library items

Γs, Cs � ARCH-SPEC � (nodes, AΣ, D)

Γs, Cs � BASIC-ARCH-SPEC � (nodes, AΣ,D′)

Γs, Cs � BASIC-ARCH-SPEC qua ARCH-SPEC � (nodes,AΣ, D′)

ASN ∈ Dom(As)
As(ASN) = (S, Σ)

D′ extends dgm(Cs) with a new node n such that D′(n) = Σ

(Gs, Vs, As, Ts), Cs � ASN qua ARCH-SPEC � ([n], As(ASN), dgm(Cs))

ASN ∈ Dom(As)
As(ASN ) = (S, 〈Σ1, ..., Σn〉 → Σ)

D′ extends dgm(Cs) with new nodes p1, .., pn, r and edges pi → r
such that D′(pi → r) = ιΣi⊆Σ

(Gs, Vs, As, Ts), Cs � ASN qua ARCH-SPEC � ([r, p1, ..., pn], As(ASN ), D′)

Fig. 14. Rules for architectural specifications

Γs, Cs � BASIC-ARCH-SPEC � (nodes, AΣ,D)

Γs, C
0
s � UDD+ � Cs

Γs, Cs � RESULT-UNIT � (nodes,UΣ, D)

Γs, C0
s � basic-arch-spec UDD+ RESULT-UNIT � (nodes, (ctx(Cs), UΣ), D)

Fig. 15. New extended static semantics rule for basic architectural specifications
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Γs, Cs � UNIT-DECL-DEFN+ � C′
s

Γs, C
0
s � UDD1 � (Cs)1

...
Γs, (Cs)n−1 � UDDn � (Cs)n

Γs, C0
s � UDD1,..., UDDn � (Cs)n

Fig. 16. New extended static semantics rule for lists of declarations and definitions

Γs, Cs � RESULT-UNIT � (nodes,UΣ, D)

ΓS, Cs � UNIT-EXPR � (p, UΣ, D)

Γs, Cs � result-unit UNIT-EXPR � ([p], UΣ, D)

ΓS , Cs � UNIT-EXPR � (r : fs, UΣ, D)

Γs, Cs � result-unit UNIT-EXPR � (r : fs, UΣ, D)

Fig. 17. New extended static semantics rule for result unit expressions

ΓS, Cs � ARCH-UNIT-SPEC � (nodes, UΣ, D)

Γs, Cs � ARCH-SPEC � (nodes, (S,UΣ), D′)

Γs, Cs � ARCH-SPEC qua ARCH-UNIT-SPEC � (nodes, UΣ, D′)

Fig. 18. New extended static semantics rule for architectural unit specifications

Γs, Cs � unit-defn UN UNIT-EXPR � C′
s

Γs, Cs � UNIT-EXPR � ([p], Σ, D)
UN is a new name

Γs, Cs � unit-defn UN UNIT-EXPR � ({}, {UN �→ (p, Σ)}, D)

Γs, Cs � UNIT-EXPR � (r : fs, UΣ, D)
UN is a new name

Γs, Cs � unit-defn UN UNIT-EXPR � ({UN �→ (r : fs, UΣ)}, {}, D)

Fig. 19. New rule for unit definitions

Σ, Γs, Cs � UNIT-SPEC � (nodes, UΣ, D)

Γs, Cs � ARCH-UNIT-SPEC � (nodes, UΣ, D′)

Σ, Γs, Cs � ARCH-UNIT-SPEC qua UNIT-SPEC � (nodes, UΣ, D′)

Fig. 20. New extended static semantics rule for arch unit specs as unit specs
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5 An Application: Refinement of Units with Imports

This section illustrates the use of the new semantics rules for architectural speci-
fications with the help of a case study example - the specification of a warehouse
system by Baumeister and Bert [1]. The system keeps track of stocks of prod-
ucts and of orders and allows adding, canceling and invoicing orders, as well as
adding products to the stock.

Fig. 22 presents the specifications involved and the relations between them.
The specifications ORDER, PRODUCT and STOCK specify the objects of the
system. The main purpose for the INVOICE specification is to specify an op-
eration for invoicing an order for a product in the stock. The QUEUES and
ORDER_QUEUES specifications specify different types of queues (pending, in-
voiced) for orders. The WHS specification is the top-level specification, with the

Γs, Cs � UNIT-DECL � (C′
s, D)

Cs � UNIT-IMPORTED � (p,D)
C = Cs + ({}, {}, D)

D(p), Γs, C � UNIT-SPEC � ([], Σ, D′)
UN is a new name

D′′ extends D′ by a new node q with D′′(q) = D′(p) ∪ Σ
and edge e : p → q with D′′(e) = ιD′(p)⊆D′′(q)

Γs, Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED � ({}, {UN �→ q}, D′′)

Cs � UNIT-IMPORTED � (p,D)
C = Cs + ({}, {}, D)

D(p), Γs, C � UNIT-SPEC � ([], 〈Σ1, .., Σn〉 → Σ0, D
′)

UN is a new name
Γs, Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED�

({UN �→ (p, 〈Σ1, .., Σn〉 → Σ0 ∪ ΣI)}, {}, D′)

Cs � UNIT-IMPORTED � (p,D)
C = Cs + ({}, {}, D)

D(p), Γs � UNIT-SPEC � (r : fp, 〈Σ1, .., Σn〉 → Σ, D′)
UN is a new name

Γs, Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED�

({UN �→ (r : fp, 〈Σ1, .., Σn〉 → Σ)}, {}, D′)

Cs � UNIT-IMPORTED � (p,D)
C = Cs + ({}, {}, D)

D(p), Γs � UNIT-SPEC � ([n], Σ, D′)
UN is a new name

Γs, Cs � unit-decl UN UNIT-SPEC UNIT-IMPORTED�

({}, {UN �→ ([n], Σ)}, D′)

Fig. 21. New rules for unit declarations
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Fig. 22. Structure of the specification of the warehouse system

main operations of the system. The next step is to come up with a more con-
crete realization of ORDER, that allows to distinguish between different orders
on the same quantity of a product by introducing labels. This results in specifica-
tions ORDER’, INVOICE’ and WHS’. The specification WHS’ of the warehouse
system is then further refined to an architectural specification describing the
structure of the implementation of the system. Moreover, NAT and LIST are
the usual specifications of natural numbers and lists.

The modular decomposition of the warehouse system is recorded in the archi-
tectural specification below:

arch spec Warehouse =
units NatAlg : NAT; ProductAlg : PRODUCT;
OrderFun : PRODUCT → ORDER’ given NatAlg;
OrderAlg = OrderFun [ProductAlg];
StockFun : PRODUCT → STOCK given NatAlg;
StockAlg = StockFun [ProductAlg];
InvoiceFun : {ORDER’ and STOCK} → INVOICE’;
QueuesFun : ORDER → QUEUES;
WhsFun : {QUEUES and INVOICE’}→ WHS’

result WhsFun[QueuesFun [OrderAlg]
and InvoiceFun [OrderAlg and StockAlg]]

Using the refinement language introduced in [8], we can write this refinement
chain in the following way:
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refinement R =
WHS refined to
WHS’ refined to arch spec Warehouse

We can further proceed to refine each component separately. For example, let
us assume we want to further refine ORDER’ in such a way that the labels of
orders are natural numbers and denote the corresponding specification ORDER”.

The changes in the extended static semantics rules allow us to rephrase the
declaration of OrderFun in an equivalent way using generic units3:

OrderFun :
arch spec
{units F : NAT × PRODUCT → ORDER’

result lambda X : PRODUCT • F [NatAlg] [X]
};

Then we need to write a unit specification for the specification of OrderFun

to be able to further refine it:

unit spec NATORDER’ = NAT × PRODUCT → ORDER’

and another unit specification to store the signature after refinement as well:

unit spec NATORDER” = NAT × PRODUCT → ORDER”

The refinement is done along a morphism that maps the sort Label to Nat:

refinement R’ =
NATORDER’ refined via Label �→ Nat to NATORDER”

The CASL refinement language can be easily modified to allow the refinement
of OrderFun without making use of the arbitrary name (in our case F) chosen
for the generic unit 4:

refinement R” = R then {OrderFun to R’}

6 Conclusions

We have presented and discussed a series of changes to extended static semantics
of CASL architectural specifications, motivated by the unsatisfactory treatment
of lambda expressions in the original semantics of CASL [4]. We have identified a
number of practically important situations requiring lambda expressions to have
dependency tracking with their unit term and we formulated the modified rules
accordingly. We have also discussed briefly how the known completeness result
3 Notice that this equivalence becomes visible at the level of refinement signatures as

defined in [8].
4 More exactly, the composition of refinement signatures must be slightly adapted to

make this composition legal.



Lambda Expressions in Casl Architectural Specifications 117

can now be successfully extended to the whole CASL architectural language; a
full proof is very lengthy and follows the lines of the existing result; for this
reason we have omitted it. Finally, we have presented an example of refinement
of generic units with imports; without the changes introduced in this paper such
a refinement could not have been expressed using the CASL refinement language.
The implementation of the modified rules in the Heterogeneous Tool Set Hets
[9] is currently in progress.
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Abstract. Logical frameworks like LF are used for formal representa-
tions of logics in order to make them amenable to formal machine-assisted
meta-reasoning. While the focus has originally been on logics with a proof
theoretic semantics, we have recently shown how to define model theo-
retic logics in LF as well. We have used this to define new institutions in
the Heterogeneous Tool Set in a purely declarative way.

It is desirable to extend this model theoretic representation of logics to
the level of structured specifications. Here a particular challenge among
structured specification building operations is hiding, which restricts a
specification to some export interface. Specification languages like ASL
and CASL support hiding, using an institution-independent model the-
oretic semantics abstracting from the details of the underlying logical
system.

Logical frameworks like LF have also been equipped with structuring
languages. However, their proof theoretic nature leads them to a theory-
level semantics without support for hiding. In the present work, we show
how to resolve this difficulty.

1 Introduction

This work is about reconciling the model theoretic approach of algebraic spec-
ifications and institutions [AKKB99, ST11, GB92] with the proof theoretic ap-
proach of logical frameworks [HHP93, Pau94].

In [Rab10, CHK+10], we show how to represent institutions in logical frame-
works, notably LF [HHP93], and extend the Heterogeneous Tool Set [MML07]
with a mechanism to add new logics that are specified declaratively in a logical
framework.

In the present work, we extend this to the level of structured specifications,
including hiding. In particular, we will translate the ASL-style structured spec-
ifications with institutional semantics [SW83, Wir86, ST88] (also used in CASL
[Mos04]) into the module system MMT [RK10] that has been developed in the
logical frameworks community.

Like ASL, MMT is a generic structuring language that is parametric in the
underlying language. But where ASL assumes a model theoretic base language –
given as an institution – MMT assumes a proof theoretic base language given in

T. Mossakowski and H.-J. Kreowski (Eds.): WADT 2010, LNCS 7137, pp. 118–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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terms of typing judgments. If we instantiate MMT with LF (as done in [RS09]),
we can represent both logics and theories as MMT-structured LF signatures.
This is used in the LATIN project [KMR09] to obtain a large body of struc-
tured representations of logics and logic translations. An important practical
benefit of MMT is that it is integrated with a scalable knowledge management
infrastructure based on OMDoc [Koh06].

However, contrary to model theoretic structuring languages like ASL, struc-
turing languages like MMT for logical frameworks have a proof theoretic se-
mantics and do not support hiding, which makes them less expressive than ASL.
Therefore, we proceed in two steps. Firstly, we extend LF+MMT with primitives
that support hiding while preserving its proof theoretic flavor. Here we follow
and extend the theory-level semantics for hiding given in [GR04]. Secondly, we
assume an institution that has been represented in LF, and give a translation of
ASL-structured specifications over it into the extended LF+MMT language.

The paper is organized as follows. In Sect. 2, we recall ASL- or CASL-style
structured specifications with their institution-independent semantics; and in
Sect. 3 we recall LF and MMT with its proof theoretic semantics. In Sect. 4, we
extend MMT with hiding, and in Sect. 5, we define a translation of ASL style
specifications into MMT and prove its correctness. Sect. 7 concludes the paper.

2 Structured Specifications

Institutions [GB92] have been introduced as a formalization of the notion of log-
ical systems. They abstract from the details of signatures, sentences and models
and assume that signatures can be related via signature morphisms (which car-
ries over to sentences and models).

Definition 1. An institution is a quadruple I = (Sig ,Sen,Mod , |=) where:

– Sig is a category of signatures;
– Sen : Sig → SET is a functor to the category SET of small sets and

functions, giving for each signature Σ its set of sentences Sen(Σ) and for
any signature morphism ϕ : Σ → Σ′ the sentence translation function
Sen(ϕ) : Sen(Σ)→ Sen(Σ′) (denoted also ϕ);

– Mod : Sigop → Cat is a functor to the category of categories and functors
Cat 1 giving for any signature Σ its category of models Mod(Σ) and for
any signature morphism ϕ : Σ → Σ′ the model reduct functor Mod(ϕ) :
Mod(Σ′)→ Mod(Σ) (denoted _|ϕ);

– a satisfaction relation |=Σ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context.
1 We disregard here the foundational issues, but notice however that Cat is actually

a so-called quasi-category.
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For an institution I, a presentation is a pair (Σ, E) where Σ is a signature and E
is a set of Σ-sentences. For a set E of Σ-sentences, ModΣ(E) denotes the class of
all Σ-models satisfying E. For a classM of Σ-models, ThΣ(M) denotes the set
of all sentences that hold in every model in M, and for a set of Σ-sentences E,
we write ClΣ(E) for ThΣ(ModΣ(E)). Presentations provide the simplest form
of specifications, and we refer to them as basic specifications.

Working with basic specifications is only suitable for specifications of fairly
small size. For practical situations as in the case of large systems, they would
become impossible to understand and use efficiently. Moreover, a modular design
allows for reuse of specifications. Therefore, algebraic specification languages
provide support for structuring specifications.

The semantics of (structured) specifications can be given as a signature and
either (i) a class of models of that signature (model-level semantics) or (ii) a set
of sentences over that signature (theory-level semantics). In the presence of struc-
turing, the two semantics may be different in a sense that will be made precise
below. The first algebraic specification language, Clear [BG80], used a theory-
level semantics; the first algebraic specification language using model-level se-
mantics for structured specifications was ASL [SW83, Wir86], whose structuring
mechanisms were extended to an institution-independent level in [ST88].

In Fig. 1, we present a kernel of specification-building operations and their
semantics over an arbitrary institution, similar to the one introduced in [ST88].
The second and third columns of the table contain the model-level and the
theory-level semantics for the corresponding structured specification SP ,
denoted Mod [SP ] and Thm [SP ] respectively. The signature of SP , denoted
Sig [SP ] is defined as follows: (i) Sig[(Σ, E)] = Σ, (ii) Sig[SP1∪SP2] = Sig[SP1]
(= Sig[SP2]), (iii) Sig[σ(SP )] = Σ′, where Σ′ is the target signature of σ and
finally (iv) Sig[σ−1(SP )] = Σ, where Σ is the source signature of σ. Note that
we restrict attention to hiding against inclusion morphisms. Moreover, we will
only consider basic specifications that are finite.

Without hiding, the two semantics can be regarded as dual because we have
Thm [SP ] = ThSig[SP ](Mod [SP ]), which is called soundness and completeness
in [ST11]. But completeness does not hold in general in the presence of hiding

SP Mod [SP ] Thm[SP ]

(Σ, E)
ModΣ(E) ClΣ(E)

E ⊆ Sen(Σ)

SP1 ∪ SP2 Mod(SP1) ∩ Mod(SP2) ClΣ(Thm[SP1] ∪ Thm[SP2])
Sig[SP1] = Σ
Sig[SP2] = Σ

σ(SP ) {M ∈ Mod(Σ′)|M |σ ∈ Mod [SP ]} ClΣ({σ(e)|e ∈ Thm[SP ]})
σ : Sig [SP ] → Σ′

σ−1(SP ) {M |σ|M ∈ Mod [SP ]} {e ∈ Sen(Σ)|σ(e) ∈ Thm[SP ]}
σ : Σ ↪→ Sig [SP ]

Fig. 1. Semantics of Structured Specifications
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[Bor02]. Moreover, in [ST11] it is proved that this choice for defining the theory
level semantics is the strongest possible choice with good structural properties
(e.g. compositionality). This shows that the mismatch between theory-level se-
mantics and model-level semantics cannot be bridged in this way. We will argue
below that this is not a failure of formalist methods in general; instead, we will
pursue a different approach that takes model-level aspects into account while
staying mechanizable.

The mismatch between model and theory-level semantics is particularly ap-
parent when looking at refinements. For two Σ-specifications SP and SP ′, we
write SP �Σ SP ′ if Mod [SP ′] ⊆ Mod [SP ]. Without hiding, this is equivalent
to Thm [SP ] ⊆ Thm [SP ′], which can be seen as soundness and completeness
properties for refinements. But in the presence of hiding, both soundness (if SP
has hiding) and completeness (if SP ′ has hiding) for refinements may fail.

3 LF and MMT

The Edinburgh Logical Framework LF [HHP93] is a proof theoretic logical
framework based on a dependent type theory related to Martin-Löf type the-
ory [ML74]. Precisely, it is the corner of the λ-cube [Bar92] that extends simple
type theory with dependent function types. We will also use the notion of LF
signature morphisms as given in [HST94]. Moreover, in [RS09], LF was extended
with a module system based on MMT. MMT [RK10] is a generic module system
which structures signatures using named imports and signature morphisms. The
expressivity of MMT is similar to that of ASL or development graphs [AHMS99]
except for a lack of hiding. In [Rab10], LF is used as a logical framework to
represent both proof and model theory of object logics.

We give a brief summary of basic LF signatures, MMT-structured LF signa-
tures, and the representation of model theory in LF in Sect. 3.1, 3.2, and 3.3,
respectively. Our approach is not restricted to LF and can be easily generalized
to other frameworks such as Isabelle or Maude along the lines of [CHK+10].

3.1 LF

LF expressions E are grouped into kinds K, kinded type-families A : K, and
typed terms t : A. The kinds are the base kind type and the dependent function
kinds Πx : A. K. The type families are the constants a, applications a t, and the
dependent function type Πx : A. B; type families of kind type are called types.
The terms are constants c, applications t t′, and abstractions λx : A. t. We write
A → B instead of Πx : A. B if x does not occur in B. An LF signature Σ is
a list of kinded type family declarations a : K and typed constant declarations
c : A. Optionally, declarations may carry definitions. A grammar that subsumes
LF is given in Sect. 3.2 below.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′

is a typing- and kinding-preserving map of Σ-symbols to Σ′-expressions. Thus,
σ maps every constant c : A of Σ to a term σ(c) : σ(A) and every type family
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symbol a : K to a type family σ(a) : σ(K). Here, σ is the homomorphic extension
of σ to Σ-expressions, and we will write σ instead of σ from now on. Signature
morphisms preserve typing and kinding: if �Σ E : E′, then �Σ′ σ(E) : σ(E′).

Composition and identity of signature morphisms are straightforward, and we
obtain a category LF of LF signatures and morphisms. This category has in-
clusion morphisms by taking inclusions between sets of declarations. Moreover,
it has pushouts along inclusions [HST94]. Finally, a partial morphism from
Σ to Σ′ is a signature morphism from a subsignature of Σ to Σ′. Partiality
will only be used in MMT structures below, and we do not need to define a
composition of partial morphisms.

LF uses the Curry-Howard correspondence to represent axioms as constants
and theorem as defined constants (whose definiens is the proof). Then the typing-
preservation of signature morphisms corresponds to the theorem preservation of
theory morphisms.

3.2 LF+MMT

The motivation behind the MMT structuring operations is to give a flattenable,
concrete syntax for a module system on top of a declarative language. Signature
morphisms are used as the main concept to relate and form modular signatures,
and signature morphisms can themselves be given in a structured way. Moreover,
signature morphisms are always named and can be composed into morphism
expressions.

The grammar for the LF+MMT language is given below where [−] denotes
optional parts. Object level expressions E unify LF terms, type families, and
kinds, and morphism level expressions are composed morphisms:

Signature graph G ::= · | G, %sigT = {Σ} | %view v : S → T = {σ}
Signatures Σ ::= · | Σ, %struct s : S = {σ} | Σ, c : E[= E′]
Morphisms σ ::= · | σ, %structs := μ | σ, c := E
Object level expr. E ::= type | c | x | E E | λx : E. E | Πx : E. E | E → E
Morphism level expr. μ ::= · | T.s | v | μ μ′

The LF signatures and signature morphisms are those without the keyword
%struct. Those are called flat2.

Syntax. The module level declarations consist of named signatures R, S, T and
two kinds of signature morphism declarations. Firstly, views %view v : S →
T = {σ} occur on toplevel and declare an explicit morphism from S to T given by
σ. Secondly, structures %structs : S = {σ} occur in the body of a signature
T and declare an import from S into T . Structures carry a partial morphism σ
from S to T , i.e., σ maps some symbols of S to expressions over T . Views and
structures correspond to refinements and inclusion of subspecifications in unions
in ASL and CASL.

MMT differs from ASL-like structuring languages in that it uses named im-
ports. Consequently, the syntax of MMT can refer to all paths in the signature
2 Note that in the grammars presented in this paper · stands for the empty entity.
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graph using composed morphisms; these morphism level expressions μ are formed
from structure names T.s, view names v, and diagram-order composition μ μ′.

MMT considers morphisms μ from S to T as expressions on the module
level. Such a morphism μ has type S and is valid over T . Most importantly,
MMT permits structured morphisms: The morphisms σ occurring in views and
structures from S to T may map a structure %struct r : R = {σ} declared in
S (i.e., a morphism level constant of type R over S) to a morphism μ : R → T
(i.e., a morphism level expression of type R over T ). These are called structure
maps %struct r := μ.

Semantics. The semantics of LF+MMT is given by flattening. Every well-
formed LF+MMT signature graph G is flattened into a diagram G over LF.
Every signature S in G produces a node S in G; every structure %structs :
S = {σ} occurring in T produces an edge T.s from S to T ; and every view
%view v : S → T = {σ} produces an edge v from S to T . Accordingly, every
morphism expression μ yields a morphism μ. These results can be found in
[RS09], and we will only sketch the central aspects here.

The flattening is defined by recursively replacing all structure declarations and
structure maps with lists of flat declarations. To flatten a structure declaration
%structs : S = {σ} in a signature T , assume that S and σ have been flattened
already. For every declaration c : E[= E′] in S, we have in T

– a declaration s.c : T.s(E) = E′′ in S if σ contains c := E′′,
– a declaration s.c : T.s(E) [= T.s(E′)] in S otherwise.

The morphism T.s from S to T maps every S-symbol c to the T symbol s.c.
For a view %view v : S → T = {σ}, the morphism v from S to T is given by

the flattening of σ. · is the identity morphism in LF, and μ μ′ is the composition
μ′ ◦ μ.

Finally, morphisms σ from S to T are flattened as follows. To flatten a struc-
ture map %struct r := μ where r is a structure from R to S, assume that R has
been flattened already. Then the flattening of σ contains s.c := μ(c) for every
constant c in R.

In particular, if %sigT = {Σ, %struct s : S = {σ}} the semantics of
signature graphs is such that the left diagram below is a pushout. Here S0 is a
subsignature of S such that σ : S0 → Σ. Moreover, if S declares a structure r of
type R, then the semantics of a structure map %struct r := μ occurring in σ is
that the diagram on the right commutes.

S0 S

Σ T

σ T.s

R S

T

μ

S.r

T.s
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3.3 Representing Logics in LF

LF has been designed for the representation of the proof theory of logics. Re-
cently we showed how this can be extended to representations of the model
theory [Rab10]. The key idea is to use a signature ΣMod that represents mod-
els of a logical signature Σ and a signature F that represents the foundation
of mathematics. Then individual Σ-models can be represented as morphisms
ΣMod → F .

The feasibility of this approach has been demonstrated in [IR11], where we
give detailed encodings of ZFC set theory, Mizar’s set theory, and Isabelle’s
higher-order logic. Thus, we can choose the right foundation for every individual
logic. In the following, it is sufficient to assume a fixed arbitrary signature F . A
comprehensive example has been given in [HR11] where we represent first-order
logic with a set theoretical foundation. We will use a simplified variant of this
methodology in the sequel and give a summary below, using first-order logic as
a running example.

F

LMod

LSyn

Lmod

ΣSyn

ΣMod

Σmod

F
idF

M

The commuting LF diagram on the right
presents the representation of a logic L as a tu-
ple (LSyn , LMod , Lmod ,F).

LSyn represents the syntax of the logic. We assume
that LSyn contains two distinguished declarations o :
type and ded : o → type. For example, for first-order
logic, LSyn contains a constant ∧ : o→ o→ o for con-
junction along with proof rules for it. Then Σ-sentences
are represented as closed βη-normal terms of type o
over ΣSyn , and correspondingly Σ-proofs of F as terms
of type ded F . Theorems are represented as sentences
F for which the type ded F is inhabited over ΣSyn .
F represents the foundation of mathematics. In the

case of set theory, F contains in particular symbols
set : type, prop : type and true : prop → type for sets, propositions, and proofs.
Moreover, it contains predicates ∈: set → set → prop and eq : set → set → prop
for elementhood and equality between sets.

LMod extends F with declarations for all components present in any model.
For example, to represent set theoretical first-order models, LMod declares two
symbols: a set univ : set for the universe and an axiom making univ non-empty.

Lmod interprets the syntax in a model. It represents the fixed part of the
interpretation function assigning semantics to the logical symbols. For example,
in the case where F is set theory, Lmod(o) could be an F -type representing the
set {0, 1} of booleans, and Lmod(ded) the type family λx. true (x eq 1). Then
Lmod would map ∧ to the F -expression representing the boolean AND function.

Individual signatures Σ are represented as inclusion morphisms Lsyn ↪→ ΣSyn .
In the case of first-order logic, ΣSyn extends LSyn with declarations for all the
function and predicate symbols. Due to the Curry-Howard representation of
proofs as terms, there is no conceptual difference between representing signatures
and theories of the underlying logic. Therefore, ΣSyn could also declare axioms.
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From these, we obtain ΣMod and Σmod via a pushout in the category of LF
signatures. Thus, ΣMod arises as the extension of LMod with declarations for all
components present in a model of Σ. In our running example, ΣMod would de-
clare, e.g., an n-ary function/relation on univ for every n-ary function/predicate
symbol declared in ΣSyn .

Then a model M of Σ can finally be represented as a morphism M : ΣMod →
F such that M |F = idF . In our running example, M(univ) is the universe
of the model, and M maps every non-logical symbol declared in ΣMod to its
interpretation.

Then finally, for a sentence F : o over ΣSyn , the homomorphic extension
M(Σmod(F )) yields the truth value of F in M . In particular, the satisfaction of
F in M is represented as the inhabitation of the type M(Σmod(ded F )) over F .
If ΣSyn contains axioms, then so does ΣMod . In that case, M must map each
axiom to a proof in F . Thus, the type-preservation property of LF signature
morphisms guarantees that all such morphisms indeed yield models.

In [Rab10], the proof theory of the logic is represented in parallel to the model
theory as a morphism Lpf : LSyn → LPf where LPf adds the proof rules that
populate the types dedF . Here, we assume for simplicity that LSyn = LPf , and
our results easily extend to the general case.

4 Hiding in LF and MMT

In a proof theoretic setting as in LF+MMT, flattening is not a theorem but
rather the way to assign meaning to a modular signature. Since hiding precludes
flattening, it is a particularly difficult operation to add to systems like LF+MMT.

In this section, we develop an extension of LF+MMT with hiding. The basic
idea is to represent signatures with hidden information as inclusions Σv ↪→ Σh.
Intuitively, Σv contains all declarations making up the visible interface, and
Σh \ Σv contains declarations for all the hidden operations. Thus, the hidden
operations are never removed; instead, they are recorded in Σh. That way the
hidden operations are still available when defining models. Intuitively, models
will be represented as morphisms out of Σv that factor through Σh.

In the following, we will abstractly introduce LF signatures with hidden dec-
larations and morphisms between such signatures in Sect. 4.1. They will be plain
LF-signatures with a distinguished subsignature for the visible declarations. In-
tuitively, an LF signature with hiding is a plain LF-signature in which some
declarations are flagged as hidden. These LF signatures with hiding do not use
the module system yet, and we will extend the MMT module system to LF signa-
tures with hiding in Sect. 4.2. Intuitively, LF+MMT with hiding works in exactly
the same way as LF+MMT except for keeping track of which declarations are
hidden.

4.1 LF with Hiding

We will not only introduce LF signatures with hidden declarations but also
LF morphisms that hide constants. It is important to realize that we need
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hiding morphisms in addition to partial morphisms. Therefore, we introduce H-
morphisms, which may have the two orthogonal properties of total/partial and
revealing/hiding. Here revealing is used for H-morphisms that do not use hiding:
The (partial) revealing H-morphisms will be exactly the (partial) LF-morphisms
from above.

Given two LF-signatures Σ and Σ′, an H-morphism from Σ to Σ′ consists of
two subsignatures Σ0 ↪→ Σ1 ↪→ Σ and an LF signature morphism σ : Σ0 → Σ′.
The intuition is that σ maps all constants in Σ0 to Σ′-expressions and hides
all constants in Σ \ Σ1; for the intermediate declarations in Σ1 \ Σ0, σ is left
undefined, i.e., partial. We call Σ0 the revealed domain and Σ1 the non-
hidden domain of σ. We call σ total if Σ1 = Σ0 and otherwise partial; and
we call σ revealing if Σ = Σ1 and otherwise hiding.

For a Σ-expression E, we say that σ maps E if E is a Σ0-expression and
that σ hides E if E is not a Σ1-expression. Then we can define a composition
of total H-morphisms as follows: The revealed domain of σ′ ◦ σ is the largest
subsignature of the revealed domain of σ that comprises only constants c such
that σ′ maps σ(c); then we can put (σ′ ◦σ)(c) = σ′(σ(c)). We omit the technical
proof that the revealed domain of σ′ ◦ σ well-defined.

An H-signature is a pair Σ = (Σv, Σh) such that Σv is a subsignature of
Σh. We call Σh the domain and Σv the visible domain of Σ.

Finally, we define the category LFH whose objects are H-signatures and whose
morphisms (Σv, Σh) → (Σ′

v, Σ
′
h) are total H-morphisms from Σv to Σ′

v. Note
that these morphisms are exactly the total morphisms from Σh to Σ′

v whose
revealed domain is at most Σv. The LFH identity of (Σv, Σh) is the LF identity
of Σv. Associativity follows after observing that σ′′◦(σ′◦σ) hides c iff (σ′′◦σ′)◦σ
hides c.

LFH-morphisms only translate between the visible domains and may even use
hiding in doing so. We are often interested in whether the hidden information
could also be translated. Therefore, we define:

Definition 2. For an LFH-morphism σ0 : Σ → Σ′ with revealed domain Σ0,
we write σ0 : Σ

!→ Σ′ if σ0 can be extended to a total revealing morphism
σ : Σh → Σ′

h, i.e., if there is an LF morphism σ : Σh → Σ′
h that agrees with σ0

on Σ0.

4.2 LF+MMT with Hiding

We can now extend the MMT structuring to LFH, i.e., to a base language
with hiding. The flattening of signature graphs with hiding will produce LFH-
diagrams.

We avoid using pairs (Σv, Σh) in the concrete syntax for H-signatures and
instead extend the grammar of LF+MMT as follows:

Signatures Σ ::= · | Σ, [%hide] %struct s : S = {σ} | Σ, [%hide] c : E[= E]
Morphisms σ ::= · | σ, %struct s := μ | σ, c := E | %hide c | %hide%struct s
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If a declaration in Σ has the %hide modifier, we call it hidden, otherwise visi-
ble. Hidden declarations are necessary to keep track of the hidden information.
From a proof theoretical perspective, it may appear more natural to delete them,
but this would not be adequate to represent ASL specifications with hiding.

If σ contains c := E (or %hide c), we say that σ maps (or hides) c, and
accordingly for structures. As before, we call signatures or morphisms flat if
they do not contain the %struct keyword.

The semantics of a well-formed signature graph G is given in two steps: first G
is flattened into a flat signature graph G̃, second the semantics of a flat signature
graph G is given by an LFH-diagram G. In particular, every composite μ from
S to T occurring in G induces a total H-morphism μ : Sv → T v.

Well-formedness and semantics are defined in a joint induction on the struc-
ture of G, and only minor adjustments to the definition of G for LF+MMT are
needed. We begin with the flat syntax.

Firstly, a flat signature %sigT = {Σ} induces a hiding signature T =
(T v, Th) as follows: Th contains all declarations in Σ, and T v is the largest
subsignature of Th that contains only visible declarations. Σ is well-formed if
this is indeed a well-formed LFH-object.

Secondly, consider a flat morphism σ and two flat signatures S and T in
G. σ induces an H-morphism from Sv to T v as follows: Its revealed domain is
the smallest subsignature of Sv that contains all constants mapped by σ; its
non-hidden domain is the largest subsignature of Sv that contains no constants
hidden by σ. σ is well-formed if this is indeed a well-formed H-morphism from
Sv to T v.

Next we define the semantics of the full syntax by flattening an arbitrary
signature graph G to G̃. We use the same definition as in [RS09] except for
additionally keeping track of which declarations are hidden. In particular, the
semantics is unchanged if no declarations are hidden.

Firstly, consider a signature T with a structure %structs : S = {σ}, and
consider a declaration of c in S̃. Then T̃ contains a constant s.c defined in the
same way as for LF+MMT. Moreover, s.c is hidden in T̃ if s is hidden in T , c is
hidden in S, or σ̃ hides c.

Secondly, consider an occurrence of %structs := μ in σ in a structure or view
declaration with domain S. Since the semantics μ of μ is a total H-morphism, we
must consider two cases for every visible constant c in S̃: if c is in the revealed
domain of μ, then σ̃ contains s.c := μ(c) as for LF+MMT; otherwise, σ̃ contains
%hide s.c.

Thirdly, consider an occurrence of %hide%struct s in σ in a structure or
view declaration with domain S. Then σ̃ contains %hide s.c for every visible
constant c of S̃.

Finally, to define well-formedness of signature graphs, we use the same in-
ference system as in [RS09] with the following straightforward restriction for
morphisms: In a structure declaration %structs : S = {σ} within T or in a
view declaration %view v : S → T = {σ}, σ̃ must be an H-morphism from
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S̃v to T̃ v. σ̃ must be total for views and may be partial for structures. Such
structures and views induce edges T.s and v in G in the obvious way.

It is easy to show that well-formedness of the flat syntax is decidable. More-
over, the following result can be proved by a straightforward induction on the
structure of G.

Theorem 3. G̃ is a diagram over LFH for every well-formed signature graph G.

The morphisms σ in structures and views may only map symbols of the visible
domain. Moreover, they may hide some of these symbols. However, if we inspect
the definition of the flattening of a structure %struct s : S = {σ}, we see that it
imports all constants of S including the hidden ones and including those hidden
by σ. Therefore, we have:

Lemma 4. Assume a well-formed signature graph with hiding G containing a
structure %structs : S = {σ} in T . Then T.s : S

!→ T .

Proof. The extension of T.s to Sh maps every constant c to s.c.

5 Interpreting ASL in LF+MMT

We now introduce the translation from ASL-style structured specifications into
LF+MMT. We assume that there is a representation of an institution I in LF
(see Sect. 5.1), such that when translating an ASL-style specification over I (see
Sect. 5.2), the resulting MMT specification is based on this representation. The
subsequent subsections deal with proving adequacy of the translation.

5.1 Logics

Consider an encoding as in Sect. 3 for an institution I. We make the following
assumptions about the adequacy of the encoding.

Definition 5. We say that a foundation is adequately represented by an LF
signature F if there is (i) an F-type prop : type such that there is a bijective
representation �−	 of formal statements F of the foundation as βη-normal F-
terms �F	 : prop, and (ii) an F-type family true : prop → type such that there
is a bijective representation of formal proofs of F in the foundation as βη-normal
F-terms of type true �F	.

In the following, we will assume a fixed signature F that adequately represents
the foundation of mathematics, in which the models of our specifications are
expressed. For example, in order to represent an institution whose models are
defined in terms of Zermelo-Fraenkel set theory, F can be the signature given in
[HR11]; in that case the terms of type prop represent first-order formulas over
the binary predicate symbol ∈.
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Definition 6. We say that an institution I of the form (Sig ,Sen,Mod , |=) is
adequately represented as (LSyn ,F , LMod , Lmod) if there is a functor Φ : Sig →
LF/LSyn such that for every signature Σ (i) Φ(Σ) = ΣSyn is an extension of
LSyn , (ii) there is a bijection �−	 mapping Σ-sentences to βη-normal ΣSyn -
terms of type o, and �−	 is natural with respect to sentence translation Sen(σ)
and morphism application Φ(σ) (iii) there is a bijection �−	 mapping Σ-models
to LF-morphisms ΣMod → F , and �−	 is natural with respect to model reduction
Mod(σ) and precomposition with Φ(Σ)mod, (iv) satisfaction M |=Σ F holds iff
�M	 maps Σmod(�F	) to an inhabited F-type.

Using the definitions of [Rab10], this can be stated more concisely as an institu-
tion comorphism from I to an appropriate institution based on LF.

Our assumption of a bijection between I-models and LF-morphisms is quite
strong. In most cases, not all models will be representable as morphisms. How-
ever, using canonical models constructed in completeness proofs, in many cases
it will be possible to represent all models up to elementary equivalence.

Moreover, note that the bijection between models also directly implies that the
represented institution has amalgamation, provided that we are able to transfer
pushouts into the representation:

Theorem 7. If the functor Φ of an adequate representation of an institution
preserves pushouts, the represented institution I has amalgamation.

5.2 Specifications

We define a translation from ASL specifications to LF+MMT signatures with
hiding. Since the ASL structuring is built over an arbitrary institution, we as-
sume that the underlying institution has already been represented in LF and the
representation is adequate in the sense of Sect. 3.3 and Def. 6.

For every ASL specification SP over a signature Σ, we define two LF+MMT
signatures of the form

%sigNΣ = {%struct l : LSyn , �Σ	} %sigNSP = {%structs : NΣ , �SP	}

�Σ	 is a list of declarations representing the visible signature symbols of SP ,
and similarly �SP	 represents the hidden signature symbols and all the axioms.
There is some flexibility regarding the treatment of axioms: Alternatively, we
could distinguish visible and hidden axioms and put the visible ones in �Σ	.
Our choice makes the technical details simpler.

�Σ	 and �SP	 need to refer to the logical symbols of the underlying logic.
Therefore, NΣ starts with an import from LSyn .

It is important to realize that LF+MMT does not use signature expressions in
the way ASL uses specification-building operations. In LF+MMT, imports are
achieved by declaring structures within the body of a signature, and for efficiency
reasons, they may import only named signatures. Therefore, the translation from
ASL to LF+MMT must translate nested specification-building operations into
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multiple named LF+MMT signatures; consequently, it results in an LF+MMT
signature graph. We will use NΣ and NSP to denote the fresh names generated
during the translation for the nodes and edges of this signature graph. Note that
this leads to an increase in size but not to the exponential blow-up incurred
when flattening.

In the following, we will define �Σ	 and �SP	 inductively on the structure of
the specification SP . The cases of the translation are given in Fig. 2.

We will describe the translation step by step visualizing the involved objects
using diagrams in LF. First we introduce one simplification of the notation. Re-
call that technically, the semantics NSP of NSP is an LFH object (NSP v, NSPh)
and similarly for NΣ = (NΣv, NΣh). A simple induction will show that NΣ never
contains hiding and that NSP .s : NΣv = NΣh → NSPv is an isomorphism in
LF. Therefore, we will always write NΣ instead of NΣv, NSP instead of NSPh,
and NSP .s instead of NSP .s.

NΣ

NSP

NSP .s

The rule Basic translates basic specification SP = (Σ, E) using
the LF representation of the underlying institution. �Σ	 contains
one declaration for every non-logical symbol declared in Σ. For ex-
ample, if LSyn encodes first-order logic and has a declaration i : type
for the universe, a binary predicate symbol p in Σ leads to a dec-
laration p : l.i → l.i → l.o in �Σ	. All axioms F ∈ E, lead to a
declaration a : ded �F	 where a is a fresh name. This has the effect
that axioms are always hidden, which simplifies the notation significantly; it is
not harmful because the semantics of ASL does not depend on whether an axiom
is hidden or visible.

NΣ NSP1

NSP2 NSP ′

NSP1 .s1

NSP2 .s2

NSP ′ .s

NSP ′ .t2

NSP ′ .t1

The rule Union assumes translations of Σ,
SP1, and SP2 and creates the translation of
SP ′ = SP1 ∪ SP2 by instantiating NSP1 and
NSP2 in such a way that they share NΣ. The
semantics of LF+MMT guarantees that the re-
sulting diagram on the left is a pushout in LF.

The rule Transl translates SP ′ = σ(SP) as-
suming that σ and SP have been translated al-
ready. The signature morphism σ is translated

to a view in a straightforward way. Recall that NΣ and NΣ′ contain no hidden
declarations or axioms so that Nσ is a (total) morphism in LF. The resulting
diagram is the left diagram below; it is again a pushout in LF.

Similarly, the rule Hide translates SP = σ−1(SP ′) assuming that SP has
been translated already. As σ : Σ ↪→ Σ′ is an inclusion, we only need to know
the names ci of the symbols in Σ and the names hj of the symbols in Σ′ \ Σ,
which are to be hidden. Then we can form NSP by importing from NSP ′ and
mapping all symbols that remain visible to their counterparts in NSP and hiding
the remaining symbols. The resulting diagram is the right diagram below. Note
that by Lem. 4, NSP .t extends to a total LF morphism NSP .t∗; moreover, it is
easy to verify that NSP .t∗ is an isomorphism.
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SP := (Σ, {F1, . . . , Fn})
Basic

%sigNΣ = {%struct l : LSyn , �Σ	}
%sigNSP = {%struct s : NΣ ,

%hide a1 : ded �F1	, . . . , %hide an : ded �Fn	}

Σ = Sig[SP1] = Sig [SP2]

SP ′ := SP1 ∪ SP2

%sigNΣ = {%struct l : LSyn , �Σ	}
%sigNSP1 = {%struct s1 : NΣ , �SP1	}
%sigNSP2 = {%struct s2 : NΣ , �SP2	}

Union

%sigNSP ′ = {%struct s : NΣ ,

%struct t1 : NSP1 = {%struct s1 := s},

%struct t2 : NSP2 = {%struct s2 := s}}

σ : Σ → Σ′

SP ′ := σ(SP )

%sigNΣ = {%struct l : LSyn , �Σ	}
%sigNΣ′ = {%struct l′ : LSyn , �Σ′	}
%sigNSP = {%struct s : NΣ , �SP	}
%viewNσ : NΣ → NΣ′ = {%struct l := l′, �σ	}

Transl

%sigNSP ′ = {%struct s′ : NΣ′ ,

%struct t : NSP = {%struct s := Nσs′}}

σ : Σ ↪→ Σ′

dom(Σ) = {c1, . . . , cm}

dom(Σ′) \ dom(Σ) = {h1, . . . , hn}

SP := σ−1(SP ′)

%sigNΣ = {%struct l : LSyn , �Σ	}
%sigNΣ′ = {%struct l′ : LSyn , �Σ′	}
%sigNSP ′ = {%struct s′ : NΣ′ , �SP ′	}

Hide

%sigNSP = {%struct s : NΣ ,

%struct t : NSP ′ = {%struct s′.l′ := s.l,

s′.c1 := s.c1, . . . , s′.cm := s.cm,

%hide s′.h1, . . . , %hide s′.hn}}

Fig. 2. Translation of ASL specifications to LF+MMT with Hiding
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NΣ NΣ′

NSP NSP ′

Nσ

NSP .s

NSP ′ .t

NSP ′ .s′

NΣ NΣ′

NSP NSP ′

NSP .s

NSP .t∗

NSP ′ .s′

5.3 Adequacy for Specifications

The general idea of the encoding of models is given in Fig. 3. The diagram
corresponds to the one from Sect. 3.3 except that we have two extensions of LSyn ,
namely NΣ and NSP . Consequently, we obtain two pushouts NMod

Σ and NMod
SP

as shown in the left diagram. Then (NSP .s)mod arises as the unique factorization
through the pushout NMod

Σ .
Our central result will be that models M ∈ Mod I [SP ] ⊆ ModI(Σ) can be

represented as LF morphisms m : NMod
Σ → F that factor through NMod

SP , i.e.,
such that there is an m∗ with m∗ ◦ (NSP .s)mod = m.

LMod

LSyn

Lmod

NΣ

NMod
Σ

Nmod
Σ

NSP

NMod
SP

Nmod
SP

NSP .s

F

LMod

LSyn

Lmod

NΣ

NMod
Σ

Nmod
Σ

NSP

NMod
SP

Nmod
SP

NSP .s

(NSP .s)mod

F
idF

m m∗

Fig. 3. Representation of Models in the Presence of Hiding

The translation of ASL to MMT yields pushouts between LF signatures ex-
tending LSyn , but models are stated in terms of signatures extending LMod .
Therefore, we use the following simple lemma:

Lemma 8. Consider the left diagram below and assume that the rectangle is
a pushout. For a morphism Lmod : L → LMod , we form the signatures ΣMod

i

as pushouts of Σi along Lmod ; and we form the morphisms σmod
i as unique

factorizations through the respective pushout. Then the rectangle in the resulting
diagram on the right is also a pushout.
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Σ0 Σ1

Σ2 Σ3

L

σ1

σ2

σ3

σ4

ΣMod
0 ΣMod

1

ΣMod
2 ΣMod

3

LMod

σmod
1

σmod
2

σmod
3

σmod
4

Proof. This is shown with a straightforward diagram chase.

Then we are ready to state our main result:

Theorem 9. Let I be an institution that is adequately represented in LF. Then
for any signature Σ, any ASL-structured specification SP with Sig [SP ] = Σ,
and any Σ-model M

M ∈ ModI [SP ] iff exists m∗ : NMod
SP → F such that (NSP .s)mod ; m∗ = �M	

Proof. The proof is done by induction on the structure of SP . All cases will refer
to diagrams that correspond to those in Sect. 5.2, but which refer to the model
theory rather than to the syntax – i.e., every node NX becomes NMod

X . Lem. 8
ensures that when making this transformation, the pushout properties of the
diagrams are kept.

Case SP = (Σ, E):
For the base case, the conclusion follows directly from the assumption that the
representation of I in LF is adequate.

Case SP = SP1 ∪ SP2:
Let M ∈ Mod [SP ] and m := �M	 : NMod

Σ → F . We want to factor m through
NMod

SP . By definition, we have that M ∈ Mod [SP1] and M ∈ Mod [SP2]. By the
induction hypothesis for SP1 and SP2, we get that there are morphisms mi :
NMod

SPi
→ F such that m = (NSP i

.s)mod; mi. Using the pushout property we get a
unique morphism m∗ : NMod

SP → F such that (NSPi
.s)mod; (NSP ′ .ti)mod; m∗ = m

which gives us the needed factorization.
For the reverse inclusion, let m := �M	 : NMod

Σ → F represent a Σ-model M
and factor as (NSP .s)mod; m∗. Notice that by composing (NSP .ti)mod with m∗

we get morphisms mi : NMod
SPi

→ F . By using the induction hypothesis, M is
then a model of both SP1 and SP2 and by definition M is a model of SP .

Case SP ′ = σ(SP):
Let M ′ ∈ Mod [SP ′] and m′ := �M ′	 : NMod

Σ′ → F . We want to prove that there
is m′∗ : NMod

SP ′ → F such that m′ = (NSP ′ .s′)mod; m′∗. By definition M ′|σ ∈
Mod [SP ′]. By induction hypothesis for SP ′ we get a morphism m := �M ′|σ	 :
NMod

Σ → F and a morphism m∗ : NMod
SP → F such that (NSP .s)mod; m∗ =

m = (Nσ)mod; m′, where the latter equality holds due to the definition of model
reduct. Using the pushout property we get the desired m′∗.
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For the reverse inclusion, assume m′ := �M ′	 : NMod
Σ′ → F that factors

as (NSP ′ .s′)mod; m′∗. Then (NSP .s)mod; (NSP ′ .t)mod; m′∗ factors through NMod
SP

and thus by induction hypothesis the reduct of M ′ is an SP -model, which by
definition means that M ′ is an SP ′-model.

Case SP = σ−1(SP ′):
Let M be an SP -model and let m := �M	 : NΣ → F . We want to prove that m
factors through NMod

SP . By definition M has an expansion M ′ to an SP ′-model.
By induction hypothesis, there are morphisms m′ := �M ′	 : NMod

Σ′ → F and
m′∗ : NMod

SP ′ → F such that (NSP ′ .s′)mod; m′∗ = m′. Then
m = (NSP .s)mod; (NSP .t∗−1)mod; m′∗.

For the reverse inclusion, let m := �M	 be a morphism that factors as
(NSP .s)mod; m∗. We need to prove that M has an expansion to a SP ′-model.
We obtain it by applying the induction hypothesis to
m′ := (NSP ′ .s′)mod; (NSP .t∗)mod; m∗.

Corresponding to the adequacy for models, we can prove the adequacy for the-
orems by induction on SP , by observing that due to Lem. 4 structures always
translate (possibly hidden) theorems to (possibly hidden) theorems.

Theorem 10. Let I be an institution and assume that I has been represented
in LF in an adequate way. Then for any signature Σ, any ASL-structured spec-
ification SP with Sig[SP ] = Σ, and any Σ-sentence F

F ∈ ThmI [SP ] iff NSP .s(l.ded �F	) inhabited over NSP

Note that both in Theorem 9 and Theorem 10 we make use of the fact that
LF has model amalgamation for pushouts along injections. The results are thus
valid also in the case when the institution I does not have model amalgamation
or when the functor Φ of an adequate representation of I does not preserve
pushouts.

5.4 Adequacy for Refinements

NΣ

NSP

NSP ′

NMod
Σ

NMod
SP

NMod
SP ′

F
Nmod

Σ

NSP .s

NSP ′ .s

Nmod
SP

Nmod
SP ′

(NSP .s)mod

(NSP ′ .s)mod

m

m∗

m′∗

ρ

We want to give a syntactical cri-
terion for refinement SP �Σ SP ′.
Consider the diagram on the right.
SP �Σ SP ′ states that for all m, if
m′∗ exists, then some m∗ exists such
that the diagram commutes. Clearly,
this holds if there is an LF morphism
ρ : NMod

SP → NMod
SP ′ .

We can also prove the opposite implication if F has some additional technical
properties. Intuitively, F must be able to represent I-models as F -terms so
that we can switch back and forth between models represented as morphisms
and models represented as terms. This is the case if F declares an operation of
tupling so that the components of a morphism into F can be collected in a tuple.
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Theorem 11. Let I be an institution that is adequately encoded in LF. More-
over, assume that (i) F declares an operation of tupling and all I-models of a
finite Σ can be represented as F-tuples whose components correspond to the dec-
larations in ΣMod \ LMod , and (ii) whenever F can prove the existence of such
a tuple, there is an F-term for such a model.

Then for ASL-specifications SP and SP ′ over the signature Σ, we have that
SP �Σ SP ′ iff there is an LF morphism ρ : NMod

SP → NMod
SP ′ such that

(NSP .s)mod; ρ = (NSP ′ .s)mod.

Proof. The right-to-left implication follows immediately using Thm. 9.
For the left-to-right implication, we assume SP �Σ SP ′ and work within

NMod
SP ′ . Due to the adequacy of F , �SP �Σ SP ′	 is a provable statement of F

and thus of NMod
SP ′ (iii). Using (i), we can tuple the declarations in NMod

SP ′ \ F
(excluding the axioms) and obtain a Σ′ model m as a term over F ; using the
axioms in NMod

SP ′ \ F , we can prove that m′ is an SP ′ model. Using (iii), we
show that m is also an SP model. Then using (ii), we obtain an expression m∗

over NMod
SP ′ that expresses a model of NSP ′ . Finally, using (i), we can project

out the components of m∗. The morphism ρ maps every symbol of NMod
SP \ F

(excluding the axioms) to the corresponding components; it maps all axioms to
proofs about m∗.

The assumption (i) of this theorem, while very specific, is mild in practice. In
fact, if (i) did not hold, it would be dubious how the foundation can express
institutions and models at all. The assumption (ii) is more restricting. For ex-
ample, it does not hold necessarily for ZF set theory with a choice axiom but
without a choice operator : without a choice operator, we may be able to prove
the existence of a model in F without being able to turn it into a morphism
into F . Alternatively, we can establish (ii) for individual institutions by giving
a constructive model existence proof.

6 Related Work

Our use of MMT is akin to the SML-style structure declarations that can occur
within Extended ML signatures [KST97]. In fact, Extended ML can be extended
with hiding in the same way as we extend LF+MMT, and a similar representa-
tion of ASL in Extended ML could be defined. The key advantage of LF+MMT
is that LF is strong enough to encode to foundation as well and thus models as
morphisms.

Our definition of hiding in LF+MMT is motivated by the approach taken in
[GR04]. They also use a pair of two signatures one of which gives the visible in-
terface. The flattening of LF+MMT with hiding corresponds to their semantics.

[BHK90] introduces normal forms for ASL-like structured specifications over
many sorted classical first-order logic, where the normal form of a structured
specification SP has the form σ−1(Σ, E), such that the normal form has the
same model class as the original specification. This has been generalized to an
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arbitrary institution with weak amalgamation property in [Bor02]. The connec-
tion between our work and normal forms is done by the following result, that
can be proved by structural induction.

Theorem 12. Let SP be a structured specification and let us denote nf(SP)
its normal form. Then Nnf(SP) is a flat H-signature that is isomorphic to the
flattening of NSP .

The intuitive idea is that both the normal form and the hidden signature of NSP

hide the same symbols.

7 Conclusion

With the translation presented in this paper, it is possible to encode ASL-
and CASL-style structured specifications with hiding in proof theoretic logical
frameworks. This provides a new perspective on structured specifications that
emphasizes constructive and mechanizable notions. Our translation is given for
MMT-structured LF, but it easily generalizes to other MMT-structured logical
frameworks.

Our work does not resolve the controversy between the formalistic (or proof-
theoretic) and the semantic (or model-theoretic) approach. This, of course, could
not be expected as certain aspects of a Platonic foundation are necessarily out
of reach for a formalistic treatment. However, we have shown that substantial
aspects of the semantic intuitions – here in particular, hiding – can be captured
adequately in a formalistic framework.

Our encoding can be generalized to specifications represented as develop-
ment graphs. In this context, our representation theorem for refinements can
be strengthened to represent the hiding theorem links of [MAH06]. Even het-
erogeneous specifications [MT09, MML07] can be covered: as LF+MMT uses
the same structuring operations for logics as for theories, this requires only the
representation of the involved logics and logic translations in LF.

A theorem very similar to our representation theorem for refinements can be
obtained for conservative extensions. This permits the interpretation of the proof
calculus for refinement given in [Bor02]. In particular, the rules using an oracle
for conservative extensions can be represented elegantly as the composition of
LF signature morphisms.

The translation to MMT also has the benefit that we can re-use the infras-
tructure provided by languages like OMDoc [Koh06] (an XML-based markup
format for mathematical documents) and tools like TNTBase [ZK09] (a ver-
sioned XML database for OMDoc documents that supports complex searches
and queries, e.g., via XQuery). Further tools developed along these lines are
the JOBAD framework (a JavaScript library for interactive mathematical doc-
uments), which will provide a web-based frontend for the Heterogeneous Tool
Set, GMoc (a change management system), DocTip (a document and tool in-
tegration platform) and integration with the Eclipse framework (an integrated
development environment).
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Abstract. LF is a meta-logical framework that has become a standard
tool for representing logics and studying their properties. Its focus is
proof theoretic, employing the Curry-Howard isomorphism: propositions
are represented as types, and proofs as terms.

Hets is an integration tool for logics, logic translations and provers,
with a model theoretic focus, based on the meta-framework of institu-
tions, a formalisation of the notion of logical system.

In this work, we combine these two worlds. The benefit for LF is that
logics represented in LF can be (via Hets) easily connected to various in-
teractive and automated theorem provers, model finders, model checkers,
and conservativity checkers - thus providing much more efficient proof
support than mere proof checking as is done by systems like Twelf. The
benefit for Hets is that (via LF) logics become represented formally, and
hence trustworthiness of the implementation of logics is increased, and
correctness of logic translations can be mechanically verified. Moreover,
since logics and logic translations are now represented declaratively, the
effort of adding new logics or translations to Hets is greatly reduced.

This work is part of a larger effort of building an atlas of logics and
translations used in computer science and mathematics.

1 Introduction

There is a large manifold of different logical systems used in computer science,
such as propositional, first-order, higher-order, modal, description, temporal lo-
gics, and many more. These logical systems are supported by software, like e.g.
(semi-)automated theorem provers, model checkers, computer algebra systems,
constraint solvers, or concept classifiers, and each of these software systems
comes with different foundational assumptions and input languages, which makes
them non-interoperable and difficult to compare and evaluate in practice.

There are two main approaches to remedy this situation. The model the-
oretic approach of institutions [GB92, Mes89] provides a formalisation of the
notion of logical system. The benefit is that a large body of meta-theory can
be developed independent of the specific logical system, including specification
languages for structuring large logical theories. Recently, even a good part of
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model theory has been generalised to this setting [Dia08]. Moreover, the Hetero-
geneous Tool Set (Hets, [MML07]) provides an institution-independent software
interface, such that a heterogeneous proof management involving different tools
(as listed above) is practically realised. In Hets, logic translations, formalized
as so-called institution comorphisms, become first-class citizens. Heterogeneous
specification and proof management is done relative to a graph of logics and
translations.

The proof theoretic approach of logical frameworks starts with one “univer-
sal” logic that is used as a logical framework. This is used for representing logics
as theories (in the “universal” logic of the framework). For instance, the Edin-
burgh Logical Framework LF [HHP93] has been used extensively to represent
logics [HST94, PSK+03, AHMP98], many of them included in the Twelf distri-
bution [PS99]. Logic representations in Isabelle [Pau94] are notable for the size of
the libraries in the encoded logics, especially for HOL [NPW02]. Logic represen-
tations in rewriting logic [MOM94] using the Maude system [CELM96] include
the examples of equational logic, Horn logic and linear logic. A notable prop-
erty of rewriting logic is reflection i.e. one can represent rewriting logic within
itself. Zermelo-Fraenkel and related set theories were encoded in a number of
systems, see, e.g., [PC93] or [TB85]. Other systems employed to encode logics
include Coq [BC04], Agda [Nor05], and Nuprl [CAB+86]. Only few logic transla-
tions have been formalized systematically in this setting. Important translations
represented using the logic programming interpretation of LF include cut elim-
ination [Pfe00] and the HOL-Nurpl translation [SS04]. The latter guided the
design of the Delphin system [PS08] for logic translations.

Both approaches provide the theoretical and practical infrastructure to define
logics. However, there are two major differences. Firstly, Hets is based on model
theory – the semantics of implemented logics and the correctness of translations
are determined by model theoretic arguments. Proof theory is only used as a
tool to discharge proof obligations and is not represented explicitly.

Secondly, the logics of Hets are specified on the meta-level rather than within
the system itself. Each logic or logic translation has to be specified by imple-
menting a Haskell interface that is part of the Hets code, and tools for parsing
and static analysis have to be provided. Consequently, only Hets developers but
not users can add them. Besides the obvious disadvantage of the cost involved
when adding logics, this representation does not provide us with a way to rea-
son about the logics or their translations themselves. In particular, each logic’s
static analysis is part of the trusted code base, and the translations cannot be
automatically verified for correctness.

The work reported here is part of the ongoing project LATIN (Logic Atlas
and Integrator, [KMR09]). LATIN has two main goals: to fully integrate proof
and model theoretic frameworks described above preserving their respective ad-
vantages, and to create modular formalizations of commonly used logics together
with logic morphisms interrelating them: the Logic Atlas. To this end, we de-
velop general definition of a logical framework (the LATIN metaframework
that covers logical frameworks such as LF, Isabelle, and rewriting logic and



Towards Logical Frameworks in the Heterogeneous Tool Set Hets 141

implement it in Hets. The LATIN metaframework follows a “logics as theo-
ries/translations as morphisms” approach such that a theory graph in a logical
framework leads to a graph of institutions and comorphisms via a general con-
struction. This means that new logics can now be added to Hets in a purely
declarative way. Moreover, the declarative nature means that logics themselves
are no longer only formulated in the semi-formal language of mathematics, but
now are fully formal objects, such that one can reason about them (e.g. prove
soundness of proof systems or logic translations) within proof systems like Twelf.

This paper is organized as follows. We give introductions to the model and
proof theoretic approaches and the LATIN Atlas in Sect. 2. We introduce the
LATIN metaframework in Sect. 3 and describe its integration into the Hets
system in Sect. 4. We will use an encoding of first-order logic in the logical
framework LF as a running example.

2 Preliminaries

2.1 The Heterogeneous Tool Set

The Heterogeneous Tool Set (Hets, [MML07]) is a set of tools for multi-logic speci-
fications, which combines parsers, static analyzers, and theorem provers.Hets pro-
vides a heterogeneous specification language built on top of CASL [ABK+02] and
uses the development graph calculus [MAH06] as a proof management component.
The graph of logics supported by Hets and their translations is presented in Fig. 1.

Hets formalizes the logics and their translations using the abstract model
theory notions of institutions and institution comorphisms (see [GB92]).

Definition 1. An institution is a quadruple I = (Sig,Sen,Mod, |=) where:

– Sig is a category of signatures;
– Sen : Sig → Set is a functor to the category Set of small sets and functions,

giving for each signature Σ its set of sentences Sen(Σ) and for any signature
morphism ϕ : Σ → Σ′ the sentence translation function Sen(ϕ) : Sen(Σ)→
Sen(Σ′) (denoted by a slight abuse also ϕ);

– Mod : Sigop → Cat is a functor to the category of categories and functors
Cat 1 giving for any signature Σ its category of models Mod(Σ) and for
any signature morphism ϕ : Σ → Σ′ the model reduct functor Mod(ϕ) :
Mod(Σ′)→Mod(Σ) (denoted |ϕ);

– a satisfaction relation |=Σ ⊆ |Mod(Σ)| × Sen(Σ) for each signature Σ

such that the following satisfaction condition holds:

M ′|ϕ |=Σ′ e⇔M ′ |=Σ ϕ(e)

for each M ′ ∈ |Mod(Σ′)| and e ∈ Sen(Σ), expressing that truth is invariant
under change of notation and context.
1 We disregard here the foundational issues, but notice however that Cat is actually

a so-called quasi-category.
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Fig. 1. Hets logic graph

For example, the institution of unsorted first-order logic FOL has signatures
consisting of a set of function symbols and a set of predicate symbols, with
their arities. Signature morphisms map symbols such that their arities are pre-
served. Models are first-order structures, and sentences are first-order formu-
las. Sentence translation means replacement of the translated symbols. Model
reduct means reassembling the model’s components according to the signature
morphism. Satisfaction is the usual satisfaction of a first-order sentence in a
first-order structure.

Definition 2. Given two institutions I1, I2 with Ii = (Sigi,Seni,Modi, |=i),
an institution comorphism from I1 to I2 consists of a functor Φ : Sig1 → Sig2

and natural transformations β : Mod2 ◦ Φ⇒Mod1 and α : Sen1 ⇒ Sen2 ◦ Φ,
such that the following satisfaction condition holds:

M ′ |=2
Φ(Σ) αΣ(e) ⇐⇒ βΣ(M ′) |=1

Σ e,

where Σ is an I1 signature, e is a Σ-sentence in
I1 and M ′ is a Φ(Σ)-model in I2.

The process of extending Hets with a new logic can be summarized as follows.
First, we need to provide Haskell datatypes for the constituents of the logic,
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e.g. signatures, morphisms and sentences. This is done via instantiating vari-
ous Haskell type classes, namely Category (for the signature category of the
institution), Sentences (for the sentences), Syntax (for abstract syntax of basic
specifications, and a parser transforming input text into this abstract syntax),
StaticAnalysis (for the static analysis, turning basic specifications into theories,
where a theory is a signature and a set of sentences). All this is assembled in the
type class Logic, which additionally provides logic-specific tools like provers and
model finders. For displaying the output of model finders, also (finite) models
are represented in Hets, and these can even be translated against comorphisms.
The model theoretic foundation of Hets also is apparent from the fact that Stat-
icAnalysis contains methods for checking amalgamability properties that are
defined model theoretically (and therefore not available in purely proof theo-
retic logical frameworks). The type class Logic is used to represent logics in
Hets internally. Finally, the new logic is made available by adding it to the list
of Hets’ known logics. Similarly, Hets represents comorphisms as instances of a
type class Comorphism, which provides an interface for translating constituents
of the source logic to the target logic of the comorphism. Notice that the do-
main of the translation can be restricted to a certain sublogic of the source using
its sublogics hierarchy. Moreover, the methods of the class Comorphism include
translation of theories, signature morphisms or sentences to the target logic.

The input language of Hets is HetCASL. It combines logic-specific syntax
of basic specifications (as specified by an instance of Syntax ) with the logic-
independent structuring constructs of CASL (like extension, union, translation
of specifications, or hiding parts). Moreover, there are constructs for choosing
a particular logic, as well as for translating a specification along an institution
comorphism.

2.2 Proof Theoretic Logical Frameworks

We use the term proof theoretic to refer to logical frameworks whose semantics
is or can be given in a formal and thus mechanizable way without reference to
a Platonic universe. These frameworks are declarative formal languages with an
inference system defining a consequence relation between judgments. They come
with a notion of language extensions called signatures or theories, which admits
the structure of a category. Logic encodings represent the syntax and proof
theory of a logic as a theory of the logical framework, and logical consequence
is represented in terms of the consequence relation of the framework.

The most important logical frameworks are LF, Isabelle, and rewriting logic.
LF [HHP93] is based on dependent type theory; logics are encoded as LF sig-
natures, proofs as terms using the Curry-Howard correspondences, and con-
sequence between formulas as type inhabitation. The main implementation is
Twelf [PS99]. The Isabelle system [Pau94] implements higher-order logic [Chu40];
logics are represented as HOL theories, and consequence between formulas as
HOL propositions. The Maude system [CELM96] is related to rewriting logic
[MOM94]; logics are represented as rewrite theories, and consequence between
formulas as rewrite judgments. Other languages such as Coq [BC04] or Agda
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[Nor05] can be used as logical frameworks as well, but this is not the primary
application encountered in practice.

In the following, we give an overview of LF, which we will use as a running
example. LF extends simple type theory with dependent function types and is
related to Martin-Löf type theory [ML74]. The following grammar is a simplified
version of the LF grammar where we write · for the empty list. It includes LF
signature morphisms, which were added to LF in [HST94] and added to Twelf in
[RS09]:

Signatures Σ ::= · | Σ, c : E | Σ, c : E = E
Morphisms σ ::= · | σ, c := E
Expressions E ::= type | c | x | E E | λx:E E | Πx:E E | E → E

LF expressions E are grouped into kinds K, kinded type-families A : K,
and typed terms t : A. The kinds are the base kind type and the dependent
function kinds Πx:A K. The type families are the constants a, applications a t,
and the dependent function type Πx:A B; type families of kind type are called
types. The terms are constants c, applications t t′, and abstractions λx:A t. We
write A→ B instead of Πx:A B if x does not occur in B.

An LF signature Σ is a list of kinded type family declarations a : K and
typed constant declarations c : A. Both may carry definitions, i.e., c : A = t and
a : K = A, respectively. Due to the Curry-Howard representation, propositions
are encoded as types as well; hence a constant declaration c : A may be regarded
as an axiom A, while c : A = t additionally provides a proof t for A. Hence, an
LF signature corresponds to what usually is called a logical theory.

Relative to a signature Σ, closed expressions are related by the judgments �Σ

E : E′ and �Σ E = E′. Equality of terms, type families, and kinds are defined by
αβη-equality. All judgments for typing, kinding, and equality are decidable.

Given two signatures Σ and Σ′, an LF signature morphism σ : Σ → Σ′

is a typing- and kinding-preserving map of Σ-symbols to Σ′-expressions. Thus,
σ maps every constant c : A of Σ to a term σ(c) : σ(A) and every type family
symbol a : K to a type family σ(a) : σ(K). Here, σ is the homomorphic extension
of σ to Σ-expressions, and we will write σ instead of σ from now on.

Signature morphisms preserve typing, i.e., if �Σ E : E′, then �Σ′ σ(E) :
σ(E′), and correspondingly for kinding and equality. Due to the Curry-Howard
encoding of axioms, this corresponds to theorem preservation of theory mor-
phisms. Composition and identity are defined in the obvious way, and we obtain
a category LF.

In [RS09], a module system was given for LF and implemented in Twelf. The
module system permits to build both signatures and signature morphisms in a
structured way. Its expressivity is similar to that of development
graphs [AHMS99].

2.3 A Logic Atlas in LF

In the LATIN project [KMR09], we aim at the creation of a logic atlas based on
LF. The Logic Atlas is a multi-graph of LF signatures and morphisms
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between them. Currently it contains formalizations of various logics, type theo-
ries, foundations of mathematics, algebra, and category theory.

Among the logics formalized in the Atlas are propositional (PL), first (FOL)
and higher-order logic (HOL), sorted (SFOL) and dependent first-order logic
(DFOL), description logics (DL), modal (ML) and common logic (CL) as illus-
trated in the diagram below. Single arrows (→) in this diagram denote transla-
tions between formalizations and hooked arrows (↪→) denote imports. Among the
foundations are encodings of Zermelo-Fraenkel set theory, Isabelle’s higher-order
logic, and Mizar’s Set theory [IR11].

Note that a logical framework leaves the choice of the foundation deliberately
open. In this way, we can use one logical framework (e.g. LF) with several foun-
dations (e.g. ZFC, as well as category theory). Only the representation of a logic
includes the choice of a foundation.

PL

ML SFOL DFOL
FOL

CL

DL
HOL

OWL
MizarZFCIsabelle

Actually the graph is signifi-
cantly more complex as we use
the LF module system to ob-
tain a maximally modular de-
sign of logics. For example, first-
order, modal, and description
logics are formed from orthog-
onal modules for the individ-
ual connectives, quantifiers, and axioms. For example, the ∧ connective is
only declared once in the whole Atlas and imported into the various logics and
foundations and related to the type theoretic product via the Curry-Howard
correspondence.

FOLSynBase

FOLPf

FOLMod

ZFC

FOLmod

FOLpf

M

FOLtruth

FOLsound

Moreover, we use individual modules
for syntax, proof theory and model the-
ory so that the same syntax can be
combined with different interpretations.
For example, our formalization of first-
order logic (presented in [HR11]) con-
sists of the signatures Base and FOLSyn

for syntax, FOLPf for proof theory, and
FOLMod for model theory as illustrated
in the diagram on the right. Base con-
tains declarations o : type and i : type
for the type of formulas and first-order
individuals, and a truth judgment for
formulas. FOLSyn contains declarations for all logical connectives and quantifiers
(see Fig. 4). FOLtruth is an inclusion morphism from Base to FOLSyn . FOLPf

consists of declarations for judgments and inference rules associated with each
logical symbol declared in FOLSyn . FOLpf is simply an inclusion morphism from
FOLSyn to FOLPf .

For the representation of FOL model theory, LF is not a suitable metalan-
guage because its type theory is minimalistic and the use of higher-order abstract
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syntax is incompatible with the natural way of adding computational support
needed to express models. However, LF can serve as a minimal, neutral frame-
work to formalize the metalanguage itself. We choose ZFC set theory as the
appropriate metalanguage because it is the standard foundation of mathemat-
ics, and formalize it in LF (in the signature ZFC ) and use it as the metalanguage
to define models.

The ZFC encoding includes the type of sets, the membership predicate as
a primitive non-logical symbol, and the usual ZFC set operations and axioms
defined in a first-order language with description operator. Additionally, ZFC
contains a type judgment elem for the elements of a set as well as a binary
operation =⇒ on sets that returns the set of functions. This is important for
being able to represent models as signature morphisms (see below): signature
morphisms map types to types, and via elem, (carrier) sets can be turned into
types.

FOLMod includes ZFC as a metalanguage and uses it to axiomatize the prop-
erties of FOL-models. More precisely, FOLMod declares a set bool for the boolean
values axiomatizing it to get the desired 2-element set {0, 1}, declares a fixed set
univ of individuals, along with an axiom stating that the universe is nonempty.
For each logical symbol sSyn in FOLSyn , FOLMod declares a symbol sMod that
represents the semantic operation used to interpret sSyn along with axioms
specifying its truth values. For instance, for disjunction, which is declared as
or : o → o → o in FOLSyn , FOLMod declares the symbol ∨ as a ZFC-function
from bool2 to bool and axiomatizes it to be the binary supremum in the boolean
2-element lattice. This corresponds to the case-based definition of the semantics
of a formula.

FOLSyn FOLMod ZFC
i : type univ : set set : type
o : type bool : set prop : type
or : o→ o→ o ∨ : elem (bool =⇒ bool =⇒ bool) ∨ : prop→ prop→ prop
forall : (i→ o)→ o ∀ : elem ((univ =⇒ bool) =⇒

bool)
∀ : (set→ prop)→ prop

∈: set→ set→ prop
elem : set→ type
=⇒: set→ set→ set

The morphism FOLmod interprets the syntax of FOL in the semantic realm
specified by FOLMod : It maps the type i of individuals to the type of elements
of univ, the type o of formulas to the type of elements of bool, and the logical
operations to the corresponding operations on booleans.

The individual FOL-models are represented as LF signature morphisms from
FOLMod to ZFC that are the identity on ZFC . In other words, a model M maps
univ to a nonempty set expressed by using the set operations of ZFC . M inter-
prets the boolean operations in FOLMod in terms of the usual set operations in
ZFC . For instance, the universal quantification for the booleans is mapped to the
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intersection of a family of subsets. Given such a morphism M , the composition
FOLmod ; M then yields the interpretation of FOLSyn in ZFC .

A particular aspect of our formalization is that soundness of FOL can be
represented naturally as an LF signature morphism from FOLPf to FOLMod

making the diagram above commute. Note that a morphisms in the opposite
direction, i.e., from FOLMod to FOLPf , does not yield completeness.

3 The LATIN Metaframework

In this section we describe the theoretical background of our LATIN metaframe-
work (LMF) based on the approach taken in [Rab10]. The LMF is an abstract
framework that allows to represent logical frameworks as declarative languages
given by categories of theories. The LMF is generic in the sense that it can be
instantiated with specific logical frameworks such as LF, Isabelle or rewriting
logic, thus allowing Hets to be flexible in the choice of the logical framework in
which logics should be represented.

In Sect. 3.1, we show that our abstract representation of logical frameworks
complies with the notion of institutions and institution comorphisms. Here we
deliberately restrict attention to a special case of [Rab10] that makes the ideas
clearest and discuss generalizations in Sect. 3.2.

3.1 Main Definition

Definition 3 (Inclusions). A category with inclusions consists of a category
together with a broad subcategory that is a partial order. We write B ↪→ C for
the inclusion morphism from B to C.

Definition 4 (Logical Framework). A tuple (C,Base ,Sen,�) is a logical
framework if

– C is a category that has inclusions and pushouts along inclusions,
– Base is an object of C,
– Sen : C\Base → Set is a functor, where C\Base is the so-called slice cat-

egory of C over Base, whose objects are arrows in C of source Base and
morphisms make triangles commute,

– for t ∈ C\Base, �t is a unary predicate on Sen(t),
– � is preserved under signature morphisms: if �t F then �t′ Sen(σ)(F ) for

any morphism σ : t→ t′ in C\Base.

C is the category of theories of the logical framework. Our focus is on declarative
frameworks where theories are lists of named declarations. Typically these have
inclusions and pushouts along them in a natural way.

Logics are encoded as theories Σ of the framework, but not all theories can be
naturally regarded as logic encodings. Logic encodings must additionally distin-
guish certain objects over Σ that encode logical notions. Therefore, we consider
C-morphisms t : Base → Σ where Base makes precise what objects must be
distinguished.
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We leave the structure of Base abstract, but we require that slices t : Base →
Σ provide at least a notion of sentences and truth for the logic encoded by Σ.
Therefore, Sen(t) gives the set of sentences, and the predicate �t F expresses
the truth of F .

Example 1 (LF). We define a logical framework FLF based on the category C =
LF. LF has inclusions by taking the subset relation between sets of declarations.
Given σ : Σ → Σ′ and an inclusion Σ ↪→ Σ, c : A, a pushout is given by

(σ, c := c) : (Σ, c : A) → (Σ′, c : σ(A))

(except for possibly renaming c if it is not fresh for Σ′). The pushouts for other
inclusions are obtained accordingly.

Base is the signature with the declarations o : type and ded : o → type.
For every slice t : Base → Σ, we define Sen(t) as the set of closed βη-normal
LF-terms of type t(o) over the signature Σ. Moreover, �t F holds iff the Σ-type
t(ded) F is inhabited.

Given t : Base → Σ and t′ : Base → Σ′ and σ : Σ → Σ′ such that σ ◦ t = t′,
we define the sentence translation by Sen(σ)(F ) = σ(F ). Truth is preserved:
assume �t F ; thus t(ded) F is inhabited over Σ; then σ(t(ded) F ) = t′(ded) σ(F )
is inhabited over Σ′; thus �t′ Sen(σ)(F ).

Example 2 (Isabelle). A logical framework based on Isabelle is defined similarly.
C is the category of Isabelle theories and theory morphisms (for the latter,
see [BJL06]). Base consists of the declarations bool : type and trueprop : bool →
prop where prop is the type of Isabelle propositions. Given t : Base → Σ, we de-
fine Sen(t) as the set of Σ-terms of type t(bool), and �t F holds if t(trueprop) F
is an Isabelle theorem over Σ.

Example 3 (Rewriting logic). A logical framework based on rewriting logic can
be defined along the lines of [MOM94]. C is the category of rewriting logic
theories and theory morphisms. Base consists of the following declarations:

sorts Prop FormList Sequent .
subsorts Prop < FormList .
op empty : -> FormList .
op tt : -> Prop .
op � : FormList FormList -> Sequent .

where Prop stands for the type of propositions, tt for the formula true, and �
turns two lists of formulas into a sequent. Given t : Base → Σ, we define Sen(t)
as the set of Σ-terms of type t(Prop), and �t F holds for some term F of type
t(Prop) if empty � F ⇒Σ empty � tt. �t is preserved by rewriting logic theory
morphisms because rewriting must be preserved.

We use logical frameworks to define institutions. The basic idea is that slices
t : Base → LSyn define logics (LSyn specifies the syntax of the logic), signatures
of that logic are extensions LSyn ↪→ ΣSyn , and sentences and truth are given by
Sen and �. We could represent the logic’s models in terms of the models of the
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logical framework, but that would complicate the mechanizable representation
of models. Therefore, we represent models as C morphisms into a fixed theory
that represents the foundation of mathematics. We need one auxiliary definition
to state this precisely:

Definition 5. Fix a logical framework, and assume Lmod : LSyn → LMod in C
as in the diagram below.

LSyn

LMod

Lmod

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

Firstly, for every inclusion LSyn ↪→ ΣSyn , we define ΣMod and Σmod such
that ΣMod is a pushout. Secondly, for every σsyn : ΣSyn → Σ′Syn , we define
σmod : ΣMod → Σ′Mod as the unique morphism such that the above diagram
commutes.

Then we are ready for our main definition:

Definition 6 (Institutions in LMF). Let F = (C,Base,Sen,�) be a logi-
cal framework. Assume L = (LSyn , Ltruth , LMod ,F , Lmod) as in the following
diagram:

Base LSyn

LMod

F

Ltruth

Lmod

F
idF

ΣSyn

ΣMod

Σmod

Σ′Syn

Σ′Mod

Σ′mod

σsyn

σmod

m
m′

Then we define the institution F(L) = (SigL,SenL,ModL, |=L) as follows:

– SigL is the full subcategory of C\LSyn whose objects are inclusions. To sim-
plify the notation, we will write ΣSyn for an inclusion LSyn ↪→ ΣSyn below.

– SenL is defined by

SenL(ΣSyn) = Sen((LSyn ↪→ ΣSyn)◦Ltruth) and SenL(σ) = Sen(σ).

– ModL is defined by

ModL(ΣSyn) = {m : ΣMod → F | m ◦ (F ↪→ ΣMod) = idF}
ModL(σsyn )(m′) = m′ ◦ σmod .

All model categories are discrete.
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– We make the following abbreviation: For a model m ∈ ModL(ΣSyn), we
write m for m ◦Σmod ◦ (LSyn ↪→ ΣSyn) ◦Ltruth : Base → F . Then we define
satisfaction by

m |=L
ΣSyn F iff �m Sen(m ◦Σmod)(F ).

Theorem 1 (Institutions in LMF). In the situation of Def. 6, F(L) is an
institution.

Proof. We need to show the satisfaction condition. So assume σsyn : ΣSyn →
Σ′Syn , F ∈ SenL(ΣSyn), and m′ ∈ModL(Σ′Syn ). First observe that m′ = m′ ◦
Σ′mod ◦(LSyn ↪→ Σ′Syn)◦Ltruth = (m′◦σmod)◦Σmod ◦(LSyn ↪→ ΣSyn)◦Ltruth =
m′ ◦ σmod . Then ModL(σ)(m′) |=L

ΣSyn F iff �
m′◦σmod Sen((m′◦σmod)◦Σmod)(F )

iff �m′ Sen(m′ ◦Σ′mod)(Sen(σsyn )(F )) iff m′ |=L
Σ′Syn SenL(σsyn )(F ).

Example 4 (FOL). We can now obtain an institution from the encoding of first-
order logic in Sect. 2.3 based on the logical framework FLF . First-order logic is
encoded as the tuple FOL = (FOLSyn ,FOLtruth ,FOLMod ,ZFC ,FOLmod) as in
Sect. 2.3.

We obtain an institution comorphism FOL → FLF (FOL) as follows. Signa-
tures of FOL are mapped to the extension of FOLSyn with declarations f : i→
. . . → i → i for function symbols f , p : i → . . . → i → o for predicate sym-
bols p. If we want to map FOL theories as well, we add declarations ax : ded F
for every axiom F . Signature morphisms are mapped in the obvious way. The
sentence translation is an obvious bijection. The model translation maps every
m : ΣMod → F to the model whose universe is given by m(univ) and which
interprets symbols f and p according to m(f) and m(p). The model translation
is not surjective as there are only countably many morphisms m in FLF (FOL).
However, since FOL has a constructive existence proof of canonical models, these
models can be represented as ZFC terms and are in the image of the model trans-
lation. The satisfaction condition can be proved by an easy induction. FLF (FOL)
is complete thus FOL and FLF (FOL) have the same consequence relation.

Logical frameworks can also be used to encode institution comorphisms in an
intuitive way:

Theorem 2 (Institution Comorphisms in LMF). Fix a logical framework
F = (C,Base,Sen,�). Assume two logics L = (LSyn , Ltruth , LMod ,F , Lmod)
and L′ = (L′Syn , L′truth , L′Mod ,F , L′mod). Then a comorphism F(L)→ F(L′) is
induced by morphisms (lsyn, lmod) if the following diagram commutes

Base

F

LSyn

LMod

Ltruth
Lmod

L′Syn

L′Mod

L′truth L′mod

lsyn

lmod
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Proof. A signature LSyn ↪→ ΣSyn is translated to L′Syn ↪→ Σ′Syn by pushout
along lsyn yielding σsyn : ΣSyn → Σ′Syn . Sentences are translated by applying
σsyn . We obtain σmod : ΣMod → Σ′Mod as the unique morphism through the
pushout ΣMod . Then models are translated by composition with σmod . We omit
the details.

It is easy to see that comorphisms that are embeddings can be elegantly rep-
resented in this way, as well as many inductively defined encodings. However,
the assumptions of this theorem are too strong to permit the encoding of some
less trivial comorphisms. For example, non-compositional sentence translations,
which come up when translating modal logic to first-order logic, cannot be rep-
resented as signature morphisms. Or signature translations that do not preserve
the number of non-logical symbols, which come up when translating partial to
total function symbols, often cannot be represented as pushouts. More general
constructions for the special case of LF are given in [Rab10] and [Soj10].

3.2 Generalizations

In Ex. 4, we do not obtain a comorphism in the opposite direction. There are
three reasons for that. Firstly, FLF (FOL) contains a lot more signatures than
needed because the definition of SigL permits any extension of LSyn , not just
the ones corresponding to function and predicate symbols. Secondly, the discrete
model categories of FLF (FOL) cannot represent the model morphisms of FOL.
Thirdly, only a (countable) subclass of the models of FOL can be represented
as LF morphisms. Moreover, Def. 4 and 6 are restricted to institutions, i.e., the
syntax and model theory of a logic, and exclude the proof theory. We look at
these problems below.

Signatures. In order to solve the first problem we need to restrict F(L) to a sub-
category of SigL. However, it is difficult to single out the needed subcategory in
a mechanizable way. Therefore, we restrict attention to those logical frameworks
where C is the category of theories of a declarative language.

In a declarative language, the theories are given by a list of typed symbol
declarations. In order to formalize this definition without committing to a type
system, we use Mmt expressions ([Rab08]) as the types. Mmt expressions are
formed from variables, constants, applications @(E, l) of an expression E to a
list of expressions l, bindings β(E, l, E′) of a binder E with scope E′ binding
a list of variables typed by the elements of l. To that we add jokers ∗, which
matches an arbitrary expressions, and E, which matches a list of expressions
each of which matches E.

Such Mmt expression patterns give us a generic way to pattern-match dec-
larations of the logical framework. If a concrete logic definition contains a set
P of patterns, we represent its logical signatures as C-objects ΣSyn that extend
LSyn only with declarations matching one of the patterns in P . For example,
the patterns for first-order logic from Ex. 4 would be @(→, i, i) and @(→, i, o)
for function and predicate symbols of arbitrary arity, and @(ded , ∗) for axioms.
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Here ∗ stands for an arbitrary expression, which in this case must be a sentence
to be well-typed.

Model Morphisms. Regarding the second problem, if C is a 2-category, we can
define the model morphisms of F(L) as 2-cells in C. However it is difficult in prac-
tice to obtain 2-categories for type theories such as LF or Isabelle. In [Soj10],
we give a syntactical account of logical relations that behave like 2-cells in suf-
ficiently many ways to yield model morphisms.

Undefinable Models. The third problem is the most fundamental one because no
formal logical framework can ever encode all models of a Platonic universe. Our
encoding of ZFC is strong enough to encode any definable model. We call a
model M definable if it arises as the solution to a formula ∃!M.F (M) for some
parameter-free formula F (x) of the first-order language of ZFC. This restriction
is philosophically serious but in our experience not harmful in practice. Indeed,
if infinite LF signatures are allowed, using canonical models constructed in com-
pleteness proofs, in many cases all models can be represented up to elementary
equivalence.

Proof Theory. Our examples from Sect. 2.3 already encoded the proof theory of
first-order logic in a way that treats proof theory and model theory in a balanced
way. Our definitions can be easily generalized to this setting.

Logic encodings in a logical framework become 6-tuples (LSyn , Ltruth , LMod ,F ,
Lmod , LPf , Lpf ) for Lpf : LSyn → LPf . LPf encodes the proof theory of a logic,
which typically means to add auxiliary syntax, judgments, and proof rules to
LSyn . Def. 5 can be extended to obtain Σpf : ΣSyn → ΣPf as a pushout in
the same way as Σmod . Finally the logical framework must be extended with a
component that yields a data structure of proofs (such as entailment systems or
proof trees) for every slice out of Base.

For example, for the framework FLF , the proof trees for proofs of F using
assumptions F1, . . . , Fn can be defined as the βη-normal LF terms over ΣPf

of type Σpf
(
Ltruth(ded)F1 → . . . → Ltruth(ded)Fn → Ltruth(ded)F

)
. A

similar construction was given in [Rab10].

4 Logical Frameworks in Hets

The differences between LF and Hets mentioned in Sect. 2 exhibit complemen-
tary strengths, and a major goal of our work is to combine them. We have en-
hanced Hets with a component that allows the dynamic definition of new logics.
The user specifies a logic by giving the representation of its constituents (syn-
tax, model theory) in a logical framework and the combined system recognizes
the new logic and integrates it into the Hets logic graph. The implementation
follows the Hets principles of high abstraction and separation of concerns: we
provide an implementation for the general concept of logical frameworks, which
we describe in Sect. 4.1. This is further instantiated for the particular case of LF
in Sect. 4.2. Finally, in Sect. 4.3 we present a complete description of the steps
necessary to add a new logic in Hets using the framework of LF.
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4.1 Implementing the LMF in Hets

This section sketches how the concept of logical frameworks is integrated into
Hets. The integration is done entirely on the developer’s side and a user wish-
ing to add a new logic to Hets only has to select one of the available logical
frameworks, which will serve as a meta-logic for the new object logic he or she
specifies. We will give here just a brief overview of how the implementation is
done and refer the interested reader to [Mos05] for a presentation of the theo-
retical foundations of Hets and to the Hets developers documentation pages 2

for a more detailed presentation of how the coding is actually done.
The central part of the implementation is a Haskell type class LogicalFrame-

work, which is instantiated by the logics which can be used as logical frameworks,
i.e. in which object logics can be specified by the user. Such candidates are for
example LF, rewriting logic and Isabelle 3. The class provides a selector for
the Base signature and a method writeLogic, which takes an object logic name
as an argument and generates the instances of the classes Syntax, Sentences,
StaticAnalysis, and Logic for the given object logic.

Each logic implementing LogicalFramework must likewise implement the class
Category, from which we get the category C mentioned in Def. 4. The sentence
functor Sen is specified implicitly by the writeLogic method: the instantiation
of the StaticAnalysis class determines exactly which sentences are valid for a
particular signature of L, thus giving Sen on objects. Since the current imple-
mentation of logics in Hets does not include satisfaction of sentences in models,
the predicate �t is currently not represented as its main purpose is to define the
satisfaction relation for object logics.

At the syntactic level, we must provide a way to write down new logic defini-
tions in HetCASL, the underlying heterogenous algebraic specification language
of Hets. Since definitions of new logics have a different status than usual algebraic
specifications, we extend the language at the library level.

newlogic L =
meta F
syntax Ltruth

models Lmod

foundation F
proofs Lpf

patterns P

Concrete Syntax. We add the following concrete
syntax (on the right) to HetCASL in order to define
new logics. Here L is the name of the newly defined
logic and F is an identifier pointing to the logical
framework used. The identifiers Ltruth , Lmod , Lpf ,F
are the components of the new logic L. They refer to
previously declared signature morphisms of F and
the signatures representing LSyn , LMod , LPf can be
inferred from them. F is a signature which gives the
foundation. The declaration of patterns is optional.

After encountering a newlogic declaration, Hets invokes a static analyzer,
which retrieves the signatures and morphisms constituting the components of
the logic L. The analyzer verifies the correct shape of the induced diagram and

2 See http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/

CoFI/hets/src-distribution/daily/Hets/docs/Logic.html.
3 Currently only LF has a full implementation as a logical framework.

http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/src-distribution/daily/Hets/docs/Logic.html
http://www.informatik.uni-bremen.de/agbkb/forschung/formal_methods/CoFI/hets/src-distribution/daily/Hets/docs/Logic.html
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instantiates the Logic class for the logic L as specified by the writeLogic method
of the framework F.

The logic L arising from the above newlogic L declaration differs slightly
from the one described in Def. 6 in that it uses signatures of F that extend LSyn

rather than F-inclusion morphisms out of LSyn. Accordingly, the morphisms of
L are those morphisms of F which are the identity on LSyn. This is essentially
the same thing, but has the advantage that the data types representing the
signatures and morphisms of F can be directly reused for L and no separate
instantiation of the class Category is required4.

4.2 LF as a Logical Framework in Hets

In this section we outline how to turn LF into a logical framework in Hets, i.e.
how to instantiate the LogicalFramework class for LF. In order to do so we will
make use of the instance of the Logic class for LF.5.

The Base signature is specified to be the LF signature containing the symbols
o and ded , as described in Sect. 3. The instantiations of the classes Logic, Syntax,
etc. provided by the writeLogic method mostly inherit their LF implementations,
with one exception being the StaticAnalysis class. While both LF and the LF
object logics use Twelf to verify the well-formedness of input specifications, a
specification in an object logic is assumed to have been given relative to the
LSyn signature supplied when defining the object logic.

After receiving the input file, Twelf performs parsing, static analysis and
reconstruction of types and implicit arguments. If the analysis succeeds, the
output is stored as an OMDoc version of the input file, and is subsequently
imported into Hets using standard XML technologies. Hets reads the imported
OMDoc file and transforms it into corresponding LF signatures and morphisms
in their Hets internal representation.

4.3 Adding a New Logic in Hets: FOL

We will now illustrate the steps needed to add first-order logic as a new logic in
Hets. The aim of this section is not to show how to encode a particular logic in
Twelf, which for the case of first-order logic has been described in [HR11], but
rather to show how an existing encoding can be used to add the logic in Hets.

Given a FOL encoding as in Section 2.3, all that is needed to be done is to
collect the components of the encoding in a newlogic definition, as in Fig. 2. The
first lines import the morphism FOLtruth from Base to FOLSyn , the morphism
FOLmod from FOLSyn to FOLMod , and the morphism FOLpf from FOLSyn to
FOLPf as in Ex. 4, from their respective directories. STTIFOLEQ is a fragment
of ZFC used to represent model theory. It is composed of simple type theory
equipped with external intuitionistic first-order logic. Notice that we assume for
convenience that the file with the new logic definition is in the folder that contains
4 The theory presented in Section 3 could thus have been formulated equivalently,

albeit less elegantly, without referring to slice categories.
5 An institution for LF can be defined as for example in [Rab08].
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from logics/first -order/syntax/fol get FOL_truth %%FOLtruth

from logics/first -order/model_theory /fol get FOL_mod %%FOLmod

from logics/meta/sttifol get STTIFOLEQ %%F
from logics/first -order/ proof_theory /fol get FOL_pf %%FOLpf

newlogic FOL =

meta LF
syntax FOL_truth

models FOL_mod

foundation STTIFOLEQ

proofs FOL_pf

end

Fig. 2. Defining FOL as a new object logic

the directory of logics as sub-folder; the paths need to be adjusted if that is not
the case. 6 The directory structure mirrors the modular design of logics in the
Logic Atlas. As a result of calling Hets on the above file, a new directory called
FOL is added to the source folder of Hets. The directory contains automatically
generated files with the instances needed for the logic FOL. Moreover, the Hets
variable containing the list of available logics is updated to include FOL. After
recompiling Hets, the new logic is added to the logic graph of Hets (the node
FOL in Fig. 1 for the dynamically-added logic) and can be used in the same way
as any of the built-in logics.

In particular, we can now use the new object logic to write specifications. For
example, the specification in Fig. 3 uses FOL as a current logic and declares a
constant symbol c and a predicate p, together with an axiom that the predicate
p holds for the constant c. Notice that the syntax for logics specified in a logical
framework F is inherited from the framework (in our case LF), but it has been
extended with support for sentences, in the usual CASL syntax i.e. prefixed by
the ’.’ character.

Fig. 4 presents the theory of SP as displayed from within Hets; as mentioned
in Section 4.2, the theory is automatically assumed to extend FOLSyn . Since in
Hets all imports are internally flattened, the theory of SP when displayed will
include all the symbols from FOLSyn .

5 Conclusion and Future Work

We have described a prototypical integration of the institution-based Heteroge-
neous Tool Sets (Hets) with logical frameworks in general and LF and the Twelf
tool in particular. The structuring language used by Hets has a model theoretic
semantics, which has been reflected in the proof theoretic logical framework LF
by representing models as theory morphisms into some foundation. While LF is
6 The complete specification of FOL in LF can be found at https://svn.omdoc.org/
repos/latin/twelf-r1687/

https://svn.omdoc.org/repos/latin/twelf-r1687/
https://svn.omdoc.org/repos/latin/twelf-r1687/
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logic FOL

spec SP =

c : i.

p : i -> o.

. p c

end

Fig. 3. Specification in
the new object logic

Fig. 4. Theory of SP

the logical framework of our current choice, both the theory and the implemen-
tation are so general that other frameworks like Isabelle can be used as well. We
expect important synergy effects from this as Isabelle is already used as one of
the main inference engines in Hets.

Proof theory of the represented logics has been treated only superficially in the
present work, but in fact, we have represented proof calculi for all the LATIN
logics within LF. Representing models in the system as well has enabled us
to formally prove soundness of the calculi. It is straightforward to extend the
construction of institutions out of logic representations in logical frameworks
such that they deliver institutions with proofs. In the long run, we envision
that the provers integrated in Hets also return proof terms, which Hets can
then fill into the original file and rerun Twelf on it to validate the proof. Thus,
Hets becomes the mediator that orchestrates the interaction between external
theorem provers and Twelf as a trusted proof checker.

While the theory and implementation described in this paper make it possible
to add logics to Hets in a purely declarative way, further work is needed to turn
this into a scalable tool. Firstly, the logic translations-as-theory morphisms ap-
proach needs to be generalised in order to cover more practically useful examples.
Secondly, the new LF generated logics present in Hets need to be connected (via
institution comorphisms) to the existing hard-coded logics in order to share the
connection of the latter to theorem provers and other tools. Thirdly, it will be
desirable to have a declarative interface for specifying the syntax of new logics,
such that one is not forced to use the syntax of the logical framework. We are
currently examining whether Eclipse and Xtext are helpful here. Finally, also
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the various tool interfaces of Hets should be made more declarative, such that
Hets logics specified in a logical framework can be directly connected to theorem
provers and other tools, instead of using a comorphism into a hard-coded logic.
Then, in the long run, it will be possible to entirely replace the hard-coded logics
with declarative logic specifications in the LATIN metaframework — and only
the latter needs to be hard-coded into Hets.

The Logic Atlas currently consists of a around 150 files containing some 700
signatures and views and producing over 10000 lines of Twelf output (includ-
ing declarations that are generated by the module system). This is the result
of roughly one year of development with substantial contributions from six dif-
ferent people, and due to the evolutionary improvement of our methodology,
architecture, and expertise, growth has been exponential. Nevertheless, the rep-
resentation and interconnection of logics is (and will remain) a task that requires
a deep understanding of the respective logics, a good eye for the underlying prim-
itives, and sound judgment in the design and layout of atlantes. We consider the
current Logic Atlas to be a seed atlas that establishes best practices in these
questions and provides a nucleus of logical primitives that can be extended to
add particular logics by outside logic and system developers.

We explicitly invite researchers outside the LATIN project to contribute their
logics. This should usually be a matter of importing the aspects that are provided
by Logic Atlas theories, and LF-encoding the aspects that are not.

Acknowledgments. This paper mainly addresses the model theoretic side of
the logic atlas developed in the LATIN project — funded by the German Re-
search Council (DFG) under grant KO-2428/9-1.
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Abstract. The development of a denotational framework for graph
transformation systems proved elusive so far. Despite the existence of
many formalisms for modelling various notions of rewriting, the lack of
an explicit, algebraic notion of “term” for describing a graph (thus dif-
ferent from the usual view of a graph as an algebra in itself) frustrated
the efforts of the researchers. Resorting to the theory of institutions, the
paper introduces a model for the operational semantics of graph trans-
formation systems specified according to the so-called double-pullback
approach.

Keywords: Graph transformation systems, institutions.

1 Introduction

Graph transformation [24] is a flexible framework for the specification and ver-
ification of distributed systems, whose strength lies in the visual nature of the
specification process. The topology of the states traversed by a system is repre-
sented by a graph, and system evolution is described by a set of rewriting rules,
specified according to some operational mechanism for graph manipulation.

The formalism has a rich set of theoretical tools available, such as a well-
established theory of concurrency [8,1] (that proved pivotal in developing veri-
fication techniques [2]) and a growing family of methodologies for the modular
specification of systems [13,17]. However, so far the development of a denota-
tional framework for graph transformation proved elusive. There exist many
formalisms that are able to properly capture various notions of term rewriting,
while offering a proper denotational model [21]. Yet, the lack of an explicit notion
of “term” for describing a graph (thus different from the usual view of a graph
as an algebra in itself) and the relevance given in the theory to a structured no-
tion of rewriting step among states (usually given by a partial morphism among
graphs) contributed to frustrate so far the efforts of the researchers.

Institutions [12] are a powerful formalism relating to the Abstract Model The-
ory for Specification and Programming, as the title of the seminal work states.
They provide a denotational framework that avoids resorting to the concrete
presentation of a specification formalism, abstracting away the actual syntax
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in favor of a general notion of signature and related sentences. They intend to
capture the essence of what a logical system is, at the same time equipping
such systems with methodologies for their structural presentation that are in-
dependent of the language at hand. Their range of application is quite large,
moving from algebraic specifications towards more operational formalisms such
as process algebras [22], and they come equipped with a large array of tools for
specification and verification [25].

The aim of the paper is to cast graph transformation into the abstract
setting for system specification provided by institutions. The first two authors
investigated the presentation of (term-)graph rewriting by using enriched cat-
egories [4,3]. The work presented here has a more foundational nature, since
it requires the development of suitable notions of models for graph rewriting,
while the categorical presentation aimed at recasting the operational semantics.
Moreover, the development of an institution for graph transformation might en-
rich the family of methodologies for structured specification and verification of
graph transformation systems (as well as representing a sanity check for those
techniques adopted in the graph rewriting community).

One of the crucial issues in the definition of an institution for graph trans-
formation systems is the notion of signature. So, before presenting the actual
institution, recall that in current algebraic approaches to graph transformation
all graphs are typed, e.g., system states are elements of a comma category: (to-
tal) graph morphisms G → T . Rules (according e.g. to the spo approach) are
injective partial morphims L → R among typed graphs (over the same type
graph): each rule specifies which items of the starting graph must be preserved,
deleted, and also defines which items will be created. Indeed, rule application
means to find a (total) morphism L → G among typed graphs such that the
obvious pushout exists: the derivation is its leg G→ H . The intended semantics
of a graph transformation system, considered as a set of rules over the same type
graph, is then just the transition system whose elements are typed graphs and
whose transitions are partial graph morphisms induced by the rules themselves.

As a consequence, we believe that a declarative view of graph transformation
systems must put typed graphs at its core. Indeed, we consider (type) graphs as
signatures, and (injective) graph morphisms as signature morphisms. Sentences
are just rules, i.e., (injective) partial morphisms among typed graphs: the impact
of a morphism between type graphs on a rule is a retyping of the rule, obtained by
composition. Models are Kripke-like structures, i.e., diagrams interpreted over
the category of typed graphs and partial graph (mono)morphisms; transition
labels highlight which part of (the label of) a state is preserved along a transition.

So far, the notion of model we sketched above is independent of the chosen
approach adopted for graph rewriting. The choice comes into play in the defini-
tion of the satisfaction relation, i.e., in determining when a graph transformation
rule is satisfied by a model. We focus on a minimalistic solution: a rule is sat-
isfied if, whenever it can be applied in a given state, it is indeed applied, and
a transition labelled by the derivation corresponding to the rule application oc-
curs. The previous definition makes sense for any algebraic approach to graph
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transformation. And, even if we introduce our case studies at a concrete level of
graphs for the sake of presentation, all of our considerations could be formulated
at the abstract level of adhesive categories [19], which allows to replace graphs
and their morphisms with an arbitrary category satisfying suitable exactness
conditions. However, we are going to show that only the choice of the double
pullback mechanism [10] ensures that our formalism verifies the satisfaction con-
dition, linking satisfiability between a model and its reduct.

The paper has the following structure. After recalling in Section 2 the basics
of graphs (§ 2.1), graph transformation (§ 2.2) and institutions (§ 2.3), Section 3
presents our institution for graph transformation, defining signatures (§ 3.1),
sentences (§ 3.2), models (§ 3.3) and the satisfiability relation (§ 3.4), and finally
proving when the satisfiability condition holds (§ 3.5). Section 4 then presents in
some details the double-pullback approach to graph transformation, indicating
how it relates to the other approaches. Finally, Section 5 draws some conclusions
and sketches some directions for further works.

2 Background

2.1 Graphs

Let us start presenting the definition of typed graphs.

Definition 1 (graphs). A graph is a tuple 〈V, E, in, out〉 where V, E are the
sets of nodes and edges and in, out : E → V are the input and output functions,
mapping each edge to its source and target nodes.

From now on we denote the components of a graph G by VG, EG, inG and outG,
dropping the subscript whenever clear from the context.

Definition 2 (graph morphisms). Let G and H be graphs. A graph morphism
f : G → H is a pair of functions 〈fV : VG → VH , fE : EG → EH〉 preserving
source and target, i.e., such that fV ◦ inG = inH ◦fE and fV ◦outG = outH ◦fE.

The category of graphs is denoted by Graph. We now give the definition of
typed graph [5], i.e., a graph labelled over a structure that is itself a graph.

Definition 3 (typed graphs). Let Γ be a graph. A Γ -typed graph G (or typed
over Γ ) is a graph |G| with a graph morphism τG : |G| → Γ .

Thus, graphs typed over Γ are just the objects of the comma category Graph ↓
Γ : the arrows are defined accordingly.

Definition 4 (typed graph morphisms). Let G and G′ be Γ -typed graphs.
A Γ -typed graph morphism f : G → G′ is a graph morphism f : |G| → |G′|
consistent with the typing, i.e., such that τG = τG′ ◦ f .

The category of graphs typed over Γ (i.e., the comma category Graph ↓ Γ ) is
denoted by Γ -Graph.
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2.2 Graph Rewriting

In this section we introduce some of the basic definitions concerning the algebraic
approaches to the rewriting of typed graphs. Several mechanisms have been
proposed in the literature: here we consider the widely known double-pushout
(dpo) and single-pushout (spo) approaches [24], as well as the less known double-
pullback (dpb) approach [10,15] (we shall discuss the main differences among the
three approaches in Section 4). A first thing to be noted is that the notion of
rule is essentially the same for the three approaches.1

Definition 5 (rule). A Γ -typed graph rule p = (L
l
 K

r� R) is a pair of
Γ -typed graph monomorphisms l : K � L, r : K � R. A graph transformation
system G is a pair 〈Γ, P 〉, for Γ a type graph and P a set of Γ -typed graph rules.

So, a rule is just a span of monomorphisms in the category Γ -Graph: the mono
requirement asks for the arrows to be injective in Graph. Differently with re-
spect to rules, the definition of direct derivation, i.e., of the effect of applying a
rule to a graph, depends on the chosen approach. In the paper we use A as a
metavariable ranging over the three algebraic approaches to graph transforma-
tion, i.e., A ∈ {dpo, spo,dpb}.

Definition 6 (derivation). Let p = (L
l
 K

r� R) be a graph rule and G a
graph, both over Γ . A match of p in G is a Γ -typed graph morphism mL : L→ G.

A direct derivation from G to H via production p and match mL is a diagram
as depicted in Figure 1: it is called a dpo-derivation if (1) and (2) are pushouts in
Γ -Graph; it is called a dpb-derivation if (1) and (2) are pullbacks in Γ -Graph;
and it is called an spo-derivation if (1) is a final pullback complement and
(2) is a pushout.2 We denote this direct derivation by p/m : G ⇒A H, for
m = 〈mL, mK , mR〉, or simply by G⇒ H.

A match mL : L → G of a rule p = (L
l
 K

r� R) is A-valid, if it can be
completed to an A-derivation as in Fig. 1, with A ∈ {dpo, spo,dpb}.

Lp =

mL

��

(1)

K �� r ����l��

mK

��

(2)

R

mR

��

G D ��
r∗

����
l∗

�� H

Fig. 1. A direct derivation

Explicit conditions for validity of matches have been studied in the literature.
We just briefly remind, without reporting details that are irrelevant here, that
1 Even if for the spo approach a rule is usually defined in an alternative, yet equivalent

way as a partial injective typed graph morphism.
2 The reader is referred to [7] for the relationship between the standard definition of

spo derivation and the present one.
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– a dpo-valid match must satisfy the identification and the dangling condi-
tions, see [9];

– an spo-valid or dpb-valid match must satisfy the conflict-freeness condition,
see [10,7].

A match m is conflict-free if whenever m(x) = m(y), then either both x and y
are in l(K), or none of them is in l(K). As shown in [7], only for conflict-free
matches an spo-derivation can be defined as in Definition 6, and this is why we
require spo-valid matches to be conflict-free. However it is fair to remind that
in the original definition of spo-derivation (a pushout in the category of graphs
and partial morphisms [20]) a rule can be applied to a non-conflict-free match as
well: but in this case the resulting co-match mR : R→ H is a partial morphism,
an effect which is often considered to be counterintuitive.

The following properties of the above conditions will be exploited later.

Proposition 1 (preservation and reflection of conditions). Let g : G �
G′ be a Γ -typed monomorphism, let p = (L 
 K � R) be a rule, and let
m : L→ G, m′ : L→ G′ be two matches such that m′ = g ◦m. Then

– m satisfies the dangling condition if m′ satisfies it;
– m satisfies the identification condition if and only if m′ satisfies it;
– m satisfies the conflict-freeness condition if and only if m′ satisfies it.

2.3 Institutions

Finally, we recall what an institution is.

Definition 7 (institution). An institution is a tuple 〈Sign,Sen,Mod, |=〉
where

– Sign is a category of signatures;
– Sen : Sign → Set is a functor associating with each signature Σ the set

of sentences Sen(Σ), and with each signature morphism σ : Σ → Σ′ the
sentence translation map Sen(σ) : Sen(Σ)→ Sen(Σ′);

– Mod : Signop → CAT is a functor associating with each signature Σ, the
category of models Mod(Σ) and with each signature morphism σ : Σ → Σ′

the reduct functor Mod(σ) : Mod(Σ′)→Mod(Σ);
– |=Σ⊆ |Mod(Σ)|×Sen(Σ) is a relation for each Σ ∈ |Sign|, such that given

σ : Σ → Σ′ the following satisfaction condition holds

M ′ |=Σ′ Sen(σ)(φ) ⇐⇒ Mod(σ)(M ′) |=Σ φ

for each M ′ ∈ |Mod(Σ′)| and φ ∈ Sen(Σ).

Most often, Sen(σ)(φ) is written as σ(φ), and Mod(σ)(M ′) as M ′�σ.

3 An Institution for GTS

Given the basic preliminaries above, we can start filling in the picture.
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3.1 Signatures

As anticipated in the introduction the type graphs play the role of signatures.

Definition 8 (signatures). The category of (graph transformation) signatures
is MGraph, the sub-category of Graph of graphs and their injective morphisms.

As this definition is one of the crucial ingredient of the design of our institution
for graph transformation, it is worth providing a thorough justification. As ex-
plained in the introduction, typed graphs gained a central role in the algebraic
approaches to graph rewriting. Actually, in the original presentations (like the
seminal [9]), the classical theory of the double-pushout approach to graph trans-
formation was developed for colored graphs, i.e., graphs where nodes and edges
are labeled over corresponding sets of colors, and colors are preserved by mor-
phisms. The idea of working instead with typed graphs arose in the early 1990s
when trying to define “reasonable” notions of morphisms for graph transfor-
mation systems, as generalizations of morphisms for Petri nets; thus, in a sense,
when moving from specifications “in the small” (a single system) to specifications
“in the large” (relating several systems).

Even if this shift is, in essence, a minor syntactical change (simply adding a
graphical structure to the sets of colors), it reflects a major conceptual achieve-
ment, namely, that graph rewriting can be seen as the result of lifting the theory
of Petri nets from the category of sets to that of graphs (see the discussion in
[6]). In fact, a morphism between two Petri nets can be conveniently described
as a diagram in Set, looking at a marking as a function from the set of tokens
to the set of places. Replacing Set with Graph, one can re-interpret the same
diagram as defining a morphism between GTSs: now a state (“marking”) is a
graph (of “tokens”) with a mapping (a homomorpism) to a graph (of “places”).
Thus the type graph of a GTSs plays the role of the set of places of a Petri net.
A graph Γ ∈MGraph, the category of signatures, is thus seen as a type graph.

Let us conclude this section by commenting briefly why we require signature
morphisms to be injective. As the reduct functor (see Section 3.3) will be defined
using a pullback construction along the signature morphism, the reduct functor
induced by a non-injective morphism between type graphs could relate matches
that satisfy the application condition of a rule to matches that do not satisfy it.
This fact would not allow the satisfaction condition to hold (see Section 3.5).
Similar considerations for the institutions of CSP are discussed in [22], leading
to an analogous restriction on signature morphisms.

3.2 Sentences

Let us introduce now the sentences of our institution.

Definition 9 (sentences). The functor of (graph transformation) sentences
Rules : MGraph → Set maps a type graph Γ to the set of graph rules typed

over Γ , i.e., Rules(Γ ) = {L
l
 K

r� R | l, r ∈ Γ -Graph}.
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A sentence for a signature Γ is just a rule typed over it. This is reminiscent of the
usual institution for term rewriting systems (or, for the matter, for pre-ordered
algebras), even if the span of monomorphims is going to add discriminating
power. If γ : Γ � Γ ′ is a morphism in MGraph, the action of functor Rules
on γ consists of “retyping” the rule by post-composing in the obvious way the
typing morphisms with γ

|L|

��

|K|���� �� ��

��

|R|

��

Γ ��
γ

�� Γ ′

where for the sake of a clearer visual presentation the typing and the signature
morphisms are depicted by dotted arrows.

3.3 Models

Let us now turn our attention to models. Let us denote as Span(Γ -Graph) the
category whose objects are graphs typed over Γ , and whose arrows are abstract
spans of Γ -typed graph morphisms, i.e., up to an isomorphic choice of the graph
representing the common source of the span.

Definition 10 (graph transition system). A graph transition system M
over Γ is a diagram over Span(Γ -Graph) such that all arrows are spans of
monomorphisms. More explicitly,M is a pair 〈M, g〉, where M is a graph and g a
graph morphism from M to the graph underlying the category Span(Γ -Graph),
such that all the spans in the image of g are made of monomorphisms.

For the sake of verbal clarity, in the definition above M is going to be called a
transition system, composed by a set SM of states and a set TM of transitions.
Thus, the labeling g is a pair 〈gS, gT 〉 of functions, where gS(s) is a graph typed
over Γ for each state s ∈ SM , and for each transition t ∈ TM , gT (t) is an abstract
span of Γ -typed graph monomorphisms between gS(inM (t)) and gS(outM (t)),
as shown below (where, for the sake of visual clarity, the transition is represented
via a double arrow and the labeling via a double-dotted arrow) for Gt any
representative of the equivalence class.

s

t

��

gS

�� Gs

��gT

�� Gt

��

��

��

��

�� Γ

s′
gS

�� Gs′

		

The models of a signature Γ are going to be graph transition systems over
Γ . As it always occur, the notion of model morphism is trickier, and open to
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multiple choices. The next definition introduces the most obvious notion, namely,
transition system morphisms that strictly preserve the labeling.

Definition 11 (morphisms). Let 〈M, g〉 and 〈M ′, g′〉 be graph transition sys-
tems over Γ . A graph transition system morphism σ : 〈M, g〉 → 〈M ′, g′〉 is
a graph morphism σ : M → M ′ consistent with the labelling, i.e., such that
g = g′ ◦ σ.

The category of graph transition systems over Γ and their morphisms is de-
noted GTS(Γ ).

In order to complete the definition of the model functor GTS : MGraphop →
CAT we need to extend the mapping Γ �→ GTS(Γ ) to arrows, contravariantly.

Definition 12 (reduct). Let 〈M ′, g′〉 be a graph transition system over Γ ′ and
γ : Γ � Γ ′ a signature morphism. The reduct of 〈M ′, g′〉 along γ is the graph

transition system 〈M ′, g′〉�γ
def
= 〈M ′, g′γ〉 over Γ , having the same states and

transitions of the original system, and such that, for each state s of M ′, g′Sγ (s)
is the sub-graph of g′S(s) obtained by removing those items that are not typed in
the image of γ(Γ ); g′Tγ (t) is defined analogously for each transition in M ′. Note
that the graph g′Sγ (s) is characterized, as in the following diagram, as a pullback
(a concretely chosen one) of the typing morphism g′(s)→ Γ ′ along γ.

G′
s

��

PB

Γ ′

s
g′S

γ ��

g′S
��

Gs

��

��

�� Γ
��

γ

��

It should then be obvious how the reduct construction works for morphisms:
given a signature morphism γ : Γ � Γ ′ and a graph transition system morphism
σ : 〈M, g〉 → 〈M ′, g′〉 typed over Γ ′, the associated σ�γ : 〈M, gγ〉 → 〈M ′, g′γ〉
behaves exactly like σ on M : the consistency with the labeling trivially holds.

The canonical choice of the reduct allows to obtain a reduct functor, mapping
each graph morphism γ : Γ � Γ ′ into a functor �γ : GTS(Γ ′)→ GTS(Γ ).

Definition 13 (model functor). The (graph transformation) model functor
GTS : MGraphop → CAT maps Γ to the category GTS(Γ ) of graph transition
systems typed over Γ and each signature morphim γ : Γ � Γ ′ to the reduct
functor �γ : GTS(Γ ′)→ GTS(Γ ).

The well-definedness of the functor GTS just introduced is based on the fact that
the reduct is defined using a concrete choice of pullbacks along monomorphisms
in the category of graphs, and thus it is functorial. In fact, this choice guarantees
that the reduct 〈M, g〉�idΓ computed along an identity idΓ : Γ � Γ is 〈M, g〉
itself, and similarly that 〈M, g〉�γ2◦γ1= 〈M, g〉�γ2�γ1 .

Any other choice of pullbacks could be allowed, though, as long as it verifies
the two properties above, in order to guarantee that GTS is a functor.
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3.4 Satisfiability

We now define when a sentence is satisfied by a model, i.e., when a rule is satisfied
by a graph transition system. This notion actually depends uniformly on the
chosen graph transformation approach, which we will indicate as a parameter of
the satisfaction relation |=. We shall consider the dpo, spo and dpb approaches.

Definition 14 (satisfaction). Let 〈M, g〉 be a graph transition system and let

p = (L
l
 K

r� R) be a graph rule, both over Γ . Then, 〈M, g〉 satisfies p ac-
cording to the approach A ∈ {dpo, spo,dpb}, written 〈M, g〉 |=A

Γ p, if whenever
there is an A-valid match for p in the label g(s) of a state s, as depicted in the
left diagram below, then there is a transition witnessing the application of the
rule p according to the approach A, as depicted in the right diagram.

s
gS

�� Gs L
m��

D
��

��

��

��

R

s

t

��

gS

�� Gs

(1)

L
m��

gT

�� Gt

��

��

��

��
(2)

D��

��

��

��

��

s′
gS

�� Gs′ R��

Here t ∈ TM , and (1), (2) are both pushouts if A = dpo, are both pullbacks if
A = dpb, and (1) is a final pullback complement, (2) is a pushout if A = spo.

In general, independently of the chosen approach, it is easy to check that a
morphism σ : 〈M, g〉 → 〈M ′, g′〉 neither preserves nor reflects the satisfaction of
a rule p. In fact, suppose that 〈M, g〉 |=A p. If M ′ has a state s′ such that p has
an A-valid match to g′(s′), if s′ is not in the image of σ it is well possible that
there is no transition with source s′ witnessing the application of p, in which
case 〈M ′, g′〉 �|=A p. Conversely, if 〈M ′, g′〉 |=A p, M might still contain a state s
with an A-valid match for p in its label, but without a transition corresponding
to the application of p leaving from s.

However, it is interesting to observe that a different notion of morphism, well-
known in the literature and already used for standard transition systems (see
e.g. [11]), does reflect satisfaction.

Definition 15 (tp-morphisms (aka co-homomorphisms, open maps)).
Let 〈M, g〉 and 〈M ′, g′〉 be graph transition systems over Γ . A transition pre-
serving morphism (shortly, tp-morphims) σ : 〈M, g〉 → 〈M ′, g′〉 is a graph tran-
sition system morphism, according to Definition 11, which additionally reflect
transitions, i.e., such that it satisfies

∀s ∈ SM . ∀t′ ∈ TM ′ . inM ′(t′) = σ(s)⇒ ∃t ∈ TM . σ(t) = t′ ∧ inM (t) = s

Proposition 2 (tp-morphisms reflect satisfaction). Let 〈M, g〉 and 〈M ′, g′〉
be graph transition systems over Γ and σ : 〈M, g〉 → 〈M ′, g′〉 a tp-morphims.
Then for each rule p and approach A, 〈M ′, g′〉 |=A

Γ p implies 〈M, g〉 |=A
Γ p.



An Institution for Graph Transformation 169

Proof. Suppose that there is an A-valid match m for p in graph gS(s), with
s ∈ MS. Then, since labels are preserved, m is also a match for p in g′S(σ(s));
since 〈M ′, g′〉 |=A

Γ p there is a transition t′ : σ(s) → s′ in M ′ witnessing the
application of p, and since σ is a tp-morphism there is a corresponding transition
t : s → s′′ such that σ(t) = t′. As t and t′ have the same label, t′ witnesses the
application of p to gS(s) according to the approach A.

3.5 Satisfaction Condition

With the categories and functors introduced so far (Definitions 8, 9, 13 and 14),
we can form three tuples like 〈MGraph,Rules,GTS, |=A〉, with A varying in
{dpo, spo,dpb}. To see whether these are institutions or not, we must check if
the satisfaction condition of Definition 7 holds for them. We will show that this
condition holds for A = dpb, and only for this approach.

Rephrasing the satisfaction condition for graph transformation systems, we
must show that given a signature morphism γ : Γ → Γ ′

〈M, g〉 |=A
Γ ′ Rules(γ)(p) ⇐⇒ 〈M, g〉�γ |=A

Γ p (1)

for each 〈M, g〉 ∈ |GTS(Γ ′)| and p ∈ Rules(Γ ).
Let us first analise Figure 2. In the left part, vertically, we depicted the Γ -

typed rule p = (L 
 K � R), drawing explicitly the typing morphisms to
Γ . Notice that Rules(γ)(p) is basically the same rule, but typed over Γ ′ (by
composing the typing morphisms with γ).

In the right part we have (also vertically) a generic transition t : s⇒ s′ of M ;
in the graph transition system 〈M, g〉 ∈ |GTS(Γ ′)| the transition t is labeled by

s

t

��

����
|L|

(1)

m




m′

��

��

gS
γ (s)

��

�� �� gS(s)

��

(3)

Γ ��
γ

�� Γ ′

|K|
��

��

��

��

��

��

		

G′
t

(4)



�� ��

��

��

��

��

Gt

��

��

��

��



|R|

(2)

��
��

��

gS
γ (s′)

��

�� �� gS(s′)

��

s′

����

Fig. 2. Visualising the satisfaction condition
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the span gS(s) 
 Gt � gS(s′) typed over Γ ′, while in the reduct 〈M, g〉�γ=
〈M, gγ〉 ∈ |GTS(Γ )| it is labeled by the span gS

γ (s) 
 G′
t � gS

γ (s′) typed
over Γ . Note that squares (3) and (4) are pullbacks by standard decomposition
properties, since obtained by taking suitable pullbacks along γ : Γ � Γ ′.

Now for the ⇐-part of (1), suppose that 〈M, g〉�γ |=A
Γ p, and that there is an

A-valid match m of Rules(γ)(p) in the label gS(s) of a state s of system 〈M, g〉.
Thus m is as depicted in the top of Fig. 2, and (†) |L| m→ gS(s) → Γ ′ = |L| →
Γ

γ→ Γ ′ because m is a Γ ′-typed morphism. As gS
γ (s) is the pullback of gS(s)

along γ, by (†) there is a unique m′ : |L| → gS
γ (s) making the induced triangles

commute. For any A, match m′ is A-valid because so is m, by Prop. 1. Since
〈M, g〉�γ |=A

Γ p, we know that there is a transition t : s ⇒ s′, labeled with span
gS

γ (s) 
 G′
t � gS

γ (s′), witnessing the application of p to gS
γ (s), using match m′

and the approach A. Thus there are morphisms |K| → G′
t and |R| → gS

γ (s′)
forming commutative squares (1) and (2), typed over Γ , whose nature depends
on A, as usual. Since transiton t is in the reduct 〈M, g〉�γ , it is also in system
〈M, g〉, labeled with span gS(s) 
 Gt � gS(s′), and (3) and (4) are pullbacks.
To conclude, let us make a simple case analysis on A

– If A = dpb, then both (1) and (2) are pullbacks; therefore also the composed
squares (1)+(3) and (2)+(4) are so, and thus transition t witnesses the ap-
plication of Rules(γ)(p) to gS(s). Therefore (‡) 〈M, g〉 |=dpb

Γ ′ Rules(γ)(p).
– IfA ∈ {dpo, spo}, then (2) is a pushout, but the composed square (2)+(4) in

general is not. The following diagram is a counter-example: the left square is
a pushout, the right one is a pullback, but the composition is not a pushout.
Starting from this, it is not difficult to build a counter-example showing that
under the given hypotheses 〈M, g〉 �|=A

Γ ′ Rules(γ)(p), if A ∈ {dpo, spo}

{a} ��

��

��

PO

{a} �� ��

��

��

PB

{a}
��

��

{a} �� {a} �� �� {a, b}

Let us consider now the ⇒-part of (1) for the dpb approach only, assuming that
〈M, g〉 |=dpb

Γ ′ Rules(γ)(p). Referring again to Fig. 2, suppose that there is a
dpb-valid match m′ of p in the label gS

γ (s) of a state s of system 〈M, g〉�γ , the
γ-reduct of 〈M, g〉. Then m′ extends to a Γ ′-typed match m : L → gS(s) for
Rules(γ)(p), which is dpb-valid by Prop. 1. Since 〈M, g〉 |=dpb

Γ ′ Rules(γ)(p),
there is a transition t : s ⇒ s′, labeled with span gS(s) 
 Gt � gS(s′),
witnessing the application of p to gS(s): therefore the “big” squares |K|� |L| m→
gS(s) = |K| → Gt � gS(s) and |K| � |R| → gS(s′) = |K| → Gt � gS(s′)
are pullbacks. Next, morphism |K| → G′

t is uniquely induced by |K| → Γ
and |K| → Gt, because G′

t is a pullback object, and similarly for morphism
|R| → gS

γ (s′). Finally, since (3) and (4) are pullbacks, so are squares (1) and (2)
by a standard decomposition property, showing that transition t witnesses the
application of rule p to match m′ using the dpb approach. Thus 〈M, g〉�γ |=dpb

Γ p.
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This concludes the proof that the satisfaction condition holds for the dpb-
approach, and the discussion is summed up by the result below.

Theorem 1 (institution for double-pullback graph rewriting). The tuple
〈MGraph,Rules,GTS, |=dpb〉 is an institution.

4 About the Double-Pullback Approach

The double-pullback approach to graph transformation has been introduced
in [10,15] as a loose semantics of graph rules, in contraposition to the “strict”
semantics of the single- and double-pushout approaches. In fact, one can observe
that the spo and dpo approaches assume an implicit frame condition: the ap-
plication of a rule affects a graph only in the part matched by the left-hand side
while the rest, the context, is preserved identically. On the contrary, in the dpb

approach a rule can predicate only on the matched part of the system, while the
rest may evolve on its own: in a derivation step, besides the effects described
by the rule, arbitrary items can be deleted from the start graph and/or added
to the target graph. This looser interpretation of the effect of a rule is suitable
to describe the evolution of an open/reactive system, whose behaviour depends
also on effects caused by the environment.

For the reader familiar with the dpo approach, the relationship with the dpb

approach can be clarified by the following result [10]: if the match m and the co-
match m′ (see the next diagram) satisfy the identification condition, then there
is a dpb-transformation G⇒dpb H if and only if there is a dpo-transformation
G′ ⇒dpo H ′ and injective morphisms G′ � G and H ′ � H .

L

m

��

��

D

PBPB

PO PO

���� �� ��

��

R

m′

��

��

G′
��

��

H ′
��

��

G C����
��

��

		

		

�� �� H

Classical results of the dpo approach have been studied for the dpb in [15],
including independence, parallelism and local Church-Rosser properties, while
in [14] the dpb approach has been exploited to define a loose semantics of graph
transformation systems based on coalgebras.

Besides relating graph rewriting to other formalisms, one of the aims of an
institutional view is to obtain structuring mechanisms, as briefly discussed in
the final section. For the latter, a notion of loose semantics has already been
recognized as needed by some attempts to define, for example, parameterized
graph transformations [18,16]. Thus, it seems natural that an institution can be
obtained only for the dpb approach, because structuring mechanisms are “built-
in” in this formal framework and, specifically, the satisfaction property needs a
loose interpretation of sentences to hold (see e.g. analogous considerations for
the Logic Programming framework in [23]).
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5 Conclusions

We proposed an institutional framework for modelling the algebraic approaches
to graph transformation. After introducing the basics of (typed) graph and
their transformation, we proved how the pulback/pushout mechanisms for graph
rewriting can be modelled in terms of a suitable institution, based on
graph-labelled transition systems. We remark the fact that in our proposal the
models represent explicitly the “trace” formed by a derivation, denoting which
elements are preserved along it. This represents the main difference with respect
to adopting an institution based on (pre-)ordered algebras, where the rewriting
step would be considered as atomic, even if possibly closed with respect to the
operators of the algebra. The notion of trace lies at the basis of the concurrent
semantics for graph transformation and we plan to exploit it in our future work.

As discussed in the previous sections, among the three algebraic approaches
considered in the paper only the dpb gives rise to an institution. Nevertheless, it
is easy to show that any dpo or spo derivation step is also a dpb transformation.
Thus given a rule p, the class of models that satisfy p according to the dpb ap-
proach contains all models satisfying p according to the dpo or spo approaches.
An interesting topic for future research is to identify which universal properties,
if any, can characterize the latter models within the larger category of dpb mod-
els. However, preliminary investigations suggest that the strict preservation of
labels required by the current notion of graph transition system morphisms does
not allow to relate models that satisfy a rule “strictly” (i.e., with dpo or spo)
to models that satify it “loosely” (with dpb) via morphisms. Therefore we shall
first investigate the possibility of defining a looser notion of morphism among
models, one that does not preserve strictly the labels.

We thought of distilling an institution for graph transformation primarily as
a sanity check, in order to lift and/or compare modularity concepts so far de-
veloped in the latter formalism. The current work is however just preliminary,
since our chosen category of signatures (i.e., the category of graphs and their
injective morphisms) lacks pushouts: this fact implies that the standard tools
for model structuring (based on a suitable preservation of colimit diagrams by
the model functor) are not available. In principle, the situation might be mit-
igated by adopting the solution proposed in [22]: basically, any diagram over
MGraph is extended to one in Graph, and the colimit computed there. Now,
it is easy to show that the resulting colimit diagram (the image of the diagram,
plus the object and arrows induced by universal property) is also composed by
monomorphisms. Thus, any colimit diagram in Graph out of a diagram factor-
izing through MGraph induces a commuting diagram in MGraph, for which
a semi-exactness property can be stated (and hopefully proved).

Acknowledgements. We are indebt to Fernando Orejas who, based on his
experience with institutions for Logic Programming [23], suggested us to consider
a loose semantics of GTSs.
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20. Löwe, M.: Algebraic approach to single-pushout graph transformation. Theoretical
Computer Science 109(1/2), 181–224 (1993)

21. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. Theo-
retical Computer Science 96(1), 73–155 (1992)

22. Mossakowski, T., Roggenbach, M.: Structured CSP - A Process Algebra as an In-
stitution. In: Fiadeiro, J.L., Schobbens, P.-Y. (eds.) WADT 2006. LNCS, vol. 4409,
pp. 92–110. Springer, Heidelberg (2007)

23. Orejas, F., Pino, E., Ehrig, H.: Institutions for logic programming. Theoretical
Computer Science 173(2), 485–511 (1997)

24. Rozenberg, G. (ed.): Handbook of Graph Grammars and Computing by Graph
Transformation. Foundations, vol. 1. World Scientific (1997)

25. Sannella, D., Tarlecki, A.: Specifications in an arbitrary institution. Information
and Computation 76(2/3), 165–210 (1988)



New Results on Timed Specifications�

Timothy Bourke2, Alexandre David1, Kim G. Larsen1, Axel Legay2,
Didier Lime3, Ulrik Nyman1, and Andrzej Wąsowski4
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Abstract. Recently, we have proposed a new design theory for timed systems.
This theory, building on Timed I/O Automata with game semantics, includes clas-
sical operators like satisfaction, consistency, logical composition and structural
composition. This paper presents a new efficient algorithm for checking Büchi
objectives of timed games. This new algorithm can be used to enforce liveness
in an interface, or to guarantee that the interface can indeed be implemented. We
illustrate the framework with an infrared sensor case study.

1 Introduction and State of the Art

Several authors have proposed frameworks for reasoning about interfaces of indepen-
dently developed components (e.g. [20,13,9,12]). Most of these works have, however,
devoted little attention to real-time aspects. Recently, we proposed a new specification
theory for Timed Systems (TS) [11]. Syntactically, our specifications are represented as
Timed I/O Automata (TIOAs) [19], i.e., timed automata whose discrete transitions are
labeled by Input and Output modalities. In contrast to most existing frameworks based
on this model, we view TIOAs as games between two players: Input and Output, which
allows for an optimistic treatment of operations on specifications [13].

Our theory is equipped with features typical of a compositional design framework:
a satisfaction relation (to decide whether a TS is an implementation of a specification),
a consistency check (whether the specification admits an implementation), and a re-
finement (to compare specifications in terms of inclusion of sets of implementations).
Moreover, the model is also equipped with logical composition (to compute the inter-
section of sets of implementations), structural composition (to combine specifications)
and its dual operator quotient. Our framework also supports incremental design [14].

Refinement, Satisfaction, and Consistency problems can be reduced to solving timed-
games. For example, if inconsistent states are states that cannot be implemented, since
they violate assumptions of the abstraction, then deciding whether an interface is con-
sistent is equivalent to checking if a strategy that avoids inconsistent states exists.

Our theory is implemented in ECDAR [17], a tool that leverages the game engine
UPPAAL-TIGA [4], as well as the model editor and the simulator of the UPPAAL model
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Fig. 1. Structure of our specification theory for real-time systems

checker [5]. The purpose of this paper is to describe enrichments to our theory, and to
report on the evaluation of the tool on a concrete case study. Our contributions are:

1. An on-the-fly algorithm for checking Büchi objectives of two-player timed games.
The algorithm builds on an existing, efficient method for solving reachability objec-
tives [8,4], but it uses zones as a symbolic representation. We show how the method
can be combined with a safety objective. This allows, for example, to guarantee that
a player has a strategy to stay within a set of states without blocking the progress
of time. Similar results were proposed by de Alfaro et al. [16] but for a restricted
class of timed interfaces and without an implementation for the continuous case.

2. A realistic case study. Most existing interface theories have not been implemented
and evaluated on concrete applications. We use ECDAR to show that our interface
theory is indeed a feasible solution for the design of potentially complex timed sys-
tems. More precisely, we specify an infrared sensor for measuring short distances
and for detecting obstructions. This extensive case study reveals both the advan-
tages and disadvantages of our theory, which are summarized in this paper.

2 Background: Real Time Specifications as Games

Following [11], we now introduce the basic objects of this paper. Our specifications and
models (implementations) are taken from the same class, timed games. They both exist
in two flavors: infinite and finite. Fig. 1 summarizes this structure. The top–bottom divi-
sion goes across the notion of satisfaction (models and specifications) and the left–right
one across syntax-semantics (Timed I/O Transition Systems and Timed I/O Automata).
This orthogonality is exploited to treat the intricacies of continuous time behaviour sep-
arately from those of algorithms. Roughly, the infinite models have been used to develop
the theory, while the finite symbolic representations are used in the implementation.

Definition 1. A Timed I/O Transition System (TIOTS) is a tuple S = (StS , s0, Σ
S ,−→S),

where StS is an infinite set of states, s0 ∈ St is the initial state, ΣS = ΣS
i ⊕ΣS

o is a finite
set of actions partitioned into inputs and outputs, and −→S : StS × (ΣS ∪ R≥0) × StS

is a transition relation. We write s a−→Ss′ instead of (s, a, s′) ∈ −→S and use i?, o! and d
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to range over inputs, outputs andR≥0 respectively. Also for any TIOTS we require:

[time determinism] whenever s d−→Ss′ and s d−→Ss′′ then s′=s′′,
[time reflexivity] s 0−→Ss for all s ∈ StS , and,

[time additivity] for all s, s′′∈ StS and all d1, d2 ∈ R≥0 we have s d1+d2−−−−→Ss′′ iff
s d1−−→Ss′ and s′ d2−−→Ss′′ for some s′ ∈ StS .

We write s a−→S meaning that there exists a state s′ such that s a−→Ss′.

TIOTSs are abstract representations of real time behaviour. We use Timed I/O Automata
(TIOAs) to represent them symbolically using finite syntax.

Let Clk be a finite set of clocks. [Clk �→R≥0] denotes the set of mappings from Clk to
R≥0 . A valuation over Clk is an element u of [Clk �→R≥0]. Given d ∈ R≥0, we write
u+d to denote a valuation such that for any clock r ∈ Clk we have (u+d)(r) = x+d
iff u(r) = x. We write u[r �→ 0]r∈c for a valuation which agrees with u on all values
for clocks not in c, and gives 0 for all clocks in c ⊆ Clk. Let op be the set of relational
operators: op = {<,≤, >,≥}. A guard over Clk is a finite conjunction of expressions
of the form x ≺ n, where ≺∈ op and n ∈ N. We write B(Clk) for the set of guards
over Clk using operators in the set op, and P(X) for the powerset of a set X .

Definition 2. A Timed I/O Automaton (TIOA) is a tuple A = (Loc, q0, Clk, E,
Act, Inv) where Loc is a finite set of locations, q0 ∈ Loc is the initial location, Clk
is a finite set of clocks, E ⊆ Loc× Act×B(Clk)×P(Clk)× Loc is a set of edges, Act
is the action set Act = Acti⊕Acto, partitioned into inputs and outputs respectively, and
Inv : Loc �→ B(Clk) is a set of location invariants.

If (q, a, ϕ, c, q′)∈E is an edge, then q is a source location, a is an action, ϕ is a const-
raint over clocks that must be satisfied when the edge is executed, c is a set of clocks to
be reset, and q′ is the target location. We will give examples of TIOAs in Sect. 4.

The expansion of the behaviour of a TIOA A = (Loc, q0, Clk, E, Act, Inv) is the
following TIOTS [[A]]sem = (Loc×[Clk �→ R≥0], (q0, 0), Act,−→), where 0 is a constant
function mapping all clocks to zero, and −→ is generated by the two rules:

– Each (q, a, ϕ, c, q′) ∈ E gives rise to (q, u) a−→(q′, u′) for each clock valuation
u ∈ [Clk �→ R≥0] such that u |= ϕ and u′ = u[r �→ 0]r∈c and u′ |= Inv(q′).

– Each location q ∈ Loc with a valuation u ∈ [Clk �→ R≥0] gives rise to a transition
(q, u) d−→(q, u + d) for each delay d ∈ R≥0 such that u + d |= Inv(q).

We refer to states and transitions of a TIOA, meaning the states and transitions of the
underlying TIOTS. As stated above, these states are location–clock valuation pairs.

The TIOTSs induced by TIOAs conform to Def. 1. In addition, to guarantee deter-
minism, for each action–location pair only one transition can be enabled at a time. This
is a standard check. We assume that all TIOAs below are deterministic.

Implementations (models) are a subclass of specifications that are amenable to im-
plementation. They have fixed timing behaviour (outputs occur at predictable times)
and can always advance either by producing an output or delaying.

Definition 3. A TIOA A is a specification if each state s ∈ St[[A]]sem is input-enabled:

[input enabledness] ∀ i?∈Σ
[[A]]sem

i . s i?−−→[[A]]sem .
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Definition 4. An implementation A is a specification (so a suitable TIOA), where, in
addition, for each state p∈St[[A]]sem the following two conditions hold:

[output urgency] for each o! ∈ Σ
[[A]]sem
o if p o!−−→[[A]]sem and p d−→[[A]]sem then d = 0 and,

[independent progress] (∀d≥0. p d−→[[A]]sem) or

(∃ d∈R≥0. ∃ o!∈Σ
[[A]]sem
o . p d−→[[A]]semp′ and p′ o!−−→[[A]]sem)

Specifications are a subclass of TIOAs (the upper-left quadrant in Fig. 1) which induce
TIOTSs that are input-enabled (the upper-right quadrant). Implementations are TIOAs
(the lower-left quadrant) that induce both input-enabled and output-urgent TIOTSs able
to progress independently (the lower-right quadrant). Although specifications and im-
plementations are defined above by restricting their semantic properties, it is possible,
although more clumsy, to rephrase these conditions syntactically and implement them
in a tool. These are again standard checks.

A run ρ of a TIOTS S from its state s1 is a sequence s1
a1−→ s2

a2−→ · · · an−1−−−→ sn

such that for all i ∈ [1..n], si
ai−→ si+1 is a transition of S. We write Runs(s1, S) for the

set of runs of S starting in s1, and Runs(S) for the set of runs starting from the initial
state of S. We write States(ρ) for the set of states of S present in ρ and, if ρ is finite,
last(ρ) for the last state occurring in ρ.

TIOAs are interepreted as two-player real-time games between the output player (the
component) and the input player (the environment). The input plays with actions in Σi

and the output plays with actions in Σo:

Definition 5. A strategy f for the input (resp. output) player, k ∈ {i, o}, on the TIOA A
is a partial function from Runs([[A]]sem) to Acti ∪ {delay} (resp. Acto ∪ {delay}) such

that for every finite run ρ, if f(ρ) ∈ Actk then last(ρ)
f(ρ)−−−→ s′ for some state s′ and if

f(ρ) = delay, then ∃d > 0. ∃s′′ such that last(ρ) d−→ s′′.

For a given strategy, we consider behaviors resulting from the application of the strategy
to the TIOA, with respect to all possible strategies of the opponent:

Definition 6 (Outcome [15]). Let A be a TIOA, f a strategy over A for the input
player, and s a state of [[A]]sem. The outcome Outcomei(s, f) of f from s is the sub-
set of Runs(s, [[A]]sem) defined inductively by:

– s ∈ Outcomei(s, f),
– if ρ ∈ Outcomei(s, f) then ρ′ = ρ

e−→ s′ ∈ Outcomei(s, f) if
ρ′ ∈ Runs(s, [[A]]sem) and one of the following three conditions hold:
1. e∈Acto,
2. e∈Acti and e = f(ρ),
3. e∈R≥0 and ∀ 0≤e′<e. ∃s′′. last(ρ) e′

−−→ s′′ and f(ρ e′
−−→ s′′) = delay.

– ρ∈Outcomei(s, f) if ρ infinite and all its finite prefixes are in Outcomei(s, f)

Let MaxOutcomei(s, f) denote the maximal runs of Outcomei(s, f), that is
ρ ∈ MaxOutcomei(s, f) iff ρ ∈ Outcomei(s, f) and ρ has an infinite number of dis-
crete actions, or ρ has a finite number of discrete actions, but there exist no e∈ Act ∪
R≥0 and no state s′ with ρ

e−→ s′ ∈ Outcomei(s, f), or the sum of the delays in ρ is
infinite.
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For a given TIOA A, a winning condition W for input is a subset of
Runs([[A]]sem). We say that W does not depend on the progress of the opponent (here
output) iff whenever ρ ∈ W and ρ = ρ′ e−→ ρ′′, with e ∈ Acto, then either there exists
e′ ∈ Acti, d ∈ R≥0, a state s and a run ρ′′′ such that ρ′ d−→ s

e′
−→ ρ′′′ ∈W or there ex-

ists d ∈ R≥0 and some state s such that ρ′ d−→ s ∈ W . This restriction means that input
should always be able to ensure progress by itself and that the actions of the opponent
should not be abused to advance the game, since we cannot assume that the opponent
will ever make use of them. For a winning condition W , we write Strip(W ) to denote
the subset of W in which the runs not satisfying this condition are removed.

A pair (A, W ) is an input timed game. Given a winning condition W for input, a
strategy f of input is winning from state s if MaxOutcome(s, f) ⊆ W. A state s is
winning for input, if there exists a winning strategy for input from s. The game (A, W )
is winning for input if the initial state of A is winning for it. For an input timed game
(A, W ), we writeWi(A, W ) for the set of winning states for input and Fi(A, W, s) for
all winning strategies for input from s. The winning conditions considered here are:

– Reachability objective: the input player must enforce a set Goal of “good” states.
The corresponding winning condition is defined as

WRi(Goal) = Strip{ρ ∈ Runs([[A]]sem) | States(ρ) ∩ Goal �= ∅} (1)

– Safety objective: the player must avoid a set Bad of “bad” states. The corresponding
winning condition is defined as:

WSi(Bad) = {ρ ∈ Runs([[A]]sem) | States(ρ) ∩ Bad = ∅} (2)

– Büchi objective: the player must enforce visiting Goal, a set of “good” states, in-
finitely often. Let |A| denote the cardinality of set A. The winning condition is:

WBi(Goal) = Strip{ρ ∈ Runs([[A]]sem) | |States(ρ) ∩ Goal| =∞} (3)

We define the outcomes Outcomeo(s, f) and MaxOutcomeo(s, f) of a strategy of the
output player, as well as output timed games and all the related notions, by swapping
‘i’ and ‘o’ (for instance Acti and Acto) in the above definitions.

We now present discuss the refinement relation, which relates TIOTSs of two real
time specifications, by determining which one allows more behaviour:

Definition 7. A TIOTSs S = (StS , s0, Σ,−→S) refines a TIOTSs T = (StT, t0, Σ,−→T ),
written S ≤ T , iff there exists a binary relation R ⊆ StS × StT containing (s0, t0) such
that for each pair of states (s, t) ∈ R we have:

1. if t i?−−→T t′ for some t′ ∈ StT then s i?−−→Ss′ and (s′, t′) ∈ R for some s′ ∈ StS

2. if s o!−−→Ss′ for some s′ ∈ StS then t o!−−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

3. if s d−→Ss′ for d ∈ R≥0 then t d−→T t′ and (s′, t′) ∈ R for some t′ ∈ StT

A specification A1 refines a specification A2, written A1 ≤ A2, iff [[A1]]sem≤ [[A2]]sem.
If A1 is an implementation then we also say that it satisfies A2, written A1 |= A2.
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Refinement between two automata may be checked by playing a safety game on the
product of their two state spaces, avoiding the error states (where error states are pairs
of states of S and T for which one of the above rules is violated). See details in [11,13].
Since the product can be expressed as a TIOA itself, the refinement can be checked
using the safety game as defined above.

Consider two TIOTSs S = (StS, sS
0 , ΣS,−→S) and T = (StT, sT

0 , ΣT,−→T ). We say
that they are composable iff their output alphabets are disjoint ΣS

o ∩ ΣT
o = ∅. The

product of S and T is the TIOTS S ⊗ T = (StS ⊗ StT, (sS
0 , sT

0 ), ΣS⊗T,−→S⊗T ), where
the alphabet ΣS⊗T = ΣS ∪ ΣT is partitioned into inputs and outputs in the following
way: ΣS⊗T

i = (ΣS
i \ΣT

o ) ∪ (ΣT
i \ΣS

o ), ΣS⊗T
o = ΣS

o ∪ΣT
o . The transition relation is

generated by the following rules:

s a−→Ss′ a ∈ ΣS \ΣT

(s, t) a−→S⊗T (s′, t)
[indep-l]

t a−→T t′ a ∈ ΣT \ΣS

(s, t) a−→S⊗T (s, t′)
[indep-r]

s a−→Ss′ t a−→T t′ a ∈ R≥0 ∪ΣS⊗T
i ∪ (ΣS

i ∩ΣT
o ) ∪ (ΣS

o ∩ΣS
i )

(s, t) a−→S⊗T (s′, t′)
[sync]

Let undesirable be a set of error states that violate a safety property (for example, an el-
evator engine running while its door is open). Two specifications are useful with respect
to one another if there is an environment that can avoid undesirable states in their prod-
uct. The existence of such an environment is established by finding a winning strategy
in the game formed by the product automaton and the objective WSi(undesirable).

The parallel composition of S and T is defined as S |T = prune(S ⊗ T ), where
the prune operation removes from S ⊗ T all states which are not winning for the in-
put player in the game (S ⊗ T , WSi(undesirable)). Parallel composition is defined for
TIOTSs induced by both specifications and implementations. A similar construction
can be given directly for specifications and implementations on the syntactic level [11].

In [11] we give constructions for two other operators computed as winning strategies
in timed games. For TIOAs (TIOTSs) B and C we define conjunction B ∧ C, which
computes an automaton representing shared implementations of B and C, and also
quotient B \ C, which computes a specification describing implementations that when
composed with C give a specification refining B. Rather than define these operations
explicitly we characterize their essential properties, and refer the reader to [11] for
precise details of the constructions. Let A be an implementation. Then:

A |= B ∧ C iff A |= B and A |= C (4)

A |= B \ C iff C | A ≤ B (5)

3 Büchi Objectives

Symbolic On-The-Fly Timed Reachability (SOFTR) [8] is an efficient algorithm for
solving two-players reachability timed games used in UPPAAL-TIGA [4]. It operates
on the simulation graph induced by a TIOA representing the game. It follows an es-
tablished principle: begin with all reachable states and propagate the winning states
backwards. Its major contribution is the use of zones rather than regions. Zones, which
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are unions of regions of Alur and Dill [3], are the most efficient representation of clock
valuations known to date. In the following we recall SOTFTR, extend it to solve Büchi
objectives, and provide a new algorithm to verify Büchi and safety objectives combined.

3.1 Solving Büchi Games with SOTFTR

For a TIOTS S and a set of states X , write Preda(X) = {s ∈ St
∣∣ ∃s′ ∈X. s a−→s′}

for the set of all a-predecessors of states in X . We write iPred(X) for the set of all
input predecessors, and oPred(X) for all the output predecessors of X , so iPred(X) =⋃

a∈ΣS
i

Preda(X) and oPred(X) =
⋃

a∈ΣS
o

Preda(X). Also post[0,d0](s) is the set of
all time successors of a state s that can be reached by delays less than or equal to d0:
post[0,d0](s) = {s′ ∈ StS

∣∣ ∃ d∈ [0, d0]. s d−→Ss′}. The safe timed predecessors of a set
X relative to an unsafe set Y are the states from which a state in X is reached after a
delay while avoiding any of the states in Y (the subscript t in the definition of cPredt

below indicates that these are timed predecessors only):

cPredt(X, Y ) = {s ∈ StS
∣∣ ∃ d0 ∈ R≥0. ∃s′ ∈ X.s d0−−→Ss′ and postS[0,d0]

(s) ⊆ Y }

Let A be a TIOA and G a set of “good” states in [[A]]sem that have to be reached, that is
the objective is WRi(G). Consider the following computation [21,8]:

H0 ← ∅
repeat Hk+1 ← Hk ∪ πi(Hk) ∪G for k = 0, 1, . . .
until Hk+1 = Hk

where πi(H) = cPredt(iPred(H), oPred(States(Runs([[A]]sem)) \H)). The πi operator
computes the predecessors of set H that can enforce H in one step, regardless of what
the output player does. This is done by taking timed predecessors of input-predecessors
of H , as long as we can avoid output predecessors of states outside H . The fixpoint of
πi is the set of states in which the input player can enforce reaching G eventually [21,8].
SOTFTR is a symbolic zone-based implementation of the above fixpoint.

The winning states of the output player can be computed by replacing πi with πo(H) =
cPredt(oPred(H), iPred(States(Runs([[A]]sem))\H)). Thus, in the remainder, we focus
on solving the game for the input player only.

The following algorithm for solving Büchi timed games is an adaptation of the above
procedure given in [21], adjusted for a TIOA A and a Büchi objective. The set of “good”
states, Goal, is to be enforced infinitely often:

W0 ← States(Runs([[A]]sem))
for j = 0, 1, . . . repeat

H0 ← ∅
repeat Hk+1 ← Hk ∪ πi(Hk) ∪ (Goal ∩ πi(Wj)) for k = 0, 1, . . .
until Hk+1 = Hk

Wj+1 ← Hk

until Wj+1 = Wj

Observe that a Büchi objective is essentially a closure of a reachability objective: it
corresponds to finding a subset of “good” Goal states, from which reachability to the



182 T. Bourke et al.

good subset again is guaranteed for the player, and then solving for reachability of that
good subset. In the above computation, the inner loop finds states that can enforce a
Goal state in at least one discrete step, and uses this information to determine which
Goal states are actually “good” (the intersection with Goal). The outer loop removes the
Goal states that are not “good” from the target set of the inner loop. In the fixpoint, we
find both the subset of good Goal states and the states from which this subset can be
reached regardless of what the opponent does.

SOTFTR itself computes the inner loop of this algorithm when G = Goal∩ πi(Wj),
this observation leads to the Symbolic Timed Büchi games (STB) algorithm:

W0 ← States(Runs([[A]]sem))
repeat Wj+1 ← SOTFTR(Goal ∩ πi(Wj)) for j = 0, 1, . . .
until Wj+1 = Wj

Observe that STB uses exactly the same operations on zones as SOTFTR, which means
that it can also be implemented in an efficient manner.

Theorem 1 ([8,21]). For any input Büchi timed game (A, WBi(Goal)), STB terminates
and upon termination Wj =Wi(A, WBi(Goal)).

The algorithm of [21] computes over infinite sets of states. Our algorithm is nothing
more than a symbolic implementation of the original one. By construction and because
of [8], the above correspondence is obtained directly. Termination is shown in [21].

3.2 Combining Safety and Büchi objectives

We now strengthen the Büchi objective so that not only the Goal states are visited in-
finitely often, but also the set of unsafe states Bad is avoided (Bad ∩ Goal = ∅):

WBS(Goal, Bad) = Strip{ρ ∈ Runs([[A]]sem) | States(ρ) ∩ Bad = ∅ and

|States(ρ) ∩ Goal| =∞} (6)

One application of such games is ensuring that the input player has a strategy to avoid
Bad while ensuring that time is elapsing [16], eliminating the so called Zeno-behaviours.

If Bad can be expressed as a finite union of pairs of locations and finite unions of
zones, then this objective can be reduced to the usual Büchi objective by transforming
the game in the following way: (i) add a location B �∈ Goal; (ii) add an output action
err �∈ Acti; (iii) for each pair (q,

⋃
i=1..n Zi) ∈ Bad such that q is a location of A and⋃

i=1..n Zi is a finite union of zones, add n edges Ei (i = 0..n) labelled by err from q
to B such that for all i, the guard of Ei is Zi. Since location B has no outgoing edges
and does not belong to Goal, entering B means losing the Büchi game. Suppose we
want a winning strategy for the input player. Observe that the added edges belong to the
opponent. By definition of outcomes, going through any state in Bad means that one of
these edges can now be taken by the output player and, as B �∈ Goal, the game is lost for
the input player. The following theorem expresses the correctness of our transformation.

Theorem 2. Let (A, WBSi(Goal, Bad)) be a TIOA, and A′ be its modification obtained
by the above construction. Then Fi(A, WBSi(Goal, Bad)) = Fi(A′, WBi(Goal))
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Proof. Show that Fi(A, WBSi(Goal, Bad))⊆Fi(A′, WBi(Goal)). Let f be a strategy in
Fi(A, WBSi(Goal, Bad)) and s0 be the initial state of A and s′0 of A′. As f is winning,
no run in MaxOutcomei(s0, f) goes through a state in Bad. By construction of A′ we
have that no run in MaxOutcomei(s′0, f) goes through Bad and therefore the guards of
the extra edges in A are never satisfied. Since, apart from these edges, A′ is identical to
A, and since f ensures infinite repetition of Goal in A, then it does also in A′.

Now, show Fi(A, WBSi(Goal, Bad)) ⊇ Fi(A′, WBi(Goal)). Let f be a strategy in
Fi(A, WBSi(Goal, Bad)) and s0 be the initial state of A, and s′0 of A′. The runs of A′

that go to location B are maximal and cannot belong to WBi(Goal) for B has no outgoing
edge. Let ρ be a run in MaxOutcomei(s′0, f) and ρ = ρ′ → s→ ρ′′, and the guard of one
of the err edges is satisfied in s. Then ρ′ err−→ (B, v) for some valuation v is a maximal run
and thus belongs to MaxOutcomei(s′0, f) and then MaxOutcomei(s′0, f) �⊆ WBi(Goal)
which contradicts that f is winning. So the runs in MaxOutcomei(s′0, f) never go through
states in Bad. Furthermore, since A and A′ are identical except for B and its incoming
edges, it must then be that MaxOutcomei(s0, f) = MaxOutcomei(s′0, f) and so the runs
in MaxOutcomei(s0, f) also repeat Goal infinitely often. ��

y=0

NonZeno

y==1
Init

Z

Fig. 2. Monitor for non-zeno
strategies

An Application: eliminating Zeno Strategies. Consider a
TIOA A and a set Bad of bad states. Our objective is to
find the set of states from which the input player (symmet-
rically the output player) has a strategy to avoid Bad while
letting time elapse — as opposed to, for example, taking
infinitely many discrete transitions without any delays.

In order to generate non-zeno strategies consider the
product A×Z of A and the TIOA Z of Fig. 2. Then solve
the timed game (A × Z, WBSi(Goal, Bad)), where Goal is the set of states of A × Z
in which Z is in location NonZeno. To fulfill this objective, the input player needs to
avoid Bad and ensure that NonZeno is visited infinitely often: once in NonZeno, the
only way to revisit it is to pass through Init. This loop requires that 1 time unit elapses,
so repeated visits to NonZeno ensure that time progresses.

Note that this does not prevent the opposing player from using a spoiling strategy
producing zeno runs to prevent fulfillment of the objective.

Remark 1. One problem with the above setup is the effect of adding self-loops. Our
interface theory requires TIOA to be input-enabled. This means that, in any state of
the game, the input player should always be able to react on any of the input actions.
This typically means that states have implicit loops on input actions when the designer
does not specify any other transition for an input. Now, assume that the output player
wants to win the game and guarantee that time elapses. The input player could always
play such an input-loop and hence block time. This means that the potential addition
of arbitrary inputs may corrupt the game. A solution to the above problem is to blame
the input player each time it plays [16]. Then, the input player loses the game if there
is a point of time after which it is blamed forever. De Alfaro et al. were the first to use
blames [16]. We can also add a monitor for the blame situation. Another solution, in
order to avoid adding an extra automaton, is to use a counter in ECDAR to bound the
number of Inputs (Outputs) that can be played successively.
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(a) Logical interface (b) Timing diagram; modified slightly from [22]

Fig. 3. The driver/sensor system

4 Case Study

The ideas just presented have been implemented in the tool ECDAR [10], which
supports graphical modeling of TIOAs, computing composition operators (including
quotienting), and reachability analysis. For this paper, we have extended ECDAR with
support for Büchi and Büchi with safety objectives. We apply it to the analysis of a
simple but realistic example: a sensor component and the software required to interface
with it.1 The case study serves both to elucidate some of the technical definitions and
to demonstrate their practicability.

4.1 Timing Diagram Model

The Sharp GP2D02 infrared sensor is a small component for measuring short distances
and for detecting obstructions. Such sensors are incorporated into larger embedded sys-
tems through two communication wires which carry a protocol of rising and falling
voltage levels. The four main components of a sensor subsystem are shown in Fig. 3a:
an instance of the sensor, a driver component of a larger system, a vin wire controlled
by the driver and read by the sensor, and a vout wire controlled by the sensor and read
by the driver. The communication protocol between driver and sensor is described by
the timing diagram of Fig. 3b.

The timing diagram describes the permissible interactions between a driver and a
sensor. It represents a (partial) ordering of events and the timing constraints between
them. With careful interpretation, against a background of engineering practice, the
timing diagram can be modeled as the TIOA shown in Fig. 4 and henceforth called T .
Note that constants are multiples of 0.1 ms, so the constant 0.2 ms in the timing diagram
is represented by an integer constant 2 in the model. This model is the result of several
choices and its fidelity can only be justified by informal argument [6, Chapter 4].

We now step through the timing diagram and the TIOA model in parallel describing
the meaning of the former and justifying the latter. The interaction of driver and sensor
is essentially quite simple: the driver requests a range reading, then after a brief delay
the sensor signals that a reading has been made, the driver triggers the sensor to transmit
the reading bit by bit, and, finally, the process is repeated or the sensor is powered off.
The interaction takes place solely over the two communication wires.

1 See http://www.tbrk.org/papers/wadt10.tar.gz for the implementation in ECDAR.

http://www.tbrk.org/papers/wadt10.tar.gz
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Fig. 4. TIOA model of the timing diagram: T

The signal controlled by the driver is shown in the top half of the timing diagram.
Its most obvious features are the falling and rising transitions, these have been mod-
eled in the TIOA as outputs called, respectively, vinL! and vinH!. The driver may also
perform two other actions which are not entirely evident from the timing diagram. It
may sample the vout signal to read a bit transmitted by the sensor, which we represent
by an output called sample!, and it may stop using the sensor, which we represent by
an output called powerOff!. The signal controlled by the sensor is shown in the bottom
half of the timing diagram. The rising and falling transitions on this signal are mod-
eled as outputs called, respectively, voutL! and voutH!. In fact, all of the actions in the
model are outputs because the timing diagram describes a closed system. The model
is thus trivially input-enabled and there is no need for self-looping input transitions on
each state. Furthermore, the model can be simulated in isolation since all channels in
ECDAR must be broadcast channels (i.e. outputs are non-blocking).

The driver requests a range reading with vinL!, i.e. by lowering the voltage level
of vin. The sensor responds with voutL!, it then performs the necessary measurements
before signaling completion with voutH!. The timing diagram guarantees that the sensor
will complete a reading and respond after at least 70ms or more have passed, after which
the driver may perform a vinH!. This sequence can be seen in the model in the transitions
linking states T0–T4. We model the timing constraint by resetting a clock x when the
initial vinL! occurs, and adding the location invariant x ≤ 700 to states T1 and T2. By
rights this invariant should be strict, i.e. x < 700, but this is not currently permitted in
ECDAR.For strict compliance with the timing diagram we should also add the guard
x > 700 to the vinH! transition between T3 and T4, in practice, however, there are
implementations that do not wait the full 700 ms but rather respond to voutH!. Both
possible behaviors will be examined more closely in the next subsection.

After a reading has been made, the driver transfers the eight bits of the result from
the sensor, from the most (MSB) to the least (LSB) significant bit. For each bit, the sen-
sor sets the level of vout according to the value being transmitted, hence the ‘crossed
blocks’ in Fig. 4. The timing diagram could be more precise about the details, but in
our interpretation the driver triggers the next bit value with a vinL!, the sensor responds
within a bounded time, and then the sensor may sample! the value and reset vin with
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a vinH!, in any order, before the next bit is requested. The triggering vinL! appears in
the model from T4 for the first bit and from T8 for subsequent bits. The first action
must occur in 0.2ms or less, hence the invariant on T4. The associated transition resets
two clocks: x, for enforcing the 1ms or more constraint across cycles, and y, for con-
ditions on response times within each cycle. It also sets three variables: b, for counting
the number of bits transmitted, w, for monitoring the level of vout, and changed, for
limiting oscillations on vout. We use the w variable to ensure the strict alternation of
voutL! and voutH!, an alternative approach is shown later. Two other constants appear
around the loop T5–T8: maxtrans is a limit on the time it takes for vout to change after
a triggering vinL!, and minspace is the minimum width of pulses on vin. We set both
constants to zero for this case study.

Finally, after transmitting eight bits, the driver and sensor return their respective
wires to a high level, and, after 1.5ms or more, either another reading is requested, or
the sensor is powered off. The timing constraint is expressed as an invariant on T 9, i.e.
a guarantee on the behavior of the sensor, and guards on the transitions from T 10, i.e. a
constraint on the behavior of the driver. The invariant is right-closed and the guards are
left-open for the same reasons given above for the 700 ms constraint. Importantly, they
do not overlap, so that time alone can be used to enforce the ordering between sensor
and driver actions.

ECDAR is used to verify that the model is a valid (deterministic) specification, and
also that it is consistent, i.e. that it has at least one valid implementation. We can also
show two basic properties of the timing diagram model. The first, that vinL! and vinH!
alternate strictly, is expressed using the automaton V in , shown in Fig. 5b, and verified
by the refinement T ≤ V in . The second, that voutL! and voutH! alternate strictly,
is shown similarly using V out , shown in Fig. 5c, and the refinement T ≤ V out . In
fact, both properties can also be shown, using composition, by the single refinement
T ≤ (V in | V out).

4.2 Separate Driver and Sensor Models

While the single automaton model of the previous section is a suitable formalization
of the timing diagram, there are at least two motivations for creating separate but inter-
acting models for the roles of driver and sensor. First, this separation emphasizes the
distinct behaviors of each and clarifies their points of synchronization; each of the two
wires is, in effect, modeled separately. Second, each of the models may be used in isola-
tion. This possibility is exploited in an appendix of the full version of this paper where
a separate driver model serves as the specification for a model of an implementation in
assembly language.

The components of the models are shown in Fig. 5. We discuss the driver models
first, then the sensor, before relating them all to the timing diagram model.

The driver model. As previously mentioned, there are two ways for a driver to behave
after it has requested a range reading: it can wait for a rising transition on the vout wire,
or it can just wait 700 ms regardless. We model each possibility separately, both models
shown in Fig. 5a. The model that responds to the sensor event is called Dev , it comprises
all locations except the one labeled dd1, which should be ignored together with all of its
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Fig. 5. Sensor and driver models

incoming and outgoing transitions. The model that always delays is called Dde , it com-
prises all locations except those labeled de1 and de2 whose connected transitions are
also excluded. The models cannot be combined without introducing non-determinism.

Aside from these initial differences the two models behave identically and their struc-
tures resemble that of the timing diagram model except that events on vout from the
sensor are now modeled as the input actions voutL? and voutH?, and a counterpart for
the state T9 is not required. We explicitly model input-enabledness by adding self-loops,
which, although not mandatory, since actions occur on broadcast channels, are neces-
sary in ECDAR for verifying refinement. Note that both driver variants require little
interaction with the sensor, relying instead on timing assumptions to ensure synchro-
nization. In fact only Dev reacts to sensor events directly, through the voutH? transition
between Dev

1 and Dev
2 , though both models do sample the level of vout.
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Refinement can be used to show a basic property of both driver models, that vinL!
and vinH! alternate. This property is expressed as the automaton V in , shown in Fig. 5b,
and we use ECDAR to show Dev ≤ V in and Dde ≤ V in .

We would also like to claim that Dde refines Dev , i.e. that Dde ≤ Dev , since Dev

can always wait after receiving voutH?, but ECDAR rejects this claim since Dde does
not guarantee that voutH? will precede its initial vinH!. In fact, this type of refinement
can only be shown in a conditional form where assumptions on the environment are
made explicit. We revisit this idea after presenting a model for the sensor that embodies
sufficient assumptions.

The sensor model. The sensor modelS is shown in Fig. 5d. Events on the vin wire are now
modeled as the inputs vinL? and vinH?, with additional self-loops on certain states, and
the outputs sample! and powerOff! are not needed. The initial segment, S0–S3, mimics
the corresponding part of the timing diagram model, but the clocking loop is reduced to
a single location S4 with five self-looping transitions and one outgoing transition.

In location S4, the effect of the inputs, vinL? and voutL?, depends on the time
elapsed since the last request for a bit, as measured by the clock x, and the number of
bits remaining to transmit, as tracked by the counter b. The input vinL?, which requests
the next bit, is ignored if it occurs (again) within the period given to the sensor to set the
level of vout, and also when all bits have been transmitted, i.e. when b = 0. The input
vinH! is ignored until all bits have been transmitted at which time, provided maxtrans
units have elapsed since the last vinL?, it triggers an exit from S4. The outputs voutL!
and voutH! may only occur within maxtrans units of the last vinL?, and, furthermore,
only at most one output may occur within any cycle, that is between any two successive
and ‘legal’ vinL?s. The former constraint is expressed in the clause x ≤ maxtrans, and
the latter using the variable changed.

Instead of a changed variable, an earlier model [6, Figure 4.16] has two states with
three transitions from the first (changed = tt) to the second (changed = ff): one
labeled with voutL!, another with voutH!, and the last unlabeled. This last τ -transition
marks the possibility that the sensor decides not to change the voltage level, which
occurs when two consecutive bits of a range reading are identical. Besides being more
explicit, the two-state version is also more liberal since it is ready to accept vinH? and
vinL? as soon as the value of vout has been set. Even with maxtrans = 0 there is a
difference since in the current model there is always a non-zero delay after a triggering
vinL! before subsequent vinL! or vinH! actions can influence the sensor. In any case, τ -
steps are not permitted in TIOA and replacing them with an explicit output only makes
modeling awkward, and, moreover, it is unnecessary since the driver models always
wait and never respond immediately to vinL! or vinH! whose occurrence is a sufficient
but not necessary indication of a stable value on vout.

The sensor model as it stands allows arbitrary interleaving of voutL! and voutH!.
This is in contrast to the timing diagram model of Fig. 3b, where a variable, w, tracks
the level of vout, or effectively which of voutL! or voutH! occurred most recently, and
is used to constrain output events. The required alternating behavior is recovered using
the conjunction operator and the TIOA V out , depicted in Fig. 5c, giving the complete
sensor specification: (S ∧ V out). Here, the conjunction operator obviates the need
to update and query a state variable on multiple transitions. A specific constraint is
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Table 1. Counterexample for Dde ≤ Dev

Dde .vinL! Attacker plays outputs on left of ≤
Dev .vinL! Defender’s response on right of ≤

Dde waits 701 ms Attacker may delay on left of ≤
Dev waits 701 ms Defender’s response on right of ≤

Dde .vinH! Attacker plays outputs on left of ≤
no response Defender loses!

expressed in a localized and obvious form and the rest of the model can be constructed
under the assumption that it will hold. In ECDAR, the two automata, S and V out ,
execute in parallel and must synchronize on voutL! and voutH!, neither of which may
occur otherwise. Unlike for the timing diagram and the driver models, there is no need
to separately verify the alternation of outputs—it is guaranteed by construction.

Relations between the models. Now that we have a few different models, we turn our
attention to their interrelationships. It turns out that one of the driver models is more
general than the other under certain assumptions. After verifying that fact, we turn
our attention to validating the composition of the driver and sensor models against the
timing diagram model. We also consider how the quotient operator might be applied.

The two driver models differ only in their initial interaction with the sensor, after
requesting a range reading, Dde always waits 700 ms whereas Dev may respond as soon
as the sensor raises vout. One could thus suppose that Dev is more general than Dde ,
since it can also refuse to act before 700 ms has passed even after receiving a voutH!.
But, as described earlier, a first, naive attempt to show the refinement Dde ≤ Dev fails!
The counter-example strategy can be simulated in ECDAR, giving the results shown in
Table 1. There is no guarantee that the inputs needed by Dev will be provided. We must
make these assumptions on the environment explicit by instead stating the relation as(

Dde | (S ∧ V out )
)
≤

(
Dev | (S ∧ V out)

)
,

which is readily validated by ECDAR.2 The verification fails if Dde and Dev are
swapped: Dev can perform a vinH? when x ≤ 700 while Dde cannot.

The compositions of the driver and sensor models have been proposed as alternatives
to the timing diagram model. We state this, for the more general driver model, as two
properties: (Dev | (S ∧ V out)) ≤ T , and T ≤ (Dev | (S ∧ V out)). Both of which are
verified almost instantaneously by ECDAR. For the similar properties with Dde instead
of Dev , only the version with T on the right of the refinement holds; as would be expected.

Even ignoring the conjunction operator, the possibility of verifying a refinement with
a composition on the right-hand side is interesting, because it is not possible in any other
existing tools for checking timed automata refinement. For instance, current implemen-
tations [7] of the usual construction for checking timed trace inclusion [18,23] require
that the refined specification is an explicit automaton. The capability to
address compositions is one advantage of incorporating the refinement verification into
the model-checker itself.

2 In the current version of ECDAR, S and V out must be explicitly duplicated.
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There are limited opportunities to apply the quotient operator in this case study,
perhaps because there are only a small number of models and the operators are not
nested in especially complicated ways. There are, though, two types of properties that
may be attempted.

The first type of property uses the quotient on the right-hand side of a refinement in-
stead of composition on the left-hand side. For instance, we can verify
Dev ≤ (T \ (S ∧ V out)) in ECDAR. The right hand side expresses the idea of the timing
diagram modulo certain assumptions on the environment. Currently the tool requires the
explicit definition of universal and inconsistent states when using the quotient operator,
and simulations are not possible. These issues will be addressed in future versions.

Second, we could try the quotient on the left-hand side of a refinement. For instance,
to propose the property (T \ Dev ) ≤ (S ∧ V out ) as a means of finding out whether
the sensor model is maximal with respect to the timing diagram and driver model. This
cannot work in general, however, since as soon as Dev cannot do an output from a state,
like vinH! from the initial state for example, the quotient will have a transition to the
universal state from which any output or delay can be chosen, at any time, to challenge
the other side of the refinement.

Büchi objectives. Some aspects of specifying liveness are addressed by the algorithms
presented earlier, and supported in ECDAR. It is possible, for example, to determine
whether a given combination of a TIOA and a liveness constraint, expressed as a Büchi
objective, are consistent; i.e. whether refinement is possible. But other important aspects
are not yet addressed satisfactorily. Most notably, the interaction of Büchi constraints
and refinement is limited.

Büchi objectives offer a way to further constrain specifications. For example, con-
sider adding an additional requirement to the timing diagram model T : if an initial
range reading is requested, the system must eventually be powered off. We will inter-
pret this to mean that two behaviors are allowed: 1. resting forever in T0, or, 2. termi-
nating in T11. Our first attempt is to simply try to solve a Büchi objective for the current
model: (T , WB ({T0, T11})). But this is not correct, and ECDAR reports that the model
is inconsistent. While the model starts in T0, and T11 is always reachable, the Büchi ob-
jective is only satisfied if either of T0 or T11 is reentered infinitely often. Self-looping
output transitions must be added to T0 and T11 to allow ‘resting’ in these states. If we
do this—choosing an arbitrary output that will not occur in any other models—and call
the modified version T ′, ECDAR confirms that (T ′, WB ({T ′

0, T
′
11})) is consistent.

The modified model is easily adapted to allow a system that never stops taking range
readings: (T ′, WB ({T ′

0, T
′
10, T

′
11})). This model is obviously consistent since increas-

ing the set of states in the Büchi objective cannot reduce the set of possible implementa-
tions. More information can be gained by verifying the consistency of (T ′, WB ({T ′

10})),
which confirms that the model allows unbounded repetitions of the protocol. Com-
pliance with the Büchi objective is achieved by pruning away the transition labelled
powerOff!, so this verification does not show that the unadorned model T ′ does not
allow termination, only that the model can choose to cycle continuously. Verifying the
consistency of a model with a Büchi objective can be useful as a sanity check.

While Büchi objectives in ECDAR are quite useful for checking consistency proper-
ties, they work less well in combination with refinement. For instance, in ECDAR we
can show (T ′, WB ({T ′

0})) ≤ (T ′, WB ({T ′
10})).
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This is indeed correct, since any implementation of the left-hand side is also an
implementation of the right-hand side, but it could be considered misleading, since
the left-hand side specifies a system that never starts a range reading, while the right-
hand side could be interpreted as specifying a system that never stops performing range
readings whereas, in fact, it is a system where it is possible, but not strictly necessary,
to keep performing range readings. The source of this mismatch is that the current
refinement is based on partial observations rather than complete ones, which is adequate
for safety but not for liveness.

The pruning of output transitions that can result from the combination of a TIOA
and a Büchi objective gives models where a constraint that is supposedly on infinite
behaviors also constrains finite behaviors, which, while not necessarily bad, is perhaps
not completely reasonable [1]. The methodological implications for our theory are not
yet clear, but we note here that this situation can be detected using refinement verifica-
tion in ECDAR. The machine closure [2] of a TIOA A and a Büchi objective B can be
checked by the refinement A ≤ (A, B), which will fail if a reachable output transition
in A is not present in (A, B).

5 Summary and Future Work

We have shown that ECDAR and the underlying theory, are powerful enough to handle a
small—in terms of the scale of systems developed by industry—but realistic case study.
The input/output semantics of TIOA works well for open systems, and the game-based
refinement semantics, i.e. the idea of challenging with inputs from the right-hand side
and outputs or delays from the left-hand side, quickly comes to seem natural. Including
refinement testing in the model checker itself is much more convenient than having to
pass models through an external tool, and the concomitant feature of allowing composed
models on either side of the relation is a powerful one. Finally, the conjunction operator
is a very convenient modeling feature.

Still, several elements could be improved. While Büchi objectives are currently not
without use, a different notion and implementation of refinement is needed to support
more sophisticated applications. The quotient operator is supported by ECDAR, but its
effect is not easily visualized or simulated. More work is needed to determine how it can
be usefully applied to system development and verification; the sensor case study is too
limited in this regard. ECDAR takes advantage of the mature UPPAAL user interface,
but strategies, goals, and the effect of pruning are inherently more complicated and
harder to understand than are simple traces, more work is needed to understand how
best to compute and communicate this information. Furthermore, the new operators and
analyses available in ECDAR make it natural to work with multiple pairings of system
declarations and properties, but this is not yet well supported by the user interface.
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Abstract. In this paper, we propose a new framework of model transfor-
mation that combines graph transformation with algebraic specification.
While graph transformation is well-suited to describe the transformation
of visual models, one can observe that models are often composite struc-
tures with visual, graphical and diagrammatic components accompanied
by all kinds of data objects like strings, sets, numbers, etc. that are not
adequately represented by graphs. We advocate algebraic specification
to cover these parts of models and tupling to combine the graph and the
data components.

1 Introduction

According to the basic idea of model-driven architecture (cf., e.g., [13]), the goal
of model transformation is to transform platform-independent models (PIMs)
into platform-specific models (PSMs) in a systematic way. Quite often this entails
starting from visual modeling paradigms such as UML diagrams, Petri nets or
business process models and ending up with JAVA or C++ programs. Various
graph-transformation-based approaches that cover the part of visual models are
discussed with some success (see, e.g., [21,2,17,20,9,29,10,4]).

Although visual modeling and the transformation of visual models are very
important, one encounters many other kinds of models like grammars, automata,
specifications, and various notions of systems and transformations between them
in theoretical computer science. These models are usually tuples of sets, strings,
numbers, truth values, and such and may have graphs and visual models as
components, among others like the state graph of an automaton.

In [19], we have introduced the notion of model transformation units to com-
bine and cover both kinds of model transformation. Models are tuples of graphs,
strings, sets, numbers, truth values, or tuples again. The transformation is done
component by component due to the type of each component. Graphs are trans-
formed by graph transformation rules, while other components are transformed
by operations of the respective types.
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In this paper, we generalize model transformation units in such a way that
the concrete non-graph types are replaced by arbitrary algebraic specifications.
In this way, model components and their transformation can be specified in a
quite problem-specific way rather than by using standard types. As a running
example, we discuss the reduction of the satisfiability problem for propositional
formulas in conjunctive normal form with three literals per clause into the in-
dependence problem of undirected graphs starting in Section 2. In Section 3,
the prerequisites of graph transformation are recalled. The generalized notion of
model transformation units is introduced in Section 4 and investigated with re-
spect to termination, functionality and correctness in Section 5. Section 6 briefly
considers related work and Section 7 concludes the paper. We assume that the
reader is familiar with the basic concepts of algebraic specification (cf., e.g. [1]).

2 Example: Reduction of SAT3 to INDEP

A typical example of a model transformation as one can encounter in theoretical
computer science is the reduction of the satisfiability problem for propositional
formulas in conjunctive normal form with three literals (SAT3 ) into the inde-
pendence problem for undirected graphs (INDEP) (cf., e.g., [14] and for many
further examples [16], among others).

A propositional formula in conjunctive normal form is a conjunction of clauses,
which can be (and often is) represented as a set of clauses. A clause is a dis-
junction of literals. In particular, one may consider clauses c = c1 ∨ c2 ∨ c3 with
three literals. A literal is a Boolean variable or its negation. Let X be a finite
set of Boolean variables and X = {x | x ∈ X} the corresponding set of nega-
tions, then the disjoint union X + X of X and X denotes the set of literals over
X , C3(X) the set of clauses with three literals, and Pfin(C3(X)) the set of all
finite subsets of C3(X), each representing a conjunction of clauses. Then the
pair (X, F ) with F ∈ Pfin(C3(X)) is an element of CNF3 , the set of conjunctive
normal forms with three literals per clause. (X, F ) is satisfiable if there is an
assignment a : X → {true, false} such that each clause c ∈ F contains an x ∈ X
with a(x) = true or an x with a(x) = false. The problem whether (X, F ) is
satisfiable or not for all (X, F ) ∈ CNF3 is the well-known satisfiability problem
for CNF3 , which may be denoted by SAT3 .

The independence problem INDEP is defined for pairs (G, k) where G is a
finite undirected simple graph, i.e. G = (V, E) with a finite set of nodes V and
a set E of edges, each edge being a 2-element subset of V , and k ∈ N. The
problem is to decide whether there is a subset X ⊆ V with k elements such that
{x1, x2} �∈ E for all x1, x2 ∈ X meaning that no two nodes in X are connected
by an edge.

The reduction SAT3 -to-INDEP can be defined by mapping each (X, F ) ∈
CNF3 to the pair (G(X, F ) = (V (X, F ), E(X, F )), #F ) where #F denotes the
number of clauses, V (X, F ) = F× [3] 1 and E(X, F ) contains the following edges
assuming that the literals of each c ∈ F are numbered c1, c2 and c3:
1 [k] for k ∈ N denotes the set {1, . . . , k}.
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1. {(c, i), (c, j)} for c ∈ F, i, j ∈ [3], i �= j,
2. {(c, i), (c′, j)} for c, c′ ∈ F, c �= c′, i, j ∈ [3], and ci = x and c′j = x or ci = x

and c′j = x for some x ∈ X.

This means that there is a node for every literal in F and two literal nodes form
an edge if they either stem from the same clause or contradict each other. For
example, the pair ({x, y}, {x∨ x̄∨ y, y ∨ ȳ ∨ x, y ∨ ȳ ∨ x̄}) ∈ CNF3 is reduced to
the pair (G, 3) where G is the graph shown in in Fig. 1.

x x

y

x x

y y

y y

Fig. 1. Graph resulting from (x ∨ x̄ ∨ y) ∧ (y ∨ ȳ ∨ x)(∧y ∨ ȳ ∨ x̄)

If F is satisfiable, then there is an assignment such that each clause contains
a literal that evaluates to true. These literals stem from different clauses and
do not contradict each other. In other words, they form an independent set of
nodes. All the arguments can be reversed so that the mapping turns out to be
correct. Moreover, it is easy to see that it can be constructed by a polynomial
algorithm. Such an algorithm may count the elements of F, copy all literals as
nodes and check for each two literal nodes whether they are connected by an
edge or not. The number of steps is quadratic in the number of literals. Alto-
gether, this proves that SAT3 -to-INDEP is a reduction between NP -problems.
SAT3 and INDEP are known to be NP -complete. Moreover, as reductions pre-
serve NP -completeness, the NP -completeness of INDEP is implied by the NP-
completeness of SAT3 .

Looking at this example and many other similar examples, one can observe
the following:

1. Models are tuples with components being strings, sets, symbols, numbers,
graphs, and tuples again.

2. The tuples may be restricted by constraints.
3. Their transformations are constructions on the components and may require

computation.
4. Input types may be different from output types, and the transformation from

input models to output models may need intermediate working types.

To come up with a formal notion of model transformation that covers all these
features, we propose to employ the Cartesian product and its nice properties
for the tupling, graph-transformational rule bases for the graph components and
algebraic specifications for all other components.
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3 Graph Transformational Rule Bases

In this section, we recall the basic notions and notations of graph transformation
as far as needed.

A (graph-transformational) rule base is a system B = (G,R, =⇒) where G is a
class of graphs, R is a class of rules, and =⇒ is a rule application operator with
=⇒

r
⊆ G × G for r ∈ R.

This allows one to choose the favorite kind of graphs or those that fit best for
the intended purpose like, for example, directed or undirected graphs, labeled
or unlabeled graphs, acyclic, connected or planar graphs, hypergraphs, etc. The
same applies to the kind of rules and rule application for which one encounters
quite a variety of possible choices in the literature (cf, e.g., [26]).

An explicit example is the class Gundir (Σ) of undirected simple graphs with
edge labels in Σ. Such a graph is a system G = (V, E) where V is the set of nodes,
and E the set of edges, each edge being a pair e = (att(e), l(e)) of attachment
and label such that att(e) is a 1- or 2-element subset of V and l(e) ∈ Σ. If the
attachment att(e) is a singleton set, then e is called a loop. The components of
G are also denoted by VG and EG.

We assume that Σ contains a special symbol ∗ that is invisible in drawings
of graphs so that unlabeled edges can be represented as ∗-labeled ones. In par-
ticular, we get Gundir ⊆ Gundir (Σ) if one identifies a 2-element edge e = {v1, v2}
with the pair ({v1, v2}, ∗) where Gundir denotes the set of unlabeled undirected
graphs introduced in Section 2.

As an explicit example, we use rules of the form r = (L ⊇ K ⊆ R) where L and
R are graphs and K is a common subgraph, i.e., VK ⊆ VL ∩VR, EK ⊆ EL ∩ER.

To apply a rule r = (L ⊇ K ⊆ R) to a graph G, one needs an injective
graph morphism g : L → G, i.e. an injective mapping g : VL → VG with g(e) =
({g(v1), g(v2)}, a) ∈ EG for all e = ({v1, v2}, a) ∈ EL. Then the resulting graph
H is constructed as follows:

– Remove all nodes in g(VL − VK) and all incident edges as well as all edges
g(e) for e ∈ EL − EK .

– Add all nodes in VR − VK disjointly and add all edges in ER − EK where
each incident v ∈ VK is replaced by g(v).

The application of a rule is denoted by G=⇒
r

H. Bundir (Σ) denotes the rule

base that consists of Gundir (Σ), the rules and the rule application, as introduced.
Bundir denotes the somewhat odd rule base that consists of Gundir and the empty
set of rules. Since in the following this rule base is only used as output type it
does not need to have transformation rules.

Consider the rules in Figures 2. The rule addclause adds its right-hand side
disjointly to any given graph because there is always the empty graph morphism,
nothing is removed and all is added. The rule addcontradiction adds an edge
between two nodes if they carry loops with contradicting literals. The dotted
line in the left-hand side is a negative application condition and means that the
rule is not applied if the two nodes are already connected in the host graph. This
prevents the rule from being applied twice to the same two nodes.
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rule addclause(c1, c2, c3)

L K R

∅ ⊇ ∅ ⊆

c1, c2, c3 ∈ X + X

c3

c1

c2

rule addcontradiction(x)

L K R

⊇ ⊆
x ∈ Xx x x x x x

Fig. 2. The graph transformation rules addclause and addcontradiction

Starting from the empty graph, three applications of addclause (with the
proper literals) and seven applications of addcontradiction yield the graph in
Fig. 3.

x x

y

x x

y y

y y

Fig. 3. A graph resulting from rule applications

4 Model Transformation

In this section, the notion of model transformation units is introduced. It is based
on models being tuples comprised of graphs and elements of other data types as
well as tuples again. A transformation step is given by the application of an action
which is a tuple of rules, terms, and actions corresponding to the respective
types of the components of models. A set of actions together with a control
condition, an initialization and a terminalization forms a model transformation
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unit. The initialization adapts the input models to the working models on which
the actions are performed. The control condition regulates the application of
actions. Finally, the terminalization filters the output model from the processed
working models.

4.1 Assumptions

The notions introduced in this section are based on the following assumptions:
Let SPEC i for i ∈ [l] be a collection of algebraic specifications and Ai be a
SPEC i-algebra for each i ∈ [l]. Let Bj = (Gj ,Rj , =⇒) for j ∈ [n] be a collection
of rule bases.

4.2 Constrained Models and Their Types

Models are defined recursively as tuples of models initialized by the elements of
the given algebras and classes of graphs. They are typed in a straightforward
way:

(i) m ∈ Ai,s is a model of type s for some sort s of SPEC i and i ∈ [l],
(ii) m ∈ Gj is a model of type Bj for some rule base Bj , j ∈ [n], and
(iii) (m1, . . . , mk) is a model of type T1 × · · · × Tk if mi is a model of type Ti

for all i ∈ [k] and some k ∈ N.

The set of all models of type T is denoted by M(T ).
Instead of the elements of the data domains in (i) and the graphs in (ii), one

may consider the corresponding 1-tuples. Hence, one can assume that all models
are tuples without loss of generality.

In many cases, one is not interested in all tuples of some type, rather one may
like to deal with tuples that have some specific properties and interrelations.
To cover this, we use constraints where we allow any syntactic entity that may
restrict the class of models:

Let T be a model type and X (T ) be a class of constraints with SEM (x) ⊆
M(T ) for x ∈ X (T ). Then 〈T with x〉 for some x ∈ X (T ) is a constrained model
type with M(〈T with x〉) = SEM (x).

The definition can be used recursively meaning that the assumed type T may
be itself constrained. This yields types of the form 〈. . . 〈T with x1〉 . . . with xp〉
which may be denoted by 〈T with x1, . . . , xp〉.

For further use, types may be named and provided with standard variables
(M1, . . . , Mk) for the components. Clearly, the variables get their types from
the components. Constraints may be Boolean terms and graph properties using
these variables. As constraints may contradict each other, the class of constrained
models may be empty.

4.3 Actions Combining Rules and Operations

The most basic syntactic construct for model transformation is an action which
is defined componentwise. If the component is a graph, the action provides a
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rule. If the component is an element of some data domain, the action provides
a term of the corresponding sort, which specifies an operation on this sort. If
the component is a composite model, the action component is – recursively –
an action. Alternatively to these three cases, the action component may be the
special symbol “−” that requests “no change” in this component.

Let 〈T1 × · · · × Tk with x1, . . . , xl〉 be a model type. Then an action a =
(a1, . . . , ak) is a k-tuple such that for each i ∈ [k] one of the following holds:

1. ai = −, called void,
2. ai ∈ Rj provided that Ti = Bj for some j ∈ [n],
3. ai is a term of type Ti provided that Ti is some sort, and
4. ai is an action for type Ti provided Ti is a constrained product type which

is neither a rule base nor a sort.

4.4 Application of Actions

The application of an action transforms models into models of the same type
componentwise. Let T1 × · · · × Tk be a model type with the standard variables
(M1, . . . , Mk) and let m = (m1, . . . , mk) ∈ M(T1 × · · · × Tk). Let assign be
an assignment with assign(Mj) = mj for j ∈ [k] and free choice for all other
occurring variables. Then the action a = (a1, . . . , ak) may be performed on m
yielding m′ = (m′

1, . . . , m
′
k) ∈ M(T1 × · · · × Tk) (denoted by m =⇒

a
m′) if the

following holds for i = 1, . . . , k:

1. m′
i = mi if ai = −,

2. mi =⇒
ai

m′
i if ai ∈ Rj for some j ∈ [n],

3. m′
i = ai[assign ] if ai is a term and ai[assign ] is the term obtained from ai

by substituting each variable M in ai by assign(M), and
4. mi =⇒

ai

m′
i if ai is an action.

Given a set of actions A, =⇒
A

denotes the union of all relations =⇒
a

for a ∈ A, and
∗=⇒
A

denotes the reflexive and transitive closure of =⇒
A

. It may be noticed that the

application of an action is defined in such a way that it is an induced mapping
into the product for each fixed choice of the free (non-standard) variables.

4.5 Model Transformation Units

A model transformation unit is a system mtu = (ITD ,OTD ,WT , A, C) where

– WT = T1 × · · · × Tk is the working type.
– A is the set of actions on the working type,
– C is the control condition,
– ITD is the input type declaration consisting of the input type IT = 〈I1×· · ·×

Im with x〉 and an initialization initial : IT →WT specified by projections
and constants, and

– OTD is the output type declaration consisting of the output type OT =
〈O1×· · ·×On with y〉 and a terminalization terminal : WT → OT specified
by projections.
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Here, a control condition is any syntactic entity that may cut down the nonde-
terminism of action applications, meaning that SEM (C) ⊆ ∗=⇒

A
. SEM (C) may

be denoted by ∗=⇒
A,C

.

4.6 Semantics

The model transformation specified by mtu is a relation between input and
output models

SEM (mtu) : M(IT )→M(OT )

defined by the sequential composition

M(IT )
finitial−−−→M(WT ) ∗=⇒

A,C
M(WT )

fterminal−−−−−→M(OT ),

where finitial is the mapping induced by initial , i.e., by the projections and
constants given by initial restricted to M(IT ), fterminal is the mapping induced
by terminal restricted to M(OT ) and ∗=⇒

A,C
is the iterated action application

relation obeying the control condition C.

4.7 Example

Continuing our running example, Fig. 4 displays the reduction of SAT3 to
INDEP as a model transformation unit. It is based on the algebraic specifica-
tion clause3(data) which specifies clauses as a disjunction of literals c1∨c2∨c3

where a literal is a Boolean variable or its negation. The variables are given by
an actualization of the formal parameter data. If this is chosen as a set of identi-
fiers ID , the free clause3-algebra provides the set C3(ID) described in Section 2.
Moreover, we use the standard algebraic specifications set(data) and nat with
the algebras Pfin(ID), Pfin(C3(ID)) and N and the rule bases Bundir (Σ) and
Bundir as described in Section 3.

The working type of the unit combines sets of identifiers, sets of clauses with
the identifiers as literals, undirected graphs and natural numbers. In addition,
the four standard variables X , F , G and k are declared. Due to the mapping in
“initialize” the first two components form the input type, which is additionally
constrained by the requirement that the literals in all clauses of component 2
stem from the actual set of Boolean variables of component 1. The components 3
and 4 are initialized by the standard constants empty graph and 0 respectively.
At the end, they are used as the output components due to the mapping in
“terminalize”. However, the resulting graph is only accepted if it is unlabeled.

The unit in Fig. 4 has three actions. The action clause removes a clause from
the second component. Its literals are given as variables that do not belong to
the standard repertoire and can therefore be chosen freely. At the same time, the
rule addclause of Fig 2 must be applied in the third component using the same
literals and the counter in the fourth component is increased by 1. Due to the
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working type: (X,F,G, k) ∈ set(ID)× set(clause3(ID))× Bundir (Σ)× nat

initialize: 1 → 1 & 2 → 2 & 3: G = ∅ & 4: k = 0

actions: clause = (−, rem(c1 ∨ c2 ∨ c3,F), addclause(c1, c2, c3), succ(k))
with c1 ∨ c2 ∨ c3 ∈ F

contradict = (−,−, addcontradiction,−)
clean-up = (−,−, clean,−)

control: clause!; contradict!; clean-up!

terminalize 3 → 1 & 4 → 2

SAT3-to-INDEP

input: (X,F) ∈ CNF3 = 〈set(ID)× set(clause3(ID))
with (c1 ∨ c2 ∨ c3 ∈ F → ci ∈ X ∨ ci ∈ X
for i = 1, 2, 3)〉

output: Bundir× nat

Fig. 4. The reduction SAT3-to-INDEP as a model transformation unit

exclamation mark after clause the control condition requires that this action be
applied as long as possible so that no clause is left in component 2, all of them
are represented as disjoint triangular subgraphs in component 3, and component
4 provides their number at the end.

The subexpression “; contradict !” in the control condition requires to continue
the transformation by the application of contradict as long as possible. This
means that in the graph component edges are added between each two nodes
with contradicting loops that are not yet connected. Then the rest “;clean-up!”
requires to remove all loops in the graph component to end up with an unlabeled
graph. More precisely, every application of the rule clean removes one loop from
the current graph. For reasons of space limitations, the rule is not depicted.

It should be noted that the action clause is constrained. Formally, this is a
further control condition which requires that the Boolean term c1 ∨ c2 ∨ c3 ∈ F
evaluates to true whenever clause is applied. In this way, the removal operation
removes a clause successfully. As this part of the control condition concerns only
the action clause, it is placed next to it.

An example of a model transformation performed by the unit SAT3-to-INDEP
is

({x, y}, {x ∨ x̄ ∨ y, y ∨ ȳ ∨ x, y ∨ ȳ ∨ x̄}) finitial−−−→
({x, y}, {x ∨ x̄ ∨ y, y ∨ ȳ ∨ x, y ∨ ȳ ∨ x̄}, ∅, 0) ∗=⇒

clause
({x, y}, ∅, G1, 3) ∗=⇒

contradict

({x, y}, ∅, G2, 3) ∗=⇒
clean up

({x, y}, ∅, G3, 3)
fterminal−−−−−→ (G3, 3)

where G1 is given in Fig. 5, G2 is the graph of Fig. 3 and G3 obtained from G2

by removing each loop.
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x x

yx x
y y

y y

Fig. 5. A graph generated by clause!

4.8 Interaction between Graph Transformation and Algebraic
Specification

Besides the tupling that combines graph transformational and algebraically spec-
ified components, the framework provides a few further possibilities how graph
transformation and algebraic specification can be intertwined.

1. If a parameter of some algebraic specification is a single sort or a sort with
an equality predicate, then the class of graphs of a rule base or their set of
labels can be used as actual parameter. For instance, the set of identifiers
is an actual parameter as well as a subset of the set of labels used in the
running example.

2. The other way round, the graphs of some rule base may be labeled by ele-
ments of some algebra domain.

3. The constraints can use the standard variables and determine in this way
how all the components of models must be interrelated.

4. Rules and terms may use the same variables which must be identically in-
stantiated if they occur in the same action. For instance, the action clause
removes a clause from the set of clauses and adds at the same time a trian-
gular subgraph that is labeled by the literals of the removed clause because
the variables c1, c2 and c3 that occur in the term as well as in the rule must
be instantiated by the same assignment.

5. Analogously to Points 3 and 4, the variables that can occur in control condi-
tions may regulate the application of actions depending on the interrelation
of the involved components.

5 Termination, Functionality and Correctness

Model transformation units are devices to specify the stepwise transformation
of input into output models in a precise way. But in most cases, it is not enough
to construct such a relation. In addition, one would like to guarantee certain
desired properties. Looking at our running example, three main properties come
to mind. The model transformation unit SAT3 -to-INDEP is intended to define a
reduction of SAT3 to INDEP meaning that the transformation must be polyno-
mial, functional and correct as discussed in Section 2. As these three properties
are typical for many model transformations, we want to sketch some very first
ideas how they may be proved in the context of model transformation units.
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5.1 Termination

Termination can be shown in the traditional way by finding a valuation of models
that decreases if actions are performed.

Let us recall some well-known facts about termination based on arbitrary
binary relations.

Let C be a set of configurations, size : C → N a size function, and −→ ⊆
C × C a binary relation, the elements of which are considered as elementary
computational steps. Then a computation from c to c′ is a sequence of steps
c = c0−→ c1−→ . . .−→ ck = c′ for k ∈ N, which is shortly denoted by c

k−→ c′.
(C, size,−→) is terminating with the bound b : N → N if c

k−→ c′ implies k ≤
b(size(c)) for all computations. (C, size ,−→) is polynomial if b is a polynomial.
The bound is given on the size rather than for each configuration to cover the
special case of polynomiality as it is used for the famous complexity classes P
and NP , for example.

To prove termination, one can often use the following observation.

Observation 1. Let val : C → N be a valuation function with val(c) > val(c′)
for all c−→ c′. Then (C, size ,−→) is terminating with the bound

b(n) = max{val(c) | size(c) ≤ n} for n ∈ N.

Termination is undecidable for graph transformation in general [24]. However,
all model transformations specified by the example unit SAT3 -to-INDEP are
terminating. To illustrate how this works, consider the models (X, F, G, k) of
the working type of the model transformation unit SAT3 -to-INDEP as config-
urations and the applications of the action clause as the step relation. Then the
number of clauses #F decreases in each step by 1. Therefore, all iterations of
clause-applications are terminating in a number of steps that is linear in the
number of clauses. Moreover, the bound is sharp as clause can be applied as
long as there is some clause left.

The situation is similar for the actions contradict and clean-up. As both
change only the graph component, we can focus on this. The application of
the rule addcontradiction adds an edge between two given nodes, but only if
there is no such edge. In other words, the number of pairs of nodes that are not
connected by an edge decreases by 1 whenever the rule is applied. This proves
that the iteration of contradict terminates with a bound that is quadratic in the
number of nodes. With respect to the rule clean, the argument is even simpler
because it removes a loop whenever applied (and does nothing else).

Due to the control condition, SAT3 -to-INDEP is the sequential composition
of the three polynomial computations given by the three actions. Such a com-
position is polynomial itself if the steps increase the size of configurations by
a constant at most. This is the case with clause, contradict and clean-up if
one chooses the number of clauses plus the number of nodes as size. Only the
application of addclause increases the size by three nodes.

Termination criteria for graph transformation systems have been intensively
studied (see [6,11,3,7] for some examples).
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5.2 Functionality

Consider (C,−→, I, T ) where −→ is a step relation on C (as in 5.1) and I and
T are subsets of C providing the initial and terminal configurations respectively.
Then this system is functional if, for each c ∈ I, there is a unique c ∈ T with
c

∗−→ c (where ∗−→ denotes the reflexive and transitive closure of −→). (C,−→)
is confluent if, for each two c

∗−→ c′ and c
∗−→ c′′, there are c′ ∗−→ c and c′′ ∗−→ c

for some c.
The following observation states how confluence can yield functionality.

Observation 2. 1. Let (C,−→, I, T ) be a system with −→ ⊆ C × C and
I ∪ T ⊆ C subject to the conditions:
(a) (C,−→) is confluent,

(b) T is reduced, i.e., c
k−→ c′ and c ∈ T implies k = 0, and

(c) −→ is I, T -complete, i.e., for each c ∈ I, there is a c ∈ T with c
∗−→ c.

Then the system is functional.
2. (C,−→) is confluent if it has the strong local Church-Rosser property, i.e.,

c−→ c′ and c−→ c′′ implies c′−→ c and c′′−→ c for some c.

This applies very nicely to our running example considering the application of
each action separately as in 5.1. Obviously, each two applications of the same
rule have the strong local Church-Rosser property so that confluence is guaran-
teed. If one chooses the models that are reduced with respect to the actions in
consideration as terminal configurations, then the reducedness condition holds
by definition. And finally, the completeness condition holds in all three cases for
any choice of initial configuration because we know already that the three step
relations yield terminating computations. In particular, a computation as long
as possible holds and ends in a reduced form.

In other words, the three computations corresponding to the three actions are
functional so that their sequential composition is functional, too, yielding the
functionality of SAT3 -to-INDEP .

In the area of graph transformation, confluence can be shown by analyzing
so-called critical pairs [23,15,25].

5.3 Correctness

Correctness is an essential issue of model transformation. It means that the
semantics of input models is preserved by the transformation into output models.
For instance, if the input model describes a secure bank transfer system, then
one would like the result of the transformation to still be secure and handle bank
transfers properly. A formal notion of correctness of model transformation units
requires the semantics of the input and output models to be comparable as in
the following example.

Let mtu be a model transformation unit with SEM (mtu) : M(IT )→M(OT ).
Let SEM (IT ) : M(IT )→ DOM and SEM (OT ) : M(OT )→ DOM be semantic
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relations of the input and output models into a common semantic domain DOM .
Then mtu is correct if

SEM (IT ) = SEM (OT ) ◦ SEM (mtu).

In the case of our running example, the common semantic domain is BOOL =
{true, false} and the semantics are the satisfiability SAT3 on one hand and the
solvability of the independence problem INDEP on the other hand. As pointed
out in Section 2, the mapping SAT3-to-INDEP is a correct reduction, i.e.

SAT3 = INDEP ◦ SAT3 -to-INDEP .

By induction on the number of clauses in F and on the number of contradicting
literals in F and taking into account the considerations concerning termination
of the model transformation unit SAT3 -to-INDEP in 5.1, it can be shown that
the semantics of the unit coincides with the reduction mapping so that the unit
is correct in the sense of the definitions above.

Besides correctness proofs for reductions between NP-problems, one encoun-
ters quite many transformations of some kinds of grammars and automata into
other kinds of grammars and automata in the literature. In each of these these
cases, the common semantic domain is the set of formal languages and the cor-
rectness proof shows that the input model specifies the same language as its
transformed counterpart.

It is beyond the scope of this paper to elaborate the topic of correctness, but
it will be a focus of future research. The hope is to learn from all the correct-
ness proofs in theoretical computer science and to develop proof methods for
model transformation units that apply to the model transformation in software
engineering and business process modeling.

6 Related Work

In the literature, one encounters quite a variety of graph-transformational
approaches to model transformation. One approach to define model transfor-
mations based on graph transformation is by triple grammars [27,17,28]. They
generate corresponding source and target models simultaneously, but they can
also be considered as transformations from source to target and from target to
source. In [12], models are graphs equipped with a semantics given as a set of
simulation rules, and a model transformation is composed of generating first an
integrated model by graph transformation rules and restricting it then to the tar-
get model. In [20], an approach to model transformation is presented that uses
graph transformation units [18] based on typed attributed graph transformation.

Examples of model transformation tools based on graph transformation are
VIATRA2 [29], GReAT [2], ATOM3 [22], and MOMENT2-GT where the lat-
ter is a graph transformation variant of MOMENT2 [5]. VIATRA2 integrates
graph transformation and abstract state machines. GReAT mainly consists of
a pattern specification language, a transformation rule language and a control
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flow language. ATOM3 focuses on modeling complex systems composed of var-
ious formalisms and allows to transform them into a single common formalism.
MOMENT2-GT translates model transformation specifications into theories in
Maude [8] such that models correspond to terms and applications of graph trans-
formation rules to term rewriting.

All these approaches to model transformation consider a model as a graph.
Therefore, each of them could be used in our approach to deal with some graph
component of our models. To cover the algebraically specified components in the
other approaches, a graph encoding of arbitrary data types would be necessary.

7 Conclusion

In this paper, we have proposed a formal approach to model transformation
by combining graph transformation and algebraic specification generalizing our
work in [19]. This is based on the observation that models are often not just
diagrams or pieces of programs, but composite structures with components be-
ing strings, sets, numbers, trees, graphs, etc. Especially, the wealth of models
one encounters in theoretical computer science like grammars, automata, speci-
fications and systems of various kinds are structured in this way. Our notion of
a model transformation unit takes this into account by providing models that
are tuples of components of various types which are transformed componentwise
according to their type. Graph components are transformed by graph transfor-
mation rules. And other components are assumed to be data objects of data types
with algebraic specifications so that operations can do the transformation. The
first considerations are somewhat promising and indicate that the framework
may provide a solid fundament for the formal modeling of model transforma-
tion. However, future research should shed more light on the significance of this
approach including the following points:

1. In Section 5, we have shown that well-known methods can help to show in-
teresting properties of model transformation like termination, polynomiality
and functionality. Clearly, one would like to have methods that are more
specific and reach farther.

2. In particular, correctness is an essential property. Our hope is that model
transformation units help to study and prove correctness.

3. For the practical use of this novel approach, it will be important to provide
tool support especially to prove properties.
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29. Varró, D., Balogh, A.: The model transformation language of the VIATRA2 frame-
work. Sci. Comput. Program. 68(3), 214–234 (2007)



Towards Bialgebraic Semantics for the

Linear Time – Branching Time Spectrum
∗
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Abstract. Process algebra, e.g. CSP, offers different semantical obser-
vations (e.g. traces, failures, divergences) on a single syntactical system
description. These observations are either computed algebraically from
the process syntax, or “extracted” from a single operational model. Bial-
gebras capture both approaches in one framework and characterize their
equivalence; however, due to use of finality, lack the capability to si-
multaneously cater for various semantics. We suggest to relax finality to
quasi-finality. This allows for several semantics, which also can be coarser
than bisimulation. As a case study, we show that our approach works out
in the case of the CSP failures model.

1 Introduction

Giving semantics to process algebra in the form of SOS has become standard
since Plotkin’s seminal paper [1]. Besides the transition system of a process,
however, one is often interested in a more abstract description of a process, based
on observations such as traces or failures. Naturally, this leads to the questions
of how to obtain observations from a transition system. This can be done via
an algebraic approach using initiality of the term algebra, or coalgebraically via
finality of the intended observational model.

Bialgebras [2, 3] host these two approaches within one framework, and allow
one to study conditions under which they are equal. In this paper we are inter-
ested in observations that lead to notions of process equivalence coarser than
bisimulation. This is motivated, e.g., by the various semantics of the process
algebra CSP [4, 5], which lie within the linear time (trace semantics) – branch-
ing time (bisimulation semantics) spectrum [6]. As final objects are unique up
to isomorphisms, any given category can cater for just one semantics given by
finality. If one is interested in various semantics for one process algebra – as is,
e.g., the case for CSP – there are two possible approaches: either one defines a
specialized category for each semantic model, or, one relaxes the requirement of
finality. Here, we follow the latter approach and relax finality to quasi-finality
[7, 8]. Briefly, quasi-finality has a characterization similar to that of finality, ex-
cept that the defining conditions are required to hold only in the underlying
∗
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category (of sets and functions, for simplicity) rather than in the category of
coalgebras.

Relatively to a functor B describing the type of transition structure, we intro-
duce the notion of an observational model. Such a model consists of observations,
e.g. trace languages. These observations carry a transition structure of type B .
Additionally, an observational model defines an observation function from any
B -coalgebra to the set of observations of the model. Furthermore, the observa-
tional model is required to be quasi-final in the category of B -coalgebras w.r.t.
these observation functions.

With these notions we obtain: Given the signature Σ of a process algebra P
and its transition rules for a functor B ; and an observational model such that
a certain equation holds for all operators in Σ, then the derived denotational
semantics is equivalent to the defined operational semantics.

The starting point of our work was the realization that when studying a cer-
tain class of systems viewed as coalgebras, we may be interested in observations
or behaviours other than those described by final coalgebras. To deal with these
problems we suggested in [8] to relax the requisite of finality to quasi-finality, and
proceeded to show that typical behaviours in the linear-time – branching-time hi-
erarchy [6], like traces, ready-traces, failures and synchronization trees, give rise
to quasi-final coalgebras. The next step was to apply these ideas to the seman-
tics of an actual process calculus, as an extension of bialgebraic semantics [2, 3];
we have chosen CSP mainly because different semantics have been studied for
it, based on different kinds of behaviours [5]; this is essentially the work re-
ported in this paper. Other coalgebraic semantics of CSP include [9, 10, 11];
the main difference with our work is that ours pretends to be an instance of a
general framework intended to capture a general notion of behaviour in terms of
quasi-final coalgebras, while the work of these authors seems to be tailored for
the specific language at hand; it would be interesting, however, to look deeper
into Boreale and Gadducci’s model to see if or how it could be adapted to our
framework. Other attempts have been made at trying to capture in coalgebraic
terms traces of several kinds of systems [12, 13, 14]. We should also mention
van Glabbeek’s work [6] on the characterization of process equivalences other
than bisimilarity using modal logics, as well as the more recent work of Jacobs
and Solokova [15] based on dual adjunctions. Klin [16, 17] is interested in prov-
ing compositionality of process equivalences, and relies heavily on bialgebraic
semantics and SOS congruence formats. The goal of Klin appears to be similar
to ours, because compositionality of process equivalences is basically the same
as compositionality of operational semantics; furthermore, despite being based
on different approaches, there seem to exist deep connections between the two
works; but these need to be further investigated.

This paper is organized as follows: In Sections 2 and 3 we review the back-
ground of our construction, namely the concept of bialgabraic semantics in Sec-
tion 2, and the notion of quasi-finality in Section 3. In Section 4 we discuss how
to generalize bialgebraic semantics to the quasi-final case. Finally, in Section 5
we apply our approach to the CSP failures semantics.
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2 Bialgebraic Semantics

Bialgebras [2, 3] host initial or denotational semantics and final or operational
semantics within one framework, and allow one to study conditions under which
they are equal. In this section we discuss the basic concepts of bialgebraic se-
mantics.

2.1 Syntax, Signature, Σ-Algebra

A (single-sorted) signature Σ consists of a set of symbols together with a function
giving their arities. Figure 1 illustrates how the grammar of (a sublanguage of)
the process algebra CSP over a given set of communications A corresponds to
such a signature: The signature of our small CSP fragment has operators Stop
(for the deadlock process) of arity 0, a → ( ) (for action prefix) for all a ∈ A
of arity 1, and � (for external choice) and ||| (for interleaving) of arity 2. The
terms over this signature correspond to the expressions of CSP derived from the
grammar.

Grammar P ::= Stop | a → P | P � P | P ||| P
Signature Σ = {Stop, a → , � , ||| | a ∈ A}

Fig. 1. One sorted signature for CSP sublanguage

A Σ-algebra is a pair < M , μ > where M is a set and μ is a function μ :
ΣM → M . Here we overload notation and treat Σ also as the functor defined on
sets X by setting ΣX = {<σ, x1, . . . , xn >: σ ∈ Σ, arityσ = n, x1, . . . , xn ∈ X }.
The operation σM : M n → M associated with σ ∈ Σ of arity n is given by
σM (m1, . . . ,mn) = μ(< σ,m1, . . . ,mn >). A homomorphism from < M , μ > to
another Σ-algebra <M ′, μ′

>, or Σ-homomorphism, is a function f : M → M ′

such that the following diagram commutes:

ΣM

μ

��

Σf
�� ΣM ′

μ′

��

M
f

�� M ′ .

The set T0 of Σ-terms can be turned into a Σ-algebra < T0, α0 > by defining
α0(< σ, t1, . . . , tn >) = σ(t1, . . . , tn) where σ ∈ Σ has arity n and t1, . . . , tn are
terms; this is the initial Σ-algebra: there is a unique Σ-homomorphism ιM from
< T0, α0 > to any Σ-algebra < M , μ >. In this context, ιM is also known as
the initial or denotational semantics of the language T0 defined by Σ in the
semantic model M .

The free Σ-algebra generated by a set X is defined similarly; it will be denoted
<TX , αX >, with “inclusion of generators” ηX : X → TX . The characterizing
property of the free algebra is that any function f : X → M has a unique



212 A.P. Maldonado, L. Monteiro, and M. Roggenbach

extension to a Σ-homomorphism f̄ from <TX , αX > to <M , μ>. This may be
visualized in the following commutative diagram:

X

f
��







ηX �� TX

f̄

��
�
�
� ΣTX

αX��

Σ f̄

��
�
�
�

M ΣM .
μ

��

2.2 SOS Rules, Transition System, Coalgebra

Recall that a labelled transition system (LTS) over a set A of communications
or actions is a pair <S ,→> where S is the set of states and →⊆ S × A× S is
the transition relation; as usual, (s , a, s ′) ∈→ is written s a→ s ′. Below, besides
A we consider also the set A ∪ {τ, �} of labels, where τ represents an internal
transition and � represents termination, but for now we stick to A.

Action prefix:
a → P

a−→ P

External choice:
P

a−→ P ′

P � Q
a−→ P ′

Q
a−→ Q ′

P � Q
a−→ Q ′

Interleaving:
P

a−→ P ′

P ||| Q a−→ P ′ ||| Q
Q

a−→ Q ′

P ||| Q a−→ P ||| Q ′

Fig. 2. SOS rules for the fragment of CSP

Given a set of SOS rules the set T0 of terms of the language is turned into
an LTS. As an example, Figure 2 shows the rules of our CSP fragment: Stop
cannot perform any action, thus there is no rule for this process. Action prefix
with a can perform the action a. For external choice, the first action decides
which branch is chosen; both branches are possible. In interleaving, the involved
processes run independently of each other.

Such dynamic behaviour can also be captured with the notion of a coalgebra:
Given an endofunctor B on the category Set of sets and functions, a B -coalgebra
is a pair < S , ϕ > where S is a set and ϕ : S → BS is a function, called the
transition structure of the coalgebra. A B -morphism from <S , ϕ> to <S ′, ϕ′>
is function f : S → S ′ such that ϕ′ ◦ f = Bf ◦ ϕ, i.e., the following diagram
commutes:

S

ϕ

��

f
�� S ′

ϕ′

��

BS
Bf

�� BS ′ .

A transition system < S ,→> will be identified with a coalgebra < S , ϕ > for
the functor B = P(−)A; the structure function ϕ : S → P(S )A is defined by
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ϕ(s)(a) = {s ′ : s a→ s ′}; conversely, given such a coalgebra, the corresponding
transition relation is defined by s a→ s ′ iff s ′ ∈ ϕ(s)(a); the two notations will be
used interchangeably. For the LTS <T0,→> on the set T0 of Σ-terms we denote
the structure function with ψ0; thus, we have a structure <T0, α0, ψ0 > which
is both a Σ-algebra and a B -coalgebra; such structures are called bialgebras and
play a fundamental role in the sequel; a morphism of bialgebras is a function
that is both a Σ-homomorphism and a B -morphism.

When the category of B -coalgebras has a final object <Z , ζ >, whose elements
are interpreted as observations or behaviours, there is a unique B -morphism
βS : S → Z from any B -coalgebra <S , ϕ> to <Z , ζ >. When S is T0, the B -
morphism βT0 is the final or operational semantics of T0. Note in passing that
for cardinality reasons the functor P(−)A does not have a final coalgebra, which
precludes the existence of a final semantics; to obtain a final semantics in this
case the standard procedure is to replace P with the finite powerset functor Pfi,
when possible. But P(−)A has (infinitely) many quasi-final coalgebras, which
justifies our interest in semantics based on them.

In order to compare the denotational and the operational semantics of T0,
we must be able to define a Σ-algebra < Z , θ > to turn Z into a denotational
semantic model; in other words, we need to endow Z with a bialgebra structure
<Z , θ, ζ >; the next result explains why.

Proposition 1. If there is a bialgebra morphism < T0, α0, ψ0 >→< Z , θ, ζ >,
it must be equal to ιZ by initiality, and to βT0 by finality; in particular, the
denotational and the operational semantics coincide.

To define θ we need, in general, to define a transition structure not only in T0
but also in any free algebra TS , where S is the underlying set of a B -coalgebra
<S , ϕ>. Structurally this coalgebra, say <TS , ψS >, must have the properties:

Assumption 1. The unique Σ-homomorphism ιTS : T0 → TS and the inclu-
sion map of generators ηS : S → TS are both B-coalgebra morphisms.

Again, we have a bialgebra <TS , αS , ψS > and the assumption on ιTS implies
that it is a bialgebra morphism. In the case of LTSs, the transition structure on
TS is specified by the set of rules R ∪ RS where R is the set of rules for the
operators in Σ and RS is just the set of all transitions in S turned into rules with
no premises. For rules in “well-behaved” formats it is guaranteed that ιTS and
ηS are indeed B -morphisms (in [2] this was shown for the tyft/tyxt format [18]);
in the sequel we take this for granted. A more abstract approach was proposed
by Turi and Plotkin [3], but the one just outlined is enough for our purposes in
this paper.

2.3 Bialgebraic Semantics

Assuming that there exists a final B -coalgebra < Z , ζ >, with βS : S → Z the
only B -morphism from any B -coalgebra < S , ϕ >, and assuming that the free
algebras TS can be given transition structures as described above, the set Z
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of behaviours of interest is made into a Σ-algebra by defining θ : ΣZ → Z as
θ =̂ βTZ ◦ αZ ◦ΣηZ :

ΣTZ

αZ

��

ΣZ
ΣηZ��

θ

��
�
�
�

TZ
βTZ

�� Z .

(1)

Here, βTZ is the unique coalgebra morphism into Z thanks to finality, αZ is the
structure map of the Σ-algebra < TZ , αZ > as defined in subsection 2.1, and
ΣηZ arises from the inclusion map of generators.

Now consider the diagram:

T0
ιTZ ��

�� ��
ιZ

��

TZ
βTZ �� Z .������

βT0

(2)

If we can prove that βTZ is a Σ-homomorphism, then it is a bialgebra morphism;
by Assumption 1, ιTZ is a bialgebra morphism, so βTZ ◦ ιTZ is also a bialgebra
morphism; by Proposition 1, we conclude that ιZ = βT0: the denotational and
the operational semantics coincide.

Proposition 2. Suppose that for any B-coalgebra <S , ϕ>, a B-coalgebra has
been defined on TS such that ιTS : T0→ TS and ηS : S → TS satisfy Assump-
tion 1. Suppose furthermore that <Z , ζ > is a final B-coalgebra and θ : ΣZ → Z
is defined by (1). If βTZ : TZ → Z is a Σ-homomorphism, then the denotational
semantics ιZ is equal to the operational semantics βT0.

Provided that the structural operational rules are in some “well-behaved” for-
mat, βTZ is indeed a Σ-homomorphism: [2] shows this for rules in the tyft/tyxt
format [18]; in the more abstract setting of [3], this is guaranteed by the abstract
GSOS format [19].

Overall, bialgebraic semantics provides an “automatic” framework for defining
equivalent operational and denotational semantics: Given a set of SOS rules R
in a suitable format, and given a suitable final coalgebra <Z , ζ > of behaviours,
it derives a denotational semantics equivalent to the operational semantics given
via finality of <Z , ζ >.

2.4 Limitations of Finality

While bialgebras provide an elegant semantical framework, from our point of
view the requirement of finality is too strong: It leaves out many interesting types
of behaviours and, thus, process equivalences. Typical examples include traces,
ready-traces, failures. In fact most of Van Glabbeek’s linear-time – branching-
time hierarchy [6] for transition systems is not covered. This leaves two possible
solutions:
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– To restrict the category to make the coalgebra of behaviours of interest final,
see [7].

– To relax the requirement of finality as in [8].

The first approach often gives rise to complex constructions and also fails to offer
“natural” solutions: To begin with, there may be several categories where the
coalgebra of behaviours of interest is final, which raises the problem of justifying
any particular choice. For example, the transition system of trace languages, see
below, is final in the category of deterministic transition systems, as well as in
the full subcategory formed by itself alone. Another problem, which arises once
a category is chosen, is how to associate behaviours with coalgebras that are
outside that category. In the rest of the paper we follow the second approach.

3 The Concept of Quasi-finality

We begin our discussion with a non-standard formulation of finality:

Proposition 3. An object Z in a category C is final if, and only if, there is a
morphism βS : S → Z for every object S in C such that

S

βS ��
��

��
��

�
f

�� S ′

βS′
����

��
��

�
Z

βZ =idZ

��

Z Z

commutes for every morphism f .

Proof. If Z is final and the βS : S → Z are the unique morphisms into Z ,
then the two conditions expressed by the previous diagram hold by uniqueness.
Conversely, if those conditions hold, each βS is the unique morphism from S to
Z . Indeed, if f : S → Z is another morphism, then, by the previous diagram
with S ′ = Z , we obtain: βS = βZ ◦ f = idZ ◦ f = f .

Taking this characterization of finality as a starting point, we define the concept
of quasi-finality, as introduced and discussed in [8]. Let C be a concrete category
with forgetful functor U : C→ Set.

Definition 1. An object Z in C is quasi-final if there is a function βS : US →
UZ for every object S in C such that

US

βS ���
��

��
��

�
Uf

�� US ′

βS′
����

��
��

��
UZ

βZ =idUZ

��

UZ UZ

commutes for every morphism f . (Note that f is a morphism in C, the βS are
functions in Set.)



216 A.P. Maldonado, L. Monteiro, and M. Roggenbach

Typical examples of behaviours in the linear time – branching time spectrum [6]
have been shown [7, 8] to give rise to quasi-final coalgebras (for LTSs without
internal transitions). These include traces, ready-traces and failures, as well as
synchronization trees. We review now briefly the case of traces; later we con-
sider also failures, in the more general setting where internal transitions and
termination are also taken into account.

Example 1 (Trace languages). If s , t ∈ S are states of an LTS <S ,→> labelled
with A and x =<a0, a1, . . . , an−1 >∈ A∗, we put s x�→ t if there exists a sequence
of states s = s0, s1, . . . , sn = t , n ≥ 0, such that si

ai→ si+1 for all 0 ≤ i < n; the
sequence x is a trace of s and we let TrS (s) be the set of all traces of s . The
set TrS (s) is nonempty and prefix closed, and is called a trace language over
A. The set T of all trace languages is made into a LTS with transitions L a→ L′

whenever 〈a〉 ∈ L and L′ = {x | 〈a〉  x ∈ L}. The LTS <T ,→> is quasi-final
with behaviour Tr. Indeed, for any morphism f : S → S ′ of LTSs, every s ∈ S
and its image f (s) have the same traces, that is, TrS (s) = TrS ′(f (s)); thus,
TrS = TrS ′ ◦ f . On the other hand, the set of traces of a prefix-closed language
L as a state of <T ,→> is L itself, that is, TrT (L) = L; thus, TrT = idT .

Note that unlike final objects, quasi-final objects need not be unique up to
isomorphism—there may be even infinitely many on the same underlying set.
For example, if 1 = {∗} is a singleton, any object Z in C such that UZ = 1 is
quasi-final. More concretely still, in the category of LTSs over A, any LTS with
a single state and any number of transitions from the state to itself is quasi-
final. Thus, if A is an infinite set this already gives infinitely many quasi-final
LTSs. This does not mean that quasi-final objects do not satisfy any uniqueness
properties; in fact it is easy to find two categories in which quasi-final objects
turn out to be final: one is a super-category of C with the same objects and
additional arrows, the other is a full sub-category of C.

By definition of quasi-finality, a morphism f : S → S ′ in C “preserves be-
haviours” in the sense that βS ′ ◦ Uf = βS ; we now turn this property into a
concept. For simplicity, from now on we identify a morphism f in C with the
function Uf in Set, as is customary when dealing with forgetful functors. For
any objects S ,S ′ in C, a function f : US → US ′ is called a β-map if βS ′ ◦f = βS .
Morphisms f in C, with the identification Uf = f , are β-maps. Any βS : S → Z
is also a β-map since βZ ◦βS = idZ ◦βS = βS . Furthermore, βS is the only β-map
from S to Z : another β-map f : S → Z satisfies βS = βZ ◦ f = f . Thus, Z is final
in the category C/β that has the same objects as C and β-maps as morphisms.
Now let B be the full sub-category of C determined by all objects S such that
βS is actually a morphism S → Z and not just a function US → UZ ; first note
that Z is in B since βZ = idZ is a morphism; as we have seen, any morphism
f : S → Z , being a β-map, is equal to βS ; thus, βS is the only morphism from
S to Z ; this shows that Z is final in B. We summarize these observations in the
following proposition.

Proposition 4. Let C be a concrete category over Set with forgetful functor U
and let Z be a quasi-final object of C with behaviour β.
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1. Z is final in the category C/β which has the same objects as C and β-maps
(“behaviour preserving” functions) as morphisms.

2. Z is final in the full subcategory B of C determined by all objects S such
that βS : US → UZ is a morphism in C.

We next show how bialgebraic semantics can be extended to the case where the
behaviours (observations) of interest give rise to a quasi-final coalgebra rather
than a final coalgebra.

4 Towards Quasi-final Semantics

We apply notions related to quasi-finality to the case where C is the category
CoalgB of coalgebras of a functor B , and the forgetful functor maps a coalgebra
to its underlying set and a B -morphism to itself as a function. Given again the
signature Σ and the set T0 of Σ-terms, the operational semantics is defined as
before as βT0 : T0 → Z , except that now < Z , ζ > is a quasi-final coalgebra
with respect to a behaviour β. The algebraic structure θ : ΣZ → Z is again
defined by (1), which allows to define the denotational semantics by the unique
Σ-homomorphism ιZ : T0 → Z . Let us call a bialgebra β-map any function
between underlying sets of bialgebras that is a Σ-homomorphism and a β-map.
We have the following generalization of Proposition 1:

Proposition 5. Let < Z , ζ > be a quasi-final B-coalgebra with behaviour β. If
there is a bialgebra β-map < T0, α0, ψ0 >→< Z , θ, ζ >, it must be equal to ιZ
by initiality, and to βT0 by quasi-finality; in particular, the denotational and the
operational semantics coincide.

Once again, the equality βT0 = ιZ holds whenever βTZ : TZ → Z is a Σ-
homomorphism. Indeed, if that is the case, referring to (2), βTZ ◦ ιTZ is a Σ-
homomorphism and a β-map, because ιTZ is a B -morphism by Assumption 1,
hence a β-map, and βTZ is also a β-map, hence so is their composition. The
equality βT0 = ιZ now follows from the previous proposition.

Proposition 6. Proposition 2 still holds if <Z , ζ > is a quasi-final B-coalgebra
with behaviour β.

For LTSs, that βTZ is a Σ-homomorphism is no longer a consequence of the
fact that the transition rules are in some well-behaved format, as is the case for
finality—additional conditions are needed. In [20] we give sufficient conditions
for βTZ to be a Σ-homomorphism, embodied in the notion of “adequate” quasi-
final coalgebra. These conditions seem to be general enough to ensure that quasi-
final coalgebras studied before, like traces and failures of LTSs without τ ’s, are
adequate. When τ -transitions are used, however, the conditions may fail, as is
the case with CSP; in those cases, currently we have to verify for each set of
SOS rules that βTZ is a Σ-homomorphism. Concretely, we have to show that
the following diagram commutes:
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ΣTZ

αZ

��

ΣβTZ �� ΣZ

θ

��

TZ
βTZ

�� Z .

Let us illustrate what is required by considering, without loss of generality, a
binary operator ⊗ written in infix notation:

<⊗, t , u > � ΣβTZ ��
�

αZ

��

<⊗, βTZ (t), βTZ (u)>
�

θ
��

βTZ (βTZ (t)⊗ βTZ (u))
=

t ⊗ u �
βTZ

�� βTZ (t ⊗ u) .

Thus, we must have

βTZ (t ⊗ u) = βTZ (βTZ (t)⊗ βTZ (u)) (3)

for all t , u ∈ TZ .

4.1 A Transformation of the SOS Rules

In order to present conditions under which Assumption 1 holds, we use a trans-
formation of the SOS rules at hand that was proposed by Turi and Plotkin [3];
we illustrate the approach with our running example. We can reformulate the
rules in Figure 2 to define directly the transition map S → P(S )A, or rather its
graph, whose pairs we write in the form P �→ f for readability. The new rules are
depicted in Figure 3, where an informal lambda notation was used for function
definition.

Null:
Stop �→ λ a.∅

Action prefix:
a → P �→ λ b.

{
{P} if b = a
∅ if b �= a

External choice:
P �→ f Q �→ g

P � Q �→ λ a.f (a) ∪ g(a)

Interleaving:
P �→ f Q �→ g

P ||| Q �→ λ a.{P ′ ||| Q : P ′ ∈ f (a)} ∪ {P ||| Q ′ : Q ′ ∈ g(a)}

Fig. 3. Inductive definition of the transition map
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Each rule has as many premises as the arity of the main operator of the rule,1

and in fact can be seen as specifying a function of that arity on TS ×BTS with
values again in TS ×BTS . Actually, it is enough to consider the values in BTS ;
thus, treating together all operators in Σ, the new set of rules defines a function
�S : Σ(TS × BTS )→ BTS . For example,

�S (|||,P �→ f ,Q �→ g) = λ a.{P ′ ||| Q : P ′ ∈ f (a)} ∪ {P ||| Q ′ : Q ′ ∈ g(a)}.

It is easy to see that the �S define a natural transformation � : Σ(T×BT )→ BT ,
since the definition of �S does not depend on any particular feature of S . More
generally, any set of SOS rules in the GSOS format [19] gives rise to a natural
transformation � : Σ(T ×BT )→ BT [3]. In [3], Theorem 5.1, it is shown that �
allows to define by structural recursion a B -coalgebra <TS , ψS > from <S , ϕ>,
the function ψS being the only one that makes the following diagram commute:

S

ϕ

��

ηS �� TS

ψS

��
�
�
� ΣTS

αS��

Σ<idTS ,ψS>

��
�
�
�

BS
BηS

�� BTS Σ(TS × BTS ) .�S

��

(4)

The definition already shows that ηS is a B -morphism, as required. Furthermore,
the mapping of < S , ϕ > to < TS , ψS > extends to a functor by mapping any
B -morphism f from < S , ϕ > to < S ′, ϕ′ > to Tf , which can be shown to be
a morphism from < TS , ψS > to < TS ′, ψS ′ >. This applies in particular to
ιTS : T0 → TS , which results from the unique B -morphism from the initial
B -coalgebra on 0 to <S , ϕ>, so that ιTS is a B -morphism. These remarks show
that the existence of the natural transformation � : Σ(T × BT ) → BT implies
that Assumption 1 holds.

4.2 A Proof Approach

To prove (3) we use the fact that the transition structure of coalgebras preserves
behaviours: if <S , ϕ> is a B -coalgebra, then <BS ,Bϕ> is also a B -coalgebra
and ϕ : S → BS is a B -morphism; thus, in particular, ϕ is a β-map, so βS =
βBS ◦ ϕ. In the case at hand we have βTZ = βBTZ ◦ ψZ , with ψZ : TZ → BTZ
defined as in (4). With this result, (3) may be rewritten as

βBTZ (ψZ (t ⊗ u)) = βBTZ (ψZ (βTZ (t)⊗ βTZ (u))). (5)

The advantage of (5) over (3) is that the behaviour of expressions has been
replaced by the behaviour of their “next steps” under ψZ , whose structure is
determined by the operational rules of the language and allows a form of induc-
tive reasoning. We shall use this equation only implicitly, however: we continue
to use (3) but compute βTZ (t) with βBTZ (ψZ (t)).
1 Except for action prefix, to which we can add a premise P �→ f , which is not actually

used.
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Let us illustrate our approach with the trace semantics and the interleaving
operator (for the other operators in the fragment of CSP we have been consid-
ering the verification is immediate):

Example 2. Let Z be the set T of trace languages and let β be the family Tr of
trace functions.2 Then, the appropriate instance of (3) is

Tr(P ||| Q) = Tr(Tr(P) ||| Tr(Q)),

where we abbreviated TrTT to Tr for readability; we prove by induction on n
that both sides have the same traces of length less than or equal to n. This is
immediate for n = 0, since both sides contain ε, the only trace of length zero.
Now let us assume the result for n. Since the transition structures of coalgebras
preserve behaviours, we have, in general , Tr(P) = Tr(λ a.{P ′ | P a→ P ′}) =
{ε} ∪

⋃
{a · Tr(P ′) | P a→ P ′}, where a · Tr(P ′) = {ax : x ∈ Tr(P ′)}. We can

write

Tr(P ||| Q) = {ε} ∪
⋃
a∈A

a · (
⋃

P
a→P ′

Tr(P ′ ||| Q) ∪
⋃

Q
a→Q′

Tr(P ||| Q ′)),

T r(Tr(P) ||| Tr(Q)) =

{ε} ∪
⋃

a∈A a · (
⋃

Tr(P)
a→L

Tr(L ||| Tr(Q)) ∪
⋃

Tr(Q)
a→M

Tr(Tr(P) ||| M )).

(The equality of the two right-end sides of these equations is nothing but the
instance of (5) for this case.) Note that P a→ iff Tr(P) a→. When this is the case,
there is a unique L such that Tr(P) a→ L, namely L =

⋃
P

a→P ′ Tr(P ′), so the
union

⋃
Tr(P)

a→L
Tr(L ||| Tr(Q)) reduces to Tr((

⋃
P

a→P ′ Tr(P ′)) ||| Tr(Q)). It
is not difficult to see that the last expression is equal to

⋃
P

a→P ′ Tr(Tr(P ′) |||
Tr(Q)), so we are ready for the inductive step. By the induction hypothesis,
Tr(P ′ ||| Q) and Tr(Tr(P ′) ||| Tr(Q)) have the same traces of length at most n,
so the same happens to

⋃
P

a→P ′ Tr(P ′ ||| Q) and
⋃

P
a→P ′ Tr(Tr(P ′) ||| Tr(Q)) =⋃

Tr(P)
a→L

Tr(L ||| Tr(Q)). A symmetric reasoning applies to the two other
unions in the previous equations. We conclude that Tr(P ||| Q) and Tr(Tr(P) |||
Tr(Q)) have the same traces of length at most n + 1.

We summarize our approach with a definition and a corollary:

Definition 2. An observational model is a pair <O , obs >, where O is a quasi-
final object in CoalgB with respect to a family obs of functions obsS from any
B-coalgebra S to O.

Corollary 1. Given a set of SOS rules and an observational model <O , obs >
such that equation (3) holds for all operators in Σ (with the necessary adaptations
for operators of different arities), then the derived denotational semantics is
equivalent to the defined operational semantics.
2 For conciseness we denote here the null trace by ε and concatenation of traces x and

y by xy .



Towards Bialgebraic Semantics 221

5 Application to CSP

In this section we apply Corollary 1 to the failure semantics of CSP. First we
define an observational model, and then we prove that (3) holds for all operators
of the language, with the necessary adaptations. The SOS rules of CSP consid-
ered here are a variant of the rules in [5], in that we use a different version of
the transition rules with tick for parallel operators, more adequate for our pur-
poses but still defining the same failures and divergences. As an example, Figure
4 shows the rules for the synchronous parallel operator, where Ω is a unique
state which can only be reached after successful termination. The complete set
of rules and the proofs of the results below can be found in [21]. The rules are in
the GSOS format, which as noted in subsection 4.1 is enough to guarantee that
Assumption 1 holds.

P
τ−→ P ′

P ‖ Q
τ−→ P ′ ‖ Q

Q
τ−→ Q ′

P ‖ Q
τ−→ P ‖ Q ′

P
a−→ P ′ Q

a−→ Q ′

P ‖ Q
a−→ P ′ ‖ Q ′

P
�−→ P ′ Q

�−→ Q ′

P ‖ Q
�−→ Ω

Fig. 4. SOS rules for the synchronous parallel operator (a ∈ A)

Let A be as before an alphabet of actions or communications. Let τ denote
an internal action, and let � stand for successful termination. The set A� will
denote the extended alphabet A∪{�}, Aτ� = A∪{�, τ} and A∗� = A∗∪{x� :
x ∈ A∗}. Let S =<S ,→> be a labelled transition system, where S is the set of
states and →⊆ S × Aτ� × S . We say that S is a transition system in A with
internal actions and termination if for every pair of states such that s �→ t , t is a
state without transitions. For any a ∈ A, define a⇒ as the relational composition
( τ→)∗ a→ ( τ→)∗ and �⇒ as ( τ→)∗ �→, where ( τ→)∗ is the reflexive-transitive closure of

τ→; for arbitrary strings over A, define
〈〉⇒ as ( τ→)∗ and

xy
=⇒ as x⇒ y⇒; finally, define

τ=⇒ as τ→ ( τ→)∗. In the sequel, for conciseness, we write ε for 〈〉 and abbreviate
x  y to xy.

Given a transition system <S ,→> over A with internal actions and termina-
tion, the relations a⇒ (a ∈ Aτ�) define a transition system S∗ =< S ,⇒>. The
operation ∗ is idempotent, i.e. (S∗)∗ = S∗. As a consequence, all notions defined
in S using ⇒ coincide with the same notions in S∗ using ⇒ again. For example,
any s ∈ S has the same traces in S and in S∗; the same can be said of initials,
refusals and failures, to be introduced below.

It is easy to see that a morphism f : S1 → S2 of transition systems, as a
function f : S1 → S2, is also a morphism f : S∗1 → S∗2 (but the converse is not
true).

Definition 3. A function S1 → S2 is a weak morphism if it is a morphism
S1

∗ → S2
∗.
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In particular, 1S is a weak morphism S→ S∗. We noticed that every s ∈ S has
the same traces in S and in S∗; more generally, if f : S1 → S2 is a weak morphism,
then Tr(s) = Tr(f (s)) for every s ∈ S1.

Given a transition system S =< S ,→> over A with internal actions and
termination and a state s ∈ S , we study various observations related to s :

– The set of initials of s after x ∈ A∗� is I (s) = {a ∈ A� : ∃ t , s a⇒ t}.
– The set of failures of s is

Fl(s) = {(x ,X ) ∈ A∗ × P(A�) : ∃ t , s x⇒ t and t ref X }
∪{(x�,X ) ∈ A∗� × P(A�) : ∃ t , s x�⇒ t},

were s ref X ⊆ A� if and only if either s is a stable state (one without τ or
� transitions) and I (s) ∩ X = ∅ or s �→ and X ⊆ A.

– A refusal of s is a set X ⊆ A� such that (ε,X ) is a failure of s ; the set of
refusals of s is written Rf(s).

Weak morphisms preserve these observations:

Lemma 1. If f : S1 → S2 is a weak morphism and s ∈ S1, then Fl(s) =
Fl(f (s)). In particular, Rf(s) = Rf(f (s)).

A failure-set over A is any set P ⊆ A∗�×P(A�) such that the following closure
conditions hold:

F1 (ε, ∅) ∈ P .
F2 (xy, ∅) ∈ P ⇒ (x , ∅) ∈ P .
F3 (x ,X ) ∈ P ∧ Y ⊆ X ⇒ (x ,Y ) ∈ P .
F4 (x ,X ) ∈ P ∧ ∀ a ∈ Y , (xa, ∅) �∈ P ⇒ (x ,X ∪ Y ) ∈ P .
F5 (x�, ∅) ∈ P ⇒ ∀X ⊆ A, (x ,X ) ∈ P .
F6 (x�, ∅) ∈ P ⇒ ∀X ⊆ A�, (x�,X ) ∈ P .

Let F be the set of all failure sets. We turn F into a transition system (in
coalgebraic notation) F =<F , ζFl > by defining the transitions associated with
ζFl as follows. Let P and Q be failure-sets and a ∈ A�; we write

P τ→ Q iff Q ⊆ P ∧ Q �= P ;
P a→ Q iff ∀(x ,X ) ∈ Q , (ax ,X ) ∈ P .

Remark 1. It is easy to show that P �→ Q iff Q = {(ε,X ) : X ⊆ A�} and
(�,X ) ∈ P for all X ⊆ A�; and {(ε,X ) : X ⊆ A�} � a→ for every a ∈ Aτ�.

The transition system of failures F is well behaved with regard to various obser-
vations:

Lemma 2. Let P be a failure-set. In F =<F , ζFl > the following equalities hold:

1. Tr(P) = {x ∈ A∗� : (x , ∅) ∈ P}.
2. I (P) = {a ∈ A� : (a, ∅) ∈ P}.



Towards Bialgebraic Semantics 223

3. Rf(P) = {X ⊆ A� : (ε,X ) ∈ P}.
4. Fl(P) = P.

With Lemma 1 and the last statement of Lemma 2 we obtain:

Proposition 7. <F =<F , ζFl >, F l> is an observational model.

Finally, we note that (3) holds, with the necessary adaptations, for all operators
of CSP [5]: action prefix, prefix choice, external choice, internal choice, general
parallel, alphabetized parallel, synchronous parallel, interleaving, sequential, hid-
ing, renaming and conditional.

Proposition 8. For every t , u ∈ TZ,
1. F l(a → t) = Fl(a → Fl(t))
2. F l(?x : K → t) = Fl(?x : K → Fl(t))
3. F l(t � u) = Fl(Fl(t) � Fl(u))
4. F l(t � u) = Fl(Fl(t) � Fl(u))
5. F l(t |[K ]| u) = Fl(Fl(t) |[K ]|Fl(u))
6. F l(t |[K1 |K2 ]| u) = Fl(Fl(t) |[K1 |K2 ]| Fl(u))
7. F l(t ‖ u) = Fl(Fl(t) ‖ Fl(u))
8. F l(t ||| u) = Fl(Fl(t) ||| Fl(u))
9. F l(t ; u) = Fl(Fl(t); Fl(u))

10. F l(t \ K ) = Fl(Fl(t) \ K )
11. F l(t [[R]]) = Fl(Fl(t)[[R]])
12. F l(if ϕ then t else u) = Fl(if ϕ then Fl(t) else Fl(u))

Recursive definitions are easily accommodated with the bialgebraic framework.

Proposition 9. Suppose a set PV ar ⊆ Σ of operators with arity zero acting as
“process variables” has been given, together with an “equation” x = tx for every
x ∈ PV ar. Let the SOS rules of the x ∈ PV ar be the transitions x τ→ tx with no
premises. Then in the Σ-algebra defined on F by (1), the constant assigned to
x ∈ PV ar is FlTF(x ), which in turn is equal to FlTF (tx ) since the transition
structures of coalgebras preserve behaviours. Furthermore, the version of (3) for
process variables (and in fact for any operator with arity zero) holds vacuously.

The previous two propositions and Corollary 1 immediately yield:

Proposition 10. The operational and the denotational (failure) semantics of
CSP with respect to the observational model <F, F l> are equivalent.

In [5] it is stated that failures equivalence of CSP processes obtained from the
SOS rules via the function Fl is equivalent to the one [5] defines in terms of
denotational rules such as Fl(P � Q) = Fl(P) ∪ Fl(Q). Using this result, we
can conclude that the initial semantics we define is equivalent to the denotational
semantics given in [5].

6 Conclusion and Future Work

In this paper, we have successfully generalized the concept of bialgebraic seman-
tics from using final coalgebras to the quasi-final case. This generalization opens
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the possibility to study notions of process equivalence coarser than bisimula-
tion in a bialgebraic framework. To this end, we suggested a proof method and
demonstrated it in terms of the CSP failures semantics.

Future work will include the development of SOS rule formats that guarantee
equation (3); [20] already gives sufficient conditions, however, only on transition
systems without the silent action τ .

Yet another topic is the systematic study of further CSP semantics: CSP
denotations usually combine various observations, e.g., failures and divergences.
Such observations are coupled via healthiness conditions, e.g., that every trace
that leads to a divergence must be a possible system run. It is an interesting
question to study how the bialgebraic approach can support such constructions.

Finally, it will be interesting to see how our framework can deal with a lan-
guage such as CSP-CASL [22], which integrates both data and process
specication.
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Abstract. Classical single-sorted algebraic signatures are defined as sets
of operation symbols together with arities. In their many-sorted variant
they also list sort symbols and use sort-sequences as operation types. An
operation type not only indicates sorts of parameters, but also consti-
tutes dependency between an operation and a set of sorts. In the paper
we define algebraic signatures with dependency relation on their sym-
bols. In modal logics theory, structures like 〈W, R〉, where W is a set and
R ⊆ W × W is a transitive relation, are called transitive Kripke frames
[Seg70]. Part of our result is a definition of a construction of non-empty
products in the category of transitive Kripke frames and p-morphisms.
In general not all such products exist, but when the class of relations is
restricted to bounded strict orders, the category lacks only the final ob-
ject to be finitely (co)complete. Finally we define a category AlgSigDep
of signatures with dependencies and we prove that it also has all finite
(co)limits, with the exception of the final object.

1 Introduction

Classical single-sorted algebraic signatures are defined as sets of operation sym-
bols together with arities. In their many-sorted variant they also list sort symbols
and use sort-sequences as operation types. One should notice that an operation
type not only indicates sorts of parameters, but also constitutes dependency be-
tween an operation and a set of sorts. Informally, one can say that in order to
define the operation, all sort carriers from its type must be present in a model.

In architectural approach to system specification [ST97], a signature repre-
sents a software module interface. The whole system (or, to be precise, its model)
is obtained as a series of applications of so-called generic modules [BST99]
also known as constructor implementations [ST88]. Modules are put together
and constitute a whole only if all required parameter-modules are instantiated.
Clearly this reveals a dependency relation between modules and, as a conse-
quence, between operation symbols they define.

Our work on architectural models led us to a need of dependency structures put
directly on operation symbols right in signatures. In most approaches to stepwise
construction of software systems there exist dependencies of one entities on an-
other. Take components, services, SML functors, C libraries or Java packets, ev-
erywhere, in order to link and run the application, one needs first to provide the
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implementation of the required (parameter) symbols. The dependency structure
allows one not only to track the provenience of symbols, but also to estimate the
impact of the their use, removal or change within the system in question.

The idea is to extend the classical many-sorted signatures by explicitly defin-
ing the dependency of sorts and operations. In the paper we define a category
of algebraic signatures with dependency structures being bounded strict orders
and p-morphisms (short for pseudo-epimorphisms). Unfortunately the category
lacks the final object. However, it has all other limits and all finite colimits.

Results presented in the paper are part of the ongoing work on covariant
semantics of generic software modules and their architectures.

The paper is organized as follows. First in Sect. 2 we present the motivation
to our work. In Sect. 3 we define the categories of dependency relations. In
Sections 3.3 and 3.4 we analyze the existence of (co)limits in these categories
and in Sect. 4 we define the category of signatures with dependency structure
and prove its properties. Finally, Sect. 5 contains conclusion and future work.
Proofs of most lemmas and theorems are in the Appendix A.

2 Motivation

Classical algebraic many-sorted signatures naturally capture dependence of oper-
ation symbols on their parameters’ sorts. In architectural specifications [BST99],
signature of a generic module is an injective signature morphism σ : ΣForm →
ΣRes, where ΣForm is a formal parameters signature and ΣRes is a result signa-
ture. This renders a dependency between all symbols from the result signature
and those from the parameters signature.

The above-described dependency is weak in the sense that it is not required that
actual implementation of result symbols uses the parameter symbols intrinsically.
It rather conveys the negative information, leaving some symbols definitely inde-
pendent of others. One may think of it as of a potential dependency.

The generic module application along a fitting morphism ϕ : ΣForm → ΣAct

on the signature-level is simply the pushout of ϕ and σ. Consider the following
simple example.

ΣAct =

sorts Nat, Bool;
ops zero : Nat,

succ : Nat→ Nat,
true : Bool,
false : Bool,
isZero : Nat→ Bool

ΣForm =
sort Nat;
ops zero : Nat,

succ : Nat→ Nat

ΣRes =
sort Nat;
ops zero : Nat,

succ : Nat→ Nat,
plus : Nat×Nat→ Nat

Σ =

sorts Nat, Bool;
ops zero : Nat,

succ : Nat→ Nat,
plus : Nat×Nat→ Nat
true : Bool,
false : Bool,
isZero : Nat→ Bool

σ

ϕ
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The construction signature σ defines an operation plus : Nat × Nat → Nat ,
provided it is given a sort Nat with operations zero : Nat and succ : Nat → Nat .
The actual parameters signature ΣAct enriches the formal parameters signa-
ture ΣForm by several symbols like Bool , true : Bool etc. The pushout signature
contains all symbols together. However, the information about a potential de-
pendency of the operation plus on zero and succ is lost from the signature. One
needs to keep the whole pushout diagram to track down these dependencies.

Here comes the idea to enrich the signatures by dependency structure to ex-
plicitly show how symbols may depend on other symbols. Dashed lines on the
diagram below expose a transitive dependency relation.

ΣForm =
sort Nat;
ops zero : Nat,

succ : Nat→ Nat

ΣRes =

sort Nat;
ops zero : Nat,

succ : Nat→ Nat,
plus : Nat×Nat→ Nat

AlgSig ordered Set

Nat
zero succ

Nat
zero succ

plus

Symb

σ

In the pushout, the dependencies should be preserved, as on the following
diagram. It is visible that the operation isZero doesn’t depend on plus . Neither
the latter depends on the former.

AlgSig ordered Set

ΣAct =

sorts Nat, Bool;
ops zero : Nat,

succ : Nat→ Nat,
true : Bool,
false : Bool,
isZero : Nat→ Bool

ΣForm

ΣRes = sort Nat;
ops zero : Nat,

succ : Nat→ Nat,
plus : Nat×Nat→ Nat

Σ =

sorts Nat, Bool;
ops zero : Nat,

succ : Nat→ Nat,
plus : Nat×Nat→ Nat
true : Bool,
false : Bool,
isZero : Nat→ Bool

Nat
Boolzero succ

true false

isZero

Nat
Boolzero succ

true false

isZero

plus

Nat
zero succ

plus

Symb

σ

ϕ

In our paper we try to find out what kind of dependency relation shall we use
and how to enrich the signatures by dependency structure.

The simple example given above already says something about the dependency
relation – it needs to be transitive. We require that morphisms do not change
(in)dependencies of symbols and that the category of enriched signatures have
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all finite pushouts and pullbacks. While pushouts are needed to compute sums
of signatures, pullbacks are used to get their intersections.

3 Dependency Relation

We investigate properties of several categories of sets ordered by various transi-
tive relations with morphisms that not only preserve the dependencies, but also
weakly reflect their structure.

3.1 Category Rset↓ and Its Subcategories

The dependency relations have to be transitive. We begin from the most general
setting and formalise the category of R-sets and p-morphisms.

Definition 1 (R-sets). An R-set is a pair 〈A, RA〉 where RA ⊆ A2 is a tran-
sitive relation on a set A. In what follows we sometimes write AR instead of
〈A, RA〉. We may use the infix notation for RA and for a1, a2 ∈ AR we may also
write a1 R a2 instead of a1 RA a2, when decorations are clear from the context.

Definition 2 (Category Rset↓ of R-sets and P-morphisms). Rset↓ has
R-sets as objects and pseudo-epimorphisms, or p-morphisms, as morphisms. A
p-morphism is a function that preserves the relation R and weakly reflects R-set
down-closures, i.e. a morphism f : 〈A, RA〉 → 〈B, RB〉 is a function f : A → B
such that:

1. (monotonicity) for all a1, a2 ∈ A, a1 RA a2 implies f(a1)RB f(a2).
2. (weakly reflected R-down-closures) for all a2 ∈ A, b1 ∈ B, b1 RB f(a2) im-

plies that there exists a1 ∈ A, that a1 RA a2 and f(a1) = b1.

Identities and composition are defined as expected.

In modal logics, R-sets are called transitive Kripke frames [Seg70] and
p-morphisms are sometimes called bounded morphisms. It is well known that
the category of Kripke frames and p-morphisms is the category SetP of coal-
gebras of the powerset functor (cf. [GS01]). It makes the category Rset↓ a full
subcategory of SetP.

Definition 3 (Sub R-set). Given an R-set AR = 〈A, RA〉 and a ∈ A, its
closed down sub R-set induced by an element a is defined as AR

a↓ = A′
R, where

A′
R = 〈A′, RA′〉 with A′ = {a′ ∈ A | a′ RA a} ∪ {a} and RA′ = RA|A′ .

It is important to notice that a ∈ AR
a↓, for any set A, a ∈ A and a relation R.

The table below summarises the results1 that we prove in the rest of Sect. 3.
We investigate the existence of (co)limits2 in the category Rset↓ and three of its
1 “No?” in the table means that the absence of the property is a plausible conjecture.
2 The final object is a product of an empty class. In the table the final object and

nonempty products are presented in separate columns, because in some categories
apparently their existence does not coincide.
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full subcategories – Preord↓ (reflexive), Soset↓ (asymmetric), Sosetb↓ (asym-
metric and bounded). Clearly Sosetb↓ is the category with the most suitable
properties to work with.

category relation eq. final
obj.

nonempty
product

coeq. coprod.

Rset↓ transitive yes no? no? yes yes
Preord↓ preorder yes yes no? yes yes
Soset↓ strict order yes no no? no yes
Sosetb↓ bounded

strict order
yes no yes yes yes

(finite)

Objects of Sosetb↓ are bounded strict orders, i.e. strict orders A< with de-
scending chains limited by a natural number Ã<.

We don’t consider partial orders as a candidate for dependency relation, be-
cause the antisymmetric “closure”, existing in coequalisers of posets, may require
“gluing” of incompatible operation symbols, therefore, coequalisers won’t exist
in the category of algebraic signatures enriched by poset dependency structure.

3.2 R-multisets and Dependency Bisimulation

This section defines R-multisets that become handy when it comes to definition
of products in the category Rset↓ and its subcategories (cf. Sect. 3.3). The
reader may skip this section at the first reading.

The idea is to take an R-set and define a multiset of its elements without
adding new dependencies; however, some original dependencies may be dropped.

Definition 4 (Labeled R-set). A labeled R-set is a triple 〈AR, PR, μ〉 where
AR and PR are R-sets and μ : AR → PR is a monotonic labeling function.

Definition 5 (Labeled R-set Isomorphism). Two labeled R-sets 〈AR, PR, μ〉,
〈A′

R, PR, μ′〉 are isomorphic3 iff there exists a bijection τ : A→ A′ such that for
all a ∈ A, μ(a) = μ′(τ(a)) and for all a, a′ ∈ A a RA a′ iff τ(a)RA′ τ(a′).

Definition 6 (R-mset – R-multiset). An R-multiset, or R-mset, [AR, PR, μ]
is the isomorphism class4 of a labeled R-set 〈AR, PR, μ〉.

Definition 7 (R-submultiset). Given an R-mset [AR, PR, μ] and a ∈ A, its
R-submultiset [AR, PR, μ]a↓ induced by a is defined as an R-mset:

[AR, PR, μ]a↓ = [AR
a↓, PR, μ|(AR

a↓)]

3 We use the word “isomorphism” in categorical sense here. For a given R-set PR one
can define a category of labeled R-sets LRsetPR where morphism are functions with
compatibility requirements, as in Def. 5.

4 For technical convenience we will sometimes define concepts and constructions on
R-msets by introducing them on representatives – leaving to the reader the details
of generalization to their isomorphism classes.
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Lemma 8. Given an R-mset [AR, PR, μ] and a, a′ ∈ A, such that a′Ra, it holds
that

[AR, PR, μ]a
′
↓ = ([AR, PR, μ]a↓)a′

↓

For a multiset we can easily calculate the set of its distinct elements. The similar
question can be asked with regard to R-multisets, but here the matter is a bit
more complex, because the labeling is not required to be a p-morphism, therefore
two elements of the same label may have different dependency structure. In
the following definition we use the bisimulation-like relation to find the kernel
relation of the given R-mset. In state transition systems the bisimilar states share
the same behavior; here the situation in analogous – the kernel of an R-multiset
relates these elements that share the same dependency structure.

Definition 9 (Kernel Relation of R-mset). Given an R-mset [AR, PR, μ]
its kernel relation K ([AR, PR, μ]) ⊆ A2 is the greatest dependency bisimulation
relation on A. A dependency bisimulation is a relation ∼ ⊆ A2, such that for
a1, a2 ∈ A

if a1∼a2 then μ(a1) = μ(a2) and
for all a′

1 ∈ A such that a′
1 R a1

there exists a′
2 ∈ A, a′

2 R a2, a′
1 ∼ a′

2

and for all a′
2 ∈ A such that a′

2 R a2

there exists a′
1 ∈ A, a′

1 R a1, a′
1 ∼ a′

2

The family of dependency bisimulations is non-empty (it contains idA) and it is
closed under unions, hence the kernel relation exists for every R-mset [AR, PR, μ].
Moreover, the kernel relation, as the greatest dependency bisimulation, is an
equivalence relation.

Definition 10 (R-class of Compatible Dependencies). Given a family of
monotonic functions (wi : PR →W i

R)i∈I where PR and W i
R for i ∈ I are Rset↓-

objects, an R-class5 of compatible dependencies for (wi)i∈I is a pair 〈QR, l〉 of
an R-class QR = 〈Q, RQ〉 and a monotonic function l : Q→ P defined as:

Q =
⋃
p∈P

{〈[XR, PR, μ], p〉 | [XR, PR, μ] is an R-mset: such that:

• K ([XR, PR, μ]) = idX ,
• for any i ∈ I, μ; wi are Rset↓-morphisms,
• there exists x ∈ X, such that μ(x) = p

and for all x′ ∈ X, if x′ �= x then x′ RX x}

with a relation

5 Like to R-set, but without carriers limited to sets, because in general, for a given
nonempty set of labels P , the class of all P -labeled R-msets may be a proper class.
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RQ = {〈〈[X ′
R, PR, μ′], p′〉, 〈[XR, PR, μ], p〉〉 ∈ Q2 |

there exists x′ ∈ X, μ(x′) = p′, p′ R p

and [X ′
R, PR, μ′] = [XR, PR, μ]x

′↓}

and a monotonic function l : QR → PR simply given by l(〈[XR, PR, μ], p〉) = p.

Lemma 11 (Universal R-set of Compatible Dependencies). If an R-class
of compatible dependencies for (wi)i∈I is a set, then it is a universal R-set of
compatible dependencies for (wi)i∈I , i.e. for all i ∈ I, (l; wi) : QR → W i

R is an
Rset↓-morphism and for any pair 〈TR, θ : T → P 〉 with the same property, there
exists the unique Rset↓-morphism u : TR → QR, such that u; l = θ.

Proof: The proof is quite technical (see App. A). The main point is to observe
that when there is any object with projections to W i

R, it may be seen as an
R-multiset. We take its kernel (cf. Def. 9) and find out that every element of
the kernel (with its dependency structure) is also present in Q. This allows us
to define the unique Rset↓-morphism from the given object to Q<. �

Lemma 12. Given a family of monotonic functions (wi : PR → W i
R)i∈I where

PR and W i
R for all i ∈ I are Rset↓-objects with relations RP and RW i for all

i ∈ I being reflexive / irreflexive / asymmetric / strict bounded, then the relation
RQ from Def. 10 is also so.

The proof is straightforward. For details see App. A.

3.3 Limits in Rset↓
The completeness of categories of coalgebras is problematic (cf. [GS01]) – equalis-
ers always exist, but this is not true in case of products. The similar situation
happens also in categories of multialgebras (cf. [WW08]). To our knowledge,
however, there are no results concerning the completeness of categories of tran-
sitive Kripke frames and its reflexive, asymmetric and bounded subcategories.
We are particularly interested in the existence of pullbacks, which we are going
to define through equalisers and products of nonempty families of objects. We
begin from the fact that comes as no surprise.

Theorem 13. Rset↓, Preord↓, Soset↓ and Sosetb↓ have all equalisers.

Let us now look at final objects.

Theorem 14. Preord↓ has a singleton ordered by identity as its final object.

Theorem 15. Soset↓ and Sosetb↓ do not have a final object.

Conjecture 16. Rset↓ does not have a final object.
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Before we propose a definition of products of R-sets, let us first present an
example in Preord↓. Let A≤ = 〈{a1, a2}, a1 ≤ a1, a2 ≤ a2, a2 ≤ a1〉 and B≤ =
〈{b1, b2}, b1 ≤ b1, b2 ≤ b2, b2 ≤ b1〉 be two Preord↓-objects. The product of A≤
and B≤ in Preord↓ is an infinite R-set Q≤ that may be depicted as below.

A≤Q≤

B≤

a1

a2

b1 b2

q22

q12

q21

q1
11q2

11

q3
11

q4
11

. . .

As expected there are q22 = 〈a2, b2〉, q12 = 〈a1, b2〉, q21 = 〈a2, b1〉 in Q≤. They
are in relation with themselves and also q22 ≤Q q21 and q22 ≤Q q12. There
is also q1

11 = 〈a1, b1〉 that is in relation with all above mentioned elements.
However, Q≤ contains as well infinitely many distinct elements also projected to
a1 and b1, marked above as q2

11, q
3
11, q

4
11, . . . that differ from each other only on

their dependency structures. In fact Q≤ can be seen as an R-multiset [Q≤, (A×
B)≤, 〈πA, πB〉] (cf. Def. 6), such that K[Q≤, (A×B)≤, 〈πA, πB〉] = idQ with πA

and πB being projections. To illustrate the need for all these elements that are
projected to a1 and b1, let us have a Preord↓-object Q′

≤ defined as Q≤ without
q2
11, that is an element with the dependencies defined exactly as q2

11 ≤Q q2
11,

q21 ≤Q q2
11 and q22 ≤Q q2

11. If q2
11 was not needed in Q≤, then Q′

≤ would
be the product of A≤ and B≤ and there would exist the universal morphism
h : Q≤ → Q′

≤ compatible with projections. It is easy to prove that such morphism
does not exist, because there is no element of Q′

≤ that q2
11 may be mapped to

through a p-morphism (cf. Def. 2). P-morphisms are monotone and weakly reflect
the dependency structure, thus, we can not map q2

11 neither to q4
11, because

q21 �≤ q4
11, nor to q1

11, because q12 ≤ q1
11 and this dependency would be not

reflected. The same reasoning may be applied to all other Q≤-elements that are
projected to a1 and b1.

The following definition proposes the construction of the product, hence the
name – the product candidate. The problem is that in some cases the structure it
describes is a proper class. In Lemma 18 we prove that whenever A

∏
B happens

to be a set, then 〈A
∏

B, RA
∏

B〉 with projections ρA and ρB is a product of the
given Rset↓-objects.
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Definition 17 (Product Candidate). Given two Rset↓-objects 〈A, RA〉 and
〈B, RB〉, we define a product candidate as a pair of a class and a relation
〈A

∏
B, RA

∏
B〉 together with two functions ρA : A

∏
B → A and ρB : A

∏
B → B.

Let 〈P, RP 〉 be a pair of the set P = A×B, the product of A and B in Set together
with projections πA : P → A and πB : P → B, and a relation RP ⊆ P 2:

RP = {〈p1, p2〉 ∈ P 2 | πA(p1)RA πA(p2) and πB(p1)RB πB(p2)}

Now, let the class 〈(A
∏

B)R, l〉 be an R-class of compatible dependencies for πA

and πB (cf. Lemma 11) and the product-candidate projection functions be defined
as ρA = l; πA and ρB = l; πB.

The class A
∏

B contains every element of P taken as many times as there are
distinct (wrt. the kernel relation) R-msets of elements lower than it wrt. RP

(cf. Def. 10). These R-msets are subject to the requirement that their labelings
composed with Cartesian product projections are p-morphisms. This makes them
weakly reflect the R-down-closures of AR and BR.

The following lemma guarantees that once we show that the product candidate
is a set, then it is indeed the product.

Lemma 18. Consider two Rset↓-objects AR and BR, if A
∏

B is a set, then
the product candidate 〈AR

∏
BR, RA

∏
B〉 is their product in Rset↓.

This is a consequence of Lemma 11. For details see App. A.

Theorem 19. The category Sosetb↓ has all binary products. Moreover, given
two Sosetb↓-objects, A<, B<, their product is isomorphic to the product candi-
date from Def. 17.

We prove that, given any A<, B< ∈ Sosetb↓, the product candidate A
∏

B is a
set. Then, by Lemma 18, we argue that (A

∏
B)< is indeed the product of the

given objects. The proof goes by induction. We bound the number of possible
distinct structures labeled by every p ∈ P<. This is possible, since dependency
relations in question are bounded. For details see App. A. The products of n
Sosetb↓-objects, for n > 2, are defined following the same idea.

We cannot find a similar proof for Rset↓, Preord↓ and Soset↓.

Conjecture 20. Rset↓, Preord↓ and Soset↓ do not have all binary products.

3.4 Colimits in Rset↓
The categories of coalgebras are shown to be cocomplete (cf. [GS01]). Basi-
cally the colimits in these categories are as in Set. The same applies to Rset↓
and Preord↓. Howevwer, the category Sosetb↓ has only finite coproducts and
Soset↓ does not have all coequalisers.

Theorem 21. Rset↓ and its subcategory Preord↓ have all coequalisers.

In case of Rset↓ and Preord↓ we just prove that the transitivity and reflexivity
is preserved in the coequaliser construction from Set. However, the irreflexivity
is not preserved, hence the following theorem.
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Theorem 22. Soset↓ does not have all coequalisers.

The counterexample involves two functions id : N → N and succ : N → N and
the inverse ordering of natural numbers. See App. A for details.

It is enough to limit strict orders to bounded orders to avoid counterexamples
like the one presented above.

Theorem 23. Sosetb↓ has all coequaliers.

Theorem 24. Rset↓, Preord↓, Soset↓ have all coproducts. Sosetb↓ has finite
coproducts.

4 Algebraic Signatures with Dependent Symbols

In this section we formalize what we hand-waved in Sect. 2. We define the cat-
egory of algebraic signatures enriched by dependency structure. Dependency
structures are formalized in the category of bounded strict orders Sosetb↓. The
chosen dependency relation not only suits the technical needs, but also reflects
the practical intuition how should such relation be defined. Let us begin by
recalling the standard definition.

Definition 25 (Algebraic Signatures). We define a category AlgSig in the
standard way – with objects being algebraic signatures defined as pairs of the
form Σ = 〈S, ΩS+〉 where S ∈ Set is a set of sorts, S+ is a set of nonempty
finite S-sequences and ΩS+ = 〈Ωe〉e∈S+ is an S+-sorted set of operation names.
Morphisms of AlgSig are pairs of the form 〈σS , σΩS 〉 : Σ → Σ′ where σS : S →
S′ and σΩS = 〈σΩe : Ωe → Ω′

σ+
S (e)
〉e∈S+ . Identities and composition are defined

as one expects.

Before we allow a general dependency structure on symbols, we define a functor
that recognizes the basic dependency of operation symbols on sort symbols, as
discussed in Sect. 2.

Definition 26 (SigSymb Functor). Let SigSymb : AlgSig → Sosetb↓ be
the functor that transforms algebraic signatures to bounded strict orders of sig-
natures’ symbols. Given an algebraic signature Σ = 〈S, ΩS+〉 we define

SigSymb(Σ) = 〈S $ (
⊎

e∈S+

{o : e|o ∈ Ωe}), <SigSymb(Σ)〉

having operation symbols naturally dependent on sorts of their result and from
their arities; i.e. for all e ∈ S+, e = 〈s0 . . . sn〉, o ∈ Ωe, we have

(sk) <SigSymb(Σ) (o : e)

for all 0 ≤ k ≤ n. Given a morphism σ = 〈σS , σΩS 〉 : Σ → Σ′, we define a
Sosetb↓-morphism SigSymb(σ) : SigSymb(Σ)→ SigSymb(Σ′) as

SigSymb(σ) = σS $ (
⊎

e∈S+

σ′
Ωe

)

where σ′
Ωe

(o : e) = σΩe(o) : σ+
S (e) for o ∈ Ωe.
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Definition 27 (SetSymb Functor). Let a functor giving a set of signature’s
symbols, SetSymb : AlgSig → Set, be defined as SetSymb = SigSymb;U
where U : Sosetb↓ → Set is the obvious forgetful functor.

At the moment we have everything needed to define the structures from the
paper’s title.

Definition 28 (Algebraic Signatures with Dependent Symbols). Objects
of a category AlgSigDep of algebraic signatures with dependent symbols are
pairs

Σ< = 〈Σ, <Σ〉

where Σ ∈ AlgSig is an algebraic signature and <Σ⊆ SetSymb(Σ)2 is such
dependency relation that <SigSymb(Σ)⊆<Σ (cf. Def. 26) and

〈SetSymb(Σ), <Σ〉 ∈ Sosetb↓

Morphisms between Σ<, Σ′
< ∈ AlgSigDep are such algebraic signature mor-

phisms σ : Σ → Σ′, for which a function SetSymb(σ) is a Sosetb↓-morphism
(cf. Def. 2).

The above definition of dependency relation, that extends the basic dependency
of operation names on sorts from their arities, implies that all minimal elements
of the ordering are sort symbols. The example of a signature with dependent
symbols is given at the end of Sect. 4.1.

The definition of limits in AlgSigDep will require some work in all four
categories mentioned so far, i.e. AlgSigDep, AlgSig, Set and Sosetb↓. The
commuting diagram below presents functors between these categories.

AlgSigDep

AlgSig

Sosetb↓

Set
SetSymb

DepSymb

U
Symb

SigSymb
Dep

The functors SigSymb, SetSymb and U, are already given above. The functor
Dep adds the basic dependency between operation symbols and sort symbols
from their arities. The functor DepSymb is simply a projection and the functor
Symb is defined as Symb = DepSymb;U.

4.1 Reconstructing Signatures with Dependent Symbols

In this section we define a powerful notion of the signature with dependent
symbols “reconstruction”, given a function into a set of signature’s symbols.
Since we are going to use the “reconstruction” in the definition of limits in
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AlgSigDep, it has to be universally maximal, i.e. there must exist the mediating
morphism from all possible reconstructions to the “reconstruction’s” result.

We don’t require the function to be injective, thus the number of “recon-
structed” symbols may be greater than these of the original signature. It makes
the “reconstruction” problem much more complicated that one would expect.

We begin by defining of the “pre-reconstruction” functor PRec, that is only
universal in AlgSig. Later, the real “reconstruction” is given by the functor
Rec, that is defined as a repetitive application of PRec and construction of a
universal R-set of compatible dependencies from Lemma 11.

Definition 29. Given a Sosetb↓-object A<, the functor

PRecA< : (U(A<) ↓ Symb)→ (DepSymb ↓ A<)

where both (U(A<) ↓ Symb) and (DepSymb ↓ A <) are comma categories, is
defined as follows.

For an (U(A<) ↓ Symb)-object, f : U(A<) → Symb(Σ<), where Σ< =
〈〈S, ΩS+〉, <Σ〉, let PRecA<(f) : DepSymb(Σf ) → A< be defined by Σf

< =
〈〈Sf , Ωf

Sf +〉, <Σf 〉 with Sf = {s ∈ A′ | f(s) ∈ S} and, for any e ∈ Sf+, Ωf
e =

{o ∈ A′ | f(o) ∈ Ωf(e)}, where A′ = {a ∈ A | (<SigSymb(Σ))|SigSymb(Σ)f(a)↓ ⊆
f(<A |A<

a↓) ⊆<Σ |f(A<
a↓)}, as

PRecA<(f)(s) = s for s ∈ Sf and PRecA<(f)(o : e) = o, for o ∈ Ωf
e , e ∈ Sf+

with the relation given as <Σf =<A |PRecA< (f).
For an (U(A<) ↓ Symb)-morphism, σ : Σ1

< → Σ2
<, i.e. such that f2 =

f1;Symb(σ), where fi : U(A<)→ Symb(Σi
<), for i ∈ {1, 2}, are two (U(A<) ↓

Symb)-objects, PRecA<(σ) = 〈σ′
S , σ′

Ω
Sf1
〉 : PRecA<(f1) → PRecA <(f2) is

defined by σ′
S = idA|Sf1 and for every e ∈ Sf1

+, σ′
Ωe

= idA|Ωf
e
.

Not all symbols from a given set stays in the “reconstructed” signature – only
these from A′, the subset of A, that contains all symbols fulfilling the compatibil-
ity requirements. The first requirement, (<SigSymb(Σ))|SigSymb(Σ)f(a)↓ ⊆ f(<A

|A<
a↓), makes the relation <A extend the basic dependency of Σ-operation sym-

bols on sorts from their arities. It assures that all symbols that are needed to
place the given symbol as a part of a signature are present in A′. The second,
f(<A |A<

a↓) ⊆<Σ |f(A<
a↓), requires the function f be monotonic on the depen-

dency structure for the given symbol a. In the example at the end of Sect. 4.1
we show the application of PRec.

Lemma 30. For f : U(A<) → Symb(Σ<) there exists the AlgSig-morphism
ξf : Σf → Σ, where Σf comes from Def. 29 above, such that SetSymb(ξf ) =
U(PRecA<(f)); f and that is universal in AlgSig, i.e. for a Sosetb↓-morphism
g : DepSymb(Σ′

<) → A< and an AlgSig-morphism γ : Σ′ → Σ such that
U(g); f = SetSymb(γ) there exists exactly one AlgSig-morphism σf

g : Σ′ →
Σf such that SetSymb(σf

g );U(PRecA<(f)) = U(g) in Set and σf
g ; ξf = γ in

AlgSig.
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Set

AlgSig

Sosetb↓

Symb(Σf
<) U(A<) Symb(Σ<)

Symb(Σ′
<)

Σf Σ

Σ′

DepSymb(Σf
<) A< DepSymb(Σ<)

DepSymb(Σ′
<)

U(PRecA<(f)) f

ξf

γσf
g

PRecA<(f)

U(g)

SetSymb(γ)SetSymb(σf
g )

g

The above lemma gives an universality result, but only for AlgSig. What we
need is a functor that has the same property as above, but with σf

g being
an AlgSigDep-morphism. The true “reconstruction”, universally maximal in
AlgSigDep, is defined below.

Definition 31 (Signature Reconstruction). Given a Sosetb↓-object A<,
the functor

RecA< : (U(A<) ↓ Symb)→ (DepSymb ↓ A<)

“reconstructing” the signature with dependent symbols, is defined as follows. For
an (U(A<) ↓ Symb)-object f : U(A<) → Symb(Σ<), let there be a Sosetb↓-
morphism f ′ = PRecA<(f) : DepSymb(Σf

<)→ A<:

– if f ′ is injective then we define

RecA<(f) = f ′

– otherwise let l : Q< → DepSymb(Σf
<) be given by the universal R-set of

compatible dependencies for f ′ (cf. Lemma 11), we define

RecA<(f) = RecQ<(l); l; f ′

We postpone the definition of RecA< on morphisms to the Lemma 34 below.

Lemma 32. RecA< is well defined on objects.

Proof: The proof follows the observation that for any Sosetb↓-morphism
h : X< → X ′

< there exists a natural number nh = min({X̃<
x↓ | x, x′ ∈ X, x �=

x′, h(x) = h(x′)}∪{X̃<}), where X̃< is the length of the maximal chain in X<.
It holds that nh ≤ X̃< ≤ X̃ ′

<. In the definition of RecA< , if f ′ is not injective,
let l′ = PRecQ<(l) : DepSymb(Σl

<) → Q<; it holds that nf ′ < nl′ ≤ Ã<,
therefore, altogether there must be no more than Ã< recursive steps. The rea-
son for nf ′ < nl′ lies in the definition of PRecA< where the only source of
non-injectivity in the result morphism is the non-injectivity on sorts in the pa-
rameter function and in the Def. 28 that requires all operation symbols to depend
on sorts from their arities. �
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Lemma 33. RecA< enjoys the property described in Lemma 30 for PRecA< ,
but in case of RecA< , σf

g is an AlgSigDep-morphism, i.e. σf
g : Σ′

< → Σf
< is

such that DepSymb(σf
g );RecA<(f) = g in Sosetb↓ and σf

g ; ξf = γ in AlgSig.

Lemma 34. RecA< is a functor.

Proof: For a (U(A<) ↓ Symb)-morphism σ : Σ1
< → Σ2

< such that f2 =
f1;Symb(σ) where fi : U(A<)→ Symb(Σi

<), for i ∈ {1, 2}, are two (U(A<) ↓
Symb)-objects, RecA<(σ) = σf2

RecA< (f1) : Σ1
< → Σ2

<, an AlgSigDep-morphism
from Lemma 33. �

Hopefully the following simple example will help the reader to grasp the idea be-
hind the “reconstruction” defined above. Let there be a signature with dependent
symbols Σ<, defined as a signature Σ = (sorts s, t,ops a : s, b : t) and a relation
on its symbols <Σ= {〈s, a : s〉, 〈t, b : t〉, 〈a : s, b : t〉, 〈s, b : t〉}. Let A< = 〈A, <A〉
with A = {x, x′, y, z} and <A= {〈y, x〉, 〈z, x〉} be an Sosetb↓-object and a
function f : U(A) → Symb(Σ<) be defined as f(x) = a : s, f(x′) = b : t,
f(y) = f(z) = s. The “reconstructed” signature with dependent symbols is
Σl

< = 〈Σl, <Σl〉 where Σl = (sorts y, z ops x1 : y, x2 : y, x1 : z, x2 : z) and
<Σl= {〈y, x1 : y〉, 〈z, x1 : y〉, 〈y, x2 : y〉, 〈y, x1 : z〉, 〈z, x1 : z〉, 〈z, x2 : z〉}.

Set

AlgSig

Sosetb↓

Symb(Σl
<) U(Q<) Symb(Σf

<) U(A<) Symb(Σ<)

x

x′

y

z

a : s b : t

s t

x : y

x : z

y

z

x1 : y
x2 : y

x1 : z
x2 : z

y

z

x1 : y
x2 : y

x1 : z
x2 : z

y

z

x x′

y z

x : y x : z

y z

x1 : y
x2 : y

x1 : z
x2 : z

y z

a : s b : t

s t

Σl Σf Σ

DepSymb(Σl
<) Q< DepSymb(Σf

<) A< DepSymb(Σ<)

U(PRecQ<)(l) l

PRecQ<(l)

U(PRecA<)(f) f

PRecA<(f)

ξl ξf

U(RecA<(f))

l;RecA<(f)

4.2 Limits and Colimits in AlgSigDep

The rich technical background from the previous sections is to be used here to
prove the existence of (co)limits in AlgSigDep.

Before we begin we would like to remind the reader that there is a standard
result that the category AlgSig is both complete and cocomplete.

We start our review of limits from the final object.
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Theorem 35. The category AlgSigDep does not have the final object.

This is the straight consequence of the lack of the final object in Sosetb↓. In
what follows we are going to show that all other limits and all finite colimits are
present in AlgSigDep.

Theorem 36. AlgSigDep has all equalisers.

We use the Theorem 13 and the “reconstructing” functor from Def. 31. For the
proof see App. A.

The definition of products in AlgSigDep follows the definition of products
in Sosetb↓. The result is then “reconstructed” as a signature with dependency
structure.

Theorem 37. AlgSigDep has all products of non-empty families of objects.

Proof: Let (Σi
<)i∈I , for I �= ∅, be a family of AlgSigDep-objects and let Σ

together with a family of projection morphisms (πΣ
i : Σ → Σi)i∈I be the product

of (Σi)i∈I in AlgSig. Now, let P = SetSymb(Σ), (πi = SetSymb(πΣ
i ))i∈I and

<P = {〈p1, p2〉 ∈ P ×P | πi(p1) <Σi πi(p2) for all i ∈ I}. It is easy to check that
for every i ∈ I, πi : P< → DepSymb(Σi

<) is a monotonic function, it doesn’t
have to be a p-morphism, though. Through an universal R-set6 of compatible
dependencies for (πi)i∈I (cf. Lemma 11), 〈Q<, l : Q→ P 〉, we get the family of
Sosetb↓-morphisms (ρi = l; πi : Q< → DepSymb(Σi

<))i∈I .
By “reconstructing” the signature with dependent symbols from l (cf. Def. 31)

we obtain the Sosetb↓-morphism RecQ<(l) : DepSymb(Σl
<) → Q< and an

AlgSig-morphism ξl : Σl → Σ such that SetSymb(ξl) = U(RecQ<(l)); l in
Set (cf. Lemma 33). For i ∈ I we get the following equalities in Set

SetSymb(ξl; πΣ
i ) = U(RecQ<(l)); l; πi = U(RecQ<(l); ρi)

thus SetSymb(ξl; πΣ
i ) is a well defined Sosetb↓-morphism; therefore, ρΣi =

ξl; πΣ
i : Σl

< → Σ< is a well defined AlgSigDep-morphism.
The product of (Σi

<)i∈I is an AlgSigDep-object Σl
< together with the family

of projections (ρΣi : Σl
< → Σi

<)i∈I .
To prove it, let ΣT

< be an algebraic signature with dependent symbols and
let (θi : ΣT

< → Σi
<)i∈I be a family of AlgSigDep-morphisms. Let us name

T< = DepSymb(ΣT
<). Like in the proof of Lemma 18 we define the mono-

tone function θ : T< → P< as θ(t) = 〈DepSymb(θi)(t)〉i∈I and the Sosetb↓-
morphism u : T< → Q< as u(t) = 〈[T<, P<, θ]/K

[t]K↓, θ(t)〉 for any t ∈ T .
Mimicking the proof of Lemma 18, we learn that for i ∈ I, θ; πΣ

i = θi, that
u(t) ∈ Q, the morphism u is indeed a Sosetb↓-morphism and that it is unique
such that (u; ρi = DepSymb(θA))i∈I is a family of Sosetb↓-morphisms. By
Lemma 33, there exists the unique AlgSigDep-morphism, σl

u : ΣT
< → Σl

< such
that DepSymb(σl

u);RecQ<(l) = u in Sosetb↓ and σl
u; ξl = θ in AlgSig, there-

fore, for i ∈ I, σl
u; ρΣi = θi in AlgSigDep. �

6 Cf. Theorem 19 for the proof that an R-class of compatible dependencies in Sosetb↓
is a set
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The coequalisers and finite coproducts are inherited from AlgSig.

Theorem 38. The category AlgSigDep has all coequalisers and finite
coproducts.

At this point we proved enough to say that the category AlgSigDep is a natural
extension of AlgSig. It simply adds dependencies between signatures’ symbols.
The only cost we pay, while shifting from one category to another, is the loss of
the final object and restriction to finite colimits. The other vital properties are
preserved.

5 Conclusion

In the paper we proposed the category of algebraic signatures with dependent
symbols AlgSigDep and proved that it has all pushouts and pullbacks. The pro-
posal was proceeded by the long analysis of several possible dependency orderings
and proofs of the existence of the (co)limits in the respective categories. On the
way we defined a product candidate in the category R-sets and p-morphisms,
also known as the category of transitive Kripke frames. Finally we decided that
the category of bounded strict orders and p-morphisms, that lacks only the final
object to be finitely (co)complete, is the most suitable setting to describe the
dependency relation.

The decision also reflects the intuition one may have regarding the matter
described in Sect. 2. In the example given there we said that the pushout should
preserve the dependencies in a way presented on the given diagram. Our proposal
does exactly it, actually, the diagram given there is in AlgSigDep.

Through our paper we didn’t say anything about models of signatures with
dependent symbols. We believe that they may or may not reflect the dependency
structure from the signature. This is not that place to discuss all possibilities in
detail.

Future work concerns the use of algebraic signatures enriched by dependency
structure in covariant definition of signatures of generic modules in the architec-
tural specifications framework. Models of such signatures will take advantage of
the dependency information given in their signatures.

In the paper we used the standard category AlgSig and added dependency
structure to algebraic signatures. However, the construction is more general than
that and should work with most signature categories in the similar way.

Acknowledgment. The author would like to thank Andrzej Tarlecki for his
invaluable help and support and Bartek Klin for thoughtful suggestions.
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References

[BST99] Bidoit, M., Sannella, D., Tarlecki, A.: Architectural Specifications in CASL.
In: Haeberer, A.M. (ed.) AMAST 1998. LNCS, vol. 1548, pp. 341–357.
Springer, Heidelberg (1998)
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A Proofs of Lemmas and Theorems

Here we give proofs of lemmas and theorems for whom there was no place in
the main sections. Before we get to the proofs let us introduce a bit more of
technicalities.

Definition 39 (Quotient of R-mset wrt. ≡). Given an R-mset [AR, PR, μ]
and an equivalence relation ≡ ⊆ A2, a quotient R-mset is defined as an R-mset:

[AR, PR, μ]/≡ = [A′
R, PR, μ′]

where A′ = A/≡, RA′ is defined by

[a1]≡RA′ [a2]≡ iff for any a′
1 ∈ [a1]≡ and a′

2 ∈ [a2]≡, a′
1RAa′

2

and the labeling
μ′([a]≡) = μ(a)

where [a]≡ is the equivalence class of a wrt. ≡.

Definition 40 (Kernel of an R-mset). Given an R-mset [AR, PR, μ], its ker-
nel is defined as

[AR, PR, μ]/K = [AR, PR, μ]/K ([AR,PR,μ])

Elements of the kernel are equivalence classes, for a ∈ A, [a]K = [a]K ([AR,PR,μ]).

Lemma 41. Given an R-mset [AR, PR, μ]

K ([AR, PR, μ]/K) = idA/K([AR,PR,μ])
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Proof: Let a relation ∼′ ⊆ (A/K ([AR,PR,μ]))2 be a dependency bisimulation
on [AR, PR, μ]/K , then also ∼ ⊆ A2, defined as a1 ∼ a2 iff [a1]K∼′[a2]K ,
for a1, a2 ∈ A, is a dependency bisimulation on [AR, PR, μ]. Therefore, ∼ ⊆
K ([AR, PR, μ]) and for any a1, a2 ∈ A, if [a1]K ∼′ [a2]K then a1 ∼ a2 and
〈a1, a2〉 ∈ K ([AR, PR, μ]), thus [a1]K = [a2]K and ∼′ = idA/K([AR,PR,μ]) . �

Lemma 42. Given an R-mset [AR, PR, μ] and a ∈ A,

K ([AR, PR, μ]a↓) = K ([AR, PR, μ]) ∩ ([AR, PR, μ]a↓)2

Proof: The proof is straightforward. Let us just notice that the kernel relation is
based solely on the structure down from the given element wrt. R in the R-mset.

�

Corollary 43. Given an R-mset [AR, PR, μ], and a ∈ A, it holds that

([AR, PR, μ]a↓)/K = ([AR, PR, μ]/K)[a]K↓

Lemma 44. Given an Rset↓-morphism f : AR → BR, and an element a ∈ A,
the reduct f|AR

a↓ : AR
a↓ → BR is also an Rset↓-morphism.

Proof: The reduct f|AR
a↓ is monotone, because f is so. Since R is transitive,

for any a′ ∈ AR
a↓, all a′′RAa′ are in AR

a↓ as well and so f|AR
a↓ meets the

requirement (2) of Def. 2, as f does. �

Lemma 45. Let there be two R-msets [AR, PR, μ] and [A′
R, PR, μ′] and an Rset↓-

morphism f : AR → A′
R, such that μ = f ; μ′. If ∼ ⊆ A2 is a dependency bisim-

ulation on [AR, PR, μ], then f(∼) ⊆ f(A)2 is a dependency bisimulation on
[f(A)R, PR, μ′|f(A)], where Rf(A) = RA′|f(A).

Proof: Let ∼′= f(∼). Then, given a1, a2 ∈ A, a1 ∼ a2, we have f(a1) ∼′ f(a2).
By μ = f ; μ′, we have μ′(f(a1)) = μ′(f(a2)) and for any p′ ∈ P , p′ R μ(f(a1))
and b′1 ∈ A′, if μ′(b′1) = p′ and b′1 R f(a1), by requirement (2) of Def. 2, there
exists a′

1 ∈ A, a′
1 R a1, f(a′

1) = b1 and, since ∼ is a dependency bisimulation,
there exists a′

2 R a2, a′
1 ∼ a′

2, thus f(a′
2)R f(a2) and f(a′

2) ∼′ f(a′
1) = b′1, hence

b′1 ∈ f(A). By symmetry, this proves that f(∼) is a dependency bisimulation on
[f(A)R, PR, μ′]. �

Corollary 46. Consider two R-msets [AR, PR, μ] and [A′
R, PR, μ′] and a surjec-

tive Rset↓-morphism f : AR → A′
R, such that μ = f ; μ′. If ∼ ⊆ A2 is a depen-

dency bisimulation on [AR, PR, μ], then f(∼) ⊆ A′2 is a dependency bisimulation
on [A′

R, PR, μ′].

Lemma 47. For R-msets [AR, PR, μ] and [A′
R, PR, μ′] and an Rset↓-morphism

f : AR → A′
R, such that μ = f ; μ′, it holds that

K (f) ⊆ K ([AR, PR, μ])
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where K (f) ⊆ A2 is the kernel relation for the function f . Moreover, if it happens
that K ([A′

R, PR, μ]) = idA′ , then

K (f) = K ([AR, PR, μ])

Proof: A Rset↓-morphism f weakly reflects R-set down-closures. Therefore, if
a1, a2 ∈ A are such that f(a1) = f(a2), then μ(a1) = μ(a2) and for any p′Rμ(a1)
and any a3 R a1 such that μ(a3) = p′, since f(a3)R f(a1) = f(a2) there exists
a4 R a2, f(a4) = f(a3). By symmetry, this implies that K (f) is a dependency
bisimulation on [AR, PR, μ] and since K ([AR, PR, μ]) is the greatest such re-
lation, K (f) ⊆ K ([AR, PR, μ]). When additionally K ([A′

R, PR, μ]) = idA′ , let
∼ ⊆ A2 be a dependency bisimulation on [AR, PR, μ] and a1, a2 ∈ A. If a1 ∼ a2

then, by definition of f , f(a1)f(∼)f(a2) and, since f(∼) is a dependency bisim-
ulation on [f(A)R, PR, μ|f(A)] (cf. Lemma 45), f(∼) ⊆ K ([f(A)R, PR, μ|f(A)]) ⊆
K ([A′

R, PR, μ′]) = idA′ , thus f(a1) = f(a2), therefore K ([AR, PR, μ]) ⊆ K (f).
Together with the previous result this gives K (f) = K ([AR, PR, μ]). �

Lemma 48. Every R-mset component of 〈[XR, PR, μ], p〉 ∈ QR from Def. 10
has a distinguished top-element x, i.e. there exists exactly one x ∈ X, such that
μ(x) = p and for all x′ �= x ∈ X, x′ R x.

Proof: By contradiction, let x1 be another such element, i.e. x1 �= x and for
all x′ �= x1 ∈ X , x′ R x1. As a consequence xR x1 and x1 R x, thus, since R is
transitive, 〈x, x1〉 ∈ K ([XR, PR, μ]) = idX . Contradiction. �

Lemma 49. The class Q from Def. 10 is self-adequate, meaning that for all
〈[XR, PR, μ], p〉 ∈ Q and for all x ∈ X

〈[XR, PR, μ]x↓, μ(x)〉 ∈ Q

Proof of Lemma 11: By definition, RQ is transitive, which makes QR indeed
an Rset↓-object. For i ∈ I, let ρi = l; wi. We show that ρi is an Rset↓morphism.
It obviously preserves the relation. Let q1, q2 ∈ Q be q1 = 〈[X1

R, PR, μ1], p1〉 and
q2 = 〈[X2

R, PR, μ2], p2〉, such that q1 RQ q2, then, by definition, p1 RP p2, thus
(ρi(q1))RW i (ρi(q2)). It also meets the requirement (2) of Def. 2, which makes
it an Rset↓-morphisms. Namely, given q = 〈[XR, PR, μ], p〉 ∈ Q and a′ ∈ Wi,
a′ RW i ρi(q), by definition of Q there exists x ∈ X , μ(x) = p, μ; wi(x) = a
and, since μ; wi is an Rset↓-morphism, there exists x′ R x, μ; wi(x′) = a′. By
self-adequacy of Q (cf. Lemma 49), there is q′ = 〈[XR, PR, μ]x

′↓, μ(x′)〉, and of
course q′ R q and ρi(q′) = wi(μ(x′)) = a′.

Now we show that for each object TR ∈ Rset↓ and a monotone function
θ : TR → PR, such that morphisms from the family (θi = θ; wi : TR → W i

R)i∈I

are in Rset↓, there exists a unique Rset↓-morphism u : TR → QR such that
u; l = t.

We notice that [TR, PR, θ] is an R-mset. Let

[T ′
R, PR, θ′] = [TR, PR, θ]/K
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It is easy to prove that θ′; wi for i ∈ I is an Rset↓-morphism. Let the morphism
u : TR → QR be defined as

u(t) = 〈[TR, PR, θ]/K [t]K↓, θ(t)〉

for any t ∈ T , where [t]K is an equivalence class of t wrt. K ([TR, PR, θ]) (cf. Def. 9
and Def. 40). Before we proceed with the proof let us simplify the notation by
naming

[T t
R, PR, θt] = [TR, PR, θ]/K [t]K↓

for t ∈ T .
Let us show that for every t ∈ T , u(t) ∈ Q. The R-mset [T t

R, PR, θt] indeed
meets all requirements from the definition of Q. By Def. 7, θt = θ′|T t and, since
θ′; wi for i ∈ I is an Rset↓-morphism, by Lemma 44 θt; wi is also an Rset↓-
morphism. Moreover, the element [t]K is such that for all x ∈ T t, (x)R([t]K)
and by Lemma 41 and Corollary 43, K ([T t

R, PR, θt]) = id [T t
R,PR,θt]. Now, let us

check that u is monotone. Let t′, t ∈ T and t′ RT t. To prove that u(t′)RQ u(t)
we need to show that there exists x′ ∈ T t, θt(x′) = θ(t′) and that [T t′

R , PR, θt′ ] =
[T t

R, PR, θt]x
′↓. Let us take x′ = [t′]K . Obviously θt([t′]K) = θ(t′). The second

requirement, [T t′
R , PR, θt′ ] = [T t

R, PR, θt][t
′]K↓ also holds because ([t′]K)RT t([t]K)

and by Lemma 8. It is trivial to show that u; l = θ. To finish the proof we need to
show that a function u is a Rset↓-morphism and that the choice of u is unique.

We prove that the function u is an Rset↓-morphism. We already have shown
that it is monotone. The requirement (2) of Def. 2 says that for any t ∈ T and
q′ = 〈[X ′

R, PR, μ′], p′〉 ∈ Q such that (q′)RQ(u(t)), there must exist t′ ∈ T , t′ R t
and u(t′) = q′. Since (q′)RQ(u(t)), there exists x′ ∈ T t that θt(x′) = p′ and, by
definition of u, there exists t′ ∈ T that [t′]K = x′ and t′ R t. Of course θ(t′) = p′.
Moreover, by definition of RQ, [X ′

R, PR, μ′] = [T t
R, PR, θt][t

′]K↓ and by Lemma 8
we have [T t

R, PR, θt][t
′]K↓ = [T t′

R , PR, θt′ ]. This proves that q′ = u(t′).
To show the uniqueness of u such that u; l = θ let us have some Rset↓-

morphism u′ : TR → QR that u; l = θ. For any t ∈ T , u′(t) = 〈[XR, PR, μ], θ(t)〉,
for some R-set XR and a monotone function μ : XR → PR. Let us define a
surjective Rset↓ morphism u′

t : TR
t↓ → XR as follows. For any t′ ∈ TR

t↓ we
have (u′(t′))RQ(u(t)), thus u′(t′) = 〈[X, PR, μ]x

′↓, θ(t′)〉 for exactly one x′ ∈ X
(cf. Lemma 48), let

u′
t(t

′) = x′

The morphism u′ meets both requirements of Def. 2 – it is monotone and, since
Q is self adequate (cf. Lemma 49), for each x′′ ∈ X , if x′′ RX x′ then there exists
q′′ ∈ Q such that (q′′)RQ(u′(t′)) and, since u′ is a Rset↓-morphism, there must
exist t′′ ∈ T such that t′′ R t′ and u′(t′′) = q′′ = 〈[XR, PR, μ]x

′′↓, θ(t′′)〉, thus
u′

t(t
′′) = x′′. This also proves that u′

t is surjective. Hence, there is a bijection
between X and (TR

t↓)/K (u′
t)

, where K (u′
t) is the kernel of the function u′

t. By
Lemma 47, since u′

t is surjective and K ([XR, PR, μ]) = idX ,

K (u′
t) = K ([TR

t↓, PR, θ|TR
t↓]) = K ([TR, PR, θ]t↓)
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This means that [X, PR, μ] = ([TR, PR, θ]t↓)/K . By Corollary 43, [X, PR, μ] =
([TR, PR, θ]/K)[t]K↓, therefore, u′ = u.

This shows the uniqueness of u and completes the proof that 〈Q, RQ〉, together
with projections ρA and ρB, is the product of AR and BR in Rset↓. �

Proof of Lemma 12: (reflexive) Let RP and RW i , for all i ∈ I, be reflexive.
Let q = 〈[XR, PR, μ], p〉 ∈ Q. By Lemma 48 there exists a top-element x ∈ X
and we notice that [XR, PR, μ] = [XR, PR, μ]x↓. By reflexivity of RP we have
p R p. All together this makes q R q (cf. Def.10).

(Irreflexive) Let RP and RW i , for all i ∈ I, be irreflexive. By contradiction. Let
q = 〈[XR, PR, μ], p〉 ∈ Q and q R q. Thus, p R p which contradicts the irreflexivity
of RP .

(Asymmetric) Let RP and RW i , for all i ∈ I, be asymmetric. Let
q = 〈[XR, PR, μ], p〉, q′ = 〈[X ′

R, PR, μ′], p′〉 ∈ Q, and let q R q′. This means that
p R p′ and, by asymmetry, it doesn’t hold that p′ R p. Therefore, by definition of
RQ (cf. Lemma 48), it doesn’t hold that q′ R q.

(Strict bounded) Let there be a family of functions (wi : PR → W i
R)i∈I with

RP and RW i , for all i ∈ I, be strict (i.e. transitive, asymmetric, thus irreflexive)
bounded relations. From Lemma 11 we know that, for any i ∈ I, l; wi is an
Rset↓-morphism. Since, by above points, QR is asymmetric, it is a Soset↓-
morphism. It is easy to prove that any Soset↓-morphism reflects the length of
the finite chains, i.e. for a Soset↓-morphism f : A< → B< and a ∈ A such that

B̃<
f(a)↓ is finite, Ã<

a↓ = B̃<
f(a)↓. Therefore, since all chains in W i

R are bounded,
we bound the size of chains in QR by Q̃R = max{W̃ i

R}. �

Proof of Theorem 13: Given two morphisms f, g : AR → BR in Rset↓, their
equaliser is an inclusion e : CR → AR, where

C = {a ∈ A | for all a′ ∈ AR
a↓, f(a′) = g(a′)}

See Def. 3 for the definition of closed down sub R-set AR
a↓ induced by a. The

relation is defined as RC = RA|C . Trivially, e is an Rset↓-morphism. Let us check
that it is universal. Let h : DR → AR be such Rset↓-morphism that h; f = h; g.
We need to find the unique u : DR → CR, such that u; e = h. Since e is an
inclusion and because h(D) ⊆ C, putting u(d) = h(d) for d ∈ D yields the only
such morphism. The inclusion h(D) ⊆ C is the consequence of the fact that h, as
an Rset↓-morphism, weakly reflects R-set down-closures. To complete the proof,
it is enough to notice that if AR and BR are in Preord↓, Soset↓ or Sosetb↓,
respectively, then so is CR. �

Proof of Theorem 14: The relations are reflexive, therefore there exist unique
morphisms from any of their objects to the singleton ordered by identity. �

Proof of Theorem 15: Since the relations in objects of Soset↓ (and Sosetb↓)
are irreflexive, their morphisms must not glue together any elements being in
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relation. If the final object existed, there would be an injective map from any
ordinal (represented as an R-set with natural strict bounded “ordering”) into it.
Hence, such a final object can not be a proper set. �

Proof of Lemma 18: Let us assume that A
∏

B is a set. By Lemma 11 we get
that (A

∏
B) is an R-set and the projections, ρA and ρB, are Rset↓-morphisms.

Now we show that for each object TR ∈ Rset↓ and two morphisms θA : TR →
AR and θB : TR → BR in Rset↓, there exists a unique Rset↓-morphism u : TR →
QR such that u; ρA = θA and u; ρB = θB.

Let an Rset↓-object TR and morphisms θA and θB be as described above. We
define a function θ : T → P as

θ(t) = 〈θA(t), θB(t)〉

The monotonicity of θ follows the monotonicity of θA and θB and the definition
of RP . By definition, it holds that θ; πA = θA and θ; πB = θB.

Having above, by Lemma 11 we get a unique Rset↓-morphism u : TR → QR

such that u; l = θ, therefore u; ρA = u; l; πA = θ; πA = θA and similarly we get
u; ρB = θB.

�

Proof of Theorem 19: By Lemma 12 we know that <A
∏

B is a bounded
strict order, thus in fact A

∏
B, if proved to be a set, is the Sosetb↓-object.

To show that it is indeed a product we need to show that A
∏

B is a set to be
able to use Lemma 18. To do so, it is enough to bound the number of A

∏
B

elements that share the given label p ∈ P (using notation from Def. 17). Given
q = 〈[X<, P<, μ], p〉 ∈ A

∏
B and a label p′ ∈ P<

p↓, let us bound the cardinality
of μ−1(p′) by cases:

– (base case) if P<
p↓ = {p}, then p′ = p and |μ−1(p′)| <= 1, i.e. lp′ = 1,

because there may be only one element labeled by p′ distinct wrt. the kernel
relation (cf. Def. 9);

– (induction step) otherwise, let L =
∑

p′′<p′ lp′′ , where lp′′ is the bound of
μ−1(p′′) for p′′ < p′, then |μ−1(p′)| <= 2L, i.e. lp′ = 2L; it is impossible to
have more elements labeled by p′ distinct wrt. the kernel relation, than all
combinations of elements lower wrt. <X .

The cardinal number lp′ is well defined for every p′ ∈ P<
p↓, because <X is a

bounded strict order. Finally, by definition of <A
∏

B, we conclude that the car-
dinality of the set of elements that share the label p is bounded by lp, therefore,
A

∏
B is a set. By Lemma 18 a Sosetb↓-object 〈A

∏
B, <A

∏
B〉 together with

morphisms ρA and ρB, as defined in Def. 17, is a product of A<, B< in Sosetb↓.
�

Lemma 50. Given two Rset↓-morphisms f, g : AR → BR and a relation ∼ ⊆
B2 defined as b1 ∼ b2 iff there exists a ∈ A such that b1 = f(a) and b2 = g(a)
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and its reflexive, symmetric and transitive closure ≡ = Trans(Sym(Ref (∼))),
it holds that: for any b1, b2 ∈ B, if b1 RB b2 then for any b′2 ≡ b2 there exists
b′1 ≡ b1 such that b′1 RB b′2.

Proof: For any b2 ≡ b′2 there exists a path from b2 to b′2 in the undirected graph
Graph(f)∪Graph(g). Let a2 ∈ A be such that f(a2) = b2 and let b1 RB b2. Since
f is Rset↓-morphism, by requirement (2) of Def. 2, there exists a1 ∈ A such that
f(a1) = b1 and a1 RA a2. Since g is also an Rset↓-morphism, by requirement (1)
of the same definition, it is monotone, i.e., g(a1)RA g(a2) and g(a1) ≡ b1 and
g(a2) ≡ b2. The above procedure executed along the path between b2 and b′2 (the
same that served the transitive closure in definition of ≡) results in existence of
the required b′1 ≡ b1 such that b′1 RB b′2. �

Lemma 51. Given two Rset↓-morphisms f, g : AR → BR, their coequaliser in
Set, e : B → C, is an Rset↓-morphism e : BR → CR where the relation RC is
defined simply as

RC = e(RB)

Proof: Let f, g : AR → BR be two Rset↓-morphisms and e : B → C be their
coequaliser in Set. Let us notice that C = B/≡, where ≡ is an equivalence
defined as in Lemma 50. We need to show that RC is transitive and that e
meets both conditions of Def. 2. In fact RC is transitive. Let c1 RC c2 RC c3.
Function e as a coequaliser in Set is surjective, thus there exist b1, b2, b

′
2, b3 ∈ B

such that e(b1) = c1, e(b2) = e(b′2) = c2, e(b3) = c3 and b1 rB b2 and b′2 RB b3.
By Lemma 50, since b2 ≡ b′2, there exists b′1 ≡ b1 such that b′1 RB b′2. Relation
RB is transitive thus b′1 RB b3. Of course, since e is the coequaliser of f and g,
we get e(b′1) = e(b1) = c1. Therefore c1 RC c3. Function e trivially meets the
first condition of Def. 2, because RC = e(RB). To prove the second condition
let b2 ∈ B and c1 ∈ C such that c1 RC e(b2). From the surjectivity of e and
the definition of RC we get the existence of b′2, b

′
1 ∈ B such that e(b′1) = c1,

e(b′2) = e(b2) and b′1 RB b′2. Therefore, b′2 ≡ b2 and by Lemma 50, there exists
b1 ∈ B such that b1 ≡ b′1 and b1 RB b2, and accordingly e(b1) = e(b′1) = c1. �

Proof of Theorem 21: The coequaliser of two morphisms f, g : AR → BR in
Rset↓ is e : BR → CR, where e is the coequaliser of f and g in Set and a relation
RC = e(RB). The universal properties of e in Rset↓ are inherited from Set.
Namely, given a morphism h : BR → DR in Rset↓ such that f ; h = g; h, there
exists a unique function k : C → D such that e; k = h. It is monotone. Given
c1, c2 ∈ C, c1 RC c2 since e in surjective (as a coequaliser in Set) and monotone
there exist b1, b2 ∈ B such that b1 RB b2 and e(b1) = c1 and e(b2) = c2. We have
h(b1)RD h(b2), because h is monotone, and finally

k(c1) = k(e(b1)) = h(b1)RD h(b2) = k(e(b1)) = k(c2)

Function k also meets the requirement (2) of Def. 2. Let c1 ∈ C and d2 ∈ D
be such that d2 RD k(c1). Since h is a p-morphism, for any b1 ∈ B such that



Algebraic Signatures Enriched by Dependency Structure 249

h(b1) = k(c1) there exits b2 ∈ B, b2 RB b1 and h(b2) = d2. Let us choose the
b1 such that e(b1) = c1. It exists because e is surjective. Of course h(b1) =
k(e(b1)) = k(c1), so there is b2 with properties given above. Function e is mono-
tone, thus, e(b2)RC e(b1). Moreover, k(e(b2)) = h(b2) = d2. The two, above
shown, properties of function k make it an Rset↓-morphism.

Due to Lemma 51, e is an Rset↓-morphism and e(RB) is a transitive relation.
Note that reflexivity of RB guarantees reflexivity of e(RB). �

Proof of Theorem 22: Let us show a counterexample. A strictly ordered set
〈N, prev 〉, where prev ⊆ N × N is defined as prev = {〈n + 1, n〉 | n ∈ N}, is
a Soset↓-object. Let f, g : 〈N, prev〉 → 〈N, prev 〉 be two Soset↓-morphisms be
defined as f = idN and g = succ, where succ is a successor function. Their co-
equaliser in Rset↓ is e : 〈N, prev 〉 → 〈C, RC〉, where C = {∗} and RC = {〈∗, ∗〉},
i.e. a singleton ordered by identity. However, 〈C, RC〉 fails to be a Soset↓-object,
because RC is reflexive. Moreover, no other function may in the same time co-
equalise functions f and g and stay monotonic. Therefore, they have no co-
equaliser in Soset↓. �

Proof of Theorem 23: The coequaliser of two morphisms f, g : AR → BR

in Sosetb↓ is e : BR → CR, where e is the coequaliser of f and g in Set and a
relation RC = e(RB). If all descending chains in RB are finite, for any b1, b2 ∈ B,
if b1 < b2 then b1 �≡ b2, where ≡ is the equivalence relation as in Lemma 50. To
prove this fact, let us assume that there are b1, b2 ∈ B such that b1 < b2, the proof
goes by induction on the length of the descending chain lower to b1 wrt. <. In the
base case let for all b ∈ B, b �< b1. By contradiction let b1 ≡ b2. Due to Lemma 50,
since b1 ≡ b2 and b1 < b2, there must exist b′1 < b1. Contradiction. In the
induction step let us assume that for all b < b1, b �≡ b1. Again by contradiction,
let b1 ≡ b2. Using once more Lemma 50, since b1 ≡ b2 and b1 < b2, we get
the existence of b′1 < b1, that b′1 ≡ b1. Contradiction. Therefore, irreflexivity of
bounded RB guarantees irreflexivity of e(RB) in Sosetb↓. �

Proof of Theorem 24: The empty set ordered by the empty relation is an
initial object in all above-listed categories. A binary coproduct of 〈A, RA〉 and
〈B, RB〉 is 〈A $B, RA$RB〉. Other finite coproducts are defined in the same way.
The infinite coproducts do not exist in Sosetb↓, because the resulting structure
may be not bounded. �

Lemma 52. If f : U(A<)→ Symb(Σ<) is a Sosetb↓-morphism, i.e. f : A< →
DepSymb(Σ<), then ξf : DepSymb(Σf

<)→ DepSymb(Σ<) (from Lemma 30)
is a well defined AlgSigDep-morphism.

Proof of Lemma 30: Let Σf = 〈Sf , Ωf

Sf +〉, the AlgSig-morphism ξf =

〈ξf
S , Ωf

Sf 〉 : Σf → Σ is defined as ξf
S = f|Sf and for every e ∈ Sf+, ξf

Ωe
=

f|Ωf
e
. For a Sosetb↓-morphism g : DepSymb(Σ′

<)→ A< and AlgSig-morphism
γ : Σ′ → Σ such that U(g); f = SetSymb(γ) there exists an AlgSig-morphism
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σf
g = 〈σs, σΩ′

S′ 〉 : Σ′ → Σf where σs : S′ → Sf and σΩ′
S′ : ΩS′+ → ΩSf + are

given as σs(s) = g(s), for s ∈ S′, σΩe(o) = g(o : e), for e ∈ S′+ and o ∈ Ω′
e. The

uniqueness of σf
g comes by construction. �

Proof of Lemma 33: If f is injective it is easy to check that by definition
(cf. the proof of Lemma 30) σf

g is an AlgSigDep morphism. Otherwise, we use
the universality of the construction of Q< and l : Q< → DepSymb(Σf

<) from
Lemma 11. �

Proof of Theorem 35: The category Sosetb↓ is embeddable into AlgSigDep
as a full subcategory (of sort-symbols-only signatures); thus, by Theorem 15, the
final object does not exist. �

Proof of Theorem 36: Given two AlgSigDep-morphisms f, g : ΣA
< → ΣB

< ,
let e : C< → DepSymb(ΣA

<) be the equalizer of

DepSymb(f),DepSymb(g) : DepSymb(ΣA
<)→ DepSymb(ΣB

< )

in Sosetb↓. The equaliser of f and g in AlgSigDep is

ξe : Σe
< → ΣA

<

from Lemma 52. See Def. 31 for a definition of signature with dependent symbols
morphism “reconstruction”. �

Proof of Theorem 38: A coequalizer of two morphisms f, g : 〈ΣA, <A〉 →
〈ΣB, <B〉 in AlgSigDep is e : 〈ΣB, <B〉 → 〈ΣC , <C〉, where e is the coequalizer
of f and g in AlgSig and the strict order <C= Symb(e)(<B) (cf. Theorem 13).
The initial object in AlgSigDep is the empty signature with the empty relation.
Binary coproducts in AlgSigDep are binary coproducts in AlgSig ordered by
the union of the component orders. Other finite coproducts are defined in the
same way. �
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Abstract. The language Csp-Casl combines specifications of data and
processes. We give an institution based semantics to Csp-Casl that al-
lows us to re-use the institution independent structuring mechanisms of
Casl. Furthermore, we extend Csp-Casl with a notion of refinement
that reconciles the differing philosophies behind the refinement notions
for Csp and Casl. We develop a compositional proof calculus for re-
finement along the Casl structuring mechanisms, and demonstrate that
compositional proof techniques along parallel process composition from
the context of Csp lifts to structured Csp-Casl specifications.

1 Introduction

Distributed computer applications like flight booking systems, web services, and
electronic payment systems such as the EP2 standard [1] involve the parallel
processing of data. Consequently, these systems exhibit concurrent aspects (e.g.,
deadlock freedom) as well as data aspects (e.g., functional correctness). Often,
these aspects depend on each other. In [20], we present the language Csp-Casl,
which is tailored to the specification of distributed systems. Csp-Casl inte-
grates the process algebra Csp [10, 21] with the algebraic specification language
Casl [15].

In [8] we apply Csp-Casl to the EP2 standard and demonstrate that Csp-
Casl can deal with problems of industrial strength. Interestingly enough, Csp

alone is not expressive enough to model the EP2 standard: The abstract system
descriptions included in this standard require loose semantics of data. However,
the exercise in [8] also demonstrates the need to enrich Csp-Casl by means for
specification in the large: While the Casl structuring mechanisms are available
for data to be plugged into a Csp-Casl specification, this has yet no counterpart
on the process side.

Based on an institution for Csp [14], here we extend this language by loose
processes and give it an institution-based semantics. The institutional setting [9]
allows for specifications with loosely specified data and process parts. Moreover,
the institution independent structuring mechanisms of Casl can be applied in
the process algebraic setting in a methodologically meaningful way.

Furthermore, we study refinement in the context of Csp-Casl. Refinement in
Casl is usually reduced to simple model class inclusion, given the power of the
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Casl structuring mechanisms that can be used to massage the involved speci-
fications if needed. We show that a similar approach can be used for capturing
Csp’s traditional notion of refinement also in the setting of loose semantics.
Moreover, we show that reasoning about refinements can be done in a modular
way, using the Casl structuring mechanisms.

Csp-Casl also inherits from the process algebraic side: For Csp, [18] presents
a compositional approach for deadlock analysis on networks of processes. We lift
this technique to Csp-Casl, and show by means of an extended example, how
to use it in combination with the structuring constructs inherited from Casl.

To the best of our knowledge, we were the first to suggest loose process spec-
ifications in [14]. Here, we combine this idea with loose data specifications. Ac-
cordingly, our notion of refinement for loose data and processes is new as well.
Other approaches of combining data and processes, e.g., Csp-M [23], Csp-Z [7],
and Csp-OZ [24], use tight semantics of both data and processes and provide
only limited structuring. The Wright architectural description language [2] al-
lows reasoning on typed processes for a sublanguage of Csp; semantically, it
is restricted to a single Csp model. Moreover, Wright does not cover data
refinement. Temporal logics offer a declarative approach to the specification of
reactive behaviour. Here, [25] studies structuring of reactive systems using Casl

architectural specifications over an institution of transition systems and CTL∗

formulae. This again differs from our work, as we consider structured specifica-
tion with loose semantics (classes of models), whereas architectural specifications
focus on the structuring of individual models. In other reactive Casl extensions,
e.g., modalCasl [12] or Casl-LTL [19], the concept of refinement and its in-
teraction with structuring has not been studied yet.

Our paper is organised as follows: In Section 2 we motivate our notion of
“loose processes”. Then we develop, to some extent, institutions for Csp-Casl:
one institution for each of the main Csp models, namely the Csp traces model,
the Csp failures/divergences model, and the Csp stable failures model. Section 4
defines Csp-Casl refinement and gives compositional proof rules along the Casl

structuring mechanisms. Then we discuss how to lift a compositional deadlock
analysis rule from the Csp context to Csp-Casl. We conclude the paper with
an extended example.

We assume that the reader is familiar with Csp ([10, 21] provide introductions)
and with Casl ([4] is a gentle introduction). Moreover, we use the notion of
institutions [9] as a formalisation of the notion of logical system. The reader
unfamiliar with institutions should be able to understand most parts of this
paper when replacing the word “institution” by “logical system”.

2 Loose Process Semantics

Csp-Casl [20] is a novel specification language which combines processes written
in Csp [10, 21] with the specification of data types in Casl [15]. The general idea
is to describe reactive systems in the form of processes based on Csp operators,
where the communications of these processes are the values of data types, which
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are loosely specified in Casl. All standard Csp operators are available, such as
multiple prefix, the various parallel operators, operators for non-deterministic
choice, and communication over channels. Concerning Casl features, the full
language is available to specify data types, namely many-sorted first order logic
with sort-generation constraints, partiality, and subsorting.

Csp-Casl supports the three main Csp semantics: The traces model T , in
which one can verify safety properties; the failures/divergences model N , which
allows one to study the phenomenon of livelock, i.e., the possibility that the
system can indefinitely engage in internal actions only; and the stable failures
model F , which is best suited for deadlock analysis. The traces model T records
only the possible traces of a process; the failures/divergences model records
two different behaviours: The failures – i.e., action sets which a process can
refuse after executing a trace – and the divergences – i.e., traces that lead to a
livelock; the stable failures model, finally, records two behaviours: The system
traces exactly like the traces model, and the failures for “stable” states, i.e.,
states which can’t perform an internal action. The main means of verification
in Csp is to prove that one process, say P , refines to another one, say Q, in
signs P & Q. Each Csp model gives rise to one notion of refinement. Here,
the following relations have been established: &N�&T , &F�&T , &N �⊆&F , and
&F �⊆&N , see [21].

In this paper, we extend the setting of Csp-Casl as defined in [20] by adding
loose semantics for processes, following the ideas of [14]. Loose process semantics
offers advantages in terms of methodology, furthermore, it is required for generic
specifications and instantiation.

For the methodological aspect, consider the specification Arch Customer of
the customer of an electronic shop, see Figure 1 – in the context of our example,
to be discussed in more detail in Section 6 – we call this the “architectural level”.
The data part written in Casl provides a type system, namely that LoginReq
(“Login Request”) and Logout are subsorts of D C (“Data Customer”), which
comprises of all data the customer can deal with. The customer communicates to
the outside world over a channel C C (“Channel Customer”), which allows for
messages of type D C. The suffix def on sort names excludes the “error” element
of the sort, i.e., we are specifying the system under the assumption that only
valid messages are exchanged.1 In the process part, the customer’s behaviour
is described in terms of several processes, devoted to different activities. The
purpose of the architectural level is to describe how to combine these activities in
order to describe the customer. The detailed description of such an activity, e.g.,
Customer GoodLogin, however, is postponed to a later design step. We only state
that there is a process Customer GoodLogin, whose behaviour is underspecified,
i.e., in semantical terms it is “loose”.

With such loose specifications available for the customer, warehouse, pay-
ment system, and the coordinator, we can model the whole shop as their par-
allel composition over various channels, see the process part of the specification
Arch Shop. Here, the specifications Arch Customer, Arch Warehouse,

1 For simplicity we refrain from error handling.
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Arch PaymentSystem and Arch Coordinator serve as parameters in a
generic construction. They provide the names and properties of data and pro-
cesses involved. But what instances do we want to allow? Obviously, any refine-
ment of these parameters shall be possible. To this end, we define an operator
RefCl – to be discussed in detail in Section 4 – which closes the model class of
a Csp-Casl specification under refinement.

Loose or underspecified processes differ from non-deterministic processes in
Csp. The process P = a → Stop � b → Stop is non deterministic. For this
equation, there is only one denotation possible for P which makes the equation
true. In the traces model T , e.g., this is the interpretation I(P ) = {〈〉, 〈a〉, 〈b〉}.
Specifying a loose process Q by saying Q shall be any process that refines to P ,
written Q & P , however, leads to infinitely many different possible denotations
of Q. In the traces model T , e.g., we have the interpretations J(Q) = I(P ) and
K(Q) = {〈〉, 〈a〉, 〈a, a〉, 〈b〉}. Note that this example also demonstrates that the
set of interpretations of loose processes is not necessarily refinement closed: {〈〉}
is not a possible interpretation for Q, however it is an element of every refinement
closed set in T .

spec Arch Customer =
data sorts LoginReq, Logout < D C
channel C C : D C
process Customer : C C ; Customer GoodLogin : C C ;

Customer BadLogin : C C ; Customer AddItem : C C ;
Customer Body : C C ; Customer Quit : C C ; . . .
Customer = C C ! x :: LoginReq def →

(Customer GoodLogin ; Customer Body �

Customer BadLogin ; Customer)
Customer Quit = C C ! x :: Logout def → SKIP
Customer Body = Customer AddItem  . . . Customer Quit

end

spec Arch Shop [RefCl(Arch Customer)] [RefCl(Arch Warehouse)]
[RefCl(Arch PaymentSystem)] [RefCl(Arch Coordinator)] =
process System : C C, C W, C PS ;

System = Coordinator |[ C C, C W, C PS || C C, C W, C PS ]|
(Customer |[ C C || C W, C PS ]|

(Warehouse |[ C W || C PS ]| PaymentSystem))
end

Fig. 1. Selections of Csp-Casl specifications of our online shop example

3 CSP-CASL Institutions for Different CSP Models

In order to give a precise semantics to (possibly structured) Csp-Casl specifi-
cations, we formalise Csp-Casl as an institution [9]; to be more precise: three
institutions – one for each of the main Csp models, namely: the Csp traces
model, the Csp failures/divergences model, and the Csp stable failures model.
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These institutions share the notions of signatures and sentences. Their respec-
tive model categories and satisfaction relations are defined following a common
scheme. We only sketch the institutions, for full details see [16]. The institutions
for Csp-Casl are naturally based on institutions for Casl [15] and for Csp [14],
using the ideas for the Csp-Casl semantics [20] for the combination.

3.1 Signatures

A Csp-Casl signature ΣCC is a pair ΣCC = (ΣData, ΣProc) where:

– ΣData = (S,TF ,PF , P,≤) is a subsorted first-order signature consisting of
a set of sort symbols S, a set of total functions symbols TF , a set of partial
function symbols PF , a set of predicate symbols P , and a reflexive and
transitive subsort relation ≤ ⊆ S × S – see [15] for details – where the set
of sorts S is finite and the subsort relation has local top elements, i.e., if
u, u′ ≥ s then there exists t ∈ S with t ≥ u, u′, see [20].

– ΣProc = (Nw,comms)w∈S∗,comms∈S↓ is a family of finite sets of process names.
Such a process name n is typed in the sort symbols S of the data signature
part:
• a string w = 〈s1, . . . , sk〉, si ∈ S for 1 ≤ i ≤ k, k ≥ 0, which is n’s param-

eter type. A process name without parameters has the empty sequence
〈〉 as its parameter type.
• a set comms ⊆ S which collects all types of events in which the process n

can possibly engage in. We require the set comms to be downward closed
under the subsort relation, i.e., comms ∈ S↓ = {X ⊆ S | X = ↓ X},
where ↓ X = {y ∈ S | ∃x ∈ X : y ≤ x} for X ⊆ S.

Given Csp-Casl signatures ΣCC = (ΣData, ΣProc), Σ′
CC = (Σ′

Data, Σ′
Proc),

with S as the sort set of ΣData and S′ as the sort set of Σ′
Data, a Csp-Casl

signature morphism is a pair θ = (σ, ν) : ΣCC → Σ′
CC where:

– σ : ΣData → Σ′
Data is a Casl signature morphism for which the following

additionally hold:
refl σS(s1) ≤S′ σS(s2) implies s1 ≤S s2 for all s1, s2 ∈ S

(reflection of the subsort relation), and
weak non-extension σS(s1) ≤S′ u′ and σS(s2) ≤S′ u′ implies that there

exists a sort t ∈ S with s1 ≤S t, s2 ≤S t and σS(t) ≤S′ u′.2
– ν = (νw,comms)w∈S∗,comms∈S↓ is a family of functions such that νw,comms :

Nw,comms → ∪comms′∈(↓(σ(comms)))↓N
′
σ(w),comms′ is a mapping of process

names. Another way to express this is that a process name n ∈ Nw,comms is
mapped to νw,comms(n) = n′, where n′ ∈ N ′

σ(w),comms′ and ∀y ∈ comms′ :
∃x ∈ comms : y ≤S′ σ(x) (“the target is dominated by the source”). We also
write ν(n : w, comms) = n′ : σ(w), comms′.

2 [20] works with the condition ‘non-extension’. One can show however that the results
of [20] also hold with the more liberal notion that we use here. The difference from
the original version is the more liberal choice of sort t (originally, we have required t
to be a pre-image of u′). Further note that for s1 = s2, the condition trivially holds.
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The conditions on process translations ensure that both the parameter types as
well as the communication set, are translated with the signature morphism σ of
the data part. While preserving the parameter structure, the communication set
is allowed to “shrink”. This “non-expansion” of the communication sets – see
also [14] – guarantees that the reduct functor is defined and that the satisfaction
condition holds. In [16] we demonstrate that our notion of a signature morphisms
is quite liberal. All morphisms arising in our shop example fulfil these conditions.

3.2 Sentences

Sentences are either data or process sentences. A ΣCC-data sentence is a Casl

sentence over (S, TF, PF, P,≤). A ΣCC -process sentence is a process definition

n(x1, . . . , xk) = pt

where n ∈ N〈s1,...,sk〉,comms, xi are global variables of type si, 1 ≤ i ≤ k, and
pt is a process term such that sorts(pt) ⊆ comms, i.e., the process term pt
communicates only in events which are allowed for n. For further details see [16].

3.3 The Alphabet Construction

The alphabet construction takes a data (i.e., Casl) model and uses its elements
as alphabet letters, which then form the alphabet for Csp. Csp-Casl’s alpha-
bet construction takes the subsort structure into account in order to determine
whether two events are equal or not. More precisely, given a Casl model M , its
corresponding alphabet

Alph(M) = (
⊎
s∈S

Ms ∪ {⊥s})/∼M

is constructed by taking the disjoint union of all its carrier sets extended by
a bottom element ⊥, but identifying carriers along subsort injections (this is
captured by the equivalence relation ∼M ). This map Alph extends to a functor
from the model category to the category Set.

Given a Casl model M , we use the shorthand M⊥ for the totalised version
of M , i.e., carrier sets include a bottom element M⊥(s) = M(s)∪ {⊥s} and the
interpretation of function and predicate symbols is strictly extended. Given a
sort symbol s, a Casl model M , and x ∈ M⊥(s) we write xs

M to denote the
alphabet element [(s, x)]∼M . Further more we lift this notation to sorts, namely
sM = {xs

M | x ∈ M⊥(s)} ⊆ Alph(M) for the set of communications that can
arise from the sort s in the model M . Finally, given a set of sorts X , we write
XM =

⋃
s∈X sM . We drop the subscripts M and superscripts s when clear from

the context.

3.4 Models and Satisfaction

A Csp-Casl model consists of a data (i.e., Casl) model and a collection of in-
terpretations for processes. Concerning the interpretation of processes, let D(A)
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be a Csp domain constructed relatively to some alphabet of communications A.
Examples of such domains D(A) include T (A) of the Csp traces model, N (A) of
the Csp failures/divergences model, and F(A) of the Csp stable failures model,
see [21] for details. Each of these domains gives rise to a different institution.
Actually, D extends to an endofunctor on the category Set.

Given a Csp-Casl signature ΣCC = (ΣData, ΣProc), a ΣCC -model is a pair
(M, I), where M is a Casl model for ΣData and I gives type correct inter-
pretations of the process signature in the Csp domain D(Alph(M)). All Csp

models describe, which traces a process can execute. In the following we denote
these traces with the function cT r.3 Type correctness of (M, I) requires that the
interpretation map I applied to a process name n ∈ N〈s1,...,sk〉,comms for all pa-
rameters ai ∈ si, 1 ≤ i ≤ k, yields an interpretation with cT r(I(n(a1, . . . , ak))) ∈
T (comms). It is this type correctness condition which allows us to define the
reduct functor and to prove the satisfaction condition.

Satisfaction of data sentences w.r.t. a ΣCC-model is inherited from Casl.
Satisfaction of a process sentence n(x1, . . . , xk) = pt over signature ΣCC and
global variable system XG with respect to a ΣCC-model (M, I) is defined as
follows:

(M, I) |=ΣCC (n(x1, . . . , xk) = pt)
if and only if

for all variable valuations μG : XG →M⊥ :
I(n(μG(x1)M , . . . , μG(xk)M )) = ��pt�(M,I),μG,∅�D.

Here, �pt�(M,I),μG,μL
is the evaluation of process term pt according to Casl

with respect to model (M, I) and global and local variable valuations μG and
μL. �pt′�D is the denotation of process term pt′ in the Csp domain D. For further
details and also the definition and discussion of model morphisms see [16].

3.5 Pushouts and Amalgamation

The existence of pushouts and amalgamation properties shows that an institution
has good modularity properties. Amalgamation is a major technical assumption
in the study of specification semantics [6, 22]. An institution is said to be semi-
exact, if for any pushout of signatures

Σ
σ1

����
��

��
�� σ2

���
��

��
��

�

Σ1

θ1 ���
��

��
��

� Σ2

θ2����
��

��
��

Σ′

3 The controlled traces are the traces as given as denotations in the traces model – in
F , they are directly given, in N , they can be computed out of the divergences and
failures.
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any pair (M1, M2) ∈Mod(Σ1)×Mod(Σ2) that is compatible, in the sense that
M1 and M2 reduce to the same Σ-model, can be amalgamated to a unique Σ′-
model M (i.e., there exists a unique M ∈Mod(Σ′) that reduces to M1 and M2,
respectively), and similarly for model morphisms.

Proposition 1. Csp-Casl signature morphisms between signatures with acyc-
lic subsort relations are injective on sorts. Thus, CspCaslSig does not have
pushouts.

As in [14], there is a way out: Let CspCaslSigplain be CspCaslSig with the
reflection and weak non-extension restriction dropped. Then we have:

Proposition 2. CspCaslSigplain has pushouts, and any such pushout of a span
in CspCaslSig actually is a square in CspCaslSig (although not a pushout in
CspCaslSig).

Pushouts in CspCaslSigplain give us an amalgamation property:

Proposition 3. CspCaslSigplain-pushouts of CspCaslSig-morphisms have the
semi-exactness property for the traces model and the stable failures model.

In fact, this result generalises easily to multiple pushouts. Moreover, the initial
(i.e., empty) signature has the terminal model category. Since all colimits can
be formed by the initial object and multiple pushouts, this shows that we even
have exactness (when colimits are taken in CspCaslSigplain).

Altogether, Proposition 3 shows that Casl-style parameterisation, Casl ar-
chitectural specifications and much more also work for Csp-Casl.

3.6 CSP-CASL with Channels

We often use channels in Csp-Casl. This leads to further institutions, with
extended notions of signatures and sentences. Most prominently, the notion of a
signature is extended by a third component C:

(ΣData, C, ΣProc)

Here, C is a finite set of names typed by non-empty lists over S. We require
C to be closed under the subsort relation4 ≤∗ i.e., if c : 〈s1, . . . , sk〉 ∈ C and
〈u1, . . . , uk〉 ≤∗ 〈s1, . . . , sk〉 then c : 〈u1, . . . , uk〉 ∈ C.

Csp-Casl with channels can be reduced to Csp-Casl (without channels) as
follows: each Csp-Casl signature with a channel component is translated to a
Csp-Casl theory Φ(Σ), where each channel is coded as a new sort (isomorphic
to the sort of the channel) and each Csp-Casl Σ-sentence ϕ is translated to a
Csp-Casl Φ(Σ)-sentence α(ϕ) by reducing channel communication to ordinary
communication using the new channel sorts. Models and satisfaction can then be
easily borrowed from Csp-Casl by letting ModCC(Σ) := ModCC(Φ(Σ)) and
M |=CC

Σ ϕ iff M |=CC
Φ(Σ) α(ϕ). This is an instance of borrowing logical structure

in the sense of [5].
In the rest of the paper we use the term Csp-Casl to represent Csp-Casl

with channels.
4 ≤∗ stands for the pointwise extension of ≤ to strings of sorts.
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4 Refinement and a Structured Proof Calculus

Refinement allows us to develop systems in a stepwise manner. Here we discuss
refinement for Csp-Casl as well as its proof calculus on structured specifications.

4.1 Refinement

Csp has a notion of refinement between individual processes, e.g., in the traces
model, pt & pt′ means that pt′ has fewer traces than pt, i.e., traces(pt′) ⊆
traces(pt). In the context of this paper we write pt & pt′ for pt &D pt′ if the
specific choice of D ∈ {T ,N ,F} does not matter. Similarly, the Casl family
of languages uses model class inclusion as the simplest notion of refinement [3]:
SP1 � SP2 if SP2 has fewer models than SP1, i.e., Mod(SP2) ⊆ Mod(SP1).
To cater for renaming, this notion can be extended by a signature morphism σ.
In this case one defines SP1 �σ SP2 if the reduct of SP2 has fewer models than
SP1, i.e., Mod(SP2)|σ ⊆ Mod(SP1). When combining these worlds through
institution theory, one has to recognise that these two refinement notions fol-
low different ideas: While Csp refinement talks about refinement of individual
models, Casl refinement talks about refinement of model classes.

This should become clear with the following notion: A Csp-Casl specifica-
tion SP is single-valued, if there is no looseness in the processes, that is, any two
SP -models with the same data part coincide. Now, traditional Csp refinement
is about refinement between different single-valued process specifications – re-
ducing the amount of internal non-determinism – whereas model class inclusion
mainly captures different degrees of looseness of specifications.

How can we reconcile these two worlds? Here, we want to capture different
degrees of looseness not only for data, but also for processes! Hence we adopt the
model class inclusion notion of refinement, applied to the Csp-Casl institution.
However, in order to capture Csp refinement between different single-valued
processes (which alone, would obviously never lead to model class inclusion), we
also provide a notion of refinement closure (and here, “refinement” is meant in
the Csp sense, not in the model class inclusion sense).

Given a Csp-Casl specification SP with signature (ΣData, ΣProc), its refine-
ment closure RefCl(SP ) is defined as follows:

– the signature of RefCl(SP ) is that of SP ,
– the model class of RefCl(SP ) consists of those Csp-Casl models (M ′, I ′)

for which there exists a model (M, I) of SP such that
• M = M ′, i.e., they have the same data part,
• for each n ∈ ΣProc and all suitable data elements a1, . . . , ak,

I(n(a1, . . . , ak)) & I ′(n(a1, . . . , ak))

in the sense of Csp.

Alternatively, the semantics of RefCl(SP ) can be expressed as a structured spec-
ification

SP then p1 & q1, . . . , pn & qn hide p1, . . . , pn with q1 �→ p1, . . . , qn �→ pn



260 L. O’Reilly, T. Mossakowski, and M. Roggenbach

Alg(SigData(SP ))

ProjData(Mod(SP ))

Casl Model M

Process Denotations in
Alph(M)

ProjM (Mod(SP ))

I

I′

ProjM (Mod(RefCl(SP )))

Fig. 2. A diagram showing refinement between Csp-Casl models

where p1, . . . , pn are the process names of SP (we assume here that all of them
are unparameterised), q1, . . . , qn are new process names, and p & q stands for
p = p � q.

Figure 2 depicts the notion of refinement closure. Given a model M of the
data part of SP , we consider all of its possible “partners” relative to SP :
ProjM (Mod(SP )) = {I | (M, I) ∈ Mod(SP )} – this is represented by the
rectangle. The refinement closure includes all I ′ such that there exists some
I ∈ ProjM (Mod(SP )) that refines to I ′.

With this notion, we are ready to define a notion of refinement that is suitable
for Csp-Casl:

SP1 �θ
D SP2 iff ModD(SP2)|θ ⊆ModD(RefCl (SP1))

for D ∈ {T ,N ,F}. We omit D if it is clear from the context and we also omit
θ if it is the identity signature morphism. We write |θ to denote the Csp-Casl

reduct functor. This notion reconciles Casl refinement based on model class
inclusion with Csp refinement based on inclusion of trace sets, failure sets, etc.
Two specifications SP1 and SP2 are equivalent, written SP1 ≡ SP2, if their
signatures and model classes coincide.

Proposition 4 (Basic Refinement Properties).

1. RefCl is monotonic, that is: if Mod(SP1) ⊆Mod(SP2),
then Mod(RefCl(SP1)) ⊆Mod(RefCl(SP2)).

2. RefCl is idempotent, that is RefCl(SP ) ≡ RefCl(RefCl(SP )).
3. � is reflexive and transitive.
4. If SP1 � SP2 and SP2 � SP1, then RefCl(SP1) ≡ RefCl(SP2).
5. If SP1 � SP2, SP2 � SP1, and both are single-valued, then SP1 ≡ SP2.

Following ideas given in [11] we obtain a decomposition theorem for basic (or
unstructured) specifications. This allows us to (syntactically) decompose a basic
Csp-Casl specification5 SP into a data part (D) and a process part (P ), which
we shortly write as (D, P ).

5 Such a specification may have a structured Casl specification as the data part D.
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Proposition 5 (Decomposition).

Mod(D′)|σ ⊆Mod(D) (D′, θ(P )) �D (D′, P ′)

(D, P ) �θ
D (D′, P ′)

where θ = (σ, ν) is a Csp-Casl signature morphism, and D ∈ {T ,N ,F}.
The above proposition allows us to decompose a Csp-Casl refinement to a Casl

refinement (i.e., Mod(D′)|σ ⊆Mod(D)) and a process refinement (D′, θ(P )) �D
(D′, P ′). Here, θ(P ) is the renaming of the process part along θ. The former proof
obligation can be discharged using Casl’s proof tool, namely Hets [13]. The
latter can be proven using the tool Csp-Casl-Prover [17].

4.2 Compositional Proof Rules along Structuring

The results of Section 3 allow us to re-use institution independent structuring
operations of Casl [15, 22], which are defined in terms of signatures and models:

Presentations: For any Csp-Casl signature ΣCC and finite set Γ ⊆ Sen(ΣCC)
of ΣCC -sentences, the presentation 〈ΣCC , Γ 〉 is a specification with:

Sig(〈ΣCC , Γ 〉) := ΣCC

Mod(〈ΣCC , Γ 〉) := {(M, I) ∈Mod(ΣCC) | (M, I) |= Γ}

Union: For any Csp-Casl signature ΣCC and any ΣCC-specifications SP1 and
SP2, their union SP1 and SP2 is the specification with:

Sig(SP1 and SP2) := ΣCC

Mod(SP1 and SP2) := Mod(SP1) ∩Mod(SP2)

Translation: For any signature morphism θ : ΣCC → Σ′
CC and ΣCC-specifica-

tion SP , SP rename θ is the specification with:
Sig(SP rename θ) := Σ′

CC

Mod(SP rename θ) := {(M ′, I ′) ∈Mod(Σ′
CC) | (M ′, I ′)|θ ∈Mod(SP )}

Hiding: For any signature morphism θ : ΣCC → Σ′
CC and Σ′

CC -specification
SP ′, SP ′ hide θ is the specification with:

Sig(SP ′ hide θ) := ΣCC

Mod(SP ′ hide θ) := {(M ′, I ′)|θ | (M ′, I ′) ∈Mod(SP ′)}

As a first proof of concept, we show that the specification building operators are
monotonic w.r.t. the structuring operations, cf. [3]. This requires, in our case,
certain side conditions, most prominently for the structured union operation
on specifications. Here, the conditions deal with the following non-monotonic
situation of Csp-Casl refinement: There exist Csp-Casl specifications SP1, SP ′

1

and SP2 with6

SP1 � SP ′
1, Mod(SP1 and SP2) = ∅, Mod(SP ′

1 and SP2) �= ∅.
6 Consider over the traces model SP1 = (D, P = a → Stop), SP2 = (D, P = Stop),

and SP ′
1 = (D, P = Stop) where D is a consistent Casl specification that declares

a constant a. Then SP1 and SP2 is inconsistent, SP1 �T SP ′
1, and SP ′

1 and SP2

has models (M, I) with I(P ) = {〈〉} and M ∈ Mod(D).
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Definition 6. Two Csp-Casl specifications SP1 and SP2 over the same sig-
nature are process consistent, written as proc-consistent(SP1, SP2) if for all
M ∈ (ProjData(Mod(SP1)) ∩ ProjData(Mod(SP2))), there exists (M, J) ∈
Mod(SP1) ∩Mod(SP2).

Proposition 7. The following proof rules7 are sound over T , N , and F :

SP1 � SP ′
1 proc-consistent(SP1, SP2) single-valued (SPi) for i = 1 ∨ i = 2

(SP1 and SP2) � (SP ′
1 and SP2)

SP1 � SP ′
1 SP1 ≡ RefCl(SP1)

(SP1 and SP2) � (SP ′
1 and SP2)

SP � SP ′ θ is injective on process names
(SP rename θ) � (SP ′ rename θ)

SP � SP ′

(SP hide θ) � (SP ′ hide θ)

where θ : ΣCC → Σ′
CC.

The rules for and involve rather strong preconditions, where we hope that it
will be possible to obtain better results in the future.

Renaming and refinement involving the same signature morphism can be ex-
changed:

Proposition 8. The following implications hold:

1. (SP rename θ) � SP ′ implies SP �θ SP ′.
2. Provided that θ is injective on process names, we also have:

SP �θ SP ′ implies (SP rename θ) � SP ′.

5 Compositional Verification of Deadlock Freedom

Our new version of Csp-Casl extends Csp-Casl as was presented in [11] with
loose processes. However, our definitions and semantical constructions coincide
for single valued specifications.

The deadlock analysis presented in [11] is practically limited to dealing with a
small number of processes in parallel. It involves the construction of a so-called
sequential process – which has a size that is exponential in the number of parallel
components involved. Here we prove deadlock freedom in a far more elegant way.

For the rest of this section, as usual for deadlock analysis in the context of
Csp, we work in the stable failures model F only. Furthermore we assume all
processes and process terms to be divergence free.
7 Note that θ being injective on process names can have restrictions on the data part

of the signature morphism as data forms part of the identity of process names.



Compositional Modelling and Reasoning in an Institution 263

5.1 Deadlock Freedom in Structured Specifications

We first define what it means for a process term to be deadlock free in the context
of a specification (be it basic or structured). We then present a collection of proof
rules for deadlock freedom over the structuring operators.

Definition 9 (Deadlock freedom). Let SP be a Csp-Casl specification with
signature ΣCC, XG and XL be global and local variable systems respectively over
ΣCC, and let pt be a process term over signature ΣCC with variable systems XG

and XL. We say: pt is deadlock free in specification SP , written as

pt isDFin SP

if for all models (M, I) ∈ Mod(SP ), for all variable valuations μG : XG →
M⊥ and μL : XL → M⊥, and for all traces s ∈ Alph(M)∗ it holds that
(s,Alph(M)�) /∈ failures(�pt�(M,I),μG,μL

).

Deadlock freedom is compatible with the structuring operations:

Proposition 10. The following proof rules are sound:

SP �θ
F SP ′ pt isDFin SP

θ(pt) isDFin SP ′
pt isDFin SP1

pt isDFin (SP1 and SP2)

pt isDFin SP

θ(pt) isDFin (SP rename θ)
θ(pt) isDFin SP ′

pt isDFin (SP ′ hide θ)

where θ : ΣCC → Σ′
CC.

The above proof rules allow one to show deadlock freedom by decomposing
structured specifications. However, it may still be a difficult task to prove dead-
lock freedom for complex systems involving parallel processes. We describe a
technique for dealing with this situation in the following section.

5.2 Composing Networks

In order to study networks of processes, we lift a definition, originally formulated
over Csp in [18], to Csp-Casl. This captures the notion of processes being
responsive to one and another, i.e., not causing deadlock to occur.

Definition 11. Assume the setting of Definition 9. Let P and Q be process
terms over signature ΣCC with variable systems XG and XL. Let AP and AQ

be downward and upward closed super sets of the constituent alphabet sort set of
the process terms P and Q respectively (i.e., sorts(P ) ⊆ AP , ↓ AP = AP , and
↑ AP = AP , similar for AQ)8, and let J = AP ∩ AQ be the set of all shared
communications sorts. Let J ′ ∈ J↓ and X = J ′ ∪ {�}. Then we define:

Q :: AQ ResToLive� P :: AP on J ′ in SP

8 Upward closure is defined in the obvious way: ↑ X = {y ∈ S | ∃x ∈ X : x ≤ y}.
The condition “upward and downward closed” is required due to Casl subsorting.
It ensures that the sort set J comprises all shared communications.
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if for all models (M, I) ∈Mod(SP ), all variable valuations μG : XG →M⊥ and
μL : XL →M⊥, and for all traces s ∈ Alph(M)� it holds that

(s, X) ∈ failures(�P |[ J ]|Q�(M,I),μG,μL
) =⇒ (s, X) ∈ failures(�P �(M,I),μG,μL

)

In this definition, Q can be seen as a server and P as a client. The server
is responsive to the client if whenever the client needs participation from the
server, the server is prepared to engage in it.

A network is a special way of defining a process in Csp. Formally, a network
V is a finite set of pairs {(Pi, Ai) | i ∈ G}, where G is a nonempty, finite index
set, Pi is a Csp process, and Ai ⊆ A is the set of communications which Pi can
engage in, for all i ∈ G. The process defined by such a network V is

Network(V ) := ‖i∈G (Pi, Ai)

where ‖i∈G (Pi, Ai) is the replicated alphabetised parallel operator of Csp. As
the semantics of ‖i∈G is independent of the order of its arguments, it is suffi-
cient to define networks over index sets. A network Network({P}) over a single
process P is equivalent to the process P itself. Note that the process System
in Figure 1 is defined as the network consisting of the processes Coordinator,
Customer, Warehouse, and PaymentSystem with suitable communication sets.
Deadlock freedom of such networks can be proven in a compositional way:

Proposition 12. Given a Csp-Casl specification SP and process terms Pi for
1 ≤ i ≤ k and a process term Q. Let Ai and AQ be downward and upwards closed
supersets of the constituent alphabet of Pi for 1 ≤ i ≤ k and Q respectively. If

– Ai ∩Aj ∩AQ = ∅ for all i and j where 1 ≤ i, j ≤ k and i �= j,
– Ai ∩AQ �= ∅ for at least one i where 1 ≤ i ≤ k,
– Network({(P1, A1), . . . , (Pk, Ak)}) isDFin SP , and
– Q :: AQ ResToLive� Pi :: Ai on (Ai∩AQ) in SP for each i where 1 ≤ i ≤ k

and Ai ∩AQ �= ∅

then Network({(P1, A1), . . . , (Pk, Ak), (Q, AQ)}) isDFin SP .

This proposition provides an elegant proof technique: The network under consid-
eration becomes smaller; the property “responds to live” has a characterisation
in terms of refinement and thus can be proven, e.g., by Csp-Casl-Prover; the
conditions concerning communication alphabets can be proven algorithmically.
In order to lift this proof technique to structured specifications, we provide a
proof calculus with regards to the property “responds to live”:

Proposition 13. The following proof rules are sound:

Q :: AQ ResToLive� P :: AP on J ′ in SP1

Q :: AQ ResToLive� P :: AP on J ′ in (SP1 and SP2)

Q :: AQ ResToLive� P :: AP on J ′ in SP

θ(Q) :: σ(AQ) ResToLive� θ(P ) :: σ(AP ) on σ(J ′) in (SP rename θ)
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θ(Q) :: σ(AQ) ResToLive� θ(P ) :: σ(AP ) on σ(J ′) in SP ′

Q :: AQ ResToLive� P :: AP on J ′ in (SP ′ hide θ)

where θ = (σ, ν) : ΣCC → Σ′
CC .

The above propositions illustrate the successful application of techniques from
Csp together with the institution independent structuring mechanisms. We ex-
pect other techniques from Csp also to lift successfully to Csp-Casl.

6 Example: Online-Shop

In this section we present a proof typical for our calculus. It concerns an online
shopping system as has been studied in the literature several times.

6.1 The Specification in Detail

The online shop is a typical distributed system. It has several components,
namely a customer, a warehouse, a payment system, and a coordinator. The
communication structure is pointwise only: The coordinator communicates with
the three other components in a star like network. The customer, warehouse and
payment system only communicate with the coordinator.

The customer may ask the coordinator to perform actions such as: To login, to
add an item to the basket, to remove an item from the basket, to checkout, etc.
The coordinator then responds to the customer with an appropriate response
message. All communication (on a channel) follows this pattern of a request
message followed by a response message (except for the Logout message, which
is more of a command). The coordinator may ask the warehouse to reserve an
item, to release an item that has previously been reserved, and to dispatch the
reserved items. The payment system allows the coordinator to take payments
for goods.

We specify the shop on various levels of abstraction. The architectural shop
(see Figure 1) describes the network layout, which remains unchanged in the
development. The development is restricted to individually refining the four
components. Here we present the first two levels of abstraction for our example,
namely: The architectural level for describing the basic interfaces, and the ab-
stract component level (ACL) for specifying the type system and its interplay
with process behaviour. Each component contains a ‘main’ process as its starting
point.

Within the rest of this section we use C to denote customer, Co to denote
coordinator, W to denote warehouse and PS to denote payment system. We also
drop the communications sets within the network construction and take them to
be the declared communications sets of the process names implicitly, for instance:
by Network({Customer}), we mean Network({(Customer, C C)}).
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spec ACL Customer =
data sorts LoginReq, Logout, GoodLoginRes, BadLoginRes,

AddItemReq, AddItemRes, . . . < D C
channel C C : D C
process Customer : C C ; Customer GoodLogin : C C ;

Customer BadLogin : C C ; Customer AddItem : C C ;
Customer Body : C C ; Customer Quit : C C ; . . .
Customer = C C ! x :: LoginReq def →

(Customer GoodLogin ; Customer Body �

Customer BadLogin ; Customer)
Customer GoodLogin = C C ? x :: GoodLoginRes def → SKIP
Customer BadLogin = C C ? x :: BadLoginRes def → SKIP
Customer AddItem = C C ! x :: AddItemReq def →

C C ? y :: AddItemRes def →
Customer Body

. . .
Customer Quit = C C ! x :: Logout def → SKIP
Customer Body = Customer AddItem  . . .

 Customer Quit
end

spec ACL Coordinator =
data . . .
channels C C : D C ; C W : D W ; C PS : D PS
process . . .

Coordinator AddItem = C C ? x :: AddItemReq def →
C W ! y2 :: ReserveItemReq def →
C W ? x2 :: ReserveItemRes def →
C C ! y :: AddItemRes def →
Customer Body

Coordinator Body = Coordinator AddItem � . . .
� Coordinator Quit

end

Fig. 3. Specification of the ACL customer and coordinator specifications

6.2 Deadlock Analysis

We illustrate how to prove deadlock freedom using the technique presented in
Section 5. We discuss the core part of the proof, and explain how to scale it up
for the whole system. The proof rule from Proposition 12 reduces the network
of processes step by step. We start at the point where the network has been
reduced to two processes only:

spec Reduced Arch Shop [RefCl (Arch C)] [RefCl(Arch Co)] =
process System′ : C C ;

System′ = Coordinator |[ C C || C C ]| Customer
end
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The specification Reduced Arch Shop instantiated with ACL components is
semantically equivalent to the following specification (without parameterisation):

Reduced ACL Shop =
(( (ReflCl(Arch C) rename θ1) and

(ReflCl(Arch Co) rename θ2) and Body

) rename θ3) and (ACL C rename θ4) and (ACL Co rename θ5)

Here all signature morphisms involved are embeddings and the specification
Body is a basic specification with the signature equal to the union of the sig-
natures of the ACL customer and coordinator along with the new process name
System′, and where the only axiom is that of

System′ = Coordinator |[ C C || C C ]| Customer.

Our aim is to prove that the process term bound to System′ is deadlock free
within the specification Reduced ACL Shop. To this end, we apply Proposi-
tion 12 and obtain:

Network({Customer, Coordinator}) isDFin Reduced ACL Shop

if (a) C isDFin Reduced ACL Shop and
(b) Co :: C C ResToLive� C :: C C on C C in Reduced ACL Shop

To discharge obligation (a), we apply the and rule from Proposition 10 several
times and reduce it to (C isDFin ACL C rename θ4). Applying the renaming
rule (also from Proposition 10) results in (C isDFin ACL C). As ACL C is
a basic specification and the customer process does not involve any parallel
operator we can easily discharge this obligation with Csp-Casl-Prover.

Concerning obligation (b), we apply the and rule from Proposition 13 several
times and reduce it to:

Co :: C C ResToLive� C :: C C on C C in
((ACL C rename θ4) and (ACL Co rename θ5))

As ACL C and ACL Co are basic Csp-Casl specifications we can discharge
the proof obligation by applying the flattening operation and then using Csp-
Casl-Prover. This obligation holds because the coordinator allows the customer
to choose the initial action (a request message) and then provides a response
message to the customer for this particular type of request (possibly after further
communications with other components).

The full proof of deadlock freedom has the same structure. Proposition 12 re-
duces Network({Customer, Coordinator, PaymentSystem, Warehouse}) down
to Network({Customer}) by removing first Warehouse, then PaymentSystem,
and – as shown above – Customer from the network. The resulting obligations
can then be reduced to a format where they can be discharged with Csp-Casl-
Prover.

7 Conclusion and Future Work

We have presented institutions for Csp-Casl, where we added the new feature of
loose process semantics. This setting allowed us to define and study structuring,
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parameterisation and refinement of Csp-Casl specifications. We gave several
proof calculi for compositional reasoning along the structure of Csp-Casl spec-
ifications: One dedicated to refinement, the other for deadlock analysis.

Future work will include the development of further proof rules for structured
operations: We intend to improve the refinement rules for and, and we want to
develop proof rules for the structured free operation, with a special emphasis
on connection with the Csp fixed point theory. Furthermore, we plan to apply
structuring to our EP2 case study, and to implement the presented calculi within
the standard proof tool for Casl, namely, Hets [13].

Acknowledgement. The authors are grateful to Erwin Catesbeiana for his
structured advice on how to navigate through deadlocked situations. This work
has been supported by the German Federal Ministry of Education and Research
(Project 01 IW 10002 SHIP).
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Abstract. Bundy and Richardson [4] developed a method for reasoning
about functions manipulating lists which is based on separating shape
from content, and then exploiting a mathematically convenient represen-
tation for expressing shape-only manipulations. Later, Prince et al. [7]
extended the technique to other data structures, and gave it a more for-
mal basis via the theory of containers. All these results are restricted to
fully polymorphic functions. For example, functions using equality tests
on list elements are out of reach. We remedy this situation by developing
new abstractions and representations for less polymorphic functions. In
Haskell speak, we extend the earlier approach to be applicable in the
presence of (certain) type class constraints.

1 Introduction

Abstraction is a useful strategy to get a clear view on the things that matter.
Regarding proofs about program equivalences, it is beneficial to have an abstract
representation of data structures and functions, holding exactly the information
necessary for the intended reasoning in an easily accessible form. For lists, Bundy
and Richardson [4] introduced a higher-order formulation in which a list is a
pair (n, f) where n is a natural number representing the length of the list, i.e.,
its shape, and f is a content function taking each position in the list to its
corresponding element. Bundy and Richardson’s motivation was that reasoning
about such representations can be easier than reasoning about standard lists. In
a more precise and more general form, the idea later recurred as reasoning via
container representations [1,7].

The usefulness of the abstraction from the actual elements stored in a list is
made apparent by the fact that certain container morphisms, taking a list (in
this case) to another one, do not inspect or alter the image of f . An example
for such a container morphism is the function reversec , the container version of
the usual function reversing a list. The application of this container morphism
is given as follows:

reversec (n, f) = (n, λi → f (n− i− 1))
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In general, a morphism shuffles positions (here by composing f with the func-
tion λi → n − i − 1) and can alter the length of the list, remove elements,
duplicate others. It cannot modify the elements themselves or add completely
new elements.

The advantage of the container representation, which led Bundy and Richard-
son to using that representation, is that proofs about programs expressible as
the composition of container morphisms become (simple) arithmetic proofs. For
example, the proof that reversing a (finite) list twice is the identity is obtained
very easily as follows:

reversec (reversec (n, f)) = reversec (n, λi → f (n− i− 1))
= (n, λi → f (n− (n− i− 1)− 1))
= (n, λi → f i)
= (n, f)

Prince et al. [7] use, from Abbott et al. [1,2], that container morphisms cor-
respond to parametrically polymorphic functions (or, natural transformations).
Such polymorphic functions act independently of the concrete input type and
hence, necessarily, independently of concrete elements of a type. Particularly, a
fully polymorphic function from lists to lists, expressed via the type [α] → [α],
maps for every type τ input lists of type [τ ] to output lists of type [τ ] without
using any specifics of the type τ . For example, a possible definition of reverse in
Haskell [6] is:

reverse :: [α] → [α]
reverse [ ] = [ ]
reverse (x : xs) = (reverse xs) ++ [x]

Using category theoretic notions, Prince et al. observe that such polymorphic
functions from lists to lists are isomorphic to the list container morphisms. The
correspondence also generalises to other, strictly positive, data types.

What both Bundy and Richardson [4] and Prince et al. [7] fail to do is to
reason about functions that are not fully polymorphic. An example, discussed
in both papers, is a function member that checks whether a given value is an
element of a given list. In Haskell:

member :: Eq α ⇒ α → [α] → Bool
member x [ ] = False
member x (y : ys) = (x== y) || (member x ys)

Since programmed equivalence (the binary Bool-valued function (==)) depends
on the type at which it is used, member cannot be given the fully polymorphic
type α → [α] → Bool. It instead comes with the constraint “Eq α ⇒”, us-
ing Haskell’s type class mechanism [10]. In the discussions of both Bundy and
Richardson [4] and Prince et al. [7], the outcome is that the proposed reasoning
method is not effective for member . Similarly, reasoning would not work for the
function nub that eliminates duplicates from a list. These kind of functions also
fall outside the realm of shapely operations in the calculus of Jay [5].
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While Bundy and Richardson only identified the problematic case, and Prince
et al. went a step further by observing that the problem can be explained by
a lack of polymorphism, we do provide a solution. In retrospect, at least the
basic idea behind our solution may seem obvious: if a function is not polymor-
phic enough, then exploit information about to what actual extent it loses its
polymorphism. In Haskell, that information is provided exactly by type class
constraints like “Eq α ⇒”. One example is the type of member seen above, an-
other is that the already mentioned function nub will naturally be given the type
Eq α ⇒ [α] → [α]. Of course, there is no reason at all to expect that the latter
corresponds to an ordinary container morphism, because those were shown to
be isomorphic to functions of the more general type [α] → [α] instead. But we
can investigate refined notions of container representations and container mor-
phisms, so that effective reasoning in the spirit of the earlier method becomes
possible again. That is what we do in this paper.

In Section 2 we reconsider the connection between fully polymorphic func-
tions and container morphisms. This sets the stage for our original development
in later parts of the paper. In particular, it explains the use of free theorems
[9], which in the guise of category-theoretic naturality is also at the heart of the
isomorphism Prince et al. [7] use, and which in the form of free theorems for
functions with type class constraints (also called ad-hoc polymorphic functions)
will also pave the way to our results. In contrast to Prince et al., we do not use
dependent types and therefore have slightly different formalisations of container
values and container morphisms. Our reason for abstaining from using depen-
dent types is notational convenience. Already by comparing the formulations
of otherwise equivalent results and examples by Bundy and Richardson [4] and
Prince et al. [7], it becomes clear that the former is lighter on notation. For
the treatment of ad-hoc/type class polymorphism we found that the overhead
of keeping exact dependent typing is even more cumbersome. However, there is
something to lose by using less exact typing: we will not have an exact isomor-
phism as that employed by Prince et al. [7]. But we show in Section 2 that our
setup is nevertheless sufficient for doing the kind of reasoning the overall method
is aiming for. Moreover, it is perfectly possible to add all the dependent types
back in, both in Section 2 and for our extensions to handle Eq-polymorphism, as
presented in Section 3. Our approach is not limited to the type class Eq . In a sim-
ilar way, container values, container morphisms, and the reasoning method can
be extended to handle other type classes. We demonstrate this, still in Section 3,
for the type class Ord , and offer some further perspective in Section 4.

2 The Earlier Results on Lists, Rephrased

In what follows, we use Haskell both as the language for writing functions about
which we might want to prove properties, and as the specification language for
container values and container morphisms, though for the latter use we will
stretch Haskell a bit by including general math concepts. Moreover, we do not
care about laziness in Haskell, or mixing strict and lazy evaluation using Haskell’s
seq-primitive. In fact, we assume a completely strict dialect of Haskell.
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Let us first clarify some notations. The set of natural numbers is denoted
by Nat. Depending on the context, a natural number n represents either the
number n ∈ Nat or the set of natural numbers {0, . . . , n− 1}. Furthermore, the
type constructor for lists, already used in Haskell types in the introduction, is
defined by

[τ ] = {[x0, . . . , xn−1] | n ∈ Nat, ∀i ∈ n. xi :: τ}
Lists can alternatively be defined as container values, meaning by a shape (the
length) and a content function (mapping each position to its entry). An appro-
priate definition (without using container terminology) was already introduced
by Bundy and Richardson [4]. We restate it here by defining the set C(τ) of list
container values of type τ as

C(τ) = {(n, f) | n :: Nat, f :: Nat → τ}
where the fs need not be totally defined, i.e., can be partial functions. But in
every container value (n, f), we require f to be defined at least for all natural
numbers less than n, i.e., on every position of the represented list.

In the following lemma we give a pair of functions that map back (�−1) and
forth (�) between container values and lists and nearly constitute an isomor-
phism. We continue to use the standard expression syntax of Haskell (while
on the type level, C(α) is “special syntax” that would not be found in actual
Haskell). The operator !! takes a list and a position and returns the list entry at
that position (counting from 0), and map is the usual function that applies its
argument function to each element in its input list.

Lemma 1. For each type τ as instantiation for α, the functions � and �−1

defined as

� :: C(α) → [α] �−1 :: [α] → C(α)
� (n, f) = map f [0 .. (n− 1)] �−1 xs = (length xs, xs !!)

satisfy the following three properties:

1. (� ◦ �−1) = id [τ ]

2. (�−1 ◦ �) ⊆ ≡C(τ), where ≡C(τ) = {((n, f), (n, f ′)) | ∀i ∈ n. f i = f ′ i}
3. ∀(n, f), (n′, f ′) ∈ C(τ). (n, f) ≡C(τ) (n′, f ′) iff � (n, f) = � (n′, f ′)

Proof. First, we show that (� ◦ �−1) xs = xs holds for every τ and xs :: [τ ], by
a straightforward induction on the length of xs . Second, we prove that (�−1 ◦
�) ⊆ ≡C(τ). We can reason as follows, for every container value:

�−1 (� (n, f)) = (length (map f [0 .. (n− 1)]), (map f [0 .. (n− 1)]) !!)

= (n, f ◦ ([0 .. (n− 1)] !!))

= (n, f |n)
where g|n means the restriction of a function g to the domain n. The calculation
steps are all by definitions and obvious properties of length,map, and (!!). Finally,
the property ((n, f), (n′, f ′)) ∈ ≡C(τ) iff � (n, f) = � (n′, f ′) follows from the
definition of �.
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Note that � and �−1 indeed only nearly constitute an isomorphism. For ex-
ample, let τ = Char and let f1 :: Nat → Char be the partial function with
graph {(0, ’a’), (1, ’b’)} and f2 :: Nat → Char the one whose graph additionally
contains (2, ’c’). Then (2, f1) and (2, f2) are two different elements of C(Char),
but � (2, f1) = [’a’, ’b’] = � (2, f2).

We define a container morphism as a family (sn, Pn)n∈Nat of pairs comprising
a natural number sn, intuitively the output list length for any input list of
length n, and a function Pn :: Nat → Nat, intuitively mapping positions in the
output list to positions in the input list when the latter has length n. For each
container morphism and each n ∈ Nat, we allow Pn to be a partial function,
but require that for every i ∈ sn, we have (Pn i) ∈ n. The latter guarantees that
all output positions are covered and that we never map an output position to
a non-existing input position. We often abbreviate (sn, Pn)n∈Nat as (s, P ). The
application of a container morphism to a container value is defined as

(s, P ) (n, f) = (sn, f ◦ Pn)

Here are some container morphisms that intuitively correspond to well-known
Haskell functions of type [α] → [α]:

reversec = (n, λi → n− i− 1)n∈Nat

initc = (n− 1, id)n∈Nat

tailc = (n− 1, λi → i+ 1)n∈Nat

Before we can prove a systematic connection between fully polymorphic functions
(in strict Haskell) and container morphisms, and function composition in either
world, we need to say a few words on free theorems. Such theorems are statements
about functions only dependent on the function type, relying on a formalisation
of parametricity [8] for the functional language at hand. For example, in strict
Haskell, the free theorem for the type [α] → Nat states that for every function
f :: τ1 → τ2 with τ1 and τ2 arbitrary, every function g :: [α] → Nat, and every
list xs :: [τ1], we have g (map f xs) = g xs if f is defined for all elements of xs .
The intuition is that in a purely functional language g’s behaviour can clearly
only depend on its input argument. Moreover, since g is fully polymorphic in
the type α of elements of that input list, g cannot inspect those elements in any
way. Hence, g’s behaviour, and thus output, can only depend on the structure
of its input list. Since a general property of map is that it does not change
structure (and the output list is defined if f is defined on all input list elements),
g (map f xs) = g xs follows. Reasoning by parametricity/free theorems allows
to derive similar statements for a wide variety of types.

Incidentally, since the function length itself has exactly the above mentioned
polymorphic type, one of the “obvious properties” (actually two, another one
for (!!)) in the proof of Lemma 1 could have been deduced without considering
the concrete function length, just its type. But the real value of free theorems is
when we really do not know what concrete function we deal with, such as when
we want to prove that every strict-Haskell function of type [α] → [α] corresponds
to some container morphism.
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Since free theorems are available for free, i.e., can be automatically generated,
we will use them as given, without considering further formal background here.
Let us note, though, in preparation for Section 3, that free theorems in the
presence of type class polymorphism can be established by an indirection via
types (and functions) obtained through the dictionary translation method of
Wadler and Blott [10].

Theorem 1. For every function g :: [α] → [α], there exists a container mor-
phism (s, P ) such that g ◦ � = � ◦ (s, P ).

Proof. Let g :: [α] → [α]. Then the free theorem for g’s type tells us that
g (map h l) = map h (g l) for every choice of types τ1, τ2, function h :: τ1 → τ2,
and list l :: [τ1] if h is defined for all elements of l. Hence, we can reason as
follows, for every container value:

g (� (n, f)) = g (map f [0 .. (n− 1)])
= map f (g [0 .. (n− 1)])
= � (�−1 (map f (g [0 .. (n− 1)])))
= � (length (g [0 .. (n− 1)]), f ◦ ((g [0 .. (n− 1)]) !!))
= � ((length (g [0 .. (n− 1)]), (g [0 .. (n− 1)]) !!)n∈Nat (n, f))

where the second step is by the free theorem, the third by Lemma 1(1), the
fourth by the definition of �−1 and properties of length, map, and (!!), and
the last step by the definition of the application of a container morphism to a
container value.

Note that there is not a unique container morphism corresponding, in the sense
of Theorem 1, to a function g :: [α] → [α]. For example, for the standard
Haskell definition of init :: [α] → [α], both initc = (n − 1, id)n∈Nat and
initc = (n − 1, id |n−1)n∈Nat satisfy init ◦ � = � ◦ initc . This (direction of)
non-uniqueness does no harm to our reasoning application, though. Together
with Lemma 1, Theorem 1 allows the calculation with container morphisms in-
stead of polymorphic functions. The required results are stated in the following
corollary and lemma.

Corollary 1. For every function g :: [α] → [α], there exists a container mor-
phism (s, P ) such that g = � ◦ (s, P ) ◦ �−1.

Proof. By Theorem 1 and Lemma 1(1).

Lemma 2. Let g, g′ :: [α] → [α]. Let (s, P ), (s′, P ′) be container morphisms
such that g = � ◦ (s, P ) ◦ �−1 and g′ = � ◦ (s′, P ′) ◦ �−1. Then we have
g ◦ g′ = � ◦ (s, P ) ◦ (s′, P ′) ◦ �−1.

Proof. By the assumptions, we have g ◦ g′ = � ◦ (s, P ) ◦ �−1 ◦ � ◦ (s′, P ′) ◦
�−1, so it would suffice to show that � ◦ (s, P ) ◦ �−1 ◦ � = � ◦ (s, P ). By
Lemma 1(3), this is equivalent to, for every type τ and (n, f) ∈ C(τ),

(s, P ) (�−1 (� (n, f))) ≡C(τ) (s, P ) (n, f)
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But by Lemma 1(2), we have �−1 (� (n, f)) ≡C(τ) (n, f), and it is easy to
show from the definitions that for every (n, f), (n′, f ′) with (n, f) ≡C(τ) (n′, f ′),
it holds that (s, P ) (n, f) ≡C(τ) (s, P ) (n′, f ′).

Let us manifest the usefulness of our formal material by an example. Assume
we want to prove that reverse ◦ tail = init ◦ reverse holds. We have

reverse = � ◦ reversec ◦ �−1

init = � ◦ initc ◦ �−1

tail = � ◦ tailc ◦ �−1

for standard Haskell definitions of the list functions and reversec , initc , and tailc

as given above Theorem 1.1 By Lemma 2, it suffices to prove that

� ◦ reversec ◦ tailc ◦ �−1 = � ◦ initc ◦ reversec ◦ �−1

and by Lemma 1(3) indeed to prove that for every type τ and (n, f) ∈ C(τ),
(reversec ◦ tailc) (n, f) ≡C(τ) (initc ◦ reversec) (n, f)

We can calculate for the left-hand side

(reversec ◦ tailc) (n, f) = reversec (n− 1, λi → f (i + 1))

= (n− 1, λi → f (((n − 1)− i− 1) + 1))

= (n− 1, λi → f (n− 1− i))

and for the right-hand side

(initc ◦ reversec) (n, f) = initc (n, λi → f (n− i− 1))

= (n− 1, λi → f (n− i− 1))

to see that the claim holds.
Let us contrast the above proof with an attempt at directly proving reverse ◦

tail = init ◦ reverse using the Haskell definition of reverse from the introduc-
tion as well as some suitable definitions of tail and init . The interesting case
is the one of a non-empty list: reverse (tail (x : xs)) = init (reverse (x : xs)),
which reduces to the proof obligation reverse xs = init ((reverse xs) ++ [x]).
Now an inductive proof using the defining equations of init would be required,
where first the given proof obligation would have to be generalised to an actu-
ally suitable induction hypothesis (since simply performing induction on xs in
reverse xs = init ((reverse xs) ++ [x]) leads nowhere). In contrast, the above
proof requires neither induction nor inventing a generalisation. It just performs
simple arithmetics.

1 Clearly, neither Theorem 1 nor Corollary 1 prove the equivalence reverse = � ◦
reversec ◦ �

−1 for the specific syntactic definitions of reverse and reversec given in
the introduction (and likewise for init and tail). The theorem and corollary provide,
for every g, one suitable definition for gc. It might not be the one we find useful for
reasoning. Finding such a useful syntactic representation, like reversec = (n, λi →
n− i− 1)n∈Nat, must be done on a case-by-case basis, but is often very natural, like
in all cases here.
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3 Refining the Container-Related Notions

The results in the previous section can be extended in two directions. One is to
consider not only functions from lists to lists, but also functions between other
data structures that can be viewed as container values. That direction is already
explored by Prince et al. [7]. The extension that we consider is orthogonal to
that first one. In particular, while we focus on functions from lists to lists here,
we are confident that our results could be easily combined with the results of
Prince et al. [7] to handle functions (involving element tests like equivalence and
ordering) between arbitrary container structures.

Considering functions like nub, removing all duplicates from a list, or sort ,
sorting a list’s elements, it is clear that they are not fully polymorphic in their
list element type. The functions require the availability of an equivalence test or
an order defined on elements of the input list. Hence, Theorem 1 is not appli-
cable anymore. Our aim now is to appropriately adapt the notions of container
value and container morphism to get equally useful results for functions of types
Eq α ⇒ [α] → [α] and Ord α ⇒ [α] → [α] as the earlier works provide for
functions of type [α] → [α].

It is important to note that our view on type classes is that they really hold
what they pretend to provide. In the case of Eq , that means that every type in Eq
indeed carries an equivalence relation. In real Haskell, the implemented relations
can be arbitrary (no reflexivity, transitivity, or symmetry are guaranteed or
checked). In the same spirit, in Section 3.2 we expect types in the type class Ord
to carry an actual total preorder (a reflexive, transitive, and total relation).

3.1 The Type Class Eq

To capture what happens if elements in a list are testable for equivalence, the
container notions have to be adjusted. We use E(M) to denote the class of all
(decidable) equivalence relations over a set M . For simplicity of notation, we
freely regard an equivalence relation ∼= on a subset of Nat as the equivalence
relation ∼=∪ idNat on Nat when appropriate. For a type τ that is an instance of
Eq , we denote by ∼=τ the corresponding fixed (in a given program) equivalence
relation. Since in Haskell, it is actually accessible via the binary Bool-valued
function (==), we set:

∼=τ = {(x, y) | x :: τ, y :: τ, (x== y) = True}
Definition 1. Let τ be some type that is an instance of Eq. An Eq-container
value of type τ is a triple (n,∼=, f) with n :: Nat, ∼= ∈ E(Nat), and f :: Nat → τ
a partial function such that

∀i, j ∈ n. i ∼= j ⇔ (f i) ∼=τ (f j)

or, equivalently,2

2 The kernel of a function over a relation is defined as (ker∼= f) = {(i, j) | (f i) ∼=
(f j)}.
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(ker∼=τ
f |n) = (∼= ∩ (n× n)) (1)

The set of all such container values is denoted by CEq(τ).

The roles of n and f in the above definition are as before in the case of ordinary
list containers C(τ). Condition (1) implies the previous side condition that the
function f is defined at least for all natural numbers less than n. But condi-
tion (1) is stronger than that. It involves the key new ingredient of Eq-container
values, namely the second component ∼=. The role of that equivalence relation
is to capture information, in terms of list positions, about equivalence tests be-
tween elements accessible via f . For a concrete example, assume τ = Char and
that the equivalence relation ∼=Char were such that upper- and lowercase of the
same letter were considered equivalent, while different letters were considered
inequivalent. Then the list [’a’, ’A’, ’b’] :: [Char] could be represented as an Eq-
container value as (3,∼=, f), where ∼= = {(0, 0), (0, 1), (1, 0), (1, 1), (2, 2)} and f
maps 0 to ’a’, 1 to ’A’, and 2 to ’b’.

Some further explanations seem in order, to avoid possible misconceptions.
First, from Definition 1, in particular from the presence of ∼= (though not ∼=τ )
in container value triples, it might seem that each Eq-container value somehow
stores its own completely private equivalence relation so that, within the same
program, two members (n1,∼=1, f1) and (n2,∼=2, f2) of the same CEq(τ) can in-
terpret equivalence between elements of type τ in two different ways. Under
that perception, for example, some (2,∼=1, f1), (2,∼=2, f2) ∈ CEq(Char) could
represent the same list [’a’, ’A’] :: [Char] while somehow ∼=1 and ∼=2 could be
chosen in such a way that in one case when [’a’, ’A’] is passed to some function
g :: Eq α ⇒ [α] → [α] (or its “container version”) the two list elements are
considered equivalent, while in the other case they are not.

But that is not the case! Actually, by condition (1) we have that n, f , and
τ (through ∼=τ ) uniquely determine ∼= (or at least its relevant part, on n × n).
So why, then, do we include the ∼= in (n,∼=, f) ∈ CEq(τ) at all? The point is
that we will be able (in Definitions 2 and 3 below) to describe the behaviour of
(a container analogue of) a function g :: Eq α ⇒ [α] → [α] on (n,∼=, f) solely
by relying on n and ∼=, rather than looking into f . That is the key abstrac-
tion/enabler for exploiting the type class polymorphism when reasoning about
such functions: that the behaviour of such a function g can be understood by
just considering relative equivalences between list elements (as captured via ∼=),
rather than the concrete list elements themselves (as still accessible via f , but
deliberately not used in determining g’s behaviour). So explicitly representing
and (while preserving the invariant (1); see Lemma 4) manipulating ∼= is crucial
to effectively “let the symbols do the work”.

Hopefully having accepted ∼= as an explicit component of Eq-container values,
note further that we use f as a function from list positions into τ . We could
have been tempted to instead define f as a function from equivalence classes of
positions, with respect to ∼=, into τ , rather than from the positions themselves.
While these choices may appear to be interchangeable, there is actually a crucial
difference. With our choice we can distinguish elements that are equivalent with
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respect to ∼=τ , but not equal. For example, consider the list [’a’, ’A’] :: [Char]
and assume that the equivalence relation ∼=Char were again the one mentioned
in the paragraph directly following Definition 1. Then a container representation
working with a function from equivalence classes of positions would, at length
two, only be able to represent lists with two equal elements ([’a’, ’a’], [’b’, ’b’],
[’A’, ’A’], . . . ) and lists with different letters ([’a’, ’b’], [’b’, ’a’], [’a’, ’B’], . . . ), but
not the list [’a’, ’A’] as distinguishable from [’a’, ’a’] and [’A’, ’A’]. One might
be willing to accept this limited expressiveness, as indeed when the equivalence
provided by the type class instance for Char is “same letter”-ness, then all of
[’a’, ’A’], [’a’, ’a’], and [’A’, ’a’] ought to be considered equivalent with respect to
the inferred type class instance for [Char]. But after all, equivalent with respect
to a type class instance is not the same as semantically equal, and we want to
keep that distinction in our reasoning. For example, we want to still be able
to observe that applying (the container morphism corresponding to) reverse to
[’a’, ’A’] gives [’A’, ’a’], and not [’a’, ’a’] or [’A’, ’A’].

After having made and justified these important decisions, we can set up a pair
of functions between Eq-container values and lists satisfying similar properties
as the pair of functions � and �−1 defined in Lemma 1.

Lemma 3. For each type τ that is an instance of Eq, the instantiations of the
functions �Eq and (�Eq)−1 defined as

�Eq :: Eq α ⇒ CEq(α) → [α]
�Eq (n,∼=, f) = map f [0 .. (n− 1)]

(�Eq)−1 :: Eq α ⇒ [α] → CEq(α)
(�Eq)−1 xs = (length xs , ker∼=α (xs !!), xs !!)

satisfy the following three properties:

1. (�Eq ◦ (�Eq)−1) = id [τ ]

2. ((�Eq)−1 ◦ �Eq) ⊆ ≡CEq(τ),
where ≡CEq(τ) = {((n,∼=, f), (n,∼=′, f ′)) | ∀i ∈ n. f i = f ′ i}

3. ∀(n,∼=, f), (n′,∼=′, f ′) ∈ CEq(τ).
(n,∼=, f) ≡CEq(τ) (n

′,∼=′, f ′) iff �Eq (n,∼=, f) = �Eq (n′,∼=′, f ′)

Proof. The proofs of properties (1)–(3) are similar to the proof of Lemma 1.
An important aspect to show is that indeed ((�Eq)−1 xs) ∈ CEq(τ) for every
xs :: [τ ], particularly so for condition (1) from Definition 1. But the required
statement is obtained relatively directly from the definition of (�Eq)−1.

Now, appropriate morphisms between Eq-container values, and their application,
are defined as follows.

Definition 2. An Eq-container morphism (s, P ) is a family of pairs (s
∼=
n , P

∼=
n )

n∈Nat,∼=∈E(Nat) such that s
∼=
n :: Nat and P

∼=
n :: Nat → Nat a partial function

with (P
∼=
n i) ∈ n for every i ∈ s

∼=
n .

The intuitions for s
∼=
n and P

∼=
n are as for ordinary container morphisms before,

except that now both can depend on the new parameter ∼= in addition to n. After
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all, we need to be prepared for the fact that the behaviour (i.e., determining the
length of the output list and the distribution of elements in it) of a function
involving equivalence tests cannot anymore be described by just inspecting the
input list length. In addition, information about such equivalence tests may have
to be accessed.

Definition 3. Let (n,∼=, f) be an Eq-container value and (s, P ) an Eq-contai-
ner morphism. The application of (s, P ) to (n,∼=, f) is defined as

(s, P ) (n,∼=, f) = (s
∼=
n , ker∼= P

∼=
n , f ◦ P

∼=
n )

The first and last components of the output triple are analogous to the ordi-
nary case without element tests. For the middle component, we capture the
position-wise equivalence of output list elements in terms of the mapping to in-
put positions and what we know about, again position-wise, equivalence of input
list elements.

The following lemma states the well-behavedness of the notions defined above.

Lemma 4. Let τ be a type that is an instance of Eq. Let c ∈ CEq(τ) and let m
be an Eq-container morphism. Then we have (m c) ∈ CEq(τ).

Proof. The critical point to prove is the condition (1) from Definition 1 on the
content function of the resulting container value. Let c = (n,∼=, f) and m =
(s, P ). We have (m c) = (s

∼=
n , ker∼= P

∼=
n , f ◦ P

∼=
n ) and hence need to show that

(ker∼=τ (f ◦ P
∼=
n )|s∼=n ) = ((ker∼= P

∼=
n ) ∩ (s

∼=
n × s

∼=
n ))

is satisfied. But that is an easy exercise, using (ker∼=τ
f |n) = (∼= ∩ (n× n)).

Comparing the definitions of morphisms on ordinary container values and on
Eq-container values, we can easily translate the former ones into the latter ones.

Note 1. Every (ordinary) container morphism (sn, Pn)n∈Nat can be viewed as
the Eq-container morphism (sn, Pn)n∈Nat,∼=∈E(Nat).

To verify that our definitions of Eq-container values and Eq-container morphisms
are useful when reasoning about strict-Haskell functions of type Eq α ⇒ [α] →
[α], we need results similar to Theorem 1, Corollary 1, and Lemma 2. Indeed,
such results are possible and given below.

Theorem 2. For every function g :: Eq α ⇒ [α] → [α], there exists an Eq-con-
tainer morphism (s, P ) such that g ◦ �Eq = �Eq ◦ (s, P ).

Proof. Let g :: Eq α ⇒ [α] → [α]. Then the free theorem for g’s type tells us that
g (map h l) = map h (g l) for every choice of types τ1, τ2 that are instances of Eq ,
function h :: τ1 → τ2, and list l :: [τ1], provided that (ker∼=τ2

h) = ∼=τ1 and that

h is defined for all elements of l. Now, let (n,∼=, f) ∈ CEq(τ). By the definition
of Eq-container values, we know that the function f satisfies (ker∼=τ

f |n) =
(∼= ∩ (n × n)). So for h = f |n, τ1 = n, ∼=τ1 = (∼= ∩ (n× n)), and τ2 = τ we can
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apply the free theorem above and obtain g (map f |n l) = map f |n (g l) for every
list l :: [n]. Hence, we can reason similarly to the proof of Theorem 1 as follows:3

g∼=τ (�Eq (n,∼=, f)) = g∼=τ (map f [0 .. (n− 1)])

= g∼=τ
(map f |n [0 .. (n− 1)])

= map f |n (g∼=∩(n×n) [0 .. (n− 1)])

= �Eq ((�Eq )−1 (map f |n (g∼=∩(n×n) [0 .. (n− 1)])))

= �Eq (length (g∼=∩(n×n) [0 .. (n− 1)]),
ker∼=τ

(f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!)),
f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!))

= �Eq ((s, P ) (n,∼=, f))

where we set

(s, P ) = (length (g∼=∩(n×n) [0 .. (n−1)]), (g∼=∩(n×n) [0 .. (n−1)]) !!)n∈Nat,∼=∈E(Nat)

and use

f ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!) = f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!)

as well as

ker∼= ((g∼=∩(n×n) [0 .. (n− 1)]) !!) = ker∼=τ
(f |n ◦ ((g∼=∩(n×n) [0 .. (n− 1)]) !!))

These two statements used here are true since g∼=∩(n×n) [0 .. (n − 1)] :: [n]
contains only elements from 0 to n− 1 and since, for the second statement, we
know that (ker∼=τ f |n) = (∼= ∩ (n× n)).

Corollary 2. For every function g :: Eq α ⇒ [α] → [α], there exists an Eq-con-
tainer morphism (s, P ) such that g = �Eq ◦ (s, P ) ◦ (�Eq)−1.

Proof. By Theorem 2 and Lemma 3(1).

Lemma 5. Let g, g′ :: Eq ⇒ [α] → [α]. Let (s, P ), (s′, P ′) be Eq-container
morphisms such that g = �Eq ◦ (s, P ) ◦ (�Eq)−1 and g′ = �Eq ◦ (s′, P ′) ◦
(�Eq)−1. Then we have g ◦ g′ = �Eq ◦ (s, P ) ◦ (s′, P ′) ◦ (�Eq)−1.

Proof. Similarly to the proof of Lemma 2.

We have now established all the formal setup that is required for reasoning
about functions of type Eq ⇒ [α] → [α] by instead reasoning about Eq-contai-
ner morphisms. To manifest this with some examples, consider first the following
container morphism versions of nub and rmSingles , where the first of these func-
tions removes duplicates from a list and the second one throws away each element
that appears only once in a given list (in both cases, ultimately with respect to
an equivalence relation provided via a type class instance for Eq, of course):

3 To highlight the changes of the equivalence relation that g uses, we have throughout
subscripted each instance of g with the equivalence relation it actually works with.
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nubc = (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat)

with s
∼=
n = |n/∼=| and
P

∼=
n = λi → min{j : |{[k]∼= : k ≤ j}| = i+ 1}

rmSinglesc = (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat)

with s
∼=
n =

∑
e∈n/∼=,|e|>1 |e| and

P
∼=
n = λi → min{j : |{j′ ∈ ⋃

e∈n/∼=,|e|>1 e : j′ ≤ j}| = i + 1}
Note that we use standard notations n/∼= for factorisation with respect to an
equivalence relation and [k]∼= for building equivalence classes.

As already noticed, we can view “ordinary” container morphisms as Eq-con-
tainer morphisms as well. For an example, we give the application of initc to
an Eq-container value. As we use them in the following examples of proofs, we
show the result of applying nubc and rmSinglesc , in general, as well.

initc (n,∼=, f) = (n− 1,∼=, f)

nubc (n,∼=, f) = (|n/∼=|, id , λi → f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))
rmSinglesc (n,∼=, f) = (

∑
e∈n/∼=,|e|>1 |e|,

ker∼= (λi → min{j : |{j′ ∈ ⋃
e∈n/∼=,|e|>1 e : j′ ≤ j}|

= i+ 1}),
λi → f (min{j : |{j′ ∈ ⋃

e∈n/∼=,|e|>1 e : j′ ≤ j}|
= i+ 1}))

Note that we used algebraic simplifications like that (ker∼= id) is ∼= and that the
kernel of an (up to the relevant ∼=) injective function is the identity.

Let us now demonstrate the usefulness of reasoning with our extended con-
tainer notions, based on three examples.

An example proof with Eq-container morphisms. We wish to show that
nub ◦ init always returns a prefix of the result of just nub. Using our new setup,
we can do this by showing that for every Eq-container value c,

prefix ((nubc ◦ initc) c) (nubc c) (2)

holds, where prefix is defined by

prefix (n1,∼=1, f1) (n2,∼=2, f2) ⇔ n1 ≤ n2 ∧ ∀i ∈ n1. f1 i = f2 i

To prove the desired statement, we take an arbitrary Eq-container value
c = (n,∼=, f) and first calculate both arguments to prefix in (2) above. We get

nubc (initc (n,∼=, f))

= nubc (n− 1,∼=, f)

= (|(n− 1)/∼=|, id , λi → f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))
and

nubc (n,∼=, f) = (|n/∼=|, id , λi → f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))
To verify the prefix property, we then have to establish the following statements:
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1. |(n− 1)/∼=| ≤ |n/∼=|
2. ∀i ∈ |(n−1)/∼=|. f (min{j : |{[k]∼= : k ≤ j}| = i+1}) = f (min{j : |{[k]∼= :

k ≤ j}| = i+ 1})
of which the first is a simple property of factorisation (of a subset, with respect to
the same equivalence relation), and of which the second is a syntactic tautology.

Another example proof. We wish to show that rmSingles ◦ nub always
returns an empty list. Using our new setup, we can do this by showing that for
every Eq-container value c, the container value (rmSinglesc ◦ nubc) c has 0 in
its length component. So let c = (n,∼=, f) be an Eq-container value. Then:

rmSinglesc (nubc (n,∼=, f))

= rmSinglesc (|n/∼=|, id , λi → f (min{j : |{[k]∼= : k ≤ j}| = i+ 1}))
= (

∑

e∈|n/∼=|/id ,|e|>1

|e|, · · ·, · · ·)

= (0, · · ·, · · ·)

And yet another example proof. We wish to show that nub is idempotent,
i.e., nub ◦ nub = nub. Using our new setup, we can do this by showing that
nubc ◦ nubc = nubc. So let c = (n,∼=, f) be an Eq-container value. Then:

nubc (nubc (n,∼=, f))

= nubc (|n/∼=|, id , h)
with h = λi → f (min{j : |{[k]∼= : k ≤ j}| = i+ 1})

= (||n/∼=|/id |, id , λi → h (min{j : |{[k]id : k ≤ j}| = i+ 1}))
= (|n/∼=|, id , h)
= nubc (n,∼=, f)

where except for the next-to-last one all steps are simply by applying definitions.
That one interesting step is valid by |m/id | = m for every m ∈ Nat,4 and by
the fact that for every i ∈ Nat,

min{j : |{[k]id : k ≤ j}| = i+ 1} = min{j : |{{k} : k ≤ j}| = i+ 1}
= min{j : |{{0}, {1}, . . . , {j}}| = i+ 1}
= i

3.2 The Type Class Ord

As a second example for the adjustment of the container notions to type classes,
we consider the type class Ord . Similarly to the adjustment for the type class

4 Note that our notation overloading is at work here, according to which m ∈ Nat can
represent the actual number m in one context and the set of numbers {0, . . . ,m−1}
in another context.
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Eq , the container values and container morphisms have to be aware of the oper-
ation(s) now available on the formerly completely polymorphic list content. We
use an approach analogous to that in Section 3.1, but replace equivalence rela-
tions by total preorders. We use O(M) to denote the class of all total preorders
over a set M . For simplicity of notation, we freely regard a total preorder � on
a subset n of Nat as the total preorder �∪{(i, j) | (i ∈ n∧n ≤ j)∨ (n ≤ i ≤ j)}
on Nat when appropriate.

As the remaining definitions, results, and proofs are in close analogy to the
ones for the type class Eq , we will give them in condensed form only, and omit
all proofs. For a type τ that is an instance of Ord , we denote by �τ the corre-
sponding fixed (in a given program) total preorder:

�τ = {(x, y) | x :: τ, y :: τ, (x<= y) = True}
Definition 4. Let τ be some type that is an instance of Ord. An Ord-container
value of type τ is a triple (n,�, f) with n :: Nat, � ∈ O(Nat), and f :: Nat → τ
a partial function such that (ker	τ f |n) = (� ∩ (n × n)).5 The set of all such
container values is denoted by COrd(τ).

Definition 5. We define functions �Ord and (�Ord)−1 as

�Ord :: Ord α ⇒ COrd(α) → [α]

�Ord (n,�, f) = map f [0 .. (n− 1)]

(�Ord)−1 :: Ord α ⇒ [α] → COrd(α)

(�Ord)−1 xs = (length xs, ker	α (xs !!), xs !!)

Definition 6. An Ord-container morphism (s, P ) is a family of pairs (s	n , P
	
n )

n∈Nat,	∈O(Nat) such that s	n :: Nat and P	
n :: Nat → Nat a partial function

with (P	
n i) ∈ n for every i ∈ s

∼=
n .

Definition 7. Let (n,�, f) be an Ord-container value and (s, P ) an Ord-con-
tainer morphism. The application of (s, P ) to (n,�, f) is defined as

(s, P ) (n,�, f) = (s	n , ker	 P	
n , f ◦ P	

n )

Theorem 3. For every function g :: Ord α ⇒ [α] → [α], there exists an Ord-
container morphism (s, P ) such that g = �Ord ◦ (s, P ) ◦ (�Ord )−1.

Lemma 6. Let g, g′ :: Ord ⇒ [α] → [α]. Let (s, P ), (s′, P ′) be Ord-container
morphisms such that g = �Ord ◦ (s, P ) ◦ (�Ord)−1 and g′ = �Ord ◦ (s′, P ′) ◦
(�Ord)−1. Then we have g ◦ g′ = �Ord ◦ (s, P ) ◦ (s′, P ′) ◦ (�Ord)−1.

Comparing the definitions of morphisms on ordinary container values and on
Ord-container values, we can again easily translate the former ones into the
latter ones, analogously to Note 1. Moreover, every Eq-container morphism can
be viewed as an Ord -container morphism as well.

5 Note that the kernel of a function can not only be taken over an equivalence relation.
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Note 2. Every Eq-container morphism (s
∼=
n , P

∼=
n )n∈Nat,∼=∈E(Nat) can be viewed

as the Ord-container morphism (s	∩

n , P	∩


n )n∈Nat,	∈O(Nat).

Clearly, there are also Ord -container morphisms that are no ordinary container
morphisms and no Eq-container morphisms. They correspond exactly to the
functions of type Ord ⇒ [α] → [α] that are not of type Eq α ⇒ [α] → [α] (or
even of type [α] → [α]). For example, the Haskell function

least :: Ord α ⇒ [α] → [α]
least [ ] = [ ]
least (x : xs) = [go x xs]

where go x [ ] = x
go x (y : ys) = go (if x<= y then x else y) ys

corresponds to:

leastc = (s	n , P	
n )n∈Nat,	∈O(Nat)

with s	n = min{n, 1} and

P	
n = λi → min{j : ∀k ∈ (n \ j). j � k}

4 Conclusion and Future Work

We have extended the ellipsis [4] or container [7] technique for reasoning about
functions on lists to the case of the presence of element tests. The key insight
was to use, in the proofs of Theorems 2 and 3, an extension of free theorems [8,9]
to ad-hoc polymorphism à la type classes [10]. An obvious goal for future work
is to see what needs to be done to make reasoning with our refined container-
related notions, as we have performed on examples by hand, more effective and
mechanisable. Just as the techniques of Bundy and Richardson [4] and Prince
et al. [7] have to rely on good proof tactics for arithmetics, our method will
have to rely on tactics that additionally take properties of equivalence relations
and total preorders into account, and that can exploit algebraic notions like the
kernel of a function over a relation, etc.

Another issue is that of transforming function definitions we want to reason
about into suitable container morphism representations in the first place. As
we have seen with examples like rmSinglesc, describing a structure change as a
result of element tests can be somewhat involved to express by a mathematical
formula. Only more practical experience will be able to tell how problematic that
really is. Note, though, that container morphism representations need not nec-
essarily be provided by the “customer” of a proof system. Indeed, in Bundy and
Richardson’s setup the container versions of list functions were used internally
only, not exposed to the user.

How about further extensions? We have already mentioned that moving from
lists to a broader range of data structures is largely orthogonal to taking el-
ement tests into account. A more challenging extension is to treat other type
classes than Eq and Ord . The framework of free theorems is readily available for
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other type classes as well. However, finding the right abstractions and morphism
notions may appear to require new insights for each new class. For example,
while both Eq and Ord mathematically correspond to relations, or to ways of
observing elements of an unspecified type, what about type classes that provide
ways of constructing elements via some operations, say class Monoid? Interest-
ingly, recent work by Bernardy et al. [3] could shed some light here. For the
purpose of testing (not verification), they essentially characterise polymorphic
functions in terms of monomorphic inputs, such as characterising a function of
type [α] → [α] in terms of its action on integer lists of the form [1 .. n]. For more
complicated types, in particular higher-order ones, they work from a classifica-
tion of function arguments (typically themselves functions) into observers and
constructors, and describe a methodology for finding fixed types and monomor-
phic inputs that completely determine a function’s behaviour. Via the dictionary
translation method, type class constraints lead to precisely such different kinds
of function arguments, so there is a good chance for leverage here.

Acknowledgements. We thank the anonymous reviewers for their comments
and suggestions for improving the paper.
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Abstract. Testing takes much of the time of the software development process,
so several efforts have been devoted to automate it. We present here a tool that
is able to generate test cases for Maude functional modules, and check their cor-
rectness with respect to a given specification or select a subset of these test cases
to be checked by the user by using different strategies. Since these processes are
very expensive we also present different trusting techniques to ease them.

Keywords: Test cases, Maude, black-box testing, white-box testing, code
coverage.

1 Introduction

Testing takes much of the time of the software development process, so several efforts
have been devoted to automate it. Although initially much progress was done in testing
for imperative languages [17,14,12], during the last years several efforts have been de-
voted to develop test-case generators for declarative languages [9,10,4,2,5], being spe-
cially notable the development of Quickcheck [4], a very powerful test-case generator
developed for Haskell (and coded in Haskell itself) that has been adapted to imperative
languages as Java1 or C++,2 thus filling the gap between testing strategies for impera-
tive and declarative languages. To perform testing we use test cases, whose definition
depends on the programming language being tested, that the programmer uses to exam-
ine his program by checking the correctness of these test cases against an oracle, which
usually is a specification of the system or the programmer himself.

These test cases are generated following two different strategies: black-box and white-
box testing. The former uses a specification language, usually with a formal semantics,
to generate the test cases that are later translated to test cases in the implementation lan-
guage; a semantical relation must be established between the test cases in both languages
to determine the correctness of the implementation. Examples of black-box testing are
the translation to Java and C++ of the test cases generated by Quickcheck presented above
and the language Congu,3 a framework to create algebraic specifications to test Java pro-
grams. On the other hand, white-box testing (also known as glass-box testing) uses the

� Research supported by MICINN Spanish project DESAFIOS10 (TIN2009-14599-C03-01) and
Comunidad de Madrid program PROMETIDOS (S2009/TIC-1465).

1 https://quickcheck.dev.java.net/
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3 http://gloss.di.fc.ul.pt/congu/
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current implementation of the system to select the most appropriate test cases. Both ap-
proaches have been followed in imperative and declarative contexts; black-box testing
has been studied in imperative languages [12,13], in declarative languages [4,15,2], and
in general contexts [1,11], while white-box testing has been investigated in [17,14] for
imperative programming and in [10,9] for declarative programming.

Maude [6] is a high-level language and high-performance system supporting both
equational and rewriting logic computation for a wide range of applications. Maude
modules correspond to specifications in rewriting logic [16], a simple and expressive
logic which allows the representation of many models of concurrent and distributed
systems. This logic is an extension of equational logic; in particular, Maude functional
modules correspond to specifications in membership equational logic [3], which, in
addition to equations, allows the statement of membership axioms characterizing the
elements of a sort. Rewriting logic extends membership equational logic by adding
rewrite rules, that represent transitions in a concurrent system. Maude system modules
are used to define specifications in this logic.

Although the initial aim of the Maude system was to be used as a specification lan-
guage, the last releases of the system introduce new features such as TCP/IP sockets [6,
Chapter 11] and unification [7] that encourage to use Maude as a programming lan-
guage. Thus, Maude specifications grow in size and complexity, growing consequently
the difficulty to debug and analyze them. As part of an ongoing project to debug Maude
specifications, we have already implemented a declarative debugger for Maude [19] that
allows to debug both wrong and missing answers (incorrect and incomplete results, re-
spectively). Following this line, this paper presents a methodology to test Maude func-
tional modules by using both black-box testing, where the specification language is
Maude itself, and white-box testing, where we adapt some strategies already developed
for declarative languages and, in addition, present a new strategy to test sort inferences.
These techniques have been implemented in Maude and integrated with the the declar-
ative debugger, which allows the user to debug the erroneous test cases at once.

Exploiting the fact that rewriting logic is reflective [8], a key distinguishing fea-
ture of Maude is its systematic and efficient use of reflection through its predefined
META-LEVEL module [6, Chap. 14], that allows access to metalevel entities such as spec-
ifications or computations as usual data. Therefore, we are able to generate and check
the test cases in Maude itself. The system provides another module, Full Maude [6,
Chap. 18], that includes features for parsing, evaluating, and pretty-printing terms, im-
proving the input/output interaction. By extending Full Maude our test-case generator,
including its user interactions, is implemented in Maude itself.

Although the Maude metalevel allows an efficient implementation of black-box test-
ing by providing mechanisms to test the correctness of a Maude module against another
one and, consequently, its performance should be comparable to Quickcheck’s [4], the
main drawback of our approach is the term generation: while Quickcheck uses nar-
rowing to obtain the test cases, the Maude’s machinery for narrowing is still under
development4 and cannot be used with general Maude theories, so we incrementally

4 Currently, the narrowing command only supports some theories, does not allows the user to
introduce a condition the returned terms are assumed to fulfill, and does not allow incremental
searches, that is, we cannot obtain new results without computing again the previous ones.
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generate terms and then check whether they are appropriate for testing. Although our
black-box testing is less efficient that the one in Quickcheck, we overcome it by pro-
viding white-box testing. This testing is based on [10], which adopted some techniques
from imperative languages to select a set of terms fulfilling a giving coverage, that is,
a number of statements that must be executed to consider the specification tested. We
improve these coverage techniques by providing coverage for membership inferences,
which takes into account both positive (statements used) and negative (statements that
could not be used) information.

The rest of the paper is organized as follows. After briefly introducing Maude func-
tional modules in Section 2, we describe how the terms are generated in Section 3. Our
methodology to test Maude functional modules is described in Section 4, while Sec-
tion 5 outlines the implementation of the tool. Section 6 concludes and outlines some
future work.

More information about the test-case generator, related papers, examples, and its
source code can be found at http://maude.sip.ucm.es/testing/.

2 Maude

Maude [6] is a declarative language based on both equational and rewriting logic for the
specification and implementation of a whole range of models and systems. Functional
modules define data types and operations on them by means of membership equational
logic theories [3] that support multiple sorts, subsort relations, equations, and assertions
of membership in a sort. In this way, Maude makes possible the faithful specification of
data types (like sorted lists or search trees) whose data are not only defined by means of
constructors, but also by the satisfaction of additional properties. It is important to note
that in membership equational logic sorts are grouped into equivalence classes called
kinds. For this purpose, two sorts are grouped together in the same equivalence class if
and only if they belong to the same connected component.

For our purposes in this work we take advantage of the fact that membership equa-
tional logic theories are assumed to be terminating, confluent, and sort decreasing [6].
In this way, we can use a calculus that modifies the usual one shown in [3] by consider-
ing that equations are only applied from left to right, which allows us to infer judgments
of the form t →n t ′ and t :ls s, introduced in [18] and which indicate, respectively, that
the normal form of t is t ′ and that the least sort of t is s. Models of these judgments,
given a signature Σ and a set of equations and membership axioms E , are Σ-term models
TΣ/E [16]; see [18] for details in the relation between models and judgments.

Below we present the basics of Maude functional modules and present an example
that will be used throughout the rest of the paper.

2.1 Maude Functional Modules

Maude functional modules [6, Chapter 4], introduced with syntax fmod ... endfm,
are executable membership equational specifications and their semantics is given by
the corresponding initial membership algebra in the class of algebras satisfying the
specification.

http://maude.sip.ucm.es/testing/
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In a functional module we can declare sorts (by means of keyword sort(s)); subsort
relations between sorts (subsort); operators (op) for building values of these sorts, giv-
ing the sorts of their arguments and result, and which may have attributes such as being
associative (assoc) or commutative (comm), for example;5 memberships (mb) asserting
that a term has a sort; and equations (eq) identifying terms. Both memberships and
equations can be conditional (cmb and ceq). In Maude the user can specify each opera-
tor with its own syntax, which can be prefix, postfix, infix, or any “mixfix” combination.
This is done by indicating with underscores the places where the arguments appear in
the mixfix syntax. Another interesting feature for our tool is that Maude allows both
equations and membership axioms to be identified with a label, which is introduced
after either the keyword eq or ceq (mb or cmb for memberships).6

Maude does automatic kind inference from the sorts declared by the user and their
subsort relations. Kinds are not declared explicitly, and correspond to the connected
components of the subsort relation. The kind corresponding to a sort s is denoted [s].

For example, we show how to specify lists of natural numbers in the module LIST
below. We declare the sort List for these lists, while the subsort declaration indicates
that a single natural number is also a list:

fmod LIST is
pr NAT .

sort List .
subsort Nat < List .

Lists are built with the operator nil for empty lists and the juxtaposition operator _ _,
which is associative and has nil as identity, for bigger lists:

op nil : -> List [ctor] .
op _ _ : List List -> List [ctor assoc id: nil] .

Finally, we define a function reverse to reverse a list. Note that this function is buggy:
the equation labeled with rev1 should return nil instead of 0:

var N : Nat .
var L : List .

op reverse : List -> List .
eq [rev1] : reverse(nil) = 0 .
eq [rev2] : reverse(N L) = reverse(L) N .

endfm

3 Term Generation

The tool is able to generate terms by using the constructor information provided by the
user. As a first approach, we computed them in a recursive fashion: starting with con-
stants, in each step the new terms were computed from the ones previously obtained.

5 It is important to note that the equational theory works modulo these axioms.
6 It is also possible to write this label at the end of the statement as an attribute, although we will

always use labels in the way described above.
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We can also understand this approach as a grammar, where sorts are non-terminals,
constants are terminals, and operators are production rules. After each step, member-
ship axioms were applied to ensure the terms were assigned the appropriate sort. For
example, the terms in the LIST example above (assuming that the predefined natural
numbers have constructors 0 and s_ for zero and successor) were generated as follows:

1. The constants 0 and nil for natural numbers and lists respectively are built.
2. Sort inference is applied. Thus, the term 0 is also considered a term of sort List.
3. Nontrivial constructors are applied. The term s(0) (pretty printed as 1 by Maude)

is built for natural numbers, while the term 0 0 is generated for lists.
4. Steps 2 and 3 are applied until enough terms have been generated.

However, although this method builds up to several thousand terms very quickly, it
presents a major drawback: most of the terms are very similar and thus they find the
same bugs, while some other problems, that would be found with more complex terms,
cannot be found due to the quick growth in the number of terms, that prevents the
system from computing more terms once a few steps have been performed (although
the user can select the number of steps that are applied in function of the complexity of
the constructors, the amount of time required for big bounds greatly limits this option).

To palliate this problem we tried to use the narrowing features available in Maude,
using the constructors to distinguish between the different kinds of terms and then trying
to fulfill the conditions imposed by the equations and membership axioms. However,
these narrowing features do not support general theories and some combinations of at-
tributes cannot be used. Another major problem is that the narrowing command returns
the first n solutions but, since it does not receive the condition to be fulfilled but only
the lefthand side of the statement to be matched, it is possible to obtain terms that fi-
nally cannot be used as term cases, and thus more terms are needed but, with the current
format, the system has to recalculate the n previous solutions. We expect this command
to be improved soon and thus incorporate this feature to our test generator.

Since narrowing did not improve the tool as expected, for the time being we decided
to randomly remove some terms in each iteration of the previous algorithm in order to
reduce the number of combinations in the next levels and thus be able to generate bigger
terms.7 Once these terms are computed, we can start the testing process.

4 Testing Maude Functional Modules

We define a test case in Maude as a judgment t →n t ′ or t :ls s, where t and t ′ are terms
and s is a sort. We describe in this section how, starting with the terms generated in the
previous section, test cases of this form are generated in Maude and used for testing.
First, we show in Section 4.1 how they can be checked against a correct specification;
then Section 4.2 describes how to select a set of terms to be inspected by the user de-
pending on different strategies. Finally, Section 4.3 explains how to improve the testing
process by allowing the user to select some statements as trusted, preventing the tool
from taking them into account when creating this set of terms.

7 Although this technique does not guarantee that the terms are more suitable for testing, we
have checked that it works better in practice.
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4.1 Black-Box Testing

Usually, a good approach to testing consists in checking the correctness of several test
cases against a specification of the system [4,12]. In our case this relation can be easily
established because both the correct specification and the program under test are Maude
specifications: assuming that T is the model of the correct specification and T ′ the
model of the specification under test, then a test case j fulfills the specification when
T |= j ⇐⇒ T ′ |= j. This technique can be efficiently adopted in our prototype thanks to
the reflective capabilities of Maude, that allow us to use modules as data. Thus, the tool
compares the results obtained from the current specification with respect to the correct
one and extracts several pieces of information: the results are different (either they have
different constructors or the terms are equal but the inferred sorts are different), the term
is not in normal form, or the results are incomparable. Note that it is not necessary to
have a correct module with the same functions used in the tested module: if a property
over the function to be tested can be defined, it is enough to define this property in a
correct module as a constant function that always returns true:

fmod MY-SPEC is fmod PROP is fmod CORRECT is
... pr MY-SPEC . pr MY-SPEC .
endfm op prop : ... -> Bool . op prop : ... -> Bool .

eq prop(...) = ... . eq prop(...) = true .
... endfm
endfm

More specifically, we can define the property revProp for our lists specification, stating
that the reverse of a composition of lists is equal to the composition of the reverses of
the lists in inverse order, as follows:

fmod REV_LIST is
pr LIST .
vars L1 L2 : List .
var N : Nat .

op revProp : List List -> Bool .
eq [prop] : revProp(L1, L2) = reverse(L2) reverse(L1) == reverse(L1 L2) .
endfm

Now, we create a new module CORRECT_LIST where a function with the same name
and profile is defined as the constant true, that is, our specification indicates that this
property is true:

fmod CORRECT_LIST is
pr LIST .
vars L1 L2 : List .

op revProp : List List -> Bool .
eq revProp(L1, L2) = true .

endfm
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Now, we can use our tool to check the property. First, we identify which is the correct
module, and then we start the testing process with the test command:

Maude> (correct test module CORRECT_LIST .)
CORRECT_LIST selected as correct module for testing.

Maude> (test in REV_LIST : revProp .)
8464 test cases were generated.
8464 test cases are incorrect with respect to the correct module.

Notice that the property never holds. We can ask the tool to show some of the incorrect
test cases found, and use the debugger to fix the specification:

Maude> (show 1 incorrect .)
The following test cases are incorrect with respect to the correct module:
1. The term test(0,0) has been reduced to false

Maude> (invoke debugger with incorrect test case 1 .)
Declarative debugging of wrong answers started.
...
The buggy node is:
reverse(nil) -> 0
with the associated equation: rev1

Complete explanations of this example and the ones in the following sections, including
the debugging sessions, are available at http://maude.sip.ucm.es/testing/ .

4.2 White-Box Testing

Since Maude is a specification language itself, the user does not always have another
specification (or is able to define a property) to check the results with. In this case the
correctness of the test cases depends on the intended semantics given by the user, and
hence a strategy that selects a subset of the generated terms, called code coverage, is
needed in order to be easily checked by humans. We assume that this intended interpre-
tation is a Σ-term model I corresponding to the model that the user had in mind while
writing the specification, and thus we require that, given a test case j and the initial
model T of the specification, I |= j ⇐⇒ T |= j.

Covering Equations. In [10] some strategies for selecting a coverage in functional
languages are described: global branch coverage and function coverage. The former
selects a set of terms such that they cover all branches (both direct and indirect) of
the function being tested; the latter tries that, in addition to all branches of the original
call to the function, also all branches of all recursive calls to that function have to be
considered. Although function coverage is more difficult to apply, it detects more bugs
in general than global branch coverage.

In the Maude case, these strategies select a subset of the equations and membership
axioms in the specification and then looks for a set of test cases whose inference requires
the application of the statements previously selected:

http://maude.sip.ucm.es/testing/
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– Global branch coverage tries to find terms that use all the statements potentially
used by the function under test (which, of course, also includes the functions in
the conditions). That is, the coverage of a function symbol f using this strategy
includes all the equations whose lefthand side matches the term f (x1, . . . ,xn), where
x1, . . . ,xn are variables on the kinds specified by the program, and, for each equation
l = r if

∧n
i=1 ti = t ′i ∧

∧m
j=1 t ′′j : s j added to the coverage we must also add all the

membership axioms for each sort s j and the coverage for all the function symbols
in the equation, funs(r) ∪ ⋃n

i=1 funs(ti) ∪ funs(t ′i ) ∪
⋃m

j=1 funs(t ′′j ), where

funs( f (t1, . . . ,tn)) = { f} ∪ funs(t1) ∪ . . . ∪ funs(tn)
funs(a) = {a}
funs(X) = /0

For example, if we want to test the function revProp from our lists specifications,
we should cover the equations prop, rev1, and rev2. We can use the tool to test it
with the commands:

Maude> (global coverage .)
Global Branch Coverage selected

Maude> (test in REV_LIST : revProp .)
1 test cases have to be checked by the user:

1. The term revProp(nil,0) has been reduced to false

All the statements were covered.

Maude> (invoke debugger with user test case 1 .)
...

Actually, reducing this term we cover prop (it is the only equation that can be
initially used), and rev1 and rev2 (by reducing reverse(nil) and reverse(0)
once the first equation has been applied). Once again, we can invoke the debugger
to fix the specification by using this term.

– Function coverage checks that all the statements that can be applied for a given
function are applied by all the recursive calls (including all those calls in the con-
ditions) in the program. That is, if we try to compute the coverage of a function
symbol f with respect to the recursive calls to a function r, then we must find all
the appearances of r traversing the specification in the same way we explained for
global branch coverage. Once all the reachable calls to r from f have been found,
the coverage requires each of them to execute all the equations whose lefthand side
matches r(x1, . . . ,xn), with x1, . . . ,xn variables of the appropriate kind.

In our lists example, if we want to test revProp taking into account the calls to
reverse we have to distinguish between the four different calls to this function:
the first one in rev2 and three more in prop. Each one of these calls must execute
both rev1 and rev2. We can use our test-case generator to look for a coverage with
the commands:
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Maude> (function coverage .)
Function Coverage selected

Maude> (test in REV_LIST : revProp wrt reverse .)

2 test cases have to be checked by the user:
1. The term revProp(0,0) has been reduced to false
2. The term revProp(nil,nil) has been reduced to false

All calls were covered.

Maude> (invoke debugger with user test case 2 .)
...

In that case it is impossible to complete the coverage with only one term, because
the calls in prop can only execute one of the equations for reverse with each test
case: with the first test case all these calls execute rev2, while with the second one
they execute rev1. Regarding the recursive call in rev2, it executes both equations
when reducing reverse(0 0) from the first test case. Finally, note that both test
cases detect the error and can be used to debug the specification.

Testing memberships. Maude functional modules contain not only equations; as said
in the introduction, they also allow the user to define membership axioms and, although
initially one could think that the strategies described above can be straightforwardly
adapted to work in this case, we soon notice that to apply the axioms (and thus comput-
ing an erroneous sort) is as important as not to apply them (and thus obtaining a least
sort bigger than expected). This problem does not arise with equations, because when
a term is not reduced the test generator indicates it is not in normal form by using the
constructors, while in this case the system cannot state whether the inferred sort is the
least one or just one possible sort of the term.

For this reason, a new coverage strategy that takes into account this information (that
we call negative) has been developed: some of the terms in the coverage have to apply
all reachable statements but also some other terms have to fail, in a special way we
will explain below, when trying to apply them. However, some constraints have to be
applied to this negative information in order to obtain a realistic coverage strategy:

– It should not consider as negative information trivial failures, which in fact usually
occurs when matching the current term with the lefthand side of a membership
axiom. For example, assume we are defining the sort OList for ordered lists8 and
we state the following axiom:

cmb E E’ L : OList if E <= E’ /\ E’ L : OList .

Of course, this membership cannot be applied to the test cases nil or 0, but this
information is probably unimportant to the user, since even the number of subterms
are different.

8 We prefer “ordered lists” over ”sorted lists” because “sort” is already used to refer to types in
this context.
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– However, asking the term to match the lefthand side of the axiom can also be too
restrictive, since the lefthand side can contain information about the sorts of the
terms. For example, we could replace the previous membership axiom for our or-
dered lists specification with the following one:

cmb E OL : OList if E’ OL’ := OL /\ E <= E’ .

where the variables OL and OL’ have sort OList. In that case, if we only consider
terms matching the lefthand side as negative information we are discarding im-
portant terms: those that cannot be applied because the membership for OList is
wrong and thus prevents the term from matching.

– To solve these problems we have decided to consider as valid test cases those that
match the lefthand side of the membership axiom at the kind level. That is, we
consider the variables in the lefthand side as declared in their corresponding kind
and then we add the matching at the sort level as the new first condition of the
membership axiom.

Besides this problem, another question arises when taking into account the negative
information: is it necessary to check that each condition fails? Although in general
this approach would detect more errors, with medium examples the computation of
the coverage takes too much time to be useful. For this reason we have decided to
consider that a membership axiom provides enough negative information when any of
its conditions (including the ad hoc condition indicating that the sorts of the terms are
correct) fails.

Following the ideas presented previously, assume that we specify ordered lists of
natural numbers with:

(fmod OLIST is
pr NAT .

sorts List OList .
subsort OList < List .

op nil : -> OList [ctor] .
op _:_ : Nat List -> List [ctor] .
cmb [ol1] : (N : N’ : L) : OList if N <= N’ /\ N’ : L : OList .
endfm)

That is, the membership axiom stating that singleton lists are ordered lists is missing.
We can look for test cases for this specification with the command:

Maude> (test sort in OLIST : OList .)

1 test cases have to be checked by the user:
1. The term 0 : 0 : nil has least sort List

The following statements were not checked with the given test cases:
ol1
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All the negative information was covered.

Maude> (invoke debugger with user test case 1 .)
...
The buggy node is:
The least sort of 0 : nil is List
Either the operator _:_ needs more membership axioms or the conditions
of the current axioms are not written in the intended way.

The tool is not able to apply ol1 (actually, it cannot be applied without the membership
axiom for singleton lists) but it informs the user that it has found a term that, although
it matches the lefthand side of one of the memberships, it cannot be finally applied. In
fact, the term should have as least sort OList instead of List, and thus it reveals the
failure in our specification.

4.3 Enhancing the Performance

While developing the Maude declarative debugger several buggy specifications, de-
scribing all possible errors, were developed. The tool has successfully generated test
cases for all the functional examples. However, the main drawback of the tool is its
poor performance when facing large specifications, specially when computing the code
coverage.

More specifically, although the term generator is able to build up to ten thousand test
cases, only the testing with respect to a correct module can use all these test cases, while
when computing the coverage it is recommended to select a lower bound for the number
of test cases to be checked. The coverage is computed quite slowly (it works with less
than one thousand cases), due both to the fact that it performs several operations at the
metalevel (see Section 5 for details) and that it computes the minimum coverage, which
has exponential complexity.

To improve the performance, a trusting mechanism that hastens the computation of
the coverage has been developed: some statements can be pointed out as correct, and
thus the tool will omit them when computing the required coverage. The tool offers
several options to trust the statements: only labeled statements are taken into account
when generating the coverage, specific statements can be trusted, and even complete
modules can be selected as correct.

The previous examples are very simple and thus the trusting mechanisms cannot be
applied with all their power. We could trust the equation rev2 with the commands:

Maude> (set test select on .)
Debug select is on for test generation.

Maude> (test include REV_LIST .)
Labels prop rev1 rev2 have been added to the coverage.

Maude> (test deselect rev2 .)
Labels rev2 have been excluded from the coverage.
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The first command initializes the trusting mode, the second one introduces all the labels
in the (flattened) module REV_LIST as suspicious, and the third one trusts the equation
rev2. We can use now function coverage with our initial example:

Maude> (test in REV_LIST : revProp wrt reverse .)

1 test cases have to be checked by the user:
1. The term revProp(nil,nil) has been reduced to false

All calls were covered.

Note that now one test case is enough to cover all the (non-trusted) equations for
reverse.

Finally, the tool also allows to trust a specific kind of statement of different modules
with the command:

(test include/exclude eqs/mbs MODULES .)

where MODULES is a list of module names separated by spaces.

5 Implementation

We present in this section how the ideas shown in the previous sections have been im-
plemented. This implementation makes extensive use of Maude metalevel [6, Chapter
3], which allows metalevel entities such as terms and modules be used as usual data.
Moreover, the test-case generator, as well as the declarative debugger, is implemented
on top of Full Maude [6, Chap. 18], which improves the input/output loop provided by
the LOOP-MODE [6, Chapter 17] with several parsing features. In this way, we are
able to generate the term cases, compute the coverage, check the correctness of the test
cases against a correct module, and implement the user interface in Maude itself.

The first phase in the implementation of the tool is the term generator. To build the
terms the tool traverses all the operators in the specification looking for those with the
ctor attribute indicating that they are constructors of the given sort. As explained in
Section 3, it first selects the constant constructors (those whose arity is nil) and then
the rest of operators are used, using as arguments the terms obtained in the previous
steps. However, when creating these new terms we must be careful with the operator
attributes, that can identify terms that at first sight are different. To take into account
these attributes we use the predefined function metaNormalize, that computes the nor-
mal form of the term with respect to the equational theory consisting of these equational
attributes. Finally, after each step we use the predefined function leastSort to obtain
the least sort of the term and then add it to the set of all its supersorts.

Black-box testing is implemented in a straightforward way; we use the function
metaReduce in both the correct module and the module under test, and then we check
that both the term and the sort correspond. White-box testing is more complicated: start-
ing from the function to be tested, we check all the possible paths in order to keep the
reachable statements, in the case of global branch coverage, or the reachable recursive
calls, in the case of function coverage. Once the needed coverage has been computed
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we execute the test cases obtained in the previous step; however, the usual way of ex-
ecuting a term in a functional module is just obtaining the result, while in our case we
need to examine each term to keep the coverage thus far. To do this we use the function
metaMatch to check whether the current term matches the lefthand side of an equation
and fulfills the conditions and, in case the matching succeeds, we apply the obtained
substitution to the righthand side, which generates the next term to be examined.

Regarding the interaction with the user, we have extended the internal state of the
loop shown in [19] with attributes to keep the type of coverage selected, the trusting
information, the test cases, and the type of error detected by each test case (in case we
are using black-box testing). With these attributes and the new commands described in
this paper we are able to combine the declarative debugger with the test-case generator,
which shows the scalability of the system.

6 Concluding Remarks and Ongoing Work

This work is the first step toward developing a test-case generator for Maude specifi-
cations. Currently, the tool allows the user to debug functional modules following two
different strategies: black box and white box. While the former compares the results
obtained in the module under test with those obtained in a correct specification, the
latter selects a set of terms in such a way that they fulfill a so called code coverage.
In addition to known coverage strategies like global branch and function coverage, that
have been adapted to the Maude case, we have designed a membership coverage that
takes into account not only the statements applied, but also the memberships that were
not applied.

Regarding scalability, we distinguish between the scalability with respect to the com-
plexity of the constructors and with respect to the number of statements. In the first case
the tool only scales well for medium-sized specifications, because the number of terms
generated for a given sort in each step of the term-generation process depends on the
number of terms built for the sorts used as arguments and thus, if several levels are
needed to build the sort (i.e., if the sort is complex) then each step is very expensive
and only a few can be taken before the system collapses. In the second case, the tool
works even for large specifications, since the complexity does not depend on the size
of the specification but on the complexity of the function being tested (number of state-
ments/recursive calls); moreover, the trusting mechanisms work better for large (and
structured) specifications, since we expect the user to test the imported modules before
using them, and thus they can be trusted.

For the reasons sketched above, most of the ongoing work is devoted to improve the
performance of the tool. We are now working on the term generator. The narrowing
command working on the Maude metalevel is being enhanced to allow consecutive
searches in an efficient way (currently, it recomputes the previous results). Using this
command we can generate terms, check whether these terms fulfill the conditions of
any of the statements under test, and then continue generating terms until the required
number of terms have been generated. It will also be required an extension of narrowing
to more theories than the currently supported, especially taking membership axioms
into account.
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The prototype can be improved, first, with new strategies (both new coverage strate-
gies and black-box testing) and, second, by enhancing its performance by providing
new trusting mechanisms. We also intend to improve the current coverage strategies:
currently, the smallest set of terms fulfilling the selected strategy are presented; how-
ever, it could be easier for the user to check a big set of simple terms than a small set
of very complex terms. Thus, we are developing different strategies to allow the user to
select the most appropriate set of test cases depending on his expertise. We also plan to
allow the user to fix some complex values (e.g. tables and arrays which do not change
the behavior of the function) in the functions to be tested, so the test-case generator can
focus on the rest of parameters. We intend to improve the performance of all these tasks
by using a distributed architecture, where each processor is in charge of a specific task
while another processor gathers and handles all the information.

Since Maude is a specification language, it would be interesting to use Maude to
specify a system and another language to implement it. Currently, this approach is been
followed to teach data structures at the Universidad Complutense: the data structures
are first specified in Maude and then implemented in C++. To test them a translation
from Maude to C++, written by hand for each data structure, is required. The results
obtained from this experience will be used to develop translations to other languages.

An extension to system modules is also outlined; since these modules are not re-
quired to be either terminating or confluent, the test cases must take into account dif-
ferent information. Probably, a coverage strategy that checks which terms cannot be
further rewritten (i.e., provides negative information) will be useful. Finally, the graph-
ical user interface is being updated to connect the test-case generator with the Maude
declarative debugger.
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Plášil, Frantǐsek 25
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