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Preface

These proceedings contain the papers that were presented at the 6th International
Conference on Language and Automata Theory and Applications (LATA 2012),
held in A Coruña, Spain, during March 5–9, 2012.

The scope of LATA is rather broad, including: algebraic language theory;
algorithms for semi-structured data mining; algorithms on automata and words;
automata and logic; automata for system analysis and program verification; au-
tomata, concurrency and Petri nets; automatic structures; cellular automata;
combinatorics on words; computability; computational complexity; computa-
tional linguistics; data and image compression; decidability questions on words
and languages; descriptional complexity; DNA and other models of bio-inspired
computing; document engineering; foundations of finite-state technology; foun-
dations of XML; fuzzy and rough languages; grammars (Chomsky hierarchy,
contextual, multidimensional, unification, categorial, etc.); grammars and au-
tomata architectures; grammatical inference and algorithmic learning; graphs
and graph transformation; language varieties and semigroups; language-based
cryptography; language-theoretic foundations of artificial intelligence and artifi-
cial life; parallel and regulated rewriting; parsing; pattern recognition; patterns
and codes; power series; quantum, chemical and optical computing; semantics;
string and combinatorial issues in computational biology and bioinformatics;
string processing algorithms; symbolic dynamics; symbolic neural networks; term
rewriting; transducers; trees, tree languages and tree automata; and weighted
automata.

LATA 2012 received 114 submissions. Each one was reviewed by three Pro-
gram Committee members, many of whom consulted with external referees. After
a thorough and lively discussion phase, the committee decided to accept 41 pa-
pers (which represents an acceptance rate of 35.96%). The conference program
also included three invited talks and two invited tutorials. Part of the success in
the management of such a large number of submissions is due to the excellent
facilities provided by the EasyChair conference management system.

We would like to thank all invited speakers and authors for their contri-
butions, the Program Committee and the reviewers for their cooperation, and
Springer for its very professional publishing work.

December 2011 Adrian-Horia Dediu
Carlos Martín-Vide
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Measuring Information in Timed Languages�

Eugene Asarin

LIAFA – Université Paris Diderot and CNRS, France
eugene.asarin@liafa.jussieu.fr

Timed automata and timed languages [1] constitute a beautiful discovery that
opened new perspectives to automata and language theory, as well as new ap-
plications to computer-aided verification. However the theory of timed regular
languages is far from being achieved. Seven years ago, in [2], I argued that devel-
oping such a theory constituted an important research challenge, and I sketched
a research program in this direction. Unfortunately, when listing research tasks
on timed languages I have overlooked one interesting topic: measuring size of
and information content in such languages. Catching up this omission became
the focus of my research and the theme of this talk.

In this talk, I survey results obtained in [3–7] by my co-workers and myself
on volume and entropy of timed regular languages.

To define size measures of timed languages we proceed as follows. A “slice”
Ln of a timed language L, limited to words with n events, can be seen as subset
of IRn × Σn, and its volume Vn can be defined in a natural way. We call the
exponential growth rate of Vn volumic entropy H of the timed language L.

For a timed regular L, volumes Vn are rational, and relatively easy to compute
for a fixed n. What is more interesting, computation of entropy H is based on
functional analysis. Namely, to a timed automaton can be associated a positive
linear operator Ψ (given by a matrix of integrals) on some Banach space. Then
we prove that H = log ρ(Ψ), where ρ denotes the spectral radius. We discuss
exact and approximate methods of computing the entropy.

Entropy H can be seen as a size of the language L or as information con-
tents in its typical timed words. We formalize this last observation in terms of
Kolmogorov complexity and in terms of symbolic dynamics.

Entropy brings new insights into classical questions on timed automata. We
show that having a not-too-small entropy suffices to rule out Zeno pathologies in
timed automata. Thus “non-vanishing” timed regular languages satisfy a weak
pumping lemma and behave well under discretization.

For “degenerate” timed automata, it is often the case that the slice Ln is a
union of polyhedra of different dimensions ≤ n. We argue for a reasonable way
of measuring volumes and entropies in this degenerate case.

We conclude this introduction to quantitative theory of timed languagesby some
open problems and speculate on future theoretical and practical applications.

� The support of Agence Nationale de la Recherche under the project EQINOCS
(ANR-11-BS02-004) is gratefully acknowledged.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 1–2, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Automata-Based Symbolic Representations

of Polyhedra�

Bernard Boigelot, Julien Brusten, and Jean-François Degbomont

Institut Montefiore, B28,
Université de Liège,

B-4000 Liège, Belgium
{boigelot,brusten,degbomont}@montefiore.ulg.ac.be

Abstract. This work describes a data structure, the Implicit Real-Vec-
tor Automaton (IRVA), suited for representing symbolically polyhedra,
i.e., regions of n-dimensional space defined by finite Boolean combina-
tions of linear inequalities. IRVA can represent exactly arbitrary convex
and non-convex polyhedra, including features such as open and closed
boundaries, unconnected parts, and non-manifold components. In addi-
tion, they provide efficient procedures for deciding whether a point be-
longs to a given polyhedron, and determining the polyhedron component
(vertex, edge, facet, . . . ) that contains a point. An advantage of IRVA is
that they can easily be minimized into a canonical form, which leads to
a simple and efficient test for equality between represented polyhedra.
We also develop an algorithm for computing Boolean combinations of
polyhedra represented by IRVA.

1 Introduction

The problem of designing a good data structure for representing and handling
polyhedra, i.e., regions of n-dimensional space delimited by finitely many planar
boundaries, has important applications in several areas of computer science. The
precise class of polyhedra that needs to be covered and the range of necessary
manipulation operations actually differ according to the application field.

Our historical motivation for studying this problem is related to computer-
aided verification, where polyhedra are used for representing sets of system
configurations that are manipulated during symbolic state-space exploration of
hybrid automata [11,6]. In this setting, polyhedra are defined as finite Boolean
combinations of strict and/or non-strict linear inequalities. The operations that
need to be performed on polyhedra include unions, intersections, projections,
and linear transformations (for applying the transition relation of the system
under study), and tests of inclusion or equality (for detecting that a fixed point
has been reached).

� This work is partially supported by the Interuniversity Attraction Poles program
MoVES of the Belgian Federal Science Policy Office, and by the grants 2.4607.08
and 2.4545.11 of the Belgian Fund for Scientific Research (F.R.S.-FNRS).

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 3–20, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The efficient manipulation of polyhedra is also essential to computed-aided
design, where they yield convenient approximations of the shape of arbitrary
objects. In this framework, the spatial dimension n is usually limited to 2 or
3, and polyhedra are often regularized, meaning that they are made equal to
the topological closure of their interior. Intuitively, the regularization operation
gets rid of polyhedron features that are considered to be negligible and prob-
lematic, such as isolated points, dangling facets or edges, and open boundaries.
The operations applied on polyhedra include Boolean combinations in order to
construct complex objects from elementary building blocks, geometric transfor-
mations and measurements, two and three-dimensional visualization, checking
whether a point belongs to a given polyhedron (the point location problem), and
computing the polyhedron component (vertex, edge, facet, . . . ) that contains a
point (the point classification problem).

Finally, as last examples of applications, polyhedra are also used in optimiza-
tion theory and constraint programming [16] for specifying systems of constraints.
In those applications, the spatial dimension n corresponds to the number of vari-
ables implicated in the constraints, which is usually large, and the considered
polyhedra are often convex, meaning that they can be expressed as finite con-
junctions of linear inequalities. Typical problems there consist in searching inside
a polyhedron for a point that maximizes a given objective function, and deciding
whether a polyhedron is empty or not.

In this work, we consider the polyhedra defined as a finite Boolean combi-
nation of open and closed linear constraints, which are also known as Nef poly-
hedra [1,10]. This class covers polyhedra with combinations of open and closed
boundaries, non-convex or unconnected parts, and non-manifold components.
Our aim is to obtain a data structure that is able to represent exactly those
polyhedra, and for which efficient algorithms can be derived for computing their
Boolean combinations, checking inclusion, equality, and emptiness, and solving
the point location and point classification problems.

Several approaches have been proposed for tackling those problems. A first
possibility is to represent a polyhedron by a logical formula expressed in the
quantifier-free fragment of linear arithmetic, for which powerful solvers are avail-
able [9]. This solution has the advantage of being able to deal with large spatial
dimensions, but does not provide efficient algorithms for checking set equality or
inclusion, or for simplifying the representation of a polyhedron obtained as the
result of complex operations. In the restricted case of convex polyhedra, formula-
based representations can be augmented with redundant structural information
(the so-called vertices, extremal rays and lines of polyhedra), which substantially
simplifies comparison operations [13]. In computer-aided design applications,
the main approaches consist in representing a solid object as an explicit Boolean
combination of elementary primitives (Constructive Solid Geometry (CSG)) [15],
or by a geometrical description of their boundary (Boundary representations
(B-rep)). CSG methods can be generalized to non-polyhedral primitives such
as spheres, toruses and shapes bounded by polynomial surfaces. They provide
direct implementations of Boolean operators and an easy solution to the point
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location problem. However, they are usually restricted to regularized shapes, and
do not make it possible to check easily inclusion or equality of objects. On the
other hand, B-rep techniques are able to represent accurately features such as
open and/or closed boundaries and non-manifold components, but do not admit
efficient algorithms for applying Boolean operators or solving the point location
problem. These drawbacks are addressed by Selective Nef Complexes (SNC),
which combine a geometrical description of the vertices, edges and facets that
compose a polyhedron with a topological representation of the incidence relation
between them. SNC data structures have the same expressive power as B-rep
ones, but can be combined by means of Boolean operators. Algorithms have also
been developed for solving the point location and point classification problems
over these structures [10] in the case of small spatial dimensions (n = 2 or n = 3).

A different approach is to represent polyhedra using Real-Vector Automata
(RVA), which are a particular form of infinite-word automata recognizing en-
codings of points in Rn [2,5]. It has been established that RVA are expressive
enough for representing arbitrary polyhedra. The advantages of automata-based
representations are that computing Boolean combinations of polyhedra reduce
to carrying out similar operations on the languages accepted by the automata,
for which simple algorithms are known. Furthermore, RVA can easily be mini-
mized into a canonical form [14]. This leads to efficient comparison operations
between represented sets, and allows to simplify the results of long chains of
operations. RVA also provide a very efficient algorithm for solving the point lo-
cation and classification problems. The main drawback of RVA is their size that
can grow linearly with the coefficients of linear constraints, which makes those
symbolic representations unmanageable in some applications. This drawback is
alleviated by Implicit Real-Vector Automata (IRVA), which intuitively operate
on similar principles as RVA, but replace some of their unnecessarily large in-
ternal structures by more concise algebraic objects [3]. Interestingly enough, it
has been shown that the RVA structures replaced in IRVA closely match the
internal components of SNC representations of polyhedra, and that their reach-
ability properties represent the incidence relation between them. The advantages
of IRVA over SNC representations are threefold. First, they inherit the canonicity
properties of RVA, which reduces equality testing between polyhedra to a sim-
ple isomorphism check. Second, like RVA, they admit very efficient algorithms
for the point location and classification problems, which proceed by following a
single path in a decision structure. Finally, IRVA are applicable to any spatial
dimension n.

2 Basic Notions and Notations

Let n ∈ N be a dimension. A linear constraint over points x ∈ Rn is a constraint
of the form a.x#b, with a ∈ Zn, b ∈ Z, and # ∈ {<,≤,=,≥, >}. A finite
Boolean combination of such constraints defines a polyhedron. A polyhedron Π
is convex if for every x1,x2 ∈ Π and λ ∈ [0, 1], one has λx1+(1−λ)x2 ∈ Π , i.e.,
the line segment joining x1 and x2 is a subset ofΠ . Every convex polyhedron can
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be expressed as a finite conjunction of linear constraints. A polyhedron defined
by a finite conjunction of linear equalities, i.e., constraints of the form a.x = b, is
an affine space. An affine space that contains 0 is a vector space. The dimension
dim(S) ≤ n of an affine or vector space S ⊆ Rn is the largest number of linearly
independent vectors it contains. A set S ⊆ Rn is conical with respect to the apex
v ∈ Rn if for all x ∈ Rn and λ ∈ R>0, one has x ∈ S iff v + λ(x − v) ∈ S,
which intuitively states that the set S is not affected by a scaling transformation
centered on the point v. A polyhedron that is conical is a pyramid. The set of
apexes of a pyramid always forms an affine space [1].

3 Polyhedra

3.1 Topological Components

The main idea behind the data structure discussed in this work is to exploit the
specific topological properties of polyhedra. It has been observed that the struc-
ture of a polyhedron Π ⊆ Rn is pyramidal in arbitrarily small neighborhoods of
any point v ∈ Rn [1,4]. This property can be formalized as follows.

Definition 1. Let v = (v1, . . . , vn) ∈ Rn and ε ∈ R>0. The cubic closed neigh-
borhood of size ε of v is the set

Nε(v) = [v1 −
ε

2
, v1 +

ε

2
]× [v2 −

ε

2
, v2 +

ε

2
]× · · · × [vn −

ε

2
, vn +

ε

2
].

Theorem 2. Let Π ⊆ Rn be a polyhedron. For every point v ∈ Rn, there exists
ε ∈ R>0 such that Π coincides over Nε(v) with a pyramid of apex v.

Note that if Π coincides with a pyramid P in the neighborhood Nε(v) of a point
v, then the same pyramid P also describes its structure in all neighborhoods
Nε′(v) such that 0 < ε′ ≤ ε, since a pyramid is invariant by scaling transfor-
mations. It has additionally been established that a finite number of distinct
pyramids suffices for describing the structure of Π in the neighborhood of all
points in Rn [1,4]. We have the following definition and theorem.

Definition 3. Let Π ⊆ Rn be a polyhedron, and v ∈ Rn be an arbitrary point.
The local pyramid of Π with respect to v is the pyramid PΠ(v) that coincides
with Π over sufficiently small neighborhoods Nε(v) of v.

Theorem 4. For each polyhedron Π ⊆ Rn, the set {PΠ(v) | v ∈ Rn} is finite.

This theorem states that a polyhedron Π partitions the space Rn into a finite
number of equivalence classes, each described by a local pyramid. We call the
equivalence class that contains a point v the polyhedral component, or more sim-
ply component, of Π associated to v. Such a component is thus uniquely charac-
terized by the local pyramid PΠ(v). The set of apexes of this pyramid forms the
characteristic affine space of the component, denoted aff(C) for a component C,
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and the dimension of this space defines the dimension of the component, denoted
dim(C). Intuitively, the dimension of a component characterizes the number of
degrees of freedom among its points. Components of dimension 0, 1, 2 thus cor-
respond to the classical notions of vertices, edges and facets of polyhedra. An
illustration is given in Figure 1.

x2

x2 < 2

x1 − x2 ≤ 1

x1

x1 ≥ 1

Fig. 1. Example of (a) polyhedron, (b) components, and (c) incidence relation

3.2 Incidence Relation

The components of a polyhedron are connected by an incidence relation. We
have the following definition and theorem.

Definition 5. A component C2 of a polyhedron Π is incident to a component
C1, which is denoted C1 � C2, if for every point v ∈ Rn that belongs to C1,
there exist points that are arbitrarily close to v and that belong to C2.

Theorem 6. For every polyhedron, the incidence relation � is a partial order
over its components. This relation is such that C1 � C2 implies aff(C1) ⊆ aff(C2)
(and thus dim(C1) ≤ dim(C2)).

3.3 Extension to Polyhedral Partitions

The notions of polyhedral component and incidence relation can be extended
to more general structures than polyhedra. We define a polyhedral partition as
a partition Π = {Π1, Π2, . . . , Πm} of Rn, with m > 0, such that each Πi is a
polyhedron. Such a partition can alternatively be specified as a color function
Π : Rn → {1, 2, . . . ,m} that maps every point v ∈ Rn onto its index Π(v) in
the partition, which can be seen as a color assigned by the polyhedral partition
out of m distinct possibilities. Polyhedral partitions are especially useful in the
framework of the point classification problem, where the core issue is to describe
such a partition by a data structure from which one can easily compute the
index, or color, of arbitrary points. A polyhedron can be seen as a particular
instance of a polyhedral partition, limited to two colors corresponding to the
points that respectively belong and do not belong to the polyhedron. In the rest
of this paper, we will thus indifferently use polyhedra and polyhedral partitions.
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The definition of pyramids readily adapts to polyhedral partitions: A polyhe-
dral partition Π over Rn is pyramidal with respect to the apex v ∈ Rn if it is
such that for every x ∈ Rn and λ ∈ R>0, we have Π(x) = Π(v + λ(x − v)).
A pyramidal partition of apex v is thus one that classifies the points of Rn on
the sole basis of the direction in which they are seen from v, which means that
such a partition is not affected by scaling transformations centered on v. From
this extension of the concept of pyramid, one straightforwardly generalizes to
polyhedral partitions the notions of local pyramid, components, and incidence
relation.

4 Towards a Better Data Structure for Polyhedra

4.1 Real-Vector Automata

Selective Nef Complexes (SNC) are data structures that combine descriptions of
the components of a polyhedron and of the incidence relation between them [10].
In this section, we study another class of representations, the Real-Vector Au-
tomata (RVA), and show that, even though RVA are based on different ideas
from SNC representations, both data structures share some common principles
of operation. Our aim will then be to define symbolic representations that are
as concise as SNC, but inherit from RVA their canonicity property, as well as
very efficient algorithms for solving the point location and point classification
problems.

RVA are finite-state machines recognizing the coordinates of points, encoded
into words [2,5]. They depend on the choice of a numeration base r ∈ N>1,
which provides an alphabet of digits Σr = {0, 1, . . . , r − 1}, augmented with
a distinguished symbol � used for separating the integer from the fractional
part of encodings. In a given base r, a number z ∈ R≥0 is encoded by infinite
words ap−1ap−2 . . . a0 � a−1a−2 . . . such that p > 0, ai ∈ Σr for all i < p,
and z =

∑
i<p air

i. This scheme is extended to signed numbers by encoding
negative numbers by their r’s complement, which amounts to representing a
number z ∈ R<0 by the encoding of z+rp, where p is the length of its integer part.
The value of p is not fixed, but has to satisfy the constraint −rp−1 ≤ z ≤ rp−1.
The integer part of an encoding can be increased at will, by repeating its leading
digit (which is equal to 0 for positive and to r − 1 for negative numbers), hence
every number admits infinitely many encodings.

Points in Rn are encoded by combining encodings of their components, which
can always be chosen such that their integer parts share the same length. By
reading those component encodings synchronously, one symbol at a time, one
obtains a point encoding that takes the form of an infinite word over the alphabet
{0, 1, . . . , r−1}n∪{�} (since the separator symbol is read at the same time in all
component encodings, it can be denoted by a single symbol). The exponential
size of the alphabet can be avoided by serializing the encodings, which amounts
to replacing each symbol (d1, d2, . . . , dn) ∈ {0, 1, . . . , r − 1}n by the subword
d1d2 . . . dn expressed over Σr.
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Given a set S ⊆ Rn and a base r ∈ N>1, the base-r encodings of the points
in S form a language. An infinite-word finite-state automaton that accepts this
language is called a Real-Vector Automaton (RVA) representing S. It is known
that RVA are expressive enough for representing all the sets that are definable
in 〈R,Z,+,≤〉 [2], i.e., the first-order additive theory of real and integer num-
bers, which covers our definition of polyhedra. Furthermore, a restricted form
of infinite-word automata, weak deterministic ones, suffices for representing the
sets definable in 〈R,Z,+,≤〉, and the sets that are representable by these au-
tomata in every base exactly match those that are definable in that theory [5]. A
weak automaton is a Büchi automaton such that each strongly connected compo-
nent of its transition relation is entirely composed of accepting or non-accepting
states. The advantages of using weak deterministic RVA is that they have ef-
ficient manipulation algorithms, in particular for applying to represented sets
operations such as Boolean combinations, projections and Cartesian products,
and that they admit an easily computable canonical form [14].

4.2 Point Decision in RVA

Consider a deterministic weak RVA A that represents a polyhedron Π ⊆ Rn in
a base r ∈ N>1. Assessing whether a point v ∈ Rn belongs or not to Π reduces
to encoding v in base r, which yields a word w ∈ Σ+

r � Σω
r , and then checking

whether this word is accepted by A. Since A is deterministic, this can be done by
following a single path in its transition graph. In a weak automaton, determining
whether a path is accepting or not amounts to checking the accepting status of
the last strongly connected component (SCC) that it visits. In other words, the
point decision problem for v is solved by following transitions labeled by the
successive symbols in w, which moves through the SCC of A, until a final SCC
is reached.

It has been shown that the SCC of A are related to the polyhedral compo-
nents of Π [4,3,7]. This can intuitively be explained as follows. Let u ∈ Σ+

r �Σ∗
r

be a finite encoding prefix that contains k digits in the fractional part of each
vector component, and s be the state of A reached after reading u. The points
of Rn that admit an encoding prefixed by u form a n-cube Cu of size r−k, and
the shape of Π inside this n-cube is uniquely determined by the state s. As-
sume that s belongs to a non-trivial strongly connected component of A, i.e.,
one containing a cycle from s to itself, labeled by a word u′ that adds k′ addi-
tional digits to the encoding of each vector component. The encodings prefixed
by uu′ determine a n-cube Cuu′ of size r−(k+k′). In both cubes Cu and Cuu′ ,
the shape of Π is identical. This shows that the linear scaling transformation
that maps Cu to Cuu′ leaves Π invariant inside of this n-cube. It is established
in [4] that this invariance property actually holds for arbitrary scaling factors,
which implies thatΠ is pyramidal inside Cu. A correspondence between the local
pyramidal structures induced by the strongly connected components of A and
the components of Π has been discovered in [4], and is investigated in [7]. This
correspondence is not exactly one-to-one: some polyhedral components can be
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split between several SCC, and components that have local pyramids that only
differ by a translation are sometimes described by a common SCC.

The reachability relation between the SCC of A also loosely corresponds to
the incidence relation between the components of Π . The intuition is as follows.
Consider a non-trivial SCC S2 reachable from another one S1. For every point
v ∈ Rn with an encoding that ends up in S1, there exists a point v′ that is
arbitrarily close to v with an encoding ending up in S2. Indeed, one may follow
in S1 the path reading the encoding of v for arbitrarily many transitions before
deciding to divert towards one ending in S2.

The procedure for deciding whether a point v ∈ Rn belongs to a polyhedron
represented by a RVA can thus be summarized as follows. One follows in the
transition graph of the automaton the path given by an encoding w of v, until
reaching a non-trivial strongly connected component S1. If the remaining suffix
of w can be read without leaving S1, which means that v belongs to a polyhedral
component C1 represented by S1, then the accepting status of this component
provides the answer to the point decision problem. If this suffix leaves S1, then
it eventually reaches another non-trivial SCC S2, which intuitively corresponds
to moving from C1 to another polyhedral component C2 that is incident to C1.
The same procedure is repeated in S2, and so on until the path finally reaches a
SCC that it does not leave anymore.

4.3 Principles of IRVA

The idea behind Implicit Real-Vector Automata is to define a data structure
representing the components of a polyhedron and the incidence relation between
them, in such a way that the point decision problem can be solved by following
deterministically a single path in the structure, similarly to RVA. Compared
to RVA, the main advantage of IRVA will be their substantially more efficient
representation of the polyhedral components.

Informally, an IRVA is a graph composed of implicit states, which correspond
to the components of its represented polyhedron, and explicit states and tran-
sitions, that provide an acyclic and deterministic decision structure linking the
implicit states. In order to decide whether a point v ∈ Rn belongs to a polyhe-
dron represented by an IRVA, one will start from a first implicit state s1. If v
belongs to the corresponding polyhedral component C1, then the search is over
and the answer to the decision problem depends on whether C1 is a subset of
the polyhedron (which may be indicated by a flag attached to s1). If v does not
belong to C1, then the procedure follows the decision structure that leaves s1,
until reaching another implicit state s2, representing a polyhedral component
C2 that is incident to C1. The same procedure is repeated in this implicit state,
and so on until reaching the component that finally contains v. Note that this
idea straightforwardly generalizes to representations of polyhedral partitions, by
associating a color to each implicit state instead of a binary flag.

The information that needs to be associated to an implicit state s includes
the characteristic affine space aff(C) of its corresponding polyhedral component
C, and either the color associated to this component or a binary acceptance flag.
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The purpose of the deterministic decision structure leaving s is to represent the
structure of the underlying local pyramid of C, by directing the vectors leaving
C to the appropriate incident components. The development of such a decision
structure will be addressed in Section 4.4.

A problem that remains to be addressed is to locate efficiently the first implicit
state s1 to be visited during the search for a point v ∈ Rn. This could be achieved
by building a deterministic decision structure for classifying the points of Rn. We
choose to follow a simpler approach, which consists in considering only polyhedra
in which the choice of the initial implicit state is trivial. We have the following
result.

Theorem 7. If a polyhedron Π is a pyramid, then it contains a unique compo-
nent C that is minimum with respect to the incidence relation � , i.e., such that
C � C′ for every component C′ of Π. This minimum component corresponds to
the set of apexes of Π.

As a consequence, if a pyramid Π is represented by an IRVA, then the first
implicit state visited during the search for a point can systematically be chosen
to be the representation of the minimum component of Π , which eliminates the
need for a special form of decision structure. Intuitively, this is possible because
a pyramid of apex v is not affected by scaling transformations centered on v.
This property can be exploited for conducting the search in any arbitrarily small
neighborhood of v.

It is important to point out that moving from polyhedra to pyramids does
not incur a loss of expressive power, for every polyhedron can be transformed
into a pyramid that represents it without ambiguity, and vice-versa. We have
the following definition.

Definition 8. Let Π ⊆ Rn be a polyhedron. The representing pyramid of Π is
the polyhedron Π ⊆ Rn+1 = {λ(x1, . . . , xn, 1) | λ ∈ R>0 ∧ (x1, . . . , xn) ∈ Π}.

For every polyhedron Π ⊆ Rn, the polyhedron Π is a pyramid of apex 0. The
polyhedronΠ can be recovered fromΠ by the transformationΠ={(x1, . . . , xn) |
(x1, . . . , xn, 1) ∈ Π}, which amounts to computing the section ofΠ by the planar
constraint xn+1 = 1, and projecting the result over the n first vector components.

Note that the elementary operations over polyhedra, such as computing
Boolean combinations, testing equality or inclusion, and solving the point deci-
sion and point classification problems, readily translate into identical or similar
operations over their representing pyramids. The notion of representing pyramids
also straightforwardly generalizes to polyhedral partitions.

In the sequel, we will thus only address without loss of generality the prob-
lem of designing a data structure for pyramids, or pyramidal partitions, that
admit the apex 0. This choice brings the additional benefit of simplifying some
structures. In particular, the characteristic affine spaces aff(C) of components
become, in the case of such partitions, vector spaces since they systematically
include 0. It follows that the implicit states of IRVA can actually be annotated
by vector spaces instead of affine ones.
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4.4 Decision Structure for Directions

Before defining formally IRVA, we discuss the details of the decision structures
linking implicit states. This section is adapted from [3]. The problem that is
tackled can be stated as follows. Let A be an IRVA representing a pyramidal
partition Π of Rn , with apex 0. Let s be an implicit state of A, representing a
polyhedral component C of Π . As explained in Section 4.3, a vector space VS(s)
is associated to s, and represents the set of apexes of the local pyramid PΠ(C)
of C. The problem consists in building a deterministic decision structure that
classifies the points v ∈ Rn such that v �∈VS(s) according to their polyhedral
component in the pyramid PΠ(C).

For every λ ∈ R>0, the decision taken for the point λv has to match exactly
the one taken for v, since PΠ(C) is invariant by scaling transformations centered
on 0. We ensure that this property is satisfied by first normalizing the point v,
which intuitively corresponds to keeping only the direction in which it can be
reached from VS(s), and then encode this direction over a finite alphabet. The
decision structure leaving s can then take the form of an acyclic graph, the edges
of which are labeled by symbols of this alphabet.

We first describe the normalization operation. Let {y1,y2, . . . ,ym}, with 0 ≤
m ≤ n, be a basis of the vector space VS (s). If m = n, then the component
C is universal, meaning that PΠ(C) has a uniform color over Rn. In this case,
there is no need for a decision structure leaving s, since one cannot have v �∈
VS(s). If m < n, then we introduce n − m vectors z1, z2, . . . , zn−m such
that {y1,y2, . . . ,ym, z1, z2, . . . , zn−m} is a basis of Rn. The vectors z1, z2, . . . ,
zn−m can be chosen in a canonical way, by selecting among (1, 0, . . . , 0), (0, 1, . . . ,
0), . . . , (0, 0, . . . , 1), in that order, n−m vectors linearly independent with {y1,
y2, . . . ,ym}.

The next step for normalizing v is to express this point in the coordinate
system {y1, . . . ,ym, z1, . . . , zn−m}, obtaining a tuple (y1, . . . , ym, z1, . . . , zn−m).
Clearly, PΠ(C) is not affected by translations within VS (s), hence only the
coordinates (z1, z2, . . . , zn−m) are relevant for classifying v.

Let z = (z1, z2, . . . , zn−m). The next operation is to get rid of the magnitude
of this vector, keeping only its direction. This can be done by computing the
intersection of the half-line {λz | λ ∈ R>0} with the faces of the normalization
cube [− 1

2 ,
1
2 ]
n−m. The resulting point v′ ∈ Rn−m then provides the normalization

of our original point v.
It remains to define an encoding scheme for mapping normalized points onto

words over a finite alphabet. Instead of using the technique discussed in Sec-
tion 4.1, we use an encoding relation that exploits the fact that the points
to be encoded belong to the normalization cube. Precisely, an encoding of a
normalized point v′ = (v′1, v

′
2, . . . , v

′
n−m) ∈ Rn−m begins with a symbol a ∈

{−(1),+(1),−(2),+(2), . . . ,−(n−m),+(n−m)} that identifies the face of the
normalization cube to which v′ belongs: If a = −(i), with 1 ≤ i ≤ n − m,
then v′i = − 1

2 ; if a = +(i), then v′i = + 1
2 . The leading symbol a is followed

by a suffix w ∈ {0, 1}ω that encodes the position of v′ within the face of the
normalization cube represented by a. The suffix w is obtained as follows. If
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a ∈ {−(i),+(i)}, with 1 ≤ i ≤ n−m, then the i-th component v′i of v
′ is fixed,

and it remains to encode the coordinates v′′ = (v′1, . . . , v
′
i−1, v

′
i+1, . . . , v

′
n−m).

We then define w ∈ {0, 1}ω as the fractional part of a base-2 encoding of the
point v′′ + (12 ,

1
2 , . . . ,

1
2 ), i.e., such that 0n−m−1 � w is a binary encoding of this

point.
This encoding scheme maps a normalized point v′ ∈ Rn−m onto words of the

form aw, with a ∈ {−(1),+(1),−(2),+(2), . . . ,−(n − m),+(n − m)} and w ∈
{0, 1}ω. Note that some points have multiple encodings, because either they are
located at the boundary between different faces of the normalization cube, or their
position on a face of this cube admits more than one fractional binary encoding.
This situation is not at all problematic, provided that the decision structure leav-
ing the implicit state s handles all these encodings in the same way.

In order to obtain a deterministic decision structure rooted at s, we consider
the successive digits of encodings w. The leading digit a of w characterizes a
specific face of the normalization cube. The normalized points v′ ∈ Rn−m that
admit an encoding prefixed by a form a convex pyramid, and it is easily shown
that the points v ∈ Rn that normalize into v′ form a convex pyramid as well.
This latter pyramid, which only depends on the vector space V = VS (s) and the
leading symbol a, will be denoted RV,a. This pyramid corresponds to a region
of Rn that has a non empty intersection with some subset S of the components
of Π . If this subset contains a unique minimum component C′ with respect to
the incidence relation �, then deciding whether a point v ∈ RV,a belongs or not
to Π can be carried out in the neighborhood of C′, hence the decision branch
labeled by a can be directed to the implicit state representing C′.

If, on the other hand, the subset S of components does not contain a mini-
mum element with respect to �, then the decision branch labeled by a has to
be developed further. By reading an additional prefix u ∈ {0, 1}∗, one refines
the region RV,a into the pyramid RV,au containing all points v ∈ Rn whose
normalization admits an encoding prefixed by au. Once again, if RV,au covers
a subset of components of Π with a unique minimum component C′, then the
decision branch labeled by au can be oriented to the implicit state representing
C′. Otherwise, the refinement procedure has to be repeated until the prefix is
long enough. Termination is ensured by the following result.

Theorem 9. Let Π be a pyramidal partition of Rn, with apex 0, C be one of
its polyhedral components, and V = aff(C). There exists k ∈ N>0 such that for
every encoding w of length k, the subset of components of Π that have a non-
empty intersection with the region RV,w admits a unique minimum element with
respect to the incidence relation �.

5 Implicit Real-Vector Automata

5.1 Syntax

We are now ready to define the syntax of IRVA. As discussed in Sections 3.3
and 4.3, the goal is to obtain a symbolic representation of a pyramidal partition,
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i.e., a generalized pyramid in which the components are labeled by a finite range
of colors instead of a binary acceptance flag.

Definition 10. An Implicit Real-Vector Automaton (IRVA) is a tuple (n, SI ,
SE , s0, δ,VS , col ), where:

– n ∈ N is a dimension,
– SI is a finite set of implicit states,
– SE is a finite set of explicit states,
– s0 ∈ SI is an initial state,
– δ : (SI×±(N>0))∪(SE×{0, 1})→ SI ∪SE is a (partial) transition function,
– VS : SI → 2R

n

associates a vector space to each implicit state,
– col : SI → N>0 associates a color to each implicit state.

In order to be valid, IRVA have to satisfy some syntactic constraints. First,
the transition function δ must be acyclic as well as complete, in the sense
that for every implicit state s ∈ SI , δ(s,−(i)) and δ(s,+(i)) are defined iff
i ∈ {1, 2, . . . , n− dim(VS(s))}, and for every explicit state s ∈ SE , both δ(s, 0)

and δ(s, 1) are defined. Let us denote by s1
w→ s2, or more simply s1 → s2 if w

is not of interest, the fact that the transition function δ leads from the implicit
state s1 ∈ SI to s2 ∈ SI , reading the word w ∈ ±(N>0){0, 1}∗, and visiting
only explicit states between s1 and s2. The reflexive and transitive closure of
the relation → is denoted →∗. We impose the following additional restrictions
on IRVA: each implicit state s ∈ SI must be reachable, i.e., such that s0 →∗ s,
and for every pair s1, s2 ∈ SI such that s1

w→ s2 for some word w, one must
have VS(s1) ⊂ VS (s2) (which implies dim(VS(s1)) < dim(VS (s2))), as well as
RVS(s1),w ∩ VS(s2) �= ∅. These restrictions intuitively express that the decision
structures linking the implicit states are consistent with the properties of the
incidence relation between polyhedral components.

5.2 Semantics

Let A = (n, SI , SE , s0, δ,VS , col) be an IRVA and v ∈ Rn be a point. We have
the following definition.

Definition 11. A run of A over v is a finite sequence s0
w1→ s1

w2→ · · · wm→ sm,
where 0 ≤ m ≤ n, s0, s1, . . . , sm ∈ SI , and w1, w2, . . . , wm ∈ ±(N>0){0, 1}∗,
such that v ∈ VS (sm), and for every i ∈ {0, 1, . . . ,m − 1}, v �∈ VS(si) and
v ∈ RVS(si),wi+1

.

In other words, a run over a point v is obtained by starting from the initial
implicit state s0, and repeatedly moving from an implicit state to another ac-
cording to the deterministic decision structures induced by the transition func-
tion δ, which amounts to following the relation →. A run ends when it finally
reaches an implicit state whose associated vector space contains v. A point may
admit multiple runs. In order to be able to solve the point decision and point
classification problems by following a single run in an IRVA, we introduce the
following semantical integrity constraint.
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Definition 12. An IRVA (n, SI , SE , s0, δ,VS , col) is well-formed if it is syn-
tactically valid, and for every v ∈ Rn, each of its runs over v ends up in the
same implicit state.

From now on, we will only consider well-formed IRVA. Solving the point decision
or classification problems on such IRVA thus reduce to following an arbitrary
run over the point of interest. The answer is then provided by the color of the
implicit state that is finally reached by this run.

We are now ready to define the semantics of an IRVA A = (n, SI , SE , s0, δ,
VS , col), i.e., to describe the partitioning, or coloring, function Π : Rn → N>0

that it represents. Since the transition relation → between implicit states is
acyclic, we can consider these implicit states in bottom-up order, associating a
coloring function Πs to each s ∈ SI . This procedure can be started from the
states s ∈ SI such that dim(VS (s)) = n, which do not have successors by →,
and will eventually end up in the initial state s0. The coloring function Πs0 of
s0 will then provide the partition represented by the IRVA. The procedure relies
on the following result.

Theorem 13. Let s ∈ SI be an implicit state of A. Its coloring function Πs is
such that

– Πs(v) = col(s) for all points v ∈ VS (s),

– Πs(v) = Πs′(v) for all states s′ ∈ SI and points v ∈ Rn such that s
w→ s′

and v ∈ RVS(s),w, for some word w ∈ ±(N>0){0, 1}∗.

In summary, we have shown constructively how to build a coloring function that
describes the semantics of a given IRVA. We thus have the following theorem.

Theorem 14. Every well-formed IRVA (n, SI , SE, s0, δ,VS , col) represents a
pyramidal partition of Rn.

6 Canonicity

6.1 Canonical IRVA Representations

We now show that, for every pyramidal partition Π of Rn with apex 0, there
exists an IRVA A that represents it, and that this IRVA can be defined canoni-
cally up to equality of vector spaces and isomorphism of transition graphs. We
will then develop an algorithm for transforming any IRVA that represents Π
into this canonical form.

The first step consists in defining the set of implicit states SI of A, by cre-
ating one implicit state si for each polyhedral component Ci of Π . From Theo-
rem 7, we know that Π admits a unique minimum component C0 with respect
to the incidence relation �. The corresponding implicit state s0 becomes the
initial state of A. For each si ∈ SI , the vector space VS(si) is then made
equal to aff(Ci), and the color col(si) takes the (common) value of Π(v) for the
points v ∈ Ci.
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It remains to define the decision structures that link the implicit states. Recall
that, for an implicit state si ∈ SI and a word w ∈ ±({1, 2, . . . , n−m}){0, 1}∗,
where m = dim(VS(si)), it is possible to have si

w→ sj , with sj ∈ SI , iff the set
of components {Ck | (Ci � Ck) ∧ (RVS(si),w ∩ Ck �= ∅)} admits Cj as unique
minimum element (with respect to �). Since our aim is to obtain a canonical
decision structure, it is natural to only select the shortest words w for which such
a decision is possible, i.e., the transition si

w→ sj will be considered only if there

does not exist a shorter prefix u of w for which si
u→ sj is possible. By applying

this reasoning to all pairs of implicit states, one finally obtains a canonical form
of the acyclic labeled transition relation → linking these states.

From the labeled relation →, it is straightforward to define the explicit states
of the canonical IRVA representing Π . This can be achieved by building a deter-
ministic finite-state automaton with a transition relation corresponding to →,
considering that each implicit state has a unique distinguished accepting sta-
tus. This automaton can then be minimized into a canonical form using classical
techniques [12]. The implicit states are preserved by this operation, and the other
states of the minimized automaton become the explicit states of the canonical
IRVA. The transition function δ is then directly given by the transition relation
of the minimized automaton.

6.2 Minimization Algorithm

We now sketch an algorithm for computing, from an IRVA A = (n, SI , SE , s0, δ,
VS , col), a canonical IRVA that represents the same pyramidal partition. The
idea is to exploit the acyclic structure of the transition graph, by inspecting the
implicit and explicit states of A one by one in bottom-up order. Each step of the
minimization procedure consists in examining one state s ∈ SI ∪SE , in order to
determine whether it can be merged with another state s′ that has already been
processed, or left otherwise unchanged. When a state s is merged into a state s′,
all its incoming transitions are redirected to s′, and its outgoing transitions are
orphaned. This may leave unreachable states in the resulting IRVA, which are
easily removed by a subsequent cleaning step. Thanks to the order in which the
states are processed during minimization, the states s considered at each step
are such that their successors by the transition function have already undergone
minimization. The minimization of IRVA thus proceeds quite similarly to the
usual minimization algorithms for acyclic finite-state automata or for binary
decision diagrams [8]. The precise rules for deciding whether states should be
merged are however specific to IRVA.

A first situation occurs when the state s under scrutiny happens to have
identical successors as an already processed state s′, i.e., for every symbol a, one
has δ(s, a) = s′′ iff δ(s′, a) = s′′. In this case, if s is an explicit state, then it
can be merged into s′. If s is an implicit state, one additionally has to check the
conditions VS(s) = VS(s′) and col(s) = col(s′) before merging s with s′.

The next rule is more complex. Consider an explicit state s ∈ SE , with an out-
going decision structure leading to the set of implicit states {s1, s2, . . . , sk} ⊂ SI .
If this set contains a unique minimum element s′ with respect to the transition
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relation →∗, i.e., if s →∗ si for all i ∈ {1, 2, . . . , k}, then the decision structure
leaving s is redundant, since all its paths can be redirected towards s′ without
affecting the semantics of A. In such a case, the state s itself is redundant and
can be merged with s′. It can be shown that this situation only occurs when
the implicit state s′ is a direct successor of s; this property may be exploited for
speeding up the search for the states si.

Finally, a similar rule applies to implicit states s ∈ SI . Let {s1, s2, . . . , sk} ⊂
SI be the set of implicit states that are directly reachable from s by the transition
relation →. If this set admits a unique minimum element s′ with respect to →∗,
then s can be merged with s′ provided that two conditions are satisfied. First, the
color of both states must match: col(s) = col(s′). Second, in the particular case
where one has dim(VS (s′)) = dim(VS (s)) + 1, it is essential to ensure that the
state s′ does not represent a boundary of the polyhedral component associated
to s. This is done by checking that, among the words w such that s

w→ s′, at least
two of them have leading symbols −(i) and +(i) with an identical face number
and opposite polarities. This tricky particular case was overlooked in [3].

7 Combination Operation

Our goal is now to develop an algorithm for combining two IRVA A1 and A2,
respectively representing pyramidal partitions Π1 and Π2 of Rn. Recall that
these partitions can be seen as functions Π1 : Rn → {1, 2, . . . ,m1} and Π2 :
Rn → {1, 2, . . . ,m2} that assign colors to the points in Rn. In order to combine
Π1 and Π2, we need a combination function c : {1, 2, . . . ,m1}×{1, 2, . . . ,m2} →
{1, 2, . . . ,m}, where m ∈ N>0, that maps every pair of colors from Π1 and Π2

onto a single one. We have the following definition.

Definition 15. The combination of Π1 and Π2 induced by c is the pyramidal
partition Π = Π1 ��c Π2 over Rn such that Π(v) = c(Π1(v), Π2(v)) for every
v ∈ Rn.

Note that, in the particular case of binary partitions, this definition covers the
computation of intersections, unions, and differences of sets, by choosing a com-
bination function that corresponds to the appropriate Boolean operator.

The construction that we are about to describe shares some similarities with
the computation of the product of two finite-state automata. The idea is to
construct incrementally an IRVA A representing Π = Π1 ��c Π2, starting from
its initial state and developing its transition function step by step. Each implicit
state s of A corresponds to a pair (s1, s2), where s1 (resp. s2) is an implicit state
of A1 (resp. A2). The polyhedral component of Π represented by s corresponds
to the points v ∈ Rn that simultaneously belong to the component C1 of Π1

represented by s1, and to the component C2 of Π2 represented by s2. As a
consequence, one has VS(s) = VS(s1)∩VS(s2) and col(s) = c(col(s1), col (s2)).
The initial state of A is the first to be created, by pairing the initial states of
A1 and A2.
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During the construction of A, the creation of a new implicit state s is followed
by the development of its outgoing decision structure. This is done by exploring
the prefixes that can be read from s in breadth-first order. For such a prefix w,
one checks whether A admits an implicit state s′ such that s

w→ s′. This check is
carried out by first computing the convex region RVS(s),w, and then determining
whether this region covers a unique minimum component incident to C1 in Π1,
as well as one incident to C2 in Π2 (with respect to the incidence relations �1

and �2 of these pyramids). If a suitable implicit state s′ exists, then it either
corresponds to a previously computed state of A, or to a new state that needs
to be created. Otherwise, the decision labeled by w has to be developed further.

A key operation in the previous procedure is thus, given the IRVA Ai repre-
senting the pyramid Πi, with i ∈ {1, 2}, a convex region R ⊆ Rn, and an implicit
state si of Ai representing a component Ci ofΠi, to determine whether the set of
components of Πi that are incident to Ci and have a non-empty intersection with
R admits a unique minimum element C′

i. We encapsulate this operation in a func-
tion minel(Ai, R, si) that returns the implicit state of Ai representing C′

i if it ex-
ists, and ⊥ otherwise. The value of minel(Ai, R, si) can be computed as follows.
First, one explores the implicit states s′i of Ai that are reachable from si, i.e., for
which there exist words w1, w2, . . .wk and implicit states q1, q2, . . . qk−1, with

k > 0, such that si
w1→ q1

w2→ q2
w3→ · · · wk−1→ qk−1

wk→ s′i. All such states s′i for which
the intersection R∩RVS(si),w1

∩RVS(q1),w2
∩ . . .∩RVS(qk−1),wk

∩VS(s′i) is non-
empty are collected in a set U . If U contains a minimum state s′i with respect to
→∗, i.e., such that s′i →∗ s′′i for every s′′i ∈ U , then one has minel(Ai, R, si) = s′i.
Otherwise, the function returns minel(Ai, R, si) = ⊥.

The procedure for combining two IRVA is formalized in Algorithm 1. In ad-
dition to minel , this procedure relies on a function succ(s) that returns the
alphabet of symbols that can potentially be read from a state s, a function
new() that instantiates new explicit states, and the usual push, pop and empty?
operations on stacks. The algorithm relies on a stack for storing the states of A
whose outgoing decision structures still need to be developed. This stack con-
tains tuples (s1, s2, s, sI , w), where s is such a state, s1 and s2 are the current
states reached in respectively A1 and A2, sI is the last visited implicit state in
A, and w is the word read from sI to s.

8 Conclusions and Perspectives

We have studied a data structure, the Implicit Real Vector Automaton (IRVA),
that can be used for representing symbolically polyhedra or polyhedral partitions
in Rn. IRVA are not limited to convex or regularized polyhedra, admit an easily
computable minimal form, and are closed under Boolean operators.

IRVA imitate the principles of operation of Real-Vector Automata (RVA),
another automata-based data structure suited for polyhedra, but can be consid-
erably more concise. IRVA inherit from RVA very efficient algorithms for solving
the point decision and classification problems, which is a substantial advantage
compared to other symbolic representations of polyhedra, in particular Selective
Nef Complexes [10].
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input : Two IRVA A1 = (n1, SI1, SE1, s01, δ1,VS1, col1) and
A2 = (n2, SI2, SE2, s02, δ2,VS2, col2), a combination function c

output: An IRVA A = (n, SI , SE , s0, δ,VS , col)

s0 := (s01, s02);
SI := {s0};
SE := ∅;
VS(s0) := VS1(s01) ∩ VS2(s02);
col(s0) := c(col1(s01), col2(s02));
stack := ∅;
push (stack , (s01, s02, s0, s0, ε));
while not(empty?(stack)) do

(s1, s2, s, sI , w) := pop(stack);
foreach a ∈ succ(s) do

m1 := minel(A1, RVS(sI ),wa, s1);
m2 := minel(A2, RVS(sI ),wa, s2);
if m1 �= ⊥ and m2 �= ⊥ then

R := VS1(m1) ∩ VS2(m2);
if R ∩ RVS(sI ),wa = ∅ or dim(VS(sI)) ≥ dim(R) then

sN := new();
SE := SE ∪ {sN};
δ(s, a) := sN ;
push(stack , (m1,m2, sN , sI , wa));

else
if (m1,m2) �∈ SI then

SI := SI ∪ {(m1,m2)};
VS((m1,m2)) := R;
col((m1,m2)) := c(col1(m1), col2(m2));
push(stack , (m1,m2, (m1,m2), (m1,m2), ε));

end
δ(s, a) := (m1,m2);

end

else
if m1 = ⊥ then m1 := s1;
if m2 = ⊥ then m2 := s2;
sN := new();
SE := SE ∪ {sN};
δ(s, a) := sN ;
push(stack , (m1,m2, sN , sI , wa));

end

end

end

Algorithm 1. Computation of A1 ��c A2
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Future work will address the implementation of a package for building and
manipulating IRVA, the assessment of their performances in actual applications,
and the computation of additional operations such as projecting polyhedra and
converting IRVA to and from other representations.
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Abstract. The physical Church-Turing thesis explains the Galileo the-
sis, but also suggests an evolution of the language used to describe nature.
It can be proved from more basic principle of physics, but it also ques-
tions these principles, putting the emphasis on the principle of a bounded
density of information. This principle itself questions our formulation of
quantum theory, in particular the choice of a field for the scalars and the
origin of the infinite dimension of the vector spaces used as state spaces1.

1 The Church-Turing Thesis and Its Various Forms

1.1 Why a Thesis?

It is a quite common situation in mathematics, that a notion, first understood
intuitively, receives a formal definition at some point. For instance, the notion of
a real number has been understood intuitively in geometry, for instance as the
length of a segment, before it has been formally defined in the 19th century, by
Cauchy and Dedekind. Another example is the notion of an algorithm, that has
been understood intuitively for long, before a formal definition of the notion of a
computable function has been given in the 30s, by Gödel and Herbrand, Church,
Turing, and others.

There is however a difference between these two notions. When the notion of
a real number was defined, there seems to have been no real discussion of the
fact that the formal definition of Cauchy or Dedekind was indeed a formalization
of our intuitive notion of a real number. In the same way, there is no discussion
of the fact that the formal definitions of the notions of a triangle, a square, or
a circle are indeed formalizations of our intuitive notions of a triangle, a square,
or a circle. Even for the formal definitions of the notions of a distance and of
orthogonality, based on the notion of an inner product, we finally agree that they
correspond to our intuitive notion of a distance and of orthogonality.

1 These tutorial notes owe a lot to Pablo Arrighi with whom most of this research
has been done and to Maël Pégny with whom I gave a course on the Church-Turing
thesis in the PUC Rio in 2011, on the invitation of Luiz Carlos Pereira. I also want to
thank Olivier Bournez, José Félix Costa, Nachum Dershowitz, Jean-Baptiste Joinet,
Giuseppe Longo, and Thierry Paul for many discussion on this thesis.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 21–37, 2012.
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The situation is different with the notion of a computable function, as the
formal definition of this notion came with a thesis that this formal definition
indeed captures our intuitive notion of computability.

This peculiarity of the notion of a computable function can be explained by
its history. Before the modern definition, another had been given: the notion
of a primitive recursive function, and it was then noticed that there existed
functions, such as the Ackermann function, that were intuitively computable,
but not primitive recursive. This has raised a reasonable doubt that history
may repeat itself and that another counterexample may be given to this new
definition.

1.2 The Physical Church-Turing Thesis

Stated as such, the epistemological status of the Church-Turing thesis is unclear.
It cannot be proved, as it uses a notion that is not formally defined: that of a
function computable in the intuitive sense. It cannot be experimentally tested as
it is not a statement about nature. But it could be falsified, if anyone came with
a counterexample, i.e. a function that is not computable in the formal sense,
but such that everyone agrees that it is computable in the intuitive sense, as it
happened with the Ackermann function. Yet, this requirement of a consensus on
the computability, in the intuitive sense, of this function puts it at the border
of falsifiability. Thus, stated as such, the Church-Turing thesis is hardly a thesis,
and several attempts have been made to replace this notion of computability in
the intuitive sense by a more precise notion. These attempts go at least in three
directions.

– The first is to axiomatize a computability predicate and to prove the equiv-
alence of this implicitly defined notion with that defined by Gödel and Her-
brand, Church, Turing, etc. This is the way taken by Dershowitz and Gure-
vich [19], and others.

– The second is to define a notion of computability based on the analysis of
the operations executed by a human being performing a computation and to
prove the equivalence of this notion with that defined by Gödel and Herbrand,
Church, Turing, etc. This is the way taken by Turing himself, and others.

– The third is to define a notion of computability based on the analysis of the
operations executed by a machine performing a computation and to prove
the equivalence of this notion with that defined by Gödel and Herbrand,
Church, Turing, etc. This is the way taken by Gandy [26], and others.

The thesis expressing that any function computable by a machine is computable
in the sense of Gödel and Herbrand, Church, Turing, etc. is called the physical
Church-Turing thesis.

Giving a meaning to this thesis requires to give a definition of the notion of a
machine. A machine is any physical system, equipped with a interaction protocol
defining a way to communicate some information to the system by choosing some
parameters a = 〈a1, ..., an〉, when preparing the system, and to extract some
information from the system, by measuring some values b = 〈b1, ..., bp〉.
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Such a machine defines a relation: the relation R such that a R b if b is a
possible result for the measurements, when the chosen parameters are a. We say
that this relation R is realized by this machine. For instance, if one applies an
electrical tension U to a conductor of resistance R and measures the current
I passing through this conductor, then a = 〈U,R〉 and b = I and the realized
relation is that relating 〈U,R〉 and I when U = RI. In the same way, if one lets
a body freely falling in vacuum for some time t and measures the position x of
this body, the realized relation is that relating t and x when x = 1

2gt
2.

The physical Church-Turing thesis expresses that relations realized by a ma-
chine are computable.

The physical Church-Turing thesis is obviously a thesis about nature. Thus its
correctness depends on the world we are in. It is easy to imagine worlds where
this thesis is valid and worlds where it is not. In particular this thesis is not
valid in worlds where accelerating machines or infinitely parallel machines can
be built. The theory of hypercomputability studies such worlds.

Yet, not everyone agrees on the epistemological status of this thesis. According
to some, such as Deutsch [20], this thesis — or its negation — is a principle of
physics, like the homogeneity of space or the homogeneity of time. According to
others, such as Gandy, this thesis — or its negation — must be established as a
consequence of other principles of physics. There is no real contradiction between
these two points of view, as we know that the choice of axioms in a theory is
somewhat arbitrary. For instance, in set theory, we may chose a particular form
of the axiom of choice and prove the others. Yet, some propositions are simple
enough to be taken as axioms or principles, and others are not.

2 Beyond Natural Numbers

Computability is primarily defined for the functions from the set of natural num-
bers to itself, but many functions we use when discussing the physical Church-
Turing thesis are defined on other domains. Thus, the notion of computability
must be defined beyond the set of natural numbers.

2.1 Indexings

The first way to define a notion of computability on a set S different from the
natural numbers is to transport the notion of computability from the set of real
numbers to the set S with the use of an indexing, i.e. a bijection �.� between S
and a subset of N.

Then, a function f from S to S is said to be computable, if there exists a
computable function f̂ from N to N such that for all x in S, �f(x)� = f̂(�x�).

An objection to this method, due to Montague [28], is that the defined no-
tion of computability depends on the choice of the indexing. To see why, let
us consider an undecidable set U , that does not contain 0 and the function D
mapping

– 2n to 2n+ 1 and 2n+ 1 to 2n if n ∈ U ,
– 2n to 2n and 2n+ 1 to 2n+ 1 otherwise.
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This function is a non computable bijection from N to N. Moreover it is involutive,
i.e. D−1 = D, D(0) = 0, and D(1) = 1.

Then, consider a set S, an indexing �.� of this set, elements u and v in S such
that �u� = 0 and �v� = 1, and the function f from S to S defined by f(x) = u

if �x� is is even and f(x) = v otherwise. As the function f̂ from N to N defined

by f̂(n) = 0 if n is even and f̂(n) = 1 otherwise is computable, the function f
is computable with respect to the indexing �.�.

But, the function D ◦ �.� is also an indexing of S

S

f

S

fN
N

D D

N

f

N

and the function f = D ◦ f̂ ◦ D is not computable. Indeed f(2n) = 1 if and

only if D(f̂(D(2n))) = 1 if and only if D(2n) is odd if and only if n ∈ U .
Thus, the function f is not computable with respect to the indexing D ◦ �.�. The
computability of f therefore depends on the chosen indexing.

Thus, unless we have a canonical way to represent the parameters a and the
measured values b by natural numbers, the formulation of the physical Church-
Turing thesis is relative to the choice of an indexing.

Three answers have been given to this objection.

Articulation. A list a1, a2, ..., ak of natural numbers has a canonical index

�a1, a2, ..., ak� = (a1; (a2; (...; (ak; 0))))
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where ; is the bijection between N2 and N\{0} defined by (n; p) = (n+p)(n+p+
1)/2+ p+1. And a tree indexed by natural numbers p(t1, ..., tk) has a canonical
index

�p(t1, ..., tk)� = (p; �t1�; ...; �tk�; 0)
This permits to define indexings for all articulated sets of trees, where a set of
tree is articulated if it is n-articulated for some n, 0-articulated if all its elements
are labeled in a finite set and (n + 1)-articulated if all its elements are labeled
in a n-articulated set of trees. For instance, proofs are trees labeled by sequents,
that are trees labeled by formulae that are trees labeled by function symbols,
predicate symbols, and variables, that are trees labeled in a finite set. Thus the
set of proofs is articulated. In a similar way, all the sets of syntactic objects,
formulae, proofs, programs, etc., are articulated.

Let S be an articulated set of trees, ultimately labeled in the finite set E.
Using the canonical indexing of trees above, we can transform any indexing �.�0
of the set E into an indexing �.�n of S by

�f(t1, ..., tk)�r+1 = (�f�r; �t1�r+1; ...; �tk�r+1; 0)

As all finite functions are computable, the choice of the indexing �.�0 is immate-
rial and all the indexings based on this canonical tree indexing define the same
set of computable functions.

Finite Generation. This argument has been generalized by Rabin [30] to all
finitely generated algebraic structures.

In mathematics, we are not interested in sets per se, but in structures, i.e. sets
equipped with operations: 〈N, S〉, 〈N,+,×〉, 〈L, ::〉, 〈L,@〉, etc. As their name
suggests, these operations must be computable. Thus, when indexing a structure,
we must restrict to the admissible indexings: those that make these operations
computable.

A structure is said to be finitely generated when all its elements can be built
from a finite number of elements with the operations of the structure, for instance
the set of natural numbers equipped with addition, the set of lists of elements of
a finite set equipped with concatenation, the set of rational numbers equipped
with addition, multiplication and division, etc. are finitely generated structures.

When a structure is finitely generated, if i and j are two admissible indexings,
then there exists a computable function f such that j = f ◦i. Thus, all admissible
indexings define the same notion of computability: computability is stable.

In particular computability is stable on all the finite extensions of the field of
rational numbers, all the finite-dimensional vector spaces over such fields, etc. [3].

Computability of Sets of Functions. Programs in a given programming lan-
guage are lists of letters in a finite alphabet. We have seen that, as the set of lists
of elements of a finite set equipped with concatenation @ is finitely generated,
all its admissible indexings define the same set of computable functions, and the
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characteristic function χ of the set of terminating programs is non computable,
relatively to any admissible indexing. In other words, for any indexing, if the
function @ is computable, then the function χ is not.

Boker and Dershowitz [11] have suggested that this result could be stated
without focusing on the concatenation operation @, as the fact that the functions
@ and χ cannot be both computable, with respect to the same indexing. Calling
a set of functions computable, if there exists an indexing with respect to which
all the elements of the set are computable, the set {@, χ} is non computable, in
an absolute sense.

The set {χ} is computable as it is possible to cheat on the indexing and
associate an even number to terminating programs and an odd number to non
terminating ones, but the price to pay is to make concatenation non computable.

Another way to formulate this result is that the set C of functions computable
with respect to an admissible indexing is a maximal computable set of functions.
Indeed, let φ be a function that is not in C and i an indexing such that φ
is computable relatively to i. Then, i is not admissible and the concatenation
operation is not computable with respect to i. Thus, there exists a function of
C that is not computable with respect to i and the set of functions computable
with respect to i is not a proper superset of C.

In other words, changing the indexing can change the set of computable func-
tion, but it cannot extend it.

As a consequence, if we formulate the physical Church-Turing thesis as the
fact that the set of functions realized by a machine is the set of computable
functions, we obtain a thesis that depends on the way we interpret the physical
parameters and the measured values. And this thesis can be invalidated by build-
ing a machine that computes the parity of a natural number and interpreting it
as a machine deciding the halting problem, by cheating on the indexing.

But if we formulate this thesis as the fact that the set of functions realized by
a machine is a strict superset of the set of computable functions for no indexing,
then we have a thesis that is independent on the choice of an indexing.

2.2 Real Numbers

The use of an indexing permits to transport the notion of computability to
countable sets only. Computability over non countable sets is an unexplored
world, except for one set: that of real numbers. As real numbers might be useful
in physics, we have to say a few words about the computability of real functions.

To know a real number x is not to be able to answer the query “give me all
the digits of x”, but to be able to answer the query “give me the nth first digits
of x” for all n, or equivalently to the query “give me a rational approximation
of x with an error less than ε” for all ε [29,33].

To know a real function f is to be able to answer all the queries of the form
“give me a rational approximation of f(x) with an error less than ε” provided
we are answered all queries of the form “give me a rational approximation of x
with an error less than η”.
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Thus a function f from R to R is computable if there exists a computable
function F from Q × (Q+ \ {0}) to Q × (Q+ \ {0} ∪ {+∞}) such that for all x
in R, q and r in Q, η and ε in Q+ \ {0}

(F (q, η) = (r, ε) and |x− q| ≤ η) ⇒ |f(x)− r| ≤ ε

and if (qn)n, (ηn)n, are sequences such that for all n, |x − qn| ≤ ηn and the
sequence η goes to 0 at infinity, then, calling (rn, εn) = F (qn, ηn), the sequence
ε also goes to 0 at infinity.

2.3 Non-determinism

Computability theory is a theory of computable functions. However, when describ-
ing a machine we spoke, not about functions, but about relations. This is because
several sequences of measured values bmay correspond to the same sequence of pa-
rameters a. This non-determinism may have different sources, it may either come
from the absolute non-determinism of nature, or because some variables are kept
hidden: for instance, in the experiment above, if we choose the resistance R and
measure the intensity I, then I does not depend functionally on R.

We know that a non deterministic algorithm from a set A to a set B may
always be considered as a deterministic algorithm from the set A to the powerset
P(B): a relation R may always be considered as a function mapping a to the set
Ra = {b ∈ B | a R b}. If we represent the set Ra by an algorithm computing
its partial characteristic function, then a relation R may be called computable
when there exists an algorithm mapping a to an algorithm mapping b to 1 if and
only if a R b. Using the fact that a function taking values in a functional space
is equivalent to a function of several arguments, the relation R is represented
by its own partial characteristic function. Thus, a relation is computable if and
only if it is semi-decidable.

We could also represent the set Ra by an enumeration function and this
would lead to define computable relations as effectively enumerable relations.
On natural numbers, and on any set on which equality is decidable, these two
notions coincide. This is not the case on real numbers and only the second notion
makes sense in this case [21].

3 Gandy’s Proof

As previously noticed, some statements are too complex to be taken as axioms
or principles and must rather be derived from more basic ones. This is probably
the case with the physical Church-Turing thesis. And indeed Gandy [26] has
shown how to derive this thesis from three more basic hypotheses about nature.

3.1 Gandy’s Hypotheses

Gandy’s hypotheses are
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– the homogeneity of space and time,
– the boundedness of the velocity of propagation of information,
– the boundedness of the density of information.

The boundedness of the velocity of propagation of information can be expressed
as the fact that the state of a system in one place can only affect the state of a
system in another only after a delay, proportional to their distance. This principle
has been part of the principles of physics, at least since special relativity.

The boundedness of the density of information can be expressed as the fact
that a physical system of finite diameter has a finite state space. This principle is
a more original idea. We may see it as an abstract formulation of the quantization
idea: the fact that a variable cannot take any real number as a value, but only
one of a discrete set. A similar principle has been stated more explicitly by
Bekenstein [8].

3.2 Gandy’s Proof

Then, to prove the physical Church-Turing thesis from these hypotheses, we
just need to partition the space into an infinite number of identical cells of finite
diameter. Because information has a bounded density, the state space of each cell
is finite. Because space is homogeneous, this state space is the same for all cells.
At the origin of time all the cells except a finite number are in a particular
quiescent state. Like space, time can be discretized. Because the velocity of
propagation of information is bounded and space and time are homogeneous,
the state of a cell at a given time step is function of the state of a finite number
of neighbors cells at the previous time step.

This function of a finite number of variables varying in a finite set is computable.
Hence the state of each cell at each time step can be computed from the initial
state.

In other words, using Gandy’s hypotheses, a tiling of space and time allows to
describe the evolution of any system as a cellular automata [35]. Of course, the
choice of the tiling should not affect the evolution of the system, as the tiling is
not a property of the system itself, but of our description of the system.

3.3 Criticizing Gandy’s Hypotheses

Gandy’s hypotheses can be, and have been [18], criticized. For instance, it is
well-known that, in Newtonian mechanics, gravity is instantaneous and thus
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information can be propagated with an infinite velocity. Also, the position of a
body between two points A and B, the distance AB taken as a unit, can be
any real number between 0 and 1 and thus can contain an infinite quantity of
information: any infinite sequence in a finite alphabet can be encoded as the
digits of such a number, in an appropriate base. Yet, these properties of New-
tonian mechanics seem to be rather weaknesses of this theory than properties
that would allow to communicate instantaneously or to store an infinite amount
of information in a finite space: Gandy’s hypotheses have not be refuted experi-
mentally, for instance by the construction of an instantaneous computer network
or by the construction of a hard drive with an unbounded capacity.

More importantly, even if Gandy’s hypotheses must be refined, Gandy’s proof
shows that the physical Church-Turing thesis is a consequence of some hypothe-
ses about nature, that do not refer to notions such that those of language or
computability.

4 The Physical Church-Turing Thesis and the Galileo
Thesis

4.1 The Galileo Thesis

The Effectiveness of Mathematics in Natural Sciences. The thesis that
mathematics are effective in the natural sciences has been formulated by Galileo
in 1623: “Philosophy is written in this vast book, which continuously lies open
before our eyes (I mean the Universe). But it cannot be understood unless you
have first learned the language and recognize the characters in which it is written.
It is written in the language of mathematics” [25].

Galileo formulated this thesis, but did not give any explanation why it held.
And long after Galileo, the lack of such an explanation was noticed by Einstein
according to whom “The eternal mystery of the world is its comprehensibility”
[24] or Wigner according to whom “The enormous usefulness of mathematics in
the natural sciences is something bordering on the mysterious and that there is
no rational explanation for it” [34].

Insufficient Explanations. Several explanations of this unreasonable effective-
ness of mathematics in the natural sciences have been attempted:

1. God is a mathematician and He wrote the vast book in the language of
mathematics.

2. The mathematical concepts are built by abstracting from empirical objects.
3. Scientists select only those phenomena that can be mathematically described.
4. Scientists approximate the phenomena they study, until they can be mathe-

matically described.
5. Our brain is part of nature, hence our concepts are natural objects, thus

they are of the same kind as the objects they describe.
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Each of these explanation is insufficient. The first reduces the problem to that of
why God is a mathematician, which seems even harder to explain. The second
is partial: if some mathematical concepts are built by abstracting from natural
objects, the concept of ellipse, for instance, has not been built by abstracting
from the trajectory of the planets, as it has been introduced some two thousands
years before. The third leaves intact the problem of why so many — if not all
— phenomena can be described in the language of mathematics. The fourth
leaves intact the problem of why phenomena can be approximately — if not
accurately — described in the language of mathematics. The fifth presupposes
that we understand better a phenomenon from the inside than from the outside,
which is not the case in general.

Perhaps Several Kinds of Effectiveness. The effectiveness of mathematics
in the natural sciences may be of different kinds. And instead of looking for a
global explanation of all kinds of effectiveness, we should perhaps look for more
local explanations.

For instance, the atomic masses of the chemical elements have a regular struc-
ture, as they are the integer multiples of some unit. When this regularity was dis-
covered, there were three exceptions to this rule, because no elements of atomic
mass 45, 68, and 70 were known. Yet, as some chemists trusted the structure of
the natural numbers better that their observations, they predicted the existence
of these three elements, that were later discovered. This is a striking example of
the effectiveness of the structure of natural numbers in chemistry.

But, this striking regularity is easily explained by the fact that the mass of
the atoms is mostly due to the mass of protons and neutrons that constitute
their nucleus and that each nucleus contains a whole number of such particles.

Yet, this explanation sheds light on the effectiveness of the structure of natural
numbers to describe the atomic masses of the chemical elements, but it does not
shed light on the effectiveness of mathematics in the natural sciences in general,
for instance, it does not shed light on the effectiveness of the quadratic functions
to describe the free fall in vacuum.

Thus, we shall focus on a particular instance of the general thesis that math-
ematics are effective in the natural sciences: the fact that physically realized
relations can be expressed by a proposition of the language of mathematics.

Physically Realized Relations. Let us imagine an experiment where one
prepares a physical system by choosing some parameters a = 〈a1, ..., an〉 and
measures some values b = 〈b1, ..., bp〉. Such an experiment defines a relation: the
relation R such that a R b if b is a possible result for the measurements when
the chosen parameters are a. We say that this relation R is realized by this
experiment. A relation that is realized by an experiment is said to be physically
realized.

For instance, if one applies an electrical tension U to a conductor of resistance
R and measures the current I passing through this conductor, then a = 〈U,R〉
and b = I and the realized relation is that relating 〈U,R〉 and I when U = RI.
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In the same way, if one lets a body freely falling in vacuum for some time t and
measures the distance crossed by this body, the realized relation is that relating
t and x when x = 1

2gt
2.

The relation between 〈U,R〉 and I can be expressed by a proposition in the
language of mathematics U = RI. In the same way, the relation between the
time and the position of a body freely falling in vacuum can be described by a
proposition in the language of mathematics x = 1

2gt
2. Among the uncountable

number of relations between numbers, only a countable number can be defined
by a proposition in the language of mathematics, such as U = RI or x = 1

2gt
2

and all the physically realized relations seem to be in this small set.
As Galileo stressed the rôle of the language of mathematics, we can call the

Galileo thesis the thesis that all physically realized relation can be expressed by
a proposition in the language of mathematics.

Instead of attempting to explain the general thesis that mathematics are ef-
fective in the natural sciences, we shall restrict our investigation to attempt to
explain this unreasonable effectiveness of the propositions of the language of
mathematics to express physically realized relations.

4.2 The Physical Church-Turing Thesis Implies the Galileo Thesis

Our definition of the notions of a machine and of an experiment are identical,
both a machine and an experiment is a physical system prepared by choosing
some parameters a = 〈a1, ..., an〉 and on which some values b = 〈b1, ..., bp〉 are
measured. Thus the notion of a relation realized by a machine and of a physically
realized relation are identical.

The physical Church-Turing thesis states that physically realized relations
are computable and the Galileo thesis states that they can be expressed by a
proposition in the language of mathematics.

Once we have identified that the Galileo thesis and the physical Church-Turing
thesis are theses about the same set of relations, we may remark that the physical
Church-Turing thesis implies the Galileo thesis [22]. Indeed, as any program
expressing a computable relation is a mathematical expression, all computable
relations can be defined by a proposition in the language of mathematics. In
fact, computable relations can even be expressed by a proposition in a very
small fragment of mathematics: the language of Peano arithmetic. Thus, if the
physical Church-Turing thesis holds, then all physically realized relations are
computable, hence they can be expressed by a proposition of the language of
mathematics, i.e. the Galileo thesis holds.

We have seen that

– Gandy’s hypotheses imply the physical Church-Turing thesis,
– and the physical Church-Turing thesis implies the Galileo thesis.

Thus, we can deduce that Gandy’s hypotheses imply the Galileo thesis and
attempt to prove this directly.
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Yet, from a historical point of view, it is important to notice the rôle of
computability theory and of the physical Church-Turing thesis in connecting
Gandy’s hypotheses to the Galileo thesis.

4.3 An Algorithmic Description of the Laws of Nature

A side effect of this explanation of the Galileo thesis is that the laws of nature can
be described not only in the language of mathematics, but also in an algorithmic
language.

Instead of expressing the law of free fall in vacuum by the proposition x = 1
2gt

2,
we could express it by the algorithm fun t -> g * t * t / 2, leading to a sec-
ond Galilean revolution in the language of natural sciences. In particular, as long
as differential equations have computable solutions [29,12,15,16] the language of
differential equations can be seen as an algorithmic language.

Yet, this algorithmic description of the laws of nature may have a broader
scope than the description of the laws of nature with differential equations. For
instance, the transformation of a messenger RNA string to a protein is easily ex-
pressed by an algorithm, while it cannot be expressed by a differential equation.

4.4 A Property of Nature or of the Theory?

An objection to Galileo’s formulation of the Galileo thesis “The Universe [...]
is [...] a book [...] written in the language of mathematics” is that it confuses
nature with our description of nature: nature itself is neither a book written
in the language of mathematics, nor a book written in another language: it is
not a book at all. Only our description of nature is a book. Thus, we could
imagine that our description of nature is written in the language of mathematics
because we have chosen to write it this way, nature having nothing to do with our
decision [36].

Yet, nature and our description of nature are not independent: our description
must have an experimental adequation of some sort with nature. And as we shall
see, when constructing a theory, the scientists have very little freedom when
“choosing” the set of physically realized relations.

Let us consider first a particular case where all the realized relations are func-
tional. Then, we show that if two theories differ on the set of realized relations,
one of the theories can be, at least in principle, experimentally refuted. Indeed,
if the set of the realized relations differ, then there exists a relation R that is
realized according to one theory T but not according to the other theory T′. Let
E be the experiment realizing R according to the theory T and R′ be the rela-
tion realized by this experiment according to the theory T′. As R is not realized
according to T′, the relations R and R′ are different. Thus, there exists a, b, and
b′, such that b �= b′, a R b, and a R′ b′. Then, if we perform the experiment E
with the parameters a, the measures will either give the result b and refute T′,
or b′ and refute T, or an other value and refute both theories.

When the realized relations need not be functional, we have a weaker result:
either a theory can be refuted, or it predicts, among others, a result that never
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occurs, whatever the number of times the experiment is repeated. Again, if the
set of the realized relations differ, then there exists an experiment that realizes
a relation R according to one theory and a relation R′, R′ �= R, according to the
other. Thus, there exists an a, such that the set Ra of the b such that a R b and
the set R′

a of the b such of b such that a R′ b differ. As these sets are different,
they are not both equal to Ra ∩R′

a. Then, if we repeat the experiment with the
parameters a, either the measures give one result that is not in Ra ∩R′

a and at
least one of the theories is refuted, or the measures always give results in Ra∩R′

a

and at least one theory predicts a result that never occurs.

5 The Physical Church-Turing Thesis and the Quantum
Theory

5.1 The Bounded Density of Information in the Quantum Case

The hypothesis of a bounded density of information seems to be inspired by the
idea of quantization of the state space, but is in contradiction with quantum
theory. Indeed in quantum theory even a system with two distinct states u and
v has an infinite number of states αu+βv, for |α|2+ |β|2 = 1. Thus, in quantum
theory, this hypothesis cannot be formulated as the fact that the state space of
a cell is finite.

Yet, this does not mean that the amount of possible outcomes of a measure-
ment of some value associated to this system, is itself infinite and the bounded
density of information principle can be formulated as the fact that each such
measurement may only yield a finite number of possible outcomes.

This requirement amounts to the fact that the state space of a region of space
of finite diameter is a finite-dimensional vector space. This constitutes a good al-
ternative to the fact that the amount of possible outcomes, when measuring the
system, is finite, as this formulation does not involve the notion of a measurement.

In the classical case, the finiteness of the state space S is used to deduce that
any function from S to S is computable. When S is a finite-dimensional vector
space, it is not the case that all functions from S to S are computable, but it is the
case that all linear maps are computable, as the application of a linear map to a
vector boils down to matrix multiplication, i.e. to addition and multiplication of
scalars. Fortunately, quantum evolutions are always linear maps, hence they are
computable. In short, linearity tames infinities, when infinite sets are restricted
to finite-dimensional vector spaces.

To define the state space of an non necessarily bounded region of space, we first
decompose this region into a finite or infinite number of cells of finite diameter.
The state space of each cell is a finite-dimensional vector space. Let e1, . . . , en
be a base of this set. The state space of the whole system is the tensor product of
all these finite-dimensional spaces. Its vectors are linear combinations of tensor
products of elements of e1, . . . , en. As all the cells but a finite number of them
are in a quiescent state, we can even restrict to finite tensor products.
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We get this way a Fock-like space. This space is infinite-dimensional, hence
it is not finitely generated with the operations + and ., but as it has a base
formed with vectors that are tensor products of elements of e1, . . . , en: it is
finitely generated with the operations +, . and ⊗. In particular computability is
stable on such a space [3].

Thus, in the quantum case, the hypothesis of a finite density of information
does not rule out infinite-dimensional vector spaces, but it explains where this
infinity comes from: from the fact, that in an unbounded physical space, we can
assemble an unbounded number of cells.

A difficult question is that of the impact of this hypothesis of a boundedness
of information on the choice of the field of scalars we use. If we use the field
C, then a scalar contains an infinite quantity of information, for instance any
infinite sequence of 0 and 1 may be encoded as the digits of a scalar. Thus, the
linear combination αu + βv, also contains an infinite quantity of information.
Of course, this information cannot be retrieved in a single measurement, but it
can, in principle, be probabilistically retrieved, by repeated measurements on
similarly prepared systems.

On the opposite, we might consider that when superposing two base states
αu+ βv, only a finite number of linear combinations are possible.

A intermediate solution is to assume that the state space of each cell is a finite-
dimensional vector space over a finite-degree extension of the field of rationals.
Since we are in discrete-time discrete-space quantum theory, such a restriction as
little consequences: we have all the scalars that can be generated by a universal
set of quantum gates for instance [13], see also [2] for a more in-depth discussion.
Nevertheless, in the continuous picture, this kind of assumptions are not without
consequences, and these are currently being investigated [17,10].

5.2 The Bounded Velocity of Information in the Quantum Case

Like the hypothesis of a finite density of information, that of a finite velocity of
propagation of information has to be defined with caution in the quantum case.
For instance, according to some interpretations of the Einstein-Podolsky-Rosen
paradox, it could be said to contradict quantum theory.

In the Einstein-Podolsky-Rosen paradox, however, no accessible information
can be communicated faster than the speed of light [9]. Similarly, it can be proved
that not more than one bit of accessible information can be stored within a single
qubit [27]. Drawing this distinction between the description of the infinite, non-
local quantum states and the information that can actually be accessed about
them, hints towards the quantum version of these hypotheses.

In the classical case we could assume that the state of a compound system
was simply given by the state of each component. In the quantum setting this
no longer holds, some correlation information needs to be added. In other words,
the state space of two regions is not the Cartesian product of the state space
of each region, but its tensor product. Actually, if we stick to state vectors,
knowing the state vector, e.g. (u ⊗ u) + (v ⊗ v), of the compound system, we
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cannot even assign a state vector to the first system. In order to do so, we need to
switch to the density matrix formalism. Each state vector u is then replaced by
the pure density matrix |u〉u and if ρ is the density matrix of a compound system,
then we can assign a density matrix to each subsystem, defined as a partial trace
of ρ. The partial trace is defined by mapping A×B to A and extending linearly
to A⊗B → A. Still, knowing the density matrix of each subsystem is again not
sufficient to reconstruct the state of the compound system.

In this setting, the most natural way to formalize the bounded velocity of prop-
agation of information hypothesis is that given in [6] where it was referred to as
Causality. Causality says that there exists a constant T such that for any region
A, any point in time t, the density matrix associated to the region A at time
t+T , ρ(A, t+T ) depends only on ρ(A′, t), with A′ the region of radius 1 around
A. Actually, this definition is a rephrase of the C∗-algebra formulation found
in [31], which itself stems from quantum field theoretical approaches to enforc-
ing causality [14]. The difficulty of this axiomatic formalization of the bounded
velocity of propagation of information in the quantum case, is that it is quite
non-constructive: it is no longer the case that because we know that ρ(A, t+ T )
is a local function fA of ρ(A′, t), and ρ(B, t+T ) is a local function fB of ρ(B′, t),
that ρ(A ∪ B, t+ T ) can be reconstructed from ρ(A′ ∪B′, t) by means of these
two functions.

A more constructive approach to formalizing the bounded velocity of propa-
gation of information in the quantum case would be to, instead, state that the
global evolution is localizable [7,23,32,4], meaning that the global evolution is
implementable by local mechanisms, each of them physically acceptable. Here
this would say that the global evolution G is in fact quantum circuit of local
gates with infinite width but finite depth. But the disadvantage of this approach
is that this is a strong supposition to make. Fortunately, in [4,5], the two ap-
proaches where shown to be equivalent. Hence we only need to assume causality
and we can deduce locality.

With these two hypotheses formalized as explained, it is possible to extend
Gandy’s theorem to quantum theory [1].

6 Conclusion

The physical Church-Turing thesis explains the Galileo thesis, but also suggests
an evolution of the language used to describe nature.

It can be proved from more basic principle of physics, but it also questions
these principles, putting the emphasis on the principle of a bounded density of
information. This principle itself questions our formulation of quantum theory,
in particular the choice of a field for the scalars and the origin of the infinite
dimension of the vector spaces used as state spaces.
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Abstract. The article was prepared for the LATA 2012 conference where
I will be presenting two one and half hour lectures for a short tutorial
on parameterized complexity. Much fuller accounts can be found in the
books Downey-Fellows [33, 34], Niedermeier [72], Flum-Grohe [49], the
two issues of the Computer Journal [36] and the recent survey Downey-
Thilikos [39].

1 Introduction

1.1 Preamble

Following early ideas of Fellows and Langston (such as [42–44]) in the early 1990’s
Mike Fellows and the author initiated a new direction in complexity theory with
a series of papers [27–29], and then a number of other papers with talented co-
authors, the state of the art (at the time) being given in the monograph [33].

The idea was that to try to devise a complexity theory more attuned to the
considerations of practical computation than other kinds of complexity such as
the classical theory of NP-completeness.

Now over 20 years have passed. Moreover, the 14 years since the publication
of [33] has seen remarkable development in the area. There have appeared new
books, many surveys, and more importantly, a whole host of new techniques,
applications, and structural complexity. A remarkable number of young talented
people have entered the field.

It is also remains true that in many computer science departments, and de-
partments applying complexity the theory only penetrates in a kind of random
fashion. Whilst I am sure that in the audience there will be people who now
know more about parameterized complexity than I do, my plan is to give a basic
tutorial for the others. I hope that they will see some applications for themselves,
and perceive the two sided dialog that the theory allows between the hardness
theory and the methods of establishing parameterized tractability.

1.2 The Idea

The pioneers of complexity theory (such as Edmonds [40]) identified polynomial
time as a mathematical idealization of what might be considered feasible for the

� Research supported by the Marsden Fund of New Zealand.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 38–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



A Parameterized Complexity Tutorial 39

running times of algorithms. As the familiar story of complexity theory runs,
we soon discover that for many problems, the only algorithm we can find is to
try all possibilities. To do so takes Ω(2n) for instances of size n. In spite of the
combined efforts of many algorithm designers, we are unable to show that there
is no polynomial time algorithm for a wide class of such problems.

The celebrated work of Cook, Levin and crucially Karp [61] that many of
these problems could be shown to be polynomial-time reducible to each other,
and to the problem of acceptance for a polynomial time nondeterministic Turing
machine. That is, they are NP-complete. This means that we have a practical
“proof” of hardness. If any of the problems were in polynomial time, all would be;
and secondly showing them to be in polynomial time would show that acceptance
for a polynomial time nondeterministic Turing machine would be also. The belief
is that a nondeterministic Turing machine is such an opaque object, without any
obvious algebraic structure, that it seems impossible to see if it has an accepting
path without trying all of them.

Parameterized complexity views the story above as a first foray into feasi-
ble computation. However, for practical computation, it seems that we ought
to refine the analysis to make it more fine grained. Firstly, when we show that
something is NP-complete or worse, what we are focusing on is the worst case
behaviour. Second, the analysis takes the input as being measured by its size
alone. You can ask yourself the question: when in real life do we know noth-
ing else about a problem than its size? The answer is never. For instance,
the problem is planar, tree-like, has many parameters bounded, etc. The idea
behind parameterized complexity is to try to exploit the structure of the in-
put to get some practical tractability. That is, we try to understand what
aspect of the problem is to blame for the combinatorial explosion which oc-
curs. If this parameter can be controlled then we would have achieved practical
tractability.

Anyone working where they design actual algorithms for real-life problems
knows that you should fine tune the algorithm for the situation at hand. More-
over, in applications such as computational biology, structure of things like DNA
is far from random. The main idea of parameterized complexity is to design a
paradigm that will address complexity issues in the situation where we know in
advance that certain parameters will be likely bounded and this might signifi-
cantly affect the complexity. Thus in the database example, an algorithm that
works very efficiently for small formulas with low logical depth might well be
perfectly acceptable in practice.

The idea is not to replace polynomial time as the underlying paradigm of
feasibility, but to provide a set of tools that refine this concept, allowing some
exponential aspect in the running times by allowing us either to use the given
structure of the input to arrive at feasibility, or develop some relevant hardness
theory to show that the kind of structure is not useful for this approach.

There will be two parts to this theory. First, there have evolved distinct tech-
niqueswhich seemgenerally applicable to parameterizedproblems. In this tutorial,
I will look at the main players which include bounded search trees, kernelization,
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other reduction techniques such a crown reductions [3] and Cai’s technique [15],
iterative compression, and somewhat less practical but still useful bounded width
metrics, as well as things like colour coding methods from logic, and impractical
things like WQO theory.

Hand in hand with this is a hardness theory. I will look at the basic hard-
ness classes such as the W-, A-, M- and other hierarchies. I will also look at
how these hierarchies can be exploited to establish practical limitations of the
techniques.

1.3 Some Definitions

I will now discuss the standard examples which we use for the theory. Mike Fel-
lows and my early work had the three problems Vertex Cover, Dominating

Set,Independent Set motivating the theory.
For a graph G a vertex cover is where vertices cover edges: that is C =

{v1, . . . , vk} is a vertex cover iff for each e ∈ E(G), there is a vi ∈ C such that
vi ∈ e. They should recall that a dominating set is where vertices cover vertices:
D = {v1, . . . , vk} is a dominating set iff for all v ∈ V (G), either v ∈ D or there
is an e ∈ E(G) such that e = 〈vi, v〉 for some vi ∈ D. Finally an independent
set is a collection of vertices no pair of which are connected. Of course, these are
some of the basic NP -complete problems identified by Karp [61].

As in [26], and earlier [33], I will motivate the definitions by looking at a prob-
lem in computational biology. Computational biology has been interacting with
parameterized complexity from the beginning, and this interaction has contin-
ued with throughout, with the work Langston and his group (who have contracts
throughout the world to analyze biological data, and use Vertex Cover and
other FPT techniques routinely), of Niedermeier and his group, and others. The
paper [64] describes a classic application to computational biology.

Suppose we had a conflict graph of some data from this area. Because of the
nature of the data we know that it is likely the conflicts are at most about 50 or
so, but the data set is large, maybe 1012 points. We wish to eliminate the conflicts,
by identifying those 50 or fewer points. Let’s examine the problem depending on
whether the identification turns out to be a dominating set problem or a vertex
cover problem.
Dominating Set. Essentially the only known algorithm for this problem is to
try all possibilities. Since we are looking at subsets of size 50 or less then we
will need to examine all (1012)50 many possibilities. Of course this is completely
impossible.
Vertex Cover. There is now an algorithm running in time O(1.2738k + kn)
([22]) for determining if an G has a vertex cover of size k. This and and struc-
turally similar algorithms has been implemented and is practical for n of un-
limited practical size and k large. The relevant k has been increasing all the
time, evolving from about 400 in [20], to Langston’s team [64, 77] who now rou-
tinely solve instances on graphs with millions of nodes and vertex covers in the
thousands. Moreover, this last work is on actual biological data.
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As well as using bounded branching (and parallelization [4]), the method used
for this algorithm for Vertex Cover is called kernelization and is based on
reduction rules1, which tend to be easy to implement and perform often much
better than anticipated in practice. We will discuss this method in detail soon.
The following table from Downey-Fellows [33] exhibits the difference between
the parameter k being part of the exponent like Dominating Set or as part
of the constant like Vertex Cover. This table compares of a running time of
Ω(nk) vs 2kn.

Table 1. The Ratio nk+1

2kn
for Various Values of n and k

n = 50 n = 100 n = 150

k = 2 625 2,500 5,625

k = 3 15,625 125,000 421,875

k = 5 390,625 6,250,000 31,640,625

k = 10 1.9 × 1012 9.8 × 1014 3.7 × 1016

k = 20 1.8 × 1026 9.5 × 1031 2.1 × 1035

In classical complexity a decision problem is specified by two items of
information:

(1) The input to the problem.
(2) The question to be answered.

In parameterized complexity there are three parts of a problem specification:

(1) The input to the problem.
(2) The aspects of the input that constitute the parameter.
(3) The question.

Thus one parameterized version of Vertex Cover is the following:
Vertex Cover

Instance: A graph G = (V,E).
Parameter: A positive integer k.
Question: Does G have a vertex cover of size ≤ k?

We could, for instance, parameterize the problem in other ways. For example,
we could parameterize by some width metric, some other shape of the graph,
planarity etc. Any of these would enable us to seek hidden tractability in the
problem at hand.

For a formal definition, for simplicity I will stick to the strongly uniform
definition of being fixed-parameter tractable. There are other definitions of less
importance in practice, and I refer the reader to [33] or [49] for more details.

A parameterized language is L ⊆ Σ∗ × Σ∗ where we refer to the second
coordinate as the parameter. It does no harm to think of L ⊆ Σ∗×N. Flum and

1 There are other FPT methods based around reduction rules such as Leizhen Cai [15]
and Khot and Raman [63], which work on certain hereditary properties.
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Grohe have an alternative formulation where the second coordinate is a function
κ : Σ∗ → Σ∗, but I prefer to keep the second parameter as a string or number.

Definition 1. Aparameterized languageL is (strongly) fixed parameter tractable
(FPT ), iff there is a computable function f , a constant c, and a (deterministic)
algorithm M such that for all x, k,

〈x, k〉 ∈ L iff M(x, k) accepts,

and the running time of M(x, k) is ≤ f(k)|x|c.

It is not difficult to show that the multiplicative constant in the definition can
be replaced by an additive one, so that L ∈ FPT iff L can be accepted by a
machine in time O(|x|c) + f(k) for some computable f . In the case of Vertex

Cover we have f(k) = 1.2738k, and the O is 2. One nice notation useful here
is the O∗ notation which ignores the f(k) be it additive or multiplicative and
is only concerned with the exponential part. The algorithm would be said to be
O∗(n1). The table on the web site

http://fpt.wikidot.com/fpt-races

lists 35 (at the time of writing) basic problems which are fixed parameter tractable
with (mostly) practical algorithms, and for which there are current “races” for
algorithms with the best run times.

In the following I will briefly mention some of the techniques I will discuss in
the tutorial.

2 Positive Techniques

2.1 Bounded Search Trees

A fundamental source of high running times is branching in algorithms. A very
crude idea to limit the running time is to keep this branching small and a function
of the parameter. For instance, for Vertex Cover, we can do this as follows.
Take any edge e = vw, and begin a search tree, by having leaves labeled by v
and w, and for each leaf recursively do this for the graphs gotten by deleting any
edge covered by v and w respectively. The depth of this process for a k-vertex
cover is k. Thus, using this idea, we can decide of G has a vertex cover in time
O(2k|G|) using this method.

The running time of this method can often be exploited by by making the
tree smaller, or by using some kind of asymptotic combinatorics to constrain the
search. For example, if G has no vertex of degree three or more, then G consists
of a collection of cycles, and this is pretty trivial to check. Thus we can assume we
have vertices of higher degree than 2. For vertex cover of G we must have either
v or all of its neighbours, so we create children of the root node corresponding to
these two possibilities. The first child is labeled with {v} and G− v, the second
with {w1, w2, . . . , wp}, the neighbours of v, and G−{w1, w2, . . . , wp}. In the case



A Parameterized Complexity Tutorial 43

of the first child, we are still looking for a size k− 1 vertex cover, but in the case
of the second child we need only look for a vertex cover of size k−p, where p is at
least 3. Thus, the bound on the size of the search tree is now somewhat smaller
than 2k. It can be shown that this algorithm runs in time O(5k\4 · n), and in
typical graphs, there are lots of vertices of higher degree than 3, and hence this
works even faster.

More involved rules exploring the local structure of neighbourhoods in graphs,
result in the algorithm of Chen et. al. [22]) with running time O∗(1.2738k) for
the branching.

There are a number of problems for which this technique is the only method,
or at least the best method, for parameterized algorithms. The method has been
particularly successful in computational biology with problems like the Closest

String problem [55] and Maximum Agreement Forest problem [58].
In passing I remark that this method is inherently parallelizable and as we

see is often used in conjunction with other techniques. The method for Vertex

Cover can be found discussed in [4].

2.2 Kernelization

The idea is that if we make the problem smaller then the search will be quicker.
This is a data reduction or pre-processing idea, and is the heart of many heuristics.

Whilst there are variations of the idea below, the simplest version of kernel-
ization is the following.

Definition 2 (Kernelization)
Let L ⊆ Σ∗ ×Σ∗ be a parameterized language. A reduction to a problem kernel,
or kernelization, comprises replacing an instance (I, k) by a reduced instance
(I ′, k′), called a problem kernel, such that

(i) k′ ≤ k,
(ii) |I ′| ≤ g(k), for some function g depending only on k, and
(iii) (I, k) ∈ L if and only if (I ′, k′) ∈ L.

The reduction from (I, k) to (I ′, k′) must be computable in time polynomial in
|I|+ |k|.

There are other notions, where the kernel may be another problem (often “an-
notated”) or the parameter might increase, but, crucially, the size of the kernel
depends only on k.

Here are some natural reduction rules for a kernel for Vertex Cover.
Reduction Rule VC1:

Remove all isolated vertices.

Reduction Rule VC2:

For any degree one vertex v, add its single neighbour u to the solution set and
remove u and all of its incident edges from the graph.



44 R. Downey

These rules are obvious. Sam Buss (see [33]) originally observed that, for a
simple graph G, any vertex of degree greater than k must belong to every k-
element vertex cover of G (otherwise all the neighbours of the vertex must be
included, and there are more than k of these).
This leads to our last reduction rule.
Reduction Rule VC3:

If there is a vertex v of degree at least k+1, add v to the solution set and remove
v and all of its neighbours.

After exhaustively applying these rules, we get to a graph (G′, k′), where no
vertex in the reduced graph has degree greater than k′ ≤ k, or less than two.
Then simple combinatorics shows that if such a reduced graph has a size k vertex
cover, its must have size ≤ k2. This is the size k2 kernelization.

Now we can apply the bounded depth search tree rule to this reduced graph,
and get an algorithm for vertex cover running in time O(1.2738k)k2. As observed
by Langston and his team in problems in sequence analysis, and articulated
by Niedermeier and Rossmanith [73] better running times can be obtained by
interleaving depth-bounded search trees and kernelization. That is, first kernelize,
begin a bounded search tree, and the re-kernelize the children, and repeat. This
really does make a difference. In [71] the 3-Hitting Set problem is given as an
example. An instance (I, k) of this problem can be reduced to a kernel of size
k3 in time O(|I|), and the problem can be solved by employing a search tree of
size 2.27k. Compare a running time of O(2.27k · k3 + |I|) (without interleaving)
with a running time of O(2.27k + |I|) (with interleaving).

In actual implementations there are other considerations such as load sharing
amongst processors and the like. We refer to the articles in the Computer Journal
special issue concerning practical FPT.

The best kernelization for Vertex Cover is due to Nemhauser and Trotter
[70] and has size 2k. It is based on matching and we will look at this technique
in the tutorial. The technique is quite powerful.

There are many other reduction techniques based on locan graph structure
like crown reductions ([3]), and then the generalization to the less practical
protrusions. See Downey and Thilikos [39].

2.3 Iterative Compression

This technique was first introduced in a paper by Reed, Smith and Vetta in
2004 [75] and more or less re-discovered by Karp [62]. Although currently only
a small number of results are known, it seems to be applicable to a range of
parameterized minimization problems, where the parameter is the size of the
solution set. Most of the currently known iterative compression algorithms solve
feedback set problems in graphs, problems where the task is to destroy certain
cycles in the graph by deleting at most k vertices or edges. In particular, the
k-Graph Bipartisation problem, where the task is to find a set of at most
k vertices whose deletion destroys all odd-length cycles, has been shown to be
FPT by means of iterative compression [75]. This had been a long-standing open
problem in parameterized complexity theory.



A Parameterized Complexity Tutorial 45

Definition 3 (Compression Routine)
A compression routine is an algorithm that, given a problem instance I and a
solution of size k, either calculates a smaller solution or proves that the given
solution is of minimum size.

Here is a compression routine for Vertex Cover. Begin with (G = (V,E), k),
we build the graph G vertex by vertex. We start with an initial set of vertices
V ′ = ∅ and an initial solution C = ∅. At each step, we add a new vertex v to
both V ′ and C, V ′ ← V ′ ∪ {v}, C ← C ∪ {v}. We then call the compression
routine on the pair (G[V ′], C), where G[V ′] is the subgraph induced by V ′ in G,
to obtain a new solution C′. If |C′| > k then we output NO, otherwise we set
C ← C′.

If we successfully complete the nth step where V ′ = V , we output C with
|C| ≤ k. Note that C will be an optimal solution for G.

The compression routine takes a graph G and a vertex cover C for G and
returns a smaller vertex cover for G if there is one, otherwise, it returns C
unchanged. Each time the compression routine is used it is provided with an
intermediate solution of size at most k + 1.

The implementation of the compression routine proceeds as follows. We con-
sider a smaller vertex cover C′ as a modification of the larger vertex cover C.
This modification retains some vertices Y ⊆ C while the other vertices S = C\Y
are replaced with |S| − 1 new vertices from V \ C. The idea is to try by brute
force all 2|C| partitions of C into such sets Y and S. For each such partition, the
vertices from Y along with all of their adjacent edges are deleted. In the resulting
instance G′ = G[V \Y ], it remains to find an optimal vertex cover that is disjoint
from S. Since we have decided to take no vertex from S into the vertex cover, we
have to take that endpoint of each edge that is not in S. At least one endpoint of
each edge in G′ is in S, since S is a vertex cover for G′. If both endpoints of some
edge in G′ are in S, then this choice of S cannot lead to a vertex cover C′ with
S ∩ C′ = ∅. We can quickly find an optimal vertex cover for G′ that is disjoint
from S by taking every vertex that is not in S and has degree greater than zero.
Together with Y , this gives a new vertex cover C′ for G. For each choice of Y
and S, this can be done in time O(m), leading to O(2|C|m) = O(2km) time
overall for one call of the compression routine. With at most n iterations of the
compression algorithm, we get an algorithm for k-Vertex Cover running in
time O(2kmn).

The parametric tractability of the method stems from the fact that each
intermediate solution considered has size bounded by some k′ = f(k), where k
is the parameter value for the original problem.

2.4 Other Techniques

Other methods we will discuss will include colour coding (Alon, Yuster and Zwick
[7]), treewidth (e.g. [13]), and more exotic methods. Given time, we will look at
constructivization of the methods via what is called bidimensionality theory.

For colour-coding, it is most easily understood with a simple example. The
method remains not-quite-practical as the numbers involved are large, but not
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astronomical. We will apply the problem to k-Path which seeks to find a (simple)
path of k vertices in G. What we do is to randomly colour the whole graph with
k colors, and look for a colourful solution, namely one with k vertices of one of
each color.

The two keys to this idea are

(i) we can check for colourful paths quickly.
(ii) if there is a simple path then the probability that it will have k colors for a
random coloring is k!

kk which is bounded by e−k.

Then, given (i) and (ii), we only need repeat process enough to fast probabilistic
algorithm. We prove (i) by using dynamic programming: simply add a vertex
v0 with color 0, connect to those of color 1, then generate the colorful paths
of length i starting from v0 inductively, rather like Dijkstra’s algorithm, the
running time being O(k2k|E|).

Theorem 4 (Alon, Yuster and Zwick [7]). k-Path can be solved in expected
time 2O(k)|E|.

Alon, Yuster and Zwick demonstrated that this technique could be applied to a
number of problems of the form asking “is G′ a subgraph of G?” The desired
FPT algorithm can now be obtained by a process of derandomization. The de-
sired FPT algorithm can now be obtained by a process of derandomization. A
k-perfect family of hash functions is a family F of functions (colorings) taking
[n] = {1, . . . n} onto [k], such that for all S ⊆ [n] of size k there is a f ∈ F
whose restriction to is bijective (colourful). It is known that k-perfect families of
2O(k) logn linear time hash functions. This gives a deterministic 2O(k)|E| log |V |
algorithm for k-Path. More such applications can be found in Downey and Fel-
lows [33], and Niedermeier [71, 72]. The O(k) in the exponent is where the prob-
lem lies, and the derandomization method at present seems far from practical. It
should be noted that the method does not show that k-Clique is in randomized
FPT because (i) above fails. We also remaark that recent work ([11]) has shown,
assuming a reasonable complexity assumption (namely that the polynomial time
hierarchy does not collapse to two or fewer levels), there is no polynomial size
kernel for k-Path. Thus, this is a classic problem which is in O∗(2O(k))-FTP yet
has no polynomial kernel under widely held complexity assumptions.

Another use of dynamic programming concernes optimization problem on
graphs with inductively defined internal structure. One example of this is
treewidth, but there are other width metrics like cliquewidth, branchwidth, and
others.

Definition 5 (Robertson and Seymour [76])

(a) A tree-decomposition of a graph G = (V,E) is a tree T together with a
collection of subsets Tx (called bags) of V labeled by the vertices x of T such
that ∪x∈T Tx = V and (i) and (ii) below hold:
(i) For every edge uv of G there is some x such that {u, v} ⊆ Tx.
(ii) (Interpolation Property) If y is a vertex on the unique path in T from x
to z then Tx ∩ Tz ⊆ Ty.
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(b) The width of a tree decomposition is the maximum value of |Tx| − 1 taken
over all the vertices x of the tree T of the decomposition.

(c) The treewidth of a graph G is the minimum treewidth of all tree decomposi-
tions of G.

The point of the notion is that it is a measure of how treelike the graph is.
One can similarly define path decomposition where T must be a path. A tree
decomposition is a road map as to how to build the graph. Knowing a tree or
path decomposition of a graph allows for dynamic programming since what is
important is the “information flow” across a relatively narrow cut in the graph.

Figure 1 gives an example of a tree decomposition of width 2.
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Fig. 1. Example of Tree Decomposition of Width 2

The point is that suppose you were seeking a dominating set in the graph of
the example. Starting at the bag {f, e, h}, there are 23 = 8 possible beginnings
of a dominating set: ∅, {f}, {e}, {g}, {e, f}, {f, g}, {e, g}, {e, f, g}, that is, the
subsets of {e, f, g}. These correspond to dominating sets of sizes, respectively
0,1,1,1,2,2,2,3. Now, if we move to the next bag, {g, e, h}, up the path we lose the
vertex f and it will never appear again (because of the interpolation property).
So that to figure out the possible dominating sets, we only need to remember to
point at what we have done before, and the information flow across the boundary
of the cut. Thus if we choose ∅ from the first bag, we must choose one of {e}, {g},
or {e, g} from bag {g, e, h}, but choosing {e} from bag {f, e, h}, would allow for ∅,
for example, from {g, e, h}. Join bags are handled in a similar manner. Then one
has to simply climb up the decomposition to the top and read off the minimum
dominating set. The crucial thing is that the exponential part of running time
of this process depends on the bag size, and the complexity of the definition of
the property of the problem being analysed.

This vague statement can be made more formal using Courcelle’s Theorem
([24]) which shows that any problem in “monadic second order counting logic” is
linear time FPT for graphs on a fixed treewidth, and later work shows a similar
statement for graphs of bounded “local treewidth” for first order properties. The
key problem with these methods is that it can be hard to actually find the tree
decomposition, though the problem is FPT by Bodlaender [9]. Unfortunately,

this algorithm is O(235t
3 |G|) for a fixed treewidth t, which is far from practical.

It also seems unlikely that the problem of treewidth k has a polynomial kernel as
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argued in [11]. Moreover, assuming reasonable assumptions, it has been shown
that the big towers of 2’s in the constants for the running times obtained from
Courcelle’s Theorem cannot be gotten rid of. (Frick and Grohe [52], also Flum
and Grohe [48])

3 Parametric Intractability

The two key ingredients of a hardness theory are (i) a notion of hardness and
(ii) a notion of “problem A could be solved efficiently if we could solve problem
B”; that is a notion of red reducibility.

In the classic theory of NP completeness (i) is achieved by the following:
Nondeterministic Turing Machine Acceptance

Input: A nondeterministic Turing Machine M and a number e.
Question: Does M have an accepting computation in ≤ |M |e steps?

The Cook-Levin argument is that a Turing machine is such an opaque ob-
ject that it seems that there would be no way to decide if M accepts, without
essentially trying the paths. If we accept this thesis, then we probably should
accept that the following problem is not O(|M |c) for any fixed c and is probably
Ω(|M |k) since again our intuition would be that all paths would need to be tried:
Short Nondeterministic Turing Machine Acceptance

Input: A nondeterministic Turing Machine M
Parameter: A number k.
Question: Does M have an accepting computation in ≤ k steps?

Assuming the rhetoric of the Cook-Levin Theorem, it seems hard to believe
that Short Nondeterministic Turing Machine Acceptance could be in
FPT, for example, solved in O(|M |3) for any path length k. Indeed, Short Non-

deterministic Turing Machine Acceptance not in FPT is closely related
to the statement n-variable 3Sat not being solvable in subexponential time.

Thus to show Dominating Set is likely not FPT could be achieved by show-
ing that if we could solve it in time O(nc) by for each fixed k, then we could
have a O(nc) for Short Nondeterministic Turing Machine Acceptance.
Our principal working definition for parameterized reductions is the following.

Definition 6. Let L,L′ be two parameterized languages. We say that L ≤fpt L′

iff there is an algorithm M , a computable function f and a constant c, such that

M : 〈G, k〉 �→ 〈G′, k′〉,

so that
(i) M(〈G, k〉) runs in time ≤ g(k)|G|c.
(ii) k′ ≤ f(k).
(iii) 〈G, k〉 ∈ L iff 〈G′, k′〉 ∈ L′.

We give now a simple example of a parametric reduction from k-Clique to k-
Independent Set, where the standard reduction is parametric (a situation not
common). The following is a consequence of Cai, Chen, Downey and Fellows [16],
and Downey and Fellows [31].
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Theorem 7. The following are hard for Short Nondeterministic Turing

Machine Acceptance: Independent Set, Dominating Set.

In the tutorial, I plan to discuss the proof of Theorem 7.
A classic non-example of a parameterized reduction is the classical reduction

of Sat to 3Sat. Early on Downey and Fellows conjectured that there is no
parametric reduction of k-Dominating Set to k-Independent Set, and we
see that the refined reduction of parameterized complexity theory give rise to
several hierarchies based on logical depth. In particular, theW -hierarchy is based
on weighted versions of satsifiabillity (i.e., the number of literals set to true) for
a formula in PoSoP... form or depth t. I will discuss the W -hierarchy below.

W [1] ⊆ W [2] ⊆ W [3] . . .W [SAT ] ⊆ W [P ] ⊆ XP.

Here the other classes W [P ], the weighted circuit satisfiability class, and XP
which has as its defining problem the class whose k-th slice is complete for
DTIME(nk), this being provably distinct from FPT and akin to exponential
time. There are many, many problems hard forW [1] and complete at many levels
of this hierarchy. There are also other hierarchies based on other ideas of logical
depth. One important hierarchy of this kind was found by Flum and Grohe is
the A-hierarchy which is also based on a logical alternation. For a class Φ of
formulae, we can define the following parameterized problem.

p-MC(Φ)
Instance: A structure A and a formula ϕ ∈ Φ.
Parameter: |ϕ|.
Question: Decide if φ(A) �= ∅, where this denotes the evaluation of φ in A.

Flum and Grohe define

A[t] = [p-MC(Σt)]
FPT.

For instance, for k ≥ 1, k-Clique can be defined by

cliquek = ∃x1, . . . xk(
∧

1≤i<j≤k
xi �= xj ∧

∧
1≤i<j≤k

Exixj)

in the language of graphs, and the interpretation of the formula in a graph G
would be that G has a clique of size k. Thus the mapping (G, k) �→ (G, cliquek) is
a fixed parameter reduction showing that parameterized Clique is in A[1]. Flum
and Grohe populate various levels of the A-hierarchy and show the following.

Theorem 8 (Flum and Grohe [46, 48]). The following hold:

(i) A[1] =W[1].
(ii) A[t] ⊆W[t].

Clearly A[t] ⊆XP, but no other containment with respect to other classes of
the W-hierarchy is known. There are also hierarchies like the M -hierarchy based
around parameterizing the problem size.
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As discussed in [26], this hierarchy is related to PTAS’s; the connection of pa-
rameterized complexity with PTAS’s going back to Bazgan [8]. The reader may
note that parameterized complexity is addressing intractability within polyno-
mial time. In this vein, the parameterized framework can be used to demonstrate
that many classical problems that admit a PTAS do not, in fact, admit any PTAS
with a practical running time, unless W[1] =FPT. The idea here is that if a PTAS

has a running time such as O(n
1
ε ), where ε is the error ratio, then the PTAS is

unlikely to be useful. For example if ε = 0.1 then the running time is already n to
the 10th power for an error of 10%. The idea is then to use 1

ε as a parameter and
show W [1]-hardness, say, for that parameterization. Then the problem cannot
have a PTAS without 1

ε (or worse) in the exponent. Thus it will be unlikely that
any feasible PTAS can be found. More precise measurements can be obtained
using the M -hierarchy, as we now see.

It was an insight of Cai and Juedes that tight lower bounds for approxima-
tion and parameterized complexity are intimately related; and indeed, are also
related to classical questions about NP and subexponential time. In particular,
Cai et. al. [17] who showed that the method of using planar formulae tends to
give PTAS’s that are never practical. The exact calibration of PTAS’s and param-
eterized complexity comes through yet another hierarchy called the M-hierarchy.

The base level of the hierarchy is the problem M[1] defined by the core prob-
lem below.

Instance: A CNF circuit C (or, equivalently, a CNF formula) of size k logn.
Parameter: A positive integer k.
Question: Is C satisfiable?

That is, we are parameterizing the size of the problem rather than some aspect
of the problem. The idea naturally extends to higher levels for that, for example,
M [2] would be a product of sums of product formula of size k logn and we are
asking whether it is satisfiable. The basic result is thatFPT⊆ M[1] subseteqW[1].
The hypothesis FPT �=M[1] is equivalent to a classical conjecture called the expo-
nential time hypothesis, ETH. This hypothesis is due to Impagliazzo, Paturi and
Zane [60] and asserts that n-variable 3Sat cannot be solved in “subexponential
time”, DTime (2o(n)). This conjecture accords with the intuition that not only
does P �= NP but actually NP is really at exponential level.

One example of a lower bound was the original paper of Cai and Juedes [18, 19]
who proved the following definitive result.

Theorem 9 (Cai and Juedes [18, 19])

k-Planar Vertex Cover,
k-Planar Independent Set,
k-Planar Dominating Set, and
k-Planar Red/Blue Dominating Set

cannot be in O∗(2o(
√
k))-FPT unless FPT=M[1] (or, equivalently, unless ETH

fails).
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We remark that Theorem 9 is optimal as all the problems above have been

classified as O∗(2O(
√
k) (see e.g. Downey and Thilikos [39])

3.1 XP-Optimality

There is a new programme akin to the above establishing tight lower bounds on
parameterized problems, assuming various non-collapses of the parameterized
hierarchies. A powerful example of this is what is called XP optimality. This
new programme regards the classes like W[1] as artifacts of the basic problem
of proving hardness under reasonable assumptions, and strikes at membership
ofXP. We illustrate this via Independent Set and Dominating Set which
certainly are in XP. But what’s the best exponent we can hope for for slice k?

Theorem 10 (Chen et. al [21]). The following hold:

(i) Independent Set cannot be solved in time no(k) unless FPT=M[1].
(ii) Dominating Set cannot be solved in time no(k) unless FPT=M[2].

4 Other Things

The other things I plan to discuss is how to use parameterized complexity to
show that various methods such as logical metatheorems (such as Courcelle’s
Theorem and the Frick Grohe [51] theorem on local treewidth) which make
very large constants, cannot be improved assuming the W -hierarchy does nor
collapse. Also I will look at recent work on lower bounds for kernelization such
as [11, 14, 23, 50, 59]. This is quite exciting work which allows us to demonstrate
that the kernelization technique cannot be used to give polynomial sized kernels.

I won’t have time to discuss the use of parameterized complexity to rule out
various techniques in other areas such as Aleknovich and Razborov [6].

5 Left Out

Clearly in 2 lectures I won’t have time to deal with things in a lot of depth. I
have alose left out a lot. For example, there is work on parameterized counting
(McCartin [67] and Flum and Grohe [47]) where we count the number of paths of
length k to define, for instance, #W [1]. One nice theorem here is the following.

Theorem 11 (Flum and Grohe [47]). Counting the number of cycles of size
k in a bipartite graph is #W[1]-complete.

This result can be viewed as a parameterized analog of Valiant’s theorem on
the permanent. Another area is parameterized randomization, such as Downey,
Fellows and Regan [38], and Müller [68, 69], but here problems remain. Param-
eterized approximation looks at questions like: Is it possible to have an FPT
algorithm which, on parameter k, either outputs a size 2k dominating set for
G, or says no dominating set of size k? Such algorithms famously exist for Bin



52 R. Downey

Packing and don’t exist for most natural W [P ] complete problems. Here we
refer to Downey, Fellows, McCartin and Rosamond [37] and Eickmeyer, Grohe
and Grüber [41] for more details. We have left out discussions of parameterizing
above guaranteed values such as Mahajan and Raman [65], plus discussions of
the breadth of applications. For the last, we can only point at the relevant books,
and the Computer Journal issues [36].

There are many other important topics such as implementations, connections
with exact algorithms, connections with classical complexity and the like. Time
and space limitations preclude this material being included.
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Abstract. DNA nanotechnology, pioneered by Seeman, Winfree, and
Rothemund, exploits the information processing capabilities of nucleic
acids to program matter to do our bidding at atomic and molecular
scales. This field is now a rapidly growing interdisciplinary research
adventure involving chemists, molecular biologists, computer scientists,
materials scientists, electrical and computer engineers, and others. DNA
tile assembly, DNA origami, and DNA strand displacement have enabled
the programmed self-assembly of complex nanoscale structures, dynamic
nanoscale machines, and nanoscale Boolean circuits. Applications on the
horizon include patterning of smaller, faster computer chips; nanoscale
detectors and instruments for measurement; and in-cell computers that
diagnose and treat disease. This talk will survey the role of computer sci-
ence in making DNA nanotechnology more productive, predictable, and
safe. Topics will include the specification and verification of nanoscale
systems, the intrinsic universality (a strong version of Turing universal-
ity) of self-assembly, the role of randomness in molecular programming,
and the essential role of software in the design of wet-lab experiments in
DNA nanotechnology.
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Abstract. This paper introduces the model of priced timed pushdown
systems as an extension of discrete-timed pushdown systems with a cost
model that assigns multidimensional costs to both transitions and stack
symbols. For this model, we consider the minimal cost reachability prob-
lem: i.e., given a priced timed pushdown system and a target set of
configurations, determine the minimal possible cost of any run from the
initial to a target configuration. We solve the problem by reducing it to
the reachability problem in standard pushdown systems.

1 Introduction

Pushdown systems are one of the most widely used models for the study and
analysis of recursive systems [11]. Furthermore, several models have been intro-
duced in [5,6,9,10,14] which extend the model by introducing timed behaviors.

We consider a new model for Timed Pushdown Systems consisting of push-
down systems augmented with a finite set of (integer valued) clocks. Moreover,
the symbols that are pushed into the stack have integer ages measuring the time
that has elapsed since they were pushed. A clock can be set to zero simultane-
ously with any transition. At any moment, the value of a clock is the time elapsed
since the last time it was reset. With each transition we associate time-intervals
(whose bounds are natural numbers or ω) that restrict the clock values and ages
of the sequence of symbols (on the top of the stack) that can be popped.

In parallel, there have been several works on extending the model of timed
automata [3] with prices (weights) (see e.g., [4,8]). Priced timed automata are
suitable models for embedded systems, where we have to take into consideration
the fact that the system behavior may be constrained by the consumption of
different types of resources. More precisely, priced timed automata extend clas-
sical timed automata with a cost function Cost that maps every location and
every transition to a nonnegative integer. For a transition, Cost gives the cost
of performing the transition. For a location, Cost gives the cost per time unit
for staying in the location. In this manner, we can define, for each run of the
system, the accumulated cost of staying in locations and performing transitions.

We study a natural extension of timed pushdown systems, namely Priced
Timed Pushdown Systems (PTPS). We allow the cost function to map transitions
and stack symbols of the pushdown system into vectors of integers (of some given
length k). Again, for a transition, Cost gives the cost of performing the transition;
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while for a stack symbol, Cost gives the cost per time unit for the symbol to
stay in the stack. We consider the minimal cost reachability problem for PTPS
where, given an intial configuration c0 and a set F of final configurations, the
task is to compute the minimal accumulated cost of a run that reaches F from
c0. Here, we assume that F is regular (i.e., F can be described using a finite
state automaton). Since the set of costs within which we can reach F from c0
is upward closed (regardless of the form of F ), the minimal cost reachability
problem can be reduced, using the construction of Valk and Jantzen [15], to the
cost-threshold problem. In the latter, we are given a cost vector v, and we want
to check if it is possible to reach F from c0 with a cost that does not exceed v.

In this paper, we prove that the cost-threshold problem for PTPS can be
reduced to the reachability problem for (unpriced) timed pushdown systems.
The idea consists of encoding the cost of a computation in the state of the timed
pushdown systems. Moreover, we show that the reachability problem for timed
pushdown systems can be reduced to the reachability for (unpriced and untimed)
pushdown systems which is decidable. Hence, we get the decidability of the cost-
threshold problem for PTPS (and consequently also solving the minimal cost
reachability problem for PTPS).

Related work. The works in [6,9,10] consider timed pushdown automata. How-
ever, the models in these works consider only global clocks which means that
the stack symbols are not equipped with clocks. In contrast, we associate with
each pushed stack symbol one clock (reflecting its age). In fact, our model can
be easily extended such that each stack symbol has several clocks.

In [14], the authors introduce recursive timed automata, a model where clocks
are considered as variables. A recursive timed automaton allows passing the val-
ues of clocks using either pass-by-value or pass-by-reference mechanisms. This
feature is not supported in our model since we do not allow pass-by-value com-
munication between procedures. Moreover, in the recursive timed automaton
model, the local clocks of the caller procedure are stopped until the called pro-
cedure returns. This makes the semantics of the models incomparable with ours,
since all the clocks in our model evolve synchronously.

In [5], the authors define the class of extended pushdown timed automata which
is a pushdown automaton enriched with a set of clocks, with an additional stack
used to store/restore clock valuations (which leads to the undecidability of the
reachability problem). In our model, clocks are associated with stack symbols
and store/restore operations are not allowed.

None of the above works considers prices in their models.
The minimal cost reachability problem has been addressed for several models:

priced timed automata (e.g., [4,8]), and priced timed Petri nets ([1,2]). To the
best of our knowledge, this is the first work that addresses the problem for PTPS.

2 Preliminaries

Let N denote the non-negative integers, and let Nk and Nkω denote the set of
vectors of dimension k over N and N ∪ {ω}, respectively (ω represents the first
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limit ordinal). We use 0k (or simply 0, depending on the context) to denote the
vector of dimension k whose elements have all the value 0, and Intrv to denote
the set of intervals in N × Nω. In the context of vectors, less than means the
standard componentwise ordering ≤.

For sets A and B, we use f : A → B to denote that f is a total function that
maps A to B. We use [A → B] to denote the set of all total functions from A
to B. Given a set A with an ordering � and a subset B ⊆ A, B is said to be
upward closed in A if b ∈ B, a ∈ A and b � a implies a ∈ B. Given a set B ⊆ A,
we define the upward closure B ↑ (resp. downward closure B ↓) to be the set
{a ∈ A | ∃b ∈ B : b � a (resp. a � b)}.

Let Σ be an alphabet. We denote by Σ∗ (resp. Σ+) the set of all words (resp.
non-empty words) over Σ, and by ε the empty word. A language is a (possibly
infinite) set of words. The length of a word w ∈ Σ∗ is denoted by |w|. (We
assume that |ε| = 0). For every i : 1 ≤ i ≤ |w|, let w(i) be the symbol at position
i in w. For a ∈ Σ, we write a ∈ w if a appears in w, i.e., a = w(i) for some
i : 1 ≤ i ≤ |w|. We use |w|a to denote the number of occurrences of a in w.

3 Priced Timed Pushdown Systems

The Timed Pushdown System (TPS) model is an extension of pushdown systems
augmented with a finite set of (integer valued) clocks. Moreover, the symbols that
are pushed into the stack have integer ages measuring the time that has elapsed
since they were pushed. A clock can be set to zero simultaneously with any
transition. At any moment, the value of a clock is the time elapsed since the last
time it was reset. With each transition we associate time-intervals (whose bounds
are natural numbers or ω) which restrict the clock values and ages of the sequence
of symbols (on the top of the stack) that can be popped. Then, we extend this
model to priced timed pushdown systems (PTPS) by assigning multidimensional
costs to both transitions (action costs) and stack symbols (storage costs). Each
firing of a discrete transition costs the assigned cost vector. The cost of a timed
transition depends on the stack content. For each stack symbol γ, if the stack
contains k1 occurrences of γ and the cost of storing γ per time unit is v, then
firing a timed transition will add k1v to the current accumulated cost.

Syntax. A Priced Timed Pushdown System (PTPS) is a tuple N = (X,Q,
Γ,Δ, cost) where X is a finite set of clocks, Q is a finite set of states, Γ is the
stack alphabet, cost : (Γ ∪Δ) → Nk is a function assigning (multidimensional)
firing costs to transitions and storage costs to stack symbols, and Δ is a finite
set of transition rules of the form:

(q, (α1, J1) · · · (αm, Jm))
(φ ,R)−−−−−→(q′, (γ1, I1) · · · (γn, In))

where (1) q, q′ ∈ Q are two states, (2) α1 · · ·αm ∈ Γ ∗ is the word to be popped
such that the age of each symbol αi ∈ Γ should be in the interval Ji for all
i : 1 ≤ i ≤ m, (3) φ : X → Intrv is a clock constraint over X (i.e., the valua-
tion of a clock x ∈ X should be in φ(x)), (4) R ⊆ X is the set of clocks to be reset,
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and (5) γ1 · · · γn ∈ Γ ∗ is the word to be pushed into the stack such that the initial
age of each symbol γj ∈ Γ should be in the interval Ij for all j : 1 ≤ j ≤ n.
Observe that the set Δ of transition rules can be defined as a finite subset of(
Q× (Γ × Intrv)∗

)
×
(
[X → Intrv ]× 2X

)
×
(
Q × (Γ × Intrv)∗

)
.

If for every γ ∈ Γ and δ ∈ Δ, cost(γ) = cost(δ) = 0 (i.e., the cost of any
transition or stack symbol is 0), then N is called a (unpriced) Timed Pushdown
System (TPS), which can be described by the tuple (X,Q, Γ,Δ). Moreover, if
Δ ⊆

(
Q × (Γ × I0)

∗) × ([X → I0] × 2X) × (Q × (Γ × I0)
∗) with I0 = {[0..ω]},

then the TPS N is called an unpriced and untimed pushdown system, or simply
Pushdown System (PS), which can be described by the tuple (Q,Γ,Δ).

Configurations. A configuration c of N is a triple (q, ν, w) where q ∈ Q is a state,
ν : X → N is a clock valuation, and w ∈ (Γ × N)∗ is the stack content. Observe
that the stack contains a sequence of pairs representing the pushed symbols and
their ages. Let Conf (N) denote the set of all configurations of N .

A set of configurations C ⊆ Conf (N) is said to be regular if there are a
set Q′ ⊆ Q of states, a finite set Ψ ⊆ [X → N] of clock valuations, and a
regular language L over (Γ × Intrv) such that C = {(q, ν, w) | q ∈ Q′, ν ∈
Ψ,w satisfies some l ∈ L}. A language L over (Γ × Intrv) is regular if and only
if there is a finite state automaton A over the alphabet (Γ × Intrv) such that
the language accepted by A is precisely L.

Let c = (q, ν, (γ1, a1) · · · (γn, an)) be a configuration of N with q ∈ Q, ν ∈
[X → N], and (γi, ai) ∈ Γ × N for all i : 1 ≤ i ≤ n. Then, we use c+1 to
denote the configuration (q, ν′, w′) defined as follows: (1) ν′(x) = ν(x) + 1 for
all x ∈ X (i.e., the value of each clock is increased by one time unit), and (2)
w′ = (γ1, a1 + 1) · · · (γn, an + 1) (i.e., the age of each symbol γi in the stack is
also increased by one time unit). Note that (γ1, a1) is at the top and (γn, an) is
at the bottom of the stack.

Let γ1, . . . , γn ∈ Γ , a1, . . . , an ∈ N and I1, . . . , In ∈ Intrv . We say that
the stack content w = (γ1, a1) · · · (γn, an) satisfies the stack constraint r =
(γ1, I1) · · · (γn, In) (denoted by w ∈ r) if and only if ai ∈ Ii for all i : 1 ≤ i ≤ n
(i.e., the age of each symbol γi belongs to the interval Ii).

Transition relation. We define two transition relations on the set of configu-
rations of N : timed and discrete. The timed transition relation increases the
value of each clock and the age of each pushed stack symbol by one. Formally,
c−→time c

′ if and only if c′ = c+1.
We define the discrete transition relation −→D as

⋃
δ∈Δ −→δ where −→δ repre-

sents the effect of performing the discrete transition δ. More precisely, let us

assume that the transition δ is of the form (q, r)
(φ,R)−−−−→(q′, r′) where q, q′ ∈ Q

are states, r, r′ ∈ (Γ × Intrv)∗ are stack constraints, R ⊆ C is the set of clocks
to be reset, and φ : X → Intrv is a clock constraint over X . For configurations
c = (q, ν, w) and c′ = (q′, ν′, w′), we have c−→δ c

′ if and only if

– There are u, u′′ ∈ (Γ ×N)∗ such that w = u · u′′ and u ∈ r. The transition t
can be performed only if there is a word u, at the top of the stack, satisfying
the constraint r (i.e., u ∈ r), and if this is the case u can be popped.
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– There is u′ ∈ (Γ ×N)∗ such that w′ = u′ · u′′ and u′ ∈ r′. The newly pushed
word u′ into the stack should satisfy the stack constraint given by r′.

– ν(x) ∈ φ(x) for all x ∈ X . The current clock value of x should satisfy the
time constraint imposed by φ.

– ν′(x) = 0 for all x ∈ R and ν′(x′) = ν(x′) for all x′ /∈ R. The clocks in
R are reset to 0, and thus start counting time with respect to the time of
occurrence of this transition.

We write −→N (or simply −→ when it is clear from the context) to denote the
transition relation given by −→time ∪−→D. We use −→∗ to denote the reflexive-
transitive closure of −→. It is easy to extend −→∗ to sets of configurations.

Let c, c′ ∈ Conf (N). A computation π of N from c to c′ is of the form
c0−→ c1−→· · ·−→ cn where c0 = c, cn = c′, and ci−→ ci+1 for all i : 0 ≤ i < n.
We write c π−→ c′ to denote that there is a computation π of N from c to c′. We
define Reach(c) := {c′′ | c−→∗ c′′} as the set of configurations reachable from c.

The cost of computations. The cost of a stack content w ∈ (Γ×N)∗ is defined
as Cost(w) =

∑
(γ,a)∈Γ×N

|w|(γ,a) cost(γ). Intuitively, the cost of w corresponds
to the sum, over the stack symbols γ ∈ Γ , of the number of occurrences of γ in w
multiplied by its individual cost cost(γ). In the same way, we can define the cost
of stack constraints: Given a stack constraint r ∈ (Γ×Intrv)∗, Cost(r) = Cost(u)
for some u ∈ r. Notice that the function Cost over stack constraints is well-
defined since Cost(u) = Cost(u′) for all u, u′ ∈ r.

The cost of a discrete transition δ is defined as Cost(c−→δ c
′) = cost(δ) and

the cost of a timed transition is defined as Cost(c−→time c
+1) = Cost(w) where

c is of the form (q, ν, w). The cost of a computation π = c0−→ c1−→· · ·−→ cn is

the sum of all transition costs, i.e., Cost(π) =
∑n−1
i=0 Cost(ci−→ ci+1).

The Cost-Threshold Problem. We study the problem of computing the minimal
cost for reaching a configuration in a given regular target set.

Cost-Threshold Problem

Instance: A PTPS N = (X,Q, Γ,Δ, cost) with an initial configuration c0 ∈
Conf (N), a regular set F of final configurations and a vector v ∈ Nkω.

Question: Does there exist c ∈ F and c0
π−→ c such that Cost(π) ≤ v?

The cost-threshold problem is called the reachability problem when the PTPS
N is an unpriced (un)timed pushdown system. In fact, in the case of unpriced
(un)timed pushdown systems, the cost-threshold problem boils down to check-
ing whether there exist a configuration c ∈ F and a computation π such that
c0

π−→ c. Moreover, in the case of pushdown systems, the regular set F of final
configurations can be defined using the tuple Q′ × L where Q′ ⊆ Q and L is a
regular language over Γ .

Since all costs are non-negative (in the set Nk), the standard componentwise
ordering ≤ on costs is a well-quasi order and thus every upward closed set of
costs has finitely many minimal elements [12]. Moreover, if we have a positive
instance of the cost-threshold problem with some allowed cost v then any modi-
fied instance with some allowed cost v′ ≥ v will also be positive. Thus the set of
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possible costs in the cost-threshold problem is upward-closed. In this case, the
Valk-Jantzen theorem [15] implies that the set of minimal possible costs can be
computed if the Cost-Threshold problem is decidable.

Theorem 1 (Valk and Jantzen [15]). Given an upward-closed set V ⊆ Nk,
the finite set Vmin of minimal elements of V is computable if for any vector
v ∈ Nkω the predicate v↓ ∩V �= ∅ is decidable.

Computing Minimal Possible Costs

Instance: A PTPS N with an initial configuration c0 and a regular set F of
final configurations.

Question: Compute the minimal possible costs of reaching F , i.e., the finitely
many minimal elements of VF = {v ∈ Nk | ∃c ∈ F, π. c0

π−→ c ∧ Cost(π) ≤ v}.
Since VF is upward-closed and for any vector v, if F is reachable with a cost

less than v, then v ∈ VF , we have by Theorem 1:

Theorem 2. Let N be a PTPS with an initial configuration c0 and a regular set
of final configurations F . Then, computing the minimal possible costs of reaching
F can be reduced to the cost-threshold problem of reaching F from c0.

4 From Priced to Unpriced Timed Pushdown Systems

In this section, we show that it is possible to reduce the cost-threshold reacha-
bility problem for PTPS to the reachability problem for TPS.

Theorem 3. The cost-threshold reachability problem for priced timed pushdown
systems can be reduced to the reachability problem for timed pushdown systems.

The rest of this section is devoted to the proof of this theorem. Consider an
instance of the cost-threshold reachability problem for priced timed pushdown
systems. LetN = (X,Q, Γ,Δ, cost) be a PTPS with cost(Γ )∪cost(Δ) ⊆ Nk, c0 ∈
Conf (N) be the initial configuration, F be the regular set of final configurations,
and v = (v1, . . . , vk) ∈ Nkω.

First, for every i : 1 ≤ i ≤ k, if vi = ω then we replace vi by 0 and set the i-th
component of the cost function cost of each stack symbol γ ∈ Γ and transition
δ ∈ Δ to 0. Hence, we can assume that v = (v1, . . . , vk) ∈ Nk.

In the following, we construct a TPS N ′ = (X ′, Q′, Γ ′, Δ′) such that the
cost-threshold reachability for N is reducible to the reachability problem for
N ′. The idea is to simulate any computation of N by a computation of N ′.
During the simulation, N ′ keeps track in its state of the current total cost of
the computation (performed so far) and the current cost of the stack content. So,
when a discrete transition δ is performed, N ′ adds the cost of δ to the current
total cost. (Observe that the total cost should always be less than the vector
v since we are only interested in computations whose total cost is less than v.)
Now, when a timed transition is performed, the cost of the stack content (if it
is less than v) will be added to the total cost.
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The first main difficulty is that, during one time unit, the cost of the stack
content can be strictly greater than (or incomparable to) v. To overcome this
difficulty, N ′ keeps track of the cost of the stack content up to v, and uses the
special symbol � when the current cost of the stack content is not less than v.
Moreover, N ′ adds the cost of the current stack (stored in the state of N ′) to
each newly pushed stack symbol γ ∈ Γ . Hence, a stack symbol of N ′ is of one of
the following two forms: either (γ,v′) or (γ,�) where γ ∈ Γ and v′ ≤ v. Then,
every transition performed by N ′ preserves the invariant between the stack cost
stored in the current state of N ′ and the topmost stack symbol in the stack.
This means that if the current cost of the stack content stored in the state is s
and the topmost stack symbol is (γ, s′) then the following condition should be
satisfied: If s′ = � or cost(γ) + s′ � v then s = �; otherwise s = cost(γ) + s′.

The second difficulty is that timed transitions of N ′ are performed in a non-
deterministic manner. However, N ′ needs to know when a timed transition has
been performed in order to add the current stack content cost to the total cost
stored in its state. For this we add a new clock xnew which is used to detect if
one unit of time has elapsed (i.e., a timed transition has been performed) or not.
Then, discrete transitions of N can only be simulated by N ′ when the value of
the clock xnew is equal to 0. If the current value of xnew is 1, then N ′ will add
the current stack content cost (if it is less than v) to the total cost stored in its
state and reset xnew. Formally, N ′ is defined as follows:

– Let � be a symbol. The stack alphabet Γ ′ of N ′ is defined by the set Γ ×
(v ↓ ∪ {�}). Intuitively, a stack symbol of the form (γ,v′) (resp. (γ,�))
corresponds to the fact that the cost of the stack content before pushing the
stack symbol (γ,v′) (resp. (γ,�)) into the stack is v′ (resp. not less than v).

– A state of N ′ is of the form (q, t, s) where q ∈ Q is a state of N , t ∈ v↓
is the current accumulated total cost (which should be less than v), and
s ∈ (v↓ ∪ {�}) reflects the current cost of the stack content (if the current
cost v′ of the stack content is less than v then s = v′ otherwise s = �).

– The set of clocks of N ′ contains all the clocks of N and a new clock xnew
such that xnew /∈ X (i.e., X ′ = X∪{xnew}). The clock xnew is used to detect
when a timed transition is performed in order to add the cost of the current
stack content (if it is less than v) to the total cost.

– The set Δ′ is the smallest set of rules satisfying the following conditions:

1. Simulating a discrete transition of N : Let t, t′ ∈ (v↓) be two vectors
less than v and s, s′ ∈ (v↓ ∪ {�}). For every discrete transition δ ∈ Δ

of the form (q, (α1, J1) · · · (αm, Jm))
(φ,R)−−−−→(q′, (γ1, I1) · · · (γn, In)), the TPS

N ′ has a transition of the form ((q, t, s), r)
(φ′,R)−−−−→((q′, t′, s′), r′), with r =

((α1, a1), J1) · · · ((αm, am), Jm) and r′ = ((γ1, b1), I1) · · · ((γn, bn), In), if the
following conditions are satisfied:

• t′ := t+ cost(δ). The cost of the transition δ is add to the total cost t.

• φ′(x) = φ(x) if x ∈ X , and φ′(xnew) = [0..0]. The discrete transition
can be performed by N ′ only if the clock value of xnew is equal to 0.
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• Let d = s if r = ε (i.e., m = 0) otherwise d = am. Intuitively, d represents
the stack cost after popping a word satisfying the stack constraint r.
∗ If d = � then s′ = � and bi = � for all i : 1 ≤ i ≤ n. In fact,
if the current cost of the stack after popping a word satisfying the
constraint r is not less than v (since d = �), then it is the case after
pushing any stack symbol (so, bi = � and s′ = �).

∗ If d ≤ v then for every i : 1 ≤ i ≤ n, let vi = d +
∑n
j=i cost(γj)

be the sum of d (i.e, the current stack cost after popping a word
satisfying the constraint r) and the cost of the sequence of stack
symbols γiγi+1 · · · γn. Then, if v1 ≤ v then s′ = v1, otherwise s

′ = �.
Moreover, bn = d and for every i : 1 ≤ i < n, if vi+1 ≤ v then
bi = vi+1, otherwise bi = �.

2. Simulating a timed transition of N : For every state q ∈ Q and
vectors t, t′, s ∈ (v↓) less than v, the TPS N ′ has a transition δtime of the

form ((q, t, s), ε)
(φ,R)−−−−→((q, t′, s), ε) if the following conditions hold:

• φ(x) = [0..ω] for all x ∈ X and φ(xnew) = [1..1]. This means that one
time unit has passed, and hence, a timed transition has been performed.

• t′ := t+ s. The current cost of the stack content is added to the current
total cost since a timed transition has been performed.

• R = {xnew}. Only the clock xnew is reset to 0.

Relation between N and N ′. Let w = ((γ1, a1), y1)((γ2, a2), y2) · · · ((γn, an), yn)
be a possible stack content of N ′ where γi ∈ Γ , ai ∈ (v ↓) ∪ {�}, and yi ∈ N
for all i : 1 ≤ i ≤ n. Recall that the symbol ((γn, an), yn) is in the bottom of the
stack and ((γ1, a1), y1) is the topmost stack symbol. For every i : 1 ≤ i ≤ n, let
vi =

∑n
j=i cost(γj) be the cost of the sequence of stack symbols γi · · · γn.

Then, w is a valid stack content ofN ′ if and only if an = 0 and for every i : 1 ≤
i < n, if vi+1 ≤ v then ai = vi+1, otherwise ai = �. Observe that the transition
relation of N ′ preserves the validity of the stack content in any configuration
reachable from a configuration whose stack content is initially valid.

Now, we define the mapping T that associates, for every configuration c =
(q, ν, (γ1, y1) · · · (γn, yn)) ofN and every vector t ≤ v, a configuration T (c, t,v) =
((q, t, s), ν′, w′) of N ′ such that the following conditions are satisfied:

– w′ is the unique valid stack content of the form:

((γ1, a1), y1)((γ2, a2), y2) · · · ((γn, an), yn)
Notice that such a valid stack configuration exists by definition and unique.

– If Cost(γ1 · · · γn) ≤ v then s = Cost(γ1 · · · γn), otherwise s = �.
– ν′(x) = ν(x) if x ∈ X and ν′(xnew) = 0.

Observe that T is a bijection. The definition of the mapping T is extended in
the straightforward manner to sets of configurations of N and costs less than v.
Finally, Theorem 3 is an immediate consequence of the following lemma:

Lemma 4. Let F ′ = T (F,v ↓,v). There exists a configuration c ∈ F and a
computation c0

π−→ c of N s.t. Cost(π) ≤ v iff there is a configuration c′ ∈ F ′

s.t. T (c0,0,v)−→∗
N ′ c′. Moreover, the set F ′ of configurations of N ′ is regular.
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5 From Timed Pushdown Systems to Pushdown Systems

In this section, we show that it is possible to reduce the reachability problem for
TPS to its corresponding problem for PS. Let us first show that the reachability
problem for TPS can be reduced to the reachability problem for TPS between
two configurations with empty stack and where the value of each clock is 0.

Lemma 5. Let N be a timed pushdown system, c0 ∈ Conf (N) be an initial
configuration, and F ⊆ Conf (N) be a regular set of final configurations. Then,
it is possible to construct a timed pushdown system N ′ = (X ′, Q′, Γ ′, Δ′) and two
configurations c′0 = (q0, ν, ε) and c′f = (qf , ν, ε) such that q0, qf ∈ Q′, ν(x) = 0
for all x ∈ X ′, and there is c ∈ F such that c0−→∗

N c iff c′0−→∗
N ′ c′f .

Proof. The proof of this lemma is similar to the case of standard pushdown
systems. In fact, any computation of N ′ will be divided in three phases. In the
first phase, the TPS N ′ performs some push and nop transitions in order to reach
the configuration c0. Then, N

′ starts to mimic the behavior of N . Finally, N ′

performs a sequence of pop and nop transitions to check, in a nondeterministic
way, whether the current reached configuration is in F , and then resets all clocks
to zero. This can be done since F is a regular set of configurations. ��

Let us now prove that it is possible to reduce the reachability problem for timed
pushdown systems to the reachability problem for pushdown systems.

Theorem 6. The reachability problem for timed pushdown system can be re-
duced to the same problem for pushdown systems.

The rest of this section is devoted to the proof of Theorem 6. Consider an instance
of the reachability problem for timed pushdown systems: Let N = (X,Q, Γ,Δ)
be a timed pushdown system, c0 ∈ Conf (N) be an initial configuration, F be a
regular set of final configurations. From Lemma 5, we can assume without loss of
generality that c0 = (q0, ν, ε) and F = {(qf , ν, ε)} where q0, qf ∈ Q and ν(x) = 0
for all x ∈ X .

Let max be the maximal natural number appearing in the time intervals of
the transition relation Δ. Observe that if the value of a clock or the age of a
stack symbol is strictly greater than max then we can assume without loss of
generality that it is ω.

In the following, we construct a pushdown system N ′ = (Q′, Γ ′, Δ′) such
that the reachability problem for N is reducible to the reachability problem in
N ′. The main idea is to simulate a computation of N by a computation of N ′.
During the simulation process, the pushdown system keeps track of the value
of each clock of N in its state up to the value max . In fact, if the value of a
clock of N is strictly greater than max , N ′ can assume without loss of generality
that the value of such clock is ω. Observe that this simulation process of the
clocks of N cannot be extended to the ages of the stack symbols in the stack,
since N ′ has limited access to its stack (it can only access the top part). To
overcome this problem, we add to each stack symbol γ ∈ Γ of N , its initial age,
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and the time that has elapsed between the pushing of γ and the last time it
was the topmost symbol. As in the case of the clocks of N , we can assume that
the initial age and the time elapsed associated with each stack symbol of N ′ is
in [0 ..max ] ∪ {ω}. Now, every performed transition in N ′ should preserve that
the age of the topmost stack symbol is given by the sum of its initial age and
the time elapsed so far. Hence, when a symbol is popped from the stack, the
elapsed time of the new topmost stack symbol must be updated by adding to it
the elapsed time of the popped symbol. Formally, the pushdown system N ′ is
defined as follows:

– The set Q′ of states of N ′ is Q × [X → ([0 ..max ] ∪ {ω})]. A state of N ′

is then of the form (q, ν) where q ∈ Q is the current state of N and ν is a
mapping from X to [0 ..max ] ∪ {ω}. If a clock x ∈ X has a value strictly
greater than max in N then ν(x) = ω in N ′, otherwise the value of the clock
x in N is ν(x).

– The stack alphabet Γ ′ is (Γ × ([0 ..max ]∪{ω})2)∪{(⊥, 0, 0)} where (⊥, 0, 0)
is a special symbol used to mark the bottom of the stack. A stack symbol of
the form (γ, y, z) on the top of the stack of N ′ corresponds to the fact that
γ is the topmost stack symbol of N such that if its initial age i is strictly
greater than max then y = ω, otherwise y = i. Moreover, if e is the elapsed
time while γ is in the stack of N , then if e is strictly greater than max then
z = ω, otherwise z = e. Notice that the age of γ in N is (i+ e).

– The set Δ′ is the smallest set of rules satisfying the following conditions:

1. Simulating a discrete transition of N : Let (γ, y, z) ∈ Γ ′ be a stack
symbol of N ′. Then, for every discrete transition δ ∈ Δ of N of the form

(q, (α1, J1) · · · (αm, Jm))
(φ,R)−−−−→(q′, (γ1, I1) · · · (γn, In)), N ′ has a transition of

the form: ((q, ν), (α1, y1, z1) · · · (αm, ym, zm)(γ, y, z))−→ ((q′, ν′), (γ1, y
′
1, z

′
1)

· · · (γn, y
′
n, z

′
n) (γ, y

′, z′)) if the following conditions hold:

• For every clock x ∈ X , ν(x) ∈ φ(x). The valuation of each clock x should
satisfy the time constraint given by φ.

• For every clock x ∈ X , ν′(x) = 0 if x ∈ R, otherwise ν′(x) = ν(x). Since
no unit of time has been elapsed, only the clocks that are in R are reset.

• For every i : 1 ≤ i ≤ m, we have (yi +
∑i
j=1 zj) ∈ Ji. This means that

the age of the stack symbol αi is given by the sum of the time elapsed
at each stack symbol αj with j : 1 ≤ j ≤ i and its initial age yi when it
was pushed.

• If (γ, y, z) = (⊥, 0, 0) then (γ, y′, z′) = (⊥, 0, 0). This means that the
bottom stack symbol can never be popped.

• If γ ∈ Γ then let e = z +
∑m
j=1 zj . If e ≤ max then z′ = e, otherwise

z′ = ω. The elapsed time of the new topmost stack symbol γ must
be updated using the elapsed time of each individual symbol αi with
j : 1 ≤ j ≤ m. Moreover, we have y′ = y since the initial age of γ
remains the same.
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• For every i : 1 ≤ i ≤ n, we have y′i ∈ ([0 ..max ] ∪ {ω}) ∩ Ii and z′i = 0.
The newly pushed stack symbol γi has an initial age in Ii. Moreover, the
elapsed time of γi is 0 since it is newly pushed into the stack.

2. Simulating a timed transition of N : For every state q ∈ Q, ν, ν′ ∈
[X → ([0 ..max ] ∪ {ω})], and (γ, y, z), (γ, y′, z′) ∈ Γ ′, the pushdown system
N ′ has a transition δtime of the form ((q, ν), (γ, y, z))−→ ((q, ν′), (γ, y′, z′)) if
the following conditions hold:

• For every clock x ∈ X , if ν(x)+1 ≤ max then ν′(x) = ν(x)+1, otherwise
ν′(x) = ω. Since a timed transition is performed, the pushdown system
N ′ should update the valuation of all its clocks accordingly.

• If (γ, y, z) = (⊥, 0, 0) then (γ, y′, z′) = (⊥, 0, 0). This means that the
bottom stack symbol can never be popped or modified.

• If γ ∈ Γ then let e = z + 1. If e ≤ max then z′ = e, otherwise z′ = ω.
Moreover, we have y′ = y. The elapsed time of the topmost stack symbol
must be updated since one time unit has passed.

Finally, the relation between N and N ′ is given by the following lemma:

Lemma 7. (q0, ν, ε)−→∗
N (qf , ν, ε) iff ((q0, ν), (⊥, 0, 0))−→∗

N ′ ((qf , ν), (⊥, 0, 0)).

Since the reachability problem for pushdown systems is decidable (see for ex-
ample [7,13]), and from Theorem 3 and Theorem 6, we can conclude that the
cost-threshold problem is also decidable.

Corollary 8. The cost-threshold problem for PTPS is decidable.

Moreover, from Theorem 2 and Corollary 8, we obtain:

Corollary 9. Let N be a priced timed pushdown system with an initial configu-
ration c0 ∈ Conf (N) and a regular set F of final configurations. Then, it possible
to compute the minimal possible costs of reaching F .

6 Conclusion

We introduced the model of (discrete) timed pushdown systems which is an ex-
tension of pushdown systems. We showed that the reachability problem for timed
pushdown systems is decidable and can be reduced to the reachability problem
for standard pushdown systems (which is a decidable problem). Moreover, we
have considered priced timed pushdown systems which is an extension of timed
pushdown systems with a cost model. We proved that the cost-threshold prob-
lem is decidable (by a reduction to the reachability problem for timed pushdown
systems). As a consequence of this result, the minimal cost reachability problem
for priced timed pushdown systems is decidable.

A challenging problem which we are currently considering is to extend our
results to the case of dense-timed pushdown systems.
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Abstract. We model chaining in terms of a simple, convergent, rewrite
system over a signature with two disjoint sorts: list and element. By
interpreting a particular symbol of this signature suitably, the rewrite
system can model several practical situations of interest. An inference
procedure is presented for deciding the unification problem modulo this
rewrite system. The procedure is modular in the following sense: any
given problem is handled by a system of ‘list-inferences’, and the set of
equations thus derived between the element-terms of the problem is then
handed over to any (‘black-box’) procedure which is complete for solving
these element-equations. An example of application of this unification
procedure is given, as attack detection on a Needham-Schroeder like
protocol employing the CBC encryption mode.

Keywords: Equational unification, Block chaining, Protocol.

1 Introduction

The technique of chaining is applicable in many situations. A simple case is e.g.,
when we want to calculate the partial sums (resp. products) of a (not necessarily
bounded) list of integers, with a given ‘base’ integer; such a list of partial sums
(resp. products) can be calculated, incrementally, with the help of the following
set of equations:

bc(nil, z) = nil, bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))

where nil is the empty list, z is the given base integer, x is an integer variable,
and Y is the given list of integers. The partial sums (resp. products) are returned
as a list, by evaluating the function bc, when h(x, z) is interpreted as the sum
(resp. product) of x with the given base integer z.

A more sophisticated example is the Cipher Block Chaining encryption mode
(CBC, in short), employed in cryptography. This mode uses the AC-operator
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exclusive-or (XOR) for ‘chaining the ciphers across the message blocks’; here
is how this is done: let ⊕ stand for XOR (which we let distribute over block
concatenation), and M = m ·M ′ be a message decomposed as a concatenation
of a single message blockm with the rest of the messageM ′. Then the encryption
e(M,x) of M with x as the key is given by e(M,x) = e(m,x) ·e(M ′⊕e(m,x), x)
(cf. e.g., [12]). The above set of equations also models the CBC encryption mode:
the function h(x, y) will stand in this case for the encryption e(x ⊕ y, k) of
the message-term x XOR-ed with the initialization vector y, using the public
key k of the recipient of the message. Actually, our interest in the equational
theory defined by the above two equations was motivated by the possibility of
such a modeling for Cipher Block Chaining, and the fact that rewrite as well as
unification techniques are often employable, with success, for the formal analysis
of cryptographic protocols (cf. e.g., [3,5,7,6], and also the concluding section).

This paper is organized as follows. In Section 2 we introduce our notation
and the basic notions used in the sequel; we shall observe, in particular, that
the two equations above can be turned into rewrite rules and form a convergent
rewrite system over a 2-sorted signature: lists and elements. Our concern in
Section 3 is the unification problem modulo this rewrite system; we present a 2-
level inference system (corresponding, in a way, to the two sorts of the signature)
for solving this problem. Although our main aim is to develop on the unification
problem under the assumption that h is an interpreted function symbol (as in
the two situations illustrated above), for the sake of completeness we shall also
consider the case where h is a free uninterpreted symbol. The soundness and
completeness of our inference procedure are established in Section 4. We shall
see that while the complexity of the unification problem is polynomial over the
size of the problem when h is uninterpreted, it turns out to be NP-complete
when h is interpreted so that the rewrite system models CBC encryption.

2 Notation and Preliminaries

We consider a ranked signature Σ, with two disjoint sorts: τe and τl, consisting
of binary functions bc, cons, h, and a constant nil, and typed as follows:

bc : τl × τe → τl , cons : τe × τl → τl , h : τe × τe → τe , nil : τl.

We also assume given a set X of countably many variables; the objects of our
study are the (well-typed) terms of the algebra T (Σ,X ); terms of the type τe will
be referred to as elements ; and those of the type τl as lists. For better readability,
the set of variables X will be divided into two subsets: those to which ‘lists’ can
get assigned will be denoted with upper-case letters as: X,Y, Z, U, V,W, . . . , with
possible suffixes or primes; these will be said to be variables of type τl; variables
to which ‘elements’ can get assigned will be denoted with lower-case letters,
as: x, y, z, u, v, w, . . . , with possible suffixes or primes; these will be said to be
variables of type τe. The theory we shall be studying in this paper is defined by
the two axioms (equations) already mentioned in the Introduction:

bc(nil, z) = nil, bc(cons(x, Y ), z) = cons(h(x, z), bc(Y, h(x, z)))
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It is easy to see that these axioms can both be oriented left-to-right under a
suitable lexicographic path ordering (lpo) (cf. e.g., [8]), and that they form then
a convergent – i.e., confluent and terminating – 2-sorted rewrite system. The
(sorted) equational theory defined by the two axioms above will be denoted in
the sequel as BC, and referred to as ‘block chaining’.

In the case where h is a free uninterpreted symbol, h will be fully cancellative
in the sense that for any terms s1, t1, s2, t2, we have: h(s1, t1)≈BCh(s2, t2) if and
only if s1≈BCs2 and t1≈BCt2. But when h is interpreted, e.g., as for CBC, this
is no longer true; in that case, h will only be semi-cancellative in the following
sense: for any terms s1, s2, t, we have: h(s1, t)≈BCh(s2, t) if and only if s1≈BCs2
and h(t, s1)≈BCh(t, s2) if and only if s1≈BCs2. In the sequel, we shall always
assume the symbol h to be semi-cancellative.

Our concern in this work is the equational unification problem modulo BC. We
assume without loss of generality (wlog) that any given BC-unification problem
P is in a standard form, i.e., P is given as a set of equations EQ, each having
one of the following forms:

U =? V, U =? bc(V, y), U =? cons(v,W ), U =? nil,
u =? v, v =? h(w, x), u =? const

where const stands for any ground constant of sort τe. The first four kinds of
equations – the ones with a list variable on the left-hand side – are called list
equations, and the rest (those which have an element variable on the left-hand
side) are called element equations. For any problem P in standard form, L(P)
will denote the subset formed of its list equations, and E(P) the subset of element
equations. A set of element equations is said to be in dag-solved form (or d-solved
form) if and only if they can be arranged as a list

x1 =? t1, . . . , xn =? tn

where: (a) each left-hand side xi is a distinct variable, and (b) ∀ 1 ≤ i ≤ j ≤ n:
xi does not occur in tj ([11]). Such a notion is naturally extended to sets of list
equations as well. In the next section we give an inference system for solving
any BC-unification problem in standard form. Its rules will transform any given
problem P into one in d-solved form.

For better comprehension, and to facilitate presentation, in the sequel we
shall denote by BC0 the theory defined by the rewrite system BC when h is a
free uninterpreted symbol; and by BC1 the theory defined in the case where h
is interpreted so that BC models the CBC encryption mode. Any development
presented below for the theory BC – without further precision on h – is meant
as one which will be valid for both BC0 and BC1.

3 Inference System for BC-Unification

The inference rules have to consider two kinds of equations: the rules for the list
equations in P , i.e., equations whose left-hand sides (lhs) are variables of type τl,
and the rules for the element equations, i.e., equations whose lhs are variables of
type τe. Our method of solving any given unification problem will be ‘modular’
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on these two sets of equations: The list inference rules will be shown to terminate
under suitable conditions, and then all we will need to do is to solve the resulting
set of element equations for h.

A few technical points need to be mentioned before we formulate our inference
rules. Note first that it is not hard to see that cons is cancellative; by this we
mean that cons(s1, t1) ≈BC cons(s2, t2), for terms s1, s2, t1, t2, if and only if
s1 ≈BC s2 and t1 ≈BC t2. On the other hand, since we assume that h is semi-
cancellative we can show, by structural induction, that bc is also conditionally
semi-cancellative (depending on whether its first argument is nil or not) [1].

Note that U =? bc(U, x) is solvable by the substitution {U := nil}; in fact
this equation forces U to be nil, as would also the set of equations: U =?

bc(V, y), V =? bc(U, x). Cycles of this kind have therefore to be checked to
determine whether a list variable is forced to be nil. This can be effectively done
by defining a relation >bc over type τl variables:

U >bc V iff there is an equation U =? bc(V,X).

If X >bc
+ X then X has to be nil. A set nonnil of variables that cannot be nil

for any unifying substitution is defined, recursively, as follows:

– if U =? cons(x, V ) is an equation then U ∈ nonnil.
– if U =? bc(V, x) is an equation and V ∈ nonnil then U ∈ nonnil.
– if U =? bc(V, x) is an equation and U ∈ nonnil then V ∈ nonnil.

We also have to account for cases where an ‘occur-check’ succeeds on some list
variable, and the problem will be unsolvable. The simplest among such cases is
when we have an equation of the form U =? cons(z, U) in EQ. But one could
have more complex unsolvable cases, where the equations involve both cons and
bc; e.g., when EQ contains equations of the form: U =? cons(x, V ), U =? bc(V, y);
the problem will be unsolvable in such a case: indeed, from the axioms of BC,
one deduces that V must be of the form V =? cons(v, V ′), for some v and V ′,
then x must be of the form x =? h(v, y), and subsequently V =? bc(V ′, x), and
we are back to a set of equations of the same format. We need to infer failure in
such a case; for that, we define two relations on the list variables of EQ:

U >cons V iff U =? cons(z, V ), for some z.
U ∼bc V iff U =? bc(V,w), or V =? bc(U,w), for some w.

Note that ∼bc is the symmetric closure of the relation >bc. The reflexive, sym-
metric and transitive closure of >bc will be denoted as ∼∗

bc. In what follows, for
any list variable U , we denote by [U ] the equivalence class of list variables that
get equated to U ; that is to say: [U ] = {V | U =? V ∈ P or V =? U ∈ P}

Definition 1. Let Gl = Gl(P) be the graph whose nodes are the equivalence
classes on the list variables of P, with arcs defined as follows: From a node [U ]
on Gl there is a directed arc to a (not necessarily different) node [V ] on Gl iff:

(a) Either U >cons V : in which case the arc is labeled with >cons,
Or U >bc V : in which case the arc is labeled with >bc.

(b) In the latter case, Gl will also have a two-sided (undirected) arc between [U ]
and [V ], which is labeled with ∼bc.
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(c) On the set of nodes on Gl, we define a partial relation "l by setting: [U ] "l
[V ] iff there is a path on Gl from [U ] to [V ], at least one arc of which has
label >cons. In other words: "l = ∼∗

bc ◦ >cons ◦ (∼bc ∪ >cons)
∗.

(d) A list variable U of P is said to violate occur-check iff [U ] "l [U ] on Gl.

The graph Gl = Gl(P) is called the propagation graph for P . We formulate now
the inference rules for the list equations in P .

3.1 Inference System INF l for List-Equations

(L1) Variable Elimination:
{U =? V } # EQ

{U =? V } ∪ [V/U ](EQ)
if U occurs in EQ

(L2) Cancellation on cons:
EQ # {U =? cons(v,W ), U =? cons(x, V )}
EQ ∪ {U =? cons(x, V ), v =? x, W =? V }

(L3.a) Nil solution-1:
EQ # {U =? bc(V, x), U =? nil}
EQ ∪ {U =? nil, V =? nil}

(L3.b) Nil solution-2:
EQ # {U =? bc(V, x), V =? nil}
EQ ∪ {U =? nil, V =? nil}

(L3.c) Nil solution-3:
EQ # {U =? bc(V, x)}

EQ ∪ {U =? nil, V =? nil}
if V >∗

bc U

(L4.a) Semi-Cancellation on bc:
EQ # {U =? bc(V, x), U =? bc(W,x)}
EQ ∪ {U =? bc(W,x), V =? W}

(L4.b) Pushing bc below cons:
EQ # {U =? bc(V, x), U =? bc(W, y)}

EQ ∪ {V =? cons(v, Z), W =? cons(w,Z), U =? cons(u, U ′),
U ′ =? bc(Z, u), u =? h(v, x), u =? h(w, y)}

if U ∈ nonnil

(L5) Splitting:
EQ # {U =? cons(x, U1), U =? bc(V, z)}

EQ ∪ {U =? cons(x, U1), x =? h(y, z), U1 =? bc(V1, x), V =? cons(y, V1)}
(L6) Occur-Check Violation:

EQ
FAIL

if U occurs in EQ, and U "l U on the graph Gl

(L7) Size Conflict:
EQ # {U =? cons(v,W ), U =? nil}

FAIL
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The symbol ‘#’ in the premises of the above inference rules stands for disjoint set
union (and ‘∪’ for usual set union). The role of the Variable Elimination inference
rule (L1) is to keep the propagation graph of P irredundant: each variable has a
unique representative node on Gl(P), up to variable equality. This rule is applied
most eagerly. Rules (L2), (L3.a)–(L3.c) and (L4.a) come next in priority, and
then (L4.b). The Splitting rule (L5) is applied in the “laziest” fashion, i.e., (L5)
is applied only when no other rule is applicable. The above inference rules are
all “don’t-care” nondeterministic. (Note: Type-inference failure is assumed to be
checked implicitly; no explicit rule is given.)

The validity of the rule (L4.b) (‘Pushing bc below cons’) results from the
cancellativity of cons and the semi-cancellativity of bc; note that the variables
Z,U ′, u in the ‘inferred part’ of this rule (L4.b) might need to be fresh; the
same is true also for the variables y, V2 in the inferred part of the Splitting rule
(but, in either case this is not obligatory, if the equations already present can be
used for applying these rules). We show now that such an introduction of fresh
variables cannot go for ever, and that the above 7 don’t-care nondeterministic
rules suffice, essentially, for deciding unifiability modulo the axioms of BC.

Proposition 2. Let P be any BC-unification problem, given in standard form.
The system INF l of list inference rules, given above, terminates on P in poly-
nomially many steps.

Proof. The variable elimination rule (L1) removes nodes from the propagation
graph, while the list inference rules (L2) through (L4.a) eliminate a (directed)
outgoing arc from some node of Gl. Thus their termination is easy to check.
Therefore the system of list inference rules will terminate if the splitting rule
(L5) terminates and the rule (L4.b) (Pushing bc below cons) terminates. We
show that if occur-check violation (L7) does not occur, then applications of the
rule (L5) or of the rule (L4.b) cannot go on forever.

First of all, observe that though the splitting rule may introduce new variables,
the number of ∼∗

bc-equivalence classes of nodes cannot increase, since the (pos-
sibly) new variable V1 belongs to the same equivalence class as U1 (V1 ∼bc U1).
Thus applying the splitting rule (L5) on a list-equation U = bc(V, z) removes
that equation and creates a list equation of the form U1 = bc(V1, x) for some list
variables U1 and V1, such that V ∼bc U >cons U1 ∼bc V1.

Suppose now that applying the splitting rule does not terminate. Then, at
some stage, the graph of the derived problem will have a sequence of nodes of
the form U0 = U >cons U1 >cons · · · >cons Un, such that its number of nodes
n strictly exceeds the initial number of ∼∗

bc-equivalence classes – which cannot
increase under splitting, as was observed above. So there must exist indices
0 ≤ i < j ≤ n such that Uj ∼∗

bc Ui; in other words, we would have Ui "l Ui,
and that would have caused the inference procedure to terminate with FAIL.
We conclude therefore that applying the splitting rule must terminate.

The same kind of reasoning also works for the rule (L4.b): an application of
that rule removes two list equations of the form U =? bc(V, x), U =? bc(W, y)
and creates a list equation of the form U ′ = bc(Z, u) (plus some other cons
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and/or element equations), where U = cons(u, U ′) so U >cons U
′. We conclude,

for the same reason as above, that applying rule (L4.b) must terminate.
To show that the number of steps is polynomial on the input problem size,

note first that the number of nodes and edges on the Propagation Graph of P is
polynomial in the size of P , and that number decreases under all the inferences
other than (L4.b) and (L5). But these latter rules do not increase the number of
∼bc-edges. Let the level of a ∼bc-edge be the length of the longest cons-path to
that edge. (L4.b) and (L5) remove one ∼bc-edge and add a new one at a greater
level. Since, the length of any cons-chain is polynomially bounded, (L4.b) and
(L5) can only be applied a polynomial number of times. ��
A set of equations will be said to be L-reduced if none of the above inference
rules (L1) through (L7) is applicable.

Unification modulo BC: The rules (L1) through (L7) are not enough to show
the existence of a unifier modulo BC. The subset of element equations, E(P),
may not be solvable; for example, the presence of an element equation of the
form {x =? h(x, z)} should lead to failure. However, we have the following:

Proposition 3. If L(P) is in L-reduced form, then P is unifiable modulo BC if
and only if the set E(P) of its element equations is solvable.

Proof. If L(P) is L-reduced, then setting every list variable that is not in nonnil
to nil will lead to a unifier for L(P), modulo BC, provided E(P) is solvable. ��

Recall that BC0 is the theory defined by BC when h is uninterpreted.

Proposition 4. Let P be any BC0-unification problem, given in standard form.
Unifiability of P modulo BC0 is decidable in polynomial time (wrt the size of P).

Proof. If the inferences of INF l applied to P lead to failure, then P is not
unifiable modulo BC; so assume that this is not the case, and replace P by an
equivalent problem which is L-reduced, deduced in polynomially many steps by
Proposition 2. By Proposition 3, the unifiability modulo BC of such a P amounts
to checking if the set E(P) of its element equations is solvable. We are in the
case where h is uninterpreted, so to solve E(P) we apply the rules for standard
unification, and check for their termination without failure; this can be done in
polynomial time [4]. (In this case, h is fully cancellative.) ��

It can be seen that while termination of the above inference rules guarantees
the existence of a unifier (provided the element equations are syntactically solv-
able), the resulting L-reduced system may not lead directly to a unifier. For
instance, the L-reduced system of list equations {U =? bc(V, x), U =? bc(V, y)}
is unifiable, with two incomparable unifiers, namely

{x := y, U := bc(V, y)} and {U := nil, V := nil}

To get a complete set of unifiers we need three more inference rules, which are
“don’t-know” nondeterministic, and to be applied only to L-reduced systems:
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(L8) Nil-solution-Branch:
EQ # {U =? bc(V, x), U =? bc(W, y)}
EQ ∪ {U =? nil, V =? nil, W =? nil}

(L9) Cancellation-Branch on bc:
EQ # {U =? bc(V, x), U =? bc(W, y)}

EQ ∪ {V =? cons(v, Z), W =? cons(w,Z), U =? cons(u, U ′),
U ′ =? bc(Z, u), u =? h(v, x), u =? h(w, y)}

(L10) Standard Unification on bc:
EQ # {U =? bc(V, x), U =? bc(W, y)}

EQ ∪ {U =? bc(W, y), V =? W, x =? y}
Rule (L9) nondeterministically “guesses” U to be in nonnil. The inference sys-
tem thus extended will be referred to as INF ′

l. We establish now a technical
result, valid whether or not h is interpreted:

Proposition 5. Let P be any BC-unification problem in standard form, to
which none of the inferences of INF ′

l is applicable. Then its set of list-equations
is in d-solved form.

Proof. If none of the equations in P involve bc or cons (i.e., all equations are
between list variables), then the proposition is proved by rule (L1).

Observe first that if INF l is inapplicable to P , then, on the propagation
graph Gl for P , there is at most one outgoing directed arc of Gl at any node U :
Otherwise, suppose there are two distinct outgoing arcs at some node U on Gl;
if both directed arcs bear the label >cons, then rule (L2) of INF l would apply;
if both bear the label >bc, then one of (L4.a), (L4.b), (L9), (L10) would apply;
the only remaining case is where one of the outgoing arcs is labeled with >cons
and the other has label >bc, but then the splitting rule (L5) would apply.

Consider now any given connected component Γ of Gl. There can be no di-
rected cycle from any node U on Γ to itself: otherwise the Occur-Check-Violation
rule (L6) would have applied. It follows, from this observation and the preceding
one, that there is a unique end-node U0 on Γ – i.e., a node from which there is
no directed outgoing arc –, and also that for any given node U on Γ , there is a
unique well-defined directed path leading from U to that end-node U0.

It follows easily from these that the left-hand-side list-variables of P (on the
different connected components of Gl) can be ordered suitably so as to satisfy
the condition for P to be in d-solved form. ��

Example 6. The following BC0-unification problem is in standard form:

U =? cons(x,W ), U =? bc(V, y), W =? bc(V3, y), x =? h(z, y), y =? a

We apply (L5) (Splitting) and write V =? cons(v2, V2), with v2, V2 fresh:

U =? cons(x,W ), W =? bc(V2, x), W =? bc(V3, y), V =? cons(v2, V2),
x =? h(v2, y), x =? h(z, y), y =? a

We apply the cancellativity of h and (element-)variable elimination:

U =? cons(x,W ), W =? bc(V2, x), W =? bc(V3, y), V =? cons(v2, V2),
x =? h(v2, y), z =? v2, y =? a
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No rule of INF l is applicable; but we can nondeterministically apply (L8):

U =? cons(x,W ), W =? nil, V2 =? nil, V3 =? nil, V =? cons(v2, V2),
x =? h(v2, y), z =? v2, y =? a

These equations, in d-solved form, give a solution to the original problem. ��

Our concern in this paper is the unification problem modulo BC. When h is
uninterpreted, we saw that this unification is decidable in polynomial time. But
when h is interpreted so that BC models CBC, we shall see that unification
modulo BC1 is NP-complete.

4 Solving a BC-Unification Problem

Let P be a BC-Unification problem, given in standard form. We assume that
INF l has terminated without failure on P ; we saw, in the preceding section
(Proposition 5), that P is then in d-solved form. We also assume that we have a
sound and complete procedure for solving the element equations of P , that we
shall denote as INFe. For the theory BC0 where h is uninterpreted, we know
(Proposition 4) that INFe is standard unification, with cancellation rules for
h, and failure in case of ‘symbol clash’. For the theory BC1, where h(x, y) is
interpreted as e(x ⊕ y, k) for some fixed key k, INFe will have rules for semi-
cancellation on h and e, besides the rules for unification modulo XOR in some
fixed procedure, that we assume given once and for all.

In all cases, we shall consider INFe as a black-box that either returns most
general unifiers (mgus) for the element equations of P , or a failure message when
these are not satisfiable. Note that INFe is unitary for BC0 and finitary for BC1.
For any problem P in d-solved form, satisfiable under the theory BC0, there is a
unique mgu, as expressed by the equations of P themselves (cf. also [11]), that
we shall denote by θP . Under BC1 there could be more than one (but finitely
many) mgu’s; we shall agree to denote by θP any one among them. The entire
procedure for solving any BC-unification problem P , given in standard form, can
now be synthesized as a nondeterministic algorithm:

The Algorithm A: Given a BC-unification problem P , in standard form.
Gl = Propagation graph for P . INF ′

l = Inference procedure for L(P).
INFe = (Complete) Procedure for solving the equations of E(P).

1 Compute a standard form for P , to which the mandatory inferences of INF l
are no longer applicable. If this leads to failure, exit with FAIL. Otherwise,
replace P by this standard form.

2 Apply the “don’t-know” nondeterministic rules (L8)-(L10), – followed by the
rules of INF l as needed – until the equations no longer get modified by the
inference rules (L1)-(L10). If this leads to failure, exit with FAIL.

3 Apply the procedure INFe for solving the element-equations in E(P); if this
leads to failure, exit with FAIL.

4 Otherwise let σ be the substitution on the variables of P as expressed by
the resulting equations. Return σ as a solution to P .
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Proposition 7. The algorithm A is sound and complete.

Proof. The soundness of A follows from the soundness (assumed) of INFe and
that of INF ′

l, which is easily checked: If P ′ is any problem derived from P by
applying any of these inference rules, then any solution for P ′ corresponds to a
solution for P . The completeness of A follows from the completeness (assumed)
of INFe, and the completeness of INF ′

l that we prove below:

Lemma 8. If σ is a solution for a given BC-unification problem P in standard
form, then there is a sequence of INF ′

l-inference steps that transforms P into
a problem P ′ in d-solved form such that σ is an instance of θP′ (modulo BC).
Proof sketch. The proof is by case analysis. We may assume, without loss of
generality, that P is L-reduced (i.e., the mandatory inferences of INF ′

l have all
been applied). If P is already in d-solved form then we are done since σ �BC θP ,
for some mgu θP . If P is not in d-solved form, then we have to consider several
cases, depending on the possible inference branches. We will just illustrate one
such case. Suppose there are two equations U =? bc(Z, v) and U =? bc(Y,w)
in P . If σ(v) =BC σ(w), then we must have σ(Z) =BC σ(Y ), so σ must be a
solution for the problem obtained by applying the rule (L10). If σ(v) �=BC σ(w),
then σ must be a solution to the problem derived under rule (L8) or (L9). Now,
we know that the inference steps always terminate, so such a reasoning can be
completed into an inductive argument, to prove the lemma. ��

4.1 BC1-Unification Is NP-Complete

Recall that BC1 is the theory defined by BC when the symbol h is interpreted so
that BC models CBC.

Proposition 9. Unifiability modulo the theory BC1 is NP-complete.

Proof. NP-hardness follows from the fact that general unification modulo XOR
is NP-complete [10]. We deduce the NP-upper bound from the following facts:

- For any given BC-unification problem, computing a standard form
is in polynomial time, wrt the size of the problem.

- Given a standard form, the propagation graph can be constructed
in polynomial time (wrt its number of variables).

- Applying (L1)-(L10) till termination takes only polynomially many steps.
- Extracting the set of element-equations from the set of equations obtained
in the previous step is in P.

- Solving the element-equations with the procedure INFe using unification
modulo XOR is in NP. ��

4.2 An Illustrative Example

The following public key protocol is known to be secure ([9]):

A → B : {A,m}kb
B → A : {B,m}ka
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where A,B are the participants of the protocol session, m is a message that they
intend secret for others, and kb (resp. ka) is the public key of B (resp. A).

However, if the CBC encryption mode is assumed and the message blocks are
all of the same size, then this protocol becomes insecure; here is why. Let eZ(x)
stand for the encryption e(x, kz) with the public key kz of any principal Z. What
A sends to B is cons(A, cons(m,nil)), or [A,m] in ML-notation, encrypted using
B’s public-key. Under the CBC encryption mode, this will be sent as:

A → B : [ eB(A⊕ v), eB(m⊕ eB(A⊕ v)) ].

Here ⊕ stands for XOR and v is the initialization vector that A and B have
agreed upon. But then, some other agent I, entitled to open a session with B
with initialization vector w, can get hold of the first block (namely: eB(A⊕ v))
as well as the second block of what A sent to B, namely eB(m, eB(A⊕ v)); (s)he
can then send the following as a ‘bona fide message’ to B:

I → B : [ eB(I ⊕ w), eB(m⊕ eB(A⊕ v)) ];

upon which B will send back to I the following:
B → I : [ eI(B ⊕ w), eI(m⊕ eB(A⊕ v)⊕ eB(I ⊕ w)⊕ eI(B ⊕ w) ) ].

It is clear then that the intruder I can get hold of the message m which was
intended to remain secret for him/her.

Example 10. The above attack (which exploits the properties of XOR: x ⊕
x = 0, x ⊕ 0 = x) can be reconstructed by solving a certain BC1-unification
problem. We assume that the names A,B, I, as well as the initialization vector
w, are constants. The message m and the initialization vector v, that A and B
have agreed upon, are constants intended to be secret for I. We shall interpret
the function symbol h of BC in terms of encryption with the public key of
B: i.e., h(x, y) is eB(x ⊕ y). Due to our CBC-assumption, the ground terms
h(A, v), h(m,h(A, v)) both become ‘public’ (i.e., accessible to I). We shall agree
that a ground constant d stands for the public term h(m,h(A, v)).

The above attack then amounts to saying that the intruder I can send the
following term, as a message to B:

cons(h(I, w), [d] ) = cons(h(I, w), cons(h(m,h(A, v), nil ) );

which will be considered a legitimate message by B (as mentioned earlier).

The possibility for I to construct the attack along this scheme can then be
deduced by solving the following BC1-unification problem:

bc(X,h(I, w)) =? cons(h(m,h(A, v)), nil )

under the condition that terms in the solution are all ‘public’. After transforming
into standard form, we apply rule (L5) (‘Splitting’) and write: X =? cons(z, Y ),
where z and Y are fresh variables. By applying rule (L2) (‘Cancellation on cons’)
we deduce Y := nil, but we still have to show that following problem:

h(z, h(I, w)) =? h(m,h(A, v))

is solvable for z, with public terms; using the properties of XOR we get the
solution z := h(h(m,h(A, v)), h(I, w) ), i.e., z := h( d, h(I, w) ). The solution
thus derived for X is X := [h( d, h(I, w) )]. ��
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It might be of interest to note that the above reasonings do not go through if
the namestamps form the second block in the messages sent; the protocol could
be secure, in such a case, even under CBC.

5 Conclusion

We have addressed the unification problem modulo a convergent 2-sorted rewrite
system BC, which can model, in particular, the CBC encryption mode of cryp-
tography, by interpreting suitably the function h in BC. A procedure is given
for deciding unification modulo BC, which has been shown to be sound and
complete when h is either uninterpreted, or interpreted in such a manner. In
the uninterpreted case, the procedure is a combination of the inference proce-

dure INF
′
l presented in this paper, with standard unification; in the case where

h is interpreted as mentioned above, our unification procedure is a combina-

tion of INF
′
l with any complete procedure for deciding unification modulo the

associative-commutative theory for XOR.
Although we have given an example of attack detection using our unifica-

tion procedure on a cryptographic protocol employing CBC encryption, for the
formal analysis of cryptographic protocols, unification needs to be generalized
as a procedure for solving deduction constraints [13] or, equivalently, as a cap
unification procedure [2]; that forms part of our projected future work.
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Abstract. Given two n-variable Boolean functions f and g, we study
the problem of computing an ε-approximate isomorphism between them.
I.e. a permutation π of the n variables such that f(x1, x2, . . . , xn) and
g(xπ(1), xπ(2), . . . , xπ(n)) differ on at most an ε fraction of all Boolean

inputs {0, 1}n. We give a randomized 2O(
√

n polylog(n)) algorithm that
computes a 1

2polylog(n) -approximate isomorphism between two isomor-
phic Boolean functions f and g that are given by depth d circuits of
poly(n) size, where d is a constant independent of n. In contrast, the
best known algorithm for computing an exact isomorphism between n-
ary Boolean functions has running time 2O(n) [9] even for functions com-
puted by poly(n) size DNF formulas. Our algorithm is based on a result
for hypergraph isomorphism with bounded edge size [3] and the classi-
cal Linial-Mansour-Nisan result on approximating small depth and size
Boolean circuits by small degree polynomials using Fourier analysis.

1 Introduction

Given two Boolean functions f, g : {0, 1}n → {0, 1} the Boolean function iso-
morphism is the problem of checking if there is a permutation π of the variables
such that the Boolean functions f(x1, x2, . . . , xn) and g(xπ(1), xπ(2), . . . , xπ(n))
are equivalent. The functions f and g could be given as input either by Boolean
circuits that compute them or simply by black-box access to them. This problem
is known to be coNP-hard even when f and g are given by DNF formulas (there
is an easy reduction from CNFSAT). The problem is in Σp

2 but not known to be
in coNP. Furthermore, Agrawal and Thierauf [1] have shown that the problem
is not complete for Σp

2 unless the polynomial hierarchy collapses to Σp
3 .

On the other hand, the best known algorithm for Boolean function isomor-
phism, which reduces the problem to Hypergraph Isomorphism, runs in time
2O(n) where n is the number of variables in f and g. This algorithm works even
when f and g are given by only black-box access: First, the truth-tables of the
functions f and g can be computed in time 2O(n). The truth tables for f and
g can be seen as hypergraphs representing f and g. Hypergraph Isomorphism
for n-vertex and m-edge hypergraphs has a 2O(n)mO(1) algorithm due to Luks[9]
which yields the claimed 2O(n) time algorithm for testing if f and g are iso-
morphic. This is the current best known algorithm for general hypergraphs and
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c© Springer-Verlag Berlin Heidelberg 2012



84 V. Arvind and Y. Vasudev

hence the current best algorithm for Boolean function isomorphism as well. In-
deed, a hypergraph on n vertices and m edges can be represented as a DNF
formula on n variables with m terms. Thus, even when f and g are DNF for-
mulas the best known isomorphism test takes 2O(n) time. In contrast, Graph
Isomorphism has a 2O(

√
n logn) time algorithm due to Luks and Zemlyachenko

(see [4]). More recently, Babai and Codenotti [3] have shown for hypergraphs of

edge size bounded by k that isomorphism testing can be done in 2Õ(k2
√
n) time.

Our Results

Since the exact isomorphism problem for Boolean functions is as hard as Hy-
pergraph Isomorphism, and it appears difficult to improve the 2O(n) bound, we
investigate the problem of computing approximate isomorphisms (which we de-
fine below). An interesting question is whether the circuit complexity of f and
g can be exploited to give a faster approximate isomorphism test. Specifically,
in this paper we study the approximation version of boolean function isomor-
phism for functions computed by small size and small depth circuits and give
a faster algorithm for computing approximate isomorphisms. Before we explain
our results we give some formal definitions.

Let Bn denote the set of all n-ary boolean functions f : {0, 1}n → {0, 1}.
Let g : {0, 1}n → {0, 1} be a boolean function and let π : [n] → [n] be any
permutation. The Boolean function gπ : {0, 1}n → {0, 1} obtained by applying
the permutation π to the function g is defined as follows gπ(x1, x2, . . . , xn) =
g(xπ(1), xπ(2), . . . , xπ(n)).

This defines a (faithful) group action of the permutation group Sn on the set
Bn. I.e. g(πψ) = (gπ)ψ for all g ∈ Bn and π, ψ ∈ Sn, and gπ = gψ for all g ∈ Bn
if and only if π = ψ.

Definition 1. Two boolean functions f, g ∈ Bn are said to be isomorphic
(denoted by f ∼= g) if there exists a permutation π : [n] → [n] such that
∀x ∈ {0, 1}n, f(x) = gπ(x).

Our notion of approximate isomorphism of Boolean functions is based on the
notion of closeness of Boolean functions which we now recall.

Definition 2. Two boolean functions f, g are 1
2�
-close if Prx∈{0,1}n

[
f(x) �=

g(x)
]
≤ 1

2�
.

Definition 3. Two boolean functions f, g are 1
2� -approximate isomorphic if

there exists a permutation π : [n] → [n] such that the functions f and gπ are
1
2�
-close.

Let ACs,d,n denote the class of n-ary boolean functions computed by circuits
of depth d and size s, where the gates allowed are unbounded fan-in AND and
OR gates, and negation gates. Suppose f, g ∈ ACs,d,n are isomorphic boolean
functions. As a consequence of the main result, in Section 2, we show that there
is a randomized algorithm that computes a 1

2log
O(1) n

-approximate isomorphism



Isomorphism Testing of Boolean Functions 85

between f and g in time 2log(ns)
O(d)√n. This is substantially faster than the 2O(n)

time algorithm for computing an exact isomorphism. We show how to achieve
this running time by combining some Fourier analysis of boolean functions with
the Babai-Codenotti algorithm mentioned above.

We note that, in a different context, approximate Boolean function isomor-
phism has been studied in the framework of property testing, and nearly matching
upper and lower bounds are known ([2],[7],[5]). In property testing the objective
is to test whether two given Boolean functions are close to being isomorphic or
far apart. The goal is to design a property test with low query complexity. In
contrast, our result is algorithmic and the goal is to efficiently compute a good
approximate isomorphism.

We also note that approximate versions of Graph Isomorphism have been stud-
ied in the literature as graph edit distance, graph similarity and graph matching
with respect to various distance measures (e.g. [6]). There are various heuristic
algorithms for the problem. These results do not appear related to the topic of
our paper.

The rest of the paper is organized into four sections. In Section 2 we explain
our approximate isomorphism algorithm for constant-depth small size Boolean
circuits. Finally, in Section 3 we study a general problem: given two n-variable
Boolean functions f and g consider the optimization problem where the objective
is to find a permutation π that maximizes |{x ∈ {0, 1}n | f(x) = gπ(x)}|.
This problem is coNP-hard under Turing reductions. We give a simple 2O(n)

time deterministic approximation algorithm that, when given as input Boolean
functions f and g such that f and gπ agree on a constant fraction of the inputs
for some permutation π, outputs a permutation σ such that f and gσ agree on
an O( 1√

n
) fraction of the inputs.

2 Main Result

In this section we focus on the problem of computing an approximate isomor-
phism for two Boolean functions f, g ∈ ACs,d,n. We first recall some Fourier anal-
ysis of Boolean functions which is an important ingredient in our algorithm. For
Fourier analytic purposes, it is convenient for us to consider Boolean functions
with domain {−1, 1}n and range {−1, 1}. The range {−1, 1}makes it convenient
to define the Fourier basis.

The set F = {f : {−1, 1}n → R} of real-valued functions forms a 2n-
dimensional vector space over R, where vector addition is defined as (f+g)(x) =
f(x)+g(x). The vector space F forms an inner product space with inner product
defined as:

〈f, g〉 = Ex∈{−1,1}n [f(x)g(x)] =
1

2n

∑
x∈{−1,1}n

f(x)g(x).

The �2-norm of a function f ∈ F is ‖f‖2 =
√
〈f, f〉. Clearly every Boolean

function f : {−1, 1}n → {−1, 1} has unit norm under this inner product.
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The Fourier basis, {χS
∣∣S ⊆ [n]} is defined as χS(x) =

∏
i∈S xi. It is easy

to observe that Ex[χS(x)] = 0 for nonempty sets S and Ex[χ∅(x)] = 1. Fur-
thermore, 〈χS , χT 〉 = Ex[χS
T (x)]. It follows that the Fourier basis is an or-
thonormal basis with respect to the inner product. Thus, any f ∈ F can be
written as f =

∑
f̂SχS . This is the Fourier representation of f , and the num-

bers f̂S = 〈f, χS〉 are the Fourier coefficients of f . The orthonormality of the

Fourier basis yields Parseval’s identity: 〈f, f〉 =
∑
S⊆[n] f̂(S)

2. In particular,

since any Boolean function f : {−1, 1}n → {−1.1} has unit norm, we note that∑
S⊆[n] f̂(S)

2 = 1.
In the next two propositions we relate the isomorphism of Boolean functions

f and g to their Fourier coefficients.

Proposition 1. Let π : [n] → [n] be any permutation, g any Boolean function
and S ⊆ [n], then ĝπ(S) = ĝ(Sπ) where Sπ = {i|π(i) ∈ S}.

Proof. ĝπ(S) = 1
2n

∑
x∈{−1,1}n gπ(x)χS(x) = 1

2n

∑
x∈{−1,1}n g(x)χSπ (x) =

ĝ(Sπ). ��

Proposition 2. Two Boolean functions f, g : {−1.1}n → {−1, 1} are isomor-

phic via permutation π if and only if f̂(S) = ĝ(Sπ) for each subset S.

Proof. Suppose π : [n] → [n] is an isomorphism. I.e. f(x) = gπ(x) for all x ∈
{−1, 1}n. Consider any subset S ⊆ [n]

f̂(S) =
1

2n

∑
x∈{−1,1}n

f(x)χS(x) =
1

2n

∑
x∈{−1,1}n

gπ(x)χS(x) = ĝπ(S) = ĝ(Sπ).

Conversely, if f̂(S) = ĝ(Sπ) for each subset S, by the previous proposition we

have f̂(S) = ĝπ(S) which implies that f = gπ. ��

2.1 Approximate Isomorphism for ACs,d,n

Now we turn to isomorphism for Boolean functions from the class ACs,d,n. We
first outline our approach to Boolean function isomorphism via Fourier coeffi-
cients.

A crucial theorem that we will use is the celebrated result of Linial-Mansour-
Nisan [8] which gives the distribution of Fourier coefficients for Boolean functions
computed by small depth circuits.

Theorem 1 ([8]). Let f : {−1, 1}n → {−1, 1} be computed by an ACs,d,n cir-
cuit. Then for all t > 0, ∑

S⊆[n],|S|>t
f̂(S)2 ≤ 2s2−t

1/d/20.

Consequently, for f̃ =
∑
S⊆[n],|S|≤t f̂(S)χS we have ‖f − f̃‖22 ≤ 2s2−t

1/d/20.
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Notice that each χS =
∏
i∈S xi is a monomial, and hence f̃ is a degree-t poly-

nomial that approximating f . Given Boolean functions f, g ∈ ACs,d,n as an in-
stance of Boolean function isomorphism, our aim is to work with the polynomials
f̃ and g̃:

f̃ =
∑

S⊆[n],|S|≤t
f̂(S)χS and g̃ =

∑
S⊆[n],|S|≤t

ĝ(S)χS . (1)

This is because f̃ and g̃ are of degree t and have only nt terms. I.e. we will
check if there is an approximate isomorphism between f̃ and g̃. Notice that the
polynomials f̃ , g̃ : {−1, 1}n → R are not Boolean-valued functions. We need an
appropriate notion of isomorphism here.

Definition 4. Let f ′, g′ : {−1, 1}n → R be two functions from F . We say that f ′

and g′ are 1
2�
-approximate isomorphic witnessed by a permutation π : [n] → [n]

if ‖f ′ − g′π‖22 ≤ 1
2�
.

We now explain the connection between 1
2�
-approximate isomorphism of two

functions and their Fourier coefficients.

Proposition 3. If f, g : {−1, 1}n → {−1, 1} are 1
2� -close, then ‖f − g‖22 ≤ 4 1

2�

Proof. Follows from ‖f − g‖2 = E[(f − g)2] = 4Pr[f �= g]. ��

Lemma 1. Let f and g be two Boolean functions that are 1
2�
-approximate iso-

morphic via permutation π : [n] → [n]. Then ∀S ⊆ [n] :
∣∣f̂(S)− ĝπ(S)

∣∣ ≤ 2
2�/2

.

Proof. Notice that
∑
S⊆[n](f̂(S) − ĝπ(S))2 = ‖f − gπ‖22. Suppose f, g are 1

2�
-

approximate isomorphic via permutation π. By Proposition 3 we know that∑
S⊆[n](f̂(S) − ĝπ(S))2 = ‖f − gπ‖22 ≤ 4

2� . Hence for each subset S ⊆ [n] we

have
(
f̂(S)− ĝπ(S)

)2 ≤ 4
2�
. ��

Suppose f and g be two Boolean functions that are 1
2�
-approximate isomor-

phic via permutation π : [n] → [n]. By the above proposition |f̂(S) − ĝπ(S)| is
bounded by 2

2�/2
. Furthermore, since both f̂(S) and ĝπ(S) are Fourier coefficients

of Boolean functions f and gπ, we have 0 ≤ |f̂(S)| ≤ 1 and 0 ≤ |ĝπ(S)| ≤ 1.
Hence, the bound implies that the %�/2& − 1 most significant positions in the

binary representation of f̂(S) and ĝπ(S) are identical.

For each subset S, let f̂�(S) denote the truncation of f̂(S) to the first %�/2&−1

bits. Thus, |f̂�(S) − f̂(S)| ≤ 1
2��/2�−1 for each S. Similarly, ĝ�(S) denotes the

truncation of ĝ(S) to the first %�/2&−1 bits. We define the following two functions
f� and g� from {−1, 1}n → R:

f� =
∑
S⊆[n]

f̂�(S)χS and g� =
∑
S⊆[n]

ĝ�(S)χS . (2)

The following lemma summarizes the above discussion. It gives us a way to go
from approximate isomorphism to exact isomorphism.



88 V. Arvind and Y. Vasudev

Lemma 2. If f and g be two Boolean functions that are 1
2�
-approximate iso-

morphic via permutation π : [n] → [n] then f� = gπ� , i.e. the functions f� and g�
are (exactly) isomorphic via the permutation π.

Lemma 1 and Proposition 3 yield the following observation.

Lemma 3. Suppose f, g are two Boolean functions that are 1
2� -approximate iso-

morphic via permutation π. Then ‖f̃−g̃π‖22 ≤ 4
2� . I.e. f̃ and g̃ are 4

2� -approximate

isomorphic via the same permutation π. Furthermore, |f̂(S)− ĝπ(S)| ≤ 2
2�/2

for
all S : |S| ≤ t.

Proof. By Lemma 1 and Proposition 3 we have
∑
S⊆[n]

(
f̂(S) − ĝπ(S)

)2 ≤ 4
2�
,

which implies ‖f̃ − g̃π‖22 =
∑

|S|≤t
(
f̂(S)− ĝπ(S)

)2 ≤ 4
2�
. It follows that |f̂(S)−

ĝπ(S)| ≤ 2
2�/2

for all S : |S| ≤ t. ��

Now, if |f̂(S) − ĝπ(S)| ≤ 2
2�/2

for all S : |S| ≤ t, it implies that f̂�(S) = ĝπ� (S)

for all S : |S| ≤ t, where f̂�(S) and ĝ�(S) are defined in Equation 2. Indeed, if

we truncate the coefficients of the polynomials f̃ and g̃ also to the first %�/2&− 1
bits we obtain the polynomials

f̃� =
∑

S:|S|≤t
f̂�(S)χS and g̃� =

∑
S:|S|≤t

ĝ�(S)χS . (3)

It clearly follows that π is an exact isomorphism between f̃� and g̃�. We sum-
marize the above discussion in the following lemma which is crucial for our
algorithm.

Lemma 4. Suppose f, g are two Boolean functions that are 1
2� -approximate iso-

morphic via permutation π. Then:

1. ‖f̃ − g̃π‖22 ≤ 4
2�
. I.e. f̃ and g̃ are 4

2�
-approximate isomorphic via the same

permutation π, and hence |f̂(S)− ĝπ(S)| ≤ 2
2�/2

for all S : |S| ≤ t.

2. Consequently, π is an exact isomorphism between f̃� and g̃�.

We can represent f̃� and g̃� as weighted hypergraphs with hyperedges S : |S| ≤ t

of weight f̂�(S) and ĝ�(S) respectively. We can then apply the Babai-Codenotti
hypergraph isomorphism algorithm [3] to compute an exact isomorphism π be-

tween f̃� and g̃�. Now, if π is an exact isomorphism π between f̃� and g̃� what
can we infer about π as an approximate isomorphism between f and g? The
following lemma quantifies it.

Lemma 5. Suppose f and g are Boolean functions in ACs,d,n such that π is an

exact isomorphism between f̃� and g̃� (where f̃ and g̃ are given by Equation 1).
Then π is an (δ + ε)2-approximate isomorphism between f and g, where δ =

2s2−t
1/d/20 and ε = 2nt/2

2(�−1)/2 .



Isomorphism Testing of Boolean Functions 89

Proof. Since π is an exact isomorphism between f̃� and g̃� we have f̃� = g̃π� . Now
consider ‖f − gπ‖22. By triangle inequality

‖f − gπ‖2 ≤ ‖f − f̃‖+ ‖f̃ − f̃�‖+ ‖f̃� − g̃π�‖+ ‖g̃π − g̃π�‖+ ‖gπ − g̃π‖
= ‖f − f̃‖+ ‖f̃ − f̃�‖+ ‖g̃π − g̃π�‖+ ‖gπ − g̃π‖.

By Theorem 1, both ‖f − f̃‖ and ‖gπ − g̃π‖ are bounded by δ. Furthermore,

‖f̃ − f̃�‖22 =
∑

S:|S|≤t
(f̂(S)− f̂�(S))

2 ≤
∑

S:|S|≤t

4

2�−1
≤ 4nt

2�−1
.

Hence, ‖f̃−f̃�‖ ≤ 2nt/2

2(�−1)/2 and, likewise, ‖g̃π−g̃π�‖ ≤ 2nt/2

2(�−1)/2 . Putting it together
with Proposition 3 we get

4 Pr[f �= gπ] = ‖f − gπ‖22 ≤
(
2δ +

4nt/2

2(�−1)/2

)2

.

It follows that f and g are (δ + ε)2-approximate isomorphic via the
permutation π. ��
Suppose f and g are in ACs,d,n and are given by circuits Cf and Cg. Our goal

now is to design an efficient algorithm that will compute the polynomials f̃� and
g̃�, where � will be appropriately chosen in the analysis. In order to compute
f̃� and g̃� we need to estimate to %�/2& − 1 bits of precision the Fourier coeffi-

cients f̂(S) and ĝ(S) for each subset S : |S| ≤ t. Now, by definition, f̂(S) is the
average of f(x)χS(x) where x is uniformly distributed in {−1, 1}n. Hence, fol-
lowing a standard Monte-Carlo sampling procedure, we can estimate f̂(S) quite
accurately from a random sample of inputs from {−1, 1}n and hence with high
probability we can exactly compute f�(S) for all S : |S| ≤ t. We formally explain
this in the next lemma.

Lemma 6. Given f : {−1, 1}n → {−1, 1} computed by an ACs,d,n circuit, there
is a randomized algorithm C with running time poly(s, nt, 2�) that outputs the
set {f�(S) | |S| ≤ t} with probability 1− 1

2Ω(n) .

Proof. We use the same technique as [8]to estimate the required Fourier
coefficients.

1. For each subset S ⊂ [n] such that |S| ≤ t do the following two steps:
2. Pick xi ∈r {−1, 1}n and compute the value f(xi)χS(xi) for i ∈ [m].
3. Estimate the Fourier coefficient as αf (S) =

1
m

∑m
i=1 f(xi)χS(xi).

Applying Chernoff bounds, for each subset S we have Pr
[∣∣f̂(S)−αf(S)

∣∣ ≥ λ
]
≤

2e−λ
2m/2. In our case we set λ = 1

2��/2�−1 . In order to estimate f̂(S) for each
S : |S| ≤ t within the prescribed accuracy and with small error probability, we set
m = tn logn2�. The entire procedure runs in poly(s, nt, 2�) time. Furthermore,
by a simple union bound it follows that with probability 1 − 2−Ω(n) we have
αf (S) = f�(S) for each S : |S| ≤ t with probability. Thus, the randomized

algorithm computes the polynomial f̃� with high probability. ��
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2.2 Exact Isomorphism Test for Low Degree Polynomials

We now focus on the problem of checking if the polynomials f̃� =∑
S:|S|≤t f̂�(S)χS and g̃� =

∑
S:|S|≤t ĝ�(S)χS are isomorphic, and if so to com-

pute an exact isomorphism π. To this end, we shall encode f� and g� as weighted
hypergraphs Gf and Gg, respectively.

The vertex sets for both graphs is [n]. Let E denote the set of all subsets
S ⊂ [n] of size at most t. The weight functions for the edges are wf and wg for
Gf and Gg defined as follows

wf (S) =

{
αf (S) ∀S ⊆ [n], |S| ≤ t

0 otherwise,
and wg(S) =

{
αg(S) ∀S ⊆ [n], |S| ≤ t

0 otherwise.

The isomorphism problem for the polynomials the f� and g� is now the edge-
weighted hypergraph isomorphism problem, where Gf and Gg are the two edge-
weighted graphs, and the problem is to compute a permutation on [n] that maps
edges to edges (preserving edge weights) and non-edges to non-edges. Our aim
is to apply the Babai-Codenotti isomorphism algorithm for hypergraphs with

hyperedge size bounded by k [3]. Their algorithm has running time 2Õ(k2
√
n). We

need to adapt their algorithm to work for hypergraphs with edge weights. Since
the edge weights for the graphs Gf and Gg are essentially %�/2& − 1 bit strings,
we can encode the weights into the hyperedges by introducing new vertices.

More precisely, we create new graphs G′
f and G′

g corresponding to f and g,
where the number of vertices is now n + O(�). Let the set of new vertices be
{v1, . . . , vr}, where r = O(�). Let S ⊂ [n] be a hyperedge in the original graph
Gf . A subset T ⊂ {v1, . . . , vr} encodes an r-bit string via a natural bijection (the
jth bit is 1 if and only if vj ∈ T ). Let T (S) ⊂ {v1, . . . , vr} denote the encoding of

the number f̂�(S) for each hyperedge S ∈ E. Similarly, let T ′(S) ⊂ {v1, . . . , vr}
denote the encoding of the number ĝ�(S). The hyperedge S ∪ T (S) encodes S

along with its weight f̂�(S) for each S in G′
f . Similarly, S∪T ′(S) encodes S along

with its weight ĝ�(S) for each S in G′
g. As candidate isomorphisms between G′

f

and G′
g we wish to consider only permutations on [n]∪{v1, . . . , vr} that fix each

vi, 1 ≤ i ≤ r. This can be easily ensured by standard tricks like coloring each vi
with a unique color, where the different colors can be implemented by putting
directed paths of different lengths, suitably long so that the vertices vi are forced
to be fixed by any isomorphism between G′

f and G′
g.

This will ensure that G′
f and G′

g are isomorphic iff there is a weight preserving
isomorphism between Gf and Gg. Now we invoke the algorithm of [3] on G′

f and
G′
g which will yield an isomorphism ψ between f ′ and g′. In summary, the

algorithm for isomorphism testing f� and g� carries out the following steps.

Isomorphism Test for Polynomials

1. Construct the hypergraphs G′
f and G′

g as defined above.
2. Run the algorithm of Babai and Codenotti[3] on the hypergraphs G′

f and
G′
g and output isomorphism ψ or report they are non-isomorphic.
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Lemma 7. The isomorphism of polynomials f̃� and g̃� (defined by Equation 2)

can be tested in time 2O(
√
n)(�+t)2 logO(1) n, and if the polynomials are isomorphic

an exact isomorphism can be computed in the same running time bound.

2.3 The Approximate Isomorphism Algorithm

We now give an outline of the entire algorithm.

Input: f, g ∈ ACs,d,n given by circuits of size s along with parameters t and
�.
Step 1. Compute the polynomials f̃� and g̃� using randomized algorithm
of Lemma 6.
Step 2. Check if f̃� and g̃� are isomorphic using the polynomial isomorphism
algorithm described above. If they are not isomorphic reject else output the
computed exact isomorphism π.

Suppose π is an exact isomorphism between f̃� and g̃� computed by the above
algorithm. By Lemma 5 π is a (δ+ε)2-approximate isomorphism between f and

g, where δ = 2s2−t
1/d/20 and ε = 2nt/2

2(�−1)/2 . From Lemmas 6 and 7 it follows that

the overall running time of the algorithm is poly(s, nt, 2�) + 2O(
√
n)(�+t)2 logO(1) n

and the error probability, as argued in Lemma 6, is at most 2−Ω(n).
We now set parameters to obtain the main result of the paper. Suppose f

and g are 1
2�
-approximate isomorphic, where � = (log n+ log s)kd for a suitably

large constant k > 1. Then we choose t = (logn + log s)O(d) so that (δ + ε)2 is

bounded by 2−(logn)O(1)

.

Theorem 2. Given two Boolean functions f, g ∈ ACs,d,n which are 1

2(log n)O(d) -

isomorphic, there is a randomized algorithm running in time 2O(logO(d)(n)
√
n) to

compute a permutation π such that f, g are 1

2(log n)O(1) -approximate isomorphic

with respect to π.

3 A General Approximate Isomorphism Algorithm

Given two n-variable Boolean functions f and g (either by Boolean circuits
computing them or just by black-box access) consider the optimization problem
of finding a permutation π that minimizes |{x ∈ {0, 1}n | f(x) �= gπ(x)}|. This
problem is coNP-hard under Turing reductions. We reduce the coNP-complete
problem TAUTOLOGY (checking if a propositional formula is a tautology) to
the problem MinBooleanIso of computing a permutation π that minimizes |{x ∈
{0, 1}n | f(x) �= gπ(x)}|.

Lemma 8. TAUTOLOGY is polynomial-time Turing reducible to MinBooleanIso.

Proof. Given f : {0, 1}n → {0, 1} as an n-variable propositional formula,
we define functions gi : {0, 1}n → {0, 1} for i ∈ [n] such that gi(1

i0n−i) = 0
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and gi(x) = 1 for all x �= 1i0n−i. Notice that if f is a tautology then for each i
|{x ∈ {0, 1}n | f(x) �= gπi (x)}| = 1 for all permutations π.

We now describe a polynomial-time algorithm for TAUTOLOGY with
MinBooleanIso as oracle. For each gi, we compute (with a query to the function
oracle MinBooleanIso) a permutation πi that minimizes |{x ∈ {0, 1}n | f(x) �=
gπi (x)}|. If f(π−1

i (1i0n−i)) = 1 for each i, the algorithm describing the Turing
reduction “accepts” f as a tautology and otherwise it “rejects” f .

We now show the correctness of the reduction. If f is a tautology, then clearly
for each πi we have f(π

−1
i (1i0n−i)) = 1. Conversely, suppose f is not a tautology.

Then f−1(0) = {x ∈ {0, 1}n | f(x) = 0} is nonempty. Let |f−1(0)| = N .
Then for any permutation π the cardinality |{x ∈ {0, 1}n | f(x) �= gπi (x)}|
is either N + 1 or N − 1 for each i. Furthermore, suppose x ∈ f−1(0) has
Hamming weight i. Then for any permutation πi that maps x to 1i0n−i we have
|{x ∈ {0, 1}n | f(x) �= gπi

i (x)}| = N − 1. Hence, f(π−1
i (1i0n−i)) = f(x) = 0. ��

A brute-force search that runs in n! time by cycling through all permutations
yields a trivial algorithm for the optimization problem MinBooleanIso.

The corresponding maximization problem is: Find π that maximizes |{x ∈
{0, 1}n | f(x) = gπ(x)}|. Of course computing an optimal solution to this prob-
lem is polynomial-time equivalent to MinBooleanIso. In remainder of this section
we design a simple approximate isomorphism algorithm for the maximization
problem. Our simple algorithm is based on the method of conditional probabil-
ities. We first examine how good a random permutation is as an approximate
isomorphism. Then we describe a deterministic algorithm for computing a per-
mutation with the same solution quality.

For Boolean functions f and g, consider the random variable |{x|f(x) =
gπ(x)}| when the permutation π is picked uniformly at random from Sn.

Let si(f) denote the cardinality | {x ∈ {0, 1}n| wt(x) = i, f(x) = 1} | where
wt(x) is the hamming weight of the Boolean string x. Clearly, si(f) ≤

(
n
i

)
. For

each u ∈ {0, 1}n define the 0-1 random variable Xu which takes value 1 if and
only if f(u) = gπ(u) for π ∈ Sn picked uniformly at random. If wt(u) = i, then

Pr
π
[Xu = 1] =

si(g)(
n
i

) f(u) +

(
n
i

)
− si(g)(
n
i

) (1− f(u)) .

The sum X =
∑
u∈{0,1}n Xu is the random variable | {x|f(x) = gπ(x)} | for a

random permutation π ∈ Sn. We have

Eπ [X ] =
n∑
i=0

∑
u : wt(u)=i

si(g)(
n
i

) f(u) +
n∑
i=0

∑
u : wt(u)=i

(
n
i

)
− si(g)(
n
i

) (1− f(u)) (4)

=

n∑
i=0

si(g)si(f)(
n
i

) +

n∑
i=0

(
(
n
i

)
− si(g))(

(
n
i

)
− si(f))(

n
i

) (5)

≥ max
i

(
si(f)si(g)(

n
i

) ,
(
(
n
i

)
− si(g))(

(
n
i

)
− si(f))(

n
i

) )
. (6)
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Theorem 3. There is a deterministic 2O(n) time algorithm that takes as input
Boolean functions f, g : {0, 1}n → {0, 1} as input (either by Boolean circuits or
by black-box access) and outputs a permutation σ with the following property: If
f and gπ are δ-close for some permutation π and constant δ, then

| {x|f(x) = gσ(x)} | ≥ Ω

(
2n√
n

)
.

Proof. First we show how to compute a permutation σ such that
|{x|f(x) = gσ(x)}| ≥ Eπ[X ] (see Equation 4 and discussion preceding it for
the definition of random variable X). Firstly, notice that given a partial per-
mutation σi defined on {1, 2, . . . , i}, we can define random variables Xσi,u for
each u ∈ {0, 1}n and Xσi =

∑
uXσi,u, defined by a uniformly picked random

permutation π in Sn that extends σi. Similar to Equation 4, we can write an
expression for E[Xσi ] and compute it exactly in time 2O(n) for a given σi. For
j ∈ [n] \ {σi(1), σi(2), . . . , σi(i)} let σi,j denote the extension of σi that maps
i + 1 to j. In time 2O(n) we can compute E[Xσi,j ] for every j, and choose the
permutation σi+1 as that σi,j which maximizes E[Xσi,j ]. In particular, this will
satisfy E[Xσi+1 ] ≥ E[Xσi ]. Continuing this process until i = n yields σn = σ
such that |{x | f(x) = gσ(x)}| ≥ Eπ[X ], where π is randomly picked from Sn.

Now, consider the expected value Eπ(X). It is promised that for some per-
mutation τ ∈ Sn the fraction δ = maxσ∈Sn |{x|f(x) = gσ(x)}|/2n is a constant
(independent of n). For 0 ≤ i ≤ n let

δi =
|{x | f(x) = gτ (x),wt(x) = i}|(

n
i

) .

Thus
∑n
i=0 δi

(
n
i

)
= δ2n which we can write as

√
n∑

i=0

(δi + δn−
√
n+i)

(
n

i

)
+

n/2+
√
n∑

i=n/2−
√
n

δi

(
n

i

)
= δ2n.

Since each δi ≤ 1,
∑√

n
i=0(δi + δn−

√
n+i)

(
n
i

)
≤ 2n

√
n+1 ≤ 22

√
n log n for sufficiently

large n.

Let A denote the sum
∑n/2+

√
n

i=n/2−
√
n
δi
(
n
i

)
. Then

A ≥ δ2n

(
1− 22

√
n logn

δ2n

)
≥ δ

2
2n.

By averaging, there is some hamming weight i in the range n/2 − √
n ≤ i ≤

n/2 +
√
n, such that

δi

(
n

i

)
= |{u | wt(u) = i and f(u) = gπ(u)}| ≥ δ2n

4
√
n
.

We fix this value of i and let S denote the set {u | wt(u) = i and f(u) = gπ(u)}.
Assume without loss of generality that |f−1(1)∩S| > δ2n

8
√
n
(Otherwise we consider

f−1(0) ∩ S). Thus, we have si(f) ≥ |f−1(1) ∩ S| = |(gπ)−1(1) ∩ S| ≥ δ2n

8
√
n
.
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Now, {u | wt(u) = i and gπ(u) = 1} ⊇ (gπ)−1(1)∩S. Hence |(gπ)−1(1)∩S| ≤
|{u | wt(u) = i and gπ(u) = 1}| = |{u | wt(u) = i and g(u) = 1}| = si(g).
Combined with Equation 4 and using the inequality

(
n
i

)
≤ 2n√

n
for large enough

n, we get the desired lower bound on E[X ]:

E[X ] ≥ si(f)si(g)(
n
i

) ≥ δ222n

64n
(
n
i

) ≥ δ22n

64
√
n
= Ω

(
2n√
n

)
.

��

Concluding Remarks. Motivated by the question whether Boolean function
isomorphism testing has algorithms faster than Luks’s 2O(n) time algorithm [9],
we initiate the study of approximate Boolean function isomorphism. As our main
result we show a substantially faster algorithm that for Boolean functions hav-
ing small depth and small size circuits computes an approximate isomorphism.
Precisely characterizing the approximation threshold for this problem for vari-
ous Boolean function classes based on their circuit complexity is an interesting
direction of research.

Acknowledgment We are grateful to Johannes Köbler and Sebastian Kuhnert
for discussions on the topic, especially for their help with Lemma 8.
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Reversible Multi-head Finite Automata

Characterize Reversible Logarithmic Space
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Abstract. Deterministic and non-deterministic multi-head finite
automata are known to characterize the deterministic and non-
deterministic logarithmic space complexity classes, respectively. Recently,
Morita introduced reversible multi-head finite automata (RMFAs), and
posed the question of whether RMFAs characterize reversible logarithmic
space as well. Here, we resolve the question affirmatively, by exhibiting a
clean RMFA simulation of logarithmic space reversible Turing machines.
Indirectly, this also proves that reversible and deterministic multi-head
finite automata recognize the same languages.

1 Introduction

Recently, Morita proposed reversible multi-head finite automata (RMFAs)
[10, 11]. Multi-head finite automata (MFAs) and variations thereof have seen
significant study in automata theory, cf. [6], but to our knowledge this is the
first reversible variant. Besides the interest from automata theory, MFAs are
interesting in computational complexity theory, because deterministic MFAs
are known to exactly characterize deterministic logarithmic space, L(DMFA) =
DSPACE(logn); an analogous result holds for non-deterministic MFAs [5]. In a
very concrete way, MFAs embody the idea that logarithmic space consists of
languages that can each be recognized with only a fixed amount of pointers.
Morita poses the question of whether reversible MFAs characterize reversible
logarithmic space [11, p. 253], which we answer in this paper.

RMFAs also present an intriguing sub-recursive model from the viewpoint of
reversible computing theory. Morita gives examples of non-context-free context-
sensitive languages accepted by RMFAs, so these automata accept languages
across the levels of the Chomsky hierachy.1 As regards the exact relationship of
RMFAs and DMFAs, he conjectures that any k-head DMFA can be simulated
by a k-head RMFA. Now, it is not obvious that reversible and deterministic
variants of automata should be equally powerful: reversible finite automata and
reversible pushdown automata are known to be strictly less powerful than their

1 Recall that the context-sensitive languages are exactly recognized by linear-space
non-deterministic Turing machines, linear bounded automata. By the space hierarchy
theorem these are strictly more powerful than multi-head finite automata.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 95–105, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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deterministic counterparts [8,13]. Furthermore, well-known reversibilization tech-
niques such as Bennett’s method [4] rely on generating a run-time trace, and so
cannot be leveraged to show the expressiveness of RMFAs by a näıve reversible
simulation of DMFAs, since MFAs are read-only.

Our contribution is to show that RMFAs characterize reversible logspace,
L(RMFA) = RevSPACE(logn), using a direct simulation of logarithmic space
reversible Turing machines (RTMs) by RMFAs without intermediate reversibi-
lization. In combination with the result that deterministic space equals reversible
space [9], this provides an indirect proof that reversible and deterministic MFAs
are equally expressive. Our simulation is quite efficient in terms of the number
of heads: if the simulated RTM is bounded by k logn bits on the work tape,
then it is simulated by an RMFA with k + 4 heads; one head better than the
(irreversible) MFA simulation of logspace Turing machines [5].

2 RTMs and RMFAs

We shall assume that the reader is somewhat familiar with (reversible) Turing
machines (RTMs) and multi-head finite automata (MFAs). We therefore only
outline the aspects that influence our simulation. Readers seeking a more thor-
ough introduction are referred to [3, 4] for RTMs, and [6, 11] for (R)MFAs.

2.1 Reversible Turing Machines

We shall concern ourselves with a sub-linear space complexity class. The Turing
machines (TMs) used to study such classes are equipped with two tapes: a read-
only input tape containing an input word w ∈ Σ∗ over some input alphabet
Σ, written in delimited form �w , where � and  are left and right endmarkers,
respectively; and a read-write work tape with k binary tracks (with all cells
initially 0k). The input tape head starts by pointing at � and must not move
left of � nor right of  (this can be statically enforced in the transition function).
To simplify the simulation below, TMs are here assumed to work with one-way
infinite tapes.2 (See Fig. 3 for a conceptual representation of an RTM.)

We use a triple format for the transition rules that separates head movement
from symbol substitution, cf. [3]. For example, we write (q, [←, ↓], p) for the move
rule that from state q moves the input head left, keeps the work head in place
and goes to state p; and (q, [a, 100 �→ 101], p) for the symbol rule that in state q,
when reading a on the input tape and 100 on the work tape, writes 101 to the
work tape and goes to state p. (This example uses a 3-track work tape.) Note
that because the input tape is read-only, there is no need to specify a target
symbol for the input tape.

A TM is reversible iff it is deterministic, and, for every disjoint transition
rule pair (q1, [a1, b1], p1) and (q2, [a2, b2], p2), if p1 = p2 then b1 = s1 �→ t1 and
b2 = s2 �→ t2, and t1 �= t2 or a1 �= a2. That is, if multiple rules target the same
state, then they are all symbol rules, and they write different symbols on the
tape(s).

2 These assumptions do not affect the expressive power or space complexity of TMs.
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Fig. 1. Transition diagram for a 2-head RMFA that doubles the unary counter in �1

Inversion of an RTM is accomplished by straightforward transition rule inver-
sion. For example, the inverse of move rule (q, [←, ↓], p) is (p, [→, ↓], q), and the
inverse of symbol rule (q, [a, 100 �→ 101], p) is (p, [a, 101 �→ 100], q). This leads to
an RTM with inverse functionality.

We define RevSPACE(s(n)) to be the set of languages that can be decided
by RTMs which use O(s(n)) space on the work tape, given input of size n. In
particular, RevSPACE(log n) is the reversible logarithmic space complexity class.

2.2 Reversible Multihead Finite Automata

A formal definition of RMFAs can be found in [11] and we shall not reproduce
the definition here. Instead, we note that RMFAs can be regarded as RTMs
with multiple heads on the input tape and no work tape. Thus, we can use the
RTM framework for RMFAs, including the triple transition rule format and the
definition of reversibility.3 For a k-head MFA over alphabet Σ we shall write
(q, [s1, . . . , sk], p) for the symbol rule that in state q reads si ∈ (Σ ∪ {�,  })
with the ith head (for all i ∈ {1, . . . , k}), and goes into state p; and we write
(q, [d1, . . . , dk], p) for the move rule that in state q moves the ith head in direction
di ∈ {←, ↓,→}. We follow Morita’s lead and label heads by � (with subscripts
of various kinds to differentiate them).

Let L(RMFA) be the set of languages accepted by RMFAs with any number
of heads, which all start by pointing at the left delimiter, �. L(RMFA) contains
many interesting non-trivial languages: palindromes, unary primes, and the Dyck
language of well-balanced parentheses are explicated in [11]. Rather than giving
a full example here, we shall show a subroutine where we double a unary counter
with a 2-head RMFA, Fig. 1. This will be useful for the RTM simulation below.

Example (doubling unary counter). Assume that the input tape is �1n , i.e. n
repetitions of 1. We begin in state q with a configuration where the first head
�1 of the 2-head RMFA points at the kth cell of the input (i.e., the value of the
counter �1 is k) with 2k ≤ n, and the second head �2 points at � (i.e., counter
�2 is zero). Fig. 1 shows a simple RMFA for doubling �1 as follows. We move
�1 sequentially to the left, while moving �2 two steps right for each left step of
�1. Once �1 points at �, �2 will be 2k places to the right of �, and we go to
state p. From here, we swap the positions of �1 and �2, and end in state r.

3 MFA transition rules can also use a quadruple format analogous to the quintuple
format for TMs, as done in [11].
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L(RMFA)
Conjecture [11]

== L(DMFA)
‖ here ‖ [5]

RevSPACE(log n)
[9]
== DSPACE(log n)

Fig. 2. Equivalences between the languages recognized by reversible and deterministic
MFAs and logarithmic space complexity classes. Our contribution is the direct proof
of L(RMFA) = RevSPACE(log n).

This small program fragment can fairly easily be used to recognize e.g. (unary)
2m. Furthermore, because the subroutine is reversible, the inverse of the automa-
ton will be an RMFA that halves an even number in �1, which will also be useful
for the RTM simulation.

3 RMFAs Characterize Reversible Logspace

To establish the relationship between RMFAs and RTMs there is an immediate,
but indirect, approach: simulate DMFAs by RMFAs. Because DMFAs charac-
terize deterministic logarithmic space [5], and because this is equal to reversible
logarithmic space [9], such a simulation would prove that RTMs characterize
reversible logarithmic space (see Fig. 2).

Of concern in this approach is that we would use reversibilizations (simulations
of irreversible machines) in both directions, which is wasteful: we know that in
many contexts we do not have to use reversibilization at all when relating two
reversible models, e.g. [2,14]. Also, the trace approach which is usually used for
reversibilization is not (näıvely) applicable to MFAs: there is nowhere to write
the trace. As an alternative, Morita [11] suggests adapting the reversibilization
technique of [9] to RMFAs, but this does not alleviate our concern.

We propose a more direct proof strategy which sidesteps irreversible machine
models entirely and goes directly for RevSPACE(logn): we shall construct a sim-
ulation of logspace RTMs by RMFAs. Now, as mentioned above, it is known that
MFAs are equivalent to logspace TMs. The proof of this is a briefly sketched sim-
ulation in [5, pp. 338–339], omitting most of the technical details. As one might
suspect, these details turn out to contain a fair amount of devilry; especially
when we want to prove the analogous relationship in a reversible setting. Still,
the fundamental idea of the simulation holds, as we shall see.

We proceed as follows: first, we show how to encode the configuration of a
logspace RTM by an RMFA; then, we show how to simulate RTM transitions.

3.1 Encoding an RTM Configuration

We must show that for any logspace RTM T , there exists an RMFA R which
accepts exactly the same language as T . R will have as its input exactly the
input tape of T . Now, if L ∈ RevSPACE(logn), then there exists an RTM which
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�in

�1 �1 ��2 �2 ��3 �3 �
�d �d �

�w �w �

�t �t �
input head

0 0 1

�

01 0

work head

1 0 0

RTM T

a0� a1 a2 a3 a4 a5 a6 a7 a8

track1

track2

track3

w0w1w2

RMFA R

�a0 a1 a2 a3 a4 a5 a6 a7 a8qq �

Fig. 3. Example configuration for a logspace RTM T with 3 work tracks and the 7-head
RMFA R encoding T (both in internal state q). The gray parts of the RTM tapes are
‘out-of-bounds’—the read/write heads will never go there. The input head of T points
to input cell a5, so �in does as well. The work tape head of T points to work cell
w2, so �w is 22 right shifts from �. The content of a work track from T is simulated
by the position of a track head in R: track1 contains 001 which is the reverse binary
representation of 4, so �1 points to a4. Similarly, �2 and �3 point to a1 to encode 100.
The auxiliary RMFA heads �t and �d are in their default ‘zero’ position at �.

both decides L and is logn tape bounded (by the tape compression theorem4).
Without loss of generality we therefore assume that T uses space s(n) ≤ logn
for all input lengths n. An example RTM configuration and its corresponding
RMFA encoding is shown in Fig. 3; it works as follows.

The internal state of T will be directly reflected by R’s internal state, so that
for every state q in T there is a corresponding state q in R. We us one of R’s
heads, labelled �in (the input head), to directly simulate T ’s input tape head.
Thus, the major concern is how to simulate T ’s work tape. We assumed that
T is strictly log n tape bounded, and that T ’s work tape is a k-track binary
tape, i.e. with each work tape symbol encoded as a k-bit tuple. This means
that there are at most 2k logn different possible work tape contents for T . Now,
2k log n = nk, which is the amount of possible configurations of a k-head RMFA,
so there is exactly enough room to represent each such content by a unique
RMFA configuration of k heads.

Thus, we shall use k heads in R (labelled �1 through �k) to represent the
work tape contents of T . The position of each such track head �i will be a
straightforward unary representation of the logn bits of a track when read from
left to right, such that pointing at the first cell in the RMFA input represents
0. (Note that except for �in , all the heads of R shall ignore the actual symbols
in the input word.) Flipping a bit in a track is simulated as follows. To flip the
pth bit5 from 0 to 1, we add 2p to the unary counter by moving the tape head

4 Strictly speaking, the tape compression theorem has not yet been established for
RTMs. However, the standard method of compressing cells into symbols also works
for RTMs, as this is conceptually the inverse operation of symbol reduction, which
is well established, cf. [3, 12].

5 As usual, bits are numbered starting from 0.
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corresponding to this track 2p positions to the right. To flip the bit from 1 to 0,
move the tape head 2p positions to the left, subtracting 2p from the counter.

As an example, �2 in Fig. 3 points at input cell a1, which encodes the bit
string 100. To flip the the middle bit from 0 to 1 we move �2 21 places to the
right. It will then point at input cell a3, i.e. it will encode 110, as desired.

The work tape head of T is simulated by the work head �w in R which
maintains 2p as a unary counter: if T ’s work tape head points to cell (bit) p, the
work head �w is 2p places from the left delimiter �. Note that neither �w nor
any of the k track heads will ever “overflow” by hitting the right delimiter �,
as this would break the assumption that T is strictly logn tape bounded. Using
an auxiliary head �d (which initially points to �) we can easily double or halve
the �w counter using the procedure in Fig. 1. This corresponds to moving the
work tape head right or left. (Note that we do not need a counter for p itself.)

A final auxiliary head �t will be used when reading symbols from the encoding,
meaning that R has k + 4 heads in total. To initialize the simulation, we only
need to move the work head �w and track heads �1, . . . ,�k one place to the
right of �.

3.2 Simulating RTM Transitions

We now turn to how a transition rule of RTM T is simulated by RMFA R.

Move Rule. The above encoding yields a completely straightforward simulation
of a move rule (q, [din , dw], p): if the internal state of R is q, then move the input
head �in as specified directly by din , and double or halve the work tape counter
�w as specified by dw (using the auxiliary head �d and the doubling procedure
of Fig. 1), ending by going into state p. This will be reversible as (q, [din , dw], p)
is guaranteed to be the only rule out of q, and only rule that targets p, by the
reversibility of T .

Symbol Rule. Simulating a symbol rule is trickier. The internal state q of T
is directly reflected in R, but there are usually multiple symbol rules going out
of each state and we do not know which one to simulate unless we read off the
encoding.6 To read a symbol off the simulated work tape, we further need to
consult all k tracks (meaning heads in R) because each of them carry one bit
of the symbol’s binary representation.7 We thus need procedures for reading a

6 We remark that while [5] mentions how to flip bits between known bit patterns, how
to read the encoded symbols with the MFA is not discussed at all.

7 One can equally well assume the inverse trade-off between tape bound and alphabet
size, i.e., that T has only 2 symbols in its work tape alphabet rather than 2k, but
that it is then k log n tape bounded rather than log n bounded. We then consult just
a single head to read off a symbol, but we must also maintain which of k segments of
log n bits is active. The head count for such a simulation is the same as the one here,
but the simulation has some tricky subtleties, so we chose Hartmanis’ configuration
encoding for this paper.
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Fig. 4. RMFA procedure for reading off the pth bit in the binary representation of
�1’s unary counter. For simplicity, this RMFA has a unary input alphabet: for richer
alphabets all combinations of symbols (except for the delimiters) should be supplied
for the symbol rules. Parity of the subtraction count (corresponding to the value of
the bit) is maintained by switching back and forth between the loops at p and r. The
rollbacks are shorthand for two disjoint copies of the top five states of the automaton
with their transitions inverted.

single bit off a given track (Fig. 4), and for collecting the bits from all k simulated
tracks and applying the corresponding symbol change (Fig. 5).

Single bit reading. We remark that the pth bit in the binary representation of an
integer k is (k div 2p) mod 2. Thus, to read off the pth bit of the first track �1,
we repeatedly “subtract” 2p (the value of �w) from �1 by moving it 2p positions
to the left, until �1 reaches the left endmarker �. Simultaneously, we conserve
the original position of �1 by moving the auxiliary head �t from � to the right.
We also use the auxiliary head �d to conserve the 2p counter in �w (which is
consumed by a subtraction otherwise). Depending on whether we subtract 2p

an odd or even number of times (maintained internally in the state of machine)
before running into �, the pth bit on this track is 0 or 1.8 The value of the bit
from track 1 can thus be encoded by disjoint internal states. Importantly, this
procedure can be completely reversible.

Now, the involved heads �1, �w, �d, and �t will be displaced from their
original position by this procedure. To restore them to their positions before the
reading, we do as follows. We link up the two states that encode the different
bit readings to their corresponding states in two disjoint, inverse copies of the
procedure automaton. The effect of these inverse copies will be to roll back
the calculation, restoring the initial positions of all heads, while maintaining the

8 As every logic circuit designer knows, projecting the sequence 0, 1, 2, . . . to the pth
bit in its binary representation gives a periodic sequence consisting of 2p 0’s followed
by 2p 1’s.
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Fig. 5. Implementation of symbol rules by joining the leaves of decision trees for source
states and symbols to the leaves of inverse decision tree for the target states and
symbols. The fragment shown corresponds to the rule (q, [b, 10 �→ 01], p) for a 2-track
RTM. The conditionals on �1 and �2 use the reading procedure of Fig. 4 (and its
inverse), while the ones on �in read directly from the input. The centre box denotes
applying the hardcoded directions for bit flips for this rule (left for �1, right for �2).

read bit in the internal state, ending up in, say, state q0 or q1.
9 Fig. 4 shows the

RMFA for this clean bit reading procedure.

Symbol substitution. We now proceed to read off the other track heads in similar
fashion, until we end up with the full k-bit string for the symbol of the current
work cell encoded in the internal RMFA state (along with T ’s internal state).
This, along with the symbol directly on the (input) tape, then exactly defines
which symbol rule (q, (a, s �→ t), p) to apply. We then simply move the k work
track heads 2p places left or right (or not at all) simultaneously, as defined by
the bit flips in the binary string mapping s �→ t.

At this point, the internal state of the RMFA will reflect information about
the exact transition rule that was applied. Now, we want to end up in state p,
but there is the problem that many different transition rules can target p. In the
irreversible MFA simulations we can simply join these cases directly, but in the
RMFA they must be orthogonalized to preserve reversibility. To do so we (again)
exploit the reversibility of T : only the symbol rule (q, (a, s �→ t), p) can have been
applied if the current symbol on the input tape is a, the current symbol on the
work tape is t, and the current state is p. Thus, by using the inverse of the track
reading procedures, which we get by RTM inversion, we can orthogonalize the
case where this particular rule was applied from other symbol rules targeting p.

The resulting structure is effectively that decision trees for reading the simu-
lated symbols starting from each internal state link up at the leaves with inverse
decision trees for reading the target symbols and states, see Fig. 5.10

9 This is effectively the construction for garbage-less RMFAs [10, Thm. 1]. The author
used a similar technique for reversible string comparison in a universal RTM, cf. [2].

10 This technique of joining up the leaves of the decision trees was used for symbol
reduction in single-tape RTMs [3,12].
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The simulation of either rule type thus ends up in an RMFA configuration
reflecting only the corresponding RTM configuration (with no trace information
in the RMFA configuration). We conclude that RevSPACE(log n) ⊆ L(RMFA).
The simulation circumvents the problem of having to simulate an irreversible
MFA, avoiding the inherent trade-offs of reversibilization. The result is that an
RTM using k logn bits of space can be simulated with an RMFA with k + 4
heads, so the simulation is quite efficient in terms of heads. In fact, we even
use one head less than the irreversible simulation [5]. Despite the restrictions of
reversibility, it is thus no more costly to simulate RTMs by RMFAs (in terms of
heads) than it is to simulate TMs by MFAs in general.

3.3 Simulating an RMFA with a Logarithmic Space RTM

The reverse simulation is easier. Indirectly, the result is already established: RM-
FAs are a subset of DMFAs, which characterize logspace, which is equal to
reversible logspace, see Fig. 2.

Directly, simulating an RMFA with a logspace RTM can be done as follows.
The internal state of the RMFA is stored in the internal state of the RTM. The
k heads of the RMFA are simulated by k binary tracks on the work tape of the
RTM. Each track contains the cell offset of a head from the left delimiter �, i.e.
a pointer. Obviously, only logn space is needed for each pointer. Moving the
heads left or right is simple incrementation or decrementation of the pointer. By
dereferencing each pointer in turn (moving the input head from � to the refer-
enced cell and back), we can collect the information about the symbols pointed
to in the internal state, and update it as necessary (analogous to the reading of
a work tape cell, Fig. 4). The only auxiliary space we need is an extra track to
conserve the value of a pointer over a dereference (again, analogous to the way
�t and �d was used above), and a track to mark off the logn cells allowed to the
pointers (to avoid overflowing when incrementing and decrementing reversibly).
The RTM simulation thus requires only (k + 2) logn bits of space to simulate a
k-head RMFA.

Thus, L(RMFA) ⊆ RevSPACE(log n), and in combination with the RMFA
simulation of logspace RTMs we conclude that L(RMFA) = RevSPACE(logn):
reversible multi-head finite automata characterize reversible logarithmic space.

4 Further Discussion of RMFAs

Reversible multi-head finite automata have several other properties that set them
apart from their irreversible counterparts, and which make them interesting for
separate study. We shall briefly discuss some here.

RMFAs always terminate: either we end in a proper halting state, or get stuck.
They cannot diverge, as this would mean that some configuration reachable from
the starting state has more than one predecessor, which violates reversibility.
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(No transition may target the starting state, so finite orbits with the starting
state are forbidden.) In fact, this argument extends to any space-bounded re-
versible computation.11

By eliminating stuck states we can therefore to turn all reversible space-
bounded language recognizers (acceptors) into language deciders [11].12 That
is, we can without loss of generality assume that RMFAs are total. Now, we
can also assume this for DMFAs as they recognize decidable languages, but the
construction to enforce it is much simpler for RMFAs.

Finally, if we grant write privileges to RMFAs, we end up with another inter-
esting computation model: reversible linear bounded automata, RLBAs. These
are easily seen to characterize linear space, L(RLBA) = RevSPACE(n), and share
many of the features of RMFAs. The non-deterministic LBAs recognize exactly
the context-sensitive languages, and the longstanding problem in automata (and
complexity) theory of whether non-deterministic and deterministic LBAs recog-
nize the same languages can thus also be phrased in terms of reversible LBAs
versus non-deterministic LBAs.

5 Conclusion

We showed that reversible multi-head finite automata (RMFAs) characterize
reversible logarithmic space, by a simulation of logspace reversible Turing ma-
chines by RMFAs (and vice versa). This answers a question posed by Morita [11].
The construction is based on that of Hartmanis [5], but with considerably more
detail and intricacy because of the requirements of reversibility. The simulation
incorporates several recent techniques and ideas from other clean reversible sim-
ulations of reversible models [1–3,11,14]. We slightly improve on the irreversible
construction [5] by requiring one less head, for k + 4 heads in total.

Indirectly, by the results of Lange et al. [9] this also shows that RMFAs and
DMFAs recognize the same languages. The slightly stronger conjecture of Morita,
that any k-head DMFA can be simulated by a k-head RMFA, is still open, but we
join in the belief that the simulation of [9] should be applicable, placing RMFAs
in the DMFA hierarchy [7]. However, a novel solution to this problem would be
more welcome as, currently, the arsenal of reversibilizations is very limited.

We believe that the characterization of reversible complexity classes by au-
tomata could prove fruitful for future research. For example, considering the L
vs. NL problem in terms of RMFAs could yield new insights.

Acknowledgements. Thanks are due toMichael Kirkedal Thomsen andRobert
Glück for comments on a draft of this paper.

11 The argument also applies conversely: if, say, an RTM diverges, then it necessarily
uses unbounded space.

12 An equivalent construction was given by the author for RTMs [1].
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Abstract. Conjunctive grammars (Okhotin, 2001) are an extension of
the standard context-free grammars with a conjunction operation, which
maintains most of their practical properties, including many parsing al-
gorithms. This paper introduces a further extension to the model, which
is equipped with quantifiers for referring to the left context, in which the
substring being defined does occur. For example, a rule A → a&�B de-
fines a string a, as long as it is preceded by any string defined by B. The
paper gives two equivalent definitions of the model—by logical deduction
and by language equations—and establishes its basic properties, includ-
ing a transformation to a normal form, a cubic-time parsing algorithm,
and another recognition algorithm working in linear space.

1 Introduction

Context-free grammars are a logic for defining the syntax of languages. In this
logic, the properties of strings are defined inductively, so that the properties of
a string are determined by the properties of its substrings. This is how a rule
S → aSb asserts, that if a string an−1bn−1 has the property S, then the string
anbn has the property S as well. Besides the concatenation, the formalism of this
logic has an implicit disjunction operation, represented by having multiple rules
for a single symbol. This logic can be further augmented with conjunction and
negation operations, which was done by the second author [11, 13] in conjunctive
grammars and Boolean grammars, respectively. These grammars preserve the
main idea of the context-free grammars—that of defining syntax inductively, as
described above—maintain most of their practically important features, such
as efficient parsing algorithms [13, 15–17], and have been a subject of diverse
research [1, 4, 7, 8, 10, 18]. As the applicability of a rule of a Boolean grammar to
a substring is independent of the context, in which the substring occurs, Boolean
grammars constitute a natural general case of context-free grammars. Standard
context-free grammars can be viewed as their disjunctive fragment.

When Chomsky [2] introduced the term “context-free grammar” for an intu-
itively obvious model of syntax, he had a further idea of a more powerful model,
in which one could define rules applicable only in some particular contexts. How-
ever, Chomsky’s attempt to formalize his idea using the tools available at the
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time (namely, the string-rewriting systems) led to nothing but space-bounded
nondeterministic Turing machines. Even though the resulting devices are still
known under the name of “context-sensitive grammars”, they have nothing to
do with the syntax of languages: the nonterminal symbols of these grammars
are, in general, nothing but bits in a memory of a general-purpose computer,
and do not correspond to any syntactic notions. In particular, these grammars
fail to implement Chomsky’s original idea of a phrase-structure rule applicable
in a context.

This paper undertakes to reconsider Chomsky’s [2] idea of contexts in gram-
mars, this time using the appropriate tools of deduction systems and language
equations, and drawing from the experience of developing the conjunctive gram-
mars. The model proposed in this paper are grammars with one-sided contexts,
which introduce two special quantifiers for representing left contexts of a string.
The first quantifier refers to the “past” of the current substring within the en-
tire string being defined: an expression �α defines any substring that is directly
preceded by a prefix of the form α. This quantifier is meant to be used along
with usual, unquantified specifications of the structure of the current substring,
using conjunction to combine several specifications. For example, consider the
rule A → BC &�D, which represents any substring of the form BC preceded
by a substring of the form D. If the grammar contains additional rules B → b,
C → c and D → d, then the above rule for A shall specify that a substring
bc of a string w = dbc . . . has the property A; however, this rule shall not pro-
duce the same substring occurring in the strings w′ = abc or w′′ = adbc. The
other quantifier, �α, represents the form of the current substring together with
its left context, so that the rules A → B&�E, B → b, E → ab define that
the substring b occurring in the string w = ab has the property A. One can
symmetrically define right contexts, denoted by quantifiers �α and �α.

In the literature, related ideas have occasionally arisen in connection with
parsing, where right contexts—�αΣ∗, in the terminology of this paper—are
considered as “lookahead strings” and are used to guide a deterministic parser.
If α represents a regular language, these simple forms of contexts occur in LR-
regular [3], LL-regular [9] and LL(*) [19] parsers. Some software tools for engi-
neering parsers, such as those developed by Parr and Fischer [19] and by Ford [5],
allow specifying contexts �αΣ∗, with α defined within the grammar, and such
specifications can be used by a programmer to adjust the behaviour of a deter-
ministic recursive descent parser.

In this paper, the above intuitive definition of grammars with one-sided con-
texts is formalized in two equivalent ways. The first formalization, pursued in
Section 2, uses deduction of elementary propositions of the form [A, 〈u〉v], where
〈u〉v denotes a substring v in left context u (that is, occurring in a string uvw)
and A is a syntactic property defined by the grammar (“nonterminal symbol”
in Chomsky’s terminology); this proposition asserts that v has the property
A in the context u. Then, each rule of the grammar, which is of the general
form A → α1 & . . . &αk &�β1 & . . . &�βm&�γ1 & . . . &�γn, becomes a de-
duction scheme for inferring elementary propositions of this form from each other,
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and the language generated by the grammar is ultimately defined as the set of
all strings w, such that [S, 〈ε〉w] can be deduced. The standard proof tree of such
a deduction constitutes a parse tree of the string w. This definition generalizes
the representation of standard context-free grammars by deduction—assumed,
for instance, in the monograph by Sikkel [20]—as well as the extension of this
representation to conjunctive grammars [14].

An alternative, equivalent definition given in Section 3 uses a generalization
of language equations, in which the unknowns are sets of pairs of a string and its
left contexts. All connectives and quantifiers in the rules of a grammar—that is,
concatenation, disjunction, conjunction and both context quantifiers—are then
interpreted as operations on such sets, and the resulting system of equations
is proved to have a least fixpoint, as in the known cases of standard context-
free grammars [6] and conjunctive grammars [12]. This least solution defines the
language generated by the grammar.

These definitions ensure that the proposed grammars with one-sided contexts
define the properties of strings inductively from the properties of their substrings
and the contexts, in which these substrings occur. There is no rewriting of “sen-
tential forms” involved, and hence the proposed model avoids falling into the
same pit as Chomsky’s “context-sensitive grammars”, that of being able to sim-
ulate computations of space-bounded Turing machines.

This paper settles the basic properties of grammars with one-sided contexts.
First, a transformation to a normal form generalizing the Chomsky normal form
is devised in Section 4; the construction proceeds in the usual way, first by elim-
inating empty strings, and then by removing cyclic dependencies. This normal
form is then used to extend the basic Cocke–Kasami–Younger parsing algorithm
to grammars with one-sided contexts; the algorithm, described in Section 5,
works in time O(n3), where n is the length of the input string. Finally, in Sec-
tion 6, it is demonstrated that every language defined by a grammar with one-
sided contexts can be recognized in deterministic linear space.

In this extended abstract, most proofs are omitted due to space constraints.

2 Definition by Deduction

A grammar with one-sided contexts uses concatenation, conjunction and disjunc-
tion, as well as quantifiers, either only {�,�} for left contexts, or only {�,�}
for right contexts. Though left contexts are assumed throughout this paper, all
results symmetrically hold for grammars with right contexts.

Definition 1. A grammar with left contexts is a quadruple G = (Σ,N,R, S),
where

– Σ is the alphabet of the language being defined;
– N is a finite set of auxiliary symbols (“nonterminal symbols” in Chomsky’s

terminology), disjoint with Σ, which denote the properties of strings defined
in the grammar;
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– R is a finite set of grammar rules, each of the form

A → α1 & . . . &αk&�β1 & . . . &�βm&�γ1 & . . . &�γn, (1)

with A ∈ N , k,m, n � 0, αi, βi, γi ∈ (Σ ∪N)∗;
– S ∈ N is a symbol representing correct sentences (“start symbol” in the

common jargon).

A grammar with left contexts degenerates to a conjunctive grammar, if the
context quantifiers are never used, that is, if m = n = 0 for every rule (1); and
further to a standard context-free grammar, if conjunction is never used, that is,
if k = 1 in every rule.

For each grammar rule (1), each term αi, �βi and �γi is called a conjunct.
Each unquantified conjunct αi gives a representation of the string being defined.
A conjunct �βi similarly describes the form of the left context or the past, relative
to the string being defined. Conjuncts of the form �γi refer to the form of the
left context and the current string, concatenated into a single string. Intuitively,
such a rule asserts that every substring v occurring in the left context u, such
that v is representable as each αi, u is representable as each βi and and uv is
representable as each γi, therefore has the property A.

Formally, the semantics of grammars with contexts are defined by a deduction
system of elementary propositions (items) of the form “a string v ∈ Σ∗ written
in left context u ∈ Σ∗ has the property α ∈ (Σ ∪N)∗”, denoted by [α, 〈u〉v].

Definition 2. Let G = (Σ,N,R, S) be a grammar with contexts, and define the
following deduction system of items of the form [X, 〈u〉v], with X ∈ Σ ∪N and
u, v ∈ Σ∗. There is a single axiom scheme:

)G [a, 〈x〉a] (for all a ∈ Σ and x ∈ Σ∗).

Each rule A → α1 & . . . &αk &�β1 & . . . &�βm&�γ1 & . . . &�γn in the
grammar defines a scheme I )G [A, 〈u〉v] for deduction rules, for all u, v ∈ Σ∗

and for every set of items I satisfying the below properties:

– For every unquantified conjunct αi = X1 . . .X� with � � 0 and Xj ∈ Σ ∪N ,
there should exist a partition v = v1 . . . v� with [Xj , 〈uv1 . . . vj−1〉vj ] ∈ I for
all j ∈ {1, . . . , �};

– For every conjunct �βi = �X1 . . . X� with � � 0 and Xj ∈ Σ ∪ N , there
should be such a partition u = u1 . . . u�, that [Xj , 〈u1 . . . uj−1〉uj ] ∈ I for all
j ∈ {1, . . . , �};

– Every conjunct �γi = �X1 . . .X� with � � 0 and Xj ∈ Σ ∪N should have a
corresponding partition uv = w1 . . . w� with [Xj , 〈w1 . . . wj−1〉wj ] ∈ I for all
j ∈ {1, . . . , �}.

Note, that if αi = ε in the first case, then the given condition implies v = ε, and
similarly, βi = ε implies u = ε, and γi = ε implies u = v = ε.

Then the language generated by a nonterminal symbol A is defined as

LG(A) = { 〈u〉v | u, v ∈ Σ∗, )G [A, 〈u〉v] }.
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The language generated by the grammar G is the set of all strings with left context
ε generated by S:

L(G) = {w | w ∈ Σ∗, )G [S, 〈ε〉w] }.

Using both kinds of past quantifiers (� and �) is actually redundant, because
each of them can be expressed through the other as follows:

– �D is equivalent to D′Σ∗, for a new symbol D′ with a rule D′ → ε&�D;
– �E can be replaced by Σ∗E′′, where E′′ has the unique rule E′′ → ε&�E.

Using both types of quantifiers together shall be essential later, when transform-
ing a grammar into a normal form, where the empty string cannot be defined.

The following sample grammar with contexts defines a rather simple language,
which is an intersection of two standard context-free languages. The value of this
example is in demonstrating the machinery of contexts in action.

Example 3. The following grammar generates the language { anbncndn | n � 0 }:

S → aSd | bSc | ε&�A

A → aAb | ε

The symbol A generates all strings anbn with n � 0 in any context. Without
the context specification �A, the symbol S would define all strings of the form
wh(wR), where w ∈ {a, b}∗ and the homomorphism h maps a to d and b to c.
However, the rule S → ε&�A ensures that the first half of the string (the prefix
ending with the last b) is of the form anbn for some n � 0, and therefore S
generates { anbncndn | n � 0 }. Consider the following logical derivation of the
fact that the string abcd with the left context ε is defined by S.

) [a, 〈ε〉a] (axiom)

) [b, 〈a〉b] (axiom)

) [c, 〈ab〉c] (axiom)

) [d, 〈abc〉d] (axiom)

) [A, 〈a〉ε] (A → ε)

[a, 〈ε〉a], [A, 〈a〉ε], [b, 〈a〉b] ) [A, 〈ε〉ab] (A → aAb)

[A, 〈ε〉ab] ) [S, 〈ab〉ε] (S → ε&�A)

[b, 〈a〉b], [S, 〈ab〉ε], [c, 〈ab〉c] ) [S, 〈a〉bc] (S → bSc)

[a, 〈ε〉a], [S, 〈a〉bc], [d, 〈abc〉d] ) [S, 〈ε〉abcd] (S → aSd)

The tree corresponding to this deduction is given in Figure 1, where the depen-
dence upon a context is marked by a dotted arrow.

Example 4. The following grammar generates the language

{ u1 . . . un | for every i, ui ∈ a∗c,or there exist j, kwithui = bkc and uj = akc }.
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Fig. 1. A parse tree of the string abcd according to the grammar in Example 3

S → AcS | CcS | BcS&DcE | ε
A → aA | ε C → B&�EF E → AcE | BcE | ε
B → bB | ε D → bDa | cE F → aFb | cE

This is an abstract language representing declaration of identifiers before or after
their use. Substrings of the form akc represent declarations, while every substring
of the form bkc is a reference to a declaration of the form akc.

The idea of the grammar is that S should generate a string 〈u1 . . . u�〉u�+1 . . . un
with ui ∈ a∗c ∪ b∗c if every “reference” in the suffix u�+1 . . . un has a corre-
sponding “declaration” in the whole string u1 . . . un. This condition is defined
inductively on �. The rule S → ε is the basis of induction: the string 〈u1 . . . un〉ε
has the desired property. The rule S → CcS appends a reference of the form
(b∗ &�EF )c, where the context specification ensures that this “reference” has a
matching earlier “declaration”. The possibility of a later “declaration” is checked
by another rule S → BcS&DcE.

For the language in Example 4, no Boolean grammar is known (and hence
no conjunctive grammar either). At the time of writing, this is the only such
example known to the authors. This is due to the simple reason that conjunc-
tive grammars are already quite powerful, and can define most of the standard
examples of formal languages. No methods of proving that a language does not
have a conjunctive grammar are currently known, and hence there is no proof
that grammars with contexts generate a larger class of languages.
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3 Definition by Language Equations

The representation of standard context-free grammars by language equations,
introduced by Ginsburg and Rice [6], is one of the several ways of defining their
semantics. For example, a grammar S → aSb | ε is regarded as an equation
S =

(
{a} · S · {b}

)
∪ {ε}, which has a unique solution S = { anbn | n � 0 }.

Conjunctive grammars inherit the same definition by equations [12], with the
conjunction represented by the intersection operation.

This important representation can be extended to grammars with contexts.
However, in order to include the contexts in the equations, the whole model has
to be extended from ordinary formal languages to sets of pairs of the form 〈u〉v,
that is, to languages of pairs L ⊆ Σ∗ × Σ∗. All usual operations on languages
used in equations are redefined for languages of pairs as follows. For all K,L ⊆
Σ∗ ×Σ∗, consider their

– union K ∪ L = { 〈u〉v | 〈u〉v ∈ K or 〈u〉v ∈ L },
– intersection K ∩ L = { 〈u〉v | 〈u〉v ∈ K, 〈u〉v ∈ L },
– concatenation K · L = { 〈u〉vw | 〈u〉v ∈ K, 〈uv〉w ∈ L },
– �-context �L = { 〈u〉v | 〈ε〉u ∈ L, v ∈ Σ∗ }, and
– �-context �L = { 〈u〉v | 〈ε〉w ∈ L, w = uv }.

With respect to the partial order of inclusion, all these operations are monotone
and continuous. Hence, every system of equations Xi = ϕi(X1, . . . , Xn) with
i ∈ {1, . . . , n}, in which Xi are unknown languages of pairs and the right-hand
sides ϕi are comprised of the above operations, has a least solution. A grammar
is represented as such a system in the most direct way.

Definition 5. For every grammar with contexts G = (Σ,N,R, S), the associ-
ated system of language equations is a system of equations in variables N , in
which each variable assumes a value of a language of pairs L ⊆ Σ∗ × Σ∗, and
which contains the following equations for every variable A:

A =
⋃

A→α1&...&αk&
&�β1&...&�βm&
&�γ1&...&�γn∈R

[ k⋂
i=1

αi ∩
m⋂
i=1

�βi ∩
n⋂
i=1

�γi

]
. (2)

Each instance of a symbol a ∈ Σ in such a system defines the language { 〈x〉a |
x ∈ Σ∗ }, and each empty string denotes the language { 〈x〉ε | x ∈ Σ∗ }.

Let (LA1 , . . . , LAn) with LAi ⊆ Σ∗ × Σ∗ be the least solution of the system.
Define LG(A) = LA, and let L(G) = {w | 〈ε〉w ∈ LS }.

For instance, the grammar in Example 3 induces the system

S = 〈Σ∗〉a · S · 〈Σ∗〉d ∪ 〈Σ∗〉b · S · 〈Σ∗〉c ∪
(
〈Σ∗〉ε ∩ �A

)
A = 〈Σ∗〉a ·A · 〈Σ∗〉b ∪ 〈Σ∗〉ε

with a unique solution S = { 〈ai〉an−ibncndn | n � i � 0 } ∪ { 〈anbi〉bn−icndn |
n � i � 0 }, A = { 〈x〉anbn | x ∈ {a, b}∗ }.

Definitions 2 and 5 are proved equivalent as follows.
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Theorem 6. Let G = (Σ,N,R, S) be a grammar with contexts, let X = ϕ(X)
be the associated system of equations. For every A ∈ N and 〈u〉v ∈ Σ∗ ×Σ∗,

〈u〉v ∈
[ ⊔
k�0

ϕk(∅, . . . ,∅)
]
A

if and only if )G [A, 〈u〉v].

4 Normal Form

Consider the Chomsky normal form for standard context-free grammars, in
which all rules are of the form A → BC and A → a. Its extension to conjunctive
grammars allows rules of the form A → B1C1& . . .&BkCk. The transformation
to this normal form is done by first eliminating ε-conjuncts, that is, rules of
the form A → ε& . . ., and then removing unit conjuncts, or rules of the form
A → B& . . . [11]. This transformation shall now be further extended to gram-
mars with contexts.

The task of eliminating ε-conjuncts is formulated in the same way: for any
given grammar with contexts, the goal is to construct an equivalent (modulo
the membership of ε) grammar without ε-conjuncts. A similar construction for
context-free grammars (as well as for conjunctive grammars) begins with deter-
mining the set of nonterminals that generate the empty string, which is obtained
as a least upper bound of an ascending sequence of sets of nonterminals. For
grammars with contexts, it is necessary to consider pairs of the form (A,Z),
with A ∈ N and Z ⊆ N , representing the intuitive idea that A generates ε in
the context of the form described by all nonterminals in Z. The set of all such
pairs is obtained as a limit of a sequence of sets as follows.

Definition 7. Let G = (Σ,N,R, S) be a grammar with contexts. Assume, with-
out loss of generality, that in each rule of the grammar, the context quantifiers
are applied only to single nonterminal symbols rather than concatenations. Con-
struct the sequence of sets Nullablei(G) ⊆ N × 2N , with i � 0, by setting
Nullable0(G) = ∅ and

Nullablei+1(G) =
{
(A, {D1, . . . , Dm} ∪ {E1, . . . , En} ∪ Z1 ∪ . . . ∪ Zk)

∣∣
A → α1 & . . . &αk&�D1 & . . . &�Dm&�E1 & . . . &�En ∈ R,

Z1, . . . , Zk ⊆ N : (α1, Z1), . . . , (αk, Zk) ∈ Nullable
∗
i (G)

}
,

where S∗, for any set S ⊆ N × 2N , denotes the set of all pairs (A1 . . . A�, Z1 ∪
. . . ∪ Z�) with � � 0 and (Ai, Zi) ∈ S.

Finally, let Nullable(G) =
⋃
i�0 Nullablei(G).

In the definition of S∗, note that ∅∗ = {(ε,∅)}. This value of Nullable
∗
i (G) is

used in the construction of Nullable1(G).
The next lemma explains how the set Nullable(G) represents the generation

of ε by different nonterminals in different contexts.
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Lemma 8. Let G = (Σ,N,R, S) be a grammar with contexts, let A ∈ N and
u ∈ Σ∗. Then, 〈u〉ε ∈ LG(A) if and only if there exist K1, . . . ,Kt ∈ N , such that
(A, {K1, . . . ,Kt}) ∈ Nullable(G) and 〈ε〉u ∈ LG(K1), . . . , 〈ε〉u ∈ LG(Kt).

It is convenient to define the elimination of ε-conjuncts for a grammar with
contexts G = (Σ,N,R, S), in which every symbol A ∈ N either has one or more
rules of the form A → B1 & . . . &Bk&�D1 & . . . &�Dm&�E1 & . . . &�En
with Bi, Di, Ei ∈ N , or a unique rule of the form A → BC (with B,C ∈ N),
A → a (with a ∈ Σ) or A → ε. The pre-processing necessary to reach this
intermediate form is straightforward, and then an equivalent grammar G′ =
(Σ,N,R′, S) without ε-conjuncts is constructed as follows:

1. All rules of the form A → a in R are added to R′.
2. Every rule A → B1 & . . . &Bk&�D1 & . . . &�Dm&�E1 & . . . &�En in

R is added to R′. Additionally, if 〈ε〉ε ∈ LG(D1)∩. . .∩LG(Dm), then another
rule A → B1 & . . . &Bk&E1& . . . &En&�ε is added to R′.

3. Every rule A → BC ∈ R is added to R′, along with the following ones:

– A → B&�K1& . . . &�Kt, for all (C, {K1, . . . ,Kt}) ∈ Nullable(G);
– A → C &�K1& . . . &�Kt, for all (B, {K1, . . . ,Kt}) ∈ Nullable(G);
– A → C &�ε, if there exists a nonempty set {K1, . . . ,Kt} ⊆ N , such that
(B, {K1, . . . ,Kt}) ∈ Nullable(G) and 〈ε〉ε ∈ LG(K1) ∩ . . . ∩ LG(Kt).

Lemma 9. Let G = (Σ,N,R, S) be a grammar with contexts. Then the gram-
mar G′ = (Σ,N ′, R′, S) constructed above generates the language L(G) \ {ε}.

The second stage of the transformation to the normal form is removing the unit
conjuncts in rules of the form A → B& . . .. Already for conjunctive grammars,
the only known transformation involves substituting all rules for B into all rules
for A, and results in a worst-case exponential blowup [11]. The same construction
applies for grammars with contexts as it is.

These transformations lead to the following normal form theorem.

Theorem 10. For each grammar with contexts G = (Σ,N,R, S) there exists
and can be effectively constructed a grammar with contexts G′ = (Σ,N ′, R′, S)
generating the same language, in which all rules are of the form

A → B1C1 & . . . &BkCk &�D1 & . . . &�Dm&�E1 & . . . &�En

A → a&�D1& . . . &�Dm&�E1 & . . . &�En

A → B1C1 & . . . &BkCk &�ε

A → a&�ε (k � 1, m, n � 0, a ∈ Σ, Bi, Ci, Di, Ei ∈ N ′)

The size of the resulting grammar, measured in the total number of symbols used
to describe it, is at most exponential in the size of the given grammar.
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5 Parsing Algorithm

For each grammar with one-sided contexts in the binary normal form, there exists
a parsing algorithm that determines the membership of all substrings of the input
string in the languages generated by all nonterminals of the grammar, storing the
results in a table. This algorithm elaborates a similar procedure for conjunctive
grammars [11], which in turn generalized the Cocke–Kasami–Younger algorithm
for standard context-free grammars.

Let G = (Σ,N,R, S) be a grammar with contexts in the binary normal form,
and let w = a1 . . . an with n � 1 and ak ∈ Σ be some string. Let 0 � i < j � n.
Define

Ti,j = {A | A ∈ N, )G [A, 〈a1 . . . ai〉ai+1 . . . aj ] }.
This table is constructed by the following algorithm.

1: T0,1 = {A ∈ N | A → a1 &�ε ∈ R }
2: for j = 1, . . . , n do
3: while T0,j changes do
4: for all A → a&�D1 & . . . &�Dm′ &�E1 & . . . &�Em′′ do
5: if aj = a, D1, . . . , Dm′ ∈ T0,j−1 and E1, . . . , Em′′ ∈ T0,j then
6: Tj−1,j = Tj−1,j ∪ {A}
7: for i = j − 2 to 0 do
8: let U = ∅ (U ⊆ N ×N)
9: for k = i+ 1 to j − 1 do

10: U = U ∪ (Ti,k × Tk,j)
11: for all A → B1C1 & . . . &BmCm&�D1 & . . . &�Dm′ &

�E1 & . . . &�Em′′ do
12: if (B1, C1), . . . , (Bm, Cm) ∈ U , D1, . . . , Dm′ ∈ T0,i and

E1, . . . , Em′′ ∈ T0,j then
13: Ti,j = Ti,j ∪ {A}
14: for all A → B1C1 & . . . &BmCm&�ε do
15: if (B1, C1), . . . , (Bm, Cm) ∈ U and i = 0 then
16: Ti,j = Ti,j ∪ {A}
Once the table is constructed, the input is accepted if and only if S ∈ T0,n.

Theorem 11. For every grammar with one-sided contexts G in the binary nor-
mal form, there exists an algorithm that determines the membership of a given
string w = a1 . . . an in L(G), and does so in time O(|G|2 · n3), using space
O(|G| · n2).

6 Recognition in Linear Space

The cubic-time algorithm in Section 5 uses quadratic space, as do its context-
free and conjunctive prototypes. For conjunctive grammars, the membership of a
string can be recognized in linear space and exponential time [13] by using deter-
ministic rewriting of terms of a linearly bounded size. In this section, the latter
method is extended to handle the case of grammars with one-sided contexts.
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Let G = (Σ,N,R, S) be a grammar with one-sided contexts and let w =
a1 . . . an be an input string. The linear-space parsing algorithm presented below
constructs the sets T0,1, T0,2, . . . , T0,n (as in the top row of the table in the
algorithm in the last section), with

T0,i = {A ∈ N | 〈ε〉a1 . . . ai ∈ LG(A) }.
The membership of each A ∈ N in each set T0,� is determined using term rewrit-
ing similar to the one defined for Boolean grammars [13], which operates in
exponential time by trying all possible parses. Whenever the grammar refers to
a context �D, the answer is found in one of the previously computed sets T0,i

with i < �; a reference to a context �E is resolved by looking in the partially
computed set T0,�. However, this E may not yet have been added to T0,�, and the
procedure may give a false negative answer. Hence, up to |N | iterations (similar
to those in line 3 of the cubic-time algorithm) have to be done until all depen-
dencies are propagated and all elements of T0,� are found. Once the last set T0,n

is constructed, the input string is accepted if S belongs to this set.

Theorem 12. Every language generated by a grammar with one-sided contexts
is in DSPACE(n).

7 Future Work

The new model leaves many theoretical questions to ponder. For instance, is
there a parsing algorithm for grammars with one-sided contexts working in less
than cubic time? For standard context-free grammars, Valiant [21] discovered an
algorithm that offloads the most intensive computations into calls to a Boolean
matrix multiplication procedure, and thus can work in time O(nω), with ω < 3;
according to the current knowledge on matrix multiplication, ω can be reduced
to 2.376. The main idea of Valiant’s algorithm equally applies to Boolean gram-
mars, which can be parsed in time O(nω) as well [17]. However, extending it to
grammars with contexts, as defined in this paper, seems to be inherently impossi-
ble, because the logical dependencies between the properties of substrings (that
is, between the entries of the table Ti,j) now have a more complicated struc-
ture, and the order of calculating these entries apparently rules out grouping
multiple operations into Boolean matrix multiplication. However, there might
exist a different o(n3)-time parsing strategy for these grammars, which would
be interesting to discover.

Another direction is to develop practical parsing algorithms for grammars
with one-sided contexts. An obvious technique to try is the recursive descent
parsing [16], where ad hoc restrictions resembling contexts of the form �DΣ∗

have long been used to guide deterministic computation. The Lang–Tomita Gen-
eralized LR parsing [15] is worth being investigated as well.

A more general direction for further research is to consider grammars with two-
sided contexts,whichwould allow rules of the formA → BC&�D&�E&�F&�G.
Such grammars would implement Chomsky’s [2] idea of defining phrase-structure
rules applicable in a context in full—which is something that was for the first
time properly approached in this paper.
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Longest Common Extensions via Fingerprinting
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Abstract. The longest common extension (LCE) problem is to prepro-
cess a string in order to allow for a large number of LCE queries, such
that the queries are efficient. The LCE value, LCEs(i, j), is the length of
the longest common prefix of the pair of suffixes starting at index i and
j in the string s. The LCE problem can be solved in linear space with
constant query time and a preprocessing of sorting complexity. There are
two known approaches achieving these bounds, which use nearest com-
mon ancestors and range minimum queries, respectively. However, in
practice a much simpler approach with linear query time, no extra space
and no preprocessing achieves significantly better average case perfor-
mance. We show a new algorithm, Fingerprintk, which for a parameter
k, 1 ≤ k ≤ �log n�, on a string of length n and alphabet size σ, gives
O(kn1/k) query time using O(kn) space and O(kn + sort(n, σ)) prepro-
cessing time, where sort(n, σ) is the time it takes to sort n numbers
from σ. Though this solution is asymptotically strictly worse than the
asymptotically best previously known algorithms, it outperforms them
in practice in average case and is almost as fast as the simple linear time
algorithm. On worst case input, this new algorithm is significantly faster
in practice compared to the simple linear time algorithm. We also look
at cache performance of the new algorithm, and we show that for k = 2,
cache optimization can improve practical query time.

1 Introduction

The longest common extension (LCE) problem is to preprocess a string in order
to allow for a large number of LCE queries, such that the queries are efficient.
The LCE value, LCEs(i, j), is the length of the longest common prefix of the
pair of suffixes starting at index i and j in the string s. The LCE problem can
be used in many algorithms for solving other algorithmic problems, e.g., the
Landau-Vishkin algorithm for approximate string searching [6]. Solutions with
linear space, constant query time, and O(sort(n, σ)) preprocessing time exist
for the problem [3,2]. Here sort(n, σ) is the time it takes to sort n numbers
from an alphabet of size σ. For σ = O(nc), where c is a constant, we have
sort(n, σ) = O(n). These theoretically good solutions are however not the best
in practice, since they have large constant factors for both query time and space
usage. Ilie et al. [4] introduced a much simpler solution with average case constant
time and no space or preprocessing required other than storing the input string.
This solution has significantly better practical performance for average case input
as well as for average case queries on some real world strings, when compared to
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the asymptotically best known algorithms. However, this algorithm has linear
worst case query time, and is thus only ideal when worst case performance
is irrelevant. In situations where we need both average case and worst case
performance to be good, none of the existing solutions are ideal. An example
could be a firewall, which needs to do approximate string searching. The firewall
should not allow an attacker to significantly degrade its performance by sending
it carefully crafted packages. At the same time it must scan legitimate data
quickly. The main goal of this paper is to design a practical algorithm that
performs well in both situations, that is, achieves a good worst-case guarantee
while maintaining a fast average case performance.

Previous Results. Throughout the paper let s be a string of length n over an
alphabet of size σ. Ilie et al. [4] gave an algorithm, DirectComp, for solving
the LCE problem, which uses no preprocessing and has O(LCE(i, j)) query time.
For a query LCE(i, j), the algorithm simply compares s[i] to s[j], then s[i + 1]
to s[j + 1] and so on, until the two characters differ, or the end of the string is
reached. The worst case query time is thus O(n). However, on random strings
and many real-word texts, Ilie et al. [4] showed that the average LCE is O(1),
where the average is over all σnn2 combinations of strings and query inputs.
Hence, in these scenarios DirectComp achieves O(1) query time.

The LCE problem can also be solved with O(1) worst case query time, us-
ing O(n) space and O(sort(n, σ)) preprocessing time. Essentially, two different
ways of doing this exists. One method, SuffixNca, uses constant time nearest
common ancestor (NCA) queries [3] on a suffix tree. The LCE of two indexes
i and j is defined as the length of the longest common prefix of the suffixes
s[i . . n] and s[j . . n]. In a suffix tree, the path from the root to Li has label
s[i . . n] (likewise for j), and no two child edge labels of the same node will have
the same first character. The longest common prefix of the two suffixes will
therefore be the path label from the root to the nearest common ancestor of
Li and Lj, i.e., LCEs(i, j) = D[NCAT (Li, Lj)]. The other method, LcpRmq,
uses constant time range minimum queries (RMQ) [2] on a longest common
prefix (LCP) array. The LCP array contains the length of the longest com-
mon prefixes of each pair of neighbor suffixes in the suffix array (SA). The
length of the longest common prefix of two arbitrary suffixes in SA can be
found as the minimum of all LCP values of neighbor suffixes between the two
desired suffixes, because SA lists the suffixes in lexicographical ordering, i.e.,
LCE(i, j) = LCP[RMQLCP(SA

−1[i] + 1, SA−1[j])], where SA−1[i] < SA−1[j].
Table 1 summarizes the above theoretical bounds.

Our Results. We present a new LCE algorithm, Fingerprintk, based on multi-
ple levels of string fingerprinting. The algorithm has a parameter k in the range
1 ≤ k ≤ *logn+, which describes the number of levels used1. The performance
of the algorithm is summarized by the following theorem:

1 All logarithms are base two.
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Table 1. LCE algorithms with their space requirements, worst case query times and
preprocessing times. Average case query times are O(1) for all shown algorithms. Rows
marked with * show the new algorithm we present.

Algorithm Space Query time Preprocessing

SuffixNca O(n) O(1) O(sort(n, σ))

LcpRmq O(n) O(1) O(sort(n, σ))

DirectComp O(1) O(n) None

Fingerprintk* O(kn) O(kn1/k) O(sort(n, σ) + kn)
k = �log n� * O(n log n) O(log n) O(n log n)

Theorem 1. For a string s of length n and alphabet size σ, the Fingerprintk

algorithm, where k is a parameter 1 ≤ k ≤ *logn+, can solve the LCE problem in
O(kn1/k) worst case query time and O(1) average case query time using O(kn)
space and O(sort(n, σ) + kn) preprocessing time.

By choosing k we can obtain the following interesting tradeoffs.

Corollary 2. Fingerprint1 is equivalent to DirectComp with O(n) space
and O(n) query time.

Corollary 3. Fingerprint2 uses O(n) space and O(
√
n) query time.

Corollary 4. Fingerprint�log n� uses O(n logn) space and O(log n) query
time.

The latter result is equivalent to the classic Karp-Miller-Rosenberg fingerprint
scheme [5]. To preprocess the O(kn) fingerprints used by our algorithm, we can
use Karp-Miller-Rosenberg [5], which takes O(n log n) time. For k = o(log n),
we can speed up preprocessing to O(sort(n, σ) + kn) by using the SA and LCP
arrays.

In practice, existing state of the art solutions are either good in worst case,
while poor in average case (LcpRmq), or good in average case while poor in
worst case (DirectComp). Our Fingerprintk solution targets a worst case
vs. average case query time tradeoff between these two extremes. Our solution is
almost as fast as DirectComp on an average case input, and it is significantly
faster than DirectComp on a worst case input. Compared to LcpRmq, our
solution has a significantly better performance on an average case input, but its
worst case performance is not as good as that of LcpRmq. The space usage for
LcpRmq and Fingerprintk are approximately the same when k = 6.

For k = 2 we can improve practical Fingerprintk query time even further
by optimizing it for cache efficiency. However for k > 2, this cache optimization
degrades practical query time performance, as the added overhead outweighs the
improved cache efficiency.

Our algorithm is fairly simple. Though it is slightly more complicated than
DirectComp, it does not use any of the advanced algorithmic techniques re-
quired by LcpRmq and SuffixNca.
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2 Preliminaries

Let s be a string of length n. Then s[i] is the i’th character of s, and s[i . . j] is
a substring of s containing characters s[i] to s[j], both inclusive. That is, s[1] is
the first character of s, s[n] is the last character, and s[1 . . n] is the entire string.
The suffix of s starting at index i is written suffi = s[i . . n].

A suffix tree T encodes all suffixes of a string s of length n with alphabet σ.
The tree has n leaves named L1 to Ln, one for each suffix of s. Each edge is
labeled with a substring of s, such that for any 1 ≤ i ≤ n, the concatenation of
labels on edges on the path from the root to Li gives suffi. Any internal node
must have more than one child, and the labels of two child edges must not share
the same first character. The string depth D[v] of a node v is the length of the
string formed when concatenating the edge labels on the path from the root to
v. The tree uses O(n) space, and building it takes O(sort(n, σ)) time [1].

For a string s of length n with alphabet size σ, the suffix array (SA) is an array
of length n, which encodes the lexicographical ordering of all suffixes of s. The
lexicographically smallest suffix is suffSA[1], the lexicographically largest suffix
is suffSA[n], and the lexicographically i’th smallest suffix is suffSA[i]. The inverse

suffix array (SA−1) describes where a given suffix is in the lexicographical order.
Suffix suffi is the lexicographically SA−1[i]’th smallest suffix.

The longest common prefix array (LCP array) describes the length of longest
common prefixes of neighboring suffixes in SA. The length of the longest common
prefix of suffSA[i−1] and suffSA[i] is LCP[i], for 2 ≤ i ≤ n. The first element

LCP[1] is always zero. Building the SA, SA−1 and LCP arrays takesO(sort(n, σ))
time [1].

The nearest common ancestor (NCA) of two nodes u and v in a tree is the
node of greatest depth, which is an ancestor of both u and v. The ancestors of
a node u includes u itself. An NCA query can be answered in O(1) time with
O(n) space and preprocessing time in a static tree with n nodes [3].

The range minimum of i and j on an array A is the index of a minimum
element in A[i, j], i.e., RMQA(i, j) = argmink∈{i,...,j}{A[k]}. A range minimum
query (RMQ) on a static array of n elements can be answered in O(1) time with
O(n) space and preprocessing time [2].

The I/O model describes the number of memory blocks an algorithm moves
between two layers of a layered memory architecture, where the size of the inter-
nal memory layer is M words, and data is moved between internal and external
memory in blocks of B words. In the cache-oblivious model, the algorithm has
no knowledge of the values of M and B.

3 The Fingerprintk Algorithm

Our Fingerprintk algorithm generalizesDirectComp. It compares characters
starting at positions i and j, but instead of comparing individual characters, it
compares fingerprints of substrings. Given fingerprints of all substrings of length
t, our algorithm can compare two t-length substrings in constant time.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b b a b a b b a a b b

i
s = H0[i]

H1[i] 1 2 3 4 1 2 5 6 5 1 2 3 4 1 2 5

17 18 19 20 21 22 23 24 25 26 27

a b a b a a b a b a $

6 5 6 3 4 6 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3H2[i]

Fig. 1. Fingerprintk data structure for s = abbaabbababbaabbababaababa$ , n = 27,
k = 3, t1 = n1/3 = 3 and t2 = n2/3 = 9. All substrings bba are highlighted with their
3-length fingerprint 2.

3.1 Data Structure

Given a string s, the fingerprint Ft[i] is a natural number identifying the sub-
string s[i . . i+t−1] among all t-length substrings of s. We assign fingerprints such
that for any i, j and t, Ft[i] = Ft[j] if and only if s[i . . i+ t− 1] = s[j . . j+ t− 1].
In other words, if two substrings of s have the same length, they have the same
fingerprints if and only if the substrings themselves are the same.

At the end of a string when i + t − 1 > n, we define Ft[i] by adding extra
characters to the end of the string as needed. The last character of the string
must be a special character $, which does not occur anywhere else in the string.

The Fingerprintk data structure for a string s of length n, where k is a
parameter 1 ≤ k ≤ *logn+, consists of k natural numbers t0, ..., tk−1 and
k tables H0, ..., Hk−1, each of length n. For each � where 0 ≤ � ≤ k − 1,
t� = Θ(n�/k) and table H� contains fingerprints of all t�-length substrings of s,
such that H�[i] = Ft� [i]. We always have t0 = n0/k = 1, such that H0 is the
original string s. An example is shown in Fig. 1. Since each of the k tables stores
n fingerprints of constant size, we get the following.

Lemma 5. The Fingerprintk data structure takes O(kn) space.

3.2 Query

The Fingerprintk query speeds up DirectComp by comparing fingerprints
of substrings of the input string instead of individual characters. The query
algorithm consists of two traversals of the hierarchy of fingerprints. In the first
traversal the algorithm compares progressively larger fingerprints of substrings
until a mismatch is found and in the second traversal the algorithm compares
progressively smaller substrings to find the precise point of the mismatch. The
combination of these two traversals ensures both a fast worst case and average
case performance.

The details of the query algorithm are as follows. Given the Fingerprintk

data structure, start with v = 0 and � = 0, then do the following steps:

1. As long as H�[i+ v] = H�[j + v], increment v by t�, increment � by one, and
repeat this step unless � = k − 1.

2. As long as H�[i + v] = H�[j + v], increment v by t� and repeat this step.
3. Stop and return v when � = 0, otherwise decrement � by one and go to step

two.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b b a b a b b a a b b

j + v
H0[j + v]
H1[j + v] 1 2 3 4 1 2 5 6 5 1 2 3 4 1 2 5

17 18 19 20 21 22 23 24 25 26 27

a b a b a a b a b a $

6 5 6 3 4 6 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3H2[j + v]

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b b a a b b a b a b b a a b b

i + v
H0[i + v]
H1[i + v] 1 2 3 4 1 2 5 6 5 1 2 3 4 1 2 5

17 18 19 20 21 22 23 24 25 26 27

a b a b a a b a b a $

6 5 6 3 4 6 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 241 2 3H2[i + v]

Fig. 2. Fingerprintk query for LCE(3, 12) on the data structure of Fig. 1. The top
half shows how H�[i+ v] moves through the data structure, and the bottom half shows
H�[j + v].

An example of a query is shown in Fig. 2.

Lemma 6. The Fingerprintk query algorithm is correct.

Proof. At each step of the algorithm v ≤ LCE(i, j), since the algorithm only
increments v by t� when it has found two matching fingerprints, and fingerprints
of two substrings of the same length are only equal if the substrings themselves
are equal. When the algorithm stops, it has found two fingerprints, which are
not equal, and the length of these substrings is t� = 1, therefore v = LCE(i, j).

The algorithm never reads H�[x], where x > n, because the string contains
a unique character $ at the end. This character will be at different positions
in the substrings whose fingerprints are the last t� elements of H�. These t�
fingerprints will therefore be unique, and the algorithm will not continue at level
� after reading one of them. ��

Lemma 7. The worst case query time for Fingerprintk is O(kn1/k), and the
average case query time is O(1).

Proof. First we consider the worst case. Step one takes O(k) time. In step
two and three, the number of remaining characters left to check at level �
is O(n(�+1)/k), since the previous level found two differing substrings of that
length (at the top level � = k − 1 we have O(n(�+1)/k) = O(n)). Since we can
check t� = Θ(n�/k) characters in constant time at level �, the algorithm uses
O(n(�+1)/k)/Θ(n�/k) = O(n1/k) time at that level. Over all k levels, O(kn1/k)
query time is used.

Next we consider the average case. At each step except step three, the algo-
rithm increments v. Step three is executed the same number of times as step
one, in which v is incremented. The query time is therefore linear in the number
of times v is incremented, and it is thereby O(v). From the proof of Lemma 6
we have v = LCE(i, j). By Ilie et al. [4] the average LCE(i, j) is O(1) and hence
the average case query time is O(1). ��
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Average Case vs. Worst Case The first traversal in the query algorithm guar-
antees O(1) average case performance. Without it, i.e., if the query started with
� = k − 1 and omitted step one, the average case query time would be O(k).
However, the worst case bound would remain O(kn1/k). Thus, for a better prac-
tical worst-case performance we could omit the first traversal entirely. We have
extensively experimented with both variants and we found that in nearly all sce-
narios the first traversal improved the overall performance. In the cases where
performance was not improved the first traversal only degraded the performance
slightly. We therefore focus exclusively on the two traversal variant in the re-
mainder of the paper.

3.3 Preprocessing

The tables of fingerprints use O(kn) space. In the case with k = *logn+ levels,
the data structure is the one generated by Karp-Miller-Rosenberg [5]. This data
structure can be constructed in O(n log n) time. With k < *logn+ levels, KMR
can be adapted, but it still uses O(n logn) preprocessing time.

We can preprocess the data structure in O(sort(n, σ)+kn) time using the SA
and LCP arrays. First create the SA and LCP arrays. Then preprocess each of
the k levels using the following steps. An example is shown in Fig. 3.

1. Loop through the n substrings of length t� in lexicographically sorted order
by looping through the elements of SA.

2. Assign an arbitrary fingerprint to the first substring.
3. If the current substring s[SA[i] . .SA[i]+t�−1] is equal to the substring exam-

ined in the previous iteration of the loop, give the current substring the same
fingerprint as the previous substring, otherwise give the current substring a
new unused fingerprint. The two substrings are equal when LCE[i] ≥ t�.

Lemma 8. The preprocessing algorithm described above generates the data struc-
ture described in Sect. 3.1.

Proof. We always assign two different fingerprints whenever two substrings are
different, because whenever we see two differing substrings, we change the fin-
gerprint to a value not previously assigned to any substring.

We always assign the same fingerprint whenever two substrings are equal,
because all substrings, which are equal, are grouped next to each other, when
we loop through them in lexicographical order. ��

Lemma 9. The preprocessing algorithm described above takes O(sort(n, σ)+kn)
time.

Proof. We first construct the SA and LCP arrays, which takes O(sort(n, σ))
time [1]. We then preprocess each of the k levels in O(n) time, since we loop
through n substrings, and comparing neighboring substrings takes constant time
when we use the LCP array. The total preprocessing time becomes O(sort(n, σ)
+ kn). ��
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s[SA[i]..SA[i]+3]
a
aba
abb
abb
ba
bab
bab
bba
bba

Hl[SA[i]]
1
2
3
3
5
6
6
8
8

i
1
2
3
4
5
6
7
8
9

suffSA[i]
a
ababba
abba
abbababba
ba
bababba
babba
bba
bbababba

SA[i]
9
4
6
1
8
3
5
7
2

Fig. 3. The first column lists all substrings of s = abbababba with length t� = 3. The
second column lists fingerprints assigned to each substring. The third column lists the
position of each substring in s.

4 Experimental Results

In this section we show results of actual performance measurements. The mea-
surements were done on a Windows 23-bit machine with an Intel P8600 CPU
(3 MB L2, 2.4 GHz) and 4 GB RAM. The code was compiled using GCC 4.5.0
with -O3.

4.1 Tested Algorithms

We implemented different variants of the Fingerprintk algorithm in C++ and
compared them with optimized versions of the DirectComp and LcpRmq al-
gorithms. The algorithms we compared are the following:

DirectComp is the simple DirectComp algorithm with no preprocessing and
worst case O(n) query time.

Fingerprintk<tk−1, ..., t1>ac is the Fingerprintk algorithm using k levels,
where k is 2, 3 and *logn+. The numbers <tk−1, ..., t1> describe the exact
size of fingerprinted substrings at each level.

RMQ<n, 1> is the LcpRmq algorithm using constant time RMQ.

4.2 Test Inputs and Setup

We have tested the algorithms on different kinds of strings:

Average case strings. These strings have many small LCE values, such that
the average LCE value over all n2 query pairs is less than one. We use results
on these strings as an indication average case query times over all input pairs
(i, j) in cases where most or all LCE values are small on expected input
strings. We construct these strings by choosing each character uniformly at
random from an alphabet of size 10.
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Fig. 4. Comparison of our new Fingerprintk algorithm for k = 2, k = 3 and k =
�log n� versus the existing DirectComp and LcpRmq algorithms

Worst case strings. These strings have many large LCE values, such that the
average LCE value over all n2 query pairs is n/2. We use results on these
strings as an indication of worst case query times, since the query times for
all tested algorithms are asymptotically at their worst when the LCE value
is large. We construct these strings with an alphabet size of one.

Medium LCE value strings. These strings have an average LCE value over
all n2 query pairs of n/2r, where r = 0.73n0.42. These strings where con-
structed to show that there exists input strings where Fingerprintk is
faster than both DirectComp and LcpRmq at the same time. The strings
consist of repeating substrings of r unique characters. The value of r was
found experimentally.

Each measurement we make is an average of query times over a million random
query pairs (i, j). For a given string length and string type we use the same
string and the same million query pairs on all tested algorithms.

4.3 Results

Fig. 4 shows our experimental results on average case strings with a small average
LCE value, worst case strings with a large average LCE value, and strings with
a medium average LCE value.
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Table 2. Query times in nano seconds for DirectComp (DC), Fingerprintk (FPk)
and LcpRmq (RMQ) on the five largest files from the Canterbury corpus

File n σ DC FP2 FP3 FPlog n RMQ

book1 0.7 · 220 82 8.1 11.4 10.6 12.0 218.0

kennedy.xls 1.0 · 220 256 11.9 16.0 16.1 18.6 114.4

E.coli 4.4 · 220 4 12.7 16.5 16.6 19.2 320.0

bible.txt 3.9 · 220 63 8.5 11.3 10.5 12.6 284.0

world192.txt 2.3 · 220 93 7.9 10.5 9.8 12.7 291.7

On average case strings, our new Fingerprintk algorithm is approximately
20% slower than DirectComp, and it is between than 5 and 25 times faster
than LcpRmq. We see the same results on some real world strings in Table 2.

On worst case strings, the Fingerprintk algorithms are significantly better
thanDirectComp and somewhat worse than LcpRmq. Up until n = 30, 000 the
three measured Fingerprintk algorithms have nearly the same query times. Of
the Fingerprintk algorithms, the k = 2 variant has a slight advantage for small
strings of length less than around 2, 000. For longer strings the k = 3 variant
performs the best up to strings of length 250, 000, at which point the k = *logn+
variant becomes the best. This indicates that for shorter strings, using fewer
levels is better, and when the input size increases, the Fingerprintk variants
with better asymptotic query times have better worst case times in practice.

On the plot of strings with medium average LCE values, we see a case where
our Fingerprintk algorithms are faster than bothDirectComp and LcpRmq.

We conclude that our new Fingerprintk algorithm achieves a tradeoff be-
tween worst case times and average case times, which is better than the existing
best DirectComp and LcpRmq algorithms, yet it is not strictly better than
the existing algorithms on all inputs. Fingerprintk is therefore a good choice
in cases where both average case and worst case performance is important.

LcpRmq shows a significant jump in query times around n = 1, 000, 000 on
the plot with average case strings, but not on the plot with worst case strings.
We have run the tests in Cachegrind, and found that the number of instructions
executed and the number of data reads and writes are exactly the same for both
average case strings and worst case strings. The cache miss rate for average case
strings is 14% and 9% for the L1 and L2 caches, and for worst case strings the
miss rate is 17% and 13%, which is the opposite of what could explain the jump
we see in the plot.

4.4 Cache Optimization

The amount of I/O used by Fingerprintk is O(kn1/k). However if we structure
our tables of fingerprints differently, we can improve the number of I/O opera-
tions to O(k(n1/k/B+1)) in the cache-oblivious model. Instead of storing Ft� [i]
at H�[i], we can store it at H�[((i− 1) mod t�) · *n/t�++ %(i− 1)/t�&+ 1]. This
will group all used fingerprints at level � next to each other in memory, such that
the amount of I/O at each level is reduced from O(n1/k) to O(n1/k/B).
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Fig. 5. Query times of Fingerprint2 with and without cache optimization

The size of each fingerprint table will grow from |H�| = n to |H�| = n + t�,
because the rounding operations may introduce one-element gaps in the table
after every n/t� elements. We achieve the greatest I/O improvement when k is
small. When k = *logn+, this cache optimization gives no asymptotic difference
in the amount of I/O.

We have implemented two cache optimized variants. One as described above,
and one where multiplication, division and modulo is replaced with shift opera-
tions. To use shift operations, t� and *n/t�+ must both be powers of two. This
may double the size of the used address space.

Fig. 5 shows our measurements for Fingerprint2. On average case strings
the cache optimization does not change the query times, while on worst case
strings and strings with medium size LCE values, cache optimization gives a
noticeable improvement for large inputs. The cache optimized Fingerprint2

variant with shift operations shows an increase in query times for large in-
puts, which we cannot explain. The last plot on Fig. 5 shows a variant of
average case where the alphabet size is changed to two. This plot shows a
bad case for cache optimized Fingerprint2. LCE values in this plot are large
enough to ensure that H1 is used often, which should make the extra complex-
ity of calculating indexes into H1 visible. At the same time the LCE values
are small enough to ensure, that the cache optimization has no effect. In this
bad case plot we see that the cache optimized variant of Fingerprint2 has only
slightly worse query time compared to the variant, which is not cache optimized.
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Fig. 6. Query times of Fingerprint3 with and without cache optimization

Fig. 6 shows the measurements for Fingerprint3. Unlike Fingerprint2, the
cache optimized variant is slightly slower than the unoptimized variant. Hence,
our cache optimization is effective for k = 2 but not k = 3.

5 Conclusions

We have presented the Fingerprintk algorithm achieving the theoretical bounds
of Thm. 1. We have demonstrated that the algorithm is able to achieve a balance
between practical worst case and average case query times. It has almost as good
average case query times as DirectComp, its worst case query times are sig-
nificantly better than those of DirectComp, and we have shown cases between
average and worst case where Fingerprintk is better than both DirectComp

and LcpRmq. Fingerprintk gives a good time space tradeoff, and it uses less
space than LcpRmq when k is small.
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Abstract. String comparison such as sequence alignment, edit distance
computation, longest common subsequence computation, and approxi-
mate string matching is a key task (and often computational bottleneck)
in large-scale textual information retrieval. For instance, algorithms for
sequence alignment are widely used in bioinformatics to compare DNA
and protein sequences. These problems can all be solved using essentially
the same dynamic programming scheme over a two-dimensional matrix,
where each entry depends locally on at most 3 neighboring entries. We
present a simple, fast, and cache-oblivious algorithm for this type of
local dynamic programming suitable for comparing large-scale strings.
Our algorithm outperforms the previous state-of-the-art solutions. Sur-
prisingly, our new simple algorithm is competitive with a complicated,
optimized, and tuned implementation of the best cache-aware algorithm.
Additionally, our new algorithm generalizes the best known theoretical
complexity trade-offs for the problem.

1 Introduction

Algorithms for string comparison problems such as sequence alignment, edit
distance computation, longest common subsequence computation, and approx-
imate string matching are central primitives in large-scale textual information
retrieval tasks. For instance, algorithms for sequence alignment are widely used
in bioinformatics for comparing DNA and protein sequences.

All of these problems can be solved using essentially the same dynamic pro-
gramming scheme over a two-dimensional matrix [12]. The common feature of
the dynamic programming solution is that each entry (i, j) in the matrix can
be computed in constant time given values of the neighboring entries (i− 1, j),
(i − 1, j − 1), and (i, j − 1) and the characters at position i and j in the in-
put strings. Combined we refer to these problems as local dynamic programming
string comparison problems.

In this paper, we revisit local dynamic programming string comparison prob-
lems for large-scale input strings. We focus on worst-case and exact solutions,
however, the techniques presented are straightforward to combine with the typ-
ical heuristic or inexact solutions that filter out parts of the dynamic program-
ming matrix which do not need to be computed. In the context of large-scale
strings, I/O efficiency and space usage are key issues for obtaining a fast practical
solution.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 131–142, 2012.
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Our main result is a new simple and cache-oblivious algorithm that outper-
forms the previous state-of-the-art solutions. Surprisingly, our new simple algo-
rithm is competitive with a complicated, optimized, and tuned implementation
of the best cache-aware algorithm. Furthermore, our new algorithm generalizes
the best known theoretical trade-offs between time, space, and I/O complexity
for the problem.

1.1 Memory Models

The memory in modern computers is typically organized in a hierarchy of caches,
main memory, and disks. The access time to memory significantly increases
with each level of the hierarchy. The external memory model [1] abstracts this
hierarchy by a simple two-level model consisting of an internal memory of size M
and an external memory for storing all remaining data. Data can be transferred
between external and internal memory in contiguous blocks of sizeB, and all data
must be in internal memory before it can be manipulated. The I/O complexity of
an algorithm is the number of transfers of blocks between internal and external
memory, called I/O operations (or just I/Os).

The cache-oblivious model [11] is an extension of the external memory model
with the feature that algorithms do not use knowledge of M and B. The model
assumes an optimal offline cache replacement strategy, which can be approx-
imated within a small constant factor by standard online cache replacements
algorithms such as LRU and FIFO. These properties make cache-oblivious algo-
rithms both I/O efficient on all levels of the memory hierarchy simultaneously
and portable between hardware architectures with different memory hierarchies.

1.2 Previous Results

LetX and Y be the input strings to a local dynamic programming string compar-
ison problem. For simplicity in the presentation, we assume that |X | = |Y | = n.
All solutions in this paper are based on two passes over an (n + 1) × (n + 1)
dynamic programming matrix (DPM). First, a forward pass computes the length
of an optimal path from the top-left corner to the bottom-right corner, and then
a backward pass computes the actual path by backtracking in the DPM. Finally,
the path is translated to the solution to the specific string comparison problem.
An overview of the complexities of the previous bounds and of our new algorithm
is listed in Table 1.

The first dynamic programming solution is due to Wagner and Fischer [21].
Here, the forward pass fills in and stores all entries in the DPM using O(n2)
time and space. The backward pass then uses the stored entries to efficiently
backtrack in O(n) time. In total the algorithm uses O(n2) time and space. The
space usage of this algorithm makes it unsuitable in practice for the sizes of
strings that we consider.

Hirschberg [14] showed how to improve the space at the cost of increasing
the time for the backward pass. The key idea is to not store all values of the
DPM, but instead use a divide and conquer approach in the backward pass to
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Table 1. Comparison of different algorithms for local dynamic programming. FullMa-

trix is Wagner and Fischer’s algorithm [21], Hirschberg is the linear space algorithm
by Hirschberg [14], FastLSAk is the algorithm by Driga et al. [9, 10] with parameter
k, CO is the cache-oblivious algorithm by Chowdhury et al. [4,6], and FastCOk is our
new algorithm with parameter k.

Algorithm Forward Pass Backward Pass Space I/O CO

FullMatrix O
(
n2

)
O(n) O

(
n2

)
O
(

n2

B
+ n

B
+ 1

)
Yes

Hirschberg O
(
n2

)
O
(
n2

)
O(n) O

(
n2

B
+ n

B
+ 1

)
Yes

FastLSAk O
(
n2

)
O
(

n2

k
+ n

)
O(nk +D) O

(
n2

B
+ n

B
+ 1

)
No

CO O
(
n2

)
O
(
n2

)
O(n) O

(
n2

BM
+ n

B
+ 1

)
Yes

FastCOk O
(
n2

)
O
(

n2

k
+ n

)
O(nk) O

(
n2k
BM

+ n
B

+ 1
)
Yes

reconstruct the path. At each step in the backward pass the algorithm splits the
DPM into two halves. In each half the algorithm recursively finds an optimal
path. The algorithm then combines paths for each half into an optimal path for
the entire DPM. The total time for the backward pass increases to O(n2). Hence,
in total the algorithm uses O(n2) time and O(n) space. Myers and Miller [18]
popularized Hirschberg’s algorithm for sequence alignment in bioinformatics,
and it has since been widely used in practice.

More recently, Driga et al. [9, 10] proposed an advanced recursive algorithm,
called FastLSA. The overall idea is to divide the DPM into k2 submatrices,
where k is a tunable parameter defined by the user. The forward pass computes
and stores the entries of the input boundaries of the submatrices, i.e., the row and
column immediately above and to the left of the submatrix. This uses O(n2) time
as the previous algorithms, but now additional O(nk) space is used to store the
input boundaries. The backward pass uses the stored input boundaries to speed
up the computation of the optimal path by processing only the submatrices that
intersect the optimal path. The submatrices are processed recursively until their
size is below another user defined threshold D. Submatrices of size less than D
are processed using Wagner and Fischer’s algorithm. The parameter D is chosen
such that space for the full matrix algorithm is sufficiently small to fit in a fast
cache. With the additional stored input boundaries the time for the backward

pass is improved to O(n
2

k + n). In total the algorithm uses O(n2 + n2

k + n) =
O(n2) time and O(nk + D) space. In addition to the basic recursive idea, the
algorithm implements several advanced optimizations to improve the practical
running time of the backward pass. For instance, the sizes of the submatrices
in recursive calls are reduced according to the entry point of the optimal path
in the submatrix and the allocation, deallocation, and caching of the additional
space is handled in a non-trivial way. The resulting full algorithm is substantially
more complicated than Hirschberg’s algorithm.

In practice, Driga et al. [9, 10] only consider strings of lengths ≤ 2000 and in
this case they showed that their solution outperforms bothWagner and Firscher’s
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algorithm and Hirschberg’s algorithm. For large strings we found that the origi-
nal implementation was not competitive with the other algorithms. However, by
optimizing and simplifying the implementation in the spirit of our new algorithm
(see Sec. 2), we were able to obtain a fast and competitive algorithm suitable
for large strings.

In terms of I/O complexity all of the above algorithms use O(n
2

B + n
B + 1)

I/Os. Furthermore, the algorithm by Driga et al. [9, 10] is cache-aware since it
needs to know the parameters of the memory hierarchy in order to optimally
select the threshold D.

Chowdhury et al. [4,6] gave a cache-oblivious algorithm that significantly im-
proves this I/O bound. The key idea is to split the DPM into 4 submatrices and
apply a simple divide and conquer approach in both passes. The forward pass
computes and stores the input boundaries of the 4 submatrices similar to the
algorithm by Driga et al. [9, 10], however, the computation is now done recur-
sively on each submatrix. This uses O(n2) time and O(n) space. The backward
pass recursively processes the submatrices that intersect the optimal path. This
also uses O(n2) time and O(n) space. Chowdhury et al. [4, 6] showed that the

total number of I/Os incurred by the algorithm is O( n
2

MB + n
B +1). Compared to

the previous results, this improves the number of I/Os in the leading quadratic
term by a factor M . Furthermore, they also showed that this bound is opti-
mal in the sense that any implementation of the local dynamic programming
algorithm must use at least this many I/Os. In practice, the reduced number of
I/Os significantly improve upon the performance of Hirschberg’s algorithm on
large strings. To the best of our knowledge, this algorithm is the fastest known
practical solution on large strings. Furthermore, the full algorithm is nearly as
simple as Hirschberg’s algorithm.

The above bounds represent the best known worst-case complexities for gen-
eral local dynamic programming string comparison. If we restrict the problem
in terms of alphabet size or cost function or if we use the properties of a spe-
cific local dynamic programming string comparison problem better bounds are
known, see e.g., [2, 3, 7, 8, 13, 15–17,19] and also the survey [20].

1.3 Our Results

We present a simple new algorithm with the following complexity.

Theorem 1. Let X and Y be strings of length n. Given any integer parameter
k, 2 ≤ k ≤ n, we can solve any local dynamic programming string comparison

problem for X and Y using O(n2) time for the forward pass, O(n
2

k ) time for the

backward pass, and O(nk) space. Furthermore, the algorithm uses O( n
2k

MB+nk
B +1)

I/Os in a cache-oblivious model.

Theorem 1 generalizes the previous bounds. In particular, with k = O(1) we
match the bounds of the cache-oblivious algorithm by Chowdhury et al. [4, 6].
Furthermore, we obtain the same time-space trade-off for the backward pass as
the algorithm by Driga et al. [9, 10] by choosing k accordingly.
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We have implemented our algorithm and our optimized and simplified version
of the algorithm by Driga et al. [9, 10] with k = 8, 16, 32 and compared it with
the previous algorithms on strings of length up to 221 = 2097152 on 3 different
hardware architectures. In all our experiments, these algorithms significantly
improve the current state-of-the-art cache-oblivious algorithm by Chowdhury
et al. [4, 6]. Our algorithms are faster even when k = 8 and the performance
further improves until k = 32. Hence, our results show that a small constant
factor additional space can have a significant impact in practice. Furthermore,
we found that our new simple and cache-oblivious algorithm is competitive with
our optimized, cache-aware, and tuned implementation of the more complicated
algorithm by Driga et al. [9, 10]. On one of the tested architectures our new
algorithm was even substantially faster than the algorithm by Driga et al. [9,10].

Algorithmically, our new algorithm is a relatively simple combination of the
division of the DPM into k2 submatrices from Driga et al. [9,10] and the recursive
and cache-oblivious approach from Chowdhury et al. [4, 6]. A similar approach
has been studied for solving the problem efficiently on multicore machines [5].
Our results show that this idea can also improve performance on individual cores.

1.4 Basic Definitions

For simplicity, we explain our algorithms in terms of the longest common sub-
sequence problem. All of our bounds and techniques generalize immediately to
any local dynamic programming string comparison problem.

Let X be a string of length |X | = n of characters from an alphabet Σ.
We denote the character at position i in X by X [i] and the substrings from
position i to j by X [i, j]. The substrings X [1, j] and X [i, n] are the prefixes
and suffixes of X , respectively. A subsequence of X is any string Z obtained by
deleting characters in X . Given two strings X and Y a common subsequence is
a subsequence of both X and Y . A longest common subsequence (LCS) of X
and Y is a common subsequence of X and Y of maximal length. The longest
common subsequence problem is to compute an LCS of X and Y .

Let X and Y be strings of length n. The standard dynamic programming
solution fills in an n+ 1× n+ 1 DPM C according to the following recurrence.

C [i, j] =

⎧⎪⎪⎨⎪⎪⎩
0 if j = 0 ∨ i = 0,

C [i− 1, j − 1] + 1 if i, j > 0 ∧X [i] = Y [j],

max

{
C [i, j − 1]
C [i− 1, j]

if i, j > 0 ∧X [i] �= Y [j]
(1)

The entry C[i, j] is the length of the LCS between prefixes X [1, i] and Y [1, j]
and hence the length of LCS of X and Y is C[n, n]. Note that each entry C[i, j]
depends only on the values in C[i − 1, j], C[i, j − 1], C[i − 1, j − 1] and the
characters of X [i] and Y [j]. Hence, we can fill in the entries in a top-down left-
to-right order. The LCS path is the path in C obtained by backtracking from
C[n, n] to C[0, 0]. Each diagonal edge in the LCS path corresponds to a character
of the LCS. See Fig. 1 for an example.
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s u r g e r y

0 0 0 0 0 0 0 0
s 0 1 1 1 1 1 1 1
u 0 1 2 2 2 2 2 2
r 0 1 2 3 3 3 3 3
v 0 1 2 3 3 3 3 3
e 0 1 2 3 3 4 4 4
y 0 1 2 3 3 4 4 5

(a) (b)

s u r g e r y

0 0 0 0 0 0 0 0
s 0 1 1 1 1 1 1 1
u 0 1 2 2 2 2 2 2
r 0 1 2 3 3 3 3 3
v 0 1 2 3 3 3 3 3
e 0 1 2 3 3 4 4 4
y 0 1 2 3 3 4 4 5

Fig. 1. Computing the LCS of survey and surgery. (a) The dynamic programming
matrix. (b) The LCS path. Each diagonal edge corresponds to a character of the LCS.
The resulting LCS is surey.

2 A New Algorithm for LCS

We now present our new algorithm for LCS. We describe our algorithm in the
same basic framework as Chowdhury et al. [4, 6].

Let X and Y be strings of length n and let k be the parameter for the algo-
rithm. For simplicity, we assume that n and k are powers of 2. Our algorithm
repeatedly uses a simple recursive procedure for computing the output boundary
of the submatrix given the input boundary. We explain this procedure first and
then give the full algorithm.

2.1 Computing Boundaries

Given the input boundary of a DPM for two strings of length n we can compute
the output boundary by computing the entries in the DPM in the standard
top-down left-to-right order. This uses O(n2) time and O(n) space, since we
compute each entry in constant time and we only need to store the last two
rows of the DPM during the algorithm. However, the number of I/Os incurred is

O(n
2

B ). The following simple recursive algorithm, similar to the one presented in

Chowdhury et al. [4,6], improves this bound to O( n
2

MB ) I/Os. If n = 1 we compute
the output boundary directly using recurrence 1. Otherwise, we split the matrix
into k2 submatrices of size nk ×

n
k . We recursively compute the output boundaries

for each submatrix by processing them in a top-down left-to-right order. At each
recursive call to process a submatrix, the input boundary consists of the output
boundary of the submatrix immediately above, to the left, and above-left. Hence
with this ordering, the input boundary is available for each recursive call.

The algorithm uses O(n2) time and O(n) space as before, i.e., we only need
to store the boundaries of the submatrices that are currently being processed.
Let I1(n, k) denote the number of I/Os incurred by the algorithm on strings
of length n with parameter k. If n is sufficiently small such that the recursive
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(a) (b) (c)

Fig. 2. States of the algorithm for k = 4. (a) A partition of the DPM into 4 × 4
submatrices. Thick lines indicate the initially stored boundaries. (b) After the forward
pass. (c) After the backward pass. Only the shaded submatrices intersecting the LCS
path are processed.

computation is done within internal memory, the algorithm only incurs I/Os
to read and write the input strings and to read and write the boundaries. The
length of the input strings and boundaries is O(n+ nk) = O(nk) and hence the
number of I/Os is O(nkB + 1). Otherwise, the algorithm additionally creates k2

subproblems of strings of length n
k each. Thus, the total number of I/Os is given

by the following recurrence.

I1(n, k) =

{
O(nkB + 1) if n ≤ α1M ,

k2I1(
n
k , k) +O(nkB + 1) otherwise.

(2)

Here, α1 is a suitable constant such that all computations of strings of length
α1M are done entirely within memory. It follows that the total number of I/Os

is I1(n, k) = O( n
2k

MB + nk
B + 1).

2.2 Computing the LCS

We now present the full algorithm to compute the LCS in C. The algorithm
is recursive and works as follows. If n = 1 we simply compute an optimal
path directly using recurrence (1). Otherwise, we proceed in the following steps
(see Fig 2).

Step 1: Forward Pass Partition C into k2 square submatrices of size n
k × n

k .
Compute and store the input boundaries of each submatrix in a top-down left-
to-right order. We compute the boundaries using the algorithm from Sect. 2.1.

Step 2: Backward pass Compute an optimal LCS path through the submatrices
from the bottom-right to the top-left. At each step we recursively find an opti-
mal path through a submatrix C′ given the input boundary (computed in step 1)
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and a point on the optimal path on the output boundary. Depending on the exit
point on the input boundary of the computed optimal LCS path through C′ we
continue in the submatrix above, to the left, or above-left of C′ using the exit
point as the point on the output boundary in the next step.

Step 3: Output LCS Finally, concatenate the path through the submatrices to
form an optimal LCS path in C and output the corresponding LCS.

2.3 Analysis

First consider the time complexity of the algorithm. Step 1 (the forward pass)
uses O(n2) time. In step 2 (the backward pass), we only process the submatrices
that are intersected by the optimal path. Since any path from (n, n) to (0, 0) can

intersect at most 2k−1 submatrices, step 2 uses O((2k−1) · n2

k2 +n) = O(n
2

k +n)
time. Finally, step 3 concatenates the pieces of the path and outputs the LCS in
O(n) time. In total, the algorithm uses O(n2) time.

Next consider the space used by the algorithm. Let S(n, k) denote the space
for a subproblem of size n with parameter k. The stored input boundaries use
O(nk) space and the recursive call uses S(n/k, k) space. Hence, the total space
S(n, k) is given by the recurrence

S(n, k) =

{
O(1) if n = O(1),

S(n/k, k) +O(nk) otherwise.

It follows that the space used by the algorithm is S(n, k) = O(nk).
Next consider the I/O complexity. Let I2(n, k) denote I/O complexity of the

algorithm on strings of length n with parameter k. If n is sufficiently small such
that the recursive computation is done within internal memory, the algorithm
incurs O(nkB +1) I/Os by similar arguments as in the analysis above. Otherwise,
the algorithm additionally does k2 − 1 boundary computations in step 1 on
subproblems of size n

k and recursively creates 2k − 1 subproblems of strings of
length n

k . Hence, the total number of I/Os is given by

I2(n, k) =

{
O(nkB + 1) if n ≤ α2M ,

(k2 − 1)I1
(
n
k , k
)
+ (2k − 1)I2

(
n
k , k
)
+O

(
nk
B + 1

)
otherwise.

(3)

Here, α2 is a suitable constant such that computation is done entirely in memory.

It follows that I2(n, k) = O( n
2k

MB + nk
B + 1).

In summary, our algorithm for LCS uses O(n2) time for the forward pass,

O(n
2

k + n) time for the backward pass, O(nk) space, and O( n
2k

MB + nk
B + 1)

I/Os. Since the algorithm only uses the local dependencies of LCS these bounds
hold for any local dynamic programming string comparison problem. Hence, this
completes the proof of Theorem 1.
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3 Experimental Results

3.1 Setup

We have compared the following algorithms.

FullMatrix Wagner and Fischer’s [21] original algorithm in our own imple-
mentation.

Hirschberg Hirschberg’s [14] linear space divide and conquer algorithm in our
own implementation.

CO The cache-oblivious algorithm by Chowdhury et al. [4, 6]. We have tested
the original implementation of the algorithm.

FastLSAk The FastLSA algorithm by Driga et al. [9, 10] with parameter k.
We used an optimized version of the original implementation of the algo-
rithm. The optimization improves and simplifies parameter passing in the
recursion, and the allocation and deallocation of the auxiliary arrays. In our
experiments, we report the results for k = 8, 16, 32, since larger values of
k did not further improve the performance of the algorithm. Furthermore,
we have tuned the threshold parameter D for each of the tested hardware
architectures.

FastCOk An implementation of our new algorithm with parameter k. As with
FastLSA, we report the results for k = 8, 16, 32. In our experiments we
found that the choice of k did not affect the forward pass. For simplicity, we
therefore fixed k = 2 for the forward and only varied k in the backward pass.

We compared the algorithms on the following 3 architectures.

Intel i7 2.66GHz. 32KB L1, 256KB L2, 8MB L3 cache. 4GB memory
AMD X2 - 2.5GHz. 64KB L1, 512KB L2 cache. 4GB memory
Intel M - 1.6GHz. 2MB L2 cache. 1GB memory

All algorithms were implemented in C/C++ and compiled using the gcc 3.4
compiler. We tested the performance of the algorithms on strings of lengths
n = 2i, for i = 16, 17, 18, 19, 20, 21, i.e., the largest strings are slighty larger
than 2 million. The strings are DNA strings taken from the standardized text
collection of Pizza&Chili Corpus 1. We have experimented with other types of
strings but found only very small differences in performance. This is likely due to
the small difference between worst-case and best-case performance. For brevity,
we therefore focus DNA strings from the standardized text collection in our
experiments. Additionally, we have used Cachegrind2 to simulate the algorithms
on a standard memory hierarchy with 64KB L1 and 512KB L2 caches.

3.2 Results

The results of the running time and the Cachegrind experiments are listed in
Tables 2 and 3. Results for FullMatrix are not reported since they were either

1 pizzachili.dcc.uchile.cl or pizzachili.di.unipi.it
2 valgrind.org/info/tools.html#cachegrind
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Table 2. Performance results for Hirschberg (Hb), CO, FastLSAk (FLSAk),
FastCOk (FCOk) on Intel i7, AMD X2, and Intel M. The fastest running times for
each row is in boldface.

Intel i7

n Hb CO FLSA8 FLSA16 FLSA32 FCO8 FCO16 FCO32

216 0.016h 0.012h 0.009h 0.009h 0.008h 0.009h 0.009h 0.008h
217 0.063h 0.049h 0.0387h 0.036h 0.033h 0.036h 0.035h 0.034h
218 0.251h 0.194h 0.150h 0.144h 0.132h 0.143h 0.136h 0.134h
219 1.003h 0.775h 0.584h 0.559h 0.529h 0.565h 0.539h 0.530h
220 4.059h 3.129h 2.320h 2.290h 2.127h 2.238h 2.258h 2.100h
221 16.105h 12.297h 9.544h 9.022h 8.741h 9.036h 8.611h 8.355h

AMD X2

216 0.017h 0.009h 0.010h 0.010h 0.010h 0.007h 0.007h 0.007h
217 0.069h 0.037h 0.041h 0.039h 0.038h 0.028h 0.027h 0.026h
218 0.278h 0.149h 0.169h 0.159h 0.156h 0.114h 0.108h 0.104h
219 1.123h 0.597h 0.685h 0.640h 0.624h 0.455h 0.430h 0.418h
220 4.474h 2.389h 2.752h 2.574h 2.498h 1.846h 1.721h 1.671h
221 17.949h 9.442h 11.007h 10.337h 9.950h 7.278h 6.873h 6.685h

Intel M

216 0.027h 0.021h 0.0140h 0.013h - 0.015h 0.012h -
217 0.108h 0.083h 0.0571h 0.053h - 0.061h 0.050h -
218 0.438h 0.334h 0.227h 0.218h - 0.234h 0.200h -
219 1.800h 1.337h 0.945h 0.889h - 0.928h 0.852h -
220 7.170h 5.325h 3.814h 3.575h - 3.697h 3.481h -
221 28.999h 20.601h 15.283h 14.994h - 14.730h 14.529h -

infeasible or far from competitive in all our experiments. Furthermore, for Intel
M we only report result for FastLSA and FastCO with parameter k up to 16
due to the small memory of this machine.

From Table 2 we see that FastLSA32 or FastCO32 significantly outper-
form the current state-of-the-art cache-oblivious algorithm CO. Compared with
Hirschberg, FastLSA32 and FastCO32 are a about a factor 1.8 to 2.6 faster.
Surprisingly, our simple cache-oblivious FastCOk is competitive with our opti-
mized and cache-aware implementation of the more complicated FastLSAk. For
the AMD X2 architecture, FastCO is even significantly faster than FastLSA.
We outperform previous results even when k = 8 and our performance further
improves until k = 32.

Our Cachegrind experiments listed in Table 3 show that FastCOk executes a
similar number of instructions as FastLSAk and far less than bothHirschberg

andCO. Furthermore, FastCOk incurs at least a factor 2000 less cache misses in
both L1 and L2 cache compared to FastLSAk. Note that this corresponds well
with the difference in the theoretical I/O complexity between the algorithms. The
fewest number of cache misses are incurred by CO closely followed by FastCOk.
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Table 3. Cachegrind results for Hirschberg (Hb), CO, FastLSAk (FLSAk),
FastCOk (FCOk) on a 64K L1 and 512K L2 cache hierarchy. Lowest instruction/miss
count shown in boldface. We could only test inputs up to n = 219 due to the overhead
of the Cachegrind simulation.

Instructions Executed ×109

n Hb CO FCO8 FCO16 FCO32 FLSA8 FLSA16 FLSA32

216 177.30 123.84 77.122 72.823 70.670 84.463 79.043 76.584
217 708.87 494.68 308.06 290.91 282.53 337.68 315.95 306.07
218 2, 835.4 1, 978.2 1, 221.2 1, 163.4 1,129.3 1, 352.9 1, 263.7 1, 223.8
219 11, 339 7, 907.8 4, 914.2 4, 646.4 4,514.6 5, 416.1 5, 057 4, 894.5

L1 cache misses ×106

216 1, 090 0.855 1.682 1.980 2.070 1, 293 1, 162 1, 154
217 4, 639 1.952 3.823 4.566 7.49 5, 156 4, 834 4, 626
218 18, 866 5.916 11.23 12.29 17.41 20, 640 19, 4654 18, 789
219 76, 654 19.85 37.27 39.59 46.55 83, 201 77, 630 75, 355

L2 cache misses ×106

216 604.6 0.345 1.038 1.373 1.711 1, 151 1, 146 1, 150
217 3, 207 0.594 1.949 2.49 5.2 4, 575 4, 579 4, 581
218 16, 517 1.312 4.385 5.067 9.373 18, 741 18, 303 18, 290
219 71, 629 3.416 11.689 15.12 18.792 82, 131 75, 219 73, 117

The difference between the number of cache misses incurred by FastCOk and
FastLSAk is much larger than the difference in their running time. The main
reason for this is because the number of cache misses incurred relative to the total
number of instructions executed is low (around 4% for FastLSAk). Ultimately,
the simple FastCOk simultaneously achieves good cache performance and a low
instruction count making it competitive with current state-of-the-art algorithms.

Acknowledgments. We would like to thank the authors of Driga et al. [9,
10] and Chowdhury et al. [4, 6] for providing us with the source code of their
algorithms.
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Abstract. The maximal matching problem, i.e., the computation of a
matching that is not a proper subset of another matching, is a fundamen-
tal optimization problem and algorithms for maximal matchings have
been used as submodules for problems like maximal node-disjoint paths
or maximum flow. Since in some applications graphs become larger and
larger, a research branch has emerged which is concerned with the design
and analysis of implicit algorithms for classical graph problems. Input
graphs are given as characteristic Boolean functions of their edge sets and
problems have to be solved by functional operations. As OBDDs, which
are closely related to deterministic finite automata, are a well-known
data structure for Boolean functions, OBDD-based algorithms are used
as a heuristic approach to handle very large graphs. Here, an implicit
OBDD-based maximal matching algorithm is presented that uses only
a polylogarithmic number of functional operations with respect to the
number of vertices of the input graph.

1 Introduction

Since some modern applications require huge graphs, explicit representations by
adjacency matrices or adjacency lists may cause conflicts with memory limita-
tions and even polynomial time algorithms are sometimes not fast enough. As
time and space resources do not suffice to consider individual vertices and edges,
one way out seems to be to deal with sets of vertices and edges represented
by their characteristic functions. Ordered binary decision diagrams, denoted
OBDDs, are well suited for the representation and manipulation of Boolean func-
tions [5]. They are closely related to deterministic finite automata for Boolean
languages L, where L ⊆ {0, 1}n (see, e.g., Section 3.2 in [15]). OBDDs are
able to take advantage over the presence of regular substructures which leads
sometimes to sublinear graph representations. Therefore, a research branch has
emerged which is concerned with the design and analysis of so-called implicit or
symbolic algorithms for classical graph problems on OBDD-represented graph
instances (see, e.g., [1–3], [6, 7], [9], [12, 13], and [16]). Implicit algorithms have
to solve problems on a given graph instance by efficient functional operations
offered by the OBDD data structure.
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The maximal matching problem, i.e., the computation of a matching that is
not a proper subset of another matching, is a fundamental optimization problem
and algorithms for maximal matchings have been used in some maximal node-
disjoint paths or maximum flow algorithms (see, e.g., [8]). The design of efficient
implicit algorithms requires new paradigms and techniques but it has turned out
that some methods known from the design of parallel algorithms are useful, e.g.,
the technique of iterative squaring is similar to the path-doubling strategy. Using
an efficient degree reduction procedure, the first optimal parallel algorithm for
maximal matchings has been presented by Kelsen [11]. It runs in time O(log3 |V |)
using O((|E| + |V |)/ log3 |V |) processors on bipartite graphs G = (V,E) and is
optimal in the sense that the time processor product is equal to that of the best
sequential algorithm. The main result of our paper is the following one.

Theorem 1. A maximal bipartite matching in an implicitly defined graph G =
(V,E) can be implicitly computed by O(log4 |V |) functional operations on Boolean
functions over a logarithmic number of Boolean variables. For general graphs
O(log5 |V |) functional operations are sufficient.

For this result we make use of the algorithm presented in [11] but for the im-
plicit setting also new ideas are necessary. Note, that our aim is not to achieve
new algorithmic techniques for explicit graph representations but to demonstrate
the similarity of paradigms in the design of parallel and implicit algorithms that
can also be used as building blocks for the solution of other combinatorial prob-
lems on one hand and on the other hand to develop efficient algorithms for large
structured graphs. The similarity between implicit and parallel algorithms has
also been demonstrated by the following result. A problem can be solved in the
implicit setting with a polylogarithmic number of functional operations on a log-
arithmic number of Boolean variables (with respect to the number of vertices of
the input graph) iff the problem is in NC, the complexity class that contains all
problems computable in polylogarithmic time with polynomially many proces-
sors [13, 14]. Nevertheless, this structural result does not lead directly to efficient
implicit algorithms.

In order to reduce the number of functional operations, iterative squaring
is used in our algorithm. One may argue against the use of iterative squaring
because despite the improvement in the number of functional operations inter-
mediate results of exponential size (with respect to the input length) can be gen-
erated. Nevertheless, Sawitzki has demonstrated that iterative squaring can also
be useful in applications [12]. The maximum flow problem in 0-1 networks has
been one of the first classical graph problems for which an implicit OBDD-based
algorithm has been presented and Hachtel and Somenzi were able to compute a
maximum flow for a graph with more than 1027 vertices and 1036 edges in less
than one CPU minute [9]. To improve this algorithm Sawitzki has used iterative
squaring for the computation of augmenting paths by O(log2 |V |) functional op-
erations. If the maximum flow value is constant with respect to the network size,
the algorithm performs altogether a polylogarithmic number of operations. Both
max flow algorithms belong to the class of so-called layered-network methods but
Sawitzki’s algorithm prevents breadth-first searches by using iterative squaring
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and as a result overcomes the dependence on the depths of the layered networks.
In order to confirm the practical relevance of his algorithm he has implemented
both maximum flow algorithms and has shown that his algorithm outperforms
the algorithm of Hachtel and Somenzi for very structured graphs.

The rest of the paper is organized as follows. In Section 2 we define some
notation and review some basics concerning OBDDs and functional operations,
implicit graph algorithms and matchings. Section 3 contains the main result, an
implicit algorithm for the maximal matching problem that uses only a polylog-
arithmic number of functional operations with respect to the number of vertices
of the input graph. Finally, we finish the paper with some concluding remarks.

In order to investigate the algorithm’s behavior on large and structured net-
works, it has been analyzed on grid graphs and it has been shown that the overall
running time and the space requirement is also polylogarithmic (for these results
see the full version of the paper [4]).

2 Preliminaries

We briefly recall the main notions we are dealing with in the paper.

2.1 OBDDs and Functional Operations

OBDDs are a very popular dynamic data structure in areas working with Boolean
functions, like circuit verification or model checking. (For a history of results on
binary decision diagrams see, e.g., [15]).

Definition 2. Let Xn = {x1, . . . , xn} be a set of Boolean variables. A variable
ordering π on Xn is a permutation on {1, . . . , n} leading to the ordered list
xπ(1), . . . , xπ(n) of the variables. A π-OBDD on Xn is a directed acyclic graph
G = (V,E) whose sinks are labeled by the Boolean constants 0 and 1 and whose
non-sink (or decision) nodes are labeled by Boolean variables from Xn. Each
decision node has two outgoing edges, one labeled by 0 and the other by 1. The
edges between decision nodes have to respect the variable ordering π, i.e., if an
edge leads from an xi-node to an xj-node, then π−1(i) < π−1(j) (xi precedes xj
in xπ(1), . . . , xπ(n)). Each node v represents a Boolean function fv ∈ Bn, i.e.,
fv : {0, 1}n → {0, 1}, defined in the following way. In order to evaluate fv(b),
b ∈ {0, 1}n, start at v. After reaching an xi-node choose the outgoing edge with
label bi until a sink is reached. The label of this sink defines fv(b). The size of
a π-OBDD G, denoted by |G|, is equal to the number of its nodes. A π-OBDD
of minimal size for a given function f and a fixed variable ordering π is unique
up to isomorphism. The π-OBDD size of a function f , denoted by π-OBDD(f),
is the size of the minimal π-OBDD representing f . The OBDD size of f is the
minimum of all π-OBDD(f).

Sometimes it is useful to have the notion of OBDDs where there are only
edges between nodes labeled by neighboring variables, i.e., if an edge leads from
an xi-node to an xj -node, then π−1(i) = π−1(j)− 1.



146 B. Bollig and T. Pröger

Definition 3. An OBDD on Xn is complete if all paths from the source to
one of the sinks have length n. The width of a complete OBDD is the maximal
number of nodes labeled by the same variable.

A variable ordering is called a natural variable ordering if π is the identity
1, 2, . . . , n. Complete OBDDs with respect to natural variable orderings differ
from deterministic finite automata only in the minor aspect that tests may not
be omitted even if the corresponding subfunction is the constant 0.

Now, we briefly describe a list of important operations on OBDDs (for a
detailed discussion and the corresponding time and space requirements see, e.g.,
Section 3.3 in [15] and the full version of the paper [4]). Let f and g be Boolean
functions in Bn on the variable set Xn = {x1, . . . , xn} and Gf and Gg be π-
OBDDs for the representations of f and g, respectively.

– Negation: Given Gf , compute a π-OBDD for the function f ∈ Bn.
– Replacement by constant: Given Gf , an index i ∈ {1, . . . , n}, and a Boolean

constant ci ∈ {0, 1}, compute a π-OBDD for the subfunction f|xi=ci .
– Equality test: Given Gf and Gg, decide, whether f and g are equal.
– Satisfiability: Given Gf , decide, whether f is not the constant function 0.
– Synthesis: Given Gf and Gg and a binary Boolean operation ⊗ ∈ B2, com-

pute a π-OBDD Gh for the function h ∈ Bn defined as h := f ⊗ g.
– Quantification: Given Gf , an index i ∈ {1, . . . , n}, and a quantifier Q ∈
{∃, ∀}, compute a π-OBDD Gh for the function h ∈ Bn defined as h :=
(Qxi)f , where (∃xi)f := f|xi=0 ∨ f|xi=1 and (∀xi)f := f|xi=0 ∧ f|xi=1. In the
rest of the paper quantifications over k Boolean variables (Qx1, . . . , xk)f are
denoted by (Qx)f , where x = (x1, . . . , xk).

Sometimes it is useful to reverse the edges of a given graph. Therefore, we define
the following operation (see, e.g., [13]).

Definition 4. Let ρ be a permutation on {1, . . . , k} and f ∈ Bkn be defined
on Boolean variable vectors x(1), . . . , x(k) of length n. The argument reordering
Rρ(f) ∈ Bkn with respect to ρ is Rρ(f)(x

(1), . . . , x(k)) = f(x(ρ(1)), . . . , x(ρ(k))).

2.2 OBDD-Based Graph Algorithms and Matching Problems

Let G = (V,E) be a graph with N vertices v0, . . . vN−1 and |z|2 :=
∑n−1
i=0 zi2

i,
where z = (zn−1, . . . , z0) ∈ {0, 1}n and n = *logN+. Now, E can be represented
by an OBDD for its characteristic function, where x, y ∈ {0, 1}n and

χE(x, y) = 1 ⇔ (|x|2, |y|2 < N) ∧ (v|x|2 , v|y|2) ∈ E.

(For the ease of notation we omit the index 2 in the rest of the paper and we as-
sume that N is a power of 2 since it has no bearing on the essence of our results.)
Undirected edges are represented by symmetric directed ones. Furthermore, we
do not distinguish between vertices of the input graph and their Boolean encod-
ing since the meaning is clear from the context.
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For implicit computations some Boolean functions are helpful. The equality
function EQ computes 1 for two inputs x and y iff |x| = |y|. NEQ is the negated
equality function. Since sometimes a vertex (or an edge) has to be chosen out of
a given set of vertices (or edges), several priority functions Π≺ have been defined
in the implicit setting (see, e.g., [9, 12]). We define Π≺(x, y, z) = 1 iff y ≺x z,
where ≺x is a total order on the vertex set V and x, y, z are vertices in V . In the
following we only use a very simple priority function independent of the choice
of x, where Π≺(x, y, z) = 1 iff |y| < |z|. It is easy to see that EQ, NEQ, and Π≺
can be represented by OBDDs of linear size with respect to variable orderings,
where the variables with the same significance are tested one after another.

A graph G = (V,E) is bipartite, if V can be partitioned into two disjoint
nonempty sets U and W , such that for all edges (u,w) ∈ E it holds u ∈ U
and w ∈ W or vice versa. The distance between two edges on a (directed) path
is the number of edges between them. The distance between two vertices on a
(directed) path is the number of vertices between them plus 1. The degree of
a vertex v in G is the number of edges in E incident to v. A matching in an
undirected graph G = (V,E) is a subset M ⊆ E such that no two edges of M are
adjacent. M is a maximum matching if there exists no matching M ′ ⊆ E such
that |M ′| > |M |, where |S| denotes the cardinality of a set S. A matching M is
maximal if M is not a proper subset of another matching. Given a matching M
a vertex v is matched if (v, w) ∈ M for some w ∈ V and free otherwise.

In the implicit setting the maximum (maximal) matching problem is the fol-
lowing one. Given an OBDD for the characteristic function of the edge set of an
undirected input graph G, the output is an OBDD that represents the charac-
teristic function of a maximum (maximal) matching in G.

3 The Maximal Matching Algorithm

In this section we prove Theorem 1 and present an implicit algorithm for the
maximal bipartite matching problem. The algorithm can easily be extended
for general graphs. The idea is to start with Kelsen’s parallel algorithm for
the computation of maximal matchings on explicitly defined graphs [11]. In the
parallel setting more or less only a high-level description of the algorithm is
given. Moreover, we have to add more ideas because we cannot access efficiently
single vertices or edges in the implicit setting.

The algorithm findMaximalBipartiteMatching is simple. Step-by-step a
current matching is enlarged by computing a matching in the subgraph of
G = (V,E) that consists only of the edges that are not incident to the cur-
rent matching. The key idea is an algorithm match that computes a matching
M ′, M ′ ⊆ E, adjacent to at least a fraction of 1/6 of the edges in the input
graph for match. After removing these edges from the input graph the proce-
dure is repeated. Therefore, after O(log |V |) iterations the remaining subgraph
is empty and the current matching is obviously a maximal matching in G.

The algorithm match makes use of another algorithm halve that halves ap-
proximately the degree of each vertex in a bipartite graph. The idea is to compute
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Algorithm 1. findMaximalBipartiteMatching

Input: χE(x, y)

(1) � Initialize. Start with the empty matching.

M(x, y) ← 0
(2) while χE(x, y) �= 0 do
(3) � Compute a matching M ′.

M ′(x, y) ← match(χE(x, y))
(4) � Delete the edges incident to a matched vertex in M ′.

INCNODE(x) ← (∃y)(M ′(x, y))
χE(x, y) ← χE(x, y) ∧ INCNODE(x) ∧ INCNODE(y)

(5) � Add the edges from M ′ to M.

M(x, y) ← M(x, y) ∨ M ′(x, y)
(6) return M(x, y)

an Euler partition of the input graph such that the graph is decomposed into
edge-disjoint paths. Each vertex of odd (even) degree is the endpoint of exactly
1 (0) open path. By two-coloring the edges on each path in the Euler parti-
tion and deleting all edges of one color, the degree of each vertex in the input
graph is approximately halved. Here, we use the fact that bipartite graphs have
no cycles of odd length. Therefore, for each path, where a vertex v is not an
endpoint, and for each cycle, the number of edges incident to v colored by one
of the two colors is equal to the number of edges colored by the other one. In
fact in the algorithm halve we only use the color red and delete all red edges
after the coloring. A precondition of the parallel algorithm halve is that for
each vertex its incident edges have been paired [11]. Here, we present a new
algorithm called calculatePairing which computes implicitly a pairing of the
edges with O(log2 |V |) functional operations. This algorithm together with the
degree reduction procedure in halve can possibly be used as building blocks for
the solution of other combinatorial problems in the implicit setting. We assume
that there is for each vertex an ordering on its incident edges given by a priority
function (see Section 2). In the first step of the algorithm calculatePairing

for each vertex the neighborhood of its incident edges is determined. Almost
all edges have two neighbors with respect to one of its endpoints (all but the
first and the last one). In order to compute a symmetric pairing every other
edge incident to the same vertex is colored red. This is realized by an indicator
function called RED. Afterwards, two neighboring edges (x, y), (x, z) are paired
iff (x, y) is red, i.e., RED(x, y) = 1, and (x, y) has a higher priority than (x, z),
i.e., Π≺(x, y, z) = 1. Therefore, each edge has at most one chosen neighbor with
respect to one of its endpoints and at most one of the edges incident to the
same vertex is not paired. The output of calculatePairing is a function which
depends on three vertex arguments x, y, and z and whose function value is 1 iff
y and z are two vertices adjacent to x which have been paired. Therefore, the
function is symmetric in the second and third argument. For the computation
of the pairing we determine for each edge its position with respect to all edges
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incident to the same vertex according to a priority function. This procedure
is similar to the well-known list ranking algorithm: given a linked list for each
member of the list the number of its position in the list has to be calculated (for
a nice introduction into design and analysis of parallel algorithms see, e.g., [10]).
In our case we are only interested in whether the number of the position of an
edge according to a priority function is odd or even.

Algorithm 2. calculatePairing

Input: χE(x, y)

(1) � Determine the neighborhood of the edges.

ORDER(x, y, z) ← χE(x, y) ∧ χE(x, z) ∧ Π≺(x, y, z) ∧
(∃ξ)(χE(x, ξ) ∧ Π≺(x, y, ξ) ∧ Π≺(x, ξ, z))

(2) � Compute the distance between edges incident to the same vertex

using iterative squaring.

DIST0(x, y, z) ← ORDER(x, y, z)
for i = 1, 2, ..., log |V | do

DISTi(x, y, z) ← (∃ξ)(DISTi−1(x, y, ξ) ∧ DISTi−1(x, ξ, z))
(3) � Color for each vertex its incident edges alternately.

RED(x, y) ← χE(x, y) ∧ (∃ξ)(χE(x, ξ) ∧ Π≺(x, ξ, y))
for i = 1, 2, ..., log |V | do

RED(x, y) ← RED(x, y) ∨ (∃ξ)(RED(x, ξ) ∧ DISTi(x, ξ, y))
(4) � Select only edge pairs ((x, y), (x, z)), where the first edge is red.

return (ORDER(x, y, z) ∧ RED(x, y)) ∨ (ORDER(x, z, y) ∧ RED(x, z))

Lemma 5. The algorithm calculatePairing computes for all vertices a pair-
ing of its incident edges respectively with O(log2 |V |) functional operations.

Proof. The correctness of calculatePairing follows from the following observa-
tions: the function ORDER(x, y, z) computes the output 1 iff y and z are adjacent
to the vertex x, the edge (x, y) is smaller than the edge (x, z) according to the
chosen priority function, and there is no edge between (x, y) and (x, z) (with
respect to the priority function). In step 2 the function DISTi(x, y, z) computes
1 iff the distance, i.e., the number of edges between the edge (x, y) and (x, z)
with respect to the priority function, is 2i − 1. Afterwards for each vertex the
first of its incident edges according to the priority function is colored red and
then all edges which have an odd distance to the first one are also colored red.
Now, the output of calculatePairing is a function on three vertex arguments
x, y and z, where the value is 1 iff the edges (x, y) and (x, z) are neighbored and
the first one with respect to the priority function is red.

The most time consuming steps during calculatePairing are (2) and (3),
where the position of the edges and the coloring of the incident edges are calcu-
lated. Traversing the incident edges of a vertex needs O(log |V |) iterations each
using O(log |V |) operations for the quantification over O(log |V |) variables. ��
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Algorithm 3. halve

Input: χE(x, y)

(1) � Compute the successor relation.

PAIRING(x, y, z) ← calculatePairing(χE (x, y))
SUCC(x, y, z) ← PAIRING(y, x, z)

(2) � Compute distance and reachability relations on the directed edges

defined by the successor relation.

i ← 0
DIST0(v,w, x, y) ← EQ(w, x) ∧ SUCC(v, w, y)
REACHABLE(v, w, x, y) ← (EQ(v, x) ∧ EQ(w, y)) ∨ (EQ(w,x) ∧ SUCC(v, w, y))
repeat

i ← i+ 1
REACHABLE′(v,w, x, y) ← REACHABLE(v, w, x, y)
REACHABLE(v, w, x, y) ← REACHABLE(v, w, x, y) ∨

(∃ξ, θ)(REACHABLE(v, w, ξ, θ) ∧ REACHABLE(ξ, θ, x, y))
DISTi(v, w, x, y) ← (∃ξ, θ)(DISTi−1(v, w, ξ, θ) ∧ DISTi−1(ξ, θ, x, y))

until REACHABLE′(v, w, x, y) = REACHABLE(v, w, x, y)
(3) � On each path, color an appropriate edge red.

RED(x, y) ← χE(x, y) ∧ (∀ξ, θ)(REACHABLE(ξ, θ, x, y) ∨ EQ(ξ, x) ∨ Π≺(x, x, ξ))∧
(∀θ, ξ)(REACHABLE(θ, ξ, y, x) ∨ EQ(θ, x) ∨ Π≺(x, x, θ))∧
(∀ξ)((REACHABLE(x, y, ξ, x) ∧ REACHABLE(ξ, x, x, y)) ∨ Π≺(x, y, ξ))

RED(x, y) ← RED(x, y) ∨ RED(y, x)
(4) � Color the edges alternately.

for j = 1, 2, ..., i do
RED(x, y) ← RED(x, y) ∨ (∃ξ, θ)(RED(ξ, θ) ∧ DISTj(ξ, θ, x, y))

(5) � Delete the red edges.

return χE(x, y) ∧ RED(x, y) ∧ RED(y, x)

The pairing computed by calculatePairing is symmetric and it is used by
the algorithm halve to define (directed) paths in the (undirected) input graph.
An edge (y, z) is a successor edge of an edge (x, y) and SUCC(x, y, z) = 1 iff the
edges (y, z) and (y, x) are paired according to calculatePairing. Using this
successor relation SUCC the undirected input graph is decomposed into directed
edge-disjoint paths. Since the pairing is symmetric, (y, x) is also a successor of
(z, y). Therefore, for each directed path from a vertex u′ to a vertex u′′ defined
by the successor relation SUCC, there exists also a directed path from u′′ to u′.
This property is important in order to guarantee that a coloring of the directed
edges can be used for an appropriate coloring of the undirected edges in the
input graph. For each directed path in the decomposition every other edge is
colored red and a directed edge (u, v) is red iff the directed edge (v, u) is red.
Therefore, for each pair of (undirected) edges computed by calculatePairing

exactly one edge is red and by deleting the red edges the degree of each vertex
is approximately halved. A crucial step, which is new in the implicit setting, is
the choice of the first edges that are colored red on a directed path, because
all directed paths are investigated simultaneously, i.e., for each directed path
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from a vertex s to a vertex t the directed path from t to s is considered at
the same time. We have to avoid the situation that two edges (x, y) and (x, z),
where (x, y) is a directed edge on a directed path from a vertex s to a vertex t
and (x, z) a directed edge on the reversed path from t to s, are colored red at
the same time, because otherwise all edges from s to t and from t to s would
be red after the coloring procedure. Therefore, we ensure that in the beginning
either directed edges on the path from s to t or on the corresponding path
from t to s are colored. For this reason the edge relation Reachable is used,
where REACHABLE(v, w, x, y) is 1 iff there exists a directed path from the edge
(v, w) to the edge (x, y) defined by the successor relation SUCC. Due to the
symmetry of SUCC the relation REACHABLE is also symmetric in the following
way: iff REACHABLE(v, w, x, y) = 1 then REACHABLE(y, x, w, v) = 1. Therefore,
using REACHABLE it is also possible to determine the predecessors of a directed
edge. Now, the first red edges on a directed path are the edges with the highest
priority: for each directed path the smallest vertex v on the path according
to a priority function together with a successor u is chosen if there exists no
predecessor of v which has a higher priority than u according to the chosen
priority function. This procedure ensures that either for a directed path starting
from a vertex s and ending in a vertex t an edge (v, u) is chosen or for the
reversed directed path from t to s. Afterwards an edge (u, v) is colored red iff
the edge (v, u) is red. Next, each edge on a directed path for which the distance
to one of the first red edges on the path is odd is also colored red and all red
edges are deleted from the input graph. Note, that it is possible for a directed
path that more than one edge is chosen in the beginning but these edges have the
same starting point, therefore the distance between these edges is even because
the input graph is bipartite such that no problem occurs.

Lemma 6. Let d(v) and d′(v) denote the degree of a vertex v in the graph
given by χE(x, y) before and after running procedure halve on χE(x, y). Then
d′(v) ∈ {%d(v)/2&, *d(v)/2+}. The algorithm halve uses O(log2 |V |) functional
operations.

Proof. For the number of functional operations step (2) and step (4) are the most
expensive ones. The graph is traversed via iterative squaring in the second step.
Since the length of a path is O(|E|), the number of iterations is O(log |E|) =
O(log |V |), and the quantification over the Boolean variables that encode an
edge can also be done using O(log |V |) operations (O(1) functional operations
for the quantification of each variable). The number of functional operations in
step (4) can be calculated in a similar way.

For the correctness of the algorithm halve step (3) is the most interesting one.
The directed paths according to the successor relation SUCC are edge-disjoint but
not vertex disjoint. In step (3) for each directed path according to the successor
relation at least one edge is carefully chosen and colored red. The first condition
ensures that only edges that belong to the input graph can be chosen. The second
and third requirements guarantee that a first red edge is incident to the vertex
x with the highest priority on the path. The fourth condition ensures that two
arbitrary edges incident to x that are on the same directed path and have an
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even distance are not both colored red. This condition is sufficient, we do not
have to choose only the neighbor of x which has the highest priority because we
color the edges afterwards alternately and edges whose distance is odd get the
same color anyway. Together with our considerations above we are done. ��

The idea for the correctness of match is that a (directed) subgraph P (x, y) of
the input χE(x, y) is computed for which each vertex has indegree and outdegree
at most 1. It consists only of vertex-disjoint open simple paths and trivial cycles.
Therefore, the subgraph can be seen as the union of two matchings. By choosing
the matching which is the larger one we are done. For this reason we color each
path in P (x, y) alternately and we remove the edges that are not red. Since the
paths are vertex-disjoint the coloring is easier than the coloring of the edges in
the algorithm halve. In fact we color the vertices and not the edges. We choose
for each directed simple path the first vertex and color afterwards all vertices
for which the distance to the first one is even. Then we choose the (directed)
edges (x, y) iff the vertex x is red. Finally, we traverse the computed directed
subgraph into the corresponding undirected one.

The directed subgraph P is computed in the following way. In each iteration
the vertices with degree 1 are determined. For each vertex x adjacent to vertices
with degree 1 in the remaining graph one of these vertices y is chosen according
to a priority function and (x, y) is added to P . Afterwards all edges incident to
vertices with degree 1 are deleted and the degree of all vertices is (approximately)
halved. Note, that during the computation an edge (x, y) in P can be eliminated
later on if x gets another partner that has a higher priority than y. At any time
each vertex x has at most one partner.

It can be shown that at the beginning of step (8) in match at least 1/3 of
the input edges are incident to edges defined via P (x, y). The intuition is the
following one. An edge (u, v) is not incident to the computed matching iff the
edge (u, v) is deleted during the algorithm halve and the last edges (u, u′) and
(v, v′) incident to u and v during the while loop are eliminated in step (5)
of match because u′ and v′ are at the same time adjacent to vertices x and y
which have degree 1 and are chosen as partners in the respective iteration of the
while loop. As a consequence we can conclude that the degree of u′ and v′ is
(approximately) at least twice the degree of u and v in the input graph because
Lemma 6 ensures that the degree of each node is (almost) regularly halved in each
iteration. Therefore the output of the algorithm match is a matching incident to
at least 1/6 of the input edges.

Lemma 7. The algorithm match implicitly computes a matching in an implicitly
defined input graph G = (V,E) incident to at least 1/6 of the edges in E. It needs
O(log3 |V |) functional operations.

Proof. There are O(log |V |) iterations of the while loop, each of them costs
O(log2 |V |) functional operations. The algorithm halve is the dominating step
during the while loop of match. Therefore, O(log3 |V |) functional operations
are sufficient. The correctness follows from our considerations above.
(See also [11].) ��
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Algorithm 4. match

Input: χE(x, y)

(1) � Initialize.

χE′(x, y) ← χE(x, y); P (x, y) ← 0
(2) while χE′(x, y) �= 0 do
(3) � Determine the vertices of degree at least 2.

TwoOrMoreNeighbors(x) ← (∃y, z)(NEQ(y, z) ∧ χE′(x, y) ∧ χE′(x, z))
(4) � Set P (x, y) = 1 iff y has degree 1 and is the partner of x.

Q(x, y) ← χE′(x, y) ∧ TwoOrMoreNeighbors(y)
Q′(x, y) ← Q(x, y) ∧ (∃z)(Q(x, z) ∧ Π≺(x, z, y))
P (x, y) ← (P (x, y) ∧ (∃z)(Q′(x, z))) ∨ Q′(x, y)

(5) � Delete edges incident to vertices of degree 1.

χE′(x, y) ← χE′(x, y) ∧ TwoOrMoreNeighbors(x) ∧ TwoOrMoreNeighbors(y)
(6) � Halve (approximately) the degree of each vertex.

χE′(x, y) ← halve(χE′ (x, y))
(7) � Add trivial cycles to the computed matching.

M1(x, y) ← P (x, y) ∧ P (y, x)
(8) � Color the vertices in the graph given by P (x, y) alternately and

choose an edge (x, y) iff x is red.

RED(x) ← (∀ξ)(P (ξ, x)); DIST0(x, y) ← P (x, y)
for i = 1, 2, ..., log |V | do

DISTi(x, y) ← (∃ξ)(DISTi−1(x, ξ) ∧ DISTi−1(ξ, y))
RED(x) ← RED(x) ∨ (∃ξ)(RED(ξ) ∧ DISTi(ξ, x))

M2(x, y) ← P (x, y) ∧ RED(x)
(9) return M1(x, y) ∨ M2(x, y) ∨ M2(y, x)

Summarizing, we have shown that findMaximalBipartiteMatching uses
O(log4 |V |) functional operations for the computation of a maximal matching
in an implicitly defined input graph G = (V,E). Adapting the ideas for the de-
composition of general graphs into a logarithmic number of bipartite subgraphs
[11], our algorithm can be similarly generalized with an additional factor of a
logarithmic number of functional operations.

4 Concluding Remarks

Our maximal matching algorithm seems to be simple enough to be useful in prac-
tical applications. We have shown that maximal matchings can be computed with
a polylogarithmic number of functional operations in the implicit setting. More-
over, in [4] we have proved that there exists a graph class for which even the overall
running time of our maximal matching algorithm isO(log3 |V | log log |V |) and the
space usage is O(log2 |V |), where V is the set of vertices of the input graph. One
direction for future work is to implement the algorithm and to perform empirical
experiments to determine its practical value. It would be interesting to investigate
how the performance of the maximal matching algorithm depends on the chosen
priority function. Here, we have used a very simple one. The maximal number
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of Boolean variables on which a function in the maximal matching algorithm de-
pends dominates the overall worst-case bounds for the running time and the space
usage. Therefore, another open question is whether we can reduce this number
without increasing significantly the number of functional operations. Experimen-
tal evaluation of different maximal matching algorithms might be revealing.

The authors would like to thank the anonymous referees for carefully reading
the manuscript and making helpful suggestions.

References

1. Bollig, B.: Exponential space complexity for OBDD-based reachability analysis.
Information Processing Letters 110, 924–927 (2010)

2. Bollig, B.: Exponential Space Complexity for Symbolic Maximum Flow Algorithms
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4. Bollig, B., Pröger, T.: An efficient implicit OBDD-based algorithm for maximal
matchings (2011),
http://ls2-www.cs.tu-dortmund.de/~bollig/maxMatching.pdf

5. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE
Trans. Computers 35(8), 677–691 (1986)

6. Gentilini, R., Piazza, C., Policriti, A.: Computing strongly connected components
in a linear number of symbolic steps. In: Proc. of SODA, pp. 573–582 (2003)

7. Gentilini, R., Piazza, C., Policriti, A.: Symbolic graphs: linear solutions to connec-
tivity related problems. Algorithmica 50(1), 120–158 (2008)

8. Goldberg, A.V., Plotkin, S.K., Vaidya, P.M.: Sublinear time parallel algorithms for
matching and related problems. Journal of Algorithms 14(2), 180–213 (1993)

9. Hachtel, G.D., Somenzi, F.: A symbolic algorithm for maximum flow in 0 − 1
networks. Formal Methods in System Design 10, 207–219 (1997)
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Abstract. We address termination analysis for the class of gap-order
constraint systems (GCS), an (infinitely-branching) abstract model of
counter machines recently introduced in [8], in which constraints (over
Z) between the variables of the source state and the target state of a
transition are gap-order constraints (GC) [18]. GCS extend monotonicity
constraint systems [4], integral relation automata [9], and constraint au-
tomata in [12]. Since GCS are infinitely-branching, termination does not
imply strong termination, i.e. the existence of an upper bound on the
lengths of the runs from a given state. We show the following: (1) check-
ing strong termination for GCS is decidable and Pspace-complete, and
(2) for each control location of the given GCS, one can build a GC repre-
sentation of the set of variable valuations from which strong termination
does not hold.

1 Introduction

Abstractions of Counter Systems. One standard approach in formal anal-
ysis is the abstraction based one: the analysis is performed on an abstraction
of the given system, specified in some weak (non-complete) computational for-
malism for which checking the properties of interest is decidable. The relation
between the abstraction and the concrete system is usually specified as a se-
mantic over-approximation. This ensures that the approach is conservative, by
giving a decision procedure that (for correct systems) is sound but in general
incomplete. With regard to the class of counter systems, a widely investigated
complete computational model, interesting abstractions have been studied, for
which meaningful classes of verification problems have been shown to be decid-
able. Many of these abstractions are in fact restrictions: examples include Petri
nets [16], reversal-bounded counter machines [14], and flat counter systems [10].
Genuine abstractions are obtained by approximating counting operations by non-
functional fragments of Presburger constraints between the variables of the cur-
rent state and the variables of the next state. As a consequence of this abstrac-
tion, the set of successors of a state is potentially infinite. Examples include
the class of Monotonicity Constraint Systems (MCS) [4] and its variants, like
constraint automata in [12], and integral relation automata (IRA) [9], for which
the (monotonicity) constraints (MC) are boolean combinations of inequalities
of the form u < v or u ≤ v, where u and v range over variables or integer
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constants. MCS and their subclasses (namely, size-change systems) have found
important applications for automated termination proofs of functional programs
(see e.g. [4]). Richer classes of non-functional fragments of Presburger constraints
have been investigated, e.g. difference bound constraints [11], and their exten-
sion, namely octagon relations [6], where it is shown that the transitive closure
of a single constraint is Presburger definable.

Recently, an (infinitely-branching) abstract model of counter systems, namely
gap-order constraint systems (GCS), has been introduced [8], where the con-
straints (over Z) between the variables of the source state and the target state of
a transition are (transitional) gap-order constraints (GC) [18]. These constraints
are positive boolean combinations of inequalities of the form u − v ≥ k, where
u, v range over variables and integer constants and k is a natural number. Thus,
GC can express simple relations on variables such as lower and upper bounds on
the values of individual variables; and equality, and gaps (minimal differences)
between values of pairs of variables. GC have been introduced in the field of con-
straint query languages (constraint Datalog) for deductive databases [18], and
also have found applications in the analysis of safety properties for parameter-
ized systems [1,2] and for determining state invariants in counter systems [13].
As pointed out in [2], using GC for expressing the enabling conditions of tran-
sitions allows to handle a large class of protocols, where the behavior depends
on the relative ordering of values among variables, rather than the actual values
of these variables. GCS strictly extend MCS. This because GC extend MC and,
differently from MC, are closed under existential quantification (but not under
negation). Hence, GC are closed under composition (which captures the reach-
ability relation for a fixed path in the control graph). Note that if we extend
the constraint language of GCS by allowing either negation, or constraints of the
form u−v ≥ −k, with k ∈ N, then the resulting class of systems can trivially em-
ulate Minsky counter machines, leading to undecidable basic decision problems.

Our contribution. We address termination analysis of GCS. Since GCS are
infinitely-branching, termination (i.e., the non-existence of states from which
there is an infinite run) does not imply the existence of an upper bound on the
lengths of the runs from a given state. The fulfillment of this last condition, we
call strong termination, can be a necessary requirement in some contexts, such
as running-time analysis [3] for infinitely-branching formalisms. Checking usual
termination for GCS is known to be decidable and Pspace-complete [8]. In this
paper, by a non-trivial extension of the approach used in [8], we establish the
following results:

– (1) For each control location of the given GCS, it is possible to compute a GC
representation of the set of variable valuations from which strong termination
does not hold, and (2) checking strong termination and strong termination
for a designated state in GCS are decidable and Pspace-complete.

Our approach is as follows. First, we consider a subclass of GCS, called simple
GCS: we establish our first result for simple GCS, and provide a polynomial-
time checkable condition for verifying strong termination in simple GCS, which
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is independent on the size of the lower bounds k in GC. Second, for a given
unrestricted GCS S, we show that it is possible to construct a finite family F of
simple GCS such that the union of the sets of strongly-terminating states of the
single components in F correspond to the set of strongly-terminating states of
S. Then, we show that it is possible to compute separately and in exponential
time suitable abstractions of the simple GCS in F (we are not able to give
an upper bound on the size of F), which preserve the fulfillment of the above
polynomial-time checkable condition for simple GCS. This leads to exponential-
time procedures for solving strong termination and strong termination for a
designated state in GCS. Finally, we show that in fact, the considered problems
are Pspace-complete.

A potential application of our results is to use them as basic tool in running-
time analysis (based on GCS abstraction) of infinitely-branching computational
systems. Note that concurrent open systems are usually infinitely-branching be-
cause of the ongoing interaction with an unpredictable environment, and GCS
can be used to abstractly model such an interaction.

Related work. Strong termination has been addressed in [5]. There, it is shown
that for the subclass of MCS where integer constants are disallowed except for 0,
checking strong termination is Pspace-complete. Note that our results extend
the above result in two directions: (1) we consider a strict extension of MCS,
namely GCS, and (ii) our symbolic algorithm builds a GC representation of the
set of non-strongly-terminating states, a very substantial information compared
to the algorithm in [5] (see also [4]). For example, by using such a decidable finite
representation one can check whether two GCS have the same set of strongly-
terminating states. Due to space reasons, many proofs are omitted and can be
found in [7].

2 Preliminaries

Let Z (resp., N) be the set of integers (resp., natural numbers). We fix a finite
set V ar = {x1, . . . , xr} of variables, a finite set of constants Const ⊆ Z such
that 0 ∈ Const, and a fresh copy of V ar, V ar′ = {x′

1, . . . , x
′
r}. For an arbitrary

finite set of variables V , an (integer) valuation over V is a mapping of the form
ν : V → Z, assigning to each variable in V an integer value. For V ′ ⊆ V , νV ′

denotes the restriction of ν to V ′. For a valuation ν, by convention, we define
ν(c) = c for all c ∈ Z.

Definition 1. [18] A gap-order constraint (GC) over V and Const is a conjunc-
tion ξ of inequalities of the form u− v ≥ k, where u, v ∈ V ∪ Const and k ∈ N.
W.l.o.g. we assume that for all u, v ∈ V ∪ Const, there is at most one conjunct
in ξ of the form u − v ≥ k for some k. A valuation ν : V → Z satisfies ξ if for
each conjunct u − v ≥ k of ξ, ν(u) − ν(v) ≥ k. We denote by Sat(ξ) the set of
such valuations.

Definition 2. [9,8] A (gap-order) monotonicity graph (MG) over V and Const

is a directed weighted graph G with set of vertices V ∪ Const and edges u
k→v
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labeled by natural numbers k, and s.t.: if u
k→v and u

k′→v are edges of G, then
k = k′. The set Sat(G) of solutions of G is the set of valuations ν over V

s.t. for each u
k→v in G, ν(u) − ν(v) ≥ k. GC and MG are equivalent for-

malisms since there is a trivial linear-time computable bijection assigning to
each GC ξ an MG G(ξ) such that Sat(G(ξ)) = Sat(ξ).

The notation G |= u < v means that there is an edge in G from v to u with
weight k > 0. Moreover, G |= u ≤ v means that there is an edge of G from
v to u, and G |= u = v means G |= u ≤ v and G |= v ≤ u. Also, we write
G |= u1 �1 . . . �n−1 un to mean that G |= ui �i ui+1 for each 1 ≤ i < n,
where �i ∈ {<,≤,=}. A transitional GC (resp., transitional MG) is a GC (resp.,
MG) over V ar ∪ V ar′ and Const. For valuations ν, ν′ : V ar → Z, we denote by
ν⊕ ν′ the valuation over V ar∪V ar′ defined as follows: (ν⊕ ν′)(xi) = ν(xi) and
(ν ⊕ ν′)(x′

i) = ν′(xi) for i = 1, . . . , r.

Definition 3. [8] A gap-order constraint system (GCS) over V ar and Const is
a finite directed labeled graph S such that each edge is labeled by a transitional
GC. We denote by Q(S) the set of vertices in S, called control points, and by
E(S) the set of edges.

The semantics of a GCS S is given by an infinite directed graph [[S]] defined as:

– the vertices of [[S]], called states of S, are the pairs of the form (q, ν), where
q is a control point of S and ν : V ar → Z is a valuation over V ar;

– there is an edge in [[S]] from (q, ν) to (q′, ν′) iff there is a (labeled) edge in

S of the form q
ξ→q′ such that ν ⊕ ν′ ∈ Sat(ξ). We say that the edge of [[S]]

from (q, ν) to (q′, ν′) is an instance of the edge q
ξ→q′ of S.

For a finite path ℘ of a GCS S, s(℘) and t(℘) denote the source and target
control points of ℘. For a finite path ℘ and a path ℘′ such that t(℘) = s(℘′), the
composition of ℘ and ℘′, written ℘℘′, is defined as usual. A path of [[S]] is called
a run of S. The length |℘| (resp., |π|) of a path ℘ (resp., run π) of S is defined
in the standard way. A non-null path of S is a path of S of non-null length. Let

℘ = q0
ξ0→q1

ξ1→q2, . . . be a path of S. A run π of S is an instance of ℘ if π is of the
form π = (q0, ν0)→(q1, ν1)→(q2, ν2), . . . and for each i, (qi, νi)→(qi+1, νi+1) is

an instance of qi
ξi→qi+1. A state s of S is terminating if there is no infinite run

of S starting from s. A state s of S is unbounded if the set of lengths of the finite
runs of S starting from s is unbounded (equivalently, infinite). A state s of S
is strongly terminating if it is not unbounded. Since [[S]] is infinitely-branching,
termination and strong termination are distinct concepts. In particular, strong
termination implies termination, but the vice-versa in general does not hold.

Example 1. Consider the GCS S consisting of two self-loops q
ξ→q and q

ξ′→q,
where: ξ = [(x′

1 < x1) ∧ (x1 ≥ 0) ∧ (x2 ≥ 0)] and ξ′ = [(x′
1 = x1) ∧ (x′

2 <
x2) ∧ (x1 ≥ 0) ∧ (x2 ≥ 0)]. Each state of S is terminating since along any run,
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the pair (x1, x2) decreases strictly w.r.t. the lexicographic order (over N×N). On
the other hand, one can easily check that each state s = (q, ν) with ν(x1) > 0
and ν(x2) ≥ 0 is unbounded.

Since we use MG representations to manipulate GC, we assume that the edge-
labels in GCS are transitional MG. A set U of states of a GCS S is MG repre-
sentable if there is a family {Gq}q∈Q(S) of finite sets of MG over V ar and Const
such that

⋃
G∈Gq

Sat(G) = {ν | (q, ν) ∈ U} for each q ∈ Q(S).

Investigated problems. For a GCS S, we denote by InfS the set of non-
terminating states s of S and by UnbS the set of unbounded states of S. Note
that InfS ⊆ UnbS . Moreover, for q ∈ Q(S), we denote by Inf qS (resp., UnbqS)
the set of states in InfS (resp., UnbS) of the form (q, ν) for some valuation ν.
The termination problem, i.e. checking whether InfS = ∅ for a given GCS S,
is known to be decidable and Pspace-complete [8]. In this paper, we address
strong termination:

– Strong Termination Problem: given a GCS S, is the set UnbS empty?
– Strong Termination Problem w.r.t. a designated state: given a GCS S and a

state s of S, does s /∈ UnbS hold?

2.1 Properties of Monotonicity Graphs

We recall some basic properties of MG [9]. Furthermore, we recall a sound and
complete (w.r.t. satisfiability) approximation scheme of MG [8] such that basic
operations on MG preserve soundness and completeness of this approximation.

A MG G is satisfiable if Sat(G) �= ∅. Let G be a MG over V and Const.
For V ′ ⊆ V , the restriction of G to V ′, written GV ′ , is the MG given by the
subgraph of G whose set of vertices is V ′ ∪Const. For all vertices u, v of G, we
denote by pG(u, v) the least upper bound (possibly ∞) of the weight sums on
all paths in G from u to v (we set pG(u, v) = −∞ if there is no such a path).
The MG G is normalized iff: (1) for all vertices u, v of G, if pG(u, v) > −∞,

then pG(u, v) �= ∞ and u
pG(u,v)→ v is an edge of G, and (2) for all constants

c1, c2 ∈ Const, pG(c1, c2) ≤ c1− c2. Intuitively, a normalized MG is a MG closed
under logical consequence.

Proposition 4. [9] Let G be a MG over V and Const. Then:

1. If G is normalized, then G is satisfiable. Moreover, for all V ′ ⊆ V , every
solution of GV ′ can be extended to a whole solution of G.

2. One can check in polynomial time if G is satisfiable. Moreover, if G is satis-
fiable, then one can build in polynomial time an equivalent normalized MG
G (i.e., Sat(G) = Sat(G)), called the closure of G.

According to Proposition 4, for a satisfiable MG G, we denote by G the closure
of G. Moreover, for all unsatisfiable MG G over V and Const, we use an unique
closure corresponding to some MG Gnil over V and Const such that (Gnil)∅
is unsatisfiable. The following known result [9] essentially asserts that MG (or,
equivalently, GC) are closed under intersection and existential quantification.
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Proposition 5. [9] Let G be a MG on V and Const and G′ be a MG on V ′ and
Const.

1. Intersection: one can build in polynomial time a MG over V ∪V ′ and Const,
written G

⊗
G′, s.t. for ν : V ∪ V ′ → Z, ν ∈ Sat(G

⊗
G′) iff ν|V ∈ Sat(G)

and ν|V ′ ∈ Sat(G′). Hence, for V = V ′, Sat(G
⊗

G′) = Sat(G) ∩ Sat(G′).
2. Composition: assume that G and G′ are transitional MG. Then, one can

build in polynomial time a transitional MG, written G •G′, s.t. for all ν, ν′ :
V ar → Z, ν ⊕ ν′ ∈ Sat(G •G′) iff ν ⊕ ν′′ ∈ Sat(G) and ν′′ ⊕ ν′ ∈ Sat(G′)
for some ν′′ : V ar → Z. Moreover, the composition operator • is associative.

Approximation scheme: let K stand for max({|c1− c2|+1 | c1, c2 ∈ Const}).
Note that K > 0. For each h ∈ N, let %h&K = min({h,K}).

Definition 6 (K-bounded MG). [8] A MG is K-bounded iff for each of its

edges u
k→v, k ≤ K. For a MG G on V and Const, %G&K denotes the K-bounded

MG over V and Const obtained from G by replacing each edge u
k→v of G with

the edge u
�k�K→ v.

Proposition 7. [8] Let G be a MG over V and Const. Then, G is satisfiable iff
%G&K is satisfiable. Moreover, %G&K = % %G&K &K . Furthermore, for transitional
MG G1 and G2, %G1 •G2&K = %%G1&K • %G2&K&K .

2.2 Results on the Reachability Relation in GCS

We recall some constructive results on the reachability relation in GCS [8].

Definition 8. A transitional MG G is said to be complete if:

– for all vertices u and v, G |= u ≤ v ⇒ G |= u� v for some � ∈ {<,=};
– for all u, v ∈ V ar ∪Const, either G |= u ≤ v or G |= v ≤ u;
– for all u, v ∈ V ar′ ∪ Const, either G |= u ≤ v or G |= v ≤ u.

Intuitively, complete transitionalMG induce a total ordering on the set of vertices
in V ar ∪ Const (resp., V ar′ ∪ Const). A GCS S is complete iff each MG in S
is complete. Fix a complete GCS S. For a finite path ℘ of S, the reachability
relation w.r.t. ℘, denoted by 	℘, is the binary relation on the set of valuations
over V ar defined as: for all ν, ν′ : V ar → Z, ν 	℘ ν′ iff there is a run of S from
(s(℘), ν) to (t(℘), ν′) which is an instance of the path ℘. For a transitional MG
G, G characterizes the reachability relation 	℘ iff Sat(G) = {ν⊕ ν′ | ν 	℘ ν′}.
We associate to each non-null finite path ℘ of S a transitional MG G℘ and a
transitional K-bounded MG Gbd℘ , defined as:

– ℘ = q
G→q′: G℘ = G and Gbd℘ = % G &K ;

– ℘ = ℘′℘′′, |℘′| > 0, and ℘′′ = q
G→q′: G℘ = G℘′•G andGbd℘ = %Gbd℘′•%G &K&K .

The following results have been shown in [8]. Theorem 9 can be easily deduced,
while Theorem 10 is a refinement of a result in [9] establishing that for a GCS S,
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the reflexive transitive closure of the transition relation of [[S]] is effectively GC
definable (a similar result can be found in [18], where it is shown that for Datalog
queries with GC, there is a closed form evaluation). Note that in Theorem 10,
we are not able to give an upper bound on the cardinality of the set PS .

Theorem 9. [8] For a non-null finite path ℘ of S, G℘ = G℘, G
bd
℘ = %G℘&K

and is complete, and G℘ is complete and characterizes the reachability relation
	℘. Moreover, the set {(%G℘&K , s(℘), t(℘)) | ℘ is a non-null finite path and G℘
is satisfiable}. has size bounded by O(|Q(S)|2 · (K + 2)(2|V ar|+|Const|)2) and can

be computed in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|V ar|+|Const|)2).

Theorem 10. [8] One can compute a finite set PS of non-null finite paths of
S such that: for each non-null finite path ℘′ of S from q to q′, there is a path
℘ ∈ PS from q to q′ so that %G℘′&K = %G℘&K , and 	℘′ implies 	℘ (i.e., 	℘′

is contained in 	℘).

3 Strong Termination for Simple GCS

In this section, we solve strong termination for a restricted class of GCS intro-
duced in [8]. A MG G is weakly normalized if for all vertices u, v, pG(u, v) ≥ 0
(resp., pG(u, v) > 0) implies G |= v ≤ u (resp., G |= v < u). Note that G is
weakly normalized iff %G&K is weakly normalized.
A transitional MG G is (weakly) idempotent iff %G •G&K = %G&K .

Definition 11 (Simple GCS). [8] A simple GCS is a GCS consisting of just

two edges of the form q0
G0→q and q

G→q such that q0 �= q. Moreover, we require
that G0 • G is satisfiable, G0 and G are complete and weakly normalized, and
G is idempotent.

To present our results on simple GCS, we need additional definitions.

Definition 12 (lower and upper variables). [8] We denote by MAX (resp.,
MIN) the maximum (resp., minimum) of Const. For a transitional MG G and
y ∈ V ar∪V ar′, y is a lower (resp., upper) variable of G if G |= y < MIN (resp.,
G |= MAX < y). Moreover, y is a bounded variable of G if G |= MIN ≤ y and
G |= y ≤ MAX .

Definition 13. A transitional MG is balanced iff for all u, v ∈ V ar∪Const and
� ∈ {<,=}, G |= u� v iff G |= u′ � v′ (where for u ∈ V ar ∪Const, we write u′

to denote the corresponding variable in V ar′ if u ∈ V ar, and u itself otherwise).

Intuitively, a transitional MG is balanced if the partial orders on V ar ∪ Const
and V ar′ ∪ Const induced by the MG are the same. Fix a simple GCS S with

edges q0
G0→q and q

G→q. Since G is idempotent, by the associativity of • and
Proposition 7, we obtain that for each k ≥ 1, %G0 •G • . . . •G︸ ︷︷ ︸

k times

&K = %G0 •G&K .

Hence, G0 •G • . . . •G︸ ︷︷ ︸
k times

and G • . . . •G︸ ︷︷ ︸
k times

are satisfiable for each k ≥ 1. Since G is



162 L. Bozzelli

complete and G•G is satisfiable, by Proposition 5(2) it follows that G is balanced
as well. Moreover, since G is satisfiable and complete, a variable y ∈ V ar∪V ar′

is or a lower variable, or an upper variable, or a bounded variable of G, where the
“or” is exclusive. We denote by l1, . . . , lN (resp., u1, . . . ,uM ) the lower (resp.,
the upper) variables of G in V ar, and by b1, . . . ,bH the bounded variables of G
in V ar. Hence, we can assume that

G |= l1 �2 . . .�N lN < b1 �′
2 . . .�′

H bH < u1 �′′
2 . . .�′′

M uM

where �2 . . .�N ,�′
2 . . .�′

H ,�′′
2 . . .�′′

M ∈ {<,=}. Since G is balanced it follows
that the lower variables (resp., upper variables) of G in V ar′ are l′1, . . . , l

′
N (resp.,

u
′
1, . . . ,u

′
M ), and the bounded variables of G in V ar′ are b

′
1, . . . ,b

′
H . Moreover,

G |= l
′
1 �2 . . .�N l

′
N < b

′
1 �′

2 . . .�′
H b

′
H < u

′
1 �′′

2 . . .�′′
M u

′
M

Now, we recall a polynomial-time checkable condition on simple GCS [8].

Definition 14 (termination condition). [8] We say that G satisfies the ter-
mination condition iff one of the following holds:

lower variables: either G |= li < l
′
i for some 1 ≤ i ≤ N ,

or G |= li = l
′
i and G |= l

′
j < lj for some 1 ≤ i < j ≤ N .

upper variables: either G |= u
′
i < ui for some 1 ≤ i ≤ M ,

or G |= uj = u
′
j and G |= ui < u

′
i for some 1 ≤ i < j ≤ M .

Intuitively, the above condition asserts that either there is a lower (resp., upper)
variable ofGV ar whose value strictly increases (resp., decreases) along each run of
S, or there are two lower (resp., upper) variables of GV ar such that the absolute
value of their difference strictly decreases along each run of S. Let T C be the
class of simple GCS satisfying the termination condition. By Definition 14, we
easily obtain the following.

Proposition 15. If S ∈ T C, then UnbqS = ∅ (i.e., the set of unbounded states
of S of the form (q, ν) is empty) and InfS = ∅.

Theorem 16. [8] Let S /∈ T C. Then, InfS is MG representable and one can
construct a MG representation of InfS.

Moreover, we can show the following non-trivial result (a proof is in [7]).

Theorem 17. If S /∈ T C, then UnbS = InfS and Inf q0S �= ∅.

3.1 S Satisfies the Termination Condition

We define a polynomial-time checkable condition on simple GCS which implies
the termination condition. We will show that it characterizes the simple GCS
such that InfS = ∅ and UnbS �= ∅.

Definition 18 (unboundedness condition). We say that S satisfies the un-
boundedness condition iff S ∈ T C and none of the following properties holds:
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lower variables: there is a lower variable l of G0 in V ar such that
− either G0 |= l ≤ l

′
i and G |= li < l

′
i for some 1 ≤ i ≤ N ,

− or G0 |= l ≤ l
′
i, G |= li = l

′
i, and G |= l

′
j < lj for some 1 ≤ i < j ≤ N .

upper variables: there is an upper variable u of G0 in V ar such that
− either G0 |= u

′
i ≤ u and G |= u

′
i < ui for some 1 ≤ i ≤ M ,

− or G0 |= u
′
i ≤ u, G |= ui = u

′
i, and G |= u

′
j > uj for some 1 ≤ j < i ≤ M .

Intuitively, the unboundedness condition implies the termination condition and
asserts that: (i) there is no lower (resp., upper) variable of GV ar′ (or equivalently
of GV ar) whose value strictly increases (resp., decreases) along each run of S
and at the same time is lower (resp., upper) bounded by a lower (resp., upper)
variable of G0 in V ar, (ii) there is no pair of lower (resp., upper) variables of
GV ar′ such that the absolute value of their difference strictly decreases along
each run of S, and at the same time is lower (resp., upper) bounded by a lower
(resp., upper) variable of G0 in V ar.
Let UC be the class of simple GCS satisfying the unboundedness condition. Note
that UC ⊆ T C. The following result easily follows from Proposition 15 and
Definition 18.

Proposition 19. If S ∈ T C \ UC, then UnbS = InfS = ∅.

It remains to consider the case when S ∈ UC. We define two integers L and U
as follows: L is the smallest 1 ≤ i ≤ N such that G0 |= l ≤ l

′
i for some lower

bound variable l of G0 in V ar and G |= li = l
′
i (if such an i does not exist, we

set L = N + 1). Finally, U is the greatest 1 ≤ i ≤ M such that G0 |= u
′
i ≤ u

for some upper variable u of G0 in V ar and G |= u
′
i = ui (if such an i does

not exist, we set U = 0). Note that 1 ≤ L ≤ N + 1 and 0 ≤ U ≤ M . The set
of unconstrained variables in V ar, written Unc, consists of the lower variables
li such that 1 ≤ i < L and the upper variables uj such that U < j ≤ M . We
denote by Unc′ the corresponding subset in V ar′. Since G0 •G is satisfiable, G0

is complete, and G is balanced and complete, it follows that the sets of upper
(resp., lower) variables of G and G0 in V ar′ coincide, and the orderings induced
by G and G0 coincide. By Definitions 18 and 14, if S ∈ UC, then either (1) there
is an upper variable uj such that G0 �|= u

′
j ≤ u for each upper variable u of

G0 in V ar, or (2) there is a lower variable lj such that G0 �|= l ≤ l
′
j for each

lower variable l of G0 in V ar. Thus, by the above considerations, it follows that
Unc �= ∅ if S ∈ UC. The following lemma directly follows from definition of Unc.

Lemma 20. For a valuation ν0 : V ar → Z, the set of valuations {ν(V ar\Unc) |
(q, ν) is reachable from (q0, ν0) in [[S]]} is finite.

Let vL = lL if L < N + 1, and vL = MIN otherwise. Moreover, let vU = uU

if U > 0, and vU = MAX otherwise. For a valuation ν over V ar such that
ν ∈ Sat(GV ar), we denote by Nν the natural number defined as follows:

Nν = min({ν(x)− ν(v) | x ∈ Unc, v ∈ Unc ∪ {vL, vU} and G |= v < x} ∪
{ν(v)− ν(x) | x ∈ Unc, v ∈ Unc ∪ {vL, vU} and G |= x < v}).
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where the minimum of the empty set is 0. Let Δ ∈ N be the maximum of the
set of edge weights of G. Now, we give two technical lemmata whose proofs
are in [7]. Lemma 21 ensures the following crucial property: let S ∈ UC and
π = (q, ν0) . . . (q, νm) be a run of S of non-null length such that ν0 and νm agree
on V ar \ Unc. Then, for all k ≥ 1 and valuations ν′0 ∈ Sat(GV ar) such that
ν′0 and ν0 agree on V ar \ Unc, if Nν′0 is sufficiently large, then there is also a
run of length greater than k from (q, ν′0) (intuitively, obtained by pumping the
pseudo-cycle π).

Lemma 21 (Pumping lemma for unboundedness).
Let S ∈ UC, (q, ν0), . . . , (q, νm) be a run of S of non-null length such that
(νm)V ar\Unc ∈ Sat(GV ar\Unc), and ν′0 : V ar → Z such that ν′0 ∈ Sat(GV ar)

and ν0 and ν′0 agree on V ar \ Unc. If *
Nν′

0

m·(|V ar|+1)+ > Δ, then there is a run

(q, ν′0), . . . , (q, ν
′
m) s.t.: ν′m ∈ Sat(GV ar), Nν′m ≥ *

Nν′
0

m·(|V ar|+1)+, and for each

0 ≤ i ≤ m, ν′i and νi agree on V ar \ Unc.

Lemma 22. Assume that S ∈ UC. Let ν0, ν : V ar → Z be s.t. ν0⊕ν ∈ Sat(G0 •
G) and ν ∈ Sat(GV ar). Then, the following set is infinite

{Nν′ | ν0 ⊕ ν′ ∈ Sat(G0 •G), ν′ ∈ Sat(GV ar), and ν′V ar\Unc = νV ar\Unc}

By Lemmata 20, 21, and 22, we deduce the following result.

Lemma 23. Assume that S ∈ UC. Then, (q0, ν0) ∈ UnbS iff there is a finite
run π of S starting from (q0, ν0) of the form

π = (q0, ν0)(q, ν
′
0)(q, ν) . . . (q, ν

′) . . . (q, ν′′)

such that ν′′(V ar\Unc) = ν′(V ar\Unc), and the subrun (q, ν′) . . . (q, ν′′) has non-null
length.

Proof. For the right implication ⇒, assume that (q0, ν0) ∈ UnbS . Hence, the set
of lengths of the finite runs from (q0, ν0) is infinite. Then, by Lemma 20, the
result follows.
For the left implication ⇐, assume that for a valuation ν0 over V ar, there is a
finite run π of S starting from (q0, ν0) of the form

π = (q0, ν0)(q, ν
′
0)(q, ν) . . . (q, ν

′) . . . (q, ν′′)

such that ν′′(V ar\Unc) = ν′(V ar\Unc), and the subrun (q, ν′) . . . (q, ν′′) has non-null

length. Let us consider the prefix of π of length 2 given by (q0, ν0)(q, ν
′
0)(q, ν), and

let Sν = {ν | ν0 ⊕ ν ∈ Sat(G0 •G), ν ∈ Sat(GV ar), and νV ar\Unc = νV ar\Unc}.
Since ν0 ⊕ ν ∈ Sat(G0 • G) and ν ∈ Sat(GV ar), by Lemma 22, the set Sν is
infinite, and the set Int(Sν) = {Nν | ν ∈ Sν} is infinite as well. Let us consider
the suffix of π, (q, ν) . . . (q, ν′) . . . (q, ν′′), where ν′′(V ar\Unc) = ν′(V ar\Unc). Let

ν ∈ Sν and h ≥ 1. Since νV ar\Unc = νV ar\Unc, Lemma 21 (applied repetitively)
ensures that there is nh ∈ N such that if Nν ≥ nh, then there is a finite run
π0π1 . . . πh from (q, ν) so that
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– π0 = (q, ν) . . . (q, ν1) and for 1 ≤ i ≤ h, πi is of the form (q, νi), . . . , (q, νi+1),
has non-null length, and νiV ar\Unc = νi+1

V ar\Unc = ν′′(V ar\Unc) = ν′(V ar\Unc).

Since ν0 ⊕ ν ∈ Sat(G0 •G), the run π0π1 . . . πh can be completed (by adding as
prefix a run of length 2 from (q0, ν0) to (q, ν)) into a run starting from (q0, ν0)
(the whole run has length at least h). Since the set Int(Sν) is infinite, for each
h ≥ 1, we can always choose ν ∈ Sν in such a way that the above condition
holds. Hence, (q0, ν0) is unbounded. This concludes the proof of the lemma. ��

Theorem 24. Assume that S ∈ UC. Then, UnbS is MG representable and one
can construct a MG representation of UnbS.

Proof. Let S ∈ UC. Since, UC ⊆ T C, by Proposition 15, the set of unbounded
states of S of the form (q, ν) is empty. Hence, it suffices to show that we can
construct a finite set Gq0 of MG over V ar and Const such that

⋃
G∈Gq0

Sat(G) =

{ν | (q0, ν) ∈ UnbS}. By Theorem 10, one can compute a finite set P of non-null
finite paths of S from q to q such that for each non-null finite path ℘′ of S
from q to q, there is a path ℘ ∈ P so that 	℘′ implies 	℘. Note that given
℘ ∈ P , the transitional MG G℘ (which characterizes the reachability relation
	℘) has the form G • . . . •G︸ ︷︷ ︸

k times

for some k ≥ 1. Let G= be the transitional MG

corresponding to the GC given by
∧

x∈V ar\Unc
x′ = x. Then, Gq0 consists of the

computable finite set of MG G′ over V ar and Const such that G′ = (G′′)V ar,
where G′′ = G0 • G℘ • (G℘′

⊗
G=) for some ℘, ℘′ ∈ P . Correctness of the

construction easily follows from Propositions 4 and 5, and Lemma 23. ��

Moreover, we show the following non-trivial result (a proof is in [7]).

Theorem 25. If S ∈ UC, then Unbq0S �= ∅.

By Propositions 15 and 19, and Theorems 16, 17, 24, and 25, we obtain the
following result, which provides a straightforward polynomial-time algorithm to
check strong termination for simple GCS.

Corollary 26. For a simple GCS S, the following holds:

– If S /∈ T C, then InfS = UnbS and Inf q0S = Unbq0S �= ∅;
– If S ∈ UC (hence, S ∈ T C), then InfS = ∅ and Unbq0S �= ∅;
– If S ∈ T C and S /∈ UC, then InfS = UnbS = ∅.

Moreover, one can compute a MG representation of the sets InfS and UnbS.

4 Strong Termination for Unrestricted GCS

Fix a GCS S. First, we give a characterization of the set of unbounded states
of S. For a non-null finite path ℘ of S s.t. s(℘) = t(℘) (i.e., ℘ is cyclic), (℘)ω

denotes the infinite path ℘℘ . . .. A infinite path ℘ of S of the form ℘ = ℘′(℘′′)ω
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is said to be ultimately periodic. A state s of S is neatly unbounded w.r.t. an
infinite path ℘ of S, if there is a sequence of finite runs (πn)n∈N of S from s s.t.
{|πn| | n ∈ N} is infinite and for each n, πn is an instance of the prefix of ℘ of
length |πn|. By using Theorem 10 and Ramsey’s Theorem (in its infinite version)
[17], we show the following (a proof is in [7]).

Theorem 27 (Characterization Theorem). Let S be a complete GCS and
PS be the set of paths of S satisfying Theorem 10. Then, a state s of S is
unbounded iff s is neatly unbounded w.r.t. a ultimately periodic path ℘0 · (℘)ω
such that ℘0, ℘ ∈ PS , G℘0 • G℘ is satisfiable, G℘ is idempotent, and G℘0 and
G℘ are complete and normalized.

Let S be a GCS. We denote by %S&K the GCS obtained from S by replacing

each edge q
G→q′ of S with the edge q

�G�K→ q′. Note that %S&K is simple iff S is
simple.

Theorem 28. Let S be a GCS. Then, UnbS is MG representable and one can
construct a MG representation of UnbS . Moreover, given q ∈ Q(S), checking
whether UnbqS �= ∅ is in Pspace and can be done in time O(|E(S)| · |Q(S)|2 ·
(K + 2)(2|V ar|+|Const|)2).

Proof. We assume that S is complete (the general case easily follows, and details
are given in [7]). Let PS be the computable finite set of non-null finite paths of
S satisfying Theorem 10, and let F be the finite set of simple GCS constructed

as: S ′ ∈ F iff S ′ is a GCS consisting of two edges of the form ($, s(℘0))
G℘0→ t(℘0)

and s(℘)
G℘→t(℘) such that ℘0, ℘ ∈ PS and S ′ is simple as well. By Corollary 26,

for each S ′ ∈ F , one can compute a MG representation GS′,in(S′) of Unb
(�,in(S′))
S′ ,

where ($, in(S ′)) is the initial control point of S ′. Then, by Theorems 10 and 27,
{
⋃

{S′∈F|in(S′)=q} GS′,in(S′)}q∈Q(S) is a MG representation of UnbS . Thus, the
first part of the theorem holds.

For the second part of the theorem, let FK be the set of GCS S ′ such that
S ′ = %S ′′&K for some S ′′ ∈ F . By Definitions 14 and 18, for a simple GCS S ′′,
S ′′ ∈ T C (resp., S ′′ ∈ UC) iff %S ′′&K ∈ T C (resp., %S ′′&K ∈ UC). Thus, by
Corollary 26, we obtain that for q ∈ Q(S): UnbqS �= ∅ iff there is S ′ ∈ FK with
initial control point ($, q) such that either S ′ �∈ T C or S ′ ∈ UC. Note that this
last condition can be checked in time polynomial in the size of S ′. Now, the
crucial observation is that FK can be computed in exponential time since: (i)
by Theorem 10, the set {(%G℘&K , s(℘), t(℘)) | ℘ ∈ PS and %G℘&K is satisfiable}
coincides with the set GKS = {(%G℘&K , s(℘), t(℘)) | ℘ is a non-null finite path of
S and %G℘&K is satisfiable}, (ii) by Theorem 9, the set GKS can be computed

in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|V ar|+|Const|)2). Hence, checking whether

UnbqS �= ∅ can be done in time O(|E(S)| · |Q(S)|2 · (K + 2)(2|V ar|+|Const|)2).
It remains to show that checking whether UnbqS �= ∅ can be done in polynomial

space. We outline a NPspace algorithm. Since NPspace=Pspace (by Savitch’s
theorem), the result follows. At each step, the nondeterministic algorithm im-
plicitly guesses two non-null finite paths ℘0 and ℘ of S such that s(℘0) = q, and
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compute the GCS S ′ having the edges ($, s(℘0))
�G℘0�K→ t(℘0) and s(℘)

�G℘�K→ t(℘).
Note that by observation (i) above, S ′ is simple iff S ′ ∈ FK . The algorithm keeps
in memory only the MG %G℘0&K and %G℘&K associated with the paths ℘0 and ℘
implicitly generated so far, together with their source and target control points. If
the current MG S ′ corresponds to a simple MG (hence, S ′ ∈ FK) such that either
S ′ �∈ T C or S ′ ∈ UC, then the algorithm terminates with success. Otherwise, the

algorithm chooses two edges from control points t(℘0) and t(℘), say t(℘0)
G0→q0

and t(℘)
G→q, computes the MG %%G℘0&K •%G0&K&K and %%G℘&K •%G&K&K asso-

ciated with the currently guessed paths, and re-write the memory by replacing
%G℘0&K and %G℘&K with %%G℘0&K • %G0&K&K and %%G℘&K • %G&K&K , and t(℘0)
and t(℘) with q0 and q, and the procedure is repeated. ��

Corollary 29. The strong termination problem and the strong termination prob-
lem w.r.t. a designated state are both Pspace-complete.

Proof. By Theorem 28, strong termination is in Pspace, and checking whether
UnbqS = ∅ for a given GCS S and q ∈ Q(S), is in Pspace too. By an easy
linear-time reduction to this last problem, membership in Pspace for strong
termination w.r.t. a designated state follows as well (for details see [7]). Pspace-
hardness directly follows from Pspace-hardness of termination for Boolean Pro-
grams [15] and the fact that GCS subsume Boolean Programs (note that for
Boolean Programs, which are finitely-branching, strong termination corresponds
to termination). ��
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Abstract. This paper studies how one can spread points in the Besicov-
itch space in order to keep them far one from another. We first study the
general case and then what happens if the chosen points are all regular
Toeplitz configurations or all quasiperiodic configurations.

Keywords: Hamming distance, Besicovitch distance, dynamical sys-
tems, Toeplitz sequences.

1 Introduction

In compact spaces, the more you have points in a set, the shorter the distance
between the closest points of the set. More precisely, for any ε, there is an integer
N such that any set of cardinal at least N contains two points whose relative
distance is less than ε. This is easily proved covering the compact space with
open balls of diameter ε and selecting a finite sub-covering and choosing N as
its size plus one. If one has N points, using pigeon hole lemma, there are two
points in the same ball.

This is not the case in non-compact spaces. For instance, it is clear that� ⊂ �
is an infinite set of reals which are all at distance greater or equal to 1 from all
other members.

This feature has some direct consequences on code theory. For error-correcting
(resp. detecting) codes, the valid representations of information must be at the
center of open balls of some fixed radius which do not overlap (resp. which do
not contain another valid representation). The radius depends on the number
of error to correct (resp. detect). For classical code theory on finite words, the
Hamming distance on words is often considered.

In this paper, we study the space {0, 1}� of uni-infinite words on {0, 1} or
configurations endowed with the Besicovitch topology. Configurations are often
called sequences or streams. For more investigations about configurations, see
for instance [1]. The Besicovitch distance is used, among others, in the domain
of symbolic dynamical systems, and particularly cellular automata. Considering
the phase space {0, 1}�, the classical product topology, called Cantor topology,
has counter-intuitive properties and the Besicovitch topology was proposed as

� This work has been supported by the ANR Blanc “Projet EQINOCS” (ANR-11-
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A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 169–178, 2012.
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a less biased alternative for cellular automata dynamical behavior study (see
[4,3,6]). Moreover, looking at its definition, one can note that it is a sort of
extension of the Hamming distance to infinite words.

The space {0, 1}� is not compact and many of the proofs for result with Can-
tor topology can’t be done in the Besicovitch topology. For instance Hedlund’s
theorem which states that cellular automata are the continuous shift-invariant
map on {0, 1}� is based on compactness and open cover extraction (see [7]).

We want to evaluate how much non-compact the Besicovitch space is and, if
possible, prove a kind of weak compactness. We do this by studying how points
get closer as you add points. Formally if S is a set with at least N members we
want to find the maximum distance between the closest members of S and see
how this behaves when N tends to infinity.

First, we state a negative result giving an uncountable set of configurations
such that any two members are at distance 1, the maximum for the Besicovitch
distance. Hence, there is no chance to prove a kind of weak compactness for the
Besicovitch space. Next, we try to see if the negative result is still true restricting
ourselves to some natural subsets of configurations, Toeplitz configurations and
quasiperiodic configurations.

Toeplitz configuration are a dense positively invariant set in {0, 1}�. It has
been studied in [2] and proposed as a good test set since to prove some properties
it is enough to prove them only on Toeplitz sequences. They play a role similar
to periodic sequences in Cantor topology. Quasiperiodic configurations are a
natural candidate between the general case and Toeplitz configurations and play
a special role in the field of tilings, often considered as the static version of
cellular automata (see for instance [5]).

We first prove that the negative result still holds on quasiperiodic config-
urations. However, we can prove a non-trivial bound for a natural subset of
Toeplitz configurations: regular Toeplitz configurations. In order to perform this
last study, we first consider finite words on {0, 1} of a given length since the
Besicovitch distance definition is expressed in terms of the Hamming distance
between the prefixes. Then we extend the result on the Hamming distance to
{0, 1}� proving that the distance between closest members of a set tends to one
half when the cardinal of the set increases and that this bound is tight.

The paper is organized as follows. In the next section, we give definitions
about the Besicovitch distance, quasiperiodic and Toeplitz configurations. In
Section 3 and 4 we state the negative results about the Besicovitch distance for
the general and the quasiperiodic cases. In Section 5, we study the restriction to
regular Toeplitz configurations.

2 Definitions and Tools

In this section, we introduce the space we study and a few notions.

Configurations. We call configurations uni-infinite words on {0, 1}. If x is a
configuration, as for words, we note xi the ith letter (the first one has index 0).
We note x�n the prefix on length n of x i.e. x�n = x0 . . . xn−1. A word u is a
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factor of the configuration (or the word) x if there is an integer k such that for
all i where 0 � i < |u|, ui = xk+i. We note it u 
 x or u 
n x if u is of length n.

The Besicovitch topology. The Besicovitch topology measures the rate of differ-
ences between two configurations. Its formal definition is given by the pseudo-
distance dB defined by

dB(x, y) = lim sup
n→∞

dH(x�n, y�n)

n

where dH , the Hamming distance, is such that dH(x, y) = |{n, xn �= yn}|.
It is only a pseudo-distance since two configurations with finitely or logarith-

mically many differences are at distance zero. Taking the quotient of {0, 1}�
w.r.t. the equivalence relation x ∼ y ⇔ d(x, y) = 0, we obtain a distance. For
more information about the Besicovitch topology, see [4,3].

Quasiperiodic configurations. The configuration x is quasiperiodic if

∀n, ∃N, ∀u, u 
n x ⇒ ∀w,w 
N x ⇒ u 
 w,

that is if for all integers n there exists an integer N such that all factor of length
n of x can be found in any factor of length N .

2.1 Toeplitz Configurations and Their Construction

A configuration x is Toeplitz if for all positions i ∈ �, there exists a period p
such that ∀k ∈ � such that pk + i � 0, xpk+i = xi.

In order to build Toeplitz configurations, one can use a simple algorithm.
It assigns letters to cells of the configuration step by step. Initially, all cells
are unassigned. At each step, a cell is assigned a value, and this assignment is
repeated periodically along the configuration. With this algorithm, one can build
all Toeplitz configurations.

Formally, a Toeplitz configuration x is totally (but not uniquely) defined by a
finite or infinite sequence of couple (vi, pi)0�i<L (L ∈ � ∪ {∞}) where the cells
of x are filled with values vi periodically with period pi. At step 0, x0 and all
cells of index kp0 for k ∈ � are assigned to v0. At step 1, choose the smallest
index of an unassigned cell j1 (which must be 1 unless p0 = 1 in which case there
is no step 1). All cells of index j1+kp1 are assigned to v1. We continue to assign
values to cells periodically, always starting from the unassigned cell of smallest
index: at step i, for ji the smallest index of an unassigned cell, all cells of index
ji + kpi are assigned to vi. The beginning of the process is illustrated Figure 1

This process must verify two conditions:

– the periods pi must be chosen so that a cell is never assigned twice. This
implies a rather complicated relation on periods;

– each cell is eventually assigned at some step.

If v and p are two such sequences, we note A(v, p) the Toeplitz sequence the
algorithm outputs. If the sequence (vi, pi)i∈� is finite, then the configuration is
periodic with period given by the least common multiple of the pi.
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p0 = 3 : v0 . . v0 . . v0 . . v0 . . v0 . . v0 . . v0 . . v0 . .
p1 = 6 : v0v1 . v0 . . v0v1 . v0 . . v0v1 . v0 . . v0v1 . v0 . .
p2 = 6 : v0 v1v2v0 . . v0 v1v2v0 . . v0 v1v2v0 . . v0 v1v2v0 . .
p3=12 : v0 v1 v2 v0v3 . v0 v1 v2 v0 . . v0 v1 v2 v0v3 . v0 v1 v2 v0 . .
p4 = 6 : v0 v1 v2 v0 v3v4v0 v1 v2 v0 . v4v0 v1 v2 v0 v3v4v0 v1 v2 v0 . v4

...
v0 v1 v2 v0 v3 v4 v0 v1 v2 v0 v5v4 v0 v1 v2 v0 v3 v4 v0 v1 v2 v0 v6v4

Fig. 1. Sample Toeplitz configuration construction

3 The Result for the General Case

Our first result for the Besicovitch topology is negative. It states that there exists
an uncountable set of configurations such that each member is at distance 1 (the
maximum for the Besicovitch distance) from all other members.

Lemma 1. There exists an uncountable set D of infinite words such that for
any two of those words, they differ at infinitely many positions.

Proof. Let u be a sequence of {0, 1}�. Let wu be the Toeplitz configurations
built on the sequence (ui, 2

i)i∈�.
Informally, the sequence is built as follows: the half of the configuration is

assigned to u0; the half of the remaining cells is assigned to u1; the half of the
remaining cells is assigned to u2 and so on. The beginning of the sequence is
(letters are raised according to their index for better readability)

u0u1u0
u2u0u1u0

u3u0u1u0
u2u0u1u0

u4
u0u1u0

u2u0u1u0
u3u0u1u0

u2u0u1u0

If u and v are two distinct binary sequences and l is such that ul �= vl, then at all
positions i such that i ≡ 2l−1 mod 2l+1 (hence infinitely many), the sequences
wu and wv are distinct. The set D = {wu, u ∈ {0, 1}�} proves the lemma. ��
The negative result is as follows.

Proposition 2. There exists an uncountable set of configurations Y such that
for any x and y in Y, dB(x, y) = 1.

Proof. In this proof, we note �i = 22
i

. Let w be a sequence of D of Lemma 1.
Define the configuration sw by swi = wj for�

j − 2 � i < �
j+1 − 2. It is the

concatenation of blocs of �j+1 − �j times the letter wj .
Let w and w′ be two distinct sequences of D. There is an infinite set J of

positions which w and w′ differ at. By definition of s, for all j ∈ J , since �i =
o(�i+1), one has

dH(s
w
��j+1−2, s

w′
��j+1−2)

�j+1 − 2
� (�j+1 − 2)− (�j − 2)

�j+1 − 2
∼ 1 .

Hence, considering that the limit superior is greater than the limit superior of
any subsequence, dB(s

w, sw
′
) = 1. The set Y is defined by Y = {sw, w ∈ D}. ��
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The following corollary can be deduced:

Corollary 3. Let R be a dense set of configurations according to Besicovitch
topology. Then for all ε > 0, there is an infinite set EεR of configurations in R
such that for any x and y in EεR, dB(x, y) > 1− ε. If R is uncountable, EεR can
be chosen uncountable.

Proof. Let Y be the set of proposition 2. As R is dense, for all y ∈ Y, there is a
point ry ∈ R such that dB(y, ry) <

ε
2 . Denote EεR = {ry, y ∈ Y}. Provided ε is

less than 1, Y and EεR have same cardinal. Moreover, using triangular inequality,
one has that for all x and y in Y, dB(rx, ry) > dB(x, y)−dB(rx, x)−dB(ry, y) >
1− ε. ��

4 Quasiperiodic Case Study

In this section, we show that the negative result of the previous section still holds
for quasiperiodic configurations.

Theorem 4. There exists a non countable set Q of quasiperiodic configurations
such that for any two x and y in Q, dB(x, y) = 1.

Proof. In this proof, we note u the word u where all ones are replaced by zeros
and zeros by ones. Let u ∈ {0, 1}�. Let qu defined as the limit of the substitution
process: a0 = 0; an+1 = a2n an

2an an
n if un = 0 and an+1 = a2n an

2ana
n
n if

un = 1.
Let us first prove that any sequence qu is quasiperiodic. Let w be a pattern of

size � of qu. Let n be such that � < |an|. By construction, w is a factor of either
anan, an an, anan or an an. By construction, in each window of size 2|an+1|
either an+1 of an+1 occurs. Both contains each of the words anan, an an, anan
or an an and so each window of size 2|an+1| contains w.

Define Q = {qu, u ∈ D}, where D is defined in lemma 1. Let u, v ∈ D. Let I
be the infinite set of positions i such that ui �= vi. We have that

dB(qu, qv) � lim
n∈I

dH(a2n an
2an an

n, a2n an
2ana

n
n)

|an+1|
� lim
n∈I

n|an|
(5 + n)|an|

= 1 .

��

5 Regular Toeplitz Case Study

In this section, we deal with regular Toeplitz sequences that will be defined in
Section 5.2.

5.1 Finite Words and the Hamming Distance

In this section, we study the space {0, 1}� of words on alphabet {0, 1} of a
given length �, endowed with the Hamming distance dH . For a set of cardinal
N , we want to find a (tight) bound M such that ∀S ⊂ {0, 1}� s.t. |S| = N ,
min{dH(x, y)|x, y ∈ S} � M .



174 J. Cervelle

Some Technical Lemmas. We give two combinatorial lemmas.
We consider a set S = {w0, . . . , wN−1} of N words or length �. For i ∈

{0, . . . , �−1}, we define Pi = {{p, q}|wpi = wqi }. For a couple {p, q}, dh(wp, wq) =
� −m, where m = |{i, {p, q} ∈ Pi}|. The minimum Hamming distance between
words of S is linked to the couple which maximizes m.

In order to simplify proofs and results, we use the following function,

g(n) =

(⌊n
2

⌋
2

)
+

(⌈n
2

⌉
2

)
for n � 4 .

The first lemma considers a vector V = (V0, . . . , VN−1) and bounds the number
of couples {p, q} such that Vp = Vq.

Lemma 5. Let V be a vector of letters from the alphabet {0, 1} of size N � 4.
We have that

∣∣{{p, q}, Vp = Vq
}∣∣ � g(N).

Proof. Let z be the number of i such that Vi = 0. There are
(
z
2

)
couples {p, q}

such that Vp = Vq = 0 and
(
N−z
2

)
couples {p, q} such that Vp = Vq = 1. Hence

|{{p, q}, Vp = Vq}| =
(
N−z
2

)
+
(
z
2

)
. The proof is achieved by a straightforward

recurrence, proving that for all n � 4 and for all z such that 0 � z � n
2 ,(

n−z
2

)
+
(
z
2

)
� g(n). ��

The next lemma is an upper bound for M , the number of Pi which contains the
couple that occurs the most often.

Lemma 6. Let I be a set of finite cardinal c. Let (Pi)0�i<� be a sequence of
subsets of I |Pi| � k. One has maxs∈I |{i, s ∈ Pi}| � �k

c .

Proof. Let M = maxs∈I |{i, s ∈ Pi}|. One has

�k �
�−1∑
i=0

|Pi| =
∑
s∈I

�−1∑
i=0

|Pi ∩ {s}| =
∑
s∈I

|{i, s ∈ Pi}| � Mc .��

Bound for the Hamming Distance. Let f be defined by

f(n) =

⌈
n
2

⌉
2
⌈
n
2

⌉
− 1

.

Note that f(n) = 1− g(n)

(n2)
, limn→∞ f(n) = 1

2 and f(2n) = f(2n− 1).

Proposition 7. Let S be a set of N words of length � from alphabet {0, 1}. Then
minx,y∈S dH(x, y) � f(N)�.

The result states that for a set of cardinal N of words of fixed length, one can
always find two words whose ratio of differences relatively to their length is less
than f(N), which tends to one half when N is large enough.
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Proof. Let S = {w0, . . . , wN−1}. For all i ∈ {0, . . . , �−1}, let Pi =
{
{p, q}, wpi =

wqi
}
and M = maxc |{i, c ∈ Pi}|.

Let wp and wq be two words. One has ∀i, {p, q} ∈ Pi ⇒ wpi = wqi . Hence
dH(w

p, wq) = � − |{i, {p, q} ∈ Pi}| � � −M , and equality holds for the couple
{p, q} such that |{i, {p, q} ∈ Pi}| = M . We conclude that �−M is the distance
between the closest words wp and wq. By Lemma 5 we have that |Pi| � g(N).
Using this inequality in Lemma 6 one finds that M = maxc |{i, c ∈ Pi}| �
�g(N)

(N2 )
= �(1− f(N)) and that dH(wp, wq) = �−M � �− �(1− f(N)) = f(N)�.

��

Bound Tightness. These kind of bounds have already been studied in the
field of code theory in [8]. This paper studies equidistant codes and gives a
result which states the tightness of bound of Proposition 7. For all N , it gives
a set WN of N words of some fixed length � at Hamming distance f(N)� one
another. Words of WN for N = 4, 6, 8 are given in Figure 2, where C is ordered
lexicographically.

w0 = 111

w1 = 100

w2 = 010

w3 = 001

w0 = 1111111111

w1 = 1111000000

w2 = 1000111000

w3 = 0100100110

w4 = 0010010101

w5 = 0001001011

w0 = 11111111111111111111111111111111111

w1 = 11111111111111100000000000000000000

w2 = 11111000000000011111111110000000000

w3 = 10000111100000011110000001111110000

w4 = 01000100011100010001110001110001110

w5 = 00100010010011001001001101001101101

w6 = 00010001001010100100101010101011011

w7 = 00001000100101100010010110010110111

(a) 2n = 4 (b) 2n = 6 (c) 2n = 8
111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111111
111111111111111111111111111111111111111111111111111111110000000000000000000000000000000000000000000000000000000000000000000000
111111111111111111111000000000000000000000000000000000001111111111111111111111111111111111100000000000000000000000000000000000
111111000000000000000111111111111111000000000000000000001111111111111110000000000000000000011111111111111111111000000000000000
100000111110000000000111110000000000111111111100000000001111100000000001111111111000000000011111111110000000000111111111100000
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(d) 2n = 10

Fig. 2. Words for small n

5.2 Result for Regular Toeplitz Configurations

The obstacle to the extension of the result on finite words to infinite words comes
from the limit superior in the definition of dB. If we restrict our consideration to
a class of configurations on which the limit of the Hamming distances between
prefixes necessarily exists and is therefore the limit superior required in the
Besicovitch distance, then the extension is possible.

In this section, we prove that the limit exists for subset of Toeplitz con-
figurations called regular Toeplitz configurations. From corollary 3, as Toeplitz
configurations are dense, there is no hope to extend it to the whole class.
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During the building of a Toeplitz confiugration using the algorithm given in
Section 2.1, though all cells are to be assigned, there are no insurance that the
proportion of assigned cells tends to 1 while going through steps. We are only
sure that each cell is eventually defined at some step. However, as Besicovitch
topology relies on proportions, we say that a Toeplitz configuration x is regular
if there are sequences p and v such that x = A(v, p) and:∑

0�j<L

1

pj
= 1 . (∗)

The set of regular Toeplitz sequences has continuous cardinal since the sequence
pi = 2i+1 generates a regular Toeplitz sequence for any v.

We prove that when the cardinal of a set of regular Toeplitz configurations
increases, the closest members tend to be at distance one half from each-other.

First we have to state that the limit exists.

Lemma 8. If x and y are regular Toeplitz configurations, the sequence un =
dH(x

�n,y�n)
n is a Cauchy sequence.

Proof. Let (vi, pi)0�i<L be a sequence defining x and (v′i, p
′
i)0�i<L′ be a sequence

defining y using the algorithm given in Section 2.1.
Let ε > 0. Using Equation (∗) there is an integer N such that

N∑
j=0

1

pj
� 1− ε

8
and

N∑
j=0

1

p′j
� 1− ε

8
.

Then at step N in building x and y, a proportion 1 − ε
8 cells has been as-

signed. Moreover, all the letters in these assigned cells repeat with a period
P = lcm{pi, p′i i ∈ {0, . . . , N}}. Hence, there are two words Mx and My of
length P on alphabet {0, 1,#}, where x [resp. y] is the repetition of Mx [resp.
My] where # can be replaced by 0 or 1. As a ratio of 1− ε

8 positions are already
set, Mx and My each has at most P ε

8 occurrences of #.
For instance, if N = 2, v0 = 0, v′0 = 1, v1 = 1, v′1 = 0, p0 = p′0 = 2, p1 = 4

and p′1 = 6 then

x = 010?010?010?010?010?010?010?010?010?010?010?010? . . .

y = 101?1?101?1?101?1?101?1?101?1?101?1?101?1?101?1? . . .

where cells marked with ? is set by other values of v, v′, p and p′. The repeated
words are Mx = 010#010#010# and My = 101#1#101#1#.

If d = dH(Mx,My), for n > P we have d
⌊
n
P

⌋
� dH(x�n, y�n) �

(
d+ Pε

8

) ⌈
n
P

⌉
and hence

d( n
P −1)
n � dH(x

�n,y�n)
n � (d+Pε

8 )( n
P +1)

n .

We conclude that
∣∣un − d

P

∣∣ = ∣∣∣dH(x
�n,y�n)
n − d

P

∣∣∣ � ε
8P + d

n + Pε
8n � ε

4 + d
n .

For n � max
(
P, 4d

ε

)
= N ′, one has

∣∣un − d
P

∣∣ � ε
2 . Using the triangular inequal-

ity, one has, for alln andm greater thanN ′, |un − um| �
∣∣un − d

P

∣∣+∣∣ dP − um
∣∣ � ε.

We conclude that un is a Cauchy sequence. ��
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Now we can state the proposition for regular Toeplitz configurations.

Proposition 9. If S is a set of N regular Toeplitz configurations,

min
x,y∈S

dB(x, y) � f(N)

where f is the function defined in Section 5.1.

Proof. Using Lemma 8 and Proposition 7, we have:

min
x,y∈S

dB(x, y) = min
x,y∈S

lim sup
n→∞

dH(x�n, y�n)

n

= min
x,y∈S

lim
n→∞

dH(x�n, y�n)

n
� f(N) . ��

The following corollary applies the above result to an infinite set of Toeplitz
configurations.

Corollary 10. If S is an infinite set of regular Toeplitz configurations, then for
all ε > 0, one can find infinitely many pairs (x, y) with x and y in S such that

dB(x, y) �
1

2
+ ε

Proof. Let N be such that f(N) � 1
2+ε. Picking N elements of S, one can apply

Proposition 9 to get two elements x and y at distance less than f(N) � 1
2 + ε.

Picking N other elements, one can get two more elements x and y verifying the
condition. Repeating this process, one can find infinitely many x and y. ��

5.3 Bound Tightness for Regular Toeplitz Configurations

As the result on regular Toeplitz configurations comes from Proposition 7 on
finite words with the Hamming distance, it can be adapted to configurations.

First, we need a simple lemma giving the relation between the Hamming
distance and the Besicovitch distance for periodic configurations.

Lemma 11. Let u and v be finite words of same length �, x = u∞ and y = v∞

the periodic configurations whose repeated pattern are u and v respectively. Then

dB(x, y) =
dH(u,v)

� .

Proof. As x�n = u%n
� &u

�n−%n
� & and y�n = v%n

� &v
�n−%n

� &, one has

dB(x, y) = lim sup
n→∞

dH(x�n, y�n)

n

= lim sup
n→∞

1

n

(⌊n
�

⌋
dH(u, v) + dH(u�n−%n

� &, v�n−%n
� &)
)

= lim sup
n→∞

dH(u, v)

n

⌊n
�

⌋
+

dH(u�n−%n
� &, v�n−%n

� &)
n

.

The first term of the sum tends to dH(u,v)
� and the second to 0. ��
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The following result gives bound tightness.

Proposition 12. For all integer N , there is a set XN of cardinal N of periodic
(hence regular Toeplitz) configurations such that

∀u, v ∈ XN , dB(u, v) = f(N) .

There is an infinite set X∞ of periodic configurations such that

∀u, v ∈ X∞, dB(u, v) =
1

2
.

Proof. Let WN be the set introduced at the end of Section 5.1. Let XN be the
set of periodic configurations whose repeated words are the words of WN . Using
Lemma 11, since ∀x, y ∈ WN , dH(x, y) = |x|f(N), one has ∀u, v ∈ C, dB(u, v) =
f(N).

Let X∞ = {(02i12i)∞, i ∈ �} whose first members are represented Figure 3.
Any two members of X∞ are at distance 1

2 . ��

01010101010101010101010101010101 . . .
00110011001100110011001100110011 . . .
00001111000011110000111100001111 . . .
00000000111111110000000011111111 . . .
00000000000000001111111111111111 . . .

Fig. 3. first members of {(02i12i)∞, i ∈ �}

However, it remains open to find a set where configurations are all at distance
strictly greater that one half, though for any ε > 0, one can find configurations
whose relative distance is less than 1

2 + ε.
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Abstract. Several studies have been achieved to construct a finite au-
tomaton that recognizes the set of words that are at a bounded distance
from some word of a given language. In this paper, we introduce a new
family of regular operators based on a generalization of the notion of dis-
tance and we define a new family of expressions, the approximate regular
expressions. We compute Brzozowski derivatives and Antimirov deriva-
tives of such operators, which allows us to provide two recognizers for
the language denoted by any approximate regular expression.

1 Introduction

The aim of this paper is to introduce automaton-theoretic constructions that
make a sound foundation for the design of new approximate matching algorithms.
Let us recall that approximate matching consists in locating the segments of the
text that approximately correspond to the pattern to be matched, i.e. segments
of the text that do not present too many errors with respect to the pattern.
This research topic has numerous applications, in biology or in linguistics for
example, and many algorithms have been designed in this framework for more
than thirty years especially concerning approximate string matching (see [4,12]
for a survey of such algorithms). Two contexts can be distinguished: in the
off-line case, that is when a pre-computing of the text is performed, the basic
tool is the construction of indexes [7]; otherwise, the basic technique is dynamic
programming [10]. In both cases, automata constructions have been used, either
to represent an index [16] or to simulate dynamic programming [6].

In most of the existing algorithms, the similarity between two words is mea-
sured by a distance and two basic types of distance called Hamming distance and
Levenshtein distance (or edit distance) are generally considered. Our construc-
tions provide a first kind of generalization since the similarity between two words
is handled by a general word comparison function rather than by a distance (such
a function is for instance not necessarily symmetrical).

Several studies address the problem of constructing a finite automaton that
recognizes the language of all the words that are at a distance less than or equal
to a given positive integer k from a given word. For instance this problem is
considered in [5] where Hamming distance is used and in [15] where Levenshtein
distance is used. A challenging problem is to tackle the more general case where

A.-H. Dediu and C. Martín-Vide (Eds.): LATA 2012, LNCS 7183, pp. 179–191, 2012.
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the pattern is no longer a word but a regular expression [13]. The solution de-
scribed in [9] first computes k + 1 clones of some non-deterministic automaton
recognizing the language of the regular expression and then interconnects these
clones by a set of transitions that depends on the type of distance.

We solve this problem by defining a new family of operators: given an integer k,
the Fk operator is such that, for any regular language L, the language Fk(L) is the
set of all the words that are at a distance less than or equal to k from some word
of L. We then consider the family of approximate regular expressions obtained
from the family of regular expressions by adding the family of Fk operators to
the set of regular operators. We first provide a formula that, given a regular
language L, computes the quotient of the language Fk(L) with respect to a
symbol. We then extend the computation of Brzozowski derivatives [2] (resp. of
Antimirov derivatives [1]) to the family of approximate regular expressions and
we show that the set of Brzozowski derivatives (resp. of Antimirov derivatives)
of an approximate regular expression is finite . As a consequence, the language
denoted by any approximate regular expression is regular . Our main result is
the construction of two recognizers for the language denoted by an approximate
regular expression: the deterministic automaton of Brzozowski derivatives and
the non-deterministic automaton of Antimirov derivatives.

Classical notions of language theory, such as derivative computation, are re-
called in Section 2. Section 3 gives a formalization of the notion of word com-
parison function and provides a definition of the family of approximate regular
expressions. Finally, the derivative-based constructions of an automaton from an
approximate regular expression are presented in Section 4.

2 Preliminaries

A finite automaton A is a 5-tuple (Σ, Q, I, F, δ) with Σ the alphabet (a finite
set of symbols), Q a finite set of states, I ⊂ Q the set of initial states, F ⊂ Q
the set of final states and δ ⊂ Q × Σ × Q the set of transitions. The set δ is
equivalent to the function from Q×Σ to 2Q defined by: q′ ∈ δ(q, a) if and only
if (q, a, q′) ∈ δ. The domain of the function δ is extended to 2Q ×Σ∗ as follows:
∀P ⊂ Q, δ(P, ε) = P , δ(P, a) =

⋃
p∈P δ(p, a) and δ(P, a · w) = δ(δ(P, a), w).

The automaton A recognizes the language L(A) = {w ∈ Σ∗ | δ(I, w) ∩ F �=
∅}. The automaton A is deterministic if Card(I) = 1 and ∀(q, a) ∈ Q × Σ,
Card(δ(q, a)) ≤ 1. A regular expression E over an alphabet Σ is inductively
defined by E = ∅, E = ε, E = a, E = (F + G), E = (F · G), E = (F ∗)
where a is any symbol in Σ and F and G are any two regular expressions. The
language L(E) denoted by E is inductively defined by L(∅) = ∅, L(a) = {a},
L(E + F ) = L(E) ∪ L(F ), L(E · F ) = L(E) · L(F ) and L(F ∗) = (L(F ))∗ where
a is any symbol in Σ, F and G are any two regular expressions, and for any
L1, L2 ⊂ Σ∗, L1 ∪ L2 = {w | w ∈ L1 ∨ w ∈ L2}, L1 · L2 = {w1w2 | w1 ∈
L1 ∧ w2 ∈ L2} and L∗

1 = {w1 · · ·wk | k ≥ 1 ∧ ∀j ∈ {1, . . . , k}, wj ∈ L1} ∪ {ε}.
A language L is regular if and only if there exists a regular expression E such
that L(E) = L. It has been proved by Kleene [8] that a language is regular if
and only if it is recognized by a finite automaton.
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The quotient of L w.r.t. a symbol a is the language a−1(L) = {w ∈ Σ∗ | aw ∈
L}. It can be recursively computed as follows:

a−1(∅) = a−1({ε}) = a−1({b}) = ∅, a−1({a}) = {ε}
a−1(L1 ∪ L2) = a−1(L1) ∪ a−1(L2), a−1(L∗

1) = a−1(L1) · L∗
1

a−1(L1 · L2) =
{

a−1(L1) · L2 ∪ a−1(L2) if ε ∈ L1,
a−1(L1) · L2 otherwise.

The quotient w−1(L) of L w.r.t. a word w is the set {w′ ∈ Σ∗ | w · w′ ∈ L}. It
can be recursively computed as follows: ε−1(L) = L, (aw′)−1(L) = w′−1(a−1(L))
with a ∈ Σ and w′ ∈ Σ∗. The Myhill-Nerode Theorem [11,14] states that a
language L is regular if and only if the set of quotients {u−1(L) | u ∈ Σ∗} is
finite. The derivative of an expression E w.r.t. a word w is an expression denoting
the quotient of L(E) w.r.t. w.

The notion of derivative of an expression has been introduced by Brzozowski [2].
Let E be a regular expression over an alphabet Σ and let a and b be two distinct
symbols of Σ. The derivative of E w.r.t. a is the expression d

da
(E) inductively

computed as follows :
d
da

(∅) = d
da

(ε) = d
da

(b) = ∅, d
da

(a) = ε,
d
da

(F ∗) = d
da

(F ) · F ∗, d
da

(F + G) = d
da

(F ) + d
da

(G)

d
da

(F ·G) =
{ d

da
(F ) ·G + d

da
(G) if ε ∈ L(F ),

d
da

(F ) ·G otherwise.

The derivative of E is extended to words of Σ∗ as follows:
d
dε

(E) = E, d
daw

(E) = d
dw

( d
da

(E)).

The set of derivatives of an expression E is not necessarily finite. It has been
proved by Brzozowski [2] that it is sufficient to use the ACI equivalence (that is
based on the associativity, the commutativity and the idempotence of the sum)
to obtain a finite set of derivatives: the set DE of dissimilar derivatives. Given a
class of ACI-equivalent expressions, a unique representative can be obtained after
deleting parenthesis (associativity), ordering terms of each sum (commutativity)
and deleting redundant subexpressions (idempotence). Let E∼s be the unique
representative of the class of the expression E. The set of dissimilar derivatives
can be computed as follows:

d′
d′

a
(∅) = d′

d′
a
(ε) = d′

d′
a
(b) = ∅, d′

d′
a
(a) = ε,

d′
d′

a
(E + F ) = ( d′

d′
a
(F ) + d′

d′
a
(G))∼s ,

d′
d′

a
(F ∗) = d′

d′
a
(F ) · F ∗,

d′
d′

a
(F ·G) =

{
( d′

d′
a
(F ) ·G + d′

d′
a
(G))∼s if ε ∈ L(F ),

( d′
d′

a
(F ) ·G)∼s otherwise.

The derivative automaton B = (Σ, Q, {q0}, F, δ) of a regular expression E over
an alphabet Σ is defined by Q = DE , q0 = E, F = {q ∈ Q | ε ∈ L(q)},
δ = {(q, a, q′) ∈ Q×Σ×Q | d′

d′
a
(q) = q′}. The automaton B is deterministic and

it recognizes the language L(E). Its size can be exponentially larger than the
number of symbols of E.
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Antimirov’s algorithm [1] constructs a non-deterministic automaton from a
regular expression E. It is based on the partial derivative computation. The
partial derivative of a simple regular expression E w.r.t. a symbol a is the set
∂
∂a

(E) of expressions defined as follows:
∂
∂a

(∅) = ∂
∂a

(ε) = ∂
∂a

(b) = ∅, ∂
∂a

(a) = {ε},
∂
∂a

(F + G) = ∂
∂a

(F ) ∪ ∂
∂a

(G), ∂
∂a

(F ∗) = ∂
∂a

(F ) · F ∗,

∂
∂a

(F ·G) =
{ ∂

∂a
(F ) ·G ∪ ∂

∂a
(G) if ε ∈ L(F ),

∂
∂a

(F ) ·G otherwise,

with for any set E of expressions, E · F =
⋃

E∈E E · F .
The partial derivative of E is extended to words of Σ∗ as follows:

∂
∂ε

(E) = {E}, ∂
∂aw

(E) = ∂
∂w

( ∂
∂a

(E)),

with for a set E of expressions, ∂
∂a

(E) =
⋃

E∈E
∂
∂a

(E). Every element of a partial
derivative is called a derivated term of E. Antimirov [1] has shown that the set
D′

E of the derivated terms of E is such that Card(D′
E) ≤ n + 1, where n is the

number of symbols of E. The derivated term automaton A = (Σ, Q, {q0}, T, δ)
of a simple regular expression E is defined as follows: Q = D′

E , q0 = E, F =
{q ∈ Q | ε ∈ L(q)}, δ = {(q, a, q′) ∈ Q×Σ ×Q | q′ ∈ ∂

∂a
(q)}. The automaton A

recognizes the language L(E).

3 Comparison Functions: Symbols, Sequences and Words

Let Σ be an alphabet, S = Σ ∪{ε} and X be a subset of S×S. A cost function
C over X is a function from X to N satisfying Condition 1: for all α in S,
C(α, α) = 0. For any pair (α, β) in S×S such that C(α, β) is not defined, let us
set C(α, β) = ⊥. Consequently, a cost function can be viewed as a function from
S × S to N∪ {⊥} satisfying Condition 1. Since we use ⊥ to deal with undefined
computation, we set for all x in N ∪ {⊥}, ⊥+ x = x +⊥ = x−⊥ = ⊥− x = ⊥
and for all integers x, y in N, x − y = ⊥ when y > x. A cost function can be
represented by a directed and labelled graph C = {S, V } where V is a subset of
S× (N∪{⊥})×S such that for all (α, β) in S×S, C(α, β) = k ⇔ (α, k, β) ∈ V .
Transitions labelled by ⊥ can be omitted in the graphical representation, as well
as the implicit transitions (α, 0, α) (See Example 1).

Example 1. Let Σ = {a, b, c}. Let C be the cost function defined as follows:

C(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 �� x = y,
4 �� x = a ∧ y = c,
3 �� x = c ∧ y = a,
1 �� x ∈ {a, c} ∧ y = b,
⊥ �������
��

ba c ε

�

�

�

�

Fig. 1. The cost function C

The cost function C can be represented by the graph in Figure 1.
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Given a positive integer k we now consider the set Sk of all the sequences
s = (s1, . . . , sk) of size k made of elements of S. A sequence comparison function
is a function F from

⋃
k∈N

Sk × Sk to N∪ {⊥}. Given a pair (s, s′) of sequences
with the same size, F(s, s′) either is an integer or is undefined. In the following
we will consider sequence comparison functions F satisfying Condition 2: F
is defined from a given cost function C over S × S, and Condition 3: F is a
symbol-wise comparison function, that is, for any two sequences s = (s1, . . . , sn)
and s′ = (s′1, . . . , s′n), it holds:
F(s, s′) = F((s1), (s′1)) + F((s2, . . . , sn), (s′2, . . . , s

′
n)) =

∑
k∈{1,...,n} F((sk), (s′k)).

We consider that those functions satisfy Condition 1: for all α in S, F((α), (α)) =
0. Consequently, for any pair of sequences s = (s1, . . . , sk) and s′ = (s′1, . . . , s

′
k)

such that k �= 1, Condition 4 is satisfied: if there exists an integer k′ in
{1, . . . , k} such that sk′ = s′k′ = ε, then:

F(s, s′) = F((s1, . . . , sk′−1, sk′+1, . . . , sk), (s′1, . . . , s
′
k′−1, s

′
k′+1, . . . , s

′
k)).

As a consequence of Condition 3, a symbol-wise sequence comparison function is
defined by the images of the pairs of sequences of size 1. Notice that a sequence
comparison function is not necessarily symbol-wise, e.g. for a given cost function
F, F((s1, . . . , sn), (s′1, . . . , s

′
n)) =

∑
k∈{1,...,n} F(sk, s′k)k.

Two of the most well-known symbol-wise sequence comparison functions are the
Hamming one (H) and the Levenshtein one (L) respectively defined for any pair
of sequences s = (s1, . . . , sn) and s′ = (s′1, . . . , s

′
n) in Sn × Sn and any integer

n > 0 by:
H(s, s′) =

∑
k∈{1,...,n} H(sk, s′k), L(s, s′) =

∑
k∈{1,...,n} L(sk, s′k),

with H and L the two cost functions defined for all a, b in Σ ∪ {ε} by:

H(a, b) =

⎧⎨⎩
⊥ if (a = ε ∨ b = ε) ∧ (a, b) �= (ε, ε),
1 if a �= b,
0 otherwise,

and L(a, b) =
{

1 if a �= b,
0 otherwise.

Let us now explain how a word function comparison can be deduced from a
sequence comparison function. Let w be a word in Σ∗ and |w| be its length. The
sequence s = (s1, . . . , sn) in Sn is said to be a split-up of w if s1 · · · sn = w. The
set of all the split-ups of size k of a word w is denoted by Splitk(w) and the set
of all the split-ups of w is denoted by Split(w) .

Let F be a sequence comparison function, (u, v) be a pair of words of Σ∗, and
k be a positive integer. We consider the following sets:

Y (u, v) = {F(u′, v′) | ∃k ∈ N, k ≥ 1 ∧ (u′, v′) ∈ Splitk(u)× Splitk(v)} ∩ N,
Ym(u, v) = {F(u′, v′) | ∃k ∈ N, 1 ≤ k ≤ m ∧ (u′, v′) ∈ Splitk(u)× Splitk(v)} ∩N.

Definition 2. Let F be a sequence comparison function. The word comparison
function associated with F is the function F from Σ∗ ×Σ∗ to N ∪ {⊥} defined by:

F(u, v) = min{Y (u, v)} if Y (u, v) �= ∅, F(u, v) = ⊥ otherwise.

In the case of a sequence comparison function based on a cost function, the whole
set N needs not to be considered. Indeed, according to Condition 4, if u �= ε or
v �= ε, then Y (u, v) = Y|u|+|v|(u, v) and we can write:
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F(u, v) =

⎧⎨⎩
0 if u = v = ε,
min{Y|u|+|v|} if (u, v) �= (ε, ε) ∧ Y|u|+|v| �= ∅,
⊥ otherwise.

The Hamming distance H and the Levenshtein distance L are the word compar-
ison functions respectively associated to the sequence comparison functions H
and L. Both of them satisfy the properties of word distances1. Notice that in
the following we will handle word comparison functions that are not necessarily
distance ones (e.g. Example 1).

Example 3. Let C be the cost function defined in Example 1. Let s = (s1)
and s′ = (s′1) be two sequences of size 1. We define four symbol-wise sequence
comparison functions by setting the images of the pairs of sequences of size 1
from the cost function C.
→C (s, s′) = C(s1, s

′
1), ↔C (s, s′) = min{C(s1, s

′
1), C(s′1, s1)},

←C (s, s′) = C(s′1, s1), ⇒C (s, s′) = minx∈Σ∪{ε}{C(s1, x) + C(s′1, x)}.
Let us consider the two split-ups s = (a, c, a) and s′ = (c, a, c). According to
Figure 2, it holds:

→C (s, s′) = 11%
←C (s, s′) = 10%
↔C (s, s′) = 9%
⇒C (s, s′) = 6


s = (

→C:

a c a )

s′ = ( c a c )

� � � ��

s = (

↔C:

a c a )

s′ = ( c a c )

� � � �

s = (

←C:

a c a )

s′ = ( c a c )

� � � ��

s = ( a c a )

b⇒C: b b

cs′ = ( a c )

� � �

� � �

�

Fig. 2. Examples of sequence comparisons

Any word comparison function can be used as an operator for languages,
leading to an extension of the expressivity of expressions for any bounded length.

Definition 4. Let L be a language over an alphabet Σ, F a word comparison
function and k an integer in N ∪ {⊥}. Then:

Fk(L) =
{
{w ∈ Σ∗ | ∃u ∈ L,F(w, u) ∈ {0, . . . , k}} if k ∈ N,
∅ otherwise.

Let us notice that Fk(Fk′ (L)) is not necessarily equal to Fk+k′(L). Indeed, let us
consider the three languages L1 = F1({a}), L2 = F1(F1({a})) and L3 = F2({a})
over the alphabet Σ = {a, b} with F the word comparison function associated
with the symbol-wise sequence comparison function F defined for any symbol
α, β by F((α), (β)) = 0 if α = β, F((α), (β)) = 2 otherwise. Then L1 = L2 = {a}
whereas L3 = {ε, a, b, aa, ab, ba}.
1 A word distance D is a word comparison function over words in Σ∗ satisfying the

three following properties for all x, y, z ∈ Σ∗: (1) D(x, y) = 0 ⇒ x = y, (2) D(x, y) =
D(y, x), (3) D(x, y) + D(y, z) ≥ D(x, z).
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An approximate regular expression (ARE) E over an alphabet Σ is induc-
tively defined by E = ∅, E = ε, E = a, E = F + G, E = (F · G), E = (F ∗),
E = Fk(F ) where a is any symbol in Σ, F and G are any two AREs, F is any
symbol-wise word comparison function and k is any integer in N ∪ {⊥}. The
language denoted by an ARE E is the language L(E) inductively defined by
L(∅) = ∅, L(a) = {a}, L(F + G) = L(F ) ∪ L(G), L(F · G) = L(F ) · L(G),
L(F ∗) = L(F )∗ and L(Fk(F )) = Fk(L(F )) where a is any symbol in Σ, F and
G are any two AREs, F is any symbol-wise word comparison function and k is
any integer in N∪{⊥}. In order to prove that the language denoted by an ARE
E is regular, we show how to compute a finite automaton recognizing L(E).

4 Word Comparison Functions, Quotients and Derivatives

In this section, we present two constructions of an automaton from an ARE
using Brzozowski’s derivatives and Antimirov’s ones, respectively leading to a
deterministic automaton and a non-deterministic one. We first show how to
compute the quotient of a given language Fk(L) w.r.t. a symbol a, where F is a
given word comparison function, k an integer and L a regular language.

4.1 Quotient of an Fk(L) Language

Let F be a word comparison function associated with a symbol-wise sequence
comparison function F defined over an alphabet Σ. Let k be a positive integer,
a be a symbol in Σ, u = aw be a word of Σ+, and L′ be a regular language
of Σ∗. According to Definition 4, the word u is in L = Fk(L′) if and only if
there exists a word v ∈ L′ such that F(u, v) ≤ k. According to Definition 2, this
is equivalent to the existence of an alignment (u′, v′) ∈ Splitn(u) × Splitn(v),
where n is a positive integer, between u and v, the cost F(u′, v′) of which is
not greater than k. Let u′ = (u′

1, . . . , v
′
n) and v′ = (v′1, . . . , v

′
n). (a) If n = 1,

F(u, v) = F((a), (v′1)) and since u = aw, a ∈ L ⇔ w ∈ Fk−F((a),(v′
1))

v′1
−1(L′).

(b) Otherwise, let us set u′′ = (u′
2, . . . , u

′
n) and v′′ = (v′2, . . . , v

′
n). Moreover, let

us set t = u if u′
1 = ε and t = u′

2 · · ·u′
n otherwise; let us similarly set z = v if

v′1 = ε and z = v′2 · · · v′n otherwise. Obviously, the word z belongs to v′1
−1(L′).

Since F is a symbol-wise word comparison function, there exists an alignment
(u′, v′) between u and v satisfying F(u′, v′) ≤ k if and only if there exists an
alignment (u′′, v′′) between t and z satisfying F(u′′, v′′) ≤ k−F((u′

1), (v
′
1)). Ac-

cording to Definition 2, this is equivalent to the existence of a word z ∈ v′1
−1(L′)

such that F(t, z) ≤ k − F((u′
1), (v

′
1)). According to Definition 4, it is equivalent

to say that the word t is in Fk−F((u′
1),(v

′
1))(v′1

−1(L′)). Depending on the value of
(u′

1, v
′
1) we can distinguish the following cases:

Case 1 (u′
1, v

′
1) = (a, b), with b ∈ Σ: u = aw ∈ L⇔ w ∈ Fk−F(a,b)(b−1L′),

Case 2 (u′
1, v

′
1) = (a, ε) with a ∈ Σ: u = aw ∈ L⇔ w ∈ Fk−F(a,ε)(L′),

Case 3 (u′
1, v

′
1) = (ε, b), with b ∈ Σ: u = aw ∈ L⇔ w ∈ a−1(Fk−F(ε,b)(b−1L′)).

Since w ∈ a−1Fk(L′) ⇔ aw ∈ Fk(L′), the three previous cases provide a recur-
sive expression of the quotient of the language Fk(L′) w.r.t. a symbol a ∈ Σ.



186 J.-M. Champarnaud, H. Jeanne, and L. Mignot

Unfortunately, its computation may imply a recursive loop, due to Case 3, when
F((ε), (b)) = 0. It is possible to get rid of this loop by precomputing the set of
all the quotients of L′ w.r.t. words w such that F(ε, w) = 0. In this purpose, let
us set WF = (

⋃
b∈Σ,F((ε),(b))=0{b})∗ and X(L′) = {L′}∪

⋃
w∈WF{w

−1(L′)}. Let
us notice that if L′ is a regular language, the set of its residuals is finite; as a
consequence, so is X(L′).

Lemma 5. Let L = Fk(L′) be a language over an alphabet Σ where L′ is a
regular language, F is a symbol-wise word comparison function associated with
a sequence comparison function F and a be a symbol in Σ. The quotient of L
w.r.t. a is the language a−1(L) computed as follows:

a−1(L)=
{ ⋃

L′′∈X(L′),b∈Σ(Fk−F((a),(b))(b−1(L′′)))∪
⋃

L′′∈X(L′) Fk−F((a),(ε))(L′′)
∪ a−1(

⋃
L′′∈X(L′),b∈Σ,F((ε),(b)) �=0(Fk−F((ε),(b))(b−1(L′′))))

where X(L′) = {L′} ∪
⋃

w∈WF w−1(L′) with WF = (
⋃

b∈Σ,F((ε),(b))=0{b})∗.

Proof. For any symbol α, β in Σ ∪ {ε}, let us set kα,β = k −F((α), (β)).
u ∈ a−1(L) ⇔ au ∈ L ⇔ ∃w ∈ L′,F(au, w) ∈ {0, . . . , k}

⇔

⎧⎨⎩ ∃b ∈ Σ, ∃w1bw2 ∈ L′,F(ε, w1) = 0 ∧ F(u, w2) ≤ ka,b

∨ ∃w1w2 ∈ L′,F(ε, w1) = 0 ∧ F(u, w2) ≤ ka,ε

∨ ∃b ∈ Σ, ∃w1bw2 ∈ L′,F(ε, w1) = 0 ∧ F((ε), (b)) �= 0 ∧ F(au, w2) ≤ kε,b

⇔

⎧⎨⎩
∃b ∈ Σ, ∃w1 ∈ WF , ∃w2 ∈ (w1b)−1(L′),F(u, w2) ≤ ka,b

∨ ∃w1 ∈ WF , ∃w2 ∈ (w1)−1(L′),F(u, w2) ≤ ka,ε

∨ ∃b ∈ Σ, ∃w1 ∈ WF , ∃w2 ∈ (w1b)−1L′,F((ε), (b)) �= 0 ∧ F(au, w2) ≤ kε,b

⇔

⎧⎨⎩
∃b ∈ Σ, ∃w2 ∈ b−1(

⋃
L′′∈X(L′) L′′),F(u, w2) ≤ ka,b

∨ ∃w2 ∈
⋃

L′′∈X(L′) L′′,F(u, w2) ≤ ka,ε

∨ ∃b ∈ Σ, ∃w2 ∈ b−1(
⋃

L′′∈X(L′) L′′),F((ε), (b)) �= 0 ∧ F(au, w2) ≤ kε,b

⇔

⎧⎨⎩
∃b ∈ Σ, u ∈ Fka,b

⋃
L′′∈X(L′) b−1(L′′)

∨ u ∈
⋃

L′′∈X(L′) Fka,ε(L′′)
∨ ∃b ∈ Σ, au ∈ Fkε,b

(
⋃

L′′∈X(L′) b−1(L′′))

⇔

⎧⎨⎩
u ∈

⋃
L′′∈X(L′),b∈Σ Fk−F((a),(b))b

−1(L′′)
∨ u ∈

⋃
L′′∈X(L′) Fk−F((a),(ε))(L′′)

∨ u ∈ a−1(
⋃

L′′∈X(L′),b∈Σ,F((ε),(b)) �=0 Fk−F((ε),(b))b
−1(L′′))

��

4.2 Brzozowski Derivatives

An extension of Brzozowski derivatives can be directly deduced from the com-
putation of the quotient presented in Lemma 5.

Definition 6. Let E = Fk(E′) be an ARE over an alphabet Σ where F is asso-
ciated with F and a be a symbol in Σ. The dissimilar derivative of E w.r.t. a is
the expression d′

d′
a
(E) defined by:

d′
d′

a
(E) =

⎛⎜⎝
∑

F∈X(E′),b∈Σ(Fk−F((a),(b))( d′
d′

b
(F )))

+
∑

F∈X(E′) Fk−F((a),(ε))(F )
+ d′

d′
a
(
∑

F∈X(E′),b∈Σ,F((ε),(b)) �=0(Fk−F((ε),(b))( d′
d′

b
(F ))))

⎞⎟⎠
∼s

,
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where X(E′) = {E′} ∪
⋃

w∈WF
d′
d′

w
(E′) with WF = (

⋃
b∈Σ,F((ε),(b))=0{b})∗.

Let us show that the set of dissimilar derivatives of E is finite (Lemma 7), that
the computed expression satisfies the relation between derivation and quotient
(Lemma 8) and how to determine whether the empty word belongs to the lan-
guage denoted by an ARE (Lemma 9).

Lemma 7. Let E = Fk(E′) be an ARE over an alphabet Σ and DE be the set
of dissimilar derivatives of E. Then DE is a finite set of AREs. Moreover, its
computation halts.

Proof. Consider that F is associated with F . Let us show by induction over the
structure of E′ and by recurrence over k that DE is a finite set of AREs.

By induction, the set DE′ is a finite set of AREs. Consequently, since X(E′)
is a subset of DE′ , (Fact 1) X(E′) is a finite set of derivatives of E′.

In order to show that DE is a finite set, let us show that any derivative G of
E satisfies the property P(E′, k): G is a finite sum of expressions of type Fk′(G′)
with k′ ≤ k and G′ a derivative of E′.

According to Fact 1, any subexpression Fk−F((a),(ε))(F ) with F ∈ X(E′) sat-
isfies P(E′, k). Since X(E′) is a subset ofDE′ , d′

d′
b
(F ) is a derivative of E′ for any b

in Σ. Consequently,
∑

F∈X(E′),b∈Σ(Fk−F((a),(b))( d′
d′

b
(F ))) also satisfies P(E′, k).

Finally, by recurrence hypothesis, for k′ < k, any derivative of an expression
Fk′(G′) satisfies P(G′, k′). Consequently, any derivative of Fk−F((ε),(b))( d′

d′
b
(F ))

satisfies P( d′
d′

b
(F ), k−F((ε), (b))) if F((ε), (b)) �= 0. Since F is a derivative of E′,

so is d′
d′

b
(F ), and since k −F((ε), (b)) < k, any derivative of Fk−F((ε),(b))( d′

d′
b
(F ))

satisfies P(E′, k). As a consequence, (Fact 2) any derivative of E w.r.t. a symbol
a satisfies P(E′, k).

Let us show now that if an expression H satisfies P(E′, k), then any symbol
derivative of H also satisfies P(E′, k). Since H is a sum of expressions of type
Fk′(G′) where k′ ≤ k and G′ is a derivative of E′, any symbol derivative H ′ of
H is the sum of the derivatives of the expressions H is the sum of. According
to Fact 2, any symbol derivative of an expression Fk′(G′) satisfies P(G′, k′).
Since G′ is a derivative of E′ and k′ ≤ k, any expression satisfying P(G′, k′) also
satisfies P(E′, k). As a consequence, any derivative of E w.r.t. a word w in Σ∗

satisfies P(E′, k).
As a conclusion, since any derivative of E is a sum of expressions all belonging

to the finite set {Fk′(G) | k′ ≤ k ∧ G ∈ DE′}, using the ACI-equivalence, DE

is a finite set of AREs. Moreover, by induction over E′ and by recurrence over
k, since any derivative of an expression F in X(E′) belongs to the finite set
of derivatives of E′ the computation of which halts, and since F((ε), (b)) �= 0
implies that k −F((ε), (b)) < k, the computation of DE halts. ��

Lemma 8. Let E = Fk(E′) be an ARE over an alphabet Σ and a be a symbol
in Σ. Then L( d′

d′
a
(E)) = a−1(L(E)).
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Lemma 9. Let E = Fk(E′) be an ARE over an alphabet Σ and a be a symbol
in Σ. Let WF = (

⋃
b∈Σ,F((ε),(b))=0{b})∗ and X(E′) = {E′} ∪

⋃
w∈WF

d′
d′

w
(E′).

Then the two following propositions are equivalent:

-ε ∈ L(E)
-k �= ⊥∧ε ∈

⋃
F∈X(E′) L(F )∪L(

∑
F∈X(E′),b∈Σ,F((ε),(b)) �=0(Fk−F((ε),(b))( d′

d′
b
(F ))))

Furthermore, this equivalence defines a membership test that halts.

Lemma 7 ensures that the derivative automaton D of an ARE E, computed from
the set DE of dissimilar derivatives of E following the classical way, is a finite
recognizer. Lemma 9 ensures that the set of final states can be computed, since
the number of derivatives is finite. Finally, Lemma 8 ensures that the DFA D
recognizes L(E).

Example 10. Let F = b∗(a + b)c∗ and E = H1(F ) be an ARE over Σ = {a, b, c}
where H is the Hamming distance. Derivatives of E are the following expressions:

d′
d′

a
(E) = H0(F ) + H1(c∗) + H0(c∗) = E1

d′
d′

b
(E) = E + H1(c∗) + H0(c∗) = E2

d′
d′

c
(E) = H0(F ) + H0(c∗) = E3

d′
d′

a
(E1) = H0(c∗) = E4

d′
d′

b
(E1) = H0(F ) + H0(c∗) = E3

d′
d′

c
(E1) = H1(c∗) + H0(c∗) = E5

d′
d′

a
(E2) = H0(F ) + H1(c∗) + H0(c∗) = E1

d′
d′

b
(E2) = E + H1(c∗) + H0(c∗) = E2

d′
d′

c
(E2) = H0(F ) + H0(c∗) + H1(c∗) = E1

d′
d′

a
(E3) = H0(c∗) = E4

d′
d′

b
(E3) = H0(F ) + H0(c∗) = E3

d′
d′

c
(E3) = H0(c∗) = E4

d′
d′

a
(E4) = ∅

d′
d′

b
(E4) = ∅

d′
d′

c
(E4) = H0(c∗) = E4

d′
d′

a
(E5) = H0(c∗) = E4

d′
d′

b
(E5) = H0(c∗) = E4

d′
d′

c
(E5) = H1(c∗) + H0(c∗) = E5

The derivative automaton of E is given Figure 3.

E

E1E2

E3 E4

E5

a

b

c

ab

ca,c
b

a,c

b

c

a,b

c

Fig. 3. The derivative automaton of E = H1(b
∗(a + b)c∗)

4.3 Antimirov Derivatives

The derivative computation can be rewritten using sets of expressions in order to
compute a nondeterministic recognizer from an ARE using partial derivatives.
For convenience, let us set for E a set of expressions Fk(E) =

⋃
E∈E Fk(E) and

L(E) =
⋃

E∈E L(E).
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Definition 11. Let E = Fk(E′) be an ARE over an alphabet Σ where F is
associated with F and a be a symbol in Σ. The partial derivative of E w.r.t. a
is the set ∂

∂a
(E) computed as follows:

∂
∂a

(E) =

{ ⋃
F∈X(E′),b∈Σ(Fk−F((a),(b))( ∂

∂b
(F ))) ∪

⋃
F∈X(E′) Fk−F((a),(ε))(F )

∪ ∂
∂a

(
⋃

F∈X(E′),b∈Σ,F((ε),(b)) �=0(Fk−F((ε),(b))( ∂
∂b

(F ))))
,

where WF = (
⋃

b∈Σ,F((ε),(b))=0{b})∗ and X(E′) = {E′} ∪
⋃

w∈WF
∂

∂w
(E′).

Lemma 12. Let E = Fk(E′) be an ARE over an alphabet Σ and a be a symbol
in Σ. Then L( ∂

∂a
(E)) = a−1(L(E)).

Let TE be the set of derivated terms of an ARE E w.r.t. the words in Σ∗, that
is the set of the elements of all the partial derivatives of E.

Lemma 13. Let E = Fk(E′) be an ARE over an alphabet Σ. Then:

TE ⊂
⋃

k′∈{0,...,k} Fk′(TE′).

Moreover, the computation of TE halts.

Corollary 14. Let E = Fk(E′) be an ARE over an alphabet Σ. Then TE is a
finite set of AREs. Furthermore, Card(TE) ≤ Card(TE′)× (k + 1).

Lemma 15. Let E = Fk(E′) be an ARE over an alphabet Σ and a be a symbol
in Σ. Let WF = (

⋃
b∈Σ,F((ε),(b))=0{b})∗ and X(E′) = {E′} ∪

⋃
w∈WF

∂
∂w

(E′).
Then the two following propositions are equivalent:

-ε ∈ L(E),
-k �= ⊥∧ε ∈

⋃
F∈X(E′) L(F )∪L(

⋃
F∈X(E′),b∈Σ,F((ε),(b)) �=0(Fk−F((ε),(b))( ∂

∂b
(F ))))

Furthermore, this equivalence defines a membership test that halts.

Corollary 14 ensures that the derivated term automaton D′ of an ARE E, com-
puted from the set TE of derivated terms of E following the classical way, is a
finite recognizer. Lemma 15 ensures that the set of final states can be computed.
Finally, Lemma 12 ensures that the NFA D′ recognizes L(E).

Example 16. Let E be the ARE defined in Example 10. Partial derivatives of E
are the following sets of expressions:

∂
∂a

(E) = {H0(F ),H1(c∗),H0(c∗)} ∂
∂a

(H1(c∗)) = {H0(c∗)}
∂
∂b

(E) = {E,H1(c∗),H0(c∗)} ∂
∂b

(H1(c∗)) = {H0(c∗)}
∂
∂c

(E) = {H0(F ),H0(c∗)} ∂
∂c

(H1(c∗)) = {H1(c∗)}
∂
∂a

(H0(F )) = {H0(c∗)} ∂
∂a

(H0(c∗)) = ∅
∂
∂b

(H0(F )) = {H0(F ),H0(c∗)} ∂
∂b

(H0(c∗)) = ∅
∂
∂c

(H0(F )) = ∅ ∂
∂c

(H0(c∗)) = {H0(c∗)}

The derivated term automaton of E is given Figure 4.
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H1(F )

H0(F )

H1(c∗)

H0(c∗)

a,c

a,b

a,b,c
b

a,b
b

a,b

c

c

Fig. 4. The derivated term automaton of E = H1(b
∗(a + b)c∗)

5 Conclusion

The similarity operators that equip the family of approximate regular expres-
sions enhance the expressiveness of expressions and make AREs to be a nice
tool to deal with approximate regular expression matching. From the compu-
tation of the derivatives of such an operator, it is possible to convert an ARE
into a finite automaton. An additional advantage of similarity operators is that
they can be combined with other regular operators, such as intersection and
complementation operators [3], in order to produce even smaller expressions.
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Abstract. In this paper we introduce a class of Petri nets, called cat-
alytic Petri nets, and a suitable firing strategy where transitions are fired
only when they use tokens from specific places, called catalytic places.
By establishing a one-to-one relationship with catalytic membrane sys-
tems, we can prove that the class of catalytic Petri nets with at least two
catalytic places is Turing complete.

1 Introduction

Soon after their introduction in the early 60’s, Petri nets have been acknowl-
edged as a formalism for modeling distributed and concurrent computations
and, from a formal language theoretic point of view, their expressivity has been
investigated. On the one side, the classes of languages defined by Petri nets, i.e.,
sets of sequences of labeled or unlabeled transitions, have been studied from the
beginning of the 70’s (e.g. in [15] and references therein) and the research on
this topic is still in progress. On another side the question of “how expressive
Petri nets are” has been asked and the answer can be summarized as follows:
Petri nets under the usual step firing strategy are not Turing complete (see [18]
and the surveys [10,9] for a comprehensive knowledge), while they are Turing
complete under suitable assumptions on the firing strategy, either maximality
(all the possible transitions are fired together) or ordering (a transition should
fire as soon as it is enabled), as shown in [3] and [4].

In order to make Petri nets Turing complete, different approaches have been
taken; notably the one which extends the kind of arcs considered. The classic
extension is the one where inhibitor arcs are considered, i.e., arcs where the
absence of tokens in certain places is modeled ([14]), or reset arcs, i.e., arcs with
the characteristic of emptying the preset, regardless of the number of tokens
present in the place ([8]). Other extensions of Petri Nets, not necessarily always
Turing complete, allow the introduction of non blocking arcs or transfer arcs
([11] and [13]) or making the transitions marking dependent ([5]).

Summing up, to make Petri nets Turing complete either suitable extensions
of the model have to be considered or quite heavy assumptions on the firing rule
have to be made. In the former case many among the main features of Petri
nets are retained, e.g., the locality of firing or the distributed state, whereas in
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the latter the characteristics that have made Petri nets an appealing and useful
model for concurrent and distributed computations are lost.

In this paper, inspired by membrane computing, we investigate the expressiv-
ity of Petri nets looking at suitable firing strategy and at the structure of the
nets itself. The connection between membrane computing and Petri nets has
already been established (see chapter 15 of the Oxford Handbook of Membrane
Computing [21] and references therein), where it is shown that to each kind of
membrane systems it is possible to associate a suitable labeled Petri net, where
the labeling of transitions is used to model the membrane structure.

We establish a relation between Petri nets and membrane systems showing
first that to each Petri net a membrane systems can be associated and vice versa,
and then that various firing strategy definable on Petri nets are matched by
corresponding evolutions steps in membrane systems. In particular we focus on
membrane systems with only one membrane and on catalytic membrane systems,
where the rules may use a catalyst, i.e., an object needed for applying the rule
but that it is never been consumed1. Then we use this relationship to establish
the Turing completeness of a suitable class of Petri nets (intuitively the one that
is translated into a catalytic membrane system) under a suitable firing strategy
which establish that a particular (proper) subset of the enabled transitions are
fired, namely the subset where the transitions involving catalytic places are used.
We use results of membrane computing to prove that the number of catalytic
places needed for Turing completeness is quite limited, namely just two.

The merit of the results presented in this paper is that they show that ex-
pressiveness of Petri nets can be increased without introducing suitable arcs,
without requiring transitions fired upon a complete snapshot of the system, and
therefore without loosing the locality of firing that is one of the main features of
Petri nets. In other word the state is still distributed. Furthermore the relation
established between Petri nets and membrane systems suggests that also other
classes of Petri nets with minimal parallelism (i.e., where a minimal number of
concurrent transitions are considered) could be Turing complete.

The paper is organized as follows: in the next section we will recall the basic
notions on Petri nets and their firing strategies, in section 3 we briefly recall
the definition of (catalytic) membrane system and establish some expressiveness
results. In section 4 we recall how to relate membrane systems to Petri nets
and introduce the vice versa as well, and in section 5 we show that catalytic
Petri nets with two catalysts are Turing complete when considering suitable
firing strategies (which are not the maximal one, or based on ordered firing of
transitions).

2 Petri Nets and Firing Strategies

Notations. With N we denote the set of natural numbers including zero, and
with N+ the set of positive natural numbers.

1 This notion is quite different from the one of read arc on Petri nets.
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Multisets. Given a set S, a multiset over S is a function m : S → N and with ∂S
we denote the set of multisets of S. The multiplicity of an element s in m is given
by m(s). A multiset m over S is finite iff the set dom(m) = {s ∈ S |m(s) �= 0}
is finite. All the multisets we consider in this paper are finite. A multiset m such
that dom(m) = ∅ is called empty and it is denoted by 0. The cardinality of a
multiset is defined as #(m) =

∑
s∈Sm(s). Given a multiset in ∂S and a subset

Ŝ of S, with m|Ŝ we indicate the multiset over Ŝ such that m|Ŝ(s) = m(s).
We write m ⊆ m′ if m(s) ≤ m′(s) for all s ∈ S, and m ⊂ m′ if m ⊆ m′ and
m �= m′. The operator ⊕ denotes multiset union: m ⊕ m′(s) = m(s) + m′(s).
The operator 2 denotes multiset difference: m2m′(s) = if m(s) > m′(s) then
m(s) − m′(s) else 0. The scalar product of a number j with a multiset m is
(j·m)(s) = j·(m(s)). Sometimes a multisetm ∈ ∂S is written as⊕s∈Sns·s, where
ns = m(s); we omit the summands where ns is equal 0. If m ∈ ∂S, we denote by
[[m]] the multiset defined as [[m]](a) = 1 if m(a) > 0, and [[m]](a) = 0 otherwise;
sometimes [[m]] is identified (used interchangeably) with the corresponding subset
{a ∈ S | [[m]](a) = 1} of S (observe that this is different from dom(m): this
one is the set of elements on S such that m(s) > 0, whereas [[m]] is a particular
multiset associated to m).

Petri Nets. A Petri net is a tuple N = ((S, T, F,m0),S) where S is a set of
places, T is a set of transitions, F : (S × T ) ∪ (T × S) → N is a flow relation,
m0 ∈ ∂S is the initial marking and S ⊆ S is a set of final places. Furthermore
S ∩T = ∅. With •x (x•, respectively) we indicate the multiset F ( , x) (F (x, ),
respectively), and they are called the preset (postset, respectively) of x. We
assume that for each transition t, dom( •t) �= ∅.

Given a net N = ((S, T, F,m0),S), we say that N is a state machine iff
∀t ∈ T . |dom( •t)| = |dom(t•)| = 1; and N is an input state machine iff ∀t ∈ T .
|dom( •t)| = 1 and •t = [[ •t]]. Let S′ ⊆ S be a subset of places, the subnet of N
generated by S′ is the net defined as follows:N@S′ = ((S′, T@S′, F@S′,m0@S′),
S∩ S′) where T@S′ = {t ∈ T | ∃s ∈ S′ such that either F (s, t) > 0 or F (t, s) >
0}, F@S′ is the restriction of F to S′, and m0@S′ = m0|S′ .

Firing strategies. We discuss now the dynamic of Petri nets. A multiset over S
is called a marking for the net. Let m ∈ ∂S be a marking of a net. A multiset
U ∈ ∂T of transitions is enabled under m if for all s ∈ S

∑
t∈T U(t) · F (s, t) ≤

m(s), and it is written as m [U〉st . If a finite multiset U ∈ ∂T is enabled at a
markingm (i.e., m [U〉st ), then U may fire reaching a new markingm′ defined as
m′(s) = m(s)+

∑
t∈T U(t) ·(F (t, s)−F (s, t)), for all s ∈ S. We write m [U〉stm′,

and call U a step. We observe that if t ∈ dom(U) is such that either •t = [[ •t]] or
t• = [[t•]], then the firing of the transition t consumes one token from each place
in dom( •t) or produces one token in each place in dom(t•). When considering
steps, we often omit the subscript st, thus we write simply m [U〉 and m [U〉m′.

A step firing sequence is defined as follows: m0 is a step firing sequence, and if
m0 [U1〉m1 . . .mn−1 [Un〉mn is a step firing sequence and mn [Un+1〉mn+1, then
also m0 [U1〉m1 . . .mn−1 [Un〉mn [Un+1〉mn+1 is a step firing sequence. Given
a net N = ((S.T, F,m0),S), a marking m is reachable if there is a step firing
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sequence leading to it, i.e., m0 [U1〉m1 . . .mn−1 [Un〉mn with m = mn. The set
of reachable marking of the net N is denoted with M(N). Given a Petri net N ,
it has been shown that the problem of deciding whether a given marking m is
reachable from the initial one (i.e., if m ∈ M(N)) is decidable (see [10] for a
survey).

The ordinary firing strategy of Petri nets (just one enabled transition is fired at
each marking, regardless of how many are simultaneously enabled) is an instance
of the step firing strategy we have previously revised: in this case the multiset
U is such that U = [[U ]] and #(dom(U)) = 1. We observe that, given a step
m [U〉m′, it may be always linearized and m′ can be reached from m with a
possibly different step firing sequence.

Steps, and hence firing strategies, may have suitable characteristics. Here we
concentrate on two of these, namely maximality and place-awareness. A step U
enabled at a markingm is maximal iff each step U ′ such that U ⊂ U ′ is such that
¬ (m [U ′〉 ). A maximal step will be denoted with m [U〉maxm′, and a maximal
step firing sequence is a step firing sequence where each step is maximal. The set
of reachable marking of a net N with maximal step firing sequences is Mmax(N).
In this case it holds thatMmax(N) ⊆ M(N) and the containment may be proper
(indeed it often is, as reachability in the case of this firing strategy is undecidable
[4]). Place-awareness concerns the requirement that suitable places are involved,
if possible. More formally, consider a subset of places S ⊆ S. A step U enabled
at a marking m is S-enabled iff for all s ∈ S either there exists a t ∈ dom(s•)
and U(t) �= 0, or for all t′ ∈ dom(s•) it holds that ¬m [t′〉 . We write m [U〉S to
indicate this, and the corresponding step called S-step is denoted by m [U〉S m′.
Firing sequences where each step is a S-step are defined as usual, and the set of
reachable markings under this firing strategy is MS(N). To ease the notation we
use a subscript to indicate which firing strategy is used: step, maximal, S-step;
when no subscript is used, we assume that it is the step firing strategy.

Given a net N and a marking m of N = ((S, T, F,m0),S), we say that m is a
final marking iffm ∈ M(N) and for all t ∈ T we have ¬(m [t〉 ). We are interested
in the reachable markings (under a firing strategy fs ∈ {step,max ,S}) that are
also final: Ffs(N) = {m ∈ Mfs(N) | m is final}. Among the final markings,
we may be interested in considering either the numbers of tokens contained in
certain places, or the marking in these places. Let ((S, T, F,m0),S) be a Petri

net; we denote by FS
fs(N) and F#S

fs (N) the sets {m|S | m ∈ Ffs(N)} and
{#(m|S) | m ∈ Ffs(N)}, respectively.

3 Membrane Systems with Catalysts

Membrane systems (also called P systems) represent abstract computing mod-
els based on operations with multisets. They are inspired by the structure of
(eukaryotic) cells, namely by the role of their membranes delimiting different
compartments, and thus can help to understand information processes in the
nature. The most comprehensive recent monograph is the Oxford Handbook
of Membrane Computing [21]. Membrane computing was introduced in [20],
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volume [7] presents various applications, while the P Systems webpage presents
recent developments.

Starting from the observation that there is an obvious parallelism in the cell
biochemistry [2], and relying on the assumption that “if we wait enough, then all
reactions which may take place will take place”, a basic feature of the P systems
is the maximally parallel way of using the rules: in each step, in each region of
a system, we have to use a maximal multiset of rules. This maximal parallelism
decreases the non-determinism of the systems evolution, and it provides enough
power to get computational Turing completeness.

There are several types of membrane systems (defined by various ingredients
inspired from cell biology); we use one of the basic types, namely catalytic P
systems. A catalytic P system is formed by a hierarchical membrane structure
with uniquely labeled membranes, the whole structure being embedded in a
single skin membrane. Each membrane contains a multiset of abstract objects
(members of a finite alphabet) which is divided into two parts: the set C of
catalysts, and the set of non-catalytic objects. Each membrane has assigned
an initial multiset of objects and a fixed set of evolution rules of two possible
types: catalytic rules ca → cv, and non-cooperative rules a → v, where c is a
catalyst object, a is a non-catalyst object, and v is a (possibly empty) multiset of
objects. A catalytic P system is called purely catalytic if it contains only catalytic
rules. The rules are (usually) applied in the maximally parallel mode: at each
computational step and in each membrane, the selected multiset of applicable
rules must be maximal, i.e., unused objects do not allow to apply an additional
rule.

We formalize now the notion of flat P system and of flat catalytic P system.
It is shown in [1] that the flattened version of a transition P system has the
same computability power as a non flattened one; thus we can use the flattened
one without losing generality. The idea behind the notion of flattening is the
following one: the membrane structure of a P system, capturing the intuition
that a rule uses objects in specific compartment and produces objects in the
same compartment or in compartments that are close to this one (i.e., either
in the one surrounding it or compartments that are immediately internal to the
specific one).

Definition 1. A (flat) P system is the 4-tuple Πf = (O,w0, R,O′) where

– O is a finite set of objects, and O′ ⊆ O are the final objects,
– w0 ∈ ∂V is a finite multiset of objects, called the initial configuration, and
– R is a finite set of rules of the form r = u → v, with u, v ∈ ∂O and u �= 0.

A configuration of a membrane system is any finite multiset of objects.
A flat membrane system Πf is called catalytic iff there is a designated subset

OC ⊂ O of catalysts and the rules have the following form: either r = a → v
with a ∈ O\OC and v ∈ ∂(O\OC) or r = ca → cv with a ∈ O\OC, v ∈ ∂(O\OC)
and c ∈ OC . If all the rules are of the form r = ca → cv we say that the catalytic
P system is purely catalytic. We denote catalytic P systems with CΠ, and purely
catalytic ones with CPΠ.
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According to [1], any property proved for flat membranes could be also proved
for non-flat ones.

Given a rule r = u → v, with lhs(r) we denote the multiset u and with
rhs(r) the multiset v. The dynamic of a P system is formalized in the following

way: given a multiset of rules R (R ∈ ∂R) and a configuration w, w
R⇒ w′ iff

⊕r∈RR(r) · lhs(r) ⊆ w and w′ = w2 (⊕r∈RR(r) · lhs(r))⊕ (⊕r∈RR(r) · rhs(r)).
The transition w

R⇒ w′ is called an evolution step. A configuration w is reachable

from the initial one iff there exists a finite sequence of evolution steps w1
R1⇒

w1 · · ·wn
Rr⇒ wn+1 such that w1 = w0 and w = wn+1. The basic assumption

is that each step w
R⇒ w′ is maximal, namely for each R′ ⊇ R it holds that

⊕r∈RR′(r) · lhs(r) �⊆ w.
Computations are sequence of evolution steps, and a computation terminates

(halts) iff at the configuration w reached by this computation the only possible

evolution step is 0, i.e., w
0⇒ w. The result of the computation is w|O′ . The sets

calculated by a flat P systemΠf areNOmax(Π) = {#(w|O′) | there exists a halt-
ing computation (with maximal parallelism) and w is the reached configuration}
and PsOmax(Π) = {w|O′ | there exists a halting computation (with maximal
parallelism) and w is the reached configuration}. The class calculated by a suit-
able class of P systems will be denoted with NOmax and PsOmax, respectively,
overloading the notation.

As we recalled previously, in [1] it is shown that the flattening preserves the
computability power and expressiveness of P systems. With Πn we denote the
membrane system with n membranes, n ≥ 1. Consider a membrane system Πn

(not a flat one), we call flat(Πn) its flattened version; flattening a catalytic P
system gives a flat catalytic P system.

A research topic in membrane computing is to find more realistic P systems
from a biological point of view, and one target in this respect is to relax the con-
dition of using the rules in a maximally parallel way. Minimal parallelism was
introduced in [6]; it describes another way of applying the rules: if at least a rule
from a set of rules associated with a membrane (or a region) can be used, then at
least one rule from that membrane (or region) must be used, without any other
restriction (e.g., more rules can be used, but we do not care how many). Even
if it might look weak, this minimal parallelism still leads to Turing complete-
ness for a suitable class of P systems, called symport/antiport P systems. The
minimal parallelism stems out from the consideration that this way of using the
rules ensures that all compartments (or regions) of the system evolve in parallel
by using at least one rule, whenever such a rule is applicable. Considering the
class of flat catalytic P systems, Turing completeness may be achieved relaxing
the maximal parallelism requirement with the weaker one stating that for each
catalyst c at least one catalytic rule r = ca → cv is used, if possible. Thus the
question is how many catalysts are needed to obtain Turing completeness. With
RE we denote the set of recursively enumerable sets of numbers and with PsRE
the set of recursively enumerable sets of Parikh vectors. Finally with (CΠ,n) we
indicate the number of catalysts in the catalytic P system CΠ .
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A catalytic P system with a single membrane and only two catalysts has the
power of a Turing machine, i.e., it can generate all the computable enumerable
sets of (vectors of) natural numbers [12]. With ([p−]cat , n) we denote the class
of flat (purely) catalytic P system with at least n catalysts. Assuming that the
computations obey to the minimal parallel rule (i.e., at least one rule involving
each catalyst is used, if possible), the following theorems present the results used
in Section 5.

Theorem 2. NOmin((cat , n)) = RE and PsOmin((cat , n)) = PsRE, for n ≥ 2.

Three catalysts are needed in the case of purely catalytic systems.

Theorem 3. NOmin((p − cat , n)) = RE and PsOmin((p − cat , n)) = PsRE,
for n ≥ 3.

We end this part recalling that chapter 4 of the handbook provides a good survey
of the computability power of catalytic P systems ([21]). The above results are
presented in that chapter, together with other interesting results.

4 Relating Petri Nets and Membrane Systems

We describe here how to associate a P system to a Petri net, and vice-versa.

From membrane systems to Petri nets. The intuition of encoding a membrane
system into a Petri nets is exactly the same of the encoding presented in [17]
and further developed thereof (see [16] and references therein): to each object
of the membrane system a place is associated, and to each rule belonging to a
membrane system a transition is associated. Such a translation from membrane
systems to Petri nets (with localities) can be applied to (almost) any kind of
membrane systems, including catalytic membrane systems where the objects
are partitioned into two subsets and the rules comply with a specific pattern,

Definition 4. Starting from a membrane system Π = (O, μ,w0, R,O′), we can
associate to it a net structure F(Π) = ((S, T, F,m),S) such that

– S = O and T = {tr | r ∈ R},
– for all transitions t = tr ∈ T and all the places s ∈ S with r = u → v, we

define

F (s, t) =

{
u(a) if s = a

0 otherwise
and F (t, s) =

{
v(a) if s = a

0 otherwise

– m(s) =

{
w0(a) if s = a

0 otherwise
, and

– S = O′.

The multiplicity of an object v is modeled by the number of tokens in the place v.
Obviously, this construction leads to a Petri net.
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Following [17], we introduce two functions: one associating to a configuration
of a membrane system a marking of its corresponding net, and another associ-
ating to the rules applied in an evolution of the membrane system a step in the
net.

Definition 5. Let Π = (O, μ,w0, R,O′) be a membrane system, and F(Π) =
((S, T, F,m),S) be the associated Petri net. Let w be a configuration of Π. Then
ν(w) is the marking defined by ν(w) = w.

Definition 6. Let Π = (O, μ,w0, R,O′) be a membrane system, and F(Π) =

((S, T, F,m),S) be the associated Petri net. Let C
R

=⇒ C′ be an evolution step
of Π. Then σ(R) is the multiset defined by σ(R)(tj) = R(rj), for all tj ∈ T .

We can now state the main result contained in [17].

Theorem 7. Let Π = (O, μ,w0, R,O′) be a membrane system, and F(Π) =

((S, T, F,m),S) be the associated Petri net. w
R

=⇒fs w
′ iff ν(w) [σ(R)〉fs ν(w′)

with fs ∈ {step,max ,S}.

This theorem essentially says that the net associated to a membrane system be-
haves in the same way, provided that in the net steps are performed accordingly
to the same way the evolution steps in the membrane system are defined.

From the previous section we know that the sets of natural numbers or of
multisets calculated by a membrane systemΠ under a suitable evolution strategy
e are denoted withNe(Π) and Pse(Π), respectively. A consequence of Theorem 7
is the following one:

Theorem 8. Let Π = (O, μ,w0, R,O′) be a membrane system, and F(Π) =
((S, T, F,m),S) be the associated Petri net. Then FS

fs(F(Π)) = Psfs(Π) and

FS
fs(F(Π)) = Nfs(Π), with fs ∈ {step,max ,S}.

Thus the function calculated by the net associated to the membrane system is
the same (again provided that evolutions are applied following the chosen firing
sequence/evolution strategy).

From Petri nets to membrane systems. Given a Petri net, it is always possible
to associate a flat membrane system to it. In the translation from membrane
systems to Petri nets we have associated to each object a place. Now we do vice
versa: to each place we associate an object. As for the purpose of this paper we
are interested in what is calculated by a net, we explicitly point out the set of
final places of a net.

Definition 9. Let N = ((S, T, F,m0),S) be a Petri net.
Then K(N) = (O, μ,w0, R, O′) is the membrane system defined as follows:

– O = S and w0(s) = m(s),
– for all t ∈ T define a rule rt = u → v in R where u = •t and v = t•, and
– O′ = S.
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Moreover, we define two mappings ξ and η which associate the objects to the
places and the rules to the transitions, respectively. Following Definition 9, we
have ξ(s) = s, and η(t) is the rule rti with L(t) = i.

The first result is that K(N) is indeed a flat membrane system.

Proposition 10. Let N = ((S, T, F,m0),S) be a Petri net. Then K(N) is a
flat membrane system.

Moreover, the net associated to K(N) is indeed N .

Proposition 11. Let N = ((S, T, F,m0),S) be a Petri net. Then F(K(N))=N .

When we consider flat membrane systems, we also have the following result.

Proposition 12. Let Π = (O, μ,w0, R,O′) be a flat membrane system. Then
K(F(Π)) = Π.

We extend the two functions ξ and η to markings and multisets of transitions.
These extensions relate markings to configurations, and steps in nets to evolution
steps in membrane systems.

Definition 13. Let N = ((S, T, F,m0),S) be a Petri net and K(N) be its asso-
ciate membrane system. Let m be a marking of N. Then ξ(m) is the configuration
defined by ξ(m)(s) = m(s), for all s ∈ S.

Definition 14. Let N = ((S, T, F,m0),S) be a Petri net and K(N) be the
associate membrane system. Let m [U〉m′ be a step of N . Then η(U) is the
evolution step defined by η(U)(rt) = U(t), for all rt ∈ R.

We are now ready to present the main result of this section.

Theorem 15. Let N = ((S, T, F,m0),S) be a Petri net and K(N) be its asso-
ciate membrane system. For fs ∈ {step,max ,S}, we have

m [U〉fsm′′ iff ξ(m)
η(U)
=⇒fs ξ(m

′).

A consequence of Theorem 15 is the following one:

Theorem 16. Let N = ((S, T, F,m0),S) be a Petri net and K(N) be the asso-
ciated flat membrane system. Then

FS
fs(F(Π)) = Psfs(Π) and FS

fs(F(Π)) = Nfs(Π),
where fs ∈ {step,max ,S}.

5 Catalytic Petri Nets Are Turing Complete

In this section we present the main result of the paper, namely that there is
a suitable class of Petri Nets (namely catalytic Petri Nets with at least two
catalysts) which is able to calculate a recursive enumerable set under a suitable
firing strategy. We first introduce the class of catalytic nets, then show the
relations between catalytic nets and catalytic membrane system, and finally use
the results of Section 3 to show that catalytic nets are Turing complete.
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Catalytic Petri nets. The main motivation behind catalytic net is to control the
firing of suitable transitions locally by putting tokens in suitable places (that
maintain the same number of tokens during the whole execution).

Definition 17. Let N = ((S, T, F,m),S) be a Petri net. N is catalytic iff the
set of places S is partitioned into two disjoint sets C and V such that

1. the subnet N@V is an input state machine, and
2. the subnet of N@C is a state machine, and for all t ∈ T@C we have •t = t•

and #( •t) = 1.

A net N = ((S, T, F,m),S) is said to be purely catalytic iff T = T@C.
Places in a catalytic net are partitioned into two subsets, the catalytic places
(C) and the non catalytic ones (S \ C). Condition 1 states that each transition
may consume tokens from only one non catalytic place, whereas condition 2 says
that each transition may use at most one token from a catalytic place, and the
used token is made again available for further use.

Catalytic Petri nets N = ((S, T, F,m),S) are abbreviated by CPN. Sometime
we explicitly indicate the set of catalytic places and their number, and so a
catalytic net is presented as N = ((S, T, F,m, C, n),S) with |C| = n.

The intuition behind catalytic Petri nets is the following: a transition t which
uses a catalyst fires only if there is a token in the catalytic places associated to the
transition. Tokens in catalytic places may be consumed/produced by transitions,
but the transition using these tokens as catalysts do leave the token in the place.
It is worth to stress the difference among catalytic nets and Petri nets with read
arcs of Montanari and Rossi ([19]): in their case, if two transitions test for the
presence of a token in place (with read arcs) it is enough to have a token in that
place, whereas in catalytic nets if two transitions use the same catalytic place,
this place must contain enough tokens for both transitions.

We specialize again the notion of enabling. Let N = ((S, T, F,m, C, n),S) be
a CPN. The step U is catalyticly enabled at the marking m iff it is enabled at
m and ∀c ∈ C either there is a transition t ∈ dom(U) such that •t(c) �= 0 or
∀t ∈ dom(c•) it holds that ¬m [t〉 .

In other words, a step is catalyticly enabled whenever for each catalyst places
in C, either all the transitions using tokens from this catalyst place are not
enabled or there is at least one transition using a token from a catalytic place. We
writem [U〉C to denote that U is catalyticly enabled, and we denote bym [U〉C m′

the firing of a catalyticly enabled step, where U is a catalytic step. A catalytic
firing sequence is a step firing sequence where each step is a catalytic one. The
set of reachable markings is defined accordingly, and denoted by MC(N). In the

same ways are defined the sets FC(N), FS
C (N) and F#S

C (N).

Catalytic P systems and catalytic nets. The results of Section 4 can be also
used for catalytic P systems and catalytic nets. In particular, we can state the
following two results.

Proposition 18. Let Π = (O,OC , μ, w
0, R,O′) be a catalytic P system, and

F(Π) be its associated structure. Then F(Π) is a catalytic net.
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Proposition 19. Let N = ((S, T, F,m0, C, n),S) be a catalytic Petri net. Then
K(N) is a flat catalytic P system.

Turing completeness under the catalytic firing strategy We denote by CPN(n)
the class of catalytic Petri nets with n catalytic places, and by PCPN(n) the
class of purely catalytic Petri nets with n catalytic places. Then Theorems 2
and 3 can be specialized as follows:

Theorem 20.
{F#S

C (N) | N ∈ CPN(n)} = RE and
{FS

C (N) | N ∈ CPN(n)} = PsRE, for n ≥ 2.

Theorem 21.
{F#S

C (N) | N ∈ PCPN(n)} = RE and
{FS

C (N) | N ∈ PCPN(n)} = PsRE for n ≥ 3.

6 Conclusion and Future Work

In this paper we have presented a new class of Petri nets called catalytic Petri
nets. This class turns out to be Turing complete by using a suitable firing strat-
egy. The firing of a step is done by first checking, for each catalytic place, if
one of the transitions using the place is enabled, and then firing at least one of
these transitions. This means that the rule requires a minimal parallelism which
is also locally confined. Establishing a connection with the membrane systems
allows to state also the minimal number of catalytic places which are needed.

In this class of Petri nets the main characteristic of the basic models is re-
tained: the firing is still local, though the notion of catalyst changes slightly the
meaning of local because now a confined location to be checked depends on the
catalyst and not only on the transition to be executed.

Other kinds of membrane systems enjoy minimal parallelism evolution steps,
and the relations with other suitable classes of Petri nets have to be established.
Furthermore we want to investigate further the class of catalytic Petri nets,
which seems to be an interesting and promising class.
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brane Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC
2005. LNCS, vol. 3850, pp. 292–309. Springer, Heidelberg (2006)

18. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: Proceedings of the Fourteenth Annual ACM Symposium on Theory
of Computing, pp. 267–281. ACM (1982)

19. Montanari, U., Rossi, F.: Contextual nets. Acta Informatica 32(6) (1995)
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Abstract. ν-CA are cellular automata which can have different local
rules at each site of their lattice. Indeed, the spatial distribution of local
rules completely characterizes ν-CA. In this paper, sets of distributions
sharing some interesting properties are associated with languages of bi-
infinite words. The complexity classes of these languages are investigated
providing an initial rough classification of ν-CA.

1 Introduction

Cellular automata (CA) are discrete dynamical systems consisting in an infinite
number of finite automata arranged on a regular lattice. All automata of the
lattice are identical and work synchronously. The new state of each automaton
is computed by a local rule on the basis of its current state and the one of a
fixed set of neighboring automata. This simple definition contrasts the huge num-
ber of different dynamical behaviors that made the model widely used in many
scientific disciplines for simulating phenomena characterized by the emergency
of complex behaviors from simple local interactions (particle reaction-diffusion,
pseudo-random number generation, cryptography, etc.), see for instance [4].

In many cases, the uniformity of the local rule is more a constraint than a
helping feature. Indeed, the uniformity constraint has been relaxed, for example,
for modeling cell colonies growth, fast pseudo-random number generation, and
VLSI circuit design and testing. This gave rise to new models, called non-uniform
cellular automata (ν-CA) or hybrid cellular automata (HCA), in which the local
rule of the finite automaton at a given site depends on its position. If the study
of dynamical behavior has just started up [3,6], applications and analysis of
structural properties have already produced a wide literature (see [10,11]).

In this paper, we adopt a formal languages complexity point of view. Consider
a finite set R of local rules defined over the same finite state set A. A (one-
dimensional) ν-CA is essentially defined by the distribution or assignment of local
� Corresponding author.
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rules in R to sites of the lattice. Whenever R contains a single rule, the standard
cellular automata model is obtained. Therefore, each ν-CA can be associated
with a unique bi-infinite word over R. Consider now the class C of ν-CA defined
over R and sharing a certain property P (for example surjectivity, injectivity,
etc.). Clearly, C can be identified as a set of bi-infinite words contained in ωRω . In
this paper, we analyze the language complexity of C w.r.t. several well-known
properties, namely number-conservation, surjectivity, injectivity, sensitivity to
initial conditions and equicontinuity. We have proved that C is a subshift of
finite type and sofic, respectively, for the first two properties, while it is ζ-
rational for the last three properties in the list. Remark that for sensitivity
to initial conditions and equicontinuity, the results are proved when R contains
only linear local rules (i.e. local rules satisfying a certain additivity property)
with radius 1. The general case seems very complicated and it is still open.

In order to prove the main theorems, some auxiliary results, notions and con-
structions have been introduced (variants of De Bruijn graphs and their prod-
ucts, etc.). We believe that they can be interesting in their own to prove further
properties.

In the paper, for lack of space most of proofs have been removed. They will
appear in the long version of the paper. They can also be found at [5].

2 Notations and Definitions

For all i, j ∈ Z with i ≤ j (resp. i < j), let [i, j] = {i, i + 1, . . . , j} (resp.
[i, j) = {i, . . . , j − 1}).

Configurations and non-uniform automata. Let A be a finite alphabet. A
configuration or bi-infinite word is a function from Z to A. For any configuration
x and any integer i, xi denotes the element of x at index i. The configuration
set AZ is usually equipped with the metric d defined as follows

∀x, y ∈ AZ, d(x, y) = 2−n, where n = min {i ≥ 0 : xi �= yi or x−i �= y−i} .

The metric d induces the Cantor topology on AZ. For any pair i, j ∈ Z, with
i ≤ j, and any configuration x ∈ AZ we denote by x[i,j] the word w = xi . . . xj ∈
Aj−i+1, i.e., the portion of x inside [i, j], and we say that the word w appears
in x. Similarly, u[i,j] = ui . . . uj is the portion of a word u ∈ Al inside [i, j] (here,
i, j ∈ [0, l)). In both the previous notations, [i, j] can be replaced by [i, j) with
the obvious meaning. For any word u ∈ A∗, |u| denotes its length. With 0 ∈ A,
a configuration x is said to be finite if the number of positions i at which xi �= 0
is finite.

A local rule of radius r ∈ N on the alphabet A is a map from A2r+1 to A. Local
rules are crucial in both the definitions of cellular automata and non-uniform
cellular automata. A function F : AZ → AZ is a cellular automaton (CA) if there
exist r ∈ N and a local rule f of radius r such that

∀x ∈ AZ, ∀i ∈ Z, F (x)i = f(x[i−r,i+r]) .
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The shift map σ : AZ → AZ defined as σ(x)i = xi+1, ∀x ∈ AZ, ∀i ∈ Z is one
among the simplest examples of CA.

Let R be a set of local rules on A. A distribution on R is a function θ from
Z to R, i.e., a bi-infinite word on R. Denote by Θ the set of all distributions on
R. A non-uniform cellular automaton (ν-CA) is a triple (A, θ, (ri)i∈N) where A
is an alphabet, θ a distribution on the set of all possible local rules on A and ri

is the radius of θi. A ν-CA defines a global transition function Hθ : AZ → AZ by

∀x ∈ AZ, ∀i ∈ Z, Hθ(x)i = θi(x[i−ri,i+ri]) .

In the sequel, when no misunderstanding is possible, we will identify a ν-CA
with its global transition function. From [3], recall that a function H : AZ → AZ

is the global transition function of a ν-CA if and only if it is continuous. In this
paper, we will consider distributions on a finite set of local rules. In that case,
one can assume without loss of generality that there exists an integer r such that
all the rules in R have the same radius r. ν-CA constructed on such finite sets
of local rules are called rν-CA (of radius r).

A finite distribution is a word ψ ∈ Rn, i.e., a sequence of n rules of R. Each
finite distribution ψ defines a function hψ : An+2r → An by

∀u ∈ An+2r, ∀i ∈ [0, n), hψ(u)i = ψi(u[i,i+2r]) .

These functions are called partial transition functions since they express the
behavior of a ν-CA on a finite set of sites: if θ is a distribution and i ≤ j are
integers, then

∀x ∈ AZ, Hθ(x)[i,j] = hθ[i,j](x[i−r,j+r]) .

Languages. Recall that a language is any set L ⊆ A∗ and a finite state au-
tomaton is a tuple A = (Q, A, T, I, F ), where Q is a finite set of states, A is
the alphabet, T ⊆ Q × A × Q is the set of transitions, and I, F ⊆ Q are the
sets of initial and final states, respectively. A path p in A is a finite sequence
q0

a0−→ q1
a1−→ . . .

an−1−−−→ qn visiting the states q0, . . . , qn and with label a0 . . . an−1

such that (qi, ai, qi+1) ∈ T for each i ∈ [0, n). A path is successful if q0 ∈ I and
qn ∈ F . The language L(A) of an automaton A is the set of the labels of all
successful paths in A. A language L is rational if there exists a finite automaton
A such that L = L(A).

A bi-infinite language is any subset of AZ. Let A = (Q, A, T, I, F ) be a finite
automaton. A bi-infinite path p in A is a bi-infinite sequence . . .

a−2−−→ q−1
a−1−−→

q0
a0−→ q1

a1−→ . . . such that (qi, ai, qi+1) ∈ T for each i ∈ Z. The bi-infinite word
. . . a−1a0a1 . . . is the label of the bi-infinite path p. A bi-infinite path is successful
if the sets {i ∈ N : q−i ∈ I} and {i ∈ N : qi ∈ F} are infinite. By similarity
with the uniform case, we call this condition the Büchi acceptance condition.
The bi-infinite language Lζ(A) of the automaton is the set of the labels of all
successful bi-infinite paths in A. A bi-infinite language L is ζ-rational if there
exists a finite automaton A such that L = Lζ(A).

A bi-infinite language X is a subshift if X is (topologically) closed and σ–
invariant, i.e., σ(X) = X . For any F ⊆ A∗ let XF be the bi-infinite language
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of all bi-infinite words x such that no word u ∈ F appears in x. A bi-infinite
language X is a subshift iff X = XF for some F ⊆ A∗. The set F is a set of
forbidden words for X . A subshift X is said to be a subshift of finite type (resp.
sofic) iff X = XF for some finite (resp. rational) F .

For a more in deep introduction to the theory of formal languages, the reader
can refer to [13] for rational languages,[16] for subshifts and [21,22] for ζ-rational
languages.

Properties of non-uniform CA. A ν-CA is sujective (resp. injective) iff its
defining map H : AZ → AZ is surjective (resp. injective). A ν-CA H is equicon-
tinuous if ∀ε > 0 there exists δ > 0 such that for all x, y ∈ AZ, d(y, x) < δ
implies that ∀n ∈ N, d(Hn(y), Hn(x)) < ε. A ν-CA H is sensitive to the initial
conditions (or simply sensitive) if there exists a constant ε > 0 such that for any
element x ∈ AZ and any δ > 0 there is a point y ∈ AZ such that d(y, x) < δ and
d(Hn(y), Hn(x)) > ε for some n ∈ N.

Given a finite set of local rulesR, a predicate P over distributions is a function
from Θ to {⊥,�}, where ⊥,� are the false and true symbols, respectively. In the
sequel, we are interested in the complexity of the following language of bi-infinite
words

LP = {θ ∈ Θ : P (θ) = �} .

3 Number Conservation

In physics, a lot of transformations are conservative: a certain quantity remains
invariant during a whole experiment. Think to conservation laws of mass and
energy for example. Both CA and ν-CA are used to represent phenomena from
physics and it is therefore interesting to decide when they represent a conser-
vative transformation. The case of uniform CA has been treated in [8], here we
generalize those results to ν-CA. Finally, we prove that the language of the set
of distributions representing conservative rν-CA is a subshift of finite type.

In this section, without loss of generality, A is {0, 1, . . . , s− 1}. Indeed, given
any alphabet A, let φ : A→ N be a morphism such that 0 ∈ φ(A), then all the
following results will hold by replacing A by φ(A). Denote by 0 the configuration
in which every element is 0. For all configuration x ∈ AZ, define the partial charge
of x between the index −n and n as μn(x) =

∑n
i=−n xi and the global charge of

x as μ(x) = limn→∞ μn(x). Clearly μ(x) =∞, if x is not a finite configuration.

Definition 1 (FNC). A ν-CA H is number-conserving on finite configurations
(FNC) if for all finite configurations x, μ(x) = μ(H(x)).

Remark that if H is FNC then H(0) = 0 and, for any finite configuration x,
H(x) is a finite configuration.

Definition 2 (NC). A ν-CA H is number-conserving (NC) if both the follow-
ing conditions hold: 1) H(0) = 0, 2) ∀x ∈ AZ � {0}, lim

n→∞
μn(H(x))

μn(x) = 1.
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Remark that if x �= 0 the fraction μn(H(x))
μn(x) is well-defined for n sufficiently large.

In the general case, a ν-CA can be FNC without being NC. Indeed, consider
the following example.

Example 3. Let H : AZ → AZ be the ν-CA such that for all configuration x, for
all integer i, H(x)2i = xi and H(x)2i+1 = 0. Then H is FNC but not NC. The
configuration 1 in which every element is 1 verifies lim

n→∞
μn(H(1))

μn(1) = 1
2 .

On the other hand, the following proposition shows that is not possible in the
case of rν-CA.

Proposition 4. Any rν-CA of radius r is NC if and only if it is FNC.

Theorem 5. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is number conserving" over distributions θ ∈ Θ on R. Then, LP is a sub-
shift of finite type.

Proof. We are going to prove that LP = XF where F is the following set{
ψ ∈ R2r+1 : ∃u ∈ A2r+1, ψ2r(u) �= u0 +

∑2r−1
i=0 ψi+1(0

2r−iu[1,i+1]) − ψi(0
2r−iu[0,i])

}
.

Assume that θ ∈ LP and let j ∈ Z. For any u ∈ A2r+1, let x, y be two finite
configurations such that x[j−r,j+r] = u and y[j−r,j+r] = 0u[1,2r]. As Hθ is NC,
by Proposition 4, conditions μ(H(x)) = μ(x) and μ(H(y)) = μ(y) are true. So,∑2r

i=0 θj+i−2r(0
2r−iu[0,i]) +

∑2r
i=1 θj+i(u[i,2r]0

i) =
∑2r

i=0 ui , (1)

∑2r
i=1 θj+i−2r(0

2r−i+1u[1,i]) +
∑2r

i=1 θj+i(u[i,2r]0
i) =

∑2r
i=1 ui . (2)

Subtracting (2) from (1), we obtain θj(u) = u0 +
∑2r

i=1 θj+i−2r(02r−i+1u[1,i])−∑2r−1
i=0 θj+i−2r(02r−iu[0,i]) which can be rewritten as

θj(u) = u0 +
∑2r−1

i=0 θj+i+1−2r(0
2r−iu[1,i+1]) − θj+i−2r(0

2r−iu[0,i]) .

Thus, for all j ∈ Z, θ[j−2r,j] /∈ F , meaning that θ ∈ XF . So, LP ⊆ XF
Suppose now that θ ∈ XF , i.e., for all integer j, θ[j−2r,j] /∈ F . Taking u =

02r+1, for all j we have θj+2r(02r+1) = 0 +
∑2r−1

i=0 θj+i+1(02r+1) − θj+i(02r+1)
which leads to θj(02r+1) = 0. For any finite configuration x, μ(Hθ(x)) =

=
∑

j∈Z
Hθ(x)j =

∑
j∈Z

θj(x[j−r,j+r])

=
∑

j∈Z

(
xj +

∑2r−1
i=0 θj+i+1−2r(0

2r−ix[j−r+1,j−r+i+1]) − θj+i−2r(0
2r−ix[j−r,j−r+i])

)
=

∑
j∈Z

xj +
∑2r−1

i=0

(∑
j∈Z

θj+i+1−2r(0
2r−ix[j−r+1,j−r+i+1])

−
∑

j∈Z
θj+i−2r(0

2r−ix[j−r,j−r+i])
)

Since∑
j∈Z

θj+i+1−2r(02r−ix[j−r+1,j−r+i+1]) =
∑

j∈Z
θj+i−2r(02r−ix[j−r,j−r+i]) ,

we obtain μ(Hθ(x)) =
∑

j∈Z
Hθ(x)j =

∑
j∈Z

xj = μ(x). Thus, Hθ is FNC and,
by Proposition 4, NC. Hence, θ ∈ LP . So, XF ⊆ LP . ��
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4 Surjectivity and Injectivity

In standard CA setting, injectivity is a fundamental property which is equivalent
to reversibility [12]. It is well-known that it is decidable for one-dimensional CA
and undecidable in higher dimensions [1,14]. Surjectivity is also a dimension
sensitive property (i.e. decidable in dimension one and undecidable for higher
dimensions) and it is a necessary condition for many types of chaotic behaviors.

In this paper, we prove that the language associated with distributions in-
ducing surjective (resp. injective) ν-CA is sofic (resp. ζ-rational). Remark that
constructions for surjectivity and injectivity are noticeably different, contrary
to what happens for the classical CA when dealing with the decidability of
those properties. Indeed in the uniform case, thanks to the Garden of Eden
theorem [19,20], one construction is sufficient [23]. However the Garden of Eden
theorem does not hold on ν-CA [3], therefore distinct constructions are necessary.

Before proceeding to the main results of the section we need some technical
lemma and new constructions. We believe that these constructions, inspired
by [23], might be of interest in their own and could be of help for proving new
results.

Lemma 6. For any fixed θ ∈ Θ, the ν-CA Hθ is surjective if and only if hθ[i,j]

is surjective for all integers i, j with i ≤ j.

Definition 7. Let R be a finite set of rules of radius r. The De Bruijn graph
of R is the labeled multi-edge graph G = (V, E), where V = A2r and edges in
E are all the pairs (aw, wb) with label (f, f(awb)), obtained varying a, b ∈ A,
w ∈ A2r−1, and f ∈ R.

Example 8. Let A = {0, 1} and consider the set R = {⊕, id} where ⊕ and id
are the rules of radius 1 defined as ∀x, y, z ∈ A, ⊕(x, y, z) = (x + z) mod 2, and
id(x, y, z) = y. The De Bruijn graph of R is the graph G in Figure 1.

Given two alphabets A, B and a finite word w = (a0, b0) . . . (an, bn) ∈ (A×B)∗,
the words a = Pr1(w), b = Pr2(w), are the projections of w on A and B,
respectively. By abuse of notation, we will write (a, b) ∈ (A × B)∗ instead of
w ∈ (A×B)∗, a = Pr1(w), b = Pr2(w). The same holds for bi-infinite words.

Lemma 9. Let G be the De Bruijn graph of a finite set of rules R. Consider
G as an automaton where all states are both initial and final. Then, L(G) =
{(ψ, u) ∈ (R×A)∗ : h−1

ψ (u) �= ∅}.

Theorem 10. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is surjective" over distributions θ ∈ Θ on R. Then LP is a sofic subshift.

Proof. Set F = {ψ ∈ R∗ : hψ is not surjective}. By Lemma 6, LP is just the
subshift XF . Consider the De Bruijn graph G of R as an automaton A where
all states are both initial and final. By Lemma 9, L(A) = {(ψ, u) ∈ (R× A)∗ :
h−1

ψ (u) �= ∅}. Build now the automaton Ac that recognizes Lc = {(ψ, u) ∈
(R×A)∗ : h−1

ψ (u) = ∅}. Remove from Ac all second components of edge labels
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00

01

11

10

(id, 0), (⊕, 1)

(id, 0), (⊕, 0)

(id, 1), (⊕, 1)

(id, 1), (⊕, 0)

(id, 1), (⊕, 1)

(id, 1), (⊕, 0)

(id, 0), (⊕, 1)

(id, 0), (⊕, 0)

Fig. 1. De Bruijn graph of R = {⊕, id} (every printed edge represents two edges of
the graph, labels are concatenated)

and let Ã be the obtained automaton. A word ψ ∈ R∗ is recognized by Ã if and
only if there exists u ∈ A∗ such that (ψ, u) ∈ Lc, i.e., iff hψ is not surjective.
Thus, L(Ã) = F and LP = XF is a sofic subshift. ��

The proof of Theorem 10 provides an algorithm to build an automaton that
recognizes the language F of the forbidden words for the sofic subshift LP of
distributions on a given finite set of rules R. It consists of the following steps:
1) Build the De Bruijn graph G of R; 2) Consider G as an automaton whose all
states are both initial and final and determinize it to obtain the automaton A;
3) Complete A if necessary and make all final states non-final and vice versa to
obtain Ac; 4) Delete all second components of edge labels of Ac to obtain Ã.

Example 11. With the set R from the Example 8 as input, this algorithm gives
the automaton in Figure 2. Thus, we deduce that F = R∗id ⊕ (⊕⊕)∗idR∗ and
LP is the well-known even subshift.

⊕

id

id

⊕

⊕

id

id,⊕

Fig. 2. The automaton Ã obtained from the set R = {id,⊕}

In the final part of this section, we will use product graphs to study the
injectivity property. Those graphs were first defined to deal with the decidability
of the ambiguity of finite automata in [2].
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Definition 12. Let R be a finite set of rules of radius r. Consider the De Bruijn
graph G = (V, E) of R. The product graph P of R is the labeled graph (V ×V, W )
where ((u, u′), (v, v′)) ∈W with label (f, a) ∈ R×A if and only if (u, v), (u′, v′) ∈
E both with the same label (f, a).

Remark 13. Any bi-infinite path in P with label (θi, zi)i∈Z ∈ (R × A)Z corre-
sponds to two bi-infinite paths in G in which the visited vertexes define two
configurations x and y such that Hθ(x) = Hθ(y) = z.

We call quick-fail acceptance condition for bi-infinite paths in a finite automaton
A, the acceptance condition which accepts bi-infinite paths visiting at least once
a final state. The set of labels of all such successful bi-infinite paths is said to
be the language recognized by A under the quick-fail acceptance condition. We
chose this terminology since the words belonging to the language recognized by
A fail to induce injective ν-CA (Theorem 15).

Lemma 14. Let A = (Q, A, T, I, F ) be a finite automaton. The bi-infinite lan-
guage L recognized by A with the quick-fail acceptance condition is ζ-rational.

Theorem 15. Let R be a finite set of local rules. Consider the predicate P (θ) =
"Hθ is injective" over distributions θ ∈ Θ on R. Then, LP is ζ-rational.

Proof. Let P be the product graph of R. Consider now P as a finite automaton
where all the states are initial and the final states are the pairs (u, u′) with
u �= u′. Remove from P all second components of edge labels and let P̃ be the
obtained automaton. Then, the language recognized by P̃ with the quick-fail
acceptance condition is Lc

P . By Lemma 14, Lc
P is ζ-rational and, therefore, LP

is ζ-rational too. ��

5 Equicontinuity and Sensitivity for Linear rν-CA

Sensitivity to initial conditions is a widely known property indicating a possible
chaotic behavior of a dynamical system and it is often popularized under the
metaphor of butterfly effect [7]. At the opposite equicontinuity is an element of
stability of a system. In this section, we are going to study these properties in
the context of ν-CA.

In the uniform case, equicontinuity points are characterized by blocking
words [15]. Some extensions have been made in the case of ν-CA [3]. In general,
the problem of establishing if a CA admits a blocking word is undecidable [9]
but, in the case of linear CA, the problem turns out to be decidable [18]. More-
over, the dichotomy theorem between sensitivity and presence of equicontinuity
points [15] is not ensured in the context of ν-CA. Therefore, in this preliminary
study of the complexity of distributions, we preferred to focus on a sub-class in
which the dichotomy theorem still holds, namely linear ν-CA (Proposition 17).

In order to consider linear ν-CA, the alphabet A is endowed with a sum (+)
and a product (·) operation that make it a commutative ring and we denote by
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0 and 1 the neutral elements of + and ·, respectively. Of course, An and AZ

are also commutative rings where sum and product are defined component-wise
and, with an abuse of notation, they will be denoted by the the same symbols.

Definition 16. A local rule f of radius r is said to be linear if and only if there
exists a word λ ∈ A2r+1 such that ∀u ∈ A2r+1, f(u) =

∑2r
i=0 λi · ui. A ν-CA H

is said to be linear if it is defined by a distribution of linear local rules.

Proposition 17. Any linear ν-CA H is either sensitive or equicontinuous.

From now on we consider finite sets R in which all rules are linear of radius r.

Definition 18 (Wall). A right-wall is any element ψ ∈ R∗ of length n ≥ r
such that, for all word v ∈ Ar, the sequence uψ(v) : N→ An recursively defined
by uψ(v)0 = 0n, uψ(v)1 = hψ(0ruψ(v)0v), and uψ(v)k+1 = hψ(0ruψ(v)k0r) for
k > 1, verifies ∀k ∈ N, (uψ(v)k)

[0,r−1]
= 0r. Left-walls are defined similarly.

Roughly speaking, the sequence uψ(v) gives the dynamical evolution of the func-
tion hψ when the leftmost and rightmost inputs are fixed.

Lemma 19. For any right-wall ψ ∈ Rn and any f ∈ R, both fψ and ψf are
right-walls. Furthermore, if ψ ∈ R∗ is a right-wall, then ψ′ψψ′′ is a right-wall
for any ψ′, ψ′′ ∈ R∗. Similar results hold for left-walls.

Proposition 20. For any θ ∈ Θ, Hθ is sensitive if and only if one of the
two following conditions holds: 1) There exists n ∈ N such that for all integer
m ≥ n + r, θ[n+1,m] is not a right-wall; 2) There exists n ∈ N such that for all
integer m ≤ −n− r, θ[m,−n−1] is not a left-wall.

The characterization of walls for the general case is still under investigation.
However, remark that, given any set of linear local rules with radius r ≥ 1 on
a ring (A, +, ·), it is possible to transform it in a set of linear local rules with
radius 1 on a non-commutative ring. In this case, Lemma 19 and Proposition 20
remain true whereas the characterisation of walls of the Proposition 21 does not
hold anymore. For these reasons, in the remaining part of this section, we will
assume that R is a finite set of linear rules of radius 1 (over a commutative
ring). In this case, any rule f ∈ R will be expressed in the following form:
∀a, b, c ∈ A, f(a, b, c) = λ−

f · a + λ̃f · b + λ+
f · c for some λ−

f , λ̃f , λ+
f ∈ A.

Proposition 21. A finite distribution ψ ∈ Rn is a right-wall (resp. a left-wall),
if and only if

∏n−1
i=0 λ+

ψi
= 0 (resp.

∏n−1
i=0 λ−

ψi
= 0).

For any set R of linear rules of radius r = 1, an automaton A = (Q, Z, T, I, F )
recognizing walls can be constructed. The alphabet Z is R, the set of states Q
is {−, +}×A, I = {(−, 0)}, F = {(+, 0)} and the transition rule T is as follows

1. ((−, a), f, (−, λ−
f · a)), ∀a ∈ A � {0}, ∀f ∈ R (minimal left-wall detection).

2. ((−, 0), f, (−, 1)), ∀f ∈ R (end of detection).
3. ((−, 1), f, (−, 1)), ∀f ∈ R (waiting).
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4. ((−, 1), f, (+, 1)), ∀f ∈ R (transition from left part to right part).
5. ((+, 1), f, (+, 1)), ∀f ∈ R (waiting).
6. ((+, 1), f, (+, 0)), ∀f ∈ R (beginning of detection).
7. ((+, λ+

f · a), f, (+, a)), ∀a ∈ A � {0}, ∀f ∈ R (minimal right-wall detection).

Practically speaking, A consists of two components, the left and the right part,
with a non-deterministic transition from left to right. Each component has two
special states: the first one (the state (−, 1) for the left part or (+, 1) for the
right part) on which A loops waiting for the detection of a minimal (wrt the
length) wall, the second one on which A starts ((+, 0) for the right part) or ends
((−, 0) for the left part) the detection of such a wall. The graph structure of A
is schematized in Figure 3.

−, 1

Minimal left-wall
detection

−, 0 +, 0

+, 1

Minimal right-wall
detection

Waiting Transition form left part
to right part

End of
detection

Waiting

Beginning of
detection

Fig. 3. Conceptual structure of the automaton A for walls detection

Theorem 22. Let R be a finite set of linear local rules of radius r = 1. Consider
the predicates P1(θ) = "Hθ is equicontinuous" and P2(θ) = "Hθ is sensitive"
over distributions θ ∈ Θ on R. Then, both LP1 and LP2 are ζ-rational.

Proof. We are going to prove that Lζ(A) = LP1 where A is the automaton
above introduced for the set R with Büchi acceptance condition. This permits
to immediately state that LP1 is ζ-rational, and that, by Proposition 17, LP2 is
ζ-rational too.

Let θ ∈ Lζ(A). We show that for any n ∈ N, there exists m ≤ −n − 1 such

that θ[m,−n−1] is a left-wall. Let n ∈ N. There is a successful path p = . . .
θ−1−−→

(s0, a0)
θ0−→ (s1, a1) . . . in A and integers i, j with i < j < −n such that (si, ai) =

(sj , aj) = (−, 0) are two successive initial states. If m ∈ (i, j) is the greatest

integer with (sm, am) = (−, 1), the finite path (sm, am) θm−−→ (sm+1, am+1)
θm+1−−−→

. . .
θj−1−−−→ (sj , aj) is obtained by transitions of A from 1). Then, 0 = aj =

am ·
∏j−1

l=m λ−
θl

, and, by Proposition 21, θ[m,j−1] is a left-wall. By Lemma 19,
θ[m,−n−1] is a left-wall too. Similarly, it holds that for any n ∈ N, there exists
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m ≥ n + 1 such that θ[n+1,m] is a right-wall. Hence, by Propositions 20, Hθ is
equicontinuous, i.e., θ ∈ LP1 .

Let θ ∈ LP1 . By Proposition 20, the sequence (ik)k∈Z such that i0 = 0 and
∀k ≤ 0, ik−1 = max{j ∈ Z : j < ik and θ[j,ik−2] is a left-wall}, and ∀k ≥
0, ik+1 = min{j ∈ Z : j > ik and θ[ik+2,j] is a right-wall} is well-defined. For
any k < 0, θ[ik,ik+1−2] is a left-wall and then

∏ik+1−2
j=ik

λ−
θj

= 0. So, for any k < 0,

setting n = min{l ∈ Z :
∏l

j=ik
λ−

θj
= 0}, pk = (−, 1)

θik−−→ (−, λ−
θik

)
θik+1−−−→ . . .

θn−→

(−,
∏n

j=ik
λ−

θj
)

θn+1−−−→ (−, 1) . . .
θik+1−1
−−−−−→ (−, 1) is a finite path in A from (−, 1) to

(−, 1) with label θ[ik,ik+1−1] which visits an initial state. Similarly, for any k ≥ 0,
there exists a finite path pk in A from (+, 1) to (+, 1) with label θ[ik+1,ik+1]

which visits a final state. Then, p = (pk)k∈N
is a successful bi-infinite path in A

with label θ. Hence, θ ∈ Lζ(A). ��

6 Conclusions

This paper investigates complexity classes associated to languages characterizing
distributions of local rules in ν-CA. Several interesting research directions should
be explored.

First, we have proved that the language associated with distributions of
equicontinuous or sensitive ν-CA is ζ-rational for the class of linear ν-CA with
radius 1. It would be interesting to extend this result to sets of local rule distribu-
tions with higher radius. This seems quite difficult because this problem reduces
to the study of the equicontinuity of ν-CA of radius 1 on a non-commutative
ring, loosing in this way “handy” results like Proposition 21.

Second, there is no complexity gap between sets of distributions which give
injective ν-CA and sensitive (plus the previously mentioned constraints). This
is contrary to intuition since injectivity is a property of the global transition
function whereas sensitivity is a property of its iterates. Indeed, we suspect that
the characterization of distributions giving injective ν-CA could be strengthened
to deterministic ζ-rational languages.

As a third research direction, it would be interesting to study which dynam-
ical property of ν-CA is associated with languages of complexity higher than
ζ-rational. We believe that sensitivity to initial conditions (with no further con-
straints) is a good candidate.

A further research direction would diverge from ν-CA domain and investi-
gate the topological structure of languages given by the quick-fail acceptance
condition for finite automata in the vein of [17]. The authors have just started
investigating this last subject.
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Abstract. The notion of recognition of a language by a finite semigroup
can be generalized to recognition by finite groupoids, i.e. sets equipped
with a binary operation ‘ · ’ which is not necessarily associative. It is well
known that L can be recognized by a groupoid iff L is context-free. But
it is also known that some subclasses of groupoids can only recognize
regular languages. For example, loops recognize exactly the regular open
languages and Beaudry et al. described the largest class of groupoids
known to recognize only regular languages.

A groupoid H is said to be conservative if a · b is in {a, b} for all a, b
in H . The main result of this paper is that conservative groupoids can
only recognize regular languages. This class is incomparable with the one
of Beaudry et al. so we are exhibiting a new sense in which a groupoid
can be too weak to have context-free capabilities.

1 Introduction

A semigroup S is a set with a binary associative operation ‘ · ’. It is a monoid if it
also has an identity element. The algebraic point of view on automata, which is
central to some of the most important results in the study of regular languages,
relies on viewing a finite semigroup as a language recognizer. This enables one
to classify a regular language according to the semigroups or monoids able to
recognize it. There are various ways in which to formalize this idea but the
following one will be useful in our context: a language L ⊆ Σ∗ is recognized by
a finite monoid M if there is a homomorphism φ from the free monoid Σ∗ to
the free monoid M∗ and a set F ⊆ M such that w ∈ L iff φ(w) is a sequence of
elements whose product lies in F . Since the operation of M is associative, this
product is well defined. This framework underlies algebraic characterizations of
many important classes of regular languages (see [7] for a survey).

These ideas have been extended to non-associative binary algebras, i.e. group-
oids. If a groupoid is non-associative, a string of groupoid elements does not
have a well-defined product so the above notion of language recognition must
be tweaked. A language L is said to be recognized by a finite groupoid H if
there is a homomorphism φ from the free monoid Σ∗ to the free monoid H∗

and a set F ⊆ H such that w ∈ L iff the sequence of groupoid elements φ(w)
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can be bracketed so that the resulting product lies in F . It can be shown that a
language can be recognized by a finite groupoid iff it is context-free.

However, certain groupoids are too weak to recognize non-regular languages.
The first non-trivial example was provided by Caussinus and Lemieux who
showed that loops (groupoids with an identity element and left/right inverses)
can only recognize regular languages. Beaudry et al. later showed that the lan-
guages recognized by loops are precisely the regular open languages [4]. Along
the same lines, Beaudry showed in [3] that if H is a groupoid whose multipli-
cation monoid M(H) is in the variety DA then it can only recognize regular
languages. (M(H) is the transformation monoid generated by the rows of the
multiplication table of H .) Finally, Beaudry et al. proved that this still holds if
the multiplication monoid lies in the larger variety DO [5].

A groupoid H is said to be conservative if for all x, y ∈ H we have x · y = x
or x · y = y. The simplest example of a non-associative, conservative groupoid
is the one defined by the Rock-Paper-Scissors game. In this game, two players
simultaneously make a sign with their fingers chosen among Rock, Paper, and
Scissors. Rock beats Scissors, Scissors beats Paper, Paper beats Rock, and iden-
tical signs result in a tie. The associated groupoid has three elements R,P, S and
the multiplication is given by R ·R = R ·S = S ·R = R; P ·P = P ·R = R ·P = P ;
and S · S = S · P = P · S = S. Note that H is indeed conservative and also
non-associative since (R ·P ) ·S = S �= R = R · (P ·S). The main result of our pa-
per is that conservative groupoids recognize only regular languages. Our results
are incomparable to those of Beaudry et al. Indeed a straightforward calculation
shows that the multiplication monoid of the Rock-Paper-Scissors groupoid does
not belong to the variety DO nor to the larger variety DS.

1.1 Conservative Groupoids and Tournaments

It is convenient to think of conservative groupoids as defining a generalization
of the Rock-Paper-Scissors game. For any conservative groupoid H , we define
the game in which players 1 and 2 each choose an element of H (say a and b
respectively) and player 1 wins iff a · b = a. In fact, it is helpful to think of this
game as a competition between elements of H .

Consider now a sequence w ∈ H∗ of elements of the groupoid. A bracketing
of this sequence can be viewed as specifying a tournament structure involving
the symbols of w, i.e. a specific way to determine a winner among the elements
of w. For instance, if w = abcd, then (a · b) · (c · d) is the tournament that first
pits a against b and c again d and then has the two winners of that first round
competing. Similarly in the tournament ((a · b) · c) · d we first have a facing b
with the winner then facing c and the winner of that facing d. Note that this
analogy makes sense because H is conservative and the “winner” of any such
tournament (i.e. the value of the product given this bracketing) is indeed one of
the participants (in the above example, one of a, b, c, or d). We intend to study
languages Λ(x) = {w ∈ H∗ | w can be bracketed to give x} and we accordingly
think of them as Λ(x) = {w ∈ H∗ | an organizer can rig a tournament structure
for w to ensure that x wins }.
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Let us define the contest trees. We denote the set of all contest trees by T . It is
the smallest set such that the leaf tree a is in T , for any a in the alphabet Σ, and
the tree t1⊗ t2 is also in T , for any two trees t1 and t2 in T . Let T : Σ+ → 2T be
the function that computes the set of possible contest trees in a given contest.

T (a) = {a}
T (w) = {t1 ⊗ t2 | u, v ∈ Σ+, u v = w, t1 ∈ T (u), t2 ∈ T (v)}, if |w| > 1

Note that, when performing the left-to-right traversal of a tree in T (w), the leaves
that we successively reach are the symbols that form w. Next, function W : T →
Σ computes the winner of a contest tree.

W (a) = a

W (t1 ⊗ t2) = W (t1) ·W (t2)

Note that the winner of a contest tree is unique. Next, we define the set of possible
winners in a given contest w by overloading function W with an additional
definition of type Σ+ → 2Σ . We define W (w) as {W (t) | t ∈ T (w)}. Finally, for
a ∈ Σ, we denote by Λ(a) the language of the words for which we can arrange a
contest in which a is the winner. We can give a more formal, alternative definition
of Λ(a) as {w ∈ Σ+ | a ∈ W (w)}.

Variable t denotes contest trees. Variables A and B are used to denote the
non-terminals of context-free grammars. Variable r denotes regular expressions.
The language generated by A (resp. r) is denoted by L(A) (resp. L(r)). We
denote the empty string by ε.

The paper is organized as follows. In Section 2, we show that commutative
conservative groupoids recognize only regular languages. This is extended to the
general case in Section 3. In Section 4, we give a partial algebraic characterization
of the languages recognized by conservative groupoids.

2 Commutative Case

Let us consider an RPS-like game in which the operator is defined everywhere,
conservative, and commutative.

Theorem 1. Given an arbitrary symbol a in Σ, the language Λ(a) is regular.

The demonstration proceeds in two steps. In the first step, we build a context-
free grammar G that generates Λ(a). In the second step, we show that G can be
rewritten into a regular expression.

2.1 Building the Grammar

Let us first define the auxiliary function f : Σ → 2Σ that, given a symbol b,
returns the symbols that are favorable to b; i.e. the symbols that b defeats.
Formally: f(b) = {c ∈ Σ | b · c = b}.
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We build the grammarG = (N,Σ,Aa, R) where N is the set of non-terminals,
Σ is the set of terminals, Aa is the start non-terminal, and R is the set of
productions, where:

N = {Aa} ∪ {Bσ | ∅ �= σ ⊆ Σ} and

R = {Aa → Bσ aBσ | σ = f(a)}
∪ {Bσ → Bσ′ bBσ′ | σ ⊆ Σ, b ∈ σ, σ′ = σ ∪ f(b)}
∪ {Bσ → ε | ∅ �= σ ⊆ Σ}.

We claim that G is built in such a way that all the words generated by Aa
allow a to be the winner if we arrange the contest properly. We also claim that
those generated by Bσ are either empty or allow the contest to be arranged
so that the winner is in σ. We intend to demonstrate that the non-terminals
generate words with such properties but, also, that they generate all such words.

2.2 Correctness of the Grammar

Lemma 2. For all non-empty subsets σ of symbols, L(Bσ) ⊆
⋃
b∈σ Λ(b) ∪ {ε}.

Proof. We proceed by induction on the length of the words generated by the
family of the B non-terminals. Base case. Let us consider a word w of length 0.
This means that w must be ε. Then the inclusion is trivially respected, for every
∅ �= σ ⊆ Σ. Induction hypothesis (IH ). Let us suppose that, for all ∅ �= σ ⊆ Σ
and for all w ∈ Σ∗ such that |w| ≤ n, we have that, whenever w ∈ L(Bσ), then
w ∈

⋃
b∈σ Λ(b) ∪ {ε}. Induction step. Let us consider a word w of length n + 1

and ∅ �= σ ⊆ Σ such that w ∈ L(Bσ). Since w is non-empty, we must show
that it is in

⋃
b∈σ Λ(b). We will do so by constructing a contest tree for w whose

winner is in σ. Let us choose a derivation tree for w. Given that w �= ε, let
Bσ → Bσ′ bBσ′ be the production that is used at the root of the derivation
tree, where σ′ = σ ∪ f(b). This implies that there exist u, v ∈ Σ∗ such that
w = u b v, where u, v ∈ L(Bσ′). Since both u and v are of length at most n, then
the IH applies to each. So, if u �= ε, then there exists a contest tree tu ∈ T (u)
such that W (tu) ∈ σ′. Similarly, if v �= ε, then there exists tv ∈ T (v) such that
W (tv) ∈ σ′. There are three cases to consider for u (and similarly for v): u = ε,
W (tu) ∈ σ′ − σ, and W (tu) ∈ σ. Hence, we would have a total of nine cases
to analyze. In each case, we would have to show that we can build a contest
tree tw ∈ T (w) such that W (tw) ∈ σ. For the sake of conciseness, we only
examine the case where u �= ε �= v, W (tu) ∈ σ′ − σ, and W (tv) ∈ σ. In this case,
we select tw = (tu ⊗ b)⊗ tv and we have that:

W (tw)
= W ((tu ⊗ b)⊗ tv)
= W (tu ⊗ b) ·W (tv) by def. of W
= (W (tu) ·W (b)) ·W (tv)
= (W (tu) · b) ·W (tv)
= b ·W (tv) because W (tu) ∈ σ′ − σ ⊆ f(b)
∈ σ because b, W (tv) ∈ σ and ‘ · ’ is conserv.
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v = ε W (tv) ∈ σ′ − σ W (tv) ∈ σ

u = ε b b ⊗ tv b ⊗ tv
W (tu) ∈ σ′ − σ tu ⊗ b (tu ⊗ b) ⊗ tv (tu ⊗ b) ⊗ tv

W (tu) ∈ σ tu ⊗ b tu ⊗ (b ⊗ tv) tu ⊗ (b ⊗ tv)

Fig. 1. Key step in the inductive cases in the proof of correctness

Figure 1 presents a tw that should be selected in each of the nine cases.

We now have established that L(Bσ) ⊆
⋃
b∈σ Λ(b) ∪ {ε}. What remains to show

is Lemma 3.

Lemma 3. For any a ∈ Σ, L(Aa) ⊆ Λ(a).

Proof. This is easy as the only Aa-production is Aa → Bf(a) aBf(a), where Bf(a)
generates either the empty word or a word for which we can arrange a contest
such that the winner is favorable to a. So, by analyzing four cases, we can show
that we can arrange for all words in L(Aa) to have a as a winner.

2.3 Completeness of the Grammar

Lemma 4. For all non-empty subsets σ of symbols,
⋃
b∈σ Λ(b) ∪ {ε} ⊆ L(Bσ).

Proof. We do so by induction on the length of the words. Base case. Let us
consider a word w of length 0. We have that w = ε. Because of the productions
of the form Bσ → ε, we have that ε ∈ L(Bσ), for all σ ⊆ Σ. Induction hypothesis.
We suppose that the inclusion holds for all ∅ �= σ ⊆ Σ and all words of length
at most n. Induction step. Let us consider ∅ �= σ ⊆ Σ and w of length n + 1
such that w ∈

⋃
b∈σ Λ(b) ∪ {ε}. Since w �= ε, let b ∈ σ such that w ∈ Λ(b). Let

σ′ = σ∪f(b). There exists a contest tree tw ∈ T (w) such that W (tw) = b. There
are two possible shapes for tw: it is a leaf or it is a larger tree. If tw is a leaf, then
w = b and the derivation Bσ ⇒ Bσ′ bBσ′ ⇒ bBσ′ ⇒ b shows that w ∈ L(Bσ).
Otherwise, tw = tu ⊗ tv where b is the winner of at least one of tu and tv (by
conservativeness of ‘·’). Without loss of generality, let us suppose thatW (tv) = b.
We know that W (tu) ∈ f(b), since W (tu) is defeated by b. Let u, v ∈ Σ+ such
that tu ∈ T (u) and tv ∈ T (v). Note that 1 ≤ |v| ≤ n. Since W (tv) = b, then
v ∈ Λ(b), so v ∈ Λ(b) ∪ {ε}, and (by IH) v ∈ L(B{b}). Since v �= ε, there exists
a derivation B{b} ⇒+ v that first uses the production B{b} → Bσ′′ bBσ′′ , where
σ′′ = {b} ∪ f(b). Let v′, v′′ ∈ Σ∗ such that v = v′ b v′′ and v′, v′′ ∈ L(Bσ′′). At
this point, we have that w = u v′ b v′′, that there exists a contest tree tu ∈ T (u)
such that W (tu) ∈ f(b), either that v′ = ε or that there exists a contest tree
tv′ ∈ T (v′) such that W (tv′) ∈ σ′′, and either that v′′ = ε or that there exists a
contest tree tv′′ ∈ T (v′′) such that W (tv′′ ) ∈ σ′′. Given the possible emptiness
of v′ and that of v′′, we would have four cases to analyze. We only examine
the case where both v′ and v′′ are non-empty, as the other cases are simpler.
Let tu v′ = tu ⊗ tv′ . By conservativeness, we have that W (tu v′) ∈ σ′′ and, so,
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W (tu v′) ∈ σ′. Also, we have that W (tv′′ ) ∈ σ′′ and, so, W (tv′′ ) ∈ σ′. Since
|u v′| ≤ n ≥ |v′′|, we use the IH and obtain that u v′, v′′ ∈ L(Bσ′). Thus the
derivationBσ ⇒ Bσ′ bBσ′ ⇒∗ u v′ bBσ′ ⇒∗ u v′ b v′′ = w shows that w ∈ L(Bσ).

At this point, we have established that
⋃
b∈σ Λ(b)∪{ε} ⊆ L(Bσ). What remains

to show is Lemma 5.

Lemma 5. For any a ∈ Σ, Λ(a) ⊆ L(Aa).

Proof. This is shown by noting that, for any word w in Λ(a), there is a contest
tree tw ∈ T (w) such that W (tw) = a and analyzing the three following cases:
tw = a, tw = tu ⊗ tv where W (tu) = a, and tw = tu ⊗ tv where W (tu) �= a. In
each case, it is simple to exhibit a derivation Aa ⇒∗ w, using arguments similar
to those used in the demonstration of completeness for the Bσ’s.

2.4 Regularity of the Language Generated by the Grammar

Before we demonstrate that L(G) is regular, we present a couple of lemmas. In
the first lemma, we make the rather intuitive observation that, the larger the
set σ in Bσ, the larger the generated language.

Lemma 6. For any ∅ �= σ ⊆ σ′ ⊆ Σ, we have that L(Bσ) ⊆ L(Bσ′).

Proof.

L(Bσ) =
⋃
b∈σ

Λ(b) ∪ {ε} ⊆
⋃
b∈σ′

Λ(b) ∪ {ε} = L(Bσ′).

Lemma 7. For any ∅ �= σ ⊆ σ′ ⊆ Σ, we have that L(Bσ′) = L(Bσ′ Bσ).

Proof. Showing that L(Bσ′) ⊆ L(Bσ′ Bσ) is trivial as it is sufficient to system-
atically use production Bσ → ε. Let us show L(Bσ′ Bσ) ⊆ L(Bσ′) by induction
on the length of the words. Induction basis. Let w ∈ Σ∗ of length 0. Then, w has
to be ε and w ∈ L(Bσ′). Induction step. Let w ∈ L(Bσ′ Bσ) of length n + 1.
There exist u ∈ L(Bσ′) and v ∈ L(Bσ) such that w = u v. If u = ε, then
w = v ∈ L(Bσ) ⊆ L(Bσ′) and we are done. Otherwise, there exist b ∈ σ′,
σ′′ = σ′ ∪ f(b), and u′, u′′ ∈ L(Bσ′′) such that u = u′ b u′′. Note that |u′′ v| ≤ n
and, since u′′ v ∈ L(Bσ′′ Bσ) with σ ⊆ σ′′, the IH can be used to get that
u′′ v ∈ L(Bσ′′ ). Thus w = u′ b u′′ v ∈ L(Bσ′′ {b}Bσ′′) ⊆ L(Bσ′) and we are done.

Now we can turn to the main task of showing Lemma 8.

Lemma 8. G generates a regular language.

Proof. Let us examineG’s productions. Note that each time there is a production
of the form Bσ → Bσ′ bBσ′ , then we have that σ ⊆ σ′. The productions can be
classified into two kinds: those for which σ = σ′ and those for which σ ⊂ σ′. The
second kind of productions introduces no recursion among the non-terminals.
The first kind does but only via self-recursion. We show that this does not lead
to an non-regular language.
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Ci → Ci b1 Ci ri = ( b1 |
. . . . . . |

Ci → Ci bk′ Ci bk′ |
Ci → Clk′+1

bk′+1 Clk′+1
rlk′+1

bk′+1 rlk′+1
|

. . . . . . |
Ci → Clk−1

bk−1 Clk−1
rlk−1

bk−1 rlk−1
)∗

Ci → ε

where max(lk′+1, . . . , lk−1) < i

Fig. 2. Converting productions (possibly) with self-recursion into a regular expression

The non-empty subsets of Σ form a partially ordered set, with respect to
inclusion (⊇). Let σ1, . . . , σ2|Σ|−1 be a topological ordering of the non-empty
subsets of Σ such that if σj ⊃ σi, then j < i. As a consequence, σ1 has to be Σ
and σ2|Σ|−1 has to be one of the singletons. Let us use the alias non-terminals
C1, . . . , C2|Σ|−1 for the permutation of the Bσ’s according to this ordering;

i.e. Ci = Bσi , for 1 ≤ i ≤ 2|Σ| − 1. Consequently, we now view production
Bσi → ε as Ci → ε and production Bσi → Bσj bBσj as Ci → Cj b Cj , where
i = j if and only if σi = σj .

In order to show that Aa generates a regular language, we successively show,
by induction on i, that each non-terminal Ci generates the same language as
a regular expression ri. We can then conclude that Aa also generates a regular
language. We do an inductive reasoning on the Ci’s but, as will be apparent,
there is no need to provide a special case for the basis.

Let 1 ≤ i ≤ 2|Σ|−1. By IH, we know that each Cj generates the same language
as some regular expression rj , for j < i. Let us consider all the Ci-productions
P1, . . . , Pk. Without loss of generality, let us suppose that P1, . . . , Pk′ are the
productions that involve self-recursion, that Pk′+1, . . . , Pk−1 are those that in-
volve non-self-recursion, and that Pk is Ci → ε. Note that we have 0 ≤ k′ < k.
Value k′ might be as low as 0 because there might exist non-terminals for which
all productions are non-self-recursive. Value k′ cannot get higher than k − 1
because there is production Pk.

1 For the sake of illustration, we list the produc-
tions on the left-hand side of Figure 2. On the right-hand side of Figure 2, there
is a single replacement equation whose right member is regular expression ri.
The regular expression is a Kleene iteration over a union that contains an al-
ternative for each non-ε-production. Each self-recursive production is converted
into its middle symbol. Each non-self-recursive production is trivially converted
into a regular expression, as the concerned non-terminals already denote regular
languages, by IH. We must show that ri generates L(Ci).

We start by showing that L(ri) ⊆ L(Ci). We do so by induction on the size
of the words. Induction basis. Let w ∈ Σ∗ of length 0. Then, w must be ε and,
clearly, w ∈ L(Ci). Induction step. Let w ∈ L(ri) of length n+1. By construction,

1 For instance, in the case of C1 = Bσ1 = BΣ , k′ = k − 1 since all the productions are
self-recursive except C1 → ε.
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we have that ri = (r′i)
∗, where r′i is a union. Since w �= ε, then w ∈ L(r′i ri), which

means that there exist u ∈ Σ+ and v ∈ Σ∗ such that w = u v, u ∈ L(r′i), and v ∈
L(ri). Since |v| ≤ n, we know that v ∈ L(Ci), by IH. There are two cases for u:
either u = bm, for 1 ≤ m ≤ k′, or u ∈ L(rlm bm rlm), for k′+1 ≤ m ≤ k−1. In the
first case, the following derivation shows that w ∈ L(Ci): Ci ⇒ Ci bmCi ⇒ bm Ci
⇒∗ bm v = u v = w. In the second case, we have that there exist u′, u′′ ∈ L(rlm)
such that u = u′ bm u′′. By IH, we have that u′, u′′ ∈ L(Clm). By construction
of G, we know that Ci = Bσ and Clm = Bσ′ such that σ ⊂ σ′. Consequently,
L(Ci) ⊆ L(Clm). By the second lemma, L(Clm) = L(Clm Ci). Consequently, w
= u v = u′ bm u′′ v, where u′ ∈ L(Clm) and u′′ v ∈ L(Clm Ci) = L(Clm), which
guarantees that Ci ⇒ Clm bm Clm ⇒∗ w.

We continue by showing that L(Ci) ⊆ L(ri). Once again, we show this result
by induction on the length of the words. Induction basis. Let w ∈ Σ∗ of length 0.
Then, w must be ε and, clearly, w ∈ L(ri). Induction step. Let w ∈ L(Ci) of
length n + 1. Since w �= ε, the derivation Ci ⇒∗ w must start with the use
of a non-ε-production. Then, two cases are possible. If the production is one of
the first k′ ones, then it is Ci → Ci bm Ci, for m ≤ k′, and there exist u, v ∈
L(Ci) such that w = u bm v. Since |u| ≤ n ≥ |v|, we use the IH and have that
u, v ∈ L(ri). Consequently, w = u bm v ∈ L(ri)L(ri)L(ri) ⊆ L(ri), since ri is a
Kleene iteration. In the other case, the first production used is Ci → Clm bmClm ,
for k′ < m ≤ k − 1, and there exist u, v ∈ L(Clm) such that w = u bm v. By
construction of G and the ordering of the C non-terminals, we know that Clm
appears before Ci (i.e. lm < i) in the ordering and so Clm generates the same
language as rlm , by IH. Consequently, w = u bm v ∈ L(rlm) {bm}L(rlm) ⊆ L(ri).

3 Non-commutative Case

We now study the case where the operator is non-commutative but still conserva-
tive and defined everywhere. That is, there exist a, b ∈ Σ such that a · b �= b · a.
We show Theorem 9. We show it using an adaptation of the grammar-based
method of Section 2.

Theorem 9. Given an arbitrary symbol a in Σ, the language Λ(a) is regular.

As in the commutative case, we start by giving the construction of a context-free
grammar that generates Λ(a) and then show that its language is regular.

3.1 Building the Grammar

Due to the loss of the commutativity property, we now need two auxiliary func-
tions that return, for a given symbol b, the symbols that are favorable to b:
functions fL, fR : Σ → 2Σ for the symbols that are defeated when they appear
on the left-hand side of the operator and those that are defeated when they
appear on the right-hand side of the operator, respectively. Formally: fL(b) =
{c ∈ Σ | c · b = b}, and fR(b) = {c ∈ Σ | b · c = b}.
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We define the context-free grammar G = (N,Σ,Aa, R) where all the compo-
nents are the same as in the commutative case except for the productions:

R = {Aa → Bσ′ aBσ′′ | σ′ = fL(a), σ′′ = fR(a)}
∪ {Bσ → Bσ′ bBσ′′ | σ ⊆ Σ, b ∈ σ, σ′ = σ ∪ fL(b), σ′′ = σ ∪ fR(b)}
∪ {Bσ → ε | ∅ �= σ ⊆ Σ}.

The main difference is that we take care of handling the sets of defeated symbols
independently on the left- and on the right-hand sides. We do not show the
following lemmas as the proofs are similar to those of Section 2.

Lemma 10. L(Bσ) =
⋃
b∈σ Λ(b) ∪ {ε}.

Lemma 11. L(Aa) = Λ(a).

3.2 Regularity of the Language Generated by the Grammar

Lemma 12. G generates a regular language.

Proof. In order to show Lemma 12, we use the alias variables C1, . . . , C2|Σ|−1

once again. We remind the reader that Ci = Bσi , for 1 ≤ i ≤ 2|Σ| − 1, that, if
σj ⊇ σi, we have j ≤ i, and finally that, for any production Ci → α, any Cj
that appears in α is such that j ≤ i. Again, we show by induction on i that
each Ci generates a regular language, which is the same as the one generated by
the regular expression ri. At step i, we suppose that Cj is equivalent to rj , for all
j < i. The changes that must be made to the proof in the non-commutative case
relate to the construction of the regular expression ri and the demonstrations
that L(ri) ⊆ L(Ci) and L(Ci) ⊆ L(ri).

Let us consider all the Ci-productions P1, . . . , Pk. Without loss of generality,
let us suppose that the productions are grouped by kind of recursion. Note that
the non-ε-productions are of the form Ci → Cj b Ch, with j ≤ i ≥ h, and hence
cannot be merely categorized as being self-recursive or not. Let 0 ≤ k′ ≤ k′′ ≤
k′′′ < k such that P1, . . . , Pk′ are completely self-recursive, Pk′+1, . . . , Pk′′ are
self-recursive on the left only, Pk′′+1, . . . , Pk′′′ are self-recursive on the right only,
and Pk′′′+1, . . . , Pk−1 are not self-recursive at all. Figure 3 presents the original
Ci-productions and the regular expression ri in which they are transformed.

As in the commutative case, there remains to show that L(ri) = L(Ci). Due
to lack of space, we omit the proof that each language is contained into the
other. However, the arguments are similar to those used in the commutative
case, except that there are a few extra sub-cases to analyze; i.e. those for the
productions that are self-recursive on the left only and for the productions that
are self-recursive on the right only.

4 Languages Recognized by Conservative Groupoids

We now know that languages recognized by conservative groupoids are regular
and it is natural to seek a more precise characterization. This seems challenging.
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Ci → Ci b1 Ci ri = ( b1 |
. . . . . . |

Ci → Ci bk′ Ci bk′ |
Ci → Ci bk′+1 Clk′+1

bk′+1 rlk′+1
|

. . . . . . |
Ci → Ci bk′′ Clk′′ bk′′ rlk′′ |
Ci → Clk′′+1

bk′′+1 Ci rlk′′+1
bk′′+1 |

. . . . . . |
Ci → Clk′′′ bk′′′ Ci rlk′′′ bk′′′ |
Ci → Clk′′′+1

bk′′′+1 Cl′
k′′′+1

rlk′′′+1
bk′′′+1 rl′

k′′′+1
|

. . . . . . |
Ci → Clk−1

bk−1 Cl′
k−1

rlk−1
bk−1 rl′

k−1
)∗

Ci → ε

where max(lk′+1, . . . , lk−1, l
′
k′′′+1, . . . , l

′
k−1) < i

Fig. 3. Converting productions into a regular expression in the non-commutative case

One starting point is to consider conservative groupoids which are also asso-
ciative, i.e. semigroups for which x ·y ∈ {x, y}. In particular, these satisfy x2 = x
but we can give an exact characterization.

Lemma 13. A semigroup S is conservative iff its set of elements can be parti-
tioned into k classes C1, . . . Ck such that x · y = y · x = x whenever x ∈ Ci and
y ∈ Cj for i > j and for any j either x · y = x for all x, y ∈ Cj (left-zero) or
x · y = y for all x, y ∈ Cj (right-zero).

Proof. By definition, such a semigroup is conservative. Also, the operation de-
fined above is associative. Indeed if x, y, z are three elements lying in the same
class Ci then (x ·y) ·z = x ·(y ·z) = x if Ci is left-zero and (x ·y) ·z = x ·(y ·z) = z
if it is right-zero. If x, y, z are not in the same class then associativity follows
because the elements in the most absorbing class are the only ones that matter.
Suppose for instance that x and z lie in the same class Ci while y lies in some Cj
with i > j. Since x ·y = x and y ·z = z we clearly have (x ·y) ·z = x · (y ·z) = xz.

Conversely, suppose S is a conservative semigroup. For any x, y, one of three
cases must hold: (1) x · y = y · x = x (or . . . = y), (2) x · y = x and y · x = y, or
(3) x · y = y and y · x = x and we say that the pair x, y is of type 1, 2, or 3.

First note that cases (2) and (3) define equivalence relations on S. Moreover,
if x �= y is a pair of type (2) then there cannot exist a z �= x such that x, z is a
pair of type (3). Indeed, we would then have z · y = (x · z) · (y · x) = x · z · y · x.
Because S is conservative we must have z · y ∈ {y, z} but this either leads to
x ·z ·y ·x = x ·z ·x = x or x ·z ·y ·x = x ·y ·x = x. Both cases form a contradiction.

These facts allow us to partition S into classes such that within each either
x · y = x for all x, y ∈ Cj or x · y = y for all x, y ∈ Cj . (These Cj correspond to
the J -classes of the semigroup.) It remains to show that we can impose a total
order on these classes. We simply choose to place class A below class B if there
is some x in A and some y in B such that x · y = y · x = x. This is well defined:
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if, e.g., we choose z another representative of B with y · z = y and z ·y = z, then
x·z = x·y ·z = x·y = x. Moreover, this forms a total order since for any pair x, y
not of type (2) or (3), we must have x ·y = y ·x = x or x ·y = y ·x = y. It is now
straightforward to check that S has the structure described in the statement.

This characterization can be translated into a description of the languages rec-
ognizable by conservative semigroups. For an alphabet Σ, consider a partition
C1, . . . , Ck each with an associated direction d1, . . . , dk with di ∈ {L,R}. For
a ∈ Cj with dj = L (resp. dj = R), define the language La (resp. Ra) of words
that contain no occurrence of letters in classes Ci with i < j and where the first
(resp. last) occurrence of a letter in Cj is an a. A language can be recognized by
a conservative semigroup iff it is the disjoint union of some La and Ra.

Note that the class of languages recognized by conservative semigroups does
not have many closure properties. For instance, it is not closed under union
or intersection: each of the languages Σ∗aΣ∗ and Σ∗bΣ∗ can be recognized but
their union (or intersection) has a syntactic semigroup which is not conservative.

The apparent absence of closure properties makes it difficult to provide a com-
plete characterization of languages recognized by non-associative, conservative
groupoids. We believe that this is nevertheless an interesting challenge and we
end this section with a discussion of basic examples and avenues for research.

First, while any language L recognized by a conservative semigroup must
be idempotent, this need not be the case for one recognized by a conservative
groupoid. A language is idempotent if, for any x, y, z ∈ Σ∗, we have xyz ∈
L ⇔ xy2z ∈ L. A language recognized by a conservative groupoid G need not be
idempotent despite the fact that g2 = g for any g ∈ G. For instance, the language
{a, b}∗a{a, b}∗a{a, b}∗ consisting of words with at least two as is not idempotent.
It can however be recognized by the Rock-Paper-Scissors groupoid by setting
φ(a) = RPS and φ(b) = ε and choosing {P} as the accepting set. If w contains
no a then φ(w) = ε cannot produce P . If w contains a single a then φ(w) = RPS
and one readily checks that R · (P · S) = R and (R · P ) · S = S. However,
φ(aa) = RPSRPS which can be bracketed as ((R · P ) · (S · (R · (P · S)))) = P .
More generally, if k ≥ 3 the k copies of RPS can be bracketed as follows. First
bracket each of the k − 2 last copies of RPS individually to obtain S, absorb
these Ss to obtain RPSRPS, and use the bracketing above.

Similarly, {a, b}∗a{a, b}∗a{a, b}∗a{a, b}∗ can be recognized by the
four-element groupoid with the multiplication table besides. One
can see that both φ(a) = 1234 and φ(aa) = 12341234 can never
be bracketed to obtain 3. In both cases, the rightmost 3 cannot
win against 4 and the leftmost 3 cannot win against 1, possibly
after having defeated 2. On the other hand, 3 can be the winner of
φ(aaa) = 123412341234, as shown by the bracketing: ((((1 · (2 · 3)) ·
(4 · 1)) · 2) · (3 · (((4 · 1) · 2) · (3 · 4)))).

1 2 3 4
1 1 1 1 4
2 1 2 3 2
3 1 3 3 4
4 4 2 4 4

We think that there are similar conservative groupoids that can “count” up
to k for any k and have verified this up to k = 6. In fact, distinguishing between
five and six occurrences of a can be achieved, somewhat counter-intuitively, with
a five-element groupoid.
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On the other hand, we believe it is impossible to count the occurrences of
a letter modulo some p using a conservative groupoid and more generally that
every language L recognized by a conservative groupoid G is star-free, i.e. that
for some k and any x, y, z ∈ Σ∗ we have xykz ∈ L ⇔ xyk+1z ∈ L.

For any g in a conservative groupoid G, we have g2 = g. So whenever g ∈
W (u), we must also have g = g2 ∈ W (u2). As a referee kindly pointed out, this
suffices to show a partial result along those lines, which is that the language
(aa)∗a of words of odd length cannot be recognized by G.

Due to space restrictions, further partial results are omitted here. An up-to-
date extended version of the paper is available from the authors’ websites.

5 Conclusion and Future Work

We have shown that conservative groupoids can only recognize regular lan-
guages. Beaudry, Lemieux, and Thérien had previously exhibited a large class
of groupoids with the same limitations but our work is incomparable to theirs
and our methods are, accordingly, quite different. It is natural to ask whether
our approach can be generalized to find a wider class of “weak” groupoids and
an obvious target are the 0-conservative groupoids, i.e. groupoids H with a 0
element such that 0 · x = x · 0 = 0 for all x ∈ H and x · y ∈ {x, y, 0} for all
x, y ∈ H ; i.e. all non-conservative products are 0.

It is well known that left-linear and right-linear context-free grammars gen-
erate regular languages [6]. The work presented in this paper can be used to
recognize a larger family of context-free grammars that generate regular lan-
guages. The work of [1,2] is similar in that regard: context-free grammars with
productions of the form A → AαA (called self-embedded), and other simpler
forms of recursion, are shown to generate regular languages.

References

1. Andrei, S., Cavadini, S., Chin, W.N.: Transforming self-embedded context-free
grammars into regular expressions. Tech. Rep. TR 02-06, University “A.I.Cuza”
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Abstract. In online graph coloring a graph is revealed to an online
algorithm one vertex at a time, and the algorithm must color the vertices
as they appear. This paper starts to investigate the advice complexity
of this problem – the amount of oracle information an online algorithm
needs in order to make optimal choices. We also consider a more general
problem – a trade-off between online and offline graph coloring.

In the paper we prove that precisely �n/2� − 1 bits of advice are
needed when the vertices on a path are presented for coloring in arbitrary
order. The same holds in the more general case when just a subset of
the vertices is colored online. However, the problem turns out to be non-
trivial for the case where the online algorithm is guaranteed that the
vertices it receives form a subset of a path and are presented in the order
in which they lie on the path. For this variant we prove that its advice
complexity is βn+O(log n) bits, where β ≈ 0.406 is a fixed constant (we
give its closed form). This suggests that the generalized problem will be
challenging for more complex graph classes.

Keywords: Advice Complexity, Online Graph Coloring, Partial
Coloring.

1 Overview of Advice Complexity

A great challenge in classical algorithmics are problems that work in an online
fashion: The instance is not shown to the algorithm all at once. Instead, the
algorithm receives it piecewise in consecutive turns. In each turn, the algorithm
must produce a piece of the output which must not be changed afterwards. Such
algorithms are called online algorithms, more on them can be found in [4].

Obviously, it is harder (and sometimes even impossible) to compute the best
partial solutions without knowing the future. The output quality of online algo-
rithms is measured by the competitive ratio of a particular instance, see [4,12].
This ratio is the quotient of the cost of the solution produced by the given online
algorithm and the cost of an optimal solution (i.e., the cost of the output of an
optimal offline algorithm for that particular instance).
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The exact advantage of the offline algorithm can be measured as the amount
of additional information, “advice”, the online algorithm needs in order to pro-
duce an optimal solution. This notion can be formalized by providing the online
algorithm with an additional source of information: an advice tape. The content
of the advice tape is assumed to be prepared in advance by an oracle which has
unlimited computational power and has access to the whole input instance. This
model of advice complexity has first been introduced in [6].

The original model [6] had a minor technical disadvantage: the advice tape
was finite, hence its length could be used to encode additional information. There
were two attempts to fix this. In [8], the authors force the algorithm to use a
fixed number of advice bits in every turn. The drawback of this approach is that
it is not possible to determine sublinear advice complexity. A better version of
the model was proposed in [3]. In this version the advice tape is considered to
be infinite, and we consider the length of its prefix that is actually examined by
the online algorithm. We are using this model in our paper.

There are indeed problems where already a small amount of information is
enough for an online algorithm to be optimal. For example, the online problem
SkiRental needs only 1 bit for being optimal, see [4,6]. In recent years, advice
complexity was also investigated for other classical online problems, such as the
k-server problem [2] and the paging problem [13].

Advice complexity has its theoretical importance in measuring an exact quan-
tity of information that directly characterizes the hardness of an online problem
compared to its offline version. It is also worth noting that advice complexity is
closely related to both non-determinism (in terms of the oracle) and randomiza-
tion. In [14] relations between advice complexity and randomized algorithms are
shown, and a new randomized algorithm is designed based on a careful computa-
tion of the advice complexity of a given problem. This makes advice complexity
a new and important point of view on online algorithms.

In this paper we present the initial results of advice complexity for a very
important online problem: online graph coloring. The general offline version of
this problem is a well-known NP-complete problem, and all online algorithms
without advice are known to be extremely poor in the worst case [11]. This huge
difference between online and offline algorithms makes this problem extremely
interesting from the advice complexity point of view. Our goal in this paper is
to provide an exact analysis of its simplest versions. In particular, we analyze
online 2-coloring of paths. We also consider a more general version of graph
coloring, where only a subset of vertices is colored online. Many such problems
on subgraphs, including path coloring, were considered in [1] and are known to
be very hard to approximate. Finally, we outline the approach that should be
taken when analyzing more general versions of online graph coloring.

2 Definitions

2.1 Advice Complexity Definitions

In this part of our paper we provide the necessary subset of definitions from [3].
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Definition 1. An online algorithm A with advice is defined as follows: The
input for the algorithm is a sequence (x1, . . . , xn) and an infinite advice word
ϕ ∈ {0, 1}ω. The algorithm produces an output sequence (y1, . . . , yn) with the
restriction that ∀i : yi is computed only from x1, . . . , xi and ϕ.

The computation of A can be seen as a sequence of turns, where in i-th turn A
reads xi and then produces yi using all the information read so far and possibly
some new bits of the advice word. Note that the definition does not restrict the
computational power of the online algorithms. Still, all of the algorithms in our
paper will be deterministic and they will all have a polynomial time complexity.

Definition 2. The advice complexity of A is a function s such that s(n) is the
smallest value such that for no input sequence of size n the algorithm A examines
more than the first s(n) bits of the advice word ϕ.

Definition 3. The advice complexity of an online problem is the smallest advice
complexity an online algorithm with advice needs to produce an optimal solution
(i.e., a solution as good as an optimal offline algorithm would produce).

In [3] the authors also provide definitions for online approximation algorithms
with advice. For these algorithms, one can look at the tradeoff between the
amount of advice available and the competitive ratio of the algorithm. Some-
times already very little advice can reduce the competive ratio significantly. One
example is the paging problem, also considered in [3]. In our paper we only con-
sider algorithms that produce optimal solutions, hence we omit these definitions.
However, in the conclusion of this paper we show that this question will be very
interesting when our problem is considered for more general classes of graphs.

2.2 Online Coloring Definitions

Definition 4. In OnlineColoring the instance is an undirected graph G =
(V,E) with V = {1, 2, . . . , n}. This graph is presented to an online algorithm in
turns: In k-th turn the online algorithm receives the graph Gk = G[ {1, 2, . . . , k} ],
i.e., a subgraph of G induced by the vertex set {1, 2, . . . , k}. As its reply, the
online algorithm must return a positive integer: the color it wants to assign to
vertex k. The goal is to produce the optimal coloring of G – the online algorithm
must assign distinct integers to adjacent vertices, and the largest integer used
must be as small as possible.

Vertex labels in G correspond to the order in which the online algorithm is
asked to color the vertices. An equivalent definition: in the k-th turn the online
algorithm is given a list of edges between k and vertices in {1, 2, . . . , k − 1}.

Note that the value n is not known a priori by the online algorithm. This is
intentional and necessary. Announcing the value n to the online algorithm would
give it additional information about the instance it will be processing, and this
amount of information would then not be reflected in the advice complexity.
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Definition 5. OnlinePartialColoring is a generalization of OnlineCol-

oring. In this case, the instance is G along with an integer sequence (a1, . . . , am)
such that 1 ≤ a1 < · · · < am ≤ n.

For a given integer k, let Gk = G[ {a1, a2, . . . , ak} ] be the subgraph induced by
{a1, . . . , ak}. The graph Gk can be obtained from Gk by changing vertex labels
from (a1, . . . , ak) to (1, . . . , k). In turn k, the online algorithm is shown the graph
Gk and it must return the color assigned to the most recently added vertex (the
one with label k in Gk and label ak in G). The goal is to produce a coloring of
G[ {a1, a2, . . . , am} ] that can be extended to an optimal coloring of G.

This problem can be seen as a parametrized trade-off between the online and
offline version of the coloring problem. We start with an uncolored graph G.
First, a part of G is colored in an online fashion. At the end, the rest of G is
colored offline. (By setting m = 0 in OnlinePartialColoring we obtain the
offline version, and for m = n we get the online version of classic coloring.)

Neither n nor m are known by the online algorithm. The relabeling of vertices
prevents the online algorithm from deducing their location in G.

Both OnlineColoring and OnlinePartialColoring can be considered
not only for general graphs, but also for specific graph classes – the online player
will then know that the entire graph G belongs to the considered class of graphs.
In this paper, we will be considering these two online problems for two of the
simplest graph classes – arbitrarily numbered and sequentially numbered paths.
(In some literature, these are denoted “paths with arbitrary presentation” and
“paths with connected presentation”. For many graph classes, OnlineColor-

ing is hard even with connected presentation. See [5] for more.)

Definition 6. An arbitrary numbered path with n vertices is a graph with ver-
tices {1, . . . , n}, n − 1 edges and max. degree 2. A sequentially numbered path
with n vertices is a graph with vertices {1, . . . , n} and edges {(i, i+1)|1 ≤ i < n}.

We will be analyzing the advice complexity of these problems given that G comes
from one of these graph classes and that the online algorithm is deterministic.
Already for these simple cases the results will be non-trivial.

Note that for any particular class of graphs, an algorithm with advice that
solves OnlinePartialColoring can be directly used to solve OnlineColor-

ing. But on the other hand, we will show that for sequentially numbered paths
OnlinePartialColoring requires strictly more advice than OnlineColor-

ing. (Here it is a slightly artificial difference, as OnlineColoring needs no
advice, but we expect to see similar differences in more complex graph classes.)

3 Theorems

In this section we list our results stated as theorems.

Theorem 1. For an arbitrary path on n vertices the advice complexity of both
OnlineColoring and OnlinePartialColoring is exactly *n/2+ − 1 bits.
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Theorem 2. For a sequentially numbered path on n vertices the advice com-
plexity of OnlineColoring is zero and the advice complexity of OnlinePar-

tialColoring is βn+O(log n), where β ≈ 0.40568523 is the binary logarithm
of the plastic constant.

In all proofs, n is implicitly used as the number of vertices of G for the given
instance. More details on β, including its closed form, are given in Section 5.
The notation “lg” in the proofs is the base-2 (binary) logarithm.

4 Proof of Theorem 1

Lemma 1. An online algorithm with advice that solves OnlinePartialCol-

oring and knows that G is 2-colorable never needs to access advice bits whenever
the degree of the currently processed vertex k in the current graph Gk is positive.

Proof. If the degree of k in Gk is positive, in G the vertex ak must be adjacent
to some ai such that i < k. The online algorithm already assigned a color to ai,
and now it must use the other color for ak. This can be done without advice. ��

Lemma 2. There is a deterministic online algorithm solving OnlinePartial-

Coloring for arbitrary paths with advice complexity *n/2+ − 1.

Proof. As suggested by Lemma 1, our algorithm only asks for advice (i.e., reads
the next bit of the advice word) whenever the current vertex k is isolated in Gk.
One bit of advice is sufficient – the advice can be interpreted as the correct color
to use. The above only applies for k > 1, as we may pick an arbitrary color for
the first isolated vertex.

Let S be the set of vertices that were isolated at the moment we processed
them. Clearly, it follows that no two of them are adjacent in G, hence S is an
independent set in G and therefore |S| ≤ *n/2+. ��

Lemma 3. Any deterministic online algorithm solving OnlineColoring for
arbitrary paths needs at least *n/2+ − 1 bits of advice in the worst case.

Note that the proof of the lower bound of %n/2& − 1 bits is reasonably simple;
for odd n we have to use a more careful analysis to force the extra bit.

Proof. We will denote the vertices v1, . . . , vn in the order in which they appear
on the path: for all i the vertices vi and vi+1 are adjacent. Note that we do
not know the exact numbers of these vertices. (Each path produces two such
sequences. But in our proof we will only consider sequences where v1 = 1, so
different sequences (v1, . . . , vn) will indeed correspond to different graphs G.)

Let k = %n/2&. The graph Gk will be called the prefix of an instance. We will
only consider instances where the prefix consists of k isolated vertices. Out of
these instances, we will pick a set of instances S with the following property: for
no two instances in S can their prefixes be colored in the same way. (Note that
each instance has exactly two valid colorings, hence the prefix of each instance
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Fig. 1. Example for n = 14 and x = 3: Px = {1, 3, 5} and Qx = {8, 10, 12, 14}

also has exactly two valid colorings – one a complement of the other.) As for a
deterministic algorithm the prefixes of instances in S are indistinguishable, all
information about their correct coloring must be given as advice.

For any x (1 ≤ x ≤ %n/2&) consider the two sets of positions on the path
Px = {2i− 1 | 1 ≤ i ≤ x} and Qx = {2i | x + 1 ≤ i ≤ %n/2&} (see Fig. 1). Note
that all vertices vi for i ∈ Px must share one color, and all vertices vj for j ∈ Qx
must share the other color. (Also note, that Px and Qx are sets of indices of
vertices vi and not their labels.)

Let Ix be the set of all instances where the vertices on positions in Px ∪ Qx
form the prefix. Formally, in these instances ∀i ∈ Px ∪Qx : vi ≤ k. Note that for
any such instance the prefix indeed consists of k isolated vertices.

We will now define the set S: Consider all strings w ∈ {p} · {p, q}k−1. For
each such string, we pick into S a single instance: Let x be the number of ps
in w. We will pick the lexicographically smallest1 instance from Ix such that
∀i ≤ n : if vi ≤ k, then (i ∈ Px iff the i-th letter of w is p). In words: The string
w determines the value of x and gives the order in which vertices from Px and
Qx are picked for coloring. There is always at least one such instance; if there
are multiple, any will do, so we pick the lexicographically smallest one.

In this way we constructed a set S of 2k−1 instances (S contains one instance
per each string {p} · {p, q}k−1) such that for no two instances in S the prefix
can be colored in the same way. By the pigeon-hole principle, if there was a
deterministic online algorithm that always uses less than k − 1 bits of advice,
two of the instances would receive the same advice, hence the algorithm would
produce the same coloring of their prefixes, which is a contradiction. Therefore
any deterministic online algorithm needs at least k−1 = %n/2&−1 bits of advice.
That concludes the proof for even n.

For odd n, we want to prove that any deterministic online algorithm must use
at least k bits of advice. By contradiction. Assume that the algorithm always
uses less than k bits of advice for paths of length n. This means that on instances
from S the algorithm always reads all k−1 bits of advice, and different instances
in S must correspond to different k − 1 bits of advice.

In S we have an instance J1 that corresponds to pk. For this instance all
vertices in the prefix must receive the same color. Let ϕ1 be the first k − 1 bits
of advice for this instance. Consider any instance (possibly with more than n
vertices) such that Gk consists of isolated vertices that should receive the same
color as J1. Clearly, for any such instance the first k − 1 bits of advice must be
ϕ1 – otherwise the deterministic algorithm would color the first k vertices in a
different way.

Now consider one additional instance J2: the lexicographically smallest one
where vi ≤ k + 1 iff i is odd. (This instance is similar to J1, but in J1 we have

1 I.e., one for which the vector (v1, v2, . . . ) is the smallest.
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v2 = k + 1 and in J2 we have vn = k + 1. For J2 the graph Gk+1 has k + 1
isolated vertices.) As our algorithm never uses k bits of advice, it must process
vn without any additional advice. Thus the instances J1 and J2 are for the
algorithm undistinguishable and the algorithm cannot use extra bits of advice
to color J2. Hence whenever our algorithm is presented with an instance (of
any size) such that the first k vertices are isolated and must share the same
color, it will color the next isolated vertex using the same color. And this is a
contradiction: we can easily create an instance of size n+1 where the (k+1)-st
isolated vertex should have the opposite color. ��

Proof of Theorem 1. By Lemma 3, any deterministic online algorithm for
OnlineColoring needs at least *n/2+ − 1 bits of advice in the worst case.
As OnlinePartialColoring is a generalization of OnlineColoring, this
lower bound transfers to OnlinePartialColoring. By Lemma 2 there is a
deterministic online algorithm solvingOnlinePartialColoring with *n/2+−1
bits of advice, hence that is the exact advice complexity for both problems. ��

5 Proof of Theorem 2

Lemma 4. OnlineColoring for sequentially numbered paths can be solved
without advice.

Proof. Trivially follows from Lemma 1. ��

Before we give the proof for OnlinePartialColoring, we first note some
trivial upper and lower bounds. The algorithm shown in Lemma 2 gives us an
upper bound of *n/2+− 1 bits of advice. As we show below, this is not optimal.
A trivial lower bound of %n/3& − 1 bits of advice is obtained by considering
instances where m = %n/3&, a1 = 1 and ai ∈ {3i − 2, 3i − 1} for 1 < i ≤ m.
These are 2m−1 instances, and the algorithm needs to receive different advice
for all of them, hence lg 2m−1 = m− 1 bits of advice are necessary.

Lemma 5. For any positive integer s and real number r ≥ 1

1

4rs
·
(
(r + 1)r+1

rr

)s
≤
(
(r + 1)s

s

)
≤
(
(r + 1)r+1

rr

)s
.

Proof. These bounds are given in [15]. ��

Lemma 6. Every deterministic online algorithm that solves OnlinePartial-

Coloring for sequentially numbered paths needs at least βn − lgn + O(1) bits
of advice, where β ≈ 0.40568523 is the binary logarithm of the plastic constant.

Proof. We will describe a special set S of instances. In all these instances m
will be the same and ai+1 ≥ ai + 2 for all i – hence all queries will be isolated
vertices. No two instances in S will admit the same coloring, hence the amount
of necessary advice bits will be bounded from below by *lg |S|+.
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The set S will be formed by all instances that have a1 = 1 and ai+1 ∈
{ai + 2, ai + 3}, for i ≥ 1, with the additional restriction that in all instances
there are exactly k values i such that ai+1 = ai + 2 and exactly l other values i.
Hence |S| =

(
k+l
k

)
, m = k+ l+1, and the number of vertices in each instance is

n = 2k+3l+1. (No two of these instances admit the same coloring: ai+1 = ai+3
always forces a color change.) To make formulas simpler, let x = n− 1.

We are now looking for the values k and l such that the number of such in-
stances is maximized. Mathematical intuition suggests k = l as a likely optimum,
but this turns out to be false. (But note that taking k = l leads to a correct and
good lower bound of 0.4x bits of advice.)

For a fixed n = 2k + 3l + 1 we are maximizing
(
k+l
l

)
. Let l = αx for some

α, hence k = (1 − 3α)x/2 and we are maximizing
(
(1−α)x/2

αx

)
as a function of

α ∈ (0, 1). It is easily verified that the function is decreasing for α ∈ [1/5, 1)
(which corresponds to the case k < l). Hence we just consider α ∈ (0, 1/5].

In Lemma 5, let s = l and r = k/l = (x − 3l)/(2l) = (1 − 3α)/(2α). (Note
that r ≥ 1.) This bounds our binomial coefficient from below:(

k + l

l

)
=

(
(1− α)x/2

αx

)

≥ 2α

4(1− 3α)αx
·
( (

1−α
2α

) 1−α
2α(

1−3α
2α

) 1−3α
2α

)αx

=
1

2(1− 3α)x
·
(

(1− α)(1−α)/2

(1− 3α)(1−3α)/2 · (2α)α

)x
= f(α)

Hence we get the lower bound: max
0<α≤1/5

(
(1−α)x/2

αx

)
≥ max

0<α≤1/5
f(α).

When constructing the set S, we may pick the value α that maximizes f(α),
thereby ensuring that any deterministic online algorithm will need at least
*lg max0<α≤1/5 f(α)+ bits of advice. We may now compute:

lg max
0<α≤1/5

f(α)

= lg max
0<α≤1/5

1

2(1− 3α)x
·
(

(1− α)(1−α)/2

(1− 3α)(1−3α)/2 · (2α)α

)x

= lg
1

2x
+ max

0<α≤1/5

(
− lg(1− 3α) + x · lg

(
(1 − α)(1−α)/2

(1− 3α)(1−3α)/2 · (2α)α

))

≥ lg
1

2x
− lg min

0<α≤1/5
(1− 3α) + x · lg max

0<α≤1/5

(
(1− α)(1−α)/2

(1 − 3α)(1−3α)/2 · (2α)α

)
︸ ︷︷ ︸

g(α)

= −1− lg x− lg(2/5) + βx (see below for the value of β)
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Let αm be the value of α for which the last expression, denoted g(α), is maxi-
mized. A numerical computation showed that αm ≈ 0.17700882, which is indeed
in the correct range (hence indeed l < k). The value of the maximized expres-
sion is g(αm) ≈ 1.3247179572, hence its binary logarithm is β = lg g(αm) ≈
0.40568523.

Using these approximate values we were able to guess and then to verify
closed forms for these constants. All three constants are related to a well-known
mathematical constant P , often called the plastic constant – see [9] for more
details. The constant P is the only real root of the polynomial x3 − x − 1. In
terms of P , we can express our constants as αm = 1/(2P + 3) and g(αm) = P ,

therefore we obtain β = lg
(

3
√
9−

√
69 +

3
√
9 +

√
69
)
− lg 3

√
18.

Note that in the calculation of this lower bound we worked with possibly
non-integer values for k and l. For an actual lower bound, we should take their
floors. Clearly, this only decreases the required advice by a constant. Hence we
may conclude that the advice complexity of solving OnlinePartialColoring

on a sequentially numbered path with n vertices is at least βn− lg n+O(1). ��

Before we prove a very close upper bound, we repeat that the naive strategy
“each time a vertex needs coloring, the advice is the color” is not optimal. It
turns out that the instances identified in the lower bound are precisely the worst
case. A general idea of the proof can be summarized as follows: whenever m is
close to n/2 (hence the instance is dense and we would need too much advice in
the naive approach), the number of color changes in the instance is necessarily
small, and we may only encode their locations as advice.

Lemma 7. There is a deterministic online algorithm that solves OnlinePar-

tialColoring for sequentially numbered paths and never uses more than βn+
2 lgn+ lg lg n+ O(1) bits of advice, where β is exactly the same constant as in
Lemma 6 and before.

Proof. The general outline of this proof: We will transform each instance to an
instance where all queries are isolated vertices that are as close to the left of
the path as possible, given the colors they are supposed to receive. The advice
will then be a triple containing n; the number of color changes in the (optimal)
coloring; and the index of the lexicographically smallest instance with the same
coloring as our given instance has. We will prove that this will indeed solve the
problem, and that the number of advice bits matches the claim above.

To improve our trivial upper bound and match it with the lower bound pre-
sented in Lemma 6, we need to make a few observations. First of all, we only
need to consider instances in which ai+1 ≥ ai + 2 for all i: the online algorithm
can handle queries where ai+1 = ai + 1 without advice, see Lemma 1.

Hence we only consider instances where the colored vertices form an indepen-
dent set. Let (a1, . . . , am) be the sequence of requests for one such instance I.
Let l be the number of times the value ai+1− ai is odd, i.e., the number of color
changes. Let k = %(n− 1− 3l)/2&.

Now consider the set S of instances constructed in the proof of Lemma 6 for
the values k and l we just defined. Clearly, for our instance I there is an instance
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I ′ in S with the following property: the sequence of colors assigned to queries in
I is a prefix of the sequence of colors assigned to the queries in I ′.

In fact, I ′ can be easily constructed from I: We start with the sequence
(a1, . . . , am) of queries in I. We subtract a1 − 1 from all elements, getting a
sequence that starts with 1. Then we process the values ai for i = 2..n, and for
each of these values we change ai into (ai−1 + 2 + (ai − ai−1) mod 2). (That is,
we shift ai to the left so that the distance ai − ai−1 becomes either 2 or 3; we
preserve parity of the distance.) Finally, if now the last request am is less than
n − 1, we append additional requests, each of them in distance two from the
previous one.

If our deterministic online algorithm receives the instance I, the advice it will
receive will consist of three parts: the value n, the value l, and a number d. To ob-
tain d, we construct the correct set S and order all its elements lexicographically;
d is the position of the instance I ′ in this order.

The value n can easily be encoded into the first lg n+lg lgn+1 bits of advice
using a suitable prefix code, such as the Elias delta code [7]. As the deterministic
online algorithm already knows n before reading l and d, we can avoid using a
prefix code for these: after the bits representing n, the advice word will contain
exactly %lgn&+ 1 bits for l and another *lg |S|+ bits for d.

(We note that the computational power of computing advice is not considered
in the advice complexity model, and neither is the time complexity of the online
algorithm. However, the value d can in fact be computed in time polynomial
in n, and also reconstructing I ′ from d can be done in polynomial time using
suitable combinatorial algorithms. As this is not the scope of our paper, we omit
these algorithms.)

We see that the amount of advice needed depends on the size of the largest
possible set S. To compute it we need to bound the same value

(
k+l
l

)
=
(
(1−α)x/2

αx

)
as in the previous Lemma, but this time from above. Again, we apply Lemma 5:(

k + l

l

)
=

(
(1 − α)x/2

αx

)

≤
( (

1−α
2α

) 1−α
2α(

1−3α
2α

) 1−3α
2α

)αx

=

(
(1− α)(1−α)/2

(1− 3α)(1−3α)/2 · (2α)α

)x
= g(α)x

Hence we get the upper bound:

max
0<α≤1/5

(
(1− α)x/2

αx

)
≤ max

0<α≤1/5
g(α)x

And using the same computations as in Lemma 6 we arrive at the conclusion:

lg max
0<α≤1/5

g(α)x = x · lg max
0<α≤1/5

(
(1 − α)(1−α)/2

(1− 3α)(1−3α)/2 · (2α)α

)
= βx,
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where β is the same constant as in Lemma 6. As in the previous lemma, we
may need to round the optimal k and l to integers (this time to ceilings of their
actual values), which may increase 2k+ 3l by a constant, hence it may increase
the number of advice bits by a constant. Therefore βn + 2 lgn + lg lgn + O(1)
bits of advice are sufficient. ��

Proof of Theorem 2. Follows trivially from Lemma 6 and Lemma 7. ��

6 Conclusion

In the paper we showed that already the simplest versions of online graph color-
ing are non-trivial in terms of advice complexity. We analyzed two such versions
and obtained exact (in one case) and almost exact (in the other case) bounds
on their advice complexity.

One direction of future research is clear. All of the problems considered in this
paper generalize to more complex graph classes. In particular, coloring of sequen-
tially numbered paths generalizes to coloring of graphs numbered according to
their depth-first or breadth-first traversal. It should be possible to generalize our
results to more complex graph classes. We also expect that this point of view
may lead to new randomized approximation algorithms and/or new inapprox-
imability results for some graph classes.

However, for more complex graph classes a more fine-grained analysis should
also be possible. We will now give an outline of its general idea. Note that for all
problems presented in the paper there is a trivial online approximation algorithm
that never uses more than three colors. Hence it does not make sense to consider
online approximation algorithms – either the online algorithm gets it right, or
it does not, in which case its competitive ratio is trivially 3/2. However, as we
move to more complex graph classes, the difference between online and offline
algorithms increases. For instance, every tree is trivially 2-colorable, but it has
been shown [10] that any online algorithm without advice can be forced to use
Θ(log n) colors on a n-vertex tree.

The advice complexity of obtaining the optimal coloring can be high. For in-
stance, there are n-vertex trees with n−2 leaves, and for these we obviously need
n− 3 bits of advice in order to produce the optimal coloring. A natural question
here is “what can we get for less?” That is, it should be possible to analyze the
tradeoff between the amount of advice available to the online algorithm and the
quality of the obtained approximation. This more detailed analysis may then
also lead to new, interesting approximation algorithms.

Such analysis can be done for all of the important graph classes. We expect
most of these problems to be hard, but worth solving – their solutions should
give us a better understanding of online coloring.

Acknowledgement. The authors are thankful to Juraj Hromkovič for bringing
this problem to their attention, and to Hans-Joachim Böckenhauer and Maria
Paola Bianchi for the interesting and helpful discussions about this problem.
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Abstract. To store and search genomic databases efficiently, researchers
have recently started building compressed self-indexes based on straight-
line programs and LZ77. In this paper we show how, given a balanced
straight-line program for a string S[1..n] whose LZ77 parse consists of z
phrases, we can add O(z log log z) words and obtain a compressed self-
index for S such that, given a pattern P [1..m], we can list the occ oc-
currences of P in S in O(

m2 + (m+ occ) log log n
)
time. All previous

self-indexes are either larger or slower in the worst case.

1 Introduction

With the advance of DNA-sequencing technologies comes the problem of how
to store many individuals’ genomes compactly but such that we can search
them quickly. Any two human genomes are 99.9% the same, but compressed
self-indexes based on compressed suffix arrays, the Burrows-Wheeler Transform
or LZ78 (see [21] for a survey) do not take full advantage of this similarity.
Researchers have recently started building compressed self-indexes based on
context-free grammars (CFGs) and LZ77 [23], which better compress highly
repetitive strings. A compressed self-index stores a string S[1..n] in compressed
form such that, given a pattern P [1..m], we can quickly list the occ occurrences
of P in S.

Claude and Navarro [4] gave the first compressed self-index based on gram-
mars, which takes O(r log r) + r logn bits, where r is the number of rules in
the given grammar, and O

(
(m2 + h(m+ occ)) log r

)
time, where h ≥ log n is

the height of the parse tree. Throughout this paper, we write log to mean
log2. Very recently, the same authors [5] described another grammar-based com-
pressed self-index, which takes 2R log r + R logn + ε r log r + o(R log r) bits,
where R is the total length of the rules’ right-hand sides and 0 < ε ≤ 1, and
O
(
(m2/ε) logR+ occ log r

)
time1. Whereas their first index requires a straight-

line program (SLP), their new index can be built on top of an arbitrary CFG.

� Supported by MNiSW grant number N206 492638, 2010–2012.
1 They have now reduced the logR factor in this time bound to log(log n/ log r).
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Table 1. Space and time bounds for Claude and Navarro’s compressed self-indexes [4,5],
Kreft and Navarro’s [16] and our own. Throughout, r is the number of rules in a given
CFG generating a string S[1..n] and only S, but the CFG must be an SLP in Row 1
and a balanced SLP in Row 4. In Row 1, h is the height of the parse tree. In Row 2,
R is the total length of the rules’ right-hand sides and 0 < ε ≤ 1. In Row 3, d is the
depth of nesting in the parse.

source total space (bits) search time

[4] O(r log r) + r log n O(
(m2 + h(m+ occ)) log r

)
[5] 2R log r +R log n+ ε r log r + o(R log r) O(

(m2/ε) logR + occ log r
)

[16] 2z log(n/z) + z log z + 5z log σ + O(z) + o(n) O(
m2d+ (m+ occ) log z

)
Thm. 4 2r log r + O(z(log n+ log z log log z)) O(

m2 + (m+ occ) log log n
)

Kreft and Navarro [16] gave the first (and, so far, only) compressed self-index
based on LZ77, which takes 2z log(n/z)+z log z+5z log σ+O(z)+o(n) bits, where
z is the number of phrases in the LZ77 parse of S, and O

(
m2d+ (m+ occ) log z

)
time, where d ≤ z is the depth of nesting in the parse. Throughout this paper,
we consider the non-self-referential LZ77 parse, so z ≥ logn. The o(n) term in
Kreft and Navarro’s space bound can be dropped at the cost of increasing the
time bound by a factor of log(n/z). In this paper we show how, given a balanced
SLP for S, we can add O(z(logn+ log z log log z)) bits and obtain a compressed
self-index that answers queries in O

(
m2 + (m+ occ) log logn

)
time. We note

that Maruyama et al. [18] recently described another grammar-based index but
its search time depends on “the number of occurrences of a maximal common
subtree in [edit-sensitive parse] trees of P and S”, making it difficult to compare
their data structure to those mentioned above.

In order to better compare our bounds, those by Claude and Navarro and
those by Kreft and Navarro — all of which are summarized in Table 1 — it is
useful to review some bounds for the LZ77, balanced and unbalanced SLPs, and
arbitrary CFGs. The LZ77 compression algorithm works by parsing S from left
to right into phrases: after parsing S[1..i−1], it finds the longest prefix S[i..j−1]
of S[i..m] that has occurred before and selects S[i..j] as the next phrase. The
previous occurrence of S[i..j−1] is called the phrase’s source. Kreft and Navarro
considered the non-self-referential LZ77 parse, in which each phrase’s source must
end before the phrase itself begins, so z ≥ logn. For ease of comparison, we also
consider the non-self-referential parse.

In an SLP of size r, each of the non-terminals X1, . . . , Xr appears on the left-
hand side of exactly one rule and each rule is either of the form Xi → a, where
a is a terminal, or Xi → XjXk, where i > j, k; thus, the SLP generates exactly
one string and can be encoded in 2r log r +O(r) bits. Rytter [22] and Charikar
et al. [2] showed that, in every CFG generating S and only S, the total length
of the rules’ right-hand sides is at least z. Rytter showed how we can build an
SLP for S with O(z logn) rules whose parse tree has the shape of an AVL tree,
which is height-balanced, and Charikar et al. showed how to build such an SLP
whose parse tree is weight-balanced. Finally, Charikar et al. showed that finding
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an algorithm for building a CFG generating S and only S in which the total
length of the rules’ right-hand sides is o(z logn/ log logn), would imply progress
on the well-studied problem of building addition chains.

With Rytter’s and Charikar et al.’s bounds in mind, it is clear that the time
bound of our index is strictly better than those of the others. Kreft and Navarro’s
index has the best worst-case space bound but only when we drop the o(n) term,
increasing their time bound by a factor of log(n/z). As it is not known whether it
is possible, regardless of the time taken, to build a CFG that generates S and only
S and in which the total length of the rules’ right-hand sides is o(z logn), it is also
not known whether Claude and Navarro’s space bounds are ever strictly better
than ours. It is even conceivable that they could be worse: suppose z = logO(1) n
and the minimum total length of the rules’ right-hand sides in a CFG generating
S and only S, is z logn; then the O(r logn) and R logn terms in Claude and
Navarro’s space bounds are Θ(z log2 n), while the dominant term in our own
space bound is 2r log r = Θ(z logn log logn).

To build our index, we add bookmarks to the SLP that allow us to extract
substrings quickly from around boundaries between phrases in the LZ77 parse.
In Section 2 we show that a bookmark for a position b takes O(logn) bits and,
for any length �, allows us to extract S[b − �..b + �] in O(�+ log logn) time.
Kreft and Navarro showed how, if we can extract substrings quickly from around
phrase boundaries, then we can quickly list all occurrences of P that finish at
or cross those boundaries, which are called primary occurrences. They first use
two Patricia trees and access at the boundaries to find, for each position i ≥ 1
in P , the lexicographic range of the reverses of phrases ending with P [1..i],
and the lexicographic range of suffixes of S starting with P [i + 1..m] at phrase
boundaries. They then use a wavelet tree as a data structure for 2-dimensional
range reporting to find all the phrase boundaries immediately preceded by P [1..i]
and followed by P [i+1..m]. In Section 3 we show how, using bookmarks for faster
access and a faster (albeit larger) range-reporting data structure, we can list all
primary occurrences in O

(
m2 + (m+ occ) log logn

)
time. Occurrences of P that

neither finish at nor cross phrase boundaries are called secondary and they can
be found recursively from the primary occurrences. We build a data structure
for 2-sided range reporting on an n × n grid on which we place a point (i, j)
for each phrase’s source S[i..j]. Since the queries are 2-sided, this data structure
takes O(z logn) bits and answers queries in O(log logn+ p) time, where p is
the number of points reported. If a phrase contains a secondary occurrence at
a certain position in the phrase, then that phrase’s source must also contain an
occurrence at the corresponding position. It follows that, by querying the data
structure with (a, b) for each primary or secondary occurrence S[a..b] we find,
we can list all secondary occurrences of P in O(occ log logn) time.

2 Adding Bookmarks to a Balanced SLP

An SLP for S is called balanced if its parse tree is height- or weight-balanced.
We claim that, for 1 ≤ i ≤ j = i + 2g ≤ n, we can choose two nodes v and



A Faster Grammar-Based Self-index 243

v

w

u

b = i+ g k + 1

ki j = i+ 2g

Fig. 1. Suppose we are given an SLP for S and consider its parse tree. For 1 ≤ i ≤
j = i+ 2g ≤ n, we can choose two nodes v and w of height O(log g) in the parse tree
whose subtrees include the ith through jth leaves. Without loss of generality, assume
the bth leaf is in v’s subtree, where b = i+ g. By storing the non-terminals at v and w
and the path from v to b, we can extract S[b − �..b + �] in O(�+ log g) time.

w of height O(log g) in the parse tree whose subtrees include the ith through
jth leaves. To see why, let u be the lowest common ancestor of the ith and jth
leaves. If u has height O(log g), then we choose its children as v and w; otherwise,
suppose the rightmost leaf in u’s left subtree is the kth in the tree. We choose
as v the lowest common ancestor of the ith through kth leaves, which must lie
on the rightmost path in u’s left subtree. Since v’s right subtree has fewer than
k− i+1 ≤ 2g leaves, v has height O(log g). We choose as w the lowest common
ancestor of the (k+1)st through jth leaves, which must lie on the leftmost path
in u’s right subtree. Since w’s left subtree has fewer than j − k ≤ 2g leaves, w
also has height O(log g). Figure 1 illustrates our choice of v and w.

Without loss of generality, assume b = i + g ≤ k; the case when b > k is sym-
metric. Then the bth leaf — which is midway between the ith and jth — is in v’s
subtree and we can store the path from v to the bth leaf inO(log g) bits. With this
information, in O(�+ log g) time we can perform partial depth-first traversals of
v’s subtree that start by descending from v to the bth leaf and then visit the � ≤ g
leaves immediately to its left and right, if they are in v’s subtree. Some of the �
leaves immediately to right of the bth leafmay be the leftmost leaves inw’s subtree,
instead; we can descend fromw and visit them inO(�+ log g) time. It follows that,
if we store the non-terminals at v and w and O(log g) extra bits then, given � ≤ g,
we can extract S[b− �..b+ �] in O(�+ log g) time.

Lemma 1. Given a balanced SLP for S with r rules and integers b and g, we can
store 2 log r+O(log g) bits such that later, given �, we can extract S[b− �..b+ �]
in O(�+ log g) time.

The drawback to Lemma 1 is that we must know in advance an upper bound
on the number of characters we will want to extract. To remove this restriction,
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for each position we wish to bookmark, we apply Lemma 1 twice: the first time,
we set g = n so that, given � ≥ logn, we can extract S[b − �..b + �] in O(�)
time; the second time, we set g = logn so that, given � ≤ logn, we can extract
S[b− �..b+ �] in O(�+ log logn) time.

Theorem 2. Given a balanced SLP for S and a position b, we can store O(logn)
bits such that later, given �, we can extract S[b−�..b+�] in O(�+ log log n) time.

We note that, without changing the asymptotic space bound in Theorem 2, the

time bound can be improved to O
(
�+ log[c] n

)
, where c is any constant and

log[c] n is the result of recursively applying the logarithm function c times to
n. If we increase the space bound to O(logn log∗ n), where log∗ is the iterated
logarithm, then the time bound decreases to O(�). Even as stated, however,
Theorem 2 is enough for our purposes in this paper as we use only the following
corollary, which follows by applying Theorem 2 for each phrase boundary in the
LZ77 parse.

Corollary 3. Given a balanced SLP for S, we can add O(z logn) bits such that
later, given �, we can extract � characters to either side of any phrase boundary
in O(�+ log logn) time.

As an aside, we note that Rytter’s construction produces an SLP in which, for
each phrase in the LZ77 parse, there is a non-terminal whose expansion is that
phrase. For any balanced SLP with this property, it is easy to add bookmarks
such that we can extract quickly from phrase boundaries: for each phrase, we
store the non-terminal generating that phrase and the leftmost and rightmost
non-terminals at height log logn in its parse tree.

3 Listing Occurrences

As explained in Section 1, we use the same framework as Kreft and Navarro
but with faster access at the phrase boundaries, using Corollary 3 and a faster
data structure for 2-dimensional range reporting. Given a pattern P [1..m], for
1 ≤ i ≤ m, we find all the boundaries where the previous phrase ends with
P [1..i] and the next phrase starts with P [i + 1..m]. To do this, we build one
Patricia tree for the reversed phrases and another for the suffixes starting at
phrase boundaries. A Patricia tree [20] is a compressed trie in which the length
of each edge label is recorded and then all but the first character of each edge
label are discarded. It follows that the two Patricia trees have O(z) nodes and
take O(z logn) bits; notice that no two suffixes can be the same and, by the
definition of the LZ77 parse, no two reversed phrases can be the same. We label
each leaf in the first Patricia tree by the number of the phrase whose reverse
leads to that leaf; we label each leaf in the second Patricia tree by the number
of the phrase starting the suffix that leads to that leaf.

For example, if S = “alabar a la alabarda$”, then its LZ77 parse is as shown
in Figure 2 (from Kreft and Navarro’s paper). For convenience, we treat all
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a l a b a r a l a a l a b a r d a $

Fig. 2. The LZ77 parse of “alabar a la alabarda$”, from Kreft and Navarro’s paper [16].
Horizontal lines indicate phrases’ sources, with arrows leading to the boxes containing
the phrases themselves.

strings as ending with a special character $. In this case, the reversed phrases
are as shown below with the phrase numbers, in order by phrase number on the
left and in lexicographic order on the right.

1) a$ 9) $a$
2) l$ 5) $
3) ba$ 6) a$
4) ra$ 7) al$
5) $ 1) a$
6) a$ 3) ba$
7) al$ 8) drabala$
8) drabala$ 2) l$
9) $a$ 4) ra$

The suffixes starting at phrase boundaries are as shown below with the numbers
of the phrases with which they begin, in order by phrase number on the left and
in lexicographic order on the right.

2) labar a la alabarda$ 5) a la alabarda$
3) abar a la alabarda$ 9) a$
4) ar a la alabarda$ 6) a la alabarda$
5) a la alabarda$ 3) abar a la alabarda$
6) a la alabarda$ 8) alabarda$
7) la alabarda$ 4) ar a la alabarda$
8) alabarda$ 7) la alabarda$
9) a$ 2) labar a la alabarda$

Notice we do not consider the whole string to be a suffix starting at a phrase
boundary. We are interested only in phrase boundaries such that occurrences
of patterns can cross the boundary with a non-empty prefix to the left of the
boundary. The Patricia trees for the reversed phrases and suffixes are shown
in Figure 3. Notice that, since “la alabarda$” and “labar a la alabarda$” share
both their first and second characters, the second character ‘a’ is omitted from
the edge from the root to its rightmost child in the Patrica trie for the suffixes;
we indicate this with a *.

For each position i ≥ 1 in P , we find the lexicographic range of the reverses of
phrases ending with P [1..i], and the lexicographic range of suffixes of S starting
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Fig. 3. The Patricia trees for the reversed phrases (on the left) in the LZ77 parse of
“alabar a la alabarda$” and the suffixes starting at phrase boundaries (on the right)

with P [i+1..m] at phrase boundaries. To do this, we first search for the reverse
of P [1..i] in the Patricia tree for the reversed phrases and search for P [i+ 1..m]
in the Patricia tree for the suffixes, then use our data structure from Corollary 3
to verify that the characters omitted from the edge labels match those in the
corresponding positions in P . This takes O(m+ log logn) time for each choice
of i, or O

(
m2 +m log logn

)
time in total. For example, if P = “ala”, then we

search for “a” and “la”, “al” and “a”, and “ala” and the empty suffix. In the first
search, we reach the root’s third child in the Patricia tree for the reversed phrases,
which is the 5th leaf (labelled 1), and the root’s third child in the Patricia tree
for the suffixes, which is the ancestor of the 7th and 8th leaves (labelled 7 and 2);
the second and third searches fail because there are no paths in the first Patricia
tree corresponding to “al” or “ala”.

Once we have the lexicographic ranges for a choice of i, we check whether there
are any pairs of consecutive phrase numbers with the first number j from the
first range and the second number j + 1 from the second range. In our example,
1, 2) is such a pair, meaning that the first phrase ends with “a” and the second
phrase starts with “la”, so there is a primary occurrence crossing the first phrase
boundary. To be able to find efficiently such pairs, we store a data structure for
2-dimensional range reporting on a z × (z − 1) grid on which we have placed
z − 1 points, with each point (a, b) indicating that the phrase numbers of the
lexicographically ath reversed phrase and the lexicographically bth suffix, are
consecutive. Figure 4 shows the grid for our example, on the left, with the four-
sided range query on the 5th row and the the 7th and 8th columns that returns
the point (5, 8) indicating a primary occurrence overlapping the phrases 1 and 2.
Notice that the first row is always empty, since the lexicographically first reversed
phrase starts with the end-of-string character $. Kreft and Navarro used a wavelet
tree but we use a recent data structure by Chan, Larsen and Pǎtraşcu [1] that
takes O(z log log z) words and answers queries in O((1 + p) log log z) time, where
p is the number of points reported. With this data structure, we can list all occ1
primary occurrences in O

(
m2 + (m+ occ1) log logn

)
time.

Once we have found all the primary occurrences, it is not difficult to recursively
find all the secondary occurrences. We build a data structure for 2-sided range
reporting on an n×n grid on which we place a point (i, j) for each phrase’s source
S[i..j]. Since the queries are 2-sided, we can implement this data structure as
a predecessor data structure and a range-maximum data structure [19] which
together take O(z logn) bits and answer queries in O(log logn+ p) time [7,11],
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Fig. 4. On the left, the grid we use for listing primary occurrences in S =
“alabar a la alabarda$”. The sides of the grid are labelled with the phrase numbers
from the leaves in the two Patricia trees. A four-sided range query on the 5th row
and 7th and 8th columns that returns the point (5, 8) indicating a primary occurrence
overlapping the phrases 1 and 2. On the right, the grid we use for listing secondary
occurrences in S = “alabar a la alabarda$”. The black dots indicate phrase sources
and the grey dot indicates a two-sided query to find sources containing S[1..3].

where p is the number of points reported. If a phrase contains a secondary
occurrence at a certain position in the phrase, then that phrase’s source must
also contain an occurrence at the corresponding position. Notice that, by the
definition of the parse, the first occurrence of any substring must be primary.
It follows that, by querying the data structure with (a, b) for each primary or
secondary occurrence S[a..b] we find, we can list all secondary occurrences of P
in O(occ log logn) time. Figure 4 shows the grid for our example, on the right,
with black dots indicating phrase sources and the grey dot indicating a two-sided
query to find sources containing the primary occurrence S[1..3] of “ala”. This
query returns a point (1, 6), so the phrase whose source is S[1..6] — i.e., the 8th
— contains a secondary occurrence of “ala”.

Theorem 4. Given a balanced straight-line program for a string S[1..n] whose
LZ77 parse consists of z phrases, we can add O(z log log z) words and obtain a
compressed self-index for S such that, given a pattern P [1..m], we can list the
occ occurrences of P in S in O

(
m2 + (m+ occ) log logn

)
time.

4 Postscript

We recently designed a compressed self-index [12] based on the Relative Lempel-
Ziv (RLZ) compression scheme proposed by Kuruppu, Puglisi and Zobel [17].
Given a database of genomes from individuals of the same species, Kuruppu et
al. store the first genome G in an FM-index [8] and store the others compressed
with a version of LZ77 [23] that allows phrases to be copied only from the first
genome. They showed that RLZ compresses well and supports fast extraction
but did not show how to support search. Of course, given a pattern P [1..m], we
can quickly find all occurrences of P in G by searching in its FM-index. If we
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store a data structure for 2-sided range reporting like the one described at the
end of Section 3, then we can also quickly find all secondary occurrences of P in
the rest of the database. We now sketch one way to find primary occurrences.

Let R be the rest of the database and suppose its RLZ parse relative to G
consists of z phrases, d of them distinct. Consider each distinct phrase as a
meta-character and consider the parse as a string R′[1..z] over the alphabet of
meta-characters. Suppose a meta-character x in R′ indicates a phrase copied
from G[i..j]; then we associate with x the non-empty interval corresponding
to G[i..j] in the Burrows-Wheeler Transform (BWT) of G, and the non-empty
interval corresponding to the reverse (G[i..j])R of G[i..j] in the BWT of GR.

We will refer to two orderings on the alphabet of meta-characters: lexico-
graphic by their phrases (lex), and lexicographic by the reverses of their phrases
(r-lex). Notice that the interval for a string A in the BWT of G contains the
intervals of all the meta-characters whose phrases start with A, which are con-
secutive in the lex ordering; the interval for AR in the BWT of GR contains
the intervals of all the meta-characters whose phrases end with A, which are
consecutive in the r-lex ordering. More generally, if the intervals for two strings
overlap in a BWT, then one must be contained in the other. We can use this fact
to store small data structures such that, given an interval in the BWT of G or
GR, we can quickly find the corresponding interval in the lex or r-lex orderings
of the meta-characters.

We build a data structure for 4-sided range reporting on a d×z grid. We place
a point (a, b) on the grid if the lexicographically bth suffix ofR′, considering meta-
characters in lex order, is preceded by a copy of the ath distinct meta-character
in the r-lex ordering. In addition to the FM-index for G we also store FM-indexes
for GR and R′. We can find all primary occurrences of P in R if, for 1 ≤ i ≤ m,
we

1. use the FM-index for GR to find the interval for (P [1..i])R in the BWT of
GR;

2. map that interval to the interval in the r-lex ordering containing phrases
ending with P [1..i];

3. compute the RLZ parse of P [i+ 1..m] relative to G;
4. use the FM-index for G to find the interval for the last phrase P [j..m] of

that parse in the BWT of G;
5. map that interval to the interval in the lex ordering containing phrases start-

ing with P [j..m];
6. use the FM-index for R′ to find the interval for the parse of P [i + 1..m] in

the BWT of R′;
7. find all points (a, b) on the d × z grid with a in the interval for (P [1..i])R

in the BWT of GR, and b in the interval for the parse of P [i + 1..m] in the
BWT of R′.

Notice that, if an occurrence of P [i + 1..m] starts at a phrase boundary in R’s
parse, then the phrases in P [i + 1..m]’s parse are the same as the subsequent
phrases in R’s parse, except that the last phrase P [j..m] in P [i + 1..m]’s parse
may be only a prefix of the corresponding phrase in R’s parse. When we use the



A Faster Grammar-Based Self-index 249

FM-index for R′ to find the interval for P [i+1..m]’s parse in the BWT of R′, we
start with the interval containing the meta-characters that immediately precede
in R′ meta-characters whose phrases start with P [j..m]. If we encounter another
phrase in P [i+ 1..m]’s parse that does not occur in R’s parse, then we know no
occurrence of P [i+ 1..m] starts at a phrase boundary in R’s parse.

Steps 1, 3, 4 and 6 in the process above take time depending linearly on m,
however, so repeating the whole process for each i between 1 and m takes time
depending quadratically on m. If we use the FM-index for GR to search for
(P [1..m])R in GR then, as a byproduct, we find the intervals for (P [1..i])R in the
BWT of GR for 1 ≤ i ≤ m. Similarly, if we use the FM-index for G to search
for P [1..m] in G then we find the intervals for P [j..m] in the BWT of G for
1 ≤ j ≤ m. We can therefore avoid repeating Steps 1 and 4.

To avoid repeating Steps 3 and 6, we use 1-dimensional dynamic programming
to compute the RLZ parses of all suffixes of P and the corresponding intervals
in the BWT of R′. Assume that, given the interval for a string Ac in the BWT
of G and the length of A, we can quickly find the interval for A; we will explain
later how we do this. We work from right to left in P . Assume we have already
computed the interval in the BWT of G for the longest prefix P [i + 1..�] of
P [i + 1..m] that occurs in G and that, for i + 1 ≤ k ≤ m, we have already
computed the RLZ parse of P [k..m] relative to G and the interval for that parse
in the BWT of R′. We will show how to compute the interval in the BWT of G
for the longest prefix of P [i..m] that occurs in G, the RLZ parse of P [i..m] and
the interval for that parse in the BWT of R′.

Knowing the interval for P [i+1..�] in the BWT of G, we can use the FM-index
for G to find the interval for P [i..�]. If this interval is non-empty, then P [i..�] is
the longest prefix of P [i..m] that occurs in G, and the first phrase in the RLZ
parse of P [i..m]; the rest of the parse is the same as for P [�+1..m]. We map the
interval for P [i..�] in the BWT of G to the corresponding interval in the lex order.
If � = m, then the interval in the BWT of R′ is the one containing the meta-
characters that immediately precede in R′ meta-characters whose phrases start
with P [i..m]. If � < m, then the interval in the lex order should be associated
with a single meta-character; otherwise, P [i..�] does not occur in the parse of R
and, thus, the interval in the BWT of R′ is empty. Knowing the interval for the
parse of P [�+ 1..m] in the BWT of R′, we use the FM-index for R′ to find the
interval for the parse of P [i..m].

If the interval for P [i..�] in the BWT of G is empty, then we compute the
intervals for P [i + 1..�′] and P [i..�′], for �′ decreasing from � − 1 to i, until we
find a value of �′ such that the interval for P [i..�′] is non-empty; we then proceed
as described above. We now explain how, given the interval for a string Ac in
the BWT of G and the length of A, we can quickly find the interval for A. In
addition to the FM-index for G, we store a compressed suffix array (CSA) and
compressed longest-common-prefix (LCP) array [9] for G and a previous/next-
smaller-value data structure [10] for the LCP. Suppose [i..j] is the interval for
Ac in the BWT of G. Notice that LCP[i] and LCP[j + 1] are both at most |A|.
If LCP[i] = |A|, then we use the P/NSV data structure to find the previous



250 T. Gagie et al.

entry LCP[i′] in the LCP array that is smaller than |A|; otherwise, we set i′ = i.
If LCP[j] = |A|, then we use the P/NSV data structure to find the next entry
LCP[j′ + 1] in the LCP array that is smaller than |A|; otherwise, we set j′ = j.
The interval for A in the BWT of G is [i′..j′].

We use the CSA by Grossi, Gupta and Vitter [13] which takes (1/ε)nHk(G)+
O(n) bits and supports access to the suffix array of G in O(logε n) time, where
k ≤ α logσ n, σ is the size of the alphabet of G and α < 1 and ε ≤ 1 are constants;
see [21]. We note that, using this CSA, we can also reduce the time needed to
locate the occurrences of P in G. Choosing the right implementations of the
various other data structures, we obtain the following result:

Theorem 5. Suppose we are asked to build a compressed self-index for a database
of genomes from individuals of the same species. Let G[1..n] be the first genome
in the database and suppose the RLZ parse of the rest of the database relative to G
consists of z phrases. For any positive constants α < 1 and ε and k ≤ α log4 n, we
can store the database in O(n(Hk(G) + 1) + z(logn+ log z log log z)) bits such
that, given a pattern P [1..m], we can find all occ occurrences of P in the database
in O((m+ occ) logε n) time.

Many of the ideas used in this section have been used previously by other authors,
notably Chien et al. [3], Hon et al. [14] and Huang et al. [15]. We recently became
aware that Do, Jansson, Sadakane and Sung [6] independently proved a theorem
similar to Theorem 5 before we did. We have described our own ideas here
because they lead to an incomparable time-space tradeoff.
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Abstract. The object of investigation in this paper is the learnabil-
ity of co-recursively enumerable (co-r.e.) languages based on Gold’s [11]
original model of inductive inference. In particular, the following learn-
ing models are studied: finite learning, explanatory learning, vacillatory
learning and behaviourally correct learning. The relative effects of impos-
ing further learning constraints, such as conservativeness and prudence
on these various learning models are also investigated. Moreover, an ex-
tension of Angluin’s [1] characterisation of identifiable indexed families of
recursive languages to families of conservatively learnable co-r.e. classes
is presented. In this connection, the paper considers the learnability of
indexed families of recursive languages, uniformly co-r.e. classes as well
as other general classes of co-r.e. languages. A containment hierarchy of
co-r.e. learning models is thereby established; while this hierarchy is quite
similar to its r.e. analogue, there are some surprising collapses when us-
ing a co-r.e. hypothesis space; for example vacillatory learning collapses
to explanatory learning.

1 Introduction

The model of learning adopted in the present paper is built on that pioneered by
Gold [11]. In this setting, a language is conceived as a set of strings over some
fixed finite alphabet; a learner is modelled as an algorithmic machine that reads
step by step example strings from a pre-assigned language and at each step,
based on what it has read so far, outputs a conjecture on the language using a
specified nomenclature. The selection of a suitable nomenclature, known formally
as a hypothesis space, depends to some extent on the nature of the languages
considered: if, for example, a language L is recursive, then a programme for a
decision procedure on whether or not a given string belongs to L may be an
adequate hypothesis for describing L. The learner is said to have successfully
learnt a target language if it outputs a correct identification of the language at
some point and thenceforth never returns to an incorrect conjecture. The success
of a learner in identifying a language L may be contingent on the sort of string
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examples presented to it at each step, and also on the order of presentation; the
ensuing discussion is confined to the case that only positive data is presented in
the form of a text - an infinite sequence of strings that contains all strings of L.

Gold’s original model has since been generalised in various directions to en-
compass a large class of learnability notions and systems of learning. One may
consider in particular the learnability of co-recursively enumerable classes in the
limit. Accordingly, a language is modelled as a co-recursively enumerable class
of strings, and a learner is represented by a recursive function mapping the set
of finite sequences of natural numbers together with a pause symbol (#) into the
set of natural numbers. As a motivation for studying learnability under this new
scheme, it may be noted that several psychology experiments [9] have revealed
that subjects tasked to identify certain conjunctive concepts generally tend to
perform better when receiving positive instances rather than negative instances,
even when both types of instances carry the same amount of information. At
the same time, it has been observed [14] that the performance of subjects in
disjunctive concept identification tasks is initially superior when they receive
negative instances to that when they receive positive instances.

If the human mind is modelled as a recursive learning machine, and the ex-
tension of a concept is always assumed to be r.e., it is possible to interpret the
learnability of languages with respect to a co-r.e. hypothesis space as a model for
concept identification based on negative examples. On this view, it is hoped that
the results in this paper may offer some insight on whether the human processing
of negative instances differs from positive instances with regard to learnability
of concepts, and whether there are precise settings under which the two kinds
of data presentations yield identical learnability results. As was pointed out ear-
lier, the choice of a hypothesis space may be a decisive factor in determining
the learnability of a class. We shall take a fixed universal numbering of all co-
recursively enumerable sets, whose existence is well-established [20], as a natural
hypothesis space for the type of classes considered. This work sits between the
setting of uniformly recursive languages considered by Angluin, Lange and Zeug-
mann [1,21,15,17] and the inference using limiting recursive programs by Case,
Jain and Sharma [7] or correction grammars by Carlucci, Case and Jain [5].

The present paper proceeds along two main lines of investigation: the classifi-
cation of learning criteria according to their relative strengths, as well as the in-
trinsic characterisation of classes that are learnable under particular constraints.
In regard to the latter objective, the paper focusses on characterising classes
that are conservatively learnable with respect to a co-r.e. hypothesis space. The
main contribution, Theorem 12, formulates this characterisation based on the
notion of a tell-tale set, originally introduced by Angluin [1]: a finite set D is a
tell-tale set for some language L if D is a subset of L, and there are no languages
L′ that are properly contained in L and which also contain D. The purpose of
a tell-tale set is to provide sufficient evidence for a plausible conjecture based
on a finite number of instances of the target language. As a model for learning
scientific theories, the restriction to a co-r.e. hypothesis space of the learner is
a natural realisation of Popper’s [19] proposed criterion that a statement of an
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empirically scientific nature should be falsifiable. In fact, conservative learners
using co-enumerable hypotheses spaces explicitly follow Popper’s principle of sci-
entific discovery: they revise hypotheses when they are proven to be false and
they issue hypotheses such that they can be refuted whenever they are wrong,
at least as long as the learner has only to deal with target sets from the class to
be learnt.

More generally, learnability with respect to a co-r.e. hypothesis space appears
to be quite a stringent criterion for a scientific law to be learnt recursively, as a
learner is required to formulate in the limit a general rule enumerating counter-
examples based on the positive data it has seen so far. The subsequent results
obtained provide evidence that under fairly natural conditions, learnability us-
ing co-enumerable indices is indeed a sharper criterion than learnability using
enumerable indices.

Notation 1. The notation and terminology from recursion theory adopted in
this paper follow [20] in the main. The abbreviation r.e. shall be used for the
term “recursively enumerable.” Note that it suffices to consider r.e. and co-r.e.
languages of natural numbers, since Cantor’s pairing function permits a coding
of all strings over some fixed finite or countable alphabet into the natural num-
bers; hence the r.e. languages range over subsets of the set N = {0, 1, 2, . . .}. A
universal numbering of all partial-recursive functions is fixed as ϕ0, ϕ1, ϕ2, . . ..
Given a set S, S denotes the complement of S, and S∗ denotes the set of all
finite sequences of elements from S. W 0,W 1,W 2, . . . is a universal numbering
of all co-r.e. sets, where We is the domain of ϕe. 〈x, y〉 denotes Cantor’s pairing
function, given by 〈x, y〉 = 1

2 (x+ y)(x+ y+ 1)+ y. We,s is an approximation to
We; without loss of generality, We,s ⊆ {0, 1, . . . , s}, and {〈e, x, s〉 : x ∈ We,s} is
primitive recursive; We =

⋃
sWe,s and We,s ⊆ We,s+1 for all s. ϕe(x) ↑ means

that ϕe(x) remains undefined; ϕe,s(x) ↓ means that ϕe(x) is defined, and that
the computation of ϕe(x) halts within s steps. K denotes the diagonal halt-
ing problem, {e : ϕe(e) ↓}. For any two sets A and B, A ⊕ B = {2x : x ∈
A} ∪ {2y + 1 : y ∈ B}. Analogously, A ⊕ B ⊕ C = {3x : x ∈ A} ∪ {3y + 1 :
y ∈ B} ∪ {3z + 2 : z ∈ C}.

For any σ, τ ∈ (N ∪ {#})∗, σ � τ if and only if σ = τ or τ is an extension of
σ, σ ≺ τ if and only if σ is a proper prefix of τ , and σ(n) denotes the element in
the nth position of σ, starting from n = 0. Pref(σ) denotes the sequence of all
prefixes, in lexicographic ordering, of σ. Given a number a and some fixed n ≥ 1,
denote by an the finite sequence a . . . a, where a occurs n times. a0 denotes the
empty string. The concatenation of two strings σ and τ shall be denoted by στ ,
and occasionally by σ ◦ τ .

Definition 2. Let {Li}i∈N be a family of languages.

i. {Li}i∈N is uniformly recursive if the set {〈i, x〉 : x ∈ Li} is recursive.
ii. {Li}i∈N is uniformly recursively enumerable if the set {〈i, x〉 : x ∈ Li} is

recursively enumerable.
iii. {Li}i∈N is uniformly co-recursively enumerable if the set {〈i, x〉 : x /∈ Li} is

recursively enumerable.
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Definition 3. A class L of recursive languages is said to be an indexed family
of recursive languages if there exists a uniformly recursive family {Li : i ∈ N}
such that L = {Li : i ∈ N}. L is said to be an indexed family of r.e. (co-r.e.)
languages if there exists a uniformly r.e. (co-r.e.) family {Li : i ∈ N} such that
L = {Li : i ∈ N}.

2 Learnability

Let C be a class of recursive, recursively enumerable or co-recursively enumerable
sets. A text TL for some L in C is a map TL : N → L∪{#}, whose range contains
every element of L. T [n] denotes the string T (0)T (1) . . . T (n). A learner is a re-
cursive function M : (N ∪ {#})∗ → N. The two main learning criteria studied
in this paper are explanatory and behaviourally correct learning. In general, the
subscript of the symbol for a learning criterion indicates the nature of the hy-
pothesis space used; “r.e.” and “co-r.e.” would refer to r.e. and co-r.e. hypothesis
spaces respectively, while “rec” would refer to a recursive hypothesis space.

i. [11] M is said to explanatorily (Exco−r.e.) learn C if, for each L in C, and any
corresponding text TL for L, there is a number n for which L = WM(TL[j])

whenever j ≥ n, and for any k ≥ j, M(TL[k]) = M(TL[j]).
ii. [8] M is said to behaviourally correctly (BCco−r.e.) learn C if, for each L

in C, and any corresponding text TL for L, there is a number n for which
L = WM(TL[j]) whenever j ≥ n.

The next three definitions restrict the way the learner handles hypotheses.

Definition 4. i. [18] A recursive learner M is said to be prudent (Prud) if it
learns the class {WM(σ) : σ ∈ (N∪{#})∗}. In other words, a prudent learner
M learns every set it conjectures.

ii. [1] A recursive learner M is said to conservatively (Cnsvco−r.e.) learn C if it
Exco−r.e. learns C and if, given any two finite sequences σ, τ ∈ (N ∪ {#})∗
such that M(σ) �= M(στ), there is a number x with x ∈ range(στ)−WM(σ).

iii. [15] Let {Li}i∈N be a family of languages. {Li}i∈N is said to be class-
preservingly learnable if there is a recursive learner M that learns {Li}i∈N

such that {Li}i∈N = {WM(σ) : σ ∈ (N ∪ {#})∗}.

Remark 5. Throughout this paper, we often consider combinations of various
learning contraints with different criteria; whenever there is no risk of ambiguity
or contradiction, the relevant notations for the criteria are concatenated. For
example, the criterion of prudent and conservative learning with respect to the
hypothesis space {W 0,W 1,W 2, . . .} is denoted by PrudCnsvco−r.e..

3 Characterisations of Conservative Learning

Angluin’s [1] theorem furnishes a necessary and sufficient condition for an in-
dexed family of recursive languages to be explanatorily learnable in the limit.
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This is formally stated in terms of the notion of a finite tell-tale set, the main
role of which is to aid a learner in steering clear of overgeneralisation; that is,
conjecturing a set that properly contains the target language. Overgeneralising
at some stage during a sequence of guesses is a potential pitfall for the learner, as
it will not observe any counter-examples to its current conjecture. However, by
ensuring that the data revealed eventually contain every member of the tell-tale
set corresponding to its last conjecture, the learner can avoid being caught in
such a situation.

Definition 6 (Angluin [1]). Let {Li}i∈N be a family of languages. A uniformly
r.e. family of finite sets {Hi}i∈N is said to be a family of tell-tale sets for {Li}i∈N

if, for every i, j ∈ N,

– Hi ⊆ Li;
– if Hi ⊆ Lj ⊆ Li, then Lj = Li.

For each language Li, Hi is said to be a tell-tale set for Li. A class of languages
for which a uniformly r.e. family of tell-tale sets exists is said to satisfy Angluin’s
tell-tale condition.

The necessity of Angluin’s tell-tale condition for the learnability of indexed fam-
ilies follows from a more general property that learnable languages possess - the
existence of locking sequences. This is stated below for the explanatory learn-
ing of co-r.e. sets, but the definition extends in a natural way to other kinds of
learning criteria, as well as to r.e. sets.

Definition 7 (Blum and Blum [4]). Let M be a recursive learner and L a
co-r.e. set learned by M . A finite sequence σ in (L∪{#})∗ is said to be a locking
sequence for L if WM(σ) = L and for all τ ∈ (L ∪ {#})∗,M(στ) = M(σ).

Using the concept of a locking sequence, one can prove Angluin’s theorem for
indexed families of recursive languages:

Theorem 8 (Angluin [1]). An indexed family of recursive languages L =
{Li}i∈N is explanatorily learnable if and only it it satisfies Angluin’s tell-tale
condition.

In seeking to bridge the disconnect between two research areas, one in indexed
families of recursive languages, and the other in general classes of r.e. languages,
de Jongh and Kanazawa [13] later generalised Angluin’s tell-tale condition to
characterise indexed families of r.e. languages. In [1], Angluin also introduced
the notion of conservativeness and observed that it is an important learnability
property of indexed families. Here a learner is called conservative if and only if
M(στ) �= M(σ) only for such σ, τ where the range of στ contains some elements
outside the hypothesis issued by M(σ). Note that with this definition, every
conservative learner is automatically explanatory. Zeugmann, Lange and Kapur
[16] showed how to generalise Angluin’s tell-tale condition to characterise con-
servative learnability of indexed families of recursive languages; this was later
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extended by de Jongh and Kanazawa [13] to the case of indexed families of
r.e. languages. A family of finite sets {Hi}i∈N is uniformly recursively generable
if there is a total effective procedure g, which, on every input j, generates all
elements of Hj and stops. Conservative learnability of an indexed family of re-
cursive languages L = {Li}i∈N can be realised if there exists a family of tell-tale
sets {Hi}i∈N for L which is uniformly recursively generable. More precisely, one
has the following theorem.

Theorem 9 (Lange, Zeugmann and Kapur [16]). Let L be an indexed fam-
ily of non-empty recursive languages. Then L is conservatively learnable if and
only if there is a hypothesis space G = {Gi}i∈N and a uniformly recursively
generable family {Hi}i∈N of finite non-empty sets such that

– range(L) ⊆ range(G);
– for all i ∈ N, Hi ⊆ Gi;
– for all i, j ∈ N with Hi ⊆ Gj it holds that Gj �⊂ Gi.

Theorem 9 has a natural analogue when the learner is restricted to a co-r.e. hy-
pothesis space, as will be demonstrated later. The next series of results give char-
acterisations of conservative co-r.e. learning under various learning constraints.
The first theorem states that for Exco−r.e.-learning, Angluin’s tell-tale charac-
terisation has a counterpart with respect to class-preserving hypothesis spaces.

Theorem 10. Assume that a class C is uniformly co-r.e. and contains the empty
set. Then C is conservatively Exco−r.e. learnable using a class-preserving hypoth-
esis space if and only if it has a uniformly co-r.e. indexing L0, L1, . . . and there
is a uniformly r.e. family H0, H1, . . . of finite sets such that for all i, j with
Hi ∩ Li ⊆ Lj ⊆ Li it holds that Li = Lj.

One has indeed to take a new numbering for Angluin’s tell-tale condition to be
implemented. The following example is class-preservingly conservatively learn-
able but does not satisfy the tell-tale condition.

Example 11. Consider the following indexing:

L0 = ∅,
L2n−1 = {0, 1, 2, . . . , n} ⊕ {n} ⊕ ∅,

L2n = {0, 1, 2, . . . , n} ⊕ {n} ⊕ {x : x > |Wn|}.

This family is conservatively learnable, but no finite family of H0, H1, . . . as in
Theorem 10 exists; hence, the hypothesis space has to be adequately chosen such
as to achieve the existence of the tell-tale family.

It may be reasonable to inquire next whether all Cnsvco−r.e. learnable, but not
necessarily class-preservingly learnable classes have a similar tell-tale
characterisation. This is the main content of the following result, which pieces
together some presently known equivalent characterisations of Cnsvco−r.e. learn-
able classes. It shows, moreover, that a conservative co-r.e. learner must also nec-
essarily be prudent. {L0, L1, L2, . . .} covers C if and only if C ⊆ {L0, L1, L2, . . .}.
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Theorem 12. Let C be a class of co-r.e. sets. The following statements are
equivalent:
(i) C is Cnsvco−r.e. learnable;
(ii) C is PrudCnsvco−r.e. learnable;
(iii) There is a uniformly co-r.e. family L0, L1, L2, . . . covering C and a uniformly
recursively generable family H0, H1, H2, . . . of the finite sets such that for all n,m
it holds that Hn ⊆ Ln and Hn ⊆ Lm ⊆ Ln ⇒ Ln = Lm;
(iv) There is a uniformly co-r.e. family L0, L1, L2, . . . covering C and a uniformly
r.e. family of finite sets H0, H1, H2, . . . such that for all n,m it holds that Hn ⊆
Ln and Hn ⊆ Lm ⊆ Ln ⇒ Ln = Lm.

Sketch. The proof of the implication (i)⇒(iii) shall be demonstrated. Suppose
that M is a Cnsvco−r.e. learner of C. Let τ0, τ1, τ2, . . . be an enumeration of all
sequences in (N ∪ {#})∗ which satisfy the following conditions:

– A number x occurs in τn if and only if it occurs in τn exactly in position x;
– For all x < |τn| such that x /∈ range(τn), x ∈ WM(τn);
– For all σ ≺ τn, M(σ) �= M(τn).

Now define a uniformly co-r.e. family of sets {Ln}n∈N by

Ln =

{
WM(τn) if WM(τn) ∩ range(τn) = ∅;
range(τn)− {#} if WM(τn) ∩ range(τn) �= ∅.

Furthermore, put Hn = range(τn)−{#} for all n; by this definition, {Hn}n∈N is
a uniformly recursive family of finite sets. For each L ∈ C, let TL be the text for
L such that for all n, TL(n) = n if n ∈ L, and TL(n) = # otherwise. Since M
learns L when fed with the text TL, there is a least n for which WM(TL[n]) = L
and WM(TL[n]) ∩ range(TL[n]) = ∅; moreover, by the construction of TL, TL[n] ∈
{τ0, τ1, τ2, . . .}. Hence C ⊆ {Ln}n∈N. If range(τn) ∩ WM(τn) = ∅, then Ln =

WM(τn), and so Hn = range(τn) − {#} ⊆ Ln. If range(τn) ∩WM(τn) �= ∅, then
Ln = range(τn)− {#}, and therefore Hn ⊆ Ln still holds.

It remains to prove the tell-tale characterisation of C. Suppose that for some
i, j,Hi = range(τi)− {#} ⊆ Lj ⊆ Li. It shall be shown that τi = τj , and hence
Li = Lj, by eliminating in turn the following cases (a), (b) and (c). (a) Suppose
that τi ≺ τj . By the third condition in the construction of {τn}n∈N, M(τi) �=
M(τj), and so by the conservativeness of M , there is an x ∈ range(τj)∩WM(τi),
and as range(τj) − {#} ⊆ Lj , this implies that Lj �⊂ Li, a contradiction. (b)
Suppose that τj ≺ τi. Again, M(τi) �= M(τj), and so by the conservativeness
of M , there is an x ∈ range(τi) ∩ WM(τj). Hence range(τi) − {#} �⊂ Lj, a
contradiction. (c) Suppose that τi(x) �= τj(x) for some x < min{|τi|, |τj |}. Let e
be the least such x. If τi(e) = # and τj(e) = e, then by the second condition in
the construction of {τn}n∈N, e ∈ WM(τi). Further, if Li = range(τi)−{#}, then
one has e ∈ Lj − Li, contrary to the condition that Lj ⊆ Li. If Li = WM(τi),
then again e ∈ Lj−Li, giving rise to the same contradiction. On the other hand,
if τi(e) = e and τj(e) = #, then e ∈ range(τi)− Lj, contradicting the condition
that range(τi) − {#} ⊆ Lj . This completes the case distinction and establishes
the required implication. ��
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To complete the picture, the following example shows that in general, the uni-
formly co-r.e. family {L0, L1, L2, . . .} covering C in statements (iii) and (iv) of
Theorem 12 may not be equal to C, and so an exact Angluin tell-tale condition
cannot be obtained.

Example 13. Consider the class C = {D : D is finite and D ∩K = ∅}. The
class C is PrudCnsvco−r.e. learnable, but there is no uniformly co-r.e. family
L0, L1, L2, . . . and no uniformly r.e. family of finite sets H0, H1, H2, . . . with C =
{L0, L1, L2, . . .} such that for all n,m, Hn ⊆ Ln, and whenever Hn ⊆ Lm ⊆ Ln,
it holds that Lm = Ln.

Baliga, Case and Jain [2] proved that an indexed family is behaviourally correctly
learnable using some other uniformly r.e. hypothesis space if and only if for
every set Le in the hypothesis space there is a finite set He ⊆ Le such that
if He ⊆ Ld ⊆ Le for some index d, then Ld = Le. By contrast, the following
example shows that some weak analogue of this result fails; Theorem 15 below
implies that also the direct analogue of this result (using uniformly recursive
families) fails.

Example 14. Let Le = {〈x, y〉 : ϕe(x) = y ∨ ∃z ≤ x[ϕe(z) ↑]} and let C be the
class of all sets Le. Then C is uniformly co-r.e. and satisfies Angluin’s tell-tale
condition non-effectively, but it is not BCco−r.e. learnable.

4 Indexed Families of Recursive Sets

The present section establishes some results on the learnability of families of
recursive sets with either a uniformly r.e. numbering or a uniformly co-r.e. num-
bering. First, it is shown that when a given class of recursive sets has a uniformly
r.e. numbering and is BCco−r.e. learnable, then it is already Exrec learnable.
Moreover, Theorem 24 in the next section will establish the existence of a uni-
formly r.e. class of recursive sets which is finitely learnable using r.e. indices but
not BCco−r.e. learnable.

Theorem 15. Let C be a uniformly r.e. class of recursive sets. If C is BCco−r.e.
learnable, then it is Exrec learnable.

Proof. Let A0, A1, ... be a uniformly recursive enumeration of the class and let
M be a BCco−r.e. learner for it. For each number n, let σn,0, σn,1, σn,2, . . . be
an enumeration of all finite sequences in A∗

n. Then one can find for every n
in the limit a sequence σn = limt→∞ σn,t such that σn ∈ A∗

n and M outputs
on every sequence σnτ with τ ∈ A∗

n an index M(σnτ) of a co-r.e. set such
that WM(σnτ) ⊆ An. One can find a recursive function f such that f(n, t) is a
recursive index for An if σn,t = σn, and f(n, t) is a recursive index for a finite
set if σn,u �= σn,t for some u > t.

Now, on input with range D and length s, the new learner N searches for the
first pair (n, t) such that (1) σn,t = σn,t+s, (2) range(σn,t) ⊆ D, and (3) the set
described by f(n, t) contains D, and N conjectures f(n, t) if this pair is found



260 Z. Gao and F. Stephan

in time s and f(s, s) otherwise. Note that condition (3) can be checked as f(n, t)
produces a recursive index. Furthermore, if the learner converges to f(n, t), then
(n, t) satisfies σn,t = σn as otherwise (n, t) would not have fulfilled requirement
(1) of the above list when s is sufficiently large. Hence the data must contain
range(σn) and furthermore the data must be contained in An. ��
It is an immediate consequence of Theorem 15 that an indexed family which is
BCco−r.e. learnable must also be Exco−r.e. and Exr.e. learnable; this, in turn,
implies by Theorem 8 that a uniformly recursive family of sets is BCco−r.e. learn-
able if and only if it satisfies Angluin’s tell-tale condition. The next theorem sums
up these observations, and asserts in addition that Angluin’s criterion implies
Cnsvco−r.e. learnability. In the context of concept identification, this result seems
to affirm empirical findings that human learning by means of positive as opposed
to negative instances is indeed superior when the extensions of concepts to be
learnt are uniformly recursive.

Theorem 16. Let C = {Le}e∈N be a uniformly recursive family of sets. Then
the following conditions are equivalent:

(i) C is Cnsvco−r.e. learnable;
(ii) C is BCco−r.e. learnable;
(iii) C is Exr.e. learnable;
(iv) C satisfies Angluin’s tell-tale condition.

5 General Classes of r.e. Sets, Co-r.e. Sets, and
Separations

This section summarizes results dealing with the two main learning criteria,
namely Exco−r.e. and BCco−r.e. learning. On the one hand, prudent, explanatory
and behaviourally correct learnability form a strict hierarchy of learning notions;
on the other hand, vacillatory and explanatory learnability using co-r.e. indices
turn out to be equivalent. The following theorem states that vacillatory learning,
in which the learner is permitted to vacillate between finitely many different
indices, is still just as powerful as Exco−r.e. learning.

Definition 17 (Case [6]). M is said to vacillatorily (V acco−r.e.) learn C if it
BCco−r.e. learns C and outputs on every text TL for each L in C only finitely
many different indices i0, i1, . . . , in.

Theorem 18. If a class is vacillatorily learnable using co-r.e. indices, then the
class is explanatorily learnable using co-r.e. indices.

However, for uniformly co-r.e. families of sets, PrudBCco−r.e. learnability is less
restrictive than Exco−r.e. learnability. This result is parallel to the usual case of
learning using r.e. indices.

Theorem 19. There is a uniformly co-r.e. class C which is PrudBCco−r.e.
learnable but not Exco−r.e. learnable.
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While Fulk [10] showed that every Exr.e. learnable class is prudently Exr.e.
learnable and Jain, Stephan and Ye [12] showed that every BCr.e. learnable
class is prudently BCr.e. learnable, the next result shows that prudence does not
need to hold for co-r.e. learning, even if every member of the class is recursive.

Theorem 20. There is a class C of recursive sets which is Exco−r.e. learnable
but not PrudBCco−r.e. learnable.

Sketch. For each partial-recursive {0, 1}-valued function f , let Lf = {〈x, y〉 :
y ∈ {0, 1} ∧ f(x) ↓ ⇒ y = f(x)}. Next, define the class

C = {Lf : ∃e(∀n > e)[f(e) ↑ ∧ϕe(n) ↓= f(n) ↓∈ {0, 1}]}.

Then C is Exco−r.e. learnable but not PrudBCco−r.e. learnable. ��

A consequence of Theorem 12 is that every Cnsvco−r.e. learnable class is also
PrudExco−r.e. learnable; the next result shows that Cnsvco−r.e. learnability is
in fact more restrictive than PrudExco−r.e. learnability.

Theorem 21. There is a uniformly co-r.e. class C which is PrudExco−r.e. learn-
able but not Cnsvco−r.e. learnable.

Sketch. Let M0,M1,M2, . . . be a numbering of all partial-recursive learners,
and σ0, σ1, σ2, . . . be an enumeration of all elements of N∗. Build a uniformly
co-r.e. family {Li}i∈N as follows. With η0 = e, set L2e,0 = {τ ∈ N∗ : |τ | >
0 ∧ τ(0) �= η0(0)}. At stage s + 1, using ηs, search for the first σ ∈ N∗ such
that ηs ≺ σ, and either Me,s(Pref(ηs)) ↓�= Me,s(Pref(σ)) ↓, or σ ∈ WMe,s(ηs),j

holds for some j < s+ 1. Let the computational time of this search be bounded
by s + 1. If such a σ is found, let ηs+1 = σ and set L2e,s+1 = {τ ∈ N∗ :
∃k[k < max{|τ |, |ηs+1|} ∧ τ(k) �= ηs+1(k)]}. Otherwise, if no such σ is found,
set ηs+1 = ηs and L2e,s+1 = L2e,s. Let L2e =

⋃
s∈N

L2e,s. Since, at each stage

s+ 1, L2e,s ⊆ L2e,s+1, the set L2e is co-r.e., and consists of all strings which are
comparable with the longest common prefix of the strings in L2e,s at some stage
s. Further, set L2e+1 = {η ∈ N∗ : η � σe ∨ σe � η} for all e.

It is shown that no Me is a conservative learner of {L0, L1, L2, . . .}. Suppose
that L2e is an infinite chain e ≺ τ0 ≺ τ1 ≺ τ2 ≺ . . . of comparable strings;
it follows that Me fails to learn L2e, as there are infinitely many stages at
which Me will either make a mind change, or conjecture a set whose comple-
ment enumerates elements of L2e, when fed with the text T such that T [i] =
e◦τ0◦τ1 ◦τ2 . . .◦τi−1 for all i ≥ 1. By contrast, if L2e = {η ∈ N∗ : η � σ∨σ � η}
for some σ ∈ N∗, then L2e ⊆ WMe(Pref(σ)). Further, if L2e is not a proper subset

of WMe(Pref(σ)), then the set H = {η ∈ N∗ : η � σ◦0∨σ◦0 � η} is a member of

{L0, L1, L2, . . .} that must be a proper subset of WMe(Pref(σ)), and so Me can-
not conservatively learn H when fed with a text that starts with Pref(σ). ��

The final results separate the learnability of classes of recursive sets with respect
to whether r.e. or co-r.e. hypothesis spaces are used. These results are a bit
parallel to prior results on learning correction grammars [5].
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Definition 22 (Bārzdiņš and Freivalds [3]).M is said to finitely (Finco−r.e.)
learn C if, for each L in C and any text TL for L, there are an index i and a
number n such that W i = L, M(TL[k]) = i for all k ≥ n and M(TL[k]) = ? for
all k < n.

Theorem 23. There exists a uniformly co-r.e. class of recursive sets which is
Finco−r.e. learnable but not BCr.e. learnable.

Theorem 24. There is a uniformly r.e. class of recursive sets which is Finr.e.
learnable but not BCco−r.e. learnable.

Sketch. Let Ln = {n} ⊕ {m : Wn,m ⊂ Wn ∨ (m > 0 ∧Wn,m = Wn,m−1)} and
C = {L0, L1, . . .}; this family is uniformly r.e., finitely learnable with respect to
r.e. indices, but is not BCco−r.e. learnable. ��
Thus, while BCr.e. and Finco−r.e. are incomparable learning notions, it fol-
lows from Theorem 15 that the class of all uniformly r.e. sets of recursive lan-
guages which are Exrec learnable strictly subsumes all uniformly r.e. families of
BCco−r.e. learnable recursive languages. At present, however, it is still unknown
whether or not there is a uniformly co-r.e. class of recursive languages which is
Exr.e. learnable but not BCco−r.e. learnable.

6 Conclusion

Co-r.e. languages are a natural counterpart to the r.e. ones and the current work
studies the learnability of these languages. This framework of learning may be
viewed as an approximate model for concept identification based on negative
instances. Theorem 12 shows that for co-r.e. languages, Angluin’s tell-tale condi-
tion characterises conservative learnability and not explanatory learnability. Fur-
thermore, the characterisation works only with some class-comprising hypothesis
space and not the given one. Later, Theorem 16 shows that for indexed families
of recursive sets, the criteria Exrec Cnsvco−r.e. and BCco−r.e. coincide. While
for Exr.e. and BCr.e. learning, prudence can be achieved, there is an Exco−r.e.
learnable class which does not even have a prudent BCco−r.e. learner.
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1 Introduction

The cost, in terms of states, of the simulation of two-way nondeterministic au-
tomata (2nfas, for short) by two-way deterministic automata (2dfas) is one of
the most important and challenging open problems in automata theory and, in
general, in theoretical computer science. This problem was proposed in 1978 by
Sakoda and Sipser [19], who conjectured that the cost is exponential. However,
in spite of all effort, exponential gaps were proved only between 2nfas and some
restricted weaker versions of 2dfas .

In 1980, Sipser proved that if the resulting machine is required to be sweeping
(deterministic and reversing the direction of its input head only at the endmark-
ers, two special symbols used to mark the left and right ends of the input),
the simulation of a 2nfa is indeed exponential [22]. However, Berman and Mi-
cali [1,18] proved independently that this does not solve the general problem:
in fact the simulation of unrestricted 2dfas by sweeping 2dfas also requires an
exponential number of states. The Sipser’s result was generalized by Hromkovič
and Schnitger [11], who considered oblivious machines (following the same tra-
jectory of input head movements along all inputs of equal length) and, recently,
by Kapoutsis [15], considering 2dfas with the number of input head reversals
that is sublinear in the length of the input. However, even the last condition
gives a machine provably less succinct than unrestricted 2dfas, and hence the
general problem remains open.

Starting from 2003 with a paper by Geffert et al. [7], a different kind of restric-
tion has been investigated: the subclass or regular languages using a single-letter
input alphabet . Even under this restriction, the problem of Sakoda and Sipser

looks difficult, since it is connected with L
?
= NL, an open question in com-

plexity theory. (L and NL denote the respective classes of languages accepted
in deterministic and nondeterministic logarithmic space.) First, in [7], a new
normal form was obtained for unary automata, in which all nondeterministic
choices and input head reversals take place only at the endmarkers. Moreover,
the state-size cost of the conversion into this normal form is only linear . This
normal form is a starting point for several other properties of unary 2nfas. First,
in the same paper, each n-state unary 2nfa is simulated by an equivalent 2dfa
with O(n�log2(n+1)+3�) states, which gives a subexponential but still superpoly-
nomial upper bound. It is not known whether this simulation is tight. However,
a positive answer would imply the separation between the classes L and NL. In
fact, under assumption that L = NL, each unary 2nfa with n states can be
simulated by a 2dfa with a number of states polynomial in n [9]. After a minor
modification (without assuming L = NL), this gives that each unary 2nfa can
be made unambiguous, keeping the number of the states polynomial. (For fur-
ther connections between two-way automata and logarithmic space, we address
the reader to [2,16].)

Along these lines of investigation, in [8], the problem of the complementa-
tion for unary 2nfas has been considered, by proving that each n-state 2nfa
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accepting a unary language L can be replaced by a 2nfa with O(n8) states
accepting the complement of L. The proof combines the above normal form for
unary 2nfas with inductive counting arguments.

Kapoutsis [13] considered the complementation in the case general input al-
phabets, but restricting the input head reversals. He showed that the complemen-
tation of sweeping 2nfas (with the input head reversals only at the endmarkers)
requires exponentially many states, thus emphasizing a relevant difference with
the unary case.

In this paper, we use a different approach. Instead of restricting the power
of 2dfas to the degree for which it is already possible to derive an exponential
gap between the weaker model and the standard 2nfas, we increase the power
of 2dfas, towards 2nfas, to the degree for which it is still possible to obtain a
subexponential conversion from the stronger model to the standard 2dfas. Such
new stronger model then clearly shows that, in order to prove an exponential
gap between 2nfas and 2dfas, one must use capabilities not allowed in the
proposed new model. More precisely, in our new model, we neither restrict the
cardinality of input alphabets, nor put any constraint on the head movement,
i.e., head reversals can take place at any input position. On the other hand, we
permit nondeterministic choices only when the input head is scanning one of the
endmarkers. We shall call such machine a two-way outer-nondeterministic finite
automaton (2onfa).

It turns out that this machine has its natural counterpart also in the case of
two-way alternating finite automata (2afas), which is atwo-way outer-alternating
finite automaton (2oafa), making universal and existential choices only at the
endmarkers. (For recent results on 2afas, see [14,6].)

We show that several results obtained for unary 2nfas can be extended to
2onfas, and some of them even to the alternating version, 2oafas, with any
input alphabet. In particular, we prove the following:

– Each n-state 2onfa can be simulated by a halting two-way self-verifying
automaton (2svfa) [5] with O(n8) many states. This fact has two important
implications:

• The complementation of 2onfas can be done by using a polynomial
number of states. Note the contrast with the above mentioned case of
sweeping 2nfas studied in [13].

• Each 2onfa can be simulated by a halting 2onfa using a polynomial
number of states.

– Each n-state 2onfa can be simulated by a 2dfa with O(nlog2 n+6) states.
– If L = NL, then each n-state 2onfa can be simulated by a 2dfa with a

number of states polynomial in n. Hence, a superpolynomial lower bound
for the simulation of 2onfas by 2dfas would imply L �= NL. (Unlike in [2],
there are no restrictions on the length of potential witness inputs.)

– Each n-state 2onfa can be simulated by an unambiguous 2onfa with a
polynomial number of states.

– If L = P, then each n-state 2oafa can be simulated by a 2dfa with a
number of states polynomial in n, with the same consequences as presented
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for L
?
= NL. (P denotes, as usual, the class of languages recognizable by

deterministic Turing machines in polynomial time.)
– Similarly, if NL = P, we get the corresponding polynomial conversion from

2oafas to 2nfas.

These results are obtained by generalizing the constructions given in [7,8,9] for
the unary case. However, here we do not have a normal form for simplifying the
automata, by restricting input head reversals to the endmarkers. Our general-
ization rely on a different tool, presented in the first part of the paper. Basically,
we extend some techniques developed originally for deterministic devices [21,8]
to machines with nondeterminism at the endmarkers. This permits us to check
the existence of certain computation paths, including infinite loops, by the use
of a linear number of states.

Due to the lack of space, in this version of the paper the proofs are omitted or
just outlined. See http://arxiv.org/abs/1110.1263 for an extended version.

2 Preliminaries

Let us start by briefly recalling some basic definitions from automata theory. For
a detailed exposition, we refer the reader to [10]. Given a set S, |S| denotes its
cardinality and 2S the family of all its subsets.

A two-way nondeterministic finite automaton (2nfa, for short) is defined as
a quintuple A = (Q,Σ, δ, qI, F ), in which Q is a finite set of states, Σ is a finite
input alphabet, δ : Q × (Σ ∪ {),4}) → 2Q×{−1,0,+1} is a transition function,
where ),4 /∈ Σ are two special symbols, called the left and the right endmarkers,
respectively, qI ∈ Q is an initial state, and F ⊆ Q is a set of final states. The
input is stored onto the input tape surrounded by the two endmarkers, the left
endmarker being at the position zero. In one move, A reads an input symbol,
changes its state, and moves the input head one position forward, backward, or
keeps it stationary depending on whether δ returns +1, −1, or 0, respectively.
The machine accepts the input, if there exists a computation path from the
initial state qI with the head on the left endmarker to some final state q ∈ F .
The language accepted by A, denoted by L(A), consists of all input strings that
are accepted. A is said to be halting if each computation ends in a finite number
of steps. Observing that if an accepting computation visits the same endmarker
two times in the same state then there exists a shorter accepting computation
on same input, we immediately get the following lemma, which will be used in
the proofs of some of our results:

Lemma 1. If a 2nfa A with n states accepts an input w, then it also accept w
with a computation that visits the left (right) endmarker at most n times.

Throughout the paper, given a 2nfa A, we will call computation segment (or
just segment) from p to q on w, each computation path on an input w that starts
at the left endmarker in the state p, ends at the left endmarker in the state q
and never visits the same endmarker in the meantime.
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A sequence of t ≥ 0 segments from a state p to a state q on input w is
a sequence of segments such that there are states p0, p1, . . . , pt, with p0 = p,
pt = q, and the ith segment is from pi−1 to pi, i = 1, . . . , t.

A 2nfa A is said to be deterministic (2dfa), whenever |δ(q, σ)| ≤ 1, for any
q ∈ Q and σ ∈ Σ ∪ {),4}, A is called unambiguous (2ufa), if there exists at
most one accepting computation path for each input. A two-way self-verifying
automaton (2svfa) A is a 2nfa which, besides the set of accepting states F ⊆ Q,
is equipped also with a disjoint set of rejecting states F r ⊆ Q. For each input
w ∈ L(A) there exists one computation path halting in a state q ∈ F , and no
path may halt in a state q ∈ F r. Conversely, for w /∈ L(A) there exists one
computation path halting in a state q ∈ F r, and no path may halt in a state
q ∈ F . Note that some computation paths of a 2svfa may end with a “don’t-
know” answer, by ending in one state not belonging to F ∪ F r, or entering into
an infinite loop.

An automaton working over a single letter alphabet is called unary.
A two-way outer-nondeterministic finite automaton (2onfa, for short) is a

2nfa A = (Q,Σ, δ, qI, F ) that can take nondeterministic decisions only when the
input head is scanning one of the two endmarkers, i.e., for each q ∈ Q, a ∈ Σ,
|δ(q, a)| ≤ 1. Actually, with a linear increasing in the number of the states, we
can further restrict the use of the nondeterminism to the left endmarker only
and obtain other simplifications:

Lemma 2. For any n-state 2onfa A = (Q,Σ, δ, qI, F ) there exists an equivalent
2onfa A′ with no more than 3n states that satisfies the following properties:

1. nondeterministic choices are taken only when the input head is scanning the
left endmarker,

2. there is a unique accepting state qF and this state is also halting,
3. qF is reachable only at the left endmarker by stationary moves,
4. stationary moves can occur only at the left endmarker to enter the state qF.

We assume that the reader is familiar with the standard Turing machine model
and the basic facts from space and complexity theory, in particular with the
classes L, NL, and P. For more details, see e.g. [10,23].

3 The Subroutine Reach

This section is devoted to develop a tool which will be fundamental in the proof
of our results. Given a 2onfa A with n states, we show the existence of a
subroutine Reach that receives as parameters two states q′, q′′ of A and decides
whether or not A has a computation segment from q′ to q′′ on an input string w.
This subroutine can be implemented using a deterministic finite state control
with O(n) states whose input w is stored on a two-way tape.

At a first glance, we could try to compute Reach(q′, q′′) by initializing the
automaton A in the state q′ with the input head at the left endmarker and
by stopping its computation as soon as the input head, in one of the following
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steps, reaches again the left endmarker, then testing whether or not the state
so reached is q′′. However, this approach presents two problems: first of all, the
original automaton A could enter into a infinite loop, never coming back to the
left endmarker; second, the first move from the state q′ on the left endmarker
can be nondeterministic.

In order to solve the first problem, we adapt the construction given in [8] to
transform each n-state 2dfa into an equivalent halting 4n-state 2dfa, which, it
turns, was a refinement of the construction obtained by Sipser [21] to make space
bounded Turing machines halting. We give a brief outline. For each w ∈ Σ∗, a
deterministic machine accepts w if and only if there is a “backward” path, fol-
lowing the history of the computation in reverse, from the unique accepting
configuration cf to the unique initial configuration c0. In our setting, a “configu-
ration” is a pair (s, i), where s ∈ Q is a state and i ∈ {0, . . . , |w|+ 1} is an input
head position.

Consider the graph whose nodes represent configurations and edges computa-
tion steps. If the machine under consideration is deterministic and the accepting
configuration is also halting, then no backward path starting from cf can cycle
(hence, it is of finite length). Thus, the component of the graph containing the
accepting configuration cf is a tree rooted at this configuration, with backward
paths branching to all possible predecessors of cf . Thus, the equivalent halting
machine can perform a depth-first search of this tree in order to detect whether
the initial configuration c0 belongs to the predecessors of cf . If this is the case,
then the simulator accepts. On the other hand, if all the tree is examined without
reaching c0, this means that there are no paths from c0 to cf and so w is not in
the language. Hence, the simulator rejects.

We adapt such a procedure by choosing c0 = (q′, 0) and cf = (q′′, 0), where q′

and q′′ are the two parameters. Furthermore, since we are interested to detect the
existence of just one segment from q′ to q′′, we do not consider the transitions
on the left endmarker from states different than q′. However, the remaining
transition, i.e., that from configuration c0, can be nondeterministic. Thus, we
need further modifications. Suppose δ(q′,)) = {(q1,+1), . . . , (qk,+1)}. Hence,
there is a segment from c0 to cf if and only if there is a path from cj = (qj , 1)
to cf , for some j ∈ {1, . . . , k}, visiting the left endmarker only in cf . Hence,
the backward search can be done starting from cf , without considering all the
transitions of the original automaton from the left endmarker, stopping and
accepting when one of the cj ’s is reached, or rejecting when all the tree has been
visited without reaching any of the cj ’s.

To do that, our procedure needs to detect when the head position of the
original 2onfa A is scanning the first “real” input symbol, i.e., that immediately
to the right of the left endmarker, in cell number 1. By a closer look to the
simulation in [8] and to its implementation it is possible to show how this can
be done. In particular, this construction can be implemented by a deterministic
finite state control with 4n − 3 states (not counting the space needed to store
the parameters q′, q′′, which will be used in a “read-only” way). This gives us
the following result which will be a fundamental tool in the next sections:
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Lemma 3. For each 2onfa A with n states (in the form of Lemma 2), it is
possible to construct a deterministic finite state control with 4n − 3 states that
given an input string w ∈ Σ∗ stored on a two-way tape and two states q′, q′′ of
A decides whether or not the automaton A has a computation segment from q′

to q′′ on w.

4 Simulation by Halting Self-verifying Automata

In this section we prove that for each n-state 2onfa A accepting a language L
there exists an equivalent halting 2svfa using a polynomial number of states
and making nondeterministic choices only when the input head is scanning the
left endmarker. As a consequence, we can derive halting 2onfas with polynomial
many states that accept L and the complement of L.

Even in this case, our starting point is a proof given in [8] for the unary case,
which was based on the well known technique of the inductive counting. However,
there are deep differences. In particular, the proof in [8] uses a normal form for
unary 2nfas in which a computation is a sequence of deterministic traversals of
the input from one endmarker to the opposite one. In this normal form there are
no parts of computations starting and ending at the same endmarker without
visiting the other one in the meantime (these parts are usually called U-turns).
Furthermore, the only possible infinite loops involve the endmarkers and can be
easily avoided using Lemma 1. The simulation inductively counts, for increasing
values of t, how many states are reachable from the initial state in t traversals
of the input and, as a side effect of this counting procedure, also lists these
states. In this way, after a certain number of traversals, all the states which are
reachable at the endmarkers have been listed and, hence, it is possible to decide
whether or not the input was accepted by the original machine.

In the case we are considering, we do not have such a kind of normal form.
Hence, a computation can present traversals of the input from one endmarker
to the opposite one as well as U -turns. Furthermore, a computation can reject
by entering into a infinite loop: in this case infinite loops which never visits the
endmarkers are also possible. To overcome the first problem, instead of traversals,
our inductive counting procedure considers computation segments: for increasing
values of t, it counts how many states are reachable from the initial state in
a computation consisting of t segments, i.e., visiting the left endmarker t + 1
times, and, at the same time, the procedure lists these states. Since, as stated
in Lemma 1, each accepted input has an accepting computation which visits the
left endmarker at most n times, it is enough to consider computations consisting
of at most n− 1 segments. This avoid infinite loops involving the endmarkers.

The remaining infinite loops are removed using the subroutine Reach, dis-
cussed in Section 3 and another subroutine tReach which with parameters
q ∈ Q and t ≥ 0 verifies the existence of a sequence of t segments from the initial
state qI to q on the input under consideration. In negative case, tReach aborts
the simulation in the “don’t-know” state q?, otherwise the subroutine returns to
the main simulation in a different state. This subroutine is nondeterministic. It
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Algorithm 1. Simulation of 2onfas by 2svfas

1 m′ := 1
2 for t := 0 to |Q| − 2 do
3 m := m′; m′ := 0
4 foreach q′ ∈ Q do
5 for i := 1 to m do
6 q := a nondeterministically chosen state
7 if (i > 1 and q ≤ qprev) then halt in q?
8 qprev := q
9 if tReach(q, t) and Reach(qprev, q

′) then
// possible side effect of tReach: abort in q?

10 if q′ = qF then halt in qyes
11 m′ := m′ + 1
12 break

13 halt in qno

can also halt in q?, due to a wrong sequence of nondeterministic guesses. How-
ever, if there exists a sequence of t segments from qI to q, the subroutine has at
least one computation ending in a state other than q?. The subroutine tReach

is implemented by iterating t times a nondeterministic variant of Reach which,
given a parameter q′′, returns a nondeterministic chosen state q′ such that A
has a computation segment form q′ to q′′.

The inductive counting procedure is given in Algorithm 1. At each iteration of
the main loop (line 2), from the number of states reachable at the left endmarker
by all computation paths with exactly t segments (stored in the variable m), the
number of states reachable upon completing one more segment is counted in
the variable m′. A linear ordering ≤ is assumed on the set of states. Boolean
operators are evaluated in a “lazy” way. This implies that the condition q ≤ qprev
is evaluated only for i > 1, hence after assigning a value to qprev.

We can prove that: (i) if the input is accepted by A, at least one computation
path halts in the state qyes, and no path halts in qno, (ii) if the input is rejected, at
least one path halts in qno, and no path halts in qyes, (iii) due to wrong sequences
of nondeterministic guesses, some computation paths halt in the “don’t-know”
state q?, but no path can get into an infinite loop.

Our implementation produces an halting automaton with O(n8) states. Fur-
thermore, in the main algorithm and in the subroutines all the nondeterministic
choices are taken with the input head scanning the left endmarker. Hence:

Theorem 4. Each n-state 2onfa can be simulated by an equivalent halting
O(n8)-state 2svfa making nondeterministic choices only when the input head
is scanning the left endmarker.

Corollary 5. For each n-state 2onfa A there exist an equivalent halting 2onfa

A′ with O(n8) states and a 2onfa A′′ with O(n8) states accepting the comple-
ment of the language accepted by A.
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Algorithm 2. Recursive function Reachable(q, p, t)

14 if t = 1 then return (q = p or Reach(q, p))
15 else
16 foreach state r ∈ Q do
17 if Reachable(q, r, �t/2�) then
18 if Reachable(r, p, �t/2�) then return true

19 return false

5 Subexponential Deterministic Simulation

In this section, we prove that each 2onfa with n states can be simulated by an
equivalent 2dfa with O(nlog2 n+6) states, i.e., with a subexpontential, but still
superpolynomial, number of states. In the authors’ knowledge this is the first
case of a model using nondeterminism and an unrestricted alphabet, having a
subexponential simulation by 2dfas.

This result generalizes a result proved for the unary case in [7]. The new
“ingredient” in our version is the subroutine Reach presented in Section 3. So
we give a very short presentation, addressing the reader to [7] for further details.

Let A be a 2onfa with n states in the form of Lemma 2. The 2dfa simulating
A implements a recursive function, called Reachable, based on the well known
divide-and-conquere technique (see Algorithm 2). The function receives three
parameters: two states q and p and an integer t ≥ 1, and returns a boolean. On
these parameters, Reachable(q, p, t) returns true if and only if on the input w
under consideration the automaton A has a sequence of at most t segments from
the state q to the state p. Hence, according to Lemma 1, to decide whether or
not w is accepted by A, we call Reachable(qI, qF, n− 1).

Theorem 6. Each n-state 2onfa can be simulated by an equivalent 2dfa with
O(nlog2 n+6) states.

It is natural to wonder if the upper bound stated in Theorem 6 is optimal.
We remind the reader that the best known lower bound for the number of the
states of 2dfas simulating n-state 2nfas is O(n2) [4]. In the next section we
will show that the optimality of the upper bound in Theorem 6 or any other
superpolynomial state lower bound for the simulation of 2onfas by 2dfas would
imply the separation between deterministic and nondeterministic logarithmic
space, hence solving a longstanding open problem in structural complexity.

6 Conditional and Unambiguous Simulations

In this section we discuss how to reduce the language accepted by a given 2onfa

to the graph accessibility problem (GAP), i.e., the problem of deciding whether a
directed graph contains a path connecting two designated vertices. This problem
is well known to be complete for NL. As a consequence of this reduction we will
prove that the equality between the classes L and NL would imply a polynomial
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simulation of 2onfas by 2dfas. Furthermore, we also prove that each 2onfa

can be made unambiguous with a polynomial increasing in the number of the
states.

Let us start to present our reduction. As for the results in Sections 4 and 5,
it is obtained by combining a technique developed for the unary case [9], with
the use of the subroutine Reach presented in Section 3.

Given an n-state 2onfa A in the form of Lemma 2, with each input w ∈ Σ∗

we associate the directed graph G(w) = (Q,E(w)), where Q is the set of states
of A and E(w) = {(p, q) ∈ Q ×Q | Reach(p, q) is true}, i.e., it is the set of pairs
(p, q) of states such that A on input w has a segment from p to q. It should be
clear that w is accepted by A if and only if the graph G(w) contains a path from
vertex qI, the initial state, to vertex qF, the accepting state. Hence, this defines a
reduction from the language accepted by A to GAP. As mentioned before, GAP
is complete for NL under logarithmic space reductions [20]. Using this property
and the reduction above described we are able to prove the following:1

Theorem 7. If L = NL then each n-state 2onfa can be simulated by a 2dfa

with a number of states polynomial in n.

A modification of the construction used to prove Theorem 7, allows us to obtain
the next simulation, which does not require the condition L = NL:

Theorem 8. Each n-state 2onfa can be simulated by an unambiguous 2onfa
with a number of states polynomial in n.

7 The Alternating Case

In this section we briefly discuss an extension of the technique used in Section 6,
to the case of automata with alternations [3], recently considered in [14,6].

A two-way alternating automaton (2afa, for short) is defined as a quintuple
A = (Q,Σ, δ, qI, F ), exactly as a 2nfa. However, the set Q is partitioned in two
sets Q∃ and Q∀, the sets of existential and universal states, respectively. The
acceptance of an input string w is witnessed by an accepting computation tree.
Even for 2afas, we can restrict the use of the nondeterminism as we did for
2nfas, considering outer-alternating finite automata (2oafas). In these models,
each configuration scanning an ordinary input symbol can have at most one
successor, namely (existential or universal) nondeterministic choices can be taken
only when the head is scanning one of the endmarkers. Actually, we can further
restrict the use of the nondeterminism only at the left endmarker, proving a
normal form similar to that of Lemma 2.

Now, we consider the alternating graph accessibility problem (AGAP, for
short), an alternating version of GAP. The instance of the problem is an al-
ternating direct graph, i.e., a graph G = (V,E) with a partition of V in two sets
V∃ and V∀, and two designated vertices s and t. The question is if the predicate

1 The result in Theorem 7 is presented, in a different context, also in [17].
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apath(s, t) is true, where, for x, y ∈ V , apath(x, y) holds true if and only if either
(i) x = y, or (ii) x ∈ V∃ and exists z ∈ V with (x, z) ∈ E such that apath(z, y) is
true, or (iii) x ∈ V∀ and for all z ∈ V , (x, z) ∈ E implies that apath(z, y) is true.
This problem is known to be complete for the class P, with respect to logarithmic
space reductions [12]. As is Section 6, we can reduce the language accepted by
a given 2oafa A to AGAP, by associating with each input string w the graph
G(w) = (Q,E(w)), where (p, q) ∈ E(w) if and only if A has a computation
segment from p to q on input w. (The extension of the notion of computation
segment to 2afa is obvious.) Since the subroutine Reach presented in Section 3
depends only on the transition function of the given automaton A and not on
the acceptance condition, we can use it to detect segments even in the case of
outer 2afas. Using the fact that AGAP is complete for P we can prove:

Theorem 9. If L = P then each 2oafa can be simulated by a 2dfa with a
polynomial number of states. If NL = P then each 2oafa can be simulated by a
2nfa with a polynomial number of states.

8 Concluding Remarks

In this paper we generalized, in a unified framework, some results previously ob-
tained for unary 2nfas to machines with arbitrary input alphabets, but making
nondeterministic choices only at the input tape endmarkers. Among others, we
have shown that any superpolynomial lower bound for the simulation of such ma-
chines by standard 2dfas would imply L �= NL.We also related the alternating

version of such machines to L
?
= NL

?
= P, the classical computational complexity

open problems. Comparing our results with those obtained for other restricted
models of two-way automata we observe that:

– Actually, unary 2nfas can use only a restricted form of nondeterminism.
In fact, we can restrict their nondeterminism to the endmarkers without
increasing significantly their size [7].

– In the general case, the possibility of reversing the input head movement at
any input position does not seem so powerful as the possibility of making
nondeterministic decisions at any input position. (Compare our polynomial
upper bound for the complementation of 2onfas with the exponential lower
bound for the complementation of sweeping 2nfas in [13].)

– However, in the deterministic case, the possibility of reversing the input
head at any input position can make automata exponentially smaller than
machines reversing the input head only at the endmarkers [1,18].

Our contructions mainly rely on the fact that for 2onfas a polynomial control is
enough to keep information about nondeterministic choices. The same does not
seem to be feasible for unrestricted 2nfas. It would be interesting to see if the
results proved in this paper could not be extended to a model using the nonde-
terminism in a less restricted way than the one considered here. In general, we
believe that the study of restricted forms of nondeterminism in finite automata
deserves further investigation.
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Abstract. This article proposes polynomial-time algorithms for learn-
ing typed pattern languages—formal languages that are generated by
patterns consisting of terminal symbols and typed variables. A string is
generated by a typed pattern by substituting all variables with strings
of terminal symbols that belong to the corresponding types.

The algorithms presented consitute non-trivial generalizations of
Lange and Wiehagen’s efficient algorithm for learning patterns in which
variables are not typed. This is achieved by defining type witnesses to im-
pose structural conditions on the types used in the patterns. It is shown
that Lange and Wiehagen’s algorithm implicitly uses a special case of
type witnesses. Moreover, the type witnesses for a typed pattern form
characteristic sets whose size is linear in the length of the pattern; our
algorithm, when processing any set of positive data containing such a
characteristic set, will always generate a typed pattern equivalent to the
target pattern. Thus our algorithms are of relevance to the area of gram-
matical inference, in which such characteristic sets are typically studied.

1 Introduction

Since Dana Angluin [1] introduced the pattern languages, they have been a
popular object of study in the area of algorithmic learning theory and formal
language theory. A pattern is a string consisting of terminal and variable sym-
bols; its language is the set of all words that can be generated when replacing
variables with non-empty strings of terminal symbols. Part of the reason for their
popularity is that patterns provide an intuitive and simple way of representing
rather complex but structured languages; moreover they can be thought of as a
model for text mining applications.

It is known that the class of all pattern languages is learnable from posi-
tive data (i.e., if the learning algorithm sees only words contained in the tar-
get pattern language) in Gold’s model of identification in the limit [7,1]. The
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first polynomial-time algorithm for learning pattern languages was presented by
Lange and Wiehagen [10].

Unfortunately, most interesting text mining applications require a pattern
model in which the variables are typed, i.e., the set of strings that can be substi-
tuted for a variable in a pattern is restricted. This is only natural since database
entries are typically typed as well. Koshiba [9] hence introduced the model of
typed pattern languages, in which each variable in a pattern has an associ-
ated type that defines the set of allowed substitutions for the variable. After
Koshiba’s initial results on learning typed pattern languages, recent progress
was made on learning relational pattern languages (a generalization of typed
pattern languages) [6]. In particular, learnability of relational and thus of typed
pattern languages from positive data was shown in variations of Gold’s learning
model that at least partly address the issue of efficiency in terms of the amount
of data presented to the learning algorithm [6].

The present paper focuses on the problem of learning typed pattern languages
in polynomial time, in particular on generalizing Lange and Wiehagen’s algo-
rithm to the case of typed pattern languages. This is not only of interest for
both practical and theoretical reasons, but it also constitutes a non-trivial task.
Lange and Wiehagen’s algorithm exploits only the shortest words contained in
the given data and crucially relies on the fact that these words are formed when
variables are replaced by strings of length one. Moreover, it relies on the fact that
there are two distinct strings of length one that can be replaced for each vari-
able (see Section 2.2 for more background on Lange and Wiehagen’s algorithm).
Neither property can be guaranteed when dealing with typed patterns.

We hence introduce the notion of type witness to impose certain structural
conditions on the types used in the patterns. We demonstrate that

– Lange and Wiehagen’s algorithm implicitly uses a special kind of type wit-
ness according to our definition,

– type witnesses allow for learning the corresponding typed pattern languages
in polynomial time, using a generalization of Lange and Wiehagen’s algo-
rithm,

– type witnesses for a typed pattern form characteristic sets [3,8] whose size is
linear in the length of the pattern; our algorithm, when processing any set
of positive data containing such a characteristic set, will always generate a
typed pattern equivalent to the target pattern.1

Some of our results also address the important question of polynomial-time learn-
ing with a consistent algorithm that always hypothesizes patterns that generate
all of the positive input data seen [4]. Neither Lange and Wiehagen’s algorithm
nor our proposed algorithms have this property in general, but we identify special
cases in which consistent behaviour can be achieved without sacrificing runtime
efficiency.

This article is the first one to design polynomial-time algorithms for learning
typed pattern languages. It contributes to the state-of-the-art as follows:

1 Characteristic sets play an important role in the area of grammatical inference.
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– Our generalized study of Lange and Wiehagen’s algorithm provides new
theoretical insights into the difficulties of efficiently learning patterns in
application-relevant scenarios, and it proposes new algorithmic solutions.

– The definition of type witnesses is likely to be of value for further studies on
learning typed pattern languages and their generalizations, relational pattern
languages.

– The connection to the use of characteristic sets bridges gaps between the
inductive inference community (in which pattern languages have mostly been
studied so far) and the grammatical inference community.

2 Preliminaries and Background

Languages are defined with respect to a non-empty alphabet Σ. A word w is a
finite, possibly empty, sequence of symbols from Σ the length of which is denoted
by |w|. ε refers to the empty word, i.e., the word of length 0. The set of all words
over Σ is denoted by Σ∗, and the set of all non-empty words over Σ by Σ+;
hence Σ+ = Σ∗ \ {ε}. A language L is a subset of Σ∗. By w1 ◦ w2 we denote
the concatenation of two words w1 and w2 (where, for ease of presentation, we
allow w1 and/or w2 to be written as σ ∈ Σ rather than a word (σ) of length 1).
In what follows, we always assume Σ to be a finite set of cardinality at least 2.

For any w, v ∈ Σ∗, we say that v is a prefix of w (suffix of w, resp.), if
w = v ◦ w′ (w = w′ ◦ v, resp.) for some w′ ∈ Σ∗. A prefix (suffix, resp.) of w is
called proper if it is distinct from w. If A ⊆ Σ∗ and w ∈ Σ∗, we write w 5 A
(w 
 A, resp.) if w is a prefix (proper prefix, resp.) of some word in A.

For A ⊆ Σ∗ and w ∈ Σ∗, we call w A-decomposable, if w can be written as
w = w1 ◦ · · · ◦ wm for some m ≥ 1, where w1, . . . , wm ∈ A. (w1, . . . wm) is then
called an A-decomposition of w; the length of this A-decomposition is m.

2.1 Pattern Languages and Typed Pattern Languages

A class of languages that has been studied in the formal language theory commu-
nity as well as in the learning theory community is Angluin’s class of non-erasing
pattern languages [1], defined as follows. Let X = {x1, x2, . . .} be a countable
set of symbols called variables; we require that X be disjoint from Σ. A pattern
is a non-empty finite string over Σ ∪X . The set of all patterns over Σ ∪X will
be denoted by PatΣ . A substitution is a string homomorphism θ : PatΣ → Σ+

that is the identity when restricted to Σ. The set of all substitutions with re-
spect to Σ is denoted by ΘΣ . The (non-erasing) language L(p) of a pattern
p ∈ (Σ ∪X)+ is defined by L(p) = {w ∈ Σ+ | ∃θ ∈ ΘΣ [θ(p) = w]}, i.e., it con-
sists of all words that result from substituting all variables in p by non-empty
words over Σ. The class LΣ of (non-erasing) pattern languages is defined by
LΣ = {L(p) | p ∈ PatΣ}.

Thus patterns constitute a simple and intuitive means of describing formal
languages of a particular kind of structure. From a practical point of view, pat-
tern languages are interesting because in applications one can think of a set of
database entries as being generated by a fixed underlying pattern.
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Shinohara [13] defined erasing pattern languages by allowing substitutions by
the empty word, but in this article we focus on non-erasing languages exclusively.
Wright [14] studied a subclass of erasing pattern languages under restricted
substitutions, leading to Koshiba’s typed pattern languages [9]. In Koshiba’s
model, each variable x in a pattern p is assigned a particular type T (x), which
is a decidable subset of Σ+. The words generated by p, when respecting the
types, are formed by substituting any variable x in p only with words from
T (x), resulting in the typed pattern language L(p, T ).

Definition 1. A typed pattern over Σ is a pair (p, T ), where p is a pattern
over Σ and T : X → {S ⊆ Σ+ | S is decidable} is a mapping that associates
each variable with a recursive language. For each x ∈ X, T (x) is called the
type of x. A T -typed substitution is a string homomorphism θ : PatΣ → Σ+

that is the identity when restricted to Σ and that fulfills θ(x) ∈ T (x) for all
x ∈ X. The set of all T -typed substitutions with respect to Σ is denoted by
ΘΣ,T . The language of a typed pattern (p, T ), denoted by L(p, T ), is defined by
L(p, T ) = {w ∈ Σ+ | ∃θ ∈ ΘΣ,T [θ(p) = w]}.
Types make pattern languages more expressive and more suitable for appli-
cations. For example, a system for entering bibliographic data as described by
Shinohara [13] might use patterns like p = author: x1 title: x2 year: x3. One
would expect x3 to be substituted only by certain two or four digit integers—a
property that becomes expressible when using types.

For the sake of simplicity, we assume that the range of T is finite. However, all
of the results we present below generalize very easily to the case that the range
of T is infinite, under minor conditions explained in Section 5.1.

Definition 2. Let T be a finite set of decidable subsets of Σ+. The class of all
T -typed pattern languages is the class of all languages L(p, T ) where (p, T ) is a
typed pattern and T (x) ∈ T for all x ∈ X.

2.2 Learnability

In Gold’s model of learning in the limit from positive data [7], a class of languages
is learnable if there is a learner that “identifies” every language in the class
from any of its texts, where a text for a language L is an infinite sequence
τ(0), τ(1), τ(2), . . . of words such that {τ(i) | i ∈ N} = L.

Definition 3 (Gold [7]). Let L be a class of languages. L is learnable in the
limit from positive data if there is a hypothesis space {Li | i ∈ N} ⊇ L and a
partial recursive mapping A such that, for any L ∈ L and any text (τ(i))i∈N for
L, A(τ(0), . . . , τ(n)) is defined for all n and there is a j ∈ N with Lj = L and
A(τ(0), . . . , τ(n)) = j for all but finitely many n.

Below we will focus on polynomial-time learning , i.e., learning by an algorithm
that computes its hypotheses in time polynomial in the length of its input.2

2 This notion of efficient learning does not refer to the number of text examples needed
before convergence; for a critical treatment of notions of efficiency in learning, the
reader is referred to the work by Pitt [11] and Case and Kötzing [5].
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Angluin showed that LΣ is learnable [1]. Most intuitive learning algorithms,
including the one proposed by Angluin, conduct a large number of membership
tests (“does word w belong to the language L(p)?”) in order to identify pattern
languages from text. Since the membership problem for non-erasing pattern
languages is NP-complete [1], polynomial-time learning cannot be guaranteed
by this kind of algorithm.

Lange and Wiehagen [10] designed an algorithm that learns LΣ in polynomial
time. At any point in the learning process, their algorithm uses only the shortest
words presented in the text so far to build a hypothesis pattern ph; all other
words in the text are ignored. For any i, if a symbol σ ∈ Σ occurs in the i-th
position in all the shortest words presented so far, the algorithm sets the i-th
position of ph to σ. Otherwise, the i-th position of ph is a variable. If both
position i and position j in ph contain a variable and the symbol in position i
of any shortest word w in the given text segment equals the symbol in position
j of w, then the variables in positions i and j in ph are chosen to be identical.
For example, if the shortest words collected are

a a a bb a ab
a a b bb a ab
a b a bb b ab

then the pattern ph hypothesized by the algorithm is ax1x2bbx1ab.
This algorithm does not work for erasing pattern languages; in fact, for

|Σ| ∈ {2, 3, 4}, the class of all erasing pattern languages is not learnable at
all [12], not even by an inefficient learning algorithm. Moreover, in general, nei-
ther erasing nor non-erasing typed pattern languages are learnable (cf. [9]), let
alone polynomial-time learnable. The main contribution of this paper is the
design of polynomial-time algorithms for learning interesting subclasses of (non-
erasing) typed pattern languages, where certain structural properties of the po-
tential target patterns are assumed. In order to define appropriate structural
properties, we introduce the notion of type witness below.

Unfortunately, our above definition of polynomial-time learning is of no con-
sequence. Pitt [11] showed that by repeating previous hypotheses until the input
has grown long enough to afford computing a new hypothesis, a polynomial-time
learner can be constructed from any learner successful according to Definition 3.
But Lange and Wiehagen’s algorithm A learns efficiently in a much stronger
sense: every non-erasing pattern language L possesses a finite subset SL of size
polynomial in the length of any pattern p with L = L(p) such that A, on input
of any text segment for L containing at least all words in SL, returns a correct
hypothesis for L. Such a subset SL is what de la Higuera calls a characteristic
set of polynomial size [8,3], which, for learning from positive data, corresponds
to a tell-tale set [2]. Deviating slightly from de la Higuera’s model, we define:

Definition 4 (cf. de la Higuera [8]). Let L be a class of languages and H
a set of representations such that for each H ∈ H there is exactly one LH ∈ L
associated with H. Let ||H || denote the size of a representation H ∈ H. H is
polynomially learnable from positive data if there exist two polynomials χ and ξ
and an algorithm A such that the following conditions are fulfilled.
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1. Given any finite set S ⊆ Σ∗, A returns some H ∈ H in time at most χ(|S|).
2. For any H ∈ H there is a finite set SH ⊆ LH with |SH | ≤ ξ(||H ||) such that,

on input of any set S with SH ⊆ S ⊆ LH , A returns some H ′ ∈ H with
LH′ = LH . SH is called a characteristic set for H with respect to H.

De la Higuera additionally requires A to be consistent [4], i.e., to produce only
hypotheses that contain the input set S. We drop this condition in Definition 4.
Obviously, if L has an effectively enumerable representation set H that is poly-
nomially learnable from positive data according to Definition 4, then L is also
learnable in the limit from positive data. For example, the set of all patterns
may serve as a representation set for the set of all pattern languages.

A characteristic set Sp for a pattern p, for each variable occurring in the
target pattern p, contains two shortest words in which that variable is replaced
differently and all other variables are replaced by some fixed σ ∈ Σ:

Proposition 5. Let p ∈ PatΣ. Then there is a subset Sp of L(p) with |Sp| ≤
2|p| such that Sp is a characteristic set with respect to PatΣ for Lange and
Wiehagen’s algorithm.

Proof. Let σ1, σ2 ∈ Σ, σ1 �= σ2. Let Sp be a subset of L(p) consisting of two
words v1(x) = θx1 (p) and v2(x) = θx2 (p) per variable x occurring in p, where

θx� (xi) =

{
σ� , if xi = x ,

σ1 , if xi �= x ,

for � ∈ {1, 2}. Clearly, |Sp| ≤ 2|p| and Sp contains only shortest words from L(p).
Lange and Wiehagen’s algorithm on input S, Sp ⊆ S ⊆ L(p), can identify the

positions in which variables reside (because in each such position in the words
in Sp both σ1 and σ2 occur) and the pairs of positions in which two distinct
variables reside (because in these pairs of positions at least one word in Sp has
distinct entries). Thus Sp is a characteristic set for p with respect to PatΣ . �

3 Type Witnesses

The key to Lange and Wiehagen’s algorithm is that a position in a shortest
word of a non-erasing pattern language corresponds to the same position in the
underlying pattern. For typed pattern languages, this is no longer the case, since
the types might not contain any words of length one, and thus the shortest words
of the language might be longer than the underlying pattern itself.

The shortest words in Lange and Wiehagen’s case are those that are generated
by substitutions replacing a variable with a word of length 1. Since, for Σ ≥ 2,
there are at least 2 distinct words of length 1, a learner can eventually figure out
which positions of the shortest words in the given text correspond to variables
and which variable positions correspond to repeated variables. We generalize
this idea by using type witness words instead of words of length 1. These words
will allow the learner to recognize repetitions of variables. Just as there are 2
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distinct words of length 1, we need 2 distinct type witness words per type. For
the learner to be able to distinguish types, we require the type witness words to
belong only to their corresponding type. This is formalized as follows.

Definition 6. Let T be a set of subsets of Σ+. Let ω1, ω2 : T → Σ+ be mappings
and W =

⋃
t∈T {ω1(t), ω2(t)}. (ω1, ω2) is a type witness for T if the following

properties are fulfilled.

1. ω1(t) �= ω2(t) and {ω1(t), ω2(t)} ⊆ t \
⋃
t′∈T \{t} t

′ for all t ∈ T ,

2. If w 5 α ◦w1 ◦ · · · ◦wm for w1, . . . , wm ∈
⋃
t∈T t, α ∈ Σ∗, and w ∈ W , then

w 5 α ◦ w1.
3. If w ∈ W and w′ ∈

⋃
t∈T t then w′ is not a proper suffix of w.

4. If w,w′ ∈ W then w′ is not a proper prefix of w.

Conditions 2 through 4 in this definition are included for technical reasons that
will become obvious in the results proven below. In Lange and Wiehagen’s case,
there was only one type in T , namely Σ+. As type witnesses, two distinct words
of length 1 in Σ+ were used. This agrees with all conditions in Definition 6.

Remark: For some applications, Definition 6 may be inappropriate. However,
there are other options to define type witnesses to yield sufficient conditions for
learnability. We see Definition 6 as one non-trivial example of creating sufficient
conditions for the design of non-trivial efficient learning algorithms for typed
pattern languages.

Since the length of a witness word no longer has to be equal to 1, it might be
impossible for the learner to identify which parts of a word in the text correspond
to constants in the underlying target pattern. This obstacle is avoided if type
witnesses are short in the sense of the following definition.

Definition 7. Let T be a set of subsets of Σ+. Let (ω1, ω2) be a type witness
for T . (ω1, ω2) is a short type witness for T if, for all t ∈ T and all w ∈ t,

|ω1(t)| = |ω2(t)| ≤ |w| .

The following example demonstrates how short type witnesses can be defined
for Lange and Wiehagen’s case of learning non-erasing pattern languages and
for a text mining case in which variables can be either of type “positive integer”
or of type “float” or of type “string.”

Example 8. 1. Let Σ = {a, b}, t = Σ+, T = {t}. Let ω1(t) = a and ω2(t) = b.
Then (ω1, ω2) is a short type witness for T .

2. Let Σ = Σ1 ∪ Σ2 ∪ Σ3 where Σ1 = {0, 1, . . . , 9}, Σ2 = {‘.‘, ‘, ‘, SPACE},
Σ3 = {a, b, . . . , z}. Let T = {t1, t2, t3}, where t1 = {w ∈ Σ+

1 | w does not
start with 0}, t2 = {w ◦ . ◦ w′ | w,w′ ∈ Σ+

1 }, and t3 = {w ◦ σ ◦ w′ | w,w′ ∈
Σ∗, σ ∈ Σ3, w does not contain any substring α.σ′ with α ∈ t1 and σ′ ∈
Σ \ {SPACE}} \ {1, 2}. Define (ω1(t1), ω2(t1)) = (1, 2), (ω1(t2), ω2(t2)) =
(3.0, 4.0), (ω1(t3), ω2(t3)) = (a, b). Then (ω1, ω2) is a short type witness
for T .
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4 Polynomial-Time Learning of Typed Pattern Languages

In what follows, polynomial learning of typed pattern languages implicitly uses
a representation class in which each language is represented by a pattern p and
a table assigning a type name to each variable occurring in p.

Our first theorem states that the class of all non-erasing typed pattern lan-
guages generated by terminal-free patterns is polynomially learnable from posi-
tive data, if the underlying type collection has a type witness. By terminal-free
patterns we mean patterns consisting only of variables.

Theorem 9. Let T be a finite set of decidable subsets of Σ+ that has a type
witness. Then the class of all non-erasing T -typed pattern languages that are
generated by terminal-free patterns is polynomially learnable from positive data.

To prove this theorem, we first prove some helpful lemmas.

Lemma 10. Let T be a set of subsets of Σ+. Let (ω1, ω2) be a type witness for
T , W =

⋃
t∈T {ω1(t), ω2(t)}. Let α, α′ ∈ W and β1, . . . , βm ∈

⋃
t∈T t be such

that α′ 5 α ◦ β1 ◦ · · · ◦ βm. Then α = α′. In particular, every W -decomposable
word has a unique W -decomposition.

Proof. Since α′ 5 α ◦ β1 ◦ · · · ◦ βm, where α, β1, . . . , βm ∈
⋃
t∈T t, and α′ ∈ W ,

Definition 6.2 implies α′ 5 α. Definition 6.4 then yields α = α′. �
Lemma 10 helps to prove that the unique W -decomposition of a W -decom-

posable word w ∈ Σ+ can be found in time polynomial in the length of w (for
a fixed collection of polynomial-time decidable types with type witnesses).

Lemma 11. Let T be a set of decidable subsets of Σ+. Let (ω1, ω2) be a type
witness for T , W =

⋃
t∈T {ω1(t), ω2(t)}. There is an algorithm that, given a

(
⋃
t∈T t)-decomposable word w ∈ Σ+, runs in time polynomial in |w|, returns

the W -decomposition of w if w is W -decomposable and returns “no” otherwise.

Proof. Because of Lemma 10, it suffices to traversew in steps in the following way.
In the i-th step (i ≥ 1), one picks any word wi ∈ W such that w1◦· · ·◦wi−1◦wi 5
w. If, after some number m of steps, no more such word wm+1 is found, one
returns (w1, . . . , wm) in case w1 ◦ · · · ◦ wm = w and returns “no” otherwise.
Correctness and efficiency are evident. �
In order to study W -decomposable words generated by a terminal-free pattern,
we introduce some more notation.

Definition 12. Let T be a set of subsets of Σ+. Let (ω1, ω2) be a type witness
for T , W =

⋃
t∈T {ω1(t), ω2(t)}. For any T -typed pattern (p, T ), define

LW (p, T ) = {w ∈ Σ+ | ∃θ ∈ ΘΣ,T [θ(p) = w and θ(x) ∈ W for all x ∈ X ]} .

Lemma 13. Let T be a set of subsets of Σ+. Let (ω1, ω2) be a type witness
for T , W =

⋃
t∈T {ω1(t), ω2(t)}. Let (p, T ) be a terminal-free T -typed pattern,

|p| = m. Let w ∈ LW (p, T ). Then the following statements are fulfilled.
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1. w has a W -decomposition of length m.
2. If w′ ∈ L(p, T ) \LW (p, T ) and w′ is W -decomposable, then the W -decompo-

sition of w′ has length greater than m.

Proof sketch. Statement 1 is straightforward to show: since p is terminal-free, if
w ∈ LW (p, T ) then w is obviously W -decomposable into m words.

To prove Statement 2, let p = y1 . . . ym, where the yi are (not necessarily
distinct) variables. Let θ ∈ ΘΣ,T be such that w′ = θ(p) = θ(y1) ◦ · · · ◦ θ(ym).
Let (v1, . . . , vn) be the unique W -decomposition of w′. We need to show that
n > m. Assume n ≤ m. The rest of the proof can be sketched as follows.

First, repeated application of Property 2 in Definition 6 yields v1 ◦ · · · ◦ vi 5
θ(y1) ◦ · · · ◦ θ(yi) for 1 ≤ i ≤ n, which implies n = m and v1 ◦ · · · ◦ vn =
θ(y1) ◦ · · · ◦ θ(yn).

Second, v1 ◦ · · · ◦ vi 5 θ(y1) ◦ · · · ◦ θ(yi) for 1 ≤ i ≤ n and v1 ◦ · · · ◦ vn =
θ(y1) ◦ · · · ◦ θ(yn) implies that either (i) θ(yi) = vi for all i ∈ {1, . . . , n} or
(ii) θ(yi) is a proper suffix of vi for some i ∈ {1, . . . , n}. (i) would contradict the
choice of w′ /∈ LW (p, T ), (ii) would contradict Property 3 in Definition 6. Since
the assumption n ≤ m leads to a contradiction, we have n > m. �

Lemma 13 is crucial for our proof of Theorem 9. It further implies the existence
of normal forms for terminal-free T -typed patterns, for any type collection T
that has a type witness. In particular, if two terminal-free T -typed patterns
generate the same language, they are equal modulo renaming of variables.

Proof of Theorem 9. Let T be a finite set of decidable sets of words. Let (ω1, ω2)
be a type witness for T and let W =

⋃
t∈T {ω1(t), ω2(t)}. The required learner

A, given a set S ⊆ Σ+, obeys the following algorithm.

Algorithm 1.

1. Compute the set C of all W -decomposable words in S with the shortest W -
decompositions. Let m be the length of such a shortest decomposition.

2. Initialize p = y1 . . . ym. For each i ∈ {1, . . . ,m}, let T (yi) be the type t ∈ T
for which the i-th word in the W -decomposition of any z ∈ C is contained
in {ω1(t), ω2(t)}.

3. For each i ∈ {1, . . . ,m} and each j ∈ {i, . . . ,m}, if T (yi) = T (yj) and, for
all z ∈ S, the i-th word equals the j-th word in the W -decomposition of z,
then replace yi and yj in p by xi.

4. Replace all remaining yi in P by xi. T (xi) = T (yi) for each i ∈ {1, . . . ,m}.
5. Return (p, T ).

Step 1 can be done in polynomial time according to Lemma 11. Step 2 can be
executed since T is finite and because of Definition 6. Steps 3 and 4 can obviously
be executed in polynomial time.

Assume the target pattern is (p∗, T ∗). Note that LW (p∗, T ∗) is finite. Let S∗

be a subset of LW (p∗, T ∗) consisting of two words v1(x) = θx1 (p
∗) and v2(x) =

θx2 (p
∗) per variable x occurring in p∗ where, for � ∈ {1, 2},

θx� (xi) =

{
ω�(T

∗(x)) , if xi = x ,

ω1(T
∗(xi)) , if xi �= x .
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If S∗ ⊆ S, it is not hard to verify, using Lemma 13, that there is a terminal-free
pattern (p, T ) with L(p∗, T ∗) = L(p, T ), such that A on input S returns (p, T ).

Finally, note that the size of the characteristic set S∗ defined above is poly-
nomial in the length of p∗. �
Theorem 9 can be generalized to the case of all non-erasing typed pattern lan-
guages if we require the underlying type witnesses to be short.

Theorem 14. Let T be a finite set of decidable subsets of Σ+ that has a short
type witness. Then the class of all non-erasing T -typed pattern languages is poly-
nomially learnable from positive data.

Proof sketch. The proof is based on the easily verifiable fact that, for any target
pattern (p, T ), the set LW (p, T ) is contained in the set of shortest words in
L(p, T ), which is obviously finite. The required learner A, given a finite set
S ⊆ Σ+, obeys the following algorithm.

Algorithm 2.

1. Compute the set C of all shortest words in S, where m is their length.
2. Initialize p = y1 . . . ym. For each i ∈ {1, . . . ,m}, if there is a σ ∈ Σ such

that the i-th position of each word in C is σ, change the i-th position of p
to σ and mark the i-th position in p “constant.”

3. Remove all words from C for which any of the maximal substrings corre-
sponding to non-constant positions in p are not W -decomposable.

4. Apply Algorithm 1 to the left-to-right concatenations of maximal substrings
of words in C corresponding to non-constant positions in p. Replace the non-
constant parts in p with the corresponding parts of the pattern obtained from
Algorithm 1.

5. Return (p, T ).

It is not hard to verify that this algorithm runs in polynomial time.
Assume the non-erasing target pattern is (p∗, T ∗). Let S∗ be the subset of all

shortest words in L(p∗, T ∗) that is defined by analogy with the set S∗ used in
the proof of Theorem 9. The size of S∗ is polynomial in |p∗|. If S∗ ⊆ S, one can
prove that there is a pattern (p, T ) with L(p∗, T ∗) = L(p, T ), such that A on
input S returns (p, T ). Details are omitted due to space constraints. �

5 Extensions of the Presented Results

This section addresses several possible ways of strengthening the above results.

5.1 Learning Typed Pattern Languages over Infinitely Many Types

For some applications, it might be required to model the learning problem using
an infinite set of types, i.e., an infinite set T . Our learnability results immedi-
ately transfer to this case if the type witness is equipped with two appropriate
mappings that (i) assign type witness words to a type index number and (ii) find
a type index for each witness word.
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Theorem 15. Let T be a set of decidable subsets of Σ+ that has a short type
witness (ω1, ω2) fulfilling the following property.

There is an efficiently computable one-to-one mapping witness : N → (Σ+)2

and an efficiently computable mapping typeIndex:
⋃
t∈T {ω1(t), ω2(t)} → N

such that, for all t ∈ T and w ∈ {ω1(t), ω2(t)}, witness(typeIndex(w)) =
(ω1(t), ω2(t)).

Then the class of all non-erasing T -typed pattern languages is polynomially learn-
able from positive data.

We get an analogous generalization of Theorem 9 for terminal-free patterns
when dropping the shortness constraint on the type witness.

5.2 Consistent Learning of Typed Pattern Languages

Algorithms 1 and 2 presented above, just like Lange and Wiehagen’s algorithm,
ignore most of the input words and build a hypothesis based just on a special
subset of the given words. A side-effect is that the hypotheses returned on any
set not containing a characteristic set may be inconsistent with the given data.

One way of making our learning algorithms consistent would be to test for
each input word whether it is generated by the pattern that the algorithm would
normally return. If not, then (x1, T ) with T (x1) = Σ+ could be returned instead.
However, there is no known polynomial-time algorithm deciding membership for
(typed) pattern languages, even if all types are polynomial-time decidable: the
membership problem for non-erasing pattern languages is NP-complete [1].3

However, the membership problem for non-erasing pattern languages is in P,
when restricted to patterns containing a bounded number of distinct variables [1].
This was generalized to typed pattern languages with finitely many polynomial-
time decidable types [6]. A similar result holds for all typed pattern languages
with finitely many polynomial-time decidable types when bounding the length
of words from above [6]. These results imply the following theorem.

Theorem 16. Let T be a finite set of polynomial-time decidable subsets of Σ+

that has a short type witness (ω1, ω2). Let k ∈ N. Then the following holds.

1. The class of all non-erasing T -typed pattern languages that are generated by
typed patterns containing at most k distinct variables is polynomially learn-
able from positive data by a consistent learning algorithm.

2. The class of all non-erasing T -typed pattern languages with shortest words of
length at most k is polynomially learnable from positive data by a consistent
learning algorithm, if the input to the learning algorithm is restricted to sets
of words of length at most c · k for some constant c.

A detailed proof is omitted due to space constraints. Again we get an analo-
gous generalization of Theorem 9 for terminal-free patterns when dropping the
shortness constraint on the type witness.

3 The membership problem for (non-erasing) pattern languages is to decide, given a
pattern p and a word w, whether or not w ∈ L(p).
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6 Conclusion

We generalized the method of Lange and Wiehagen’s polynomial-time algorithm
for learning pattern languages to be applicable to typed pattern languages. This
required the introduction of type witnesses, structurally restricting the class of
typed pattern languages for which we can prove polynomial-time learnability. We
established a connection to the study of characteristic sets, though in general
without being able to guarantee consistent learning algorithms. Our preliminary
considerations in Section 5.2 are a first step towards future work on the problem
of achieving consistency without sacrificing runtime efficiency.

Type witnesses are likely to be of further use for the study of efficient al-
gorithms for the identification of (typed or relational) patterns. In particular,
specific application scenarios will allow for modeling specific sets of type wit-
nesses; in all such cases the algorithms we proposed can be a basis for efficient
solutions to machine learning and data mining problems.
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Abstract. This paper investigates ways to reduce redundancy in forbid-
ding sets for language forbidding-enforcing systems. A language forbid-
ding set disallows combinations of subwords in a word, while permitting
the presence of some parts of these combinations. Since a forbidding set
is a potentially infinite set of finite sets of words, finding normal forms for
forbidding sets is interesting from a combinatorics on words perspective
and important for the theoretical investigation of language fe-systems,
the connection between variants of fe-systems, and their applications to
molecular computation. This paper shows that the minimal normal forms
for forbidding sets defining classes of languages (fe-families) are also nor-
mal forms for forbidding sets defining single languages (fe-languages),
but not necessarily minimal. Thus, an investigation of minimality and
sufficient conditions for fe-languages are presented and it is shown that
in special cases they coincide with a minimal normal form for fe-families.

Keywords: fe-systems, forbidden words, biomolecular computing, nor-
mal forms, formal languages.

1 Introduction

Forbidding-enforcing systems (fe-systems) can be viewed, in general, as boundary
restrictions imposed on classes of structures that can be defined over any category
of objects and morphisms [9]. Abstracting from the non-deterministic behavior
of molecules in molecular reactions, A. Ehrenfeucht and G. Rozenberg intro-
duced the forbidding and enforcing paradigm ([2,3,4,16]) as fe-systems that de-
fine classes of languages (fe-families) capable of providing means for information
processing. These classes of languages were shown to be different than Chom-
sky’s hierarchy [8]. Fe-systems have been proposed in the framework of mem-
brane computing [1], used to model DNA self-assembly [5], and defined on graphs
[6]. Detailed discussion of DNA computing models, splicing systems, membrane
systems, and DNA self-assembly, can be found in [10,11,12,13,14,15,17]).

This paper investigates ways to simplify forbidding sets for a variant of fe-
systems introduced in [7], in which one fe-system is used to define a single lan-
guage (fe-language fe-system), as opposed to a family of languages (fe-family
fe-system) as defined in [4]. Unlike a grammar or an automaton, which gener-
ates or accepts a word symbol by symbol, a language fe-system defines a language
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based on forbidden and enforced subwords. Characterizations of local and fac-
torial languages by fe-systems were presented in [7] and it was shown that such
systems can define the solutions to the k-colorability problem and model splicing
rules. Using one system to define one set of words is motivated by molecular com-
putation, where the result of a computation is a set of molecules (a set of words
over a DNA alphabet), restriction enzymes require specific sequences (subwords)
to perform a cut, and from DNA involution codes, where subwords are essential
to the word structure.

The focus here is on theoretical properties of forbidding sets and the sets of
words that they define and shies away from applications. This paper investigates
how redundancy of forbidding sets can be avoided, i.e. how by shrinking certain
forbidden combinations of subwords or deleting many combinations from the
forbidding set, one can find an equivalent reduced set of forbidden combinations
of subwords that defines the same set of consistent words (fe-language). From
a combinatorics on words perspective, the combinations of forbidden words are
non-strict, i.e., some parts of them are allowed, and the number of forbidden
combinations may be infinite.

Following the related definitions and examples in Section 2, Section 3 inves-
tigates the similarities and differences of the normal forms for forbidding sets
for both the fe-family and fe-language fe-systems models and shows that the
subword free and subword incomparable minimal normal form proved in [2,16]
for fe-families is not necessarily minimal for the single language forbidding set.
Minimal language forbidding sets are investigated in Section 4 and Section 5
provides normal forms for strict forbidding sets.

2 Language Forbidding-Enforcing Systems

A finite set of symbols (alphabet) is denoted by A and the free monoid consisting
of all words over A is denoted by A∗. A subset of A∗ is called a language. The
length of a word w ∈ A∗ is denoted by |w| and Am is the set of all words of
length m, whereas A�m is the set of all words of length at most m. The empty
word, denoted by λ has length 0. The language A+ consists of all words over A
with positive length.

The word y ∈ A∗ is a subword (factor) of x ∈ A∗, if there exist s, t ∈ A∗, such
that x = syt. The set of subwords of a word x is denoted by sub (x) and the set
of subwords of a language L by sub (L), where sub (L) = ∪x∈L sub (x).

When referring to fe-families, this paper uses the definitions and notation
from [4]. For more details about properties of fe-systems defining fe-families of
languages, the reader is referred to [2,3,4,6,8,16].

The normal forms in this paper relate to the fe-systems model introduced in
[7], in which one forbidding-enforcing system defines a single language as opposed
to a family of languages. The related definitions are recalled below. Assume that
the alphabet A is given.
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Definition 1. A forbidding set F is a family of finite nonempty subsets of A+;
each element of a forbidding set is called a forbidder. A word w is consistent
with a forbidder F , denoted by w conF , if and only if, F �⊆ sub (w). A word w is
consistent with a forbidding set F, denoted by w conF, if and only if, w conF for
all F ∈ F. If w is not consistent with F (resp. F), the notation is wnconF (resp.
wnconF). The language L(F) = {w | w conF}. A language L is a forbidding
language or f-language, if there is a forbidding set F such that L = L(F). Two
forbidding sets F and F′ are equivalent, denoted by F ∼ F′, if and only if,
L(F) = L(F′). A forbidding set F is called strict, if and only if, |F | = 1 for every
F ∈ F.

The following forbidding set was discussed in [2,4,6,8,16], where it was used to
define a family of languages. The example below is from [7], where the same
forbidding set was used to define a single set of words (f-language).

Example 2. Assume that A = {a, b}. Let F = {{ab, ba}, {aa, bb}}. Then L(F) =
{an, bn, abn, anb, ban, bna | n ≥ 0}.

Other examples of f-languages over the same alphabet A include: L(F1) = a∗

for F1 = {{b}} and if F2 = {{bb}}, then L(F2) contains words where any two b’s
are separated by at least one a. Note that a∗ ⊂ L(F2). Also note that if nothing
is forbidden, then everything is allowed, i.e. L(F) = A∗ if and only if F is empty.

Theorem 1 in [7] establishes a connection between the fe-family defined by a
forbidding set and the fe-language defined by the same forbidding set. It states
that the union of maximal languages in the fe-family gives the fe-language. The
same statement holds, if we replace “maximal languages” by “languages”. The
following result is used in the proof of Theorem 8.

Theorem 3. Let F be a forbidding set. Then, L(F) = ∪L∈L(F)L.

Proof. Let F be given. Assume w ∈ L(F). Then, the language {w} ∈ L(F),
otherwise there is a forbidder F ∈ F, such that F ⊆ sub ({w}) and we have F ⊆
sub (w), which contradicts the assumption that w conF . Hence, w ∈ ∪L∈L(F)L.
Therefore, L(F) ⊆ ∪L∈L(F)L. Conversely, assume w ∈ ∪L∈L(F)L. Then, there
exists a language K ∈ L(F) such that w ∈ K. Let F ∈ F. Since K conF, it
follows that F �⊆ sub (K). Then, F �⊆ sub (w), otherwise F ⊆ sub (w) and
sub(w) ⊆ sub (K) imply F ⊆ sub (K), a contradiction. Since w conF for an
arbitrary F ∈ F, we have that w conF, i.e., w ∈ L(F). Thus, ∪L∈L(F)L ⊆ L(F).
Consequently, L(F) = ∪L∈L(F)L. ��

The other boundary condition used in the fe-language fe-systems model proposed
in [7] is an enforcing set.

Definition 4. An enforcing set E is a family of ordered pairs called enforcers
(x, Y ), such that x ∈ A∗ and Y = {y1, . . . , yn} where yi ∈ A+ for i = 1, . . . , n,
x ∈ sub (yi) and x �= yi for every yi ∈ Y . A word w satisfies an enforcer (x, Y )
(w sat (x, Y )), if and only if, w = uxv for some u, v ∈ A∗ implies that there
exists yi ∈ Y and u1, u2, v1, v2 ∈ A∗ such that yi = u2xv2 and w = u1u2xv2v1.
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In the case that x �∈ sub (w), w is said to satisfy the enforcer trivially. A word
w satisfies an enforcing set E (w satE), if and only if, w satisfies every enforcer
in that set. For an enforcing set E the set of all words that satisfy it is denoted
by L(E). A language L is called an e-language, if there exists an enforcing set E
such that L = L(E).

Enforcers in which x = λ are called brute. In this case, a word from Y has to be
a subword of w in order for w to satisfy the enforcer. Note that if y ∈ Y , then
y sat (x, Y ). Also, L(E) = A∗ if and only if E = ∅. An enforcer (x, Y ) is called
strict, if |Y | = 1. Consider the enforcing set E = {(λ, {a})}∪{(ai, {ai+1}) | i ≥ 1}
over an alphabet A that contains a. It consists of strict enforcers only, one of
which is brute and requires that ai ∈ sub (w) for any i ≥ 1. Since L(E) can only
contain finite words, L(E) = ∅.

The idea of a forbidding-enforcing system for families of languages from [4] is
preserved for a set of words (fe-language) in [7] and the definition is stated next.

Definition 5. A forbidding-enforcing system is an ordered pair (F,E), such that
F is a forbidding set and E is an enforcing set. The language L(F,E) defined by
this system consists of all words that are consistent with F and satisfy E, i.e.,
L(F,E) = L(F) ∩ L(E). A language L is called an fe-language, if there exists an
fe-system (F,E), such that L = L(F,E).

Basic properties of fe-language fe-systems are stated in [7] and are reminiscent
of fe-family fe-systems properties from [4,16]. For example, Property 7 from
Proposition 1 in [7] states that if F and F′ are two forbidding sets and E and E′

are two enforcing sets, then L(F∪F′,E∪E′) = L(F,E)∩L(F′,E′). This property
is used in the following example from [7] to define the language in Item 3 as the
intersection of the languages in Items 1 and 2.

Example 6. Let A = {a, b}.
1. Let F = {{ba}} and E1 = {(λ, {a})} ∪ {(ai, {ai+1, aibi}) | i ≥ 1}. Then,

L1 = L(F,E1) = {anbm | n ≤ m and n,m ≥ 1}.
2. Let F = {{ba}} and E2 = {(λ, {b})} ∪ {(bi, {bi+1, aibi}) | i ≥ 1}. Then,

L2 = L(F,E2) = {anbm | n ≥ m and n,m ≥ 1}.
3. Then, L = L1 ∩ L2 = {anbn | n ≥ 1} = L(F,E1 ∪ E2).

Since a forbidding (enforcing) set can be empty, an fe-system can be defined using
only one of the boundary conditions as constraints, i.e., L(∅,E) = A∗ ∩ L(E) =
L(E) and L(F, ∅) = L(F) ∩ A∗ = L(F). In this sense, forbidding languages
(enforcing languages) are fe-languages.

3 Subword-Free and Subword-Incomparable Normal
Forms

A forbidding set may be be redundant and in that case it may be reduced by
removing some parts of its forbidders or entire forbidders without changing the
language that it defines and without changing the family of languages that it
defines.
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Definition 7. A forbidding set F is called subword free if all of its forbidders
are subword free and subword incomparable if for any two forbidders F1, F2 ∈ F

with F1 �= F2, it holds that sub (F1) �⊆ sub (F2) and sub (F2) �⊆ sub (F1).

The subword free and subword incomparable normal forms for families of lan-
guages were introduced in [2] and discussed in detail in [16]. The authors proved
that these two conditions combined (called minimal normal form) define a nor-
mal form that is indeed minimal and unique for fe-families. In this section, two
questions are investigated: whether the normal forms proved for fe-families for-
bidding sets are also normal forms for fe-language forbidding sets and if so,
whether the minimal and unique normal form for fe-families is minimal and
unique for fe-languages, as well. The answer to the first question is affirmative.
However, as shown in this section, the analogous normal form for fe-languages
is neither minimal nor unique.

Example 5 in [2] shows that since the minimal normal form of the forbidding
set F = {{ai, bi, aibi} | i ≥ 1} is F′ = {{ab}}, they both define the same family
of languages and so, an infinite forbidding set in this case can be reduced to a
finite one. Observe that, the same is true for the fe-language model, as well, since
{ai, bi, aibi} �⊆ sub (w) for all i ≥ 1 iff {a, b, ab} �⊆ sub (w) iff {ab} �⊆ sub (w). In
fact, consider the following.

Theorem 8. Every normal form for forbidding sets for fe-families is also a
normal form for forbidding sets for fe-languages.

Proof. Let F be a forbidding set and F′ be a forbidding set equivalent to it
in some normal form for fe-families. Then, L(F) = L(F′). From Theorem 3,
L(F) = ∪L∈L(F)L. By the same theorem, we have that L(F′) = ∪L∈L(F′)L.
Thus, L(F) = ∪L∈L(F)L = ∪L∈L(F′)L = L(F′). Hence, L(F) = L(F′). Therefore,
F ∼ F′ for fe-language forbidding sets, as well. ��

It follows from the above theorem that the minimal normal form for fe-family
forbidding sets is a normal form for fe-language forbidding sets, as well.

Corollary 9. For every language forbidding set there is an equivalent subword
free and subword incomparable forbidding set.

So, given a forbidding set, we can find a fe-language equivalent forbidding set that
is subword free and subword incomparable. However, the next example shows
that a subword free and subword incomparable forbidding set is not necessarily
fe-language minimal.

Example 10. Let A = {a, b}, F = {{aabb}, {bbaa}, {bbabaa}, {aa, bb, abab}}, and
F′ = {{aabb}, {bbaa}, {bbabaa}, {aa, bb}}. Clearly, F is subword free and sub-
word incomparable. In the fe-families model, this forbidding set is minimal. If
we remove a forbidder, the removed forbidder is a language that is not in the old
family but it is in the new one, so the obtained forbidding set is not going to be
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equivalent to F. If we remove a word from a forbidder, say abab, the remaining
words from that forbidder, i.e., {aa, bb} form a language that is consistent with
F but not consistent with the newly obtained forbidding set. In the fe-language
model F is not minimal, since it can be reduced to a smaller forbidding set which
defines the same language, i.e., is equivalent to F′. Observe that every word that
contains both aa and bb as subwords and does not contain abab as a subword
contains either aabb, or bbaa, or bbabaa as a subword. Hence, w conF implies
w conF′. The converse is obvious. Therefore, F ∼ F′. Further more, since F′ is
not subword incomparable, i.e., sub ({aa, bb}) ⊆ sub (G) for every G ∈ F′ with
G �= {aa, bb}, F′ can be reduced to F′′ where F′′ = {{aa, bb}}. Thus, F ∼ F′′.

4 Connecting Words and Minimal Normal Form

In [7] connecting words were used to prove that for every forbidding set there
exists an equivalent enforcing set that defines the same set of words, i.e. language.
In this paper, connecting words are used to investigate the relationship between
general forbidding sets and strict ones and to prove some normal forms.

Definition 11. Given a finite set of words (a forbidder) F , a word x such that
F ⊆ sub (x) is called a connecting word of F . The set of all connecting words
of F is called the connect of F and denoted by C(F ). If s ∈ C(F ) and for no
t ∈ C(F ), t �= s it holds that t ∈ sub (s), then s is a minimal connecting word
of F . The set of minimal connecting words of F is called the minimal connect
of F and denoted by Cmin(F ).

Remark 12. Note that for a forbidder F and a word w ∈ A∗, either w conF or
w ∈ C(F ). More precisely, w ∈ C(F ) if and only if F ⊆ sub (w) if and only if
wnconF .

Two forbidders F1 and F2 are equivalent if and only if w conF1 implies w conF2

and vice versa. Hence, the following remark.

Remark 13. Let F be a forbidding set and F1, F2 ∈ F. Then, F1 and F2 are
equivalent if and only if C(F1) = C(F2).

Even for a very simple forbidder, such as the one in the next example, the set
of minimal connecting words and thus, the set of all connecting words for this
forbidder may be infinite.

Example 14. Let A = {a, b} and consider the forbidder F = {aa, bb}. Then
aabbabb ∈ C(F ), but aabbabb �∈ Cmin(F ), since aabb ∈ sub (aabbabb). How-
ever, aababb ∈ Cmin(F ), since none of its proper subwords is in C(F ). In fact,
aa(ba)ibb ∈ Cmin(F ) for any i ≥ 0. Moreover, Cmin(F ) = {aa(ba)ibb, bb(ab)iaa |
i ≥ 0}.

The following useful result can be proved directly by the above definition.
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Lemma 15. Let F and F ′ be finite sets of words (forbidders) with F ′ ⊆ F .
Then, C(F ) ⊆ C(F ′).

Lemma 16. Let F be a forbidding set and F1, F2 ∈ F such that C(F2) ⊆ C(F1).
Then F ∼ (F\{F2}).

Proof. Let F, F1, and F2 be as in the hypothesis of the lemma. Obviously, L(F) ⊆
L(F\{F2}). Let w ∈ L(F\{F2}). Since w conF1, it follows that w �∈ C(F2).
Otherwise, since C(F2) ⊆ C(F1), we have w ∈ C(F1), a contradiction with
Remark 12 and so, w conF2, in view of the same remark. Therefore, L(F\{F2}) ⊆
L(F). ��

The above lemma is generalized below to allow removal of possibly infinitely
many forbidders.

Lemma 17. Let F and F′ be forbidding sets with F′ ⊆ F such that for each
F ∈ F there is F ′ ∈ F′ such that C(F ) ⊆ C(F ′). Then F′ ∼ F.

Proof. Obviously, L(F) ⊆ L(F′). Let w ∈ L(F′) and let F ∈ F . Then, there
exists F ′ ∈ F′ such that C(F ) ⊆ C(F ′). By Remark 12, w �∈ C(F ′), which
implies that w �∈ C(F ). Hence, w conF and the lemma follows. ��

Example 10 shows that some words in a forbidder may be redundant depending
not only on other words in the forbidder, but also on the other forbidders.

Proposition 18. Let F be a forbidding set and F ∈ F be a forbidder. Let x ∈ F
be such that for every w ∈ C(F \ {x}) with x �∈ sub (w), there exists G ∈ F,
G �= F with w ∈ C(G). Then, F ∼ (F \ {F}) ∪ {F ′}, where F ′ = F \ {x}.

Proof. Assume F, F , and x are given as in the statement and let F′ = (F \
{F})∪ {F ′}, where F ′ = F \ {x}. Clearly, L(F′) ⊆ L(F). Assume w ∈ L(F) and
wnconF ′. By Remark 12, w ∈ C(F ′). Since w conF , it follows that x �∈ sub (w).
Then, there exists G ∈ F, G �= F such that w ∈ C(G), which contradicts the
assumption that w ∈ L(F). Hence, w conF ′ and L(F) ⊆ L(F′). Consequently,
F ∼ F′. ��

Note that the above process is transitive. It follows from the above proposition
that if F can be reduced to F ′ = F \ {x} and F ′ can be reduced to some
F ′′ = F ′ \ {y}, then F can be reduced to F ′′ = F \ {y, x}. In fact, F may be
reduced by a subset X , if every element in X satisfies the conditions of the above
proposition.

Definition 19. A forbidding set is called connecting free if for every forbidder
F ∈ F with |F | ≥ 2 and every word x ∈ F there exists w ∈ C(F\{x}) with
x �∈ sub (w) such that w conG for every G ∈ F, G �= F .

The forbidding set from Example 2 is connecting free. Observe that if F =
{ab, ba}, and x = ab, then there exists w = ba such that w ∈ C(F \ {x}) and
w con {aa, bb}. Similarly, for x = ba we can take w = ab, for x = aa let w = bb,
and for x = bb take w = aa.
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Proposition 20. Every connecting free forbidding set is subword free.

Proof. Suppose a connecting free forbidding set F is not subword free. This
implies that there exists a forbidder F and x, y ∈ F such that x ∈ sub (y).
Then, there is no w ∈ C(F \ {x}) for which x �∈ sub (w), since if y ∈ sub (w),
so is x. Hence, there doesn’t exist w ∈ C(F \ {x}) with x �∈ sub (w) such that
w conG for every G ∈ F, G �= F . This contradicts the assumption that F is
connecting free. Hence, the proposition follows. ��

Example 10 shows that, in general, the converse of Proposition 20 does not hold,
i.e. a subword free forbidding set is not necessarily connecting free. The next
proposition states that for subword free and subword incomparable forbidding
sets with forbidders consisting of no more than two elements, the converse of
Proposition 20 holds.

Proposition 21. Let F be a subword free and subword incomparable forbidding
set with |F | ≤ 2 for every F ∈ F. Then, F is connecting free.

Proof. Let F satisfy the hypothesis of the statement and let F ∈ F with |F | = 2.
Since F is subword free, F = {x, y} for some x, y ∈ A+ such that x �∈ sub (y)
and y �∈ sub (x). Then, y ∈ C(F \ {x}) is such that y conG for every G ∈
F, otherwise there exists G ∈ F such that G ⊆ sub (y), which implies that
sub (G) ⊆ sub (y) ⊆ sub (F ) and contradicts the assumption that F is subword
incomparable. Similarly, x ∈ C(F \{y}) is such that x conG for every G ∈ F. ��

The following result states that if in addition to subword free and subword
incomparable, a forbidding set is also connecting free, it is minimal in the sense
that a removal of only one word from one forbidder changes the forbidding
language.

Lemma 22. Let F be subword incomparable and connecting free. Then, for every
F ∈ F and every x ∈ F , L(F′) ⊂ L(F), where F′ = (F\{F}) ∪ {F ′} such that
F ′ = F\{x}.

Proof. Let F be subword incomparable and connecting free. Let F ∈ F and
x ∈ F . Consider F ′ = F\{x} and F′ = (F\{F}) ∪ {F ′}. It is obvious that
L(F′) ⊆ L(F). Since F is connecting free, there exists w ∈ C(F ′) with x �∈ sub(w)
such that w conG for every G ∈ F, G �= F . Then, w is such that w ∈ L(F), but
w �∈ L(F′). Hence, L(F′) ⊂ L(F). ��

The next example shows that even if a forbidding set contains minimal forbid-
ders, it may still contain redundant forbidders.

Example 23. Let A = {a, b} and consider F = {{ab}, {ba}, {aa, bb}} and let
F = {aa, bb}. From Example 14, we have that Cmin(F ) = {aa(ba)ibb, bb(ab)iaa |
i ≥ 0}. Since w nconF implies that one of the words in Cmin(F ) is a subword of
w, and for every word in Cmin(F ) either ab or ba is a subword of that word, it
follows that w ncon {ab} or w ncon {ba}. This implies that w conF if and only if
w con (F\{F}). Hence, F is redundant and can be removed without changing the
forbidding language. The forbidding language L(F) = a∗∪b∗ = L(F\{{aa, bb}}).
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The next proposition is a generalization of Example 23.

Proposition 24. Let F be a forbidding set and let F ∈ F be such that for every
w ∈ C(F ) there exists G ∈ F, G �= F such that w ∈ C(G). Then, F ∼ (F \ {F}).

Proof. Let F be a forbidding set and let F ∈ F be such that for every w ∈ C(F )
there exists G ∈ F, G �= F such that w ∈ C(G). Obviously, L(F) ⊆ L(F \ {F}).
Conversely, assume that w ∈ L(F \ {F}). Suppose that wnconF . Then, w ∈
C(F ) and so, there exists G �= F such that w ∈ C(G). This contradicts the
assumption that w conG. Therefore, w conF and L(F \ {F}) ⊆ L(F). ��

Definition 25. A forbidding set F is called connecting reduced if for every F ∈ F

there exists w ∈ C(F ), such that w �∈ C(G) for every G ∈ F, G �= F .

Proposition 26. Every connecting reduced forbidding set is subword incompa-
rable.

Proof. Let F be connecting reduced. Let F1, F2 ∈ F with F1 �= F2. Since F

is connecting reduced, there exists w ∈ C(F2), such that w �∈ C(F1), i.e., F1 �⊆
sub (w). Moreover, since w ∈ C(F2), by Remark 12, we have F2 ⊆ sub (w) and so,
sub (F2) ⊆ sub (w). Thus, F1 �⊆ sub (F2), otherwise F1 ⊆ sub (F2) ⊆ sub (w), a
contradiction. Hence, sub (F1) �⊆ sub (F2). Similarly, sub (F2) �⊆ sub (F1). Thus,
F is subword incomparable. ��

Example 23 shows that the converse of the above proposition does not hold,
since this forbidding set is subword incomparable, but not connecting reduced.

Lemma 27. Let F be a connecting reduced forbidding set. Then, L(F) ⊂ L(F \
{F}) for any F ∈ F.

Proof. Assume that F is connecting reduced and let F ∈ F. Clearly, L(F) ⊆
L(F \ {F}). Since F is connecting reduced, there exists w ∈ C(F ) such that
w �∈ C(G) for every G ∈ F, G �= F . Then, w ∈ L(F \ {F}), but w �∈ L(F).
Therefore, L(F) ⊂ L(F \ {F}). ��

Example 23 also shows that a connecting free forbidding set is not necessarily
connecting reduced.

Definition 28. A forbidding set F is reduced if it is both connecting free and
connecting reduced.

The forbidding set from Example 2 is reduced.
The next theorem states that every reduced forbidding set is minimal, i.e.

removal of only one forbidder or only one word in a forbidder, changes the set
of words that the forbidding set defines. It follows from Lemmas 22 and 27.

Theorem 29. Every reduced forbidding set is minimal.
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5 Normal Forms for Strict Forbidding Sets

Proposition 30. Let F be a forbidding set. For every F ∈ F choose one connect-
ing word sF ∈ C(F ) and consider F′ = {{sF} | F ∈ F}. Then, L(F) ⊆ L(F′).

Proof. Let w ∈ L(F) and let {sF } ∈ F′. Then, sF is a connecting word for some
F ∈ F. Then F �⊆ sub (w) implies that {sF } �⊆ sub (w). Thus, L(F) ⊆ L(F′). ��

Note that the converse is not necessarily true even if F is reduced. For example,
consider A = {a, b}, F = {{aa, bb}}, and F′ = {{aabb}}. Then w = bbaa is
such that w ∈ L(F′) and w �∈ L(F). However, if all minimal connecting words
of all forbidders are considered as singleton forbidders, then the converse holds.
Moreover, we have the following normal form.

Theorem 31. For every forbidding set there exists an equivalent strict forbid-
ding set.

Proof. Let F be a forbidding set. For every F ∈ F construct the forbidding set
FF = {{s} | s ∈ Cmin(F )} and consider F′ = ∪F∈FFF . We show that F ∼ F′.
Assume that w conF. Note that by definition of F′, for every {s} ∈ F′ there
exists F ∈ F such that F ⊆ sub (s). Since w conF, we have that F �⊆ sub (w). It
follows that {s} �⊆ sub (w). Hence, L(F) ⊆ L(F′). Conversely, let w conF′ and
let F ∈ F. Suppose F ⊆ sub (w). Then, w ∈ C(F ) and there is s ∈ Cmin(F )
such that s ∈ sub (w), which contradicts the assumption that w conF′. Hence,
F �⊆ sub (w) and L(F′) ⊆ L(F). Consequently, F ∼ F′. ��

Remark 32. Note that the above theorem does not make general forbidding sets
obsolete. Example 14 shows that even a simple forbidder F = {aa, bb} may have
an infinite number of minimal connecting words and replacing a finite number
of forbidders with an infinite number of forbidders maybe undesirable.

Remark 33. Any strict forbidding set is connecting (subword) free. Also, con-
necting reduced is equivalent to subword incomparable for such a set.

Corollary 34. For every forbidding set there exists an equivalent minimal strict
forbidding set.

Proof. Let F be given and construct an equivalent F′ as in the proof of Theorem
31. Then, from Corollary 9 for F′ there exists an equivalent connecting reduced
(subword incomparable) forbidding set F′′. By Lemma 27, F′′ is minimal, i.e.,
L(F′′) ⊂ L(F′′ \ {F}) for any F ∈ F′′. ��

Lemma 35. Let F be a strict forbidding set and F1 and F2 be two minimal
strict forbidding sets equivalent to F. Then, F1 = F2.

Proof. Let {u} ∈ F1 and since F1 ∼ F2, u �∈ L(F1) = L(F2). It follows that
there exists {v} ∈ F2 such that {v} ⊆ sub (u). Hence, sub ({v}) ⊆ sub (u).
Similarly, since v �∈ L(F1), there exists {w} ∈ F1 such that {w} ⊆ sub (v),
which implies that sub ({w}) ⊆ sub (v). Since both {w} and {u} are in F1,
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sub ({w}) ⊆ sub ({u}), and F1 is subword incomparable, it follows that {w} =
{u}. Hence, sub ({w}) = sub ({u}) and thus, sub ({v}) = sub ({u}). Since both
v and u are subword free, we have that {v} = {u} and {u} ∈ F2. Thus, F1 ⊆ F2.
Similarly, F2 ⊆ F1. Consequently, F1 = F2. ��

The next result shows that if a strict forbidding set is reduced, then it is both
minimal and unique.

Theorem 36. For every forbidding set there exists an equivalent unique mini-
mal strict forbidding set.

Proof. Let F be given and let F′ be the strict forbidding set constructed as in the
proof of Theorem 31 consisting of singleton forbidders of all minimal connecting
words of the forbidders in F. From Corollary 9 there exists a connecting reduced
(subword incomparable) set F̂ equivalent to F′. Then, F̂ is reduced. From Corol-
lary 34, it is minimal and Lemma 35 establishes that it is unique. ��

In [7] it was shown that a language is local if and only if it is an f-language.
Since the characterization was obtained using strict forbidders, i.e. for every
local language L with a set of forbidden words H = {h1, . . . , hn} it holds that
L = A∗\A∗HA∗ if and only if L = L(F), where F = {{h1}, . . . , {hn}}, we have
the obvious corollary for local languages. The above theorem shows that the set
of forbidden words for L can be reduced.

Corollary 37. For every local language L with a set of forbidden words H, there
exists a unique minimal set of forbidden words H ′ such that L = A∗\A∗H ′A∗.

6 Concluding Remarks

This paper presented an investigation of normal forms for forbidding sets defining
fe-languages. It was shown that every normal form for forbidding sets defining
fe-families is also a normal form for forbidding sets defining fe-languages. How-
ever, such normal forms are not necessarily minimal nor unique for fe-languages
as they are known to be for fe-families. Thus, connecting free and connecting
reduced forbidding sets were introduced and it was shown that they are minimal
for fe-language forbidding sets and coincide with the subword free and subword
incomparable normal form for fe-families for strict forbidding sets. Further, in-
vestigation of normal forms for enforcing sets is needed to enhance the study
of language fe-systems and their applications to molecular computing. The rela-
tionship between language fe-systems and graph fe-systems [6] should be inves-
tigated further. Some similarity exists between the notion of connecting words
and that of connecting graphs that may lead to common properties of subwords
and subgraphs.
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Abstract. We introduce a new connection between formal language the-
ory and proof theory. One of the most fundamental proof transformations
in a class of formal proofs is shown to correspond exactly to the compu-
tation of the language of a certain class of tree grammars. Translations in
both directions, from proofs to grammars and from grammars to proofs,
are provided. This correspondence allows theoretical as well as practical
applications.

1 Introduction

Proof theory developed from Hilbert’s programme in the foundations of math-
ematics at the beginning of the 20th century. The fundamental observation of
Hilbert was that even though mathematical proofs speak about infinite objects
(such as real numbers, real-valued functions, vector spaces of such functions,
etc.) they do so by using only a finite amount of symbols and of space. There-
fore, considering proofs as mathematical objects in their own right makes them
amenable to analysis by mathematical (finitary, discrete) means. Hilbert’s orig-
inal aim was to justify mathematical reasoning by consistency proofs which, by
Gödel’s second incompleteness theorem, turned out to be too ambitious. How-
ever, other kinds of analyses of proofs are possible.

One type of analysis that has received a lot of attention in recent years (see
e.g. [15]) is proof mining: the extraction of additional mathematical information
from existing proofs. Such additional information can often be thought of as
concrete values for existential quantifiers. In the most simple situations it can be
straightforward to read off such values, for example in case a proof of a statement
∃xϕ(x) starts with “Let us show ϕ(a).” for some concrete value a. In general
the situation is more complicated, consider the following famous example:

Theorem. There are x, y ∈ R \Q s.t. xy ∈ Q.

Proof. If
√
2
√
2 ∈ Q, let x = y =

√
2 and we are done as

√
2 ∈ R \Q. Otherwise

√
2
√
2 ∈ R \Q, let x =

√
2
√
2
, y =

√
2 and observe xy =

√
2
2
= 2 ∈ Q. �

This proof does not give us any information on whether
√
2
√
2 ∈ Q or not.
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The values of the existential quantifiers ∃x and ∃y are not unique, we have
to represent this proof by a disjunction of instances of the theorem: if ϕ(x, y)
abbreviates “x ∈ R \Q and y ∈ R \Q and xy ∈ Q”, the above proof only shows

that ϕ(
√
2,
√
2) ∨ ϕ(

√
2
√
2
,
√
2) is provable (from suitable basic axioms). This

situation is described from a logical point of view by Herbrand’s theorem [9,2].
In its simplest form it states that ∃xϕ(x) for a quantifier-free formula ϕ(x) is
valid iff there are terms t1, . . . , tn s.t.

∨n
i=1 ϕ(ti) is a tautology. Such a disjunction

is therefore also called Herbrand-disjunction.
It was easy to read off an Herbrand-disjunction from the above proof. The

reason is that it contains the instances of its quantifiers in plain sight. In general
however proofs use lemmas and values of quantifiers of the theorem depend
on objects whose existence is asserted by these lemmas. The proofs of these
lemmas may in turn rely on other lemmas and so on. In total, there can be very
complicated dependencies between values of quantifiers that have to be unwound
in order to obtain concrete values. A proof transformation that carries out this
unwinding is cut-elimination (the root of this terminology being that the cut-rule
formalises the use of a lemma). This transformation is, for a number of reasons,
of central importance in proof theory. It essentially works by a stepwise reduction
of the complexity of the cuts (lemmas), the interested reader is referred to [19].

In this paper we show that for a certain class of proofs, cut-elimination corre-
sponds exactly to the computation of the language of a certain tree grammar: we
give translations from proofs to grammars and from grammars to proofs s.t. this
correspondence holds. The connection point is the observation that an Herbrand-
disjunction is given by a finite set of terms, hence a finite tree language. A proof
with lemmas then corresponds to a tree grammar whose language is an Herbrand-
disjunction. Therefore, one can obtain concrete values for existential quantifiers
by computing the language of a grammar. In Section 2 we will develop a suit-
able notion of tree grammar corresponding to rigid tree automata [13,14], in
Section 3 we describe how to translate proofs to grammars and in Section 4 how
to translate grammars to proofs. Most proofs in this paper will only be sketched,
the reader interested in more details is referred to the technical report [10].

2 Rigid Tree Languages

A feature which is important for many applications of tree languages but not
present in regular tree languages is the ability to carry out equality tests between
subterms, for instance to recognise patterns of the form f(x, x). This need has
led to the development of several classes of tree automata providing this ability:
some allow to specify local equality constraints as side conditions of transition
rules by giving term positions explicitly, see [3] for a survey, while others consider
global constraints specified via states. An important class of the latter kind are
tree automata with global equalities and disequalities (TAGED) [5,6,7]. For the
purposes of this paper it will turn out to be natural to work with rigid tree
automata that have been introduced in [13], see also [14]. They are a subclass of
TAGED (characterised by having minimal equality and disequality relations).
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Definition 1. A tree automaton on a signature Σ is a tuple 〈Q,F,Δ〉 where Q
is a finite set of state symbols, F ⊂ Q is the set of final states and Δ a set of
transition rules of the form: f(q1, . . . , qn) → q where f ∈ Σ and q, q1, . . . , qn ∈ Q.

A rigid tree automaton on Σ is a tuple 〈Q,R, F,Δ〉 where 〈Q,F,Δ〉 is a tree
automaton and R ⊆ Q is the set of rigid states.

As usual a position is a list of natural numbers, Pos(t) is the set of positions of the
term t, ε is the empty (root) position and concatenation of positions p1 and p2 is
written as p1.p2. The subterm of t at a position p ∈ Pos(t) is denoted as t|p. We
write Pos(x, t) for the set of positions of the symbol x in t and we write x ∈ t if
Pos(x, t) �= ∅. A run of a tree automaton on a term t is a function r : Pos(t) → Q
s.t. for all f ∈ Σ and all p ∈ Pos(f, t): f(r(p.1), . . . , r(p.n)) → r(p) ∈ Δ. A run of
a rigid tree automaton on t is a run of the underlying tree automaton satisfying
the additional rigidity condition: for all p1, p2 ∈ Pos(t): if r(p1) = r(p2) ∈ R
then t|p1 = t|p2 . T (Σ) denotes the set of ground terms over a signature Σ. The
language of an automaton A in a state q is denoted as L(A, q) and defined as
the set of t ∈ T (Σ) s.t. there exists a run r on t with r(ε) = q. The language of
A is defined as L(A) =

⋃
q∈F L(A, q).

Example 2. Let Σ = {0/0, s/1}. A simple pumping argument shows that the
language L = {f(t, t) | t ∈ T (Σ)} is not regular. On the other hand, L is
recognised by the rigid tree automaton 〈Q,R, F,Δ〉 where Q = {q, qr, qf}, R =
{qr}, F = {qf} and Δ = {0 → q, 0 → qr, s(q) → q, s(q) → qr, f(qr, qr) → qf}.

For the proof-theoretic purposes of this paper it is considerably more natural
and technically useful to work with grammars instead of automata.

Definition 3. A regular tree grammar is a tuple 〈α,N,Σ, P 〉 composed of an
axiom α, a set N of non-terminal symbols with arity 0 and α ∈ N , a term
signature Σ with Σ ∩N = ∅ and a set P of production rules of the form β → t
where β ∈ N and t ∈ T (Σ ∪N).

A rigid tree grammar is a tuple 〈α,N,R,Σ, P 〉 where 〈α,N,Σ, P 〉 is a regular
tree grammar and R ⊆ N is the set of rigid non-terminal symbols.

The derivation relation →G of a regular tree grammar G is defined for s, t ∈
T (Σ ∪ N) as s →G t if there is a production rule β → u and a position p s.t.
s|p = β and t is obtained from s by replacing β at p by u. A derivation of a
term t ∈ T (Σ) in a regular tree grammar is a list of terms t1, . . . , tn ∈ T (Σ∪N)
s.t. t1 = α, tn = t and ti →G ti+1 for i = 1, . . . , n − 1. A derivation of t in
a rigid tree grammar is a derivation in the underlying regular tree grammar
satisfying the additional rigidity condition: if ti →G ti+1 and tj →G tj+1 are
applications of productions rules at positions pi, pj with the same left-hand side
β ∈ R, then t|pi = t|pj . The language of a tree grammar L(G) is the set of
t ∈ T (Σ) that are derivable in G. A production whose left-hand side is β will
be called β-production. Let G = 〈α,N,R, T, P 〉 be a rigid tree grammar; a rigid
tree grammar G′ = 〈α,N,R, T, P ′〉 is called projection of G if P ′ ⊆ P and P ′

contains at most one β-production for every β ∈ R. A first basic but useful
observation about rigid tree grammars is the following
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Lemma 4. Let G be a rigid tree grammar and let t ∈ L(G). Then there is a
projection G′ of G s.t. t ∈ L(G′).

Proof. Use the rigidity condition, replace subderivations if needed.

In order to establish the connection with the existing literature we quickly sketch
a proof of the equivalence of rigid tree grammars and rigid tree automata. The
reader interested in the details is referred to [10].

Definition 5. A grammar is called normalised if every production rule has the
form γ → a or γ → f(γ1, . . . , γn) for a, f ∈ Σ and γ, γ1, . . . , γn ∈ N .

Lemma 6. If G is a rigid tree grammar, then there is a normalised rigid tree
grammar G∗ s.t. L(G) = L(G∗).

Proof. In a first phase of normalisation, productions β → f(t1, . . . , tn) are
replaced by β → f(β1, . . . , βn), β1 → t1, . . . , βn → tn. In the second phase, pro-
ductions of the form β → γ are removed which – due to the rigidity condition –
necessitates a different treatment depending on which of β, γ are rigid.

Theorem 7. A set of terms is language of a rigid tree grammar iff it is language
of a rigid tree automaton.

Proof. It is straightforward to translate between normalised rigid tree grammars
and rigid tree automata, the result then follows from Lemma 6.

Definition 8. A rigid tree grammar is called totally rigid if all non-terminals
are rigid.

Totally rigid tree grammars will simply be written as 〈α,R,Σ, P 〉.
Definition 9. Let G be a regular or rigid tree grammar with non-terminals N
and productions P . Define an order <1

G on N as α <1
G β if α → t ∈ P and β ∈ t

and write <G for the transitive closure of <1
G. G is called acyclic if <G is.

Example 10. The totally rigid grammar G = 〈α,R,Σ, P 〉 with R = {α, β, γ},
Σ = {f/1, g/1, g/1, a/0, b/0}, and P = {α → h(β)|h(γ), β → f(γ)|a, γ →
g(β)|b} is cyclic because β <G γ and γ <G β but removing β → f(γ) or
γ → g(β) (or both) from the productions yields an acyclic grammar.

Totally rigid acyclic grammars are central for this paper as they correspond to
proofs. Furthermore, they allow the following description of their language in
terms of substitutions. As usual, a substitution is a mapping from variables to
terms which is different from the identity for only a finite number of variables.
A substitution is written as [x1\t1, . . . , xn\tn]. Application of a substitution σ
to a term t is written as tσ.

Lemma 11. If G is totally rigid and acyclic, then up to renaming of the non-
terminals G = 〈α0, {α0, . . . , αn}, Σ, P 〉 with L(G) = {α0[α0\t0] · · · [αn\tn] |
αi → ti ∈ P}.
Proof. Acyclicity permits a renaming of non-terminals s.t. αi >P αj implies
i > j. The result then follows from re-arranging the derivation and Lemma 4.

Consequently, the language L(G) of a totally rigid and acyclic G is finite.
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3 From Proofs to Tree Languages

We now turn to proof theory. In the seminal article [8], which can be considered
the founding work of structural proof theory, Gentzen introduced the sequent
calculus and proved the cut-elimination theorem. A sequent is a pair of multisets
of formulas written A1, . . . , An ) B1, . . . , Bm whose intended meaning is the
formula (

∧n
i=1 Ai) → (

∨m
j=1 Bj).

Definition 12. A proof in the sequent calculus is a tree that starts with sequents
of the form A ) A for an atomic formula A and is built up using the following
rules:
The logical rules:

Γ ) Δ,A Π ) Λ,B

Γ,Π ) Δ,Λ,A ∧B
∧r

A,Γ ) Δ

A ∧B,Γ ) Δ
∧l1

B,Γ ) Δ

A ∧B,Γ ) Δ
∧l2

A,Γ ) Δ B,Π ) Λ

A ∨B,Γ,Π ) Δ,Λ
∨l

Γ ) Δ,A

Γ ) Δ,A ∨B
∨r1

Γ ) Δ,B

Γ ) Δ,A ∨B
∨r2

Γ ) Δ,A

¬A,Γ ) Δ
¬l

A,Γ ) Δ

Γ ) Δ,¬A
¬r

A[x\t], Γ ) Δ

∀xA, Γ ) Δ
∀l

Γ ) Δ,A[x\α]
Γ ) Δ, ∀xA ∀r

A[x\α], Γ ) Δ

∃xA, Γ ) Δ
∃l

Γ ) Δ,A[x\t]
Γ ) Δ, ∃xA ∃r

where t is a term, α is a variable and the quantifier rules are subject to the
following conditions:

1. t must not contain a bound variable,
2. α is called eigenvariable and must not occur in Γ ∪Δ ∪ {A}

The structural rules weakening, contraction and cut:

Γ ) Δ
A,Γ ) Δ

wl
Γ ) Δ

Γ ) Δ,A
wr

A,A, Γ ) Δ

A,Γ ) Δ
cl

Γ ) Δ,A,A

Γ ) Δ,A
cr

Γ ) Δ,A A,Π ) Λ

Γ,Π ) Δ,Λ
cut

The formulaA in an application of the cut-rule is called cut-formula. The sequent
at the root of a proof is called end-sequent of that proof. This calculus is sound
and complete for classical first-order logic in the sense that a formula F is valid
iff there is a proof whose end-sequent is ) F . We consider A → B to be an
abbreviation of ¬A∨B and also allow free use of corresponding rule abbreviations
→l and →r for

Γ ) Δ,A B,Π ) Λ

A → B,Γ,Π ) Δ,Λ
→l and

A,Γ ) Δ,B

Γ ) Δ,A → B
→r .

Furthermore, → is right-associative.
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Example 13. Define the formulas A1 = P (a)∨P (b), A2 = ∀x (P (x) → Q(f(x)))
and A3 = ∀x∀y (P (x) → Q(y) → R(g(x, y))) and the proof π =

(π1)
A1 � P (a), P (b)

A1 � ∃xP (x), P (b)
∃r

A1 � ∃xP (x),∃xP (x)
∃r

A1 � ∃xP (x)
cr

(π2)
P (α), A2 � Q(f(α))

P (α), A2 � ∃xQ(x)
∃r

(π3)
P (α), Q(β),A3 � R(g(α,β))

P (α), Q(β),A3 � ∃xR(x)
∃r

P (α),∃xQ(x),A3 � ∃xR(x)
∃l

P (α), P (α), A2, A3 � ∃xR(x)
cut

P (α), A2, A3 � ∃xR(x)
cl

∃xP (x),A2, A3 � ∃xR(x)
∃l

A1, A2, A3 � ∃xR(x)
cut

where the proofs π1, π2 and π3 are left to the reader. This proof contains
two cuts, one whose cut-formula is ∃xP (x) and another whose cut-formula is
∃xQ(x).

A quantifier in a formula A is called positive if it is below an even number of
negations in the syntax tree of A and negative if it is under an odd number
of negations. Positive universal and negative existential quantifiers are called
strong, the others are called weak. It is straightforward to show that a strong
quantifier is introduced by ∀r or ∃l and a weak quantifier by ∀l or ∃r. A proof is
called regular if different strong quantifier inferences have different eigenvariables.
From now on we will assume – as a convention on variable-naming – that all
proofs are regular.

In the above definition some formulas are mentioned explicitly like A ∧ B,
A and B in the case of ∧r. The formula A ∧ B below the rule is called main
formula and the formulas A and B above it are called auxiliary formulas of
the rule. Analogous definitions apply to all other rules. One then defines an
ancestor relation on the formula occurrences in a proof as follows: an auxiliary
formula occurrence is ancestor of a main formula occurrence and furthermore the
occurrence of a formula in the context Γ,Δ,Π,Λ above an inference is ancestor of
the corresponding occurrence below the inference. For illustration of the ancestor
relation see Definitions 14, 17 and Examples 15, 18.

From now on and for the rest of this paper, T will denote a universal the-
ory, i.e. a set of formulas of the form ∀x1 · · · ∀xnB with B quantifier-free. It
is a standard result of mathematical logic that every theory has a conservative
universal extension which is obtained by Skolemisation, see e.g. [22]. Concentrat-
ing on universal theories hence does not significantly restrict (though simplifies
technically) the results of this paper.

Definition 14. Let π be a proof of T ) ∃xA with A quantifier-free and ψ a
subproof of π. The Herbrand-set H(ψ, π) of ψ w.r.t. π is defined as follows. If ψ
is an axiom, then H(ψ, π) = ∅. If ψ is of the form

(ψ′)
Π ) Λ,A[x\t]
Π ) Λ, ∃xA ∃r
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where the main formula ∃xA is ancestor of the formula ∃xA in the end-sequent,
then H(ψ, π) = H(ψ′, π)∪{A[x\t]}. If ψ ends with any other unary inference and
ψ′ is its immediate subproof then H(ψ, π) = H(ψ′, π). If ψ ends with a binary
inference and ψ1, ψ2 are its immediate subproofs, then H(ψ, π) = H(ψ1, π) ∪
H(ψ2, π). We write H(π) for H(π, π).

Example 15. The proof π of Example 13 has H(π) = {R(g(α, β))}.

Example 16. A (suitable) formalisation of the proof discussed in the introduction

has the Herbrand-set {ϕ(
√
2,
√
2), ϕ(

√
2
√
2
,
√
2)}.

Definition 17. Let π be a proof and Q be a quantifier occurrence in π. Define a
set of terms t(Q) associated with Q as follows: if Q occurs in the main formula
of a weakening, then t(Q) = ∅. If Q is introduced by a quantifier inference
from a term t or a variable x, then t(Q) = {t} or t(Q) = {x} respectively. If Q
occurs in the main formula of a contraction and Q1, Q2 are the two corresponding
quantifiers in the auxiliary formulas of the contraction, then t(Q) = t(Q1) ∪
t(Q2). In all other cases Q has exactly one immediate ancestor Q′ and t(Q) =
t(Q′).

Let π be a proof and c be a cut in π. Write Q(c) for the set of pairs (Q,Q′)
of quantifier occurrences where Q is a strong occurrence in one occurrence of
the cut-formula of c and Q′ the corresponding weak occurrence in the other oc-
currence of the cut-formula. Define the set of base substitutions of c as B(c) =⋃

(Q,Q′)∈Q(c){[x\t] | x ∈ t(Q), t ∈ t(Q′)}. For c1, . . . , cn being the cuts in π define

the base substitutions of π as B(π) =
⋃n
i=1 B(ci).

Example 18. The proof π of Example 13 has B(π) = {[α\a], [α\b], [β\f(α)]}.

Definition 19. For a proof π define the totally rigid tree grammar G(π) =
〈ϕ,N,Σ, P 〉 by N = {ϕ} ∪ EV(π), Σ = Σ(π) ∪ {∧,∨,¬}, and P = {ϕ → F |
F ∈ H(π)} ∪ {α → t | [α\t] ∈ B(π)}, where EV(π) is the set of eigenvariables of
the proof π and Σ(π) is its first-order signature.

Example 20. The proof π of Example 13 has G(π) = 〈ϕ,N,Σ, P 〉 where N =
{ϕ, α, β}, Σ = {a, b, f, g, P,Q,R,∧,∨,¬} and P = {ϕ → R(g(α, β)), β →
f(α), α → a, α → b} hence L(G(π)) = {R(g(a, f(a))), R(g(b, f(b)))}. The reader
is invited to verify that A1, A2, A3 ) L(G(π)) is provable for A1, A2, A3 as in
Example 13.

Definition 21. A proof π is called simple if every cut-formula in π contains at
most one quantifier.

We will now restrict our attention to simple proofs. The main result of this pa-
per is that cut-elimination in the class of simple proofs corresponds exactly (in a
sense made precise below) to the computation of the language of a totally rigid
acyclic tree grammar. While this restriction on proofs substantially decreases
the scope of the present analysis, simple proofs are still of considerable inter-
est: they do contain quantified cuts and hence allow the formalisation of some
mathematical lemmas and their cut-elimination is of exponential complexity.



308 S. Hetzl

The size of a grammar G, written as |G|, is the number of production rules.
The size of a proof π, written as |π|, is the number of inferences.

Theorem 22. If π is a simple proof of T ) ∃xA with A quantifier-free, then
there is a totally rigid acyclic grammar G with |G| ≤ |π| and L(G) ⊆ L(G(π))
s.t. T ) L(G) is provable.

Proof. Only a sketch of the proof is described here, the reader interested in
the details is referred to the technical report [10]. We have |G(π)| ≤ |π|2, the
quadratic size being due to quantifiers in cut-formulas which are introduced
from a linear number of terms (on their weak side) and a linear number of
eigenvariables (on their strong side).

Let β, γ be two non-terminals of G(π) and write β ∼ γ if there is a strong
quantifier occurrence Q in a cut-formula with β, γ ∈ t(Q). The equivalence
relation ∼ defines a partition of the non-terminals of G(π) into n classes where
n is the number of cuts in π that contain a quantifier. Define the totally rigid
grammarG from G(π) by identifying all non-terminals of the same ∼-class. Then
|G| ≤ |π| and L(G) ⊆ L(G(π)).

Furthermore, let d be a new (“dummy”) constant and, for a given proof ψ,
write Gnd(ψ) for G(ψ) from which all productions of the form β → d for any non-
terminal β have been removed. By proof-theoretic transformations – in particular
the prenexification of [1], see also [4, Theorem VII.4.7], applied to cut-formulas
– we obtain a proof π′ all of whose cuts are of the form ∃xB for B quantifier-free
and which satisfies L(Gnd(π

′)) = L(G). The role of the dummy constant is to
mark artefacts introduced by prenexification into the grammar as such.

The central part of the proof then consists in applying a suitable procedure for
cut-elimination to π′ and to show that this process is computing L(Gnd(π

′)) step-
by-step from G(π′) in the proof: the systematic unfolding of the proof induced
by cut-elimination essentially transforms a grammar into its language, the occur-
rences of the dummy constant are deleted by this process due to their positions
in the proof. Finally we obtain a cut-free proof π∗ with H(π∗) = L(Gnd(π

′)).
This allows to conclude that T ) L(Gnd(π

′)), i.e. T ) L(G), is provable.

Corollary 23. If π is a simple proof of T ) ∃xA with A quantifier-free, then
T ) L(G(π)) is provable.

Proof. Append weakenings to the proof of T ) L(G) obtained from Theorem 22.

Example 24. Applying Corollary 23 to the proof π of Example 13 shows that

A1, A2, A3 ) R(g(a, f(a))), R(g(b, f(b)))

is provable. The reader is invited to verify that a standard algorithm for cut-
elimination (see e.g. [19]) gives the same result.

Note that Theorem 22 together with Lemma 11 provides an exponential upper
bound on the complexity of cut-elimination in simple proofs, more precisely: for
every simple proof π of T ) ∃xA with A quantifier-free there are t1, . . . , tk with
k ≤ |π||π| s.t. T ) A[x\t1], . . . , A[x\tk]. On the other hand, cut-elimination in
general is non-elementary [23,17,18] which shows that simplicity is a necessary
assumption for Theorem 22.
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4 From Tree Languages to Proofs

Already the results in [11] show that a simple proof induces an acyclic regular(!)
tree grammar whose finite language is an Herbrand-disjunction. So what have we
gained from strengthening this result by adding total rigidity? On the one hand,
we have gained an exponent: in contrast to the bound nn obtained in the totally
rigid case, there are acyclic regular tree grammars Gn with 2n productions and
|L(Gn)| = nn

n

(Gn builds a tree with depth n, branching-degree n and n choices
at each leaf).

However there is another – more fundamental – motivation for this result: in
this section we show that the compression power of simple proofs corresponds
exactly to that of totally rigid acyclic grammars. Given such a grammar G we
will obtain a simple proof π that induces G and whose cut-elimination essentially
computes L(G) from G. As L(G(π)) is a set of formulas but L(G) is a set of
terms (which do not necessarily represent formulas), we cannot expect to obtain
G(π) = G. The closest possible connection is to wrap up the term language of
G in some new unary predicate symbol R1. Therefore the proofs constructed in
the theorem below have T ) ∃xR1(x) as end-sequent. For proofs π and π′ we
write π → π′ if π′ can be obtained from π by applying the standard reduction
rules of cut-elimination as in [19].

Theorem 25. For every totally rigid acyclic tree grammar G = 〈α1, R,Σ, P 〉
there is a simple proof π with G(π) = 〈α0, R∪{α0}, Σ, P ∪{α0 → R1(α1)}〉 and
a cut-free proof π′ with π → π′ and H(π′) = L(G(π)).

Proof. By Lemma 11 we can assume that G = 〈α1, {α1, . . . , αn}, Σ, P 〉 s.t. αi
depends only on αj with j > i. The proof π is defined in the language Σ ∪
{Ri | 1 ≤ i ≤ n} where the Ri are unary predicate symbols with intended
interpretation “being reachable from the non-terminal αi”. For each rule αi → t
define the formula

ϕαi→t = ∀xi+1 · · · ∀xn ( Ri+1(xi+1) → · · ·Rn(xn) → Ri(t[αj\xj ]nj=i+1) ).

For each non-terminal αi with rules αi → t1, . . . , αi → tm define the formula

ϕi =

m∨
j=1

ϕαi→tj

and the proof ψi =

· · ·
Ri(tj) ) Ri(tj)

Ri(tj) ) ∃xRi(x)
∃r

ϕαi→tj , Ri+1(αi+1), . . . , Rn(αn) ) ∃xRi(x)
∀∗l ,→∗

l

· · ·

ϕi, Ri+1(αi+1), . . . , Rn(αn) ) ∃xRi(x)
c∗,∨∗

l .

Now define proofs πi : ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) ) ∃xR1(x) for i ∈
{0, . . . , n} and π′

i : ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) ) ∃xR1(x)
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for i ∈ {0, . . . , n− 1} by

π′
i =

(πi)
ϕ1, . . . , ϕi, Ri+1(αi+1), . . . , Rn(αn) ) ∃xR1(x)

ϕ1, . . . , ϕi, ∃xRi+1(x), Ri+2(αi+2), . . . , Rn(αn) ) ∃xR1(x)
∃l

and

π0 =
R1(α1) ) R1(α1)

R1(α1), . . . , Rn(αn) ) ∃xR1(x)
w∗

l , ∃r

and

πi+1 =

(ψi+1)
ϕi+1, Ri+2(αi+2), . . . , Rn(αn) ) ∃xRi+1(x) (π′

i)

ϕ1, . . . , ϕi+1, Ri+2(αi+2), . . . , Rn(αn) ) ∃xR1(x)
c∗l , cut .

Then it is straightforward to verify that π = πn : ϕ1, . . . , ϕn ) ∃xR1(x) has
the desired grammar. In order to obtain π′, reduce the cuts in a bottom-up
order which for each production rule of an αi+1 will create a new copy of πi
hence computing the language L(G(π)) by expansion from right to left (in the
representation of Lemma 11).

5 Applications

The above results pave the way for several applications of formal language theory
in proof theory to be further explored in future work. First of all, for carrying out
concrete analyses of simple proofs one can use rigid tree grammars instead of the
more cumbersome cut-elimination to compute values for existential quantifiers.
Secondly, standard problems of formal language theory such as membership, in-
tersection, etc. assume a proof-theoretic meaning by allowing to answer whether
a given value is obtained from a given proof, what values can be obtained from
both of two given proofs, etc.

Furthermore, these results show that the length of a proof with cut (which is
notoriously difficult to control) is intimately related to measures such as auto-
matic complexity [21] and automaticity [20], more precisely:

Corollary 26. Let ∃xA be a formula and k ∈ N s.t. T ) A[x\t1], . . . , A[x\tn]
implies that every totally rigid acyclic grammar G with L(G) = {t1, . . . , tn} has
|G| ≥ k, then every simple proof π of T ) ∃xA has |π| ≥ k.

Proof. Suppose there was a simple proof π0 of T ) ∃xA with |π0| < k, then
by Theorem 22 there would be a totally rigid acyclic tree grammar G0 with
|G0| ≤ |π0| < k s.t. T ) L(G0) would be provable, contradiction.

Via this connection, a lower bound on grammars thus translates to a lower bound
on proofs with cut.

Another intriguing perspective is to exploit these results computationally by
abbreviating a cut-free proof through the introduction of cuts which are ob-
tained from first computing a small grammar: the cut-free proof of T ) ∃xA
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is represented by its Herbrand-disjunction A[x\t1], . . . , A[x\tn] which in turn is
represented by the trivial grammar whose axiom is x and whose productions are
x → t1, . . . , x → tn. An analysis of the structure of the ti can lead to a smaller
grammar representing the same language. It then only remains to check whether
the grammar can be realised by cut-formulas of a simple proof (which for the
case of a single cut is always the case). A first algorithm based on this approach
for the case of a single cut can be found in [12].

6 Conclusion

We have shown that cut-elimination in proofs where each cut contains at most
one quantifier corresponds exactly to the computation of the language of a totally
rigid acyclic tree grammar. This work constitutes a proof-of-concept result for a
new connection between proof theory and formal language theory arising from
exact characterisations of classes of proofs by classes of grammars. In principle,
such a result is conceivable for any proof system that possesses an Herbrand-like
theorem, i.e. even full higher-order logic as in [16]. The challenge consists in
finding an appropriate type of grammars.

Acknowledgements. The author would like to thank the anonymous referees
for helpful comments and suggestions that led to significant improvements of
this paper.
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Abstract. We study the membership problem for regular expressions
extended with operators for unordered concatenation and numerical con-
straints. The unordered concatenation of a set of regular expressions
denotes all sequences consisting of exactly one word denoted by each
of the expressions. Numerical constraints are an extension of regular ex-
pressions used in many applications, e.g. text search (e.g., UNIX grep),
document formats (e.g. XML Schema). Regular expressions with un-
ordered concatenation and numerical constraints denote the same lan-
guages as the classical regular expressions, but, in certain important
cases, exponentially more succinct. We show that the membership prob-
lem for regular expressions with unordered concatenation (without nu-
merical constraints) is already NP-hard. We show a polynomial-time
algorithm for the membership problem for regular expressions with nu-
merical constraints and unordered concatenation, when restricted to a
subclass called strongly 1-unambiguous.

Keywords: Regular Expressions, Automata, Numerical Constraints, Un-
ordered Concatenation, Interleaving, XML, SGML.

1 Introduction

In the ISO standard for the Standard Generalized Markup Language (SGML) [16],
the precursor of XML, the operator “&” is used for what in this paper is called
unordered concatenation, that is, the languages are concatenated, but in any
order. For example, &(ya, basta) denotes {yabasta, bastaya}. In SGML “&” is
infix, but because it is not associative, we find it more convenient to write it
prefix. Brüggemann-Klein [4,2] investigates unambiguity of regular expressions
extended with such an unordered concatenation operator.

Unordered concatenation is superficially similar to interleaving, an extension
to regular expressions studied by e.g. Mayer & Stockmeyer in [21]. Interleaving is
used to model process-theoretic parallel composition. There is no obvious way to
translate the algorithms and the complexity results for interleaving to unordered
concatenation.

Numerical constraints allow expressing that a subexpression must be matched
a number of times specified by a lower and an upper limit. For example, (a+b)2..3

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 313–324, 2012.
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denotes the words of length 2 or 3 consisting only of a’s and b’s. Numerical
constraints are also used in XML Schema, and in addition in applications for text
search, e.g. GNU grep. The extension has been studied by, among others, Gelade
et al.[8], Kilpeläinen & Tuhkanen [18], Hovland [14], and Ghelli et al. [11].

This paper has a theoretical and a more practical motivation. The theoret-
ical motivation is curiosity about the properties of unordered concatenation,
especially when used in combination with numerical constraints. Unordered con-
catenation is intuitive and seems useful for searches and definitions in natural lan-
guage text. Membership is shown to be tractable for the strongly 1-unambiguous
regular expressions with unordered concatenation and numerical constraints. It
is interesting to note that for the regular expressions with numerical constraints,
the largest known subset where membership can be decided in time linear in
the size of the word and polynomial in the size of the expression, is the strongly
1-unambiguous subset.

In this paper we will study the regular expressions with unordered concate-
nation and numerical constraints, and the membership problem for these ex-
pressions. In the next section we give a definition of these expressions and their
languages, and in Sect. 3 we show that the membership problem is NP-complete
already without numerical constraints. The algorithm for membership is based
on construction of finite automata with counters, where positions in the term
trees of the regular expressions play a central role. Section 4 is therefore devoted
to a description of term trees and positions in these trees, while in Sect. 5 we de-
fine the finite automata with counters. In Sect. 6 we define strong 1-unambiguity,
and state the main theorem. The last section presents some related work and a
conclusion.

2 Regular Expressions with Unordered Concatenation
and Numerical Constraints

Fix an alphabet Σ of letters. Assume a, b, and c are members of Σ. l, l1, l2, . . . are
used as variables for members of Σ. Let N = {1, 2, . . .}, N1 = {2, 3, 4, . . .}∪{∞},
and N0 = {0, 1, 2, . . .}.

Definition 1. Given an alphabet Σ, RΣ is the set of regular expressions with
unordered concatenation and numerical constraints over Σ, defined by the fol-
lowing grammar:

RΣ ::= RΣ +RΣ | RΣ · RΣ | RN..N1

Σ |&(RΣ , . . . ,RΣ) |Σ | ε

We only allow rn..u for n ≤ u. Numerical constraints have the highest prece-
dence, followed by concatenation, choice, and unordered concatenation, which
has the least precedence. Parentheses are used, when necessary, to group sub-
expressions. We use r, r1, r2, . . . as variables for regular expressions. The sign
for concatenation, ·, will often be omitted. A regular expression denoting the
empty language is not included, as this is irrelevant to the results in this paper.
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We use rn.. as shorthand for rn..∞, r0..n as shorthand for r1..n + ε, r+ as short-
hand for r1..∞, r∗ as shorthand for r0.., and rn for rn..n. We denote the set of
letters from Σ occurring in r by sym(r).

The reason the unordered concatenation operator is not binary infix, is that, as
we will see below, it is not associative. The star-free regular expressions with
unordered concatenation are the subset of RΣ with no numerical constraints,
that is, no subexpressions of the form rn..u.

We lift concatenation of words to sets of words, such that if L1, L2 ⊆ Σ∗,
then L1 · L2 = {w1 · w2 |w1 ∈ L1 ∧ w2 ∈ L2}. Moreover, ε denotes the empty
word of zero length, such that for all w ∈ Σ∗, ε · w = w · ε = w. Further, we
allow non-negative integers as exponents meaning repeated concatenation, such
that for an L ⊆ Σ∗, we have Ln = Ln−1 · L for n > 0 and L0 = {ε}. We
define that n < ∞ for all numbers n. The semantics of unordered concatenation
is defined in terms of permutations. By Perm({1, . . . , n}) we mean the set of
permutations of {1, . . . , n}. If σ ∈ Perm({1, . . . , n}), we assume σ = σ1, . . . , σn.
For convenience, we recall in Definition 2 the language denoted by a regular
expression, and extend it to unordered concatenation and numerical constraints.

Definition 2 (Language). The language ‖r‖ denoted by a regular expression
r ∈ RΣ, is defined in the following inductive way:

‖r1 + r2‖ = ‖r1‖ ∪ ‖r2‖
‖r1 · r2‖ = ‖r1‖ · ‖r2‖
‖&(r1, . . . , rn)‖ =

⋃
σ∈Perm({1,...,n})‖rσ1‖ · · · ‖rσn‖

‖rl..u‖ =
⋃
l≤i≤u‖r‖i

for a ∈ Σ ∪ {ε}, ‖a‖ = {a}

Some examples of regular expressions and their languages are: ‖&(ab, c)‖ =
{abc, cab}, ‖&(a, b, c)‖ = {abc, bac, acb, bca, cab, cba}, and ‖(a + b)1..2‖ = {a, b,
aa, ab, ba, bb}. Note that unordered concatenation is not associative, for example:
‖&(&(a, b), c)‖ = {abc, bac, cab, cba} �= {abc, acb, bca, cba} = ‖&(a,&(b, c))‖.

3 Complexity of Membership under Unordered
Concatenation

The membership-problem is to decide, given a regular expression with unordered
concatenation r ∈ RΣ , and a word w ∈ Σ∗, whether w ∈ ‖r‖. This is also called
matching. For regular expressions with numerical constraints (without unordered
concatenation), the membership problem is known to be in P [17]. NP-hardness
of membership for regular expressions with interleaving was shown by Ogden
et al. [23]. The proof cannot easily be modified to fit the case for unordered
concatenation.

It is not hard to show that the membership problem for regular expressions
with numerical constraints and unordered concatenation is in NP. The certificate
for an instance of the problem, consists in making all the necessary choices in the
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regular expression, such that one can see that the word is in the language. The
size of the certificate is polynomial in the lengths of the word and the regular
expression. An explicit construction is given in [15, p.53].

To show that membership is NP-hard, we use a reduction from satisfiabil-
ity of propositional formulas, first shown NP-hard by Cook [6]. By a result of
Tseitin [25] we can assume the formulas are in conjunctive normal form. In the
remainder of this section we will not use the numerical constraints. The usage
of the exponents in the expressions and words in this section is only a short-
hand for repeated concatenation. The alphabet consists of the names of the
Boolean variables. Given a formula with c clauses and v variables, we construct
a regular expression r which is a unordered concatenation of c + v expressions.
The first c expressions in the unordered concatenation each represent a clause.
In these clause-expressions, disjunction is represented by choice (+), a positive
literal is represented by itself, and a negated literal is represented by concate-
nating the respective letter with itself c + 1 times. The last v expressions in
the unordered concatenation, one for each variable x, are of the following form
((x + ε)cxc

2

) + (xc+1 + ε)c. The word w that we will check for membership, is

x1
c2+c · · ·xvc

2+c, assuming the variables are x1, . . . , xv.

Example 3. For the purpose of an example, let the formula be (x1 ∨¬x2 ∨¬x3 ∨
x4)∧(x3∨¬x5∨x6)∧(x3∨¬x6). Then v = 6, c = 3 andΣ = {x1, x2, x3, x4, x5, x6}.
The regular expression becomes &((x1 + x4

2 + x4
3 + x4), (x3 + x4

5 + x6), (x3 +
x4
6), r1, r2, r3, r4, r5, r6), where each ri is ((xi + ε)3x9

i ) + (x4
i + ε)3. The word to

check membership in the language of this regular expression becomes x12
1 · · ·x6

12.

It remains to show that the problem instance of the membership problem is only
polynomially larger than the propositional formula, and that the word is in the
language of the regular expression if and only if the propositional formula is
satisfiable. For reasons of space, these proofs must be left out, but they can be
found in [15, p.54-57]. The intuition is that in the choices in the last v parts of
the regular expressions, the left choice can be used if the corresponding variable
can be true, and the right choice if it can be false, and that in the sub-expressions
representing the clauses, the chosen subexpression must be true in the formula.

Note that it is enough for NP-hardness with one single top-level unordered
concatenation.

4 Term Trees, Positions, and Subscripting

In this section we will define notation necessary for the later sections. Given a
regular expression r, we follow [1] and define the term tree of r as the tree where
the root is labeled with the main operator (choice, concatenation, or star) and
the subtrees are the term trees of the subexpression(s). If a ∈ Σ ∪ {ε} the term
tree is a single root-node with a as label.

We use 〈n1, . . . , nk〉, a possibly empty sequence of natural numbers, to denote
a position in a term tree. We let p, q, including subscripted variants, be variables
for such possibly empty sequences of natural numbers. The position of the root
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is 〈〉. If r = r1 · r2 or r = r1 + r2, and n1 ∈ {1, 2}, the position 〈n1, . . . , nk〉 in
r is the position 〈n2, . . . , nk〉 in the subtree of child n1, that is, in the term tree
of rn1 . If r = r1

∗, the position 〈1, n1, . . . , nk〉 in r is the position 〈n1, . . . , nk〉 in
the term tree of r1. Let pos(r) be the set of positions in r.

p6 q will be used for the concatenation of positions p and q. We will also use
this notation for concatenating a position with each element in a list of positions,
and for concatenating a position with each element of a set of lists of positions.

Whenever concatenating with a position of length one, we will often omit
the sign 6 and abbreviate, such that for example p1 = p 6 〈1〉, 2S = 〈2〉 6 S,
ir = 〈i〉 6 r, etc.

For a position p in r we will denote the subexpression rooted at this position
by r[p]. Note that r[〈〉] = r. We also set r[ε] = ε. Furthermore, given p1, . . . , pn
in pos(r) ∪ {ε}, put r[p1 · · · · · pn] = r[p1] · · · · · r[pn]. Lastly, we lift r[] to sets of
string, such that if S ⊆ pos(r)

∗
, then r[S] = {r[w] | w ∈ S}.

The concept of marked expressions will be important in this paper. It was first
used in a similar context by Brüggemann-Klein & Wood [5]. For any regular
expression r, let μ(r) be the marked expression, where every instance of any
symbol from Σ is substituted by its position in the expression. Note that, e.g.,
μ(b) = μ(a) = 〈〉, which shows that marking is not injective. Furthermore ‖μ(r1 ·
r2)‖ = 1‖μ(r1)‖ · 2‖μ(r2)‖, ‖μ(r1 + r2)‖ = 1‖μ(r1)‖ ∪ 2‖μ(r2)‖, and ‖μ(r∗)‖ =
1‖μ(r)∗‖.

Example 4. ConsiderΣ = {a, b} and r = (&(a2, b))3..4. Then μ(r) = (&(〈1, 1, 1〉2,
〈1, 2〉)3..4. The term trees of r and μ(r) are shown in Fig. 1.

..

&

..

a 2 2

b

3 4

..

&

..

〈1, 1, 1〉 2 2

〈1, 2〉
3 4

Fig. 1. Term trees for (&(a2, b))3..4 and μ((&(a2, b))3..4)

5 Finite Automata with Counters

In this section we describe the finite automata with counters (FAC). FACs are,
of course, based on classical finite automata, but extended with a finite set of
counters. A configuration of the FAC includes a mapping, called counter state,
from the counters to the non-negative integers. For subexpressions with numer-
ical constraints we use the counters to keep track of the number of times the
subexpression has been matched, and use this to control that the numerical con-
straints are not violated. For regular expressions with unordered concatenation
we use the counters to keep track of which parts of a unordered concatenation
have been matched. We keep a counter for every argument in every unordered
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concatenation. All counters are initially 0. A part of an unordered concatenation
can only be used for matching if the corresponding counter is 0, the counter
will then be increased to 1. The matching process is only allowed to leave the
unordered concatenation when all parts, except those that can match ε, have
been matched. The counters are then reset to 0.

Let C be the set of positions of subexpressions we need to keep track of. We
model counter states as mappings γ : C → N0. Let γ0 be the counter state
in which all counters are 0. We define an update instruction ψ as a partial
mapping from C to {inc, res, one} (inc for increment, res for reset, one for setting
to 1). Update instructions ψ define mappings fψ between counter states in the
following way: If ψ(p) = inc, then fψ(γ)(p) = γ(p) + 1, if ψ(p) = res then
fψ(γ)(p) = 0, if ψ(p) = one then fψ(γ)(p) = 1, and otherwise fψ(γ)(p) = γ(p).

Definition 5 (Satisfaction of Update Instructions). We define a satisfac-
tion relation between update instructions and counter states. Given γ : C → N0,
ψ : C → {inc, res, one}, min : C → N0, and max : C → N1, γ |=max

min ψ is defined by
the following inductive rules:

γ |=max
min ∅

γ |=max
min ψ1 ∪ {p �→ inc} ⇔ γ |=max

min ψ1 ∧ γ(p) < max(p)
γ |=max

min ψ1 ∪ {p �→ res} ⇔ γ |=max
min ψ1 ∧ γ(p) ≥ min(p)

γ |=max
min ψ1 ∪ {p �→ one} ⇔ γ |=max

min ψ1 ∧ γ(p) ≥ min(p)

The intuition of Definition 5 is that a counter can only be increased if the value is
smaller than the maximum, while a value can only be reset if it’s value is at least
as large as the minimum. Given mappings max and min, two update instructions
are called overlapping, if there is a counter state that satisfies both of the update
instructions. Overlap can be detected in linear time: For every p ∈ C such that
p is mapped to inc by one of the update instructions, and p is mapped to either
res or one by the other update instruction, it must hold that min(p) < max(p).

5.1 Finite Automata with Counters

Definition 6 (Finite Automata with Counters). A finite automaton with
counters (FAC) is a tuple (Σ,Q, C,A, Φ,min,max, qI ,F). The members of the
tuple are described below:

– Σ is a finite, non-empty set (the alphabet).
– Q and C are finite sets of states and counters, respectively.
– qI ∈ Q is the initial state.
– A : Q−{qI} → Σ maps each non-initial state to the letter which is matched

when entering the state.
– Φ maps each state to a set of pairs of a state and an update instruction.

Φ : Q → ℘(Q × (C → {inc, res, one})).
– min : C → N0 and max : C → N1 are the counter-conditions.
– F ⊂ Q× (C → {res}) describes the final configurations (See Definition 7).
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Running or executing an FAC is defined in terms of transitions between config-
urations. The configurations of an FAC are pairs, where the first element is a
member of Q, and the second element is a counter state.

Definition 7 (Configuration of an FAC). A configuration of an FAC is a
pair (q, γ), where q ∈ Q is the current state and γ : C → N0 is the counter state.
A configuration (q, γ) is final, if there is (q, ψ) ∈ F such that γ |=max

min ψ.

Intuitively, the first member of each of the pairs mapped to by Φ, is the state
that can be entered, and the second member describes the changes to the current
configuration of the automaton in this step. Thus, Φ and A together describe
the possible transitions of the automaton. This is formalized as the transition
function δ.

Definition 8 (Transition Function of an FAC). For an FAC (Σ,Q, C, A,
Φ, qI ,F), the transition function δ is defined for any configuration (q, γ) and
letter l by δ((q, γ), l) = {(p, fψ(γ)) | A(p) = l, (p, ψ) ∈ Φ(q), γ |=max

min ψ}.

Definition 9 (Deterministic FAC). An FAC (Σ,Q, C,A, Φ, qI ,F) is deter-
ministic if and only if |δ((q, γ), l)| ≤ 1 for all q ∈ Q, l ∈ Σ and γ : C → N0.

Deciding whether an FAC is deterministic can be done in polynomial time as
follows: For each state p, for each two different (p1, ψ1), (p2, ψ2) both in Φ(p),
verify that either A(p1) �= A(p2) or that ψ1 and ψ2 are not overlapping.

5.2 Word Recognition

An FAC either accepts or rejects a given input. A deterministic FAC recognizes
a word by treating letters in the word one by one. It starts in the initial con-
figuration (qI , γ0). An FAC in configuration (q, γ), with letter l ∈ Σ next in
the word, will reject the word if δ((q, γ), l) is empty. Otherwise it enters the
unique configuration (q′, γ′) ∈ δ((q, γ), l). If the whole word has been read, a
deterministic FAC accepts the word if and only if it is in a final configuration.
The subset of Σ∗ consisting of words being accepted by an FAC A is denoted
‖A‖. A deterministic FAC accepts or rejects a word in time linear in the length
of the word.

Example 10. Let Σ = {a, b}, Q = {qI , a〈1, 1, 1〉, b〈1, 2〉}, and C = {〈1〉, 〈1, 1〉,
〈1, 1, 1〉, 〈1, 2〉}. Figure 2 illustrates a deterministic FAC (Σ, Q, C,A, Φ,min,max,
qI , F) which recognizes ‖(&(a2, b))3..4‖. Note that the names of the non-initial
states are decorated with the values of A. Every state is depicted as a rectangle
with the name of the state, and with F described by the reset instructions. Every
member of Φ is shown as an arrow, annotated with the corresponding update
instruction. C, min, and max are shown in the top of the figure. The sequence of
configurations of this FAC while recognizing aabbaabaa is :
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(qI , γ0)
(a〈1, 1, 1〉, {〈1〉 �→ 1, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 1, 〈1, 2〉 �→ 0})
(a〈1, 1, 1〉, {〈1〉 �→ 1, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 2, 〈1, 2〉 �→ 0})
(b〈1, 2〉, {〈1〉 �→ 1, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 0, 〈1, 2〉 �→ 1})
(b〈1, 2〉, {〈1〉 �→ 2, 〈1, 1〉 �→ 0, 〈1, 1, 1〉 �→ 0, 〈1, 2〉 �→ 1})
(a〈1, 1, 1〉, {〈1〉 �→ 2, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 1, 〈1, 2〉 �→ 1})
(a〈1, 1, 1〉, {〈1〉 �→ 2, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 2, 〈1, 2〉 �→ 1})
(b〈1, 2〉, {〈1〉 �→ 3, 〈1, 1〉 �→ 0, 〈1, 1, 1〉 �→ 0, 〈1, 2〉 �→ 1})
(a〈1, 1, 1〉, {〈1〉 �→ 3, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 1, 〈1, 2〉 �→ 1})
(a〈1, 1, 1〉, {〈1〉 �→ 3, 〈1, 1〉 �→ 1, 〈1, 1, 1〉 �→ 2, 〈1, 2〉 �→ 1})

The last configuration is final, since min(〈1〉) ≤ 3, min(〈1, 1〉) ≤ 1, and
min(〈1, 1, 1〉) ≤ 2.

Fig. 2. Illustration of FAC recognizing ‖(&(a2, b))3..4‖

For each letter matched by the FAC, it must test satisfiability of the update
instructions corresponding to transitions to the states with a matching letter.
Since the sum of these update instructions is smaller than the whole FAC, and
testing satisfiability of update instructions is linear, we get the following:
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Lemma 11 (Linear-time recognition). For any deterministic FAC A = (Σ,
Q, C, A, Φ, min, max, qI , F), if σ(A) is the size of A, then for any word w ∈ Σ∗,
the FAC A accepts or rejects w in time O(|w|σ(A)).

6 Unambiguity

In this section we will define the right unambiguity we need for constructing
deterministic automata. Strongly 1-unambiguous regular expressions were first
defined by Koch & Scherzinger [20], but the definitions used here also bear on
Gelade et al. [8]. A deterministic FAC can be constructed in polynomial time
from such expressions. We recall the definition of 1-unambiguity such that the
difference with strong 1-unambiguity becomes clear.

Definition 12 (1-unambiguity [3,5]). A regular expression r is 1-unambigu-
ous if for all upv, uqw ∈ ‖μ(r)‖, where u, v, w ∈ (pos(r))∗ and p, q ∈ pos(r),
r[p] = r[q] implies p = q.

Strong 1-unambiguity is needed to prevent unambiguities related to the numeri-
cal constraints. For example, (a3..4)2 is 1-unambiguous, but there is an ambiguity
related to which of the two numerical constraints should be increased when see-
ing the fourth a in a word. To formalize this ambiguity we will use subscripted
expressions, and the languages of these. Subscripting is inspired by the bracket-
ing used by Koch & Scherzinger [20] and Gelade et al. [8]. The intuition is that
for a regular expression r, the subscripted regular expression ss(r), is such that
all subexpressions of the form rl..u1 or &(r1, . . . , rn) are subscripted with their
position in the term tree. For example, ss((&(a2, b))3..4) = (&(a2〈1,1〉, b)〈1〉)

3..4
〈〉 .

To define the language of a subscripted expression we will use some more
notation: For a position p = 〈j1, . . . , jn〉, and a positive integer i, pi denotes the
position 〈j1, . . . , jn, i〉. For a regular expression r, let Γr =

⋃
p∈pos(r){↑p, ↓p}. For

a set L, εL denotes {ε}∩L and L> denotes L−{ε}. The language of a subscripted
expression r is a set of strings over sym(r)∪Γr . For the not subscripted parts we
use the same rules as in Definition 2, while ‖rl..up ‖ = (

⋃u
i=l({↑p1} · ‖r‖)i) · {↓p1},

and ‖&(r1, . . . , rn)p‖ =

ε‖&(r1,...,rn)‖∪⎛⎜⎝⋃σ∈Perm({1,...,n})

⎛⎝ ε‖rσ1‖ ∪ {↑pσ1} · ‖rσ1‖
>

· · ·
ε‖rσn‖ ∪ {↑pσn} · ‖rσn‖

>

⎞⎠>
⎞⎟⎠ · {↓p1 · · · ↓pn}

The ambiguity observed in (a3..4)2 corresponds to the fact that there are u, v, w
such that both u · a · ↑〈1,1〉 · a · v and u · a · ↓〈1,1〉 · ↑〈1〉 · ↑〈1,1〉 · a · w are words in
‖ss((a3..4)2)‖.

Definition 13 (Strong 1-unambiguity [8,20]). A regular expression r is
strongly 1-unambiguous if it is 1-unambiguous, and for all uαav, uβbw ∈ ‖ss(r)‖,
where a, b ∈ sym(r), α, β ∈ Γ ∗

r and u, v, w ∈ (Σ ∪ Γr)
∗, a = b implies α = β.
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Examples of expressions that are not strongly 1-unambiguous are (a1..2)1..2,
(a∗a)2..3 and (&(a1..2, b))1..2, while (a+ b)1..4 is strongly 1-unambiguous.

We can now formulate the main result of this paper. The construction of an
FAC from a regular expression is based on first, last, and follow sets. There is
not space for it in this paper, but it can be seen in [15, p.86-107].

Theorem 14. For any regular expression r, we can in polynomial time con-
struct an FAC recognizing exactly ‖r‖. For any word w, and any strongly
1-unambiguous regular expression r, we can in polynomial time decide whether
w ∈ ‖r‖.

7 Related Work

The present paper is based on Chapter 3 of Hovland [15]. Proofs, definitions, and
examples left out of the present paper for reasons of space can be found in [15]

Sperberg-McQueen [24] has studied regular expressions with numerical con-
straints and a translation to finite automata with counters, though no proofs are
given. Gelade et al. [9,10] and Gelade et al. [8] also wrote about this, including
full proofs. The latter was published simultaneously with the paper [14]. The
present paper is based on [14], but also incorporates ideas from [8], most notably
the bracketing, which was inspiration for the subscripted expressions. Section 6
from [8], including the proofs for Sect. 6 in the Appendix of [8] has inspired
some of the content concerning subscripting, strong 1-unambiguity, and proving
correctness of the construction of FACs.

Kilpeläinen & Tuhkanen [17,18,19], Gelade [7], Gelade et al. [9,10], and Gelade
et al. [8] also investigated properties of the regular expressions with numerical
constraints, and give algorithms for membership. Stockmeyer & Meyer [22] study
the regular expressions with squaring, a subclass of the regular expressions with
numerical constraints. Colazzo, Ghelli & Sartiani, describe in [12] an algorithm
for linear-time membership in a subclass of regular expressions called collision-
free. The collision-free regular expressions have at most one occurrence of each
symbol from Σ, and the counters (and the Kleene star) can only be applied
directly to letters or disjunctions of letters. The latter class is strictly included
in the class of strongly 1-unambiguous regular expressions.

Extensions of finite automata similar to Finite Automata with Counters have
been studied by many authors. The earliest is the treatment of multicounter
automata by Greibach [13]. In the multicounter-automata counters can only
increase or decrease by 1, and the transition function cannot read the values of
the counters. An instruction corresponding to res or one does therefore not exist.
Sperberg-McQueen [24] describe the Counter-extended Finite-state Automata
(CFA) and Gelade et al. [8] describe the CNFA. Both of the latter automata
classes use separate expressions for the update instructions (called actions by
Sperberg-McQueen) and for specifying the conditions/guards. In the FACs in the
present paper these guards (or conditions) are implicit, and calculated directly
from the update instructions. The language for guards is also quite expressive,
and this leads to higher expressive power in the CNFAs and CFAs compared
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to FACs. Gelade et al. [9,10] describe NFA(#)s which have a counter for each
state. The FACs described in the present paper are a variant of those described
by the author in [14], modified to fit the combination of numerical constraints
and unordered concatenation. In the case of unordered concatenation, only the
values 0 and 1 are used. The update instruction one is new.

Brüggemann-Klein [4,2] gives an algorithm for deciding 1-unambiguity of reg-
ular expressions with unordered concatenation. Unordered concatenation is also
mentioned in [5,3]. Strong 1-unambiguity has also been mentioned by Brügge-
mann-Klein & Wood [5,3] and Sperberg-McQueen [24], and Gelade et al. [8]. The
first in-depth study of strong 1-unambiguity was by Koch & Scherzinger [20].

8 Conclusion

We have studied the membership problem for regular expressions extended with
numerical constraints and with unordered concatenation, an operator similar to
“&” in SGML. The membership problem was shown to be NP-complete already
without the numerical constraints. We defined Finite Automata with Counters
(FAC). There is a polynomial-time translation from the regular expressions with
numerical constraints and unordered concatenation to FACs. Further we defined
strongly 1-unambiguous regular expressions, a subset of the regular expressions
with numerical constraints and unordered concatenation in constraint normal
form, and for which the FAC resulting from the translation is deterministic. The
deterministic FAC can recognize the language of the given regular expression in
time linear in the size of word to be tested. Testing whether an FAC is deter-
ministic can be done in polynomial time.
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Abstract. A restarting transducer is a restarting automaton that is
equipped with an output function. Accordingly, restarting transducers
compute binary relations, and deterministic restarting transducers com-
pute functions. Here we characterize the rational functions and some
of their proper subclasses by certain types of deterministic restarting
transducers with window size one.

1 Introduction

The restarting automaton [8] was invented to model the so-called “analysis by
reduction,” which is a linguistic technique used to analyze sentences of natural
languages with free word order. A restarting automaton consists of a finite-state
control, a flexible tape with end markers, and a read/write window of a fixed size
working on that tape. It works in cycles, where in each cycle it performs a single
rewrite operation that shortens the tape contents. After a finite number of cycles,
it halts and accepts (or rejects). Thus, a restarting automaton is a language
accepting device. The real goal of performing analysis by reduction, however, is
not simply to accept or reject a given input sentence, but to extract information
from that sentence and to translate it into another form, e.g., into a formal
representation. Accordingly, we are interested in computing binary relations.
Observe that rational and subsequential relations have found many applications
in e.g. compiler construction (see, e.g., [1]) and natural language and speech
processing (see, e.g., [11]).

In [6] a binary relation is associated to a (deterministic) restarting automaton
M by splitting its tape alphabet Γ into three (disjoint) parts: an input alpha-
bet Σ, an output alphabet Δ, and a set of auxiliary symbols Γ � (Σ ∪Δ). Then
a pair (u, v) ∈ Σ∗ ×Δ∗ belongs to the relation Relio(M) associated with M if
and only if M accepts a word from the shuffle of u and v, that is, if and only if
M accepts a word w ∈ (Σ ∪Δ)∗ such that PrΣ(w) = u and PrΔ(w) = v. Here
PrΣ (PrΔ) denotes the projection from (Σ ∪Δ)∗ onto Σ∗ (Δ∗). This approach,
however, is not very satisfying as the “output” v must be given together with the
“input” u. Here we follow a different approach in that we extend the restarting
automaton to a restarting transducer by introducing an additional output func-
tion: whenever a restart operation or an accept operation is performed, then
additionally an output string is generated (see Section 2 for the definition).

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 325–336, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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In the current paper we concentrate on a very restricted class of restarting
transducers: restarting transducers with window size one. As each rewrite oper-
ation of such a transducer just erases a single symbol from the tape, no auxiliary
symbols can be introduced in the course of a computation. Accordingly, we don’t
need to consider auxiliary symbols at all. It is known that deterministic restart-
ing automata with window size one accept exactly the regular languages [9,12],
and this result even extends to deterministic nonforgetting restarting automata
that are monotone [5]. Here we show that the class of functions computed by de-
terministic monotone nonforgetting RR-transducers (see below) of window size
one coincides with the class of rational functions, and that the deterministic
monotone nonforgetting R-transducers (see below) of window size one charac-
terize the subsequential functions. Also we characterize the class of functions that
are computed by deterministic generalized sequential machines by a restricted
type of deterministic R-transducers with window size one. As the corresponding
types of restarting automata represent some regular languages in a more succinct
way than even nondeterministic finite-state acceptors (see [5,9]), these charac-
terizations show that our restarting transducers can be used to describe certain
rational or subsequential functions more succinctly than rational transducers.

The paper is structured as follows. After defining the types of restarting trans-
ducers in Section 2 that we want to study, we present some detailed examples.
These examples are then used in Section 3 to establish some hierarchy results
for the classes of functions that are computed by the various restricted types
of deterministic restarting transducers with window size one. The announced
characterizations are presented in Section 4.

2 Restarting Transducer with Window Size One

We assume that the reader is familiar with the basic concepts and main results
from Formal Language Theory, for which we use [4] as our main reference. By
REG and CFL we denote the classes of regular and context-free languages. Fur-
ther, basic knowledge on rational relations and functions is expected, where [2,3]
serve as our main references. Finally, concerning restarting automata we refer
to [13]. For a finite alphabet Σ, we use Σ∗ to denote the set of all words over Σ
including the empty word ε. For a word w ∈ Σ∗, |w| denotes the length of w.

2.1 Restarting Automata with Window Size One

In the literature many different types of restarting automata have been studied.
Here we only present those types that we will need in what follows.

A nonforgetting restarting automaton with window size one, that is, an nf-
RR(1)-automaton, is defined by a 7-tuple M = (Q,Σ, c, $, q0, 1, δ). Here Q is a
finite set of internal states, Σ is a finite alphabet, the symbols c, $ �∈ Σ serve
as markers for the left and right border of the workspace, respectively, q0 ∈ Q
is the initial state, and δ is the transition relation that associates a finite set
of transition steps to pairs of the form (q, a), where q ∈ Q is a state and a ∈
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Σ ∪ {c, $} is a possible content of the window. There are four types of transition
steps: move-right steps of the form (q′,MVR), which shift the window one step to
the right and change the internal state to q′, delete steps of the form (q′, ε) that
erase the content a of the window and change the internal state to q′, restart
steps of the form (q′,Restart) that place the window over the left end of the tape
and change the internal state to q′, and accept steps (Accept), which cause the
automaton to halt and accept. Some additional restrictions apply in that the
sentinels c and $ must not be deleted, and that the window must not move right
across the $-symbol. Further, M is deterministic if δ is a partial function. We
use the prefix det- to denote deterministic types of nf-RR-automata.

A configuration of M is described by a word αqβ, where q ∈ Q and either
α = ε and β ∈ {c} · Σ∗ · {$} or α ∈ {c} · Σ∗ and β ∈ Σ∗ · {$}; here q is the
current internal state, αβ is the content of the tape, and the window contains the
first symbol of β. A restarting configuration is of the form qcw$, and an initial
configuration is of the form q0cw$. By )M we denote the single-step computation
relation of M , and )∗

M denotes the reflexive transitive closure of )M .
The automaton M proceeds as follows. Starting from a restarting configura-

tion qcw$, where q ∈ Q and w ∈ Σ∗, the window is shifted to the right by a
sequence of move-right steps until a configuration of the form cxqay$ is reached
such that (q′, ε) ∈ δ(q, a), where w = xay. Now the latter configuration can be
transformed into the configuration cxq′y$, and the computation proceeds with
further move-right steps until eventually a restart operation is executed, which
yields a restarting configuration of the form pcxy$ for some p ∈ Q. This sequence
of computational steps, which is called a cycle, is expressed as qcw$ )cM pcxy$,
and )c∗M is used to denote the reflexive transitive closure of this relation. Observe
that a cycle must contain exactly one application of a delete step. A computation
of M consists of a finite sequence of cycles that is followed by a tail computa-
tion, which consists of a sequence of move-right operations (and possibly a single
application of a delete operation) that is possibly followed by an accept step.
A word w ∈ Σ∗ is accepted by M , if there exists an accepting computation of
M which starts with the initial configuration q0cw$. By L(M) we denote the
language consisting of all words that are accepted by M .

Each cycle C of a restarting automaton M contains a unique configuration
αqβ in which a delete step is applied. Then |β| is called the right distance of C,
denoted asDr(C). A sequence of cycles (C1, C2, . . . , Cn) ofM is calledmonotone
if Dr(C1) ≥ Dr(C2) ≥ · · · ≥ Dr(Cn). A computation of M is called monotone
if the corresponding sequence of cycles is monotone. Finally, M itself is called
monotone if all its computations that start from an initial configuration are
monotone. We use the prefix mon- to denote monotone types of restarting au-
tomata. By adopting the proof from [7] it can be shown that monotonicity is
decidable for nf-RR(1)-automata.

M is called a nonforgetting R(1)-automaton (nf-R(1)-automaton, for short)
if it is a nonforgetting RR(1)-automaton for which each delete operation is im-
mediately followed by a restart operation. To simplify the description we com-
bine each delete operation of an R(1)-automaton with the subsequent restart
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operation. Of course, the notions of determinism and monotonicity also apply to
R(1)-automata. Further, for each type of (restarting) automaton X, we denote
the class of all languages that are accepted by automata of type X by L(X). On
nf-RR(1)-automata, the following result has been obtained in [5].

Theorem 1. L(mon-nf-R(1)) = L(det-mon-nf-RR(1)) = REG.

Finally, the forgetting restarting automaton is obtained from the nonforgetting
restarting automaton by requiring that it is reset to its initial state by all its
restart operations. This is actually the model defined originally (see [8,13]).
Therefore, the forgetting variants of the nf-RR(1)- and the nf-R(1)-automaton
are simply denoted as RR(1)- and R(1)-automata.

Following [6] we associate a binary relation with a restarting automaton. Let
M be an nf-RR(1)-automaton on Γ , let Σ be a proper subalphabet of Γ , and let
Δ = Γ �Σ. We interpret Σ as an input and Δ as an output alphabet. Then

Relio(M) = { (u, v) ∈ Σ∗ ×Δ∗ | ∃w ∈ L(M) : u = PrΣ(w) and v = PrΔ(w) }

is called the (input-output) relation of M . By Relio(nf-RR(1)) we denote the
class of all these relations of nf-RR(1)-automata. Concerning the relations of this
form we have the following characterization. Here RatRel denotes the class of
rational relations (see, e.g., [2]).

Corollary 1. Let R ⊆ Σ∗×Δ∗ be a binary relation, where Σ and Δ are disjoint.
Then R is a rational relation if and only if it is the relation of a mon-nf-R(1)-
automaton if and only if it is the relation of a det-mon-nf-RR(1)-automaton.

Proof. By a theorem of Nivat (see, e.g., [2]) a binary relation R ⊆ Σ∗ ×Δ∗ is
rational if and only if there exists a regular language L ⊆ (Σ ∪ Δ)∗ such that
R = { (PrΣ(w),PrΔ(w)) | w ∈ L }. By Theorem 1 the class of regular languages
coincides with the class of languages that are accepted by mon-nf-R(1)- and det-
mon-nf-RR(1)-automata. Thus, if M is an automaton of one of these two types
such that L(M) = L, then R coincides with the relation Relio(M). ��

2.2 Restarting Transducer

Here we introduce the restarting transducer, that is, a restarting automaton with
output. Although this generalization can be applied to all types of restarting
automata, we state it here only for nf-RR(1)- and nf-R(1)-automata.

An nf-RR(1)-transducer, abbreviated as nf-RR(1)-Td, is given through an 8-
tuple T = (Q,Σ,Δ, c, $, q0, 1, δ), where Q, Σ, c, $, q0 and the window size 1 are
defined as for an nf-RR(1)-automaton, Δ is a finite output alphabet, and δ is the
transition relation that associates a finite set of transition steps to pairs of the
form (q, a), where q ∈ Q and a ∈ Σ ∪ {c, $}. There are four types of transition
steps: move-right steps and delete steps are defined as for nf-RR(1)-automata, a
restart step of the form (q′,Restart, v) places the window over the left end of the
tape, it changes the internal state to q′, and it outputs the word v ∈ Δ∗, and
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an accept step of the form (Accept, v) causes the transducer to halt and accept
while producing the output v ∈ Δ∗. The restarting transducer is deterministic if
δ is a (partial) function. Further, T is an nf-R(1)-Td if the underlying restarting
automaton is an nf-R(1)-automaton. Finally, the R(1)- and the RR(1)-transducers
are obtained by requiring that each restart operation resets the internal state to
the initial state q0.

A configuration of T is described by a pair (αqβ, z), where αqβ is a con-
figuration of the underlying restarting automaton and z ∈ Δ∗ is an output
word. If αβ = cxay$ such that δ(q, a) contains the triple (q′,Restart, v), then
(αqβ, z) )T (q′αβ, zv), that is, T may restart changing its internal state to q′

and producing the output v. Further, if δ(q, a) contains the pair (Accept, v), then
(αqβ, z) )T (Accept, zv), that is, T may halt and accept producing the output v.
An accepting computation of T consists of a finite sequence of cycles that is
followed by an accepting tail computation, that is, it can be described as

(q0cw$, ε) )cT (qi1cw1$, v1) )cT · · · )cT (qimcwm$, v1 · · · vm)
)∗
T (Accept, v1 · · · vmvm+1).

With T we associate the following (input-output) relation

Rel(T ) = { (w, z) ∈ Σ∗ ×Δ∗ | (q0cw$, ε) )∗
T (Accept, z) }.

For w ∈ Σ∗, T (w) = { z ∈ Δ∗ | (w, z) ∈ Rel(T ) }. If T is deterministic, then
Rel(T ) is obviously the graph of a (partial) function. The corresponding function
will be called the transduction computed by T .

Obviously, the notion of monotonicity generalizes from restarting automata
to restarting transducers. Further, a restarting transducer is called proper if all
its accept operations are of the form (Accept, ε), that is, in the last step of an
accepting computation it can only output the empty word. We use the prefix
prop- to denote proper types of restarting transducers.

2.3 Examples of Functions Computed by RR(1)-Transducers

Here we present two examples of nonforgetting RR(1)-transducers. In order to
describe an nf-RR(1)-transducer in a compact way, we use meta-instructions of
the form (q, E1, a → ε, E2, q

′; v), where q, q′ are internal states of T , E1, E2 are
regular expressions, a ∈ Σ is a letter to be deleted, and v ∈ Δ∗ is an output
word (cf., e.g., [10]). This meta-instruction is applicable to configurations of the
form (qcw$, z), where w can be factored as w = xay such that cx ∈ E1 and
y$ ∈ E2, and it transforms this configuration into the configuration (q′cxy$, zv).
To describe accepting tail computations we use meta-instructions of the form
(q, E,Accept; v) that enable T to perform an accepting tail computation starting
from a configuration of the form (qcw$, z) such that cw$ ∈ E. In this situation
T reaches the final configuration (Accept, zv). Observe that meta-instructions
are just a convenient way for describing restarting automata. In particular, such
a description is essentially nondeterministic. When it comes to properties like
determinism, then one first has to construct the real transition relation of the
restarting automaton considered, but this is always possible.
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Example 1. The function τ1 : a∗ → {b, c}∗ that is defined by τ1(a
2n) = b2n

and τ1(a
2n+1) = c2n+1 (n ∈ N) is computed by the proper det-mon-nf-RR(1)-

transducer T1 that is described by the following meta-instructions:

(1) (q0, c, a → ε, a · (aa)∗ · $, q1; b), (4) (q1, c, a → ε, a∗ · $, q1; b),
(2) (q0, c, a → ε, (aa)∗ · $, q2; c), (5) (q1, c$,Accept; ε),
(3) (q0, c$,Accept; ε), (6) (q2, c, a → ε, a∗ · $, q2; c),

(7) (q2, c$,Accept; ε).

Recall that a restarting transducer produces its outputs only while executing
restart and accept transitions, that is, when it executes the last step of a cycle
or a tail computation.

Example 2. The function τ2 : {0, 1}∗ → {0, 1}∗ that is defined by

τ2(w) =

{
0|x|, if w = x0 and x ∈ {0, 1}∗,
1|x|, if w = x1 and x ∈ {0, 1}∗,

is computed by the proper det-RR(1)-transducer T2 that is described by the
following meta-instructions, where a, b ∈ {0, 1}:

(1) (q0, c, a → ε, {0, 1}∗ · b$, q0; b), (2) (q0, cb$,Accept; ε).

3 Relations Computed by nf-RR(1)-Transducers

For each type X of restarting transducers, we use Rel(X) to denote the class
of relations that are computed by the transducers of type X. From the above
definitions we immediately obtain the following inclusions. Just observe that
each det-R(1)- and each det-RR(1)-transducer is necessarily monotone.

Proposition 1.

(a) Rel(det-R(1)-Td) ⊆ Rel(det-mon-nf-R(1)-Td) ⊆ Rel(det-mon-nf-RR(1)-Td).
(b) Rel(det-R(1)-Td) ⊆ Rel(det-RR(1)-Td) ⊆ Rel(det-mon-nf-RR(1)-Td).
(c) Rel(det-R(1)-Td) ⊆ Rel(det-mon-nf-R(1)-Td) ⊆ Rel(mon-nf-R(1)-Td).

Obviously, the above inclusions also hold for the corresponding types of proper
transducers. Further, Rel(prop-X) ⊆ Rel(X) holds obviously for each type X of
restarting transducers. Using Examples 1 and 2 it can be shown that several of
the inclusions above are actually strict.

Proposition 2. The function τ1 can neither be computed by a det-RR(1)-, nor
by an R(1)-, nor by a det-mon-nf-R(1)-transducer.

Proposition 3. The function τ2 can neither be computed by an R(1)- nor by a
det-mon-nf-R(1)-transducer.

Proposition 4. Let τ3 denote the partial function τ3 : {a, b}∗ → {a, b}∗ that is
defined by abn �→ ban for all n ≥ 0. Then τ3 is computed by a det-mon-nf-R(1)-
transducer, but it cannot be computed by any RR(1)-transducer.
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From these propositions we obtain the hierarchy shown in Figure 1. Here the
properness of the inclusions of the deterministic classes in the corresponding
nondeterministic classes follows from the simple fact that deterministic trans-
ducers can only compute functions, while nondeterministic transducers can also
compute relations that are not functions.

Rel(mon-nf-RR(1)-Td)

Rel(det-mon-nf-RR(1)-Td)

�����������������
Rel(mon-nf-R(1)-Td)

����������������

Rel(det-RR(1)-Td)

τ1

��

Rel(det-mon-nf-R(1)-Td)

τ1

�����������������

����������������
Rel(mon-R(1)-Td)

τ3

��

Rel(det-R(1)-Td)

τ3

��

τ2

�����������������

����������������

Fig. 1. Hierarchy of classes of transductions computed by various types of restarting
transducers. Here arrows denote proper inclusions.

How expressive are the mon-nf-RR(1)-transducers? Obviously, the rational
relationR1 = { (ε, an) | n ≥ 0 } cannot be computed by any nf-RR(1)-transducer.
On the other hand, the relation R2 = { (anbn, ε), (anbn+1, ε) | n ≥ 0 } is not
rational, but it is computed by a mon-RR(1)-transducer that is obtained from
a mon-RR(1)-automaton for the language L2 = { anbn, anbn+1 | n ≥ 0 }. Hence,
we obtain the following incomparability result.

Proposition 5. The class of relations Rel(mon-nf-RR(1)-Td) is incomparable
to the class RatRel of rational relations with respect to inclusion.

In contrast to this incomparability result we will see below that det-mon-nf-
RR(1)- and the mon-nf-R(1)-transducers only compute rational relations.

Lemma 1. Rel(det-mon-nf-RR(1)-Td) � Relio(det-mon-nf-RR(1)).

Proof. Because of the relation R1 above and Corollary 1 it remains to verify that
the inclusion above holds. Accordingly, let T = (Q,Σ,Δ, c, $, q0, 1, δ) be a det-
mon-nf-RR(1)-transducer that computes a relation Rel(T ) ⊆ Σ∗ ×Δ∗. Thus, a
pair (u, v) ∈ Σ∗×Δ∗ belongs to Rel(T ) if and only if there exists a computation
of the form (q0cu$, ε) )c

∗
T (qicu

′$, v′) )∗
T (Accept, v′v′′) such that v = v′v′′.

Without loss of generality we can assume that T performs restart and ac-
cept instructions only on the $-symbol. Also we may assume that Σ and Δ are
disjoint. We now define a det-mon-nf-RR(1)-automaton M by meta-instructions
from a description of T by meta-instructions, where sh(L,L′) denotes the shuffle
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of two languages L and L′. Each rewriting meta-instruction of T is translated
into finitely many rewriting meta-instructions of M . Here in order to increase
readability we just consider the case that a single output letter b is produced,
but this construction is easily extended to the case of output words of any posi-
tive length by using additional rewriting meta-instructions and additional restart
states. Let (qi, E1, a → ε, E2 · $, qj ; b) be a rewriting meta-instruction (a ∈ Σ,
b ∈ Δ) of T . It is translated into the rewriting meta-instructions

(qi, E1, a → ε, sh(E2, Δ
∗) · $, q′i) and (q′i, E1, b → ε, sh(E2, Δ

∗) · $, qj)

of M , where q′i is a new state. If a rewriting meta-instruction of T is of the form
(qi, E1, a → ε, E2 · $, qj; ε), then we simply take the rewriting meta-instruction
(qi, E1, a → ε, sh(E2, Δ

∗) · $, qj) for M . Finally, each accepting meta-instruction
(qi, E · $,Accept; b) of T yields an accepting meta-instruction (qi, E · b$,Accept)
of M . Based on this description the transition function of M can be derived
from the transition function of T .

It remains to show that Rel(T ) = Relio(M) holds. Let (u, v) ∈ Rel(T ), that
is, there exists an accepting computation of T that consumes input u ∈ Σ∗

and produces output v ∈ Δ∗. This computation consists of a sequence of cycles
C1, C2, . . . , Cm−1, where Ci (1 ≤ i ≤ m− 1) is of the form

(qicxiaiyi$, vi) )∗
MVR (cxipiaiyi$, vi) )Delete (cxip

′
iyi$, vi)

)∗
MVR (cxiyip̂i$, vi) )Restart (qi+1cxiyi$, vibi),

and a tail computation of the form

(qmcwm$, vm) )∗
MVR (cwmq

′
m$, vm) )Accept (Accept, vmb

′).

In the above cycle a rewriting meta-instruction (qi, E1, ai → ε, E2 · $, qi+1; bi)
is applied, where cxi ∈ E1 and yi ∈ E2, and in the above tail computation an
accepting meta-instruction (qm, E·$,Accept; b′) is applied, where cwm ∈ E holds.
Obviously, for all i = 1, . . . ,m− 2, xiyi = xi+1ai+1yi+1, and as T is monotone,
we see that |yi| ≥ |yi+1| holds.
Case 1. If |yi| > |yi+1|, then ai+1yi+1 is a suffix of yi. Thus, if we insert the letter
bi immediately to the right of the letter ai, then M will execute the following
sequence of two cycles using the meta-instructions that have been obtained from
the above meta-instruction of T :

(qicxiaibiyi$) )∗
MVR (cxipiaibiyi$) )Delete (cxip

′
ibiyi$)

)∗
MVR (cxibiyip̂i$) )Restart (q′icxibiyi$)

)∗
MVR (cxip

′′
i biyi$) )Delete (cxip̃iyi$)

)∗
MVR (cxiyip̂

′
i$) )Restart (qi+1cxiyi$).

Case 2. If |yi| = |yi+1|, then xi = xi+1ai+1. In this situation we insert the
word bibi+1 immediately to the right of the factor ai+1ai. Then M will execute
the following sequence of two cycles using the meta-instructions that have been
obtained from the above meta-instruction of T :

(qicxiaibibi+1yi$) )∗
MVR (cxipiaibibi+1yi$) )Delete (cxip

′
ibibi+1yi$)

)∗
MVR (cxibibi+1yip̂i$) )Restart (q

′
icxibibi+1yi$)
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)∗
MVR (cxip

′′
i bibi+1yi$) )Delete (cxip̃ibi+1yi$)

)∗
MVR (cxibi+1yip̂

′
i$) )Restart (qi+1cxibi+1yi$)

= (qi+1cxi+1ai+1bi+1yi+1$).

By combining these two cases we obtain a word w ∈ sh(u, v) such that the
computation of M on input w mirrors the computation of T on input u, and it
follows that (u, v) ∈ Relio(M). Conversely, it can be checked easily that (x, y) ∈
Rel(T ) holds for each pair (x, y) ∈ Relio(M). Thus, Rel(T ) = Relio(M) follows.
In addition, as T is deterministic and monotone, so is M . ��

By adjusting the above proof idea also the following inclusion can be derived.

Lemma 2. Rel(mon-nf-R(1)-Td) � Relio(mon-nf-R(1)).

Together with Corollary 1 and Proposition 5 these lemmata yield the following
results, where RatF denotes the class of rational functions.

Corollary 2. (a) Rel(det-mon-nf-RR(1)-Td) ⊆ RatF.
(b) Rel(mon-nf-R(1)-Td) � RatRel.
(c) Rel(mon-nf-R(1)-Td) � Rel(mon-nf-RR(1)-Td).

4 Sequential and Rational Functions

Now we want to relate some types of deterministic nf-RR(1)-transducers to cer-
tain subclasses of the rational functions. Therefore we describe in short these
subclasses. Details can be found in, e.g., [2] and [3].

A rational transducer is defined as T = (Q,Σ,Δ, q0, F, E), where Q is a
finite set of internal states, Σ is a finite input alphabet, Δ is a finite output
alphabet, q0 ∈ Q is the initial state, F ⊆ Q is the set of final states, and
E ⊂ Q×Σ∗×Δ∗×Q is a finite set of transitions. The relation Rel(T ) computed
by T consists of all pairs (u, v) ∈ Σ∗ ×Δ∗ such that there exists a computation
of T that, starting from the initial state q0, reaches a final state q ∈ F reading
the word u and producing the output v.

A sequential transducer is a rational transducer T = (Q,Σ,Δ, q0, Q,E) for
which E ⊂ Q × Σ × Δ∗ × Q is a partial function from Q × Σ into Δ∗ × Q.
Observe that all internal states of a sequential transducer are final, and that
in each step it reads a single symbol. Then the relation Rel(T ) is obviously a
partial function. It is called a sequential function, and by SeqF we denote the
class of all sequential functions.

A subsequential transducer consists of a pair Tϕ = (T, ϕ), where T = (Q,Σ,
Δ, q0, Q,E) is a sequential transducer and ϕ : Q → Δ∗ is a partial function. For
u ∈ Σ∗, let q0 ·u ∈ Q denote the state that T reaches from its initial state q0 on
reading u. Then the relation Rel(Tϕ) is defined as

Rel(Tϕ) = { (u, z) ∈ Σ∗ ×Δ∗ | ∃v ∈ Δ∗ : (u, v) ∈ Rel(T ) and z = vϕ(q0 · u) }.
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Obviously, Rel(Tϕ) is a partial function. A partial function R is called subsequen-
tial if there exists a subsequential transducer Tϕ such that R coincides with the
relation Rel(Tϕ). By SubSeqF we denote the class of all subsequential functions.

Finally, a deterministic generalized sequential machine (dgsm) is a rational
transducer T = (Q,Σ,Δ, q0, F, E) for which E is a partial function from Q×Σ
into Δ∗ ×Q [4]. Thus, it differs from a sequential transducer only in that it has
a designated set of final state. The relation Rel(T ) is a partial function, which
is called a dgsm-mapping. By DgsmF we denote the class of all dgsm-mappings.

Concerning the various types of rational functions introduced above, we have
the chain SeqF � DgsmF � SubSeqF � RatF of proper inclusions [2,3]. Our first
characterization result shows that the dgsm-mappings correspond to a particular
class of restarting transducers.

Theorem 2. A function f : Σ∗ → Δ∗ is a dgsm-mapping if and only if it can
be computed by a proper det-mon-nf-R(1)-transducer.

Proof. Let M = (Q,Σ,Δ, q0, F, E) be a dgsm. We define a det-mon-nf-R(1)-
transducer T = (Q,Σ,Δ, c, $, q0, 1, δ) such that Rel(T ) = Rel(M) holds. The
transducer T is obtained from M by converting every transition step (q, x) →
(p, y) (q, p ∈ Q, x ∈ Σ, and y ∈ Δ∗) of M into the transition steps δ(q, c) =
(q,MVR) and δ(q, x) = (p,Restart, y). As T is an R(1)-transducer, its restart op-
erations are combined with delete operations. Thus, T simulates M by erasing
its tape inscription letter by letter from left to right, for each letter producing
the corresponding output. Finally, T accepts restarting from the restarting con-
figuration (qc$, w) producing the empty output if and only if q is a final state
of M . It follows that Rel(T ) = Rel(M), and that T is proper, monotone and
deterministic.

Conversely let T be a proper det-mon-nf-R(1)-transducer that computes a
transduction t : Σ∗ → Δ∗. In [5] it is shown that each det-mon-nf-R(1)-automa-
ton can be simulated by a deterministic finite-state acceptor (dfa). During the
simulation the dfa has to store a bounded number of possible delete/restart oper-
ations of the restarting automaton in its finite-state control in order to verify that
it has detected a correct sequence of cycles within the computation being simu-
lated. Now by storing the possible output word together with each delete/restart
operation, a dgsm can be designed that simulates the transducer T . ��

If the given det-mon-nf-R(1)-transducer T is not proper, that is, if it produces
non-empty outputs during some of its accept transitions, then the construction
mentioned above yields a subsequential transducer. On the other hand, it is
easily seen that a subsequential transducer can be simulated by a det-mon-nf-
R(1)-transducer that is allowed to produce non-empty outputs during its accept
instructions. Thus, we have the following consequence.

Corollary 3. A function f : Σ∗ → Δ∗ is a subsequential function if and only
if it can be computed by a det-mon-nf-R(1)-transducer.

Finally, we want to characterize the class of rational functions in terms of
restarting transducers. To this end we need the following result of Santean.
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Here μ$ : Σ∗ → (Σ ∪ {$})∗ denotes the function defined by μ$(ε) = ε and
μ$(a1 . . . ak) = a1 . . . ak$a2 . . . ak$ . . . $ak−1ak$ak for k ≥ 1 and a1, . . . , ak ∈ Σ.

Theorem 3 ([14]). If f : Σ∗ → Δ∗ is a rational function such that f(ε) = ε,
then there exists a sequential function fL : (Σ∪{$})∗ → Δ∗ such that f = fL◦μ$.

Of course, μ$ is not rational, and in fact, it is not even a pushdown function.
However, the restarting transducers are somehow naturally equipped to simulate
this preprocessing stage.

Theorem 4. RatF ⊆ Rel(det-mon-nf-RR(1)-Td).

Proof. Let f : Σ∗ → Δ∗ be a rational function. Let us first assume that f(ε) = ε
holds. By Theorem 3 there exists a sequential function fL : (Σ ∪ {$})∗ → Δ∗

such that f = fL ◦ μ$. As the function fL is sequential, it can be computed by
a proper det-mon-nf-RR(1)-transducer T (see Theorem 2).

Now this transducer can be extended to a det-mon-nf-RR(1)-transducer Tf
for computing f . The sequential transducer for fL that is given in the proof
of Theorem 3 produces a non-empty output only on seeing the $-symbol. Now
Tf proceeds as follows. During the first cycle on input u = a1 . . . ak, it erases
the letter a1 and simulates the internal transitions of the sequential transducer
for fL until it reaches the $-symbol. At this time it restarts and produces the
corresponding output. Now the next cycle starts with the tape content a2 . . . ak.
Continuing in this way f(u) = fL ◦ μ$(u) is computed. Thus, Tf is a proper
det-mon-nf-RR(1)-transducer that computes the function f .

Finally, if f(ε) �= ε, then we apply the construction above to the partial
function f ′ that is defined by f ′(u) = f(u) for all u ∈ Σ+ and f ′(ε) = ε.
This yields a proper det-mon-nf-RR(1)-transducer T ′

f for computing f ′. We then
extend T ′

f such that, starting from its initial state, it accepts on empty input
producing the output f(ε). ��

DgsmF �� SubSeqF �� RatF

Rel(prop-det-mon-nf-R(1)-Td) Rel(det-mon-nf-R(1)-Td) Rel(det-mon-nf-RR(1)-Td)

Fig. 2. Classes of rational functions computed by some types of restarting transducers

Together with Corollary 2 (a) this yields the following result.

Corollary 4. RatF = Rel(det-mon-nf-RR(1)-Td).

Actually the above proof shows that Rel(prop-det-mon-nf-RR(1)-Td) coincides
with the class of rational functions f satisfying f(ε) = ε. In summary we have
derived the characterizations shown in Figure 2.
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5 Concluding Remarks

We have introduced various types of restarting transducers, and we have charac-
terized three classes of rational functions through certain types of these transduc-
ers. It remains open whether there exists a class of det-nf-RR(1)-transducers that
compute exactly the sequential functions. Further, are there characterizations
of the classes of functions that are computed by deterministic R(1)- or RR(1)-
transducers? For example, the function τ3 of Proposition 4 is a
sequential function, but it cannot be computed by any RR(1)-transducer. On the
other hand, the function τ2 of Example 2 is computed by a proper det-RR(1)-
transducer, but it is not even subsequential. Finally, it remains to characterize
the classes of binary relations that are computed by the various types of nonde-
terministic nf-RR(1)-transducers. Recall from Section 3 that the rational relation
R1 = { (ε, an) | n ≥ 0 } is not computed by any nf-RR(1)-transducer. In fact, it is
easily seen that, for any nf-RR(1)-transducer T , there exist constants c1, c2 ≥ 0
such that |v| ≤ c1 · |u|+ c2 holds for all pairs (u, v) ∈ R(T ).
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Abstract. Given an n-tape automaton M with a one-way read-only
head per tape which is delimited by an end marker $ and a nonnegative
integer k, we say that M is weakly k-synchronized if for every n-tuple
x = (x1, . . . , xn) that is accepted, there is an accepting computation on
x such that no pair of input heads, neither of which is on $, are more
than k tape cells apart at any time during the computation. When a
head reaches the marker, it can no longer move. As usual, an n-tuple
x = (x1, . . . , xn) is accepted if M eventually reaches the configuration
where all n heads are on $ in an accepting state. We look at the following
problems: (1) Given an n-tape automaton M , is it weakly k-synchronized
for a given k (for some k)? and (2) Given an n-tape automaton M , does
there exist a weakly k-synchronized automaton for a given k (for some
k) M ′ such that L(M ′) = L(M)? In an earlier paper [1], we studied the
case of multitape finite automata (NFAs). Here, we investigate the case
of multitape pushdown automata (NPDAs), multitape Turing machines,
and other multitape models. The results that we obtain contrast those
of the earlier results and involve some rather intricate constructions.

Keywords: Multitape NPDAs, Weakly Synchronized, Reversal-bounded
Counters, Multitape Turing Machines, (Un)decidability, Halting Prob-
lem, Post Correspondence Problem.

1 Introduction

A serious web security vulnerability can occur when a user input string is em-
bedded into an interpreted script which is then executed with system privileges.
Such a carefully crafted embedded input string can alter the intended meaning
of the script and bypass security checks, such as in the case of SQL injection
attacks. A current research effort to combat this problem involves reachability
analysis of string variables in a script that allows general assertions to be made
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about their values (e.g., a string variable will never contain a specific set of char-
acters). Earlier reachability analyses model each string variable using a separate
finite-state automaton. More recently, multitrack and then multitape finite-state
automata have been used to model sets of string variables, allowing assertions
about relationships between the string members; see [6,7,8] for concrete examples
of reachability analyses using finite-state automata.

Although multitape automata support a richer class of assertions than multi-
track automata, decision problems involving them are often undecidable. (Here
we are assuming the usual convention that strings in an input tuple to multitrack
automata are left-justified, and the shorter strings are padded to the right with
the symbol λ to have the same length as the longest string; on the other hand, if
λ’s are allowed to appear anywhere in the strings, then multitrack and multitape
automata are equivalent.) Clearly, multitape automata can be easily converted to
equivalent multitrack automata if the distance between any two tape heads can
be bounded by a constant k; we say such machines are k-synchronized or simply
synchronized if the constant is not important or not known. This observation
gives rise to three decisions problems:

– given a multitape automaton M and a constant k, is M k-synchronized?
– given a multitape automaton M , is M synchronized?
– given a multitape automaton M , is there an automaton M ′ of the same type

such that L(M) = L(M ′) and M ′ is synchronized?

We call the property involved in the first two questions synchronization and
the property in the last question synchronizability. We have studied these
questions in two earlier papers:

1. In [4], we studied the notion of strong head synchronization: an n-tape
automaton M is strongly k-synchronized if at any time during the compu-
tation on any input n-tuple (x1, . . . , xn) (accepted or not), no pair of input
heads, neither of which is on $, are more than k tape cells apart. In that
paper, we showed the following:

(**) It is decidable to determine, given an n-tape NPDA M , whether it is
strongly k-synchronized for some k, and if this is the case, the smallest
such k can be found.

2. In [1], we studied the notion of weak head synchronization for multi-
tape finite automata: an n-tape automaton M is weakly k-synchronized
if for any accepted input n-tuple (x1, . . . , xn) there exists some accepting
computation of M such that at any time no pair of input heads, neither of
which is on $, are more than k tape cells apart.

Weak synchronization is a more general notion than strong synchroniza-
tion. Obviously, a strongly synchronized machine is also weakly synchronized,
but the converse is not true. Consider, e.g., the set L = {(am$, bn$) | m,n >
0}. We can construct a 2-tape NFA M , which when given input (am$, bn$),
nondeterministically executes (a) or (b) below:
(a) M reads am$ on tape 1 until head 1 reaches $, and then reads bn$ on

tape 2 until head 2 reaches $ and then accepts.
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(b) M reads the symbols on the two tapes simultaneously until one head
reaches $. Then the other head scans the remaining symbols on its tape
and accepts.

Then M is not strongly synchronized, because of (a). However, M is weakly
synchronized (in fact, weakly 0-synchronized) because every tuple (am$, bn$)
can be accepted in a computation as described in (b). Thus strongly synchro-
nized implies weakly synchronized, but not conversely.

It turns out that weak synchronization and synchronizability decision
problems are more difficult and subtle than their strong counterparts. For
example, it was shown in [1] that, unlike (**) above, it is undecidable to deter-
mine, given a 2-ambiguous 2-tape NFA, whether it is weakly k-synchronized.
However, the problem is decidable if M is 1-ambiguous (i.e., unambiguous).

In the present paper we study the notion of weak head synchronization and
synchronizability for nondeterministic multitape automata equipped
with a pushdown stack (NPDA) or a counter (NCM) and possibly
augmented with additional reversal-bounded counters, as well as mul-
titape space-bounded Turing machines. We obtain contrasting decidability
results for restricted versions of these machines in terms of ambiguity and bound-
edness of one or more strings in the input tuples.

Note: Some proofs are omitted due to lack of space. All proofs will be given in
a full version of the paper.

2 Preliminaries

A (one-way) n-tape deterministic finite automaton (DFA) M is a finite automa-
ton with n tapes where the content of each tape is a string over input alphabet
Σ. Each tape is read-only and has an associated one-way input head. We assume
that each tape has a right end marker $ (not in Σ). On a given n-tuple input
x = (x1, . . . , xn), M starts in the initial state q0 with all the heads on the first
symbols of their respective tapes. The transition function of M consists of rules
of the form δ(q, a1, . . . , an) = (p, d1, . . . , dn) (resp. = ∅). Such a rule means that
if M is in state q, with head Hi on symbol ai, then the machine moves Hi in
direction 1 or 0 (for right move or stationary move), and enters state p (resp.,
halts). When a head reaches the end marker $, that head has to remain on the
end marker. The input x is accepted if M eventually reaches the configuration
where all n heads are on $ in an accepting state. Let M be an n-tape DFA and
k ≥ 0. M is weakly k-synchronized if for every n-tuple x = (x1, . . . , xn) that
is accepted, the unique computation on x is such that at any time during the
computation, no pair of input heads, neither of which is on $, are more than k
cells apart. Notice that, since the condition in the definition concerns pairs of
heads that are both on symbols in Σ, if one of these two heads is on $, then
we can stipulate that the condition is automatically satisfied, irrespective of the
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distance between the heads. In particular, if k = 0, then all heads move to the
right synchronously at the same time (except for heads that reach the right end
marker early). M is weakly synchronized if it is weakly k-synchronized for some k.

The above definitions generalize to n-tape nondeterministic finite automata
(NFAs). Now, weakly k-synchronized requires that every n-tuple x = (x1, . . . , xn)
that is accepted has a computation on x such that at any time during the com-
putation, no pair of input heads, neither of which is on $, are more than k cells
apart. The definitions can also be generalized to n-tape deterministic pushdown
automata (DPDAs) and n-tape nondeterministic pushdown automata (NPDAs),
which may even be augmented with a finite number of reversal-bounded counters.
At each step, each counter (which is initially set to zero) can be incremented by
1, decremented by 1, or left unchanged and can be tested for zero. The counters
are reversal-bounded in the sense that there is a specified r such that during any
computation, no counter can change mode from increasing to decreasing and
vice-versa more than r of times. A counter is 1-reversal if once it decrements,
it can no longer increment. Clearly, an r-reversal counter can be simulated by
*(r + 1)/2+ 1-reversal counters.

A nondeterministic counter machine (NCM) is an NFA augmented with one
counter. Note that an NCM is a special case of an NPDA where the stack alpha-
bet consists of only one symbol, in addition to a distinguished bottom-of-the-
stack symbol B which is never modified. Hence the stack can be thought of as a
counter since it can only push or pop the same symbol, which would correspond
to incrementing or decrementing the stack height by 1. The count is zero when
the stack contains only the bottom symbol B. DCM is the deterministic version
of NCM.

Given an n-tuple (x1, . . . , xn), denote by AL(x1, . . . , xn) an n-track string
where the symbols of xi’s are left-justified (i.e., the symbols are aligned) and
the shorter strings are right-filled with blanks (λ) to make all tracks the same
length. For example, AL(01, 1111, 101) has 01λλ on the upper track, 1111 on
the middle track, and 101λ on the lower track. Given a set L of n-tuples, define
AL(L) = {AL(x) | x ∈ L}.

A machine is k-ambiguous if there are at most k accepting computations for
any input. Note that unambiguous is the same as 1-ambiguous, and deterministic
is a special case of unambiguous.

A language is bounded if it is a subset of a∗1 · · ·a∗n for some distinct letters
(symbols) a1, . . . , an. A multitape machine is unary if each tape contains a string
over a single symbol (letter); bounded if each tape contains a string from a
bounded language; and all-but-one-bounded (ABO-bounded) if all but the first
tape contains a string from a bounded language. We also refer to the inputs of
such machines as unary, bounded, ABO-bounded, respectively.

The following lemma can be easily verified.

Lemma 1. Let L be a set of n-tuples.
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1. L is accepted by a weakly 0-synchronized n-tape NFA if and only if AL(L)
is regular.

2. L is accepted by a weakly 0-synchronized n-tape NPDA if and only if AL(L)
is context-free.

Let N be the set of nonnegative integers and k be a positive integer. A subset
Q of Nk is a linear set if there exist vectors v0, v1, . . . , vn in Nk such that Q =
{v0+t1v1+· · ·+tnvn | t1, . . . , tn ∈ N}. The vectors v0 (referred to as the constant
vector) and v1, . . . , vn (referred to as the periods) are called the generators of the
linear set Q. The set Q ⊆ Nk is semilinear if it is a finite union of linear sets.
The empty set is a trivial (semi)linear set, where the set of generators is empty.
Every finite subset of Nk is semilinear – it is a finite union of linear sets whose
generators are constant vectors. Semilinear sets are closed under (finite) union,
complementation and intersection. It is known that the disjointness, containment,
and equivalence problems for semilinear sets are decidable [2].

Let Σ = {a1, . . . , ak}. For w ∈ Σ∗, let |w| is the number of letters in w, and
|w|ai denote the number of occurrences of ai in w. The Parikh image P (w) of
w is the vector (|w|a1 , . . . , |w|ak); similarly, the Parikh image of a language L is
defined as P (L) = {P (w) | w ∈ L}.

It is known that the Parikh image of a language L accepted by an NPDA
(i.e., L is context-free) is an effectively computable semilinear set [5]. This was
generalized in [3]:

Theorem 2. The Parikh image of a language L accepted by an NPDA with
1-reversal counters is an effectively computable semilinear set.

We will need the following result from [3]:

Theorem 3. The emptiness (Is L(M) = ∅?) and infiniteness (Is L(M) infi-
nite?) problems for 1-tape NPDAs with reversal-bounded counters are decidable.

Convention: (1) We shall also refer to a set of n-tuples accepted by an n-tape
machine as a language. (2) All input n-tuples (x1, . . . , xn) are delimited by a
right end marker $ on each tape, although sometimes the end markers are not
explicitly shown.

3 Weak Synchronization of Multitape Automata

In this section, we study the weak synchronization decision problem for multi-
tape NCM/NPDA with/without additional reversal-bounded counters. We ob-
tain sharp contrasting results by considering further restrictions on ambiguity
(unambiguous, finitely ambiguous, infinitely ambiguous) and boundedness of in-
put strings (bounded, ABO-bounded, unbounded). The results will be organized
according to their proof techniques, which fall under three categories: simula-
tion by 1NPDAs augmented by reversal-bounded counters, reduction from Post
Correspondence Problem, and reduction from halting problems of Turing and
2-counter machines. (Note that 1NPDA is an abbreviation for 1-tape NPDA.)
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3.1 Technique 1: Simulation by 1NPDAs with Reversal-Bounded
Counters

We will see that it is decidable, given an unambiguous multitape NPDA M with
reversal-bounded counters, whether M is weakly k-synchronized for a given k
(resp., for some k). We will also show that if M is ambiguous but its tapes are
over bounded languages, it is decidable whether it is weakly k-synchronized for
a given k.

Unambiguous Multitape NPDAs

Let M be an n-tape NPDA M augmented with reversal-bounded counters. M
may be ambiguous. Define L = {1d | d ≥ 0, for some computation of M on some
input n-tuple x = (x1, . . . , xn) (accepting or not) there are two heads that get
separated more than d cells apart during the computation}.

For k ≥ 0, define Lk = {1k | for some computation of M on some input n-
tuple x = (x1, . . . , xn) (accepting or not) there are two heads that get separated
more than k cells apart during the computation}.

In [4], it was shown that we can construct a 1-tape NPDA M ′ (resp., Mk)
augmented with reversal bounded counters which accepts L (resp., Lk). Then
M is not strongly k-synchronized for some k (resp., for a given k) if and only
if L is infinite (resp., Lk �= ∅), which is decidable by Theorem 3. When M is
unambiguous, similar constructions work for the “weakly” version by modifying
M ′ (resp., Mk) so that it accepts 1d (resp., 1k) if during the unique accepting
computation of M on some input n-tuple x that is accepted, there are two heads
that get separated more than d (resp., k) cells apart. Hence, we have:

Theorem 4. It is decidable to determine, given an unambiguous n-tape NPDA
M augmented with reversal-bounded counters, whether it is weakly k-synchronized
for some k (resp., for a given k).

Bounded-Input Multitape NPDAs

When the multitape NPDA is ambiguous but it is over bounded languages, we
have:

Theorem 5. It is decidable to determine, given an integer k ≥ 0 and an n-
tape NPDA M over a∗11 · · · a∗1m1

× · · · × a∗n1 · · ·a∗nmn
where the aij’s are distinct

symbols, whether M is weakly k-synchronized.

Proof. We prove the theorem for the case of 2 tapes. The same technique works
for any number of tapes. Let M be a 2-tape NPDA, where the string on tape 1
is from the bounded language a∗1 · · · a∗r and the string on tape 2 is from b∗1 · · · b∗s,
for some distinct symbols a1, . . . , ar, b1, . . . , bs.

Construct a (1-tape) NPDA M1 with r + s 1-reversal counters C1, . . ., Cr,
D1, . . ., Ds that accepts a language that is a subset of a∗1 · · ·a∗rb∗1 · · · b∗s such that
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L(M1) = {ai11 · · · airr b
j1
1 · · · bjss | (ai11 · · ·airr , b

j1
1 · · · bjss ) ∈ L(M)}. M1 operates as

follows when given the input ai11 · · ·airr b
j1
1 · · · bjss : It reads the input and stores

i1, . . . , ir, j1, . . . , js in counters C1, . . . , Cr, D1, . . . , Ds. Then M1 simulates the
computation of M on (ai11 · · · airr , b

j1
1 · · · bjss ), using the integers stored in the

counters. M accepts if and only if M1 accepts. It is known that the Parikh
image of the language accepted by a 1-tape NPDA with 1-reversal counters (M1

in this case) is an effectively computable semilinear set, i.e.,

P (L(M1)) = {(i1, . . . , ir, j1, . . . , js) | ai11 · · · airr b
j1
1 · · · bjss ∈ L(M1)}

is a semilinear set [3].
Next, we construct from M a 2-tape NPDA M ′ which simulates M faithfully

except that it halts and rejects whenever the heads of M are no longer within
k cells apart (when neither head is on $). Clearly L(M ′) ⊆ L(M), and M is
weakly 0-synchronized iff L(M) = L(M ′). To decide this condition, we construct
from M ′ (as above), an NPDA with 1-reversal counters M ′

1 such that L(M ′
1) =

{ai11 · · · airr b
j1
1 · · · bjss | (ai11 · · ·airr b

j1
1 · · · bjss ) ∈ L(M ′

1)}. Then P (L(M ′
1)) is also

semilinear. Clearly, L(M) = L(M ′) iff L(M1) = L(M ′
1). The result follows, since

the equivalence of semilinear sets is decidable [2]. ��

The above result generalizes to more generally bounded languages and machines
augmented with reversal-bounded counters:

Theorem 6. It is decidable to determine, given an n-tape NPDA M augmented
with reversal-bounded counters over x∗

11 · · ·x∗
1m1

× · · · × x∗
n1 · · ·x∗

nmn
for some

(not necessarily distinct) nonnull strings xij ’s and an integer k ≥ 0, whether M
is weakly k-synchronized.

3.2 Technique 2: Reduction from Post Correspondence Problem

In [1], it was shown that it is undecidable to determine, given a 2-ambiguous
2-tape NFA M , whether M is weakly k-synchronized for a given k (resp., for
some k), and whether there is a weakly 0-synchronized 2-tape NFA M ′ such
that L(M ′) = L(M). We extend this result to 2-ambiguous 2-tape 1-reversal
NCMs and 2-ambiguous 2-tape 3-reversal NPDAs. Recall that an NCM is a
special case of an NPDA (it has a counter instead of a stack). These results are
obtained by reduction from the undecidable problem of Post Correspondence
Problem (PCP).

An instance I = (u1, . . . , un); (v1, . . . , vn) of the PCP is a pair of n-tuples of
nonnull strings over an alphabet with at least two symbols. A solution to I is
a sequence of indices i1, i2, . . . , im such that ui1 . . . uim = vi1 . . . vim . It is well
known that it is undecidable to determine, given a PCP instance I, whether it
has a solution. We can define W (I) = {x | x = ui1 . . . uim = vi1 . . . vim ,m ≥
1, 1 ≤ i1, . . . , im ≤ n}. Then I has a solution if and only if W (I) �= ∅. We shall
also refer to a string x in W (I) as a solution to I.
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2-Ambiguous 2-Tape NPDAs

Theorem 7. The following problems are undecidable, given a 2-ambiguous 2-
tape 1-reversal NCM M :

1. Is M weakly k-synchronized for a given k?
2. Is M weakly k-synchronized for some k?
3. Is there a 2-tape NCM (or NPDA) M ′ that is weakly 0-synchronized (or

weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M ′) = L(M)?

Proof. Synchronization (the first two items) is implied by Theorem 2 from [1].
It remains to show synchronizability (the last item). We first prove the result for
a general (i.e., unboundedly ambiguous) 2-tape 1-reversal NCM M .

Let I = (u1, . . . , un); (v1, . . . , vn) be an instance of the PCP, where the ui’s
and the vi’s are nonnull strings in {0, 1}∗. Let a, b, c be new symbols. Define the
language (of tuples):

L = {(xarbs, yci) | r, s, i > 0, x �= y} ∪
{(xa3ib2i, xci) | i > 0, x is a solution to I}.

L clearly can be accepted by a 2-tape 1-reversal NCM M which, when given
input (xarbs, yci), nondeterministically accepts if one of the following holds:

(a) x �= y: this step can be performed deterministically with the two heads in
0-sync.

(b) x = ui1 . . . uik and y = vi1 . . . vik for some (guessed) index sequence i1, . . .,
ik, r = 3i and s = 2i: after verifying that x = y, M verifies that r = 3i
while simultaneously storing i in the counter and then verifies that s = 2i,
reversing the counter only once in the process.

If I has no solutions, then all accepting computations are of type (a) and henceM
is weakly 0-synchronized. We show that if I has a solution then no 2-tape NCM
(or NPDA) M accepting L can be weakly 0-synchronized (weakly k-synchronized
for a given k, or weakly k-synchronized for some k).

Suppose such an M exists, so AL(L) is context-free by Lemma 1. Let

t = (xa3mb2m, xcm)

be the tuple in L where x is a solution to the PCP instance I and m is the
Ogden’s pumping lemma constant for L.

We mark the m symbols AL(a, a) in AL(t). According to Ogden’s lemma,
AL(t) can be written as UV XY Z where X has at least one marked position;
either U and V both have marked positions, or Y and Z both have marked
positions; V XY has at most m marked positions; and UV kXY kZ is in L for
every k ≥ 0.
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We have five cases:

1. Y and Z both have marked positions: this means that V and Y do not
contain b’s in their upper tracks, and Y has at least one AL(a, a). Hence
UV VXY Y Z does not have the correct number of b’s on its upper track, and
cannot be in L, a contradiction.

2. U and V both have marked positions: this means that |V | ≥ 1, V con-
sists solely of AL(a, a), and Y either is empty or consists solely of AL(a, a),
AL(a, λ), or AL(b, λ).
(a) Y is empty: same as case 1.
(b) Y consists solely of AL(a, a): same as case 1.
(c) Y consists solely of AL(a, λ): same as case 1.
(d) Y consists solely of AL(b, λ): the strings UV k+1XY k+1Z are of the form

AL(xa3m+k|V |b2m+k|Y |, xcm+k|V |),

where 3m + k|V | = 3(m + k|V |), which implies that |V | = 0, a contra-
diction.

It follows the PCP instance I does not have a solution if and only if L(M) =
L(M ′) for some weakly 0-synchronized 2-tape NCM (or NPDA) M ′. This shows
the undecidability of part 3.

We now modify the construction of the 2-tape NCM M above to make it
2-ambiguous. The sources of ambiguity are in computations of type (b). Clearly,
since computations of type (a) is deterministic, if we can make computations of
type (b) deterministic, then the 2-NCM will be 2-ambiguous.

We accomplish this as follows. Instead of x, we use x′ where x′ has two
tracks: track 1 contains x and track 2 contains the “encoding” of the indices
that are used to match x and y; y remains single-track. Specifically, let I =
(u1, . . . , un); (v1, . . . , vn) be an instance of the PCP. Let #, e1, . . . , en be new
symbols. For 1 ≤ i ≤ n, let the string E(i) = ei#

|ui|−1. Thus, the length of E(i)
is equal to the length of ui. Let Δ = {#, e1, . . . , en} and define the language:

L = {(x′arbs, yci) | r, s, i > 0, x′ is a 2-track tape where the first track contains

x and the second track is a string in Δ∗, x �= y} ∪
{x′a3ib2i, yci) | i > 0, x′ is a 2-track tape where the first track contains x

and the second track is a string E(i1) · · ·E(ir) for some

i1, . . . , ir, x = y, x = ui1 · · ·uir , y = vi1 · · · vir , j = 2i}.

One can easily check that the computations of types (a) and (b) can be made
deterministic. However, it is possible that the same input of the form (x′arbs, yci),
where x �= y can be accepted in both computations of type (a) or (b). (x is the
first track of x′.) Hence, M is 2-ambiguous. ��
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2-Ambiguous ABO-Bounded-Input 2-Tape NPDAs

In Theorem 7, the tapes ofM have unrestricted inputs. We now state a somewhat
stronger variation in that one tape is restricted to unary inputs, but M is now
a 2-ambiguous 2-tape 3-reversal NPDA; its proof also involves a reduction from
PCP. (The stack of an NPDA is r-reversal if the number of times it changes mode
from pushing to popping and vice-versa during any computation is at most r
times.)

Theorem 8. The following problems are undecidable, given a 2-ambiguous 2-
tape 3-reversal NPDA M over Σ∗ × c∗, where Σ is an alphabet with at least 2
symbols:

1. Is M weakly k-synchronized for a given k?
2. Is M weakly k-synchronized for some k?
3. Is there a 2-tape NPDA M ′ that is weakly 0-synchronized (weakly k-synchro-

nized for a given k, or weakly k-synchronized for some k) such that L(M ′) =
L(M)?

3.3 Technique 3: Reduction from Halting Problems

In this subsection we present two additional improvements of Theorem 7. First,
we strengthen Theorem 7 by showing that the decision problems for 2-tape 1-
reversal NCM remains undecidable even when one tape is over a unary alphabet,
although the machine is now allowed to have unbounded ambiguity (Theorem
9). Second, we prove another improvement of Theorem 7 that allows all but
one input tape to be bounded at the cost of unbounded reversals of the counter
(Theorem 11). Both sets of results are proved by reduction from the undecidable
halting problems for Turing and counter machines.

Ambiguous ABO-Bounded-Input 2-Tape NCMs

Theorem 9. The following problems are undecidable, given a 2-tape 1-reversal
NCM M over input tuples from Σ∗ × c∗, where Σ has at least 2 symbols and c
is a symbol:

1. Is M weakly k-synchronized for a given k ?
2. Is M weakly k-synchronized for some k ?
3. Is there a 2-tape NCM (or NPDA) M ′ that is weakly 0-synchronized (or

weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M ′) = L(M)? Is there a 2-tape 1-reversal weakly 0-synchronized
NPDA M ′ such that L(M) = L(M ′) ?

Proof. By reduction from the halting problem for Turing machines. Let T be
an arbitrary Turing machine. The (unique) halting computation of T on blank
input, if it exists, can be described by a sequence of instantaneous descriptions
H(T ) = I1#I2# . . .#Im, where I1 is the initial instantaneous description of T ,
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Im is a halting instantaneous description of T , and Ij+1 follows from Ij in one
step for j = 1, 2, . . . ,m− 1. Let Σ be set of symbols that can occur in H(T ) and
a, b, c be new symbols. Define

LT = {(xarbs, c|x|+i) | x ∈ Σ, r, s, i > 0, x �= H(T ) or (r = 3i, s = 2i)}.

L(T ) can be accepted by a 2-tape 1-reversal NCM M as follows: on input
(xarbs, ct), M nondeterministically verifies one of the following two possibilities:

1. x �= H(T ): either x is not in the well-formed regular set, or I1 is not the
initial ID, or Im is not a halting ID, or Ij+1 does not follow from Ij in one
step for some j. The first three conditions can be checked with a DFA. The
last condition can be checked by guessing j and guessing the location where
Ij and Ij+1 do not agree using one reversal of the counter. Since the number
of candidates for j depends on m, M is not finitely ambiguous. Regardless
of the guessed values, M ’s heads move in 0-sync in this process.

2. r = 3i and s = 2i, where i = t− |x|: M first verifies that t ≥ |x| by moving
its two heads in 0-sync until the first a is read, and then verifies that r = 3i
by moving the first head three times as fast. At the same time, M loads the
counter with i. When M has finished reading the second tape, it then verifies
that s = 2i using one reversal of the counter. Note that since i is arbitrary,
the two heads of M are separated by an arbitrary distance in this process.

If T does not halt on blank input, then any input that is accepted via a com-
putation of type (2) above is also accepted by a computation of type (1), and
hence M is weakly 0-synchronized.

On the other hand, if T halts on blank input, then there is a (unique) ac-
cepting computation x of T . For any value of i, (xa3ib2i, c|x|+i) is accepted via
a computation of type (2) of M only. Now if LT is accepted by some weakly
0-synchronized 2-tape 1-reversal NCM M ′, then AL(LT ) must be context-free
by Lemma 1, which is a contradiction since for large values of i, (xa3ib2i, c|x|+i)
can be pumped using Ogden’s Lemma to get a string not in LT as shown in the
proof of Theorem 7.

We have shown that M is weakly 0-synchronized, in fact, weakly synchronized
iff L(M) = L(M ′) for some weakly 0-synchronized M ′ iff T halts on blank input.

��

In contrast to the above theorem, the following result was shown in [1]:

Theorem 10. It is decidable to determine, given an n-tape NFA M over Σ∗ ×
x∗
21· · · x∗

2m2
× · · · × x∗

n1 · · ·x∗
nmn

for some (not necessarily distinct) nonnull
strings xij ’s and a nonnegative integer k, whether M is weakly k-synchronized.

3-Ambiguous ABO-Bounded-Input Unbounded-Reversal
2-Tape NCMs

The following theorem can be proved using reduction from the halting problem
of 2-counter machines:
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Theorem 11. The following problems are undecidable, given a 3-ambiguous 2-
tape NCM M over input tuples from Σ∗ × c∗, where Σ has at least 2 symbols
and c is a symbol:

1. Is M weakly k-synchronized for a given k ?
2. Is M weakly k-synchronized for some k ?
3. Is there a 2-tape NCM (or NPDA) M ′ that is weakly 0-synchronized (or

weakly k-synchronized for a given k, or weakly k-synchronized for some k)
such that L(M ′) = L(M)?

Open: Note that in Theorem 11, the counter of the NCM is unrestricted. Can
the theorem be further strengthen so that the NCM is k-ambiguous for some k
and the counter is r-reversal for some r?

4 Space-Bounded Multitape Turing Machines

In this subsection, we investigate the weak synchronization problems for Turing
machines.

Theorem 12. The following problems are undecidable, given a 2-tape DTM M
with logarithmic work space over input tuples from a∗ × b∗, where a and b are
symbols:

1. Is M weakly k-synchronized for a given k ?
2. Is M weakly k-synchronized for some k ?

Proof. By reduction from the halting Problem of Turing machines. Let T be any
one-tape Turing machine. The halting computation H(T ) = I0#I1 . . .#Ir of T
on blank input, if it exists, can be encoded and decoded using only two symbols
and logarithmic space. Define

LT = {(ai, b) : i > 0, | i = 2nm,m odd, binary(n) = H(T )}.

Clearly there is a 2-tape DTM with logarithmic work space to accept L: on
input (ai, b), M first computes the binary representation of i on its work tape,
and then computes the binary representation of n, where i = 2nm, m is odd. M
then verifies that the binary representation of n is the encoding of the halting
computation of T on blank input: H(T ) = I0#I1# . . .#Ir. It then moves the
second head until it reads the right marker $ and then accepts. Otherwise M
rejects. This can be done deterministically in logarithmic space using only the
first head.

If T does not halt on blank input, then LT = ∅, and hence M is vacuously
weakly 0-synchronized. Else if T halts on blank input, then LT is infinite; since
there is only one b and arbitrarily many a’s in accepted inputs, M cannot be
weakly 0-synchronized for any k. Hence we have shown that T halts on blank
input iff M is weakly 0-synchronized iff M is weakly k-synchronized for any k.
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Unlike previous results of this type, there is a weakly 0-synchronized 2-tape
DFA M ′ with logarithmic work space to accept LT : instead of moving the second
head after verifying that the first tape encodes the halting computation of T , M ′

verifies that the second tape contains b by moving the second head in 0-sync with
the first head. We will see that machines of this type are always synchronizable
(Theorem 13, part 3). ��

Theorem 13.

1. Let S(n) ∈ o(n). It is undecidable to determine, given a 2-ambiguous 2-tape
NFA M , whether there exists a 2-tape S(n) space-bounded NTM M ′ that
is weakly 0-synchronized (or weakly k-synchronized for a given k, or weakly
k-synchronized for some k) such that L(M ′) = L(M).

2. Let S(n) ∈ Ω(n). Then any multitape S(n) space-bounded NTM can be con-
verted to an equivalent weakly 0-synchronized multitape S(n) space-bounded
M ′.

3. Let S(n) ∈ Ω(log n). Then any multitape S(n) space-bounded NTM over
ABO-bounded languages can be converted to an equivalent weakly 0-synchro-
nized multitape S(n) space-bounded M ′.

5 Summary

We investigated the boundaries between decidability and undecidability of
whether a pushdown automaton (resp., counter machine, Turing machine) with
certain restrictions is k-synchronized for a given k or for some k (synchroniza-
tion).

The main result is synchronization is undecidable for 2-tape 2-ambiguous,
1-reversal NCMs (Thm. 7). It becomes decidable when the NCMs are either un-
ambiguous (Thm. 4) or bounded (Thms. 5,6); these decidability results hold even
the machines are allowed additional tapes, additional reversal-bounded counters
and one pushdown stack.

When one tape is unbounded, synchronization remains undecidable for am-
biguous NCMs with one reversal (Thm. 9), for 3-ambiguous NCMs with unlim-
ited counter reversals (Thm. 11), and 2-ambiguous NPDAs with three reversals
(Thm. 8). Finally, synchronization is undecidable for 2-tape logarithmic space-
bounded DTMs.

We also obtained undecidability of whether there exist equivalent synchro-
nized versions of a given machine (synchronizability) for some of the above-
mentioned classes; in contrast, we showed how to construct equivalent synchro-
nized versions in two cases of space-bounded NTMs.
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Abstract. We introduce an automata model for data words, that is
words that carry at each position a symbol from a finite alphabet and
a value from an unbounded data domain. The model is (semantically) a
restriction of data automata, introduced by Bojanczyk, et. al. in 2006,
therefore it is called weak data automata. It is strictly less expressive
than data automata and the expressive power is incomparable with
register automata. The expressive power of weak data automata corre-
sponds exactly to existential monadic second order logic with successor
+1 and data value equality ∼, EMSO2(+1,∼). It follows from previous
work, David, et. al. in 2010, that the nonemptiness problem for weak
data automata can be decided in 2-NEXPTIME. Furthermore, we study
weak Büchi automata on data ω-strings. They can be characterized by
the extension of EMSO2(+1,∼) with existential quantifiers for infinite
sets. Finally, the same complexity bound for its nonemptiness problem
is established by a nondeterministic polynomial time reduction to the
nonemptiness problem of weak data automata.

1 Introduction

Motivated by challenges in XML reasoning and infinite-state Model Checking,
an extension of strings and finitely labelled trees by data values has been in-
vestigated in recent years. In classical automata theory, a string is a sequence
of positions that carry a symbol from some finite alphabet. In a nutshell, data
strings generalize strings, in that every position additionally carries a data value
from some infinite domain. In the same way, data trees generalize (finitely) la-
belled trees. In XML Theory, data trees model XML documents. Here, the data
values can be used to represent attribute values or text content. Both, cannot
be adequately modelled by a finite alphabet. In a Model Checking1 scenario, the
data values can be used, e.g., to represent process id’s or other data.
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Early investigations in this area usually considered strings over an “infinite
alphabet”, that is, each position only has a value, but no finite-alphabet sym-
bol [2,21,7,15,16,19]. Many of the automata models and logics that have been
studied for data strings and trees lack the usual nice decidability properties of
automata over finite alphabets, unless strong restrictions are imposed [11,4,3,1].

A result that is particularly interesting for our investigations is the decidability
of the satisfiability problem for two-variable logic over data strings [4]. Here, as
usual, the logical quantifiers range over the positions of the data string and it
can be checked whether a position x carries a symbol a (written: a(x)), whether
it is to the left of a position y (x + 1 = y), whether x is somewhere to the left
of y (x < y) and whether x and y carry the same data value (x ∼ y). The logic
is denoted by FO2(+1, <,∼). The result was shown with the help of a newly
introduced automata model for data words, data automata (DA). It turned out,
that the expressive power of these automata can be actually characterized by the
extension of FO2(+1, <,∼) with existential quantification over sets (of positions)
and an additional predicate that holds for x and y if y is the nearest position to
the right of x with the same data value.

However, the complexity of the decision procedure for FO2(+1, <,∼) is very
high. The problem is equivalent to the Reachability problem for Petri nets [13], a
notoriously hard problem whose complexity has not been resolved exactly. Thus,
it has been investigated how the complexity can be reduced, by dropping one
of the predicates x < y or x + 1 = y. In the latter case (that is, for FO2(<,∼))
the complexity decreases to NEXPTIME [4]. In the former case (FO2(+1,∼)) the
complexity also becomes elementary. In [3] a 3-NEXPTIME bound was shown for
the case of data trees and this bound clearly carries over to data strings. A more
direct proof with a 4-NEXPTIME bound was given in [9] and a 2-NEXPTIME
bound was obtained in [20].

The high complexity of the satisfiability of FO2(+1, <,∼) in [4] results from
the high complexity of the nonemptiness problem for data automata. One of the
starting questions for this paper was:

(1) Is there a natural restriction of data automata with (i) a better complexity
and (ii) a correspondence to EMSO2(+1,∼), the closure of FO2(+1,∼) under
existential set quantification?

We show that such a restriction indeed exists. Data automata consist of two au-
tomata A and B. Automaton A is a non-deterministic letter-to-letter transducer
that constructs, given the finite alphabet part of the input data string2 u, a new
data string w (where, for each position, the data value in w is the same as in
u). The second automaton B can then check properties of the subsequences of
w that carry the same data value. We define weak data automata (WDA) which
also use a non-deterministic letter-to-letter transducer but can only test some
simple constraints of the subsequences in the second part. These constraints are
(unary) key, inclusion and denial constraints and they are evaluated for each

2 The transducer also sees whether a position has the same data value as the next
one.
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class separately (there are no inter-class constraints). Essentially, the key differ-
ence between weak data automata and data automata is that these constraints
are invariant under reordering of positions. Weak data automata extend the au-
tomata model of [9] by so-called denial constraints, in a sense that will be made
precise in Lemma 1.

It turns out that WDA are expressively weaker than data automata, in-
comparable with register automata [15,1] and that their expressiveness can be
precisely characterized by the extension of FO2(+1,∼) by existential set quan-
tification, that is, EMSO2(+1,∼). As the property that we use to separate the
expressive power of WDA and DA can be defined in EMSO2(+1, <,∼) we get
that EMSO2(+1,∼) �≡ EMSO2(+1, <,∼) as opposed to the classical setting
(without data values) where EMSO2(+1) ≡ EMSO2(+1, <). Indeed, one of the
benefits of the logical characterization is that it gives an easy means to show
non-expressibility for EMSO2(+1,∼) (and FO2(+1,∼)). From results in [9] it
immediately follows that the nonemptiness problem for WDA can be solved in
2-NEXPTIME.

As mentioned above, one motivation to study data strings comes from Model
Checking. In that context, systems are usually considered to run forever and to
produce infinite traces. Thus, data ω-words need to be considered as well, and
this was actually one of the main motivations of this research. In particular we
address the following questions.

(2) Do the complexity results of [9] carry over to data ω-strings?
(3) Can the expressibility results and logical characterizations of the first part

of the paper also be established for data ω-strings?

It is straightforward to adapt weak data automata for data ω-strings. The trans-
ducer can simply be equipped with a Büchi acceptance mechanism. We refer to
the resulting model as weak Büchi data automata (WBDA). It turns out that
the answer to both questions, (2) and (3), is affirmative. For (3), this is not
hard to prove. The separation of WDA from DA also separates WBDA from
Büchi data automata. It is also not too hard to get a logical characterization of
WBDA by extending EMSO2(+1,∼) with existential set quantifiers that are se-
mantically restricted to bind to infinite sets. The answer to question (2) required
considerably more effort. However, we establish a 2-NEXPTIME upper bound for
the nonemptiness problem for WBDAs by a nondeterministic polynomial time
reduction to the nonemptiness for WDA.

Related work. Some related work was already mentioned above. The pioneering
works in Linear Temporal Logic for ω-words with data are the papers [11,10].
In [10] an extension of Linear Temporal Logic (LTL) to handle data values is
proposed and its satisfiability problem is shown to be decidable. The decision
procedure is a reduction to the reachability problem in Petri nets, thus resulting
in a similarly unknown complexity as for data automata. The logic and automata
considered in [11] are decidable for finite data words, but not primitive recursive,
and undecidable for ω-words. In [18] it is shown that with a safety restriction
both the logic and the automata become decidable, even in EXPSPACE. In [10]
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a logic with PSPACE complexity is considered. It must be noted that in [4] it is
shown that the satisfiability of EMSO2(+1, <,∼) is decidable also on ω-words. In
[5], MSO logic on data words (with possibly multiple data values per position)
is compared to automata models for various types of successor relations. An
extension of data automata with decidable emptiness problem is studied in [24].
In [8] it is shown that rigidly guarded MSO corresponds to recognizability by
orbit finite data monoids.

Organization. We give basic definitions in Section 2. In Section 3, weak data
automata are defined, their complexity is given, and their expressive power is
compared with other models. Section 4 gives the logical characterization of WDA
by EMSO2(+1,∼). Section 5 studies data ω-strings and shows how the nonempti-
ness problem of WBDA can be nondeterministically reduced in polynomial time
to the nonemptiness of WDA. Section 6 states some open problems. Proofs omit-
ted due to space constraints can be found in the full version of this paper ([17]).

2 Notation

Data words. Let Σ be a finite alphabet and D an infinite set of data values.
A finite word is an element of Σ∗, while an ω-word is an element of Σω. A
finite data word is an element of (Σ ×D)∗, while a data ω-word is an element of
(Σ ×D)ω . We often refer to data words also as data strings.

We write a data (finite or ω-) word w as
(
a1
d1

)(
a2
d2

)
· · · , where a1, a2, . . . ∈ Σ

and d1, d2, . . . ∈ D. The symbol ai is the label of position i, while the value di is
the data value of position i. The projection of w to the alphabet Σ is denoted
by Str(w) = a1a2 . . .. A position in w is called an a-position, if the label of that
position is a.

A maximal set of positions with the same data value d is called a class cd of
the word and the Σ-string induced by the symbols at its positions is called
the class string wd. The profile word of a data ω-word w =

(
a1
d1

)(
a2
d2

)
· · · is

Profile(w) = (a1, s1), (a2, s2), . . . ∈ (Σ × {�,⊥})ω, where for each position i ≥ 1
the component si is � if and only if di = di+1. The profile word of a finite data
word

(
a1
d1

)(
a2
d2

)
· · ·
(
an
dn

)
is defined similarly, with the addition that the component

sn is ⊥.

Automata and Büchi automata. An automaton A over the alphabet Σ is a tuple
A = 〈Σ,Q, q0, Δ, F 〉, where Q is a finite set of states, q0 ∈ Q is the initial state,
Δ ⊆ Q × Σ × Q is a set of transitions and F ⊆ Q is a set of accepting states.
A run of A on a word w = a1a2 . . . an is a sequence ρ = q1 . . . qn of states from
Q such that (qi, ai+1, qi+1) ∈ Δ for each 0 ≤ i < n. The run ρ is accepting if
qn ∈ F .

A Büchi automaton A is syntactically just an automaton. A run of A on an
ω-word w = a1a2 . . . is an infinite sequence ρ = q1q2 . . . of states from Q such
that (qi, ai+1, qi+1) ∈ Δ for each i ≥ 0. Let Inf(ρ) denote the set of states that
appear infinitely many times in ρ. The run ρ is accepting if Inf(ρ) ∩ F �= ∅.
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A word (resp. an ω-word) w is accepted by an automaton (resp. Büchi au-
tomaton) A, if there exists an accepting run of A on w. As usual, L(A) (resp.
Lω(A)) denotes the set of words (resp. ω-words) accepted by the automaton A.

Letter-to-letter transducers. A letter-to-letter transducer over the input alphabet
Σ and the output alphabet Γ is a tuple T = 〈Σ,Γ,Q, q0, Δ, F 〉, where Q, q0, F
are the set of states, the initial state, and the set of accepting states, respectively,
and Δ ⊆ Q × Σ × Q × Γ is the set of transitions. The intuitive meaning of
a transition (q, a, q′, γ) is that when the automaton is in state q, reading the
symbol a, then it can move to the state q′ and output γ. A run of T on a
word w = a1a2 . . . an is a sequence (q1, γ1), . . . , (qn, γn) of pairs from Q × Γ
such that (qi, ai+1, qi+1, γi+1) ∈ Δ for each 0 ≤ i < n. Likewise, a run of T on
an ω-word w = a1a2 . . . is a sequence (q1, γ1), (q2, γ2), . . . over Q × Γ such that
(qi, ai+1, qi+1, γi+1) ∈ Δ for each i ≥ 0. A run is accepting if it is accepting in
the sense of (Büchi) automata. We say that v = γ1γ2 . . . is an output of T on w,
if there exists an accepting run (q1, γ1), (q2, γ2), . . . of T on w.

Data automata. A data automaton (DA) is a pair (A,B), where A is a letter-to-
letter transducer with input alphabet Σ×{�,⊥} and output alphabet Γ and B
is a finite state automaton over the alphabet Γ . A data word w is accepted by
(A,B) if the following holds.

– Profile(w) is accepted by A, yielding an output u.
– For each data value d of w, the class string ud is accepted by B.

Data automata were introduced in the stated form in [4]. In [1] it was shown
that their expressive power is not affected, if A gets Str(w) as input as opposed
to Profile(w). In more recent papers, data automata are therefore defined in the
(syntactically) weaker form with input Str(w).

3 Weak Data Automata

In this section we define a new automata model for finite data words and study
its expressive power and its complexity. The model follows a similar approach as
the model of data automata. The profile of the input data word is transformed by
a letter-to-letter transducer and then further conditions on the resulting class
strings are imposed. However, the conditions that can be stated in the new
automata model are much more limited than those of a data automaton (hence
the name weak data automata).

Let Γ be an alphabet. Weak data automata allow three kinds of data con-
straints over Γ :

1. key constraints, written in the form: key(γ), where γ ∈ Γ .
2. inclusion constraints, written in the form: V (γ) ⊆

⋃
γ′∈R V (γ′), where γ ∈ Γ ,

R ⊆ Γ .
3. denial constraints, written in the form: V (γ) ∩ V (γ′) = ∅, where γ, γ′ ∈ Γ .
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Whether a data word w =
(
a1
d1

)
· · ·
(
an
dn

)
satisfies a data constraint C, written as

w |= C, is defined as follows. In the following, we denote by Vw(a), the set of
data values found in a-positions in w, i.e., Vw(a) = {di | ai = a}, for each a ∈ Γ .

1. w |= key(γ), if every two γ-positions in w have different data values.
2. w |= V (γ) ⊆

⋃
γ′∈R V (γ′), if Vw(γ) ⊆

⋃
γ′∈R Vw(γ

′).
3. w |= V (γ) ∩ V (γ′) = ∅, if Vw(γ) ∩ Vw(γ

′) = ∅.

It should be noted that the satisfaction of a data constraint by a data word does
not depend on the order of the positions of the data word. If C is a collection of
data constraints, then we write w |= C, if w |= C for all C ∈ C.

A weak data automaton (WDA) over the alphabet Σ is a pair (A, C), where
A is a letter-to-letter transducer with input alphabet Σ × {�,⊥} and output
alphabet Γ and C is a collection of data constraints over the alphabet Γ . A data
word w =

(
a1
d1

)
· · ·
(
an
dn

)
is accepted by a WDA (A, C), if

– there is an accepting run of A on Profile(w), with an output γ1 . . . γn, and
– the induced data word w =

(
γ1
d1

)
· · ·
(
γn
dn

)
satisfies all the constraints in C.

We write L(A, C) to denote the language that consists of all data words accepted
by (A, C).

We first discuss some extensions of WDA by the constraints that were studied
in [9].

– Disjunctive key constraints are written in the form: key(K), where K ⊆ Γ .
Such a constraint is satisfied by a data word if each of its classes has at most
one position with a symbol from K.

– Disjunctive inclusion constraints are written in the form:
⋃
γ∈S V (γ) ⊆⋃

γ′∈R V (γ′), where S,R ⊆ Γ . Such a constraint is satisfied by a data word
if each class with a position with a symbol from S also has a position with
a symbol from R.

An extended weak data automaton is defined like a WDA but it further allows
disjunctive key and inclusion constraints. The proof of the following Lemma can
be found in the full version of this paper ([17]).

Lemma 1. From each extended WDA (A, C) an equivalent WDA of polynomial
size can be constructed in polynomial time.

Next, we compare the expressive power of weak data automata with other
automata models for data words. More precisely we compare it with register
automata [15,1] and data automata. Register automata are an extension of finite
state automata with a fixed number of registers in which they can store data
values and compare them with the data value of subsequent positions. For a
precise definition we refer3 the reader to [1].

3 The precursor model finite-memory automata was defined on “strings over infinite
alphabets”, that is, essentially data strings without a Σ-component [15].
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We consider the following two data languages.

– La<b consists of all data words over the alphabet {a, b} with the property
that for every a-position i there is a b-position j > i with the same data
value;

– La∗b is the subset of La<b where the next b-position j with the same data
value as i always satisfies j = i+ 2.

Lemma 2. Neither La∗b nor La<b can be recognized by a WDA.

Proof. We first show that no WDA recognizes La∗b. Towards a contradiction, we
thus assume that La∗b is recognized by some weak data automaton (A, C).

To this end, let n = |Γ |4+1 and let d1, d
′
1, d2, d

′
2, . . . dn, d

′
n be pairwise different

data values. We consider the data word

w =

(
a

d1

)(
a

d′1

)(
b

d1

)(
b

d′1

)(
a

d2

)(
a

d′2

)(
b

d2

)(
b

d′2

)
· · ·
(
a

dn

)(
a

d′n

)(
b

dn

)(
b

d′n

)
of length 4n. Clearly, w is in La∗b and its profile is ((a,⊥)(a,⊥)(b,⊥)(b,⊥))n.

Let γ = γ1γ2 · · · γ4n be an output ofA on the profile of w such that
(
γ1
d1

)
· · ·
(
γ4n
d′n

)
satisfies all constraints in C. By the choice of n, there exist numbers i, j with
0 ≤ i < j < n such that γ4i+1γ4i+2γ4i+3γ4i+4 = γ4j+1γ4j+2γ4j+3γ4j+4.

Let u be the data word obtained from w by swapping the positions of the
data values di+1d

′
i+1 and dj+1d

′
j+1. That is, u equals

(
a

d1

)
· · ·

(
a

di+1

)(
a

d′i+1

)(
b

dj+1

)(
b

d′j+1

)
· · ·

(
a

dj+1

)(
a

d′j+1

)(
b

di+1

)(
b

d′i+1

)
· · ·

(
b

d′n

)
.

Clearly, u �∈ La∗b. However, because Profile(u) = Profile(w), γ1γ2 . . . γ4n is
also an output of A on Profile(u). Moreover, Vu(γ) = Vw(γ) for each γ ∈ Γ ,
and therefore the validity of inclusion and denial constraints does not change.
Furthermore, as in u and w every data value occurs at exactly one a-position
and at exactly one b-position, they cannot be distinguished by key constraints,
either. Thus, u ∈ L(A, C), the desired contradiction.

The proof for La<b is exactly the same, as w ∈ La<b and u �∈ La<b (because
of
(
a

dj+1

)
). ��

Theorem 3. (a) The class of data languages that are recognized by WDA is
strictly included in the class of data languages recognized by DA.

(b) The classes of languages recognized by WDA and by register automata are
incomparable.

Proof. Towards (a) we first show that every WDA can be translated into a DA
and thus WDA recognize a subclass of DA. That the subclass is strict can then
be concluded from (b) as register automata are captured by DA [1] and thus
there is a data language that can be recognized by a DA but not a WDA.

Let thus (A, C) be a WDA. Then (A,B) is a data automaton for L(A, C),
where the automaton B tests the constraints in C as follows.
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– For every key constraint key(γ) of C, B tests that every class string has at
most one γ-position.

– For every inclusion constraint V (γ) ⊆
⋃
γ′∈R V (γ′), B tests that every class

string with a γ-position also has a γ′-position, for some γ′ ∈ R.
– For every denial constraint V (γ) ∩ V (γ′) = ∅, B checks that classes with a

γ-position do not have any γ′-positions.

To show statement (b) we first consider the separation language L = La∗b which
cannot be recognized by a WDA by Lemma 2. However, La∗b can be easily
recognized by a register automaton that always stores the last two data values
in two registers and the information about their symbols in its state.

On the other hand, it is trivial to show that the set of all data strings over
Σ = {a} in which every data value occurs only once can be recognized by a
WDA (A, C), where A is simply an identity transducer and C = {key(a)}. It
is already shown in [15] that such a language cannot be recognized by register
automata. ��

The complexity of the nonemptiness problem for WDA follows directly from
results in [9].

Theorem 4. The nonemptiness problem for WDA is decidable in 2-NEXPTIME.

Proof. In [9], it was shown that given an automaton A that reads profile strings
and a set C of disjunctive key and inclusion constraints, to decide whether there
is a data word w such that A accepts Profile(w) and w |= C can be done in
nondeterministic double exponential time.

Clearly, this is basically the same as the nonemptiness problem for WDA with
disjunctive key and inclusion constraints only. It thus only remains to show that
denial constraints can be translated into disjunctive constraints in a nonempti-
ness respecting fashion. To this end, a denial constraint V (γ1) ∩ V (γ2) = ∅ can
be replaced as follows. We add two new symbols γ′

1, γ
′
2 and require that in each

class with γi one γ′
i occurs but γ

′
1 and γ′

2 do not co-occur by two inclusion con-
straints V (γ1) ⊆ V (γ′

1) and V (γ2) ⊆ V (γ′
2) and a disjunctive key constraint for

{γ′
1, γ

′
2}. ��

4 A Logical Characterization of Weak Data Automata

In this section, we give a logical characterization of the data languages recog-
nized by weak data automata in terms of existential second order logic. The
characterization is an analogue of the Theorem of Büchi, Elgot and Trakhten-
brot [6,12,23] for string languages. This theorem can be stated for various logics,
the most interesting one for our context is that EMSO2(+1) characterizes exactly
the regular languages.

We use logical structures w = 〈{1, . . . , n},+1, <, {a(·)}a∈Σ,∼〉 to represent
data words, where {1, . . . , n} is the set of positions, +1 is the successor relation
(i.e., +1(i, j) if i + 1 = j), < is the order relation (i.e., <(i, j) if i < j), the
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a(·)’s are the label relations, and i ∼ j holds if positions i and j have the same
data value. As the empty data word can not be properly represented, the logical
characterization of WDA ignores the empty data word. That is, we associate
with each WDA a formula ϕ such that, if the automaton accepts the empty data
string then its language is the language defined by ϕ augmented by ε.

For a set S ⊆ {+1, <,∼} of relation symbols, we write FO(S) for first-order
logic with the vocabulary S, MSO(S) for monadic second-order logic (which ex-
tends FO(S) with quantification over sets of positions), and EMSO(S) for existen-
tial monadic second order logic, that is, all sentences of the form ∃R1 . . . ∃Rm ψ,
where ψ is an FO(S) formula extended with the unary predicates R1, . . . , Rm.
By FO2(S) we denote the restriction of FO(S) to sentences with two variables x
and y, and by EMSO2(S) the restriction of EMSO(S) where the first-order part
uses only two variables.

4.1 From Weak Data Automata to EMSO2(+1,∼)

Theorem 5. For every weak data automaton (A, C), an equivalent
EMSO2(+1,∼) formula ϕ is constructible in polynomial time.

The construction can be found in the full version [17]. It is similar as the
classical translation from NFAs to MSO formulas. See, for example, [22].

4.2 From EMSO2(+1,∼) to Weak Data Automata

Theorem 6. There is an algorithm that translates every EMSO2(+1,∼) for-
mula ϕ into an equivalent weak data automaton (A, C) in doubly exponential
time. In particular, the output alphabet Γ of A and the number of constraints
are C is at most exponential.

The first two steps of the following translation are very similar to the one given
in [4].

Proof. The algorithm first transforms ϕ into an equivalent EMSO2(+1,∼) for-
mula in Scott normal form (SNF) of the form ψ = ∃R1 . . . ∃Rn[∀x∀y χ′ ∧∧m
i=1 ∀x∃y χ′

i], where χ′ and each χ′
i are quantifier-free [14]. The size of ψ is

linear in the size of ϕ, in particular, n = O(|ϕ|) and m = O(|ϕ|).
Then it rewrites formula χ′ into an, at most exponential, conjunction χ =∧
j ¬(αj(x)∧βj(y)∧δj(x, y)∧εj(x, y)), where, for every j, αj , βj are conjunctions

of literals with unary relation symbols, δj is x ∼ y or x �∼ y and εj(x, y) is one
4

of x = y, y = x+ 1 and |x− y| > 1, where the latter is an abbreviation for the
formula ¬(y = x+ 1) ∧ ¬(x = y + 1) ∧ x �= y, expressing that the distance of x
and y is at least two.

Likewise, it rewrites every χ′
i into an, at most exponential, disjunction χi =∨

j(α
i
j(x) ∧ βij(y) ∧ δij(x, y) ∧ εij(x, y)), where the atomic formulas are of the

respective forms as above.

4 The case x = y+1 does not need to be considered as it can be obtained by swapping
x and y.
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The idea of the construction is that A guesses some relations that allow to
state some of the properties expressed in ψ by constraints of C. The details are
given in [17]. ��

We note that in the upper bound of the algorithm for nonemptiness of WDA
transferred from [9], the doubly exponential term only depends on the alphabet
size. By combing this with the bounds of Theorem 6 we obtain a 3-NEXPTIME
upper bound for satisfiability of FO2(+1,∼) (which is worse than the bound in
[20]). We also note that the construction underlying the proof of Theorem 6 can
be turned into a nondeterministic exponential time reduction from satisfiability
for FO2(+1,∼) to nonemptiness for WDA resulting in an automaton with a
singly exponential number of states. The reduction guesses the order in which
types appear in the accepted string (as opposed to the construction in the proof
of Theorem 6).

The previous two theorems yield the following logical characterization.

Theorem 7. Weak data automata and EMSO2(+1,∼) are equivalent in expres-
sive power.

We note that on strings EMSO2(+1) and EMSO2(+1, <) are expressively equiv-
alent. It is an interesting consequence of the above characterization that this
equivalence does not hold for data strings.

Corollary 8. EMSO2(+1,∼) is strictly less expressive than EMSO2(+1, <,∼).

Proof. The inclusion holds by definition. It is strict because the language La<b
cannot be recognized by an WDA (Lemma 2) and thus cannot be defined in
EMSO2(+1,∼), but it can be expressed by the simple formula ∀x∃y(a(x) →
(b(y) ∧ x < y ∧ x ∼ y)). ��

5 Weak Büchi Data Automata

In this section we consider automata and logics for data ω-words, that is, data
words of infinite length. Weak data automata (A, C) can easily be adapted for
data ω-words. The automaton A is simply interpreted as a letter-to-letter Büchi
transducer. A run is accepting if it visits infinitely often a state from F . We
refer to the resulting model as weak Büchi data automata (WBDA). We write
Lω(A, C) for the set of data ω-words accepted by (A, C). We remark that for data
automata and register automata there is no “official” variant for data ω-words.
However, Theorem 3 carries over to any such models, provided that they deal
with data ω-words obtained by padding a finite data word by an infinite suffix(
a
d

)ω
in a natural way.

We use logical structures w = 〈N,+1, <, {a(·)}a∈Σ,∼〉, to represent data
ω-words, where N is the set {1, 2, . . .} of natural numbers which represent the
positions and the other relations are as in the case of data words. For a set
S ⊆ {+1, <,∼} of relation symbols E∞MSO(S) consists of all formulas of the
form ∃∞R1 . . . ∃∞Rm∃S1 . . . ∃S� ϕ where ϕ ∈ FO2(S). Here all relation
symbols Ri, Si are unary. The ∃∞ are semantically restricted to bind to infinite
sets only.
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Remark 9. It is folklore that languages (without data) accepted by Büchi au-
tomata are precisely languages expressible in formulas of the form:

∃∞R1 · · · ∃∞Rm∃S1 · · · ∃S� ϕ

for some ϕ ∈ FO2(+1). However, we have not found an explicit reference for
this result in the literature. We remark that it is relatively straightforward to
show that quantification of finite sets is not necessary. However, such finite set
quantifications are included for the simplicity of our presentation and proofs.

The following theorem is a straightforward generalization of Theorem 7. The
proof is given in [17].

Theorem 10. Weak Büchi data automata and E∞MSO2(+1,∼) are equivalent
in expressive power.

Theorem 11. The nonemptiness problem for weak Büchi data automata is de-
cidable in 2-NEXPTIME.

The proof is by a reduction to the nonemptiness problem for WDA. The result
then follows from Theorem 4. The approach is a classical one. We show that if
the language of a WBDA (A, C) is non-empty then a finite data string of the
form uv can be constructed such that there is a run of A which loops over v.
The “unravelling” uvω is then also accepted by the automaton. But some care
is needed to assign data values in a suitable manner. Details are given in [17].

6 Conclusion

We conclude this paper with two open problems for future directions. An obvious
open problem is to determine the exact complexity of the nonemptiness problem
for weak data automata. The current 2-NEXPTIME yields a 3-NEXPTIME upper
bound for the satisfiability problem for EMSO2(+1,∼). However, as the latter
problem can be solved in 2-NEXPTIME [20], there might be further room for
improvement.

Another interesting question is howour results can be applied to temporal logics.
In [11], it is shown that the simple fragment of freeze LTL with one register has the
same expressive power as a certain two variable logic. We conjecture that there
is a correspondence between our logics and the restriction of simple LTL to the
operators X, X−1 and an operator that allows navigation to any other position.

Acknowledgement. We thank Christof Löding for helpful remarks on au-
tomata and logics for ω-words and Thomas Zeume for thorough proof reading.
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Abstract. Concurrent game structures model multi-player games played
on finite graphs where the players simultaneously choose their moves and
collectively determine the next state of the game. We extend this model
with prices on transitions for each player. We study pure Nash equilibria
in this framework where each player’s payoff is the accumulated price
of all transitions until reaching their goal state. We provide a construc-
tion of a Büchi automaton accepting all Nash equilibria outcomes and
show how this construction can be used to solve a variety of related prob-
lems, such as finding pareto-optimal equilibria. Furthermore, we prove
the problem of deciding the existence of equilibria to be NP-complete.

1 Introduction

Games played on graphs have enjoyed much attention from computer scientists
in the past decades. Traditionally, they have been used to model scenarios where
an actor tries to find a course of action against an unpredictable environment.
Games have proven to be a helpful formalism with many applications. Bisimu-
lation, accepting conditions of alternating automata, satisfiability of predicate
logic can all be expressed as a two-player game with antagonistic objectives.
Only one player can win in this case and the focus is usually limited to finding
out which player has a winning strategy.

Non-zero-sum Games. In non-zero-sum games the players have independent
objectives. Each player only cares about their own objective and does not care
about objectives of others. Furthermore, it is natural to consider more than two
players in this context. Such generalization of games allows for more realistic
expression of real world problems and has been prominently used in economics,
evolutionary biology or political science. In computer science, they have been
used to model network routing problems [5]. The non-zero-sum games have been
the focus of the game theory branch of mathematics for many years. However,
strategies are rarely studied as objects that have an internal structure.

The objectives of players in non-zero-sum games can be qualitative or quan-
titative. In the qualitative setting, each player can either win or lose, so an
outcome of the game has a set of winners. In the quantitative setting, the result
of each player is a number – the cost – which they try to minimize (or maximize
– in this case, the number is called payoff). In our case of graph games, the moves
of the game are equipped with individual prices for each player.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 363–376, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Concurrent Games. Traditionally, the players take their decicions with full
information and the game is turn-based. If the result depends on simultaneous
and secret choices of multiple players, such as in the game rock-paper-scissors,
we call the game concurrent [1]. Concurrent games are sufficient to describe all
turn-based games, but they can model additional interesting problems.

Nash Equilibria. Rational players adjust their play to the play of their oppo-
nents to improve their own benefit. If the game is repeated, the course of the
game changes until they reach a situation where no player can further improve
by unilaterally changing their play. Such state is called a Nash equilibrium [6]
and it is the game theorists’ tool of choice for the analysis of non-zero-sum games.
Barring pacts between the players, the situation always stabilizes in a state that
is a Nash equilibrium. A pure Nash equilibrium does not always exist and is not
always optimal, but a game can also have multiple equilibria.
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Fig. 1. A Priced Concurrent Games Structure and the Cost for its Equilibria

Our Contribution. In Section 2, we introduce Priced Concurrent Games Struc-
tures (PCGS), deterministic concurrent game graphs with non-negative integer
prices on transitions for each player with individual reachability objectives. An
example of a two-player PCGS can be seen in Fig. 1. From each state, a transi-
tion is determined by a choice of both players (pair of letters). Each transition
is assigned a pair of numbers representing costs for the respective players. The
goal state for both players is a bold circle.

A player provides a strategy that can consider the whole history of the game
to choose a next move. The combination of strategies determines a run in the
graph, which yields the cost for each player, defined as the accumulated price of
all transitions until reaching their goal state.

The studied problem is to characterize all pure-strategy Nash equilibria of a
given game. Variants of the problem include deciding existence of an equilibrium
and limiting the search to equilibria with the costs of players constrained by
bounds. Costs of all equilibria for the example in Fig. 1 are plotted in the chart.

In sections 3 and 4 we identify all outcomes of pure-strategy Nash equilibria by
constructing a Büchi automaton accepting precisely the language of outcomes of
all equilibrium strategy profiles satisfying a bound vector. Such characterization
allows for simple reduction of other similar problems, e.g. deciding the existence
of any equilibrium by checking emptiness of the language of a Büchi automaton.

In Section 5, we characterize the complexity of the decision problem by proving
that it is NP-complete in its several variants, except for the special case of
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turn-based games without bounds. We prove that an equilibrium always exists
in turn-based games, which makes the general decision problem trivial.

Related Work. Bouyer et. al. explore in [2] the existence of Nash equilibria in
multiplayer concurrent games with reachability objectives. They include timed
games, but they only consider qualitative reachability objectives. Brihaye et. al.
study in [3] turn-based quantitative multiplayer games with reachability objec-
tives. They prove existence of finite-memory Nash equilibria in such games. We
confirm this in our framework as a corollary of our main result. However, it is
necessary to point out that the formalisms are not completely equivalent. Most
recently, Ummels et. al. study Nash equilibria in [7], using concurrent games but
only with respect to limit-average objectives. The important distinction is that
the initial part of the game is irrelevant to them. Thus, although related, the
studied problems are quite different.

2 Preliminaries

We start with definitions of Concurrent Game Structures, computations, (full-
memory) strategies and strategy profiles and outcomes of strategies. Then we
introduce Priced Concurrent Game Structures by adding prices to transitions.
Afterwards we formally define Nash equilibria on priced games.

We use the symbol N∞ = N ∪ {∞} for the set of natural numbers with
zero and infinity. The a-th projection of a vector X is denoted by Xa. We
use the notation X−a = (X1 . . . Xa−1, Xa+1 . . .) for the vector X without its
a-th element. We define a vector extension operator �a, which adds the first
argument to the position a in the vector given as the second argument, i.e.
xa �a (x1 . . . xa−1, xa+1 . . . xn) = (x1 . . . xn) and Xa �a X−a = X .

A word over alphabet Σ is a (finite or infinite) sequence of elements from Σ.
Given a word w and i ≤ |w|, w[i] denotes the i-th element of w, wi is a prefix of
w of length i, and wi is the i-th suffix s. t. w = wi.w

i. An empty word is denoted
by ε.

For the rest of the article we use standard comparison operators over natural
numbers including zero and special symbols∞ and⊥. For the sake of comparison,
∞ is the largest element and ⊥ is the smallest element. Addition or subtraction
involving ∞ results in ∞ (except when ⊥ is involved). Addition or subtraction
involving ⊥ always results in ⊥.

Definition 1 (Concurrent Game Structures). A Concurrent Game Struc-
ture (CGS) is a tuple (K,Q, q0, Φ, φ,M, Δ, δ) with the following components:

– A natural number K ≥ 1 of players. We identify the players with numbers
1, . . . ,K and we use notation Ω = {1, . . . ,K} for the set of players.

– A finite set Q of states.
– An initial state q0 ∈ Q.
– A finite set Φ of propositions.
– A labeling function φ : Q → 2Φ, such that for each state q ∈ Q, φ(q) ⊆ Φ is

a set of propositions true at q.
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– A non-empty, finite set M of moves.
– A move function Δ : Ω ×Q → 2M \ {∅}, that defines a set of possible moves

for each player and each state. For each state q ∈ Q, a move vector at q is a
vector J ∈ Mk such that Ja ∈ Δa(q) for each player a. Given a state q ∈ Q
we write Δ(q) =

∏
a∈ΩΔa(q) for the set of all move vectors. We denote

by Δ−b(q) =
∏
a∈Ω,a �=bΔa(q) the set of vectors of the possible moves of all

players except b.
– A transition function δ, such that for each state q ∈ Q and each move vector

J ∈ Δ(q), it determines a state δ(q, J) ∈ Q that results from state q if every
player a ∈ Ω chooses move Ja.

Let us remark that commonly studied turn-based games are a special case of
CGS, where in every state each player but one has exactly one possible move.
We define the extended transition function δ̂ over finite words of move vectors
inductively: δ̂(q, ε) = q and δ̂(q, J.Λ) = δ̂(δ(q, J), Λ), where J ∈ MK , Λ ∈ (MK)∗.

Definition 2 (Computation). Let Λ be a (finite or infinite) word over alpha-
bet MK and q a state of a CGS. We say that Λ is a computation from q if for
each position i ∈ N, Λ[i+ 1] ∈ Δ(δ̂(q, Λi)).

Lemma 3. If Λ is a computation from state q, then Λi is a computation from
state δ̂(q, Λi).

Definition 4 (Strategy). Given a CGS T , q ∈ Q and a ∈ Ω, a function

f : (MK)∗ → M is a (pure) strategy from state q for player a, if r = δ̂(q, Λ)
implies f(Λ) ∈ Δa(r). Thus, a strategy of a player is a function that for a finite
history determines their next move. A vector (f1, . . . , fK) is a strategy profile
from state q, if for each a ∈ Ω, fa is a strategy from state q for player a.

The operator � allows us to change the strategy of a player in a strategy profile:
if F is a strategy profile from state q and f is a strategy from state q for player
a, f �a F−a is a strategy profile, where all players except a play according to F
and player a uses the strategy f . Similarly, if j ∈ Δa(q) is a move of player a in
state q and J ∈ Δ(q) is a move vector, j �a J−a is a move vector with changed
move for player a.

Definition 5 (Outcome). The outcome is the function λ from strategy profiles
to computations, s. t. whenever F is a strategy profile from a state q, λ(F ) is
the infinite computation from q s. t. λ(F )[i+1] = (F1(λ(F )i), . . . , FK(λ(F )i)) .

That is, λ(F ) is the computation where each step consists of individual moves
of strategies from F based on current history.

Definition 6 (Priced Concurrent Game Structures). A Priced Concur-
rent Game Structure (PCGS) is a tuple (K,Q, q0, Φ, φ,M, Δ, δ, γ) with the fol-
lowing differences to CGS:

– The set of propositions Φ always includes g1, . . . , gK, which are used to rep-
resent goal states for the respective players.
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– The price function γ assigns to each state q and each move vector J ∈ Δ(q)
a K-tuple of non-negative natural numbers which correspond to the price for
each player. γi denotes the i-th projection of γ, i.e. the price for player i.

Definition 7 (Cost). Given a PCGS T , the cost function is the function Γ :
Q× (MK)∗ → NK∞ such that for each player a ∈ Ω, state q ∈ Q and computation
Λ from q,

Γa(q, Λ) =

k∑
i=1

γa(δ̂(q, Λi−1), Λ[i]),

where k is the smallest position such that ga ∈ φ(δ̂(q, Λk)). If no such k exists,
Γa(q, Λ) = ∞.

We omit the state q since it is usually clear from the context of the computation
Λ and write just Γ (Λ).

Lemma 8. Let Λ be a computation from q. If ga ∈ φ(q), then Γa(Λ) = 0.
Otherwise, Γa(Λ) = Γa(Λ

1) + γa(q, Λ[1]).

Definition 9 (Nash Equilibrium). Given a PCGS with initial state q0, we
say that strategy profile F from state q0 is a Nash equilibrium, if for each player
a ∈ Ω and for all strategies fa of player a,

Γa(λ(fa �a F−a)) ≥ Γa(λ(F )).

That is, no player can reduce their cost Γa by changing their strategy.
We say that a Nash equilibrium F satisfies bounds B ∈ NK∞, if Ba ≥ Γa(λ(F )).

Example 10. Let us go back to the example in Fig. 1. Consider the following
strategies fH , fM , fL for player 1 from q0 (all possible strategies) and f1, f2, f3
for player 2 from q0 (3 out of 8 possible strategies). For any history Λ ∈ (M2)∗:

fH(Λ) =

{
H if Λ = ε

O otherwise
f1(Λ) =

{
O always

fM (Λ) =

{
M if Λ = ε

O otherwise
f2(Λ) =

{
P if Λ = (L,O)

O otherwise

fL(Λ) =

{
L if Λ = ε

O otherwise
f3(Λ) =

{
P if Λ = (L,O) or (M,O)

O otherwise

The outcome for the strategy profile (fM , f2) is λ(fM , f2) = (M,O)(O,O)ω (the
dotted path). The cost of this outcome is Γ (λ(fM , f2)) = (6, 2). The outcome
for the strategy profile (fL, f2) is λ(fL, f2) = (L,O)(O,P )(O,O)ω (the dashed
path). The cost of this outcome is Γ (λ(fL, f2)) = (7, 3). Note that although the
strategy for player 2 remains the same, their move is different in the second step.

Let us now examine some of the strategy profiles for equilibria. Profile (fM , f2)
is a Nash equilibrium as no player can reduce their cost. Particularly, if player
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1 uses fL, he gets lower cost for the first step, but suffers even worse penalty in
the second step. Other equilibria include (fL, f1), (fM , f1), and (fL, f3). Profiles
(fM , f1) and (fM , f3) are not Nash equilibria. Player 1 may switch to fL without
any penalty. Profile (fH , f3) is not a Nash equilibrium. While switching to fM
does not do player 1 any good, switching to fL yields an immediate benefit that
is greater than the received penalty from player 2.

Problem 11 (Nash equilibria problem). Given a PCGS and bound vector
(b1 . . . bK) ∈ NK∞, characterize all pure-strategy Nash equilibria F satisfying
bounds (b1 . . . bK).

Problem 12 (Decision variant of Nash equilibria problem). Given a PCGS and
a bound vector (b1 . . . bK) ∈ NK∞, decide whether there is a Nash equilibrium F
satisfying bounds (b1 . . . bK). If all ba are fixed to ∞, i.e. we decide whether there
is some Nash equilibrium in general, we refer to this problem as the Decision
variant of Nash equilibria problem without bounds.

We might want to consider only equilibria where each player reaches their goal,
i. e. where each cost is finite. We would still want to be able to limit the individual
costs.

Problem 13 (Decision variant of Nash equilibria with finite costs problem). Given
a PCGS and a bound vector (b1 . . . bK) ∈ NK∞, decide whether there is a Nash
equilibrium F satisfying bounds (b1 . . . bK), in which each cost is finite.

3 Temptation and Punishment

When looking for Nash equilibria, we are looking neither for best strategies,
nor for any competition. The players are not opponents, but collaborators. A
Nash equilibrium is a stable mutual cooperation, where no player is tempted
to defect. The cooperation need not be the most effective one. In games with
multiple equilibria, we can often find multiple or even infinite number of stable
cooperations that are strictly worse than other stable cooperations (such as the
equilibrium (fL, f3) in the example from Fig. 1 with cost (7, 3)).

The temptation is the best possible result a player can achieve by defecting a
cooperation from a particular transition. Without temptation, all cooperations
would be Nash equilibria because players would have no incentive to defect. We
assume that players can agree on any outcome that is not jeopardized by a better
temptation for one of the players.

Reactive games such as CGS allow strategies to detect a defection and ad-
just their behaviour. However, the players always provide their whole strategy
in advance. Therefore the defecting adversary is able to adjust to the cooper-
ating players’ punishment. The punishment are the moves of the coalition that
they had decided to use after they detect a betrayal. The defecting player can
take advantage of that and choose a way of defection that guarantees the best
outcome, given the future punishment.
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A strategy can never detect and punish a defection in advance. The reason
for this is that a strategy is determined only by a history of moves. As long as
the defector stays true to the deal, the others must be using the same moves.

On the other hand, the punishing coalition’s strategies do not care about
their own cost anymore. After the alliance is broken by the traitor, all they are
trying to do is make things miserable for the traitor. Such behaviour might seem
counter-intuitive at first, but it makes sense when we reconsider the very purpose
of such punishment. It exists to minimize temptation, and never has to occur
when the players keep the deal which they have no incentive of breaking.

Let us introduce punishment values Π and temptation values τ . First of all,
we state our requirements for these values and show an easy example. Then we
provide an algorithm for computing punishment and temptation values based on
relations between them and finally we formally prove that the computed values
correspond to our requirements. The punishment value Πa(q) for player a and

H,O

(7, 1)

M,O (5, 2)

L,O
(3, 3)

O,O

(1, 0)

O,P
(4, 0)

O,O

q0 q1 g
(1, 1)

Π(q1) = (4, 0)
Π(q0) = (7, 3) τ1(q1, O) = 1
τ1(q0, O) = 7 τ1(q1, P ) = 4
τ2(q0, H) = 1 τ2(q1, O) = 0
τ2(q0,M) = 2
τ2(q0, L) = 3 Π(g) = (0, 0)

τ1,2(g,O) = 1
Π = (0, 0)

τ = (1, 1)

τ = (4, 0)

τ = (1, 0)τ = (7, 1)

τ = (7, 2)

τ = (7, 3)

Π = (7, 3) Π = (4, 0)

Fig. 2. PCGS from Fig. 1 with punishment and temptation values

state q is the cost of the worst outcome for player a which the coalition Ω \ {a}
can enforce, starting in q. In other words, coalition Ω \{a} has a strategy profile
F−a to guarantee that the cost for player a from q will be at least Πa(q).

Temptation value τa(q, J−a) for player a, state q and move J−a of the coalition
Ω\{a} is the cost of the best outcome for player a starting from q, provided that
Ω \ {a} use J−a as their first move and they are commited to their strategy. In
other words, if players Ω \ {a} use profile F−a from q, starting with J−a, player
a has a strategy to guarantee that their cost from q will be at most τa(q, J−a).
For the sake of simplicity, we use notation τa(q, J) = τa(q, J−a).

Our algorithm is based on the following relations between punishment and
temptation values:

τa(q, J−a) = min
j∈Δa(q)

γa(q, j �a J−a) +Πa(δ(q, j �a J−a))

if ga /∈ φ(q) : Πa(q) = max
J∈Δ−a(q)

τa(q, J)

if ga ∈ φ(q) : Πa(q) = 0

It starts with an initial assignment of punishment values to∞ for non-goal states
and to 0 for goal states of a player. Then, in every iteration, it updates all the
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values according to these equations until reaching a fixed point. We can prove
that no more than |Q| iterations are needed and therefore the algorithm operates
in polynomial time.

In the following lemmas consider Π, τ to be values computed by the algorithm,
i.e. values satisfying the above equations. Here we show that they accord with
their meaning provided in the first paragraphs.

Lemma 14 (Punishment Lemma). For each state q of a PCGS T , there is
a strategy profile F−a from q for coalition Ω \ {a}, such that for each strategy f
from q of player a, Γa(λ(f �a F−a)) ≥ Πa(q).

Lemma 15 (Temptation Lemma). For each state q and move J−a ∈ Δ−a(q)
and for each strategy profile F−a from q for coalition Ω \ {a} starting with the
move J−a, there is a strategy f from state q of player a, such that Γa(λ(f �a

F−a)) ≤ τa(q, J−a).

4 Equilibrium Automaton

Theorem 16. For a PCGS T , the set of all outcomes of Nash equilibria satis-
fying bounds B ∈ NK∞ is an ω−regular language.

We proceed with constructing a Büchi automaton accepting exactly the set of
all equilibria outcomes. The idea of the construction is that we enhance states
with local bounds for each player. Bounds X = (x1 . . . xK) in state (q,X) mean
that the cost of any infinite computation Λ from q represented by a run from
(q,X) must satisfy X , i.e. Γa(Λ) ≤ xa. We are also allowed to say that we no
longer care about the cost for player a from this state and let xa = ⊥.

Whenever there is a transition from q to r with cost C, there should be a
transition from (q,X) to (r, Y ′), where Y ′ = (y′1 . . . y

′
K) and y′a = xa − Ca.

However, whenever q is a goal state for player a, then instead the local bound y′a
for a is set to ⊥, because the cost of this run for a has already been determined.
This alone would allow us to observe the global bounds B.

On the other hand, we also have to account for the temptations of players
to defect a potential equlibrium. Whenever we want to agree on a move J with
temptation τa(q, J), then the cost of the rest of the outcome for player a must
be lower than or equal to this temptation. Otherwise, player a would defect the
cooperation in this transition. Therefore we also update local bounds in r to
y′′a = τa(q, J)− Ca.

We are interested in the lower of the two bounds y′, y′′. Thus finally,

ya = min(xa, τa(q, J)) − γa(q, J)

Note that such transition function guarantees that on any run of an equilibrium
automaton, the local bound for any player a is nonincreasing.

Additionally, whenever ya is lower than 0, we omit that transition. The tran-
sition function for the Equilibrium automaton is deterministic, but not total.
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A choice of accepting states reflects the local bounds. If local bound xa is
⊥, the cost is finite and respects the bounds. However, a computation Λ which
never reaches a state with goal ga has cost Γa(Λ) = ∞. Such computation can
only be an equilibrium if local bounds for all states are ∞. Otherwise, there is
a temptation for player a to defect. Therefore we allow ∞ as a local bound for
accepting states.

Definition 17 (Equilibrium automaton T ). For a PCGS T and B ∈ NK∞,
the Equilibrium automaton for T and bounds B is the Büchi automaton
(Σ,Q, δ′, {(q0, B)},F) with the following components:

– Alphabet Σ =
⋃
q∈QΔ(q), the set of all move vectors.

– The state set Q = Q × P1 × . . . × PK , where Pa denotes the set {⊥,∞} ∪
{0, 1 . . . pa}. If Ba �= ∞, pa = Ba, otherwise pa equals to the highest punish-
ment value Πa for player a lower than ∞.

– The partial transition function δ′ : Q×Σ → Q, defined as follows. For each
state q and local bounds X = (x1 . . . xK), let Y = (y1 . . . yK), s. t.

ya =

{
⊥ if xa = ⊥ or ga ∈ φ(q),

min(xa, τa(q, J)) − γa(q, J) otherwise.

Then δ′((q,X), J) =

{
(δ(q, J), Y ) if ya = ⊥ or ya ≥ 0 for all a,

undefined otherwise.

– The initial state set {(q0, B)}, the initial state of T augmented with bounds
B.

– The accepting state set F = Q× {⊥,∞}K.

Lemma 18 (Correspondence). Let T be a PCGS, LT be the language of all
outcomes λ(F ), such that F is a Nash equilibrium satisfying bounds B ∈ NK∞,
and let T be an Equilibrium automaton for T and bounds B. Then L(T ) = LT .

Proof. The ⊆ direction is given by Lemma 21, the ⊇ is given by Lemma 22.

Theorem 16 is a corollary of the previous Lemma.

Example 19. In Fig. 3 we provide a second example which is not turn-based
and includes cycles. On the left side there is PCGS T with temptation and
punishment values according to the previous section. The cost of each transition
is (1, 1), except for the transition O,O from qk which is (0, 1). On the right side,
there is an Equilibrium automaton for T and bounds (∞,∞).

Lemma 20. Let T be the Equilibrium automaton for a PCGS T and bounds B ∈
NK∞. Then, if T has an accepting run ρ over word Λ, then Λ is a computation on
T starting in q0 and the state component of the extended state always corresponds
to the state of the computation, i.e. for ρ(i) = (qi, x

i
1 . . . x

i
K), qi = δ̂(q0, Λi).

Furthermore, ρ satisfies local bounds in each state, i.e. for each player a, either
xia = ⊥, or Γa(Λ

i) ≤ xia.
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O,OO,O

q0,∞,∞ q1,∞,∞

qk,∞,∞ qk,∞,0 qk,0,∞

g,0,0g,⊥,⊥

N,NN, YY,N

Y, Y

G,W W,G

W,W

G,G

O,O
O,O

q0

qk

q1

g

Y, Y
G,G W,W

W,G
G,W

Π = (0, 0)

Π = (∞,∞)

Π = (∞,∞)

Π = (∞,∞)

τ = (1, 1)

τ = (0, 0)

τ = (∞,∞)

τ = (1,∞)

τ = (∞, 1)

τ = (∞,∞)

τ = (∞,∞)

τ = (∞,∞)
(0, 1)

Y,N; N,Y;
N,N

O,O

O,O

Fig. 3. Construction of the Equilibrium automaton for bounds (∞,∞)

Lemma 21. Let T be the Equilibrium automaton for a PCGS T and bounds
B ∈ NK∞. If T accepts Λ, there exists a strategy profile F from q0, such that Λ
is an outcome λ(F ) and F is a Nash equilibrium satisfying B.

Proof. Firstly, we construct strategy profile F = (f1 . . . fK) s. t. Λ = λ(F ).
These strategies follow Λ but as soon they detect a defection, they employ a
punishing strategy according to the Punishment Lemma 14. Then we show that
F is a Nash equilibrium by contradiction. Assuming that player a can reduce
their cost by changing to f ′

a, we find the last state qi−1 before the defection and
refer to the Punishment Lemma for the next state to show that the new cost
for a from qi−1 is at least xi−1

a . However, since the original cost for a is at most
xi−1
a thanks to Lemma 20, we reach a contradiction with the improvement of

the cost.
Finally F satisfies bounds B, as B are local bounds for state q0 and Lemma

20 gives an upper bound for the cost of λ(F ). ��
Lemma 22. For each strategy profile F that is a Nash equilibrium on a PCGS
T satisfying bounds B, its outcome is in the language of T , the Equilibrium
automaton for T and B. That is, λ(F ) ∈ L(T ).

Proof. If Λ is not accepted by T , we find the last index k s. t. condition xia = ⊥
or Γa(Λ

i) ≤ xia is satisfied for each i ≤ k. If such index does not exist because the
run is infinite but the condition is always satisfied, then the cost for some player is
∞ which implies that the condition is not satisfied in some state (a contradiction).
If such index does not exist because the condition is never satisfied, then the
equilibrium does not meet the bounds.

Otherwise, we show that Λ[k] is a move with a low temptation value for
player a and according to the Temptation Lemma 15, we can find a strategy f
defecting in this move, resulting in cost lower than the original. Thus, F is not
Nash equilibrium. ��
The Equilibrium automaton provides a representation of all solutions to Prob-
lems 11 and 12. We can easily modify the automaton to solve Problem 13 by
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limiting the set of accepting states to those where all local bounds are ⊥, as this
corresponds to runs where each player reaches their goal. This also allow us to
compute all Pareto optimal equilibria: the set of bounds (b1, . . . , bk) ∈ Nk satis-
fied by a Nash equilibrium is upwards closed. Having just presented the solution
to Problem 13 we can apply the result of Valk and Jantzen [8] for computing
the finite (due to Dickson’s lemma) minimal such bounds:

Theorem 23. The set of Pareto optimal bounds (b1, . . . , bk) ∈ Nk satisfied by a
Nash equilibrium can be computed.

5 Complexity of the Decision Variant

Consider the decision variant of Nash equilibria problem. With the construc-
tion of the Equilibrium automaton T for PCGS T and bounds B, the problem
is reduced to deciding the existence of an accepting run in the Büchi automa-
ton. Although the size of the automaton is possibly exponential, we present the
following result:

Theorem 24. Decision variant of Nash equilibria problem is NP-complete.

First we focus on showing that the problem is solvable in NP. The idea is that in-
stead of constructing the Equilibrium automaton, we nondeterministically guess
an accepting lasso in the automaton. We then verify the lasso in time linear to
its length using the transition rules. The following two lemmas show that a lasso
of polynomial length is sufficient for this.

Definition 25 (Relation ). States X = (qX , x1 . . . xK), Y = (qY , y1 . . . yK)
are in relation X  Y iff qX = qY and for each player a, either xa = ya = ⊥,
or xa ≥ ya > ⊥. We say that X is no more strict than Y .

Lemma 26. Let X,Y be two states of the equilibrium automaton T such that
X  Y . Then, for every computation Λ from q, whenever there is a run ρY from
state Y over Λ, then there also exists a run ρX from X over Λ. Furthermore,
ρX(i)  ρY (i) for all i.

Proof. As all local bounds are lower in Y , whenever there is a transition from
Y , the conditions of the transition function also hold in X . Furthermore, end
states of the respective transitions are also in , so we can use induction. ��

Lemma 27. Given a PCGS with K players and |Q| states, if there is an accept-
ing run in T , there is also an accepting run which is a lasso of length at most
(K + 2)|Q|.

Proof. Let ρ be the shortest accepting lasso. We first show that the length of
the cycle is at most |Q|. As the local bounds are nonincreasing, the values of
the local bounds must be the same on all states on the cycle (either ∞ or ⊥).
Therefore they differ only in the base state. For cycle longer than |Q| we find a
repeating state and create a shorter accepting cycle, reaching a contradiction.
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Now we show that the length of the nonrepeating path is at most (K +1)|Q|.
If it is longer, some base state must repeat more than K+1 times. A local bound
for player a can change to ⊥ only once. Therefore between at least one pair of
those repetitions, no local bound changes to ⊥. The previous lemma gives us
a run ρ′ from the first of those states. Now take the first state X of the cycle
on ρ. Since all local bounds are either ⊥ or ∞, ρ′ leads to this exact state and
continues on the same accepting cycle. Joining ρ′ and the path to X skips the
steps between its one repetition, which contradicts that ρ is the shortest. ��
Lemma 28. Decision variant of Nash equilibria problem is NP-hard.

Proof. We show a reduction from the subset sum problem [4], i.e. for every input
instance of the subset sum problem, we construct a game structure and bounds,
such that there is a Nash equilibrium meeting these bounds iff the input instance
of the subset sum problem has a solution.

(m1, 0)

q2q1

(0,m1)

(m2, 0)

(0,m2)

qn

(mn, 0)

(0,mn)

qn+1

(0, 0)

(M, 0)

g

(0, 0)∈, O ∈, O ∈, O

/∈, O /∈, O /∈, O

O, Y

O,N O,O

Fig. 4. Reduction from the subset sum problem

Let S = {m1,m2, . . . ,mn} be a set of positive integers and m be the target
sum. The input instance (S,m) has a solution iff there exists a set S′ ⊆ S, such
that sum of the numbers of S′ is exactly m. Let M =

∑
s∈S s, the sum of all

numbers. We construct a two-player turn-based game G according to the Fig. 4.
The initial state is q1, g is a goal state for both players and numbers above the
transitions represent the prices. In circle (resp. square) states, player 1 (resp.
player 2) chooses the next move. We set the bounds (b1, b2) = (m,M −m).

For the first direction, suppose there is a solution to the subset sum problem
S′. Now consider the following strategies for the players.

Player 1. In qi(1 ≤ i ≤ n), choose ∈ if mi ∈ S′, otherwise choose /∈.
Player 2. In qn+1, choose Y if the accumulated costs so far are (m,M − m),

otherwise choose N .

Outcome of these strategies has costs (m,M −m) = (b1, b2). If player 1 changes
his strategy such that the costs are different in qn+1, his cost increases by M > m
in the last transition and thus she can not improve her cost. Player 2 can not
influence her cost at all. The strategies are Nash equilibrium.

Now for the second direction, suppose there exists a Nash equilibrium meeting
the bounds (b1, b2). As the sum of the costs for both players is at least m1+ . . .+
mn = M = m+ (M −m) = b1 + b2, the cost is exactly (b1, b2). We consider the
outcome and construct the set S′ as the set {mi | player 1 chooses the ∈ in qi}.
Since the cost for player 1 is m, the sum of S′ must be exactly m and it is a
solution to the subset sum problem. ��
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Theorem 24 is a corollary of the previous lemma and Lemma 27. We now show
that the problem of deciding the existence of an equilibrium point is NP-hard
even if we have no bounds on the possible equilibria.

Theorem 29. Decision variant of Nash equilibria problem without bounds is
NP-complete.

Proof. Given a two-player PCGS T and bounds (b1, b2) we construct a two-player
PCGS T ′ according to Fig. 5. The new initial state is q′0 and the state g is a
goal state of both players. We need to prove that there is an equilibrium in T ′

iff there is an equilibrium in T satisfying the bounds (b1, b2).

original game T

q′0 A B C

X (x1, x2) (b1, 1) (b1 + 1, 0)

Y (1, b2) (1, 0) (0, 1)

A,X

C,X

C,Y

B,Y

B,X

A,Y

(b1, 1)

(1, 0)

(0, 1)

(b1 + 1, 0)

(1, b2)

g q′0 q0
(0, 0)

O,O

(0, 0) x1>b1

x2>b2

Fig. 5. Reduction from the problem with bounds (b1, b2) to the problem without
bounds

None of the added edges can be part of an equilibrium outcome as can be
seen in the Table of choices in Fig. 5. The horizontal arrows indicate improve-
ment for player 1, the vertical for player 2. Every equilibrium in T satisfying
bounds (b1, b2) is preserved in T ′, but the equilibria not satisfying the bounds
are suppressed, because both players could change their first move and get a
better cost. ��
Lemma 28 shows NP-hardness even for turn-based games. However, [3] shows
that for a special kind of games which roughly correspond to turn-based games
where cost for each transition and player is 1, a Nash equilibrium always exists.
Without elaborating on this further, we can confirm their result for any priced
turn-based game with strategies that use history. Hence, the decision problem
for this case is trivial and the answer is always positive.

6 Conclusion

We introduced the Nash equilibrium problem with bounds for priced concurrent
games structures and provided a construction of a Büchi automaton accepting
the set of all equilibria outcomes, characterizing the class of all Nash equilibria
outcomes satisfying a bound vector as an ω-regular set. We provided examples of
similar problems that can be solved using our characterization, including finding
equilibria satisfying LTL properties and describing pareto-optimal equilibria.

We also characterized the complexity of the decision variant of the problem
as NP-complete. The problem remains NP-complete even if we consider either
turn-based PCGS, or we omit bounds. If we do both, the problem becomes trivial
as the equilibrium always exists.
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Abstract. Computing by Observing is a theoretical model for computa-
tion that tries to formalize the standard setup of experiments in natural
sciences. We establish that insertion systems with empty contexts and
only one inserted letter suffice in this architecture to accept all recursively
enumerable languages. While so far in most cases context-free power was
needed, here a sub-regular system leads to computational completeness
in this context. Further, we investigate more complicated insertion sys-
tems in a model with less powerful observer called Observing Change.

1 Computing by Observing

Much of the recent work in Formal Language Theory has stood in some rela-
tion to biochemistry. The original motivation for this were hopes of building
actual biocomputers based on the theoretical models that have been developed.
Nearly all of these models in the area of DNA computing follow the classical
computer science paradigm of processing an input directly to an output, which
is the result of the computation. Only the mechanisms of processing are differ-
ent from conventional models; instead of a finite state control or a programming
language it is biomolecular mechanisms that are used, or rather abstractions of
such mechanisms.

However, in many experiments in biology and chemistry the setup is funda-
mentally different. The matter of interest is not some product of the system
but rather the change over time observed in certain, selected quantities. To cite
two simple examples that might be well-known from High School biology and
chemistry classes:

– The predator-prey relationship. It is not of much use to know the numbers
of predators and prey in one single moment. The interesting feature here is
how the increase or decrease in one of the two populations affects the other
population.

– A chemical reaction with a catalyst often has the same product as without,
but the energy curves during the reactions are different. In the presence of
a catalyst the reaction will occur with less energy consumption and possibly
also faster.
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Fig. 1. The architecture of an accepting observer system [6]

The objective of Computing by Observing was to formalize this approach of
investigators who have been dealing with biological and chemical systems for
ages in a paradigm for computation. The resulting architecture consists of an
underlying system, which evolves in discrete steps from one configuration to the
next. The second element is an observer, which reads these configurations and
transforms them into single letters; a type of classification, if we take the finite
number of letters to represent a finite number of classes. In this way, a sequence
of configurations is transformed into a simple sequence of symbols, i.e. a string.
This corresponds to the protocol of an experiment in biology or chemistry, and
for us it is the main result of the computation. Figure 1 depicts this setup, where
acceptance is decided based on this observation.

In the initial work on the topic, membrane systems were used as underlying
systems [4]. Then plain string-rewriting systems came into the focus [5,6]; be-
cause of their simplicity and generality they seemed suited for identifying key
features of the underlying systems that would be crucial for obtaining higher
computational power. At the same time, several types of models of bio-computing
were investigated as underlying systems, namely splicing systems [3] and sticker
systems [2]. The main results of these investigations presented a common pat-
tern: systems that by themselves characterize the context-free languages together
with regular observers result in computational completeness.

From the numerous DNA-inspired models of computation [14,8], here we inves-
tigate insertion systems as underlying systems in the Computing by Observing
architecture. Insertion is the operation of inserting a new factor between spec-
ified left and right contexts in a string. Motivated from linguistics, systems of
rules of this type were first investigated by Galiukschov [9]. Later, more intensive
investigations resulted from the fact that insertion occurs in DNA strands. Thus
the power of this operation in the field of DNA computing was investigated,
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mostly in combination with the complementary operation of deletion [10,12]. An
up-to-date and complete overview of work on these systems can be found in the
recent dissertation by one of the current authors [13].

Since every insertion necessarily increases a string’s length, the generative
power of insertion systems is limited; in some sense they have no auxiliary mem-
ory available. However, via morphisms that delete some auxiliary symbols, all
recursively enumerable languages can be obtained from languages generated by
insertion systems, whose rules have inserted strings, left and right contexts all
of length two. Systems with smaller rules are less powerful.

In the light of the results mentioned above, our main result is slightly sur-
prising: while so far, with the exception of sticker systems, context-free power
was necessary in the underlying systems to achieve computational completeness,
we show that insertion systems of sub-regular power suffice for this purpose. In
fact, the insertion systems we use are the simplest ones possible: they insert one
letter independent of the context. Here the observer’s implicit ability to verify
the correct context for an insertion combines very efficiently with the simple
insertion rules.

The fact that computational completeness is obtained already with the sim-
plest insertion systems suggests using less powerful models of observation. One
such model is observing change [7], where the observer sees only which type of
change (i.e. rule) has occurred, but does not see the entire configuration. We
establish that such systems are significantly less powerful than the ones with
omnivident observers.

2 Insertion Observer Systems

Now we proceed to define first the two main components that will make up
our observer systems. Then we formally describe their interplay. The reader is
assumed familiar with standard concepts from Formal Language Theory such
as languages and finite automata; for more details standard textbooks can be
consulted [15]. Note that we denote the empty string by λ.

2.1 Insertion Systems

We now formally specify what insertion systems are and how they implement
the insertions described informally above.

Definition 1. An insertion system is a triple (Σ,A,R), where Σ is an alphabet,
the set of axioms A is a finite language over Σ, and the set of insertion rules R
is a finite set of triples of the form (u, α, v), where u, α, and v are strings over
Σ, α �= λ.

An insertion rule (u, α, v) ∈ R indicates that the string α can be inserted between
u and v; the latter two are therefore called contexts. Stated otherwise, (u, α, v) ∈
R corresponds to the rewriting rule uv → uαv. We denote by ⇒ the relation
defined by an insertion rule. Formally, x ⇒ y iff x = x1uvx2, y = x1uαvx2,
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for some (u, α, v) ∈ R and x1, x2 ∈ Σ∗. We denote by =⇒∗ the reflexive and
transitive closure of ⇒, and ⇒+ denote its transitive closure. The language
generated by the system is defined by

L = {w ∈ Σ∗ : x ⇒∗ w, x ∈ A}.

In what follows, we will mainly use very simple insertion systems, namely
ones that do not use contexts and insert only one letter at a time. To facilitate
comparison later on, we start by characterizing their generative power.

Lemma 2. Every language over the alphabet Σ generated by an insertion system
with insertion rules that have empty contexts and insert only one letter is a finite
union of languages of the form X∗x1X

∗x2X
∗ · · ·X∗xnX

∗ where for some n ≥ 0
we have x1, x2, . . . , xn ∈ Σ and X ⊆ Σ.

Proof. We take a look at what kinds of words an insertion system (Σ,A,R) can
generate. We divide the letters from the alphabet Σ into two classes: X is the
set {x : (λ, x, λ) ∈ R}, Y is the rest of letters. Obviously, letters from Y can only
occur in a word that is generated by the system, if they were already present
in the axiom. On the other hand, letters from X can be inserted in arbitrary
numbers at arbitrary places. Thus each axiom generates a language of the form
in the lemma’s statement. ��

2.2 Observers

The observer’s task is mapping a string to a single symbol. As in all the preceding
work on observer systems, where the configurations were strings, we will use
monadic transducers for this. They are simply finite automata that additionally
have an output function φ that outputs one letter depending on the state the
transducer stops in.

Definition 3. A monadic transducer is a tuple [Q,Σ, Γ, δ, q0, φ] where the state
set Q, the alphabet Σ, the transition function δ, and the initial state q0 are the
same as for deterministic finite automata. Γ is the output alphabet, and φ is
the output function, a mapping Q �→ Γ ∪ {λ} which assigns an output letter or
the empty word to each state.

2.3 Insertion Observer Systems

Combining the devices introduced in the preceding definitions we now give a
formal description of the setup depicted in Figure 1.

Definition 4. An insertion observer system is a quintuple Ω = [Δ,R,O, D,6],
where O is a monadic transducer, R is an insertion system over the input alpha-
bet Σ of O, the system’s input alphabet Δ is a subset of Σ, and D is a regular
language over the output alphabet of O; all words of D end in the termination
symbol 6.
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The main difference to general accepting observer systems is the termination
symbol 6. So far, the observations always ended when the underlying system’s
computation terminated. However, insertion systems often do no terminate. Es-
pecially systems with very simple rules will run forever: if there is an insertion
rule without context, it will always be applicable; also rules with just one symbol
of context on just one side will always be applicable, if they have been applicable
once — the context symbol will never disappear. This is why we introduce this
explicit way of stopping the observation.

Definition 5. The language accepted by an insertion observer system Ω =
[Δ,R,O, D,6] is the set of all words w ∈ Δ∗ such that there exists a derivation
sequence s : w ⇒ w1 ⇒ · · · ⇒ wn with insertion rules from R, whose observation
is in the language D, i.e. O(w) · O(w1) · · · O(wn) ∈ D, where wn must either be
a string to which no rule of R can be applied, or it must be equal to 6 with 6
not appearing before in s..

3 Computing by Observing Insertion Systems

In order to illustrate the ideas behind the definitions of Section 2 we start out
with an example. Already this example will show that the combination of simple
components can lead to considerable computational power.

Example 6. With a very simple insertion system we can generate the language
{anbncn : n ≥ 0}, which is not context-free. More specifically, all the rules have
empty contexts and insert only one letter each. The insertion rules that are used
are the ones in the set

{(λ,A, λ), (λ,A, λ), (λ,B, λ), (λ,B, λ), (λ,C, λ), (λ,C, λ)}.

In combination with the observer, these rules are used to implement the following
algorithm:

(i). Check, if the input word is from the language a+b+c+.
(ii). Insert an A after the first letter a that is not followed by A.
(iii). Insert a B after the first letter b that is not followed by B.
(iv). Insert a C after the first letter c that is not followed by c.
(v). Insert an A after the first letter A that is not followed by A.
(vi). Insert a B after the first letter B that is not followed by B.
(vii). Insert a C after the first letter C that is not followed by C.
(viii). If there is some lower case letter left that is not followed by the corre-

sponding upper case letter: go back to Step (ii).
(ix). Accept the input word.

This algorithm recognizes the language {anbncn : n ≥ 0} by first checking the
sequence of letters in the word, i.e. there should only be a followed by a block
of b followed by a block of c. This is done implicitly by the observer. Steps (ii)
– (vii) in some sense mark one each of the letters a, b and c by inserting their
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upper case counterparts just after them. Thus, if after some iteration there is no
unmarked letter left, we can conclude that the input was from {anbncn : n ≥ 0}.
This is again done by the observer which will end the observation by outputting
6. Its mapping is:

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if w ∈ (aAA)∗a+(bBB)∗b+(cCC)∗c+,
2 if w ∈ (aAA)∗aAa∗(bBB)∗b+(cCC)∗c+,
3 if w ∈ (aAA)∗aAa∗(bBB)∗bBb∗(cCC)∗c+,
4 if w ∈ (aAA)∗aAa∗(bBB)∗bBb∗(cCC)∗cCc∗,
5 if w ∈ (aAA)+a∗(bBB)∗bBb∗(cCC)∗cCc∗,
6 if w ∈ (aAA)+a∗(bBB)+b∗(cCC)∗cCc∗,
6 if w ∈ (aAA)+(bBB)+(cCC)+,
⊥ else.

The observations 1 to 6 correspond to the six steps (ii) – (vii) from the algorithm
above. Now the deciders task consists in checking whether these steps have al-
ways been executed in the correct order. To this end the decider accepts the
language (123456)+6.

This example already exhibits the key technique that we will use further down.
Obviously, insertion rules cannot delete or change any symbols. Thus, what forms
part of the string at some point will stay in the string until the end of the com-
putation. However, for computing it is usually convenient to discard information
that will not be used anymore. Obviously this makes it easier to find the rel-
evant pieces of information. What we did in Example 6 with the symbols that
had already been counted was to put a ”complementary” symbol behind them
to signal that they had no relevance for the remainder of the computation. This
complementing instead of rewriting allowed the observer to identify the place
where the computation was proceeding: the only place where uncomplemented
A, B and C appeared.

Theorem 7. Every recursively enumerable language can be accepted by an in-
sertion observer system with insertion rules that have empty contexts and insert
only one letter.

Proof. We will simulate an off-line Turing Machine M with one working tape
and with transition function δ : Q× Φ → Q× Φ× {+,−}, where Q is the set of
states, Φ is the tape alphabet, and + or − denote a move to the right or left,
respectively. Every transition in δ is associated to an unique label t, and T is
the set of all these labels. The special letter � ∈ Φ denotes an empty tape cell.
An input string is accepted, if M stops in the final state qf ∈ Q. Its initial state
q0 ∈ Q appears at the beginning of input string in the initial configuration.

We denote by T̂ = T ∪ {�,�,⊕,2,)}. Q and Φ are new alphabets with
overlined symbols a, a ∈ Q, and a ∈ Φ, correspondingly and by Σ the alphabet
Σ = Q∪Φ∪Q∪Φ∪T̂ . We denote by Sm and Sf the following regular expressions
Sm = (QQ ∪ ΦΦ)∗, Sf = (Φ ∪ Sm)∗, respectively.

Now we construct the insertion observer system Ω = (T,R,O, D) that sim-
ulates M, where the set of insertion rules R contains the following rules: R =
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{(λ, a, λ) : a ∈ Σ}. The output alphabet for the observer O consists of the union
of the sets {I1, I2,6,⊥}, {Tt,l : 1 ≤ l ≤ 6, t ∈ T }, {Ti,l : 1 ≤ l ≤ 8, i ∈ 1, . . . , |Q|}
and {Tl : 9 ≤ l ≤ 14}. Its mapping for the initialization phase is:

O(w) =

{
I1, if w ∈ Φ∗,
I2, if w ∈ q0Φ

∗.

For every transition t : (qi, a)
δ→ (qj , b,+) (which performs the rewriting step

w′qiaw
′′ → w′bqjw

′′, w′, w′′ ∈ Φ∗) the observer is defined by the mapping:

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tt,1, if w ∈ tT̂ ∗SfqiaS
f ,

Tt,2, if w ∈ tT̂ ∗SfqiaqjS
f ,

Tt,3, if w ∈ tT̂ ∗SfqiaaqjS
f ,

Tt,4, if w ∈ tT̂ ∗SfqiaabqjS
f ,

Tt,5, if w ∈ tT̂ ∗SfqiqiaabqjS
f ,

Tt,6, if w ∈) tT̂ ∗SfqiqiaabqjS
f .

Similarly, for every transition t : (qi, a)
δ→ (qj , b,−) (which performs rewriting

w′xqiaw
′′ → w′qjxbw

′′, x ∈ Φ, w′, w′′ ∈ Φ∗) we define

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Tt,1, if w ∈ tT̂ ∗SfΦqiaS
f ,

Tt,2, if w ∈ tT̂ ∗SfqjΦqiaS
f ,

Tt,3, if w ∈ tT̂ ∗SfqjΦqiaaS
f ,

Tt,4, if w ∈ tT̂ ∗SfqjΦqibaaS
f ,

Tt,5, if w ∈ tT̂ ∗SfqjΦqiqibaaS
f ,

Tt,6, if w ∈) tT̂ ∗SfqjΦqiqibaaS
f .

We can assume that for every transition t : (qi, a)
δ→ (qj , b, μ) we have qi �= qj .

Hence, the strings of the form SfqiS
mqiS

f may be used in order to “replace”
qi over marked symbols. We do so by inserting a new copy of qi and then by
marking the old symbol qi. Formally, for every state qi ∈ Q the observer O(w)
is defined by the following mapping:

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ti,1, if w ∈ �T̂ ∗SfqiS
mSf ,

Ti,2, if w ∈ �T̂ ∗SfqiS
mqiS

f ,

Ti,3, if w ∈ �T̂ ∗SfqiqiS
mqiS

f ,

Ti,4, if w ∈) �T̂ ∗SfqiqiS
mqiS

f ,

Ti,5, if w ∈ �T̂ ∗SfSmqiS
f ,

Ti,6, if w ∈ �T̂ ∗SfqiS
mqiS

f ,

Ti,7, if w ∈ �T̂ ∗SfqiS
mqiqiS

f ,

Ti,8, if w ∈) �T̂ ∗SfqiS
mqiqiS

f ,

where Ti,1, Ti,2, Ti,3, Ti,4 are used to replace qi to the right and Ti,5, Ti,6, Ti,7, Ti,8
are used to replace qi to the left.
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Insertion of the blank tape symbol � is controlled by the following clauses:

O(w) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

T9, if w ∈ ⊕T̂ ∗SfQ,

T10, if w ∈ ⊕T̂ ∗SfQ�,

T11, if w ∈) ⊕T̂ ∗SfQ�,

T12, if w ∈ 2T̂ ∗Q(Φ ∪Q)Sf ,

T13, if w ∈ 2T̂ ∗�Q(Φ ∪Q)Sf ,

T14, if w ∈) 2T̂ ∗�Q(Φ ∪Q)Sf ,

where the first three conditions are used to insert the blank at the end while
the remaining three conditions are used to insert the blank at the beginning of
the factor in QSf . In the latter case, we additionally require that the first state
symbol in Q has not been marked (hence it is followed by either symbol in Φ or
in Q).

Finally, the observer O(w) is defined for the final configuration of M and
those computations that have not been considered.

O(w) =

{
6, if w ∈ T̂ SfqfS

f ,
⊥, else.

All the languages, i.e. types of configurations, described in the observer’s clauses
above are disjoint. Therefore we can take the union of all of the parts defined
above to obtain the complete observer.

The decider D mainly has to guarantee that always one transition of the
Turing Machine at a time is simulated completely. To this end it accepts the
language

D = I1I2
( ⋃

t∈T Tt,1Tt,2Tt,3Tt,4Tt,5Tt,6⋃
i∈{1,...,|Q|}(Ti,1Ti,2Ti,3Ti,4 ∪ Ti,5Ti,6Ti,7Ti,8)⋃

T9T10T11 ∪ T12T13T14)
∗ 6 .

The prefix of computed strings over T̂ stores a history of computation steps
performed by observer system in the form () (T̂\ )))∗, where t ∈ T ⊂ T̂

means corresponding instruction performed by M; symbols �,� ∈ T̂ are used
for right and left moves of q0 over marked symbols; and ⊕,2 ∈ T̂ are used for
insertion of blank cell at the end of the string or at the beginning of the factor
in QSf . We use these letters over T̂ in order to indicate which computation part
performs the observer. Insertion of ) means that the observer is ready for the
next computation part.

The computation of Ω realizes the following algorithm:

(1) Insert q0 at the beginning of the input string.
(2) Go randomly to Step (3), (4) or (5) (guess next operation).

(3) Simulate a rule t : (qi, a)
δ→ (qj , b, μ), μ ∈ {+,−}.

– Insert symbol t at the beginning of the string.
– Insert new state symbol qj .
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– Mark symbol a.
– Insert symbol b.
– Mark qi.
– Insert ) .
– Go to (6).

(4) “Replace” state symbol qi to the left or to the right over marked symbols
– Insert � (or �) at the beginning.
– Insert a copy of qi to the right(to the left) over marked symbols, corre-
spondingly.
– Mark the old qi.
– Insert ) .
– Go to (6).

(5) Insert a blank cell.
– Insert ⊕(or 2) at the beginning.

– Insert the blank at the end (or after T̂ ∗, at the beginning of factor in QSf ,
correspondingly).
– Insert ) .

(6) If there is no symbol qf then go back to Step (2).
(7) Accept the input word.

The very specific form of the observer’s clauses guarantees that the order of these
steps is followed. Every simulation of a step of the computation runs through
a sequence of configurations that belong to clauses specific to only that step.
Thus for every string accepted by M there is an accepting computation of Ω.
Indeed, consider the computation of M, Then the corresponding computation
of the observer system mimics it by the algorithm shown above. Step (4) is
performed whenever the replacement of qi over marked symbols needed, while
step (5) inserts blanks.

In order to show that for every word accepted by Ω there an accepting com-
putation of M we note that the decider D is defined in such a way that it allows
to consider only those computations of Ω that are given by the algorithm. ��

So already the simplest possible form of insertion rules suffices to obtain com-
putational completeness in the framework of insertion observer systems. This
suggests considering variants of observer systems with less powerful modes of
observation. First, however, we want to remark how big the leap in computa-
tional power in Theorem 7 was. Looking at the power of the corresponding class
of insertion systems by themselves, we observe that they only generate the very
simple class of subregular languages described in Lemma 2.

4 Observing only Change

Section 3 has shown us that even the simplest insertion systems suffice to obtain
computational completeness in the Computing by Observing framework. One
essential point for this was the observer’s power to see and process the entire
configuration in each step. This is a very strong assumption; as there is no bound
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on the size of a configuration, such an observation might take a very long time.
Therefore variants with less powerful observers have been investigated, too. We
take a look at what was called observing change [7]: the observer does not see
the configuration, but rather sees what has happened. In our case, this means
that the observation consists in the rule that has been applied, without any
knowledge as to where it has been applied.

Definition 8. An insertion change-observing acceptor is a quintuple
Ω = [Δ,R,O, D,6], where all components are the same as in Definition 4 except
for the observer. It is not a monadic transducer but a function from R into the
alphabet of D.

We refrain from giving a formal definition of the mode of operation here, because
the functioning is very straightforward to understand after the treatment of
insertion observer systems in the preceding sections. With such an insertion
change-observing acceptor we now recognize the same language as in Example
6. We will see how the knowledge about positions of insertions must now be
coded in the rules’ contexts, because the observer cannot do this part of the job
anymore.

Example 9. The key observation for this example is an alternative characteriza-
tion of words from the language {anbncn : n ≥ 0} based on the possible factors of
length two that such words can have. It is relatively straight-forward to see that
the following three conditions characterize exactly the words from our language:

(i). There is exactly one occurrence of each ab and bc.
(ii). The numbers of aa, bb and cc are equal.
(iii). Other blocks of two letters (ac, ba, ca, cb) do not occur.

For every possible factor of two letters we use one insertion rule to mark it: for
x, y ∈ {a, b, c} we use the rule (x,7, y) and give it the label xy; we use the labels
as observations for better readability. Thus between any two input letters the
symbol 7 can be inserted. As a result, the two letters are not adjacent anymore.
Thus every factor of length two leads to exactly one rule application. An input
string x1x2 . . . xn−1xn is converted into the string x1 7 x2 7 · · · 7 xn−1 7 xn.

In this way, the sequence of rules can be used to count the numbers of oc-
currences of the different types of factors. With the decider abbc(aabbcc)

∗ on the
labels of rules we validate exactly the characterization from above. Note that
the fact that the derivation has to terminate also guarantees that none of the
forbidden factors occurs.

While this example shows that some non-trivial languages can be generated, we
do not achieve computational completeness as above. In fact, even some finite
languages cannot be accepted.

Proposition 10. The singleton language {a2ba} cannot be accepted by any in-
sertion change-observing acceptor with insertion rules that have left and right
contexts of length at most one each and insert an arbitrary number of letters.
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Proof. Let us look at a factor xy of an input string. Whatever is inserted between
x and y during a derivation does not at all depend on the parts of the string left
of x and right of y. Consequently, for a change-observing acceptor it is irrelevant
where in the string xy is located. Every such pair generates a sequence of rule
applications, and the possible sequences for the entire input string depend only
on the numbers of pairs of different types. This means that the strings a2ba
and aba2 generate exactly the same sequences of rule applications. This means
that in any language accepted by a change-observing acceptor as specified above
there are either both of these strings or none. ��

The proof shows that the main limitation of power comes from the fact that
it is impossible to distinguish applications of the same rule in different places.
To some extent this could be compensated by using more context in the rules.
This is just what took us from Example 6 to Example 9, where in the latter
the same language is accepted as in the former by using some context. Based on
prior experience with graph-controlled insertion systems [1] we conjecture the
following:

Conjecture 11. Insertion change-observing acceptors with insertion rules that
have left and right contexts of length two each and insert strings of length two
can accept all recursively enumerable languages.

In the reference cited above, the mark and migration technique as used by Kari
and Sośık [11] was combined with a graph control of derivations. In this way, in-
sertion rules as in the conjecture sufficed to achieve computational completeness.
Since the graph control is essentially based on admitting only certain sequences
of rules, very similar arguments should work for our acceptors.

5 Conclusions

Theorem 7 has shown that insertion systems are very well-suited for the use in
the Computing by Observing architecture: even sub-regular systems suffice to
accept all recursively enumerable languages. As the systems used are the simplest
ones possible, this leaves few open questions.

On the other hand, the results from Section 4 provide a host of open questions:
the most obvious one is the explicitly formulated Conjecture 11. If it turns out
to be true, then the next question is its optimality. That is, can computational
completeness also be achieved with rules of smaller sizes? And can the language
classes that are accepted with insertion rules of smaller size be characterized in
nice ways?
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11. Kari, L., Sośık, P.: On the weight of universal insertion grammars. Theoretical
Computer Science 396(1-3), 264–270 (2008)

12. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Infor-
mation and Computation 131(1), 47–61 (1996)

13. Krassovitskiy, A.: Complexity and Modeling Power of Insertion-Deletion Systems.
Ph.D. thesis, Universitat Rovira i Virgili, Tarragona (2011)
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Abstract. We investigate the application of Courcelle’s Theorem and
the logspace version of Elberfeld et al. in the context of the implica-
tion problem for propositional sets of formulae, the extension existence
problem for default logic, as well as the expansion existence problem for
autoepistemic logic and obtain fixed-parameter time and space efficient
algorithms for these problems.

On the other hand, we exhibit, for each of the above problems, families
of instances of a very simple structure that, for a wide range of different
parameterizations, do not have efficient fixed-parameter algorithms (even
in the sense of the large class XPnu), unless P = NP.

1 Introduction

Non-monotonic reasoning formalisms were introduced in the 1970s as a formal
model for human reasoning and have developed into one of the most important
topics in computational logic and artificial intelligence. However, as it turns
out, most interesting reasoning tasks are computationally intractable already
for propositional versions of non-monotonic logics [7], in fact presumably much
harder than for classical propositional logic. Because of this, a lot of effort has
been spent to identify fragments of the logical language for which at least some
of the algorithmic problems allow efficient algorithms; a survey of this line of
research can be found in [13].

In this paper a different approach is chosen to deal with hard problems, namely
the framework of parameterized complexity. Gottlob et al. [8] made it clear that
the tree width of a (suitable graph theoretic encoding of a) given knowledge base
is a useful parameter in this context: making use of Courcelle’s Theorem it was
shown that many reasoning tasks for logical formalisms such as circumscription,
abduction and logic programming become tractable in the case of bounded tree
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width. Here we examine a family of non-monotonic logics where the semantics of
a given set of formulae (axioms, knowledge base) is defined in terms of a fixed-
point equation. In particular we turn to default logic [11] and autoepistemic logic
[9]. In the first, human reasoning is mimicked using so called “default rules” (in
the absence of contrary information, assume this and that); in the second, a
modal operator is introduced to model the beliefs of a perfect rational agent.
For both logics the algorithmic tasks of satisfiability and reasoning have been
shown to be complete in the second level of the polynomial hierarchy [7].

Much in the vein of [8] we here examine the parameterized complexity of these
problems and, making again use of Courcelle’s Theorem and a recent improve-
ment by Elberfeld et al., we obtain time and space efficient algorithms if the
tree width of the given knowledge base is bounded. This proves once again how
important this parameter is.

A second contribution of our paper concerns lower bounds: Under the as-
sumption P �= NP we show that, even for certain families of very simple knowl-
edge bases and for any parameterization taken from a broad variety, no efficient
fixed-parameter algorithms exist, not even in the sense of the quite large pa-
rameterized class XPnu. These simple families of knowledge bases are defined
in terms of severe syntactic restrictions, e.g., using default rules with literals or
propositions only. Restricting the input structure even further we obtain that
no fixed-parameter algorithm in the sense of the space-bounded class XLnu (the
logarithmic space analogue of XPnu) exists, unless L = NL.

Unfortunately, tree width is not among the parameters for which our lower
bound can be proven—otherwise we would have proven P �= NP. In a third part
of our paper, we show that those structurally very simple families of knowledge
bases, for which we gave our lower bounds, already have unbounded tree width.
For this result, we introduce the notion of pseudo-cliques and show how to embed
these into our graph-theoretic encodings of knowledge bases.

Due to space reasons the proof of Theorem 13 has to be omitted and can be
read in the CoRR version ”Meier, A., Schmidt, J., Thomas, M., Vollmer, H.:
On the parameterized complexity of default logic and autoepistemic logic. CoRR
abs/1110.0623 (2011)”.

2 Preliminaries

Complexity Theory. In this paper we will make use of several standard notions of
complexity theory such as the complexity classes L, ⊕L, NL, P, NP, coNP, and
Σp

2 and their completeness notions under logspace-many-one ≤log
m reductions.

Given a problem P and a parameterization κ, (P, κ) belongs to the class FPT
iff there is a deterministic algorithm solving P in time f(κ(x)) · |x|O(1); (P, κ) is
said to be fixed parameter tractable then. If (P, κ) is a parameterized problem,
then (P, κ)� := {x ∈ P | κ(x) = �} is the �-th slice of (P, κ). Define (P, κ) to be
a member of XPnu (in words, XP nonuniform) iff (P, κ)� ∈ P for all � ∈ N. For
background on parameterized complexity we recommend [6].

Furthermore, we require space parameterized complexity classes which have
been defined in [12] recently. Given a parameterized problem (P, κ), we say
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(P, κ) ∈ PLS iff there exists a deterministic algorithm deciding P in space
O(log κ(x) + log |x|), (P, κ) ∈ FPL iff there exists a deterministic algorithm
deciding P in space O(log f(κ(x)) + log |x|) for some recursive funktion f , and
(P, κ) ∈ XLnu iff (P, κ)� ∈ L for all � ∈ N. It holds that PLS ⊆ FPL ⊆ FPT ⊆
XPnu as well as FPL ⊆ XLnu ⊆ XPnu.

Tree width. A tree decomposition of a graph G = (V,E) is a pair (T,X), where
X = {B1, . . . , Br} is a family of subsets of V (the set of bags), and T is a tree
whose nodes are the bags Bi, satisfying the following conditions: (i)

⋃
X = V ,

i.e., every node appears in at least one bag, (ii) ∀(u, v) ∈ E ∃B ∈ X : u, v ∈ B,
i.e., every edge is ’contained’ in a bag, and (iii) ∀u ∈ V : {B | u ∈ B} is connected
in T , i.e., for every node u the set of bags containing u is connected in T .

The width of a decomposition (T,X), width(T,X), is the number max{ |B| |
B ∈ X} − 1, i.e., the size of the largest bag minus 1. The tree width of a graph
G, tw(G), is the minimum of the widths of the tree decompositions of G.

Propositional Logic. Let ϕ, ψ be propositional formulae. We say ψ can be de-
duced from ϕ, in symbols ϕ |= ψ, if for every assignment θ such that θ |= ϕ
it holds θ |= ψ. Further if A is a set of propositional formulae, then we define
Th(A) := {ψ | ϕ |= ψ, ϕ ∈ A} as the set of all consequences of the set A.

Default Logic. Following Reiter [11], a default rule is a triple α:β
γ ; α is called

the prerequisite, β is called the justification, and γ is called the conclusion. If
B is a set of Boolean functions, then d = α:β

γ is a B-default rule if α, β, γ are
B-formulae, i.e., formulae that use only connectors for functions in B. A B-
default theory (W,D) consists of a set of propositional B-formulae W and a set
of B-default rules D.

Let (W,D) be a default theory and E be a set of formulae. Now define Γ (E)
as the smallest set of formulae such that (i) W ⊆ Γ (E), (ii) Γ (E) is closed
under deduction, i.e., Γ (E) = Th(Γ (E)), and (iii) for all defaults α:β

γ ∈ D with

α ∈ Γ (E) and ¬β /∈ E, it holds that γ ∈ Γ (E). Then a stable extension of
(W,D) is a fix-point of Γ , i.e., a set E such that E = Γ (E).

A definition for stable extensions beyond fix-point semantics which was intro-
duced by Reiter [11] uses the principle of a stage construction: for a given default
theory (W,D) and a set E of formulae, define E0 = W and Ei+1 = Th(Ei)∪{γ |
α:β
γ ∈ D,α ∈ Ei and ¬β /∈ E}. Then E is a stable extension of (W,D) if and

only if E =
⋃
i∈N

Ei, and the set G = {α:βγ ∈ D | α ∈ E ∧ ¬β /∈ E} is called the
set of generating defaults.

The so to speak satisfiability problem for default logic, here called extension
existence problem, Ext, is the problem, given a theory (W,D), to decide if it
has a stable extension. Gottlob [7] proved that this problem is Σp

2-complete.

Autoepistemic Logic. Moore in 1985 introduced a new modal operator L stating
that its argument is ”believed” as an extension of propositional logic [9]. Further
the expression Lϕ is treated as an atomic formula with respect to the conse-
quence relation |=. Given a set of Boolean functions B, we define with Lae(B)
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the set of all autoepistemic B-formulae through ϕ ::= p | f(ϕ, . . . , ϕ) | Lϕ
for f being a Boolean functions in B and a proposition p. If Σ ⊆ Lae(B),
then a set Δ ⊆ Lae(B) is a stable expansion of Σ if it satisfies the condition
Δ = Th(Σ ∪ L(Δ) ∪ ¬L(Δ)), where L(Δ) := {Lϕ | ϕ ∈ Δ} and ¬L(Δ) :=
{¬Lϕ | ϕ /∈ Δ}, and L(Δ),¬L(Δ) ⊆ Lae(B).

Let SF(ϕ) denote the set of subformulae of ϕ, let SFL(ϕ) denote the set
of those subformulae of ϕ that have prefix L, and let us use the shorthand
¬S = {¬ϕ | ϕ ∈ S} for a set of (autoepistemic) formulae S. Given a set of
autoepistemic B-formulae Σ ⊆ Lae(B), we say a set Λ ⊆ SFL(Σ) ∪ ¬SFL(Σ) is
Σ-full if for each Lϕ ∈ SFL(Σ) it holds Σ ∪ Λ |= ϕ iff Lϕ ∈ Λ, and Σ ∪ Λ �|= ϕ
iff ¬Lϕ ∈ Λ. The connection of Σ-full sets and stable expansions of Σ has been
observed by Niemelä [10]: if Σ ⊆ Lae is a set of autoepistemic formulae and Λ is
a Σ-full set, then for every Lϕ ∈ SFL(Σ) either Lϕ ∈ Λ or ¬Lϕ ∈ Λ. The stable
expansions of Σ and Σ-full sets are in one-to-one correspondence.

The expansion existence problem, Exp, is the problem, given a set of autoepis-
temic formulae Σ, to decide if it has a stable expansion. Again, Gottlob proved
that this problem is complete for the class Σp

2 .

3 MSO-Encodings

The aim of this paper is the application of Courcelle’s theorem for obtaining
fixed-parameter algorithms in the context of default and autoepistemic logic.
For this, we will have to describe the relevant decision problems by monadic
second-order formulae. In this section we will explain how to do this and obtain a
preliminary result for the implication problem. Our approach is similar to the one
of Gottlob, Pichler, and Wei [8] where MSO encodings for algorithmic problems
from logic programming, abduction, and circumscription were developed.

Now fix a finite set B of Boolean functions. Denote by τB the vocabulary
{const1f | f ∈ B, arity(f) = 0} ∪ {conn2f,i | f ∈ B, 1 ≤ i ≤ arity(f)}. With
respect to a set Γ of propositional B-formulae we associate a τB,prop-structure
AΓ where τB,prop := τB ∪{var1, repr1} such that the universe of AΓ is the set of
subformulae of the formulae in Γ , and (i) var(x) holds iff x represents a variable,
(ii) repr(x) holds iff x represents a formula from Γ , (iii) const1f (x) holds iff x

represents the constant f , and (iv) conn2f,i(x, y) holds iff x represents the ith
argument of the function f at the root of the formula tree represented by y.

Lemma 1. Let B be a finite set of Boolean functions. Then there exists an
MSO-formula θsat over τB,prop such that for any Γ ⊆ L(B) it holds that
Γ is satisfiable iff AΓ |= θsat.

Proof. The formula θstruc defined as follows states that if an individual is not
representing a formula ϕ ∈ Γ , then there must be at least one subformula in
which it occurs. If an individual is not a variable, then it represents either a
constant or a Boolean function f ∈ B and needs to have corresponding arity f
individuals.
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θstruc := ∀x
(
¬repr(x) → ∃y

(
¬var(y) ∧

∨
f∈B,

1≤i≤arity(f)

connf,i(x, y)
))

∧ ∀x
(
¬var(x)→

∨
f∈B,

arity(f)=0

constf (x)⊕
∨
f∈B

∧
1≤i≤arity(f)

∃y
(
connf,i(y, x) ∧ ∀z(connf,i(z, x) → z = y)

))
.

Let n denote the maximal arity of B, i.e., n := max{arity(f) | f ∈ B}.

θassign(M) := ∀x∀y1 · · · ∀yn
∧
f∈B

( ∧
arity(f)=0

constf (x) → (M(x) ↔ f)∧

∧
1≤i≤arity(f)

connf,i(yi, x)→
(
M(x) ↔ f(�y1 ∈ M�, . . . , �yarity(f) ∈ M�)

))
,

where �x ∈ M� is � iff x ∈ M holds and ⊥ otherwise. Now define

θ∃assign := ∃M
(
θassign(M) ∧ ∀x

(
repr(x)→M(x)

)
It is easy to verify that θsat := θstruc ∧ θ∃assign satisfies the lemma. ��
Let B be a finite set of Boolean functions and F,G be sets of B-formulae.
Answering the implication problem of sets of propositional formulae, i.e., the
question whether F |= G, requires to extend our vocabulary τB,prop to τB,imp :=
τB,prop ∪ {repr1prem, repr1conc} as well as our structure which we will denote by
AF,G: reprprem(x) is true iff x represents a formula from F , and reprconc(x) is
true iff x represents a formula from G. Now it is straightforward to formalize
implication.

Lemma 2. Let B be a finite set of Boolean functions. Then there exists an
MSO-formula θimp over τB,imp such that for any Γ ⊆ L(B) and any F,G ⊆ Γ
it holds that F |= G iff AF,G |= θimp.

Proof. Define the MSO-formulae θpremise(M), θconclusion(M), and θimplies as fol-
lows:

θpremise(M) := ∀x(reprprem(x)→M(x))

θconclusion(M) := ∀x(reprconc(x)→M(x)))

θimplies := ∀M
((

θassign(M) ∧ θpremise(M)
)
→ θconclusion(M)

)
Then, we can define the formula θimp as θimp := θstruc ∧ θimplies, where θstruc
and θassign are defined as above in Lemma 1. ��
The application of Courcelle’s Theorem [3] and the logspace version of Elberfeld
et al. [5] directly leads to the following theorem.

Theorem 3. Let B be a finite set of Boolean functions, let k ∈ N be fixed, and let
F,G be sets of B-formulae such that AF,G has tree width bounded by k. Then the
implication problem for sets of B-formulae is solvable in time O(f(k)·(|F |+|G|))
and space O(log(f(k)) + log(|F |+ |G|)).
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In other words, the implication problem of sets of formulae parameterized by
the tree width of AF,G is fixed-parameter tractable, and even in PLS. In the
following sections we will extend this result to default logic and autoepistemic
logic.

4 Default Logic

Let B be a finite set of Boolean functions. Write W �D as a shorthand for the set
of formulaeW∪{α, β, γ | α:βγ ∈ D}. To anyB-default theory (W,D), we associate

a τB,dl := τB,prop ∪ {kb1, def1, prem2, just2, concl2}-structure A(W,D) such that
the universe of A(W,D) is the union of the set of subformulae of W �D ∪ {¬β |
α:β
γ ∈ D} together with a set corresponding to the defaults in D, the relations

from τB,prop are interpreted as in Section 3, and kb(x) holds iff x represents
a formula from the knowledge base W , def(x) holds iff x represents a default
d ∈ D, prem(x, y) (resp. just(x, y), concl(x, y)) holds iff x represents the premise
α (resp. justification β, conclusion γ) and y represents the rule α:β

γ .

Lemma 4. Let B be a finite set of Boolean functions and let (W,D) be a B-
default theory. There exists an MSO-formula θextension such that (W,D) pos-
sesses a stable extension iff A(W,D) |= θextension.

Proof. First the formula θisneg expresses the fact that one formula is the nega-

tion of another formula: θisneg(ϕ, ϕ) := θstruc ∧ ∀M
(
θassign(M) →

(
M(ϕ) ↔

¬M(ϕ)
))

. Observe that ϕ and ϕ are not formulae but placeholders for individu-

als. The following two formulae define the applicability of defaults, i.e., whether
a premise α is entailed or a justification β is violated which uses the shortcut
χ(C,M, x) := (kb(x) ∨ C(x)) → M(x):

θW∪C|=α(C,α) := ∀M
(
θassign(M) → ∀x

(
χ(C,M, x) → M(α)

))
,

θW∪C|=¬β(C, β) := ∃β∃M
(
θassign(M)→∀x

(
χ(C,M, x) ∧M(β) ∧ θisneg(β, β)

))
.

Now we can define the MSO-formulae θapp (a default d is applicable), θstable (a
set of defaults is stable), θgd (a set of defaults is generating) as follows.

θapp(d,G) :=∃α∃β∃C
(
prem(α, d) ∧ just(β, d)∧

∀x
(
C(x) ↔ ∃y(G(y) ∧ concl(x, y))

)
∧ θW∪C|=α(C,α) ∧ ¬θW∪C|=¬β(C, β)

)
θstable(G) :=∀d

(
def(d) ∧ (G(d) ↔ θapp(d,G))

)
θgd(G) := θstable(G) ∧ ∀G′(G′ � G→¬θstable(G′))

Then θextension := θstruc ∧ ∃G(θgd(G)) is true under A(W,D) iff (W,D) has a
stable extension. ��
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As a consequence of Lemma 4, we obtain from Courcelle’s Theorem [3] and the
logspace version of Elberfeld et al. [5] that, given the tree width of A(W,D) as a
parameter, the extension existence problem for default logic is fixed-parameter
tractable, and in fact, in PLS.

Theorem 5. Let B be a finite set of Boolean functions, let k ∈ N be fixed, and
let (W,D) be a B-default theory such that A(W,D) has tree width bounded by
k. Then the extension existence problem for B-default logic is solvable in time
O(f(k) · |(W,D)|) and space O(log(f(k)) + log |(W,D)|).

So again and maybe with no big surprise, similar to the study by Gottlob et
al. [8] for different nonmonotonic formalisms, we see here that bounding the
tree width of a default theory yields time and space efficient algorithms for
satisfiability. In the following we want to contrast this with a strong lower bound.
We consider knowledge bases with very simple defaults rules, namely consisting
only of literals (and in a second step even only propositions). Then we consider
any parameterization of the extension existence problem that is bounded for all
knowledge bases that obey this restriction. It follows that even for these very
restricted knowledge bases, the parameterized extension existence problem is not
even in the class XPnu, unless P �= NP.

We want to point out that this theorem comprises for example the usual
parameterizations for Sat (in terms of, e.g., backdoor sets or formula tree width):
For all these, we have FPT-algorithms for propositional satisfiability, but still
the extension existence problem is not in XPnu.

Theorem 6. Let B be a finite set of Boolean functions such that ¬ ∈ [B ∪{�}]
and let D be the set of sets D of default rules such that each default d ∈ D is
composed of literals only. Further let κ be a parameterization function for which
there exists a c ∈ N such that κ

(
(∅, D)

)
< c for all D ∈ D. If P �= NP, then

the extension existence problem for B-default logic, parameterized by κ, is not
contained in XPnu.

Proof. The reduction from Sat to default logic restricted to default theories
with W = ∅ and default rules composed of literals only, shown in Lemma 5.6
of [2], proves that the extension existence problem of default logic restricted
to theories of this kind (which will be denoted by Ext

′) is NP-hard. Now let
κ be such a parameterization and suppose P �= NP. For contradiction assume
(Ext′, κ) ∈ XPnu. Hence, by definition of XPnu, it holds (Ext

′, κ)� ∈ P for every
� ∈ N. As also � < c holds we can compose a deterministic polynomial time
algorithm which solves Ext′. This contradicts P �= NP and concludes the proof.

��

Theorem 7. Let B be a finite set of Boolean functions such that ⊥ ∈ [B] and let
D be the set of sets D of default rules such that each default d ∈ D is composed of
propositions or the constant ⊥ only. Further let κ be a parameterization function
for which there exists a c ∈ N such that κ

(
(W,D)

)
< c for all D ∈ D and all W

that consists of at most one proposition. If L �= NL, then the extension existence
problem for B-default logic, parameterized by κ, is not contained in XLnu.
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Proof. The reduction from Gap to default logic restricted to default theories
with |W | ≤ 1 and default rules composed of propositions or the constant ⊥
only, shown in Lemma 5.8 of [2], proves that the extension existence problem of
default logic restricted to theories of this kind (which will be denoted by Ext

′)
is NL-hard. Following the argumentation in the proof of Theorem 6, we conclude
for L �= NL and (Ext′, κ) ∈ XLnu that (Ext′, κ)� ∈ L holds for every �. This
eventually leads to the desired contradiction proving the theorem. ��

5 Autoepistemic Logic

Let B be a finite set of Boolean functions. To any set Σ of autoepistemic B-
formulae, we associate a τB,ae := τB ∪ {L1, repr1}-structure AΣ such that the
universe of AΣ is the union of the set of subformulae of Σ ∪ {¬Lϕ | Lϕ ∈
SF(Σ)}, the relations from τB are interpreted as in Section 3, and L(x) holds
iff the subformulae represented by x is prefixed by an L, and repr(x) holds iff x
represents a formula in Σ.

Lemma 8. Let B be a finite set of Boolean functions and let Σ be a set of
autoepistemic B-formulae. There exists an MSO-formula θ such that Σ possesses
a stable expansion iff AΣ |= θ.

Proof. For a set of formulae G and a formula ϕ, similar to θW∪C|=α(C,α) in the
proof of Lemma 4, define be the MSO-formula

θΣ∪Λ|=ϕ(Λ,ϕ) := ∀M
(
θassign(M) → ∀x

((
(repr(x) ∨ Λ(x)) → M(x)

)
→ M(ϕ)

))
to test for Σ ∪ Λ |= ϕ. Now define the MSO-formula θfull as

θfull(Λ) :=∀x
(
L(x)→

(
Λ(x)⊕∃y(conn¬(x, y) ∧ Λ(y))

))
∧

∀x
(
L(x)→

(
Λ(x) ↔ θΣ∪Λ|=ϕ(Λ, x)

))
Then θ := θstruc ∧ ∃Λ(θfull(Λ)) is true under AΣ iff Σ has a Σ-full set Λ, which
is the case iff Σ has a stable expansion. ��

As above we obtain from Lemma 8 that, given the tree width of AΣ as a param-
eter, the expansion existence problem for autoepistemic logic is fixed-parameter
tractable, and in fact in PLS.

Theorem 9. Let B be a finite set of Boolean functions, let k ∈ N be fixed, and
let Σ be a set of autoepistemic B-formulae such that AΣ has tree width bounded
by k. Then the expansion problem is solvable in time O(f(k) · |Σ|) and space
O(log(f(k)) + log |Σ|).

On the other hand, analogues of Theorems 6 and 7 are easily obtained:
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Theorem 10. Let B be a finite set of Boolean functions such that ∨ ∈ [B ∪
{⊥,�}] and let Σ be the set of sets Σ of autoepistemic B-formulae such that
all ϕ ∈ Σ are disjunctions of propositions or L-prefixed propositions. Further
let κ be a parameterization function for which there exists a c ∈ N such that
κ(Σ) < c for all Σ ∈ Σ. If P �= NP, then the expansion existence problem for
sets of autoepistemic B-formulae, parameterized by κ, is not contained in XPnu.

Proof. Observe that there exists a reduction f from 3-Sat to autoepistemic logic
restricted to B-formulae shown in Lemma 4.5 of [4]. This implies our claim, as
membership in XPnu implies a polynomial-time algorithm for any fixed κ. ��

Theorem 11. Let B be a finite set of Boolean functions such that ⊕,� ∈ [B]
Further let κ be a parameterization function for which there exists a c ∈ N such
that κ(Σ) < c for all Σ. If L �= ⊕L, then the expansion existence problem for
sets of autoepistemic B-formulae, parameterized by κ, is not contained in XLnu.

Proof. Observe that there exists a reduction f from the implication problem
restricted to B-formulae shown in Lemma 4.8 of [1]. This implies our claim, as
membership in XLnu implies a logspace algorithm for any fixed κ. ��

We remark that similar lower bounds as given for default logic in the previous
section and for autoepistemic logic here hold for the implication problem as well.

6 Pseudo-cliques

Looking at Theorems 6 and 7 one might hope that the syntactic restriction
imposed there, namely allowing only defaults that involve literals or propositions,
is so severe that it will bound the tree width of every such input structure.
Combining this with Theorem 5 would then yield P = NP (or L = NL, resp.).
Stated the other way round, if P �= NP then the tree width of A(W,D) is a
non-trivial parameterization, i.e., a parameterization κ for which there exists
no c ∈ N such that κ((∅, D)) < c holds for all D consisting of defaults rules
involving only literals.

In the following we directly prove the non-triviality of the parameterization
by tree width (i.e., without any complexity hypothesizes). As a tool we utilize
the subsequent definition of pseudo-cliques.

Definition 12. Let G = (V,E) be an undirected graph. A pseudo-clique is a set
of vertices V ′ ⊆ V that can be partitioned into the set of main-nodes Vmain and
sets of edge-nodes Vu,v for each u �= v ∈ Vmain such that the following holds: for
v1, . . . , vm ∈ Vu,v the nodes in Vu,v form a simple path from u to v, i.e., it holds
that (u, v1), (v1, v2), . . . , (vm−1, vm), (vm, v) ∈ E and no other edges are present.

The size of a pseudo-clique is |Vmain|, i.e., the number of main-nodes. The
cardinality of a pseudo-clique is maxu�=v∈Vmain |Vu,v|, i.e., the length of the longest
simple path between edge-nodes. A pseudo-clique is said to have exact cardinality
k if ∀u, v ∈ Vmain: |Vu,v| = k.
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n = 2 n = 3 n = 4 n = 5

n = 4,
cardinality 3

1, d12, 3, 4, . . . , n

d12, 2, 3, 4, . . . , n

2, d24, 4 2, d23, 3 . . . 2, d2n, n

1, d13, 3 1, d14, 4 . . . n − 1, dn−1n, n

Fig. 1. Pseudo-cliques of exact card. 1 and size ∈ {2, . . . , 5}, one of card. 3 and size 4,
and a tree decomposition of a pseudo-clique of exact card. 1 and size n.

The first four pseudo-cliques of exact cardinality 1, and one of cardinality
3 are visualized in Figure 1. The thick vertices correspond to the main-nodes
whereas the small dots correspond to the edge-nodes.

The important fact for us is the observation that pseudo-cliques of size n have
the same tree width as the clique of size n.

Theorem 13. Let G = (V,E) be a pseudo-clique of size n ≥ 3 and cardinality
k ≥ 0. Then the tree width of Gn is n− 1.

Whenever one wants to show that a parametrization by tree width is non-trivial,
the most obvious method is to show that the family of graphs has (sub-) cliques
of arbitrary size. Now Theorem 13 provides an alternative when this method is
prohibited: it suffices to construct pseudo-cliques. Corollary 14 (1.) shows that,
for families used for the lower bounds in the previous sections, it is not possible
to use cliques in order to prove unbounded tree width and therefore additionally
motivates the definition and purpose of pseudo-cliques.

Corollary 14. Let B be a finite set of Boolean functions such that ⊥ ∈ [B] and
let (∅, D) be a B-default theory in the sense of Theorem 6, i.e., each default in
D is composed of literals only. Then there exists an MSO formula θ fulfilling the
property (W,D) ∈ Ext(B) iff A(W,D) |= θ, and

1. A(W,D) is neither �-connected nor contains a clique of size � for any � ≥ 3.
2. There exists a family of default theories (∅, D)k such that the tree width of

A(∅,D)k is not constant.

Proof. For (1.) we construct the MSO formula θ according to Lemma 4. At first
observe that the universe of A(W,D) comprises only literals and defaults. Further,
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there are no edges between literals, and no edges between defaults. Every default
can be connected to at most three different literals. Obviously the graph does not
contain a clique of size � ≥ 3. Furthermore, the graph is not �-connected for any
� ≥ 3 by the following observation. Let xd be some individual representing the
default d = α:β

γ . Then there are individuals xα, xβ , xγ to represent the respective
parts of d which are all connected to xd. If now xα, xβ and xγ are removed from
the graph, then there is no other individual to which xd is connected yielding a
contradiction to the connectivity.

Turning to (2.) observe that (1.) prohibits using �-cliques or �-connectivity for
any � ≥ 3 to measure the tree width of A(W,D)k . Now define a default theory

(∅, D) complying with Theorem 10, where D :=
{
dij =

xi:yj
⊥
∣∣ 1 ≤ i ≤ j ≤ n

}
,

and xi, yj are variables for 1 ≤ i ≤ j ≤ n. Consisting only of this kind of default
rules implies that the structure forms a pseudo-clique whence the application of
Theorem 13 concludes the proof. ��

An analogous result holds for autoepistemic logic.

Corollary 15. Let B be a finite set of Boolean functions. There exists a family
of autoepistemic B-formulae Σk and all ϕ ∈ Σk are disjunctions of propositions
or L-prefixed propositions such that there exists an MSO formula θ fulfilling the
property Σk ∈ Exp(B) iff AΣk

|= θ and the tree width of AΣk
is not constant.

Proof. Define Σk as Σk := {xi ∨ xj | 1 ≤ i ≤ j ≤ k}. Then the structure AΣk

consist of cliques of size k, in fact. ��

Corollary 16. Let B be a finite set of Boolean functions such that ∧,∨ ∈ [B].
Let Γ1 be the set of sets Γ of formulae in monotone 2-CNF and let Γ2 be the
set of sets Γ of formulae in DNF. There exists a family of sets of B-formulae
(F,G)k with F ∈ Γ1, G ∈ Γ2 such that there exists an MSO formula θ fulfilling
the property (F,G)k ∈ Imp(B) iff A(F,G)k |= θ and the tree width of A(F,G)k is
not constant.

7 Conclusion

In this paper we applied Courcelle’s Theorem [3] and the logspace version of
Elberfeld et al. [5] to the most prominent decision problems in the nonmontonic
default logic and autoepistemic logic. Thereby we showed that the extension
existence problem for a given default theory (W,D) is solvable in time O(f(k) ·
|(W,D)|) and space O(log |(W,D)|) if the tree width of the corresponding MSO
structure is bounded by k; similarly for the expansion existence problem for a
set of autoepistemic formulae, and as well for the implication problem for sets
of formulae F,G.

Further we mention that one can achieve similar results for the credulous (resp.
brave) and skeptical (resp. cautious) reasoning problems of the nonmontone
logics from above by slight extensions of the constructed MSO-formulae.

Furthermore we introduced with pseudo-cliques a weaker notion of cliques:
basically we have a clique where each edge is divided into two edges by a fresh



400 A. Meier et al.

node (or even a longer path). There we showed that for a graph the size of its
largest sub-pseudo-clique gives a lower bound for its tree width. If we investigate
default theories (W,D) which contain an empty knowledge base W and only
defaults which are composed of propositions or the constant ⊥ only, then for
constant parameterizations we show collapses of P and NP (resp. L and NL) if
the corresponding parameterized problem is in XPnu (resp. XLnu). Thus through
the concept of pseudo-cliques we construct a family of default theories whose tree
width of its MSO-structures is unbounded. Therefore this parameter cannot be
used to prove such complexity class collapses. Analogue claims can be made
for the expansion existence problem in autoepistemic logic and the implication
problem for sets of formulae.

For subsequent research it would be very interesting to find a parameterization
that is non-trivial in the sense of Theorem 6 but uses many different values. Also
insights on new types of parameterizations, in particular in the context of the
new space parameterized complexity classes, would be very engaging.

Acknowledgement. For helpful hints and discussions we are grateful to Nadia
Creignou (Marseille) and Thomas Schneider (Bremen). We also thank the anony-
mous referees for helpful comments.
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Abstract. We show that there are Cayley graph automatic groups that
are not Cayley graph biautomatic. In addition, we show that there are
Cayley graph automatic groups with undecidable Conjugacy Problem
and that the Isomorphism Problem is undecidable in the class of Cayley
graph automatic groups.
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1 Introduction

The notion of automatic groups, based on ideas of Thurston, Cannon, Gilman,
Epstein and Holt, was introduced in [5]. The initial motivation was to under-
stand the fundamental groups of compact 3-manifolds and make them tractable
for computing. It was quickly realized that automatic group come short in deal-
ing with manifolds of Nil and Sol types. This immediately triggered a search for
suitable generalizations. In [4] Bridson and Gilman came up with a sufficiently
powerful notion of automaticity (asynchronously automatic groups where regu-
lar languages are replaced with indexed languages) that covers all fundamental
groups of compact 3-manifolds, but at the cost of losing the good algorithmic
properties.

Since 1990’s a lot of groups were proved to be automatic (see the survey in
[7]), but a certain frustration still lingers there. It turns out that many basic
questions on automatic groups remain wide open despite a considerable effort
by the group theoretic community. Three such basic problems ask if automatic
groups are biautomatic, if they have a decidable Conjugacy Problem, and if
the Isomorphism Problem is decidable within the class. The Cayley graph auto-
matic groups, introduced in [7] (building on the earlier work of Khoussainov and
Nerode [8] and the more recent work of Blumensath and Grädel [1]) retain the
basic algorithmic properties of the standard automatic groups (decidability of
the Word Problem in quadratic time and decidability of the Conjugacy Problem
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in the biautomatic case) but form a much wider class of groups, which, in par-
ticular, contains many nilpotent and solvable groups, which are not automatic
under the standard definition. From the algorithmic view-point this indicates
that the new class gives a legitimate notion of automaticity. Another confirma-
tion that Cayley graph automatic groups provide a robust generalization of the
standard automatic groups is given by the fact that the basic problems men-
tioned above can be tamed in this case. Namely, we show that all three have a
negative solution in the class of Cayley graph automatic groups.

Theorem 1. There are Cayley graph automatic groups that are not Cayley
graph biautomatic.

This answers a question raised implicitly at the end of the introductory sec-
tion in [7]. The theorem below answers a question raised implicitly at the end
of Section 8 in [7].

Theorem 2. There are Cayley graph automatic groups with undecidable Con-
jugacy Problem.

Our last result concerns the Isomoprhism Problem.

Theorem 3. The Isomorphism Problem is not decidable in the class of Cayley
graph automatic groups.

Our results follow from several results of Kharlampovich, Khoussainov, and Mi-
asnikov [7], Bogopolski, Martino, and Ventura [2], and Levitt [9].

Bogopolski, Martino, and Ventura proved that certain group extensions have
decidable Conjugacy Problem (here and thereafter Fn denotes the free group of
rank n).

Theorem 4 (Bogopolski, Martino, Ventura [2] Corollary 7.6). There
exists a group of the form Zd �τ Fn with undecidable Conjugacy Problem.

The homomorphism τ : Fn → GLd(Z) constructed in the proof of Theorem 4
in [2] is not injective. In fact, the image τ(Fn) is not finitely presented and the
question of existence of a group of the form Zd�τFn with undecidable Conjugacy
Problem such that τ(Fn) is finitely presented was left open. A modification of
the construction from [2] that was provided in [10] resolved this question.

Theorem 5 (Šunić, Ventura [10]). There exists a group of the form Zd�τ Fn
with undecidable Conjugacy Problem such that τ is injective.

The primary goal of [10] was to prove that the Conjugacy Problem is not de-
cidable in the class of automaton groups (these are self-similar groups of rooted
regular tree automorphisms generated by finite, invertible, synchronous trans-
ducers; see [6]). The class of automaton groups should not be confused with the
class of automatic groups, as defined in [5], nor with its generalization, the Cay-
ley graph automatic groups, as defined in [7]. At present, the relation between
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the class of automaton groups and the class of Cayley graph automatic groups
is not clear and only the latter is the subject of consideration in this work.

The final ingredient in the proof of Theorem 2 is Theorem 6, which is not
stated in [7] in the form in which we quote it here, but it is a corollary of the
other results presented there. Theorem 2 directly follows from Theorem 4 and
Theorem 6.

Theorem 6 (Kharlampovich, Khoussainov, Miasnikov [7]). All groups
of the form Zd � Fn are Cayley graph automatic.

As a direct corollary of Theorem 2 and the following result, we obtain Theorem 1.

Theorem 7 (Kharlampovich, Khoussainov, Miasnikov [7] Thm. 8.5).
Cayley graph biautomatic groups have decidable Conjugacy Problem.

As a direct corollary of Theorem 6 and the following result of Levitt, we obtain
Theorem 3.

Theorem 8 (Levitt [9]). The Isomorphism Problem is not decidable in the
class of groups of the form Zd � Fn.

Note that there is an earlier work of Zimmermann [11] showing that the isomor-
phism problem is not decidable in (free-abelian)-by-surface groups, and that his
argument could be applied for (free-abelian)-by-free groups.

It is important to observe that our examples of Cayley graph automatic groups
that are not biautomatic and have undecidable Conjugacy Problem are not au-
tomatic in the standard sense. Indeed, one can prove the following.

Theorem 9. If a group of the form Zd �Fn has subexponential Dehn function,
then it has decidable Conjugacy Problem.

In the remaining sections we provide the necessary definitions and other details.

2 Cayley Graph Automatic and Cayley Graph
Biautomatic Groups

Let Σ be a finite alphabet. We will sometimes extend this alphabet by a special
symbol 8 that is not in Σ, and we denote Σ� = Σ ∪ {8}.

The convolution ⊗(w1, . . . , wn) of an n-tuple of words (w1, . . . , wn) over Σ is
the word of length max{|w1|, . . . , |wn|} over (Σ�)

n in which the j-th symbol is
(σ1, . . . , σn), where

σi =

{
the j-th symbol of wi, if j ≤ |wi|
8, otherwise

.

For instance,

⊗(aaa, babaa, ∅) =

⎛⎝a
b
8

⎞⎠⎛⎝a
a
8

⎞⎠⎛⎝a
b
8

⎞⎠⎛⎝8a
8

⎞⎠⎛⎝8a
8

⎞⎠ ,
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where ∅ denotes the empty word and the symbols in (Σ�)
n are written, for

convenience, as columns.
Let R be an n-ary relation on Σ∗. The convolution ⊗R of R is the language

over (Σ�)
n defined by

⊗R = { ⊗(w1, . . . , wn) | (w1, . . . , wn) ∈ R }.

A relation R is regular over Σ if its convolution ⊗R is a regular language over
(Σ�)

n, i.e., ⊗R is recognizable by a finite automaton over the alphabet (Σ�)
n

(let us note that, in this work, the automata always read words from left to
right). A subset R of Σ∗ may be considered as a unary relation and, since in
this case, ⊗R = R, there is no difference (or confusion) between the regularity
of R over Σ as a subset of Σ∗ (as is usually defined) or as a relation on Σ∗ (in
the sense defined above, using convolutions).

Let G be a finitely generated group with finite generating set S. The right
Cayley graph of G with respect to S is the graph Γ (G,S) with G as the set of
vertices and, for each g in G and s in S, an edge from g to gs. The Cayley graph
can be interpreted as a system of |S| binary relations Es on G, for s in S, where

Es = { (g, gs) | g ∈ G }.

A map ¯ : G → Σ∗ induces |S| binary relations on Σ∗ given by

Es = { (g, gs) | g ∈ G }.

Definition 1. A finitely generated group G with finite generating set S is Cayley
graph automatic if there exists a finite alphabet Σ and an injective map ¯ : G →
Σ∗ such that

G is regular (over Σ) and
Es is regular (over Σ), for every s in S.
In such a case the tuple (G,Es1 , . . . , Esk) is called an automatic structure of

the Cayley graph Γ (G,S) or Cayley graph automatic structure of G (with respect
to S = {s1, . . . , sk}).
In addition to the right Cayley graph one may consider the left Cayley graph
Γ �(G,S) as well. The vertex set is G and, for each g in G and s in S, an edge
from g to sg. The left Cayley graph can be interpreted as a system of |S| binary
relations E�s on G, for s in S, where

E�s = { (g, sg) | g ∈ G }.

Definition 2. A finitely generated group G with finite generating set S is Cayley
graph biautomatic if there exists a finite alphabet Σ and an injective map ¯ :
G → Σ∗ such that

G is regular (over Σ),
Es is regular (over Σ), for every s in S, and

E
�

s is regular (over Σ), for every s in S.

In such a case the tuple (G,Es1 , . . . , Esk , E
�

s1 , . . . , E
�

sk) is called a biautomatic

structure of the pair of Cayley graphs Γ (G,S) and Γ �(G,S) or Cayley graph
biautomatic structure of G (with respect to S = {s1, . . . , sk}).
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It is important to observe that being Cayley graph automatic is a property
of the group and does not depend on the chosen finite generating set S, i.e., G
is Cayley graph automatic with respect to a finite generating S if and only if it
is Cayley graph automatic with respect to any of its other finite generating sets
(Theorem 6.9. [7]).

All (bi)automatic groups, as defined in [5] are Cayley (bi)automatic (Propo-
sition 7.3. and Proposition 8.4. [7]). The class of Cayley graph automatic groups
is much wider than the class of automatic groups. For instance, it includes the
Heisenberg group H = 〈a, b | [a, [a, b]] = [b, [a, b]] = 1〉 and many other nilpotent
groups that are not automatic (Example 6.6 [7]). Nevertheless, the class of Cay-
ley (bi)automatic groups retains many algorithmic properties of (bi)automatic
groups. For instance, every Cayley graph automatic group has Word Problem
decidable in quadratic time and every Cayley graph biautomatic group has de-
cidable Conjugacy Problem (Theorem 8.2. and Theorem 8.5. [7]).

The class of Cayley graph automatic groups has good closure properties. The
following is, in particular, relevant for our purposes.

Theorem 10 (Kharlampovich, Khoussainov, Miasnikov [7] Thm. 10.3).
Let A and B be Cayley graph automatic groups with finite generating sets X and
Y , respectively. Let τ : B → Aut(A) be a homomorphism such that the au-
tomorphism τ(y) is automatic, for every y in Y . Then the semidirect product
G = A�τ B is Cayley graph automatic.

Let us briefly explain what is meant by an automatic automorphism α of a
Cayley graph automatic group A. Let A be automatic over Σ and ¯ : A → Σ∗

be the injective map used in the automatic structure of A. The automorphism
α induces a binary relation {(a, aα) | a ∈ A} on A, which, in turn, induces a
binary relation α = {(a, aα) | a ∈ A} on Σ∗. The automorphism α is automatic
if the relation α is a regular relation over Σ.

The semidirect product A�τ B is the set of all pairs (b, a), for b ∈ B, a ∈ A,

with product defined by (b1, a1)(b2, a2) = (b1b2, a
τ(b2)
1 a2).

It is known that the free abelian group A = Zd and the free group B = Fn
of finite ranks are automatic, and hence they are Cayley graph automatic. The
argument in the proof of Proposition 10.5 in [7], showing that every automor-
phism of Z2 is automatic, can be extended to show that every automorphism
of Zd is automatic. In other words, multiplication of d-tuples of integers by any
fixed d × d matrix in GLd(Z) is automatic. These observations, together with
Theorem 10 immediately imply Theorem 6.

3 (Free-abelian)-by-free Groups with Undecidable
Conjugacy Problem

For the duration of this section, let A = Zd and B = Fn (this agreement is not
crucial for all statements, but this is the setting we are aiming for and there is
no need to go into more general considerations).
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Let C be a subgroup of Aut(A) = GLd(Z). We say that C has undecidable
Orbit Problem if there is no algorithm that decides, on input consisting of arbi-
trary pair of vectors u and v in A, if there exists a matrix c in C such that uc = v
(we use the right action of matrices on vectors; this is just the multiplication of
vectors by the matrix c on the right). Let τ : B → GLd(Z) be a homomorphism
such that τ(B) = C. If C has undecidable Orbit Problem then the semidirect
product G = A�τ B has undecidable Conjugacy Problem. Indeed, as observed
in [2], two vectors u and v in A are conjugate in G if and only if they are in
the same orbit under the action of C = τ(B), and since the latter problem is
undecidable, so is the Conjugacy Problem in G.

A good way to construct orbit undecidable subgroups of GLd(Z) is provided
in [2] (Section 7; in particular, Proposition 7.5. and Corollary 7.6., the latter
of which is listed in our introduction as Theorem 4). Let d ≥ 4 and let H be
a finitely presented group with undecidable Word Problem. Use the Mikhailova
construction to obtain the corresponding finitely generated subgroup H ′ of F2×
F2 with undecidable Membership Problem and then consider F2 × F2 as a sub-
group of GLd(Z) through a specific embedding (F2 × F2 embeds in GLd(Z), for
d ≥ 4) that turns the undecidability of the Word Problem in H into unde-
cidability of the Orbit Problem for H ′ = C ≤ GLd(Z) (a specific embedding of
F2×F2 with this property is spelled out precisely in [2]). The group G = A�τ B,
where τ : B → GLd(Z) is any homomorphism with τ(B) = C, has undecidable
Conjugacy Problem.

The group C, as defined above, is finitely generated and not finitely presented.
Thus, τ is not injective for any group of the form G = A �τ B with C = τ(B)
as in the above construction.

The following modification, introduced in [10], provides groups of the form
G = A �τ B with undecidable Conjugacy Problem and injective τ . Let C =
〈g1, . . . , gn〉 be an orbit undecidable subgroup of GLd(Z), let B = F (f1, . . . , fn)
be free of rank n, and let C′ = 〈g′1, . . . , g′n〉 be any free subgroup of rank n of
GL2(Z) (for every n, such subgroups exist). Define τ : B → GLd+2(Z) by

τ(fi) =

[
gi 0d×2

02×d g′i

]
,

for i = 1, . . . , n, where 0d×2 and 02×d are the zero matrices of appropriate sizes.
In other words, the action of τ(fi) on the first d coordinates of Zd+2 is the same
as the action of the matrix gi, and on the last two coordinates as the action
of the matrix g′i. It is clear that τ is injective (since it is injective “on the last
two coordinates”). Moreover, the undecidability of the Orbit Problem for C in
GLd(Z) induces the undecidability of the Orbit Problem for the free subgroup
C′ = τ(B) in GLd+2(Z) (see Proposition 1 in [10], which is listed as Theorem 5
in our introduction).

At the end, we show that our examples of Cayley graph automatic groups that
are not Cayley graph biautomatic and have undecidable Conjugacy Problem are
not automatic under the standard definition. In fact, Theorem 9 implies that
our examples cannot even have subexponential Dehn functions (recall that the
groups that are automatic in the standard sense have quadratic Dehn functions).
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Proof (Proof of Theorem 9). Let G = Zd �τ Fn be a group with subexponen-
tial Dehn function. Bridson showed that the Dehn function of G can be either
polynomial or exponential and the former is possible only when Fn has a sub-
group F ′ of finite index such that τ(F ′) is unipotent [3]. This implies that τ(Fn)
is virtually solvable. Since virtually solvable subgroups of GLd(Z) have decid-
able Orbit Problem, it follows that G has decidable Conjugacy Problem (see
Proposition 6.9 and Corollary 6.10 in [2]).
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systems, and groups. Tr. Mat. Inst. Steklova 231(Din. Sist., Avtom. i Beskon.
Gruppy), 134–214 (2000)

7. Kharlampovich, O., Khoussainov, B., Miasnikov, A.: From automatic structures to
automatic groups (2011), arXiv:1107.3645v2

8. Khoussainov, B., Nerode, A.: Automatic Presentations of Structures. In: Leivant,
D. (ed.) LCC 1994. LNCS, vol. 960, pp. 367–392. Springer, Heidelberg (1995)

9. Levitt, G.: Unsolvability of the isomorphism problem for [free abelian]-by-free
groups (2008), arXiv:0810.0935v2
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In: Low-Dimensional Topology (Chelwood Gate, 1982). London Math. Soc. Lecture
Note Ser., vol. 95, pp. 214–255. Cambridge Univ. Press, Cambridge (1985)



On Model Checking

for Visibly Pushdown Automata

Tang Van Nguyen and Hitoshi Ohsaki

Research Team for Verification and Specification
National Institute of Advanced Industrial Science and Technology, Japan

{t.nguyen,ohsaki}@ni.aist.go.jp

Abstract. In this paper we improve our previous work by introduc-
ing optimized on-the-fly algorithms to test universality and inclusion
problems of visibly pushdown automata. We implement the proposed
algorithms in a prototype tool. We conduct experiments on randomly
generated VPA. The experimental results show that the proposed method
outperforms the standard one by several orders of magnitude.

1 Introduction

Visibly pushdown automata [1] are pushdown automata whose stack behavior
(i.e., whether to execute push, pop, or no stack operation) is completely deter-
mined by the input symbol according to a fixed partition of the input alphabet.
As shown in [1], this class of visibly pushdown automata enjoys many good prop-
erties similar to those of the class of finite automata. The main reason for this
being is that, each nondeterministic VPA can be transformed into an equiva-
lent deterministic one. Therefore, checking context-free properties of pushdown
models is decidable as long as the calls and returns are made visible. As a result,
visibly pushdown automata have turned out to be useful in some context, e.g.,
as automaton model for processing XML streams [6,3], and as AOP protocols
for component-based systems [4]. To check universality for a nondeterministic
VPA M over its alphabet Σ (that is, to check if L(M) = Σ∗), the standard
method is first to make it complete, determinize it, complement it, and then
check it for emptiness. To check the inclusion problem L(M) ⊆ L(N), the stan-
dard method computes the complement of N , takes its intersection with M and
then, checks for emptiness. This is costly as computing the complement necessi-
tates a full determinization. This explosion is in some senses inevitable, because
determinization for VPA requires exponential time blowup [1]. This raises a nat-
ural question: Are there methods to efficiently implement decision procedures
like universality (or inclusion) checking for VPA.

A pushdown system (e.g., see [2]) is a pushdown automaton that is regardless
of input symbols. Bouajjani et al. [2] have introduced a method to compute
reachable configurations of a pushdown system. The key of their technique is
to use a finite automaton so-called P-automaton to encode a set of infinite
configurations of a pushdown system. In our previous paper [5], we proposed
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on-the-fly algorithms to check universality and inclusion of VPA. The key idea
is based on doing determinization and generating P-automata simultaneously.

In this paper we improve the algorithms presented in [5] by optimizing the
determinized VPA and generated P-automaton as follows. First, we propose
an on-the-fly method to test universality of VPA M . In particular, in order to
check universality of a nondeterministic VPA, we simultaneously determinize
this VPA and apply the P-automata technique to compute a set of reachable
configurations of the target determinized VPA. When a rejecting configuration
is found, the checking process stops and reports that the original VPA is not
universal. Otherwise, if all configurations are accepting, the original VPA is uni-
versal. Furthermore, to strengthen the algorithm, we define a partial ordering
over transitions of P-automaton, and only minimal transitions are used to in-
crementally generate the P-automaton. The purpose of this process is to keep
the determinization step implicitly for generating reachable configurations as
small as possible. This improvement helps to reduce not only the size of the
P-automaton but also the complexity of the determinization phase. The intu-
itive idea behind this process is to find whether there exists a word w such that
w /∈ L(M) as early as possible. Second, an algorithmic solution to inclusion
checking for VPA using on-the-fly manner will be presented. Again, no explicit
determinization is performed. To solve the language-inclusion problem for non-
deterministic VPA, L(M) ⊆ L(N), the main idea is to find at least one word
w accepted by M but not accepted by N , i.e., w ∈ L(M) \ L(N). Finally, we
implement all algorithms in a prototype tool, named VPAChecker, and tested
them in a series of experiments. Our preliminary experiments on randomly gen-
erated VPA show a significant improvement of on-the-fly methods compared to
the standard ones.

The remainder of this paper is organized as follows. In Section 2 we recall
basic notions and properties of VPA, and then we give an improvement on de-
terminization of VPA. Section 3 propose optimized on-the-fly algorithms for
checking universality and inclusion of VPA. Also, the correctness proof of the
proposed algorithm is presented in this section. Implementation as well as ex-
perimental results are presented and analyzed in Section 4. Finally, we conclude
the paper in Section 5.

2 Visibly Pushdown Automata

2.1 Definitions

Let Σ be the finite input alphabet, and let Σ = Σc ∪ Σr ∪ Σi be a partition
of Σ. The intuition behind the partition is: Σc is the finite set of call (push)
symbols, Σr is the set of return (pop) symbols, and Σi is the finite set of internal
symbols. Visibly pushdown automata are formally defined as follows:

Definition 1 (Visibly Pushdown Automata [1]). A visibly pushdown au-
tomaton (VPA) M over Σ is a tuple M = (Q,Γ,Q0, Δ, F ) where Q is a finite set
of states, Q0 ⊆ Q is a set of initial states, F ⊆ Q is a set of final states, Γ is a
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finite stack alphabet with a special symbol ⊥ (representing the bottom-of-stack),
and Δ = Δc∪Δr∪Δi is the transition relation, where Δc ⊆ Q×Σc×Q×(Γ\{⊥}),
Δr ⊆ Q×Σr × Γ ×Q, and Δi ⊆ Q×Σi ×Q.

– If (q, c, q′, γ) ∈ Δc, where c ∈ Σc and γ �= ⊥, there is a push-transition from
q on input c where when reading c, γ is pushed onto the stack and the control

changes from state q to q′; we denote such a transition by q
c/+γ−−−→ q′.

– Similarly, if (q, r, γ, q′) ∈ Δr, there is a pop-transition from q on input r
where γ is read from the top of the stack and popped (if the top of the stack
is ⊥, then it is read but not popped), and the control state changes from q

to q′; we denote such a transition q
r/−γ−−−→ q′.

– If (q, i, q′) ∈ Δi, there is an internal-transition from q on input i where when
reading i, the state changes from q to q′; we denote such a transition by

q
i−→ q′. Note that there are no stack operations on internal transitions.

Let St = {w⊥ | w ∈ (Γ \ {⊥})∗} be the set of stack contents. A configuration is
a pair (q, σ) of q ∈ Q and σ ∈ St . The transition relation of a VPA can be used
to define how the configuration of the machine changes in a single step: we say
(q, σ)

a−→ (q′, σ′) if one of the following conditions holds:

– If a ∈ Σc then there exists γ ∈ Γ such that q
a/+γ−−−→ q′ and σ′ = γ · σ

– If a ∈ Σr, then there exists γ ∈ Γ such that q
a/−γ−−−→ q′ and either σ = γ · σ′,

or γ = ⊥ and σ = σ′ = ⊥
– If a ∈ Σi, then q

a−→ q′ and σ = σ′.

A (q0, w0)-run on a word u = a1 · · · an is a sequence of configurations (q0, w0)
a1→

(q1, w1) · · ·
an→ (qn, wn), and is denoted by (q0, w0)

u→ (qn, wn). A word u is

accepted by M if there is a run (q0, w0)
u→ (qn, wn) with q0 ∈ Q0, w0 =⊥, and

qn ∈ F . The language L(M) is the set of words accepted by M . The language
L ⊆ Σ∗ is a visibly pushdown language (VPL) if there exists a VPA M with
L = L(M).

Definition 2 (Deterministic VPA [1]). A VPA M is deterministic if |Q0| =
1 and for every configuration (q, σ) and a ∈ Σ, there are at most one transition
from (q, σ) by a. For deterministic VPA (DVPAs) we denote the transition re-
lation by δ instead of Δ, and write: δ(q, a) = (q′, γ) instead of (q, a, q′, γ) ∈ Δc

if a ∈ Σc, δ(q, a, γ) = q′ instead of (q, a, γ, q′) ∈ Δr if a ∈ Σr, and δ(q, a) = q′

instead of (q, a, q′) ∈ Δi if a ∈ Σi.

As shown in [1], any nondeterministic VPA can be transformed into an equivalent
deterministic one. The construction has two components: a set of summary edges
S, that keeps track of what state transitions are possible from a push transition
to the corresponding pop transition, and a set of path edges R, that keeps track
of all possible states reached from initial states. Reader(s) are referred to [1] for
more details. During implementation of VPA’s operations, we found that the
set of summaries S may contain redundant pairs in the sense that these pairs
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Algorithm 1. Optimized determinization for VPA

Data: A nondeterministic VPA M = (Q,Γ,Q0,Δ, F )

Result: A determinized VPA Mod = (Q′, Γ ′, Q′
0,Δ

′, F ′)

1 begin
2 Q′ = 2Q×Q, Γ ′ = Q′ × Σc,
3 Q′

0 = {IdQ0}, F ′ = {S ∈ Q′ | Π2(S) ∩ F �= ∅},
4 and the transition relation Δ′ = Δ′

i ∪ Δ′
c ∪ Δ′

r is given by:

– Internal: For every a ∈ Σi, S
a−→ S′ ∈ Δ′

i where
S′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′ a−→ q′ ∈ Δi}.

– Push: For every a ∈ Σc, S
a/+(S,a)−−−−−−→ IdR′ ∈ Δ′

c where

R′ = {q′ | ∃q ∈ Π2(S) : q
a/+γ−−−→ q′ ∈ Δc}.

– Pop: For every a ∈ Σr,

- if the stack is empty : S
a/−⊥−−−−→ S′ ∈ Δ′

r where

S′ = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S, q′′
a/−⊥−−−−→ q′ ∈ Δr}.

- otherwise:

S
a/−(S′,a′)−−−−−−−→ S′′ ∈ Δ′

r, where⎧⎪⎨
⎪⎩

S′′ = {(q, q′)|∃q3 ∈ Q : (q, q3) ∈ S′, (q3, q′) ∈ Update}

Update =

{
(q, q′)

∣∣∣∣∣
∃q1, q2 ∈ Q : (q1, q2) ∈ S,

q
a′/+γ−−−−→ q1 ∈ Δc, q2

a/−γ−−−→ q′ ∈ Δr

}

do not keep information of reachable states. In other words, Alur-Madhusudan’s
algorithm defines each state of the output deterministic VPA as a pair (S,R).
However, by a little modification of the algorithm, we can make every pair (S,R)
satisfy Π2(S) = R without disturbing the correctness of the algorithm (where,
Π2(S) = {s | (s, s′) ∈ S} is the projection on the second component.) After this
modification, the component R is no longer needed. In the following, we formally
present an optimization for determinization by keeping the set of summaries as
small as possible. For a finite set X , let denote IdX = { (q, q) | q ∈ X}. Let
M = (Q,Γ,Q0, Δ, F ) be a nondeterministic VPA. We construct an equivalent
deterministic VPA Mod = (Q′, Γ ′, Q′

0, Δ
′, F ′) ( od stands for optimized deter-

minization) as presented in Algorithm 1.

Theorem 3 (Optimized Determinization [5]). For a given nondeterminis-
tic VPA M of n states, one can construct a deterministic VPA Mod such that
L(Mod) = L(M). Moreover, the number of states and stack symbols of Mod in

the worst case are 2n
2

and |Σc| · 2n
2

, respectively.
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3 Universality and Inclusion Checking

3.1 Emptiness Checking

A pushdown system (e.g., see [2]) is a pushdown automaton that is regardless
of input symbols. Bouajjani et al. [2] have introduced a method to compute
reachable configurations of a pushdown system. The key of their technique is
to use a finite automaton ”so-called P-automaton” to encode a set of infinite
configurations of a pushdown system. In the following, we apply P-automata
technique to check emptiness of visibly pushdown automata. Our definition,
though in essence does not differ from the one in [2], has been tailored so that
concepts discussed in this paper are easily related to the definition. Given a
VPA P = (Q,Γ,Q0, Δ, F ), a P-automaton is used in order to represent sets of
configurations C of P . A P-automaton uses Γ as the input alphabet, and Q as
set of initial states. Formally,

Definition 4 (P-automata [2]).

1. A P-automaton of a VPA P is a finite automaton A = (P, Γ, δ,Q, FA) where
P is the finite set of states, δ ⊆ P × Γ × P is the set of transitions, Q ⊆ P
is the set of initial states and FA ⊆ P is the set of final states.

2. A P-automaton accepts or recognizes a configuration (p, w) if p
w−→ q, for

some p ∈ Q, q ∈ FA. The set of configurations recognized by P-automaton
A is denoted by Conf(P).

For a VPA P = (Q,Γ,Q0, Δ, F ) and a set of configurations C, let A be a
P-automaton representing C. The P-automaton APost∗(C) representing the set
of configurations reachable from C (denoted by Post∗(C)) is constructed as fol-
lows: We compute Post∗(C) as a language accepted by a P-automaton Apost∗(C)

with ε-moves. We denote the relation q(
ε−→)∗· γ−→ ·( ε−→)∗p by q =⇒γ p. Formally,

Apost∗(C) is obtained from A by the procedure given in Algorithm 2:

3.2 Universality Checking

Standard Method. The standard algorithm for universality of VPA is to
first determinize the automaton, and then check for the reachability of a non-
accepting state. Reachable configurations of a determinized VPA can be com-
puted by using P-automata technique. A configuration c = (q, w) is rejecting
if q is not a final state. When a rejecting configuration is found, we stop and
report that the original VPA is not universal. Otherwise, if all reachable config-
urations of determinized VPA are accepting, the original VPA is universal. Let
ReachableConf(Mod) and RejectingConf(Mod) denote the sets of reachable and
rejecting configurations of Mod, respectively. With the above observation, we
obtain the following lemma:

Lemma 5. Let M be a nondeterministic VPA according to Algorithm 1. The
automaton M is not universal iff there exists a rejecting reachable configuration
of Mod, i.e., ReachableConf(Mod) ∩ RejectingConf(Mod) �= ∅.
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Algorithm 2. The algorithm to construct P-Automaton

Data: A VPA P = (Q,Γ,Q0,Δ, F ) and a finite automaton A representing set
of configurations C.

Result: A finite automaton Apost∗(C) representing post∗(C)

1 begin
2 for (each pair (q′, γ′) such that P contains at least one rule of the form

q
a/ + γ′
−−−−−→ q′ ∈ Δc) do

3 Add a new state p(q′,γ′) to A. Here (q′, γ′) is used as an index to
distinguish p(q′,γ′) with others newly added states, and thus, we can
minimize the number of necessary added states.

4 Add new transitions to A according to the following saturation rules:

1. Internal: if (q
a−→ q′ ∈ Δi and q =⇒γ p in the current automaton) then

Add a transition (q′, γ, p).

2. Push: if (q
a/ + γ′
−−−−→ q′ ∈ Δc and q =⇒γ p in the current automaton) then

first add (q′, γ′, p(q′,γ′)), and then add (p(q′,γ′), γ, p).

3. Pop: if (q
a/ − γ−−−−→ q′ ∈ Δr and q =⇒γ p in the current automaton) then

Add a transition (q′, ε, p).

Optimized On-the-fly Method. To improve efficiency of the checking
process, we perform simultaneously on-the-fly determinization and P-automata
construction. There are two interleaving phases in this approach. First, we de-
terminize VPA M step by step (iterations). After each step of determinization,
we update the P-automaton. Second, using the P-automaton, we perform deter-
minization again, and so on. It is crucial to note that this procedure terminates.
This is because the size of the Mod is finite, and the P-automaton construction
terminates. Lemma 5 means that checking universality of M amounts to finding
a rejecting configuration of Mod. In the following we present an on-the-fly way to
explore such rejecting configurations (if there are any) efficiently. We begin with
the following observations that play an important role in establishing theoretical
background for correctness of our algorithms. For a given nondeterministic VPA
M , let Mod be the determinized VPA. Recall that a state S of Mod belongs
to 2Q×Q. We now define an ordering over states and stack symbols of Mod as
follows:

Definition 6 (Partial ordering over states and stack symbols).

– Let S1 and S2 be states of Mod. We say S1 ≤ S2 if, S1 ⊆ S2.
– Let γ′

1 = (S1, a) and γ′
2 = (S2, a) be stack symbols of Mod. We say γ′

1 ≤ γ′
2

if S1 ⊆ S2.

Lemma 7. Let S1
a−→ S′

1 and S2
a−→ S′

2 be internal transitions of the deter-
minized VPA Mod. We have S′

1 ≤ S′
2 if S1 ≤ S2.
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Proof. By the determinization procedure, we have:

– S1
a−→ S′

1 ∈ Δ′
i where S′

1 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S1, q
′′ a−→ q′ ∈ Δi}.

– S2
a−→ S′

2 ∈ Δ′
i where S′

2 = {(q, q′) | ∃q′′ ∈ Q : (q, q′′) ∈ S2, q
′′ a−→ q′ ∈ Δi}.

Thus, it is easy to verify that S′
1 ≤ S′

2 if S1 ≤ S2. ��
Similarly, for the cases of push and pop transitions, the next two lemmas hold:

Lemma 8. Let S1
a/+(S1,a)−−−−−−→ IdR′

1
and S2

a/+(S2,a)−−−−−−→ IdR′
2
be push transitions

of the determinized VPA Mod. If S1 ≤ S2, we have IdR′
1
≤ IdR′

2
.

Lemma 9. Let S1
a/−(S′

1,a
′)−−−−−−−→ S′′

1 and S2
a/−(S′

2,a
′)−−−−−−−→ S′′

2 be pop transitions of the
determinized VPA Mod. Assume that (S′

1, a
′) ≤ (S′

2, a
′) and S1 ≤ S2. Then, we

have S′′
1 ≤ S′′

2 .

Now, we are in a position to extend the ordering in Definition 6 to an ordering
over configurations of the determinized VPA Mod.

Definition 10. Let c1 = (S1, γn · · · γ1⊥) and c2 = (S2, γ
′
n · · · γ′

1⊥) be two con-
figurations of Mod. We say c1 ≤ c2 iff the following conditions hold: S1 ≤ S2,
and γi ≤ γ′

i for all 1 ≤ i ≤ n.

Lemma 11. Let c1 = (S1, γn · · · γ1⊥) and c2 = (S2, γ
′
n · · · γ′

1⊥) be con-
figuration of Mod such that c1 ≤ c2. For any word w = a1 · · ·ak ∈
Σ∗, if (S1, γn · · · γ1⊥)

w−−−→ (S̄1, γ̄m · · · γ̄1⊥) and (S2, γ
′
n · · · γ′

1⊥)
w−−−→

(S̄2, γ̄
′
m · · · γ̄′

1⊥), then (S̄1, γ̄m · · · γ̄1⊥) ≤ (S̄2, γ̄
′
m · · · γ̄′

1⊥)

Proof. We prove this lemma by induction on the length |w| of w. If |w| = 1, it
means that w = a. The proof immediately follows from Lemma 7, Lemma 8,
or 9 wrt. the type of input symbol a. Now, assume that the lemma holds for
the case |w| = i. Again, using induction hypothesis and Lemmas 7, 8 or 9, it is
easy to verify that this lemma also holds for the case |w| = i+ 1. The lemma is
proved. ��

Algorithm 3. Extract minimal transitions of P-automata at each incre-
mental step

Data: A set of transitions T (A) of P-automaton A

Result: A set of ”minimal” transitions T(A) of A

1 begin
2 for each state S of A do
3 if (S1, γ1, S) ∈ T (A) ∧ (S2, γ2, S) ∈ T (A) such that: S1 ≤ S2 and

γ1 ≤ γ2 then
4 T (A) ←− T (A)\{(S2, γ2, S)}.
5 return T(A);



On Model Checking for Visibly Pushdown Automata 415

It is crucial to note that, L(M) �= Σ∗, iff there exists a rejecting reachable
configuration ofMod. Recall that a configuration (S, σ) is rejecting ifΠ2(S)∩F =
∅. Note that if (S, σ) ≤ (S′, σ′) and Π2(S

′)∩F = ∅, then Π2(S)∩F = ∅. Based
on this observation and Lemma 11, it is sufficient to compute only minimal
reachable configurations and check for the existence of a rejecting configuration.
Formally, we define the set of minimal reachable configurations of a determinized
VPA N as follows:

Definition 12. MinimalReachableConf(N) = {(s, σ) ∈ ReachableConf(N) |
¬∃(s′, σ′) ∈ ReachableConf(N) · (s′, σ′) ≤ (s, σ)}.

Let C0 = {(IdQ0 ,⊥)} be the set of initial configurations of Mod. Let Apost∗(C0)

be the P-automaton for presenting the set of ReachableConf(Mod). Let A be the
P-automaton that is obtained from Apost∗(C0) at each incremental expansion
step as follows: for two configurations (S1, γ1σ) and (S2, γ2σ), we only need to
compare the states (i.e., S1 and S2) and top-of-stack symbols (i.e., γ1 and γ2).
Assume that S1 ≤ S2 and γ1 ≤ γ2, then (S1, γ1σ) ≤ (S2, γ2σ) . So, we only need
to keep the “smaller” configuration (S1, γ1σ). We formalize this observation in
Algorithm 3.

Algorithm 4. The optimized on-the-fly algorithm for university checking
of VPA
Data: A nondeterministic VPA M = (Q,Γ,Q0,Δ, F )

Result: Universality of M

1 begin
2 Create the initial state of the minimal determinized VPA Md using

Algorithm 1;
3 Initiate P-automaton A to represent the initial configuration of Md;
4 Create transitions of Md departing from the initial state using Algorithm

1;
5 while (the set of new transitions of Md is not empty) do
6 Apply Algorithm 2 on the current Md to create new transitions and

states of A;
7 Then apply Algorithm 3 on the current A to obtain the newly

optimized P-automaton A;
8 if a rejecting state is added to A then
9 return False;

10 Apply Algorithm 1 on new states of A to create new transitions of Md;

11 return True;

Theorem 13 (Correctness of Algorithm 4). Let M be a nondeterministic
VPA. Let Mi and Ai be deteminized VPA and the P-automaton obtained in the
ith repetition of the while-loop in Algorithm 4. The VPA M is not universal if
and only if L(Ai) ∩ RejectingConf(M i) �= ∅ for some i.
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Proof. If L(Ai) ∩ RejectingConf(Mi) �= ∅ for some i then of course M is not
universal. Conversely, if M is not universal, there exists at least one rejecting
reachable configuration q = (S, σ) (i.e., Π2(S)∩F = ∅). If q ∈ L(Ai) for some i,
then the theorem holds. If q /∈ L(Ai) for any i (within a bound), it means that
q was out of L(Ai) by a removing action at a certain step of the incremental
expansion using Algorithm 3. Thus, there is at least one reachable configuration
q′ = (S′, σ′), such that q′ ≤ q and q′ ∈ L(Ai). Because q′ ≤ q, S′ ≤ S and
Π2(S

′)∩F = ∅, and thus q′ is a rejecting configuration. As a result, there exists
an i such that q′ ∈ L(Ai) ∩ RejectingConf(Mi), the theorem holds. ��
Complexity: In the worst case (i.e., the automaton is universal), the complexity

of our proposed algorithm is the same as of the standard one, O(23n
2

) where n
are numbers of states of M (this is because checking emptiness of VPA is cubic
time [2]). However, in the case of not universal, our methods outperforms the
standard one as the experiments will show in the next section.

3.3 Inclusion Checking

To check whether L(A) ⊆ L(B), the standard method is to check whether L(A×
B) = ∅, where B is the complement of B. For inclusion checking of VPA, we first
determinize B, take its complement B) and make product with A incrementally
step by step ( denoted by A × B). Concurrently, we check for reachability of
this product automaton using on-the-fly manner. If there is a reachable state
(q, s) such that q ∈ FA and s ∩ FB = ∅ (s is an accepting state of B). In this
case, there exists a word w such that w ∈ L(A) and w /∈ L(B). In this case
we stop and report that L(A) � L(B). Although our formalization is different
from the antichain of finite automata [7], the intuition behind our method is
the same as theirs. In other words, the on-the-fly approach tries to find if there
exists at least a word w ∈ L(A) \ L(B). If such a word w was found, we can
conclude that L(A) � L(B). Otherwise, L(A) is a subset of L(B). In the worst

case, the complexity is O(m3 · 23n2

) for VPA inclusion checking, where m and n
are numbers of states of A and B.

4 Implementation and Experiments

We have implemented the above approaches, on the top of VPAlib 1, for testing
universality and inclusion of VPA in a prototype tool named VPAchecker. The
package is implemented in Java 1.5.0 on Windows XP. To compare the optimized
algorithm with the standard algorithm, we run our implementations on randomly
generated VPA. All tests are performed on a PC equipped with 1.50 GHz Intel R©
CoreTM Duo Processor L2300 and 1.5 GB of memory. During experiments, we fix
the size of the input alphabet to |Σc| = |Σr| = |Σi| = 2, and the size of the stack

alphabet to |Γ | = 3. The density of final states f = |F |
|Q| is the ratio of number of

1 http://www.emn.fr/x-info/hnguyen/vpa/
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Table 1. Universality checking for VPA generated by r-random (50 automata for each
sample)

number of states
ON-THE-FLY-OPT 5 10 20 40 60 80 100 150

no. of success 50 50 50 50 50 50 50 47
total time (s) 19 35 43 87 147 222 496 336

no. of timeout (60 s) 0 0 0 0 0 0 0 3

number of states
ON-THE-FLY 5 10 20 40 60 80 100 150

no. of success 50 50 50 50 50 50 46 47
total time 23 46 52 110 210 247 686 372

no. of timeout (60 s) 0 0 0 0 0 0 4 3

number of states
STANDARD 5 10 20 40 60 80 100 150

no. of success 21 1 0 0 0 0 0 0
total time (s) 456 31 0 0 0 0 0 0

no. of timeout (60 s) 29 49 50 50 50 50 50 50

Table 2. Universality checking for VPA generated by r-regular random (50 automata
for each sample)

number of states
ON-THE-FLY-OPT 5 10 15 20 30 40 50

no. of success 50 45 19 2 0 0 0
total time (s) 52 833 892 86 0 0 0

no. of timeout (180 s) 0 5 31 48 50 50 50

number of states
ON-THE-FLY 5 10 15 20 30 40 50

no. of success 50 43 13 0 0 0 0
total time 68 1425 754 0 0 0 0

no. of timeout (180 s) 0 7 37 50 50 50 50

number of states
STANDARD 5 10 15 20 30 40 50

no. of success 0 0 0 0 0 0 0
total time (s) 0 0 0 0 0 0 0

no. of timeout (180 s) 50 50 50 50 50 50 50

Table 3. Checking inclusion with r(q, a) = 2, f = 1

number states of A and B
ON-THE-FLY-OPT (10,5) (100,5) (500,5) (1000,5) (3000,5)

success 20 20 5 5 2
time(s) 27 910 336 1257 357

timeout (300 s) 0 0 15 15 18
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final states over the number of states of a VPA. We first set parameters of the
tests as follows:

Definition 14 (r-random). The density of final states f = |F |
|Q| = 1 and the

density of transitions r = ka
|Q| = 2, where ka is the number of transitions for each

input symbol a, F and Q are set of final states and states of VPA, respectively.

We ran our tests on randomly VPA generated by the parameter r-random. We
have tried VPA sizes from 10 to 100. We generated 50 VPA for each sample
point, and setting timeout to 60 seconds. The experimental results are given in
Table 1. We found that all successfully checked VPA are not universal, and thus
we omit the row for universal results in the table. The experiments shows that
STANDARD can solve for generated VPA instances with 5 states only. It becomes
stuck when the number of states greater than or equal to 10. Meanwhile, ON-
THE-FLY is significantly more efficient than STANDARD, it can check for almost
all VPA. We also applied optimization of P-automaton and implemented it as
ON-THE-FLY-OPT. Based on experimental results, ON-THE-FLY-OPT is a little
bit better than ON-THE-FLY. The parameter r-random does not guarantee the
completeness of VPA. Therefore, the probability of being universal is very low.
In order to increase the probability of being universal, we define a new parameter
as below:

Definition 15 (r-regular random). The density of final statesf = |F |
|Q| = 1

and the density of transitions r : Q × Σ → N ; r(q, a) depends on not only the
input symbol a but also on the state q. In particular, we select: r(q, a) = 2 for
all q ∈ Q and a ∈ Σc, r(q, b) = 6 for all q ∈ Q and b ∈ Σr, and r(q, c) = 2 for
all q ∈ Q and c ∈ Σi.

With r-regular random, a VPA with 10 states has 200 transitions. We again
test for various sizes of VPA from 5 to 50. We ran with 50 samples for each
point, setting timeout to 180 seconds. The results are reported in Table 2. For
this parameter, results of STANDARD are all timeout even with only 5 states.
ON-THE-FLY behaves in significantly better ways than those of STANDARD.
Since VPA generated by r-regular random parameter are universal, all three
algorithms work more slowly. Especially, if the number of states is greater than
30, results of ON-THE-FLY are all timeout. Similarly, ON-THE-FLY-OPT is a
little bit better than ON-THE-FLY for this parameter.

We also performed experiments for inclusion checking L(A) ⊆ L(B). For
this, we selected parameter r-regular random for generating the most difficult
instances of inclusion checking. This is because using r-regular random both A
and B are universal, and thus L(A) is included in L(B). We generated various
sizes of A (10, 100, 200, 500, 1000, and 3000 states) and B (5 and 10 states).
We ran with 20 samples for each point, setting timeout to 300 seconds. The
experimental results are summarized in Table 3. There we only list the number
of tests that finish within timeout. The detailed results are reported in Table 3.
We see that STANDARD does not work well, it get all timeout for the smallest
size (10, 5). The results show that ON-THE-FLY-OPT outperforms STANDARD.
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5 Conclusion

In this paper we presented the optimized on-the-fly algorithms for testing univer-
sality and inclusion of nondeterministic VPA. In summary, to check universality
of a nondeterministic VPA M , the intuition idea behind on-the-fly manner is try
to find whether there exists a word w such that w /∈ L(M). Similarly, to check
inclusion L(M) ⊆ L(N), the intuition idea is to find whether there exists at least
a word w such that w ∈ L(M)\L(N). All algorithms have been implemented in
a prototype tool. Although the ideas of our methods are simple, the experimen-
tal results showed that the proposed algorithms are considerably faster than the
standard ones.

We should emphasize that much work needs to be done in the future, which
includes, e.g., (1) consider how to apply the tool to case studies in practice, for
example, checking correctness requirements for XML streams. At the moment,
the data structures for VPA are rather naive. That is reason why the running
time of our tool is not fast. It would be interesting to explore a more com-
pact data structure; for this, (2) we plan to manipulate VPA using BDD-based
representation. Currently, we have been working on aspects (1) and (2). The
preliminary results related to these mentioned future work will be reported in
another opportunity.

Acknowledgements. We would like to thank Prof. Mizuhito Ogawa, Dr. Nao
Hirokawa of JAIST and anonymous reviewers for helpful comments to improve
this paper.
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Abstract. We define an automaton-based abstract interpretation of a
trace semantics which identifies loops that definitely initialize all the
elements of an array, a useful piece of information for the static analysis of
imperative languages. This results in a fully automatic and fast analysis,
that does not use manual code annotations. Its implementation inside
the Julia analyzer is efficient and precise.

1 Introduction

This work was born from a problem faced during the static analysis of Java and
Android programs. Fig. 1 shows an example: fields mOriginal and mRotated
hold arrays, initialized by readModel() and then read and dereferenced by other
methods. In this case the null-pointer analysis of Julia [12] issued spurious warn-
ings since it could not prove that the elements of these arrays were initialized.

We wanted to prove, automatically, that all elements of fields mOriginal and
mRotated are initialized at point *. Complete initialization of arrays to some value
is undecidable [2,9], but static analysis can often prove it. Typically, theorem prov-
ing or predicate abstraction are used [7,8]. However, not all techniques are auto-
matic; some require a previous manual annotation of the program with invariants;
others must be instantiated with different abstract domains (or predicate abstrac-
tions), depending on the specific program at hand; others have an overwhelming
cost. An impressive evaluation of those techniques has been done in [6]: its authors
implemented and compared them, with the result that very few are completely au-
tomatic and none efficient for real large software. Moreover, they present a new
technique based on abstract interpretation [3,4]: a fixpoint over an abstraction of
arrays into segments with strict or non-strict bounds. The abstraction of the ele-
ments of a single segment is given over an abstract domain, left parametric.

Our contributions are:

1. a new automaton-based abstract interpretation of execution traces, proving
that all elements of an array are definitely initialized at a program point;

2. a proof of correctness for the previous analysis;
3. experiments showing that the analysis is efficient (1 second on average for

large software) precise and scales to the analysis of more than 100, 000 lines.

Our static analysis is intraprocedural, but aware of interprocedural side-effects.
It is a whole-program analysis, hence it does not apply to classes in isolation nor
to libraries. We give definitions and proofs for an automaton spotting the full

A.-H. Dediu and C. Martín-Vide (Eds.): LATA 2012, LNCS 7183, pp. 420–432, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



Automaton-Based Array Initialization Analysis 421

private void readModel ( S t r ing p r e f i x ) {
. . . .
S t r i ng [ ] p = . . . .
int numpoints = p . l ength ;
this . mOriginal = new ThreeDPoint [ numpoints ] ;
this . mRotated = new ThreeDPoint [ numpoints ] ;

for ( int i = 0 ; i < numpoints ; i++) {
this . mOriginal [ i ] = new ThreeDPoint ( ) ;
this . mRotated [ i ] = new ThreeDPoint ( ) ;
S t r ing [ ] coord = p [ i ] . s p l i t ( ” ” ) ;
this . mOriginal [ i ] . x=Float . valueOf ( coord [ 0 ] ) ;
this . mOriginal [ i ] . y=Float . valueOf ( coord [ 1 ] ) ;
this . mOriginal [ i ] . z=Float . valueOf ( coord [ 2 ] ) ;

}
[ po int ∗ ]
. . . .

}

Fig. 1. A snippet of code from the CubeWallpaper Android program by Google

initialization of monodimensional arrays, with a standard pattern of initialization
from element 0 upwards. This is, of course, a restriction, but covers the most
frequent situations, as confirmed by our experiments in Section 6. We have also
implemented some automata for full initialization of bidimensional arrays and
for other orders of initialization, but they are not presented here due to space
limitations, and we do not consider them a contribution of this paper.

Our abstract domain is rather simple: it contains only 5 elements. This permits
us to provide a fully detailed soundness proof of low complexity. The key to this
simplicity is abstract interpretation, that relates the semantics of the program
with the pattern recognition ability of the automaton. The analysis in [6] is
more general and precise than ours (for instance, it deals with out-of-order array
initializations, while we are not able to do it), but this comes at the cost of a
higher theoretical complexity. We could not perform an experimental comparison
with them, since we analyze Java bytecode while the Clousot analyzer of [6]
works for .NET. Also, the great precision of [6] largely depends on its specific
instantiation and available supporting aliasing analysis.

One can apply our analysis also to position-based collection classes such as
java.util.ArrayList. However, those Java classes have been devised in such a
way that elements can be read only if they have already been set, or an exception
is thrown. Hence, in Java, they are always fully initialized, potentially to null.

Proving full array initialization at a program point does not mean that the
array is initialized to some kind of values (e.g. to non-null values) and that
this remains true later, when the array is accessed, possibly in different methods
from the one which initializes it. The local initialization at a program point must
be lifted to a global property at all program points where the array is read. An
extended version of this paper [10] presents our solutions to these problems.

2 A Simple Imperative Language and Its Semantics

We present here a simplified imperative language, inspired by [5]. It exposes
only features relevant to our work. Namely, it has a minimal set of types, does
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E ::= n | x Integer / Variable B ::= true | false Truth/Falsity
| x .length Array length | ¬B1 Negation
| x [E] Array element | E1 � E2 � ∈ {<, ≤, =}
| E1 ⊕ E2 ⊕ ∈ {+, −, ∗, ÷, %} | B1 � B2 � ∈ {∧, ∨}

A ::= B Test C ::= L1 : A → L2; Command
| x := E Variable assignment
| x := new t [E] Creation of an array n ∈ Z, x ∈ Var, E, E1, E2 ∈ E,
| x [E] := E Array element assign B, B1, B2 ∈ B, A ∈ A, C ∈ C, t ∈ Type

Fig. 2. Abstract syntax of programs

not include classes, structures, procedures (our analysis is intraprocedural) nor
exceptions. The actual implementation of our analysis includes all features of
monothreaded Java bytecode such as classes, method calls and exceptions.

In our language, commands are labeled actions. These actions are executed
when the interpreter of the language is at a given, initial label and lead to an-
other, successor label. More actions can share the same initial label and hence
our language is, in general, non-deterministic. The exact nature of labels is ir-
relevant: we can assume, for instance, that they are integers.

Definition 1 (Syntax of Programs). A program is a finite set of commands,
with a distinguished initial command Cinit . C is the set of commands C of the
form L1 : A � L2;, where L1 and L2 are called initial and successor labels of
C, and A is the action executed by C. We define selectors ini�C� � L1, suc�C� �
L2 and act�C� � A. Actions can be Boolean expressions in B (whose definition
uses arithmetic expressions in E), creation of arrays and assignments to local
variables in Var or to array elements, and they are defined by the grammar in
Fig. 2. The set of types, Type, is the minimal set containing int and array of t
for every t �Type. We assume that every v �Var has a static type t�v�.

We assume programs well-typed. For instance, given an action x �y�3�� :� z ,
then t�y� � array of int and t�x � � array of t�z �. We let vars�D� stand for the
variables occurring in an expression or action D , and mod�A� � vars�A� for
the variables modified (i.e., assigned) by an action A. Namely, mod�B� � ∅,
mod�x :� E� � 	x
, mod�x :� new t�E�� � 	x
 and mod�x �E1� :� E2� � ∅.

1. i = 0; C0 1: i :� 0 � 2;
2.while (i < a.length) � C1 2: i � a.length � 3;
3. if(i % 3 == 0) � C2 2: ��i � a.length� � 9;
4. a[i]=...; C3 3: i%3 � 0 � 4;
4. � else � C4 3: ��i%3 � 0� � 5;
5. a[i]=...; C5 4: a	i
 :� ... � 8;
6. i++; C6 5: a	i
 :� ... � 6;
7. a[i]=...; C7 6: i :� i � 1 � 7;
7. � C8 7: a	i
 :� ... � 8;
8. i++; C9 8: i :� i � 1 � 2;
8.� C10 9: � � �
9. . . .

Example 1. The figure on
the left shows a Java loop
(left) initializing an array
a and its corresponding
transition system (right).
This code fragment is well-
typed with t�i� � int and
t�a��array of int.

At run-time, variables hold values which, in a programming language such as
Java, may be primitive or non-primitive; the latter include objects and arrays.
Def. 2 simplifies the picture by only considering integers as primitive values and
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arrays as non-primitive values. That simplification does not limit the results of
this paper, that is only concerned about arrays and integer counters.

Definition 2 (Values). Values are elements of Val � Z�L�	null
, where L
is a finite set of memory locations. Arr is the set of arrays a��n, �v0, . . . , vn1�,
where n �N is the length of a and vi �Val are its elements, for i ��0..n��N. We
define a.length� n and a�i� � vi , for i � �0..n�. We also define the update of a
at i as a�i �� v � � �n, �v0, . . . , vi1, v , vi�1, . . . , vn1� �Arr, which is undefined
when i is outside the range of a. A memory is a partial map μ : L�Arr.

An environment represents the state of an interpreter of the language. It
provides a value for each variable and specifies the memory of the system.

Definition 3 (Environment). An environment is a pair e ��ρ, μ of a total
map ρ : Var � Val and a memory μ. As in Java, we ban dangling pointers,
i.e., �v � Var, if ρ�v� � L, then μ�ρ�v�� is defined, and for every a � Arr and
�i � �0..a.length�, such that a�i� � L, then μ�a�i�� is defined. We require static
types respected i.e., �v �Var we have ρ�v��μ t�v�, where (i) x�μ int iff x �Z; and
(ii) x�μ array of t iff x � null or (x �L and �i ��0..μ�x �.length�, μ�x ��i��μ t).
We let E be the set of all environments.

Definition 4 (Value of Expressions). The evaluations A�E� : E � Val and
B�B� : E � 	true, false
 of expressions are partial maps defined as

A�n��ρ, μ� � n B�true�e � true
A�x��ρ, μ� � ρ�x� B�false�e � false

A�x .length��ρ, μ� � μ�ρ�x��.length B��B�e � �B�B�e
A�x �E���ρ, μ� � μ�ρ�x���A�E��ρ, μ�� B�E1�E2�e�A�E1�e�A�E2�e

A�E1	E2��ρ, μ��A�E1��ρ, μ�	A�E2��ρ, μ� B�B1�B2�e�B�B1�e�B�B2�e.

Both maps are undefined when their defining expression is undefined or when
any of of their arguments is undefined.

The execution of an action maps an initial environment into one of its successors.

Definition 5 (Semantics of Actions). The semantics of an action A is a
partial map S�A� : E � E defined as

S�B�e �

�
e if B�B�e � true

undefined otherwise

S�x :� E��ρ, μ� � �ρ�x 
� A�E��ρ, μ��, μ�

S�x �E1� :� E2��ρ, μ� �

�����
����
�ρ, μ�l 
� μ�l��i 
� A�E2��ρ, μ����

if l � ρ�x�, l � null
i � A�E1��ρ, μ� and 0  i � μ�l�.length

undefined otherwise

S�x :� new t�E���ρ, μ� � �ρ�x 
� lf �, μ�lf 
� �A�E��ρ, μ�, �def, . . . , def����,

where lf is a fresh location i.e., lf � dom�μ� and def is the default value for t .
This map is undefined when any of its arguments is undefined.
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Our operational semantics works over execution traces of states. A state is an
environment enriched with a component recording the next command to be
executed, similar to the program counter in an actual interpreter of the language.

Definition 6 (State). A state is a pair σ � �e, C � E � C. The set of states
is denoted by Σ. We define the selectors env�σ� � e and cmd�σ� � C.

A trace is a sequence of states that reflects an actual execution of the program.

Definition 7 (Trace). A finite partial trace τ of states is a finite sequence of
states �σ1, . . . , σn. For every 1� i�n, if σi��e, C, we require that S�act�C��e
is defined and that σi�1 � �S�act�C��e, C� with suc�C� � ini�C��. When n � 0,
the trace is empty and denoted by ε. Otherwise, we define first�τ� � σ1 and
last�τ� � σn . The set of traces is denoted by T . The concatenation � of two
traces is defined as τ1 � ε � τ1, ε � τ2 � τ2 and �σ1

1 , . . . , σ
1
n1
 � �σ2

1 , . . . , σ2
n2
 �

�σ1
1 , . . . , σ

1
n1

, σ2
1 , . . . , σ2

n2
 if the latter is a trace; it is undefined otherwise.

We define the operational semantics of our language as a transformer of sets of
traces: it expands every trace τ with a state whose next command to be executed
is a given command C that can be attached to τ according to Def. 7.

Definition 8 (Operational Semantics). Let C � C and �C : ℘�T � � ℘�T �
be defined as T�C 	τ � �e, C � τ �T � e �E � τ � �e, C is defined
. The opera-
tional semantics at C is the set @C of all possible traces that lead to C and start
with the execution of the distinguished command Cinit , that is, @C � 	τ �Tn �
�T1, . . . ,Tn � T .	ε
 �C1 T1 �

C2 T2 � � � �
Cn Tn � C1�Cinit � Cn�C
.

3 Regular Trace Approximation

We define here an approximation of the execution traces of a program through a
finite deterministic automaton. Its states are sets of traces and represent elements
of an abstract domain. This is defined through regular expressions specifying se-
quences of commands that can be executed to construct the traces. We prove that
the transition relation of the automaton is a correct approximation of the �C

operational relation. The automaton (Fig. 3) is designed for a pair of program
variables a, of type array, and i , of integer type. It is defined over the alphabet
Λ � 	0,�,�,�, I,R
 and has states S � 	INIT, START, WRITTEN, ACCEPT
. Its
transition relation is a function δ : S � Λ � S : given states p, q � S and λ � Λ,
if the automaton has a transition from p to q labelled by λ, then δ�p, λ� � q.

The alphabet is an abstraction of the commands of the program.

Definition 9 (Abstraction of Commands). Consider an array a and an
index integer variable i. The abstraction of commands, s : C�Λ, is defined as:
s��L1 : A � L2;� � λ, where the abstract value λ can be 0, �, � or �, if action
A is i :� 0, i :� i � 1, a�i� :� E or ��i � a.length� respectively. Otherwise, if A is
such that mod�A� � 	a, i
 � ∅, i.e., if the local variables assigned by A are not
a nor i, then λ � I. In all other cases, λ � R.



Automaton-Based Array Initialization Analysis 425

WRITTEN

0 R,+

I, 0

≥

=

R

I, =

0,+

≥

Λ�0

Λ�0

0

START

INIT ACCEPT

Fig. 3. Automaton detecting fully initialized arrays

START WRITTEN ACCEPT

INIT

∅

Fig. 4. The abstract domain A

Note that assignments to a�i� are abstracted into � but any assignment to any
other element of the array (such as to a�i � 1�) is considered irrelevant (I). This
abstraction is syntactical: a command with action i :� 0 is abstracted into 0; an-
other with action i :� 1� 1 into R. This does not affect correctness (Theorem 1)
but one might simplify and normalize the actions, making the abstraction more
semantical and precise. We have not implemented this improvement.

Definition 10 (Abstraction of Traces). The abstraction of traces is given by
β : T �Λ� and defined as β��σ1, . . . , σn1, σn��β��σ1, . . . , σn1�s�cmd�σn���
s�cmd�σ1�� . . . s�cmd�σn ��, for non-empty traces, with β�ε� � ε.

Since Λ contains abstractions of commands, the meaning of the states of the
automaton, S , becomes clearer. As we formalize below (Def. 11), INIT means
that nothing is known about the last executed commands; START means that
an assignment i :� 0 is executed, and potentially followed by an alternation
of assignments to a�i� and unitary increments of i ; WRITTEN means that an
assignment to a�i� has just been executed and the automaton is waiting to
match it with a corresponding unitary increment of i ; ACCEPT means that the
complete initialization of the array can be asserted. An arbitrary number of
irrelevant actions can always be executed between relevant actions.

Definition 11 (Abstract Domain A). The states of the automaton in Fig. 3
correspond to the following sets of traces defined by regular expressions over Λ:
INIT � �τ � T � β�τ � � Λ�� � T , START � �τ � T � β�τ � � Λ�0I����I����I����,
WRITTEN��τ � T � β�τ � � Λ�0I����I����I�����I����, ACCEPT��τ � T � β�τ � �

Λ�0I����I����I�����I�����, where � ��� means zero or more �at least one�
repetitions. We define the set A � 	INIT, START, WRITTEN, ACCEPT,∅
.

Proposition 1. A is a Moore family of ℘�T � i.e., it is an abstract domain
ordered by set inclusion (Fig. 4). As standard for Moore families, the induced
abstraction map α : ℘�T ��A is α�T ��

�
A�A,T�A A, for every T �T .

Proof. The last relevant instruction of any τ �T is 0 or �, if τ �START; is �, if
τ �WRITTEN; is �, if τ �ACCEPT. The intersection of these elements is ∅ � A.
Since INIT�T , we have that �a �A, a�INIT�a. Hence A is a Moore family. ��

Lemma 1 states a consistency or correctness relation [4] between the operational
semantics and the transitions of the automaton in Fig. 3.

Lemma 1. Let C � C and I, O � T . If I�C O then α�O� � δ�α�I�, s�C��.
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Proof. Let τ �O. By Def. 8, there exist τ �� I and e �E s.t. τ�τ � � �e, C�, and there-
fore β�τ ��β�τ ��s�C�. We proceed by case analysis. If α�I��START and s�C��0,
then τ �� I�α�I��START and therefore β�τ ��β�τ ��s�C�� Λ�0I����I����I���s�C�

�Λ�0I����I����I���0�Λ�0 � Λ�0I����I����I���. Hence, τ � START. Since τ
is arbitrary, O� START and hence α�O� � α�START� � START� δ�START,0� �
δ�α�I�, s�C��. All other cases are proved similarly, see [10] for the full proof. ��

I⇒C O

Iα(I)

α(O) O
δ(α(I), s(C))

The figure on the left illustrates this result: inner
circles (with no borders) are I and O. Shapes with
dashed borders are their abstractions through α.
The shape with a solid border is the abstract state
obtained by executing δ from α�I� and is, in gen-
eral, an approximation of α�O�.

4 The Static Analysis Algorithm

1: for all C ∈ C do
2: ϕ(C) := ∅;
3: end for
4: ws := [〈Cinit , INIT〉];
5: ϕ(Cinit) := {INIT};
6: while (!ws.isEmpty()) do
7: 〈C, σ!〉 := ws.pop();
8: for all C1 such that suc(C) = ini(C1) do

9: σ!1 := δ(σ!, s(C));

10: if (σ!1 /∈ ϕ(C1)) then

11: ws.push(〈C1, σ
!
1〉);

12: ϕ(C1) := ϕ(C1) ∪ {σ!1};
13: end if
14: end for
15: end while

Fig. 5. The ArrayInit algorithm

We describe here a static analysis
that determines a subset of those
commands that are exactly at the
end of a loop performing a complete
initialization of an array. This sub-
set is in general strict, since iden-
tification of completely initialized
arrays is undecidable. The analy-
sis, intraprocedural but aware of
interprocedural side-effects, is de-
signed for a specific pair �a, i of
variables. Its result lets us com-
pute an under-approximation of the
points where a has been initialized
through a loop with index variable
i . We repeat the analysis for each
pair �a, i, but in practice, a pair

�a, i is significant only when a and i occur in actions a�i� :�E, which drastically
reduces the number of pairs to consider.

Our analysis is formalized by the working set-based fixpoint algorithm in
Fig. 5. When the working set (ws) is empty (line 6), a fixpoint is reached. The
algorithm starts by applying the automaton in Fig. 3 from Cinit and the INIT

state (line 4). It reads and executes commands in any order allowed by the
labels of the program. Consequently, the state of the automaton evolves and the
algorithm records it just before executing a command. We use a map ϕ to that
purpose, initially empty (line 2) and updated at each command (line 12).

Example 2. We show the application of ArrayInit over the Java loop and its
corresponding transition system given in Example 1. We assume the working set
implemented as a stack. We write I, S, W and A for INIT, START, WRITTEN and
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it. ws C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

0 〈C0, I〉 I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 〈C1, S〉, 〈C2, S〉 I S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2 〈C2, S〉, 〈C3, S〉, 〈C4, S〉 I S S S S ∅ ∅ ∅ ∅ ∅ ∅

3 〈C3, S〉, 〈C4, S〉, 〈C10,A〉 I S S S S ∅ ∅ ∅ ∅ ∅ A
4 〈C4, S〉, 〈C10,A〉, 〈C5, S〉 I S S S S S ∅ ∅ ∅ ∅ A
5 〈C10,A〉, 〈C5, S〉, 〈C6, S〉 I S S S S S S ∅ ∅ ∅ A
6 〈C5, S〉, 〈C6, S〉 I S S S S S S ∅ ∅ ∅ A
7 〈C6, S〉, 〈C9,W〉 I S S S S S S ∅ ∅ W A
8 〈C9,W〉, 〈C7,W〉 I S S S S S S W ∅ W A
9 〈C7,W〉 I S S S S S S W ∅ W A
10 〈C8, S〉 I S S S S S S W S W A

Fig. 6. Application of ArrayInit on an array initialization loop

ACCEPT. Fig. 6 shows the evolution of ws and ϕ during the iterations. Column
Ci stands for the content of ϕ�Ci �. Initially, ws � ��C0, I� with C0 � Cinit ,
ϕ�C0� � 	I
 and ϕ holds the empty set elsewhere. Then we pop �C0, I from
ws and compute δ�I, s�C0�� � δ�I,0� � S. Since suc�C0� � ini�C1� � ini�C2�,
control passes to C1 and C2. Since S � ∅ � ϕ�C1� � ϕ�C2�, we push �C1, S and
�C2, S into ws and update ϕ at C1 and C2. Since ws is not empty, the algorithm
continues by popping �C1, S from ws and computes δ�S, s�C1�� � δ�S, I� � S.
Since suc�C1� � ini�C3� and S � ∅ � ϕ�C3�, we push �C3, S into ws and update
ϕ at C3. The algorithm continues similarly until the working set is empty. ��

Example 3. Fig. 7 shows another Java fragment, its transition system and itera-
tions of our algorithm. ArrayInit can identify even this unusual and non-trivial
array initialization as a complete initialization (continues in Example 4). ��

Proposition 2 (Soundness). Let C�C. ArrayInit ends with @C��ϕ�C�.

Proof. We prove a stronger property that entails the thesis: at the end of Ar-
rayInit, for every sequence of application of� of the form �ε� �C1 T1 � � � �

Cn Tn ,

. . .
1. i = 0 ;
2. while ( i < a . l ength /( i +1)){
3. a [ i ] = 7 ;
4. i f ( i > a [ i ] ){
5. a [ i ] = i ;

}
6. i++;

}
7. while ( i < a . l ength ){
8. a [ i ] = 10 ;
9. i++;

}
10. . . .

C0 1 : i := 0 → 2;
C1 2 : i < a.length ÷ 2 → 3;
C2 2 : ¬(i < a.length ÷ 2) → 7;
C3 3 : a[i] := 7 → 4;
C4 4 : (i > a[i]) → 5;
C5 4 : ¬(i > a[i]) → 6;
C6 5 : a[i] := i → 6;
C7 6 : i := i + 1 → 2;
C8 7 : (i < a.length) → 8;
C9 7 : ¬(i < a.length) → 10;
C10 8 : a[i] := 10 → 9;
C11 9 : i := i + 1 → 7;
C12 10: · · ·

it. ws C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C11 C12

0 〈C0, I〉 I ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

1 〈C1, S〉, 〈C2, S〉 I S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

2 〈C2, S〉, 〈C3, S〉 I S S S ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅ ∅

3 〈C3, S〉, 〈C8, S〉, 〈C9, S〉 I S S S ∅ ∅ ∅ ∅ S S ∅ ∅ ∅

4 〈C8, S〉, 〈C9, S〉, 〈C4,W〉, 〈C5,W〉 I S S S S S ∅ ∅ S S ∅ ∅ ∅

5 〈C9, S〉, 〈C4,W〉, 〈C5,W〉, 〈C10, S〉 I S S S S S ∅ ∅ S S S ∅ ∅

6 〈C4,W〉, 〈C5,W〉, 〈C10, S〉, 〈C12,A〉 I S S S S S ∅ ∅ S S S ∅ A
7 〈C5,W〉, 〈C10, S〉, 〈C12,A〉, 〈C6,W〉 I S S S S S W ∅ S S S ∅ A
8 〈C10, S〉, 〈C12,A〉, 〈C6,W〉, 〈C7,W〉 I S S S S S W W S S S ∅ A
9 〈C12,A〉, 〈C6,W〉, 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
10 〈C6,W〉, 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
11 〈C7,W〉, 〈C11,W〉 I S S S S S W W S S S W A
12 〈C11,W〉 I S S S S S W W S S S W A

Fig. 7. A pair of loops fully initializing an array and their analysis with ArrayInit
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with Tn  ∅ and C1�Cinit , we have Tn ��ϕ�Cn� and, during the execution of
ArrayInit, there is a step where a pair �Cn , σ��, with α�Tn��σ�, is pushed on
the working set ws. The thesis follows from the definition of @C. We prove this
property by induction on the length n�1 of the sequence of applications of �.
Base case: In this case n � 1, hence we have a sequence �ε� �C1 T1 with
C1�Cinit . Line 5 of the algorithm and the fact that it never removes states from
the range of ϕ guarantee that at the end of the algorithm T1� INIT��ϕ�Cinit �.
Moreover, �Cinit , INIT� is pushed into ws at line 4, and α�T1� � INIT.
Induction: Assume that the result holds for some n � 1. We prove it for n�1. A
sequence of applications of � of length n�1 has form �ε� �C1 T1 � � � �

Cn�1 Tn�1,
with Tn�1 ∅ and C1�Cinit . Since Tn�1 ∅, we also have Tn ∅, by definition
of�. In a sequence �ε� �C1 T1 � � � �

Cn Tn , by inductive hypothesis we have that,
at the end of ArrayInit, Tn��ϕ�Cn� and, during the execution of ArrayInit,
there is a step at which �Cn , σ�� with α�Tn��σ� is pushed into ws. The algorithm
terminates only when ws is empty (line 6), so that pair must have been removed
from ws at some moment, at line 7. Tn�1 ∅, so suc�Cn �� ini�Cn�1�. Hence Cn�1

was considered in the loop at line 8, state σ�1�δ�σ�, s�Cn�� was computed at line
9 and compared against ϕ�Cn�1� at line 10. This might have had two outcomes:
1� if σ�1 � ϕ�Cn�1�, line 12 adds σ�1 to ϕ�Cn�1�, where it remains until the end of
ArrayInit. No state is ever removed from the range of ϕ, so σ�1��ϕ�Cn�1�. By
extensivity of α [4], Lemma 1 and monotonicity1 of δ, we have Tn�1�α�Tn�1��

δ�α�Tn�, s�Cn�� � δ�σ�, s�Cn�� � σ�1 ��ϕ�Cn�1�. Line 11 pushed �Cn�1, σ
�
1� into

ws and from Tn�1�σ�1 (shown above) we have α�Tn�1��α�σ�1��σ�1 since σ�1 �A.
2� if σ�1 �ϕ�Cn�1�, then it is still there at the end of ArrayInit. As above, we
can prove that Tn�1��ϕ�Cn�1� and α�Tn�1��σ�1. ��

Hence our algorithm supports a correct array initialization analysis.

Theorem 1. Consider a program P , variables a (array) and i (index) and the
automaton in Fig. 3 for a and i. At the end of the ArrayInit algorithm, for
every C � C such that ϕ�C� � 	ACCEPT
 we have that ini�C� is a point of P
where all elements of a have been initialized by a loop with index i.

Proof. By Proposition 2, @C��ϕ�C��ACCEPT i.e., every trace τ leading to C is
in the language of Λ�0I����I����I�����I����. Hence τ ends with an assignment
of 0 to i (0) followed by a repetition of at least an assignment to a�i� (�) and
then a single increment of i (�). At the end of τ , i holds the length of a. Since
only irrelevant actions are allowed in τ between those actions, a is definitely
completely initialized at the end of the execution represented by τ . ��

Example 4. From Fig. 6 we know that ϕ�C10��	ACCEPT
 at the end of the al-
gorithm. By Theorem 1, the array has been completely initialized when program
point 9� ini�C10� is reached. The same holds for program point 10 in Fig. 7. ��

1 It can be proven easily (see [10]) that ∅�p � q � δ�p, λ��δ�q, λ�.
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5 Dealing with Implicit Upper Bounds and Side-Effects

Although the analysis of Sec. 3 and 4 determines where an array held in a local
variable is fully initialized, it has strong limitations. It identifies the comparison
between a loop index variable i and the size of an array a in a syntactical,
explicit way (Def. 9): it must have the form !�i � a.length�. This is not the
case in Fig. 1 and our analysis would fail there. Moreover, it works only for
arrays held in local variables. Again, this is not the case in Fig. 1, where they are
stored into instance variables i.e., fields. The problem with fields goes beyond the
extension of our language of expressions (Fig. 2) with a new expression x .field :
it actually requires careful attention to side-effects. For instance, method foo
in Fig. 8 recreates the array at each iteration. At the end of the loop, none of

int i = 0 ; x . f = this ;
while ( i<this . a . l ength ){

this . a [ i++] = 2 ;
foo (x ) ;

}
void f oo ( x ) {

y = x . f ;
y . a = new T [ . . . ] ;

}

Fig. 8. Side-effects hinder the
full initialization of this.a

its elements is initialized. A naive extension of
our analysis to arrays held in fields might easily
turn out to be unsound. We discuss below how
we overcome these two limitations.

Implicit Upper Bounds. We consider some
frequent implicit ways of expressing the upper
bound of an array. Often, a variable is used,
as numpoints in Fig. 1. To prove that it holds
the array length, we use the definite expression
aliasing analysis available in Julia, a traditional
available expression analysis [1] for bytecode:
bindings from variables to expressions are generated by assignments, that also
kill other bindings referring to the old value of the variables. In Fig. 1, the bind-
ing numpoints = this.mOriginal.length is generated by the first new and
never killed later, since this, numpoints and this.mOriginal are not updated.
Similarly for the binding numpoints = this.mRotated.length. Def. 9 is im-
proved: when A is !�i � var�, its abstraction is � if, there, we have the binding
var � a.length (a can be a local variable or a field).

In other cases, the upper bound is a numerical constant. This includes the case
when a final static integer field is used (i.e., a symbolic constant) since compilers
usually replace it with its numerical value and Julia analyzes the bytecode. Here,
we must be sure that the same constant is used for the array length wherever it is
created, also outside the method where the initialization loop occurs. Since there
might be more creation points for the objects stored inside the array variable,
that condition must hold for all of them. Here, we exploit the creation point
analysis available in Julia: for each variable at a given program point or field, it
over-approximates the set of program points where its content might be created.
This is a concretization of class analysis [11]. Def. 9 is improved: when A is
!�i � con� and con a numerical constant, its abstraction is � if all creation
points for a (the variable being initialized) have the form new T[con].

Side-Effects. When the array is stored in a field, as in x .field , we must strengthen
the notion of irrelevant action A (case I of Def 9): we must require that mod�A��
	x , i
 � ∅ and that A does not modify field . The only actions that might modify
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name vendor loc
total Array Initialization total

loc total detected time time

AbdTest Android Distribution 489 56334 1 1 2.36 121.73

AccelerometerPlay Android Distribution 306 46854 1 1 0.35 71.99

CubeWallpaper Android Distribution 370 25654 3 3 0.12 28.51

HoneycombGallery Android Distribution 948 71501 1 0 1.06 157.85

TicTacToe Android Distribution 607 59040 3 3 0.70 102.65

Snake Android Distribution 420 57075 1 0 0.36 117.49

Real3D Android Distribution 1228 74384 2 2 1.06 177.95

ChimeTimer Moonblink 4095 95781 9 7 0.80 383.45

Dazzle Moonblink 4376 100271 4 1 1.02 394.44

OnWatch Moonblink 9746 113368 10 6 2.91 525.15

Tricorder Moonblink 10410 106100 17 11 1.01 467.58

TestAppv2 Typoweather 377 58365 1 1 0.38 102.34

TxWthr Typoweather 2024 74441 7 1 0.42 179.78

JFlex 7681 40872 7 6 1.35 72.46

nti 2372 13098 4 4 0.09 13.55

plume 8587 43302 24 21 1.19 113.07

Fig. 9. Experiments with our array initialization analysis. loc is the number of non-
blank, non-comment program lines reached and hence analyzed by Julia; total loc is
the total number of analyzed lines, including java.* and android.* libraries; total is
the number of reachable loops in those programs (not in libraries) that fully initialize an
array, computed by manual check; detected is the number of them that our analysis
successfully spot as complete initializations of arrays; in principle, for the most precise
static analysis we have detected=total; time is the time in seconds of our array
initialization analysis; it is a small fraction of the total time (in seconds) of the
nullness analysis of Julia: the latter includes parsing of the class files, preprocessing,
aliasing, sharing, creation points, expression aliasing and side-effects analyses.

field are explicit assignments to y.field , for any y, and calls to non-pure meth-
ods (neither of them is in Fig. 2, but naturally a real language includes both).
Here, we use the side-effects analysis provided by Julia: for each method call, it
over-approximates the set of fields modified during the execution of the callee(s)
(and of the methods that the callees invoke, recursively).

6 Experiments

We implemented our analysis in the Julia tool: http://www.juliasoft.com.
Experiments in Figure 9 were performed on a quad-core Intel Xeon 64 bits
machine at 2.66GHz, with 8GB of RAM, Linux 2.6.27 and Sun jdk 1.6.
We analyzed the lexical analyzers generator JFlex (http://jflex.de), the

name
Nullness

ArrInit ArrInit

AccelerometerPlay 3 6
ChimeTimer 33 36

CubeWallpaper 0 3
TicTacToe 0 2

JFlex 57 65
OnWatch 82 85
Real3D 19 19
Tricorder 107 121
TxWthr 48 49

nti 15 15
plume 57 59

plume library by Michael D. Ernst
(http://code.google.com/p/plume-lib),
the non-termination analyzer nti by Éti-
enne Payet, programs from Google’s An-
droid 3.0 distribution and Android applica-
tions from public repositories (http://code.
google.com/p/moonblink and http://code.
google.com/p/typoweather).

While Figure 9 shows that our array initial-
ization analysis is fast and precise, the table on
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the left shows that it is useful to a client analysis. In particular, it considers
those programs from Fig. 9 that contain at least a loop initializing an array of
reference type, since otherwise the array initialization analysis would be irrele-
vant for nullness analysis. It reports the number of null-pointer warnings with
(ArrInit) and without (ArrInit) our array initialization analysis. In the former
case, the precision of the nullness analysis is improved by 8.48% on average on
these programs and its cost is only 0.47% higher (compare time and total
time in Fig. 9).

When Julia fails to spot complete array initialization, the problem is related to
weaknesses in the supporting analyses rather than to our array initialization anal-
ysis. For instance, there is a complete array initialization in HoneycombGallery
that Julia fails to spot (Fig. 9). Here it is:

String[] items = new String[cat.getEntryCount()];
for (int i = 0; i < cat.getEntryCount(); i++)
items[i] = cat.getEntry(i).getName();

The loop upper bound is cat.getEntryCount(), which does not fall in the cases
considered in Sec. 5. The use of a method call as loop upper bound is problematic
since the definite expression aliasing analysis must be able to prove that the value
of cat.getEntryCount() is constant between the creation of the array and the
check of the loop upper bound, also when the loop body has side-effects, as here.

7 Conclusion

Our new automaton-based abstract interpretation detects fully initialized arrays
held in local variables or fields. The implementation is efficient, precise and effec-
tive to support a client nullness analysis. We observe that our array initialization
analysis is not tailored to nullness, but can support any other client analysis.
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Abstract. This paper presents a combinatorial study to characterise the
dynamics of intersecting Boolean automata circuits and more specifically
that of double Boolean automata circuits. Explicit formulae are given
to count the number of periodic configurations and attractors of these
networks and a conjecture proposes a comparison between the number of
attractors of isolated circuits and that of double circuits. The aim of this
study is to give intuition on the way circuits interact and how a circuits
intersection modifies the “degrees of freedom” of the overall network.

Keywords: Positive and Negative Circuits, Boolean Automata Network,
Regulation Network, Dynamical Behaviour, Attractor.

Introduction

Since McCulloch and Pitts [9] proposed threshold Boolean automata networks
to represent formally neural networks and, later, Kauffman [8] and Thomas [17]
introduced the first Boolean models of genetic regulation networks, automata
networks have been widely studied (e.g. [3,5,6,7,12,14]). One of the main motiva-
tions in this context has been to better understand the emergent dynamical be-
haviours that networks of interacting elements display that cannot be explained
or predicted by a simple analysis of the local interactions they involve. In partic-
ular, Thomas highlighted the importance of specific patterns in the interaction
structure of a network and focused especially on circuits (i.e. oriented cycles of
consecutive interactions) [18].

Circuits are instances of the most basic structural patterns that have a sig-
nificant impact on the dynamics of a network. They are responsible for the
diversity in its possible limit behaviours. And indeed, in a network whose struc-
ture is acyclic, the “information” runs linearly from the source automata that
have constant states towards the sink automata whose states influence that of
no other. In [4], we described the dynamics of isolated Boolean automata cir-
cuits, i.e. , Boolean networks structured as simple circuits. Now, using this as a
basis, we aim at to going further, towards the understanding of the behaviour
of arbitrary networks that possibly involve several interacting circuits. To do so,
we propose to start by studying the dynamics of intersecting circuits.

Of course, after having studied exhaustively the dynamics of isolated circuits,
the approach that consists in doing the same for two intersecting circuits, then
three, then . . . is certainly limited very early by a complexity problem so that

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 433–444, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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it cannot hope to reach the stage where it provides a complete description of
the dynamics of networks whose interaction structures are arbitrary strongly
connected components. However, because the first step turned out to provide
some significant intuition on the way circuits interact through their intersections,
we present it here.

In Section 1, we start by giving some definitions and preliminary results. Next,
in Section 2, we give and prove our main result on the dynamics of circuits (sum-
ming up results from [4]) and double-circuits. Finally, in Section 3, we propose to
compare, in terms of combinatorics, the dynamics of these two types of networks.

1 Definitions and Preliminary Results

Boolean Automata Networks

A Boolean automata network is a couple N = (G,F) where G = (V,A) is a
digraph called the interaction structure of N and F is its set of local transition
functions: F = {fi : {0, 1}n → {0, 1} | i ∈ V }. Nodes of G are considered as
the automata of the network. They are supposed to be numbered from 0 to
n− 1 where |V | = n is the network size. Boolean vectors x ∈ {0, 1}n are called
configurations of N . Their coefficients xi ∈ {0, 1} represent automata states.
Informally, the local transition function fi of automaton i outputs the new state
that i will take if it is updated, given as input the current state of the network.
It satisfies the following:

(j, i) ∈ A ⇔ ∃x ∈ {0, 1}n, fi(x) �= fi(x
j) (1)

where xj is the configuration defined by ∀k �= j, xjk = xk and xjj = ¬xj . Here,
we add the requirement that local transition functions be locally monotone so
that each arc of the interaction structure can be signed, i.e. , ∀(j, i) ∈ A, only
two cases are possible:

sign(j, i) = + ⇔ ∀x ∈ {0, 1}n, xj = 0, fi(x) ≤ fi(x
j),

sign(j, i) = − ⇔ ∀x ∈ {0, 1}n, xj = 0, fi(x) ≥ fi(x
j).

For the sake of simplicity, in the sequel, the arity of local transition functions is re-
stricted so that they become functions of the following form: fi : {0, 1}deg

−(i) →
{0, 1} (where deg−(i) denotes the in-degree of i in G). Moreover, we consider
only the parallel updating mode so we define the global transition function of
the network as follows:

F :

{
{0, 1}n → {0, 1}n

x �→ (f0(x), f1(x), . . . , fn−1(x))
.

For any network configuration x ∈ {0, 1}n, we prefer the notation:
x = x(0) and x(t) = F t(x)

where F t is the tth iterate of F so that if x represents the initial network config-
uration, then, x(t) represents its configuration at time step t.

Circuits and Double-circuits

A circuit of size n is a digraph denoted by Cn = (V,A) whose set of nodes is
considered to be V = N/nN so that i + j denotes node i+ j mod n, and whose
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set of arcs equals A = {(i, i + 1) | i ∈ V }. A double circuit D�r (see Fig. 1
left) is a digraph of order n = � + r − 1 consisting of two sub-graphs called the
side-circuits of D�r. The left- (resp. right-) circuit is a sub-graph isomorphic to
C� (resp. to Cr). Its size � (resp. r) is called the left- (resp. right-) size of D�r.
Nodes of the left-circuit are numbered from 0 to �−1. The right-circuit contains
those that are numbered from � to � + r − 1 as well as node 0 which belongs
to both side-circuits and is the only node with in- and out-degree 2 (rather
than 1).

r�

+

+

−+

+

+

++

++
+

n− 1 = �+ r − 2

0

�− 1

�1

− ++

Fig. 1. Left: A double circuit D�r. Right: The signed interaction structure of a canonical
negative-positive dbac D–+

�r . All arcs are positive except for the arc (�−1, 0), i.e. fL
0 =

neg, fR
0 = id and ∀i �= 0, fi = id.

Boolean Automata Circuits and Double Boolean Automata Circuits

A Boolean automata circuit (or bac) is a network (Cn,F) whose interaction
structure is a circuit. By (1), in such a network where all local transition functions
have arity 1, it holds that ∀i ∈ V, fi ∈ {id : a �→ a, neg : a �→ ¬a}. bacs with
an even (resp. odd) number of negative arcs are called positive (resp. negative)
circuits and are denoted by C+

n (resp. C−
n ). A double Boolean automata circuit,

or dbac for short, is a network (D�r,F) whose interaction structure is a double
circuit D�r. By (1) and by the local monotony of local transition functions, in a
dbac, f0 can be written:

f0(x�−1, xn−1) = fL0 (x�−1) 8 fR0 (xn−1) where 8 ∈ {∧,∨} (2a)

and the following is true:

∀i ∈ V, i �= 0, fi, f
L
0 , f

R
0 ∈ {id, neg}. (2b)

A side-circuit with an even (resp. an odd) number of negative arcs is called a
positive (resp. a negative) (side-)circuit. We use Dss′

�r to denote a dbac with
left-size �, right-size r, left-sign s and right-sign s′ (s, s′ ∈ {−,+}). Also, for any
network configuration x = (x0, . . . , xn−1) ∈ {0, 1}n, we write xL = (x0, . . . , x�−1)
and xR = (x0, x�, . . . , xn−1) to denote, respectively, the restrictions of x to the
configurations of the left- and right-circuits.
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Network Dynamics

The dynamics of a network N = (G,F) are described by a transition graph
T = ({0, 1}n, T ) which equals the graph of the global transition function of N :

T = { (x(t), x(t + 1)) } ⊆ {0, 1}n × {0, 1}n.
Configurations that belong to circuits in T are called periodic configurations.
For a periodic configuration x = x(t), any integer p satisfying x(t) = x(t+ p) is
called a period of x. An attractor of period p ∈ N, or p-attractor, is a set of p
configurations belonging to the orbit of a configuration that has minimal period
p. Attractors of period 1 are called fix points.

Dirichlet Convolutions

Let 1l be the function 1l : n ∈ N �→ 1 and let � denote the Dirichlet convolu-
tion [2], that is, the binary operator such that for any two arithmetic functions
f and g:

f � g : n ∈ N �→
∑
p|n f(p) · g

(
n/p
)
.

We recall that the set of arithmetic functions with point-wise addition and Dirich-
let convolution is a commutative ring. The multiplicative identity of this ring is
the function δ : N �→ N defined by δ(1) = 1 and ∀n > 1, δ(n) = 0. Let us also
recall that the inverse of function 1l for the Dirichlet convolution is the Möbius
function (see [2], for instance) μ : N �→ {−1, 0, 1} :

μ :

⎧⎪⎨⎪⎩
n �→ 0 if n is not square-free

n �→ 1 if n > 0 has an even number of prime factors

n �→ −1 if n > 0 has an odd number of prime factors.

The importance of this function here lies in the Möbius inversion formula that
it satisfies (deriving from 1l � μ = δ) for all arithmetic functions f and g:

g = f � 1 ⇒ f = g � μ
i.e. ∀n ∈ N, g(n) =

∑
p|n f(p) ⇒ f(n) =

∑
p|n g(p) · μ

(
n/p
)
.

Another notable property is the resulting relation between the Möbius function
and the Euler totient ϕ: since ϕ satisfies ∀n ∈ N, n = ϕ � 1l(n), it holds that
ϕ = μ � id, where id : n ∈ N �→ n .

Useful Quantities

We call order of a network N the least common multiple of all attractor periods
of N . We write ω(N ) = lcm{p ∈ N | p is an attractor period of N} and can show
that ω(N ) = min{p ∈ N | ∀ periodic x ∈ {0, 1}n, F p(x) = x}. In combinatorial
terms, the asymptotic dynamics of a network can then be described by the four
quantities (see [10]) listed below for a divisor p of ω(N ):
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- The number X(p) of configurations of period p satisfying (see (3b)):

X = Y � 1l; (3a)

- The number Y(p) of configurations of minimal period p satisfying:

Y = X � μ; (3b)

- The number A(p) = Y(p)
p of p-attractors satisfying:

A = inv · (X � μ); (3c)

- The number T(p) of attractors of period a divisor of p, satisfying:

T = A � 1l = inv · (X � ϕ). (3d)

where inv : n ∈ N �→ 1/n and where the last equality above holds because
completely multiplicative functions such as inv distribute over �. For an integer
p that does not divide ω(N ), X(p) = Y(p) = A(p) = T(p) = 0.

Remark 1. As a result of the existence of the relations (3a) to (3d), to determine
any of the three quantities Y, A and T relative to a given network N , it suffices
to determine the quantity X.

Canonical Boolean Automata Circuits and dbacs

Lemma 2 ([4]). For a bac N = Csn, the four quantities X, Y, A, T depend only
on the size n ∈ N and sign s ∈ {−,+} of the circuit and for a dbac N = Dss′

�r ,
they depend only on the sizes �, r ∈ N and signs s, s′ ∈ {−,+} of the side-circuits.

By Lemma 2 which was proven in [4], X, Y, A and T thus do not depend on the
number and position of the negative arcs in a (side-)circuit. We can therefore
concentrate on canonical circuits and canonical dbacs with minimal numbers
of negative arcs (0 or 1 for circuits, 0, 1 or 2 for dbacs). By Lemma 2, X, Y, A
and T do not depend either on whether 8 = ∨ or 8 = ∧ in the definition of
the local transition function f0 (see (2a)). For canonical dbacs, arbitrarily, we
choose 8 = ∨. In addition, we set ∀i �= 0, fi = id and fL0 = neg (resp. fR0 = neg)
if the left-circuit (resp. right-circuit) is meant to be negative, fL0 = id (resp.
fR0 = id) if it is meant to be positive. This way, the only possible negative arcs
in canonical dbacs are arcs (�− 1, 0) and (n− 1, 0).

Relationships between Automata States in a dbac

Let us note that in a canonical dbac, because ∀i �= 0, fi = id, the state of any
node i �= 0 at any time can be expressed simply as the state of node 0 at some
previous time: ∀x(t) ∈ {0, 1}n, ∀i ∈ V ,{

xi(t+ i) = x0(t) if i < � belongs to the left-circuit and

xi(t+ i− �) = x0(t) if i ≥ � belongs to the right-circuit.
(4)
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Also, if x(t) has period p, then it can be shown by induction that:

xi(t) =

{
ximod p(t) if i < � and

x(i−�)mod p(t) if i ≥ �.
(5)

Further, if x(t) has period p and if t ≥ p, � = k� · p + d� ≡ d� mod p and
r = kr · p + dr ≡ dr mod p, then, according to (4) and (5), the circular binary
word w defined by:

w ∈ {0, 1}p, ∀i ∈ N/pN, wi = x0(t+ i) (6a)

is such that:

x(t)L = wk�w[0, . . . , d� − 1] and x(t)R = wkrw[0, . . . , dr − 1] (6b)

where w[m, . . . ,m′] = wmwm+1 . . . wm′ , ∀m ≤ m′ < |w|. As a consequence, to
describe the asymptotic dynamics of a canonical dbac, it suffices to describe the
behaviour of the intersection node 0, concentrating on the word w associated to
each periodic configuration.

2 Main Result

The main result, Theorem 3 below, involves both the Lucas sequence
(L(n))n∈N [11,13] (sequence A204 of the OEIS [16]) defined by L(1) = 1, L(2) =
3 and L(n) = L(n−1)+L(n−2), ∀n > 2, and the Perrin sequence (P(n))n∈N [1]
(sequence A1608 of the OEIS [16]) defined by P(0) = 3, P(1) = 0, P(2) =
2 and P(n) = P(n− 2) + P(n− 3), ∀n > 2.

Theorem 3. Forany network N which is either a Boolean automata circuit
(bac) or a double Boolean automata circuit (dbac), the order ω(N ) of N and
the number of its configurations of period a divisor p of ω(N ) are given in the
table below:

Network N Order ω(N )
Number of configurations
of period p, p|ω(N )

Positive bac C+
n n X+(p) = 2p

Negative bac C−
n 2n X−(p) = 2p

Positive-positive dbac D++
�r gcd(�, r) X++(p) = 2p

Negative-positive dbac D–+
�r ω(D–+

�r ) | r X–+

� (p) = L( p
Δp

)Δp

Negative-negative dbac D––
�r ω(D––

�r ) | �+r X––

Δ (p) = P( p
Δp

)Δp

where Δ = gcd(�, r), and Δp = gcd(p, �) (resp. Δp = gcd(p,Δ)) in the case of a
negative-positive dbac (resp. in that of a negative-negative dbac).

For any network N which is either a bac or a dbac, this and Remark 1
on Page 437 directly yield explicit formulae for the number of configurations of
minimal period p, the number of p-attractors and the total number of attractors
of N .
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Thus, for instance, a negative-positive dbac D–+
3,6

has 1 = Q–+

3 (1) (Q ∈
{X, Y, A, T}) fix point. Also, it has X–+

3 (2) = 3 (resp. Y–+

3 (2) = 2) configurations of
(resp. minimal) period 2, X–+

3 (3) = 1 (resp. Y–+

3 (3) = 0) of (resp. minimal) period
3 and X–+

3 (6) = 27 (resp. Y–+

3 (6) = 24) of (resp. minimal) period 6. Therefore,
it has A3(2) = 1 attractor of period 2, A3(6) = 4 of period 6 and T3(6) = 6
attractors in total.

Results in Theorem 3 that concern isolated Boolean automata circuits Csn, s ∈
{−,+} and positive-positive dbacs D++

�r
as well as network orders are proven

in [4]. As a consequence, here, we focus on dbacs that have at least one negative
side-circuit. The following four points are remarks that derive from Theorem 3
and which are also proven in [4]. In Points 1 and 3, a dbac Dss′

�r
is said to

“behave” as a bac Cs′′n with same order ω = ω(Dss′
�r ) = ω(Cs′′n ). By this it is meant

that the sub-transition graph of Dss′
�r

induced by its periodic configurations is
isomorphic to the transition graph of Cs′′n and thus Qss

′
(p) = Qs

′′
(p), ∀p|ω and

∀Q ∈ {X, Y, A, T}.
1. A positive-positive dbac D++

�r behaves as a positive bac C+
Δ, Δ = gcd(�, r).

2. Strictly positive attractor periods of a dbac Dss′
�r divide the sizes of the

underlying positive circuits (including the size � + r of the non-elementary
encompassing positive circuit when s = s′) and do not divide the sizes of the
underlying negative circuits, if there are any.

3. A dbac Dss
nn

behaves as a Boolean automata circuit Csn.
4. A dbac has as many fix points as it has positive side-circuits.

Negative-Positive dbacs

In this section, without loss of generality as justified earlier, we consider only
canonical dbacs D–+

�r (see Fig. 1 right and caption). According to Point 2 above,
these networks have exactly one fix point and all their other attractors have
periods that divide r without dividing �.

Lemma 4 (Characterisation of periodic configurations). Let p, �, r, k, d
be integers such that p|r and � = kp+d ≡ d mod p. A configuration x(0) of D–+

�r

has period p if and only if there exists a circular word w ∈ {0, 1}p satisfying (6b)
that does not contain a sub-sequence 0u0, u ∈ {0, 1}d−1.

Thus, the number of configurations of period p of D–+
�r

equals the number of
binary circular words of length p without a sub-sequence 0u0, u ∈ {0, 1}d−1.

Proof. The second part is a direct consequence of the first. Let x(0) be a config-
uration of D–+

�r with period = r/qp and let w ∈ {0, 1}p be the word associated
to x(0) defined in (6). Then:

x0(t) = x0(t+ k · p)
= ¬x�−1(t+ k · p− 1) ∨ xn−1(t+ k · p− 1)
= ¬x�−k·p(t) ∨ x0(t+ (k − q) · p)
= ¬xd(t) ∨ x0(t),

= wt = ¬wt−dmod p ∨wt



440 M. Noual

w
(2)
1w

(3)
1w

(1)
4w

(2)
4w

(3)
4w

(1)
2w

(2)
2

w
(1)
0 w

(2)
0 w

(3)
0 w

(1)
3 w

(2)
3 w

(3)
3

w
(1)
1w

(3)
2

w1 w2 w3

w14

w13 w12 w11 w10 w9

w4 w5

w8 w7

w0

w6

Fig. 2. The circular word w = w0 . . . wp−1 = x0(t) . . . x0(t + p − 1) that characterises
a configuration of period p of a dbac D–+

�r (see (6)). Here, p = 15, d = � mod p = 6
so that w is is an interleave of Δp = gcd(d, p) = 3 words w(1), w(2) and w(3) of size
p/Δp = 5, corresponding respectively to nodes in light grey, dark grey and white.

where d and k are as in Lemma 4. Thus, if w contains a sub-sequence 0u0, u ∈
{0, 1}d−1, then there is an integer t such that wt = wt−dmod p and 0 = ¬0∨0 = 1
which is impossible. The converse of Lemma 4 can be proven easily. ��

Lemma 5. The number of configurations of period p of D–+
�r

, where p|r, equals
X–+

� (p) = L( p
Δp

)Δp , Δp = gcd(p, �), and as a consequence, Q–+

� (p) = Q–+

�mod r(p)

for any of the four quantities Q = X, Y, A and T, introduced in (3).

Proof. The Lucas sequence counts the number of circular words of size n that
do not contain the sub-sequence 00. By Lemma 4, X–+

� (p) equals the number of
circular words w ∈ {0, 1}p without a sub-sequence 0u0, u ∈ {0, 1}d−1, where
d = � mod p. Any one of these words w can be written as an interleaving of a
certain number m of circular words w(1), w(2), . . . , w(m) of size s = p/m without
the sub-sequence 00 (see Fig. 2). The size s of a word w(j) satisfies s× d = q× p
for a certain integer q that is minimal, i.e. sd = lcm(d, p) = dp/gcd(d, p) so that
s = p/Δp and, consequently, m = Δp and X–+

� (p) = L(s)m = L( p
Δp

)Δp . From

this and from (3) follows the rest of Lemma 5. ��
Negative-Negative dbacs

In a canonical negative-negative dbac, all arcs are positive except the negative
arcs (� − 1, 0) and (n − 1, 0), i.e. ∀i �= 0, fi = id and fL0 = fR0 = neg. By
Point 2 on Page 439, all attractors periods divide N = � + r without dividing
Δ = gcd(�, r). We omit the proof of the following lemma which resembles that
of Lemma 4.

Lemma 6 (Characterisation of periodic configurations). Let p, �, r, k�, kr,
d�, dr be integers such that p|�+r, � = k� ·p+d� ≡ d� mod p and r = kr ·p+dr ≡
dr < d� mod p.

A configuration x(0) of a dbac D––
�r

has period p if and only if there exists a
word w ∈ {0, 1}p satisfying (6b) that does not contain any sub-sequence 0u0 nor
1u1u′1, u, u′ ∈ {0, 1}dr−1.

Thus, the number of configurations of period p of D––
�r

equals the number
of binary circular words of length p without a sub-sequence 0u0 nor 1u1u′1,
u, u′ ∈ {0, 1}dr−1.
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Lemma 7. For n > 0, P(n) counts the number of circular words of size n with-
out the sub-sequences 00 and 111.

Proof. The statement of Lemma 7 is true for 1 ≤ n ≤ 3. Let En ⊆ {0, 1}n be the
set of circular words of length n without the factors 00 and 111. If n ≥ 3, then
any word w ∈ En can be written w = u0v where u is a word with no 0, possibly
the empty word ε. Further, for n > 3, only two disjoint cases are possible: either
v = 10v′ or v = 110v′, for some binary word v′. From this follows that En =
{u010v′ |u ∈ {ε, 1, 11}, u0v′ ∈ En−2} # {u0110v′ |u ∈ {ε, 1, 11}, u0v′ ∈ En−3}
and then |En| = |En−2|+ |En−3|. ��

Lemma 7 explains why the Perrin sequence is involved in Theorem 3. Finally,
combining Lemmas 6 and 7, we obtain Lemma 8 below as we did for Lemma 5.
This ends the proof of the part of Theorem 3 that concerns negative-negative
dbacs.

Lemma 8. The number of configurations of period p of a negative-negative
dbac D––

�r , where p|� + r, equals X––

Δ (p) = P( p
Δp

)Δp , where Δ = gcd(�, r)

and Δp = gcd(p,Δ).

3 Comparisons and Bounds

Since the aim of this paper is to gain intuition on the way that circuits inter-
act, our next step is to compare the dynamics of isolated circuits with that of
dbacs. In these lines, a first result is necessary to bound the number of periodic
configurations of dbacs:

Lemma 9. The numbers of configurations of period p of D–+
�r and of D– –

�r are
respectively bounded as follows: X–+

� (p) ≤ 3
p
2 , if p|r and X––

Δ (p) ≤ 3/(2
√
2)·2p/2

(Δ = gcd(�, r)) if p|�+ r.

Proof. The first inequality is proven by exploiting the relation L(n) = φn +
(−1/φ)n, ∀n, [13] where φ is the golden ratio. The second is derived from: ∀m > 0,
P(m) < 3/(2

√
2) · 2m/2 which can be proven by induction on m. ��

From Lemma 9 and (3d), it holds that the total numbers of attractors of D–+
�r

and of D––
�r are bounded respectively as follows:

T–+

� (r) ≤ 1
r

∑
p|r∧¬ (p|�) ϕ(

r
p ) · 3p/2 ≤ T+(r) (7a)

T––

Δ (N) ≤ 3
2
√
2
· 1
N

∑
p|N ∧¬ (p|Δ) ϕ(

N
p ) · 2p/2 ≤ T+(N) (7b)

where Δ = gcd(�, r), N = � + r and T+(n) is the total number of attractors of
C+
n . By Point 1 on Page 439 the total number of attractors of D++

�r equals:

T++(Δ) = T+(Δ). (7c)

Also, because it can be proven that the total number of attractors of a negative
bac equals T−n (2n) = (ϕ � X−n )(2n)/2n = (1/2n) ·

∑
odd d|n ϕ(d) · 2n/d it holds

that the number of attractors of C+
n and of C−

n are related as follows:

T−n (2n) ≤ T+(n)/2. (7d)
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Equations (7a) to (7d) provide combinatorial comparisons between isolated pos-
itive circuits and all other networks of the types considered in this paper.

Now, let us note that the total number of attractors of a networkN is necessar-
ily greater than what it would be if all periodic configurations had the greatest
possible minimal period, that is, ω = ω(N ). Conversely, the total number of
attractors is necessarily smaller than what it would be if all periodic configura-
tions had the smallest possible minimal period, that is, if they were all fix points.
Thus, whatever the network N , the following inequalities hold: X/ω ≤ T ≤ X.
As can be shown in the context of binary necklaces (see [15] for instance), in
the case of isolated Boolean automata circuits, the upper bound can actually be
made much smaller:

∀n ∈ N, X+(n)/n = 2n/n ≤ T+(n) ≤ 2n+1/n = 2X+(n)/n

X−(2n)/2n = 2n−1/n ≤ T−(n) ≤ 2n/n = 2X−(2n)/2n
(8)

Here, we propose the following conjecture that extends (8) to all dbacs. Its
central point is the upper bound in (9).

Conjecture 10. Let N be any network that is either a bac or a dbac and let
ω = ω(N ). Then, the total number T(ω) of attractors of N is related to its total
number X(ω) of periodic configurations as follows:

X(ω)/ω ≤ T(ω) ≤ K · X(ω)/ω (9)

for a certain constant K ≤ 2. In other words, the expected value of attractor
periods of N is very high:

∑
p|ω A(p)/T(ω) · p = X(ω)/T(ω) ≥ ω/K.

Clearly, Conjecture 10 seems to be true in the cases that are considered be-
cause X, and as a consequence T, grow exponentially fast. Thus, almost all peri-
odic configurations have the greatest possible minimal period. In the context of
automata networks, this can perhaps be related to the instability of automata in
a periodic configuration. Indeed, let us say that an automaton i ∈ V is unstable
in x when fi(x) �= xi. Then, having very large attractor periods allows attractors
in which very little automata are unstable but where the rare instabilities need
a lot of time to be gradually propagated all around the circuit or double-circuit.

Besides its meaning in terms of the expected values of periods, the importance
of Conjecture 10 lies in that, combined with Lemma 9, it allows to derive more
precise comparisons between the total number of attractors of positive Boolean
automata circuits and that of the four other types of networks that have been
considered in this paper (the two first relations below have already been proven):

T−(ω) ≤ 1/2 · T+(ω) (10a)

T++(ω) = T+(ω) (10b)

T –+

Δ (ω) ≤ K ·
(√

3/2
)ω · T+(ω) (10c)

T ––

Δ (ω) ≤ K ′ ·
(√

2/2
)ω · T+(ω). (10d)

where K and K ′ are constants that are no greater than 2.
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Conclusion

We have given explicit formulae that describe exhaustively the dynamics of
Boolean automata circuits and double-circuits (dbacs). As a result we have
observed that circuits that intersect tend to hinder their respective degrees of
freedom: their number of possible limit behaviours or attractors falls when they
are made to interact. And, what is more, according to Conjecture 10 and to its
consequences (relations in (10)), it seems to decrease by an exponential factor.
In addition, the presence of underlying negative circuits also seems to cause a
decrease in the number of attractors of a network.

There are two immediate limits to the scope of the study presented in this
article. The first is structural: the circuits intersections that have been studied
are of only one type, the simplest. However, it is easy to prove that any other
type of intersection between two circuits is more restrictive because, precisely, it
extends over more arcs and nodes. Consequently, dbacs necessarily have no less
attractors than any other intersecting circuits.

This suggests that in an arbitrary Boolean automata network, the more there
are intersecting circuits and the more there are negative circuits among them,
the less freely can the network behave.

The second limit concerns the very special updating schedule that has been
chosen, namely the parallel update schedule. As an concluding remark, let us
note that this may provide an informal argument in favour of the existence of
some dynamical properties of Boolean automata networks that are related more
intimately to the interaction structure of the network than to its update schedule
(although these properties may require a certain special update schedule to be
revealed). Indeed, it appears that in the case studied here, the restriction in
the networks possible limit behaviours is due more to the structural constraint
(embodied by the intersection) that imposes two circuits to “be in phase” than
to the choice of the parallel update schedule.
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Abstract. In a previous work we introduced slice graphs as a way to
specify both infinite languages of directed acyclic graphs (DAGs) and
infinite languages of partial orders. Therein we focused on the study of
Hasse diagram generators, i.e., slice graphs that generate only transitive
reduced DAGs. In the present work we show that any slice graph can
be transitive reduced into a Hasse diagram generator representing the
same set of partial orders. This result allow us to establish unknown
connections between the true concurrent behavior of bounded p/t-nets
and traditional approaches for representing infinite families of partial or-
ders, such as Mazurkiewicz trace languages and Message Sequence Chart
(MSC) languages. Going further, we identify the family of weakly sat-
urated slice graphs. The class of partial order languages which can be
represented by weakly saturated slice graphs is closed under union, in-
tersection and a suitable notion of complementation (bounded cut-width
complementation). The partial order languages in this class also admit
canonical representatives in terms of Hasse diagram generators, and have
decidable inclusion and emptiness of intersection. Our transitive reduc-
tion algorithm plays a fundamental role in these decidability results.

Keywords: Partial Orders, Automata, Canonization.

1 Introduction

It is widely recognized that both the true concurrency and the causality between
the events of concurrent systems can be adequately captured through partial
orders [14,16,34]. In order to represent the whole concurrent behavior of sys-
tems, several methods of specifying infinite families of partial orders have been
proposed. Partial languages [17], series-parallel languages [26], concurrent au-
tomata [10], causal automata [29], approaches derived from trace theory [25,28],
approaches derived from message sequence chart theory [19], and more recently,
Hasse diagram generators [32].

Hasse diagram generators are defined with basis on slice graphs, which by
their turn, may be regarded as a specialization (modulo some convenient no-
tational adaptations) of graph grammars [9,12]. Indeed, slice graphs may be
viewed as automata that concatenate atomic blocks called slices, to generate
infinite families of directed acyclic graphs (DAGs) and to represent infinite sets
of partial orders. A Hasse diagram generator HG is a slice graph that generates

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 445–457, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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exclusively transitive reduced graphs. In other words, every DAG in the graph
language generated by HG is the Hasse diagram of the partial order it represents.
Such generators were introduced by us in [32] in the context of Petri net theory,
and used to solve different open problems related to the partial order semantics
of bounded place/transition-nets (p/t-nets). For instance, we showed that the
set of partial order runs of any bounded p/t-net N can be represented by an
effectively constructible Hasse diagram generator HGN 1. Previously, approaches
that mapped behavioral objects to p/t-nets were either not expressive enough to
fully capture partial order behavior of bounded p/t-nets, or were not guaranteed
to be finite and thus, not effective [13,18,21].

In [32] we also showed how to use Hasse diagram generators to verify the
partial order behavior of concurrent systems modeled through bounded p/t-
nets. More precisely, given a bounded p/t-net N with partial order behavior
LPO(N) and a HDG HG representing a set LPO(HG) of partial orders, we may
effectively verify both whether LPO(HG) is included into LPO(N) and whether
their intersection is empty. Previously an analogous verification result was only
known for finite languages of partial orders [27]. As a meta-application of this
verification result, we were able to test the inclusion of the partial order be-
havior of two bounded p/t-nets N1 and N2: Compute HGN1 and test whether
LPO(HGN1) ⊆ LPO(N2). The possibility of performing such an inclusion test
for bounded p/t-nets had been open for at least a decade. In the nineties,
Jategaonkar-Jagadeesan and Meyer [23] proved that the inclusion of the causal
behavior of 1-safe p/t-nets is decidable, and Montanari and Pistore [29] showed
how to determine whether two bounded nets have bisimilar causal behaviors.

Finally, Hasse diagram generators may be used to address the synthesis of
concurrent systems from behavioral specifications. The idea of the synthesis is
appealing: Instead of constructing a system and verifying if it behaves as ex-
pected, we specify a priori which runs should be present on it, and then auto-
matically construct a system satisfying the given specification [24]. In our setting
the systems are modeled via p/t-nets and the specification is made in terms of
Hasse diagram generators. In [32] we devised an algorithm that takes a Hasse
diagram generator HG and a bound b as input, and determines whether there
is a b-bounded p/t-net whose partial order behavior includes LPO(HG). If such
a net exists, the algorithm returns the net N whose behavior minimally in-
cludes LPO(HG). More precisely for every other b-bounded p/t-net N ′ satisfying
LPO(HG) ⊆ LPO(N ′) it is guaranteed that LPO(N) ⊆ LPO(N ′). This implies
in particular, that if the set of runs specified by HG indeed matches the partial
order behavior of a b-bounded p/t-net N , then this net will be returned. The
synthesis of p/t-nets from finite sets of partial orders was accomplished in [4]
and subsequently generalized in [5] to infinite languages specified by rational
expressions over partial orders, which are nevertheless not expressive enough to
represent the whole behavior of arbitrary bounded p/t-nets. For other results
considering the synthesis of several types of Petri nets from several types of

1 Indeed we can chose to derive from N a HDG HGex
N representing the set of true

concurrent runs of N or a HDG HGcau
N representing the set of causal runs of N .
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automata and languages, specifying both sequential and step behaviors we point
to [2,11,20].

2 Transitive Reduction of Slice Graphs and Its Consequences

Both the verification and the synthesis of p/t-nets described in the previous
section are stated in function of Hasse diagram generators, and do not extend
directly to general slice graphs. The main goal of this paper is to overcome this
limitation, by proving that any slice graph can be transitive reduced into a Hasse
diagram generator specifying the same partial order language.

Theorem 1 (Transitive Reduction of General Slice Graphs). Any slice
graph SG can be transitive reduced into a Hasse diagram generator HG represent-
ing the same partial order language, i.e., LPO(SG) = LPO(HG).
This result is interesting for two main reasons: First slice graphs are much more
flexible than Hasse diagram generators from a specification point of view. Sec-
ond it establishes interesting connections between p/t-nets and well known for-
malisms aimed to specify infinite families of partial orders, such as Mazurkie-wicz
trace languages [28] and message sequence chart (MSC) languages [19,30]. More
precisely, we prove that if a partial order language LPO is specified through a pair
(A, I) of finite automaton A over an alphabet of events Σ and a Mazurkie-wicz
independence relation I ⊆ Σ × Σ, then there is a slice graph SG representing
the same set of partial orders. A similar result holds if LPO is specified by a
high-level message sequence chart (HMSC), or equivalently, by a message se-
quence graph (MSG)[1,31]. We point out that in general, the slice graphs arising
from these transformations may be far from being transitive reduced and that
a direct translation of these approaches in terms of Hasse diagram generators is
not evident. Nevertheless, Theorem 8 guarantees that these slice graphs can be
indeed transitive reduced into Hasse diagram generators representing the same
partial order language, allowing us in this way to apply both our verification and
synthesis results:

Theorem 2 (Verification). Let N be a bounded p/t-net and LPO a partial
order language generated by pair (A, I) of finite automaton and independence
relation, or by a message sequence graph M. Then we may effectively verify
whether LPO ⊆ LPO(N) and whether LPO ∩ LPO(N) = ∅.
In Theorem 3 below we address the synthesis of (unlabeled) p/t-nets from partial
order languages represented by traces or message sequence graphs. We point out
that the synthesis of labeled p/t-nets (i.e., nets in which two transitions may be
labeled by the same action) from Mazurkievicz trace languages and from local
trace languages [21] was addressed respectively in [22] and in [25]. However there
is a substantial difference between labeled and unlabeled p/t-nets when it comes
to partial order behavior. For instance, if we allow the synthesized nets to be
labeled, we are helped by the fact that labeled 1-safe p/t-nets are already as
partial order expressive as their b-bounded counterparts [6]. Thus the synthesis
of unlabeled nets tends to be harder.
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Theorem 3 (Synthesis). Let b ∈ � be a bound and LPO be a partial order
language represented by a pair (A, I) of automaton and independence relation, or
by a message sequence graph M. Then we may effectively compute a b-bounded
p/t-net N whose partial order behavior minimally includes LPO.

Our transitive reduction algorithm is also a necessary step towards the canon-
ization of slice graphs with respect to the partial order language they represent.
We say that a function C canonizes slice graphs if for every slice graph SG,
LPO(SG) = LPO(C(SG)) and C(SG) ∼ C(SG′) for all other slice graph SG′ sat-
isfying LPO(SG) = LPO(SG′). In the same way that a Hasse diagram provides
a minimal representation for its induced partial order, it is natural that Hasse
diagram generators correspond to the canonical forms of slice graphs. However
simply transitive reducing a slice graph is not sufficient to put it into a canonical
form, and indeed canonization is in general uncomputable. Fortunately, there is
a very natural and decidable2 subclass of slice graphs (weakly saturated slice
graphs) for which canonization is feasible. Besides admitting canonical represen-
tatives, partial order languages represented by weakly saturated slice graphs are
closed under union, intersection and even under a special notion of complemen-
tation, which we call bounded cut-width complementation. Furthermore inclusion
(and consequently, equality) and emptiness of intersection are decidable for this
class of languages. Transitive reduction will play a fundamental role in these
decidability results, for the reasons that we describe in the next paragraph, and
in the definition of bounded cut-width complementation.

A slice graph SG is meant to represent three distinct languages: A slice lan-
guage L(SG) which is a regular subset of the free monoid generated by a slice
alphabet ΣS; a graph language LG(SG) consisting of the DAGs which have a
string representative in the slice language; and a partial order language LPO(SG)
obtained by taking the transitive closure of DAGs in the graph language. As we
show in the full version of this paper, any weakly saturated slice graph can be ef-
ficiently transformed into a stronger form, wich we call saturated slice graph, rep-
resenting the same partial order language. It turns out that questions about the
graph language of saturated slice graphs can be translated into questions about
their slice languages. Indeed this fact will follow by interpreting saturated slice
languages as being closed under a certain commutation operation on the slice al-
phabet. If additionally, the slice graphs in consideration are Hasse diagram gener-
ators, then questions about their partial order languages can be further mapped
to questions about their graph languages, paving in this way a path to decid-
ability. The crucial point to be stressed is that this last observation fails badly if
the slice graphs are not transitive reduced: There exist (even saturated) slice
graphs SG and SG′ for which LG(SG)∩LG(SG′) = ∅ but LPO(SG)∩LPO(SG) �= ∅,
or for which LG(SG) � LG(SG′) but LPO(SG) ⊆ LPO(SG). Thus it is crucial that
we transitive reduce slice graphs before performing operations with their partial

2 In [19] it is undecidable whether a MSC-language is linearization-regular. This is not
in contradiction with the decidability of weak saturation. An analogous statement
for us would be: It is undecidable whether a slice graph can be weakly saturated.
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order languages. With regard to this observation, an important feature of our
transitive reduction algorithm is that it preserves weak saturation.

A skeptic could wonder whether weak saturation is an excessively strong con-
dition which could be only satisfied by uninteresting examples of slice graphs. We
counter this skepticism by describing three natural situations in which weakly
saturated slice graphs arise: The first two examples stem from the fact that
our study of weakly saturated slice languages was inspired, and indeed gener-
alizes, both the theory of recognizable trace languages [28] and the theory of
linearization-regular3 message sequence languages [19]. In particular, recogniz-
able trace languages can be mapped to weakly saturated regular slice languages,
while linearization-regular MSC languages which are representable by message
sequence graphs, may be mapped to loop connected slice graphs, which can be
efficiently weakly saturated. Our third and most important example comes from
the theory of bounded p/t-nets. More precisely, we show that the Hasse diagram
generators associated to bounded p/t-nets in [32] are saturated. This last ob-
servation has two important consequences: first, slice graphs are strictly more
expressive than both Mazurkievicz trace languages, and MSC-languages, since
there exist even 1-safe p/t-nets whose partial order behavior cannot be expressed
through these formalisms; second, it implies that the behavior of bounded p/t-
nets may be canonically represented by Hasse diagram generators. While in [32]
we were able to associate a HDG HGN to any bounded p/t-net N , we were not
able to prove that if two nets N and N ′ have the same partial order behavior
then they can be associated to same HDG4. By showing that the partial order
language of bounded p/t-nets may be represented via saturated slice languages
we are able to achieve precisely this goal:

Corollary 4 (Canonical Hasse Diagram Generators and p/t-Nets). The
partial order behavior of any bounded p/t-net N can be canonically represented
by a Hasse diagram generator HGN . In particular for any other bounded p/t-net
N ′ satisfying LPO(N) = LPO(N ′) it holds that HGN = HGN ′ .

Due to lack of space, in this extended abstract we only deal with our transitive
reduction algorithm, which is in the core of all other results. We leave our devel-
opment of weakly saturated slice languages, the reductions from Mazurkiewicz
trace languages and MSC languages to slice graphs, as well as their relationship
to theory of p/t-nets, to the full version of this paper which is available at the
homepage of the author by the time this extended abstract is being submitted.

3 Slices

There are several automata theoretical approaches for the specification of infinite
families of graphs: graph automata [33], automata over planar DAGs [7], graph

3 In our work the term regular is used in the standard sense of finite automata theory.
The notion of ”regular” used in [19] is analogous to our notion of regular+saturated.

4 In general, a partial order language can be represented by several distinct Hasse
diagram generators.
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Fig. 1. i) A slice ii) Composition of slices. iii) A degenerate slice. iv) A slice graph
labeled with unit slices, and an intuitive representation of its graph language. Sι is
initial and Sε i is final.

rewriting systems [3,9,12], and others [8,15]. In this section we will introduce
an approach that is more suitable for our needs. Namely, the representation
of infinite families of DAGs with bounded cut width. In particular, the slices
defined in this section can be regarded as a specialized version of the multi-
pointed graphs defined in [12], which are too general, and which are subject to
a slightly different notion of concatenation.

A slice is a labeled DAG S = (V,E, l) whose vertex set V is partitioned
into three subsets: A non-empty center C labeled by l with the elements of an
arbitrary set T of events, and the in- and out-frontiers I andO respectively which
are numbered by l in such a way that l(I) = {1, · · · , |I|} and l(O) = {1, ..., |O|}.
Furthermore a unique edge in E touches each frontier vertex v ∈ I∪̇O, where ∪̇
denotes the disjoint union of sets. This edge is outgoing if v lies on the in-frontier
I and incoming if v lies on the out-frontier O. In drawings, we surround slices
by rectangles, and implicitly direct their edges from left to right. In-frontier and
out-frontier vertices are determined respectively by the intersection of edges with
the left and right sides of the rectangle. Frontier vertices are implicitly numbered
from top to bottom. Center vertices are indicated by their labels (Fig. 1-i).

A slice S1 can be composed with a slice S2 whenever the out-frontier of S1 is
of the same size as the in-frontier of S2. In this case, the resulting slice S1 ◦ S2

is obtained by gluing the single edge touching the j-th out-frontier vertex of
S1 to the corresponding edge touching the j-th in-frontier vertex of S2 (Fig.
1-ii). We note that as a result of the composition, multiple edges may arise,
since the vertices on the glued frontiers disappear. A slice with a unique vertex
in the center is called a unit slice. A sequence of unit slices S1S2 · · ·Sn is a
unit decomposition of a slice S if S = S1 ◦ S2 ◦ · · · ◦ Sn. The definition of unit
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decomposition extends to DAGs by regarding them as slices with empty in and
out-frontiers. The slice-width of a slice is defined as the size of its greater frontier.
The slice width of a unit decomposition S = S1 ◦ S2 ◦ · · · ◦ Sn is the slice-width
of its widest slice.

We say that a slice is initial if its in-frontier is empty and final if its out-frontier
is empty. A unit slice is non-degenerate if its center vertex is connected to at
least one in-frontier (out-frontier) vertex whenever the in-frontier (out)-frontier
is not empty. In Fig. 1-iii we depict a degenerate unit slice. A slice alphabet is
any finite set ΣS of slices. The slice alphabet of width c over a set of events T is
the set Σc

S
of all unit slices of width at most c, whose center vertex is labeled with

an event from T . A slice language over a slice alphabet ΣS is a subset L ⊆ Σ∗
S

where for each string S1S2 · · ·Sn ∈ L, S1 is initial, Sn is final and Si can be
composed with Si+1 for 1 ≤ i < n. From a slice language L we may derive a
language LG of DAGs by composing the slices in the strings of L, and a language
LPO of partial orders, by taking the transitive closure of each DAG in LG:

LG = {S1 ◦S2 ◦ · · · ◦Sn|S1S2 · · ·Sn ∈ L} and LPO = {H∗|H ∈ LG} (1)

In this paper we assume that all slices in a slice alphabet ΣS are unit and non-
degenerate, but this restriction is not crucial. With this assumption however,
every DAG in the graph language derived from a slice language has a unique
minimal and a unique maximal vertex.

A slice language is regular if it is generated by a finite automaton or regular
expressions over slices5. We notice that a slice language is a subset of the free
monoid generated by a slice alphabet ΣS and thus we do not need to make a
distinction between regular and rational slice languages. In particular every slice
language generated by a regular expression can be also generated by a finite
automaton. Equivalently, a slice language is regular if and only if it can be
generated by the slice graphs defined below (see appendix of [32]):

Definition 5 (Slice Graph). A slice graph over a slice alphabet ΣS is a labeled
directed graph SG = (V , E ,S) possibly con-tai-ning loops but without multiple
edges. The function S : V → ΣS satisfies the following condition: (v1, v2) ∈ E
implies that S(v1) can be composed with S(v2). We say that a vertex on a slice
graph is initial if it is labeled with an initial slice and final if it is labeled with a
final slice. The slice language generated by SG is defined as follows:

L(SG) = {S(v1)S(v2) · · · S(vn) : v1v2 · · · vn is a walk on SG
from an initial to a final vertex}.

We write respectively LG(SG) and LPO(SG) for the graph and the partial
order languages derived from L(SG). A slice language L is transitive reduced if
all DAGs in LG are simple and transitive reduced. In other words, each DAG
in LG is the Hasse diagram of a partial order in LPO. A slice graph is a Hasse
diagram generator if its slice language is transitive reduced.

5 The operation of the monoid is just the concatenation S1S2 of slice symbols S1 and
S2 and should not be confused with the composition S1 ◦ S2 of slices.
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4 Sliced Transitive Reduction

In [32] we devised a method to filter out from the graph language of a slice
graph SG all DAGs which are not transitive reduced. In this way we were able
to obtain a Hasse diagram generatorHG whose graph language consists precisely
on the Hasse diagrams generated by SG (i.e. LPO(HG) ⊆ LPO(SG)). The method
we devised therein falls short of being a transitive reduction algorithm, since the
partial order generated by the resulting slice graph HG could be significantly
shrunk and indeed even reduced to the empty set. It was not even clear whether
such a task could be accomplished at all, since we are dealing with the application
of a non-trivial algorithm, i.e. the transitive reduction, to an infinite number
of DAGs at the same time. Fortunately in this section we prove that such a
transitive reduction is accomplishable, by developing an algorithm that takes
a slice graph as input and returns a Hasse diagram generator HG satisfying
LPO(SG) = LPO(HG).

The difficulty in devising an algorithm to transitive reduce slice graphs stems
from the fact that a slice that labels a vertex v of a slice graph may be used to
form both DAGs that are transitive reduced and DAGs that are not, depending
on which path we are considering in the slice graph. This observation is illus-
trated in Figure 3.ii where the slice containing the event a has this property.
Thus in general the transitive reduction cannot be performed independently on
each slice of the slice graph. Fortunately we will overcome this difficulty by in-
troducing in Definition 6 and Lemma 7 a ”sliced” characterization of superfluous
edges of DAGs, i.e., edges that do not carry any useful transitivity information.
By expanding each slice of the slice graph with a set of specially tagged copies
satisfying the properties defined in Definition 6 and connecting them in a special
way, we will be able to keep all paths which give rise to transitive reduced DAGs,
and to create new paths which will give rise to transitive reduced versions of the
non transitive-reduced DAGs generated by the original slice graph. In the proof
of Theorem 8 we develop an algorithm that transitive reduces slice graphs which
do not generate DAGs with multiple edges. Subsequently, in Theorem 8 we will
eliminate the restriction on multiple edges and prove that slice graphs in general
can be transitive reduced.

We say that an edge e of a simple DAG H is superfluous if the transitive
closure ofH equals the transitive closure ofH\{e}. In this section we will develop
a method to highlight the sliced parts of superfluous edges of a graphH on any of
its unit decompositions S1S2 · · ·Sn (Fig. 2-ii). Deleting these highlighted edges
from each slice of the decomposition, we are left with a unit decomposition
S′
1S

′
2 · · ·S′

n of the transitive reduction of H . It turns out that we may transpose
this process to slice graphs. Thus given a slice graph SG we will be able to
effectively compute a Hasse diagram generator HG that represents the same
language of partial order as SG, i.e. LPO(SG) = LPO(HG).

A function T : E2 → {0, 1}2 defined on the pairs of edges of a unit slice
S = ({v}, E, l) is called a coloring of S. A sequence of functions T1T2 · · · Tn is a
coloring of a unit decomposition S1S2 · · ·Sn of a DAG H if each Ti is a coloring
of Si and if the colors associated by Ti to pairs of edges touching the out-frontier
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Fig. 2. The transitivity coloring of the unit decomposition of two DAGs. i) The DAG
is transitive reduced. No edge is marked. ii) The DAG is not transitive reduced. The
sliced parts of each superfluous edge are marked (in gray). Deleting the marked edges
and composing the slices we are left with the transitive reduction of the original DAG.

of Si agree with the colors associated by Ti+1 to pairs of edges touching the in-
frontier of Si+1 (Figs. 2-i,2-ii). Below we define the notion of transitivity coloring
that will allow us to perform a ”sliced” transitive reduction on DAGs. We say
that an edge e of a slice S is marked by T if T (ee) = 11 and unmarked if
T (ee) = 00.

Definition 6 (Transitivity Coloring). Let S = (I ∪ {v} ∪ O,E, l) be a unit
slice. Then a transitivity coloring of S is a partial function T : E2 → {0, 1}2
such that

1. Undefinedness: T (e1e2) is not defined if and only if (es1=et2) or (et1=es2)
2. Antisymmetry: If T (e1e2) = ab then T (e2e1) = ba.
3. Marking: T (ee) ∈ {00, 11}. e is unmarked if T (ee) = 00 and marked if

T (ee) = 11.
4. Transitivity:

(a) If e1 and e2 �= e1 have the same source vertex, then T (e1e2) = 00.
(b) If es1 ∈ I and et1 ∈ O and es2 = v then T (e1e2) ∈ {01, 11} and

T (e1e2) = 01 iff (∃e, et=v)(T (e1e) ∈ {00, 01})
5. Relationship between marking and transitivity:

If et = v then e is marked ⇔ (∃e1, et1 = v)T (ee1) = 01.

We observe that an isolated unit slice may be transitivity colored in many
ways. However as stated in the next lemma (Lemma 7), a unit decomposition
S1S2 · · ·Sn of a simple DAG H with a unique minimal and a unique maximal
vertex, can be coherently colored in a unique way. Furthermore, in this unique
coloring, each superfluous edge of H is marked.

Lemma 7 (Sliced Transitive Reduction). Let S1S2 · · ·Sn be a unit decom-
position of a simple DAG H with a unique minimal and a unique maximal vertex.
Then

1. S1S2 · · ·Sn has a unique transitivity coloring T1T2 · · · Tn. Furthermore,
2. an edge e in Si is marked by Ti if and only if e is a sliced part of a superfluous

edge of H (Fig. 2-ii).
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Proof. Let T1T2 · · · Tn be a transitivity coloring of S1S2 · · ·Sn. By the rule of
composition of colored slices and by conditions 1 to 5 of Definition 6, the value
associated by Ti to each pair of distinct edges of Si are completely determined
by the values associated by Ti−1 to edges touching the out-frontier of Si−1.
Furthermore, since H has a unique minimal vertex, T1 associates the value 00
to each pair of distinct edges of S1. Thus the values associated by each Ti to
distinct edges of Si are unique. It remains to show that the marking is unique.

Let e be a superfluous edge of H , and e1e2..ek be a path from es to et, then
the transitivity conditions in Definition 6.4 assure that for any sliced part e′ of e
and any sliced part e′i of ei lying in the same slice Sj , Tj(e′, e′i) = 00 if i = 1 and
Tj(e′, e′i) = 01 for 2 ≤ i ≤ k (Fig. 2). Let Sj be the slice that contains the target
vertex of e, and let e′ and e′k be respectively the sliced parts of e and ek lying
in Sj . Then T (e′e′k) = 01 and thus, by condition 5 of Definition 6, e′ is marked,
implying that any sliced part of e lying in previous slices must be marked as
well. Now suppose that e1 and e2 have the same target vertex, and that e1 is
not superfluous. Then for any sliced part e′1 of e1 and any sliced part e′2 of e2
lying in the same slice Sj , we must have Tj(e′1, e′2) = 10 if e2 is superfluous and
Tj(e′1, e′2) = 11 if e2 is not superfluous. Thus by condition 5 of Definition 6, no
sliced part of e1 can be marked. We observe that Tj(e′1, e′2) �= 00 since otherwise
e1 and e2 would have the same source and thus form a multiple edge. ��

In this extended abstract we deal only with the transitive reduction of slice
graphs whose graph language does not contain DAGs with multiple edges (The-
orem 8). We say that these slice graphs are simple. Lemma 7 is of special impor-
tance for its proof. The transitive reduction of general slice graphs (Theorem 1)
is more technically involved and is treated in details in the full version of this
paper.

Theorem 8 (Transitive Reduction of Simple Slice Graphs). Let SG =
(V , E ,S) be a slice graph such that LG(SG) has only simple DAGs. Then there
exists a Hasse diagram generator HG such that LPO(SG) = LPO(HG).

Proof. As a first step we construct an intermediary slice graph SG′ as follows:
we expand each vertex v in V with a set of vertices {vT } where T ranges over
all transitivity colorings of S(v). Each vertex in {vT } is labeled with S(v). We
add an edge from vT to v′T ′ in SG′ if and only if v is connected to v′ in SG and if
the values associated by T to the edges touching the out-frontier of S(v) agree
with the values associated by T ′ to the edges touching the in-frontier of S(v′).
Finally we delete vertices that cannot be reached from an initial vertex, or that
cannot reach a final vertex. We note that T1T2 · · · Tn is a transitivity coloring of
the label S(v1)S(v2) · · · S(vn) of a walk from a initial vertex v1 to a final vertex
v2 in SG, if and only if S(v1)S(v2) · · · S(vn) also labels the walk v1T1

v2T2
· · · vnTn

in
the new slice graph SG′. By Lemma 7 ( Item 1) a coloring exists for each such a
walk and thus LG(SG) = LG(SG′). In order to get the Hasse diagram generator
HG with the same partial order language as SG, we relabel each vertex vT with
a version of S(v) in which the edges which are marked by T are deleted. By
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Lemma 7.2 a DAG is in LG(HG) if and only if it is the transitive reduction of a
DAG in SG, and thus LPO(HG) = LPO(SG). ��
We end this section by giving a simple upper bound on the complexity of the
transitive reduction of slice graphs (Corollary 9).

Corollary 9. Let SG be a slice graph with n vertices and let s be the size of
the greatest frontier of a slice labeling a vertex of SG. Then the Hasse diagram
generator constructed in in Theorem 8 has n · 2O(s2) vertices. In particular, the
transitive reduction algorithm runs in polynomial time for s = O(

√
logn).

Proof. Let v be a vertex of SG which is labeled with a slice S of width s. Then
S can be colored in at most 2O(s2) ways, since each two edges touching the same
frontier of S can be colored in at most a constant number of ways. Since the SG
has n vertices, the bound of n · 2O(s2) follows. ��

Fig. 3. i) How multiple edges are collapsed (dealt with in the full version) ii) A
slice graph and an intuitive depiction of its graph language. iii) The Hasse diagram
generator obtained from the slice graph to the left. The marked edges (in gray), which
should be deleted, and the values of the coloring were left to illustrate the proof of
Theorem 8.
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13. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding al-
gorithm. Formal Methods in System Design 20(3), 285–310 (2002)

14. Gaifman, H., Pratt, V.R.: Partial order models of concurrency and the computation
of functions. In: Proc. of LICS 1987, pp. 72–85 (1987)

15. Giammarresi, D., Restivo, A.: Two-dimensional finite state recognizability. Funda-
menta Informaticae 25(3), 399–422 (1996)

16. Gischer, J.L.: The equational theory of pomsets. Theoret. Computer Science 61,
199–224 (1988)

17. Grabowski, J.: On partial languages. Fundamenta Informaticae 4(2), 427 (1981)
18. Hayman, J., Winskel, G.: The unfolding of general Petri nets. In: Proc. of FTTCS

2008. LIPIcs, vol. 2, pp. 223–234 (2008)
19. Henriksen, J.G., Mukund, M., Kumar, K.N., Sohoni, M.A., Thiagarajan, P.S.: A

theory of regular MSC languages. Inform. and Comput. 202(1), 1–38 (2005)
20. Hoogers, P., Kleijn, H., Thiagarajan, P.: A trace semantics for Petri nets. Inform.

and Comput. 117(1), 98–114 (1995)
21. Hoogers, P.W., Kleijn, H.C.M., Thiagarajan, P.S.: An event structure semantics

for general Petri nets. Theoret. Computer Science 153(1-2), 129–170 (1996)
22. Husson, J.-F., Morin, R.: On Recognizable Stable Trace Languages. In: Tiuryn, J.

(ed.) FOSSACS 2000. LNCS, vol. 1784, pp. 177–191. Springer, Heidelberg (2000)
23. Jategaonkar, L., Meyer, A.R.: Deciding true concurrency equivalences on safe, finite

nets. Theoret. Computer Science 154(1), 107–143 (1996)



Canonizable Partial Order Generators 457

24. Kupferman, O., Lustig, Y., Vardi, M.Y., Yannakakis, M.: Temporal synthesis for
bounded systems and environments. In: STACS 2011, pp. 615–626 (2011)

25. Kuske, D., Morin, R.: Pomsets for local trace languages. Journal of Automata,
Languages and Combinatorics 7(2), 187–224 (2002)

26. Lodaya, K., Weil, P.: Series-parallel languages and the bounded-width property.
Theoret. Computer Science 237(1-2), 347–380 (2000)

27. Lorenz, R., Juhás, G., Bergenthum, R., Desel, J., Mauser, S.: Executability of
scenarios in Petri nets. Theor. Comput. Sci. 410(12-13), 1190–1216 (2009)

28. Mazurkiewicz, A.W.: Trace Theory. In: Brauer, W., Reisig, W., Rozenberg, G.
(eds.) APN 1986. LNCS, vol. 255, pp. 279–324. Springer, Heidelberg (1987)

29. Montanari, U., Pistore, M.: Minimal Transition Systems for History-Preserving
Bisimulation. In: Reischuk, R., Morvan, M. (eds.) STACS 1997. LNCS, vol. 1200,
pp. 413–425. Springer, Heidelberg (1997)

30. Morin, R.: On Regular Message Sequence Chart Languages and Relationships to
Mazurkiewicz Trace Theory. In: Honsell, F., Miculan, M. (eds.) FOSSACS 2001.
LNCS, vol. 2030, pp. 332–346. Springer, Heidelberg (2001)

31. Muscholl, A., Peled, D., Su, Z.: Deciding Properties for Message Sequence Charts.
In: Nivat, M. (ed.) FOSSACS 1998. LNCS, vol. 1378, pp. 226–242. Springer, Hei-
delberg (1998)

32. de Oliveira Oliveira, M.: Hasse diagram generators and Petri nets. Fundamenta
Informaticae 105(3), 263–289 (2010)

33. Thomas, W.: Finite-state recognizability of graph properties. Theorie des Auto-
mates et Applications 172, 147–159 (1992)

34. Vogler, W.: Modular Construction and Partial Order Semantics of Petri Nets.
LNCS, vol. 625. Springer, Heidelberg (1992)



Ogden’s Lemma for ET0L Languages

Max Rabkin

School of Computer Science
University of the Witwatersrand

Johannesburg, South Africa
max@cs.wits.ac.za

Abstract. We develop a necessary condition for ET0L languages
inspired by Ogden’s Lemma. Besides being useful for proving that in-
dividual languages are not ET0L languages, this result also gives an
alternative proof of Ehrenfeucht and Rozenberg’s theorem about rare
and nonfrequent symbols in ET0L languages.

1 Introduction

Perhaps the best known theorems in formal language theory are the pumping
lemmas for regular and context-free languages. A more powerful version of the
latter – Ogden’s Lemma – was proven in [6]. This theorem allows symbols in a
word to be designated as marked, and guarantees that the pumping operation
will affect the marked symbols. The main use of these theorems is proving that
a given language does not belong to the corresponding class.

It is natural to ask whether there are analogous results for larger classes of
languages, and in Sect. 4 of this paper we prove such a result for extended table-
driven zero-context Lindenmayer (ET0L) languages. Like the pumping lemma
for context-free languages, it generates new words in a language from a given
word, by repeating subwords. Unlike the results for context-free languages, but
like the pumping lemma for random permitting-context languages (Theorem 6 in
[5]), the pumping operation can repeat more than two subwords, and can change
their order. This makes it more difficult to apply but it seems unavoidable, due
to the increased power of ET0L systems.

In Sect. 5 we prove some useful corollaries of our main result, including the
theorem of Ehrenfeucht and Rozenberg about rare and nonfrequent symbols in
ET0L languages (Theorem 1 in [4]).

There has been previous work on pumping lemmas for L-system languages,
which we review briefly in Sect. 3: Beauquier [1] proved a version of Ogden’s
Lemma for finite-index ET0L languages. Ehrenfeucht and Rozenberg [3] give a
pumping lemma for deterministic ET0L languages where only certain words can
be pumped. In contrast to these, our result applies to all ET0L languages, and
all sufficiently long words.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 458–467, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Definitions

We use [n] to denote the set {1, 2, . . . , n}, IN for {0, 1, . . .}, and IN+ for {1, 2, . . .}.
We let #b(w) denote the number of appearances of the symbol b in the word

w, and let #B(w) =
∑
b∈B#b(w) when B is a set of symbols.

Our definition of an ET0L language differs slightly from the usual: we use a
single symbol, rather than a word, as the axiom. This simplifies our work slightly,
but has no effect on the class of languages generated (see Theorem 4 below).

Definition 1. An ET0L system is a tuple G = (V,Σ, T , S) where Σ, the ter-
minal alphabet, is a non-empty subset of the alphabet V , S ∈ V and T is a
collection {T1, . . . , Tn} of tables. Each table is a set of productions A → u, such
that for every A ∈ V there is a production A → u in Ti for every i ∈ [n].

Definition 2. If G = (V,Σ, T , S) is an ET0L system, with A1, A2, . . . , An ∈ V ,
and u1, u2, . . . , un ∈ V ∗, then A1A2 · · ·An ⇒ u1u2 . . . un if there is a table T ∈ T
such that (Ai → ui) ∈ T for all i ∈ [n]. We write ⇒∗ for the reflexive and
transitive closure of ⇒.

Definition 3. If G = (V,Σ, T , S) is an ET0L system, then it generates the lan-
guage L(G) = {w ∈ Σ∗ : S ⇒∗ w}. Such languages are called ET0L languages.

Theorem 4. If a starting word (axiom) ω is used instead of the starting symbol
S in the definition of ET0L languages, the same class of languages is generated.

Proof. Any ET0L language by our definition is also an ET0L language with an
axiom, since we can take ω = S. To see that the converse is true, add a new non-
terminal symbol S, and add a production S → ω to every table. Then S ⇒ ω,
and since there are no other productions involving S, we have S ⇒∗ w if and
only if ω ⇒∗ w. ��

Definition 5. If G = (V,Σ, T , S) is an ET0L system and w1, w2, . . . , wn ∈ V ∗,
with S = w1 ⇒ w2 ⇒ · · · ⇒ wn, then a tree τ is a derivation tree of wn in G if

1. the root of τ is labelled with S, and
2. if a symbol A was rewritten to u, then the corresponding node has children

labelled with the symbols of u, in order.

A level refers to the set of nodes at the same depth (and therefore corresponds
to one of the words in a derivation). The root is called the first level, its children
the second level, and so on. The maximum out-degree of a tree is the maximum
number of children of any node in the tree

We will have need of several concepts related to marking. A word with marked
symbols can be defined formally as a pair (w,M), where M ⊆ [|w|]: an instance
of a symbol in w is called marked if its position is in M . However, we will not
use this notation, preferring for simplicity to identify a marked word with its
underlying unmarked word. We extend the concept of marking to nodes of a
derivation tree of a marked word w thus:
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1. a leaf is marked if it corresponds to a marked symbol in w, and
2. a non-leaf node is marked if any of its child nodes are marked.

We will call a node a branch node if it has more than one marked child.
The concepts of rare and nonfrequent symbols are used in Theorem 1 of [4],

for which we provide an alternative proof.

Definition 6. Let L be a language over Σ, and B ⊆ Σ.

1. B is called nonfrequent if there is a constant cB such that #B(w) ≤ cB for
all w ∈ L. Otherwise it is called frequent.

2. B is called rare if for every k ∈ IN+, there exists an nk ∈ IN+ such that if
#B(w) ≥ nk then the distance between any two appearances in w of symbols
from B is at least k.

When the meaning is clear from context, we will not always disambiguate be-
tween a symbol, an instance of a symbol in a word, the node in a derivation tree
corresponding to an instance of a symbol, and the subtree rooted at that node.

The remaining definitions are used only in our discussion of previous work.
Since terminal symbols in an ET0L system can be rewritten, the definition of

index for such a system needs a concept of active symbols.

Definition 7. Let G = (V,Σ, T , S) be an ET0L system. A symbol A ∈ V is
called active if there is a production A → u with A �= u in some table in T .

Definition 8. Let G = (V,Σ, T , S) be an ET0L system. L(G) and G are said
to have index k if every word w ∈ L(G) has a derivation where no word contains
more than k active symbols. If such a k ∈ IN exists, then L(G) and G are called
finite-index.

Definition 9. An ET0L system G = (V,Σ, T , S) is called deterministic (or an
EDT0L system) if every table T ∈ T is a homomorphism: i.e., if (A → u1) ∈ T
and (A → u2) ∈ T , then u1 = u2.

Definition 10. A function f : IN → IN is called slow if f(n) is eventually
dominated by nε for all ε > 0.

For example, the logarithmic and constant functions are slow.

Definition 11. For any f : IN → IN, a word w is called f -random if there is
no word u with |u| > f(|w|) such that w = v1uv2uv3.

3 Previous Work

Beauquier [1] proved this Ogden-like theorem about finite-index ET0L languages.
Beauquier’s result uses finite-index matrix grammars, but these generate the
same languages as finite-index ET0L systems [7,8].
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Theorem 12. If L is an ET0L language of index k, then there exists an l ∈ IN
such that for any w ∈ L with at least l marked positions, w can be written as
w = u0v1u1v2u2 . . . vnun with n ≤ k such that for some i (0 ≤ i ≤ n),

1. ui contains a marked position;
2. there is a marked position either in both vi and u0v1u1 . . . ui−1, or in both

vi+1 and ui+1vi+2 . . . vnun;
3. vi and vi+1 together contain at most l marked positions;
4. u0v

t
1u1v

t
2u2 . . . v

t
nun ∈ L for all t ∈ IN.

Ehrenfeucht and Rozenberg [3] proved the following pumping lemma for EDT0L
languages.

Theorem 13. If L is an EDT0L language and f is a slow function, then there
exists an l ∈ IN such that for any f -random word w ∈ L with |w| > l, w
can be written as w = u0v1u1v2u2 . . . vnun (with |v1v2 . . . vn| > 0) such that
u0v

t
1u1v

t
2u2 . . . v

t
nun ∈ L for all t ∈ IN.

Note that only certain words can be pumped using this theorem, and not all
languages contain such words (for example, languages over a singleton alphabet).

4 Main Results

The following simple combinatorial lemma on trees will be needed. It basically
gives a lower bound on the height of a derivation tree in terms of the length of
the derived word, but is modified slightly to be useful for words with marked
positions.

Lemma 14. For any m ∈ IN, if a tree with maximum out-degree at most p has
more than pm marked leaves, it must have a path from the root to a leaf with
more than m branch nodes.

Proof. We prove this by structural induction on the tree.
A tree consisting of a single leaf has at most 1 = p0 marked leaf, and so

trivially satisfies the lemma.
Let τ be a (non-leaf) tree with more than pm marked leaves, for some m, and

suppose its children τ1, τ2, . . . , τn satisfy the lemma (n ∈ [p]). If only a single τi
is marked (i ∈ [n]), then τ has the same number of marked leaves and a path
with the same number branch nodes as τi, and therefore τ satisfies the lemma.

Otherwise, the root of τ is a branch node. One of the τi must have more than
pm/n ≥ pm−1 marked leaves, and therefore has a path with more than m − 1
branch nodes. Since the root of τ is also a branch node, τ has a path with more
than m branch nodes. ��

We can now prove our main result.

Theorem 15. If L is an ET0L language, then there exists an l ∈ IN (which we
will call the threshold for L) such that for any word w ∈ L with at least l marked
positions,
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1. w can be written as w = u1u2 . . . un and each ui can be written ui =
v(i,1)v(i,2) . . . v(i,ni) (we will denote the set of subscripts of v, i.e. {(i, j) :
i ∈ [n], j ∈ [ni]}, by I);

2. there is a map φ : I → [n] such that if each v(i,j) is replaced with uφ(i,j), then
the resulting word is still in L, and this process can be applied iteratively to
always yield a word in L ;

3. if v(i,j) contains a marked position then so does uφ(i,j) ;
4. there is an (i, j) ∈ I such that φ(i, j) = i, and there are at least two marked

positions in v(i,j) and at least one in ui but outside of v(i,j).

Proof. Let G = (V,Σ, T , S) be an ET0L system. Let p be the maximum length
of the right-hand side of a rule in G, and let m = |V | 4|V |. Let w be a word in
L(G) with at least pm + 1 marked positions.

Consider a derivation tree of w in G. Since the tree has more than pm marked
leaves, it must have a path with more than m branch nodes.

There must be a symbol A ∈ V which appears more than m/ |V | = 4|V | times
as the label of a branch node on this path. For each of these, consider the set
of symbols which appear on the same level in the derivation tree, and the set
of marked symbols which appear on the same level. Since there are only 4|V |

distinct such pairs of sets, there must be two branch nodes labelled by A, with
one an ancestor of the other, with the same pair of sets. Call the ancestor node
A1 and the descendant A2, and the words in which they appear w1 and w2,
respectively.

The sequence of tables which were applied to w1 to derive w can be applied
again to w2. Due to non-determinism, there may be several possible results from
this, but one result can be obtained by replacing each subtree corresponding to
an instance of a symbol in w2 with a subtree corresponding to an instance of
the same symbol in w1. To obtain the desired result, it is necessary to choose A1

when an instance of A is sought, and if there is a marked instance of a symbol,
we must choose it. This replacement can be applied as many times as desired.
This gives us parts 2 and 3 of the theorem.

Part 4 follows from the fact that A2 is replaced with A1, and both are branch
nodes. Set l = pm + 1 to complete the proof. ��

We give here a more formal description of the replacement operation in part 2
(which we will call the pumping operation). This operation produces the words
w(t) for all t ∈ IN, where

v
(0)
(i,j) = v(i,j) (1)

u
(t)
i = v

(t)
(i,1)v

(t)
(i,2) . . . v

(t)
(i,ni)

(2)

v
(t+1)
(i,j) = u

(t)
φ(i,j) (3)

w(t) = u
(t)
1 u

(t)
2 . . . u(t)

n . (4)

Note that w(0) = w. We consider an instance of a symbol in w(t+1) to be marked
if it was produced by copying a marked symbol in w(t).
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It may be interesting to remark that {w(t) : t ∈ IN} is a homomorphic image
of a deterministic zero-context Lindenmayer (D0L) language.

This pumping operation is more complicated than that in Theorems 12 and 13.
At least some complication is necessary: those operations generate a sequence
of words whose lengths form an infinite arithmetic progression, but there are
infinite ET0L languages which do not contain such sequences.

There is a simpler form of Theorem 15 which may nevertheless sometimes
be useful. Their relationship is analogous to the relationship between Ogden’s
Lemma and the pumping lemma for context-free languages.

Corollary 16. If L is an ET0L language, then there exists an l ∈ IN such that
for any word w ∈ L with |w| ≥ l,

1. w can be written as w = u1u2 . . . un and each ui can be written ui =
v(i,1)v(i,2) . . . v(i,ni) (we will again use I for the set of subscripts of v);

2. there is a map φ : I → [n] such that if each v(i,j) is replaced with uφ(i,j), then
the resulting word is still in L, and this process can be applied iteratively to
always yield a word in L ;

3. there is an (i, j) ∈ I such that φ(i, j) = i, and v(i,j) is a strict subword of ui.

Proof. This follows directly from Theorem 15 if we mark all positions in w. ��

We will now see how Theorem 15 and its proof apply to an example.

Example 17. The set {aFn : n ∈ IN+}, where Fn denotes the nth Fibonacci
number, is an ET0L language generated by the system (V,Σ, T , S) where V =
{Q,S, a}, Σ = {a}, and T = {{Q → QS, S → Q, a → a}, {Q → a, S → a, a →
a}}.

A derivation tree in this system for a5 is given in Fig. 1. For simplicity, we
will consider the case where all symbols are marked, as in Corollary 16.

Observe that the third and fourth level of the tree contain the same set of
symbols – {Q,S} – and since all symbols are marked, also the same set of marked
symbols. Furthermore, the Q in the third level is an ancestor of the leftmost Q
in the fourth level, and both are branch nodes, so the pumping operation can be
applied to these two levels of the tree.

This leads us to break the string up as aa a aa , where the outer brackets
delimit the subwords u1 and u2, and the inner brackets, v(1,1), v(1,2) and v(2,1),
and to set φ(1, 1) = φ(2, 1) = 1 and φ(1, 2) = 2. Applying the pumping operation
yields w(1) = aaa aa aaa , which is indeed a string in the language. Applying
it again yields w(2) = aaaaa aaa aaaaa , and so on.

Theorem 15 is a necessary condition for a language to be ET0L, but it is not
sufficient. In fact, as the following example shows, a language which satisfies
it may even be uncomputable, while all ET0L languages are computable [2,
Table 0.3.1].

Example 18. Let M1,M2, . . . be an enumeration of the set of Turing machines,

and let L = {a2k(2i+1) : Mi halts, k ∈ IN}. This language is not computable, and
is therefore not ET0L, but it satisfies the conditions of Theorem 15.
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Fig. 1. An example ET0L derivation

The halting problem is reducible to L, since a2i+1 ∈ L if and only if Mi halts.
Thus L is uncomputable.

Now we will show that it satisfies Theorem 15 with threshold l = 3. Let
w = a2

k(2i+1) be a word in L with at least three marked positions, where k ∈ IN
and Mi halts. Let u1 = w and let v(1,1)v(1,2) = w in such a way that v(1,1)
contains at least two marked positions and v(1,2) contains at least one. Let
φ(1, 1) = φ(1, 2) = 1. Then applying the pumping operation yields the words

a2
k+1(2i+1), a2

k+2(2i+1), . . ., which are all in L, and all the other conditions of
Theorem 15 are satisfied.

5 Applications

We will now prove two facts about the pumping operation which will help in
using Theorem 15 to prove that certain languages are not ET0L languages.

The pumping operation can initially reduce the number of marked symbols by
replacing subwords with many marked symbols by subwords with few. However,
eventually the number of marked symbols must increase, as the following shows.

Corollary 19. If L is an ET0L language with threshold l, and w ∈ L has at least
l marked symbols, then the number of marked symbols in w(t) tends to infinity,
where w(t) is the result of applying the pumping operation t times. Specifically,
w(t) contains at least t+ 2 marked symbols for all t ∈ IN.

Proof. Let u
(t)
i and v

(t)
(i,j) be as in (1)–(4), and i and j as in part 4 of Theorem 15.

By part 4 of Theorem 15, v
(0)
(i,j) contains at least two marked symbols.
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Suppose v
(t)
(i,j) contains at least t+2 marked symbols. Then v

(t+1)
(i,j) = u

(t)
i ; this

has v
(t)
(i,j) as a subword, which contributes t + 2 marked symbols. However, ui

also contains a marked symbol outside of v(i,j), and since subwords containing a
marked symbol are replaced with other such subwords, this property is inherited:

u
(t)
i has a marked symbol outside of v

(t)
(i,j). This contributes another marked

symbol, so in total there are at least t+ 3 marked symbols in v
(t+1)
(i,j) .

By induction, we conclude that w(t) contains at least t + 2 marked symbols
for all t ∈ IN. ��

On the other hand, the number of symbols cannot grow superexponentially by
this pumping operation:

Corollary 20. If L is an ET0L language with threshold l, and w ∈ L is at least
l symbols long, then |w(t)| ≤ |I|t |w|, where w(t) is the result of applying the
pumping operation t times and I is the set defined in part 1 of Theorem 15.

Proof. Let u
(t)
i and v

(t)
(i,j) be as in (1)–(4).

For all (i, j) ∈ I and all t, we have |v(t+1)
(i,j) | = |u(t)

φ(i,j)| ≤ |w(t)|.
Since |w(t+1)| =

∑
(i,j)∈I |v

(t+1)
(i,j) |, we get |w(t+1)| ≤ |I| |w(t)|. ��

Although Corollary 19 relates to marked symbols and Corollary 20 to the total
number of symbols, each applies to both, since the number of marked symbols
is always less than or equal to the total number of symbols.

Corollaries 19 and 20 together with Theorem 15 can be useful in proving that
certain languages are not ET0L languages.

Example 21. We wish to prove that L = {anbm : n ∈ IN,m ≥ 22
n} is not an

ET0L language. Suppose it is. Then, let l be the number in Theorem 15,m = 22
l

,
and w = albm with all the a’s and none of the b’s marked. Theorem 15 applies to
w. As before, we will denote by w(t) the word obtained by applying the pumping
operation t times.

By Corollary 19, #a

(
w(t)
)
≥ t + 2; on the other hand, #b

(
w(t)
)
≤ |w(t)| ≤

|I|t |w| by Corollary 20. Since |I|t |w| is eventually dominated by 22
t+2

, we find
that w(t) �∈ L for large enough t, which contradicts Theorem 15; thus L cannot
be an ET0L language. ��

If all positions were marked, the pumping operation could increase the number
of b’s while leaving the a’s, and so generating strings in L. So the marking aspect
is really necessary.

A similar argument can be used if 22
n

is replaced with any superexponential
function.

The following theorem by Ehrenfeucht and Rozenberg [4] can be deduced from
Theorem 15 without making any additional reference to the structure of ET0L
derivations.
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Theorem 22. Let L be an ET0L language over Σ, with B a non-empty subset
of Σ. If B is rare in L, then B is nonfrequent in L.

Proof. Let l be the number for L from Theorem 15. Suppose B is frequent in
L. Then there must be a word w ∈ L with more than l symbols from B. If we
mark them all, Theorem 15 applies. Again we will denote by w(t) the result of
pumping this word t times.

By Corollary 19, w(t) contains at least t + 2 symbols from B. However, by
part 4 of Theorem 15, the subword v(i,j) contains two marked symbols, and this

subword appears in all w(t), so these two symbols are a fixed distance apart. So
B is not rare in L. ��

This can be used to prove that, for example, {(gak)k : k ∈ IN+} is not an
ET0L language. Theorem 15 is, however, stronger than this one: the language
of Example 21 has no rare set of symbols, so Theorem 22 cannot show that it is
not an ET0L language.

6 Concluding Remarks

We have developed an analogue of Ogden’s Lemma for ET0L languages, which
can be used to prove that certain languages do not belong to this class. We also
used it to give a straightforward proof of a known result about these languages.

It would be interesting to investigate whether our theorem can be used to
prove other results in the theory of ET0L languages. We are also interested to
see if one can prove a marking variant, similar to Theorem 15, of Ewert and
Van der Walt’s pumping lemma for random permitting-context languages [5]
and shrinking lemma for random forbidding-context languages (a superset of
the ET0L languages) [9].

Acknowledgements. The author is grateful to Sigrid Ewert and the anony-
mous reviewers for their comments and suggestions, and to Bertin Zinsou for
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7. Păun, G.: Some further remarks on the family of finite index matrix languages.
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Abstract. We show that any parameter of patterns that is an upper
bound for the treewidth of appropriate encodings of patterns as relational
structures, if restricted to a constant, allows the membership problem
for pattern languages to be solved in polynomial time. Furthermore, we
identify a new such parameter, called the scope coincidence degree.
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tended Regular Expressions.

1 Introduction

A pattern α is a finite string that consists of variables and terminal symbols
(taken from a fixed alphabet Σ), and its language is the set of all words that can
be derived from α when substituting arbitrary words over Σ for the variables.
For example, the language L generated by the pattern α := x1ax2bx1 (where
x1, x2 are variables and a, b are terminal symbols) consists of all words with an
arbitrary prefix u, followed by the letter a, an arbitrary word v, the letter b and
a suffix that equals the prefix u. Thus, w1 := aaabbaa is contained in L, whereas
w2 := baaba is not.

Patterns provide a compact and natural way to describe formal languages.
In their original definition given by Angluin [1] variables can only be substi-
tuted by non-empty words; hence, the term nonerasing pattern languages (or,
for short, NE-pattern languages) is used. Extended or erasing pattern languages
(or, for short, E-pattern languages) where variables can also be substituted by
the empty word have been introduced by Shinohara [18]. The original motivation
for pattern languages (cf. Angluin [1]) is derived from inductive inference, i. e.,
the task of inferring a pattern from any given sequence of all words in its pattern
language, for which numerous results can be found in the literature (see, e. g.,
Angluin [1], Shinohara [18], Lange and Wiehagen [8], Rossmanith and Zeug-
mann [16], Reidenbach [11,12] and, for a survey, Ng and Shinohara [10]). On the
other hand, due to their simple definition, pattern languages have connections
to many other areas of theoretical computer science and their general properties
have been investigated in various contexts (for a survey, see, e. g., Mateescu and
A. Salomaa [9]). For example, there exist several versions of regular expressions
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that are extended in such a way that pattern languages can be defined (see, e. g.,
Bordihn et al. [3]). The problem to decide for a given word w and a pattern α
whether or not the variables of α can be substituted in such a way that w is
obtained, i. e., the membership problem for pattern languages, has been shown
to be NP-complete by Angluin [1].

Besides the theoretical importance of pattern languages, the concept of pat-
terns also finds practical application in so-called extended regular expressions
with backreferences (REGEX for short) (see, e. g., Câmpeanu et al. [5]). REGEX
can roughly be considered as classical regular expressions that are equipped with
the possibility to define backreferences, i. e., to require factors to be repeated at
several defined positions in the word; hence, backreferences correspond to the
variables in patterns. While backreferences dramatically increase the expressive
power of classical regular expressions, they are also responsible for the member-
ship problem of this language class to become NP-complete. This is particularly
worth mentioning as today’s text editors and programming languages (such as
Perl, Python, Java, etc.) all provide so-called REGEX engines that compute the
solution to the membership problem for any language given by a REGEX and
an arbitrary string. Hence, despite its theoretical intractability, algorithms that
perform the matchtest for REGEX are a practical reality. While pattern lan-
guages merely describe a proper subset of REGEX languages, they cover what
is computationally hard, i. e., the concept of backreferences. Hence, investigat-
ing the membership problem for pattern languages helps to improve algorithms
solving the matchtest for extended regular expressions with backreferences.

Our main research task is to identify parameters of patterns that, if restricted
to a constant, allow a polynomial time membership problem. The benefit of find-
ing such parameters is twofold. Firstly, we can learn what properties of a pattern
are actually responsible for the complexity of the membership problem, i. e., we
achieve a refined complexity analysis of this problem. Secondly, restricting these
parameters is likely to lead to improved algorithms for the membership problem
of pattern languages. The first such parameter that comes to mind is the num-
ber of different variables in a pattern. Its restriction constitutes a trivial way to
obtain a polynomial time membership problem, since the brute force algorithm
that simply enumerates all possibilities to substitute the variables by terminal
words in order to check whether the input word can be obtained is exponential
in the number of variables. Nevertheless, the number of variables is a central
parameter of patterns and important results about the learnability of pattern
languages (see Angluin [1] and Reischuk and Zeugmann [15]) as well as recent
results about the inclusion problem of pattern languages (see Bremer and Frey-
denberger [4]) are concerned with patterns with a restricted number of variables.
The membership problem for pattern languages given by patterns with only one
occurrence per variable (introduced by Shinohara [18]) is also solvable in poly-
nomial time, simply because these patterns describe regular languages; hence,
they are called regular patterns.

The arguably first nontrivial restriction of patterns that allow a polynomial
time membership problem are Shinohara’s non cross patterns [19], i. e., patterns
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where between any two occurrences of the same variable x no other variable
different from x occurs. However, this result does not provide a structural pa-
rameter of patterns that can be considered to contribute to the complexity of
the membership problem. Recently, in [14], Shinohara’s result has been extended
to an infinite hierarchy of classes of pattern languages with a polynomial time
membership problem. The idea in [14] is to restrict a rather subtle parameter,
namely the distance several occurrences of any variable x may have in a pattern
(i. e., the maximum number of different variables separating any two consecutive
occurrences of x). This parameter is called the variable distance vd of a pattern
α, and in [14] it is demonstrated that the membership problem is solvable in
time O(|α|3 × |w|(vd(α)+4)), so it is exponential only in the variable distance.

In this work, we approach the problem of identifying such parameters in a
novel and quite general way. More precisely, we encode patterns and words as
relational structures and, thus, reduce the membership problem to the homomor-
phism problem for relational structures. Our main result is that any parameter
of patterns that is an upper bound for the treewidth of the corresponding rela-
tional structures, if restricted to a constant, allows the membership problem to
be solved in polynomial time. In this new framework, we can restate the known
results about the complexity of the membership problem mentioned above, as
well as identifying a new parameter that is stronger than the variable distance.
Therefore, we provide a convenient way to treat the membership problem for pat-
tern languages, which, as shall be pointed out by our results, has still potential
for further improvements.

Note that, due to space constraints, all proofs are omitted.

2 Preliminaries

Let N := {0, 1, 2, 3, . . .}. For an arbitrary alphabet A, a string (over A) is a finite
sequence of symbols from A, and ε stands for the empty string. The notation
A+ denotes the set of all nonempty strings over A, and A∗ := A+ ∪ {ε}. For the
concatenation of two strings w1, w2 we write w1 · w2 or simply w1w2. We say
that a string v ∈ A∗ is a factor of a string w ∈ A∗ if there are u1, u2 ∈ A∗ such
that w = u1 · v ·u2. The notation |K| stands for the size of a set K or the length
of a string K. The term alph(w) denotes the set of all symbols occurring in w.
If we wish to refer to the symbol at a certain position j, 1 ≤ j ≤ n, in a string
w = a1 · a2 · · · · · an, ai ∈ A, 1 ≤ i ≤ n, we use w[j] := aj. Furthermore, for each
j, j′, 1 ≤ j < j′ ≤ |w|, let w[j, j′] := aj · aj+1 · · · · · aj′ and w[j,−] := w[j, |w|].
If j > |w|, we define w[j,−] = ε.

Pattern Languages and the Scope Coincidence Degree

For any alphabets A,B, a morphism is a function h : A∗ → B∗ that satisfies
h(vw) = h(v)h(w) for all v, w ∈ A∗; h is said to be nonerasing if and only if, for
every a ∈ A, h(a) �= ε. Let Σ be a finite alphabet of so-called terminal symbols
and X a countably infinite set of variables with Σ∩X = ∅. We normally assume
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X := {x1, x2, x3, . . .}. A pattern is a nonempty string over Σ ∪ X , a terminal-
free pattern is a nonempty string over X and a word is a string over Σ. For any
pattern α, we refer to the set of variables in α as var(α).

A morphism h : (Σ ∪X)∗ → Σ∗ is called a substitution if h(a) = a for every
a ∈ Σ. We define the E-pattern language of a pattern α by LE,Σ(α) := {h(α) |
h : (Σ ∪X)

∗ → Σ∗ is a substitution}. The NE-pattern language LNE,Σ(α) of α
is defined analogously, just with respect to nonerasing substitutions. Since in our
work the impact of the choice of the alphabet Σ is negligible, we mostly denote
pattern languages by LE(α) and LNE(α).

The problem to decide for a given pattern α and a given word w ∈ Σ∗ whether
w ∈ LE(α) (or w ∈ LNE(α)) is called the membership problem for E-pattern
languages (or NE-pattern languages, respectively). For every class C ⊆ (Σ ∪X)∗

and every Z ∈ {E,NE}, Z-PATMem(C) denotes the membership problem for
Z-pattern languages where the patterns are restricted to the class C.

The concept of the scope coincidence degree has already been introduced
in [13]. However, here we shall define it in a slightly different (yet equiva-
lent) way. Let α be a pattern. For every y ∈ var(α), the scope of y in α is
defined by scα(y) := {i, i + 1, . . . , j}, where i is the leftmost and j the right-
most occurrence of y in α. The scopes of y1, y2, . . . , yk ∈ var(α) coincide in
α if and only if

⋂
1≤i≤k scα(yi) �= ∅. Finally, the scope coincidence degree of

α (scd(α)) is the maximum number of variables in α such that their scopes
coincide. Let Σ := {a, b, c} and let the pattern β ∈ (Σ ∪ X)∗ be given by
β := x1bx2ax1x3x2abx3x4x2x4x5bcbx1x4x5. It is easy to see that each set
{x1, x2, x3}, {x1, x2, x4} and {x1, x4, x5} contain variables the scopes of which
coincide, but there does not exist a set of more than 3 variables with the same
property. Hence, scd(β) = 3. It is straightforward to see that the scope coinci-
dence degree can be computed in time linear in the length of the pattern.

Relational Structures, Treewidth and Homomorphism Problem

For the sake of completeness, we repeat the following standard definitions very
briefly, and for a comprehensive reference, the reader is referred to Chapters 4,
11 and 13 of Flum and Grohe [6].

A (relational) vocabulary τ is a finite set of relation symbols. Every relation
symbol R ∈ τ has an arity arity(R) ≥ 1. A τ-structure (or simply structure),
comprises a finite set A called the universe and, for every R ∈ τ , an interpre-
tation RA ⊆ Aarity(R). For example, every graph can be given as a relational
structure over a vocabulary with one binary relation symbol representing the
edges. Let A and B be structures of the same vocabulary τ with universes A
and B, respectively. A homomorphism from A to B is a mapping h : A → B
such that for all R ∈ τ , of arity r, and for all a = (a1, a2, . . . , ar) ∈ Ar, a ∈ RA

implies h(a) ∈ RB, where h(a) = (h(a1), h(a2), . . . , hr(ar)).
Next, we introduce the concept of a treewidth of a graph G, denoted by tw(G).

We omit the standard definition of the treewidth, that makes use of the concept
of tree decompositions of graphs (see, e. g., Bodlaender [2]). Instead, we apply an
alternative characterisation in terms of a game due to Seymour and Thomas [17].
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In the robber-cops-game (called jump searching in [17]), a number of cops try to
catch a robber on a graph. Let G := (V,E) be a graph. A position (of the robber-
cops-game) is a pair (C,R), where C ⊆ V and R is a connected subgraph of G
that does not contain any vertex of C. The set C contains the vertices currently
occupied by cops. The set R, on the other hand, is the position of the robber.
Since the robber can move with infinite speed we can interpret it to occupy all
vertices of the connected subgraphR at the same time. The initial position of the
game is (C0, R0), where C0 = ∅ and R0 is some connected subgraph chosen by
the robber. At the start of the ith step of the game we have position (Ci−1, Ri−1).
Now all the cops are removed from the graph and then again placed on some
vertices Ci ⊆ V . After that, the robber chooses (if possible) a new connected
subgraph Ri that does not contain any vertex from Ci and touches Ri−1, i. e.,
Ri−1 and Ri have a common vertex or an edge connects a vertex of Ri−1 with
a vertex of Ri. If in any step i of the robber cops game, the cops could choose
a set of vertices Ci such that there does not exists a position (Ci, Ri), i. e., for
every possible connected subgraph Ri that touches Ri−1, Ri ⊆ Ci is satisfied,
then the cops win the robber-cops-game. We say that k ∈ N cops can catch a
robber on G if the robber-cops-game can be won by the cops such that, for every
position (Ci, Ri) in the game, |Ci| ≤ k.

For example, one cop is not enough to catch a robber even on a single path,
since the robber can always outrun the cop as soon as it changes to another
vertex. Two cops can catch a robber on a path and also on arbitrary trees. To
catch a robber on a simple circle three cops are required: one is permanently
placed on some vertex, which turns the cycle in a path, and then the other two
can corner the robber in one of the two dead ends. The next theorem establishes
the relation between the robber-cops-game and the treewidth of a graph.

Theorem 1 (Seymour and Thomas [17]). Let G be an arbitrary graph. Then
k ∈ N cops can catch a robber on G if and only if tw(G) ≤ k − 1.

In order to define the treewidth of relational structures, we need the concept of
the Gaifman graph of a τ -structure A, which is the graph that has the universe A
of A as vertices and two vertices are connected if and only if they occur together
in some relation (see Chapter 11 of Flum and Grohe [6]). Now we can state the
definition of the treewidth that shall be used for our results:

Definition 2. The treewidth of a structure equals k−1, where k is the minimum
number of cops that are sufficient to catch a robber on its Gaifman graph.

The homomorphism problem HOM is the problem to decide, for given struc-
tures A and B, whether there exists a homomorphism from A to B. For any set
of structures C, by HOM(C) we denote the homomorphism problem, where the
left hand structure is restricted to be from C. If C is a class of structures with
bounded treewidth, then HOM(C) can be solved in polynomial time. This is a
classical result that has been first achieved in terms of constraint satisfaction
problems by Freuder [7] (see also Chapter 13 of Flum and Grohe [6]).

Theorem 3 (Freuder [7]). Let C be a set of structures with bounded treewidth.
HOM(C) is solvable in polynomial time.
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3 Patterns and Words as Relational Structures

In this section, we introduce a way to represent patterns and terminal words as
relational structures. Our overall goal is to reduce the membership problem for
pattern languages to the homomorphism problem for relational structures.

Representing words as relational structures is a common technique when
mathematical logic is applied to language theory (see, e. g., Thomas [20] for
a survey). However, our representations of patterns and words by structures
differ from the standard technique, since our approach is tailored to the ho-
momorphism problem of structures and, furthermore, we want to exploit the
treewidth.

In order to encode patterns and terminal words, i. e., an instance of the
membership problem for pattern languages, we use the relational vocabulary
τΣ := {E, S, L,R}∪{Da | a ∈ Σ}, where E, S are binary relations and L,R,Da,
a ∈ Σ, are unary relations. The vocabulary depends on Σ, the alphabet under
consideration. In order to represent a pattern α by a τΣ-structure, we interpret
the set of positions of α as the universe. The roles of S, L, R and Da, a ∈ Σ,
are straightforward: S relates adjacent positions, L and R are singletons that
contain the leftmost and rightmost position, respectively, and, for every a ∈ Σ,
the relation Da contains the positions in α where the terminal symbol a occurrs.
For the encoding of the variables, we do not explicitly store their positions in the
pattern, which seems impossible, since the number of different variables can be
arbitrarily large. Instead, we use the relation E in order to record pairs of posi-
tions where the same variable occurs and, furthermore, this is done in a “sparse”
way. More precisely, the relation E relates some positions with the same variable,
i. e., positions i, j with α[i] = α[j], in such a way that the symmetric transitive
closure of E contains all pairs (i, j) with α[i] = α[j] and α[i] ∈ X . This way of
interpreting relation E is crucial for our results.

We now state the formal definition and shall illustrate it afterwards.

Definition 4. Let α be a pattern and let Aα be a τΣ-structure. Aα is an α-
structure if it has universe Pα := {1, 2, . . . , |α|} and SAα := {(i, i+ 1) | 1 ≤ i ≤
|α| − 1}, LAα := {1}, RAα := {|α|}, for every a ∈ Σ, DAα

a := {i | α[i] = a},
and EAα is such that, for all i, j ∈ Pα,

– (i, j) ∈ EAα implies α[i] = α[j] and i �= j,
– α[i] = α[j] implies that (i, j) is in the symmetric transitive closure of EAα .

Since τΣ contains only unary and binary relation symbols, it is straightforward
to derive the Gaifman graph from an α-structure, which is simply a graph with
two different kinds of edges due to SAα and EAα . Hence, we shall switch be-
tween these two models at our convenience without explicitly mentioning it. In
the previous definition, the universe as well as the interpretations for the relation
symbols S, L, R and Da, a ∈ Σ, are uniquely defined for a fixed pattern α, while
there are several possibilities to define an interpretation of E. Intuitively, a valid
interpretation of E is created by connecting different occurrences of the same
variable by edges in such a way that all the occurrences of some variable describe
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a connected component. The simplest way to do this is to add an edge between
every two occurrences of the same variable, i. e., EAα := {(i, j) | α[i] = α[j]}.
However, we shall see that for our results the interpretation of E is crucial
and using the one just mentioned is not advisable. Another example of a valid
interpretation of E is the following one. For every x ∈ var(α), let lx be the
leftmost occurrence of x in α. Defining EAα :=

⋃
x∈var(α){(lx, i) | lx < i ≤

|α|, α[i] = x} yields another possible α-structure.
Next, we define a canonical α-structure, i. e., the interpretation of E is such

that every occurrence of a variable x at position i is connected to the next
occurrence of x to the right of position i.

Definition 5. Let α be a pattern. The standard α-structure (Asα) is the α-
structure where EAs

α := {(i, j) | 1 ≤ i < j ≤ |α|, ∃ x ∈ X such that x = α[i] =
α[j] and α[k] �= x, i < k < j}.

As an example, we consider the standard α-structure Asα for the pattern α :=
x1 ·a ·b ·x1 ·b ·x2 ·a ·x1 ·x2 ·x1. The universe of Asα is Pα = {1, 2, . . . , 10} and the
relations are interpreted in the following way. SAs

α = {(1, 2), (2, 3), . . . , (9, 10)},
LAs

α = {1}, RAs
α = {10}, DAs

α
a = {2, 7}, DAs

α
b = {3, 5} and, finally, EAs

α =
{(1, 4), (4, 8), (6, 9), (8, 10)}.

We continue with representing words over the terminal alphabet Σ as τΣ-
structures. We recall that it is our goal to represent the membership problem for
pattern languages as homomorphism problem for relational structures. Hence,
the way we represent terminal words by τΣ-structures must cater for this pur-
pose. Furthermore, we have to distinguish between the E case and the NE case.
We first introduce the NE case and shall afterwards point out how to extend the
constructions for the E case. We choose the universe to be the set of all possible
factors of w, where these factors are represented by their unique start and end
positions in w; thus, two factors that are equal but occur at different positions
in w are different elements of the universe. The interpretation of L contains all
prefixes and the interpretation of R contains all suffixes of w. The interpretation
of S, which for patterns contains pairs of adjacent variables, contains now pairs
of adjacent (non-overlapping) factors of w. The relation E is interpreted such
that it contains all pairs of factors that are equal and non-overlapping. Finally,
for every a ∈ Σ, Da contains all factors of length one that equal a. This is
necessary for the possible terminal symbols in the pattern.

For the E case, the empty factors of w need to be represented as well. To this
end, for every i, 0 ≤ i ≤ |w|, we add an element iε to the universe denoting the
empty factor between positions i and i + 1 in w. The interpretations of S and
R are extended to contain the empty prefix and the empty suffix, respectively,
and relation S is extended to relate non-empty factors to adjacent empty factors
and, in addition, each empty factor is also related to itself. Next, we formally
define this construction for the NE case and its extension to the E case.

Definition 6. Let w ∈ Σ∗ be a terminal word. The standard-NE-w-structure
(NE−As

w) with universe Pw is defined by
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– Pw := {(i, j) | 1 ≤ i ≤ j ≤ |w|},
– ENE−As

w := {((i, j), (i′, j′)) | j < i′ or j′ < i,w[i, j] = w[i′, j′]},
– SNE−As

w := {((i, j), (j + 1, j′)) | 1 ≤ i ≤ j, j + 1 ≤ j′ ≤ |w|},
– LNE−As

w := {(1, j) | 1 ≤ j ≤ |w|},
– RNE−As

w := {(i, |w|)| | 1 ≤ i ≤ |w|} and,

– for every a ∈ Σ, D
NE−As

w
a := {(i, i) | w[i] = a}.

Let NE−As
w be the standard-NE-w-structure with universe Pw. We define the

standard-E-w-structure (E−As
w) with universe PE

w as follows:

– PE
w := Pw ∪ {iε | 0 ≤ i ≤ |w|},

– EE−As
w := ENE−As

w ∪ {(iε, jε) | 0 ≤ i, j ≤ |w|, i �= j},
– SE−As

w := SNE−As
w ∪ {(iε, iε) | 0 ≤ i ≤ |w|} ∪

{((i, j), jε)) | 1 ≤ i ≤ j ≤ |w|} ∪ {(iε, (i+ 1, j)) | 0 ≤ i ≤ j ≤ |w|},
– LE−As

w := LNE−As
w ∪ {0ε},

– RE−As
w := RNE−As

w ∪ {|w|ε} and,

– for every a ∈ Σ, D
E−As

w
a := D

NE−As
w

a .

In the following lemma we state that the membership problem for pattern lan-
guages can be reduced to the homomorphism problem for relational structures.
We shall informally explain this for the case of terminal-free NE-pattern lan-
guages. If there exists a substitution that maps the pattern α to the word w,
then we can construct a homomorphism g from Aα to NE−As

w by mapping the
positions of α to the factors of w according to the substitution h. If two positions
in α are adjacent, then so are their images under h in w and the same holds for
equal variables in α; hence, g is a valid homomorphism. If, on the other hand,
there exists a homomorphism g from Aα to NE−As

w, then the elements of the
universe of Aα, i. e., positions of α, are mapped onto factors of w such that a
factorisation of w is described. This is enforced by the relations S, L and R.
Furthermore, this mapping from α to w induced by g is a substitution, since the
symmetric transitive closure of EAα contains all pairs (i, j) with α[i] = α[j] and
α[i] ∈ X . For general patterns with terminal symbols and for the E case the idea
is the same, but the situation is technically more complex.

Lemma 7. Let α be a pattern, w ∈ Σ∗ and let Aα be an α-structure. Then
w ∈ LNE(α) (or w ∈ LE(α)) if and only if there exists a homomorphism from
Aα to NE−As

w (or from Aα to E−As
w, respectively).

From Lemma 7 and Theorem 3, we can conclude that, for patterns that can be
encoded by α-structures with a bounded treewidth, the membership problem is
solvable in polynomial time.

Theorem 8. Let C ⊆ (X ∪ Σ)+ and let g be a mapping that, in polynomial

time, maps every α ∈ C to an α-structure, such that Ĉ := {g(α) | α ∈ C} has
bounded treewidth. Then NE-PATMem(C) and E-PATMem(C) are decidable in
polynomial time.
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Due to Theorem 8, the task of identifying parameters of patterns that, if
bounded, allow a polynomial time membership problem, can now be seen from
a different angle, i. e., as the problem of finding classes of patterns that can be
encoded by α-structures with a bounded treewidth. The fact that we can easily
rephrase known results about the complexity of the membership problem for
pattern languages in terms of standard α-structures with a bounded treewidth,
pointed out by the following proposition, indicates that this point of view is
natural and fits with our current knowledge of the membership problem.

Proposition 9. Let α be a pattern. If α is non-cross or regular then tw(Asα) ≤
2. Furthermore, tw(Asα) ≤ | var(α)|.

While Proposition 9 is trivially true, an analogous result can also be given
for the variable distance of patterns (see Section 1 and [14]), which is a more
subtle parameter the restriction of which is known to yield a polynomial time
membership problem. This follows from the main result of the subsequent sec-
tion, which shows that a stronger parameter than the variable distance, namely
the already mentioned scope coincidence degree, also allows a polynomial time
membership problem if restricted to a constant. The question arises why we do
not simply consider the treewidth of a pattern α, i. e., tw(α) := min{tw(Aα) |
Aα is an α-structure}, to be an appropriate parameter of patterns that should
be bounded in order to solve the membership problem efficiently. The problem
here is that, firstly, for a pattern α there exists an exponential number of α-
structures and, secondly, computing the treewidth of graphs is an NP-complete
problem. Consequently, it is not clear whether this parameter can be computed
in polynomial time and, in order to conclude complexity theoretical results from
Theorem 8, we rely on finding easily computable parameters of patterns that –
ideally as tight as possible – are upper bounds for tw(α).

4 Patterns with Restricted Scope Coincidence Degree

In this section we show that, for every pattern α, the treewidth of the standard
α-structure is bounded by the scope coincidence degree of α. To this end, we shall
play the robber-cops-game defined in Section 2 on the Gaifman graph of stan-
dard α-structures. For the sake of convenience, we shall not distinguish anymore
between a pattern α and the Gaifman graph of its standard α-structure, i. e., we
change at will between interpreting the positions in the pattern as occurrences
of variables or as vertices in the Gaifman graph of the standard α-structure.
Similarly, we allow some leeway with respect to the robber-cops-game and shall
play it directly on a pattern α, meaning to actually playing it on the Gaifman
graph of its standard α-structure. Next, we define a strategy to search a pattern
in terms of the robber-cops-game.

Definition 10. Let α be a pattern. We define the inspector search strategy (on
α). We assume that we have an infinite number of cops, where one distinct cop is
called the inspector and all other cops are called constables. Let m, 1 ≤ m ≤ |α|,
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be the leftmost occurrence of a variable in α. Initially, the inspector is placed on
vertex m. For every i, m ≤ i ≤ |α| − 1, when the inspector is located on vertex
i, the following steps are executed:

1. If α[i] is the leftmost occurrence of some variable x in α, then a constable
is placed on vertex i. If α[i] is an occurrence of some variable x, but not the
leftmost one, then the constable from vertex j is moved to vertex i, where j <
i, is the rightmost occurrence of x that is currently occupied by a constable.

2. The inspector moves from vertex i to vertex i+ 1.
3. If i is the rightmost occurrence of some variable x in α, then the constable

on vertex i is removed.

The number of constables that are required to carry out the inspector search
strategy on α is called the constable number of α.

Informally, the inspector search strategy on some pattern α can be described in
the following way. The inspector moves through the pattern from left to right.
Every occurrence of a terminal symbol is ignored and the inspector just moves
on. If it enters an occurrence of a variable, it places a constable there. A new
constable is required if this is the first occurrence of some variable x. If, on the
other hand, there exists an earlier occurrence of x in α, then, by definition of the
search strategy, a constable is located at the next occurrence of x to the left of the
current inspector position. This constable is now moved forward to the position of
the inspector. If the inspector reaches a rightmost occurrence of a variable, then
also a constable is moved to this position, but removed immediately after the
inspector moves on. However, it is important that the constable is placed there
before the inspector moves on and remains there while the inspector moves to
the next position. Obviously, this procedure terminates as soon as the inspector
reaches position |α|. We note that as long as there exists at least one variable
in the pattern, the constable number is at least one, hence, we can assume that
the constable number is always at least one.

We observe the following property of the inspector search strategy.

Proposition 11. Let α be a pattern. Every time step 1 of the inspector search
strategy on α is executed, the following condition is satisfied. Let p1, p2, . . . , pk ∈
{1, 2, . . . , |α|} with p1 < p2 < . . . < pk be the positions occupied by constables.
Then there are k different variables y1, y2, . . . , yk, such that var(α[p1, pk]) =
{y1, y2, . . . , yk} and, for every i, 1 ≤ i ≤ k, pi is the rightmost occurrence of yi
in α[p1, pk].

The next lemma describes how a certain area of the pattern can be sealed off by
the constables, such that the robber cannot reach this area.

Lemma 12. Let α be a pattern and let p1, p2, . . . , pk ∈ {1, 2, . . . , |α|} with p1 <
p2 < . . . < pk such that var(α[p1, pk]) = {y1, y2, . . . , yk} and, for every i, 1 ≤
i ≤ k, pi is the rightmost occurrence of yi in α[p1, pk]. If vertices p1, . . . , pk are
occupied by constables, then the robber cannot reach a vertex t, p1 ≤ t ≤ pk,
from a vertex s, pk < s.
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The previous results can be used in order to show that, for every pattern α, a
robber can be caught by applying the inspector search strategy on α.

Lemma 13. Let α be a pattern with constable number k. If k = 1, then 3 cops
are sufficient to catch a robber on the Gaifman graph of Asα, and if k ≥ 2, then
k + 1 cops are sufficient to catch a robber on the Gaifman graph of Asα.

It is worth mentioning that the special case in the above lemma concerning
patterns with a constable number of 1 is caused by the fact that the patterns
may contain terminals. For terminal-free patterns α with a constable number of
1, a robber can be caught on the Gaifman graph of Asα by 2 cops. Next, we show
that the constable number of a pattern equals its scope coincidence degree.

Lemma 14. For every pattern α, the constable number of α equals scd(α).

By the previous lemmas, we can conclude that, for every pattern α with scd(α) =
1, a robber can be caught on α by using one inspector and 2 constables, and for
every pattern α with scd(α) = k, k ≥ 2, a robber can be caught on α by using one
inspector and k constables. Hence, referring to Theorem 1, the treewidth of the
standard α-structure is bounded by the scope coincidence degree. Furthermore,
the standard α-structures of the class of patterns with restricted variable distance
have a bounded treewidth as well.

Theorem 15. Let α be a pattern. Then tw(Asα) ≤ scd(α) ≤ vd(α) + 1.

Theorems 8 and 15 imply the following complexity result.

Corollary 16. Let k ∈ N and Z ∈ {E,NE}. The problem Z-PATMem({α |
scd(α) ≤ k}) is solvable in polynomial time.

We conclude this work by some questions not explicitly addressed so far. Since
in Definition 4 we leave the exact definition of the relation symbol E open, there
are many possible α-structures for a pattern α that all permit an application of
Theorem 8. However, the standard way of encoding patterns (Definition 5) has
turned out to be sufficient for all results in the present paper. Hence, it would
be interesting to know whether or not, for some pattern α, there exists a better
α-structure than the standard one, i. e., tw(α) < tw(Asα). This question is open,
but we conjecture that it can be answered in the negative.

Another question is whether the scope coincidence degree of a pattern α is a
tight upper bound for the treewidth of the standard α-structure. This question
can be answered in the negative. Consider for example the pattern α := x1 · x2 ·
· · · · xk−1 · xk · xk · xk−1 · · · · · x2 · x1. It is easy to see that scd(α) = k. On the
other hand, we can catch a robber on α with 3 cops. Thus tw(Asα) ≤ 2 < scd(α).
This examples also gives an indication that it might be possible to identify a
parameter closer to tw(α) still preserving polynomial time computability.
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Abstract. The parameterized Synchronizing-Road-Coloring Problem
(in short: SRCP�

C) in its decision version can be formulated as follows:
given a digraph G with constant out-degree �, check if G can be synchro-
nized by some word of length C for some synchronizing labeling. We con-
sider the family {SRCP �

C}C,� of problems parameterized with constants
C and � and try to find for which C and � SRCP�

C is NP-complete. It is
known that SRCP3

C is NP-complete for C ≥ 8. We improve this result
by showing that it is so for C ≥ 4 and for � ≥ 3. We also show that
SRCP�

C is in P for C ≤ 2 and � ≥ 1. Hence, we solve SRCP almost
completely for alphabet with 3 or more letters. The case C = 3 is still
an open problem.

1 Introduction

We will call a digraph G the RCP-graph, if it is strongly connected and has
constant out-degree. The Road Coloring Problem (RCP) originates in [2] and
it was stated explicitly in the paper by Adler et al. [1]. It can be formulated
as follows: let G be an RCP-graph such that the greatest common divisor (gcd)
of the lengths of all cycles in G equals 1. Is there an edge labeling, turning G
into a deterministic finite synchronizing automaton? The problem is of great
importance in automata theory, because the synchronizing property makes the
automaton behavior resistant to errors that could occur in an input word: after
the error is detected, the synchronizing word can reset the automaton to its
initial state, as if there were no error. In this way we regain the control over the
automaton action. Trahtman [7] solved the RCP by showing that a synchronizing
labeling exists for any RCP-graph G if and only if the gcd of the lengths of all
cycles in G equals 1. RCP uses a notion of synchronization, which in fact was
introduced few years before the work of Adler et al. The ’classical’ version of the
synchronizing problem (SP) can be defined as follows:

(SP) given an automaton (a labeled graph G with constant out-degree) and a
natural number C, check if there exists a synchronizing word of length C
for G.

In this problem there is no restriction on the length of the synchronizing sequence
– this value is given as a part of the input. It is known that (SP) is NP-complete
[4] for binary alphabets. The solution of RCP opened a new, broad field of

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 480–489, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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research. For example, [3,6] deal with algorithms for finding a synchronizing
labeling given a graphG. We can reformulate all classical synchronizing problems
in the ’RCP fashion’, using the following schema:

(classical version) given a constant out-degree graph G with labeling δ, check
if COND(G, δ) holds,

(RCP version) given a constant out-degree graph G, check if COND(G, δ)
holds for some labeling δ.

In this way we may also reformulate (SP): given an RCP-graph G and a natural
number C, check if G can be synchronized by some word of length C for some
synchronizing labeling. However, we will consider more restricted problem (in
fact, a family of problems parameterized by two constants):

(SRCP�C) given a graph G with constant out-degree �, check if G can be syn-
chronized by some word of length C for some synchronizing labeling.

Notice that here C is not a part of the input, but is a constant number. The
corresponding classical problem would be: given an automaton, check if it can be
synchronized by some word of length C. This problem can be obviously solved
in polynomial time O(|Q| · |A|C) by checking the synchronizing property for all
possible words of length C. Our main result states that the RCP version of this
problem is NP-complete for almost all C and � values.

Thanks to Trahtman’s result [7] we may restrict our research only to graphs
with the gcd of the lengths of all cycles equal to 1. The motivation for this work
was the question about the complexity of Synchronizing-Road-Coloring Problem
posted by Volkov during theWroclawConference on the Černý Conjecture [8] and
a partial solution published in [5]. The other motivation is that not only synchro-
nizing issues, but also their RPC versions are of practical nature. A good example
of application of the RCP-type problems to the real life is given in [9].

The paper is constructed as follows: in Section 2 we give some necessary
definitions and notations. In Section 3 we show that SRCP�C is NP-complete for
C ≥ 4 and � ≥ 3. This improves the result from [5] saying that it is so for C ≥ 8
and � = 3. The proof for SRCP3

4 is even simpler and shorter than the one from
[5] for SRCP3

8. In Section 4 we show that SRCP3
C is in P for C = 1, 2 and � ≥ 1.

In Section 5 we summarize our results and discuss some open problems.

2 Preliminaries

An automaton is a triple A = (Q,A, δ), where Q is a nonempty, finite set of
states, A is a finite alphabet and δ : Q × A → Q is a transition function called
also the automaton action. By A∗ we denote a free monoid over A consisting of
all finite words over A. By ε we denote the empty word of length 0. We define
A+ = A∗ \ {ε} and An = {w ∈ A∗ : |w| = n}. For the sake of simplicity, we
will write p.a = q instead of δ(p, a) = q. It is convenient to extend δ to the sub-
sets of Q in the usual way: for P ⊂ Q we define P.ε = P , P.a =

⋃
p∈P {p.a} and
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P.aω = (P.a).ω for all ω ∈ A+. We say that W ∈ A∗ synchronizes A = (Q,A, δ)
if |Q.W | = 1. If such a word exists, A is called a synchronizing automaton.
Sometimes we will be interested in the ’local’ synchronization only: if P ⊂ Q,
then we say that W ∈ A∗ is P -synchronizing (or that W synchronizes P ) if
|P.W | = 1. By q.a−1 we understand the set {p : p.a = q}.

From now on, we will consider only strongly connected, directed graphs with
constant out-degree. Let G = (V , E) be such a graph, where V is a finite set of
vertices and E is a (multi)set of edges. Let each vertex have an out-degree k and
let A be a k-element alphabet. An automaton with underlying graph G = (V , E)
is an automaton AG = (V , A, δ) such that for each v ∈ V we have {v.a : a ∈
A} = {v′ : (v, v′) ∈ E}, where the equality has to be understood in the multiset
sense (note: sometimes we will use the sentence ”all other edges of G can be
labeled arbitrarily” – it means that the resultant labeling must fulfill the above
condition). A path in G is a sequence of vertices (v1, v2, ..., vn), n ≥ 2 such that
(vi, vi+1) ∈ E for each 1 ≤ i ≤ n − 1. The length of the path is n − 1. The
path (v1, v2, ..., vn+1) is called an n−(v1, vn+1) path. By reachn(v) we denote
the set of all vertices that can be reached from v by some path of length n:
reachn(v) = {v.w : w ∈ An}.
Lemma 1. Let AG = (V , A, δ) be an automaton with the underlying graph G =
(V , E). If there exists a synchronizing word W of length C for AG, then⋂

v∈V
reachC(v) �= ∅.

Proof. Let W be a synchronizing word of length C. Then there exists v′ ∈ V ,
such that v.W = v′ for all v ∈ V and obviously v.W ∈ reachC(v) for all v ∈ V .
Therefore, v′ ∈

⋂
v∈V �= ∅. �

A labeling of G is a function L : E → A which assigns letters from A to the
edges in such a way that for each vertex v ∈ V all of its k outgoing edges have
pairwise different labels (colors). The labeled graph becomes an automaton and
L is equivalent to δ, so slightly abusing the notation sometimes we will refer to
δ as a labeling. If v ∈ V , by out(v) we denote the (multi)set of outgoing edges
from v.

3 SRCP3
C Is NP-complete for C ≥ 4 and � ≥ 3

Our reasoning for proving NP-completeness of SRCP�C for C ≥ 4 and � ≥ 3
consists of three steps. In the first step we prove NP-completeness of SRCP3

4. In
the second step we show that this result can be extended to C ≥ 4. In the last
step we show that the result from the second step can be extended to � ≥ 3.

First, consider the Synchronizing-Road-Coloring problem SRCP3
4:

– INPUT: RCP-graph G with constant out-degree 3;
– OUTPUT: ”YES” if there exists a synchronizing word of length 4 for some

synchronizing labeling of G. ”NO” otherwise.
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It is clear that SRCP�C is in NP for any C and �: given a labeling and a word W
one can check if W synchronizes G and it can be done in O(|W | · |G|) time, where
|G| is the number of vertices in G. We will prove that SRCP3

4 is NP-complete
by reducing 3-SAT to this problem.

Let ϕ be a 3-SAT formula in a conjunctive normal form with n clauses c1, ..., cn
and z variables x1, ..., xz. Let us define a graph Γϕ = (X,Y ) corresponding to
ϕ in the following way: X = {1, ..., z} and for j �= j′ {j, j′} ∈ Y iff there is
a clause ci such that both {xj ,¬xj} ∩ ci and {xj′ ,¬xj′} ∩ ci are nonempty. We
will consider only formulas in a so-called standard form. By a standard form
we mean that: (1) if literal belongs to ci, then its negation does not; (2) for
each j = 1, ..., z there exist two clauses ci and ci′ , i �= i′ such that xj ∈ ci and
¬xj ∈ ci′ ; (3) Γϕ is connected. Notice that if Γϕ is not connected and has κ
components, the formula can be split into κ formulas and for each of them we
can assign variables values independently.

We will construct a digraph G = G(ϕ) = (V , E) such that there exists a
synchronizing word of length 4 for some synchronizing labeling of G if and only
if ϕ is satisfiable. The main construction of G is presented in Fig. 1. The digraph
G has constant out-degree 3, so we will consider automata over 3-letter alphabet
A = {a, b, c}. The gcd of all cycles in G equals 1 (because, for example, of the
cycles (t, v, x, t) and (t, v, x, u, t) of lengths 3 and 4 resp.). The digraph G consists
of 2n+8z+22 vertices, so its size is polynomial in n, z. For the sake of simplicity,
some edges are not shown in Fig. 1. These are: ci → ci for each i ∈ {1, . . . , z}
and l → l for each l ∈ {s1, r1, . . . , sz, rz , t, u, v, w, x, y, q}. Each bolded arrow
denotes a set of three edges. Small black and white disks are used for simplifying
the presentation. All edges outgoing to black (resp. white) disks are in fact the
edges outgoing to state k (resp. r1).

The top part of the graph, denoted byGϕ, is a ”formula gadget” and it depends
on the ϕ formula. It is constructed as follows: if a clause cj contains a literal li ∈
{xi,¬xi}, we put (cj , li) ∈ E . This property will be utilized in Lemma 2. The most
important part of the construction consists of the subgraphG∗, together with the
states ri, si, xi,¬xi, i = 1, . . . , z. This part is called the ”main gadget”. It has
a property stated in Lemmata 5 and 6, which plays a key role in the proof of the
main theorem. The formula gadget, together with themain gadget, has the desired
property: the formula ϕ is satisfiable if and only if there exists a synchronizing
word of length 4 for someAG. The Road Coloring Problem was stated for strongly
connected digraphs, so we need to introduce onemore gadget to provide the strong
connectivity of G. This is the graph G. It is easy to observe that adding it makes
G strongly connected, because all states can reach t, t can reach all states in G
and each state in G can reach any state in G.

Lemma 2. Let C = {c1, c2, ..., cn} ⊂ V. The following statements are equivalent:

(a) ϕ is satisfiable,
(b) there exists a labeling δ for Gϕ such that

∀i ∈ {1, ..., z} |{xi,¬xi} ∩ C.α| ≤ 1

for some α ∈ A.
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k c1 · · · cn s1 r1 · · · sz rz
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x1 ¬x1 · · · · · · xz ¬xz

s1s′1

r1r′1

s′z sz

r′z rzt

v x u
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· · ·

G

Gϕ

G

G∗

Fig. 1. Main construction (not all edges are shown)

Moreover, there exists at least one index j, 1 ≤ j ≤ z such that |{xj ,¬xj} ∩
C.α| = 1.

Proof. (a ⇒ b) Let ϕ be satisfiable. Then there exists an assignment such that
in each clause ci there is at least one literal lj ∈ {xj,¬xj} with the true value.
We put

δ(ci, α) = lj . (1)

If two or more literals in ci take true values, we can take as δ(ci, α) the literal
with the smallest index j. It is clear that if ci.α = lj for some i, j, then for each
i′ �= i we have ci′ .α �= ¬lj .
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(b ⇒ a) Let δ be a labeling fulfilling (b). We assign true value to lj if and only
if δ(ci, α) = lj for some i ∈ {1, ..., n}. Such an assignment is correct and there is
at least one literal with true value in each clause.

The existence of j such that |{xj ,¬xj} ∩ C.α| = 1 comes from the fact that⋃z
i=1{xi,¬xi}.α−1 = C �= ∅. �

Let AG = (V , {a, b, c}, δ) be an automaton with the underlying graph G from
Fig. 1. Let us define the sets: Gi = {ri, si}, 1 ≤ i ≤ z, D =

⋃z
i=1 Gi and

E = {t, u, v, w, x, y, q}. The following Proposition is straightforward.

Proposition 3. For each automaton AG and for every word W of length 1 the
set V .W contains D ∪ E and has a nonempty intersection with

⋃z
i=1{xi,¬xi}.

Proposition 3 states that irrespective of a labeling for G, the set D∪E is always
contained in the set being the image of V after applying any word of length 1.

Lemma 4. The formula ϕ is satisfiable if and only if there exists a labeling δ of
G(ϕ) and W ∈ A such that for each i ∈ {1, ..., z} the set V .W contains at most
one of the elements xi,¬xi.
Proof. The proof follows directly from Lemma 2, Proposition 3 and the analysis
of G. �
Now we formulate two key lemmata that will be used to prove NP-completeness
of the Synchronizing-Road-Coloring problem.

Lemma 5. Let AG be an automaton and let i ∈ {1, 2, ..., z}. If there is a word
W ∈ A∗ which synchronizes the set Gi ∪E ∪ {xi}, then W has length at least 3.
If W synchronizes Gi ∪E ∪ {¬xi}, then W also has length at least 3. Moreover,
in both cases, there exists such a word of length 3.

Proof. We will prove the first implication. The second one can be proved in
the same way. Fix i and put H = Gi ∪ E ∪ {xi}. It is easy to observe that⋂
h∈H reachλ(h) = ∅ for λ = 1, 2, so by Lemma 1 there exists noH-synchronizing

word of length ≤ 2 for any labeling δ. Notice that reach3(y) ∩ reach3(ri) = {t}
and H ⊂ t−3, so

⋂
h∈H reach3(h) = {t}. Hence, if there is an H-synchronizing

word W of length 3, then H.W = t.
LetW = αβγ, α, β, γ ∈ A. We want to find all possible labelings ofH for which

there is an H-synchronizing word of length 3. Notice that each path going from
any vertex from H through k to t must be of length > 3, because t �∈ reach2(k).

The only 3−(x, t) path is x
α→ v

β→ x
γ→ t, so α �= γ. The only 3−(q, t) path is

q
α→ x

β→ u
γ→ t, so β �= α and β �= γ. Having this labeling it is easy to observe

that necessarily t
α→ v, v

α→ w, w
β→ x, w

α→ v, u
α→ q, xi

α→ yi, ¬xi
β→ xi, xi

γ→ t,

ri
α→ si, si

α→ ¬xi, si
β→ xi, si

γ→ ri. Edge ¬xi → t may be labeled by α or γ. The
above necessary labeling is shown in Fig. 2. The shortestH-synchronizing word is
W = αβγ, where α, β, γ are pairwise different letters from A. �
Lemma 6. Let AG be an automaton and let i ∈ {1, 2, ..., z}. If there is a word
W ∈ A∗ which synchronizes the set Gi∪E∪{xi,¬xi}, then W has length greater
than 3.
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xi

¬xi

si

ri

t

v

x

u

w

q y

αβγα

β

α

γ

α ∨ γ

α

βγ

α

βγ

α

α
βα

α, β, γ

α, β, γ

Fig. 2. Graph H ∪ {¬xi} with the necessary synchronizing labeling for a H-
synchronizing word of length 3

Proof. PutH = Gi∪E∪{xi,¬xi}. Suppose that there exists anH-synchronizing
word W of length ≤ 3. But then W synchronizes also H \{¬xi}, so from Lemma
5 we know that W = αβγ, where α, β, γ are pairwise different and that the
synchronization takes place in t. Figure 2 presents the necessary labeling for
any automaton with an (H \ {¬xi})-synchronizing word of length 3. The only

3−(¬xi, t) path is ¬xi → xi → ¬xi → t, but we have ¬xi
β→ xi – a contradiction

with the form of W = αβγ. �

Theorem 7. SRCP3
4 is NP-complete.

Proof. Let ϕ be a 3-SAT formula in a normal form. We construct G = G(ϕ) =
(V , E) as in Fig. 1 and let AG = (V , A, δ) be an automaton with the under-
lying graph G. We will show that ϕ is satisfiable if and only if there exists a
synchronizing word of length 4 for some AG.

If ϕ is not satisfiable, then by Lemma 4 for each AG and for any W ∈ A there
exists i ∈ {1, 2, ..., z} such that H = D∪E∪{xi,¬xi} ⊂ V .W . By Lemma 6 there
is no H-synchronizing word of length ≤ 3, so obviously there is no synchronizing
word for AG of length 4. If ϕ is satisfiable, consider the following labeling:

δ|Gϕ is given by (1) for α = a

δ|E is given as in Fig. 2 for α = a, β = b, γ = c

δ(k, a) = δ(t, a) = δ(u, a) = δ(v, a) = δ(w, a) = δ(x, a) = δ(y, a) = δ(q, a) = r1

∀i ∈ {1, ..., z} δ(ri, a) = si, δ(si, c) = ri, δ(xi, c) = δ(¬xi, c) = t

∀i ∈ {1, ..., n} δ(ci, a) = r1, ∀i ∈ {1, ..., z} δ(ri, a) = δ(si, a) = r1

∀i ∈ {1, ..., z} δ(xi, a) =

{
¬xi if xi.a−1 �= ∅
k otherwise

, δ(xi, b) =

{
k if xi.a

−1 �= ∅
¬xi otherwise

∀i ∈ {1, ..., z} δ(¬xi, a) =
{
xi if ¬xi.a−1 �= ∅
k otherwise

, δ(¬xi, b) =
{
k if ¬xi.a−1 �= ∅
xi otherwise
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Other edges can be labeled arbitrarily. It is easy to see that V .a = D ∪ E ∪⋃z
i=1 Fi, where Fi = {xm−4

i } or Fi = {ym−4
i } or Fi = ∅ and for at least one i we

have Fi �= ∅. From Lemma 5 we have that |V .aabc| = 1, so there is a labeling for
which there exists a synchronizing word of length 4. �
So far we have shown that SRCP 3

C is NP-complete for C = 4. To obtain the
similar result for any C > 4 we have to slightly modify the construction from
Fig. 1. We have to add C − 4 states between each pair of states l′ and l for
l ∈ {s1, . . . sz, t, u, v, w, x, y, q}. These ’chains’ of states enforce us to use a word
W ∈ AAC−4 of length C−3 before we reach the set V .W = D∪E∪

⋃z
i=1 Fi which

can be still synchronized by the word of length 3 if and only if the corresponding
formula ϕ is satisfiable. This reasoning leads us to the following result:

Theorem 8. SRCP3
C is NP-complete for any C ≥ 4.

Now it remains to show theNP-completeness for arbitrary � ≥ 3. Let |A| = � > 3.
Take the construction from Fig. 1 and add �−3 edges to each state in the following
way: for each ci, i = 1, . . . , z, add �−3 edges (ci, l), where l is an arbitrarily chosen
literal from clause ci; for each l ∈ {r1, s1, . . . , rz , lz, t, u, v, w, x, y, q} add � − 3
edges (l′, l); for each vertex l of G add �− 3 edges (l, next(l)), where next(l) is a
vertex of G such that (l, next(l)) is already an edge in G; add �− 3 edges (y, q)
and (q, x); for each of remaining states add �− 3 edges going to k. It is easy to
see that the whole reasoning from the proof of Theorem 7 remains unchanged.
This allows us to formulate the main theorem of this section:

Theorem 9. SRCP�C is NP-complete for C ≥ 4 and � ≥ 3.

4 Complexity of SRCP�
C for C = 1, 2 and � ≥ 1

In this section we deal with the complexity of SRCP�C for C = 1, 2 and arbitrary
�. Let G = (V , E) be a directed graph. For v ∈ V define the pre-image of vertex
v as v−1 = {w ∈ V : (w, v) ∈ E} and extend this notion to pre-images for
sets: for V ⊂ V let V −1 =

⋃
v∈V v−1. For i > 1 define v−i = (v−1)−(i−1) and

V −i = (V −1)−(i−1).
First let us consider some easy boundary cases.

Proposition 10. SCRP�C is in P for C = 1 or � = 1.

Proof. Notice that we consider only strongly connected digraphs. If � = 1, then
G is a cyclic graph and the synchronizing word of any length for some labeling
of G exists only for graphs with |V| = 1. If C = 1, then the synchronizing word
of length 1 exists for some labeling of G = (V , E) if and only if there exists v ∈ V
such that v−1 = V . Both conditions can be checked in polynomial time. �.

The necessary condition from Lemma 1 (for the existence of synchronizing word
of length C for some labeling of a given graph G) can be expressed equivalently
using the notion of pre-images:

∃v ∈ V : v−C = V . (2)
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Before we go to case � > 1, notice that to show that a problem is in P it suffices
to give an algorithm solving any instance of the problem in polynomial time.
We will use the following, general algorithm scheme for checking if there exists
a synchronizing word of some length for some labeling of graph G:

Find-Synchr-Labeling

in: G = (V , E), integer C
out: YES, if there exists a synchronizing word of length C for some labeling of

G; NO, otherwise
1. foreach v ∈ V such that v ∈ v−1 do
1.1. // assume that the synchronization will take place in v
1.2. if condition (2) is fulfilled for v and C then return YES // Prop. 11

2. foreach v ∈ V such that v �∈ v−1 and condition (2) is fulfilled for v and C
do
2.1. // assume that the synchronization will take place in v
2.2. if Check-State(G, v, C) = YES then return YES

3. return NO

It is obvious that condition (2) can be checked in time polynomial in size of G
and C. Procedure Check-State(G, v, C) checks if G can be synchronized to v
with a word of length C for some labeling of G. This procedure will be different
for different C’s. Notice that it may be called only for vertices with no loops.
For proving the correctness of Find-Synchr-Labeling when it returns YES
in line 1.2. it is enough to show that condition (2) is a necessary and sufficient
condition in case v ∈ v−1:

Proposition 11. Let G = (V , E) be a graph and let v ∈ V such that v ∈ v−1.
There exists a labeling L of G such that V can be synchronized to v by a word of
length C if and only if condition (2) holds for v.

Proof. ”⇒” implication is trivial. We prove the ”⇐” one. Let (2) holds. Consider
the following labeling:

v.a = v,

∀w ∈ v−i \
i−1⋃
j=0

v−j , i = 1, ..., C, w.a = x s.t. (w, x) ∈ E ∧ x ∈ v−(i−1) \
i−2⋃
j=0

v−j ,

where v0 := {v}. All other edges are labeled arbitrarily. It is clear that for this
labeling we have V .aC = v. �
The labeling procedure in Proposition 11 is just a BFS algorithm that starts
in v, enqueue it and while the queue Q is not empty it takes vertex w from Q,
goes to all non-visited vertices w′ ∈ w−1, labels (w′, w) with a and enqueues w′.
Because of (2), we know that in the BFS procedure we will reach each vertex of
G in at most C steps starting from v.

Now we return to the case � > 1.

Theorem 12. SCRP�C is in P for C = 2 and any � > 1.
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Proof. We use Find-Synchr-Labeling with the following Check-State(G, v)
procedure for C = 2:

Check-State

in: G = (V , E), v ∈ V such that v �∈ v−1

out: YES, if there exists W ∈ A2, such that V .W = v for some labeling of G; NO,
otherwise

1. if condition (2) is fulfilled then return YES
2. else return NO

Correctness of Check-State. Let E1 = {(u, v) : u ∈ v−1}, E2 = {(u,w) : u ∈
v−2 = V , w ∈ v−1}. We have E1 ∩ E2 = ∅, because v �∈ v−1. Define labeling δ
as follows: for each w ∈ V put w.a = u for some u ∈ v−1 and for each u ∈ v−1

put u.b = v. All other edges can be labeled arbitrarily. It is clear that W = ab
synchronizes G with labeling δ. �

5 Conclusions and Future Work

Table 1 summarizes our results on the complexities of SRCP�C for different word
lengths C and alphabet sizes �. Question marks denote problem versions for
which we do not know the complexity.

Table 1. Synchronizing-Road-Coloring
�
C complexities for different C and �

C = 1 C = 2 C = 3 C ≥ 4

� = 1 P (Prop. 10) P (Prop. 10) P (Prop. 10) P (Prop. 10)

� = 2 P (Prop. 10) P (Th. 12) ? ?

� = 3 P (Prop. 10) P (Th. 12) ? NPC (Th. 8)

� ≥ 4 P (Prop. 10) P (Th. 12) ? NPC (Th. 9)
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Abstract. The notion of a k-automatic set of integers is well-studied.
We develop a new notion — the k-automatic set of rational numbers —
and prove basic properties of these sets, including closure properties and
decidability.

1 Introduction

Let k be an integer ≥ 2, and let N = {0, 1, 2, . . .} denote the set of non-
negative integers. Let Σk = {0, 1, . . . , k − 1} be an alphabet. Given a word
w = a1a2 · · · at ∈ Σ∗

k, we let [w]k denote the integer that it represents in base k;
namely,

[w]k =
∑

1≤i≤t
aik

t−i, (1)

where (as usual) an empty sum is equal to 0. For example, [101011]2 = 43.
Note that in this framework, every element of N has infinitely many distinct

representations as words, each having a certain number of leading zeroes. Among
all such representations, the one with no leading zeroes is called the canonical
representation; it is an element of Ck := {ε} ∪ (Σk − {0})Σ∗

k. For an integer
n ≥ 0, we let (n)k denote its canonical representation.

Given a language L ⊆ Σ∗
k , we can define the set of integers it represents, as

follows:

[L]k = {[w]k : w ∈ L}. (2)

Definition 1. We say that a set S ⊆ N is k-automatic if there exists a regular
language L ⊆ Σ∗

k such that S = [L]k.

The class of k-automatic sets of natural numbers has been widely studied (e.g.,
[3,4,1]), and many properties of these sets are known. For example, it is possible
to state an equivalent definition involving only canonical representations:

Definition 2. A set S ⊆ N is k-automatic if the language (S)k := {(n)k : n ∈
S} is regular.

To see the equivalence of Definitions 1 and 2, note that if L is a regular language,
then so is the language L′ obtained by removing all leading zeroes from each
word in L.

A.-H. Dediu and C. Mart́ın-Vide (Eds.): LATA 2012, LNCS 7183, pp. 490–501, 2012.
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A slightly more general concept is that of k-automatic sequence. Let Δ be a
finite alphabet. Then a sequence (or infinite word) (an)n≥0 over Δ is said to be
k-automatic if, for every c ∈ Δ, the set of fibers Fc = {n ∈ N : an = c} is
a k-automatic set of natural numbers. Again, this class of sequences has been
widely studied [3,4,1]. The following result is well-known [4]:

Theorem 3. The sequence (an)n≥0 is k-automatic iff its k-kernel, the set of its
subsequences K = {(aken+f )n≥0 : e ≥ 0, 0 ≤ f < ke}, is finite.

In a previous paper [11], the second author extended the notion of k-automatic
sets over N to sets over Q≥0, the set of non-negative rational numbers. In this pa-
per, we will obtain some basic results about this new class. Our principal results
are Theorem 13 (characterizing the sets of integers), Corollary 18 (showing that
k-automatic sets of rationals are not closed under intersection), and Theorem 23
(showing that it is decidable if a k-automatic set is infinite).

Our class has some similarity to another class studied by Even [5] and Hart-
manis and Stearns [6]; their class corresponds to the topological closure of our
k-automatic sets, where the denominators are restricted to powers of k.

2 Representing Rational Numbers

A natural representation for the non-negative rational number p/q is the pair
(p, q) with q �= 0. Of course, this representation has the drawback that every
element of Q≥0 has infinitely many representations, each of the form (jp/d, jq/d)
for some j ≥ 1, where d = gcd(p, q).

We might try to ensure uniqueness of representations by considering only “re-
duced” representations (those in “lowest terms”), which amounts to requiring
that gcd(p, q) = 1. However, this condition cannot be checked by automata —
see Remark 19 below — and deciding if an arbitrary regular language consists
entirely of reduced representations is not evidently computable. Furthermore,
insisting on reduced representations rules out the representation of some reason-
able sets of rationals, such as {(km − 1)/(kn− 1) : m,n ≥ 1} (see Theorem 17).
For these reasons, we allow the rational number p/q to be represented
by any pair of integers (p′, q′) with p/q = p′/q′.

Next, we need to see how to represent a pair of integers as a word over a finite
alphabet. Here, we follow the ideas of Salon [8,9,10]. Consider the alphabet
Σ2
k. A finite word w over Σ2

k can be considered as a sequence of pairs w =
[a1, b1][a2, b2] · · · [an, bn] where ai, bi ∈ Σk for 1 ≤ i ≤ n. We can now define the
projection maps π1, π2, as follows:

π1(w) = a1a2 · · · an; π2(w) = b1b2 · · · bn.

Note that the domain and range of each projection are (Σ2
k)

∗ and Σ∗
k , re-

spectively. Then we define [w]k = ([π1(w)]k, [π2(w)]k). Thus, for example, if
w = [1, 0][0, 1][1, 0][0, 0][1, 1][1, 0], then [w]2 = (43, 18).

In this framework, every pair of integers (p, q) again has infinitely many dis-
tinct representations, arising from padding on the left by leading pairs of zeroes,
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that is, by [0, 0]. Among all such representations, the canonical representation is
the one having no leading pairs of zeroes. We write it as (p, q)k.

We now state the fundamental definitions of this paper:

Definition 4. Given a word w ∈ (Σ2
k)

∗ with [π2(w)]k �= 0, we define

quok(w) :=
[π1(w)]k
[π2(w)]k

.

If [π2(w)]k = 0, then quok(w) is not defined. Further, if [π2(w)]k �= 0 for all w ∈
L, then quok(L) := {quok(w) : w ∈ L}. A set of rational numbers S ⊆ Q≥0 is
k-automatic if there exists a regular language L ⊆ (Σ2

k)
∗ such that quok(L) = S.

Note that in our definition, a given rational number α can have multiple repre-
sentations in two different ways: it can have non-canonical representations that
begin with leading zeroes, and it can have “unreduced” representations (p, q)
where gcd(p, q) > 1.

Given a set S ⊆ Q, if S contains a non-integer, then by calling it k-automatic,
it is clear that we intend this to mean automatic in the sense of this section. But
what if S ⊆ N? Then calling it “automatic” might mean automatic in the usual
sense, as in Section 1, or in the extended sense introduced in this section, treating
S as a subset of Q. In Theorem 13 we will see that these two interpretations
actually coincide for subsets of N, but in order to prove this, we need some
notation to distinguish between the two types of representations. So, by (N, k)-
automatic we mean the interpretation in Section 1 and by (Q, k)-automatic we
mean the interpretation in this section.

So far we have only considered representations where the leftmost digit is
the most significant digit. However, sometimes it is simpler to deal with re-
versed representations where the leftmost digit is the least significant digit. In
other words, sometimes it is easier to deal with the reversed word wR and re-
versed language LR instead of w and L, respectively. Since the regular languages
are (effectively) closed under reversal, for most of our results it does not mat-
ter which representation we choose, and we omit extended discussion of this
point.

We use the following notation for intervals: I[α, β] denotes the closed interval
{x : α ≤ x ≤ β}, and similarly for open- and half-open intervals.

3 Examples

To build intuition, we give some examples of k-automatic sets of rationals.

Example 5. Let k = 2, and consider the regular language L1 defined by the
regular expression A∗{[0, 1], [1, 1]}A∗, where A = {[0, 0], [0, 1], [1, 0], [1, 1]}. This
regular expression specifies all pairs of integers where the second component
has at least one nonzero digit — the point being to avoid division by 0. Then
quok(L) = Q≥0, the set of all non-negative rational numbers.
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Example 6. Consider the regular language

L2 = {w ∈ (Σ2
k)

∗ : π1(w) ∈ Ck ∪ {0} and [π2(w)]k = 1}.

Then quok(L2) = N.

Example 7. Let k = 3, and consider the regular language L3 defined by the reg-
ular expression [0, 1]{[0, 0], [2, 0]}∗. Then quok(L2) is the 3-adic Cantor set, the
set of all rational numbers in the “middle-thirds” Cantor set with denominators
a power of 3 [2].

Example 8. Let k = 4, and consider the set S = {0, 1, 3, 4, 5, 11, 12, 13, . . .} of all
non-negative integers that can be represented using only the digits 0, 1,−1 in
base 4. Consider the set L5 = {(p, q)4 : p, q ∈ S}. It is not hard to see that L5

is (Q, 4)-automatic. The main result in [7] can be phrased as follows: quo4(L5)
contains every odd integer. In fact, an integer t is in quo4(L5) if and only if the
exponent of the largest power of 2 dividing t is even.

Example 9. Note that quok(L1 ∪ L2) = quok(L1) ∪ quok(L2) but the analogous
identity involving intersection need not hold. As an example, consider L1 =
{[2, 1]} and L2 = {[4, 2]}. Then quo10(L1 ∩ L2) = ∅ �= {2} = quo10(L1) ∩
quo10(L2).

4 Basic Results

In this section we obtain some basic results about automatic sets of rationals.
First we state a result from [11]:

Theorem 10. Let β be a non-negative real number and define

L≤β = {w ∈ (Σ2
k)

∗ : quok(w) ≤ β},

and analogously for the other relations <,=,≥, >, �=. Then L≤β (resp., L<β,
L=β, L≥β, L>β) is regular iff β is a rational number.

Lemma 11. Let M be a DFA with input alphabet Σ2
k and let F ⊆ Q≥0 be a

finite set of integers. Then the following problems are recursively solvable:

1. Is F ⊆ quok(L(M))?
2. Is quok(L(M)) ⊆ F?

Proof. To decide if F ⊆ quok(L(M)), we simply check, using Theorem 10,
whether x ∈ quok(L(M)) for each x ∈ F .

To decide if quok(L(M)) ⊆ F , we create DFA’s accepting L=x for each x ∈ F ,
using Theorem 10. Now we create a DFA accepting all representations of all
elements of F using the usual “direct product” construction for the union of
regular languages. Since F is finite, the resulting DFA A is finite. Now, using
the usual direct product construction, we create a DFA accepting L(A)−L(M)
and check to see if its language is nonempty. ��
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Suppose S is a set of real numbers, and α is a real number. We introduce the
following notation:

S + α := {x+ α : x ∈ S} S
.− α := {max(x− α, 0) : x ∈ S}

α .− S := {max(α − x, 0) : x ∈ S} αS := {αx : x ∈ S}.

Theorem 12. The class of k-automatic sets of rational numbers is closed under
the following operations: (i) union; (ii) S → S+α for α ∈ Q≥0; (iii) S → S

.− α
for α ∈ Q≥0; (iv) S → α .− S for α ∈ Q≥0; (v) S → αS for α ∈ Q≥0; (vi)
S → {1/x : x ∈ S \ {0}}.

Proof. We prove only item (2), with the others being similar. We will use the
reversed representation, with the least significant digit appearing first. Write
α = p/q. Let M be a DFA with quok(L(M)) = S. To accept S + α, on input
a base-k representation of x = p′/q′, we transduce the numerator to p′q − pq′

and the denominator to qq′ (hence effectively computing a representation for
x − α), and simultaneously simulate M on this input, digit-by-digit, accepting
if M accepts. ��

We now state one of our main results.

Theorem 13. Let S ⊆ N. Then S is (N, k)-automatic if and only if it is (Q, k)-
automatic.

The proof requires a number of preliminary results. First, we introduce some
terminology and notation. We say a set S ⊆ N is ultimately periodic if there
exist integers n0 ≥ 0, p ≥ 1 such that n ∈ S ⇐⇒ n+p ∈ S, provided n ≥ n0. In
particular, every finite set is ultimately periodic. We let P = {2, 3, 5, . . .} denote
the set of prime numbers. Given a positive integer n, we let pd(n) denote the
set of its prime divisors. For example, pd(60) = {2, 3, 5}. Given a subset D ⊂ P ,
we let π(D) = {n ≥ 1 : pd(n) ⊆ D}, the set of all integers that can be factored
completely using only the primes in D. Finally, let k ≥ 2, n ≥ 1 be integers,
and define νk(n) := max{i : ki | n}, the exponent of the largest power of k
dividing n.

The first result we need is the following theorem, which is of independent
interest.

Theorem 14. Let D ⊆ P be a finite set of prime numbers, and let S ⊆ π(D).
Then S is k-automatic iff

1. F := { s
kνk(s) : s ∈ S} is finite

and
2. For all f ∈ F the set Uf = {i : kif ∈ S} is ultimately periodic.

First, we need a lemma.

Lemma 15. Let D be a finite set of prime numbers, and let S ⊆ π(D). Let
s1, s2, . . . be an infinite sequence of (not necessarily distinct) elements of S.
Then there is an infinite increasing sequence of indices i1 < i2 < · · · such that
si1 | si2 | · · · .
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Proof. Case 1: The sequence (si) is bounded. In this case infinitely many of the
si are the same, so we can take the indices to correspond to these si.

Case 2: The sequence (si) is unbounded. In this case we prove the result by
induction on |D|. If |D| = 1, then we can choose a strictly increasing subsequence
of the (si); since all are powers of some prime p, this subsequence has the desired
property.

Now suppose the result is true for all sets D of cardinality t − 1. We prove
it for |D| = t. Since only t distinct primes figure in the factorization of the
si, some prime, say p, must appear with unbounded exponent in the (si). So
there is some subsequence of (si), say (ti), with strictly increasing exponents of
p. Now consider the infinite sequence (ui) given by ui = ti/p

νp(ti). Each ui has
a prime factorization in terms of the primes in D − {p}, so by induction there
is an infinite increasing sequence of indices i1, i2, . . . such that ui1 | ui2 | · · · .
Then pνp(ti1)ui1 | pνp(ti2 )ui2 | · · · , which corresponds to an infinite increasing
sequence of indices of the original sequence (si). ��

Now we can prove Theorem 14.

Proof. ⇐=: S can be written as the disjoint finite union
⋃
f∈F f · {ki : i ∈ Uf},

where Uf is an ultimately periodic set of integers. Each term in the union has
base-k representation (f)k{0i : i ∈ Uf} and hence is regular. It follows that S
is k-automatic.

=⇒: Suppose F is infinite. Notice that, from the definition, no element of F is
divisible by k. Therefore we can write S as the disjoint union

⋃
i≥0 k

iHi, where

Hi := {f ∈ F : kif ∈ S}. Then there are two possibilities: either (a) the sets
Hi are finite for all i ≥ 0, or (b) at least one Hi is infinite.

In case (a), define ui := maxHi for all i ≥ 0. Then the set {u0, u1, . . .} must
be infinite, for otherwise F would be finite. Choose an infinite subsequence of
the ui consisting of distinct elements, and apply Lemma 15. Then there is an
infinite increasing subsequence of indices i1 < i2 < · · · such that ui1 | ui2 | · · · .
So the sequence (uij )j≥1 is strictly increasing.

Now consider the characteristic sequence of S, say (f(n))n≥0, taking values
1 if n ∈ S and 0 otherwise. Consider the subsequences (fj) in the k-kernel of f
defined by fj(n) = f(kijn) for n ≥ 0, j ≥ 1. By our construction, the largest
n in π(D) such that k |/n and fj(n) = 1 is n = uij . Since the uij are strictly
increasing, this shows the (infinitely many) sequences (fj) are pairwise distinct.
Hence, by Theorem 3, f is not k-automatic and neither is S.

In case (b), we have Hi is infinite for some i. As mentioned above, S can be
written as the disjoint union

⋃
i≥0 k

iHi. Let L be the language of canonical base-
k expansions of elements of Hi (so that, in particular, no element of L starts
with 0). The base-k representation of elements of kiHi end in exactly i 0’s, and
no other member of S has this property. Since S is assumed to be k-automatic,
it follows that L is regular. Note that no two elements of Hi have a quotient
which is divisible by k, because if they did, the numerator would be divisible by
k, which is ruled out by the condition.



496 E. Rowland and J. Shallit

Since L is infinite and regular, by the pumping lemma, there must be words
u, v, w, with v nonempty, such that uvjw ∈ L for all j ≥ 0. Note that for all
integers j ≥ 0 and c ≥ 0 we have

[uvj+cw]k = [uvjw]k · kc|v| + ([vcw]k − [w]k · kc|v|). (3)

Let D = {p1, p2, . . . , pt}. Since [uvjw]k ∈ S ⊆ π(D), it follows that there exists
a double sequence (fr,j)1≤r≤t;j≥1 of non-negative integers such that

[uvjw]k = p
f1,j
1 · · · pft,jt (4)

for all j ≥ 0. From (4), we see that k|uw|+j|v| < p
f1,j
1 · · · pft,jt , and hence (assuming

p1 < p2 < · · · < pt) we get

(|uw|+ j|v|) log k < (
∑

1≤r≤t
fr,j) log pt.

Therefore, there are constants 0 < c1 and J such that c1j <
∑

1≤r≤t fr,j
for j ≥ J .

For each j ≥ J now consider the indices r such that fr,j > c1j/t; there must
be at least one such index, for otherwise fr,j ≤ c1j/t for each r and hence∑

1≤r≤t fr,j ≤ c1j, a contradiction. Now consider t+ 1 consecutive j’s; for each
j there is an index r with fr,j > c1j/t, and since there are only t possible
indices, there must be an r and two integers l′ and l, with 0 ≤ l < l′ ≤ t, with
fr,j+l > c1(j + l)/t and fr,j+l′ > c1(j + l′)/t. This is true in any block of t + 1
consecutive j’s that are ≥ J . Now there are infinitely many disjoint blocks of
t+1 consecutive j’s, and so there must be a single r and a single difference l′− l
that occurs infinitely often. Put δ = l′ − l.

Now use (3) and take c = δ. We get infinitely many j such that

p
f1,j+δ

1 · · · pft,j+δ

t = kδ|v|p
f1,j
1 · · · pft,jt + E,

where E = [vδw]k − [w]k · kδ|v| is a constant that is independent of j. Now focus
attention on the exponent of pr on both sides. On the left it is fr,j+δ, which we
know to be at least c1(j+ δ)/t. On the right the exponent of pr dividing the first
term is fr,j + δ|v|er (where k = pe11 · · · pett ); this is at least c1j/t. So phr divides
E, where h ≥ c1j/t. But this quantity goes to ∞, and E is a constant. So E = 0.
But then

[uvj+δw]k
[uvjw]k

= kδ|v|.

which is impossible, since, as we observed above, two elements of Hi cannot have
a quotient which is a power of k. This contradiction shows that Hi cannot be
infinite.

So now we know that F is finite. Fix some f ∈ F and consider Tf = {ki :
kif ∈ S}. Since S is k-automatic, and the set of base-k expansions (Tf )k essen-
tially is formed by stripping off the bits corresponding to (f)k from the front
of each element of S of which (f)k is a prefix, and replacing it with “1”, this is just
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a left quotient followed by concatenation, and hence (Tf )k is regular. Let M
′ be a

DFA for (Tf)k, and consider an input of 1 followed by l 0’s for l = 0, 1, . . . in M ′.
Evidently we eventually get into a cycle, so this says that Uf = {i : kif ∈ S} is
ultimately periodic.

This completes the proof of Theorem 14. ��
Corollary 16. Suppose S is a k-automatic set of integers accepted by a finite
automaton M . There is an algorithm to decide, given M , whether there exists a
finite set D ⊆ P such that S ⊆ π(D). Furthermore, if such a D exists, we can
also determine the sets F and Uf in Theorem 14.

Proof. To determine if such a D exists, it suffices to remove all trailing zeroes
from words in (S)k and see if the resulting language is finite. If it is, we know
F , and then it is a simple matter to compute the Uf . ��
We can now prove Theorem 13.

Proof. One direction is easy, since if S is (N, k)-automatic, then there is an
automaton accepting (S)k. We can now easily modify this automaton to accept
all words over (Σ2

k)
∗ whose π2 projection represents the integer 1 and whose π1

projection is an element of (S)k. Hence S is (Q, k)-automatic.
Now assume S ⊆ N is (Q, k)-automatic. If S is finite, then the result is clear,

so assume S is infinite. Let L be a regular language with quok(L) = S. Without
loss of generality we may assume every representation in L is canonical; there are
no leading [0, 0]’s. Furthermore, by first intersecting with L �=0 we may assume
that L contains no representations of the integer 0. Finally, we can also assume,
without loss of generality, that no representation contains trailing occurrences of
[0, 0], for removing all trailing zeroes from all words in L preserves regularity, and
it does not change the set of numbers represented, as it has the effect of dividing
the numerator and denominator by the same power of k. Since the words in
L represent integers only, the denominator of every representation must divide
the numerator, and hence if the denominator is divisible by k, the numerator
must also be so divisible. Hence removing trailing zeroes also ensures that no
denominator is divisible by k. Let M be a DFA of n states accepting L.

We first show that the set of possible denominators represented by L is actually
finite. Write S = S1 ∪ S2, where S1 = S ∩ I[0, kn+1) and S2 = S ∩ I[kn+1,∞).
Let L1 = L ∩ L<kn+1 , the representations of all numbers < kn+1 in L, and
L2 = L ∩ L≥kn+1 . Both L1 and L2 are regular, by Theorem 10. It now suffices
to show that S2 is (N, k)-automatic.

Consider any t ∈ S2. Let z ∈ L2 be a representation of t. Since t ≥ kn+1,
clearly |z| ≥ n, and so π2(z) must begin with at least n 0’s. Then, by the pumping
lemma, we can write z = uvw with |uv| ≤ n and |v| ≥ 1 such that uviw ∈ L for
all i ≥ 0. However, by the previous remark about π2(z), we see that π2(v) = 0j

for 1 ≤ j ≤ n. Hence [π2(z)]k = [π2(uvw)]k = [π2(uw)]k. Since uw must also
represent a member of S, it must be an integer, and hence [π2(z)]k | [π1(uw)]k
as well as [π2(z)]k | [π1(uvw)]k. Hence

[π2(z)]k | [π1(uvw)]k − [π1(uw)]k = ([π1(uv)]k − [π1(u)]k) · k|w|.



498 E. Rowland and J. Shallit

The previous reasoning applies to any z ∈ L2. Furthermore, 0 < [π1(uv)]k −
[π1(u)]k < kn. It follows that every possible denominator d of elements in L2

can be expressed as d = d1 · d2, where 1 ≤ d1 < kn and d2 | km for some m. It
follows that the set of primes dividing all denominators d is finite, and we can
therefore apply Theorem 14. Since k divides no denominator, the set of possible
denominators is finite.

We can therefore decompose L2 into a finite disjoint union corresponding to
each possible denominator d. Next, we use a finite-state transducer to divide the
numerator and denominator of the corresponding representations by d. For each
d, this gives a new regular language Ad where the denominator is 1. Writing
T :=

⋃
dAd, we have S2 = quok(T ) =

⋃
d quok(Ad). Now we project, throwing

away the second coordinate of elements of T ; the result is regular and hence S
is a k-automatic set of integers. ��

As corollaries, we get that the k-automatic sets of rationals are (in contrast with
sets of integers) not necessarily closed under the operations of intersection and
complement.

Theorem 17. Let S1 = {(kn − 1)/(km − 1) : 1 ≤ m < n} and S2 = N. Then
S1 ∩ S2 is not a k-automatic set.

Proof. We can write every element of S1 as p/q, where p = (kn − 1)/(k − 1)
and q = (km − 1)/(k − 1). The base-k representation of p is 1n and the base-k
representation of q is 1m. Thus a representation for S1 is given by the regular
expression [1, 0]+[1, 1]+. We know that N is k-automatic from Example 6.

From a classical result we know that (km − 1) | (kn − 1) if and only if m | n.
It follows that S1 ∩ S2 = T , where T = {(kn − 1)/(km − 1) : 1 < m <
n and m | n}. If the k-automatic sets of rationals were closed under intersection,
then T would be (N, k)-automatic. Writing n = md, we have (kn−1)/(km−1) =
k(d−1)m + · · · + km + 1, whose base-k representation is (10m−1)d−11. Hence
(T )k = {(10m−1)d−11 : m ≥ 1, d > 1}. Assume this is regular. Intersecting
with the regular language 10∗10∗10∗1 we get {10n10n10n1 : n ≥ 1}. But a
routine argument using the pumping lemma shows this is not even context-free,
a contradiction. ��

Corollary 18. The class of (Q, k)-automatic sets is not closed under the oper-
ations of intersection or complement.

Proof. We have just shown that this class is not closed under intersection. But
since it is closed under union, if it were closed under complement, too, it would
be closed under intersection, a contradiction. ��

Remark 19. The technique above also allows us to prove that the languages
Ld = {(p, q)k : q | p}, Lr = {(p, q)k : gcd(p, q) > 1}, and Lg = {(p, q)k :
gcd(p, q) = 1} are not context-free.

We can also prove a decidability result.
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Theorem 20. Given a regular language L ⊆ (Σ2
k)

∗, it is decidable whether

(a) quok(L) ⊆ N; (b) quok(L) \ N is finite.

Proof. For (a), given M accepting L, we first create (using Theorem 10) a DFA
M1 accepting the set T1 := (quok(L) ∩ I[0, kn+1)) \ {0, 1, . . . , kn+1 − 1}. If
T1 �= ∅, then answer “no” and stop. Next, create a DFA M2 accepting the set
T2 := (quok(L) ∩ I[kn+1,∞)). Now project onto the second coordinate, and,
using Corollary 16, decide if the integers so represented are factorable into a
finite set of primes. If not, answer “no” and stop. Finally, using Corollary 16
again, create the decomposition in that corollary (resulting in only finitely many
denominators) and check for each denominator whether it divides all of its cor-
responding numerators, using a transducer.

For (b) we need to check instead whether T1 is a finite set, and whether there
are finitely many exceptions to the second and third steps. ��

5 Solvability Results

In this section we show that a number of problems involving k-automatic sets
of rational numbers are recursively solvable. We start with a useful lemma.

Lemma 21. Let u, v, w ∈ (Σ2
k)

∗ such that |v| ≥ 1, and such that [π1(uvw)]k
and [π2(uvw)]k are not both 0. Define

U :=

⎧⎪⎨⎪⎩
quok(w), if [π1(uv)]k = [π2(uv)]k = 0;

∞, if [π1(uv)]k > 0 and [π2(uv)]k = 0;
[π1(uv)]k−[π1(u)]k
[π2(uv)]k−[π2(u)]k

, otherwise.

(5)

(a) Then exactly one of the following cases occurs:

(i) quok(uw) < quok(uvw) < quok(uv
2w) < · · · < U ;

(ii) quok(uw) = quok(uvw) = quok(uv
2w) = · · · = U ;

(iii) quok(uw) > quok(uvw) > quok(uv
2w) > · · · > U .

(b) Furthermore, limi→∞ quok(uv
iw) = U .

Proof. Part (a) is proved in [11]. We now prove the assertion about the limit.
Let j ∈ {1, 2}, let i be an integer ≥ 1, and consider the base-k representation

of the rational number

[πj(uv
iw)]k

ki|v|+|w| ; it looks like πj(u).

i︷ ︸︸ ︷
πj(v)πj(v) · · · πj(v) .

On the other hand, the base-k representation of

[πj(u)]k +
[πj(v)]k
k|v| − 1

looks like πj(u).πj(v)πj(v) · · · .
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Subtracting, we get∣∣∣∣ [πj(uviw)]kki|v|+|w| −
(
[πj(u)]k +

[πj(v)]k
k|v| − 1

)∣∣∣∣ < k−i|v|.

It follows that

lim
i→∞

[πj(uv
iw)]k

ki|v|+|w| = [πj(u)]k +
[πj(v)]k
k|v| − 1

.

Furthermore, this limit is 0 if and only if [πj(uv)]k = 0. Hence, provided
[π2(uv)]k �= 0, we get

lim
i→∞

quok(uv
iw) = lim

i→∞

[π1(uv
iw)]k

[π2(uviw)]k
= lim
i→∞

[π1(uv
iw)]k

ki|v|+|w|
[π2(uviw)]k
ki|v|+|w|

=
limi→∞

[π1(uv
iw)]k

ki|v|+|w|

limi→∞
[π2(uviw)]k
ki|v|+|w|

=
[π1(u)]k +

[π1(v)]k
k|v|−1

[π2(u)]k +
[π2(v)]k
k|v|−1

=
[π1(uv)]k − [π1(u)]k
[π2(uv)]k − [π2(u)]k

= U.

��

We now give some solvability results.

Theorem 22. The following problems are recursively solvable: given a DFA M ,
a rational number α, and a relation � chosen from =, �=, <,≤, >,≥, does there
exist x ∈ quok(L(M)) with x � α?

Proof. The following gives a procedure for deciding if x � α. First, we cre-
ate a DFA M ′ accepting the language L�α as described in Theorem 10 above.
Next, using the usual direct product construction, we create a DFA M ′′ accept-
ing L(M) ∩ L�α. Then, using breadth-first or depth-first search, we check
to see whether there exists a path from the initial state of M ′′ to some final
state of M ′′. ��

Theorem 23. The following problem is recursively solvable: given a DFA M ,
and an integer k, is quok(L(M)) of infinite cardinality?

Note that this is not the same as asking whether L(M) itself is of infinite cardi-
nality, since a number may have infinitely many representations.

Proof. Without loss of generality, we may assume that the representations in M
are canonical (contain no leading [0, 0]’s). Define

γk(u, v) =
[π1(uv)]k − [π1(u)]k
[π2(uv)]k − [π2(u)]k

,

and let pref(L) denote the language of all prefixes of all words of L. Let n be
the number of states in M . We claim that quok(L(M)) is of finite cardinality if
and only if quok(L(M)) ⊆ T , where

T = {quok(x) : x ∈ L(M) and |x| < n} ∪
{γk(u, v) : uv ∈ pref(L) and |v| ≥ 1 and |uv| ≤ n}. (6)
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One direction is easy, since if quok(L(M)) ⊆ T , then clearly quok(L(M)) is
of finite cardinality, since T is.

Now suppose quok(L(M)) � T , so there exists some x ∈ L(M) with quok(x) �∈
T . Since T contains all words of L(M) of length < n, such an x is of length
≥ n. So the pumping lemma applies, and there exists a decomposition x =
uvw with |uv| ≤ n and |v| ≥ 1 such that uviw ∈ L for all i ≥ 0. Now apply
Lemma 21. If case (b) of that lemma applies, then quok(x) = γk(u, v) ∈ T , a
contradiction. Hence either case (a) or case (c) must apply, and the lemma shows
that quok(uv

iw) for i ≥ 0 gives infinitely many distinct elements of quok(L(M)).
To solve the decision problem, we can now simply enumerate the elements of

T and use Lemma 11. ��

Theorem 24. Given p/q ∈ Q≥0, and a DFA M accepting a k-automatic set of
rationals S, it is decidable if p/q is an accumulation point of S.

Proof. The number α is an accumulation point of a set of real numbers S if and
only if at least one of the following two conditions holds:

(i) α = sup(S ∩ I(−∞, α) ); (ii) α = inf(S ∩ I(α,∞) ).

By Theorem 10 we can compute a DFA accepting S′ := S ∩ I(−∞, α) (resp.,
S ∩ I(α,∞)). By [11, Thm. 2] we can compute supS′ (resp., inf S′). ��
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Paris 305, 501–504 (1987)
10. Salon, O.: Propriétés arithmétiques des automates multidimensionnels. Ph.D. the-
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On Stable and Unstable Limit Sets

of Finite Families of Cellular Automata�
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Abstract. In this paper, we define the notion of limit set for a finite
family of cellular automata, which is a generalization of the limit set of a
single automaton. We prove that the hierarchy formed by increasing the
number of automata in the defining set is infinite, and study the boolean
closure properties of different classes of limit sets.

Keywords: Cellular Automata, Symbolic Dynamics, Limit Sets.

1 Introduction

Cellular automata are discrete dynamical systems that, despite their simple def-
inition, can have very complex dynamics. They are defined as transformations
on a space of configurations, that is, infinite sequences of symbols, that operate
by applying the same local rule in every coordinate. The research of CA dates
back to the 60’s [2].

We are interested in the long-term time evolution of the configuration space
under the dynamics given by cellular automata, which can be studied using the
concept of limit sets. The limit set of a cellular automaton consists of those
configurations that can appear arbitrarily late in the evolution of the system. A
CA is called stable if its evolution actually reaches the limit set at some point
in time. In general, limit sets can be very complicated, and it has been shown
that all their nontrivial properties are undecidable, given the defining CA [4].

In this paper, we generalize the notion of a limit set and define limit sets of
finite families of cellular automata, as opposed to a single automaton. By study-
ing these more general objects, we hope to shed light on some of the problems
concerning the conventional limit sets. The idea of a limit set of multiple CA
stands somewhere between tiling systems and conventional limit sets, although
our model does not directly give a subclass of tilings (we explore this connection
in Section 3). Also, comparing the limit sets of two automata to their common
limit set can give information about their relationship. For instance, the common
limit set of a family of commuting automata is just the union of their limit sets,
which is not true in general.

The paper is organized as follows. Section 1 consists of this introduction. In
Section 2 we define the notions used in the rest of the paper.
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In Section 3, we prove some basic lemmas about limit sets of families of
cellular automata. Using the notion of projective subdynamics and results from
[7], we obtain a necessary condition for a subshift to be the limit set of some
family of CA.

In Section 4, we focus on the classes of limit sets of a given number of cellular
automata, and the hierarchy formed by increasing this number. The main results
of this chapter state that both the stable and unstable hierarchies are infinite,
with proper inclusions at every step. We also prove that the stable hierarchy,
when restricted to transitive subshifts, collapses to a single level.

In Section 5, we study the closure properties of classes of limit sets under set-
theoretic operations, that is, unions and intersections. The class of stable limit
sets turns out to be closed under union, but our counterexamples show that
neither the stable nor unstable class is closed under (nonempty) intersection.
We also prove that the hierarchy formed by considering finite unions of stable
limit sets of a given number of CA is finite: all stable limit sets of finite families
of cellular automata can be expressed as finite unions of limit sets of just two
automata. An open question is whether the hierarchy has only one level.

Section 6 consists of our conclusions about this paper.

2 Definitions

Let S be a finite set, the alphabet, which is given the discrete topology. We denote
by S∗ =

⋃
n∈N

Sn the set of words over S, and if w ∈ Sn, we denote |w| = n.
The space SZ with the induced product topology is called the full shift over S.
The topology of SZ is also given by the metric d defined by

d(x, y) = 2−min{|i| | xi �=yi}.

For a subset X ⊂ SZ and ε > 0, we define

Bε(X) = {y ∈ SZ | ∃x ∈ X : d(x, y) < ε}.

We also consider the two-dimensional shift space SZ
2

with the product topology.
If x ∈ SZ, we denote the ith coordinate of x with xi, and abbreviate the ex-

pression xixi+1 · · ·xi+n−1 by x[i,i+n−1]. If u, v, w, t ∈ S∗, we denote by ∞uv.wt∞

the element x ∈ SZ defined by x[−n|u|,−(n−1)|u|−1]−|v| = u, x[−|v|,−1] = v,
x[0,|w|−1] = w and x|w|+[n|t|,(n+1)|t|−1] = w, and the element ∞vv.vv∞ is de-
noted ∞v∞. We may use the notation x = ∞uvw∞ when the position of the
origin is irrelevant or can be inferred from the context. If a ∈ S, an element of
the form ∞awa∞ is called a-finite, and an element of the form ∞a∞ is called a
uniform configuration. For a word w ∈ Sn, we say that w occurs in x and denote
w 
 x, if there exists i such that w = x[i,i+n−1]. On SZ we define the shift map
σS (or simply σ, if S is clear from the context) by σS(x)i = xi+1 for all i. Clearly
σ is bijective and continuous w.r.t. the topology of SZ.

A finite set of words W ⊂ S∗ is said to be mutually unbordered if whenever
two words v, w ∈ W occur in some x ∈ SZ as v = x[0,|v|−1] and w = x[m,m+|w|−1]
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where m > 0, then we must have m ≥ |v|. This means that the words cannot
overlap in any way. Note that we may have v = w in this definition, so even self-
overlaps are forbidden. Given any configuration x ∈ SZ, the set W now uniquely
partitions Z into |W |+ 1 disjoint sets Aw for w ∈ W and A, defined by i ∈ Aw
if and only if x[m,m+|w|−1] = w for some m ∈ [i − |w| + 1, i], and A being the
complement of

⋃
w∈W Aw.

A closed, shift-invariant subset of SZ is called a subshift. Alternatively, given
a set of forbidden words F ⊂ S∗, a subshift can be defined by those points of
SZ in which no word from F occurs. If F is finite, the resulting subshift is a
subshift of finite type, abbreviated SFT. We define Z2 subshifts and Z2 SFT’s
analogously, as closed shift-invariant subsets of SZ

2

, which are also defined by a
set of forbidden two-dimensional patterns. The set of words of length n occurring
in a subshift X is denoted by Bn(X), and we define B(X) =

⋃
n Bn(X). If X

has the property that for all v, w ∈ B(X) and N ∈ N there exists an n ≥ N , a
word z ∈ Sn and a point x ∈ X with vzw 
 x, then we say that X is transitive.
If there exists an N such that the previous holds for all n ≥ N , we say that X is
mixing. A point x ∈ X is doubly transitive, if for all w ∈ B(X) and for all N ∈ N,
there exist m ≤ −N and n ≥ N with x[m,m+|w|−1] = x[n,n+|w|−1] = w. Clearly
every transitive subshift contains a doubly transitive point. The restriction of
σS to X is denoted by σX . The entropy of a subshift X is defined as h(X) =
limn−→∞

1
n log |Bn(X)|.

Given an n × n integral matrix M with Mij ≥ 0 for all i and j, we can
construct an SFT from it by taking S = {(i, j,m) | i, j ∈ [1, n], 0 ≤ m < Mij}
as the state set and {((i1, j1,m1), (i2, j2,m2)) | j1 �= i2} as the set of forbidden
words. This SFT is called the edge shift defined by M . If there is an N such that
(Mn)ij > 0 for all i and j whenever n ≥ N , we say that M is primitive. It is
known that M is primitive if and only if its edge shift is mixing.

Let X and Y be two subshifts. A block map from X to Y is a continuous map
ψ : X → Y such that ψ ◦ σX = σY ◦ ψ. It is known that all block maps are
defined by local rules Ψ : B2r+1(X) → B1(Y ) so that ψ(x)i = Ψ(x[i−2r,i+2r]) for
all x ∈ X and i ∈ N. The number r is called the radius of ψ. If r = 1 and Ψ does
not depend on the rightmost coordinate, we say that ψ has radius 1

2 and give Ψ
as a function from B2(X) to B1(Y ). The block map ψ is said to be preinjective if
ψ(x) �= ψ(y) whenever xi = yi for all but a finite number of i. If ψ is surjective,
it is called a factor map, and then Y is a factor of X . A factor of an SFT is
called sofic. A cellular automaton is a block map from SZ to itself.

3 Limit Sets and Basic Results

Let F be a finite family of cellular automata. We define the sets Li(F) for i ∈ N
by L0(F) = SZ, and Li(F) =

⋃
f∈F f(Li−1(F)) for i > 0. The limit set of F is

the set L(F) =
⋂
i∈N

Li(F). We say that F is stable if L(F) is equal to one of
the Li(F).

We denote by k−LIMs and k−LIMu the classes of stable and unstable limit
sets of families of at most k cellular automata, respectively. The notation k−LIMx
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refers to both classes (not their union), thinking of x as a variable ranging over
{s, u}. We also denote ∞−LIMx =

⋃
k k−LIMx for x ∈ {s, u}.

To illustrate the concept of limit sets of finite families of CA, we give an
example of a complex limit set of two automata.

Example 1. Consider the two automata f0 and f1 on the alphabet {0, 1,#}
where each fi has radius 1

2 , and the local rule of fi is given by the following
table:

0 1 #
0 0 0 #
1 1 1 #
# i i #

Now the limit set L({f0, f1}) is the subshift defined by the forbidden words
{#uv#w | n ∈ N, u, w ∈ {0, 1}n, v ∈ {0, 1,#}∗, u �= w}. That is, every two
#-symbols in a configuration of L({f0, f1}) must be followed by the same words
over {0, 1}.

The following two lemmas are direct generalizations of well-known properties
of limit sets of a single cellular automaton.

Lemma 2. Let F be a finite family of cellular automata. Then we have L(F) =⋃
f∈F f(L(F)).

Proof. It is clear that f(L(F)) ⊂ L(F) for all f ∈ F , since

f(L(F)) = f(
⋂
i

Li(F)) ⊂
⋂
i

f(Li(F)) ⊂
⋂
i

Li+1(F) = L(F).

For the other inclusion, consider an arbitrary point x ∈ L(F), and let Z =⋃
f∈F f−1(x). Since x ∈ Li+1(F), we have Z ∩Li(F) �= ∅ for all i. Since we now

have a descending chain of nonempty compact sets, the intersection⋂
i

(Z ∩ Li(F)) = Z ∩ L(F)

is nonempty. Therefore, x has a preimage in L(F). ��

Lemma 3. Let F be a finite family of cellular automata. For all ε > 0, there
exists k such that Lk(F) ⊂ Bε(L(F)).

Proof. The set Z = SZ − Bε(L(F)) is compact. Therefore, if Z ∩ Li(F) were
nonempty for all i, we would also have Z∩L(F) �= ∅ as in the previous proof. ��

By the definition of the metric in SZ, this means that for all m, there exists a
km such that Bm(Lk(F)) = Bm(L(F)) for all k ≥ km. In particular, a limit set
that is an SFT must be stable.

We will use the following result from [7] to prove certain languages not to
be unstable limit sets of any families of cellular automata. First, we define the
notion of projective subdynamics.
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Definition 4. Let X be a Z2 SFT. The set of horizontal rows appearing in
points of X is called the Z-projective subdynamics of X.

Definition 5. If X is a one-dimensional sofic shift, we say l is a universal
period for X if there exists M such that for all x ∈ X there exists y with
y = σl(y) such that |{i | xi �= yi}| ≤ M .

Lemma 6. ([7]) A zero-entropy proper one-dimensional sofic shift X is real-
izable as the Z-projective subdynamics of a Z2 SFT if and only if it has no
universal period.

Corollary 7. A zero-entropy proper sofic shift with a universal period is not the
limit set of any finite family of CA.

Proof. Any family F of cellular automata defined on SZ defines a Z2 SFT X
over the alphabet S×F as follows: The F -component must be constant in every
horizontal row. If f ∈ F is the CA of row i + 1, then the S-component of row
i must be the f -image of the S-component of row i + 1. Now the Z-projective
subdynamics of X is precisely L(F) × {∞f∞ | f ∈ F}, so it cannot be a zero-
entropy proper sofic shift with a universal period. But then L(F) cannot have
that property either. ��
We present here a realization theorem for limit sets, which uses techniques al-
ready found in [7].

Theorem 8. If X is the limit set of a family of cellular automata containing at
least two periodic points, then X is realizable as the Z-projective subdynamics of
a Z2 SFT.

Proof. Let S be the alphabet of X = L({f1, . . . , fk}), and let q1, q2 ∈ X be
distinct periodic points such that q1 = ∞a∞ and q2 has period p. Using the
identification SZ

2 ∼= (SZ)Z, we think of configurations of SZ
2

as bi-infinite ver-
tical words over the alphabet SZ of bi-infinite horizontal words. Then, choose k
mutually unbordered vertical words wi ∈ {q1, q2}m.

We now construct the Z2 SFT Y having X as its Z-projective subdynamics.
The local rule of Y works on a coordinate (a, b) of a configuration x as follows:
If x[a,a+p−1]×[b+r,b+r+m−1] does not appear in any wi for any r ∈ [1 − m, 0],
then both x[a,a+p−1]×[b+1,b+m] and x[a,a+p−1]×[b−m,b−1] must do so. Then, since
the wi are mutually unbordered, each row of Y must be either part of some

vertical word wi, or between two such words. Additionally, if
x
wi
y

appears as a

vertical subword in Y , where x and y are not part of any wj , then we require
that y = fi(x). It is now clear that X is the Z-projective subdynamics of Y . ��
Corollary 9. All stable limit sets X of finite families of cellular automata are
realizable as the Z-projective subdynamics of a Z2 SFT.

Proof. Since X is stable, it must be sofic. If X is an SFT, the claim is trivial.
Now, if |X | > 1 and X is proper sofic but does not contain two distinct periodic
points, then it contains a unique periodic point, which must then be unary. But
then it is clear that X has zero entropy and a universal period, contradicting
Corollary 7. ��
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4 Hierarchies

We now turn to the relations between the classes k−LIMx. The following theorem
is obvious since all classes k−LIMs contain SFT’s, and all classes k′−LIMu

contain subshifts that are not sofic.

Theorem 10. The classes k−LIMs and n−LIMu are incomparable for k, n ≥ 1.

It is also known that the classes are not completely disjoint [1].

Example 11. Let S = {0, 1,#}, and let g0 and g1 be the CA of radius 0 on S
defined as follows:

g0(x)i =

{
#, if xi = #
0, otherwise

and g1(x)i =

{
#, if xi = #
1, otherwise

Now the limit set of the family {g0, g1} is X = {0,#}Z∪{1,#}Z, and is reached
in one step. Since this subshift is not transitive, it cannot be the limit set of a
single stable CA.

It can even be proven that X is not the limit set of any unstable CA, using
argumentation similar to that used in the proof of Theorem 23.

It is slightly more complicated to prove that both hierarchies are infinite. This
will be our goal for the remainder of this section. We begin by finding arbitrarily
large families of mixing SFT’s Xi that have at least one uniform configuration
with the property that Xi does not factor onto Xj for any i �= j. We need some
lemmas from [5].

Definition 12. If A is a primitive integral matrix, let λA be its greatest eigen-
value with respect to absolute value, and sp×(A) the unordered list (or multi-
set) of its eigenvalues, called the nonzero spectrum of A. We use the notation
〈λ1, . . . , λk〉 for the unordered list containing the elements λi.

Lemma 13. ([5]) The entropy of the edge shift X defined by a primitive integral
matrix A is logλA.

Lemma 14. ([5]) If the edge shifts X and Y defined by two primitive integral
matrices A and B, respectively, have the same entropy and X factors onto Y ,
then sp×(B) ⊂ sp×(A).

The previous lemma gives us a necessary condition for factoring between edge
shifts of equal entropy, so it is enough to find, for each k, a family of k matrices
Mi with the property that λMi = λMj for all i and j, but sp×(Mi) �⊂ sp×(Mj)
whenever i �= j. The following lemmas are the tools we need for this.

Definition 15. Let Λ = 〈λ1, . . . , λk〉 be an unordered list of complex numbers.
Denoting Λd = 〈λd1, . . . , λdk〉, let

tr(Λ) =
k∑
i=1

λi



508 V. Salo and I. Törmä

be the trace of Λ, and

trn(Λ) =
∑
d|n

μ(
n

d
)tr(Λd)

the nth trace of Λ, for all n ∈ N, where μ : N → {−1, 0, 1} is the Möbius
function.

Lemma 16. ([5]) Let A be a primitive integral matrix and B an integral matrix
such that

– λB < λA, and
– trn(sp

×(A)) + trn(sp
×(B)) ≥ 0 for all n ≥ 1.

Then there is a primitive integral matrix C such that sp×(C) = sp×(A)∪ sp×(B).

Now let A be a matrix [λ] with a single entry much greater than k, and let Bi be
the matrices Bi = [i] for i ∈ [1, k]. By taking a large enough λ, the assumptions
of Lemma 16 are satisfied for the pairs A and Bi. Now, the matrices Ci, where
Ci is given by the lemma for A and Bi, are primitive integral matrices with the
same greatest eigenvalue, but incomparable nonzero spectra. Thus, their edge
shifts have the same entropy by Lemma 13, but none of them factor onto another
one by Lemma 14.

We still have one problem left: the edge shifts defined by the Ci might not
have uniform configurations. This is fixed by taking a common power of the
Ci: Since the matrices are primitive, there exists a p such that all of Cpi have
nonzero matrix trace, and thus define edge shifts with uniform configurations.
The Cpi are again primitive, and since sp×(Cpi ) = sp×(Ci)

p and the eigenvalues
are positive, we still have no factoring relations. Renaming the symbols of the
shifts, we have proved the following lemma:

Lemma 17. For all k ∈ N, there exists a finite alphabet Sk, a symbol a ∈ Sk and
a set {X1, . . . , Xk} of k mixing edge shifts over Sk such that whenever i �= j, we
have that Xi does not factor onto Xj, Xi∩Xj =

∞a∞ and B1(Xi)∩B1(Xj) = a.

We still need some further lemmas:

Lemma 18. ([6]) Let X ⊂ SZ be an SFT. Then X is the stable limit set of
some cellular automaton if and only if X is mixing and contains a uniform
configuration.

Lemma 19. ([5, Corollary 4.4.9]) If X is an SFT and Y a transitive sofic shift
with X ⊂ Y and h(X) = h(Y ), then X = Y .

Lemma 20. ([5, Proposition 4.1.9]) If X is a subshift and ψ any block map,
then h(ψ(X)) ≤ h(X).

We are now ready to prove the main theorems of this chapter, namely the infinity
of the stable and unstable hierarchies. More precisely, we prove that each level
of the hierarchies is separated from the previous one.
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Theorem 21. For all k, (k − 1)−LIMs � k−LIMs.

Proof. Let Xi be given by Lemma 17, and for each i let fi be the cellular
automaton given by Lemma 18 having Xi as its stable limit set, operating on
B1(Xi) instead of Sk. We extend each fi to the common alphabet Sk by having fi
consider every symbol of Sk −B1(Xi) as a. Then clearly the system {f1, . . . , fk}
has X =

⋃
iXi as its stable limit set, and thus X ∈ k−LIMs.

Now consider a hypothetical system F with |F| < k such that X = L(F) =
Ln(F). Let i be arbitrary, and consider a doubly transitive point x ∈ Xi. Since
x must have a preimage in X , we see that for some f ∈ F we have Xi ⊂ f(Xj).
By Lemma 20, this means that h(Xi) ≤ h(f(Xj)) ≤ h(Xj) = h(Xi), so by
Lemma 19 we have Xi = f(Xj). But by the property of the Xi, this is only
possible if i = j, so that f maps Xi onto itself.

Since |F| < k, there must exist f ∈ F and indices i and j such that f maps
both Xi and Xj onto themselves. In this case, we must have f(∞a∞) = ∞a∞.
Let r be the radius of f . Let b′ ∈ B(Xi) − a∗ such that ∞ab′a∞ ∈ Xi. Now
there exists x′ ∈ Xi with fn(x′) = ∞ab′a∞. Let x = ∞ax′

[−rn,|b|+rn]a
∞. Then

fn(x) = ∞aba∞, where b ∈ B(Xi) with b[m,m+|b′|−1] = b′ for some m. Similarly,
we obtain c ∈ B(Xj) − a∗ such that ∞aca∞ has an a-finite fn-preimage in
Xj . For all N ∈ N, define yN = ∞abaNca∞ ∈ SZ

k . Now for large enough N ,
f−n(yN) �= ∅, which is a contradiction, since yN /∈ X . ��
For the unstable case, yet another lemma is needed:

Lemma 22. ([5, Theorem 8.2.19]) If X ⊂ SZ is a mixing SFT and φ : X → X
is a factor map, then φ is preinjective.

Theorem 23. For all k, (k − 1)−LIMu � k−LIMu.

Proof. LetXi be given by Lemma 17, and for each i let fi be the cellular automa-
ton given by Lemma 18 having Xi as its stable limit set, operating on B1(Xi)
instead of Sk. We extend each fi to the alphabet Sk ∪{#} by having fi consider
every symbol of Sk − B1(Xi) as a, and making # a spreading state. Denote
X ′ =

⋃
iXi. It is clear that the family {f1, . . . , fk} has X = {∞#b#∞ | b 
 X ′}

as its unstable limit set, implying X ∈ k−LIMu.
Now consider again a hypothetical system F with |F| < k having X as its

unstable limit set. It is easy to see that a doubly transitive point x ∈ Xi must
have a preimage in X without the symbol #. In particular, we again see that
some f ∈ F must map Xi onto itself, and find f , i and j such that f maps both
Xi and Xj onto themselves. It is clear that f(∞a∞) = ∞a∞.

Now it is not a contradiction that configurations with symbols from both
B1(Xi) − {a} and B1(Xj) − {a} have long chains of preimages, so we need a
slightly more involved argument than in Theorem 21. Let r be the radius of f .
By Lemma 3, each point in SZ

k must locally approach X when f is applied to
it repeatedly, so there exists an M such that B2r+1(f

m(SZ

k )) ⊂ B2r+1(X) for all
m ≥ M .

Let b, c /∈ a∗ be such that ∞aba∞ ∈ Xi and
∞aca∞ ∈ Xj , and define

y = ∞(ba2r(M+1)ca2r(M+1))∞.
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Since y is periodic with some period p, so are all its images fn(y). We claim that
in all points fn(y) for n ∈ N, symbols from both B1(Xi)−{a} and B1(Xj)−{a}
appear: First, no # can appear in the images, since all (2r+1)-blocks that occur
will be from B2r+1(X

′). Since f is a surjection from Xi to itself and Xi is mixing,
f is preinjective on Xi by Lemma 22, and similarly for Xj .

Now, when we apply f to a block of the form a2rwa2r where w 
 Xi is not
completely over a, the result must contain at least one symbol of B1(Xi)− {a},
and similarly for Xj . Since non-a symbols from both subshifts cannot appear in
the same (2r+1)-block after M steps, we then inductively see that symbols from
both shifts must appear in all of the points fn(y). Since the fn(y) are periodic
with period p, they cannot locally approach X , and this contradiction proves
the claim. ��

Note that the more involved argument of Theorem 23 can also be used in the
stable case, implying that there exist subshifts

X ∈ k−LIMs − ((k − 1)−LIMs ∪ (k − 1)−LIMu),

and
Y ∈ k−LIMu − ((k − 1)−LIMs ∪ (k − 1)−LIMu)

for all k > 1.
The following theorem shows that the existence of several mixing components

is important in the stable case:

Theorem 24. If X ∈ ∞−LIMs is transitive, then X ∈ 1−LIMs.

Proof. Let X be the stable limit set of the family F reached in one step. Then,
since X contains a doubly transitive point, we find f ∈ F that maps X onto
itself as in the previous proofs. But the limit set of f must be contained in X ,
so X = L({f}), and f reaches X in one step. ��

In the unstable case, Theorem 24 might not hold as such, since the automaton
f could be stable. The following, however, is true.

Theorem 25. If X ∈ ∞−LIMu is transitive, then X ∈ 1−LIMs ∪ 1−LIMu.

Question 26. Is the unstable hierarchy proper when restricted to transitive sub-
shifts?

5 Boolean Operations

In this section, we study the relation between the classes ∞−LIMx and set-
theoretic operations. We begin with an easy lemma.

Lemma 27. If F and F ′ are stable families of cellular automata, then L(F) ∪
L(F ′) is the limit set of a stable family F ′′ of automata. If both limit sets are
reached in one step, then F ′′ can be taken to be F ∪ F ′.



Limit Sets of Finite Families of Cellular Automata 511

Proof. Let k be such that Lk(F) = L(F) and Lk(F ′) = L(F ′). Then L1(F ′′) =
L(F ′′) = L(F) ∪ L(F ′), where F ′′ = Fk ∪ F ′k. ��

Corollary 28. The class ∞−LIMs is closed under finite union.

Theorem 29. Let F be a finite family of CA. Then
⋃
f∈F L({f}) ⊂ L(F). If

the automata in F commute, equality holds.

Proof. The first claim is clear from the definition. Suppose then that the au-
tomata commute and x ∈ L(F), so that there is a sequence (fi)i∈N over F
such that for all n, f−1

n (· · · f−1
1 (x) · · · ) �= ∅. One of the automata, say f , must

occur infinitely many times in the sequence. Let i ∈ N. Since the automata
commute, we can move i copies of f to the beginning of the sequence, so that
f−i(x) �= ∅. ��

Since limit sets are always nonempty, the question whether intersections of limit
sets are always limit sets themselves is trivially false. In the case of nonempty
intersections, we have the following counterexamples:

Example 30. The class ∞−LIMu is not closed under nonempty intersection.

Proof. Take two subshifts over the alphabet {0, 1, 2}: X is a one-step SFT with
the forbidden words {10, 11, 02, 22}, and Y is the sofic shift with forbidden words
{20n1 | n ∈ N}. By Lemma 18 X is the stable limit set of some CA, and clearly
Y is the unstable limit set of the CA that moves 1’s to the right and 2’s to the
left, destroying them when they collide.

Consider then the shifts Z = X×Y and Z ′ = Y ×X . Now both Z and Z ′ are
unstable limit sets of the product automata. However, their intersection, which
is the product with itself of the orbit closure of ∞0120∞, can’t be the limit set
of any family of CA by Corollary 7. ��

The following example can also be found in [3].

Example 31. The class ∞−LIMs is not closed under nonempty intersection.

Proof. Let f be the radius 1
2 CA over the alphabet S = {0, 1, 2} whose local rule

is given by the following table:
0 1 2

0 0 1 1
1 2 0 0
2 2 0 0

The automaton f marks every transition 0x with 1 and x0 with 2, where x ∈
{1, 2}, and otherwise produces 0. Denote by X the subshift with forbidden words
{a0na | n ∈ N, a ∈ {1, 2}}. It is clear that L1({f}) ⊂ X . On the other hand,
if x ∈ X , we can easily construct a preimage y ∈ X for it: Note that when we
consider 1 and 2 equal, f behaves like the binary XOR automaton with radius
1
2 . Since the XOR automaton is surjective, we obtain an f -preimage for y by
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taking a suitable XOR-preimage for it, and replacing every other 1 by 2. This
shows that X ⊂ f(X), from which it follows that L({f}) = X .

Let g be the symbol-transforming automaton that maps 0 �→ 0, 1 �→ 1 and
2 �→ 0 having the stable limit set {0, 1}Z. Now, the intersection of the limit sets
of f and g is the orbit closure of ∞010∞, which, again by Corollary 7, is not the
limit set of any family of automata. ��

In fact, the previous proofs show that 1−LIMx is not closed under intersection
for x ∈ {s, u}.

Question 32. Is ∞−LIMu closed under union?

Another interesting question is whether elements of k−LIMx can be decom-
posed into finite unions of elements of m−LIMx, for m < k. In the stable case,
the following theorem proves this in the positive for m = 2, but the case m = 1
is still unknown. In the unstable case, nothing is known.

Theorem 33. If X ∈ ∞−LIMs, then X is the union of a finite number of
subshifts in 2−LIMs.

Proof. We may assume X is the limit set of a family F = {f1, . . . , fk} with X =
L1(F). Let Xi = fi(S

Z), noting that X =
⋃
iXi. Consider one of the (mixing)

components Xi. Without loss of generality, we may assume that Xi � Xj for no
j �= i: Suppose that such j exists. We claim that we can then remove fi from F
without changing the limit set. Clearly, the limit set can’t grow, so it suffices to
show that Xi ⊂ f(X) for some f ∈ F − {fi}. But this is clear, since some point
of Xj is doubly transitive and must have a preimage in X with some f ∈ F , and
necessarily f �= fi.

Let x ∈ Xi be doubly transitive, and let f ∈ F be such that f(y) = x, where
y ∈ Xj1 for some j1. Now we easily see that Xi ⊂ f(Xj1), so that actually
f = fi and Xi = f(Xj1). We repeat this argument for Xj1 to obtain j2 such that
fj1(Xj2) = Xj1 , and continue inductively to obtain a sequence (jn) ∈ [1, k]N such
that fjn(Xjn+1) = Xjn for all n. Since [1, k] is finite, we have that jm = jm+p

for some m and p > 0.
Now denote Y = Xi and Z = Xjm , and consider the CA

g = fi ◦ fj1 ◦ · · · ◦ fjm−1

and
h = fjm ◦ · · · ◦ fjm+p−1 .

We clearly have L({g, h}) ⊂ X , since g and h are compositions of automata
in F . Since h(SZ) = h(Z) = Z and g(SZ) = g(Z) = Y , we have that Y ⊂
L({g, h}) = Y ∪ Z. Also, the limit set is reached in one step. Now we have
proved that Xi ⊂ L({g, h}) ⊂ X and L({g, h}) ∈ 2−LIMs, which completes the
proof since i was arbitrary. ��

Question 34. Is there a subshift X ∈ 2−LIMs which is not a union of a finite
number of subshifts in 1−LIMs?
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6 Conclusions

In this paper, we have studied basic properties of limit sets of finite families
of cellular automata. The first question we asked was which subshifts can be
realized as the limit set of a family of CA, and what is their relation to tiling
systems. Here, we have shown that all stable limit sets can be realized as pro-
jective subdynamics of Z2 SFT’s, but the unstable case is still open.

Another obvious question is what happens if one increases the number of
automata. We separated the stable and unstable hierarchies and showed the
triviality of the stable transitive hierarchy, but for now, not much can be said
about the unstable transitive hierarchy.

Finally, we studied the relation between classes of limit sets and Boolean
operations, in particular whether a limit set can be expressed as a union of
simpler ones. The stable class is closed under union, but neither class is closed
under intersection. We also proved that limit sets of commuting families can be
decomposed into those of the individual CA, and stable limit sets into limit sets
of pairs of CA. An open question is whether these results can be improved.

Acknowledgements. Finally, we’d like to thank Pierre Guillon for Lemma 27
and for pointing us in the direction of [7].
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Abstract. Given a group G and a positive integer d ≥ 2 we intro-
duce the notion of an automaton rank of a group G with respect to
its self-similar actions on a d-ary tree of words as the minimal num-
ber of states in an automaton over a d-letter alphabet which generates
this group (topologically if G is closed). We construct minimal automata
generating free abelian groups of finite ranks, which completely deter-
mines automaton ranks of free abelian groups. We also provide naturally
defined 3-state automaton realizations for profinite groups which are in-
finite wreath powers . . .  H  H for some 2-generated finite perfect groups
H . This determines the topological rank and improves the estimation for
the automaton rank of these wreath powers. We show that we may take
H as alternating groups and projective special linear groups.

Keywords: Tree of Words, Self-similar Group, Automaton Group,
Wreath Product.

1 Introduction

There are two approaches to represent groups by automata. The first one is via
acceptors, also known as Rabin-Scott automata, which brings automaticity via
Thurston or automaticity via Khoussainov-Nerode (see for example [5, 8, 9]).
The second one is based on the concept of transducers, also known as Mealy-
type automata or sequential machines, which transmit, letter by letter, an input
sequence of letters from a certain alphabet into an output sequence. The language
of transducers turned out to be fruitful finding examples of the so-called self-
similar groups with extraordinary properties and investigating their geometric
actions (see [6, 7, 10, 11]).

Let X be a certain alphabet. In the present paper we refer to Mealy-type
automata over X as particular subsets with elements (called states) in the auto-
morphism group of the tree X∗ of finite words over X . For a given automaton S
we call a subgroup generated by the set S as a group defined by the automaton
S. An abstract group G is called an automaton group if G is isomorphic with
a group defined by an automaton over a certain alphabet X . In the theory of
automaton groups the following question arises naturally: given integers n, d ≥ 2
which groups are defined by n-state automata over a d-letter alphabet? Until
now, the full classification was given only in case n = d = 2 (see [6, 7]) and
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some partial solution ([4]) was obtained for n = 3, d = 2. On the other hand,
different automaton representations were found for many classical groups, such
as free groups, some free products of finite cyclic groups, affine groups, lamp-
lighter groups, some Baumslag-Solitar groups and others (see [1, 6, 7, 13–15]).
In this context, it would be interesting for a given group G and an integer d ≥ 2
to study various automaton representations of G by automata over a d-letter al-
phabet and to find among them an optimal representation, that is an automaton
with the minimal number of states. This minimal number we denote by ar(G, d)
and call an automaton rank of G (with respect to self-similar actions of G on a
d-ary tree of words). Referring to the ordinary rank r(G), which is the minimal
number of symbols needed to write any element of G as a group-word on these
symbols and, in a sense, measures the combinatorial complexity of this group,
one can think of the automaton rank of G as measuring the complexity of this
group as an automaton group. Obviously, for any group G and any d ≥ 2 we
have ar(G, d) ≥ r(G). Since finding any automaton representation of even al-
gebraically not complicated group is rather unexpected and far from obvious,
all the more difficult is to determine its automaton ranks, as it usually involves
proving that the corresponding automaton is minimal. In the present paper we
prove the following

Theorem 1.1. The automaton rank of a free abelian group Zk is equal to k if
and only if k > 1 and d > 2. In other cases we have ar(Zk, d) = k + 1.

For the proof we construct for any k ≥ 2 a k-state automaton over a 3-letter
alphabet which generates a free abelian group of rank k. Further, by using re-
sults from [10, 11] concerning contracting self-similar actions on a binary rooted
tree, we show that there is no k-state automaton over a 2-letter alphabet which
generates a free abelian group of rank k. For the second result, we find automata
defining some natural profinite subgroups in the automorphism group of a tree
X∗, namely, the infinite wreath powers W(H) = . . . :H :H , where H is some 2-
generated perfect (i.e. equals its commutator subgroup) transitive permutation
group on the set X . This construction implies the following

Theorem 1.2. Let H be a perfect transitive permutation group on a finite set X
generated by 2 elements, one of which has a fixed point and the other decomposes
into disjoint cycles of the same length. Then the rank of the infinite wreath power
W(H) is equal to 2 and for d = |X | the automaton rank ar(W(H), d) is not
greater than 3.

Finally, we show that we may take H as alternating groups An of degree n > 4
as well as projective special linear groups PSL2(p) with a prime p > 3. In this
context it is worth to note (see [2, 12]) that for any nonabelian finite simple
group H with its transitive action the rank of W(H) is equal to 2.

2 Self-similar Groups and Their Automaton Ranks

Let X be a finite set of d ≥ 2 symbols (the so-called alphabet). By X∗ we de-
note the tree of finite words (including the empty word ε) over X . The set of all
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words w ∈ X∗ of a given length i (i ≥ 0) constitutes the i-th level of the tree
X∗. In particular the 0-th level consists only of the empty word ε, which is called
the root of the tree X∗.

A faithful action G ×X∗ → X∗, (g, w) �→ wg of a given group G on the tree
X∗ is called self-similar if for every g ∈ G and every x ∈ X there are y ∈ X
and h ∈ G such that (xw)g = ywh for every w ∈ X∗. A group G which has a
self-similar action on a tree X∗ is called self-similar. The element h ∈ G in the
last equality is denoted by gx and is called the section of g at the letter x. The
permutation πg:x �→ y of the alphabet X is called the root-permutation of g or
the vertex-permutation of g at the root. We also define the section gw ∈ G and
the vertex-permutation πg,w ∈ Sym(X) of every g ∈ G at any word w ∈ X∗

inductively: gε = g, gxw = (gx)w, πg,ε = πg, πg,xw = πgx,w.
A natural example of a self-similar group is the group Aut(X∗) of all automor-

phisms of the tree X∗, which consists of all permutations of the set of vertices
preserving the root and the vertex-adjacency. The group Aut(X∗) is an example
of a profinite group equipped with a natural profinite topology. Every self-similar
group G is isomorphic to a subgroup of Aut(X∗), with which it will be iden-
tified. For example, for a given permutation group H < Sym(X), we identify
the corresponding infinite wreath power W(H) = . . . :H :H with the subgroup
of automorphisms g for which πg,w ∈ H for all w ∈ X∗. This is an example
of a closed self-similar group. According to [3] the group W(H) is topologically
finitely generated if and only if H is perfect. For more about self-similar groups
we refer to [10].

2.1 The Language of Wreath Products

Let x1, x2, . . . , xd be some indexing of a certain alphabet X and let G be a
group with a given self-similar action on the tree X∗. The concept of a vertex-
permutation and a section is used to describe elements of G in the language of
wreath products. Namely, the relation

g = (gx1 , gx2, . . . , gxd
)πg

is called the wreath recursion of an element g ∈ G and describes the embedding
of G into the permutational wreath product G : Sym(X), where the symmet-
ric group acts on the direct power Gd by permuting the factors. For example,
wreath recursions for elements of the group Aut(X∗) define an isomorphism
Aut(X∗) ; Aut(X∗) : Sym(X). We also define other embeddings into wreath
products. Namely, for every i ≥ 0 we use the restriction of the self-similar action
of G to the subtree X≤i ⊆ X∗ ending at the level i and for every g ∈ G we
denote by g|i the restriction to the set X≤i of the automorphism corresponding
to g. Now, if we put G|i = {g|i: g ∈ G}, then we have an embedding of the group
G|i into the permutational wreath product Sym(X) :Xi−1 G|i−1, which is defined
by the mapping

Ψ(g|i) = ((πg,w1 , . . . , πg,wD ), g|i−1),

where D = di−1 and w1, w2, . . . , wD is an ordering of the (i − 1)-th level of the
tree X∗ induced by indexing of the alphabet X .
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2.2 Automaton Groups and Automaton Ranks

Obviously, every self-similar group G has a generating set S ⊆ G such that for
every x ∈ X and every s ∈ S the section sx belongs to S (suffice it to take
S = G). We are especially interested in the case when there is a finite generating
set S ⊆ G with the above property.

Definition 2.1. A finite subset S ⊆ G of a self-similar group G is called an
automaton and the elements of S are called states if the section sx belongs to S
for each s ∈ S and each x ∈ X. A self-similar group generated (topologically if
it is closed) by an automaton is called an automaton group.

In the computational group theory an automaton S ⊆ Aut(X∗) is usually de-
scribed as a quadruple

(X,S, ϕ, ψ),

where the mapping ϕ:S ×X → S, ϕ(s, x) = sx is called a transition function,
and the mapping ψ:S × X → X , ψ(s, x) = xπs is called an output function.
Conversely, if X is a certain alphabet, S is a finite set, ϕ and ψ are the mappings
of the form ϕ:S × X → S, ψ:S × X → X and in addition for every s ∈
S the mapping x �→ ψ(s, x) defines a permutation of the alphabet, then the
quadruple (X,S, ϕ, ψ) defines an automaton in the group Aut(X∗). The states
of this automaton, identified with elements of the set S, transmit the words as
follows: if w = xi1xi2 . . . xil is a word, then ws = ψ(s1, xi1 )ψ(s2, xi2 ) . . . ψ(sl, xil),
where sj ∈ S are defined recursively: s1 = s, sj+1 = ϕ(sj , xij ) for 1 ≤ j < l.
In particular, for every s ∈ S and every letter x ∈ X the section sx of the
automorphism s ∈ Aut(X∗) satisfies: sx = ϕ(s, x), and for the root-permutation
πs we have: xπs = ψ(s, x).

Another convenient way to describe an automaton is to draw its Moore di-
agram, which is a directed, labeled graph with the vertices identified with the
states. Every vertex s ∈ S is labeled by the corresponding root-permutation πs,
and if two vertices are of the form s and sx for some s ∈ S and x ∈ X then we
draw an arrow labeled by x starting in s and ending in sx. To make a diagram of
the automaton clear, we replace a large number of arrows connecting two given
vertices and having the same direction by one multi-arrow labeled by suitable
letters, and if the labelling of such a multi-arrow starting from a given vertex
follows from the labelling of other arrows starting from this vertex, we will omit
this labelling.

An automaton group G generated by an automaton S = {s1, . . . , sk} is
uniquely determined by the wreath recursions of the states:⎧⎪⎪⎪⎨⎪⎪⎪⎩

s1 = (q11, q12, . . . , q1d)τ1,
s2 = (q21, q22, . . . , q2d)τ2,
...
sk = (qk1, qk2, . . . , qkd)τk,

(1)

where qij ∈ S denotes the section of si at xj ∈ X and τi denotes the root per-
mutation of si. Conversely, if S = {s1, . . . , sk} is an arbitrary set of k symbols,
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then formulas (1), where τi ∈ Sym(X) and qij ∈ S (1 ≤ i ≤ k, 1 ≤ j ≤ d),
uniquely define an automaton group G < Aut(X∗) with S as an automaton
generating G.

Definition 2.2. The automaton rank ar(G, d) of a group G with respect to self-
similar actions of G on a d-ary (d ≥ 2) tree of words is the minimal number of
states in an automaton generating G (topologically if G is closed). We will write
ar(G, d) = ∞ if G is not an automaton group with respect to any its self-similar
action on a d-ary tree of words.

It is worth to note that automaton ranks of groups can be much larger than
their abstract ranks. Indeed, for any infinite collection {Gi: i ∈ I} of pairwise
nonisomorphic groups and any d ≥ 2 the set {ar(Gi, d): i ∈ I} of their automaton
ranks is unbounded (in particular may contain ∞). This follows from a simple
observation that for every d ≥ 2 and every k ≥ 1 there is only finitely many
k-state automata over a d-letter alphabet.

Lemma 2.1. If d′ ≥ d, then ar(G, d′) ≤ ar(G, d).

Proof. If G is generated by an automaton S = {s1, . . . , sk} over the alphabet
X = {x1, . . . , xd} and the states of S are defined by wreath recursions (1),
then G is also generated by an automaton S′ = {s′1, . . . , s′k} over the alphabet
X ′ = {x1, . . . , xd, xd+1, . . . , xd′} with the states defined by wreath recursions⎧⎪⎨⎪⎩

s′1 = (q11, q12, . . . , q1d, s
′
1, . . . , s

′
1)τ

′
1,

...
s′k = (qk1, qk2, . . . , qkd, s

′
k, . . . , s

′
k)τ

′
k,

where the permutations τ ′i ∈ Sym(X ′) (1 ≤ i ≤ k) are defined as follows:

xτ
′
i = xτi for x ∈ X and xτ

′
i = x for x ∈ X ′ \X . The claim follows. ��

Example 2.1. An automaton rank ar(Z, d) of the infinite cyclic group Z is equal
to 2 for every d ≥ 2. Indeed, Z can not be generated by an automaton which is
a singleton {a}, as the state a would be of finite order. But if a state a is defined
by the wreath recursion a = (a, e, . . . , e)π, where e is the so called neutral state
(that is e = IdX∗) and π as a cycle of the length d, then the set {e, a} is
an automaton generating Z. In general, for the free abelian group Zk of rank
k ≥ 1 we have the estimations k = r(Zk) ≤ ar(Zk, d) ≤ ar(Zk, 2) ≤ k + 1. The
last inequality follows from the construction of the ”sausage” automaton S =
{e, a1, . . . , ak} over the binary alphabet with states defined by wreath recursions:
a1 = (e, an)(1, 2), ai = (ai−1, ai−1)id for 1 < i ≤ k. The automaton S generates
Zk (see for example [6] or [10]).

Example 2.2. The combined results of [14] and [15] show that the nonabelian
free group Fk of rank k ≥ 3 is generated by a k-state automaton over a 2-
letter alphabet. This implies ar(Fk, d) = r(Fk) = k for every d ≥ 2 and every
k ≥ 3. However, the problem of finding ar(F2, d) for any d ≥ 2 is open. For d = 2
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we only have the estimation 4 ≤ ar(F2, 2) ≤ 6. Indeed, from the one hand, there
are exactly six groups generated by 2-state automata over a 2-letter alphabet
(see [7]) and F2 is not among them. Furthermore, according to [4], among groups
generated by 3-state automata over a 2-letter alphabet the only nonabelian free
group is F3. On the other hand, there is a 6-state automaton over a 2-letter
alphabet generating F2 (see [10]).

Example 2.3. We know (see [1]) that for any relatively prime integers n, d > 1
the Baumslag-Solitar group BS(1, n) = 〈a, t: tat−1 = an〉 is generated by an n-
state automaton over a d-letter alphabet. In particular, ar(BS(1, n), d) ≤ n for
odd n > 1 and all d ≥ 2. On the other hand, for different n the groups BS(1, n)
are not isomorphic. Thus for every d ≥ 2 and every m there is n such that the
automaton rank ar(BS(1, n), d) is finite and not smaller than m. This contrasts
with the fact that each BS(1, n) is 2-generated.

Example 2.4. Let H be a perfect transitive permutation group on a d-element
set. Let {α1, . . . , αk} be an arbitrary generating set. According to [3] if the action
of H is not free, then the infinite wreath power W(H) is topologically generated
by the automaton {e, a1, . . . , ak, b1, . . . , bk} with the states ai, bi described by
wreath recursions: ai = (ai, bi, e, . . . , e)id, bi = (e, . . . , e)αi. In particular, the
automaton rank ar(W(H), d) is not greater than 2k + 1.

3 Automaton Ranks of Free Abelian Groups

We start with the following

Proposition 3.1. There is no k-state (k ≥ 1) automaton over a 2-letter alpha-
bet which generates a free abelian group of rank k.

Proof. Suppose that the statement is not true, and let {a1, . . . , ak} be an au-
tomaton over the alphabet {1, 2} which generates Zk. The wreath recursions for
the states ai (1 ≤ i ≤ k) are of the form ai = (ai′ , ai′′ )πi, where i

′, i′′ ∈ {1, . . . , k}
and πi ∈ {id, (1, 2)}. Directly from these recursions we see that every section of
aηi (1 ≤ i ≤ k, η ∈ {−1, 1}) is equal to aηi′ for some i′ ∈ {1, . . . , k}. In general,
let g = as11 . . . askk ∈ Zk be arbitrary, and let s = s1+ . . .+ sk. By easy induction

on |s1|+ . . .+ |sk| we show that every section of g is of the form a
s′1
1 a

s′2
2 . . . a

s′k
k ,

where the integers s′i are such that s′1+ . . .+ s′k = s. Thus, since Zk is generated

freely by the states ai (1 ≤ i ≤ k), we see that s �= s′ implies (as1)w �= (as
′

1 )w′

for all w,w′ ∈ {1, 2}∗. But Theorem 5.2 in [11] together with Theorem 2.12.1
in [10] implies that the self-similar action of a free abelian group generated by
an automaton over a 2-letter alphabet is contracting. This means that there is a
finite set N ⊆ Zk such that for every g ∈ Zk there is i > 0 such that gw ∈ N for
every word w from the i-th level of X∗. In particular, for every integer s there
is ws ∈ X∗ such that (as1)ws ∈ N . But from the above inequality we obtain:
(as

′
1 )ws′ �= (as1)ws for s′ �= s, which contradicts with the fact that the set N is

finite. The claim follows. ��
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It turns out that the situation changes over the alphabetX with at least 3 letters.
To show this let us consider for every k > 1 the automaton A = {a1, . . . , ak} over
the alphabet X = {1, 2, 3} with the states defined by following wreath recursions

a1 = (ak, a1, a1)(1, 2), ai = (ai−1, ai−1, ai−1)id, 1 < i ≤ k. (2)

The Moore diagram of the automaton A is presented in Figure 1.

id

id

id

id

id

(1,2)

1

2,3

1, 2, 3

1, 2, 3

1, 2, 3

1,
2,

3

Fig. 1. The minimal automaton generating Zk

Lemma 3.1. For all 1 ≤ i, j ≤ k we have aiaj = ajai.

Proof. By induction on the length |w| of a word w we show that waiaj = wajai .
For |w| = 0 it is obvious. Directly from the wreath recursions (2) we obtain the
following wreath recursions for aiaj :

aiaj = (ai−1aj−1, ai−1aj−1, ai−1aj−1)id, 1 < i, j ≤ k,

a1ai = (akai−1, a1ai−1, a1ai−1)(1, 2), 1 < i ≤ k,

aia1 = (ai−1ak, ai−1a1, ai−1a1)(1, 2), 1 < i ≤ k.

In particular we have πaiaj = πajai for all 1 ≤ i, j ≤ k. Consequently, if |w| = 1,
then we have waiaj = wπaiaj = wπajai = wajai . By the above wreath recursions
for aiaj we see that for all 1 ≤ i, j ≤ k and every letter x ∈ X the section of
aiaj at x is equal to ai′aj′ for some 1 ≤ i′, j′ ≤ k. Moreover, if (aiaj)x = ai′aj′ ,
then (ajai)x = aj′ai′ . Now, let w ∈ X∗ be nonempty and let us assume the
statement for all words of the length smaller than |w|. Then w = xv for some
x ∈ X and v ∈ X∗. Let 1 ≤ i, j ≤ k and let us denote x′ = xπaiaj = xπajai . By
the above observation, there are 1 ≤ i′, j′ ≤ k such that (aiaj)x = ai′aj′ and
(ajai)x = aj′ai′ . Since |v| < |w|, we obtain:

waiaj = x′v(aiaj)x = x′vai′aj′ = x′vaj′ai′ = x′v(ajai)x = wajai .

The claim follows. ��
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Lemma 3.2. The element a1 is of infinite order.

Proof. For any even number s we obtain from the wreath recursion for a1 the
following wreath recursion for as1:

as1 = (a
s/2
1 a

s/2
k , a

s/2
1 a

s/2
k , as1)id. (3)

From the wreath recursions ai = (ai−1, ai−1, ai−1)id (1 < i ≤ k) we obtain for
any s the following wreath recursions:

asi = (asi−1, a
s
i−1, a

s
i−1)id, 1 < i ≤ k. (4)

Suppose that as1 is an identity for some s > 0. Since the root-permutation of
a1 is the transposition, the number s must be even. Thus by (3) we obtain:

a
s/2
k = a

s/2
1 . Since the root-permutation of ak is the identity, the number s/2

must be even. By (4) the section of a
s/2
k at the word 3k−21 is equal to a

s/2
1 .

By (3) the section of a
s/2
1 at the word 3k−21 is equal to a

s/4
1 a

s/4
k . Consequently

a
s/2
1 = a

s/4
1 a

s/4
k and thus a

s/4
k = a

s/4
1 . By repeating we obtain a2k = a21, and

further a21 = (a2k)3k−21 = (a21)3k−21 = a1ak. Consequently ak = a1, which is
false. ��

Proposition 3.2. The automaton A = {a1, . . . , ak} defined by recursions (2)
generates a free abelian group of rank k.

Proof. Suppose not, then there is a minimal positive integer S which is a sum
|s1|+ . . .+ |sk| of absolute values of exponents in a product as11 as22 . . . askk defining
IdX∗ . Let us denote s = s1 + . . .+ sk. By wreath recursions (2) we see that the
section of the above product at the word 3k−1 is equal to as1, and thus s = 0 by
Lemma 3.2. If s1 ·si ≥ 0 for all 1 ≤ i ≤ k, then S = |s| = 0, which is a contradic-
tion with S > 0. Thus there is a minimal number j > 1 such that s1 ·sj < 0. The

section of as11 as22 . . . askk at the word 3j−2 is equal to as
′

1 a
sj
2 . . . askk−j+2, where s

′ =

s1+ . . .+ sj−1. Since (1, 2)
s′ is a root-permutation of the last product, the num-

ber s′ must be even. By the wreath recursion as
′

1 = (a
s′/2
1 a

s′/2
k , a

s′/2
1 a

s′/2
k , as

′
1 )id

and by Lemma 3.1 we see that the section of as
′

1 a
sj
2 . . . askk−j+2 at the letter 1 is

equal to the product a
s′/2+sj
1 a

sj+1

2 . . . askk−j+1a
s′/2
k . The above product defines

IdX∗ and the sum of absolute values of exponents in this product is equal
to S′ = |s′/2 + sj | + |s′/2| + |sj+1| + . . . + |sk|. Since s′sj < 0, we have
|s′/2 + sj | < |s′/2| + |sj |, and thus S′ < S. Since all si (1 ≤ i < j) in the
sum s′ = s1 + . . .+ sj−1 are of the same sign, we obtain: |s′/2+ sj |+ |s′/2| = 0
if and only if si = 0 for 1 ≤ i ≤ j. Consequently S′ = 0 if and only if si = 0 for
1 ≤ i ≤ k. Thus 0 < S′ < S, which contradicts the definition of S. ��

Proof (of Theorem 1.1). For k = 1 the statement follows by Example 2.1. For
k > 1 and d = 2 the statement follows by Proposition 3.1 and the construction
of a ’sausage’ automaton from Example 2.1. For k > 1 and d > 2 the statement
follows by Lemma 2.1 and Proposition 3.2. ��
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4 The Groups . . . � H � H as Automaton Groups

Let H be a perfect transitive permutation group on a finite set X generated
by 2 elements α, β such that: (i) α has a fixed point, i.e. there is x0 ∈ X such
that xα0 = x0, (ii) β decomposes into disjoint cycles of the same length. Then
there are m, r ≥ 1 such that β decomposes into r cycles each of the length
m: β = (x11, . . . , x1m)(x21, . . . , x2m) . . . (xr1, . . . , xrm), where xrm = x0. Let
X = {x11, x21, . . . , xr1, . . . , x0} be an indexing of the alphabet such that the
letters xi1 (1 ≤ i ≤ r) are in the first r positions and the letter xrm = x0 is
in the last position. Let A = {e, a, b} be a 3-state automaton over X with the
states defined by the following wreath recursions:

a = (e, . . . , e, a)α, b = (b, . . . , b, e, . . . , e)β, (5)

where all b’s on the right-hand side of the second recursion are in the first r
positions (i.e. positions corresponding to the letters xi,1, 1 ≤ i ≤ r). The Moore
diagram of the automaton A is depicted in Figure 2.

id� �

x
0 x

11
, x x

21 1
, ,

r

a e b

Fig. 2. An automaton generating . . .  H  H

Proposition 4.1. The infinite wreath power W(H) = . . . :H :H is topologically
generated by the automaton A defined by wreath recursions (5).

Proof. Let G be a group generated by the automaton A, and for i ≥ 1 let G|i
be a group generated by restrictions ai = a|i and bi = b|i of the states a, b to
the subtree X≤i. We must show that G|i = W(H)|i for every i ≥ 1. Since the
elements α, β generate H and a1 = α, b1 = β, we obtain: G|1 = H = W(H)|1.
Let us assume that G|i−1 = W(H)|i−1 for some i > 1. Let D = |X |i−1 and let

w1 = x11 . . . x11, . . . , wD = x0 . . . x0

be an ordering of X i−1 induced by the above indexing of X . The embedding
Ψ :G|i → H :Xi−1 G|i−1 is induced by

Ψ(ai) = ((πa,w1 , . . . , πa,wD), ai−1), Ψ(bi) = ((πb,w1 , . . . , πb,wD ), bi−1).

By induction assumption we have G|i−1 = W(H)|i−1. Thus, since the elements
ai−1, bi−1 generate G|i−1, we see that G|i projects under Ψ onto the whole
W(H)|i−1. Thus to prove our proposition it is enough to show that Ψ(G|i)
contains HD × {Id}, where Id = IdX≤i−1 . We show at first that for every
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γ ∈ H there is k ∈ G|i such that Ψ(k) = ((id, . . . , id, γ), Id). For the powers bm
j

(j ≥ 1) the following wreath recursions hold bm
j

= (bm
j−1

, . . . , bm
j−1

)id. This

implies: (bi−1)
mi−1

= Id and πbmi−1 ,wj
= β for 1 ≤ j ≤ D. From the wreath

recursion for a we obtain πa,wj = id for 1 ≤ j < D and πa,wD = α, as well as
ai−1 stabilizes wD. In particular, we have

Ψ(ai) = ((id, . . . , id, α), ai−1), Ψ(bm
i−1

i ) = ((β, . . . , β), Id). (6)

Since H is a perfect group generated by α and β, we see that every γ ∈
H is represented by a group word W (α, β) on α and β in which the sums
of exponents on generators are both equal to zero. Then from the fact that
ai−1 stabilizes wD and from equalities (6), we obtain the equality Ψ(k) =

((id, . . . , id, γ), Id), where the element k = W (ai, b
mi−1

i ) arises from W (α, β)

by the substitution of any α for ai and any β for bm
i−1

i . Obviously, the group
G|i−1 = W(H)|i−1 acts transitively on X i−1. Thus for every 1 ≤ j ≤ D
there is gj ∈ G|i−1 such that w

gj
j = wD. For 1 ≤ j ≤ D let γj ∈ H be ar-

bitrary, and let hj, kj ∈ G|i be such that Ψ(hj) = ((πhj ,w1 , . . . , πhj ,wD ), gj)

and Ψ(kj) = ((id, . . . , id, δj), Id), where δj = πhj ,wjγjπ
−1
hj ,wj

. Then we have:

Ψ(h−1
j kjhj) = ((id, . . . , id, γj, id, . . . , id), Id), where γj on the right-hand side

of the above recursion is in the j-th position. Finally, for the product g =
(h−1

1 k1h1)(h
−1
2 k2h2) . . . (h

−1
D kDhD) we obtain Ψ(g) = ((γ1, . . . , γD), Id). The

claim follows. ��
As a direct consequence of Proposition 4.1 we obtain Theorem 1.2.

4.1 The Case of Alternating Groups An, n > 4

For every n > 4 the alternating group An is a transitive group of permutations
on the set X = {1, 2, . . . , n}. This is a perfect group (as a simple nonabelian
group). The next Lemma shows that the group An is generated by two elements
α, β which satisfy the conditions (i)-(ii).

Lemma 4.1. The alternating group An (n > 4) is generated by the set {α, β},
where α = (1, 2, 3) and β = (1, 2, . . . , n) or β = (1, 3, . . . , n − 1)(2, 4, . . . , n)
depending on the parity of n.

Proof. The group An is generated by 3-cycles (i, j, k) with i, j, k ≥ 1, all distinct.
By equalities: (i, j, k) = (1, l, i)(1, j, k)(1, i, l), i, j, k, l ≥ 1, all distinct, (1, i, j) =
(1, 2, j)(1, 2, i)(1, 2, j)−1, i �= j, i, j ≥ 3, we have to show that each 3-cycle (1, 2, i)
with i ≥ 3 is a product of α, β or their inverses. Indeed, in case n even we define:
α0 = α, αi = β−1αi−1β for 1 ≤ i ≤ (n − 2)/2. By easy calculation we obtain:
αi = (2i+1, 2i+2, 2i+3) for 0 ≤ i < (n−2)/2 and α(n−2)/2 = (n−1, n, 1). Then,

for the elements γi (1 ≤ i ≤ n−2) defined as follows: γ1 = α and γi = α−1
i′ γi−1αi′

for i > 1, where i′ = [i/2], we easily verify: γi = (1, 2, i+ 2). In case n is odd we
define similarly: α0 = α, αi = β−1αi−1β for 1 ≤ i ≤ n. Then for the elements γi
(1 ≤ i ≤ n − 2) defined as follows: γ1 = α and γi = α−1

i−1γi−1αi−1 for i > 1 we
obtain γi = (1, 2, i+ 2). The claim follows. ��
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4.2 The Case H = PSL2(p), p > 3

Let p > 3 be a prime and let X = Fp ∪ {∞} be the projective line over the
field Fp = {0, 1, . . . , p − 1}. The projective special linear group PSL2(p) is the
group of linear-fractional transformations x �→ (ax + b)/(cx + d) of the set X ,
where a, b, c, d ∈ Fp and ad − bc = 1 (we make standard conventions about
∞, for example a/0 = ∞ for a �= 0 and (a∞ + b)/(c∞ + d) = a/c). The
above transformations determine PSL2(p) as a perfect and transitive group of
permutations of X . We show that there is a 2-element generating set in PSL2(p)
which satisfies (i)-(ii).

It is known that PSL2(p) is generated by the following two transformations:
α:x �→ x + 1, β:x �→ −1/x. Since β is an involution and ∞ is a fixed point
of α, we see that α, β satisfy (i)-(ii) if and only if −1 is not a square in Fp,
or equivalently, p ≡ 3 (mod 4). Now, we show how we may skip the above
restriction for p. To this end for every r ∈ Fp we choose in the group PSL2(p)
the transformation βr:x �→ −1/x + r. We see by the equality β = βrα

−r and
the fact that the permutations α, β generate PSL2(p) that for every r ∈ Fp the
transformations α, βr also generate PSL2(p). Now, let us consider the sequence
(un)n≥0 defined recursively: u0 = 0, u1 = 1 and un+2 = run+1 − un for n ≥ 0.

Lemma 4.2. We have βnr :x �→ (un+1x − un)/(unx − un−1), where βnr denotes
the n-th power of βr.

Proof. We have β1
r (x) = (rx − 1)/x = (u2x − u1)/(u1x − u0) for every x ∈ X .

Let us assume the statement for some n ≥ 1. Then for every x ∈ X we have:

βn+1
r (x) = βr(β

n
r (x)) = − 1

βnr (x)
+ r =

un−1 − unx

un+1x− un
+ r =

=
(run+1 − un)x− (run − un−1)

un+1x− un
=

un+2x− un+1

un+1x− un
.

The claim follows. ��

Lemma 4.3. There is r ∈ Fp such that βr defines a nontrivial permutation of
the set X, which decomposes into disjoint cycles of the same length.

Proof. Since p > 3 is a prime, the sequence 4 · 1, 4 · 2, . . . , 4 · (p− 1) contains all
nonzero elements of the field Fp. Since Fp \ {0} contains both squares and non-
squares, there is i ∈ Fp \{0, p−1} such that the set {4i, 4(i+1)} contains both a
square and a non-square. Let us denote r = 4i+2. Since the product of a nonzero
square and a non-square is a non-square, the element r2−4 = 4i·4(i+1) is a non-
square. The permutation βr is nontrivial as βr(∞) = r. Let m be the length of
the shortest cycle in the decomposition of βr into disjoint cycles. We show that all
cycles in this decomposition are of the lengthm. To this end we have to show that
βmr is the identity permutation. Since ∞ is not a fixed point of βr, the shortest
cycle contains an element different than∞. Thus βmr (x0) = x0 for some x0 ∈ Fp.
By Lemma 4.2 we have (um+1x0 − um)/(umx0 − um−1) = x0, or equivalently:
umx

2
0 − x0(um+1 + um−1) + um = 0. By definition of the sequence (ui) we have
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um+1+um−1 = rum, and thus um(x
2
0−rx0+1) = 0. Since r2−4 is a non-square,

we have x2
0 − rx0 + 1 �= 0. Consequently um = 0 and um+1 = −um−1. Thus for

every x ∈ X we have βmr (x) = (um+1x−um)/(umx−um−1) = −um+1x/um−1 =
x, that is βmr = IdX . The claim follows. ��

Corollary 4.1. Let H be an alternating group An of degree n > 4 or a projective
special linear group PSL2(p) with a prime p > 3. Then the infinite wreath power
W(H) = . . .:H :H has a 3-state automaton realization. In particular, the automa-
ton rank ar(W(An), n) as well as the automaton rank ar(W(PSL2(p)), p+1) is
not greater than 3.
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One-Way Reversible and Quantum Finite

Automata with Advice
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Abstract. We examine characteristic features of reversible and quan-
tum computations in the presence of supplementary information, known
as advice. In particular, we present a simple, algebraic characterization
of languages recognized by one-way reversible finite automata with ad-
vice. With a further elaborate argument, a similar but slightly weaker
result for bounded-error one-way quantum finite automata is also proven.
As an immediate application of those features, we demonstrate certain
containments and separations among various standard language families
that are suitably assisted by advice.

Keywords: Reversible Finite Automaton, Quantum Finite Automaton,
Advice, Regular Language, Context-free Language.

1 Background, Motivations, and Challenges

From theoretical and practical interests, we wish to promote our basic under-
standings of the exotic behaviors of reversible and quantum computations by
examining machine models of those computations, in particular, reversible fi-
nite automata and quantum finite automata. Of various types of such automata
(e.g., [10]), in order to make our argument clear and transparent, we initiate
our study by limiting our focus within one of the simplest automaton models:
one-way deterministic reversible finite automata (or 1rfa’s, in short) and one-way
measure-many quantum finite automata (or 1qfa’s, thereafter). Our 1qfa scans
each input-tape cell by moving a single tape head only in one direction (with-
out stopping) and performs a (projection) measurement immediately after every
head move, until the tape head scans the right endmarker. From a theoretical
perspective, the 1qfa’s with more than 7/9 success probability are essentially as
powerful as 1rfa’s [1], and therefore it is possible to view 1rfa’s as a special case
of 1qfa’s. Notice that, for bounded-error 1qfa’s, it is not always possible to make
a sufficient amplification of success probability. This is one of many features that
make the analysis of 1qfa’s quite different from that of polynomial-time quan-
tum Turing machines. These intriguing features of 1qfa’s, on the contrary, have
kept stimulating our research since their introduction in late 1990s. Back in an
early period of study, numerous unconventional features have been revealed. For
instance, as Ambainis and Freivalds [1] demonstrated, certain quantum finite
automata can be built more state-efficiently than deterministic finite automata.
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However, as Kondacs and Watrous [4] proved, a certain regular language cannot
be recognized by any 1qfa with bounded-error probability. Moreover, by Brod-
sky and Pippenger [2], no bounded-error 1qfa recognizes languages accepted by
minimal finite automata that lack a so-called partial order condition. The latter
two facts suggest that the language-recognition power of 1qfa’s is hampered by
their own inability to generate useful quantum states from input information.
To overcome such drawbacks, a simple, straightforward way is to appeal to an
outside information source.

In a wide range of literature, various notions of classical machines equipped
with supplemental information have been extensively studied. Because of its
simplicity, we consider only Karp and Lipton’s [3] style of information, known
as (deterministic) advice, a piece of which encodes additional data, given in
parallel with a standard input, into a single string (called an advice string),
which depends only on the size of the input. A series of recent studies [6–9] on
classical one-way finite automata with advice have unearthed advice’s delicate
roles. These advised automaton models have immediate connections to other
fields, including one-way communication, random access coding, and two-player
zero-sum games. Two central questions concerning the advice are: how can we
encode necessary information into a piece of advice before a computation starts
and, as a computation proceeds step by step, how can we decode and utilize
such information stored inside the advice?

For the polynomial-time quantum Turing machines, there is a rich literature
on the power and limitation of advice (see, for instance, [5]); disappointingly,
little is known for the roles of advice when it is given to finite automata, in par-
ticular, 1rfa’s and 1qfa’s. For bounded-error 1qfa’s, for instance, an immediate
advantage of taking such advice is the elimination of both endmarkers placed on
an input tape. Beyond such an obvious advantage, however, there are numer-
ous challenges in the study of advice. The presence of advice tends to make an
analysis of underlying computations quite difficult and it often demands quite
different kinds of proof techniques. As a quick example, a standard pumping
lemma—a typical proof technique that showcases the non-regularity of a given
language—is not quite serviceable to advised computations; therefore, we need
to develop other tools (e.g., a swapping lemma [7]) for them. On a similar light,
certain advised 1qfa’s violate the aforementioned criterion of the partial order
condition, and this fact makes a proof technique of [4] inapplicable to, for ex-
ample, a class separation between regular languages and languages accepted by
bounded-error advised 1qfa’s.

To aim at analyzing the behaviors of 1qfa’s as well as 1rfa’s, in this paper, we
first need to lay out a ground work to (1) capture the fundamental features of
those automata when advice is given to boost their language-recognition power
and (2) develop methodology necessary to lead to collapses and separations of ad-
vised language families. In particular, the aforementioned difficulties surrounding
the advice for 1qfa’s motivate us to seek different kinds of proof techniques.

Major Contributions. In this paper, we will prove two main theorems. As
the first main theorem (Theorem 1), with an elaborate argument, we will show a
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machine-independent necessary and sufficient conditions for languages to be rec-
ognized by 1rfa’s taking advice. Moreover, for bounded-error 1qfa’s with advice,
we will give a machine-independent sufficient condition as the second theorem
(Theorem 6). These two conditions exhibit certain behavioral characteristics of
1rfa’s and 1qfa’s when appropriate advice is provided. Applying these theorems
further, we can prove several class separations among advised language families.
These separations indicate, to some extent, inherent strengths and weaknesses
of reversible and quantum computations even in the presence of advice.

2 Basic Terminology

We briefly explain fundamental notions and notations used in this paper. Let N
be the set of all nonnegative integers. For any pair m,n ∈ N with m ≤ n, the
integer interval [m,n]Z denotes the set {m,m + 1,m + 2, . . . , n} and [n] is the
shorthand for [1, n]Z. An alphabet Σ is a finite nonempty set and a string over
Σ is a series of symbols taken from Σ. In particular, the empty string is always
denoted λ and we set Σ+ = Σ∗ − {λ}. The length |x| of a string x is the total
number of symbols in x. For any string x and any number n ∈ N, Prefn(x)
expresses the string consisting of the first n symbols of x whenever |x| ≥ n. In
particular, Pref0(x) = λ. A language over Σ∗ is a subset of Σ∗. We conveniently
treat a language L as a “function” defined as L(x) = 1 (resp. L(x) = 0) if x ∈ L
(resp. x �∈ L). Given an alphabet Γ , a probability ensemble over Γ ∗ means an
infinite series {Dn}n∈N of probability distributions, in which each Dn maps Γn

to the unit real interval [0, 1]. For ease of our later analysis, we always assume
that (1) every finite automaton is equipped with a single read-only input tape,
on which each input string is initially surrounded by two endmarkers (the left
endmarker |c and the right endmarker $) and (2) every automaton moves its tape
head rightward without stopping. Set Σ̌ = Σ ∪{|c, $}. For brevity, we abbreviate
as 1dfa a one-way deterministic finite automaton. Let REG, CFL, and DCFL
denote, respectively, the families of regular languages, of context-free languages,
and of deterministic context-free languages.

To introduce a notion of (deterministic) advice that is fed to finite automata
beside input strings, we adopt the “track” notation of [6]. For two symbols σ ∈ Σ
and τ ∈ Γ , where Σ and Γ are two alphabets, the notation [ στ ] expresses a new
symbol made up of σ and τ . On the input tape, this new symbol is written in a
single tape cell, which is split into two tracks, whose upper track contains σ and
the lower one contains τ . Notice that an automaton’s tape head scans two track
symbols σ and τ in [ στ ] at once. For two strings x and y of the same length n,
[ xy] denotes a concatenated string [ x1

y1][
x2
y2] · · · [ xn

yn], provided that x = x1x2 · · ·xn
and y = y1y2 · · · yn. An advice function is a function mapping N to Γ ∗, where Γ
is an alphabet, called an advice alphabet. The advised language family REG/n
of Tadaki et al. [6] is the collection of all languages L over certain alphabets Σ
such that there exist a 1dfa M , an advice alphabet Γ , and an advice function
h : N → Γ ∗ for which (i) for every length n ∈ N, |h(n)| = n and (ii) for every
string x ∈ Σ∗, x ∈ L iff M accepts [ x

h(|x|)]. Similarly, CFL/n is defined in [7, 9].
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3 Reversible Finite Automata with Advice

Since its introduction, the usefulness of advice has been demonstrated for var-
ious models of underlying computations. Following this line of study, we begin
with examining characteristic features of a reversible language family that is
naturally assisted by advice. A one-way (deterministic) reversible finite automa-
ton (or 1rfa, in short) is a 1dfa M = (Q,Σ, δ, q0, Qacc, Qrej) that satisfies the
following “reversibility condition”: for every inner state q ∈ Q and every symbol
σ ∈ Σ, there exists at most one inner state q′ ∈ Q for which δ(q′, σ) = q. For-
mally, the advised language family 1RFA/n is composed of all languages L over
alphabets Σ such that there exist a 1rfa M and an advice function h satisfying
(i) |h(n)| = n for any length n ∈ N and (ii) M([ x

h(|x|)]) = L(x) for every string
x ∈ Σ∗. Similar to 1RFA ⊆ REG, the containment 1RFA/n ⊆ REG/n also
holds.

To understand the reversible behaviors of 1rfa’s in the presence of advice, we
wish to seek a machine-independent, algebraic characterization of every language
in 1RFA/n, which turns out to be a useful tool in studying the computational
complexity of languages in 1RFA/n. Here, we describe the first main theorem,
Theorem 1, of this paper.

Theorem 1. Let S be any language over an alphabet Σ. The following two
statements are equivalent. Let Δ = {(x, n) | x ∈ Σ∗, n ∈ N, |x| ≤ n}.

1. S is in 1RFA/n.
2. There is an equivalence relation ≡S over Δ such that

(i) the set Δ/≡S is finite, and
(ii) for any length parameter n ∈ N, any symbol σ ∈ Σ, and any two strings

x, y ∈ Σ∗ with |x| = |y| ≤ n, the following holds:
(a) whenever |xσ| ≤ n, (xσ, n) ≡S (yσ, n) iff (x, n) ≡S (y, n), and
(b) if (x, n) ≡S (y, n), then S(xz) = S(yz) for all strings z with |xz| = n.

Condition (a) in this theorem concerns the reversibility of automata. Hereafter,
we want to give the proof of Theorem 1.

Proof of Theorem 1. (1 ⇒ 2) Assuming S ∈ 1RFA/n, we take a 1rfa M =
(Q,Σ, δ, q0, Qacc, Qrej) and an advice function h such that M([

x
h(|x|)]) = S(x)

for all x ∈ Σ∗. Now, we set: (x, n) ≡S (y,m) iff there exists a state q ∈ Q for
which M enters q just after reading [ xw] as well as [

y
w′], where w = Pref|x|(h(n))

and w′ = Pref|y|(h(m)). It is easy to check that ≡S satisfies Conditions (i)-(ii).
(2 ⇒ 1) To make our proof simple, we ignore the empty string and consider

only the set S ∩ Σ+. Assume that we have an equivalence relation ≡S that
satisfies Conditions (i)-(ii). We want to show that S ∈ 1RFA/n. Let d = |Δ/≡S |
for a certain constant d > 0 and assume that Δ/≡S = {A1, A2, . . . , Ad}. Note
that any two sets in Δ/ ≡S are disjoint. The following four properties hold.
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Claim 1.

1. For any x (|x| ≤ n), there is a unique q ∈ [d] such that (x, n) ∈ Aq.
2. For any x, y, σ, q, n with σ ∈ Σ and |x| = |y| < n, if (x, n), (y, n) ∈ Aq then

there exists an index q′ ∈ [d] such that (xσ, n), (yσ, n) ∈ Aq′ .
3. For each fixed length n ≥ 1, there exist two disjoint sets of indices in [d],

say, C
(n)
acc = {q(n)acc,j}j and C

(n)
rej = {q(n)rej,j}j such that {(x, n) | |x| = n, x ∈

S} ⊆
⋃
j Aq(n)

acc,j

and {(x, n) | |x| = n, x �∈ S} ⊆
⋃
j Aq(n)

rej,j

.

4. For every x, y, σ, q′ satisfying (xσ, n), (yσ, n) ∈ Aq′ , there exists a unique
index q ∈ [d] for which (x, n), (y, n) ∈ Aq.

It is tedious but straightforward to prove this claim; thus, we omit it entirely.
Next, for any n ∈ N+ and i ∈ [n], we define finite functions hn,i : [d] × Σ →
[d] ∪ {#} ∪ ([d]× {Cacc} × {Crej}) as follows. Let q, q′ ∈ [d] and σ ∈ Σ.

(i) Let hn,1(q, σ) = q′ iff (σ, n) ∈ Aq′ .
(ii) For any i ∈ [2, n − 1]Z, hn,i(q, σ) = q′ iff there exists a string x with

|x| = i− 1 such that (x, n) ∈ Aq and (xσ, n) ∈ Aq′ .

(iii) Let hn,n(q, σ) = (q′, C
(n)
acc , C

(n)
rej ) iff there exists a string x with |x| = n− 1

such that (x, n) ∈ Aq and (xσ, n) ∈ Aq′ .
(iv) In the above definitions, to make hn,i a total function, when (x, n) �∈ Aq

for any string x with |x| = i− 1, we need to define hn,i(q, σ) = #.

We treat each function hn,i as a new “symbol” and set Γ = {hn,i | n ≥ 1, i ∈ [n]}
so that Γ becomes a finite set. Our advice string hn of length n is defined to be
hn,1hn,2 · · ·hn,n. By Claim 1(2), it is not difficult to show that hn,i is indeed a
function.

We then define a finite automaton M with its transition function δ as follows.
Let δ(q0, |c) = q0 and δ(q, $) = q. For any n and any i ∈ [n− 1], let δ(q, [ σ

hn,i]) =

hn,i(q, σ). Assuming that hn,n(q, σ) = (q′, C
(n)
acc , C

(n)
rej ), let δ(q, [

σ
hn,n]) = (acc, q′)

(resp., = (rej, q′)) if q′ ∈ C
(n)
acc (resp., q′ ∈ C

(n)
rej ). For any other remaining cases

(if any) with q �= #, let δ(q, [ στ ]) = # and δ(#, [ στ ]) = q0. Note that, for any
input string x ∈ Σn, with the correct advice function h, the automaton M never
reaches any other remaining cases; hence, we may define the values δ(q, [ στ ])
arbitrarily so that δ is reversible. Using Claim 1(1)&(4), it is possible to prove
by induction on i (for hn,i) that M is reversible.

Finally, we want to show that S = {x | M accepts [ xhn] }. Assume that x =
σ1σ2 · · ·σn and (λ, n) ∈ Aq0 , (σ1, n) ∈ Aq1 , (σ1σ2, n) ∈ Aq2 , . . ., (x, n) ∈ Aqn .
First, we consider the case where x ∈ S. We can prove by induction that qi =
δ̂(q0, [

σ1···σi
hn,1···hn,i

]) for every i ∈ [0, n]Z, where δ̂ is the extended transition function
induced from δ. From the induction hypothesis on i, it immediately follows that
δ̂(q0, [

σ1···σi+1

hn,1···hn,i+1
]) = hn,i+1(δ̂(q0, [

σ1···σi
hn,1···hn,i

]), σi+1) = hn,i+1(qi, σi+1) = qi+1.

Since x ∈ S, by Claim 1(3), we obtain qn = (acc, q
(n)
acc,j) for a certain j. Thus, it

follows that δ̂(q0, [
x
hn]) = (acc, q

(n)
acc,j). Since δ̂(q0, [

x
hn]$) = qacc,j, M accepts [ xhn].

Next, we assume that x �∈ S. This case is similar to the previous case, since the
only difference is the final step. This completes the proof of Theorem 1. �
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For comparison, let us introduce another advised family 1RFA/Rn that uti-
lizes random advice, where randomized advice1 is a probabilistic extension of
deterministic advice. More precisely, 1RFA/Rn denotes the family of all lan-
guages L satisfying the following condition: there exist a 1rfa M , an error bound
ε ∈ [0, 1/2), and a probability ensemble {Dn}n∈N such that, for every string
x ∈ Σ∗, ProbD|x| [M([

x
D|x|]) = L(x)] ≥ 1− ε, where the probability is taken ac-

cording to the distribution D|x|. When 1dfa’s are used in place of 1rfa’s, we also
obtain the family REG/Rn, and it was proven in [9] that REG/Rn � CFL/n. In
what follows, we show a class separation between REG/n and DCFL∩1RFA/Rn.

Proposition 2. (1) DCFL ∩ 1RFA/Rn � REG/n. (2) 1RFA/Rn � CFL/n.

Proof. (1) In this proof, we will sharpen the proof of [9, Proposition 16]. For
our purpose, we use a “marked” version of Pal, the set of even-length palin-
dromes. Consider the deterministic context-free language Pal# = {w#wR |
w ∈ {0, 1}∗} over the ternary alphabet Σ = {0, 1,#}. Similar to the separation
Pal �∈ REG/n [7], we can prove that Pal# �∈ REG/n by employing a so-called
swapping lemma given in [7].

Next, we will show that Pal# ∈ 1RFA/Rn. Assuming that its input tape
has no endmarkers, we first define a one-tape probabilistic finite automaton (or
a 1pfa) M with Q = {q0, q1, q2, q3} and Qacc = {q0, q2}. Let Γ = {0, 1,#}. If
n = 2m, we define Dn to generate y#yR with probability 2−m. Otherwise, we let
Dn generate #n with probability 1. The transition function δ of M is defined as
follows. For every σ, τ ∈ {0, 1} and any index i ∈ {0, 1}, δ(qi, [ στ ]) = qστ+i mod 2

and δ(qi, a) = qi+1 mod 2, where a = [ ##]. For any other state-symbol pair (q, σ),
we make two new transitions from (q, σ) to both q2 and q3 with probability
exactly 1/2. It is not quite difficult to translate M into a reversible automaton.

On input of the form x#x′, if x′ = xR, then we enter an accepting state with
probability 1 for each fixed advice string y produced by Dn. On the contrary, if
x′ �= xR, then over all possible y’s, we enter an accepting state with probability
exactly 1/2. To reduce its error probability to 1/4, we need to make two runs of
the above procedure in parallel.

(2) Similarly, we can show that Dup = {ww | w ∈ {0, 1}∗} over the binary
alphabet {0, 1} is in 1RFA/Rn. It is known that Dup �∈ CFL/n [7]. �

As an immediate consequence of Proposition 2, we obtain:

Corollary 3. 1RFA/n �= 1RFA/Rn.

4 Properties of Advice for Quantum Computation

As the second topic, we will examine one-way measure-many quantum finite
automata (or 1qfa’s, in short) that takes deterministic advice with bounded-error
probability, where every 1qfa permits only one-way head moves and performs a
(projection) measurement, at each step, to see if the machine enters any halting
state. Formally, a 1qfaM is defined as a sextuple (Q,Σ, {Uσ}σ∈Σ̌ , q0, Qacc, Qrej),
1 Randomized advice in the context of 1dfa’s was discussed in [9].
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where each time-evolution operator Uσ is a unitary operator acting on the Hilbert
space EQ = span{|q〉 | q ∈ Q} of dimension |Q|. The series {Uσ}σ∈Σ̌ describe
the time evolution of M . Let Pacc, Prej , and Pnon be respectively the projections
of EQ onto the subspaces Eacc = span{|q〉 | q ∈ Qacc}, Erej = span{|q〉 | q ∈
Qrej}, and Enon = span{|q〉 | q ∈ Qnon}. For any symbol σ ∈ Σ̌, we define a
transition operator Tσ as Tσ = PnonUσ. For each fixed string x = σ1σ2 · · ·σn in
Σ̌∗, we set Tx = TσnTσn−1 · · ·Tσ2Tσ1 .

To describe precisely the time-evolution of M , let us consider a new Hilbert
space S spanned by the basis vectors in EQ×R×R. We then define a norm2 of
an element ψ = (|φ〉, γ1, γ2) in S to be ||ψ|| = (|||φ〉||2 + |γ1|+ |γ2|)1/2. With the
space S, we extend the aforementioned transition operator Tσ to T̂σ by defining
T̂σ(|φ〉, γ1, γ2) = (Tσ|φ〉, γ1+ ||PaccUσ|φ〉||2, γ2+ ||PrejUσ|φ〉||2). For an arbitrary

string x = σ1σ2 · · ·σn in Σ̌∗, we further define T̂x as T̂σn T̂σn−1 · · · T̂σ1 . Notice

that this extended operator T̂x may not be a linear operator in general; however,
it satisfies the following useful properties, which will play a key role in the proof
of Theorem 6.

Lemma 4. [key lemma] Each of the following statements holds.
1. For any two quantum states |φ〉, |φ′〉 ∈ Enon and any string x ∈ Σ̌∗, |||φ〉 −

|φ′〉||2 − ||Tx(|φ〉 − |φ′〉)||2 ≤ 3
2 [(|||φ〉||2 − ||Tx|φ〉||2) + (|||φ′〉||2 − ||Tx|φ′〉||2)].

2. For any two elements ψ, ψ′ ∈ S, it holds that ||ψ + ψ′|| ≤ ||ψ||+ ||ψ′||.
3. For any two elements ψ, ψ′ ∈ S and any string x ∈ Σ̌∗, ||T̂xψ − T̂xψ

′|| ≤√
2||ψ − ψ′||.

4. For any two elements ψ, ψ′ ∈ S and any string x ∈ Σ̌∗, let ψ = (|φ〉, γ1, γ2)
and ψ′ = (|φ′〉, γ′

1, γ
′
2). Then, ||T̂xψ− T̂xψ

′||2 ≥ ||ψ−ψ′||2−3(|||φ〉−|φ′〉||2−
||Tx(|φ〉 − |φ′〉)||2).

Proof Sketch. Here, we give only an outline of the proof of (1). Assume that
x = x1x2 · · ·xn and fix i ∈ [1, n]Z arbitrarily. Moreover, let |φi〉 = Tx1x2···xi−1 |φ〉
and |φ′

i〉 = Tx1x2···xi−1 |φ′〉. It then follows that

|||φ〉 − |φ′〉||2 − ||Tx(|φ〉 − |φ′〉)||2 = (|||φ〉||2 − ||Tx|φ〉||2)
+(|||φ′〉||2 − ||Tx|φ′〉||2) + (〈φ|T †

xTx|φ′〉+ 〈φ′|T †
xTx|φ〉 − 〈φ|φ′〉 − 〈φ′|φ〉)

≤ (|||φ〉||2 − ||Tx|φ〉||2) + (|||φ′〉||2 − ||Tx|φ′〉||2)
+|〈φ|T †

xTx|φ′〉 − 〈φ|φ′〉|+ |〈φ′|T †
xTx|φ〉 − 〈φ′|φ〉|.

A vigorous calculation leads to the following inequalities:

|〈φ|φ′〉 − 〈φ|T †
xTx|φ′〉| ≤ 1

2

n∑
i=1

[(|||φi〉||2 − ||Txi |φi〉||2) + (|||φ′
i〉||2 − ||Txi |φ′

i〉||2)]

≤ 1

2
[(|||φ1〉||2 − |||φn+1〉||2) + (|||φ′

1〉||2 − |||φ′
n+1〉||2)].

Since |φn+1〉 = Tx|φ〉 and |φ′
n+1〉 = Tx|φ′〉, the lemma follows. �

Recall that any input to a 1qfa must be of the form |cx$ = σ1σ2 · · ·σn+2, where
σ1 = |c, σn+2 = $, and x ∈ Σn. The acceptance probability of M on x at step

2 Our definition of “norm” is slightly different in its form from the norm in [4].
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i (1 ≤ i ≤ n + 2), denoted pacc(x, i), is ||PaccUσi |φi−1〉||2, where |φ0〉 = |q0〉
and |φi〉 = Tσi |φi−1〉. The acceptance probability of M on x, denoted pacc(x),

is
∑n+2
i=1 pacc(x, i). Similarly, we define the rejection probabilities prej(x, i) and

prej(x) using Prej instead of Pacc. In the end of a computation, using those no-

tations, we obtain T̂|cx$(|q0〉, 0, 0) = (|φn+2〉, pacc(x), prej(x)). Finally, let 1QFA
denote the collection of all languages recognized by 1qfa’s with bounded error
probability (i.e., the error probability is upper-bounded by an absolute constant
in [0, 1/2)).

Similar to 1RFA/n, the notation 1QFA/n indicates the collection of all lan-
guages L over alphabets Σ that satisfy the following condition: there exist a 1qfa
M , an error bound ε ∈ [0, 1/2), an advice alphabet Γ , and an advice function
h : N → Γ ∗ such that (i) |h(n)| = n for each length n ∈ N and (ii) for every
x ∈ Σ∗, M on input [

x
h(|x|)] outputs L(x) with probability at least 1 − ε (ab-

breviated as ProbM [M([ x
h(|x|)]) = L(x)] ≥ 1 − ε). Similar to a known inclusion

1QFA ⊆ REG [4], 1QFA/n ⊆ REG/n holds.
An immediate benefit of using advice for 1qfa’s is the elimination of endmark-

ers on their input tapes. Earlier, Brodsky and Pippenger [2] demonstrated that
we can eliminate the left endmarker |c. The use of advice further enables us to
eliminate the right endmarker $ as well. This is done by marking the end of an
input string by a piece of advice. We omit the proof of Lemma 5.

Lemma 5. [endmarker lemma] For any language L ∈ 1QFA/n, there exist a
1qfa M , a constant ε ∈ [0, 1/2), an advice alphabet Γ , and an advice function h
such that (i) M ’s input tape has no endmarkers, (ii) |h(n)| = n for any length
n ∈ N, and (iii) for any string x ∈ Σ∗, ProbM [M([

x
h(|x|)]) = L(x)] ≥ 1− ε.

Next, we will give a precise description of our main theorem. Following a standard
convention, for any partial order ≤ defined on a finite set, we use the notation
x = y whenever x ≤ y and y ≤ x; moreover, we write x < y if x ≤ y and
x �= y. A finite sequence (s1, s2, . . . , sm) is called a strictly descending chain of
length m (with respect to ≤) if si+1 < si for any index i ∈ [m − 1]. For our
convenience, we call a reflexive, symmetric, binary relation a closeness relation.
For any closeness relation ∼=, an ∼=-discrepancy set is a set S satisfying that, for
any two elements x, y ∈ S, if x and y are “different,” then x �∼= y.

Theorem 6. Let S be any language over an alphabet Σ. Let Δ = {(x, n) ∈
Σ∗ × N | |x| ≤ n}. If S ∈ 1QFA/n, then there exist two constants c, d > 0,
an equivalence relation ≡S over Δ, a partial order ≤S over Δ, and a closeness
relation ∼= over Δ that satisfy the following seven conditions. Let (x, n), (y, n) ∈
Δ, z ∈ Σ∗, and σ ∈ Σ with |x| = |y|.
1. The set Δ/≡S is finite.
2. If (x, n) ∼= (y, n), then (x, n) ≡S (y, n).
3. If |xσ| ≤ n, then (xσ, n) ≤S (x, n).
4. If |xz| ≤ n, (x, n) =S (xz, n), (y, n) =S (yz, n), and (xz, n) ∼= (yz, n), then

(x, n) ≡S (y, n).
5. (x, n) ≡S (y, n) iff S(xz) = S(yz) for all z ∈ Σ∗ with |xz| = n.
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6. Any strictly descending chain (w.r.t. ≤S) in Δ has length at most c.
7. Any ∼=-discrepancy subset of Δ has cardinality at most d.

The meanings of the above relations ;, ≤S, and ≡S will be soon explained in
the proof of Theorem 6. Our proof of the theorem heavily depends on Lemma
4, and thus it requires only basic properties of the norm in Hilbert spaces.

Proof of Theorem 6. Let S ∈ 1QFA/n be any language over an alphabet
Σ. For this language S, there are an alphabet Γ , an error bound ε ∈ [0, 1/2), a
1qfa M , and an advice function h : N → Γ ∗ such that, for every string x ∈ Σ∗,
ProbM [M([

x
h(|x|)]) = S(x)] ≥ 1− ε. W.l.o.g, we assume that ε > 0.

Recall that Δ = {(x, n) | x ∈ Σ∗, |x| ≤ n}. For the advice alphabet Γ , let
Γ̌ = {[ στ ] | σ ∈ Σ, τ ∈ Γ} denote its extended alphabet and set e = |Γ̌ |. For
simplicity, write ψ0 for the triplet (|q0〉, 0, 0). For each element (x, n) ∈ Δ, we
assume that T̂|c[ xw]ψ0 = (|φx〉, γx,1, γx,2), where w = Pref|x|(h(n)).

To satisfy Condition 5, it suffices to define (x, n) ≡S (y, n) whenever S(xz) =
S(yz) for all strings z with |xz| = n. The following claim is trivial.

Claim 2. The set Δ/≡S is finite.

Next, we define a closeness relation ∼= over Δ. Choose a constant μ satisfying
0 < μ < (1 − 2ε)/10 and define (x, n) ∼= (y,m) if ||T̂|c[ xw]ψ0 − T̂|c[ y

w′]
ψ0||2 < μ,

where w = Pref|x|(h(n)) and w′ = Pref|y|(h(m)). For any ∼=-discrepancy subset
G of Δ, it is obvious that G is a finite set and thus its cardinality |G| is upper-
bounded by a certain absolute constant. Now, we define d = maxG{|G|}. Hence,
Condition 7 is also satisfied.

To show Condition 2, we first claim the following statement.

Claim 3. If ||T̂|c[ xw]ψ0 − T̂|c[ yw]ψ0||2 < 1− 2ε, then (x, n) ≡S (y, n).

Condition 2 follows from Claim 3, since (x, n) ∼= (y, n) implies ||T̂|c[ xw]ψ0 −
T̂|c[ yw]ψ0||2 < μ < 1 − 2ε. To prove Claim 3, it suffices to show Claims 4 and
5.

Claim 4. For any two elements (x, n), (y, n) ∈ Δ and any string z ∈ Σ∗ with
|x| = |y| and |xz| = n, it holds that 2||T̂|c[ xw]ψ0 − T̂|c[ yw]ψ0||2 ≥ |pacc(xz) −
pacc(yz)|+ |prej(xz)− prej(yz)|.

Claim 5. If |x| = |y| ≤ n and ||T̂|c[ xw]ψ0 − T̂|c[ yw]ψ0||2 < 1 − 2ε, then S(xz) =

S(yz) for any string z with |xz| = n.

Proof. Assume to the contrary that ||T̂|c[ xw]ψ0−T̂|c[ yw]ψ0||2 < 1−2ε but S(xz) �=
S(yz) for a certain z with |xz| = n. This implies that |pacc(xz)−pacc(yz)| ≥ 1−2ε
and |prej(xz)− prej(yz)| ≥ 1− 2ε. Thus, by Claim 4, we have

2||T̂|c[ xw]ψ0 − T̂|c[ yw]ψ0||2 ≥ |pacc(xz)− pacc(yz)|+ |prej(xz)− prej(yz)|,
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which is further lower-bounded by 2(1 − 2ε). This contradicts our assumption
that ||T̂|c[ xw]ψ0 − T̂|c[ yw]ψ0||2 < 1− 2ε. Therefore, S(xz) = S(yz) should hold. �

Next, we define a partial order ≤S on Δ as follows: (x, n) ≤S (y,m) iff there
exist two numbers s, s′ ∈ N such that (i) 0 ≤ s ≤ s′ ≤ *1/μ+, (ii) (s − 1)μ <
|||φx〉||2 ≤ sμ, and (iii) (s′ − 1)μ < |||φy〉||2 ≤ s′μ. Since |||φxσ〉|| ≤ |||φx〉|| for
any x and σ, Condition 3 immediately follows. Note that (x, n) =S (y,m) implies
||||φy〉||2 − |||φx〉||2| < μ.

The desired constant c is set to be *1/μ++1. Since |||φλ〉|| = 1 and |||φx〉|| ≤ ε
for all x with |x| = n, the relation <S must appear at most c times in any series
of the form {(λ, n), (σ1, n), . . . , (σ1 · · ·σn, n)}. Condition 6 thus follows.

Condition 4 requires Claim 6, which follows from Lemmas 4(1)&(4).

Claim 6. Assume that |x| = |y| and |xz| ≤ n. If ||T̂|c[ xzwu]
ψ0 − T̂|c[ yzwu]

ψ0||2 < γ,

|||φx〉||2−|||φxz〉||2 < α, and |||φy〉||2−|||φyz〉||2 < α, then ||T̂|c[ xw]ψ0−T̂|c[ yw]ψ0||2 <

γ + 9α, where wu = Pref|xz|(h(n)), |w| = |x|, and |u| = |z|.

To show Condition 4, assume that (x, n) ∼= (y, n), (xσ, n) =S (x, n), and
(yz, n) =S (y, n). In other words, ||T̂|c[ xw]ψ0−T̂|c[ yw]ψ0||2 < μ, |||φxz〉||2−|||φx〉||2 <

μ, and |||φyz〉||2−|||φy〉||2 < μ. Claim 6 implies that ||T̂|c[ xw]ψ0−T̂|c[ yw]ψ0||2 < 10μ.

Since 10μ < 1− 2ε, Claim 3 yields (x, n) ≡S (y, n), as requested. This completes
the proof of Theorem 6. �

We have so far proven two main theorems, Theorems 1–6, which give unique
features of advised 1rfa’s and 1qfa’s. Hereafter, we will state two direct conse-
quences of those features. As the first consequence, we will show below that
1QFA is not included in 1RFA/n. This result can be viewed as a strength
of bounded-error quantum computation over error-free advised quantum
computation.

Corollary 7. 1QFA � 1RFA/n, and thus 1RFA/n �= 1QFA/n.

Proof. Consider the language L = {0m1n | m,n ∈ N}. Ambainis and Freivalds
[1] showed how to recognize this language L on a certain 1qfa with success
probability at least 0.68. It thus suffices to show that L �∈ 1RFA/n. Note that L
was shown to be outside of 1RFA [1]. Our result therefor extends this result.

Assume that L ∈ 1RFA/n. By Theorem 1, there exists an equivalence rela-
tion ≡L over Δ that satisfies the theorem’s conditions. Let k be the cardinality
|Δ/ ≡L |. Fix any number n satisfying that n > k + 1. Let us consider the set
S = {0i1n−i | i ∈ [1, n − 1]Z}. Since |S| = n − 1 > k, there are two indices
i, j ∈ [1, n− 1]Z with i < j such that (0i1n−i, n) ≡L (0j1n−j, n). By Condition
(a) of the theorem, we have (0i1j−i, n) ≡L (0j , n) since i < j. By Condition
(b), if we choose z = 0n−j, then L(0i1j−iz) = L(0jz). Recall that i < j < n.
However, since L(0i1j−iz) = L(0i1j−i0n−j) = 0 and L(0jz) = L(0n) = 1, we
obtain a contradiction. Therefore, L cannot belong to 1RFA/n. �
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Next, we seek the second consequence. Concerning the language family 1QFA,
Kondacs and Watrous [4] first proved that REG � 1QFA. The following class
separation between REG and 1QFA/n indicates that 1qfa’s are still not as pow-
erful as 1dfa’s even with a great help of advice.

Corollary 8. REG � 1QFA/n, and thus 1QFA/n �= REG/n.

Proof. Our example language S over the binary alphabet Σ = {a, b} can be
expressed using a regular expression as (aa+ ab+ ba)∗.

First, it is not difficult to show that S is regular. Next, we intend to show
that S is not in 1QFA/n. Assume otherwise; that is, S ∈ 1QFA/n. Let Δ =
{(x, n) ∈ Σ∗ × N | |x| ≤ n}. By Theorem 6, there exist two constants c, d >
0, an equivalence relation ≡S , a partial order ≤S , and a closeness relation ∼=
that satisfy Conditions 1-7 given in the theorem. Let e be the total number of
equivalence classes in Δ/ ≡S and let k = max{c, d, e}. Let n denote the minimal
even integer such that n ≥ (k + 1)(k + 5).

To draw a contradiction, we want to construct a special string x of length at
most n. Inductively, we build a series of strings x1, x2, . . . , xm such that each
xi has length at most 2(*log k+ + 1) and the total length |x1 · · ·xm| should be
maximized without exceeding n. For our convenience, set x0 = λ. Assuming that
x0, x1, x2, . . . , xi are already defined, we want to define xi+1 as follows. Let us
denote by x′

i the concatenated string x1x2 · · ·xi and denote by zi,w the string
x′
iw for each string w ∈ ((a + b)a)∗ with |zi,w| ≤ n. Our key claim is stated as

follows.

Claim 7. There exists a nonempty string w ∈ ((a + b)a)∗ such that |w| ≤
2(*log k++ 1) and (zi,w, n) <S (x′

i, n).

Now, we choose the (lexicographically) first nonempty string w ∈ ((a + b)a)∗

that satisfies |w| ≤ 2(*log k+ + 1) and (zi,w, n) <S (x′
i, n). The desired string

xi+1 is defined to be this string w. Obviously, it holds that |xi+1| ≤ 2(*log k++
1). The construction of xi’s implies that (x′

m, n) <S (x′
m−1, n) <S · · · <S

(x′
1, n). From Condition 6, we have m ≤ c ≤ k. Hence, we conclude that

|x1x2 · · ·xm| > n − 2(*log k+ + 1) because, otherwise, we can define xm+1 to
satisfy that |xm+1| ≤ 2(*log k++1) and (x′

m+1, n) <S (x′
m, n), contradicting the

maximality of |x1x2 · · ·xm|. Thus, we obtain n < (k + 1)(k + 5). However, since
n ≥ (k + 1)(k + 5), we obtain a contradiction. Therefore, S �∈ 1QFA/n.

To complete the proof of the corollary, it still remains to prove Claim 7. This
claim can be proven by a way of contradiction with a careful use of Conditions
4, 5, and 7 of Theorem 6. Let us assume that x′

i is already defined. Toward a
contradiction, we now suppose that the claim fails; that is, for any nonempty
string w ∈ ((a + b)a)∗ with |w| ≤ 2(*log k+ + 1), we have (zi,w, n) =S (x′

i, n).
Under this assumption, the following statement holds.

Claim 8. For any two distinct pair w,w′ in (aa + ab + ba)∗ with |w| = |w′| ≤
n− 2, it holds that (wa, n) �≡S (w′b, n).
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Assuming that Claim 8 holds, let us consider all strings in ((a + b)a)�log k�+1.
Note that the total number of such strings is 2�log k�+1 ≥ 2k. We define Gn to
be the set of all elements (zi,w, n) ∈ Δn for any w ∈ ((a + b)a)�log k�+1. Now,
we want to show that Gn is a ∼=-discrepancy set. Assume otherwise; that is,
(zi,w, n) ∼= (zi,w′ , n) for certain two distinct strings w,w′ ∈ ((a + b)a)�log k�+1.
For such strings, there are (possibly empty) strings y, y′, z for which w = yaaz
and w′ = y′baz. By applying Claim 8 to the two strings x′

iy and x′
iy

′, we con-
clude that (x′

iya, n) �≡S (x′
iy

′b, n). Since (zi,w, n) =S (x′
i, n) =S (zi,w′ , n) by

our assumption, Condition 4 of Theorem 6 implies that (x′
iya, n) ≡S (x′

iy
′b, n),

a contradiction. This implies that Gn is indeed a ∼=-discrepancy subset of Δ.
By the definition of Gn, it follows that |Gn| ≥ 2k. However, this contradicts
Condition 7 of Theorem 6, which says |Gn| ≤ d ≤ k. Therefore, Claim 7 should
hold.

At the end, let us prove Claim 8 by induction on the length |w|. Consider the
case where |w| = 0. Assume that (a, n) ≡S (b, n). By the definition of S, there is
a string z such that |az| = n and S(az) �= S(bz). For instance, when n = 2, we
have S(ab) �= S(bb). However, Condition 5 implies that S(az) = S(bz), leading
to a contradiction. Thus, it follows that (a, n) �≡S (b, n). Next, consider the case
where 0 < |w| ≤ n− 2. Since w,w′ ∈ (aa+ ab+ ba)∗, there exists a string z such
that |wabz| = n and S(wabz) �= S(w′bbz). Hence, by a similar reasoning to the
initial case, we obtain that (wa, n) �≡S (w′b, n). �
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Abstract. Recently several “distributional learning algorithms” have
been proposed and have made great success in learning different sub-
classes of context-free grammars. The distributional learning models and
exploits the relation between strings and contexts that form grammati-
cal sentences in the language of the learning target. There are two main
approaches. One, which we call primal, constructs nonterminals whose
language is supposed to be characterized by strings. The other, which
we call dual, uses contexts to characterize the language of each nonter-
minal of the conjecture grammar. This paper shows how those opposite
approaches are integrated into single learning algorithms that learn quite
rich classes of context-free grammars.

1 Introduction

Recent studies on grammatical inference have demonstrated how powerful the
idea of “distributional learning” is for learning context-free grammars (cfgs).
Distributional learning algorithms exploit information on combinations of strings
and contexts that form grammatical sentences in the concerned language L.
Clark [5] has classified existing distributional learning algorithms into two ap-
proaches, which are called primal and dual, respectively, and Yoshinaka [11] has
discussed the neat symmetry of those two. For example, Shirakawa and Yoko-
mori’s learning algorithm for c-deterministic cfgs [9] and Clark’s one for learn-
ing cfgs with the q-fcp [4] take the dual approach. As their respective primal
counterparts, one can understand Clark’s learning algorithm for congruential
cfgs [3] and Yoshinaka’s for cfgs with the p-fkp [11]. The primal approach
assumes that the learning target is generated by a cfg whose nonterminal sym-
bols generate a language “characterizable” by a finite string set. A learner uses
sets of strings obtained from given data as nonterminal symbols of its hypothesis
grammar, whereas sets of contexts are used to reject ineligible rules constructed
from those nonterminals. In the dual approach, the roles played by string sets
and context sets are switched. An important and interesting property of the hy-
pothesis grammar is the monotonic relation between the generated language and
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respective sets of strings and contexts. In the primal approach, the bigger the
string set gets, the bigger the conjectured language becomes, while the bigger
the context set becomes, the smaller the language will be. The dual approach
shows just the opposite monotonicity. Based on this monotonicity, a learner is
able to adjust the hypothesis language and finally achieves a right grammar for
the target language.

Although those two approaches might appear incompatible due to the op-
posite monotonicity, actually it is possible to integrate those two into a single
algorithm. This paper presents algorithms that take advantage of both primal
and dual approaches, which enables us to learn richer classes of languages more
efficiently than taking solely either primal or dual approach. One of our algo-
rithms can be seen as an integration of Shirakawa and Yokomori’s algorithm
for c-deterministic cfgs [9] and Clark’s for congruential cfgs [3]. The other is
an integration of Yoshinaka’s algorithms for cfgs with the p-fkp and with the
q-fcp [11], respectively, where the latter is a simplification of Clark’s [4].

2 Preliminaries

Let Σ be a nonempty finite set of letters. We denote the empty string by λ. Any
element of Σ∗×Σ∗ is called a context. The empty context 〈λ, λ〉 is denoted by Λ.
For a string v ∈ Σ∗ and a context 〈u1, u2〉 ∈ Σ∗ ×Σ∗, the composition of them
is 〈u1, u2〉6v = u1vu2 ∈ Σ∗. The composition operation is naturally generalized
to be applied to sets W ⊆ Σ∗ × Σ∗ and V ⊆ Σ∗ as W 6 V = {w 6 v | w ∈
W, v ∈ V }. For a language L ⊆ Σ∗, we let

Sub(L) = { v ∈ Σ∗ | w 6 v ∈ L for some w ∈ Σ∗ ×Σ∗ },
Con(L) = {w ∈ Σ∗ ×Σ∗ | w 6 v ∈ L for some v ∈ Σ∗ }.

We also have an operation dual to 6. We denote the set of contexts that admit
every string in a set V ⊆ Σ∗ with respect to a language L ⊆ Σ∗ by

L< V = {w ∈ Σ∗ ×Σ∗ | w 6 v ∈ L for all v ∈ V }.

Similarly, the set of strings that every context in W ⊆ Σ∗ ×Σ∗ accepts is

L<W = { v ∈ Σ∗ | w 6 v ∈ L for all w ∈ W }.

Note that L<{Λ} = L. By definition, W 6V ⊆ L iff W ⊆ L<V iff V ⊆ L<W .
When L is understood, particularly when our learning target is L, we denote
L<W for W ⊆ Σ∗ ×Σ∗ by W † and L< V for V ⊆ Σ∗ by V ‡. It is easy to see
that V ⊆ (V ‡)†, W ⊆ (W †)‡, V ‡ = ((V ‡)†)‡ and W † = ((W †)‡)†. Moreover, we
define W ‡ = (W †)‡ and V † = (V ‡)†. It is clear by definition that W 6V ⊆ L iff
W ‡ 6 V † ⊆ L. In both cases where X ⊆ Σ∗ and where X ⊆ Σ∗ × Σ∗, we have
X† ⊆ Σ∗ and X‡ ⊆ Σ∗ × Σ∗. For X1, X2 ∈ 2Σ

∗ ∪ 2Σ
∗×Σ∗

, we write X1 �L X2
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iff X†
1 ⊆ X†

2 , which is equivalent to X‡
1 ⊇ X‡

2 . If X1 �L X2 and X2 �L X1, we
write X1 ≈L X2.

1 The subscript L of ≈L is dropped when understood.

Lemma 1. For X1, X2 ∈ 2Σ
∗ ∪ 2Σ

∗×Σ∗
, X1 � X2 iff X‡

2 6X†
1 ⊆ L.

We have w 6 V1 ⊆ L ⇔ w 6 V2 ⊆ L for every w ∈ Σ∗ × Σ∗ if and only if
V1 ≈ V2.

We have W16v ⊆ L ⇔ W26v ⊆ L for every v ∈ Σ∗ if and only if W1 ≈ W2.

A cfg is a tuple G = 〈Σ,N, P, S〉, where Σ is the set of terminal symbols, N
is the set of nonterminal symbols, P ⊆ N × (N ∪ Σ)∗ is the set of rules, and
S ∈ N is the start symbol. The derivation relation of G is denoted by ⇒∗

G. The
language generated by each nonterminal symbol A is denoted by L(G,A) = { v ∈
Σ∗ | A⇒∗

G v } and the language of G is L(G) = L(G,S). The context set of a
nonterminal A is defined by C(G,A) = { 〈u1, u2〉 ∈ Σ∗ × Σ∗ | S⇒∗

G u1Au2 }.
This paper assumes that L(G,A) �= ∅ and C(G,A) �= ∅ for all A ∈ N . The
description size of G is defined to be ‖G‖ =

∑
A→α∈P |Aα|.

3 Learning Targets

Clark [3] has introduced a class of grammars, called congruential cfgs and
presented a learning algorithm for them. We say that a cfg is congruential if
for every nonterminal A of G and every v1, v2 ∈ L(G,A), we have {v1} ≈ {v2}.

Quite a symmetric result has been obtained by Shirakawa and Yokomori [9].
They have presented a learning algorithm for c-deterministic cfgs in Chomsky
normal form (Cnf), where we say that a cfg is c-deterministic if for any context
w ∈ C(G,A) of any nonterminal A, it holds that L(G)< {w} = L(G,A).

This paper targets a class of cfgs that is a superclass of Clark’s and Shirakawa
and Yokomori’s learning targets.

Definition 1. By G(r) we denote the class of cfgs G such that each rule has
at most r nonterminals on the right-hand side and each nonterminal A satisfies
either

– {v} ≈ L(G,A) for any v ∈ L(G,A), or
– {w} ≈ L(G,A) for any w ∈ C(G,A).

The class of languages generated by grammars in G(r) is denoted by L(r).

Since the generative power of congruential cfgs and that of c-deterministic cfgs
are incomparable, our new class G(2) defines a properly richer class of languages
than those existing classes. An easy example is the disjoint union of a language
L1 ⊆ Σ∗

1 that is congruential and not c-deterministic and another L2 ⊆ Σ∗
2 that

is c-deterministic and not congruential, where Σ1 ∩Σ2 = ∅.

1 Pairs 〈X†, X‡〉 with the order � form a lattice structure, called a syntactic concept
lattice proposed by Clark [2], and indeed technical discussions of this paper would
be better understood with that background. This paper does not go into the details
of them due to the space limit, but is technically self-contained.
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Clark [4] has introduced a hierarchy of language classes that are more general
than c-deterministic cfgs and Yoshinaka [11] has discussed the “primal” coun-
terpart of them, which is a generalization of the property introduced by Clark
et al. [6]. An integration should be defined as follows.

Definition 2. By G(p, q, r) we denote the class of cfgs G such that each rule
has at most r nonterminals on the right-hand side and each nonterminal A
admits either

– a finite string set VA ⊆ Σ∗ such that |VA| ≤ p and VA ≈ L(G,A), or

– a finite context set WA ⊆ Σ∗ × Σ∗ such that |WA| ≤ q and WA ≈ L(G,A).

The class of languages generated by grammars inG(p, q, r) is denoted asL(p, q, r).

We call such VA or WA a characterizing set for a nonterminal A. We note that
VA ⊆ Sub(L(G)) and WA ⊆ Con(L(G)). If G ∈ G(r), for each A, either every
v ∈ L(G,A) or every w ∈ C(G,A) forms a characterizing singleton set for A.
In fact, L(r) is a proper subclass of L(1, 1, r). An example in the difference is
{ ambn | m < n }.

Example 2. For n ≥ 3, let

Ln = { ak11 ak22 . . . aknn | k1, . . . , kn ∈ N and ki = kj for some i �= j } .

One can show that Ln ∈ L(p, q, 1) if p + q > n. The author has not found a
grammar in G(p, q, r) with p + q ≤ n that generates Ln except when {p, q} =
{0, n} or {p, q} = {1, n− 1}.

We remark that although all the preceding algorithms [3, 4, 9, 11] that base
our algorithms consider only cfgs in Cnf, this paper lifts this assumption. In
fact none of the properties except the congruentiality and 1-fkp are shown to
be closed under Chomsky-normalization. For example, every regular language
is generated by a c-deterministic grammar [9], but no c-deterministic gram-
mar in Cnf generates a finite language {ac, ad, bc}. Suppose otherwise, if a c-
deterministic grammar in Cnf generates {ac, ad, bc}, we must have a derivation
S⇒GAC⇒∗

G ac for some nonterminals A,C. The fact 〈λ, c〉 ∈ C(G,A) implies
that {〈λ, c〉}† = {a, b} ≈ L(G,A), which implies L(G,A) = {a, b}. Similarly
we have L(G,C) = {c, d}. This contradicts the fact bd /∈ L(G). Another such
example is the language of palindromes: { v ∈ Σ∗ | v = vR } where vR denotes
the reverse of v. The palindrome language is generated by a c-deterministic cfg,
but it cannot be in Cnf.

We work under different learning schemes forG(r) and G(p, q, r) in accordance
with the preceding work. Our learner for G(r) works with a minimally adequate
teacher (mat) following [3, 9], and another identifies G(p, q, r) in the limit from
positive data and membership queries like [4,11]. Yet both types of our learners
construct a conjecture in the same manner.
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4 Hypotheses

4.1 Construction

Hereafter we arbitrarily fix three natural numbers p, q, r ≥ 1 and a target lan-
guage L∗ ∈ L(p, q, r) to be learnt. When learning G(r), assume p = 1 and q = 1.
We assume that our learner has an access to an oracle who answers membership
queries (mqs), which ask whether an arbitrary string u belongs to the learning
target L∗. Our conjecture Ĝ = Gp,q,r(J,K,E, F ) is constructed from two finite
sets of strings J,K ⊆ Σ∗ and two finite sets of contexts E,F ⊆ Σ∗ × Σ∗ with
the aid of the oracle. The nonterminal set N̂ of Ĝ is constituted from two parts:

N̂ = N̂K ∪ N̂F where

N̂K = { [[V ]] | V ⊆ K with |V | ≤ p } ,
N̂F = { [[W ]] | W ⊆ F with |W | ≤ q } ,

where [[X ]] simply means a symbol indexed with X . For legibility we write [[x]]
for [[{x}]]. We would like each nonterminal [[X ]] ∈ N̂ to generate X†. Accordingly
if we have a rule of the form

[[X0]] → u0[[X1]]u1[[X2]]u2 . . . [[Xk]]uk ,

by the nature of the context-free derivation, it should hold that u0X
†
1u1X

†
2u2 . . .

X†
kuk ⊆ X†

0 . Equivalently,

X‡
0 6 u0X

†
1u1X

†
2u2 . . .X

†
kuk ⊆ L∗. (�)

Yet in general the inclusion relation (�) is not computable. We substitute some

computable finite sets for X‡
0 and X†

i to “approximate” the inclusion relation
(�). By the aid of finitely many mqs, the approximation will be decidable. For

[[Xi]] ∈ N̂K with i ≥ 1, we have Xi ≈ X†
i , thus Xi can be substituted for X†

i in

(�). For [[Xi]] ∈ N̂F , we substitute X†
i ∩ J for X†

i , which is also computable by

the aid of mqs, though it is not necessarily the case that X†
i ∩ J ≈ X†

i . On the

other hand, if [[X0]] ∈ N̂F , we have X0 ≈ X‡
0 , thus X0 can be substituted for

X‡
0 in (�), but if [[X0]] ∈ N̂K , we use X‡

0 ∩ E for X‡
0 . For a uniform treatment

of nonterminals in N̂K and N̂F , we introduce the following notation. The string
interpretation of [[X ]] ∈ N̂ is

[[X ]](J) =

{
X if [[X ]] ∈ N̂K ;

X† ∩ J = { v ∈ J | X 6 v ⊆ L∗ } if [[X ]] ∈ N̂F .

and the context interpretation of [[X ]] ∈ N̂ is

[[X ]](E) =

{
X‡ ∩ E = {w ∈ E | w 6X ⊆ L∗ } if [[X ]] ∈ N̂K ;

X if [[X ]] ∈ N̂F .
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Our grammar Gp,q,r(J,K,E, F ) has rules of the form

[[X0]] → u0[[X1]]u1[[X2]]u2 . . . [[Xk]]uk

if 0 ≤ k ≤ r, u0, . . . , uk ∈ K and2

X
(E)
0 6 u0X

(J)
1 u1 . . . X

(J)
k uk ⊆ L∗.

The start symbol is [[Λ]] ∈ N̂F .

Lemma 3. One can construct Gp,q,r(J,K,E, F ) = 〈Σ, N̂, P̂ , [[Λ]]〉 in polynomial
time with the aid of mqs, where the degree of the polynomial depends on p, q, r.
We have |N̂K | ≤ |K|p, |N̂F | ≤ |F |q and |P̂ | ≤ |N̂ |r+1|K|r+1.

4.2 Properties of Hypotheses

Lemma 4. Let Ĝ = Gp,q,r(J,K,E, F ) and Ĝ′ = Gp,q,r(J ′,K ′, E′, F ′).

1. If J ⊆ J ′, K = K ′, E = E′ and F = F ′, then L(Ĝ) ⊇ L(Ĝ′).
2. If J = J ′, K ⊆ K ′, E = E′ and F = F ′, then L(Ĝ) ⊆ L(Ĝ′).
3. If J = J ′, K = K ′, E ⊆ E′ and F = F ′, then L(Ĝ) ⊇ L(Ĝ′).
4. If J = J ′, K = K ′, E = E′ and F ⊆ F ′, then L(Ĝ) ⊆ L(Ĝ′).

Proof. (1,3) By definition, every rule of Ĝ′ is also a rule of Ĝ.
(2,4) Every rule of Ĝ is also a rule of Ĝ′. ��

We say that a rule of the form [[X0]] → u0[[X1]]u1 . . . [[Xk]]uk is correct if (�)
holds. If a rule is not correct, it is incorrect. It is clear that the inclusion relation

(�) implies X
(E)
0 6 u0X

(J)
1 u1 . . . X

(J)
k uk ⊆ L∗.

Lemma 5. Every pair 〈K,F 〉 admits a pair 〈E, J〉 of sets of a polynomial car-
dinality such that Ĝ = Gp,q,r(J,K,E, F ) has no incorrect rules.

Proof. If a rule [[X0]] → u0[[X1]]u1 . . . [[Xk]]uk is incorrect, there are w ∈ X‡
0 and

vi ∈ X†
i for i = 1, . . . , k such that w 6 u0v1u1 . . . vkuk /∈ L∗. If [[X0]] ∈ N̂F ,

we may assume that w ∈ X0 without loss of generality. For i ∈ {1, . . . , k}, if
[[Xi]] ∈ N̂K , we may assume that vi ∈ Xi. If [[X0]] ∈ N̂K , put w into E and if
[[Xi]] ∈ N̂F , put vi into J . This way we need at most one context and at most
k strings to suppressed the incorrect rule. On the other hand, there are at most
(|N̂ ||K|)r+1 rules. Hence, the lemma holds. ��

We note that if [[X0]] ∈ N̂F and [[Xi]] ∈ N̂K for all i = 1, . . . , k, the rule is always
correct. We say that a pair 〈E, J〉 is fiducial on 〈K,F 〉 with respect to L∗ if
Gp,q,r(J,K,E, F ) has no incorrect rules.

Lemma 6. If Ĝ = Gp,q,r(J,K,E, F ) has no incorrect rules, then L(Ĝ) ⊆ L∗.

2 A little more reasonable construction is to limit u0, . . . , uk to have v1, . . . , vk such
that u0v1u1 . . . vkuk ∈ K, but we ignore such technical detailed modifications.
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Proof. We show by induction on the length of derivation that v ∈ X† if [[X ]]⇒∗
Ĝ
v

with v ∈ Σ∗, which implies particularly for the start symbol [[X ]] = [[Λ]], we have
v ∈ X† = L∗.

Suppose that [[X0]] → u0[[X1]]u1 . . . [[Xk]]uk is a correct rule of Ĝ and [[X0]]
derives u0v1u1 . . . vkuk where [[Xi]] derives vi for i = 1, . . . , k. By the induction

hypothesis we have vi ∈ X†
i . Since the rule is correct, we have

X‡
0 6 u0v1u1 . . . vkuk ⊆ X‡

0 6 u0X
†
1u1 . . . X

†
kuk ⊆ L∗,

which means u0v1u1 . . . vkuk ∈ X†
0 . ��

Lemma 7. Let G∗ = 〈Σ,N∗, P∗, S∗〉 ∈ G(p, q, r) generate L∗ and XA a char-
acterizing set for each A ∈ N∗. We define a homomorphism h by h(A) = [[XA]]
and h(a) = a for a ∈ Σ. For any rule A → α of G∗, the rule h(A) → h(α) is
correct. Moreover if A is the start symbol of G∗, [[Λ]] → h(α) is a correct rule.

Proof. For any rule B0 → u0B1u1 . . . Bkuk, by the nature of context-free deriva-
tion, we have u0L1u1 . . . Lkuk ⊆ L0 where Li = L(G∗, Bi) for i = 0, . . . , k. For
any characterizing set Xi of Bi, we have

X‡
0 6 u0X

†
1u1 . . . X

†
kuk ≈ L‡

0 6 u0L1u1 . . . Lkuk ⊆ L∗

and hence the rule [[X0]] → u0[[X1]]u1 . . . [[Xk]]uk is correct by Lemma 1. More-
over if B0 is the start symbol, we have u0L1u1 . . . Lkuk ⊆ L∗, which implies
that Λ 6 u0X

‡
1u1 . . .X

‡
kuk ≈ u0L1u1 . . . Lkuk ⊆ L∗. Hence the rule [[Λ]] →

u0[[X1]]u1 . . . [[Xk]]uk is correct. ��

Corollary 8. Suppose that K∪F includes a characterizing set for each nonter-
minal A of a cfg G∗ with L∗ = L(G∗) and K includes u0, . . . , uk for each rule
A → u0B1u1 . . . Bkuk of G∗. Then L∗ ⊆ L(Gp,q,r(J,K,E, F )).

Therefore, by Lemma 6 and Corollary 8, if K and F are big enough to cover a
characterizing set of every nonterminal of the learning target G∗, and E and J
are big enough with respect to K and F to suppress incorrect rules, then our
conjecture Gp,q,r(J,K,E, F ) generates exactly the target language L(G∗).

5 Learning of G(p, q, r)

5.1 Identification in the Limit from Positive Data and Membership
Queries

Our learning paradigm is identification in the limit from positive data and mem-
bership queries. A positive presentation of a language L∗ over Σ is an infinite
sequence u1, u2, · · · ∈ Σ∗ such that L∗ = { ui | i ≥ 1 }. A learner is given a
positive presentation of the language L∗ = L(G∗) of the target grammar G∗ and
each time a new example ui is given, it outputs a grammar Gi computed from
u1, . . . , ui with the aid of an oracle who answers mqs. We say that a learning
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algorithm identifies G∗ in the limit from positive data and membership queries if
for any positive presentation u1, u2, . . . of L(G∗), there is an integer n such that
Gn = Gm for all m ≥ n and L(Gn) = L(G∗). We say that a learning algorithm
identifies a class G of grammars in the limit from positive data and membership
queries iff it identifies all G ∈ G.

5.2 Learning Algorithm for G(p, q, r)

Our learner is shown as Algorithm 1. When the learner observes that some

Algorithm 1. Learn G(p, q, r)

Data: A sequence of strings u1, u2, · · · ∈ L∗; membership oracle O for L∗;
Result: A sequence of cfgs G1, G2, . . .
let D := ∅; J,K, E, F := ∅; Ĝ := Gp,q,r(J,K,E, F );
for n = 1, 2, . . . do

let D := D ∪ {un}; J := Sub(D); E := Con(D);
if D � L(Ĝ) then

let K := J ; F := E;
end if
output Ĝ = Gp,q,r(J,K,E, F ) as Gn;

end for

positive example is not generated by the current conjecture, it expands K and
F so that they shall cover a characterizing set of some nonterminal of a target
grammar G∗. On the other hand, to get rid of incorrect rules, it keeps expanding
E and J .

Lemma 9. If the current conjecture Ĝ does not precisely generate L∗, then the
learner will discard Ĝ at some point.

Proof. If L∗ � L(Ĝ), the learner will get some element u ∈ L∗ − L(Ĝ) at some

point and discard the current conjecture Ĝ, where the new conjecture has a new
rule [[Λ]] → u at least.

If L(Ĝ) � L∗, Lemma 6 implies that 〈E, J〉 is not fiducial on 〈K,F 〉. All
incorrect rules will be removed at some point by Lemma 5. ��

Theorem 10. Algoritm 1 identifies L(p, q, r) in the limit.

Proof. By Lemma 9, the learner never converges to a wrong hypothesis. It is
impossible that the sets K,F are changed infinitely many times, because K,F
are monotonically expanded and sometime K,F will contain a characterizing set
of every nonterminal of a target grammar G∗, in which case the learner never
updates K,F any more by Corollary 8. Then sometime 〈E, J〉 will be fiducial
on the converged 〈K,F 〉 by Lemma 5, where Ĝ generates the target language by
Lemma 6. Thereafter no rules will be added to or removed from Ĝ any more. ��
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The literature has established no consensus on the definition of polynomial-time
identification in the limit. Here we remark nontrivial properties on the efficiency
of our algorithm. First, Lemma 3 implies that Algorithm 1 updates its conjecture
in polynomial time in the size of the given positive examples. Second, there is
a set D ⊆ L∗ with |D| ≤ max{p, q}|N∗| + r|P∗| such that K = Sub(D) and
F = Con(D) satisfy the condition of Corollary 8. Together with Lemma 5, we
claim that the amount of data needed for convergence is not too big.

6 Learning of G(r)

6.1 Minimally Adequate Teacher

Our learner for G(r) works under Angluin’s mat learning model [1]. A learner
has an oracle who answers equivalence queries (eqs) in addition to mqs. An
instance of an eq is a grammar Ĝ and the oracle answers “Yes” if L(Ĝ) = L∗
and otherwise returns a counterexample u ∈ (L∗ − L(Ĝ)) ∪ (L(Ĝ) − L∗). A
counterexample is called positive if u ∈ L∗ − L(Ĝ) and it is negative if u ∈
L(Ĝ)−L∗. The oracle is supposed to answer every query in constant time. The
learning process finishes when the oracle answers “Yes” to an eq.

In this learning scheme, at any point in the run, we allow a leaner to use
time bounded polynomially in ‖G∗‖ and � where G∗ is a smallest grammar such
that L(G∗) = L∗ and � is the length of the longest counterexample given by the
oracle.

6.2 Learning Algorithm for G(r)

Algorithm 2 is our learner for G(r). We show that the learner makes at most
polynomially many eqs and that it takes polynomial time to raise another eq

after receiving an answer to an eq. We first explain the case when a positive
counterexample is given to the learner and later discuss the other case where the
learner gets a negative counterexample. We let G∗ = 〈Σ,N∗, P∗, S∗〉 ∈ G(r) be
our learning target.

When Algorithm 2 gets a positive counterexample. obviously it updates its
conjecture in polynomial time. We show that the number of positive counterex-
amples that the learner receives is bounded by the number of rules in P∗ of the
target grammar G∗.

We divide the set N∗ of nonterminals of G∗ into two sets N1 and N2 so that
any v ∈ L(G∗, B) characterizes B ∈ N1 and any w ∈ C(G∗, A) characterizes
A ∈ N2. We let

Δ0(K) = {A → u0B1u1 . . . Bkuk ∈ P∗ | u0, . . . , uk ∈ K },
Δ1(K) = {B ∈ N1 | K ∩ L(G∗, B) �= ∅ },
Δ2(F ) = {A ∈ N2 | F ∩ C(G∗, A) �= ∅ }.

IfΔ0(K) = P∗,Δ1(K) = N1 andΔ2(F ) = N2, Corollary 8 ensures that L(G∗) ⊆
L(G(J,K,E, F )).
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Algorithm 2. Learn G(r)

let J := K := E := F := ∅; Ĝ = G1,1,r(J,K,E, F );
while the oracle does not answer “Yes” to the eq on Ĝ do

let u be the counterexample from the oracle;
if u ∈ L∗ − L(Ĝ) then

let K := K ∪ Sub({u}) and F := F ∪ Con({u});
else

let J := J ∪ Witness1(Ĝ, u) and E := E ∪ Witness2(Ĝ, u);
end if
let Ĝ = G1,1,r(J,K,E, F );

end while
output Ĝ;

Lemma 11. Each time the learner gets a positive counterexample, at least one
of the sets Δ0(K), Δ1(K) and Δ2(F ) is properly expanded.

Proof. Obviously none of Δ0(K), Δ1(K) and Δ2(F ) gets shrunk. Suppose that
the learner has got a positive counterexample u ∈ L(G∗)−L(Ĝ), in which case,
a derivation of u by G∗ involves either a rule π with π /∈ Δ0(K), a nonterminal
B ∈ N1 with B /∈ Δ1(K), or a nonterminal A ∈ N2 with A /∈ Δ2(F ). In
the respective cases, we have π ∈ Δ0(K ∪ Sub(u)), B ∈ Δ1(K ∪ Sub(u)), and
A ∈ Δ2(F ∪Con(u)). The lemma holds. ��

Corollary 12. The algorithm receives a positive counterexample at most |P∗|
times. Hence |K|, |F | ∈ O(|P∗|�2), where � is the length of a longest positive
counterexample given so far. The number of nonterminals of a conjecture is
bounded by |N̂ | ≤ |K| + |F | ∈ O(|P∗|�2) and the number of rules is at most
|N̂ |r+1|K|r+1 ∈ O((|P∗|�2)2(r+1)).

We next suppose that a negative counterexample u ∈ L(Ĝ) − L∗ is given. The
proof of Lemma 6 implies that our grammar Ĝ uses an incorrect rule to derive
u. In order to find an incorrect rule, we first parse u with Ĝ and (implicitly)
get a derivation tree t for u. We then search t in a topdown manner for an
incorrect rule that has contributed to the overgeneralization. If a nonterminal
[[x]] of our conjecture Ĝ derives v such that v /∈ {x}†, an incorrect rule must be
used in the derivation. In the case of [[x]] ∈ N̂F , v /∈ {x}† means x 6 v /∈ L∗.
On the other hand, if [[x]] ∈ N̂K , v /∈ {x}† means that there is w ∈ Σ∗ × Σ∗

such that w 6 x ∈ L∗ and w 6 v /∈ L∗. Hence in the recursive procedure, we
maintain such a context w ∈ {x}‡−{v}‡ to evidence that the derivation [[x]]⇒∗

Ĝ
v

involves an incorrect rule. Actually what the following procedure outputs is not
an incorrect rule, but witnesses to be added to J and/or E to get rid of the rule.
The recursive procedure Witness takes a triple 〈x, v, w〉 such that [[x]]⇒∗

Ĝ
v

and w ∈ {x}‡ − {v}‡, where w = x if [[x]] ∈ N̂F . We define Witness1(Ĝ, u) =
Witness(Λ, u, Λ) ∩Σ∗ and Witness2(Ĝ, u) = Witness(Λ, u, Λ) ∩ (Σ∗ ×Σ∗).
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Suppose that Witness(x, v, w) is called. That is, [[x]]⇒∗
Ĝ
v and w ∈ {x}‡ −

{v}‡. Let the problematic derivation be

[[x]] ⇒̂
G
u0[[x1]]u1 . . . [[xk]]uk

∗⇒̂
G
u0v1u1 . . . vkuk = v , with [[xi]]

∗⇒̂
G
vi .

We partition {1, . . . , k} into IK = { i | xi ∈ K } and IF = { i | xi ∈ F }.
If there is i ∈ IF such that xi6vi /∈ L∗, we recursively call Witness(xi, vi, xi).
Suppose that xi 6 vi ⊆ L∗ for all i ∈ IF . Let

αj = u0v1u1 . . . vjujβj+1uj+1 . . . βkuk

where βi =

{
vi for i ∈ IF ;

xi for i ∈ IK ,

for j = 0, . . . , k. If w 6 α0 /∈ L∗, by

w 6 α0 ∈ {x}‡ 6 u0{x1}†u1 . . . {xk}†uk,

the rule [[x]] → u0[[x1]]u1 . . . [[xk]]uk is incorrect. Return the witnesses w ∈ {x}‡
if [[x]] ∈ N̂K and vi ∈ {xi}† for all i ∈ IF , and halt the recursive procedure.

We now suppose w6α0 ∈ L∗. On the other hand we know that w6αk /∈ L∗.
Hence one can find j such that

w 6 αj−1 = w 6 u0v1u1 . . . vj−1uj−1βjujβj+1uj+1 . . . βkuk ∈ L∗ ,

w 6 αj = w 6 u0v1u1 . . . vj−1uj−1vjujβj+1uj+1 . . . βkuk /∈ L∗ .

Here we have βj �= vj , i.e., βj = xj ∈ K. Apply Witness to the triple

〈xj , vj , 〈w1u0v1u1 . . . vj−1uj−1, ujβj+1uj+1 . . . βkukw2〉〉 (��)

where w = 〈w1, w2〉.

Lemma 13. Let Ĝ = G1,1,r(J,K,E, F ) and u ∈ L(Ĝ) − L∗. Witness(Λ, u, Λ)

runs in polynomial time in |u| and ‖Ĝ‖. Moreover G1,1,r(J
′,K,E′, F ) has strictly

less incorrect rules than Ĝ where E′ = E ∪ Witness1(Ĝ, u) and J ′ = J ∪
Witness2(Ĝ, u).

Proof. Clearly the number of recursive calls of the procedure is bounded by
the height h of the derivation tree for u, where we may assume without loss of
generality that h ≤ |u||N̂ | by prohibiting the derivation tree from containing
a vacuous circular derivation of the form A⇒+

Ĝ
A. Clearly in each recursion,

to call itself with another argument or to halt takes polynomial time in the
size |x| + |v| + |w| of the argument 〈x, v, w〉. Since [[x]] ∈ N̂ , it is enough to
give a polynomial bound on |v|+ |w|. Suppose that the last case of the recursion
happens, which is the only nontrivial case. Observing (��), one sees that |v|+ |w|
can increase by

(|vi|+ |w1u0v1u1 . . . vj−1uj−1|+ |ujβj+1uj+1 . . . βkukw2|)− (|v|+ |w1|+ |w2|)
≤ |βj+1 . . . βk| ≤ rs
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for s = max{ |x| | x ∈ K }. All in all, the computation of Witness(Λ, u, Λ) is
done in polynomial time in |u| and ‖Ĝ‖.

The latter claim of the lemma is easy to see by the construction. ��

Lemma 14. The number of times that the algorithm receives a negative coun-
terexample and the cardinality of E, J are both polynomially bounded by |P∗| and
� where � is the length of a longest counterexample given so far.

Proof. Each time the learner receives a negative counterexample, at most r el-
ements are added to J , at most one element is added to E and at least one
incorrect rule is removed. Hence the number of negative counterexamples is
no more than the number |P̂ | of rules constructed from K and F , i.e., |P̂ | ≤∑
k≤r |N̂ |k+1|K|k+1 ∈ O((|P∗|�2)2r+2) by Corollary 12 and |E ∪ J | ∈ O((r +

1)(|P∗|�2)2r+2). ��

Theorem 15. Algorithm 2 learns G(r) with a mat in polynomial time.

Proof. By Lemmas 3, 13 and 14 and Corollary 12.

7 Concluding Remarks

The language Ln of Example 2 is in L(n, 0)∩L(0, n), which can be learnt by any
of the existing algorithms by Clark [4] and by Yoshinaka [11]. Yet our algorithm
almost halves the degree of the polynomial of the updating time by Lemma 3.

It is known that the idea of the distributional learning is applied to several ex-
tensions of cfgs [7,10,12]. Our techniques are easily applied to those extensions
as well.
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