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Abstract. The maximal matching problem, i.e., the computation of a
matching that is not a proper subset of another matching, is a fundamen-
tal optimization problem and algorithms for maximal matchings have
been used as submodules for problems like maximal node-disjoint paths
or maximum flow. Since in some applications graphs become larger and
larger, a research branch has emerged which is concerned with the design
and analysis of implicit algorithms for classical graph problems. Input
graphs are given as characteristic Boolean functions of their edge sets and
problems have to be solved by functional operations. As OBDDs, which
are closely related to deterministic finite automata, are a well-known
data structure for Boolean functions, OBDD-based algorithms are used
as a heuristic approach to handle very large graphs. Here, an implicit
OBDD-based maximal matching algorithm is presented that uses only
a polylogarithmic number of functional operations with respect to the
number of vertices of the input graph.

1 Introduction

Since some modern applications require huge graphs, explicit representations by
adjacency matrices or adjacency lists may cause conflicts with memory limita-
tions and even polynomial time algorithms are sometimes not fast enough. As
time and space resources do not suffice to consider individual vertices and edges,
one way out seems to be to deal with sets of vertices and edges represented
by their characteristic functions. Ordered binary decision diagrams, denoted
OBDDs, are well suited for the representation and manipulation of Boolean func-
tions [5]. They are closely related to deterministic finite automata for Boolean
languages L, where L ⊆ {0, 1}n (see, e.g., Section 3.2 in [15]). OBDDs are
able to take advantage over the presence of regular substructures which leads
sometimes to sublinear graph representations. Therefore, a research branch has
emerged which is concerned with the design and analysis of so-called implicit or
symbolic algorithms for classical graph problems on OBDD-represented graph
instances (see, e.g., [1–3], [6, 7], [9], [12, 13], and [16]). Implicit algorithms have
to solve problems on a given graph instance by efficient functional operations
offered by the OBDD data structure.
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The maximal matching problem, i.e., the computation of a matching that is
not a proper subset of another matching, is a fundamental optimization problem
and algorithms for maximal matchings have been used in some maximal node-
disjoint paths or maximum flow algorithms (see, e.g., [8]). The design of efficient
implicit algorithms requires new paradigms and techniques but it has turned out
that some methods known from the design of parallel algorithms are useful, e.g.,
the technique of iterative squaring is similar to the path-doubling strategy. Using
an efficient degree reduction procedure, the first optimal parallel algorithm for
maximal matchings has been presented by Kelsen [11]. It runs in time O(log3 |V |)
using O((|E| + |V |)/ log3 |V |) processors on bipartite graphs G = (V,E) and is
optimal in the sense that the time processor product is equal to that of the best
sequential algorithm. The main result of our paper is the following one.

Theorem 1. A maximal bipartite matching in an implicitly defined graph G =
(V,E) can be implicitly computed by O(log4 |V |) functional operations on Boolean
functions over a logarithmic number of Boolean variables. For general graphs
O(log5 |V |) functional operations are sufficient.

For this result we make use of the algorithm presented in [11] but for the im-
plicit setting also new ideas are necessary. Note, that our aim is not to achieve
new algorithmic techniques for explicit graph representations but to demonstrate
the similarity of paradigms in the design of parallel and implicit algorithms that
can also be used as building blocks for the solution of other combinatorial prob-
lems on one hand and on the other hand to develop efficient algorithms for large
structured graphs. The similarity between implicit and parallel algorithms has
also been demonstrated by the following result. A problem can be solved in the
implicit setting with a polylogarithmic number of functional operations on a log-
arithmic number of Boolean variables (with respect to the number of vertices of
the input graph) iff the problem is in NC, the complexity class that contains all
problems computable in polylogarithmic time with polynomially many proces-
sors [13, 14]. Nevertheless, this structural result does not lead directly to efficient
implicit algorithms.

In order to reduce the number of functional operations, iterative squaring
is used in our algorithm. One may argue against the use of iterative squaring
because despite the improvement in the number of functional operations inter-
mediate results of exponential size (with respect to the input length) can be gen-
erated. Nevertheless, Sawitzki has demonstrated that iterative squaring can also
be useful in applications [12]. The maximum flow problem in 0-1 networks has
been one of the first classical graph problems for which an implicit OBDD-based
algorithm has been presented and Hachtel and Somenzi were able to compute a
maximum flow for a graph with more than 1027 vertices and 1036 edges in less
than one CPU minute [9]. To improve this algorithm Sawitzki has used iterative
squaring for the computation of augmenting paths by O(log2 |V |) functional op-
erations. If the maximum flow value is constant with respect to the network size,
the algorithm performs altogether a polylogarithmic number of operations. Both
max flow algorithms belong to the class of so-called layered-network methods but
Sawitzki’s algorithm prevents breadth-first searches by using iterative squaring
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and as a result overcomes the dependence on the depths of the layered networks.
In order to confirm the practical relevance of his algorithm he has implemented
both maximum flow algorithms and has shown that his algorithm outperforms
the algorithm of Hachtel and Somenzi for very structured graphs.

The rest of the paper is organized as follows. In Section 2 we define some
notation and review some basics concerning OBDDs and functional operations,
implicit graph algorithms and matchings. Section 3 contains the main result, an
implicit algorithm for the maximal matching problem that uses only a polylog-
arithmic number of functional operations with respect to the number of vertices
of the input graph. Finally, we finish the paper with some concluding remarks.

In order to investigate the algorithm’s behavior on large and structured net-
works, it has been analyzed on grid graphs and it has been shown that the overall
running time and the space requirement is also polylogarithmic (for these results
see the full version of the paper [4]).

2 Preliminaries

We briefly recall the main notions we are dealing with in the paper.

2.1 OBDDs and Functional Operations

OBDDs are a very popular dynamic data structure in areas working with Boolean
functions, like circuit verification or model checking. (For a history of results on
binary decision diagrams see, e.g., [15]).

Definition 2. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables. A π-OBDD on Xn is a directed acyclic graph
G = (V,E) whose sinks are labeled by the Boolean constants 0 and 1 and whose
non-sink (or decision) nodes are labeled by Boolean variables from Xn. Each
decision node has two outgoing edges, one labeled by 0 and the other by 1. The
edges between decision nodes have to respect the variable ordering π, i.e., if an
edge leads from an xi-node to an xj-node, then π−1(i) < π−1(j) (xi precedes xj

in xπ(1), . . . , xπ(n)). Each node v represents a Boolean function fv ∈ Bn, i.e.,
fv : {0, 1}n → {0, 1}, defined in the following way. In order to evaluate fv(b),
b ∈ {0, 1}n, start at v. After reaching an xi-node choose the outgoing edge with
label bi until a sink is reached. The label of this sink defines fv(b). The size of
a π-OBDD G, denoted by |G|, is equal to the number of its nodes. A π-OBDD
of minimal size for a given function f and a fixed variable ordering π is unique
up to isomorphism. The π-OBDD size of a function f , denoted by π-OBDD(f),
is the size of the minimal π-OBDD representing f . The OBDD size of f is the
minimum of all π-OBDD(f).

Sometimes it is useful to have the notion of OBDDs where there are only
edges between nodes labeled by neighboring variables, i.e., if an edge leads from
an xi-node to an xj -node, then π−1(i) = π−1(j)− 1.
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Definition 3. An OBDD on Xn is complete if all paths from the source to
one of the sinks have length n. The width of a complete OBDD is the maximal
number of nodes labeled by the same variable.

A variable ordering is called a natural variable ordering if π is the identity
1, 2, . . . , n. Complete OBDDs with respect to natural variable orderings differ
from deterministic finite automata only in the minor aspect that tests may not
be omitted even if the corresponding subfunction is the constant 0.

Now, we briefly describe a list of important operations on OBDDs (for a
detailed discussion and the corresponding time and space requirements see, e.g.,
Section 3.3 in [15] and the full version of the paper [4]). Let f and g be Boolean
functions in Bn on the variable set Xn = {x1, . . . , xn} and Gf and Gg be π-
OBDDs for the representations of f and g, respectively.

– Negation: Given Gf , compute a π-OBDD for the function f ∈ Bn.
– Replacement by constant: Given Gf , an index i ∈ {1, . . . , n}, and a Boolean

constant ci ∈ {0, 1}, compute a π-OBDD for the subfunction f|xi=ci .
– Equality test: Given Gf and Gg, decide, whether f and g are equal.
– Satisfiability: Given Gf , decide, whether f is not the constant function 0.
– Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, com-

pute a π-OBDD Gh for the function h ∈ Bn defined as h := f ⊗ g.
– Quantification: Given Gf , an index i ∈ {1, . . . , n}, and a quantifier Q ∈

{∃, ∀}, compute a π-OBDD Gh for the function h ∈ Bn defined as h :=
(Qxi)f , where (∃xi)f := f|xi=0 ∨ f|xi=1 and (∀xi)f := f|xi=0 ∧ f|xi=1. In the
rest of the paper quantifications over k Boolean variables (Qx1, . . . , xk)f are
denoted by (Qx)f , where x = (x1, . . . , xk).

Sometimes it is useful to reverse the edges of a given graph. Therefore, we define
the following operation (see, e.g., [13]).

Definition 4. Let ρ be a permutation on {1, . . . , k} and f ∈ Bkn be defined
on Boolean variable vectors x(1), . . . , x(k) of length n. The argument reordering
Rρ(f) ∈ Bkn with respect to ρ is Rρ(f)(x

(1), . . . , x(k)) = f(x(ρ(1)), . . . , x(ρ(k))).

2.2 OBDD-Based Graph Algorithms and Matching Problems

Let G = (V,E) be a graph with N vertices v0, . . . vN−1 and |z|2 :=
∑n−1

i=0 zi2
i,

where z = (zn−1, . . . , z0) ∈ {0, 1}n and n = 
logN�. Now, E can be represented
by an OBDD for its characteristic function, where x, y ∈ {0, 1}n and

χE(x, y) = 1 ⇔ (|x|2, |y|2 < N) ∧ (v|x|2 , v|y|2) ∈ E.

(For the ease of notation we omit the index 2 in the rest of the paper and we as-
sume that N is a power of 2 since it has no bearing on the essence of our results.)
Undirected edges are represented by symmetric directed ones. Furthermore, we
do not distinguish between vertices of the input graph and their Boolean encod-
ing since the meaning is clear from the context.
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For implicit computations some Boolean functions are helpful. The equality
function EQ computes 1 for two inputs x and y iff |x| = |y|. NEQ is the negated
equality function. Since sometimes a vertex (or an edge) has to be chosen out of
a given set of vertices (or edges), several priority functions Π≺ have been defined
in the implicit setting (see, e.g., [9, 12]). We define Π≺(x, y, z) = 1 iff y ≺x z,
where ≺x is a total order on the vertex set V and x, y, z are vertices in V . In the
following we only use a very simple priority function independent of the choice
of x, where Π≺(x, y, z) = 1 iff |y| < |z|. It is easy to see that EQ, NEQ, and Π≺
can be represented by OBDDs of linear size with respect to variable orderings,
where the variables with the same significance are tested one after another.

A graph G = (V,E) is bipartite, if V can be partitioned into two disjoint
nonempty sets U and W , such that for all edges (u,w) ∈ E it holds u ∈ U
and w ∈ W or vice versa. The distance between two edges on a (directed) path
is the number of edges between them. The distance between two vertices on a
(directed) path is the number of vertices between them plus 1. The degree of
a vertex v in G is the number of edges in E incident to v. A matching in an
undirected graph G = (V,E) is a subset M ⊆ E such that no two edges of M are
adjacent. M is a maximum matching if there exists no matching M ′ ⊆ E such
that |M ′| > |M |, where |S| denotes the cardinality of a set S. A matching M is
maximal if M is not a proper subset of another matching. Given a matching M
a vertex v is matched if (v, w) ∈ M for some w ∈ V and free otherwise.

In the implicit setting the maximum (maximal) matching problem is the fol-
lowing one. Given an OBDD for the characteristic function of the edge set of an
undirected input graph G, the output is an OBDD that represents the charac-
teristic function of a maximum (maximal) matching in G.

3 The Maximal Matching Algorithm

In this section we prove Theorem 1 and present an implicit algorithm for the
maximal bipartite matching problem. The algorithm can easily be extended
for general graphs. The idea is to start with Kelsen’s parallel algorithm for
the computation of maximal matchings on explicitly defined graphs [11]. In the
parallel setting more or less only a high-level description of the algorithm is
given. Moreover, we have to add more ideas because we cannot access efficiently
single vertices or edges in the implicit setting.

The algorithm findMaximalBipartiteMatching is simple. Step-by-step a
current matching is enlarged by computing a matching in the subgraph of
G = (V,E) that consists only of the edges that are not incident to the cur-
rent matching. The key idea is an algorithm match that computes a matching
M ′, M ′ ⊆ E, adjacent to at least a fraction of 1/6 of the edges in the input
graph for match. After removing these edges from the input graph the proce-
dure is repeated. Therefore, after O(log |V |) iterations the remaining subgraph
is empty and the current matching is obviously a maximal matching in G.

The algorithm match makes use of another algorithm halve that halves ap-
proximately the degree of each vertex in a bipartite graph. The idea is to compute
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Algorithm 1. findMaximalBipartiteMatching

Input: χE(x, y)

(1) � Initialize. Start with the empty matching.

M(x, y)← 0
(2) while χE(x, y) �= 0 do
(3) � Compute a matching M ′.

M ′(x, y)← match(χE(x, y))
(4) � Delete the edges incident to a matched vertex in M ′.

INCNODE(x)← (∃y)(M ′(x, y))
χE(x, y)← χE(x, y) ∧ INCNODE(x) ∧ INCNODE(y)

(5) � Add the edges from M ′ to M.

M(x, y)←M(x, y) ∨M ′(x, y)
(6) return M(x, y)

an Euler partition of the input graph such that the graph is decomposed into
edge-disjoint paths. Each vertex of odd (even) degree is the endpoint of exactly
1 (0) open path. By two-coloring the edges on each path in the Euler parti-
tion and deleting all edges of one color, the degree of each vertex in the input
graph is approximately halved. Here, we use the fact that bipartite graphs have
no cycles of odd length. Therefore, for each path, where a vertex v is not an
endpoint, and for each cycle, the number of edges incident to v colored by one
of the two colors is equal to the number of edges colored by the other one. In
fact in the algorithm halve we only use the color red and delete all red edges
after the coloring. A precondition of the parallel algorithm halve is that for
each vertex its incident edges have been paired [11]. Here, we present a new
algorithm called calculatePairing which computes implicitly a pairing of the
edges with O(log2 |V |) functional operations. This algorithm together with the
degree reduction procedure in halve can possibly be used as building blocks for
the solution of other combinatorial problems in the implicit setting. We assume
that there is for each vertex an ordering on its incident edges given by a priority
function (see Section 2). In the first step of the algorithm calculatePairing

for each vertex the neighborhood of its incident edges is determined. Almost
all edges have two neighbors with respect to one of its endpoints (all but the
first and the last one). In order to compute a symmetric pairing every other
edge incident to the same vertex is colored red. This is realized by an indicator
function called RED. Afterwards, two neighboring edges (x, y), (x, z) are paired
iff (x, y) is red, i.e., RED(x, y) = 1, and (x, y) has a higher priority than (x, z),
i.e., Π≺(x, y, z) = 1. Therefore, each edge has at most one chosen neighbor with
respect to one of its endpoints and at most one of the edges incident to the
same vertex is not paired. The output of calculatePairing is a function which
depends on three vertex arguments x, y, and z and whose function value is 1 iff
y and z are two vertices adjacent to x which have been paired. Therefore, the
function is symmetric in the second and third argument. For the computation
of the pairing we determine for each edge its position with respect to all edges
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incident to the same vertex according to a priority function. This procedure
is similar to the well-known list ranking algorithm: given a linked list for each
member of the list the number of its position in the list has to be calculated (for
a nice introduction into design and analysis of parallel algorithms see, e.g., [10]).
In our case we are only interested in whether the number of the position of an
edge according to a priority function is odd or even.

Algorithm 2. calculatePairing

Input: χE(x, y)

(1) � Determine the neighborhood of the edges.

ORDER(x, y, z)← χE(x, y) ∧ χE(x, z) ∧Π≺(x, y, z) ∧
(∃ξ)(χE(x, ξ) ∧Π≺(x, y, ξ) ∧Π≺(x, ξ, z))

(2) � Compute the distance between edges incident to the same vertex

using iterative squaring.

DIST0(x, y, z)← ORDER(x, y, z)
for i = 1, 2, ..., log |V | do

DISTi(x, y, z)← (∃ξ)(DISTi−1(x, y, ξ) ∧ DISTi−1(x, ξ, z))
(3) � Color for each vertex its incident edges alternately.

RED(x, y)← χE(x, y) ∧ (∃ξ)(χE(x, ξ) ∧Π≺(x, ξ, y))
for i = 1, 2, ..., log |V | do

RED(x, y)← RED(x, y) ∨ (∃ξ)(RED(x, ξ) ∧ DISTi(x, ξ, y))
(4) � Select only edge pairs ((x, y), (x, z)), where the first edge is red.

return (ORDER(x, y, z) ∧ RED(x, y)) ∨ (ORDER(x, z, y) ∧ RED(x, z))

Lemma 5. The algorithm calculatePairing computes for all vertices a pair-
ing of its incident edges respectively with O(log2 |V |) functional operations.
Proof. The correctness of calculatePairing follows from the following observa-
tions: the function ORDER(x, y, z) computes the output 1 iff y and z are adjacent
to the vertex x, the edge (x, y) is smaller than the edge (x, z) according to the
chosen priority function, and there is no edge between (x, y) and (x, z) (with
respect to the priority function). In step 2 the function DISTi(x, y, z) computes
1 iff the distance, i.e., the number of edges between the edge (x, y) and (x, z)
with respect to the priority function, is 2i − 1. Afterwards for each vertex the
first of its incident edges according to the priority function is colored red and
then all edges which have an odd distance to the first one are also colored red.
Now, the output of calculatePairing is a function on three vertex arguments
x, y and z, where the value is 1 iff the edges (x, y) and (x, z) are neighbored and
the first one with respect to the priority function is red.

The most time consuming steps during calculatePairing are (2) and (3),
where the position of the edges and the coloring of the incident edges are calcu-
lated. Traversing the incident edges of a vertex needs O(log |V |) iterations each
using O(log |V |) operations for the quantification over O(log |V |) variables. ��
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Algorithm 3. halve

Input: χE(x, y)

(1) � Compute the successor relation.

PAIRING(x, y, z)← calculatePairing(χE (x, y))
SUCC(x, y, z)← PAIRING(y, x, z)

(2) � Compute distance and reachability relations on the directed edges

defined by the successor relation.

i← 0
DIST0(v,w, x, y)← EQ(w, x) ∧ SUCC(v, w, y)
REACHABLE(v, w, x, y)← (EQ(v, x) ∧ EQ(w, y)) ∨ (EQ(w,x) ∧ SUCC(v, w, y))
repeat

i← i+ 1
REACHABLE′(v,w, x, y)← REACHABLE(v, w, x, y)
REACHABLE(v, w, x, y)← REACHABLE(v, w, x, y) ∨

(∃ξ, θ)(REACHABLE(v, w, ξ, θ) ∧ REACHABLE(ξ, θ, x, y))
DISTi(v, w, x, y)← (∃ξ, θ)(DISTi−1(v, w, ξ, θ) ∧ DISTi−1(ξ, θ, x, y))

until REACHABLE′(v, w, x, y) = REACHABLE(v, w, x, y)
(3) � On each path, color an appropriate edge red.

RED(x, y)← χE(x, y) ∧ (∀ξ, θ)(REACHABLE(ξ, θ, x, y) ∨ EQ(ξ, x) ∨Π≺(x, x, ξ))∧
(∀θ, ξ)(REACHABLE(θ, ξ, y, x) ∨EQ(θ, x) ∨Π≺(x, x, θ))∧
(∀ξ)((REACHABLE(x, y, ξ, x) ∧ REACHABLE(ξ, x, x, y)) ∨Π≺(x, y, ξ))

RED(x, y)← RED(x, y) ∨ RED(y, x)
(4) � Color the edges alternately.

for j = 1, 2, ..., i do
RED(x, y)← RED(x, y) ∨ (∃ξ, θ)(RED(ξ, θ) ∧ DISTj(ξ, θ, x, y))

(5) � Delete the red edges.

return χE(x, y) ∧ RED(x, y) ∧ RED(y, x)

The pairing computed by calculatePairing is symmetric and it is used by
the algorithm halve to define (directed) paths in the (undirected) input graph.
An edge (y, z) is a successor edge of an edge (x, y) and SUCC(x, y, z) = 1 iff the
edges (y, z) and (y, x) are paired according to calculatePairing. Using this
successor relation SUCC the undirected input graph is decomposed into directed
edge-disjoint paths. Since the pairing is symmetric, (y, x) is also a successor of
(z, y). Therefore, for each directed path from a vertex u′ to a vertex u′′ defined
by the successor relation SUCC, there exists also a directed path from u′′ to u′.
This property is important in order to guarantee that a coloring of the directed
edges can be used for an appropriate coloring of the undirected edges in the
input graph. For each directed path in the decomposition every other edge is
colored red and a directed edge (u, v) is red iff the directed edge (v, u) is red.
Therefore, for each pair of (undirected) edges computed by calculatePairing

exactly one edge is red and by deleting the red edges the degree of each vertex
is approximately halved. A crucial step, which is new in the implicit setting, is
the choice of the first edges that are colored red on a directed path, because
all directed paths are investigated simultaneously, i.e., for each directed path
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from a vertex s to a vertex t the directed path from t to s is considered at
the same time. We have to avoid the situation that two edges (x, y) and (x, z),
where (x, y) is a directed edge on a directed path from a vertex s to a vertex t
and (x, z) a directed edge on the reversed path from t to s, are colored red at
the same time, because otherwise all edges from s to t and from t to s would
be red after the coloring procedure. Therefore, we ensure that in the beginning
either directed edges on the path from s to t or on the corresponding path
from t to s are colored. For this reason the edge relation Reachable is used,
where REACHABLE(v, w, x, y) is 1 iff there exists a directed path from the edge
(v, w) to the edge (x, y) defined by the successor relation SUCC. Due to the
symmetry of SUCC the relation REACHABLE is also symmetric in the following
way: iff REACHABLE(v, w, x, y) = 1 then REACHABLE(y, x, w, v) = 1. Therefore,
using REACHABLE it is also possible to determine the predecessors of a directed
edge. Now, the first red edges on a directed path are the edges with the highest
priority: for each directed path the smallest vertex v on the path according
to a priority function together with a successor u is chosen if there exists no
predecessor of v which has a higher priority than u according to the chosen
priority function. This procedure ensures that either for a directed path starting
from a vertex s and ending in a vertex t an edge (v, u) is chosen or for the
reversed directed path from t to s. Afterwards an edge (u, v) is colored red iff
the edge (v, u) is red. Next, each edge on a directed path for which the distance
to one of the first red edges on the path is odd is also colored red and all red
edges are deleted from the input graph. Note, that it is possible for a directed
path that more than one edge is chosen in the beginning but these edges have the
same starting point, therefore the distance between these edges is even because
the input graph is bipartite such that no problem occurs.

Lemma 6. Let d(v) and d′(v) denote the degree of a vertex v in the graph
given by χE(x, y) before and after running procedure halve on χE(x, y). Then
d′(v) ∈ {�d(v)/2�, 
d(v)/2�}. The algorithm halve uses O(log2 |V |) functional
operations.

Proof. For the number of functional operations step (2) and step (4) are the most
expensive ones. The graph is traversed via iterative squaring in the second step.
Since the length of a path is O(|E|), the number of iterations is O(log |E|) =
O(log |V |), and the quantification over the Boolean variables that encode an
edge can also be done using O(log |V |) operations (O(1) functional operations
for the quantification of each variable). The number of functional operations in
step (4) can be calculated in a similar way.

For the correctness of the algorithm halve step (3) is the most interesting one.
The directed paths according to the successor relation SUCC are edge-disjoint but
not vertex disjoint. In step (3) for each directed path according to the successor
relation at least one edge is carefully chosen and colored red. The first condition
ensures that only edges that belong to the input graph can be chosen. The second
and third requirements guarantee that a first red edge is incident to the vertex
x with the highest priority on the path. The fourth condition ensures that two
arbitrary edges incident to x that are on the same directed path and have an
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even distance are not both colored red. This condition is sufficient, we do not
have to choose only the neighbor of x which has the highest priority because we
color the edges afterwards alternately and edges whose distance is odd get the
same color anyway. Together with our considerations above we are done. ��

The idea for the correctness of match is that a (directed) subgraph P (x, y) of
the input χE(x, y) is computed for which each vertex has indegree and outdegree
at most 1. It consists only of vertex-disjoint open simple paths and trivial cycles.
Therefore, the subgraph can be seen as the union of two matchings. By choosing
the matching which is the larger one we are done. For this reason we color each
path in P (x, y) alternately and we remove the edges that are not red. Since the
paths are vertex-disjoint the coloring is easier than the coloring of the edges in
the algorithm halve. In fact we color the vertices and not the edges. We choose
for each directed simple path the first vertex and color afterwards all vertices
for which the distance to the first one is even. Then we choose the (directed)
edges (x, y) iff the vertex x is red. Finally, we traverse the computed directed
subgraph into the corresponding undirected one.

The directed subgraph P is computed in the following way. In each iteration
the vertices with degree 1 are determined. For each vertex x adjacent to vertices
with degree 1 in the remaining graph one of these vertices y is chosen according
to a priority function and (x, y) is added to P . Afterwards all edges incident to
vertices with degree 1 are deleted and the degree of all vertices is (approximately)
halved. Note, that during the computation an edge (x, y) in P can be eliminated
later on if x gets another partner that has a higher priority than y. At any time
each vertex x has at most one partner.

It can be shown that at the beginning of step (8) in match at least 1/3 of
the input edges are incident to edges defined via P (x, y). The intuition is the
following one. An edge (u, v) is not incident to the computed matching iff the
edge (u, v) is deleted during the algorithm halve and the last edges (u, u′) and
(v, v′) incident to u and v during the while loop are eliminated in step (5)
of match because u′ and v′ are at the same time adjacent to vertices x and y
which have degree 1 and are chosen as partners in the respective iteration of the
while loop. As a consequence we can conclude that the degree of u′ and v′ is
(approximately) at least twice the degree of u and v in the input graph because
Lemma 6 ensures that the degree of each node is (almost) regularly halved in each
iteration. Therefore the output of the algorithm match is a matching incident to
at least 1/6 of the input edges.

Lemma 7. The algorithm match implicitly computes a matching in an implicitly
defined input graph G = (V,E) incident to at least 1/6 of the edges in E. It needs
O(log3 |V |) functional operations.
Proof. There are O(log |V |) iterations of the while loop, each of them costs
O(log2 |V |) functional operations. The algorithm halve is the dominating step
during the while loop of match. Therefore, O(log3 |V |) functional operations
are sufficient. The correctness follows from our considerations above.
(See also [11].) ��
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Algorithm 4. match

Input: χE(x, y)

(1) � Initialize.

χE′(x, y)← χE(x, y); P (x, y)← 0
(2) while χE′(x, y) �= 0 do
(3) � Determine the vertices of degree at least 2.

TwoOrMoreNeighbors(x)← (∃y, z)(NEQ(y, z) ∧ χE′(x, y) ∧ χE′(x, z))
(4) � Set P (x, y) = 1 iff y has degree 1 and is the partner of x.

Q(x, y)← χE′(x, y) ∧ TwoOrMoreNeighbors(y)
Q′(x, y)← Q(x, y) ∧ (∃z)(Q(x, z) ∧Π≺(x, z, y))
P (x, y)← (P (x, y) ∧ (∃z)(Q′(x, z))) ∨Q′(x, y)

(5) � Delete edges incident to vertices of degree 1.

χE′(x, y)← χE′(x, y) ∧ TwoOrMoreNeighbors(x) ∧ TwoOrMoreNeighbors(y)
(6) � Halve (approximately) the degree of each vertex.

χE′(x, y)← halve(χE′ (x, y))
(7) � Add trivial cycles to the computed matching.

M1(x, y)← P (x, y) ∧ P (y, x)
(8) � Color the vertices in the graph given by P (x, y) alternately and

choose an edge (x, y) iff x is red.

RED(x)← (∀ξ)(P (ξ, x)); DIST0(x, y)← P (x, y)
for i = 1, 2, ..., log |V | do

DISTi(x, y)← (∃ξ)(DISTi−1(x, ξ) ∧ DISTi−1(ξ, y))
RED(x)← RED(x) ∨ (∃ξ)(RED(ξ) ∧ DISTi(ξ, x))

M2(x, y)← P (x, y) ∧ RED(x)
(9) return M1(x, y) ∨M2(x, y) ∨M2(y, x)

Summarizing, we have shown that findMaximalBipartiteMatching uses
O(log4 |V |) functional operations for the computation of a maximal matching
in an implicitly defined input graph G = (V,E). Adapting the ideas for the de-
composition of general graphs into a logarithmic number of bipartite subgraphs
[11], our algorithm can be similarly generalized with an additional factor of a
logarithmic number of functional operations.

4 Concluding Remarks

Our maximal matching algorithm seems to be simple enough to be useful in prac-
tical applications. We have shown that maximal matchings can be computed with
a polylogarithmic number of functional operations in the implicit setting. More-
over, in [4] we have proved that there exists a graph class for which even the overall
running time of our maximal matching algorithm isO(log3 |V | log log |V |) and the
space usage is O(log2 |V |), where V is the set of vertices of the input graph. One
direction for future work is to implement the algorithm and to perform empirical
experiments to determine its practical value. It would be interesting to investigate
how the performance of the maximal matching algorithm depends on the chosen
priority function. Here, we have used a very simple one. The maximal number
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of Boolean variables on which a function in the maximal matching algorithm de-
pends dominates the overall worst-case bounds for the running time and the space
usage. Therefore, another open question is whether we can reduce this number
without increasing significantly the number of functional operations. Experimen-
tal evaluation of different maximal matching algorithms might be revealing.

The authors would like to thank the anonymous referees for carefully reading
the manuscript and making helpful suggestions.
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