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Preface

This year’s edition of STACOM was held in conjunction with the MICCAI con-
ference (Toronto, Canada), and followed last year’s workshop, STACOM 2010
(held in 2010, Beijing, China), with the same goal of organizing an international
event that provides a forum for the discussion of the latest developments in the
areas of statistical atlases and computational imaging and modelling of the heart.
This broad aim included: cardiac mapping, image processing, atlas construction,
statistical modelling of cardiac function across different patient populations, car-
diac computational physiology, model personalization, ontological schemata for
data and results, atlas-based functional analysis, integrated functional and struc-
tural analyses, as well as the clinical applicability of these methods. STACOM
2011 again attracted participants from around the world, with 28 papers ac-
cepted and published by Springer in this volume of Lecture Notes in Computer
Science. Besides regular contributions on state-of–the-art cardiac image analysis
techniques, atlases and computational models that integrate data from large-
scale databases of heart shape, function and physiology, additional efforts of this
year’s STACOM workshop focused on imaging and modelling challenges.

The integration of cardiac models in pre-clinical and clinical platforms is
important for understanding disease, evaluating treatment, and planning inter-
vention. However, significant clinical translation of these tools is constrained by
the lack of complete and rigorous technical and clinical validation, as well as
benchmarking of the developed tools. To validate the models, available ground-
truth data capturing generic knowledge on healthy and pathological hearts are
required. Several efforts are now established to provide Web-accessible struc-
tural and functional experimental datasets for clinical, research and educational
purposes. We believe that these approaches will only be effectively developed
through collaboration across the full research scope of the cardiac imaging and
modelling communities. Last year’s STACOM workshop was complemented with
the CESC 2010 challenge, where a complete dataset containing cardiac geometry
and fiber orientations from diffusion-tensor MRI as well as epicardial transmem-
brane potentials from optical mapping (acquired at Sunnybrook Research Insti-
tute, University of Toronto) was provided in advance for the analysis of different
strategies for the personalization of electrophysiological models. This resulted
in a joint journal publication including all CESC 2010 participants, and was
recently published in Progress in Biophysics and Molecular Biology (Camara et
al, 2011).

STACOM 2011 was enhanced by the organization of three different challenges
for participants to test their computational tools on given data: an Electrophys-
iology (EP) Simulation Challenge (organized by the Sunnybrook Research In-
stitute - University of Toronto, and Inria - France), a Cardiac Motion Analysis
Challenge (organized by Kings College London and Universitat Pompeu Fabra,
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Barcelona) and a Cardiac Segmentation Challenge (organized by the University
of Auckland); each challenge is briefly described here.

The Electrophysiology (EP) Simulation Challenge was organized with the aim
to better understand structural and electrical functional properties of healthy
and infarcted hearts using a fusion of EP and (MRI) data obtained in a pre-
clinical animal model. Specifically, two datasets (acquired at Sunnybrook Re-
search Institute, Toronto) obtained in healthy and infarcted porcine hearts were
made available to the challengers in order to validate their computer models.
These datasets included in vivo EP data (i.e., electro-anatomical voltage and
isochronal maps acquired with the CARTO-XP system, Biosense Webster) and
corresponding high-resolution ex vivo 3D diffusion-weighted MRI scans (from
which the anatomy, infarct extent and fiber direction were extracted). However,
this year’s EP simulation challenge did not aim to compare the results among
challengers, but was rather focused on different applications and modelling ap-
proaches using the EP-MRI data provided. Three research groups participated in
the challenge, from the following institutions: Inria - Asclepios Project (France),
Rochester Institute of Technology (USA) and Sunnybrook Research Institute
(Toronto, Canada). Each group presented a different application to 3D MR
image-based cardiac computer modelling using one or both EP-MRI datasets.
These applications concerned forward and/or inverse theoretical problems that
apply to computational electrophysiology, and aimed to either validate simple or
complex mathematical models, to optimize the model’s parameterization from
EP measures or to detect non-invasively the infarct scar. A collate journal paper
summarizing all these EP simulation challenge results is under preparation.

Many forms of cardiac pathology affect the pattern of motion of the my-
ocardium. Analysis of this motion can be useful for diagnosis, treatment plan-
ning, treatment guidance and treatment follow-up. Echocardiography (echo) and
MRI are the imaging modalities of choice for studying myocardial motion, but
quantitative analysis can be very time-consuming and prone to inter- and intra-
observer variability. The recent development of several semi- and fully-automatic
motion analysis algorithms has the potential to make a significant clinical im-
pact in the field of cardiology. The benchmarking of these methods in terms of
accuracy and robustness is necessary in order to make the approaches feasible
for widespread clinical translation. This was the motivation for the First Car-
diac Motion Analysis Challenge (cMAC) that took place as part of the MICCAI
2011 conference. State-of-the-art imaging acquisition methods were employed to
acquire four-dimensional (4D) echo and MRI data of a left ventricular phan-
tom (at the University of Ulm, Germany) and 15 healthy volunteers (at King’s
College London, UK). These data were made available to participants in or-
der to quantify the deformation fields and subsequently compare the results
with manual ground truth annotations. Four international research groups took
part in the challenge: Fraunhofer MEVIS, Bremen, Germany; Imperial College
London/University College London, UK; Universitat Pompeu Fabra, Barcelona,
Spain; and Inria—Asclepios Project, France. Each participant quantified defor-
mation fields from either or both of the echo and MRI data. The protocols
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for the data acquisition and the methodologies and results from each of the
participants are presented within this volume. Quantitative comparison with
the ground truth and a comparison between participants will be the subject of
a future journal publication. The longevity of the availability of the data has
been assured by making the data available through the Cardiac Atlas Project
(www.cardiacatlas.org) so that researchers can use the data for future bench-
marking.

The 2011 Left Ventricular Segmentation Challenge was organized to allow
researchers to test their segmentation algorithms on a large dataset. In total,
there were 200 cases of cardiac MRI data consisting of patients with myocardial
infarction from the DETERMINE cohort, made available for this challenge from
the Cardiac Atlas Project database. Half of the data were randomly selected for
testing and the remaining ones were set for the challenge. A set of ground truth-
labeled images, manually and carefully drawn by experts, was provided in the
test set to the participants. The objective of this challenge was rather uncom-
mon compared with previous segmentation challenges. This challenge was held
as a collaborative effort between peers to produce better ground truth images
of the myocardium. As such, there was no ’winner’ and the results were pre-
sented without ranks. The Expectation-Maximization-based STAPLE method
was applied to estimate the ground truth images from all the participants. Five
automated segmentation methods and two sets of expert contours participated
in this challenge. A collation study of this segmentation challenge is presented
in these proceedings.

We hope that the results obtained by the three challenges, together with
the regular paper contributions, will act to accelerate progress in the important
areas of heart function and structure analysis.

September 2011 Oscar Camara
Ender Konukoglu

Mihaela Pop
Kawal Rhode

Maxime Sermesant
Alistair Young
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EP Challenge - STACOM’11: Forward Approaches  
to Computational Electrophysiology Using MRI-Based 
Models and In-Vivo CARTO Mapping in Swine Hearts  

Mihaela Pop1, Maxime Sermesant2, Tommaso Mansi3, Eugene Crystal1, Sudip Ghate1, 
Jatin Relan2, Charles Pierre4, Yves Coudiere5, Jennifer Barry1, Ilan Lashevsky1, 
Beiping Qiang1, Elliot R. McVeigh6, Nicholas Ayache2, and Graham A. Wright1 

1 Sunnybrook Research Institute, University of Toronto, Canada 
2 INRIA - Asclepios Project, Sophia-Antipolis, France 

3 Siemens Corporate Research, Princeton, NJ, USA 
4 University of Pau, France 

5 Inst. Mathematiques de Bordeaux, France 
6 Johns Hopkins University, Baltimore, USA 

mihaela.pop@utoronto.ca, gawright@sri.utoronto.ca  

Abstract. Our broad aim is to integrate experimental measurements (electro-
cardiographic and MR) and cardiac computer models, for a better understanding 
of transmural wave propagation in individual hearts. In this paper, we first 
describe the acquisition and processing of the data provided to the EP simulation 
challenge organized at STACOM’11. The measurements were obtained in two 
swine hearts (i.e., one healthy and one with chronic infarction) and comprise in-
vivo electro-anatomical CARTO maps (e.g., surfacic endo-/epicardial 
depolarization maps and bipolar voltage maps recorded in sinus rhythm), and 
high-resolution ex-vivo diffusion-weighted DW-MR images (voxel size < 1mm3). 
We briefly detail how we built anisotropic 3D MRI-based models for these two 
hearts, with fiber directions obtained using DW-MRI methods (which also 
allowed for infarct identification). We then focus on applications in cardiac 
modelling concerning propagation of depolarization wave, by employing forward 
mathematical approaches. Specifically, we present simulation results for the 
depolarization wave using a fast, macroscopic monodomain formalism (i.e., the 
two-variable Aliev-Panfilov model) and comparisons with measured 
depolarization times. We also include simulations obtained using the healthy heart 
and a simple Eikonal model, as well as a complex bidomain model. The results 
demonstrate small differences between computed isochrones using these 
computer models; specifically, we calculated a mean error ± S.D. of 2.8 ± 1.67 ms 
between Aliev-Panfilov and Eikonal models, and 6.1 ± 3.9 ms between Alie-
Panfilov and bidomain models, respectively. 

Keywords: electrophysiology, 3D computer modelling, cardiac DW-MRI. 

1 Introduction 

Abnormal rhythms (arrhythmias) are often associated with abnormal propagation of 
electrical wave in hearts with structural disease and are a major cause (>85%) of 
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sudden cardiac death [1]. Currently, chronic infarct areas are identified during the 
electrophysiology (EP) study using for instance the CARTO-XP electro-anatomical 
system (Biosense, Diamond, USA). This system is limited to surfacic endocardial 
and/or epicardial maps obtained invasively via catheters inserted into the heart 
cavities, under fluoroscopy. However, many patients are hemodynamically unstable 
and therefore the scar mapping is done only during the sinus rhythm; only very 
established clinical centers map the patients under pacing conditions. Thus, there is a 
strong clinical motivation to supplement the electrophysiology measurements with 
non-invasive information, like 3D anatomy and accurate scar delineation. Should this 
information is known, image-based predictive computer models could be integrated in 
treatment planning platforms and help the clinician improve therapy through 
identification of strategies most appropriate to the individual patient [2]. Hence, an 
important task is to find the location, extent and transmurality of the scar in post-
infarction patients. Clinically, this is done non-invasively with contrast-enhanced  
(c-e) MRI methods; however, identification of infarcted areas suffers from partial 
volume effects due to the slice thickness (~ 8 mm) [3]. Other methods, like non-
contrast MR could be exploited, particularly those that allow extraction of fiber 
directions. For instance, using diffusion-weighted DW-MRI methods, it was 
demonstrated in ex-vivo formalin-fixed porcine hearts studies that scars correspond 
with the regions of increased apparent diffusion coefficient (ADC) [4]. Similar 
findings were observed in-vivo, in patients with prior myocardial infarct, but these 
MR scans are in general of poor resolution because motion artifacts significantly 
affect in-vivo imaging [5].  

In addition to standard clinical evaluations using EP studies and MR imaging, 
computer modelling has been extensively used in cardiac electrophysiology to predict 
the heart's electrical activity [6,7]. Recent progress has demonstrated that image-based 
computer models can be integrated in treatment planning platforms [2]. However, 
prior to integration into routine clinical applications, such predictive models have to 
be validated/calibrated using experimental techniques selected to reflect EP 
phenomena at spatio-temporal scales similar to those in simulations. Importantly, 
these cardiac computer models need to account for myocardial tissue anisotropy; here 
the fiber directions are obtained via ex-vivo DW-MRI or atlases. Other groups 
focused to construct image-based models from normal and pathologic large animal 
hearts, with size relevant to human hearts. Some applications concerned simulations 
of virtual cases of arrhythmias using complex computer models built from noisy 
fractional anisotropy maps of dog hearts; although the results were encouraging, the 
studies lacked experimental validation [8]. Our group combined simplified 3D MRI-
based computer models with electrophysiology measures from optical fluorescence 
imaging, to validate the propagation and characteristics of action potential, as well as 
to customize several model parameters in large healthy hearts, ex-vivo [9, 10]. 
However, our final aim is to characterize post-infarction chronic scars using realistic 
in-vivo EP measures augmented with accurate 3D information from high-resolution 
ex-vivo MRI imaging, and also to complement this knowledge with insights from 
theoretical modeling. The first step in achieving this goal is the development of a pre-
clinical large-heart model that could characterize cardiac electrical and structural 
function with sufficient information, at least at a macroscopic level. This should allow 
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us to perform accurate validation and parameterization of computer models on a 
heart-basis, as well as to test various mathematical approaches of different degree of 
complexity, and test the utility and performance of associated computer models.  

We believe that the development of experimental datasets and sharing data and 
results within the community, will advance us toward this goal by addressing the 
advantages and limitations of different mathematical models. One step forward in this 
direction was already taken for the last year’s EP simulation challenge at STACOM-
CESC’10, where the participants have tested and/or calibrated their computer models 
using experimental datasets published in [9, 10]. These datasets comprised ex-vivo 
optical fluorescence images (isochronal maps of depolarization and repolarization 
phase) fused with ex-vivo DW-MR images of healthy swine hearts. A review paper 
[11] included the results from all challenge participants, focusing on consistency and 
main complementarities between various modelling approaches proposed by these 
research groups.  

The next logical step is to advance such efforts towards the applications concerning 
in-vivo EP measurements. This current challenge paper describes first in detail the 
data acquisition and processing for the EP simulation challenge organized at 
STACOM’11, where we provided the challengers with experimental datasets (in-vivo 
EP and ex-vivo MRI) obtained in healthy and chronically infarcted swine hearts. We 
then present applications in computational electrophysiology using the two 3D MRI-
based heart models (healthy and pathologic) and forward (direct) mathematical 
approaches. Specifically, we include simulation results for the depolarization wave 
using a simple macroscopic, monodomain formalism (i.e., the two-variable Aliev-
Panfilov model), as well as qualitative and quantitative comparisons with the 
measurements. We investigate if, for applications concerning only computations of 
the electrical wave propagation, this two-variable model is sufficient, and, for this, 
include comparisons between simulation results obtained with Aliev-Panfilov model, 
and simulation results obtained using other formalisms: the simplest model (i.e., 
Eikonal model) and a complex model (i.e., bidomain model). 

2 EP-CARTO and DW-MRI Data Acquisition and Processing 

We describe below the experimental steps following the order in which they were 
performed. We first completed the in-vivo EP studies. We then explanted the hearts 
and used DW-MRI to measure the myocardial fiber directions and delineate the 
infarct. These MR images were further used to build 3D heart computer models. 

2.1 In-Vivo Electrophysiology Study and Ex-Vivo MRI Study 

For the EP simulation challenge organized at STACOM’11, we included two cases in 
which the in-vivo EP study was performed in accordance to the animal protocol in a 
pre-clinical swine model approved by Sunnybrook Research Institute (Toronto, 
Canada). All electrophysiology maps described in this paper were recorded in sinus 
rhythm with the CARTO-XP electro-anatomical mapping system (Biosense, 



4 M. Pop et al. 

Diamond, USA). Specifically, the EP studies were performed in: a healthy swine, and 
a swine that had a 5-week old chronic infarct. For the pathologic case, the infarction 
was generated by occluding the left circumflex artery (LCX) for 90’-min with a 
balloon catheter; this was followed by the retraction of the balloon, reperfusion of the 
LCX-territory and scar healing.  

Figure 1 shows representative images taken during an in-vivo EP study in the 
infarcted heart. Fig 1a shows the EP catheter inserted into the cavity of LV of LCX-
infarct heart, under fluoroscopy guidance. Figure 1b shows the location of each 
recorded point on a raw mesh reconstructed with the CARTO-XP analysis software. 
Figure 1c shows the reconstructed isochronal map of the LV-epicardium  (isochrones 
5 ms apart) with latest activation time points in blue and the earliest points in red. For 
each recorded point, the following information was stored: precise geometrical 
location (via the X, Y, Z coordinates), unipolar values, bipolar voltage values, early 
activation times (EAT), late activation times (LAT). From these recordings, 
isochronal maps of the depolarization phase can be constructed and displayed, or 
exported to other software tools for further analysis.  

 

 

Fig. 1. The in-vivo EP study in the LCX-infarct heart: (a) recording EP catheter viewed under 
X-ray fluoroscopy, during its guidance into LV cavity for LV-endocardial mapping; (b) 
anatomical positions of the LV-endocardial CARTO points and associated mesh; and (c) 
reconstructed LV endocardial isochronal map (with the isochrones of depolarization times 
shown 5 ms apart)  

At the completion of the EP studies, the hearts were explanted, gently preserved in 
formalin, and imaged using a 1.5Tesla SignaExcite GE MR scanner for anatomy, 
myocardial fiber directions previously described in [9, 12], and scar delineation. For 
these two hearts we used the following MR parameters: TE = 32 ms, TR = 700 ms, 
NEX=1, b-value ~ 700 (for healthy heart) and ~500 (for LCX-infarct heart), 7 
directions for diffusion gradients, FOV/matrix = 10 cm, 256x256 acquisition matrix 
(yielding a 0.5 mm x 0.5 mm in plane spatial resolution), and an approximately 1.5 - 
1.8mm slice thickness. 

Figure 2a shows the in-vivo electro-anatomical voltage maps (EAVM) calculated 
from bipolar maps recorded in the LCX-infarct heart on the LV-endocardium and 
epicardium. To delineate the scar in these CARTO bipolar voltage maps, we used 
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clinical cut-off threshold voltage values < 1.5 mV; note that this threshold included 
dense infarct scar and peri-infarct areas (found at the border zone between dense scar 
and healthy myocardium). Figure 2b shows a 2D ex-vivo long-axis DW-MR image 
through this heart; elevated values of apparent diffusion coefficient (ADC-MRI) in 
the infarct areas are observable in the LCX territory. Very good correspondence was 
observed between the location and extent of the infarct area identified in both EP-
CARTO maps and DW-MR images. 

 

 

Fig. 2. Scar identification and characterization for the LCX-infarcted heart: (a) scar delineated 
in the endocardial EAVM (left) and epicardial EAVM (right) from bipolar maps; and b) a 2D 
long-axis view in an MR image with the scar delineated by the elevated (i.e., bright) ADC 
values compared to the values in remote, healthy tissue 

2.2 Fiber Directions from DW-MRI and Histological Evaluation of the Scar 

For both hearts, fiber directions for their corresponding anisotropic models were 
estimated from the first Eigen vectors, using reconstructed diffusion tensor images. 
Figure 3 shows the reconstructed fiber directions for both hearts. 
 

 

Fig. 3. Fiber directions from DW-MRI in the: (a) LCX-infarct heart; and (b) healthy heart 
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Histopathological analysis using Picrosirius Red stain in the LCX-infarct heart 
demonstrated dense collagen deposition, replacement of dead myocytes by fibrosis 
and severe alteration in myocardial tissue architecture in the infarct area. Figure 4 
shows a 2D short-axial image through the 3D DW-MRI volume, that matched the 
corresponding histological samples taken from the scarred tissue and from a remote 
healthy area in the LV-endocardium of the LCX-infarcted heart. The stained slide was 
then scanned at a 5-micron resolution, using an Aperio-ImageScope system and saved 
as multi-resolution digital image. 

 

Fig. 4. Chronic infarct scar identified in the DW-MRI image and corresponding histological 
slide using Picrosirius Red stain that demonstrated collagen deposition (in red), with fibrosis in 
the infarct area replacing dead myocytes 

For the construction of the 3D heart models, the anatomy of each heart was 
extracted from the un-weighted images (i.e., b=0) and then used to generate masks 
and volumetric meshes for the mathematical model; fiber directions were also 
integrated in these meshes. For the LCX-infarct heart, the 3D apparent diffusion 
coefficient (ADC) maps were further used to segment this heart into two zones: 
healthy tissue and infarct area (note that the latter is electrically inert and does not 
propagate electrical wave).  

3 Forward Problems Applied to Computational 
Electrophysiology  

3.1 A Simple Macroscopic Two-Variable Modelling Approach 

We used the macroscopic Aliev-Panfilov model, which is based on reaction-diffusion 
type of equations, and has a monodomain approach (i.e., the intra- and extracellular 
spaces are collapsed into each other and represented by “bulk” tissue properties) as 
described in [13]. The term –kV(V-a)(V-1) controls the fast processes (initiation and 
upstroke of action potential, AP) via the threshold parameter a, while r, determines 
the dynamics of the repolarization phase. In the system of equations (1)-(2) we solve 
for the AP, here noted V. We use Finite Element Methods, with an explicit Euler time 
integration scheme, as implemented in [14].  
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This simple two-variable model accounts for heart anisotropy via the diffusion tensor 
D (which depends on tissue ‘bulk’ conductivity, d). The anisotropy ratio is set to 0.25 
for a wave propagating twice as fast along the fibers. The values for model’s input 
parameters were assigned as in [15]; d was set to zero in the infarct scar (i.e., the 
electrical wave does not propagate through this scar zone).  

The 3D-heart model (anatomy and scar) of the LCX-infarct heart is shown in  
Fig 5a. The simulation results for this heart were achieved as follows: the normal 
sinus rhythm was simulated by applying a square pulse of 5 ms seconds and 
maximum amplitude (i.e., V = 1, since the output has normalized values for AP). In 
the absence of realistic Purkinje fibers integrated in the model, this stimulus was 
 

 

 

Fig. 5. Results obtained using the image-based model built for the LCX-infarct heart: (a) the 
3D MRI-based heart model; (b) the location where the stimulus was applied at the apex of the 
RV-endocardium; (c) simulated isochrones of depolarization phase represented by LAT times 
(ms), displayed in a lateral-view. Corresponding experimental isochronal maps projected onto: 
(d) LV-endocardium, (e) epicardium; and (f) absolute error between the measured 
depolarization times on the epicardium and corresponding map of simulated depolarization 
times (ms). 
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applied on the endocardium (at the apex) to mimic a normal activation wave, with an 
apex-to-base propagation. Note that in the CARTO-endocardial maps we identified a 
conduction block on the septum of left ventricle with an LBBB morphology, which 
was mimicked by applying the stimulus only at the RV-apex (see red dot in Fig. 5b). 
Figure 5c shows the simulated depolarization map (lateral-posterior view of the 
epicardium, with scar in black), with early depolarization times in red and late 
activation times in blue. Figures 5d and 5e show the experimental endocardial and 
epicardial isochronal maps (in a lateral-posterior view) projected onto the mesh, 
whereas Fig. 5f shows the error in activation times (i.e., absolute difference between 
measured and simulated depolarization times). 

Figure 6 shows a good correspondence between experimental and simulated 
isochronal maps of depolarization times, for the healthy heart. Experimental 
isochrones are represented from the RV-endocardium (Fig 6a), for LV-endocardium 
(Fig 6b), as well the epicardial maps (Fig 6c), all maps have early depolarization 
times in red, and latest activation times, LAT, in blue. The black points in Fig 6d 
(cross-section view through the heart) represent the locations where the stimuli 
(square pulse, V = 1) were applied in the 3D MRI-based computer model (selected on 
the endocardium of RV and LV); these points closely reproduced the locations of 
early activation points determined from experimental endocardial maps. The resulting 
epicardial breakthrough, had similar pattern and timing in experiment and 
simulations. 

        

Fig. 6. Experimental (a-c) and simulation (d-e) results obtained in the healthy heart 



 EP Challenge - STACOM’11 9 

For the Aliev-Panfilov model, when using time steps of 5x10-5s, the simulation 
time of 0.8s of the heart cycle on a mesh of approximately 190,000 elements (with an 
average element size of approximately 1.2 mm), is about 40 min on an Intel ® Core™ 
2 duo CPU, T5550 @1.83GHz, with 4 GB of RAM. 

3.2 Other Mathematical Models and Computation Results of Forward 
Problems 

We further investigated the feasibility of applying other mathematical approaches to 
the forward problem, in order to compute the wave propagation. For this, we selected 
two other well-established models: one simpler than the A-P model (i.e., the Eikonal 
model) and the other one more complex (i.e., the bidomain model).  

The Eikonal model is the simplest and fastest mathematical model used in cardiac 
electrophysiology [16]; thus, is attractive to clinical applications [2]. It computes only 
the wave front propagation (i.e., the depolarization phase Td of the electrical wave) 
based on the anisotropic Eikonal equation (3): 

( ) 12 =∇∇ d
t

d TDTv          (3) 

Where the v is the local speed of the wave and D is the diffusion tensor. In the fiber 
orientation coordinates, D = diag(1, ρ, ρ), where ρ is the anisotropy ratio between 
conduction velocity (i.e., speed of wave) in transverse and longitudinal directions. 

The bidomain model offers the most complete description of electrical behaviour 
of myocardium. It explicitly accounts for the current flow in the two spaces (extra-
/intercellular) through non-linear PDEs (4) and (5): 

Am(Cm(∂tVm + Iion(Vm,y,c)-Istim(x,t)) = div(Gi∇(Vm+φe))      (4) 

div((Gi+Ge)∇φe) + div(Gi∇Vm)) =0        (5) 

where Vm is the transmembrane potential, c is ion concentration (/specie), Am is the 
cellular surface to volume ratio, Cm is membrane capacitance, G is the conductance 
of a space extra- or intracellular. The system models these spaces from an electro-
static point of view; thus, these equations need to be coupled via a non-linear model 
that describes the current flow from one space into the other. In this paper, for the 
computation of this current, we use the model proposed by Tusscher-Noble-Noble-
Panfilov described in [17]. For the numerical method and algorithm, the equations are 
discretized using the P1 Lagrange FEM, and a first order implicit/explicit time-
stepping strategy. The evolution of Vm and φe is solved implicitly using the optimal 
pre-conditioner defined in [18].  For the boundary conditions of the system (4)-(5), we 
use the following constraints: Gi∇(Vm+φe)·n = 0 and Ge∇φe ·n = 0. 

Figure 7 shows a comparison of the depolarization times obtained using the three 
models. For each model, the results are shown in: top-view (Figs 7a, 7d and 7g), 
longitudinal/transmural cross-section view (Figs 7b, 7e and 7h), and anterior view, 
respectively (Figs 7c, 7f  and 7i). A good agreement between the LATs was observed, 
along with very small notable differences in the pattern of activation times and 
epicardial breakthrough. Note that, for these particular set of simulations, in all three 
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models, we started the excitation at the RV-apex and LV-apex on the endocardium. 
For the A-P and Eikonal models we used an anisotropy ratio of 0.25. For A-P, most 
parameters were set as in [15] except for d = 2 (to tune a speed of wave that resulted 
in ventricles depolarization within ~92 ms); for the Eikonal model we set a speed of 
65 cm/s (along the fiber). For the bidomain model, we used the following 
conductivities (mS/cm) for the longitudinal & transverse directions, and for the intra-
/extracellular spaces: Gi(l) = 1.741; Gi(t) = 0.193; Ge(t) = 1.970 and Ge(l) = 3.906. 
Other membrane characteristics were set to Cm = 1 mF/cm2 and Am = 250 cm-1; an 
external current of 52 μA/cm2 was applied to start the depolarization and a time step 
of 1x10-4s was used to solve explicitly the equations for ion concentrations. The time 
required to compute 0.2 s of heart cycle using the bidomain model was ~70 min, and 
less than 1 min for the Eikonal model. 

 

 

Fig. 7. Comparison between the simulated isochronal maps obtained using: (a-c) the Eikonal 
model, (d-f) the Aliev-Panfilov model; and (g-i) the Bidomain model (see more details in the text) 

The errors between simulated depolarization times obtained using the models are 
shown in Fig 8. Specifically, for the comparison between Aliev-Panfilov model and 
Eikonal model, we computed a mean error ± S.D of 2.76 ± 1.67 ms (calculated over 
all vertices in the mesh) with an RMS error 7.4 ms. For the comparison between 
Aliev-Panfilov and bidomain model, we obtained a mean error 6.1 ± 3.9 ms, and a 
12.96 ms RMS error. 
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Fig. 8. Absolute difference between computed depolarization times (ms): (a) Aliev-Panfilov vs. 
Eikonal model; and (b) Aliev-Panfilov vs. Bidomain model 

4 Discussion  

Advances leading to improved disease management and therapy planning, as well as 
outcomes assessment, would have immediate impact on the quality of life in patients 
with prior myocardial infarction. Integration of EP measures with image-based 
models is useful because it can help us understand a realistic 3D transmural 
propagation of the cardiac excitation wave. Thus, current research efforts are focused 
on improving non-invasive imaging methods, and on developing image-based 
predictive computer models using forward [8, 9, 11, 20] and inverse problems [2, 10, 
19] designed to customize such models. With this respect, sharing experimental data, 
as well as comparing modelling results between research groups are important 
milestones; the EP simulation challenge (at STACOM’10 and STACOM’11) 
represents an excellent joined effort toward achieving this goal. 

In this paper, we described in detail several steps undertaken in the development of 
a pre-clinical framework that integrates experimental in-vivo CARTO data and high-
resolution ex-vivo DW-MRI data from the two swine hearts (healthy and with chronic 
infarction), given to the STACOM'11 participants. The DW-MRI data allowed us to 
delineate the scar, as well as to determine the fiber directions, which is important to 
consider for a correct representation of tissue anisotropy. For the modelling part, we 
presented forward approaches to cardiac modelling and computed only the 
propagation of depolarization wave. Further, isochronal maps depolarization times 
were calculated, and then compared with measured depolarization times recorded by 
EP-CARTO. Our simulation results suggest that the two-variable Aliev-Panfilov 
model can give a good representation of the wave propagation. In a first 
approximation, the conductivity parameter d, which tunes the conduction velocity 
and, consequently, the depolarization times was tuned using a “trial and error” 
approach. This adjustment of d minimized the errors between simulations and 
experiments, and resulted in a good correspondence with respect to associated 
activation patterns and isochronal maps. We acknowledge that a more accurate tuning 
of model parameters could be performed by: i) partitioning the heart in smaller 
(AHA) zones, ii) analyzing the infarct heterogeneities (i.e., classify the infarct in scar 
and border zone), and iii) optimizing the parameters adjustment as per the methods 
proposed in [10, 19].  
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Fast predictive models that require short computation times are desirable, particularly 
for models aiming to be integrated into clinical platforms. Applications of cardiac 
image-based computer models, limitations, validation, parameterization, as well as 
accuracy and associated errors between predictions and measurements, are all 
important. As a preliminary test, for the healthy heart, we included simulations obtained 
using the simplest model (Eikonal) and a complex model (Bidomain); our results 
demonstrated small differences between the computed activation pattern and 
depolarization maps using these three models. In the future, we will design specific tests 
to demonstrate when simplified models fail to produce satisfactory results, and thus 
complex models should be used (in particular for modelling the pathologic cases). 

To conclude, evaluation of 3D image-based computer models performance and 
utility, as well as customization using in-vivo EP measurements will help us to use 
such models correctly, and to properly target them for different applications.  
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Abstract. Personalisation, i.e. parameter estimation of a cardiac Elec-
troPhysiology (EP) model is needed to build patient-specific models,
which could then be used to understand and predict the complex dy-
namics involved in patient’s pathology. In this paper, we present an EP
model personalisation approach applied to an infarcted porcine heart, us-
ing contact mapping data and Diffusion Tensor MRI. The contact map-
ping data was gathered during normal sinus rhythm, on the ventricles
in-vivo, endocardially as well as epicardially, using a CARTO mapping
system. The Diffusion Tensor MRI was then obtained ex-vivo, in or-
der to have the true cardiac fibre orientations, for the infarcted heart.
Both datasets were then used to build and personalise the 3D ventricular
electrophysiological model, with the proposed personalisation approach.
Secondly, the effect of using only endocardial mapping or epicardial map-
ping measurements, on the personalised EP model was also tested.

1 Introduction

Modelling of the cardiac electrophysiology has been an important research in-
terest for the last decades, but in order to translate this work into clinical ap-
plications, there is an important need for personalisation of such models, i.e.
estimation of the model parameters which best fit the simulation to the clini-
cal data. Cardiac model personalisation is required to develop predictive models
that can be used to improve therapy planning and guidance.

There is a large variety of cardiac electrophysiology models for myocyte action
potential developed at cellular and sub-cellular scales [1,2,3]. Cardiac tissue and
whole-heart electrophysiological computations of these models are based on the
principles of reaction-diffusion systems [1]. According to the reaction term com-
putation, these models can be broadly categorised as Biophysical Models (BM),
Phenomenological Models (PM) and Generic Models (GM). BM [2,3] model ionic
currents and are the most complete and complex but are less suitable for pa-
rameter estimation from clinical data due to a high computational cost and to
the lack of observability of their parameters. PM [4] are based on PDEs and are
of intermediate complexity level and less computationally expensive. GM [5,6]
represent simplified action potentials and are the least complex. Simple Eikonal
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Models (EM) [7] model the action potential propagation in the cardiac tissue
without modelling the action potential itself. They can be very fast to com-
pute [8], but less reliable in arrhythmia predictions due to the complexity of
both the refractoriness and the curvature of the wavefront.

In this paper, we present a coupled personalisation framework (EK-MS),
which is fast and combines the benefits of an Eikonal (EK) model with those of
a simplified biophysical model, the Mitchell-Schaeffer (MS) model. The fast 3D
EK model is used to estimate the tissue conductivity parameter over the ven-
tricles from the contact mapping of endocardial & epicardial surface potentials,
using an adaptive iterative algorithm. This is then used to set the conductivity
parameter of the 3D MS model, which could be then used for reliable arrhythmia
predictions.

In the past years, authors have focused on the personalisation of the PM and
MS model on 3D volumes [9,10] using optical and MR data. Recently, we have
proposed the coupled personalisation approach (EK-MS), with an application
to a patient with infarction, using non-contact mapping and 3D MRI [11]. The
contributions of this paper are: 1) Application of the EK-MS personalisation
approach to an infarcted porcine heart, using contact mapping data and DT-
MRI, and 2) Study of the effect of using either endocardial only or epicardial
only measurements, on the EP model personalisation.

2 3D Electrophysiology Model with Chronic Infarction

The models used in the EK-MS personalisation approach are simple Eikonal
(EK) model and a simplified biophysical model, the Mitchell-Schaeffer (MS)
model.

The EK model simulates the propagation of the depolarization wave in quies-
cent tissue, ignoring repolarisation phase. The EK model is governed by eikonal-
diffusion (ED) equation and is based on anisotropic Fast Marching Method
(FMM). More detailed analysis can be found in [8]. The non-linear EK model
equation is solved using a fixed point iterative method combined with a very
fast eikonal solver, on the bi-ventricular geometry, as explained in [7].

The MS model [12] is a 2-variable simplified biophysical model derived from
the 3-variable Fenton Karma (FK) ionic model [13]. It models the transmem-
brane potential as the sum of a passive diffusive current and several active re-
active currents including a sodium ion (influx) current and a potassium ion
(outflux) current. Unlike FK model, it does not model the Calcium ion current.
More detailed analysis can be found in [12]. The MS model is modelled as re-
action diffusion equations and is spatially integrated using a linear tetrahedral
mesh of the bi-ventricular myocardium, taking into account the fiber orienta-
tion as well, and is temporally integrated using a semi-implicit time integration
scheme (MCNAB) [14].

In this paper, we focus only on conductivity estimation, thus chronic scars are
modelled with low conductivity in the ischemic zones. While the gray zones (the
regions around scars) had conductivity estimated from the data, as shown later.
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However, we had shown the approach of modelling chronic scars along with APD
heterogeneity in [11].

3 Contact Mapping and MR Dataset Processing

In this paper, we performed the adjustments on an infarcted porcine heart. The
acquired data consists of contact mapping data gathered on the ventricles in-
vivo during normal sinus rhythm, endocardially as well as epicardially, using a
CARTO mapping system, and a Diffusion Tensor MRI (DT-MRI) representing
geometry and fiber orientation ex-vivo.

The 3D mapping system (CARTO) localizes the extracellular potentials at
points in 3D space and on a 3D ventricular geometry acquired by connecting all
those points, during the interventional procedure, using invasive catheters. The
measurement of extracellular potentials could be unipolar or bipolar (Fig 2(b)).
The mapping system then extracts the local activation times (LAT) for the con-
tact points in 3D space and produces a local activation map on the 3D ventricular
geometry, representing the action potential wave propagation pattern, as shown
in Fig 2(a).

The DT-MRI is used to reconstruct the cardiac fibers using the principal
eigenvector of the diffusion tensor. It is also used to create the 3D ventricular
model, as shown in Fig 1.

The 3D ventricular geometry acquired using CARTO is then registered to the
3D ventricular model. The measurement contact points of the CARTO, are then
projected on to the 3D ventricular geometry using closest points projections
(Fig 2(c & d)). Finally, the LATs measured at those points is then interpolated
on the endocardial and epicardial surface, to have a rough guess on the action
potential wave propagation, as shown in Fig 3.

The interpolated epicardial and endocardial LAT maps on the 3D ventricular
model, are then used as input for EP model personalisation. In order to penalise
the point projection and interpolation errors, we use the projection distance of
the points and the interpolated projection distance maps (Fig 4) as a spatial
penalising factor in the conductivity estimation procedure, as explained later.

4 Building Personalised Electrophysiological Model

4.1 Coupled Personalisation Approach (EK-MS)

Cardiac tissue conductivity is a crucial feature for the detection of conduction
pathologies. The Apparent Conductivity (AC) of the tissue can be measured
by a parameter d in the EK model [8]. For computational affordability reasons,
we use the simplest EK model for fast tissue conductivity estimation, with an
adaptive iterative algorithm based on gradient free optimisation, as explained
in details in [8,11]. For reliable pathological predictions with chronic scars, we
couple the personalised parameters of the EK model to a relatively more com-
plicated biophysical MS model. The coupling procedure is explained in details
in [11].
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Fig. 1. (a) Volume rendering of DT-MRI to visualize scars (bright in intensity), (b)
3D ventricular model constructed from DT-MRI, with labelled scar zones (black), (c)
cardiac fiber construction from DT-MRI, showing the fiber disorientation in and around
scars (black contour)
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Fig. 2. (a) LAT map constructed on a 3D ventricular geometry using CARTO map-
ping system, (b) Unipolar & bipolar extracellular potentials measured using invasive
catheters, (c & d) measurement contact points (red - endocardial & blue - epicardial)
gathered in 3D space using CARTO, registered and then projected on the endocardial
(c) & epicardial (d) surface respectively, of the 3D ventricular model

Fig. 3. LAT maps construction from linear interpolation of the measurement contact
points (black) for (a) endocardial and (b) epicardial surfaces of the 3D ventricular
model

The input to the algorithm are the linearly interpolated LAT maps on the
surface of the ventricular model (Fig 3). The cost function for each zone to
minimise, is adapted here, and is given as

J(dzone) =
∑

∀i∈S∩zone

(
PenaltyFactori ∗

(
LATi −DT sim

i (dzone)
))2

(1)
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Fig. 4. Projection distance calculated and interpolated from the contact points (black),
on to the endocardial surface

with vertex i in zone, belonging to the surface S having measures, DT sim are
the simulated depolarisation times from the EK model, and PenaltyFactor
is computed from the normalisation of interpolated projection distance maps
(Fig 4(b & c)), with 1.0 representing lowest distance and 8.14e−9 representing
the farthest distance.

4.2 Application

In order to assess the influence of mapping (endocardial and epicardial) details
on the model personalisation, we tested model personalisation with various con-
figurations as follows.

With Endocardial and Epicardial Mapping. In the state of the art in
clinics, simultaneous endocardial and epicardial mappings are the finest amount
of acquisition details possible for capturing the action potential wave propa-
gation dynamics during normal sinus rhythm. Thus we use the apparent con-
ductivity estimated using this mapping data, as the closest approximation of
the true tissue conductivity distribution, with the proposed personalisation ap-
proach. The mean error on activation times, after model personalisation was
15.93 ms. Fig 5(a & b) shows the activation isochrones after personalisation, and
Fig 6(a & b) shows the AC distribution, along with the residual activation time
error after optimisation.

With Endocardial Mapping. Now we use only the endocardial mapping,
to estimate the AC distribution. The mean error on activation times, after
personalisation was 15.26 ms. Fig 5(e) shows matching of the LV endocardial
isochrones with Fig 5(a) and data (Fig 3(a)), but has a large misfit of the epi-
cardial isochrones (Fig 5(f) compared against Fig 5(b) and Fig 3(b)). Thus the
reproducibility of the isochrones on the epicardial side is highly prone to errors.
This is confirmed by the large prediction errors on the epicardial surface, as
shown in Fig 7(c).
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With Epicardial Mapping. Here we use the epicardial mapping, to estimate
the AC distribution. The mean error on activation times, after personalisation
was 9.59 ms. Fig 5(c & d) shows good matching of the LV endocardial isochrones,
as well as epicardial isochrones with Fig 5(a & b) and data (Fig 3(a & b)). Thus
epicardial mapping could be sufficient enough to reproduce the true wave prop-
agation dynamics, as compared to endocardial mapping data. This is confirmed
by the low prediction errors on the endocardial surface, as shown in Fig 7(b).

Fig. 5. Volumetric activation times after personalisation using endocardial & epicar-
dial mapping (top row), only epicardial mapping (middle row) and only endocardial
mapping (bottom row)

5 Conclusion

In this work, we have shown the application of a proposed coupled personal-
isation framework to the contact mapping data of an infarcted porcine heart.
The cardiac fibre orientations estimated from DT-MRI were incorporated inside
the model personalisation for a more accurate tissue conductivity estimation.
We also tested the influence of mapping details on the model personalisation
algorithm. We found that personalisation using epicardial mapping gave a con-
ductivity estimation closest to the one obtained with personalisation using both
endocardial and epicardial mapping, and also showed a low prediction error. On
the other hand, the personalisation with endocardial mapping had an important
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Fig. 6. The first two columns show estimated AC distributions and last two columns
show residual error after personalisation, for various configurations explained
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Fig. 7. Graph: mean and standard deviation of the difference of AC values estimated
for the 3 configurations. Zero mean with low standard deviation shows good agreement
between the AC values for a given data point. Other figures show the prediction error
on the endocardial side, for personalisation with epicardial mapping (b) and on the
epicardial side, for personalisation with endocardial mapping.

deviation from the estimated distribution obtained with both endocardial &
epicardial mapping. It also had an important prediction error on the epicardial
surface. Thus, within this experimental setting, epicardial mapping proved to
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be a sufficient acquisition to reproduce a tissue conductivity distribution, closer
to the one estimated using both endocardial and epicardial mapping. This was
also the case when the personalisation was done on similar data from a clinical
case [15]. Such finding has to be tested on other configurations, for different
healthy and pathological cases.
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Abstract. Myocardial scar is the most common substrate for malignant
arrhythmia and cardiac arrest. Radiofrequency ablation, as one of the
emerging mainstream therapies, is subject to limited success rate because
of the inadequate assessment of scar substrates that currently relies on
electrophysiologic (EP) map acquired on endocardial and occasionally
epicardial surfaces. As myocardial scar is often complex with shapes vary-
ing with the depth of the myocardium, endocardial and epicardial maps
may differ substantially, and may fail to identify mid-wall fibrosis that
exist in ∼ 30% of patients with nonischemic cardiomyopathy. Alterna-
tively, noninvasive and transmural scar delineation by current imaging
techniques does not always show electrically altered functional substrates.
Participating in CESC’11, we presented a new application of the previ-
ously developed method of transmural EP imaging, where epicardial
unipolar electrograms acquired by CARTO together with MRI-derived
ventricular anatomical data of a porcine heart with chronicle myocardial
infarction were used for computing the transmural EP dynamics and sub-
sequently classifying conduction blocks of the porcine heart. Validation
was performed versus CARTO electroanatomic maps on the epicardium
and endocardium, as well as DW-MRI enhanced anatomical scars. This
allowed detailed examinations of the reported method in computing
transmural EP anomalies using only surface data and without any
condition-specific knowledge a priori, which could not be achieved with
either current EP mapping or medical imaging techniques alone.

Keywords: Transmural electrophysiology, scar delineation, myocardial
infarction, electroanatomic mapping, DW-MRI.

1 Introduction

Myocardial scar is the most common substrate for ventricular arrhythmia such
as tachycardia (VT), which could result in hemodynamic collapse with syncope
or sudden death if sustained [6]. For the management of ventricular arrhythmia,
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radiofrequency catheter ablation has emerged to be a mainstream therapy. The
current state of the art for VT ablation relies on the electroanatomic maps ac-
quired during electrophysiologic (EP) mapping, performed by moving the map-
ping catheter from site to site on the endocardial and occasionally epicardial
surfaces. The commonly-used surface voltage map acquired during sinus rhythm
represent scars as low-voltage (≤ 1.5mV ) regions [6]. More precisely, activation
map of VT provides a surface view of re-entrant circuits for localization of ab-
lation targets, though VT mapping can be very difficult because it requires the
VT to be inducible in EP laboratory and hemodynamically tolerated for some
period of time [9]. Besides being time consuming and technical challenging, the
invasive point-to-point EP mapping is confined to heart surfaces with limited
measurement sites. As myocardial scar is often complex with shapes varying
with the depth of the myocardium, endocardial and epicardial maps may differ
substantially, and may fail to identify mid-wall fibrosis that exist in ∼ 30% of pa-
tients with nonischemic cardiomyopathy [7]. Alternatively, high-resolution delay
contrast enhanced imaging [3] can be used to characterize myocardial necrosis
in the transmural dimension. Nevertheless, tomographic imaging detects only
anatomical scars but not electrically-altered functional conduction abnormality.

Computational EP imaging was motivated to achieve the strengths of both
techniques, namely, to reconstruct subject-specific EP dynamics deep into the
myocardium in a noninvasive manner, from which both structural and func-
tional electrically-altered anomalies can be delineated. Participating in the 2011
Electrophysiology Simulation Challenge (CESC’11), we presented a new ap-
plication of the previously described computational method of transmural EP
imaging [11,12] in a porcine heart with chronic infarction. This method was origi-
nally developed to combine body-surface electrocardiographic signals and image-
derived anatomic data to noninvasively produce subject-specific EP activity deep
into the myocardium [11], and to further delineate electroanatomic substrates
from the abnormal spatiotemporal EP features [12]. Adapted to the CESC’11
dataset, this study investigated the performance of the method in using epi-
cardial CARTO measurements for inferring transmural information. Validation
was carried out versus a comprehensive dataset including transmural DW-MRI
scar delineation and CARTO electroanatomic maps on both the epi- and endo-
cardium. It allowed a detailed investigation of the presented method in mapping
transmural and electrical-altered anomalies, which could not be achieved by ei-
ther the current EP mapping or tomographic imaging techniques alone. The new
application of using only epicardial maps to compute transmural and endocar-
dial information might also be of interest in clinical EP study for circumventing
the need of introducing a catheter inside the high pressure LV chamber.

2 Methods

2.1 Experimental Setup and Data Processing

The experiment was performed on the data set (in-vivo EP measurements and
3D ex-vivo MRI of the ventricles) obtained in a porcine heart with chronic
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(a) (b)

Fig. 1. (a) Snapshot of unipolar potential map on CARTO epicardial geometry, recon-
structed from 341 CARTO measurement sites. (b) Alignment of CARTO endocardial
(yellow spheres) and epicardial (line mesh) surfaces with image-derived ventricular
model (transparent purple).

infarction (approximately 5-6 weeks old), provided through STACOM’11 EP
Challenge. The in-vivo electroanatomic unipolar voltage maps on the epicardium
and the image-derived anatomical data were used as input to the proposed
method of transmural EP imaging, and the electroanatomic unipolar voltage
maps on the endocardium and 3D DW-MR scar delineation were used for vali-
dation of the computed transmural and endocardial EP and scar outcome.

More specifically, two types of input data were prepared for the study. The
anatomic data of the ventricles, including the 3D geometry and fiber structure,
were generated from 3D DW-MR images acquired ex-vivo with < 1mm3 voxel
size on a 1.5T GE Signa-Excite scanner. A finite-element mesh of the ventricles
(with 190181 elements and 36384 vertices) was made available through CESC’11.
For algorithmic and computational feasibility of the presented inverse method,
a meshfree model with 2084 nodes and associated fiber structure was generated
from the provided mesh to represent the same ventricles at the macroscopic scale
with much lower spatial resolution.

Epicardial unipolar electrograms acquired by CARTO-XP systems (Biosense
Webster, Inc., Diamond Bar, CA) were used as the input electrical signals
(Fig 1 (a)) to the algorithm. Spatial registration was performed manually be-
tween the CARTO epicardial surface and the image-derived ventricular model
(Fig 1 (b)). After alignment, the epicardial CARTO points were projected to the
closest points on a pericardial surface dilated from the epicardium of the image-
derived ventricular model so that it encloses the entire ventricles (Fig 2 (a)).
Since the epicardial electrograms were acquired point-by-point over multiple
beats, temporal alignment of these signals was done based on the best matching
QRS complexes in body surface lead III. Out of 341 epicardial CARTO points,
87 had cross correlation ≥ 90% and were selected as input signals. Fig 2 (b)
illustrates the locations of the 87 input unipolar potential signals after being
projected to the closest points on the pericardial surface, where the color of
the nodes encodes the distance between the original CARTO points and the
projected pericardial points. Note that the input signals reside mainly on the



26 L. Wang et al.

(a) (b)

Fig. 2. (a) Illustration of the pericardial surface (blue wired mesh) dilated from the
image-derived ventricular epicardium and encloses the mesh-free model of the ventricles
(red points) . (b) Locations of the input unipolar signals projected to the closest points
on the pericardium from CARTO surface; the color encodes the projection distance.

free wall of the right ventricle, and the projection error is 8.39±5.90mm with the
minimum distance 0.62mm and maximum distance 30.94mm. This introduces
extra errors into the input data for the subsequent transmural EP imaging.

2.2 Transmural EP and Scar Imaging

The previously described method of transmural EP and scar imaging [11,12] is
briefly reviewed in the following for background knowledge. This method was
originally motivated to tackle the severely ill-posed inverse problem to infer
transmural EP dynamics from body-surface electrocardiographic data. To con-
strain the otherwise non-unique inverse solution of transmural TMP dynam-
ics, a simple two-variable, phenomenological model of transmembrane potential
(TMP) dynamics (Aliev-Panfilov model) [1] was adopted. While this dimen-
sionless macroscopic model substantially simplifies the EP biophysics, models
with higher levels of complexity might aggravate the issue of identifiability given
that the observational data represent the organ-level collective EP behavior of
the whole heart. To mimic real-world applications where a priori knowledge of
specific conditions is hardly available, no patient-specific knowledge was incorpo-
rated in this model except image-derived anatomic information of the ventricles.
Therefore, electrical stimuli used to initialize the model were applied on the
experimentally-established locations of regular earliest ventricular excitation [4],
and model parameters were all fixed at literature values [1]. Relation between
transmural TMP and extracellular potential on any surface enclosing the ven-
tricles is described by quasi-static electromagnetic theory [8] and numerically
modeled as a linear mapping model [10]. Instead of the body-surface, here the
observation surface was moved to a pericardial surface enclosing the ventricles.

Estimation of subject-specific transmural TMP dynamics is formulated into
maximum a posteriori probabilistic estimation to take into account the uncer-
tainty that exist in the generic models and the input data (electrical data and
anatomic data). After transforming the physiological models into a stochastic
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(a) Computed transmural EP dynamics on the porcine heart with chronic infarction

(b) Simulated normal transmural EP dynamics on the same porcine heart

Fig. 3. Comparison of computed transmural EP dynamics versus simulation with Aliev-
Panfilov model assuming normal conditions. Color encodes the amplitude of transmem-
brane potential and black contours represent isopotential lines. Compared to the fast,
simultaneous activation of both ventricles expected in a healthy heart (b), the out-
put of condition-specific transmural EP dynamics shows conduction delay and latest
activation in the inferior-lateral wall of the LV.

state space system, TMP estimation was carried out based on the unscented
Kalman filter [5] to accommodate the nonlinearity and high dimensionality of
this problem. Model and data errors are assumed to be zero-mean Gaussian
noises with predefined covariance matrices. After obtaining the estimates of per-
sonalized transmural TMP dynamics, two primary EP features, activation time
(AT) and action potential duration (APD), are extracted and their deviances
from normal conditions are equally weighted to generate a new feature that char-
acterizes electrical conduction abnormality. K-means clustering is applied on this
feature to eventually discriminate between healthy and electrophysiologically-
altered tissues. For more details refer to [11,12].

3 Results and Discussions

Fig 3 (b) shows the constraints for transmural EP imaging, namely the generic
EP dynamics with electrical stimuli applied on regular first-excited LV and RV
endocardial sites [4]. Fig 3 (a) shows the transmural EP activation computed
under this constraint, where evident delay is exhibited particularly in inferior-
lateral LV. In addition to the conduction block located at inferior-lateral LV,
the reconstructed pattern also resembles the pattern of left bundle branch block
(LBBB) where sequential right ventricle to left ventricle activation (Fig 3 (a))
replaces the simultaneous ventricular activation (Fig 3 (b)).

The computed transmural EP dynamics was investigated at 3 levels. First,
pericardial electrograms and epicardial activation pattern generated from the
output were compared to epicardial CARTO data. Second, transmural conduc-
tion block detected by the method was validated with anatomical scar delin-
eated from DW-MRI. Note that DW-MRI only provides information regard-
ing anatomical scars, while the presented method detects electrically-altered
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(a) CARTO pts �87 (b) CARTO pts �194 (c) CARTO pts �265

Fig. 4. Examples of unipolar electrograms produced by the transmural EP dynamics
on three different CARTO measurement sites. Red solid: estimation results. Blue dot-
dash: measurements. Green dot: simulation of normal conditions.

substrates that might relate to either structural or functional anomalies. Third,
endocardial electrical activation was compared to CARTO maps acquired from
the LV endocardium. Note that currently no transmural electrical data is avail-
able and validation on endocardial data is the next best available option. Regis-
tration between the LV endocardial surface obtained by CARTO and the MR-
derived ventricular mesh was carried out manually taking into consideration the
general shape of the chamber and the location of DW-MRI enhanced scar.

Epicardial Validation: First, we investigated the electrical signals produced on
the pericardium and epicardium by the computed transmural EP. Fig 4 shows the
examples of pericardial electrograms produced by the transmural EP dynamics,
in comparison to the input measurements acquired by CARTO. For reference,
the pericardial electrograms produced by simulated normal EP dynamics are
also displayed. These simulated electrograms (green dotted line) correspond to
the generic knowledge provided to the algorithm, which differ substantially from
the CARTO measurements (blue dotted-dashed line). The algorithm was able to
assimilate the condition-specific information from the measurement, correct the
erroneous prior knowledge and produce the results close to the measurement tak-
ing into account measurement noises. The averaged relative root mean squared
error (RRMES) and correlation coefficient (CC) between the 87 estimated and
measured electrograms are 0.49 ± 0.27 and 0.83± 0.17, respectively, indicating
that the computed output resembles the measurements closely pattern-wise but
might involve larger amplitude difference on some locations.

To activation time measured on 223 epicardial CARTO points were then pro-
jected to the closest points on the image-derived ventricular epicardium. The
distance between the CARTO points and the projected epicardial points is
6.68 ± 5.54mm, ranging between 0.37mm and 33.60mm. Fig 5 compares the
computed epicardial activation maps with CARTO activation maps at antero-
lateral and inferolateral views of LV epicardium. The consistence of septal to
lateral activation and late lateral LV activation is visually apparent. Two types
of quantitative errors were calculated: the difference between the computed and
measured activation time is 6.51± 7.08ms on the 223 projected points; the dif-
ference between the computed activation time on the entire epicardial surface
(5028 points) and that linearly interpolated from the CARTO measurement is
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(a) Anterior LV epicardium (b) Inferior LV epicardium

Fig. 5. Comparison of epicardial activation maps computed from the presented method
(right) and acquired from CARTO systems (left) at anterior and inferior views of LV.
The color encodes the value of activation time in milliseconds.

8.91 ± 8.16ms. Note that in CARTO activation mapping, scar points were as-
signed activation times although it might be not showing much activity.

Transmural Validation: Second, we analyzed the computed transmural EP
features. Fig 6 (a) and (b) shows the transmural maps of activation time (AT)
and action potential duration (APD) extracted from the computed EP dynamics.
Note that if EP signals were only mapped or computed on heart surfaces, no EP
information would be available along the transmural dimension of the heart wall
as shown in Fig 6. On one hand, late activation and shortened action potential
duration of the computed EP were highlighted in inferior-lateral LV, consistent
with the location of infarct delineated from DW-MRI. On the other hand, late
activation and shortened APD also exhibit on a small area of middle-anterior
LV and septum, where no structural scars have been detected in DW-MRI.

Fig 7 (a) illustrates the transmural view of EP substrates detected by the
algorithm, which is further displayed in Fig 7 (b) in meshfree points superim-
posed with the scar mass delineated from DW-MRI. As shown, the presented
algorithm detected two major conduction blocks in the LV according to the fea-
tures of delayed AT and shortened APD. One cluster of detected electroanatomic
substrates resides in lateral-inferior LV (yellow meshfree points), primarily over-
lapping with the DW-MRI enhanced anatomical scar (light blue, red highlights
the overlapping) and extending to the adjacent areas. This is consistent with the
findings in [2] regarding the correlations between anatomically and electrically
defined substrates. The other cluster of detected conduction block (green) cor-
responds to septal wall where no structural scar is enhanced in the DW-MRI.
This corresponds to the LBBB-like transmural EP pattern and might indicate
a functional conduction delay at septum. However this can not be confirmed
with available data. In terms of AHA 17-segment division of LV, the DW-MRI
enhanced anatomical scars reside in inferior-lateral segments 11, 5, 10, 6, 16, 15,
12, 4 in descending order of percentage. The presented method clustered the
electrically-altered substrates at 4 septal segments 2, 3, 8, 9 that indicate septal
functional block, the inferior-lateral segments 4, 5, 11, 6, 16, 10, 15 that has
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(a) (b)

Fig. 6. (a) Computed transmural activation map. (b) Computed transmural map of
action potential duration. The color encodes values of activation time and action po-
tential duration, respectively.

(a) (b)

Fig. 7. (a) Detected conduction blocks. The color bar is the same as Fig 6 and encodes
the feature value for detecting block. (b) Detected conduction blocks (yellow and green)
represented by meshfree points, superimposed with DW-MRI enhanced anatomical scar
(light blue); red highlights the overlapping.

anatomical scars, and a small percentage at anterior segments 1, 3 that explains
the difference between anatomical scar and electrical dysfuntions.

Endocardial Validation: Finally, we compared the endocardial activation
maps of left ventricles to those acquired from CARTO systems. The activa-
tion time measured on 208 LV endocardial CARTO points were projected to the
closest points on the image-derived endocardium of LV. The distance between
the CARTO points and the projected endocardial points is 4.91 ± 3.58mm,
ranging between 0.06mm and 22.16mm. Fig 8 compares the computed endo-
cardial activation maps with CARTO activation maps at inferiolateral views
of the endocardium, both of which show similar activation from apex to base
and from septal to lateral where areas latest to activation reside on inferolat-
eral base wall. The difference between the computed and measured activation
time is 10.22± 8.22ms on the 208 projected points; the difference between the
computed activation time on the entire endocardial surface (2357 points) and
that linearly interpolated from the CARTO measurement is 9.68± 7.51ms.
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(a) (b)

Fig. 8. Comparison of inferiolateral LV endocardial activation maps computed from
the presented method (b) and acquired from CARTO systems (a)

Discussions: This study presented a new application of the previously-
described transmural EP imaging method to compute transmural and
endocardial EP dynamics from measured epicardium or pericardial signals.
Without any a priori subject-specific knowledge other than anatomical data,
the computed endocardial EP dynamics agree qualitatively and quantitatively
well with electroanatomic maps and the detected transmural EP substrate is
consistent with DW-MRI data. Furthermore, the computed transmural EP dy-
namics indicates a functional septal block that can not be detected in DW-MRI
while the LBBB-like EP pattern agrees well with the CARTO maps. This demon-
strated that the presented method was able to use generic EP knowledge and
limited electrical measurements to reconstruct transmural EP abnormalities that
might be of important diagnostic values and that can not be detected by either
EP mapping or medical imaging techniques alone. It also indicates a potential
application of this method in EP study to potentially circumvent some of the
complications of introducing a catheter inside the high pressure LV chamber.

Experimental validation of transmural EP imaging faces many challenges and
difficulties caused by the errors introduced in the data acquisition and process-
ing procedure. First, the CARTO surface and image-derived ventricular model
were created in different spaces and needed to be properly aligned. Second, the
projection of CARTO points to the pericardium that serves the observation sur-
face introduced extra errors into the input signals. Third, the validation was
further complicated by the errors generated in the projection of CARTO points
and the interpolation from hundreds of CARTO measurements to the entire epi-
cardial or endocardial surfaces with thousands of nodes. Furthermore, the vali-
dation using data from point-by-point mapping requires care in data recording
and processing because of the beat-beat variability and occasional preventricular
complexes (PVC’s) especially when mapping the endocardium. Rejecting epicar-
dial electrograms from dissimilar lead III beats was a reasonable way to overcome
variability of activation over different beats.

Because of these experimental challenges, a promising alternative of validation
could be performed on computer-simulated testbed, where complex ionic models
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can be used to simulate and mimic various sinus-rhythm or pacing conditions
as realistically as possible. The proposed transmural EP imaging, constrained
by macroscopic phenomenological EP model, can then be performed on these
simulated and noise-corrupted datasets and be validated with the simulated
ground truth of transmural EP and scar details.
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Abstract. This paper describes the acquisition of the multimodal
database used in the 1st Cardiac Motion Analysis Challenge. The
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datasets from a dynamic phantom and 15 datasets from healthy vol-
unteers. The MR acquisition included cine steady state free precession
(SSFP), whole-heart turbo field echo (TFE), and 4D tagged MR (tMR)
sequences. From the SSFP images, the end diastolic anatomy was ex-
tracted using a deformable model of the left ventricle (LV). The LV model
was mapped to the tMR coordinates using DICOM information. From
the LV model, 12 landmarks were generated (4 walls at 3 ventricular
levels). These landmarks were manually tracked in the tMR data over
the whole cardiac cycle by two observes using an in-house application
with 4D visualization capabilities. Finally, the LV model was registered
to the 3DUS coordinates using a point based similarity transform. Four
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(a) (b)

Fig. 1. The phantom: (a) placed inside the actuator and (b) immersed in water for
echocardiography acquisition

algorithms to be adopted in the clinical arena is the lack of proper validation
strategies. Even for algorithms with extensive in-house validation, a comparison
with state-of-the-art techniques is difficult due to differences on the evaluated
datasets (i.e. type of patients, number of cardiac phases, image quality, image
resolution).

Since 2007, some workshops within the Medical Image Computing and Com-
puter Assisted Intervention (MICCAI) conference have provided a unique op-
portunity to evaluate algorithms from multiple research groups. In the context
of a challenge, the workshop organizers provide datasets to test the algorithms.
Several researchers process the datasets with their algorithms and submit their
results to be evaluated in a unified manner. For an updated list of relevant
challenges, please visit http://www.grand-challenge.org/.

This paper describes the acquisition of the multimodal database used in the
1st Cardiac Motion Analysis Challenge (cMAC). The objective of this challenge
was to evaluate the accuracy and reproducibility of different motion analysis
algorithms. Each participant quantified myocardial motion in the left ventri-
cle from cine and/or tagged Magnetic Resonance (MR) and/or 3D ultrasound
(3DUS) modalities. Four institutions responded to the challenge and preliminary
results are presented for one volunteer data set.

2 The Data

The database includes a dynamic phantom [1] and 15 healthy volunteers. In both
cases, MR and 3DUS images were obtained.

– The phantom: the phantom was constructed with polyvinyl alcohol (PVA,
Lenticats, GeniaLab, Braunschweig, Germany). This material offers mechan-
ical durability, variable stiffness and good MR imaging properties. The phan-
tom was placed in an MR-compatible air-pressured actuator (see Fig. 1-a).
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The actuator compresses and rotates the PVA according to a preset heart
rate (in our case 60bpm). For the 3DUS acquisition, the phantom was in-
serted in a container filled with water to improve echogenicity conditions
(see Fig. 1-b). The phantom actuator was synchronized with the MR scan-
ner and echocardiography system by sending a 10mV pp electrocardiography
(ECG) waveform to the optically decoupled standard ECG monitoring unit.
The datasets were acquired at the Department of Internal Medicine II -
Cardiology, University of Ulm, Germany.

– The volunteers: fifteen healthy volunteers without clinical history of car-
diac disease were recruited (3 female, aged 28 ± 5 years). Demographics
and body surface area measurements are summarized in Table 1. The MR
and 3DUS acquisitions were obtained within 3.5 ± 3.3 days of each other.
The data was acquired at the Division of Imaging Sciences and Biomedical
Engineering, King’s College London, United Kingdom.

2.1 Ultrasound Acquisition

The ultrasound datasets were acquired from the apical view using a iE33 3D
echocardiography system (Philips Healthcare, Best, The Netherlands). Full-
volume mode was used in which several smaller imaging sectors are combined to
form a large composite volume with each smaller sector acquired in a single heart
cycle. The cardiologist was free to adjust the image processing settings to im-
prove the quality of the images. After acquiring several volumes the cardiologist
selected the best quality dataset to be uploaded for the challenge.

2.2 MR Acquisition

The MR datasets were acquired using a 3T Philips Achieva System (Philips
Healthcare, Best, The Netherlands). The MR acquisition included three types
of sequences (see Fig. 2 and Fig. 3):

– Cine Steady State Free Precession (SSFP) sequences: images were
scanned with an SSFP sequence in multiple views (TR/TE=2.9/1.5ms, flip
angle=40◦, cardiac phases=30). All images were acquired during breath-
holds of approximately 15 seconds and were gated to the vector ECG. Details
on spatial and temporal resolution of the datasets are summarized in Table 1.

– Whole-heart Turbo Field Echo (TFE) sequence: the whole heart TFE
sequence acquires an isotropic non-angulated volume (TR/TE=5.2/2.5ms,
flip angle=20◦, cardiac phases=1) [2]. Images were acquired during free
breathing with respiratory gating and at end-diastole with ECG gating. De-
tails on spatial and temporal resolution of the datasets are summarized in
Table 1.

– 4D tagged Magnetic Resonance sequence (tMR): this sequence is
obtained with three sequential breath-hold acquisitions in each orthogonal
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Fig. 2. Example images of the dynamic phantom. 3DUS= 3D ultrasound; SSFP=
Steady State Free Precession; TFE= Turbo Field Echo; tMR= 4D tagged Magnetic
Resonance.
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Fig. 3. Example images of a volunteer. 3DUS= 3D ultrasound; SSFP= Steady State
Free Precession; TFE= Turbo Field Echo; tMR= 4D tagged Magnetic Resonance.
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Table 1. Dataset description: demographics, temporal and spatial resolution

Age G BSA 3DUS 4ch SSFP 2ch SSFP sAX SSFP WH TFE tMR

pixel thk ph pixel thk ph pixel thk ph sl pixel thk ph sl pixel thk sl pixel thk ph

yr m2 mm mm mm mm mm mm mm mm mm mm mm mm

phantom n.a. n.a. n.a. 1.35 0.96 19 1.20 8 30 1.20 8 30 9 1.20 8 30 70 0.75 1.6 68 1.01 1.01 23

V1 28 M 1.73 0.66 0.58 14 1.19 8 30 1.19 8 30 14 1.25 8 30 95 0.75 1.5 111 0.96 0.96 23

V2 30 F 1.55 0.66 0.58 16 1.13 8 30 1.25 8 30 11 1.25 8 30 80 0.75 1.6 111 0.96 0.96 29

V3 29 F 1.63 0.82 0.72 11 1.25 8 30 1.25 8 30 14 1.25 8 30 90 0.75 1.5 111 0.96 0.96 26

V4 36 M 1.84 0.77 0.68 15 1.25 8 30 1.25 8 30 14 1.25 8 30 94 0.75 1.6 111 0.96 0.96 23

V5 34 M 1.92 0.82 0.72 14 1.13 8 30 1.25 8 30 14 1.25 8 30 94 0.75 1.6 111 0.96 0.96 23

V6 32 M 1.99 0.82 0.72 17 1.13 8 30 1.15 8 30 14 1.15 8 30 100 0.75 1.6 111 0.96 0.96 31

V7 27 M 2.13 0.82 0.72 14 1.13 8 30 1.15 8 30 16 1.15 8 30 100 0.75 1.6 111 0.96 0.96 31

V8 29 M 1.78 0.82 0.72 14 1.13 8 30 1.25 8 30 14 1.25 8 30 94 0.75 1.6 111 0.96 0.96 30

V9 22 M 1.84 0.82 0.72 13 1.13 8 30 1.25 8 30 14 1.25 8 30 80 0.75 1.6 111 0.96 0.96 27

V10 22 M 1.88 0.82 0.72 15 1.13 8 30 1.25 8 30 14 1.15 8 30 100 0.75 1.6 111 0.96 0.96 32

V11 30 M 1.94 0.82 0.72 13 1.13 8 30 1.25 8 30 14 1.25 8 30 80 0.75 1.6 111 0.96 0.96 24

V12 31 M 1.78 0.77 0.58 24 1.13 8 30 1.25 8 30 14 1.15 8 30 90 0.75 1.5 111 0.96 0.96 38

V13 24 F 1.61 0.96 0.72 18 1.13 8 30 1.25 8 30 14 1.15 8 30 75 0.75 1.6 111 0.96 0.96 29

V14 20 M 1.65 0.96 0.72 13 1.13 8 30 1.16 8 30 12 1.25 8 30 90 0.75 1.6 111 0.96 0.96 21

V15 20 M 2.06 0.82 0.72 13 1.13 8 30 1.16 8 30 14 1.25 8 30 90 0.75 1.6 111 0.96 0.96 25

G= gender; BSA= body surface area; 3DUS= 3D ultrasound; 4ch= four-chamber; 2ch= two-chamber; sAX= short-axis;

WH= whole heart; yr= years; pixel= in-plane pixel size; thk= slice thickness; ph= cardiac phases; sl= slices.

direction (TR/TE =7.0/3.2ms, flip angle=19-25◦, tag distance=7mm) [3].
Images were acquired with reduced field-of-view enclosing the left ventricle
(108×108×108 mm3). Depending on the heart rate of the volunteer, 23-38
time frames were acquired (see Table 1). A respiratory navigator was used to
compensate for any respiratory miss-alignment during the three sequential
acquisitions.

2.3 Distribution

All the data were provided in anonymized DICOM format following HIPAA
regulations. The imaging data were provided without any pre-processing af-
ter reconstruction. DICOM images were sorted by modality, sequence and time
frames. The original tMR images in three orthogonal directions were fused in a
grid-tagged volume sequence. The volumetric tMR datasets were converted to
VTK and NIFTI formats. The 3DUS datasets were also converted to VTK. All
format conversions were performed with GIMIAS v1.3.0 [4].

3 The Evaluation

3.1 Ground Truth

– tMR: In order to generate the ground truth from the tMR datasets, we
incorporated anatomical information from the SSFP images. Firstly, the
end diastolic frame of the tMR datasets was selected. The short-axis SSFP
dataset with the closest trigger time was selected. Secondly, the left ventricu-
lar (LV) cavity was segmented from the selected short-axis dataset by manu-
ally deforming a left ventricular model [5]. Thirdly, the manually segmented
mesh was registered to the coordinates of the tMR data using DICOM header
information (see Fig. 4).
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SSFP to tMR

SSFP to 3DUS

Short-axis Two-chamber Four-chamber

Fig. 4. A segmentation is obtained from the short-axis SSFP dataset (middle). The LV
model is registered to tMR coordinates using DICOM header information (top) and to
3DUS coordinates using a point based similarity transform (bottom). The landmarks
are displayed as red circles (middle-bottom).

From the manually segmented mesh, one landmark per wall (anterior,
lateral, posterior, septal) per ventricular level (basal, midventricular, apical)
were computed, totalling 12 landmarks per subject (see Fig. 6). These land-
marks were used as initialization points for two observers to do the manual
tracking. In order to achieve real 4D tracking of the landmark, the process
was done one landmark at a time. Each landmark was positioned on the
closest tag intersection from the 3 orthogonal directions. The landmark was
propagated to the next time frame and manually displaced to follow the tag
marks. This process was repeated until the landmark was tracked over the
whole cardiac cycle (see Fig. 5). The manually tracked landmarks will be
used to evaluate accuracy of methodologies applied in the challenge. Visual-
ization, segmentation and tracking was performed with GIMIAS v1.3.0 [4].

– 3DUS: LV model extracted from the end diastolic SSFP dataset was reg-
istered to 3DUS coordinates. Firstly, three orthogonal visualization planes
were selected to match MR acquisition planes (short-axis, four-chamber,
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Fig. 5. Results of manual landmark tracking: note the in-out-of-plane motion of the
landmarks due to our 4D tracking strategy

two-chamber). Secondly, three anatomical landmarks were marked on the
four-chamber view: start of the inter-ventricular septum at basal level, cen-
troid of the mitral valve and endocardial apex. Thirdly, with the correspond-
ing landmarks on the MR datasets, a point based similarity transform was
performed (see Fig. 4). The resulting transformation will be used to map the
ground-truth landmarks to 3DUS coordinates.

3.2 3DUS Quality Assessment

Even in healthy volunteers, either due to obesity or small rib separation, acous-
tic windows for US acquisition may be suboptimal. Therefore, the datasets were
graded according to their diagnostic quality. The datasets were assessed by con-
sensus of two expert cardiologists four weeks after the last recruitment. To avoid
bias, datasets were renamed with a randomized ID. The assessment was per-
formed at global and regional level. For regional evaluation, each myocardial
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Table 2. Quality assessment of 3DUS datasets

Basal Midventricular Apical Overall
A AL IL I IS AS A AL IL I IS AS A L I S

V1 2 2 2 2 2 2 2 2 2 2 2 2 1 2 2 1 3
V2 1 1 2 2 2 1 0 1 1 1 2 1 0 1 1 1 1
V3 1 1 2 2 2 1 1 2 2 2 2 1 0 2 1 1 2
V4 1 1 2 2 2 1 0 1 2 2 2 2 0 1 1 1 2
V5 1 1 1 2 2 1 2 1 1 2 2 2 1 2 1 2 2
V6 1 1 2 1 1 1 1 1 1 1 1 2 0 1 0 2 1
V7 0 1 2 2 2 0 0 1 2 2 1 0 0 1 1 2 0
V8 1 1 2 2 1 2 0 1 1 2 1 1 1 1 1 1 1
V9 0 1 1 2 2 0 1 2 2 2 2 0 1 1 0 1 1
V10 1 1 2 2 2 2 1 1 1 2 2 2 1 0 1 1 2
V11 1 1 2 2 1 1 1 1 2 2 2 1 1 2 1 2 2
V12 1 2 2 2 2 2 1 2 2 2 2 1 1 1 2 2 2
V13 1 1 2 2 2 1 1 1 2 2 2 2 1 2 2 1 2
V14 1 2 2 2 2 0 1 2 2 2 2 0 1 2 1 1 1
V15 1 1 1 1 2 1 1 1 2 2 2 1 0 0 1 1 2
3DUS= 3D ultrasound; A= anterior; L= lateral; I= inferior; S= septal.
Segmental scores: 0= unusable; 1= suboptimal; 2= optimal.
Overall scores: 0= unusable; 1= usable; 2= average; 3= excellent.

AHA segment was graded. Table 2 summarizes the results. The quality gradings
will be correlated with the accuracy of methodologies applied in the challenge.

4 Results

4.1 Response to the Challenge

The call for challengers raised interest from 13 worldwide groups, all of which
successfully downloaded the data. After 3 official withdrawals, we obtained 4
final submission to the challenge from the following groups (by order of sub-
mission): Fraunhofer MEVIS, Bremen, Germany; Imperial College London, UK;
Universitat Pompeu Fabra, Barcelona, Spain; INRIA-Asclepios project (Sophia-
Antipolis), France. Details on their methodology can be found in the workshop
proceedings: Statistical Atlases and Computational Models of the Heart: Imaging
and Modelling Challenges (STACOM). All the groups processed the tMR data,
while the 3DUS was processed only by INRIA and MEVIS. Table 3 summarizes
the data processed by each challenger.

Table 3. Response to the challenge

Institute Acronym Phantom Volunteers

MRI 3DUS MRI 3DUS

tMR SSFP tMR SSFP

Fraunhofer MEVIS MEVIS � � � �
Imperial College London ICL � �
Universitat Pompeu Fabra UPF � �
INRIA-Asclepios project INRIA � � � � � �
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Fig. 6. (left) Diagram representing the 12 landmarks used for manual tracking: one
landmark per wall (anterior, lateral, posterior, septal) per ventricular level (basal, mid-
ventricular, apical). (right) Box-plot of inter-observer variability for V2, were relative
error was calculated with Eq 1.

4.2 Inter-observer Variability

In order to provide initial feedback to the challengers during the workshop meet-
ing, we selected an average quality dataset (V2) to test all the deformation fields.
After obtaining the ground truth as described in Sec. 3, we calculated the inter-
observer variability for this dataset. To get a better idea of the magnitude of the
differences between observers, we calculated the relative error as:

Rerror =
distance(Lmkobs1i , Lmkobs2i )

maxDisplacement(Lmki)
(1)

where i is each landmark, distance(a, b) is the euclidian distance between points
a and b, and maxDisplacement is the maximum displacement of each landmark
i across the cardiac cycle. Fig. 6 shows a box-plot of the inter-observer variability
observed on dataset V2.

4.3 Qualitative and Quantitative Results

To visualize the results obtained by each challenger, we applied the deformation
fields to the manually segmented mesh of V2. All challengers obtained a phys-
iologically consistent result: systolic contraction (10-11 frames), isovolumetric
contraction (2-3 frames), early relaxation (7-8 frames), diastasis (3-4 frames)
and late relaxation due to atrial contraction (4 frames).

The methodology of MEVIS obtained good longitudinal and radial deforma-
tion (Fig. 7). We can also observe local inaccuracies on the antero-lateral wall,
most likely due to a loss of signal on the dataset. Incidentally, this region also
presented high inter-observer error. Quantitatively this translated into low av-
erage errors with a few outliers (Fig. 8).

The methodology of ICL generated a smooth mesh with good radial defor-
mations (Fig. 7). This is most likely due to the inclusion of SSFP information
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Fig. 7. Visual results for each challenger at end diastole and end systole
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Registration errors (average over all frames) for Volunteer 2.

Fig. 8. Box-plots of registration errors for each challenger on the dataset of V2
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in the methodology. However, the longitudinal deformation was underestimated
with respect to the ones of MEVIS and UPF. During the workshop, it was
suggested to increase the weight of the tMR information to better retrieve the
longitudinal deformation. In Fig. 8, we can observe that the methodology is
very consistent over the cardiac cycle, represented by the lack of outliers in the
box-plot.

The methodology of UPF generated a smooth mesh with good longitudi-
nal deformation. However, the radial deformation was relatively less than the
one obtained by all other participants (Fig. 7). This is most likely due to an
over-smoothing effect of the methodology. Similarly to MEVIS, we observed the
presence of outliers in the antero-lateral wall (Fig. 8).

The methodology of INRIA generated a smooth mesh. The radial deformation
was larger than the one obtained by UPF, yet slightly lower than the ones
obtained by MEVIS and ICL. The longitudinal deformation was comparable to
the one obtained by ICL.

5 Outlook

First of all, the organizers would like to thank challenge participants for their
contribution. The analysis presented in this manuscript is based on initial results
on a single dataset. Therefore, no final conclusions should be drawn from these
results. Once we establish the ground-truth for all volunteers and phantom, we
will perform a full quantitative analysis of the results and submit a collaborative
paper to a relevant journal. Our aim is to combine the deformation fields provided
by the challengers with a STAPLE-like approach [6]. Finally, efforts are underway
to make the datasets available via the Cardiac Atlas Project [7].
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Abstract. We present a fully automatic framework for cardiac motion
tracking based on non-rigid image registration for the analysis of my-
ocardial motion using both untagged and 3D tagged MR images. We
detect and track anatomical landmarks in the heart and combine this
with intensity-based motion tracking to allow accurately model cardiac
motion while significantly reduce the computational complexity. A col-
laborative similarity measure simultaneously computed in three LA views
is employed to register a sequence of images taken during the cardiac cy-
cle to a reference image taken at end-diastole. We then integrate a valve
plane tracker into the framework which uses short-axis and long-axis
untagged MR images as well as 3D tagged images to estimate a fully
four-dimensional motion field of the left ventricle.

1 Introduction

In this paper, we make two contributions: First, we propose a fully automatic
approach to identify and track important cardiac landmarks throughout the car-
diac cycle. In particular we use a machine learning approach to detect landmarks
such as the valve plane simultaneously in three LA views and then track the mo-
tion throughout the cardiac cycle. The second contribution is the combination
of complementary information from tagged and ungagged MR images using a
spatially adaptive weighting and a valve plane constraint to build an accurate
and realistic cardiac motion analysis framework.

2 Spatial and Temporal Correction

The analysis of cardiac motion information from different MR images requires a
common spatial and temporal reference space. However, there are three major
difficulties: (i) the presence of tags in 3D tagged images obscuring the anatomy,
(ii) differences in position caused by respiratory and patient motion within se-
quences and across sequences and (iii) variable temporal resolution of the dif-
ferent image sequences. Camara et al. [1] presented a registration algorithm
to correct the spatial misalignment between SSFP MR image sequences and
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CSPAMM MR image sequences, but temporal misalignment is not included. We
extend this framework for the combination of information derived from untagged
and 3D tagged MR image sequences which accounts for spatial misalignment as
well as differences in temporal resolution.

2.1 Temporal Alignment

Each frame of a MR image sequence contains a DICOM meta-tag describing
the trigger time. We define T s and T e as the trigger time of the first and last
phase respectively and N as number of frames. Hence each image sequence,
e.g. short-axis (SA), horizontal long axis (HLA), vertical long axis (VLA), 3-
chamber (3CH) untagged and 3D tagged images has such a pair of trigger times.
We define T s

ref and T e
ref as the maximum value of the trigger times respectively

and Nref as minimum value of the number of frames in each sequence. The
common temporal resolution is then defined as Δt = (T e

ref − T s
ref )/Nref . All

image sequences are resampled to this common temporal resolution using nearest
neighbour interpolation.

2.2 Spatial Alignment

The 3D tagged MR images are free from respiratory motion artifacts since res-
piratory navigators are used during the acquisition. They contain complete 3D
motion information with isotropic sampling in all 3 directions. Thus, it provides
an ideal common spatial coordinate system. The only difficulty is the presence
of tags in the image that obscure the anatomical information which is needed to
align to the untagged MR images.

Removal of Tags from 3D Tagged MR. Several techniques for tag removal
exist[6,7,1], yet none of these provided satisfactory results due to the fact that the
3D tagged MR images used here are dominated by tag patterns and show little of
the underlying anatomy. However, one can easily extract the low frequency band
by applying a FFT, band-pass filtering and inverse FFT. We have performed
this naive but effective approach for tag removal and then averaged the three 3D
detagged MR images to generate the 3D pseudo-anatomical image. We then align
the untagged MR images to the 3D pseudo-anatomical image using registration
by normalized mutual information [10].

Spatial Registration. Images from multiple cardiac MR image sequences may
be misaligned due to patient motion and different breath-hold positions during
acquisition. For short-axis untagged MR images this misalignment can also occur
between slices [1,2] as Figure 1 demonstrates. To correct these artifacts, we
extract the middle phase in the reference temporal resolution from both the
SA and LA untagged MR images. We then register all available SA and LA
untagged MR image sequences to the 3D pseudo-anatomical MR image using
rigid registration. In contrast to the work in [2] the transformation is modeled as
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(a) (b)

Fig. 1. This figure shows the 3D tagged pseudo-anatomical image overlaid with isolines
from the SA and LA images: (a) before alignment and (b) after alignment. Misalign-
ments are pointed out by red arrows.

a 3D rigid transformation rather than a 2D rigid transformation. The resulting
transformation of each slice in the middle phase is then applied to the same slice
in all other phases of the untagged MR image data.

3 Comprehensive Motion Tracking

During the cardiac cycle, the left ventricle undergoes a number of different defor-
mations including circumferential, radial and longitudinal motion. While the 3D
tagged MR images provide good information about all aspects of the motion, the
SA images may provide more information of radial motion and the LA images
may provide some extra information about the radial and longitudinal motion.

Consider a material point in the myocardium at a position p = (x, y, z)T at
time t0 = 0 that moves to another position p′ = (x′, y′, z′)T at time ti = iΔt
where Δt is the time interval between two consecutive phases and i corresponds
to the time frame. The goal of the motion tracking is to find the transformation
T for all time phases i such that T(p, ti) = p′. In this work we represent T
using a series of free-form deformations [8] as described in [3].

The estimation of the deformation field T proceeds in a sequence of registra-
tion steps. Using the spatial and temporal alignment described in section 2, all
image sequences have been mapped into a common spatial and temporal coordi-
nate system. We label the myocardium of the left ventricle at the end diastolic
(ED) phase of the untagged MR images using an automatic segmentation tool[9].
The segmentation tool propagate an probabilistic atlas to unseen image using
affine, LARM [13] and non-rigid registration [8], and using the propagated atlas
to constrain the MCEM [9] segmentation.

In addition, a gradient detector is used to highlight the epicardial and endocar-
dial contours on untagged MR images. The information from both segmentation
and the gradient-detector is combined into a spatially varying weighting function
which moderates the influence of the tagged and untagged images on the motion
tracking. We then register the images taken at time t1 to the reference image at
time t0 and obtain a transformation representing the motion of the myocardium
at time t1 [8]. We use the resulting transformation as an input for the next time
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frame and continue this process until all the time frames in the sequence are
registered to the first phase[3].

3.1 Weighted Similarity Measure

To exploit the complementary nature of the tagged and untagged MR images we
have developed a spatially adaptive weighting function that accounts for the dif-
ferent types of information available: The 3D tagged images characterise well the
motion inside the myocardium while untagged SA and LA images characterize
the motion well at the epi- and endocardial borders of the myocardium. Outside
of the myocardium there is no useful information for cardiac motion tracking
apart from papillary muscles. Thus, we would like to generate a weighting func-
tion that is zero outside the myocardial region, that maximizes the weighting of
the tagged images within the myocardium and increases the influence of the un-
tagged images at the myocardial border. The spatial weights for the tagged and
untagged images are generated for the reference image used for the registration.

The weighting for the untagged images, Wu(p), is generated by multiplica-
tion the gradient of the segmentation with the gradient of the image intensity.
Higher weighting indicates possible presents of myocardial edge which is critical
to estimation of radial motion. Let L denote the segmentation of the short-axis
MR image I. This segmentation assigns a label Λ = {Lbg, Lmyo, Lblood} to every
voxel. The probability for myocardium P (p, Lmyo) can be derived from my-
ocardium segmentation’s intensity distribution by applying a Gaussian model.
Furthermore assume that ∇Iσ denotes the gradient of image I after convolu-
tion with a Gaussian kernel G with standard deviation σ. The weights for the
untagged MR image are defined as

Wu(p) =
||∇Iσ(p)||||∇Pσ(p, Lmyo)||

max (||∇Iσ(p)||)max (||∇Pσ(p, Lmyo)||) (1)

where ||∇Iσ(p)|| and ||∇Pσ(p, Lmyo)|| are the gradient of intensity and the gra-
dient of myocardium probability at location p after convolution with a Gaussian
kernel G with standard deviation σ = 10mm respectively.

The weights for the 3D tagged image are defined as

W t(p) =

⎧⎨⎩1−Wu(p) if L(p) = Lmyo

0 otherwise
(2)

Given a weight map, we define the similarity between two images IA, IB as the
weighted normalized cross-correlation between the image intensities:

S(IA; IB ;W,T) =∑
W (p)(IA(p)− μA)(IB(T(p))− μB)√∑
W 2(p)(IA(p)− μA)2(IB(T(p))− μB)2

(3)
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For simultaneous registration of the untagged and 3D tagged images, the cor-
relation is computed separately across tagged images and untagged images and
combined into a single similarity measure:

Cs = {
∑
s∈T

|Ωs|
[
S(It,st0 , It,sti ,W t,s,T)

]
+
∑
s∈U

|Ωs|
[
S(Iu,st0 , Iu,sti ,Wu,s,T)

]}/ ∑
s∈U,T

|Ωs| (4)

Here |Ωs| denote the sum of weights in the image. Note, that the similarity
measure takes into account that different images have usually a different number
of voxels and therefore the correlation must be weighted accordingly.

4 Detection and Tracking of Cardiac Landmarks

We propose a fully automatic approach to localise and track landmarks of the
heart in LA views to provide essential information for myocardial motion track-
ing and segmentation. This approach is illustrated in Figure 2 for detection of
the mitral valve points heart across three LA views. A-priori knowledge about
the position of the landmarks is obtained based on a statistical analysis of the
location of landmarks. We use an approach akin to the marginal space learning
proposed in [12] to identify regions which are likely to contain the landmarks
of interest and then apply machine learning based landmark detector to voxels
within this region. Landmarks such as the valve annulus are tracked simultane-
ously in three LA views using template matching.

Fig. 2. This figure shows the work flow of valve plane tracking

4.1 Valve Annulus Modelling and Detection

During the cardiac cycle, the mitral valve annulus undergoes mostly longitudinal
motion along with a number of other types of deformations including circum-
ferential and radial motion. In a LV view, the valve plane can be modelled by a
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line between two valve points in each LA view. However, due the large variations
in cardiac anatomy across subjects, its position, orientation and appearance can
differ significantly across subjects. Lu et al. [5] presented a joint context method
for landmark detection, but only one LA view was considered hence generated
relatively large errors. For any machine learning based approach, a meaningful
feature set which can distinguish the object from other anatomical structures ef-
ficiently is crucial for the success of the detector. In this work a set of Haar-like
features [11] as well as steerable features[12] are used.

In addition, a-priori knowledge about the position of the valve points can be
exploited. As illustrated in Figure 3a, the line of the intersection between the
top stack of the SA view and VLA, and the line of the intersection between
HLA and VLA intersect at point O. This point O is usually approximately
half way from the valve annulus to apex and therefore can be used to roughly
anchor the valve plane. A bounding box can be generated relative to the point
O indicating the likely location of the valve plane. A Gaussian mixture model
is applied to classify the voxels in the LA images into air, soft tissue or blood.
Only those voxels labelled as soft tissue are considered as candidate valve points.
For each candidate valve point pi its normalised distance to the border of the
bounding box can be used to model the likelihood for a valve point at this
location. In addition, the SA view is usually planned at 90◦ relative to the LA
of the left ventricle that intersects the apex and the centre of the mitral valve
plane. Therefore, the orientation of the LA can be derived from the intersection
line of SA and any LA view. Ideally, if a point pi is a valve plane point, then
a second valve point qi should be present in the direction perpendicular to the
LA direction. Thus, the valve plane can be found by detecting a pair of points
{pi,qi} and no dedicated feature extraction is needed for orientation estimation,
thus reducing the computational complexity significantly. However, in practice
due the fact that the valve annulus deforms and scan planes may not be planned
in the ideal orientation, the correct orientation of the valve plane may sometimes
differ by a small angle θ . We therefore test every point pi with every point in the
neighbourhood of qj so that the set of candidate valve-planes points becomes
{pi,qj |∀i; j = i+ k}.

(a) (b)

Fig. 3. Automatic detection of valve points. (a) An example shows a bounding box (4
blue points) for the valve plane containing the possible candidate point pairs and. (b)
some of the Haar-like features used for detection.
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4.2 Simultaneous Valve Plane Detection in Multiple Views

Most clinical cardiac MR acquistions include multiple LA views such as VLA,
HLA and 3CH views. All three views can provide useful complementary infor-
mation. We therefore construct three different detectors for the three LA views
to detect a pair of valve points in VLA and HLA views, as well as the valve
point in the bottom border in 3CH (the valve point in the upper border in 3CH
varies too much across samples due to larger variability in the acquisition of 3CH
views, and hence is not used as landmark). Two layers of Adaboost [11] are cas-
caded for each detector to avoid the training to be biased by negative samples,
which are 10 times more likely than positive samples. As different features sets
are used for the two layers, the hypotheses from the first layer are maintained
to be combined with the result from the last layer.

4.3 Valve Plane Motion Tracking

As described above (section 4.1), it is reasonable to make the assumption that
the valve annulus mainly undergoes deformation in the long-axis direction during
the cardiac cycle and accompanied shrinking and expanding perpendicular to the
long-axis. To track the motion of the valve annulus we conduct template tracking
based 2D collaborative tracking simultaneously on three LA views. To perform
template tracking we define two regions encompassing the valve end points in
each LA view and use cross-correlation to track these two valve end points
location in the next time frame. In total six regions are tracked simultaneously
in three LA view.

4.4 Constrained Myocardial Motion Tracking Using Tagged and
Untagged MR Images

The valve plane is an important landmark for accurate cardiac motion estimation
but is not clearly visible in untagged SA images and tagged SA images. From
the LA views, we have tracked the valve annulus using the collabrative tracker
described in section 4.3 and construct a valve plane surface Vt for each time
frame using Delaunay triangulation.

To estimate the motion within the myocardium, a weighted similarity measure
described in section 3 is used. The constructed valve surface V is applied as one
of the constraints in non-rigid image registration to correlate the myocardial
motion to the tracked valve plane in form of a penalty term:

Cv = −
∑

p∈Vt0
D(T(p), Vti )

|Vt0 |
(5)

where Vti denotes the valve plane surface at time ti and D is the surface distance
operator (symmetric closest points).
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5 Results

We collected three LA views and SA sequences from each of the 50 patients. For
valve annulus detection, 40 sets of images are randomly chosen for learning and
10 sets are used for testing. The collaborative tracker is then applied on the 10
test cases. The accuracy of the motion tracking is computed as the Euclidean
distance between the detected valve points and points manually marked in each
time frame for 10 cases in the test set, which is reported in Figure 4. The relative
large error from patient 2 is due to the fact that patient 2 is actually a healthy
volunteer, hence its feature set is very different from that of the most samples
from the training set (38 patients plus 2 volunteers).

A transformed synthetic tagging grid is often used to access the accuracy of
tag tracking in addition to numerical result. Figure 5 shows a deformed grid at
the end systolic phase (subject v4). A full movie has been submitted to the chal-
lenge data base. A realistic estimation of cardiac motion should include radial,
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Fig. 4. Automatice motion tracking results. Tracking errors are estimated as distances
between tracked valve positions and ground truth positions for 10 patients through the
cardiac cycle. The edges of the blue box are 25th and 75th percentiles.

Fig. 5. This figure shows a synthetic grid propagated to end systolic phase and overlaid
with 3D tagged image of subject v4
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circumferential and longitudinal motion. An accurate tracking of the endocar-
dial and epicardial boundaries on short-axis MR images indicates good radial
motion estimation. Similarly, the accurate tracking of the endocardial and epicar-
dial boundaries on the long-axis MR images indicates good longitudinal motion
estimation. An example of the motion in different direction from subject v4 is
shown in Figure 6.

Fig. 6. This figure shows respectively radial longitudinal and circumferential motion
at end systolic phase and myocardial segmentation of subject v4

6 Conclusion and Future Work

In this paper we have presented a fully automatic approach to identify and track
a sparse set of landmarks throughout the cardiac cycle and conduct cardiac mo-
tion tracking using both 3D tagged as well as untagged image sequences from
short-axis and long-axis views simultaneously. The key advantage of the proposed
method is the simultaneous use of complementary motion information contained
in the tagged and untagged images. By combining complementary information
using a spatially adaptive weighting and valve plane constraint, we have success-
fully build an accurate and realistic cardiac motion analysis framework. Future
work will investigate continuous transformation model in the temporal direction
to avoid temporal alignment and small errors introduced by [4]. We will also
work on the automatic detection and tracking of a larger number of generic car-
diac landmarks. This will enable better hybrid sparse and dense motion tracking
with a view to improve speed and accuracy of the motion tracking.

Acknowledgements. This work was funded in part by EPSRC grant EP/
H019847/1.
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Abstract. We describe an application of the previously proposed
iLogDemons algorithm to the STACOM motion-tracking challenge data.
The iLogDemons algorithm is a consistent and efficient framework for
tracking left-ventricle heart tissue using an elastic incompressible non-
linear registration algorithm based on the LogDemons algorithm. This
method has shown promising results when applied to previous data-sets.
Along with having the advantages of the LogDemons algorithm such
as computing deformations that are invertible with smooth inverse, the
method has the added advantage of allowing physiological constraints
to be added to the deformation model. The registration is entirely per-
formed in the log-domain with the incompressibility constraint strongly
ensured and applied directly in the demons minimisation space. Strong
incompressibility is ensured by constraining the stationary velocity fields
that parameterise the transformations to be divergence-free in the my-
ocardium. The method is applied to a data-set of 15 volunteers and one
phantom, each with echocardiography, cine-MR and tagged-MR images.
We are able to obtain reasonable results for each modality and good
results for echocardiography images with respect to quality of the regis-
tration and computed strain curves.

1 Methodology

1.1 Cardiac Motion Tracking Using Physiological Constraints

Tracking cardiac motion from 3D images is a difficult task due to the complex
movement of the myocardium through the cardiac cycle. The left ventricular
(LV) movement includes a contraction of the ventricle with a longitudinal motion
towards the apex as well as a twisting motion from the base of the ventricle in the
circumferential direction. Common methods for motion tracking using non-rigid
registration are able to capture the dilation of the ventricle, however capturing
the twisting motion is a difficult task. The incompressible log-domain demons
algorithm described in [1] (iLogDemons for short) aims to tackle this problem
by imposing physiological constraints (such as incompressibility and elasticity
in the myocardium) in the previously proposed log-domain demons algorithm
(LogDemons) [2]. For the purpose of this work we don’t provide here a state of
the art on cardiac motion tracking algorithms, but rather refer the reader to [1]
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and references therein. We apply the iLogDemons method to a 3D data-set of 15
volunteers and one phantom with echocardiography, cine-MR and tagged-MR
image sequences. The method is described here in brief, for a more thorough
and descriptive analysis see [1].

1.2 Review of the Log-Domain Demons Algorithm

The iLogDemons algorithm is an extension of the LogDemons algorithm [2]. The
LogDemons algorithm estimates a dense non-linear transformation φ that best
aligns a template image T to a reference imageR. The transformation φ is param-
eterised by stationary velocity fields v through the exponential map φ = exp(v)
[3]. The images R and T are registered by minimising in the space of velocities
(the log-domain) the energy functional: ε(v,vc) = 1/σ2

i ‖ R − T ◦ exp(vc) ‖2L2

+1/σ2
x ‖ log(exp(−v) ◦ exp(vc)) ‖2L2

+1/σ2
d ‖ ∇v ‖2, where σ2

i relates to the
noise in the images and σ2

d controls the regularisation strength. The velocity
field v parameterises the transformation φ, and vc parameterises an intermedi-
ate transformation φc = exp(vc) that models the correspondences between the
voxels of the two images. During the optimisation step, ε(v,vc) is minimised with
respect to vc. Under the diffeomorphic update rule φc ← φ◦exp(δv), the optimal
update velocity writes δv(x) = (R(x)−T ◦φ(x))/(‖ (J(x) ‖2 +σi/σ(x))J(x). In
this equation, J(x) is the symmetric gradient J(x) = (∇R(x)+∇(T ◦φ)(x))/2.
The correspondence velocity vc is then updated using the first order approx-
imation of the Baker-Campbell-Hausdorff (BCH) formula vc = Z(v, δv) =
v+ δv+ 1/2[v, δv] + 1/12[v, [v, δv]] +O(‖ δv ‖2), where the Lie bracket [·, ·] is
defined by [v, δv] = (∇v)δv− (∇δv)v. Finally, the regularisation step estimates
the optimal regularised transformation φ by minimising ε(v,vc) with respect to
v, which is approximated by smoothing the correspondence velocity vc with a
Gaussian kernel Gσ.

1.3 Modeling Elasticity in the Myocardium

In order to incorporate an elastic regularizer into the LogDemons framework,
a consistent mathematical formulation of the LogDemons regularisation is re-
quired. In [1] a closed-form expression of the demons Gaussian regulariser
εreg(v) = 1/σ2

x ‖ log(exp(−v) ◦ exp(vc)) ‖2L2
+1/σ2

d ‖ ∇v ‖2 is given by lin-
earising the first term using the BCH formula and replacing the second term
with the infinite sum Tikhonov regulariser. We could then replace the Gaus-
sian regularizer by an elastic-like one, in a consistent way. The proposed elastic
regularizer amounts to filtering the correspondence velocities by the elastic-like
kernel:

v =

(
GσId+

σ2κ

1 + κ
HGσ

)
� vc = Gσ,κ � vc (1)

where σ2 = 2/σ2
d, HGσ is the Hessian of the Gaussian kernel Gσ and Gσ,κ is

the elastic-like vector filter. In this formulation, κ > 0 penalises the global com-
pressibility, and setting κ = 0 gives the Gaussian filter used in the LogDemons
algorithm.
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1.4 Incorporating Strong Incompressibility in the Myocardium

Incorporating incompressibility into the LogDemons consists in constraining the
velocity fields v to be divergence-free. Demons optimisation step is not modified,
as it optimises vc only, but demons regularisation energy is now optimised un-
der the divergence-free constraint, which amounts to minimising the Lagrange
function:

P (v, p) =
1

σ2
x

‖ vc − v ‖2L2
+

∫
Ω

+∞∑
k=1

Qk
el(v)

σ2
xσ

2k
d

− 2

σ2
x

∫
Ω

p∇ · v. (2)

whereQk
el is the k

th order isotropic differential quadratic form (IDQF) of a vector
field v defined by Qk

el(v) = αkδi1...ikvik+1
δi1...ikvik+1

+βkδi1...ikvik+1
δi2...ikvi1 . In

this equation, the Lagrange multiplier p is a scalar function of the Sobolev space
H1

0 (Ω) that vanishes at infinity. The second term is the elastic-like regularizer
that leads to the filter previously mentioned. We refer the reader to [1] for details.

Optima of (2) are found by solving δvP (v, p) = 0:

v+

∞∑
k=1

(−1)k

σ2k
d

(αkΔ
kv+ βkΔ

k−1∇∇Tv) = vc −∇p (3)

with p = 0 at the domain boundaries δΩ. The divergence of (3) under the optimal
condition ∇ · v = 0 yields the Poisson equation Δp = ∇ · vc with 0-Dirichlet
boundary conditions, which can be solved independently of v to get p. The right
hand side of (3) is thus the L2 projection of vc onto the space of divergence-
free vector fields. Computationally, the divergence-free constraint on the velocity
fields is enforced by smoothing the velocity field then projecting onto the space
of divergence-free velocity fields. This is theoretically the same as projecting
onto the space of divergence-free velocity fields then smoothing the results since
convolution and derivatives commute (up to issues at the boundary).

Algorithm 1 summarises the main steps of the method. Implementation of
this algorithm is described in the following section. A more thorough description
of the derivations of the previous equations can be found in [1].

Algorithm 1. iLogDemons: Incompressible Elastic LogDemons Registration

Require: Stationary velocity field v0. Usually v0 = 0 i.e. φ0 = Id.
1: loop {over n until convergence}
2: Compute the update velocity: δvn (see [1]).
3: Fluid-like regularisation: δvn ← Gσf � δvn , Gσf is a Gaussian kernel.

4: Update the correspondence velocity: vn ← Z(vn−1, δvn) (see [2]).
5: Elastic-like regularisation: vn ← Gσ,κ � vn (see [1]).
6: Solve: Δp = ∇ · vn with 0-Dirichlet boundary conditions.
7: Project the velocity field: vn ← vn −∇p.
8: Update the warped image T ◦ φn = T ◦ exp(vn).
9: return v, φ = exp(v) and φ−1 = exp(−v).
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2 Implementation

The algorithm has been implemented using ITK and the open source implemen-
tation of the LogDemons algorithm [4]. The Poisson equation (which is solved
at the incompressible domain) is discretised on the image grid using finite dif-
ference schemes [5] as the incompressible domain Γ may be of irregular shape.
Image gradients are computed with periodic boundary conditions over the entire
image domain [4] and the Gaussian filters are implemented with ITK recursive
filters.

Despite the additional constraints, the complexity of the algorithm remains
reasonable with respect to the LogDemons algorithm. Demons update velocity
is computed at each voxel. The elastic-like filter is computed using Gaussian
convolutions, therefore no significant overhead is added to the original Gaussian
filtering. The complexity of the divergence-free projector directly depends on the
number of voxels of the incompressible domain Γ .

The algorithm requires computing i) the divergence of the velocity field, ii)
the gradient of the pressure field p, and iii) solving a linear system with n × n
elements, where n is the number of voxels of the incompressible domain. The
divergence and gradient operators are linear in the number of voxels. The Poisson
Equation is solved at each iteration using iterative solvers like GMRES [6].

The codes are written in C++ and require as input the fixed image file and
moving image file, as well as optional input of the mask image file, and regis-
tration parameters. The parameters used in the registration are summarized in
the table below. These values were chosen based on tests performed on similar
data-sets that concluded that the key parameter of interest is σ, which defines
the weight of the Gaussian smoothing of the velocity field (in mm). The original
voxel size of the images are0.67×0.68×0.58 for echocardiography, 1.25×1.25×8
for cine-MR and 0.96× 0.96× 0.96 for tagged-MR. The choice of σ is generally
based on the voxel size to be around 1-2 times the largest original voxel size.
Given the large difference in voxel size for cine-MR σ was a trade-off between the
largest and smallest voxel size. More levels were used for the echocardiography
sequences to speed up convergence of the simulation. This could also be done
for the cine-MR sequences but was not considered necessary in this case. For
the tagged-MR sequences, increasing the number of multi-resolution levels can
remove the tags from under-sampling.

3 Image Pre-processing

In order to apply the algorithm to the different data types, some pre-processing
is needed to prepare the data. The method is defined in a way such that the user
can give as input a region (which we define as a binary image with value 1 in
the incompressible region and value 0 outside) where the incompressibility con-
straint is imposed. This region is defined at one time-frame only (end diastole).
If no input is given the entire image is constrained to be incompressible, other-
wise the user can turn off the incompressibility constraint (giving the standard
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Input parameters: Echo Cine Tag

Multi-resolution levels (frame-by-frame registration) 3 2 2
Multi-resolution levels (refinement step) 2 1 1
Number of iterations / level 100 100 100
Sigma (update field) in mm 0.5 0.5 0.5
Kappa (update field) in mm 0 0 0
Sigma (stationary velocity field) in mm 0.5 2 2
Kappa (stationary velocity field) in mm 1 1 1
Incompressibility update field (0-Disable,1-Enable) 0 0 0
Incompressibility velocity field (0-Disable,1-Enable) 1 1 1

LogDemons algorithm). Therefore, in order to use the iLogDemons algorithm,
we need to define the region where we impose the incompressibility constraint by
delineating the left ventricle myocardium using image segmentation tools (since
in this case we are interested in the deformation of the left ventricle). Note that
for the cine-MR sequences we segmented also the right ventricle since it is clearly
visible in all the images and provides added information to the registration.

Myocardium Segmentation to Define the Incompressible Region. For each image
sequence we used an interactive 3D segmentation tool that builds a 3D mask im-
age and mesh. Control points are added by the user to define the inside, outside,
and border of the region, from which a 3D mesh is constructed using an implicit
variational surfaces approach. The tool is included within the CardioViz3D soft-
ware package available for download1. For further details on the tool see [7].
We segmented the LV endocardium and the LV epicardium and then applied
arithmetic tools to obtain the LV myocardium image. We then dilate the result-
ing mask to ensure that the full myocardium is covered and to avoid possible
boundary effects. The incompressibility domain is shown in yellow for each of
the the imaging modalities (see Fig. 1). A screenshot of the segmentation tool
is shown in Fig. 2.

Isotropic Resampling. The cine-MR images have anisotropic voxel sizes. To cor-
rect for this, we re-sampled the voxels to be isotropic in all directions. Isotropic
voxel size improves the registration since the transformation is defined on a grid
with enough resolution to avoid ”aliasing” effects (as is true for any demons
algorithm). The echocardiography and tagged-MR image sequences had already
isotropic voxels.

Contrast Enhancement. To enhance the image contrast we clamped the tails of
the grey-level histogram to exclude the 1st and 99th quantiles. The grey level
intensities were then normalized for each slice using a fixed scale. This was done
for each image in the sequence independently. An example of the before and
after image is shown in Fig 3. This processing also reduced the effects of tag
fading, thus further improving registration results.

1 http://www-sop.inria.fr/asclepios/software/CardioViz3D/

http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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Fig. 1. The incompressibility domain shown on a cine-MR image (left), tagged-MR
image (center) and echocardiography image (right). This domain defines where the
incompressibility constraint is enforced in the registration algorithm.

Fig. 2. A screenshot of the interactive segmentation tool in CardioViz3D which can be
downloaded from http://www-sop.inria.fr/asclepios/software/CardioViz3D/. The tool
requires the user to place control points, from which a surface is build using implicit
variational surfaces approach.

Fig. 3. Original image (left) and processed image (right) after histogram clamping and
normalization to improve image contrast
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4 Application to Challenge Data

The algorithm was applied to a data-set of 15 volunteers and one phantom, each
with cine-MR, tagged-MR and echocardiography images. The resulting defor-
mation fields for each modality are included in the motion tracking challenge.
To demonstrate the performance of this method we show the results for each
modality for one patient from the data-set of 15 volunteers as well as the re-
sults for the phantom data. Similar results were obtained for the remaining
volunteers.

4.1 Results for Echocardiography Sequences

The method was first applied to echocardiography image sequences. In this case,
the images show well the endocardium (inside the heart) but the epicardium is
difficult to see, particularly in the free wall. However, the motion is more ap-
parent in the echocardiography sequences than in cine-MR due to the speckle
that is ”stitched” to the muscle and thus follows it as the heart deforms, though
this speckle is consistent only between few time frames. Figure 4 (first two rows)
shows one patient image at full contraction (systole) with the mask propagated
using the deformation field computed in the registration overlaid on the image
and similarly for the phantom. The masked deformation field is shown on the
patient and phantom at full contraction to illustrate the direction and mag-
nitude of motion. In each case the registration captures the expected longi-
tudinal contraction, and circumferential twisting of the ventricle. We can also
observe that, although it is difficult to distinguish clearly the epicardium for this
modality, the algorithm is able to produce reasonable strain curves, as shown
in Fig 5.

4.2 Results for Cine-MR Image Sequences

The algorithm was applied to the short-axis cine-MR images. These images show
clearly the myocardium, though there is little information in the apex due to too
few slices in the through plane. The algorithm is able to capture a realistic motion
of the myocardium, as shown in the middle two rows of Fig 4. The strain curves
for cine-MR are under-estimated mainly due to lack of texture information in the
images but show the expected trends (increase in strain towards peak systole,
followed by decrease at rest (see Fig 5).

4.3 Results for Tagged-MR Image Sequences

As expected, the tagged-MR registration captures the twisting motion of the
myocardium very well, this is particularly evident in the phantom (see Fig 4
bottom row second to the right), as well as the longitudinal contraction. The
strain curves for the tagged-MR data shown in Fig 5 show a reasonable trend,
however the standard deviation over the given regions is high in this case.
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Fig. 4. Top row: Long axis and short axis views of echocardiography images for one
patient (left two columns) and the phantom (right two columns) shown at full contrac-
tion overlaid with the mask deformed by the deformation computed using iLogDemons.
Second row: Two views of the computed deformation field (normal of intensities and
vectors) shown only in the mask region for one patient image (left columns) and the
phantom (right columns). Similarly for cine-MR (third and fourth rows) and tagged-
MR (fifth and sixth rows). For each modality a realistic motion is obtained (rows one,
three and five), as well as the desired direction and magnitude of motion (rows two,
four and six), particularly for the phantom. In particular, the longitudinal motion cap-
tured by the algorithm can be seen by the vectors pointing downwards towards the
apex in the long axis views of rows two, four and six, and the circumferential motion
can be seen in the short axis views where the vectors appear to be wrapping around
the muscle to an extent.
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5 Strain Estimation

The strain curves in each of the 17 AHA regions in each of the radial, circum-
ferential and longitudinal directions were computed for each of the modalities.
The strain was computed using the 3D Lagrangian finite strain tensor

E(x) =
1

2
[∇u(x) +∇uT (x) +∇uT (x)∇u(x)] (4)

for the estimated displacement u(x) from the iLogDemons registration at the
spatial positions x. The computed strain tensors were then projected onto a local
prolate coordinate system as described in [1].

Fig. 5. Strain curves in the radial (left), circumferential (middle) and longitudinal
(right) directions for echocardiography sequence (top row), cine-MR sequence (middle
row) and tagged-MR sequence (bottom row) for one subject. Mean (solid line) and
standard deviation (dashed line) are shown for one patient in green, and the mean
and standard deviations for systolic strain reported in [8] are shown in blue. Note that
the curves have not been temporally synchronized. We can see that the magnitudes
are under-estimated, though the curve trends are consistent with what is expected
with a peak strain at peak contraction in the radial direction, minimum strain at peak
contraction for circumferential and longitudinal strain.
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The strain curves for each modality in each direction are shown in Fig 5. The
curves show a good consistency between the modalities in respect to curve trends,
with the strain rising to a peak in the middle of the cycle at peak systole, and
decreasing back towards zero (note that the curves are not temporally synchro-
nized). The curves for the echocardiography sequence show a good agreement
to those previously found for cine-MR and tagged-MR presented in [1]. How-
ever, the curves for the cine-MR sequence show less consistency with previously
published results in [8], as they are under-estimated in all directions. Possible
reasons for this could be too much smoothing, a lack of texture information,
poor image resolution or errors in the tracking. The curves of the standard de-
viation among the zones shown are similar to the mean curves shown in green,
which displays the consistency among the AHA regions which is expected in
healthy subjects with synchronized movement among the regions. Note that
here we exclude the apical regions since the apex is not clearly visible in all
images.

6 Discussion

In general, this method provides reasonable results for tracking the myocardium
in the three modalities. In particular, the method gives good results for the
echocardiography sequences for both the tracking and estimation of strain even
given data with poor visibility and little structural information. The method
is particularly useful for cardiac motion tracking due to the fact that it can
be applied to the imaging modalities that are most commonly used in
cardiology.

6.1 Incompressibility Constraint

We discuss here the advantages and disadvantages of enforcing the incompress-
ibility constraint in the myocardium. The constraint was integrated into the
LogDemons method initially to be used on cine-MR sequences, which are known
to exhibit only apparent motion in the image. For this reason, it seemed natu-
ral to constrain the myocardium to be incompressible to reduce the number of
unknowns to force a circumferential and longitudinal deformation when there
is a radial contraction/expansion. In the case of echocardiography sequences
and tagged-MR sequences, there is more texture information in the image that
aids in capturing this motion (speckles in echocardiography images, tag grids
in tagged-MR). Nonetheless, for the purposes of the challenge we applied the
method to all modalities to analyse the results.

Myocardium Segmentation. Since the method requires a mask of the myocard-
ium, we segmented these prior to running the algorithm using the tool described
in Section 3. The incompressibility constraint relies heavily on the accuracy of the
segmentation, therefore errors in the tracking can arise due to mis-segmentation
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of the tissue. This is a problem in particular for the echocardiography and tagged-
MR images, which are known to be hard to segment given the poor image quality,
poor visibility of the myocardium and noise from the top of the cone in echo
images. However, this is the case for any method using localized incompressibility
constraint to track the myocardium. In this work, we used a binary mask for the
myocardium. To avoid possible problems related to the boundary conditions, we
dilated the mask by 2 voxels.

Constrained Incompressibility vs. Compressibility. A common point of discussion
for constraining the myocardium to be incompressible is that the myocardium is
not in fact fully incompressible. In the literature, the myocardium is observed to
have a volume change of around 5% [9]. In the case of the LogDemons algorithm,
there is no constraint on the compressibility of the myocardium, which results in
up to 30% volume change, compared to less than 7% of numerical volume change
for the iLogDemons algorithm (see Fig 6). Therefore, while the iLogDemons
algorithm may under-estimate the volume change in general, with the uncon-
strained LogDemons algorithm it can be greatly-overestimated. Furthermore,
improved strain curves were obtained in [1] compared to those computed from
the LogDemons algorithm. Hence, the incompressibility constraint is a useful
prior for cardiac motion tracking, though penalising rather than constraining
the compressibility may be more physiologically realistic.

Fig. 6. Average jacobian determinant in each of the 17 AHA regions for the LogDemons
algorithm (top row) and iLogDemons (bottom row) for each of the modalities (echo-
left column, cine-MR - centre column, tagged-MR - right column). The iLogDemons
algorithm constrains the compressibility to be less than 7% for each modality compared
to up to 30% compressibility for LogDemons.



66 K. McLeod et al.

6.2 Field of View

In some of the sequences in the challenge data-set, the myocardium was on or
very close to the border of the image, particularly in the tagged-MR sequences
which have a very narrow field of view. How the image and the deformation
are treated at the boundary of the image (extrapolated to invisible data) is a
key problem in most registration algorithms. Currently the iLogDemons algo-
rithm works in such a way that the intensities on the border of the image are
extrapolated outside the image in a given region.

7 Conclusion

The iLogDemons algorithm was applied to a data-set of 15 subjects and one
phantom each with an echocardiography, cine-MR and tagged-MR image se-
quence. This method was developed for the heart to model elasticity of the
tissue and incompressibility in the myocardium. The results show that given few
changes in the input parameters, the method is able to retrieve realistic motion
of the heart as well as reasonable strain curves for each of the three modali-
ties and is thus a versatile registration algorithm for cardiac motion tracking.
However, future work is needed to further analyse the incompressibility prior,
possibly including a change in the way the prior is incorporated into the model
by means of a penalisation of the compressibility rather than the current method
of constraining the velocity fields to be divergence-free.

Acknowledgements. This project was partially funded by the Care4Me ITEA2
project.
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Abstract. This paper presents strain quantification results obtained
from theTaggedMagnetic Resonance Imaging (TMRI) sequences acquired
for the 1st cardiac Motion Analysis Challenge (cMAC). We applied the
Temporal Diffeomorphic Free Form Deformation (TDFFD) algorithm to
the phantom and the 15 healthy volunteers of the cMAC database. The
TDFFD was modified in two ways. First, we modified the similarity met-
ric to incorporate frame to frame intensity differences. Second, on volun-
teer sequences, we performed the tracking backward in time since the first
frames did not show the contrast between blood and myocardium, making
these frames poor choices of reference.

On the phantom, we propagated a grid adjusted to tag lines to all
frames for visually assessing the influence of the different algorithmic
parameters. The weight between the two metric terms appeared to be
a critical parameter for making a compromise between good tag track-
ing while preventing drifts and avoiding tag jumps. For each volunteer, a
volumetric mesh was defined in the Steady-State Free Precession (SSFP)
image, at the closest cardiac time from the last frame of the tagging se-
quence. Uniform strain patterns were observed over all myocardial seg-
ments, as physiologically expected.

1 Introduction

TMRI provides non invasively image markers for tracking tissue motion and de-
formation along the cardiac cycle. The introduction of CSPAMM [1] efficiently
solved tag fading issues that were traditionally hampering the analysis of TMRI
data in diastole. Breathing artifacts producing unaligned slices have been cor-
rected by the introduction of navigator-driven protocols and the move to fully
3D acquisitions. In [3], a CSPAMM-based protocol was proposed by performing
three acquisitions sequentially with line tag preparation in each orthogonal di-
rection. Each of these three acquisitions is performed in a single breath-hold of
18 heartbeats duration and retrospectively corrected for misalignment using a
respiratory navigator.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 68–77, 2012.
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Fig. 1. Remeshing process: From (a) the LV mesh, extract (b) endocardial surface,
and (c) map it to a disk, (d) correct the mapping by moving the apical point to the
center, (e) create a new parametrization that maps the new vertices onto the surface
and (f,g,h) add AHA regions, (i) solve Laplace equation in 3D, (j) produce volumetric
mesh with 3 layers of wedge elements (the middle layer was hidden for clarity)

In this paper, we extend the TDFFD algorithm [4], initially designed for 3D
US images quantification and applied it to the 1st cMAC TMRI database. We
present and discuss strain quantification results on the set of healthy volunteers
and the phantom acquisitions.

2 Methods

2.1 Preprocessing

The cMAC database was acquired according to the imaging protocols defined in
[5]. In this paper, we worked on the resampled grid TMRI images. For obtaining
these fused images, the three images resulting from each acquisition direction
were first resampled to a common reference space (usually taken as the short
axis space) with isotropic voxel resolution. The geometric mean of intensities of
the three resampled volumes were then computed at each voxel to produce the
reconstructed TMRI images with a tagging grid pattern, as shown in Fig. 2(c,d).

2.2 Segmentation

Myocardial borders were defined on the reference image (here taken as the last
frame of the sequence) by segmenting the SSFP images. The corresponding frame
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(a) (b) (c) (d)

Fig. 2. Segmentation obtained from the SSFP short axis image (a,b) mapped using
the DICOM transformation to the TMRI image (c,d)

in the SSFP sequence was selected by looking for the closest trigger time. The left
ventricular (LV) cavity was then segmented from the selected short axis dataset
by a human observer experienced in cardiac magnetic resonance postprocessing.
3D meshes of the LV were obtained by manually deforming a LV model [6]. Both
the visualization and the segmentation was performed with GIMIAS v1.3.01. The
manually segmented mesh was then registered to the coordinates of the TMRI
sequence using DICOM header information. The result of mapping the SSFP
segmentation on the TMRI image is shown in Fig. 2 for the first volunteer.

2.3 Mesh Postprocessing

The goal of this postprocessing is to produce a mesh meeting the following re-
quirements: 1) to provide a regular definition of the 17 American Heart Associa-
tion (AHA) segments, 2) to provide a definition of the local radial direction that
is consistent at endo- and epicardium and 3) to be a volumetric mesh for quan-
tifying strain in the whole endocardium. We introduce here a two-step pipeline
meeting these requirements.

Imposing a regular mesh structure for improved definition of AHA segments.
Any surface, homeomorphic to a disk, can be mapped to a disk by requiring
that every coordinate has a vanishing Laplacian. We want to compute a bijective
mapping ϕ : M → D ⊂ R

2, where M is a surface and D is a disk. First we need
to define the boundary ∂D of D by uniformly sampling a circle (a unit circle
for simplicity), onto which we want to map the boundary ∂M. Therefore, for
every point of ∂M there is a corresponding point on the disk boundary ∂D. The
computed mapping will give us the coordinates of the remaining points inside
the disk. Let us assume that the disk is in the XY coordinate plane, and the
boundary coordinates are given by vector-columns x0 and y0 (concatenation of x
and y coordinates of all boundary points). Let LM\∂M be the Laplacian matrix
of the mesh that represents the surface M with the rows corresponding to its
boundary ∂M removed. Let x∂D, y∂D, xD\∂D and yD\∂D be the x,y coordinates
of the points on the disk (the ones which we are calculating and that define our

1 http://www.gimias.org

http://www.gimias.org
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Fig. 3. Propagation of a synthetic grid using the TDFFD tracking results for 3 different
λ values in Eq. 2. Drift errors (top row) and tag jumps (bottom row) are highlighted
using red ellipses.

mapping) corresponding to the boundary and the interior, respectively. Then, the
following two systems of linear equations give the desired mapping (vectors x and
y), while the connectivity information is retained from the mesh representation
of M [7]: {

LM\∂M · xD\∂D = 0
x∂D = x0

;

{
LM\∂M · yD\∂D = 0

y∂D = y0
(1)

The above methodology provides a simple method for mapping endocardium to
a disk, where the edge of the endocardium (Fig. 1b) is mapped to an uniformly
sampled circumference of the disk (Fig. 1c). However, it is in our interest to map
the cardiac apex to the center of the disk. We employ the mass spring model to
displace the apical point to the center while uniformly spreading the cell defor-
mation to all the cells (Fig. 1d). Given this mapping, we can impose a regular
mesh structure by generating vertices as points of intersection of concentric cir-
cles and rays emanating from the center (Fig. 1e). It is easy now to compute
a transformation between Fig. 1d and Fig. 1e through barycentric coordinates.
This transformation allows us to generate a new mesh (Fig. 1g) whereupon it
is easy to define the 17 AHA segments (Fig. 1f), therefore satisfying the first
requirement.
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Fig. 4. Evolution of radial and circumferential strains for the first volunteer over the
cardiac cycle, plotted using a colormap. An animated version of this figure is available
at http://mathieu.decraene.info/stacom11/strain.gif .

Volumetric mesh generation by Laplace streamlines sampling. The generation of
the volumetric mesh (third requirement) follows 4 steps:

– generate an image, between epi- and endocardium, that is a solution to
Laplace equation ΔΨ = 0, by successive over relaxation (see Fig. 1i, Δ is the
Laplace operator)

– compute streamlines of the normalized gradient of Ψ starting from each
endocardial vertex towards the epicardial surface

– generate layers of vertices equidistantly along the line connecting the end-
points of the streamlines

– use the connectivity information of the endocardial surface mesh to generate
6-node wedge elements connecting all the layers (Fig. 1j)

At each node, the direction of the outgoing streamline is taken as radial direction.
This ensures a consistent definition of the normal direction across the different
‘layers’ of the volumetric mesh (second requirement).

2.4 Motion and Deformation Quantification

The TDFFD algorithm described in [4] optimizes a 4D velocity field parametrized
by B-Spline spatiotemporal kernels. The advantage of representing the velocity
rather than the displacement is to introduce temporal consistency in the re-
covered transformation, i.e., that motion at a given time point depends on all
previous times. In this paper, the TDFFD algorithm was modified in two as-
pects. First, the tracking was performed backward in time starting from the last
image. This option was taken because in the first images of a TMRI sequence,
the blood is magnetized in the same way as the tissue. The distinction between
blood and myocardial borders is therefore invisible, making the first frames a
poor choice of reference.

http://mathieu.decraene.info/stacom11/strain.gif
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Fig. 5. Longitudinal, circumferential and radial strains for Volunteers #1 to #5 of the
cMAC database plotted as a function of time (normalized by one heart period)

The second change affects the similarity metric. The original TDFFD simi-
larity metric [4] sums the squared intensity differences between each image with
respect to the first image in the sequence. This choice was shown to be efficient
for limiting the accumulation of motion errors generating drift effects. However,
quantifying similarity from frame to frame is expected to be more sensitive to
small incremental displacements. It is also more robust to possible intensity
changes due to smooth alterations of tissue magnetization in time. For this rea-
son, we extended the original metric by summing similarities quantified both
from frame to frame and to the reference image. For this, we consider two sets
of samples. The first set of samples is defined as X = {xi, i ∈ [1, NX ]} where all
xi belongs to the space of coordinates of the reference image. The second set of
samples is taken through the full 3D+t space: Y = {(yk, fk), k ∈ [1, NY ]} where
each yk belongs to the space of coordinates of a frame fk ∈ [2, F ] that is part of
the Y samples set generation and F is the number of frames in the sequence.

The full metric is then defined as

M =

NX∑
i=1

F−1∑
j=1

(
Ij(ϕ

j
F (xi;p))− IF (xi)

)2

+λ

NY∑
k=1

(
Ifk−1(ϕ

fk−1
fk

(yk;p))− Ifk (yk)
)2

,

(2)
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Fig. 6. Longitudinal, circumferential and radial strains for Volunteers #6 to #10 of
the cMAC database plotted as a function of time (normalized by one heart period)

where ϕn
m(x) stands for the transport of a coordinate x at time m to the time n

and λ is a factor balancing the metric terms. This transport is made by following
the flow of a continuous 3D+t velocity field v(x, t;p), parametrized by B-Spline
kernels, and controlled by the set of parameters p:

ϕn
m(x;p) = x+

∫ n

m

v(ϕt
m(x;p), t;p)dt . (3)

It was shown in [4] that for a time step Δt << 1, the derivative of ϕt+Δt
s (x;p)

w.r.t p can be computed from dϕt
s(x;p)/dp

dϕt+Δt
s (x;p)

dp
=

(
I+Dv(x, t;p)Δt

)dϕt
s(x;p)

dp
+

∂v(x, t;p)

∂p
Δt . (4)

By iterating Eq. 4 from (s, t) = (m,m) to (s, t) = (n − Δt, n), one can obtain
the derivative of ϕn

m(x;p) and compute the total derivative of the metric given
in Eq. 2 by application of the chain rule.

2.5 Strain Quantification

Strain is computed in the space of coordinates of the last frame, being a good ap-
proximation of Lagrangian strain at end-diastole. The computation of the strain
tensor involves the backward multiplication of spatial derivatives of the velocity
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Fig. 7. Longitudinal, circumferential and radial strains for Volunteers #11 to #15 of
the cMAC database plotted as a function of time (normalized by one heart period)

fields, corresponding to the factor between brackets in the first term of Eq. 4.
The strain tensor is then projected on a set of local directions: radial, circum-
ferential and longitudinal [4]. The radial direction is computed as described in
Section 2.3. The longitudinal direction is taken as constant over the whole LV
and is defined as the difference between the endocardial apex and the center of
the mitral valve. The circumferential direction is computed as the cross product
of the two other directions.

3 Experiments

In-vitro phantom. Fig. 3 shows the propagation of a regular grid from the first
frame to each image of the sequence for one slice of the phantom sequence. The
B-Spline velocity grid had a resolution of 4 control points in each dimension. The
number of samples NX and NY were chosen to represent about 15% of the total
number of voxels. The λ weight in Eq. 2 was adjusted by visual inspection of
the tracking results. Fig. 3 shows that for low values of λ, i.e. when the frame to
frame term of the metric predominates, TDFFD efficiently tracks tags crossing
at mid-cycle but suffers from drift in the last frame (see red ellipses in first
row, last column). Alternatively, when giving too much importance to the non-
sequential term, the tracking suffers from tag jumps (e.g red ellipses in the last
row). In this experiment, we found a value of λ = 0.1 qualitatively optimal for
weighting the two terms in Eq. 2.



76 M. De Craene et al.

Healthy volunteers. Motion and strain were quantified using the modified TDFFD
algorithm (Section 2.4 and 2.5) and the set of local directions computed at each
node of the volumetric mesh (Section 2.3). Each of the three components of
strain was averaged across 12 AHA regions (corresponding to basal and mid-
regions) and plotted for all patients of the cMAC database in Fig. 5, 6 and 7.
The recovered strain curves showed a similar pattern in all volunteers, in good
agreement with clinical literature [2]. It is expected in healthy volunteers that
all regions contract synchronously with a similar strain amplitude. Fig. 5, 6 and
7 show that strain curves were in general uniform over all segments for each
patient, except for radial strain. Although radial strain was reported to show
the highest variability [2], the dispersion of radial strain in Fig. 5 is more likely
due to the smaller number of tags in the radial direction (between 2 and 3 tags).
An alternative way of plotting strain is to show on a surface mesh and for a
given cardiac time the value of one strain component using a color map. This
representation mode is used in Fig. 4 for the first volunteer. Drift errors in the
radial strain values are visible at the end of the cycle.

4 Conclusions

In this paper, the TDFFD algorithm was extended to TMRI sequences. Pre-
liminar motion and deformation results were reported for the set of 15 healthy
volunteers and the phantom of the 1st cMAC database. On the phantom the
weighting between non-sequential (prone to correct drift) and sequential (sensi-
tive to accurate frame to frame tracking) was critical for the obtention of correct
tracking results. We observed for healthy volunteers the uniformity of the strain
pattern among different segments of the LV, in accordance with clinical liter-
ature. The current quantification results exclude the first frames. These could
potentially be taken into account by segmenting the SSFP images for generating
regions of interest when doing the tracking.
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Motion Analysis with Quadrature Filter

Based Registration of Tagged MRI Sequences

Lennart Tautz, Anja Hennemuth, and Heinz-Otto Peitgen

Fraunhofer MEVIS, Bremen, Germany

Abstract. Analysis of tagged MRI is a valuable tool for assessing re-
gional myocardial function. One major obstacle for existing methods
based on feature extraction and registration is the desaturation of the
tagging grid over time. We propose a method based on quadrature filters
that is invariant to changes in intensity, robust with respect to the grid
geometry and provides a dense motion field that allows for the analysis
of both global and local movements. A multi-scale and multi-resolution
scheme is used to cover different scales of motion and to speed up reg-
istration. The described method has been integrated into a prototypical
application and applied to a phantom data set and 15 volunteer data
sets provided by the STACOM’11. The automatic detection of the 4D
motion field took about 130 minutes per MRI data set and about 90
minutes per US data set and resulted in plausible motion fields, which
will be quantitatively assessed within the motion tracking challenge at
MICCAI 2011.

Keywords: Tagged MRI, Morphon, Registration, Quadrature filter.

1 Introduction

MRI tagging is a non-invasive imaging method for the assessment of regional
myocardial motion, thus having the potential of being an important tool for the
clinical evaluation of cardiac dysfunction [7]. The method is based on the labeling
of image regions with saturation planes, whose deformation can then be tracked.
Different approaches have been proposed to determine a motion field from the
tagged MRI sequences, including segmentation-based methods [16], analysis of
the harmonic phase (HARP) [14,1,12,9], optical flow or related signal processing
concepts (e.g., Gabor filters) [15,3,5], and conventional registration approaches
[4,13]. Because the tagging grid desaturates over time in common tagging MRI
sequences, the contrast to the surrounding structures decreases, and the grid can
fade completely. This presents a major obstacle for existing methods. Modern
CSPAMM sequences do not suffer from tag fading, but exhibit a lower spatial
resolution and can still show intensity inhomogeneities. We propose an intensity-
invariant registration method driven with local phase information obtained by
quadrature filters that produces a dense deformation field.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 78–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Materials and Methods

2.1 Image Data

The STACOM’11 organizers provided a total of 16 tagged 4D MRI and 4D US
data sets, acquired from 15 healthy subjects and one dynamic physical phantom.
This phantom allows compression and rotation with a speed that enables the
simulation of a heart cycle through compression and relaxation within 1s [8].

MRI Data. The MRI data sets were acquired with a 3D CSPAMM sequence
that enables the generation of 4D volumes with tag planes in three orthogonal
orientations [10]. Data was acquired in short-axis orientation (see Fig. 1). The
volunteer data sets were obtained with a voxel size of 0.96 x 0.96 x 0.96 mm3

and 20 to 38 time points. The phantom was scanned with a spatial resolution of
1.01 x 1.01 x 1.01 mm3 over 23 time points.

US Data. The US data sets were acquired with a full-volume apical view (see
Fig 5). The volunteer datasets have voxel sizes between 0.66 x 0.66 x 0.58 mm3

and 0.96 x 0.96 x 0.72 mm3 and consist of 11 to 24 time frames whereas the
phantom dataset was acquired with a voxel size of 1.35 x 1.16 x 0.96 mm3 over
19 time points.

The temporal resolution of the data sets was not included in the provided
image information.

2.2 Method

The described method is based on the Morphon algorithm introduced by
Knutsson et al. [6]. In previous work, this method has been successfully ap-
plied to MRI perfusion data, where the problem of contrast variation appears
due to the wash-in and wash-out of contrast agent [11].

Background. Phase-based image registration is based on the Fourier Shift
Theorem, which states that the Fourier transforms of a signal f(x) and a shifted
signal f(x − d) are related via a phase factor F{f(x − d)} = e−jdωF{f(x)}.
For two signals f1(x) = f(x) and f2(x) = f(x− d), we have a d proportional to

arg
(
F{f1(x)}F{f2(x)}

)
, with denoting the complex conjugate. By using the

local phase φ(x), derived from the complex analytical signal fa(x) = A(x)ejφ(x)

of f(x), the above approach can be used to estimate non-stationary shifts in 1D.
The analytic signal is in practice estimated by applying a quadrature filter, q(x),

f̂a(x) = (f ∗ q)(x), which has a band-pass character that determines the scale of
the structures or shifts of interest.

To generalize the analytic signal, which inherently is a 1D construct, to images
of higher dimensions, a set of quadrature filters q(i)(x) with different orientations
n̂i is applied. The generalized analytic signal in direction n̂i for an image I(x)

is then obtained as I
(i)
a (x) = (I ∗ q(i))(x). Assume now that we have a deformed
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image J(x) = I(x+d(x)), where d(x) is an unknown deformation field that we

wish to estimate. The displacement d̂i(x) along the orientation n̂i can then be
estimated by the local phase difference of the complex product

p
(i)
IJ (x) = I(i)a (x)J

(i)
a (x). (1)

Following the Shift Theorem, d̂i(x) is proportional to arg
(
p
(i)
IJ(x)

)
. For each

oriented quadrature filter q(i)(x), a displacement estimate is obtained. A confi-
dence measure ci(x) can be associated with the estimate in each filter direction,

ci(x) =

√∣∣∣p(i)IJ(x)
∣∣∣ [1 + cos

(
arg

(
p
(i)
IJ(x)

))]
(2)

and the individual measures contribute to a combined confidence measure c(x)
formulated as

c(x) =
∑
i

ci(x). (3)

The rationale behind this confidence measure is that the magnitude of p
(i)
IJ(x) is

large if there is a strong response of the filter q(i)(x) in both images, indicating

similar structures. If the phase of p
(i)
IJ(x), that is, the phase difference between

I
(i)
a (x) and J

(i)
a (x), is large, the quadrature filter has likely picked up different

structures, which makes the estimate less certain. A first estimate of the complete
deformation field can be formulated by weighting the displacement estimates
with the associated confidence measures

d(x) =

∑
i ci(x)di(x)n̂i∑

i ci(x)
. (4)

Biological tissue generally deforms smoothly, and a spatial regularization should
be applied to reflect this prior knowledge in the deformation field d(x). By
applying so-called normalized averaging, the confidence measure contributes to
the regularized deformation field,

dreg(x) =
[d(x)c(x)] ∗ g(x;σ2)

c(x) ∗ g(x;σ2)
, (5)

where the division is taken voxel-wise, and g is a Gaussian kernel. In the resulting
field uncertain displacements have been penalized, allowing the convergence to
a smooth field.

To estimate large deformations, the displacement estimation outlined above
must be implemented in a scale space, and it is also necessary to iterate the
estimation several times on each scale to refine the estimation. The deformation
estimates are accumulated in dtot(x) as

dtot(x) ← dtot(x) +
c(x)

ctot(x) + c(x)
dreg(x), (6)
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where ctot(x) is an accumulated confidence measure that is updated for each
iteration as

ctot(x) ← c2tot(x) + c2(x)

ctot(x) + c(x)
. (7)

After convergence, dtot(x) is the final estimate of the true deformation field d(x).

Implementation. To derive the motion fields from the tagged MRI data, the
image data is analyzed slice-wise with a set of four 2D filters in orthogonal direc-
tions. We do not employ a true 3D registration for two reasons: the tagging grid
is composed of tag lines in three orthogonal directions, and the computational
costs for a 3D registration are significantly higher when compared to a 2D reg-
istration, making a distributed computation scheme highly desirable. Thus, the
total motion field is obtained by combining three 2D motion vector fields from
orthogonal directions (Fig. 1), which can be computed independently. Because
each 3D vector component is present in two fields, out-of-plane motion and other
artifacts can be compensated for by combining the corresponding components.

Fig. 1. The image shows a deformed tag plane and two exemplary slices of the ori-
entations used for the motion analysis. The deformation of a tag plane is analyzed in
two orthogonal orientations and the obtained 2D vector fields (left and middle) are
combined to describe the 3D motion of the tag planes.

We apply log-normal quadrature filters that can be expressed in the Fourier
domain as polar separable functions:

Qi(u) = R(‖u‖)Di(û) (8)

with

R(‖u‖) = eC ln2(‖u‖/u0), C = − 4

B2 ln(2)
. (9)
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Fig. 2. Orthogonal planes for vector field calculation. The image shows three slice ori-
entations used for the vector field calculation. Vectors are colored according to their
direction ((x, y, z) → (R,G,B)). The orthogonal 2-dimensional vector fields are com-
bined to one 3-dimensional field.

R(‖u‖) is a Gaussian function on a logarithmic scale, giving the filters a band-
pass character. u0 is the center frequency and B is the width of the passband in
octaves. We use two different u0 to capture displacements on different scales and
the bandwidth is fixed to B = 2 octaves. Di(û) in (8) gives the filters a direction
n̂i, and the quadrature property by setting one half of the Fourier domain to
zero as follows:

Di(û) =

{(
ûT n̂i

)2
if ûT n̂i > 0,

0 otherwise,
(10)

where n̂i is the filter direction. A filter optimization procedure was applied to
obtain finite filter kernels with good spatial localization and a frequency response
that closely match the ideal shape given by (8). This approach does not rely on
the tagging directly, but on intensity differences, which makes it suitable for
both the tagging MRI and the US data.

A coarse to fine scale-space approach with three resolution levels is adopted
to capture both global and local deformations and to increase efficiency. The
resample factor between the scales was chosen as 0.63, which is a reasonable
compromise between the number of scales and the size of perceivable deforma-
tions, and avoids artifacts due to dyadic resampling. In addition, two different
quadrature filter sets with center frequencies u0 of π

4 and π
2
√
2
are used, so that

deformations on six different scales are considered in total. It should be noted
that the frequencies are not related to the spatial frequency of the tagging grid,
but were selected to give the scale-space scheme good coverage of motions with
different magnitudes. On scales with resampled resolution four iterations are
performed, while only three are carried out on scales with the original resolu-
tion to reduce computation time. The regularization of the deformation field is
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performed using a Gaussian kernel, whose parameters were empirically optimized
to produce smooth deformation fields. Because the US data sets show more noise
than the MRI data sets, their deformation fields are more strongly regularized.

For each of the three orthogonal slice orientations, a stack of a slice-wise 2-
component vector field is calculated. Each slice in this vector field stack repre-
sents the motion between two adjacent time points. These partial motion fields
are reformatted to the transversal orientation. Every orientation contributes to
two components of the final 3D vector (Fig. 2) that is determined by averaging
the respective components. The US data sets are downsampled by a factor of 2
for processing to compensate for their size and the increased noise level in com-
parison to the MRI data sets, and upsampled with linear interpolation afterwards.

3 Results

The described registration approach has been implemented within the MeVisLab
platform [2] and applied to the tagged MRI and US data sets of one phantom and
15 healthy subjects provided by the organization team of the STACOM’11 mo-
tion challenge. Figure 3 shows the streamline visualization over one heart cycle.
Computation time depends heavily on the number of time points in the data set.

Fig. 3. Streamline visualization of the vector field calculated for the MRI data of
volunteer 15. The images represent the motion between every second subsequent time
points starting with time point one in the upper left part of this image.
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For one MRI data set, the computation time ranges from 120 minutes (23 time
points) to 500 minutes (38 time points). For one US data set, the duration ranges
from 60 minutes (11 time points) to 150 minutes (24 time points). Figure 4
shows the vector fields calculated for the phantom data sets. The motion field
derived from the tagged MRI data shows two continuous movements interrupted
by a period with little motion. The US motion field on the other hand shows
alternating phases of strong and little motion.

4 Discussion

The deformation fields calculated for the MRI tagging data appear plausible
when visually assessed with regard to the underlying image data sets. Global
and regional deformations that can be perceived in the tagging grid motion are
present in the results. Motion on the scale of single voxels, on the other hand,
is hard to evaluate. The data sets did not contain proper timing information,
preventing assessment based on, e.g., the speed of changes.

The introduced method depends on contrast at the borders of the moving
structures to analyze. Thus, it was expected that the results for the MRI images
with the tagging grid would be better than those calculated for the US data. Due
to increased noise and motion-related artifacts, more regions in the US results
showed inaccurate or even unreasonable motion.

The deformation behavior over time appears plausible for the MRI motion
fields (upper row in Fig. 4), assuming that one simulated heart cycle is covered
by the image sequence. The temporal coverage of the US image sequence however
does not seem to correspond with the MRI sequence. The motion field shows
alternating phases of little and strong motion, indicating a considerably smaller
or larger timestep between subsequent images (lower row). As shown in Fig. 5, in
the apical region, where the myocardium is not recognizable due to the proximity
to the sonographic unit, no reasonable motion field is calculated. While the
general contraction behavior is still visible, we do not expect the method to

Fig. 4. Streamline visualization of vector fields derived from the MRI phantom se-
quence (upper row) and the US phantom sequence (lower row). The color indicates
the velocity of the movement. Blue means slow motion, whereas red is used for high
velocities.
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Fig. 5. Motion field derived from the US sequence of volunteer 2. The motion field
close to the sonographic unit is perturbed by misleading image intensities.

work with this kind of data without major modifications, such as more robust
filters, an adapted regularization, and the incorporation of model assumptions.

The performance of the method is inherently limited in regions with very
homogeneous gray values, or when out-of-plane motion or rapid contrast changes
are encountered. For data sets with these properties, a mask restricting the
quadrature filter application, 3D filters or a temporal regularization of the field
could improve the deformation field.

To improve the algorithm with regard to artifacts and accuracy, a robust
and objective evaluation scheme is required. This scheme must include model or
expert knowledge, as the analysis of the vector field alone and the application of
standard error measures are insufficient for non-rigid deformations in data with
varying contrast and substantial noise and motion artifacts.

The measured computation times appear too long for clinical use, but as the
algorithm runs fully automatic it can be applied in a pre-processing step. The
approach is ideally suited to be implemented with an extended scale-space and
a data partition scheme for parallel or distributed computing, which could result
in a considerable speedup.

5 Conclusions

We introduced an algorithmic approach for the analysis of myocardial motion
based on tagged MRI data. The method is a phase-based approach, which applies
quadrature filters to derive dense motion fields between subsequent image time
frames. The algorithm was successfully applied to all data sets provided by
the STACOM’11 challenge. We obtained motion fields with visually reasonable
deformations for tagged MRI data, and fields with less accurate deformations
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for US data. A thorough evaluation is required, though, firstly to show that the
computed motion fields are biologically reasonable, and secondly to fine-tune the
algorithms. Future work will also focus on the reduction of computation times
to enable the usage in a clinical environment.
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Abstract. This paper presents collated results from the left ventricu-
lar (LV) cardiac MRI segmentation challenge as part of STACOM’11.
Clinical cases from patients with myocardial infarction (100 test and 100
validation cases) were randomly selected from the Cardiac Atlas Project
(CAP) database. Two independent sets of expert (manual) segmenta-
tion from different sources that are available from the CAP database
were included in this study. Automated segmentations from five groups
were contributed in the challenge. The total number of cases with seg-
mentations from all seven raters was 18. For these cases, a ground truth
“consensus” segmentation was estimated based on all raters using an
Expectation-Maximization (EM) method (the STAPLE algorithm).

1 Introduction

In cardiac MRI, the LV segmentation is typically performed to derive important
clinical indices such as LV mass and volume. The current clinical standard is
manual contouring of the myocardial boundaries, a time consuming and error-
prone process, requiring substantial training. The development of automated
segmentation algorithms has been problematic due to the lack of “ground truth”
in real clinical cases. Even expert manually drawn segmentations still suffer from
inter- and intraobserver variability. This problem particularly applies in cardiac
imaging, where the presence of papillary muscles, the heart dynamics, and soft
tissue contrast variations are just some of the problematic areas in cardiac MRI.

In this segmentation challenge, we created a framework to solve this problem
by providing the same data set to researchers to test their segmentation algo-
rithms and also to estimate better set of ground truth segmentations at the same
time. We applied the EM-based STAPLE method [6] to estimate the consensus
ground truth segmentations. Therefore, the challenge was performed as a collab-
orative work rather than a competition. A large data set of clinical cardiac MRI
cases was made available through the Cardiac Atlas Project1 [2]. By using the

1 http://www.cardiacatlas.org
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Table 1. Baseline characteristics of the data used in this challenge

test set (N=100) validation set (N=100)

EDV (ml) 193.86 (46.45) 199.44 (54.97)
ESV (ml) 113.41 (43.44) 123.80 (53.81)
LV mass (gr) 172.24 (42.57) 165.38 (40.30)
EF (%) 42.95 (10.88) 39.87 (11.25)
SV (ml) 80.41 (18.65) 75.59 (18.62)

EDV = endocardial volume at ED, ESV = endocadial volume at ES,

EF = ejection fraction, and SV = stroke volume.

same data set, confounding difficulties to compare segmentation results between
peers can therefore be eliminated.

2 Methods

2.1 Cardiac MRI Data

Cardiac MR images were randomly selected from the DETERMINE (Defibril-
lators To Reduce Risk by Magnetic Resonance Imaging Evaluation) cohort [4].
This study consists of patients with coronary artery disease and prior myocar-
dial infarction. Two separate groups were defined as test (N=100) and validation
(N=100) groups, by random selections (see Table 1). Cine MR images in short-
axis and long-axis views were selected for this challenge. These MR images were
acquired by using a Steady-State Free Precession (SSFP) pulse sequence. MRI
parameters varied between cases, giving a heterogenous mix of scanner types
and imaging parameters consistent with typical clinical cases.

2.2 Raters

Five automated raters (SCR, INR, DS, AO and EM) and two expert raters (AU
and NU) participated in this study. Rater descriptions are given in Table 2. Two
raters (SCR and INR) were fully automatic, although SCR required repositioning
the center of LV segmentation in four cases. Three raters required some manual
interactions, either by drawing initial contours (DS, EM and AO) or by having
some parameter initialization (EM). One rater (INR) used the test dataset to
train the algorithm, the others did not.

The expert NU rater was a manually drawn myocardial contour, traced by the
DETERMINE MRI core laboratory using QMass software (Medis, Leiden, the
Netherlands), while the AU rater was an expert-guided interactive customization
of a finite element heart model using Cardiac Image Modeller (CIM) software
(AMRG, Auckland, New Zealand). To generate the intersection between cardiac
MRI with the 3D AU models and the image planes, the CAPClient software
was used2.
2 The CAPClient is an open source software, available for download at
http://www.cardiacatlas.org/web/guest/tools

http://www.cardiacatlas.org/web/guest/tools
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Table 2. Rater characteristics

Rater Method description Dimensionality Ref.
SCR A combined deformable registration method with gray level

based shortest path segmentation algorithm.
2D pixels [3]

INR A supervised voxelwise classification technique using layered
spatio-temporal forests.

3D models [5]

AO A greedy optical flow algorithm with additional smoothing
constraint.

2D lines/pixels [1]

DS A successive contour tracking algorithm based on matching
correlation coefficients.

2D lines/pixels †

EM An active contour model framework with an optical flow en-
ergy force.

2D pixels †

AU An expert-guided 3D finite element heart model fitting based
on guide point modeling.

3D models -

NU A manually expert-drawn myocardial contours. 2D contours -
† Rater submitted the segmentation results but did not publish the corresponding methodology.

2.3 Evaluation Method

Individual rater performance was measured in two aspects: (1) the accuracy of
the segmentation results against the ground truth and (2) the clinical assessment
of global LV mass and volume. For the rater accuracy assessment, sensitivity (p),
specificity (q), positive predictive value (PPV) and negative predictive value
(NPV) were the main quantitative values. These were calculated by using the
following equations:

p =
T1

N1
, q =

T0

N0
, PPV =

T1

T1 + F1
, NPV =

T0

T0 + F0
(1)

where T1 and T0 are the number of detected pixels characterized correctly as
myocardium and non-myocardium, while F1 and F0 are the number of misclassi-
fied pixels detected as myocardium and non-myocardium, respectively. The total
number of myocardial and non-myocardial pixels are N1 and N0, respectively.

Other commonly used evaluation metrics include similarity indices in terms
of the Dice index:

D(D1, T1) =
2|D1 ∩ T1|
|D1|+ |T1| (2)

and the Jaccard index:

J (D1, T1) =
|D1 ∩ T1|
|D1 ∪ T1| (3)

where D1 and T1 are raters and ground truth sets of myocardial pixels, and |X |
denotes the number of elements in the set X . In both cases, values closer to 1
represent better performance.

2.4 Region of Interest Definition

It is well known that if N0 � N1, then the specificity (q) and NPV results
are not particularly informative. To avoid this, we defined a region of interest
around myocardium such that N0 is comparable with N1. For each image slice,
a region of interest (ROI) around myocardium was defined to reduce N0. Two
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expert segmentation results (AU and NU) were added and subsequently dilated
1.5 times the width of myocardium to generate the ROI image (see Fig. 1). This
produced sufficient area for each rater decision without introducing an excessive
amount of background pixels. The ROI images were applied as image masks
during the STAPLE iteration, as well as for the rater performance evaluation.

Fig. 1. A diagram to define a region of interest around the myocardium

2.5 Binary STAPLE Algorithm

In this collation study, we estimated the ground truth from all raters. Warfield
et. al. [6] developed a method to estimate ground truth images from a set of
segmentation results produced by raters (human and/or algorithmic) based on
the EM method. The method, known as Simultaneous Truth And Performance
Level Estimation or STAPLE, collects rater results and then simultaneously
computes both probabilistic estimates of the true segmentation and the rater
performances.

Let {D}R be a set of R rater segmentations, each of which is an N -length
of binary vector consisting of 0 (non-object) and 1 (object) values. Let T be
the hidden true binary vector that is going to be estimated. The objective of
STAPLE algorithm is to estimate rater performance parameter θ by maximizing
the complete data log-likelihood,

θ̂ = argmax
θ

ln f (D,T |θ) . (4)

The performance parameters are θj = (pj , qj)
T or the sensitivity and the speci-

ficity of rater j, which can be estimated as follows

pj = Pr (Dij = 1|Ti = 1) (5)

qj = Pr (Dij = 0|Ti = 0) (6)

where i = 1, . . . , N and j = 1, . . . , R. The parameters pj , qj ∈ [0, 1] define rater
performance characteristics, which are generally not equal between raters.
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Applying (4) into the EM algorithm, we can define the maximization step as
follows

θ̂
(k)

= argmax
θ

E
[
ln f (D,T |θ) |D, θ(k−1)

]
= argmax

θ
E
[
ln f (D|T , θ) f (T ) |D, θ(k−1)

] (7)

where k denotes an iteration number and f (T ) is the stationary prior. The ex-
pectation step is defined by estimating the posterior probability given the current
estimate of parameters at each kth iteration, i.e.,

f
(
T |D, θ(k)

)
=

f
(
D|T , θ(k)

)
f (T )∑

T f
(
D|T , θ(k)

)
f (T )

. (8)

Note that the following holds for binary segmentation, i.e.,

f
(
Ti = 0|D, θ(k)

)
= 1− f

(
Ti = 1|D, θ(k)

)
(9)

In this study, we used global stationary prior, which means that the prior of label
v for all pixels are equal. In [6], the global stationary prior f(T ) was estimated
from all raters. In this study, we calculated the global stationary prior from
expert raters only, i.e. AU and NU raters. Hence,

Pr (T = v) =
1

2N

N∑
i=1

∑
j∈R′:Dij=v

1 (10)

where N is the number of pixels and R′ = {AU,NU}.

3 Results

After the challenge submission, 18 cases had segmentations from all seven raters.
Only short-axis image series at end-diastole (ED) and end-systole (ES) frames
were included in the collation study, because the NU segmentations were only
available at these frames. STAPLE images were estimated on each 2D image
slice, independently. The total number of image slices was 330.

Clinical assessment on ED volume (EDV), ES volume (ESV) and mass were
validated against the AU rater (since mass and volume were not available for the
NU rater). Each automated rater provided their volume and mass estimations,
while the AU volume and mass were calculated from 3D finite element models
of the heart [7]. Table 3 shows the clinical assessment results in terms of mean
(μd) and standard deviation (σd) of the differences.

Due to individual algorithm features, raters might not segment myocardium
on a particular slice, particularly at the apical tip or basal planes. The binary
STAPLE algorithm was implemented in Matlab, based on [6]. The STAPLE
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Table 3. Clinical validations on global LV functions with the AU models as the
reference

Rater EDV diffs (ml) ESV diffs (ml) Mass diffs (gr)
μd σd μd σd μd σd

SCR 13.03 18.13 18.98 16.20 -9.56 22.58
INR -79.88 39.62 -61.96 38.83 74.75 53.74
AO 8.69 99.39 13.36 64.16 51.49 95.65
DS 3.94 23.14 25.65 17.71 1.08 28.40
EM -77.75 50.60 -45.46 36.44 -51.92 39.92

Table 4. Segmentation accuracy validations with STAPLE segmentation as the refer-
ence. All numbers are in ‘average (standard deviation)’ format.

Rater Sensitivity PPV Specificity NPV Dice Jaccard

SCR 0.78 (0.15) 0.92 (0.07) 0.96 (0.04) 0.87 (0.08) 0.83 (0.11) 0.73 (0.14)
INR 0.75 (0.24) 0.66 (0.14) 0.73 (0.16) 0.85 (0.12) 0.68 (0.17) 0.53 (0.17)
AO 0.90 (0.12) 0.83 (0.09) 0.87 (0.09) 0.94 (0.06) 0.86 (0.09) 0.76 (0.12)
DS 0.79 (0.16) 0.82 (0.13) 0.88 (0.08) 0.87 (0.09) 0.80 (0.14) 0.68 (0.16)
EM 0.89 (0.10) 0.89 (0.09) 0.91 (0.08) 0.93 (0.06) 0.88 (0.07) 0.80 (0.10)

AU 0.85 (0.11) 0.93 (0.09) 0.96 (0.04) 0.90 (0.08) 0.88 (0.09) 0.80 (0.13)
NU 0.63 (0.12) 0.96 (0.06) 0.99 (0.02) 0.81 (0.06) 0.75 (0.10) 0.61 (0.12)

algorithm was performed with the following settings: maximum of 500 iterations,
a relative convergence rate of 1e-16, and the average of all raters was used as
the initial weight image to define θ(0). ROI images were applied.

Two examples of STAPLE images from basal and mid-ventricular slices are
shown in Fig. 2. The performance of each rater is shown in Table 4. The distri-
bution of sensitivity and specificity values are given in Fig. 3. In Fig. 4, PPV
and NPV values of each rater were compared against different references: AU,
NU and STAPLE. Finally, receiver operating characteristic (ROC) curves are
shown in Fig. 5. Area under ROC curves (AUC) are also shown in Fig. 5.

4 Discussion

A collation study from the LV segmentation challenge has been presented in
this paper. A consensus segmentation was generated by using the STAPLE al-
gorithm, which has been modified to include expert raters when estimating the
global priors and to limit the segmentation area with ROI images. In general,
the STAPLE algorithm produced satisfactory segmentation results, which can
be regarded as the ‘ground truth’. The STAPLE method was able to resolve
disagreements in the septal region of the basal plane as seen in Fig. 2(a). It also
excluded papillary muscles in the mid-ventricular slices, because the majority of
the raters excluded these areas from myocardium (see Fig. 2(b)).
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STAPLE AU NU SCR

INR DS AO EM

(a) Basal slice

STAPLE AU NU SCR

INR DS AO EM

(b) Mid-ventricular slice

Fig. 2. Examples of STAPLE images compared with other raters
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0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Sensitivity

SCR INR AO DS EM AU NU

0.
4

0.
6

0.
8

1.
0

(b) Specificity

Fig. 3.Distributions of sensitivities and specificities against STAPLE images. Whiskers
denote ± interquartile-range, circles are outliers, and boxes are defined from lower to
upper quartiles with median values as thick lines inside the boxes.
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Fig. 4. Comparisons of the average PPV and NPV values by using AU, NU and STA-
PLE as the references

From the clinical validation (Table 3), SCR was the closest to the expert rater
AU. In terms of segmentation accuracy (Table 4), AO rater produced the highest
sensitivity, while NU showed the highest predictive value. The highest similarity
indices were AU and EM, both in Dice and Jaccard indices. The box plot dis-
tributions of the sensitivity and specificity values in Fig. 3 show how each rater
performed. Generally, INR produced wide spread of sensitivity and specificity
values, while NU maintained the highest specificity distribution values.
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Fig. 5. Receiver operating characteristic curves from all raters. Area under the ROC
curves (AUC) are captioned in the legend

Figure 4 shows how PPV and NPV values varied when different expert raters
were used as the reference. Applying STAPLE generally increased PPV values,
but not the NPV values. The overall performances of the expert raters, as seen
by the ROC curves in Fig. 5, were the highest among other raters. However, the
expert raters did not always outperform the automated raters when compared
to the STAPLE results. It is interesting to note that the expert NU rater has
the lowest sensitivity among all others. The NU rater PPV values, however, were
the highest. Both the lower sensitivity and higher PPV values are attributable
to the smaller NU myocardium compared to other raters. This was in part due
to manual exclusion of non-myocardial pixels by the NU rater, e.g., aortic root
on basal slice (Fig. 2(a)) and adjacent pericardial fat on mid slice (Fig. 2(b)).
The NU rater also integrated information from the entire cardiac MR study to
determine the location of myocardial borders, including long-axes cine MRI and
late gadolinium enhanced images. This result highlights the need for a greater
consensus within the cardiac imaging community as to the acceptable criteria
for accurate and reproducible segmentations.

In conclusion, STAPLE provides a mathematically objective ground truth
based on the evidence from the contributing raters. This will be useful in the
future to not only evaluate automated segmentation methods, but also to inform
the expert decisions on what constitutes an expert consensus.
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Abstract. This paper proposes a system to automatically segment the
left ventricle in cardiac MR cine images. Individual frames are segmented
using a shortest path algorithm and temporal consistency is enforced
through the backward and forward deformation fields of an inverse con-
sistent deformable registration. In addition, a segmentation of the mitral
valve plane is obtained from long axis images. This algorithm was applied
to 95 datasets as part of the STACOM’11 4D LV Segmentation Chal-
lenge. We analyze the results and evaluate the strengths and weaknesses
of our system.

1 Introduction

Cardiovascular disease is the leading cause of death in the western world and
there is a need to efficiently diagnose the health of the heart and the myocardium.
Magnetic resonance imaging (MRI) is a possible means to observe the behavior
of the heart. Physicians are most interested in the left ventricle (LV) because it
pumps oxygenated blood to the rest of the body. MRI cine data consists of slices
of the heart over time. In order to quantify measures such as ejection fraction,
LV volume over time, myocardial mass, and myocardial thickening, they need a
precise outline of the myocardium in all slices and all temporal phases. This can
be extremely time consuming and physicians would like to rely on automatic
software for this task. This paper proposes a system to automatically segment
the LV endocardium and epicardium in all images of a cardiac MRI cine study.

The main difficulties in segmenting the myocardium are: a) the presence of
papillary muscles and trabeculation in the blood pool (both in the LV and in
the right ventricle) that contribute to partial voluming effect between the blood
and muscle; b) there are often no clear edges between the myocardium and the
liver; c) if there is fat around the heart, the fat/lung edges are stronger than the
myocardium/fat edges; d) the myocardium becomes blurry in the apex slices;
e) the cut between the LV and the left atrium in the base slice is very subtle
(the muscle becomes thinner in the left atrium). Given all these difficulties,
there has been a large number of publications on LV segmentation in cine MRI
images [11],[12].

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 98–108, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Having studied all this work and having implemented some of the techniques,
we believe that a pure 4D segmentation approach is currently not ideal since it is
very difficult to build a model that is general enough to cover all possible shapes
and dynamics of the LV. The segmentation usually results in surfaces that are
too smooth and do not follow the true contours accurately enough. In addition,
MR slices are very far apart (8-10mm) compared to the in-slice resolution (1-2
mm) such that the 3D segmentation becomes very anisotropic. Finally the slices
might be mis-registered due to different breath-hold positions, which creates
additional problems in fitting the model. Of course, the opposite approach of
segmenting each image individually results in little cohesion between images,
and contours that are not smooth over time.

We have chosen to segment all frames in one slice using deformable registra-
tion, taking advantage of the strong temporal correlation between frames. The
main idea in our algorithm is to use an inverse consistent deformable registra-
tion to register all frames to the first frame in one slice. Then, the segmentation
can be applied to any frame and propagated to any other frame in the sequence
through the forward and backward deformation fields. We model the gray levels
of the different regions in the heart area, including the partial voluming region,
to help with difficulty a) and c). In addition, to try to overcome difficulty e),
we use the long axis slices to recover a mitral valve base plane which is used to
cut the short axis slices and compute a more accurate volume of the LV. The
following sections describe individual steps of the algorithm in more detail.

2 Left Ventricle Segmentation

The segmentation of the left ventricle is divided into 4 steps: 1) detection of
the left ventricle in the images; 2) mitral valve base plane segmentation; 3) slice
segmentation through inverse consistent deformable registration and shortest
path recovery; and 4) propagation between slices to segment the whole LV. Each
of these steps will be described in the following sections.

2.1 LV Blood Pool Detection

The method for automatic detection of the LV blood pool is described in [6].
We threshold the first harmonic of the Fourier transform in each slice to detect
the beating heart. Bright connected components are then extracted in each slice
and characterized by their shape, motion, connectivity over time, etc. A graph
is built by creating a node for each connected component. Pairs of nodes cor-
responding to connected components on neighboring slices are linked based on
their similarity in shape, temporal behavior, distance, etc. The graph is then
partitioned using isoperimetric clustering [3] and the corresponding connected
components form 3D objects. The cluster that is roundest and “shrinks nicely”
over time corresponds to the connected components inside the blood pool. Even
though this process does not generate a blood pool region on all slices, it is a
good starting point for the rest of the algorithm.
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Fig. 1. Boxes to define the mitral valve area, the apex area, and the combined area

2.2 Mitral Valve Base Plane Segmentation

If long axis slices were acquired, they can be used to generate a plane approxima-
tion for the mitral valve in the following manner. We use the algorithm proposed
in [9] to detect the mitral valve leaflet anchor points and the apex point in the
end-diastolic (ED) and end-systolic (ES) frames (roughly estimated from the ap-
proximate blood pool). The mitral valve area, the apex area, and the combined
area are each represented by 2D bounding boxes (as illustrated in Fig. 1 with 5
degrees of freedom (2 translations, 2 scale factors, and 1 rotation angle) to be
estimated in the current image. We use a marginal space search strategy [14]
where each position, orientation, and scale detector is a probabilistic boosting
tree based on Haar wavelet-like and steerable features. The combined area is
used to provide additional constraints to the search. Mitral valve points and
apex points are then generated on frames other than ED and ES through linear
interpolation and the mitral valve plane is fitted using a least squares approach
by combining all mitral valve points on multiple long axis slices.

2.3 Slice Segmentation

The segmentation of the left ventricle is described in more details in [7]. The
main idea behind the algorithm is the use of an inverse consistent deformable
registration [4]. The registration computes a dense deformation field between
any two frames in a slice without having to explicitly register every possible
pair of frames. This is achieved by making the registration inverse consistent so
that forward and backward deformation fields are recovered during the regis-
tration process, by alternately updating each deformation field at each step of
the gradient descent minimization. So all frames are registered to an arbitrary
keyframe (say the 1st frame) using the consecutive strategy illustrated in Fig. 2.
Then, the deformation field between frames i and j is obtained by compounding
the deformation field between frames 1 and j and the inverse deformation field
between frames 1 and i.

The core of the algorithm is illustrated in Fig. 3 for a given slice. Each frame
is examined one at a time (this corresponds to the different rows in Fig. 3).
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Fig. 2. Consecutive registration process

Fig. 3. Slice segmentation algorithm: for each frame p = 1, ..., P , recover a contour
using Dijkstra’s algorithm in polar space, propagate the contour to all other frames,
and repeat. Choose the combination of contours (in this case recovered from frame 17)
with the lowest cost.

For a frame p, the contour Cp is recovered in polar space using a minimum
path algorithm as described later. The contours Cq in the other frames q =
1, ..., P, q �= p are generated using the deformation fields converted to polar
space by Cq(Cp) = Φ1q(Φ

−1
1p (Cp)) where Φij is the deformation field between

frames i and j (this corresponds to the different columns in Fig. 3). Then, the
energy of this series of contours is given by K(p) =

∑
q E(Cq(Cp)) where E(C)

is the edge cost associated with contour C. This same process is applied to all
phases p = 1, ..., P and the final segmentation is the one whose energy is lowest:
K = minp K(p). Once the best sequence has been recovered, the best polar
contour in the best frame is converted to Cartesian space and propagated to the
other frames using the forward and backward deformation fields in Cartesian
space. In addition, the convex hull of the endocardium contour is generated to
further enforce that it goes behind the papillary muscles.

The recovery of a contour in one frame is based on gray level properties of
the image as described in [7]. The histogram of the LV region is analyzed to
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(a) (b)

(c) (d)

Fig. 4. Gray level analysis: (a) Polar image; (b) Multiseeded fuzzy connectedness region
labeling; (c) Original histograms; (d) Final histograms (view in color)

find seeds for a multi-seeded fuzzy connectedness algorithm [5] and generate
gray level properties of the different regions (blood, muscle, air, and partial
voluming) as illustrated in Fig. 4. Then, the edge costs for the endocardium
and the epicardium are computed using the Deriche filter edge detector on the
original images and on the region probability images. The contour with smallest
edge cost is recovered in polar space using Dijkstra’s algorithm.

2.4 Segmentation of the Entire LV

The first slice to be segmented is the slice where the detected blood pool is the
roundest. These contours are then propagated to the previous slice by applying
the deformable registration and the deformed contours are used as priors to
segment the previous slice. This process is repeated all the way to the base slice,
where the base slice is identified as the slice closest to the mitral valve anchor
points detected in the long axis slices. In the base slice, there is an additional
process to identify when the myocardium cuts through the aortic valve and
replace those segments of the endocardium and epicardium contours by straight
lines (see Fig. 5(e)).

The initial slice contours are also propagated to the next slice toward the
apex in the same way. An apex point is extracted in the long axis slices using
the algorithm in [9] in conjunction with the extraction of the mitral valve leaflet
anchor points. When reaching slices close to this apex point, tests are performed
to determine if the apex has been reached and the downward propagation should
stop. These tests include large shrinking of the contours compared to the previous
slice, inconsistency in the modeling of the regions gray level properties (in which
case the last segmentation is removed before the propagation is stopped), etc.
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The last step of the workflow consists of intersecting the mitral valve base
plane with the short axis slices and removing the parts of the contours that are
above the plane (see Fig. 5(e)).

3 Experiments

We have tested our algorithm on the 100 validation datasets from the STA-
COM’11 4D LV Segmentation Challenge run by the Cardiac Atlas Project (CAP)
[2]. All the data came from the DETERMINE [8] cohort which consists of pa-
tients with coronary artery disease and prior myocardium infarction. The data
were acquired using steady-state free precession (SSFP) MR imaging protocols
with thickness ≤ 10 mm, gap ≤ 2 mm, TR 30-50 ms, TE 1.6 ms, flip angle 60◦,
FOV 360 mm, and 256×256 image matrix. The data were acquired at multiple
sites using scanners from different vendors.

The ground truth images provided in this challenge were defined by an expert
using an interactive guide point modeling segmentation algorithm [13]. A finite
element model of a heart was fitted with this algorithm to the cardiac MR images
and the expert refined the fitted model following the wall motion throughout
the cardiac cycle by using guide points, interactively. To get binary images of
the myocardium, software from the CAP group was applied to calculate the
intersection between the fitted heart model and the original MRI slices.

We were able to process 95 of the 100 datasets. Five of the datasets
(DET0006901, DET0044401, DET0008401, DET0012301, and DET0014301) vi-
olated our assumptions, namely that all short axis slices should have the same
number of phases, and all images within one slice and all images in the short axis
matrix should have the same geometry (number of rows, number of columns, and
pixel size). We generated contours for all 95 datasets and obtained the binary
images of the myocardium by automatically painting all pixels inside the epi-
cardium and outside the endocardium. Since we did not segment the long axis
images (we only used them to compute the mitral valve plane), we reported the
binary images for the short axis images only. In 4 of the 95 cases, the automatic
detection of the LV did not work (DET0007901, DET0011501, DET0012001, and
DET0013801). For these cases, the system allows the user to move the center of
the segmentation to the blood pool and rerun the segmentation.

The validation performed by the CAP team produced the following measures
from the binary images of the ground truth and segmented myocardium: sensi-
tivity, specificity, accuracy, positive predictive value (PPV), negative predictive
value (NPV), dice, and jaccard (see http://en.wikipedia.org/wiki/Sensitivity_
and_specificity for a very good description of these statistical measures). In addi-
tion, we calculated ED volume, ES volume, andmass, and the CAP team provided
us with the difference between our values and the ground truth. Fig. 5 shows some
segmentation examples. The speed of the system was measured on a dual core
laptop (2.93GHz with 4GB of RAM) for an average size dataset with 18 slices (14
short axis and 4 long axis) and 20 phases. The segmentation takes less than 3 min-
utes: 2 minutes to compute the deformation fields for the entire dataset, 5 seconds
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 5. Examples of segmentation results: (a) mid ventricular slice; (b) mid ventricular
slice at ED; (c) mid ventricular slice at ES; (d) slice close to the valve; (e) base slice
with mitral valve base plane cut and aortic valve straight line; (f) apex slice; (g) apex
slice; (h) inaccurate segmentation; (i) poor segmentation; (j) poor apex segmentation

to detect the heart and the blood pool, 3 seconds to segment the base plane, 1 sec-
ond for the segmentation of each slice, and 1 second to register neighboring slices
and define the contour priors for the next slice. It can be seen that the registra-
tion is the bottleneck but since our implementation is parallelized, the timings on
a system with more than 2 processors are actually faster.

We first present the overall results, focusing on the 95 datasets that were pro-
cessed. There were a total of 28213 short axis images, 25481 of which contained
ground truth. For 934 images with ground truth, our algorithm did not produce
any segmentation result. This happens in the base and apex slices when the
algorithm did not propagate up or down enough. Reciprocally, our algorithm
segmented 861 images which should not have been segmented, because the al-
gorithm propagated too far up or down. Considering that wrong images being
segmented would require the user to delete contours or manually add contours,
our system achieves very good results, with a sensitivity of 0.96, specificity of
0.68, accuracy of 0.94, PPV of 0.97, and NPV of 0.67 for predicting a segmen-
tation on a particular image.

We now focus on the results for the images where both ground truth and
segmented myocardium were available. The statistics over all segmentations are
given in Table 1. Given that the images are so much larger than the myocardium,
the size of the true negative (TN) set is so large, and the specificity, accuracy, and
NPV are all very close to 1 and not very interesting to study. We will therefore
concentrate on the other measures which are much more meaningful. The median
values for the sensitivity (0.71), PPV (0.83), dice (0.77), and jaccard (0.62)
indicate that the algorithm performs well. It is important to note that these
numbers are sensitive to the pixels on the boundary of the region. We are not
comparing the endocardium and epicardium regions. Instead, we are comparing
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Table 1. Overall results for all 95 datasets

measure avg std min 1st med 3rd max

sensitivity 0.621 0.272 0.000 0.443 0.714 0.837 1.000

specificity 0.998 0.002 0.980 0.997 0.998 0.999 1.000

accuracy 0.993 0.005 0.965 0.991 0.994 0.996 1.000

PPV 0.748 0.226 0.000 0.696 0.826 0.895 1.000

NPV 0.995 0.004 0.976 0.994 0.996 0.998 1.000

dice 0.656 0.253 0.000 0.545 0.766 0.840 0.953

jaccard 0.533 0.242 0.000 0.375 0.620 0.724 0.911

the myocardium region which is relatively thin. Therefore, a few pixels included
or excluded at the boundary of the segmentation on the endocardium side or on
the epicardium side do not change the overall appearance of the segmentation
much, but change these statistical measures.

Fig. 6 shows box plots of the dice coefficient distribution for each dataset. The
box plots for sensitivity, PPV, and jaccard look very similar to this one. It can
be seen that, aside from 5 datasets where the algorithm performed very poorly
(DET0007901,DET0023801,DET0011501,DET0011601,andDET0013801), and
2 datasets where the results were not very good (DET0030301 and DET0014901),
in general, the segmentation is in good agreement with the ground truth. In all
cases of bad segmentation, the algorithm had trouble with the modeling of the
gray levels for the different regions. In some cases, it resulted in a very thin my-
ocardium as in Fig. 5(i), and in other cases, parts of the myocardium were missed
as in Fig. 5(h). Dataset DET0007901 is particularly difficult because alternating
slices have very different brightness levels. Since our algorithm uses the gray level
distributions of the previous slice to initialize the modeling in the current slice,
the algorithm breaks.

Fig. 6. Box plots of the dice coefficient distribution for each dataset

Fig. 7 shows box plots of the dice coefficient distribution for different slice
positions in the dataset. Again, box plots for sensitivity, PPV, and jaccard look
very similar. For each image, the relative slice position (between 0 and 1) was
calculated with respect to the slices containing ground truth. It can clearly be
seen that the segmentation results get worse toward the base and toward the
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Fig. 7. Box plots of the dice coefficient distribution over various relative slice positions

Fig. 8. Bland-Altman plots for the ED volume, ES volume, ejection fraction, and mass

apex. Going toward the apex, the algorithm sometimes has difficulties shrinking
the shape of the left ventricle enough as seen in Fig. 5(j). In the base, the
discrepancies are due to two factors, namely the thickness of the myocardium,
and the exact positions of the mitral valve and aortic valve. Indeed, since the
contours are cut by the mitral valve plane and parts are erased (see Fig. 5(e)), if
the plane is estimated wrong, the cuts might be completely off and the overlap
between the ground truth and segmented myocardium might be very small.

Finally, we compared the clinical measurements. Fig. 8 shows Bland-Altman
plots for the ED volume, ES volume, ejection fraction, and mass computed from
the ground truth and the segmentation results. Our volumes are calculated by
multiplying the area of the contours by half the distance to the previous slice
plus half the distance to the next slice. When the contour intersects with the
base plane, each individual pixel area multiplied by its distance to the base plane
is added to the entire volume. It can be seen that the volumes are slightly over-
estimated, by 11.67ml for ED and 18.48ml for ES. The two outliers correspond
to datasets DET0011601 and DET0023801 which we have already mentioned
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for having poor segmentation results. Even though the volumes are over esti-
mated, the ejection fraction turns out to be very accurate, underestimated by
only 0.05%. The mass is underestimated by 25g. We believe that these num-
bers are clinically acceptable. The bias in volume and mass are likely due to
differences in methods used to calculate the measurements from the segmented
slices.

4 Conclusions

We have presented a system to automatically segment the left ventricle in cardiac
cine MR images. The system segments short axis images, and uses long axis
images, when available, to extract the mitral valve leaflet anchor points and
generate a mitral valve base plane. The segmentation of the short axis images is
performed one slice at a time using an inverse consistent deformable registration
algorithm to enforce an implicit smoothness constraint over time. The contours
themselves are recovered using a minimum cost path algorithm.

We have tested our system on 95 datasets from the STACOM’11 4D LV Seg-
mentation Challenge validation set and have analyzed the results. This exercise
was very useful to understand the strengths and weaknesses of our system. We
were aware that the base and apex areas are more challenging and have some
ideas on how to improve this by combining the slice based segmentation with
a model-based approach [10]. Also, we know that the weakest link in the slice
segmentation is the gray level modeling. We might be able to model the different
regions distributions better using linear combinations of discrete Gaussians [1].
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Abstract. In this paper we present a new method for fully automatic
left ventricle segmentation from 4D cardiac MR datasets. To deal with
the diverse dataset, we propose a machine learning approach using two
layers of spatio-temporal decision forests with almost no assumptions
on the data nor explicitly specifying the segmentation rules. We intro-
duce 4D spatio-temporal features to classification with decision forests
and propose a method for context aware MR intensity standardization
and image alignment. The second layer is then used for the final image
segmentation. We present our first results on the STACOM LV Segmen-
tation Challenge 2011 validation datasets.

1 Introduction

The left ventricle plays a fundamental role in circulation of oxygenated blood
to the body. To assess its function, several indicators are often calculated in
clinical practice. Many of these are based on ventricular volume and mass mea-
surements at reference cardiac phases. To calculate these an accurate delineation
of the myocardium and the cavity is necessary. To remove the bias and variance
of manual segmentation, and obtain reproducible measurements, an automatic
segmentation technique is desirable.

Compared to computed tomography (CT), cardiac magnetic resonance imag-
ing (cMRI) offers superior temporal resolution, soft tissue contrast, no ionizing
radiation, and a vast flexibility in image acquisition characteristics. As a dis-
advantage, cMRI scans often yield significantly lower resolution in the plane
orthogonal to the plane of acquisition, the images can suffer from magnetic field
inhomogeneities and respiration artifacts can manifest as slice shifts. Moreover,
the lack of standard units (compared to the Hounsfield scale in CT) makes it
difficult to directly apply most of the intensity based segmentation techniques.

Motivated by the success of Lempitsky et al. [1] in myocardium segmentation
from 3D ultrasound sequences in near real time and Geremia et al.[2] for multiple
sclerosis lesion segmentation, we propose a fully automated voxel-wise segmen-
tation method based on decision forests (DF) with no assumptions on shape,
appearance, motion (except for periodicity and temporal ordering) or knowl-
edge about the cardiac phase of the images in the sequence. The left ventricle

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 109–119, 2012.
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segmentation problem is defined as the classification of voxels into myocardium
and background.

Instead of robustly registering to an atlas [3], building a model [4] or running
a highly specialized segmentation algorithm we leave the learning algorithm to
automatically decide the relevant features for solving the segmentation problem
using the provided ground-truth only. In principle, any pathology can be learnt
once a similar example is represented within the training dataset. The previously
used decision forests [1][2] rely on features that work best when image intensi-
ties and orientations are very similar. To tackle the highly variable dataset, we
propose a layered learning approach, where the output of each layer serves a dif-
ferent purpose. The first layer is used to prepare the data for a more semantically
meaningful and accurate segmentation task in the second layer.

The main contributions of this paper are: a method to use decision forests
to solve the MR intensity standardization problem (Section 3.1) and, similarly,
perform a context sensitive rigid registration (Section 3.2) to align all images to
a reference pose. We also suggest a way to introduce temporal dimension into
the currently used 3D random features (Section 2.2). Using the intensity stan-
dardized and pose normalized images, which we add spatial information to, we
then train a second forest layer (Section 4). This helps the trees to automatically
build their own latent shape representation.

Dataset. STACOM 2011 LV segmentation challenge data [5] were divided into
two sets. Training set (100 3D+t short axis (SA) volumes with manually delin-
eated myocardia at each cardiac phase) and validations sets ( 5 × 20 3D+t SA
volumes with no delineation provided).

This dataset clearly shows the anatomical variability of heart shape and ap-
pearance and some of the main issues of cMRI mentioned above.

2 Layered Spatio-temporal Decision Forests

Decision forests are an ensemble supervised learning method consisting of a set of
binary decision trees. The training set contains a set of feature measurements and
associated labels (myocardium/background) for each of the voxels in the set.

The trees are built in a top-down fashion, from the root, down to the leaves.
At each node, local features and a randomly sampled subset of context-rich fea-
tures are considered for feature selection. Random sampling of the features leads
to increased inter-node and inter-tree variability and improved generalization.
Each feature θ can be regarded as a binary decision (in our case τl < θ < τh)
that splits the original set into two disjoint subsets. The trees then select the
most discriminative features for each split such that the information gain is max-
imized. The data division then recursively continues until a significant part of
the voxels at the node belongs to a single class or no significant information gain
can be obtained by further splitting. The node then becomes a leaf. The aver-
aged class distributions of all the leaves in the forest reached by the voxel then
represent the posterior probabilities of it belonging to either the myocardium or
the background. See Geremia et al. [2] for more details.
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2.1 Strategy to Learn from Spatio-temporal Data

In our approach, we serially train two layers of decision forests, each with the
aim to learn to segment, but using slightly modified training data and features.
Training with all the 3D+t data was not feasible within the time limits of the
challenge, therefore a reduced strategy was designed. This strategy is repeated
for each tree:

1. Select a random subset of k 4D volumes from the whole training set
2. Randomly choose a reference 3D frame Ic for each selected 4D volume
3. Select two frames Ic−o, Ic+o with a fixed offset o on both sides from the

reference cardiac image Ic (with periodic wrapping at sequence boundaries)
4. Train the tree using a set of k triplets (Ic, Ic−o, Ic+o )

To reduce the computational time, the size of the subset for each tree was set
to k = 15, and only one fixed offset o = 4 is currently used. The choice of o
was made such that the motion between the selected frames is significant even
when more stable cardiac phases (end systole or end diastole) are selected as the
reference frame and that almost a half of the cardiac cycle could be covered.

2.2 Features

We use several features families to generate the random feature pool operating
on the triplets of frames. Their overview can be seen on Figure 2.2).

Fig. 1. Illustration of image based features extracted from the images. a) Local features
(3×3×3 box average S around the source voxel in the current frame Ic) [2]. b) Context
rich features [2] measuring the difference between source box average S and the sum
of remote region averages R1 and R2. c) Components x,y,z of voxel coordinates as
features[1]. d) Spatio-temporal context rich features with the current frame as the
source image and offset frame Ic±o as the remote. e) Spatio-temporal context rich
features with one of the offset frames as the source image and the other as remote.
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Local Features. Proposed in [2] as an average of intensities in the vicinity of
the tested voxel to deal with noise in magnetic resonance imaging:

θloc
Ic (x) = θloc

Ic ([x, y, z]) =
x′≤x+1∑
x′=x−1

y′≤y+1∑
y′=y−1

z′≤z+1∑
z′=z−1

Ic([x′, y′, z′]) (1)

Although these features are not intensity invariant, they can still quite well reject
some highly improbable intensities.

Context Rich Features. Defined also in [2], for multichannel MR acquisitions
as a difference between the local source image intensity IS and box averages of
remote regions in image IR:

θCR
IS ,IR(x) = IS(x) − 1

V ol(R1)

∑
x’∈R1

IR(x’) − 1
V ol(R2)

∑
x’∈R2

IR(x’) (2)

The 3D regions R1 and R2 are randomly sampled in a large neighborhood around
the origin voxel. These capture strong contrast changes and long-range intensity
relationships. In our case we define context-rich features as θCR

Ic,Ic(x).

Spatio-Temporal Context Rich Features. The domain of the moving heart
can be coarsely extracted by just thresholding the temporal difference magnitude
of the image. We propose to exploit this wealth of information and extend the
previous context-rich features into the temporal domain by comparing the "cur-
rent" 3D frame Ic and another frame offset from c by ±o. The temporal context-
rich features can be defined as θTCR1

Ic = θCR
Ic,Ic+o(x) and θTCR1

Ic = θCR
Ic,Ic−o(x).

Similarly, we measure the differences between the symmetrically offset frames
contained in the triplet as θTCR2

Ic (x) = θCR
Ic+o,Ic−o(x) and θTCR2

Ic (x) = θCR
Ic−o,Ic+o(x).

These spatio-temporal features can be seen as an approximation of a temporal
differentiation around the center frame. Note that we use both +o and −o to
keep some symmetry of the remote region distribution.

Voxel Coordinates. Finally, as in [1], we can insert absolute voxel coordinates:
θX

C (x) = xx, θY
C (x) = xy, θZ

C(x) = xz into the feature pool. However, not until
these coordinates have a strong anatomical meaning. This happens later, in the
second forest layer when the images are reoriented into the standard pose.

2.3 Data Preprocessing

To use fast evaluation of previously defined features based on integral im-
ages [6], it is necessary to have consistent spacing. Therefore, all the volumes
were resampled to one of the most common spatial spacings in the dataset
(1.56, 1.56, 7.42mm) and temporal sequence length (20 frames).

Intensity ranges of the images were all linearly rescaled to a fixed range.
Similarly to Nyúl et al. [7], we clamp intensities beyond the 99.8 percentile as
they usually do not convey much useful information.
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3 First Layer: Decision Forests for Image Intensity
Standardization and Position Normalization

Following the above mentioned training subset selection strategy we can train
the first layer of the forests. This is done directly on the images after intensity
rescaling i.e. images are brought into the same intensity range but have their
original poses. Although short axis scans are often acquired close to a position
where the ventricular ring is centered, slice orientation is chosen manually during
the acquisition, and precise alignment cannot be guaranteed. Therefore we skip
the usage of absolute voxel coordinate features at this step.

Fig. 2. Short (top) and long (bottom) axis views of the posterior probabilities after
the first layer. Brighter value means higher probability.

Several authors (e.g. [3]) have proposed to use Haar like features to detect the
heart and crop the heart region. Images can be then registered using the cropped
volumes. This removes the influence of background structures and improves the
success rate for the registration. However, an extraction of the cropped region
will not be necessary to perform a robust registration in our case. We train the
first layer of the forests on a rather general scenario, to end up with at least
a very rough classification performance (see Figure 2). As we show in the next
two sections, using the rough posterior probability map of a tissue belonging to
a ventricle this performance can be already good enough for ventricle detection,
intensity standardization and alignment onto a reference orientation without any
prior knowledge of the data apart from the ground-truth.

3.1 Intensity Standardization

MR intensity value differences of the same tissue are significant not only between
scanners and acquisition protocols [8] but also for the same follow-up patients
[7]. Therefore good intensity standardization is crucial for any intensity based
segmentation algorithm. The variance in median intensities of the myocardia
between different cases in the STACOM training set is quite large. There is
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no unique mode and the distribution is fairly spread in the whole intensity
range (0, 65535). Median myocardial intensities span range (1954, 36430), with
standard deviation of 5956 and inter-quantile range 7663). This is a serious
problem for any intensity based segmentation method.

Many of the intensity standardization algorithms [9] used today are based on
the methods of Nyúl et al. [7][10] and the alignment of histogram based land-
marks (e.g. modes, percentiles or statistics of homogeneous connected regions)
by rescaling image intensities with a piecewise linear mapping. Many of these
methods do work reasonably well for brain images where the white matter is
clearly the most dominant tissue. In cMRI, the largest homogeneous regions
would most of the time belong to the lungs, liver or cavities, rather than the
myocardium.

However, from the rough image first layer classification we already obtain some
information about the strength of the belief in the foreground and background
object. We propose to remap the source image intensities by a piecewise linear
function such that the weighted median (as median is more robust to outliers
than the mean) M c

source of the images is transformed to a reference value Mref .
The weighted median is defined as follows:

M c
source = arg min

µ

∑
x∈Ic

w(x).|Ic(x) − μ| (3)

Where x is the voxel iterator and w(x) are the weights (first layer posterior prob-
abilities). We avoid sorting all volume intensities by approximating the weighted
median with the weighted version of the P 2 algorithm [11][12]. This algorithm
dynamically approximates the cumulative probability density function with a
piece-wise quadratic polynomial by adjusting positions of just five markers as
the weighted samples are streamed in. Each of these markers are associated with
their position, percentile and an intensity value corresponding to that percentile.
The positions are updated such that they correspond to the sum of weights of
samples whose intensity value is smaller than the value the markers hold.

3.2 Orientation Normalization

In the approach of Lempitsky et al. [1] voxel absolute coordinates are used as
features directly. This choice cannot be justified without aligning the images onto
a reference pose. Moreover, features we use for classification are not rotation
invariant. Therefore if all the volumes could be registered to have the same
orientation, the classification would certainly benefit from it. The interpatient
cardiac registration is generally a difficult problem due to the high variability in
the thoracic cage. Shi et al. [3] do first learning based heart detection and then
apply a locally affine registration method which they claim to be robust for large
differences.

A robust learning based linear inter-patient organ registration was proposed
by Konukoglu et al.[13]. Here, each organ is represented with a smooth proba-
bility map fit to the bounding boxes obtained as a result of a regression forest.
Then, registration of these probability maps is performed.
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This sigmoid representation is however rather limiting since it disregards the
orientation that we would like to correct for. Without any assumptions on the
shape of the distribution, we propose to rigidly align the myocardium enhanced
first layer posterior probability maps instead. For this step we propose to use a
fast and robust rigid block matching registration technique [14]. The reference
we used was chosen randomly among the images where the apex was at least
partially closed. A better choice of the reference, is currently out of scope of this
paper. However, an algorithm similar to Hoogendoorn et al.[15] or a generative
technique similar to [16] could be used.

To reduce the computational time, only probability maps of frames from the
middle of the sequence are used to estimate the intensity and pose transforma-
tions. The same transformations are then applied for all the frames and ground
truths in the sequence which will be needed to train the second layer.

4 Second Layer: Learning to Segment with the Shape

4.1 Using Voxel Coordinates

Once the images are registered to a reference volume, the voxel coordinates
start to encode spatial relationships with respect to the reference coordinate
frame and the coordinate features can be now included in training of the second
decision forest layer. Moreover, if the intensity standardization step succeeds,
the intensities have more tissue specific meaning (at least for the myocardium).

Thanks to the incorporation of coordinate based features, the tree can com-
pletely automatically learn its own latent representation of the possible set of
shapes, regularize the classification, and help to remove objects far away from
the ventricle. However, this step strongly relies on the success of the previous
registration step. Currently, only one reference image is used. Registration to
multiple targets should therefore improve robustness and alleviate this problem.

4.2 Transforming the Volumes Back

After the classification is done in the reference space, the posterior probability
maps can be transformed back to the original reference frame and resampled
accordingly. This shows the advantage of a soft classification technique where
the final binary mask is obtained by thresholding the transformed non-integer
posterior map, thus avoiding some of the interpolation artifacts.

5 Results

Here we show the preliminary results of our method. The forest parameters for
the first layer were fixed as follows: 20 trees with depth 20 each. To train each
tree, 15 triplets of frames were randomly selected from different volumes of the
training set (91 volumes in total). For the second layer: 27 trees each with depth
20. For each tree 12 triplets were randomly selected from different volumes of
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Fig. 3. Short (top) and long (bottom) axis views on the posterior probabilities after
the second layer and segmentation results (isocontour of the probability map at 0.5)

the training set (91 volumes in total). This leads to usage of only 8% triplets
from the whole training set. Hence, there is a vast reserve in utilisation of the
training data and setting optimal forest sizes. These parameters were chosen
rather empirically to fit into the time limits of the challenge.

The following results were obtained after blind evaluation of our classifications
on 90 previously unseen test volumes i.e. 25415 slices from the validation dataset
by the STACOM LV segmentation workshop organisers (See Table 1).

In most of the cases, the algorithm was able to correctly identify the left
ventricle myocardium (with median specificity of 0.81). This was possible with-
out the need to explicitly define the segmentation rules and problem specific
assumptions (e.g. circularity of the myocardium or cavity contrast). It was also
not neccessary to include additional information into the training set (e.g. mitral
valve plane position or manual segmentation of a frame in the sequence) nor to
rely on a robust non-rigid registration technique.

All the measures were calculated per-slice. This way of calculating the mea-
sures caused some of them (specificity, accuracy and NPV) to reach high values
but also to have less explicative power since the number of the background vox-
els (TN) dominates the expression. Some of these measures (sensitivity and
PPV) strongly penalize any voxel misclassifications in the apical and basal
areas where the slices contain only very few true myocardial voxels. Perfor-
mance of our algorithm is currently rather mediocre at basal and apical slices



Layered Spatio-temporal Forests for LV Segmentation from 4D cMRI Data 117

(with median specificity as low as 0.23 at the apex). This is partly due to limited
feature evaluation at image borders and the pose standardization step, where
voxels at boundaries can get transformed out of the classified volume. The poor
performance at these regions results in increased variance of the measures and
helps to explain the significant differences between mean and the median values
of the measures.

Table 1. Statistics on the per-slice measures of our segmentation results on 90 volumes
from the validation dataset calculated from the entire slices with no region of interest
specified. The basal and apical slices contribute to the large differences between the
mean and median values and also contribute to the higher variance.

sensitivity specificity accuracy PPV NPV dice jaccard
TP

TP+F N
TN

F P+TN
TP+TN

P+N
TP

TP+F P
TN

TN+F N
2|A∩B|
|A|+|B|

|A∩B|
|A∪B|

mean 0.6857 0.9897 0.9861 0.4791 0.9962 0.5045 0.3730
median 0.8099 0.9907 0.9875 0.5234 0.9978 0.5995 0.4281
σ 0.3137 0.0077 0.0077 0.2069 0.0046 0.2571 0.2098

Compared to the state of the art algorithms for left ventricle segmentation,
slightly lower segmentation performance was achieved. It should be noted that
the classification is run independently for each voxel. No smoothness, connectiv-
ity nor temporal consistency constraints are enforced to demonstrate the perfor-
mance of the pure machine learning approach. Therefore, isolated segmentation
islets or holes in the resulting binary segmentation can occur as a result of mis-
classification. However, thanks to the coordinate features, most of the voxels far
from the myocardium are usually well discarded and also the solution becomes
more regular as a result of the latent cardiac shape model built by the forests.
In the soft classification, the holes are represented as a drop in the segmentation
confidence but rarely fall to zero. This information could be easily considered in
a subsequent postprocessing step to further improve the segmentation. However,
adding these was not the goal of this paper.

6 Conclusions

We aimed to present a fully automatic machine learning based algorithm for left
ventricle segmentation with no explicit definition of task specific segmentation
rules, model creation, user interaction nor post-processing. The algorithm learnt
to automatically select the most discriminative features for the task using the
ground-truth only. The only assumptions we make is that the motion of the ob-
ject to be segmented is periodic for the construction of frame triplets and that
the tissue intensity mapping between two different cases can be roughly approx-
imated by a piecewise linear function. We also introduced a machine learning
based intensity standardization method that allows to do tissue specific remap-
ping of intensities and obtain a more CT like behaviour.
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Fig. 4. a) Automatically calculated volume curve from patient DET0026701 during a
single cardiac cycle with detected end systole (ES) and end diastole (ED) frames at
the volume maximum and minimum respectively. b) Long axis crosssection through
the binarized segmentations at ED and ES.

Finally, using a curvature-based iterative hole filling algorithm [17] on the
binarized segmentation, we could automatically calculate volumetric measure-
ments and detect the main cardiac phases as the volume curve extremas (see
Figure 4).
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Abstract. Despite the important role of object tracking using the Optical Flow 
(OF) in computer graphics applications, it has a limited role in segmenting 
speckle-free medical images such as magnetic resonance images of the heart. In 
this work, we propose a novel solution of the OF equation that allows incorpo-
rating additional constraints of the shape of the segmented object. We formulate 
a cost function that include the OF constraint in addition to myocardial contour 
properties such as smoothness and elasticity. The method is totally different 
from the common naïve combination of OF estimation within the active contour 
model framework. The technique is applied to dataset of 20 patients and com-
parison with manual segmentation shows sensitivity and specificity levels of 
93% and 99% respectively is obtained through the challenge validation system. 

Keywords: Myocardial segmentation, Short Axis, Optical Flow, Active  
Contour Models. 

1 Introduction 

Quantitative assessment of the cardiac function from cine MRI images requires delin-
eation of the inner and outer surfaces of the left ventricle throughout the phases of the 
cardiac cycle. Usually, this is done by delineating the endo- and epi- cardium contours 
in multiple 2D sequences of short-axis (SA) cross-sections of the heart. Although 
manual segmentation is considered the golden reference for myocardial segmentation, 
it is a tedious and time-consuming process. Several automatic (and semi-automatic) 
techniques for segmenting the myocardium have been proposed in literature. A large 
class of automatic segmentation techniques depends mainly on the spatial information 
of each image. Examples include using 2D active contour models [ 1], region growing 
[ 2], or morphological operators [ 3]. Nevertheless, these techniques ignore the tempor-
al relationship between the consecutive time frame s which can be useful for consis-
tent segmentation of the myocardium. A number of techniques have been proposed in 
literature employing temporal information. Examples include active shape/appearance 
model segmentation techniques that use learning datasets to model the shape, appear-
ance, and motion parameters of the myocardial borders [ 4- 6]. Although these methods 
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can successfully delineate the myocardium, they require manual segmentation of huge 
number of images spanning a wide range of normal and abnormal case which is, to 
date, prohibitively expensive.  

To avoid the need for a huge training dataset, one possible way is to track the myo-
cardial contours from time frame to another using standard computer vision technique 
such as optical flow (OF) [ 7]. The technique can provide a rough estimate of the (ini-
tial) contour location at each time frame. This contour can then be refined using an 
appropriate technique such as active contour model (ACM).  For example, Mikic et al 
[ 9] used the tracked points as an initial contour for the ACM algorithm. Nevertheless, 
after few iterations of the algorithm, the contour evolves away from its initial location 
and thus the effect of the temporal information vaporizes. To avoid this loss of tem-
poral information, Hamarneh et al [ 8] proposed modifying the ACM algorithm to 
include an external force representing the contour location estimated by the OF me-
thod. Although this method successfully attracts the iterated solution to the locations 
predicted by the OF, it has a major disadvantage of having the OF algorithm runs 
independent of the ACM algorithm. That is, inaccurate results of the OF algorithm 
propagates into the ACM algorithm and bias its output. It is worth noting that the 
above two attempts were applied to ultrasound images which are rich in image  
textures (i.e. speckles). This resulted in accurate OF tracking of the myocardium con-
tours and thus reasonably accepted segmentation results. Unfortunately, in speckle-
free MRI images, such techniques are vulnerable to inaccurate OF tracking.  

In this work, we propose a novel solution of the OF equation that allows incorpo-
rating additional constraints of the shape of the segmented object. We formulate a 
new cost function that include the OF constraint in addition to myocardial contour 
properties such as smoothness and elasticity. That is, the solution minimizing this cost 
function, simultaneously (and optimally) satisfies both the OF constraint and the con-
tour smoothness constraint. The results of the new formulation outperform classical 
methods of combining OF and ACM methods because it involves simultaneous opti-
mization of both the OF and the ACM algorithm. 

2 Method 

2.1 Energy Function of the Optical Flow Constraint 

Given an image sequence I(x, y; t) with t=1, 2, .., n, it is required to estimate the dis-
placement (or equivalently, the velocity) of each image point (x,y), from one time 
frame  to the other. Let  and  be the required displacement in the x- and y-
direction, respectively, at a given time frame, t, and point , . In the optical 
flow framework, the displacements and  can be estimated by solving the optical 
flow constraint equation given by [ 7],  

    (1) 

where ,  are the first-order derivative of the image in the x- and y- direction re-
spectively calculated at and  is the time derivative of the image , ; . The 
latter can be approximated by taking the difference between two successive images , ; 1 and , ; .  
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In our formulation, we use a different form of Eq (1) by noticing that Eq (1) can be 
obtained by minimizing a quadratic term, i.e. an energy function, EOF, given by the 
following equation [ 9], ,  ,   1  .    . 1   (2) 

Where  and J( ):= .( I)T.  
If we have a set of N points forming a contour, then the energy term for the contour 

at a time frame, t, is given by:   ∑ EOF ,    (3) 
 

It is worth noting that the above equation is equivalent to Eq. (2); and thus, there is 
still no unique solution that minimizes Eq (2). Therefore, more constraints are still 
required in order to obtain a solution to Eq. (3).  

2.2 Contour Constraints 

In this work, we use the property that myocardial contours are smooth and elastic as 
the additional constraints. These additional assumptions can be formulated in a way 
similar to that of the active contour model (ACM) energy function. That is, at a given 
time frame, t, the following energy term is calculated at each contour point, , (see 
[ 11] for more details of the ACM energy function), 

EACM = E Elasticity + E Curvature   (4.1) 

E  α  β    (4.2) 

where the first- and second-  order derivatives in the above equation measure the 
amount of contour stretching (elasticity energy) and contour bending (curvature ener-
gy) respectively. The weighting parameters, α and β, represent the contour internal 
properties of elasticity and curvaturerespectively. 

2.3 Contour-Constrained Optical Flow Energy Function 

Combing equation (3) and (4) yields an energy function that contains the temporal 
information from the image sequence in addition to the contour properties. That is, the 
desired contour that delineates the myocardial border is the one that minimizes the 
following cost function: 

 EOF+EACM     (5.1) 

∑ α  β γ EOF ,   (5.2) 

A greedy algorithm is used to solve the above minimization problem, where the 
weighting factors (α, β and γ) are preset experimentally and kept fixed for the  
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different runs of the algorithm (i.e. are not changed from dataset to another).To  
determine the values of these parameters, first, the algorithm was applied several 
times values to segment four training datasets. In each run, the parameter values were 
selected randomly and kept fixed for all four datasets and the segmentation results 
were recorded. Then, the parameter values that yielded the best segmentation results 
were determined and stored. To study the effect of changing these parameters on the 
performance of the algorithm, their values were changed by 20% and the changes in 
the segmentation results were observed. It was found that the overall performance is 
not sensitive to such changes in the parameters and thus they were kept fixed in all 
other runs of the algorithm (currently, we use α=0.5, β=1.5 and γ=0.5).  

Figure 1 shows a block diagram of the proposed algorithm and Figure 2 shows how 
the EOF energy term is calculated for the two consecutive time frames t-1, t. At time 
frame t the mask points Ni of the center point P`1 are compared to the reference point 
P1 at time frame t-1. (U, V) are determined based on Nxi and Nyi coordinate values 
and the EOF energy term is calculated as described in Eq (2). 

 
 

 

Fig. 1. The workflow of the proposed algorithm 
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2.4.2   Standard ACM with Optical Flow Initialization 
A total of 3 datasets (15 slices, 25 time frame/slice) have been used to compare the 
proposed method to standard ACM technique. The ACM algorithm was initialized at 
each time frame by the OF tracking results of the final contour obtained in the pre-
vious time frame. Details of this method can be found in [ 9]. 

2.4.3   ACM with Naïve Optical Flow Energy Function 
A total of 3 datasets (15 slices, 25 time frame/slice) have been used to compare the 
proposed method to standard ACM technique with a modified energy function. The 
ACM algorithm was initialized at each time frame by the final contour obtained in the 
previous time frame. The modified energy function at a given contour point, s, is for-
mulated as, 

Ề = EACM + EOF     (6.1) 

     (6.2) 
 

Where  is the location of the  contour point in the current iteration (at any 
step during the evolution of the ACM solution); (s) is the location of the  con-
tour point predicted by the OF algorithm; and ||.|| is the vector Euclidian norm. 

3 Results and Discussion 

Table 1 shows a summary of the quantitative evaluation of the proposed method when 
applied to the 20 patient datasets. High sensitivity and specificity values are evident 
from the table. In addition, the dice index shows a relatively high similarity between 
the segmentation results of the proposed method and the ground truth obtained by the 
manual grading of the images. It is evident also from the table that all the quantitative 
measures of the proposed method are better than the other two techniques. This per-
formance is due to the global nature of the energy function associated with the pro-
posed technique. That is, the proposed method tries to find the optimal solution that 
simultaneously minimizes the constraints implied by the contour elasticity and 
smoothness properties as well as the OF constraints. On the other hand, the other two 
techniques sequentially perform two optimization problems; one to solve the OF con-
straint and the other to solve the ACM problem.  

Figure 3 shows 5 time frames of a basal short axis slice. The first row displays the 
results of the proposed technique. The second and third rows show the results of the 
two other methods: ACM initialized by OF estimated contour; and ACM algorithm 
with a naïve energy term representing the OF solution. It can be seen from the figure 
that the results of the proposed method are better than those of the other method. Two 
reasons can be stated for the failure of this particular case. First, the displacement 
field obtained by the OF at some points was overestimated and the contour was 
pushed away from the true myocardium border. In addition, the elasticity energy term 
of the ACM model tried to overcome this sudden motion of the contour at these points 
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so it pushed more points towards the direction of the motion. These two factors 
caused the contour to significantly shrink and get attached to the inner edges of the 
papillary muscles (red arrows). The yellow arrows on the figure show some segmen-
tation errors at the epicardium. Nevertheless, the error is not large because of the 
small displacement of epicardium which results in reliable OF estimation. 

Finally, it is worth noting that the proposed method does not impose the classical 
OF constraints proposed by Lucas and Kanade (spatial constancy of the motion field) 
or Horn and Schunk (smooth motion field). Instead, the new method uses a different 
type of constraints related to the shape of the object being segmented, i.e. the myocar-
dium contours. Further investigation might be done to study the effect of adding other 
constraints to the energy function orusinga term representing recent non-rigid regis-
tration techniques instead of the classical Lucas Kanadeoptical flow formulation. 

 
 

A 

B 

C 

 (1) (2) (3) (4) (5) 

Fig. 3. Segmentation results using: (A) The Proposed Algorithm; (B) ACM + OF Initialization; 
and (C) ACM + naïve OF Energy Function 
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Table 1. Quantitative comparison between different techniques and the ground truth 

 
Proposed 
Algorithm 

ACM  +OF 
 Initialization 

ACM + naïve OF 
Energy Function 

Challenge  
Validation 

Mean ± STD 
Sensitivity % 96.017 ±  2.742 90.786  ±  2.862 90.266 ±  7.264 93.947± 5.709 
Specificity % 99.407 ±  0.188 99.374  ±  0.178 99.42   ±  0.154 99.262± 0.11 
Accuracy % 99.417 ±  0.157 99.404  ±  0.169 99.455 ±  0.127 99.094± 0.084 

PPV % 83.499± 5.058 72.168± 6.585 73.172± 7.012 67.466± 7.913 
NPV % 99.914± 0.038 99.935± 0.031 99.94± 0.047 99.815± 0.058 

Dice index 0.858   ±  0.033 0.807    ±  0.049 0.75     ±  0.072 0.757   ± 0.062 
Jaccard index 0.752   ±  0.045 0.681    ±  0.065 0.702   ±  0.083 0.624± 0.08 

4 Conclusion 

In this work, a method for segmenting the myocardium in MRI images was proposed. 
The method is based on a novel formulation of the OF constraint equation. First, an 
energy function including the OF constraints as well as shape constraints of the myo-
cardium contour was formulated. Then, the energy function was iteratively minimized 
to obtain the optimum contour satisfying both constraints. The technique is applied to 
dataset of 20 patients provided by Cardiac Atlas Project and the comparison with 
manual segmentation shows high sensitivity and specificity levels. 

Acknowledgments. This work was supported in part by a research grant from the 
Science and Technology Development Fund, Ministry of Scientific Research, Egypt. 
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Abstract. We introduce a new multi-region model for simultaneous
segmentation of the left and right ventricles, myocardium and the left
ventricular papillary muscles in MRI. The model enforces geometric con-
straints such as inclusion and exclusion between the regions, which makes
it possible to correctly segment different regions even though the inten-
sity distributions are identical. We efficiently optimize the model using
Lagrangian duality which is faster and more memory efficient than cur-
rent state of the art. As the optimization is based on global techniques,
the resulting segmentations are independent of initialization. We evalu-
ate our approach on two benchmarks with competitive results.

1 Introduction

Automatic segmentation of cardiac MR images is an acknowledged difficult task.
Many successful approaches concentrate on segmenting the left ventricle (LV) as
this part is the most interesting for diagnostic purposes. Still, quantifiable infor-
mation about the cardiac function is gained from segmenting the right ventricle
(RV) as well. In this paper, we use a joint model of the whole heart where the
final result is improved compared to segmenting the parts independently.

This paper introduces a new mathematical model for cardiac MR segmenta-
tion. It is based on the following list of desiderata. Firstly, the human heart is
composed of several interacting geometric parts — this fact should be reflected
in the model. Secondly, the model should be complete in the sense that every
voxel of the image should be modeled, both in terms of geometry/shape and
appearance using statistical principles. This avoids many ad hoc procedures.
Finally, it should be possible to estimate a global solution to the resulting op-
timization problem which is not dependent on a good initialization. There is
always a compromise between the complexity of the model and the tractability
of the optimization problem. For example, image-driven methods do not have
a strong model and are typically designed to be efficient; however, they rely on
good heuristics. The main contribution of this paper is that we advance the
state of the art by showing that despite a rather sophisticated model, we can in
an efficient manner compute solutions very close to the global optimum for the
segmentation problem.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 129–138, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Most segmentation approaches in medical imaging rely on local descent tech-
niques, e.g. [11,12,14], and may get stuck in local optima. It has been shown
that it is possible to apply global optimization techniques to make the segmen-
tation more robust to poor initialization, e.g. [2,10]. We follow this trend. Our
framework builds on the multi-region scheme presented in [5] where it is shown
that geometric relationships, e.g. when one object is included in another, can be
modeled and globally optimized via graph cuts. The key property that makes
this possible is that the resulting energy minimization problem is submodular
[9]. We also identify submodular relationships; however, we go beyond submodu-
larity to enable other geometric relationships and priors to be incorporated into
the model. The standard technique for solving non-submodular energies of this
type is roof duality (RD) [15]. However, the method is quite memory intensive
and may fail in giving a complete segmentation without time-consuming probing.
Instead we develop a Lagrangian dual approach that uses half of the memory
compared to RD and it always produces a segmentation. The method can easily
be parallelized as described in [16]. Our algorithm is tested on two different data
sets, one of which was used in the MICCAI 2009 Cardiac MR Left Ventricle Seg-
mentation Challenge [1], on which we achieve results on par with the competing
methods.

(a) Four-region model (b) MR view

rp xp

0 (0, 0, 0, 0)
1 (1, 0, 0, 0)
2 (1, 1, 0, 0)
3 (1, 0, 1, 0)
4 (1, 1, 0, 1)

(c) Representation (d) Graph

Fig. 1. (a) A constructed short-axis view showing how the heart is modeled. Region
0 is the background, region 1 contains myocardium and the left and right ventricular
cavities. Region 2 is the left ventricular cavity and region 3 the right ventricular cav-
ity. Region 4 is the papillary muscles of the left ventricle. (b) An example of a slice
from a short-axis image acquired with MRI where all four regions have been manually
delineated. (c) The Boolean representation of the four regions reflect their geometric
relationships as given in (a). (d) Graph construction for one voxel. The circled number
corresponds to a vertex associated with the region number. The directed arrows are
the directed edges in the graph.

2 Model

In our model, the heart below the atrioventricular plane consists of four dif-
ferent regions as shown in Fig. 1(a) and (b). The joint model describes both
the geometry of the different regions and their appearances in the MR images.
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An energy minimization approach is proposed in which a minimizer of the energy
function gives the desired segmentation.

Let L be the set of region indices and let P be the set of voxel indices. Each
voxel should be assigned a region index rp ∈ L. We introduce x ∈ B

|L|×|P|, where
B = {0, 1} and x is indexed as xi

p with i ∈ L and p ∈ P . Further, xi represents
all Boolean variables associated with region i and xp represents all Boolean
variables associated with voxel p. Each voxel in the image is represented by |L|
Boolean variables, making it possible to directly encode geometric relationships
between regions, like inclusion and exclusion. Fig. 1(c) shows the correspondence
between rp and xp.

The energy function to be minimized is E (x) = D(x)+V (x)+W (x), whose
three components are, in order, the unary terms, the pairwise terms (regulariza-
tion) and the geometric interaction terms. For every voxel p, the unary terms
introduce a cost for each labeling of xp:

D(x) =
∑
p∈P

∑
i∈L

Di
p

(
xi
p

)
. (1)

The pairwise terms use a connectivity N to favor smooth and correctly located
boundaries:

V (x) =
∑
i∈L

∑
p,q∈N

V i
p,q

(
xi
p,x

i
q

)
. (2)

The geometric interaction terms associate a cost with labeling voxel p with dif-
ferent combinations of the two regions i and j and are used either to attract or
repel different regions to each other:

W (x) =
∑
p∈P

∑
i,j∈L
i�=j

W i,j
p

(
xi
p,x

j
p

)
. (3)

Unary terms. The unary terms are constructed from the probability, P, of each
voxel belonging to any of the four defined regions, cf. Fig. 1. We define μi(p) =
− log (P (rp = i)) , for voxel p and region i. The probability P is estimated from
training data under the assumption that the spatial location and the intensity of
a voxel are independent. We split the possible locations into four categories: left
ventricle, right ventricle, myocardium and background. Similarly the intensity is
split into three categories: blood, muscle and background.

The spatial distribution is estimated by first resizing each heart in the training
data to the same size by linear interpolation. Then a binary mask is constructed
for each category and each heart. The masks are enlarged and smoothed and
then they are all added together constructing the final probability mask.

The intensity distribution for each region is estimated by collecting all intensi-
ties from the examples in the training data. The histogram of intensities is then
smoothed and a distribution is constructed. For both the location and intensity
probability a lowest probability is set, in order to capture occurrences unseen in
the training data. An example of the final μi’s can be found in Fig. 2.
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(a) Slice. (b) μ0. (c) μ1. (d) μ2. (e) μ3.

4

10

(f) μ4.

Fig. 2. Example of μi for the slice shown in (a). Recall that μi (p) = − log (P (rp = i)).
A lower intensity corresponds to higher probability.

Having estimated μi, the unary terms Di
p

(
xi
p

)
need to be constructed to

reflect Fig. 1(c):

D1
p(1) = μ1(p)− μ0(p), D2

p(1) = μ2(p)− μ1(p), (4)

D3
p(1) = μ3(p)− μ1(p), D4

p(1) = μ4(p)− μ2(p),

and Di
p(0) = 0 for all i and p. For example, region 4 is according to Fig. 1(c)

represented as xp = (1, 1, 0, 1). The cost of this xp is (μ1(p)− μ0(p)) + (μ2(p)−
μ1(p)) + (μ4(p)− μ2(p)) = μ4(p)− μ0(p).

Pairwise terms. The regularization weights are chosen differently for each region
in a method related to the discussion in [6]. For each region i we choose the
pairwise terms as:

V i
p,q (p, q) = wp,q

1

1 + β (P (rp = i)− P (rq = i))
2 , (5)

where β can be used to tune the regularization. The neighborhood N for the
regularization is chosen as 18-connectivity. The multipliers wp,q give different
weights to different types of edges. One common choice is wp,q = 1/ dist(p, q);
however, we instead use the arguably more correct way described in [3] based on
solid angles. Since MRI have anisotropic resolution it is very important to take
that into consideration both when calculating the distance between voxels and
when using the method from [3].

Geometric interaction terms. In our model region 1 contains both region 2 and re-
gion 3. This is modeled by the use of geometric interaction terms as W 1,2

p (0, 1) =
∞ and W 1,3

p (0, 1) = ∞, ∀p ∈ P . Furthermore, the left ventricular papillary mus-
cle must be inside the left ventricle. This is modeled as W 2,4

p (0, 1) = ∞, ∀p ∈ P ,
see Fig. 1(d). By this construction any xp-labeling not listed in Fig. 1(c) will
have ∞ cost except for xp = {1, 1, 1, 1} and xp = {1, 1, 1, 0}, these two cases are
handled in Section 3.

User interaction. The method needs the user to select which slices to be seg-
mented and it also needs one click in the center of the right and left ventricle
in one slice. The two center points are used to roughly align the hearts in order
to get good spatial statistics. The algorithm can handle slices lacking any of the
regions.
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Pre-processing. Badly captured MRI are identified by looking at the distribution
of the intensities. If there are multiple peaks in the histogram close to each other
for the lower intensities, the image is assumed to be too bright and the intensity
distribution is shifted to fit an average histogram.

Post-processing. In all ground truth data we come across, only the left ventricu-
lar epicardium is delineated. In our model we do not have this restriction — we
segment the full myocardium. In order to compare our results with the ground
truth we must remove all myocardium which is not part of the left ventricular
epicardium. To do this, the thickness of the septum is approximated as the short-
est distance between the left and right ventricles in the resulting segmentation.
Then outlying myocardium is removed based on this thickness approximation,
cf. Fig. 4(a).

We also assume that the left ventricle and the myocardium are convex. The
resulting segmentation is taken as the convex hull in each slice.

The regularization can sometimes make the segmentation miss the most apical
slice. In this case either the segmentation from the same slice at another time
step or, if it is not available, the segmentation from a more basal slice is shrunk
and fitted at the bottom.

3 Solving the Optimization Problem

The energy function is minimized using graph cuts by associating each binary
variable with a vertex in an s-t graph. The global minimum is then found as
the minimum cut of the graph. We use the maximum flow implementation [4]
to compute minimum cuts.

It is well-known that an energy E(x) can be minimized exactly by finding the
minimum cut of a graph as long as all energy terms are submodular [9], but this
is not the case for our energy. The unary and pairwise terms are of standard
type and well-known to be submodular. All geometric interactions except the
separation of region 2 and 3 can be represented with a submodular function.
The corresponding graph construction for one voxel is shown in Fig. 1(d). As
illustrated in the figure, we want region 1 to contain regions 2 and 3 and at
the same time we want region 2 and 3 to be separated. Unfortunately, this last
constraint leads to a frustrated cycle and cannot be modeled by a submodular
energy function, see [5].

3.1 Using the Lagrangian Dual

Minimizing E(x) is a difficult problem, since it contains the non-submodular
separation of region 2 and 3. If we let E′(x) be our energy without the separation
constraint, E′ will be easy to minimize. Our model has four different kinds of
vertices, (x1,x2,x3,x4) = x, where the superindex denotes the region label. The
separation constraints dictate that x2 and x3 cannot be equal to 1 at the same
time. Adding this constraint gives us the new problem
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min
x

E′(x)

subject to x2 + x3 ≤ 1.
(6)

We note that this problem can be solved as an integer programming problem.
However, this is not tractable due to the large number of variables. Instead, we
look at the Lagrange dual problem:

max
λ

d(λ)

subject to λ ≥ 0,
(7)

where d(λ) = minx
(
E′(x) + λT

(
x2 + x3 − 1

))
is the Lagrange dual function.

Let d� denote the optimal value for (7) and p� the optimal value for (6). By
weak duality we then have that d� ≤ p�.

The Lagrange dual function d is always concave. However, it is not differen-
tiable in general, which precludes gradient ascent methods for its maximization.
We can, however, use the projected supergradient method [13].

This looks very similar to a gradient ascent method but has some key differ-
ences. Specifically, the method is easy to implement, but in general has worse
convergence properties than first-order gradient-based methods. We refer the
reader to [13,16] for details.

Definition 1. A supergradient to a function f at a point x0 is a vector v ful-
filling f (x)− f (x0) ≤ (x− x0)

T v, for every point x.

Lemma 1 (from [16]). Let λ be given and let x� be the optimal solution to
d(λ) = minx

(
f1(x) + λT f2(x)

)
. Then f2(x

�) is a supergradient to f at λ.

Proof. For any λ it holds that

d (λ) ≤ f1 (x
�) + λT f2 (x

�)=f1 (x
�) + λT

0 f2 (x
�) + (λ− λ0)

T
f2 (x

�)

=min
x

(
f1 (x) + λT

0 (x�)
)
+ (λ − λ0)

T
f2 (x

�)=d (λ0) + (λ− λ0)
T
f2 (x

�) .

The projected supergradient method is very simple. Let λ0 be an initial guess of
the optimal value of the concave function d. Then, in each step i a new possible
solution λi+1 is calculated as λi+1 = [λi + τivi]

+
, where vi is any supergradient

to d at λi, τi is a step-length and [·]+ is a projection onto the feasible set {λ ≥ 0}.
From Lemma 1 we directly choose a supergradient for a given λ as v =(

x2
)�

+
(
x3

)� − 1, where
(
xi
)�

are the vertices belonging to label i for the
optimal solution of d (λ) .

In each step, the optimal solution x� for a chosen λi can be calculated via a
minimum graph cut. Furthermore, as the edges will be very similar in each step,
the graph structure can be reused reducing the running time [8].

In the experiments the step size from [16] is used. Since supergradient methods
do not guarantee improved value in each step the best solution thus far is always
saved and once the relative duality gap (p− d)/|p| is small enough the algorithm
terminates. Here p and d are the currently best primal and dual energies.
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Fig. 3. Example segmentation from Lund

Table 1. Results in the Dice metric for Lund reported as mean ± one standard devi-
ation. “ED” is end diastole and “ES” is end systole. Note that the multi-region model
has a huge influence on the segmentation results.

LV endo. LV epi. RV endo.

ED 0.96±0.02 0.93±0.03 0.91±0.07

ES 0.87±0.05 0.88±0.05 0.80±0.11

(a) Full multi-region model.

LV endo. LV epi. RV endo.

ED 0.62±0.12 0.90±0.03 0.57±0.14

ES 0.47±0.25 0.86±0.04 0.42±0.14

(b) Each region segmented separately.

4 Experiments

The segmentation is only performed on the slices of the heart which are fully
below the atrioventricular plane. The quality of the segmentation is measured
by the Dice metric, which is given by 2 |A ∩B| / (|A|+ |B|), where A and B are
the ground truth and the computed segmentation, respectively. The algorithm
is evaluated on two data sets: Lund and Sunnybrook. Each data set is trained
and evaluated separately.

Lund consists of cine short-axis steady state free precession MR images of
62 healthy normals captured on a Philips Interera CV 1.5T with five channel
cardiac synergy coil. Each heart has the left and right ventricular endocardium
and the left ventricular epicardium manually delineated by an expert. The data
set is split into two equally sized parts, one used for training and one used for
evaluation. Results are given in Table 1(a) and an example segmentation in
Fig. 3. We also evaluate three clinical parameters. The left ventricular mass has
an error of 15.6±11.5 g. The left and right ventricular ejection fraction errors are
5.6±2.9% and 7.1±5.2%, respectively.

We also compare our method to a simplified version where we run the segmen-
tation for each region separately, see Table 1(b). Without the complete multi-
region model, the localization of the ventricles becomes very difficult and the
blood pools are often overestimated. Two examples where the multi-region model
improves the segmentation are given in Fig. 4.
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(a) (left) Complete model and (right) with-
out modeling the right ventricle.

(b) (left) Complete model and
(right) only the right ventricle.

Fig. 4. Examples of how modeling multiple regions improve the segmentation of the
ventricular epi- and endocardium. The color scheme is the same as in Fig. ??.

Our model was also optimized with roof duality (RD) [15]. Our method was
constantly faster than RD and at the same time giving a very small relative
duality gap. The small gap gives us certificates that the solutions are very close
to (and in many cases exactly) the global minimum, see Table 2.

Sunnybrook consists of 30 patients with different heart diseases and is split
up into two equally sized parts, one for training and one for evaluation. The
data set was used in the 2009 MICCAI segmentation challenge [1]. Sunnybrook
lacks ground truth for the right ventricles, so this was manually constructed by
a non-expert. Therefore, this ground truth was only used for training and not
for evaluation. The results given by the evaluation code used in the challenge is
given in Table 3 along with results from competing methods. In the challenge,
the Dice metric is calculated per slice and averaged over all slices.

Note that the small training data of Sunnybrook gives our method a disad-
vantage as there just 15 hearts spanning over three different diseases and one
group of normals. Image-driven methods do not suffer from the small training
set as they do not need to be trained.

Table 2. Running time in seconds per heart (ED and ES) and relative duality gap of
our algorithm after 25 iterations run on an Intel i5 2500K CPU. For RD we canceled
any computation taking longer than 12 hours.

Method Mean

Our 46±27

RD 6109±12451

(a) Sunnybrook [1]

Method Mean

Our 30±27

RD 1934±7984

(b) Lund

After 25 iterations

Sunnybrook 0.0014±0.0033

Lund 0.000055±0.0021

(c) Relative duality gap
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Table 3. Results for Sunnybrook. “?” means not reported in the corresponding paper.
“†” means that the result is not directly comparable. Mass and ejection fraction is
reported as difference between manual and automatic value.

Method
Dice LV Mass (g) LV ejection fraction (%)

LV endo. LV epi.

Our 0.86±0.05 0.92±0.02 27.1±28.3 12.5±8.7

Marák et al. 0.86±0.04 0.93±0.01 23±? 14±?

Lu et al. 0.89±0.03 0.94±0.02 21.6±14.6 8.08±5.06

Wijnhout et al. 0.89±0.03 0.93±0.01 28.7±18.7 7.02±4.78

Casta et al. ? 0.93±? † ?
O’Brien et al. 0.81±? 0.91±? ? ?
Constantinides et al. 0.89±0.04 0.92±0.02 † †
Huang et al. 0.89±0.04 0.94±0.01 ? ?
Jolly 0.88±0.04 0.93±0.02 31.8±17.7 8.35±5.78

5 Future Work and Limitations

Extending with one more region. It is possible to extend the model to also
include papillary muscles in the right ventricle; we need only to introduce one
more variable per voxel. If we let μ5 = P (rp = 5) for this new region and follow
the notation in Fig. 1(d) we need only to add one vertex corresponding to the new
variable and two edges: one s-t edge with value μ5−μ3 and one edge going from
region 5 to region 3 with ∞ weight. Initial experiments gave worse results for
both the right ventricle and myocardium segmentation with the added region.
The new region had a tendency to overflow into the septum since this would
give region 3 a rounder shape giving a lower regularization cost. We have not
yet found a good way of tackling this without relying too heavily on heuristics.

Short- and long-axis images. The Lund data set was manually delineated using
both short- and long-axis images. For a number of hearts the most basal slice
for the short-axis images containing the left ventricular cavity also cut through
to the atrium. For these slices it was hard or even impossible to even manually
delineate the left ventricle solely based on information from the short-axis images.
When the ground truth was produced, long-axis images were used to properly
segment them. It would be desirable for our algorithm to incorporate information
from long-axis images as well so we could handle these few slices as well.

Reducing memory usage. In the current implementation we use a standard max-
flow implementation [4], but the structure of the graph is highly repetitive. For
instance, all geometric interaction terms are equal and they need not be explicitly
stored in the graph. Also, if we were to use a pairwise term based on voxel
intensity we would just need to save the pairwise terms in one ”layer” reducing
the memory used by the pairwise terms to 1/4.
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6 Concluding Discussion

We have demonstrated that it is possible to apply global optimization techniques
for segmentation of cardiac MRI using a sophisticated model of the heart. The
model is optimized with a new method which is both fast and memory effec-
tive. The added complexity of the model is motivated by improvements in the
segmentation results.

Acknowledgments. We thank the Cardiac MR group at the University Hos-
pital of Lund for providing us with the Lund data set and expert delineations.
We used Segment [7] to read the DICOM images.
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Abstract. X-ray fluoroscopy is routinely used to guide cardiac catheterisations 
due to its real-time imaging capability and high device visibility, but lacks 
depth information and poorly visualizes the heart itself. A novel 2D-3D image 
registration method was developed that can augment 2D fluoroscopy by 
overlaying 3D CT cardiac images that have excellent soft-tissue information. 
The method relies on the catheterisation of two vessels during the procedure 
and globally minimizing a vessel-radius-weighted distance error between the 
vessel centrelines, segmented from the 3D data, and corresponding catheters 
reconstructed from biplane X-ray fluoroscopy. Validation of the algorithm was 
carried out using a glass heart phantom with catheters inserted into 
combinations of six of its vessels. Results show that registration with the 
coronary sinus resulted in an average 3D-TRE between 0.55 and 9.1 mm, with 
the best tested pair being the coronary sinus and descending aorta. The 
algorithm will be useful for guiding cardiac cauterization procedures and also 
for co-registration of data for the purposes of biophysical cardiac modelling. 

Keywords: 2D-3D image registration, cardiac imaging, image-guided 
catheterisation, CT, X-ray, weighted absolute orientation. 

1 Introduction 

X-ray fluoroscopy is routinely used to guide cardiac catheterisations procedures due 
to its real-time imaging capabilities, high-device visibility, low-cost and widespread 
availability. However this projective modality provides no depth information and 
suffers from poor soft-tissue contrast. In catheter-based cardiac procedures, such as 
percutaneous coronary intervention (PCI), cardiac resynchronisation therapy (CRT), 
and ablation for atrial fibrillation (AF), the cardiologist must rely on personal 
expertise to accurately position catheters. Using image-guided approaches, there is 
scope to reduce procedure time, decrease X-ray exposure, and improve success rates. 

Recently, there has been much research to augment X-rayfluoroscopy by 
overlaying better soft-tissue-contrast 3D information of the heart using 2D-3D image 
registration [1-8]. A pre-calibrated hybrid X-ray/MR system [1] can achieve 
registration within an accuracy of 5 mm; however, these systems are not widely 
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available outside research environments. Surrogate structures such as fiducial skin 
markers, visible in both X-ray and the 3D modality, provide another means of 
registration [2, 3]. However, accuracy may be compromised due to motion between 
the markers and the heart; this issue may be averted by using the heart itself for 
registration [4, 5], or by using catheters inserted in the vessels [6-8]. 

In [6, 7], registration is performed by first projecting the coronary sinus (CS) 
segmented from CT onto the fluoroscopy, and then matching the centreline of the 
projected vessel to a CS catheter in 2D. To avoid out-of-plane translation errors 
associated with projections, [8] performs the registration in 3D with the inclusion of a 
catheter reconstruction step. The method also includes the use of the descending aorta 
(DA) to improve accuracy using a global search strategy, but only assesses the 
accuracy by visual inspection. [6-8] only consider using the CS and/or DA for 
registration, whereas in clinical interventions, other vessels including the inferior vena 
cava (IVC), superior vena cava (SVC), ascending aorta (AA) and the pulmonary veins 
(PVs), are suitable candidates for catheterisation and hence registration. 

In this manuscript, the potential use of the IVC, SVC, AA and left upper PV 
(LUPV), in addition to the CS and DA is explored and analysed for use with the two-
catheter registration method described in [8], and the accuracy is quantified using 
fiducial and anatomical landmarks in a realistic heart phantom. 

Furthermore, registering with large vessels such as the DA amplifies registration 
errors due to the assumption that the catheter lies near the medial line of the vessel, 
which is not likely to be true [9-11]. The work in [9] indicates that the path of a 
guidewire inserted into a vessel is relatively reproducible in shape and position. 
Therefore, registration accuracy can potentially be improved by simulating the 
catheter path within the vessel using techniques in [10, 11] and assuming that the 
catheter lies close to this path instead of the vessel’s medial line. However, these 
methods have only been shown to apply where the catheter is well constrained in thin 
and tortuous vessels, which would not be the case for large vessels that are long and 
straight such as the DA, IVC and SVC. Therefore, the method presented in this 
manuscript still matches on the catheter and vessel medial line, but attempts to lessen 
the errors caused by the inclusion of large vessels by introducing a weight function 
based on the vessel radius. 

2 Methods 

The algorithm presented in [8] and extended in this manuscript relies on the 
catheterisation of two vessels during the interventional procedure and matches on a 
3D set of points picked along their centreline ,   and ,  from a pre-procedural CT 
scan of the heart, to a set of 3D-recontructed pointsalong their corresponding 
catheter ,  and ,  from intra-procedural X-ray. A reconstruction step is necessary 
for the catheters since X-ray is a projective modality. This is done by pre-calibrating 
and tracking the X-ray system to determine the projection parameters of the two 
views  and  [1, 8, 12]. According to epipolar geometry, a 2D point  of a catheter 
in one view (fig 2c) generates an epipolar line  in the other view that 
contains its corresponding 2D point  (fig 2d); where  denotes the Moore-Penrose 
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pseudo inverse of . The reconstructed 3D catheter point is at the intersection of the 
two back projections,  and , or at the point closest and equidistant to the 
back projections if they are skew lines. 

Matching requires that the 3D point sets are picked along the curve at a fixed 
arclength interval  and have equal point counts: # # , # # ; 
where #  denotes the number of points in . These curves are then joined together,   ; # # ## # #  . (1) 

A rigid-body transformation (RBT) reg made of rotation and translation  such that 

reg ; 1,  , (2) 

is found which minimises the vessel-radius-weighted residual error: ∑ ∑ reg ; 0, 1, 2, …  , (3) 

where  is the radius of the vessel at , and is a positive integer. By representing  
the transformation in this form, the problem reduces to that of weighted absolute 
orientation [13, 14] with no scaling. The CT data can then be registered to the X-ray 
by first applying the RBT, followed the X-ray view’s perspective projection,  
i.e. reg. 

Global Search Strategy. As described in [8] and illustrated in fig 1, generally # # and # # , and the vessel centrelines may not necessarily be picked 
in the same direction as their catheters. These are accounted for with a global search 
strategy which finds the best RBT for reg from a three degree-of-freedom (DOF) 
search space. The first two DOFs account for the differing number of points between 
the first vessel and catheter, |# # | 1, and the second, |# # | 1, by finding the subcurves of the centrelines, , , , , and catheters , , , , of equal point counts: # # , # # , 

if # # : , , : #
otherwise: , , : # 1,  ; 

if # # : , , : #
otherwise: , , : # 1,  . 

(4) 

where the superscript indexes the subcurve within the set, and a colon in the subscript 
denotes a range within the original curve, i.e. its subcurve (see fig 1a).The catheter 
and vesselsubcurves are then combined together to create a new set of  curves 
each with points similar to eq 1.  The catheters are combined as: , 1, , 1,  . (5) 
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Fig. 1. a) A 4-point catheter and 6-point vessel pair generates 3 unique subcurves from the 
vessel, and 3 catheter subcurves that are replicas of the original. b) The four ways the vessel 
centrelines can combine; 0: head-to-tail, 1: head-to-head, 2: tail-to-tail, and 3: tail-to-head. 

The vessel centrelines are also combined but account for the third DOF, , which 
allows for the centrelines to be picked in any direction relative to their catheter, 
resulting in set of 4 vessel curves, each also of length (fig 1b): , 0reverse , 1reverse , 2reverse reverse , 3 ;  1, 1,  . (6) 

with reverse  reversing the order of the points in the subcurve , i.e. # . 
Subsequently, in the global search strategy an RBT is computed for the 4 

combinations of subcurves between and . The RBT that yields the lowest 
residual error is the one used for registration so that eqs 2 & 3 are replaced with: 

∑ ; 1, , 1, , 0, 3
reg where , , argmin , ,

 . (7) 

2.1 Phantom Experiment 

To empirically determine suitable catheter/vessel (C/V) pairs for accurate registration, 
a phantom experiment was carried out with a glass model of a heart (Farlow’s 
Scientific Glassblowing, Grass Valley, CA, US) (fig 2a). Seven multimodal fiducial 
markers (Multi-modality radiographic marker, IZI MedicalProducts Corp., Baltimore, 
MD, US) were placed on the model, followed by a 512×512×384 CT scan (fig 2b) 
with a 0.68×0.68×1mm3 voxel resolution (Brilliance iCT, Philips Healthcare, The 
Netherlands). Catheters were then inserted into the CS, AA, DA, IVC, SVC and 
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LUPV which were imaged from two biplane views, LAO 30° and PA (fig 2c, d), 
using a tracked and pre-calibrated X-ray c-arm (AlluraXper FD10, Philips). 

The vessel points corresponding to centrelines were manually identified in the CT 
scan of the phantom, and catheters in the glass heart were manually reconstructed in 
3D from the biplane views using epipolar geometry and back projection (fig. 2c, 
d).Arc-length parameterised natural cubic splines were fitted through the vessel 
centrelines and catheters and sampled at the interval for use as , , , , ,  and ,  in eq 4 so that number of points in the curve is directly proportional to its length. 
The vessel’s radii was measured at the proximal and distal end and linearly 
interpolation for use as . The vessels and catheters are summarised in table 2. 

To quantify the accuracy of reg (eq 7) in terms of mean 3D target registration 
errors (3D-TRE), the seven fiducial markers were used to obtain a gold standard RBT, gs, between the CT scan and the reconstructed X-ray space, using the method 
described in [13] without scaling. 17 clinically relevant anatomical landmarks were 
then selected from the CT scan and non-exclusively grouped by the chambers of the 
heart in which they belong (table 2) to calculate the mean 3D-TRE for the four 
chambers and for the whole heart: mean 3D-TRE ∑ gs heart or chamber of interest. (8) 

Registration was then carried out using each of the 15 possible two-catheter 
configurations with the inverse-radius weighting 2 and sample interval1 mm. Subsequently, the five configurations with the lowest mean 3D-TRE over the 
whole heart were used to compare the algorithm’s accuracy without weighting (0) to weightings inversely proportional to the vessel’s cross sectional radius (1), area 
(2) and volume (3), while fixing ∆ =1 mm. These five configurations were also used 
to test the effects of changes in the sampling interval on the algorithm’s accuracy and 
computing cost by varying  between 0.2 and 1.8 mm, centred around the resolution 
of the CT, while fixing 2. 

 

 

Fig. 2. a) Glass heart model with seven multimodality markers (labelled M).b) Four-chamber 
axial CT slice of the heart.c, d) X-ray LAO 30° and PA views with IVC-to-CS and IVC-to-
SVC catheters inserted. A pointp from one view generates an epipolar line (EPL) in the other 
view containing its corresponding point q; their back-projections reconstruct the point in 3D. 
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Table 1. List of the number of points (#) that make up each catheter and vessel centreline, and 
vessel radii at the distal and proximal ends and mean radius r (mm) is listed.  For tapering 
vessels, i.e. with different distal and proximal radii, the standard deviation is given in brackets. 

 #(catheter) #(vessel) distal r proximal r mean r 
CS 70 82 1.0 5.3 2.15 (0.85) 
DA 122 183 12.8 11.0 12.7 (0.95) 
AA 41 88 12.8 14.3 13.5 (0.44) 
IVC 54 201 13.5 13.5 13.5 
SVC 55 61 12.0 12.0 12.0 
LUPV 24 36 6.0 6.0 6.0 

Table 2. Clinically relevant anatomical landmarks categorized by the chambers of the heart 

Left atrium (LA) Right atrium (RA) Left ventricle (LV) Right ventricle (RV) 
Mid-LA 
4 pulmonary veins 
Mitral valve 
Atrial septum 

Mid-RA 
Tricuspid valve 
IVC-RA junction 
SVC-RA junction 
Atrial septum 

Mid-LV 
Mitral valve 
Mid-aortic valve 
LV apex 
Ventricular septum 

Mid-RV 
Tricuspid valve 
Pulmonary valve 
Ventricular septum 

3 Results 

Gold standard registration of the seven fiducial markers yielded a fiducial registration 
error (FRE) of 0.65 mm, which indicates a suitable gold standard since this value is 
within the CT resolution. With 2 and 1 mm, registrations were carried out 
using each possible two-catheter configuration and their mean 3D-TRE over the 
whole heart and of each chamber is summarised in table 3. The CS/DA pair yielded 
the lowest TRE of 0.55 mm over the whole heart.  The reg found with this pair was 
used to perform the 2D-3D registration of the CT heart phantom onto the X-ray PA 
view (fig 4a, b).  3D-3D co-registration between the reconstructed catheters and the 
CT heart phantom can also be visualised for purposes such as biophysical cardiac 
modelling (fig 4c). 

Table 3. Mean 3D-TRE (mm) over four chambers of the heart and of all li for the C/V pairs. 
Lowest five mean 3D-TREs are lightly shaded while the lowest is shaded slightly darker. 
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LA 0.35 2.8 6.0 8.0 5.2 12 20 17 11 21 35 12 42 14 20 
RA 0.55 3.9 10 14 7.7 9.6 21 20 16 21 39 18 18 22 35 
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all 0.55 3.6 9.1 8.7 6.9 10 22 17 14 19 32 12 43 18 32 
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4 Discussion and Conclusion 

A 2D-3D registration algorithm was developed which can register between pre-
procedural 3D cardiac data from CT and intra-procedural fluoroscopy images, which 
uses the catheters that are placed inside the vessels during the interventions. The 
approach uses two catheter/vesselpairs and performs registration by matching on 
points along the vessel centreline to points along its corresponding catheter. A three-
DOF global search strategy is used to account for differences in length between the 
picked catheters and vessels, and in their picking directions. 

A phantom experiment was carried out to test this algorithm on 15 different 
catheter configurations involving the CS, AA, DA, IVC, SVC and LUPV. The 
accuracy of the algorithm was measured in terms of a mean 3D-TRE over the whole 
heart against a fiducial-based gold standard with a 0.65 mm FRE. Results show that 
the TRE was highly dependent on which two catheter/vessel pairs were used and 
indicates that configurations involving the CS catheter resulted in lower TREs 
(between 0.55 to 9.1 mm) than those that did not (10 to 43 mm).  Furthermore, when 
using the CS in conjunction with the AA or DA, TREs below the 5-mm clinical 
tolerance [1] can be achieved at 0.55 and 3.6 mm respectively. The remaining 13 
configurations did not yield TREs below the 5-mm tolerance; this is possibly due to a 
number of reasons. Among the configurations involving combinations of the DA, AA, 
IVC and SVC, the vessels involved are close to geometrically parallel to each other 
(fig 4c).  Parallel geometries may not be ideal candidates for registration since 
translations along the parallel vessel direction may result in competitively low 
residual errors, increasing the probability of a misregistration. All configurations 
involving the LUPV also resulted in TREs above 5-mm, possibly since the vessel was 
significantly shorter than the other vessels used for registration (table 1, fig 4c).  This 
may suggest that short catheters are less ideal than long ones for registration since 
there are fewer points available to minimize the error in eqs 2 and 3. 

The assumption that the catheter lies along the medial line of the vessel may not be 
accurate, especially when registering with great vessels since they provide more room 
for the catheter to move around (fig 4c, particularly the IVC and SVC).To minimise 
the loss of accuracy due to this assumption, weighting was used which was a function 
inversely proportional to the vessel radius. In four out of five configurations involving 
the CS, using the vessel-radius-weighting resulted in a more accurate registration than 
without (fig 3a). 

 Since the size of the search space decreases with increasing , so should the 
computational cost. Results show that when varying  from 0.2 to 1.8 mm, there was 
a 56-fold decrease in computational time while the maximum difference in accuracy 
was within 20% for four of five configurations involving the CS (fig 3a,b). 

In both sensitivity tests with varying xand , the CS/LUPV was the one-in-five 
outlier. This is possibly due to the two vessels being very close to geometrically 
parallel while the remaining four were close to perpendicular, and that the LUPV 
could be too short of a vessel to provide an accurate registration. 

While experiment shows that registration with a glass phantom can yield TREs 
within the 5-mm clinical tolerance, there are several limitations of this approach. With 
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clinical data, an additional gating step due to cardiac and respiratory motions is 
needed and will likely decrease the accuracy. The algorithm also assumes that the 
heart is a rigid-body when at the end-diastole and end-expiration phases. However, 
the heart undergoes significant motion and deformation throughout the cardiac and 
respiratory cycles and may not necessarily return to the same shape and size when 
returning to the same phase. Additionally, the insertion of a rigid catheter into soft-
tissue vessel may further cause deformations [9, 10].Both of these issues are likely to 
add registration errors that are not present when working with a rigid glass heart. The 
next step in development of this algorithm is to apply it to a cohort clinical study to 
assess how much of the accuracy is lessened by violations of these assumptions. 

In two stages of the algorithm, manual interaction is required: during the 
segmentation of the vessels, and the epipolar reconstruction of the catheters, 
prolonging the overall processing time. However, there has been recent research 
which show promise towards automating these steps [12, 15].It is anticipated that the 
proposed approach will be suitable for providing image registration for the guidance 
of cardiac catheterisation procedures or for the off-line fusion of cardiac image data 
for application in biophysical modelling research. 
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Abstract. The role of myocardial contractile force in the progression of 
cardiovascular diseases such as heart failure (HF) has been the focus of many 
studies. In order to better understand the mechanisms underlying compromised 
contractility, finite element (FE) modelling of ventricular mechanics is a useful 
tool. Distributions of active fibre stress during systole were estimated using left 
ventricular (LV) FE models that incorporated in vivo MRI tagging data and 
concurrent LV endocardial pressure recordings to parameterise a time-varying 
model of myocardial contraction. For five canine hearts, the calcium dependent 
contractile stress increased to peaks ranging from 33 kPa to 57 kPa during 
systole. Regional distributions of fibre stretch, stress, and myocardial work 
were examined in each case. Using this type of integrative biophysical 
modelling to compare normal and pathological cases will elucidate the 
underlying physiological mechanisms of cardiac mechanical dysfunction. 

Keywords: Magnetic Resonance Imaging (MRI), Left Ventricular (LV) 
mechanics, Finite Element Modelling, Active Tension, Regional Work. 

1 Introduction 

Heart failure (HF) is associated with compromised myocardial contractility [1][2][3]. 
Even though HF has been the focus of a great deal of medical research, the 
distributions of myocardial stress, and how they change during HF, are unknown 
primarily because they cannot be directly measured. Over the past two decades, a 
variety of studies have reported estimates of myocardial contractile properties based 
on various data sources. 

Guccione and colleagues used a cylindrical model of the LV to quantify the active 
fibre stress modelled by their deactivation model of cardiac contraction [4]. The 
maximum isometric tension from the same activation model in sheep with LV 
aneurysms was estimated in [5] by matching the end systolic cavity volume. A data 
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assimilation framework based on clinical and theoretical fibre orientations was 
proposed by [6] to estimate ventricular myocardial contractility. This methodology 
used a biventricular model and combined linear elasticity theory to match the 
measured displacement of 18 random nodes in the model. Recent developments have 
seen the use of personalised electromechanics models for studying pathological 
conditions, assisting with treatment planning as well as predicting prognosis for 
treatment such as cardiac resynchronisation therapy [7][8]. For these two clinical 
studies, fibre orientation data on HF patients were unavailable, thus canine data were 
adopted. Due to the large number of parameters involved in these mechanics models 
and the lack of regional motion data, individualised parameter identification remains 
challenging [9]. In [8], this issue was addressed by simplifying the passive and active 
constitutive equations and identifying parameters by matching the LV pressure 
transient or the recorded pressure-volume loop that could be readily generated by 
analysing the patient’s cine-MR images. A shortcoming of this work was the lack of 
validation of the systolic motion based on regional ventricular motion data. A study 
on estimating porcine ventricular tissue contractility was carried out by [10] using 
MRI and joint state-parameter estimation technique. Regional contractility 
information was obtained by matching the surface contours of the simulated ES 
model to the contours segmented directly from the cine MR images. This study was 
then extended to include displacement information provided by MRI tagging [11]. 
However, the kinematic data was only limited to the displacement of the tag planes, 
not the 3D ventricular motion.  

In this study, the integrative cardiac FE modelling framework previously proposed 
by [12][13][14] was extended to estimate the active tension development and regional 
myocardial work by matching the regional systolic motion to the displacements of 
sets of material points derived from MRI tagging  throughout the cardiac cycle for 
five normal canine hearts. Distributions of localised mechanical indices were 
examined.  

2 Methods 

The LV mechanics models used in this study were derived from individual in vivo 
tagged MRI [15] of five canine hearts (of same breed with similar age and weight), 
embedded with fibre orientations extracted from the Auckland Dog Heart model 
[16][17]. This was achieved using previously published techniques for developing 
integrative subject-specific FE models [12]. The LV mechanics models used 
nonlinear FE methods to solve the equations governing finite deformation 
hyperelasticity [18]. The stress–strain (TMN–EMN) relationship used to characterise the 
myocardial mechanical response is given in Eqs. 1 and 2 [19], and the contraction 
model used in this study is given in Eq. 3 [20].  
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where TMN is the 2nd Piola-Kirchhoff stress and EMN is the Green-Lagrange strain 
tensor. We assume that contractile tension (Ta) is only generated along the axes of the 

myocytes, hence 1x∂ .      
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where W is the strain energy density, Eff, Ecc and Err represent the strain along the 
fibre, cross-fibre and radial directions, respectively, C1-C4 are the passive material 
parameters, and TCa is the time-varying isometric tension at resting sarcomere length, 
which is modified by a linear function of the fibre (sarcomere) extension ratio (λ) and  
the constant β = 1.45 [20].  

Table 1. Passive myocardial constitutive parameters [21] 

Passive Parameters C1 (kPa) C2 C3 C4 

Values 2.5 8.6 3.7 25.8 

 
The passive material parameters used for this study (Table 1) were estimated using 

a combined-subject approach [21] whereby a single set of parameters was tuned to 
match the displacement information derived from all five sets of tags from the MRI 
data during diastole in the five hearts. The time-varying contractile tension TCa (with 
homogeneous spatial distribution) was quantified using a subject-specific estimation 
framework that minimised the root-mean-squared-error (RMSE) between the model 
predicted displacements of a set of 3D material points and those extracted from the 
MRI tagging data during systole. This is an improvement over our previous work 
[14], which only considered the match between the measured and predicted LV cavity 
volumes in the objective function. LV cavity pressures were prescribed based on the 
concurrent in vivo recordings throughout the cardiac cycle. Regional mechanical 
indices including the fibre stretch, fibre stress (total Cauchy stress) and myocardial 
work (Worki) at each of the 17 American Heart Association (AHA) regions were also 
evaluated (Eq. 4, see [22]):  
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where i is the AHA region index (1-17), Ni is the set of Gauss points for AHA region 
i, [T1,T2] is the range of time frames analysed (e.g. during ejection), )(nw  is the 

weight at integration point n for the 3D Gaussian quadrature scheme, and )(
),(

ξ
tnG is the 

deformed 3D spatial Jacobian at Gauss point n for time frame t. Note that a 



152 V.Y. Wang et al. 

backwards finite difference approximation was used to estimate the (generally 
smooth) rate of change of fibre strain.  

3 Results 

The range of values of subject-specific TCa,max (maximum contractility at ES) for all 
five cases (Table 2) had a mean±SD of 45 ± 10 kPa. A single value of TCa,max that best 
matched the systolic motion of all five animals simultaneously was also determined. 
This combined-subjects optimal value was then used to evaluate the objective 
function (RMSE) for each individual animal to assess the sensitivity to this parameter. 
The individual errors calculated using the combined TCa,max are listed in the last 
column of Table 2. On average, a 17% change in the value of TCa,max altered  
the RMSE by 5%, thus the combined (generic) value of TCa,max = 41 kPa fitted the 
deformations with little additional error in these normal dog hearts. Figure 1 
illustrates the estimated TCa transients along with their recorded pressure traces during 
systole for all five animals. In each case, TCa increased rapidly during IVC, and 
continued to increase during ejection before recovering at a slower rate during IVR. 

Table 2. Active myocardial constitutive parameters 

Subject-Specific
Animal TCa,max (kPa) Beta RMSE (mm) RMSE (mm) *

0912 55 1.45 2.5 2.7
0917 57 1.45 3.1 3.5
0926 40 1.45 2.5 3.2
1017 33 1.45 2.2 3.1
1024 45 1.45 2.3 2.4

Combined-Subjects
All 41 1.45 3.0

* RMSE evaluated using the parameters estimated using the 

combined approach  
 

To characterise the mechanical function at regional basis, the fibre stretch ratio, 
total fibre stress, and the myocardial work done during the cardiac cycle (fibre stress-
stretch loops) were analysed. Figure 2 illustrates the transmural variations at four 
locations around the equatorial LV (i.e. anterior, free-wall, posterior and septum). 
Figure 3 illustrates the transmural variations at four locations down the longitudinal 
axis of the LV free-wall. 
 
Fibre Stretch Ratio 

At the reference state, the fibre stretch ratio was initially 1 (resting length) throughout 
the whole LV model. During diastole, all fibres were stretched by approximately 10% 
with little spatial variation (Figures 2 and 3). Following diastole, the fibres continued to 
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stretch by a small amount during the early stage of IVC before the onset of shortening. 
Significant fibre shortening occurred during ejection as the blood was ejected out of the 
LV. There was little transmural variation in fibre stretch ratios in the anterior and free-
wall regions of the equatorial LV, but moderate transmural variation was observed in 
the posterior and septal regions (Figure 2). The most significant transmural variation 
occurred towards the base and apex of the LV free-wall, whilst the transmural variation 
was least significant in the mid-ventricle (Figure 3). 
 

 

Fig. 1. (Left) Recorded LV cavity pressure traces and (right) in vivo TCa transients during 
systole for all five animals. The shaded areas indicate IVC and IVR. 
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Fig. 2. Fibre stretch ratio (left), fibre stress (centre), and fibre stress-stretch loops in four 
equatorial regions of the LV model during the cardiac cycle of one animal (Animal 0912), with 
shading indicating isovolumic contraction (IVC) and isovolumic relaxation (IVR) 
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Fig. 3. Fibre stretch ratio (left), fibre stress (centre), and fibre stress-stretch loops in four 
longitudinal free-wall regions of the LV model during the cardiac cycle of one animal (Animal 
0912), with shading indicating IVC and IVR 
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Fig. 4. Anterior (left) and posterior (middle) views of regional distributions of myocardial work 
evaluated at individual fibres as well as within the 17 AHA regions (right) during contraction 
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Fibre Stress 

Total fibre stress exhibited significant transmural variation during systole with 
epicardial fibres (Figure 2: blue traces) developing highest stress and endocardial 
fibres (Figure 2: red traces) developing lowest stress. In addition, the fibres reached 
their peak stresses at different stages of the cardiac cycle. For example, the epicardial 
fibre stress was at its maximum at ES whereas the endocardial fibre stress had already 
achieved its peak by the end of IVC. These transmural and temporal variations were 
almost consistent among all five animals. On the other hand, the regional variation 
around the circumference of the LV wall was less distinct. Down the longitudinal-axis 
of the LV free wall, the endocardial fibre stress exhibited significant variation from 
base-to-apex, whilst the epicardial fibre stress was comparatively constant (Figure 3). 
Interestingly, the reversal in the transmural gradient of fibre stretch ratio from base-
to-apex was not reflected in the transmural gradients of fibre stress (Figure 3). 
 
Regional Myocardial Work 

Figure 4 illustrates anterior (Figure 4: left) and posterior (Figure 4: middle) views of 
the regional distributions of myocardial work evaluated at individual fibres as well as 
within each of the 17 AHA regions (Figure 4: right) for each of the five animals 
during ventricular contraction. In all cases, the myocardial work varied along the 
long-axis of the LV with the base performing more work than the apex. A transmural 
variation was also evident but less distinct. Homogenous distributions of myocardial 
work were generally observed in the lateral and apical regions in contrast to the septal 
regions of the LV. The peak myocardial work was consistently located at the basal- 
and mid-anteroseptal regions (region 2 and 8) for all five animals.   

4 Discussion and Conclusions 

Subject-specific FE models were used to analyse systolic mechanics and to determine 
the in vivo estimates of the time-varying active tension throughout the entire cardiac 
cycles based on MRI tissue tagging data from five healthy canine LVs. The 
individual-subject as well as the combined-subjects estimations of TCa_max at ES were 
in good agreement with previous studies that have investigated myocardial 
contractility [4][5][6]. Regional mechanical indices including the time-varying spatial 
distributions of fibre stretch ratio, fibre stress, and in vivo myocardial work were also 
examined. Integrative modelling of this kind could help to elucidate the underlying 
pathophysiological basis of ventricular mechanics during HF. To model the 
mechanical behaviour of failing hearts, heterogeneous distributions of the material 
properties and activation times will need to be considered to account for the effects of 
regional pathology and asynchronous contraction. Clinical quantification of these 
mechanical indices on a patient-specific basis may assist clinicians with the diagnosis 
and treatment of cardiac dysfunction.  
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Abstract. The cardiac fiber architecture has an important role in elec-
trophysiology, in mechanical functions of the heart, and in remodeling
processes. The variability of the fibers is the focus of various studies in
different species. However, the variability of the laminar sheets is still
not well known especially in humans. In this paper, we present prelim-
inary results on a quantitative study on the variability of the human
cardiac laminar structure. We show that the laminar structure has a
complex variability and we show the possible presence of two popula-
tions of laminar sheets. Bimodal distributions of the intersection angle
of the third eigenvector of the diffusion tensor have been observed in
10 ex vivo healthy human hearts. Additional hearts will complete the
study and further characterize the different populations of cardiac lami-
nar sheets.

1 Introduction

The heart is a complex muscle that is composed with myocardial fibers organized
as laminar sheets [25,16]. The cardiac fiber structures have an important role
in electrophysiology [14] and in mechanical functions [6] of the heart. The un-
derstanding of the cardiac fiber architecture is essential for better diagnosis and
treatment of many cardiac pathologies. The fibrous nature of the heart has been
known for centuries, tracing back to as early as 1694 [28], but has been limited to
tedious histological studies [20]. The cardiac fiber structure can now be imaged
with diffusion tensor magnetic resonance imaging (DT-MRI) [2,15], however the
variability of the fiber structure in humans is still not well known (due to the
very limited number and the value of post-mortem healthy human hearts) and
is largely speculated from studies on other species (dogs [12,13,11,26,22,21,9],
goats [8], and rats [3]). Recently, Lombaert et al. [17,18] constructed a statis-
tical atlas of the human cardiac fiber architecture and assessed its variability.
The fiber structure is shown to be more stable than the laminar sheet structure.
They hypothesized that the higher variability of the laminar sheet could be due
to the presence of two or more populations of laminar sheets [11]. Helm et al.
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Fig. 1. Atlas Construction: (1) From the acquired images, the myocardia are seg-
mented. (2) Images are then aligned and registered non-rigidly toward a reference
image. (3,4) The atlas is constructed iteratively by averaging acquired images in the
average heart shape. Variability of the laminar sheets: (A) The directions of the lami-
nar sheet normals are compared with the atlas for each heart, and (B) the probability
distribution of the intersection angle is analyzed.

studied the variability of the cardiac laminar sheet in [13]. Using 7 canine hearts,
they observed a bimodal distribution of intersection angles (i.e., two populations
of laminar sheet structure) in most myocardial segments of the left ventricle.

We present here the preliminary results of a study on the variability of the
cardiac laminar sheet structure in humans. The methods used to construct and
analyze the statistical atlas are briefly described. Next, the results show the
angular variability, from the average healthy heart, of the the laminar sheet
normal. The complexity of the laminar sheet structure is revealed thereafter by
analyzing the distribution of the intersection angle of the laminar sheet normal.
The distributions suggest the possible presence of two populations of laminar
sheets in several myocardial segments of the left ventricle.

2 Material and Method

2.1 Dataset

The human dataset [7,23] consists of 10 healthy ex vivo human hearts acquired
during forensic autopsies. The excised hearts were placed in a plastic container
and filled with non destructive hydrophilic gel to maintain a diastolic shape. The
images have been acquired on a 1.5T MR scanner (Avanto Siemens), all within
24 hours after death and prior to the examination by the pathologist, with
a bipolar echo planar imaging using 4 repetitions of 12 gradient images. The
diffusion-weighted images, from which are estimated the diffusion tensors, are of
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size 128x128x52 with an isotropic resolution of 2 mm. All cases are from extra
cardiac sudden deaths, and the hearts are classified as healthy after controlling
their weight, wall thickness, and subsequent pathology examination [24].

2.2 Atlas Construction

The statistical atlas is constructed using four steps, all fully described in [17] and
summarized here in Fig. 1. Information on the fiber architecture (i.e., any direc-
tional data from DT-MRI) is purposely omitted from the registration process in
order to avoid introducing any bias in the study of the fiber variability.

Myocardium Segmentation — Firstly, the myocardium of each heart is seg-
mented out on the B0 image of the DT-MRI acquisition. The segmentation
method is based on Graph Cuts [4].

Heart Registration — Secondly, each myocardium is registered to a reference
image using solely the B0 images and the myocardial masks. The pairwise reg-
istrations are performed with the symmetric Log-domain diffeomorphic demons
[29,19].

Construction of Healthy Atlas — Thirdly, the reference image is deformed
toward the morphological average of all hearts by iterating until convergence
the pairwise registrations and the heart averaging steps. This atlas construction
follows Guimond’s et al. method [10].

Warping of Diffusion Tensors — Fourthly, and last, the resulting deforma-
tion fields computed from the registration process are used to warp all tensor
fields to the morphological atlas. The diffusion tensors are reoriented using the
Finite Strain strategy since it preserves the geometric features [22].

2.3 Statistical Analysis

The diffusion tensor space of symmetric positive definite matrices does not have
a vector space structure with the standard Euclidean metric. The Log-Euclidean
metric [1] provides a simple and fast framework where first order arithmetic on
diffusion tensors has a closed form solution. The average diffusion tensor field,
D, is computed from the N warped tensor fields {D(i)}i=1...N (with N = 10
healthy hearts) using the Fréchet mean:

D = exp

(
1

N

N∑
i=1

log(D(i))

)
(1)

The eigendecomposition of the average diffusion tensor D gives the three av-
erage eigenvectors v1,2,3. The maximal local diffusion, revealed by the primary
eigenvector v1 occurs along the fiber while most of the remaining diffusion oc-
curs within the laminar sheet, where the secondary eigenvector v2 is thought
to lay [12,13,27]. The tertiary eigenvector, v3, corresponds to the normal of the
laminar sheet.
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The deviation of the cardiac laminar sheet of each heart is given with the
angular difference θ from the direction of laminar sheet normal, v3, to the di-
rection of the average laminar sheet normal, v3. For instance, for the ith heart,
the angular deviation from the average heart is:

θ
(i)
3 = arccos

(
|v(i)

3 · v3|
‖ v

(i)
3 ‖‖ v3 ‖

)
(2)

Endocardium 

 

Intersection
Angle 

Laminar Sheet 
Normal 

Epicardium 

Intersection angle of the
3rd eigenvector in a my-
ocardial section

The angles are defined between 0◦ and 90◦. The ab-
solute value of the dot product removes the inherent
ambiguity in the orientation of the eigenvectors (i.e.,
|a ·b| = |a · (−b)|). The variability of the laminar sheet
can be measured with the probability distribution of
the intersection angle of the third eigenvector (i.e., of
the laminar sheet normal). The intersection angle [16]
is defined as the projected angle of the laminar sheet
normal (in red in the right figure) onto a transverse
plane (the vertical transmural plane in green in the
right figure). A prolate ellipsoidal model of the heart
[20] is fitted to the morphology of the statistical atlas to ease measurements in
the prolate ellipsoidal coordinates.

3 Results

The cardiac laminar sheet was shown [17] to vary more than the fiber direction.
In order to understand the higher variability, the distribution of the intersection
angle of the laminar sheet normal is estimated in all hearts and in several myocar-
dial segments. The distributions show the presence of possibly two populations
of laminar sheets.

3.1 Variability of the Laminar Sheet Normal

0 20 40 60 80

100

200

300

400

500

600

Fig. 2. Histograms of the
angular deviation θ3 (in
degrees) for 10 hearts

The direction of the laminar sheet normal in each
heart is compared with the ones of the average healthy
heart (i.e., the atlas). The angular differences of the
laminar sheet normals, given by Eq. 2 and shown in
Fig. 3, present deviations to the average heart in sev-
eral areas for each heart. The histogram of the an-
gular differences, in Fig. 2, shows an angular peak at
θ3 = 15.77◦ (the average of the histogram modes in
Fig. 2).

3.2 Variability of the Intersection Angle

We now study the probability distribution of the intersection angle of the third
eigenvector (i.e., the laminar sheet normal). The probability distributions are
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#1 (21yo): 14.4o #2 (20yo): 12.6o #3 (21yo): 9.9o #4 (17yo): 11.4o #5 (21yo): 12.3o

#6 (47yo): 15.7o #7 (27yo): 9.9o #8 (47yo): 23.8o #9 (74yo): 27.1o #10 (50yo): 20.5o

0 15 30 45 60 75 90

Fig. 3. Deviation, θ3, of the laminar sheet normal of each heart to the atlas. The
coloring is the angular difference in degree.

#190

45

0

−45

−90

#2 #3 #4 #5

#690

45

0

−45

−90

#7 #8

epi mid endo

#9 #10

0

1

(a) For each heart, joint histogram of the intersection angle of the third
eigenvector (i.e., laminar sheet variability)
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cumulative joint
histogram of the
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Fig. 4. Joint histograms showing the distribution of the intersection angle from epi-
cardium (left side of each histogram) to endocardium (right side of each histogram)
for (a) each heart, and (b) all hearts combined. The x-axis is the transmural distance
from epicardium. The y-axis is the distribution of the intersection angles observed at
one specific transmural distance (i.e., each column is the histogram of angles for one
given distance). Color is the normalized probability distribution.

presented in a joint histograms (Fig. 4) where the angle distribution, on the
vertical axis, is plotted against all transmural distances, on the horizontal axis.
Each heart appears to have a consistent distribution of laminar sheet normal
directions with angles concentrated around a specific mean. Subject #3, #6,
#9, and #10 appear to show two populations of laminar sheet normals (i.e., the
angles are concentrated along two horizontal curves). The global joint histogram
in Fig. 4(b) shows the probability distribution of the intersection angle (i.e., the
variability of the laminar sheet normal) among all 10 hearts. Furthermore, the
probability distributions in the 17 AHA segments (American Heart Association
[5]) provide local statistics across the myocardium. More distinct clusters of lam-
inar sheet structures are visible in Fig. 5, in particular AHA zones 2, 3, 4, 7, 8,
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Fig. 5. Joint histograms showing of the distribution of the intersection angle in 17 AHA
LV segments. Blue curves (mean angles) are found using GMM (gray lines are the one-
standard-deviation envelopes). Two populations of intersection angles are visible in
most segments.

9, 12, 13, and 14 show angular distributions concentrated along two horizontal
curves. These curves of average angles can be estimated using Gaussian Mix-
ture Models (i.e., for each transmural distance, the intersection angle values are
clustered into two Gaussian models). This is illustrated with two blue curves in
each joint histogram. Each curves indicates the estimated mean angle of one of
the two Gaussian models.

4 Conclusion

In this paper, preliminary results of a study on variability of the human cardiac
laminar structure have been presented. The cardiac fiber architecture has an im-
portant role in electrophysiology and in mechanical functions of the heart. The
variability of the laminar sheets in humans is still not well known. It is thought
that there are two populations of laminar sheets. Helm et al. [13] observed in 7 ca-
nine hearts a bimodal distribution of intersection angles of the third eigenvector
(i.e., the laminar sheet normal). We similarly observed a bimodal distribution of
intersection angles in human hearts. Our preliminary results within the dataset
of 10 hearts suggest the possible presence of two populations of laminar sheets.
We will include additional hearts to the study and try to further characterize
the different populations of cardiac laminar sheets.
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Abstract. Automated detection of endocardial borders in 3D echocar-
diography is a challenging task. Part of the reason for this is the endocar-
dial boundary leads to alternating edge characteristics that vary over a
cardiac cycle. The maximum gradient (MG), step criterion (STEP) and
max flow/min cut (MFMC) edge detectors have been previously applied
for the endocardial edge detection problem. In this paper, a local polyno-
mial regression based method (LPR) is introduced for filtering the STEP
results. For each endocardial model point, (1) the surface is parametrized
locally around the point, (2) a polynomial regression is applied on the
STEP edges in the parametric domain, and (3) the fitted polynomial is
evaluated at the origin of the parametric domain to determine the en-
docardial edge position. The effectiveness of the introduced method is
validated via comparative analyses among the MFMC, STEP, and first
& second degree LPR methods.

1 Introduction

3D echocardiography has enabled real-time, non-invasive and low cost acquisi-
tion of volumetric images of the LV. The problem of automatic detection and
tracking of heart chambers in ultrasound images has received considerable at-
tention lately [1,2]. However, the accurate detection of the endocardial borders
remains a challenging task. This is partially due to the trabeculated structure
of the endocardial borders, which leads to alternating edge characteristics over
a cardiac cycle. Furthermore, the real-time imaging capability of 3D ultrasound
requires highly time-efficient algorithms.

One approach for the LV detection is to use a Kalman filter based tracking
framework to update a deformable model based on the edge measurements. In an
early work by Blake et al., Kalman filtering was used for tracking B-spline models
deformed in an affine shape space [3]. In their study, object boundaries were
determined by selecting the gradient maxima (MG) of image intensity profiles.
Later, this framework was utilized with a principal component analysis based
shape space for the LV tracking in 2D ultrasound by Jacob et al.[4,5]. This
study employed a local-phase edge detector [6] for the edge measurements, and
reported visually enhanced results compared to the maximum gradient method.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 168–177, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Orderud et al. utilized an extended Kalman filter to track deformable subdivision
surfaces in 3D image data sets [2]. The latter work used a step criterion (STEP)
[7] for the detection of endocardial edges. More recently, Dikici et al. applied the
max flow / min cut algorithm (MFMC) for the detection of endocardial edges
in a Kalman tracking framework [8].

Local polynomial regression is a simple and effective method for nonpara-
metric regression. It has been applied for many tasks including the multivariate
prediction [9], image filtering [10] and image reconstruction [11]. In this paper,
we introduce a novel local polynomial regression based edge filtering approach
(LPR) for smoothing the STEP results in a parametric domain. First, the STEP
edges are calculated at evenly distributed positions around an endocardial model.
Then, the detected STEP edges are filtered by a local polynomial regression using
a kernel weighting scheme. The major motivation for this work is to improve the
edge detection quality offered by STEP method while still providing a real-time
solution. The effectiveness of the introduced method is validated via comparative
analyses among the MFMC, STEP, and first & second degree LPR methods.

2 Tracking Framework

The tracking framework is built around a deformable subdivision model
parametrized by a set of control vertices with associated displacement direc-
tion vectors. Shape and pose deformations are handled by a composite trans-
form T = Tg(Tl(xl), xg), where local shape deformations Tl(xl) are obtained by
moving control vertices in the subdivision model together with a global transfor-
mation Tg(pl, xg) that translates, rotates and scales the whole model. This leads
to a composite state vector x, consisting of Ng global and Nl local parameters.

A manually constructed Doo-Sabin surface is used as a template for repre-
senting the endocardial borders. The control vertices are allowed to move in the
surface normal direction to alter the shape. The edge detection is conducted
from a set of evenly distributed endocardial surface points.

The tracking framework consists of five separate stages, which will be de-
scribed briefly in the following subsections (please refer to [2] for further details).

2.1 State Prediction

A motion model for predicting the state vector x at time time k+1 is formulated
as:

xk+1 − x0 = A1(x̂k − x0) + A2(x̂k−1 − x0), (1)

where x̂k is the estimated state from time-step k, and x0 is the initial state.
Temporal properties like damping and regularization towards x0 can be adjusted
using coefficients in the matrices A1 and A2. Prediction uncertainty can similarly
be changed by manipulating the process noise covariance matrix used in the
associated covariance update equation.
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2.2 Evaluation of Tracking Model

A set of surface points p with associated normal vectors n are calculated from
the predicted state. Then, the state-space Jacobi matrices relating surface point
position changes to state changes are found. The composite deformation model
leads to Jacobi matrices including both the global and local derivatives:

Jg =
[

∂Tg(pl,xg)
∂xg

,
∂Tg(pl,xg)

∂pl
Jl

]
. (2)

2.3 Edge Measurements

The predicted model is guided towards the target object using edge measure-
ments. Edge detection is conducted in the surface normal direction ni from each
point pi on the predicted surface (different methods for this part are elaborated
in Section-3). The end result is a normal displacement value vi that gives the
signed distance between the detected edge pobs,i and the surface point:

vi = nT
i (pobs,i − pi). (3)

Each normal displacement measurement is coupled with a measurement noise
ri that specifies the spatial uncertainty of the detected edge. Associated mea-
surement vectors hi for each edge are computed by taking the normal vector
projection of the state-space Jacobi matrices:

hT
i = nT

i J. (4)

2.4 Measurement Assimilation

All measurement results are assimilated in an information space with the as-
sumption of uncorrelated measurements. This allows for efficient weighted sum-
mation of all measurement results into information vector and matrix with di-
mensions invariant to the number of measurements:

HT R−1v =
∑

i hir
−1
i vi, (5)

HT R−1H =
∑

i hir
−1
i hT

i . (6)

2.5 Measurement Update

The measurement information is combined with the predicted state to compute
an updated state estimate. By using the information filter formulation of the
Kalman filter, the updated state estimate x̂ for a time step k becomes:

x̂k = x̄k + P̂kHT R−1vk, (7)
where an updated error covariance matrix P̂k can also be calculated in the in-
formation space to avoid inverting large matrices:

P̂k
−1

= P̄−1
k + HT R−1H. (8)
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3 Edge Detection

The edge detection process is performed by first extracting N intensity profiles
(I1, I2 · · · IN ) centered around the surface points pi and oriented in the surface
normal directions ni. The total number of samples in each profile, M , and the
distance between consecutive samples are determined empirically. Ii,m is used
for referring to the intensity value of the ith intensity profile’s mth sample. The
function L gives the index of the most probable edge in each intensity profile,
and is described for the STEP and LPR methods in the following subsections.

3.1 Step Criterion Edge Detector (STEP)

STEP assumes that the intensity profile Ii forms a transition from one intensity
plateau to another. It calculates the heights of the two plateaus for each index
value, and selects the index with the lowest sum of squared differences between
the criteria and the image data. For each profile, the edge index is determined as:

Li = argminm

m∑
t=1

((
1

m

m∑
j=1

Ii,j

)
− Ii,t

)2

+
M∑

t=m+1

((
1

M −m

M∑
j=m+1

Ii,j

)
− Ii,t

)2

.

(9)
If the plateau heights for the determined edge index are similar (Li = m and
1
m

∑m
j=1 Ii,j = 1

M−m

∑M
j=m+1 Ii,j), then the edge index is reset to the profile

center by Li = M
2 . The measurement noise is defined inversely proportional

with the height difference between the plateaus.

3.2 Local Polynomial Regression Edge Detector (LPR)

STEP method processes each intensity profile independently, which may cause
discontinuous edge measurement over an endocardial model. The discontinuity
problem can be resolved by filtering the measurements via local polynomial
regression. For applying a local polynomial regression, (1) the local neighborhood
for each intensity profile, (2) a weighting function or a kernel, and (3) the model
degree are needed to be defined.

The distance between the intensity profiles Ii and Ij is defined as the Cartesian
distance between their intensity profile centers by Γi,j = |pi − pj | . The local
neighborhood of the ith intensity profile is called Ki, and it includes Ij iff Γi,j <

λ: kernel radius. For a notational simplicity, Ki,j, K
(p)
i,j , and K

(l)
i,j are used for

referring to the ith neighborhood’s jth member (Ki,j), the member’s intensity
profile center (K(p)

i,j ), and the member’s measured STEP edge position (K(l)
i,j )

respectively.
The local coordinate system for Ki can be defined as,

ei =

{
[1, 0, 0]T if ni �= [1, 0, 0]T

[0, 1, 0]T else.
(10)

V 1 = ni, V2 = V 1 × ei, V 3 = V 1 × V 2. (11)
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Fig. 1. (Left) An intensity profile and its local neighborhood borders are shown, (mid-
dle) the local coordinate system for the selected intensity profile is represented, (right)
Epanechnikov quadratic kernel weights are shown

Each member of Ki can be parametrized using ξ and η parameters that can be
found by,

K
(ξ)
i,j =

(
K

(p)
i,j − pi

)
· V 2, (12)

K
(η)
i,j =

(
K

(p)
i,j − pi

)
· V 3, (13)

where K
(ξ)
i,j and K

(η)
i,j refer to ξ and η parameters of the ith neighborhood’s jth

member respectively.
The STEP edges can be averaged locally for generating smoother results using

L̂i = Ave
(
K

(l)
i,j |j ∈ {1, 2 . . . |Ki|}

)
. However, this method might still lead to

abrupt discontinuities due to constant weight function. Rather than giving all
the points equal weights, we can assign weights that die off smoothly with the
distance from the neighborhood center [12]. Nadaraya–Watson kernel-weighted
average,

L̂i =

∑|Ki|
j=1 wλ

(
pi, K

(p)
i,j

)
K

(l)
i,j∑|Ki|

j=1 wλ

(
pi, K

(p)
i,j

) , (14)

with the Epanechnikov quadratic kernel,

wλ (p, q) = 0.75

(
1−

( |p− q|
λ

)2
)

, (15)

can be used for this weighted filtering task (see Figure 1). It can be shown that
the Nadara-Watson method solves a weighted least squares problem at each
intensity profile by,

minβ0

|Ki|∑
j=1

wλ

(
pi, K

(p)
i,j

) [
K

(l)
i,j − β0

]2

, (16)
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Fig. 2. (Left) 0th degree, (middle) 1st degree - linear, (right) 2nd degree - quadratic
planes are fit on the STEP results in the parametric domain

where the estimate is L̂i = β0. Since β0 is a 0th degree polynomial, the introduced
regression is a 0th degree local polynomial regression. This filter might produce
high estimation bias due to the fact that a local polynomial regression of degree D
only has the bias terms of degree (D + 1) and higher (see Appendix). Therefore, a
higher degree polynomial regression model should lead to a lower estimation bias,
while producing higher estimation variance and computational cost. Accordingly,
the model degree should be set considering this tradeoff.

Dth degree local polynomial regression plane defined in the parametric coor-
dinates (ξ, η) solves,

minβ0...βM

|Ki|∑
j=1

wλ

(
pi, K

(p)
i,j

) [
K

(l)
i,j −

(
β0 + β1K

(ξ)
i,j + β2K

(η)
i,j . . . βM

(
K

(η)
i,j

)D
)]2

.

(17)
The regression plane needs to be evaluated at the parametric domain’s center
(ξ = 0, η = 0) to determine the filtered edge position. This calculation can be
performed using a matrix notation as L̂ = b (0, 0)

(
BT WB

)−1
BT Wy, where

b (ξ, η) =
[
1, ξ, η, ξ2, η2, ξη . . . ηD

]
, (18)

B =
[
b
(
K

(ξ)
i,1 , K

(η)
i,1

)T

, b
(
K

(ξ)
i,2 , K

(η)
i,2

)T

. . . b
(
K

(ξ)
i,|Ki|, K

(η)
i,|Ki|

)T
]T

, (19)

y =
[
K

(l)
i,1, K

(l)
i,2 . . . K

(l)
i,|Ki|

]T

, (20)

and W is a |Ki|× |Ki| diagonal matrix with jth diagonal element wλ

(
pi, K

(p)
i,j

)
.

In Figure 2, 0th, 1st and 2nd degree regression planes are represented for a given
STEP data.

4 Results

A set of 17 apical 3D echocardiography recordings, which includes 10 normal
cases and 7 cases from patients with heart diseases, was used for the evaluation.
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Table 1. Mean surface error (in mm) for the ED and ES frames for the first 5 cardiac
cycles [ED error - ES error]. The tracker converged after the first cycle; surface error
measurements deviated in small amounts in the following cycles.

Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5
STEP 7.15 − 2.44 2.90 − 2.18 2.95 − 2.19 2.94− 2.20 2.97− 2.20

MFMC 5.27 − 2.48 2.43 − 2.46 2.43 − 2.47 2.38− 2.46 2.42− 2.45

LPR-1 6.87 − 2.29 2.70 − 2.16 2.61 − 2.17 2.61− 2.16 2.60− 2.18

LPR-2 6.86 − 2.30 2.62 − 2.08 2.56 − 2.11 2.57− 2.07 2.58− 2.08

The recordings were acquired using a Vivid 7 ultrasound scanner (GE Vingmed
Ultrasound, Norway) and a matrix array transducer. Local polynomial regression
based edge filtering method was implemented for the 1st (LPR-1) and 2nd degree
(LPR-2) polynomials both with 1cm kernel radius (λ). MFMC (as introduced
in [8]), STEP, LPR-1 and LPR-2 methods were each employed in connection
to the existing Kalman tracking framework. 3D meshes were extracted after
running the tracker through 3 cardiac cycles for a convergence (see Table 1 for the
surface error convergences). The accuracy of the edge detectors were evaluated
by comparing the extracted meshes against the verified reference meshes drawn
by a medical expert using a semi-automatic segmentation tool (4D AutoLVQ,
GE Vingmed Ultrasound, Norway).

A handcrafted Doo-Sabin endocardial model consisting of 20 control points
was used as the LV model. Edge measurements were performed in 528 intensity
profiles evenly distributed across the endocardial model. Each profile consisted
of 30 samples, spaced 1 mm apart.

Table 2 shows Bland-Altman analyses for the LV surface, LV cavity volume,
and the associated ejection fraction (EF) agreement. The color coded surface
error maps of a sample case are represented in Figure 3 rows (A) and (C).

The tracking framework is implemented in C++, and processed each frame in
7.5 ms with STEP, 78 ms with MFMC, 23.7 ms with LPR-1, and 40.8 ms with
LPR-2 when executed on a 2.80 GHz Intel Core 2 Duo CPU.

5 Discussion and Conclusion

We have introduced a local polynomial regression based filtering for the STEP
edges. The proposed approach was implemented for the first and second degree
polynomial regression models. The method description is provided in a degree-
independent fashion; hence the generalization of the method for higher degrees
should be an intuitive task. Increasing the degree of regression model lowers the
bias component of the mean square error (MSE), while increasing the variance
component. Therefore, a proper degree should be selected by considering the
bias-variance tradeoff. In a future study, optimal kernel radius and the regression
order can be learned from a training data statistically.



Polynomial Regression Based Edge Filtering for Left Ventricle Tracking 175

A comparative evaluation between the edge detectors showed that both LPR-
1 and LPR-2 lead to improved surface and volumetric measurement accuracies
over the STEP method. For the ED phase, STEP, LPR-1 and LPR-2 produced
2.94 mm, 2.61 mm (12% improvement) and 2.57 mm (13% improvement) mean
surface errors. LPR-1 and LPR-2 filters also reduced the LV cavity volume error
of the STEP method at the ED phase by 3.73% and 5% respectively. Comparable
surface and volumetric measurement improvements were reported for the ES
phase (see Table 2).

The control point resolution of the endocardial model is another smooth-
ing factor for the Kalman tracking framework. A higher resolution endocardial
model, generated by refining the original model via Doo-Sabin subdivision rules
[13], can represent a wider range of deformations. Hence, the effects of edge fil-
tering becomes visually more assessable for the refined model (see Figure 3 rows
(B) and (D)). Multiresolution Doo-Sabin surface models with the measurement
filtering might also be investigated in a future study.

Acknowledgment. The authors would like to thank Brage Amundsen at the
Norwegian University of Science and Technology for providing the 3D echocar-
diography data sets.

Appendix: Local Polynomial Regression Bias

Dth degree local polynomial regression curve for 1D data defined at x0 as,

f̂ (x0) =
[
1, x0 . . . xD

0

] (
BT WB

)−1
BT Wy =

N∑
i=1

li (x0) yi (21)

E
[
f̂ (x0)

]
= f (x0)

N∑
i=1

li (x0) + f
′
(x0)

N∑
i=1

(xi − x0) li (x0) · · · (22)

Table 2. Columns 1-2: Mean surface error±1.96SD for the ED and ES frames. Columns
3-4: Mean LV cavity volume error±1.96SD for the ED and ES frames. Column 5: Mean
EF error±1.96SD.

ED [mm] ES [mm] EDV [%] ESV [%] EF [%]
STEP 2.94± 1.56 2.20± 1.39 −23.01 ± 16.05 −13.03± 24.48 −6.05 ± 10.09

MFMC 2.38± 1.43 2.46± 1.51 −7.44± 24.53 12.76 ± 42.92 −8.14 ± 10.50

LPR-1 2.61± 1.92 2.16± 1.47 −19.28 ± 17.98 −10.54± 24.42 −4.98 ± 9.76

LPR-2 2.57± 1.95 2.07± 1.52 −18.02 ± 19.02 −9.03± 24.01 −5.02 ± 8.67
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Fig. 3. For a sample case, the signed surface errors for the (A) ED phase of the original
model, (B) ED phase of the refined model, (C) ES phase of the original model, and (D)
ES phase of the refined model. The original and refined models consist of 20 and 84
control points respectively. (The original model was used for the surface and volumetric
analyses provided in this paper).

Lemma 1.
∑N

i=1 li (x0) = 1.

Proof. Assume that all yi = 1. Since li∈{1,2...N} (x0) do not depend on yi,
f̂ (x0) =

∑N
i=1 li (x0) yi =

∑N
i=1 li (x0) = 1.

Lemma 2. Define bj (x0) =
∑N

i=1 (xi − x0)
j
li (x0). Then, bj (x0) = 0 for all

j ∈ {1, 2 . . .D}.

Proof. Assume that yi = (xi − x0)
D. LPR solves

minβ

(
D∑

m=0

Cmxm
i (−x0)

D−m −
D∑

m=0

βm (x0)xm
i

)2

. (23)
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where βm (x0) = Cm (−x0)
D−m minimizes the term. Therefore,

f̂ (x0) =
N∑

i=1

(xi − x0)
j li (x0) =

D∑
m=0

Cm (−x0)
D−m xm

0 = (x0 − x0)
D = 0. (24)

Due to Lemma-1 and Lemma-2, a local polynomial regression of degree D only
has the bias terms of degree (D + 1) and higher.
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Abstract. Registration and segmentation uncertainty may be impor-
tant information to convey to a user when automatic image analysis is
performed. Uncertainty information may be used to provide additional
diagnostic information to traditional analysis of cardiac function. In this
paper, we develop a framework for the automatic segmentation of the
cardiac anatomy from multiple MR images. We also define the regis-
tration and segmentation uncertainty and explore its use for diagnostic
purposes. Our framework uses cardiac MR image sequences that are
widely available in clinical practice. We improve the performance of the
cardiac segmentation algorithms by combining information from mul-
tiple MR images using a graph-cut based segmentation. We evaluate
this framework on images from 32 subjects: 13 patients with ischemic
cardiomyopathy, 14 patients with dilated cardiomyopathy and 5 normal
volunteers. Our results indicate that the proposed method is capable of
producing segmentation results with very high robustness and high ac-
curacy with minimal user interaction across all subject groups. We also
show that registration and segmentation uncertainties are good indica-
tors for segmentation failures as well as good predictors for the functional
abnormality of the subject.

1 Introduction

Magnetic Resonance (MR) imaging can be used to visualize the anatomy and
function of the heart in detail. The most commonly available MR images of the
heart include multiple stacks of short-axis (SA) and long-axis (LA) MR images.
These images are typically acquired as cine sequences showing the heart through-
out the entire cardiac cycle. Due to the anisotropic resolution of the images (high
in-plane resolution but low out-of-plane resolution) and the fact that different
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slices of the stack are acquired during different breath-holds automated segmen-
tation is difficult. On the other hand, 3D volumetric cardiac MR imaging is now
becoming feasible [1]. These images have high spatial resolution and are free
from inter-slice motion. However, the images have a lower signal-to-noise-ratio
and lack of contrast compared to SA and LA MR images. Therefore, combin-
ing 3D and cine MR image data, has potential to provide better accuracy and
robustness for automated segmentation.

One of the widely recognized technique for cardiac anatomy segmentation is to
propagate a pre-constructed atlas to the unseen images using image registration
[2,3]. By using a locally affine registration method (LARM), this technique is
able to deal with large shape variations of the heart. Another alternative is voxel
based segmentation [4,5] The method is able to achieve sub-voxel accuracy but
requires a good initialization.

Atlas propagation is widely used either for the initialization for cardiac seg-
mentation [2] or as the primary segmentation method [3]. An important but not
yet fully explored aspect of such image segmentation is: How can we quantify
and visualize the segmentation uncertainty? This question can be further di-
vided into uncertainty arising from the registration [6,7] and uncertainty about
the final segmentation. No matter how robust a segmentation technique is, it
is important to have the ability to alert the user if the uncertainty of the seg-
mentation quality is high. High uncertainty can either be a sign of an unreliable
segmentation result or of an abnormal cardiac anatomy.

Fig. 1. Work-flow of the automatic segmentation and uncertainty estimation frame-
work

In this paper we extend an automatic image segmentation technique [8] to a
framework that simultaneously uses information from multiple (possibly sparsely
sampled) cardiac images. The integration of registration- and intensity-based
segmentation has shown the ability to achieve both good robustness and accuracy
[8]. In the proposed framework shown in Fig.1 we automatically segment the right
ventricle, left ventricle and myocardium simultaneously from high-resolution 3D
MR images (3D) as well as multiple stacks of SA and LA cine MR images.
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Before image segmentation we transform all images into a common spatial and
temporal coordinate system and correct the misalignments between inter- and
intra- sequences [9]. We first developed a registration scheme that propagates a
probabilistic atlas to the subject’s coordinate system and then used a multiple
component EM (MCEM) estimation algorithm for an initial segmentation. The
segmentation is then refined using a multi-image graph cut algorithm.

We also explore the potential of registration and segmentation uncertainty in
improving the robustness: If and only if the uncertainty of the segmentation is
high, the system will ask the user to input additional landmarks to help better
initialize the atlas-to-subject registration. The landmarks include apex, center of
mitral valve, center of left ventricle and two right ventricle insertion points. The
next section describes the segmentation framework in detail; Section 3 introduces
the idea of using uncertainty in the analysis. Finally, section 4 shows results from
32 patients while section 5 summarizes and concludes the paper.

2 Cardiac Segmentation Using Multiple Images

SA and LA cine MR views provide images with high spatial resolution within
each slice, but the spatial resolution between slices is poor. Nevertheless, both
SA and LA images have high temporal resolution revealing dynamic information
about the heart. By contrast, 3D MR images acquired within a single breath-
hold provide a static image of the heart with high spatial resolution in all three
directions. However, these images are often noisy and provide less good contrast
for the myocardium, leading to less accurate delineation. Therefore, we propose
to use all three types of MR images within a unified segmentation framework
that employs a two-step segmentation technique using registration and intensity-
based segmentation.

2.1 Spatio-Temporal Registration

The images we use for each patient consist of stacks of SA and LA images (ac-
quired as cine images) as well as a 3D anatomical end-systolic volume. The LA
image stacks consist of four (4CH), three (3CH) and two chamber (2CH) views.
Note that, the SA and LA images are acquired during a separate breath-hold
for each slice while the 3D anatomical image is acquired in a single breath-hold.
Due to potential differences in the position of the heart (e.g. due to respiration)
there is usually some spatial misalignment between the images (inter-sequence
misalignment) as well as between individual slices of the SA and LA images
(intra-sequence misalignment). In addition there is temporal misalignment be-
tween the 3D anatomical image and the SA and LA cine images. In order to
use multiple images simultaneously, these misalignments must be corrected. The
3D image provides good spatial resolution to serve as target for accurate slice-
to-volume registration [9]. In this framework we first register all available LA
and SA image sequences to the 3D image using a 1D temporal registration by
maximizing normalized mutual information as a similarity measure followed by
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a spatial 3D rigid registration using the same similarity measure. The resulting
spatio-temporal (4D) transformation corrects both the inter-sequence misalign-
ment and intra-sequence slice shifts so that all images can be transformed to the
same spatio-temporal coordinate system, in this case, the coordinate system of
the 3D anatomical MR image.

2.2 Atlas Based Segmentation

In [8] image registration was used to propagate an atlas constructed from normal
population to subjects. A locally affine registration method (LARM) [3] was
used to address the large local shape variability of pathological cardiac anatomy,
commonly seen across large populations with pathologies. LARM is integrated
into the registration process as an intermediate registration step between a global
affine registration and a fully non-rigid registration. Compared to traditional
registration schemes, LARM is capable of providing a good initial alignment
between the images of patients with pathologies and the atlas constructed from
normal subjects.The deformation is defined under the following equation 1:

T (X) =

⎧⎨⎩
Gi(X) X ∈ Vi∑i=n

i=1 Wi(X)Gi(X) otherwise

(1)

whereGi(X) is region Vi’s estimated affine transformation andWi is the distance
between given X and Vi.

After atlas propagation, We [8] used a two-component Gaussian mixture
model for the myocardial tissue modelling infarcted and non-infarcted myocar-
dial tissue while being spatially constrained by the probabilistic atlas [2] propa-
gated.

We extend the above method to multi-image atlas propagation using a com-
bined normalized mutual information similarity measure in which the similarity
for each image is weighted by the relative number of voxels in the image.

2.3 Multi-image Graph Cut Refinement

The MCEM algorithm [8] segments the 3D, SA and LA images separately al-
though the atlas is propagated to all images simultaneously. We propose to use
an energy function based on Markov Random Fields (MRF) in combination with
graph-cuts [5] to refine the segmentation across all images at the same time. 4D
graph cuts have recently been used to segment image sequences [10,11]. Here,
we have adopted the 4D graph cut approach to utilize information from multiple
MR images with different spatial resolution. To differentiate our approach from
a 4D graph cut segmentation of image sequences, we refer to it as multi-image
graph cut segmentation.

Let Ii be the i-th image of multiple images, segmenting Ii is defined as a
process of assigning a label fp ∈ L to each voxel p ∈ Ii. An MRF-based energy
function can be formulated as:
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E(f) = λ
∑
p∈Ii

Dp(fp) +
∑

{p,q}∈N

V intra
p,q (fp, fq) +

∑
{p,q}∈M

V inter
p,q (fp, fq) (2)

where N and M are a neighborhood of voxels within an image and across dif-
ferent images respectively and f is the labeling of Ii [5]. The data term Dp(fp)
measures the disagreement between the a-priori probabilistic model and the ob-
served data. Vp,q(fp, fq) is a smoothness term penalizing discontinuities of the
segmentation in N or M . The parameter λ governs the influence of the data
and smoothness terms. We found heuristically that setting λ = 2 leads to robust
results for myocardium segmentation. Two different smoothness terms are cho-
sen respectively for inter image similarity and intra image similarity since they
are intuitively distinguished. For intra image similarity continuity in intensity
space is enforced. While for inter image similarity comes from overlap between
voxels. And continuity in intensity space is neither granted nor meaningful due
to different modalities and strong spatial alignment.

To optimize eq. (2), a graph G =< V,E > with a node v ∈ V for each
voxel p is defined on images. Each edge e ∈ E consists of connections between
node v and two terminal nodes F and B (also called source and sink node)
as well as connections between neighboring voxels. The terminal nodes F and
B represent the two labels describing foreground and background, respectively.
By determining a minimum cut on graph G, the desired segmentation can be
obtained[5]. The data term Dp(fp) is estimated using the MCEM segmentation
[8] which generates a probability for each class of each voxel.

The smoothness term between neighboring voxels within an image is defined
over a cubic neighborhood N by the following equation:

V intra
p,q = wintra

1

ln(1 + (Ip − Iq)2) + ε
(3)

Here I is intensity and ε is a small constant value which compensates for noise
when Ip is close to Iq . For neighbouring voxels we define wintra = 1/d where d
is the distance between two voxels.

For voxels across different images, a different smoothness term is chosen. We
define a smoothness term that depends on the degree of overlap between the vox-
els instead of the intensity similarity to enforce spatial consistency and address
the different modalities between images. We use the Dice metric to compute the
amount of overlap between images

V inter
p,q = winter(2||Sp ∩ Sq||)/(||Sp|| ∪ ||Sq||) (4)

where Sp and Sq are the voxel volumes of voxel p and q and winter is a constant
weight chosen as 2 from extensive experiment. The result of this equation is real
number between 0 and 1 due to different voxel size and position of the images.
The smoothness term is defined in a neighborhood M where V inter

p,q > 0.
By using this multi-image graph cut approach, we connect intra-image voxel

neighbors according to their intensity similarity and distance and inter-image
voxels neighbors according to their spatial overlap. This enables us to segment
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multiple images simultaneously and consistently. Finally the energy function is
optimized using graph-cuts and multiple labels are achieved at the same time
using the expansion and the swap algorithm[5].

3 Uncertainty Definition and Evaluation

3.1 Registration Uncertainty

Given two images, Iatlas and Ii (the subject’s ith image), we can estimate a
transformation T which maps image Ii to Iatlas so that a voxel of Ii(x) cor-
respond to Iatlas(T(x)) and their intensity values should be similar. Using a
probabilistic formulation for the image registration problem [6], the uncertainty
of a transformation T at point x can be modeled by the following equation :

uc(T(x)|(Ii(x), Iatlas)) = 1− p((Ii(x), Iatlas)|T(x))p(T(x))

p((Ii(x), Iatlas))
(5)

We model the likelihood term, p((Ii(x), Iatlas)|T(x)), as a normal distribution of
the intensity difference between transformed Iatlas and Ii estimated using an EM
algorithm after histogram equalization. Similarly, the prior of the transforma-
tion, p(T(x)), is modeled as a Rician distribution of the Jacobian determinant
of the transformation [12]. The distribution is estimated based on the inver-
sion technique proposed in [13]. The Rician distribution is a non-negative and
asymmetric distribution which approximates the distribution of the Jacobian
determinant well for a given transformation. Finally, p((Ii(x), Iatlas)) can be
modelled as a constant term.

3.2 Segmentation Uncertainty

The uncertainty of a given label from our 4D graph cut segmentation can be
modeled by the following equation:

uc(Lj|Ii(x)) = 1− p(Ii(x)|Lj)p(Lj)

p(Ii(x))
(6)

where p(Ii(x)|Lj) is the likelihood that intensity of Ii(x) belongs to Lj as esti-
mated by the segmentation method. p(Ii(x)) is modelled as a constant term and

p(Lj) =
1

log(δj + 1 + ε)
(7)

Here ε is a small constant value and δ is the interquartile range of the multi-
ple component distribution that represents Lj’s intensity distribution from our
segmentation method. The interquartile range is chosen because it’s a robust
statistic that conveys the dispersion of a distribution [6] and corresponds well
to the intra-region homogeneity of a segmentation. It is robust in the sense that
it provides meaningful information even for non-Gaussian distributions like the
ones that can be obtained from the MCEM segmentation.
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Table 1. Validation results: The Dice overlap measure for the endocardial segmentation
(LV) and epicardial segmentation (LV+MYO) results comparing automatic and manual
segmentation. ∗ means that the pair-wise t-test is significant at p < 0.05 and � p < 0.01.

Group Segmentation Segmentation using SA only[8] Proposed segmentation

all
endocardial∗ 0.907 ± 0.032 0.920 ± 0.026
epicardial∗ 0.908 ± 0.028 0.921 ± 0.024

apex
endocardial� 0.837 ± 0.095 0.900 ± 0.059
epicardial� 0.838 ± 0.079 0.910 ± 0.052

mid
endocardial 0.918 ± 0.028 0.923 ± 0.024
epicardial 0.920 ± 0.029 0.925 ± 0.021

basal
endocardial ∗ 0.894 ± 0.048 0.916 ± 0.041
epicardial ∗ 0.896 ± 0.036 0.917 ± 0.033

3.3 Uncertainty Quantification and User Interaction

For each voxel xi in all images, its registration and segmentation uncertainty
can be evaluated and visualized using eqs. (5) and (6) respectively. We can
further define the registration and segmentation uncertainty of a given region
Lj by averaging over the region. The quantification of uncertainty can be used
to inform the user about how reliable the segmentation results are.

Based on results from the uncertainty analysis, we can design a system that
that detects abnormally high uncertainty. In our analysis we have four failure
cases in which the global affine registration fails during the atlas registration. The
subsequent segmentations also fail. Myocardial registration uncertainty is a good
indicator for failed global affine registration (failed cases 0.86± 0.14, successful
cases 0.39 ± 0.08 p < 0.0001). A combination of registration and segmentation
uncertainties is better in terms of classification using linear discriminant analysis
(LDA) (failed cases 1.73± 0.12, successful cases 1.2± 0.08 p � 0.0001). A good
threshold for detecting segmentation failures using the combined registration
and segmentation uncertainty is 1.59 derived from LDA with accuracy of 100%.

In the cases that we detect a segmentation failure, the user is asked to define
6 landmarks (apex, center of left ventricle, anterior and inferior insertion points
of right ventricle, center of right ventricle and center of basal plane). These
landmarks are also defined in the atlas. By introducing knowledge about these
additional 6 landmarks, the atlas-to-image registration can be initialized more
accurately and all segmentations performed correctly.

4 Results

In this paper we used datasets form 32 subjects. Each dataset consists of short
axis (SA), long axis (LA) four (4CH), three (3CH) and two chamber (2CH) cine
MR image sequence (2.2 × 2.2 × 10,mm, 30 phases) and anatomical 3D MR
images (1.1× 1.1× 1.1,mm, one phase).

Manual segmentations were performed by a cardiologist to extract the my-
ocardium and left ventricle in all images after spatio-temporal registration.
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We then compared these to the segmentation results obtained via our previ-
ous technique [8] which uses SA MR images only and the proposed technique.
Both techniques utilize the landmarks from the user for four patients for which
the global affine registration fails. For comparisons between the methods we
used the Dice metric, D = (2||Sa ∩ Sb||)/(||Sa||+ ||Sb||) where Sa and Sb are
respectively the manual label segmentation and automatic label segmentation.
The results are summarized in tab.1. The results indicate that our proposed seg-
mentation scheme performed better than the original method especially on the
basal and the apex segments. The basal and apex are very difficult to segment
using SA MR images only due to the large slice thickness and partial volume. In
the proposed approach the segmentation in these region is enhanced by adding
information from 3D and LA images.
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Fig. 2. Left figure shows myocardial segmentation uncertainty and right figure shows
myocardial registration uncertainty

Uncertainty is a good indicator for the failure of the global affine registration.
However, during our experiment, there is no strong correlation between uncer-
tainty and accuracy of the segmentation if the uncertainty does not rise beyond
the threshold used. If the segmentation is considered successful, the uncertainty
relates more to abnormality of the patient’s cardiac anatomy than the accuracy
of the segmentation. This is possibly due to the fact that our segmentation al-
gorithm is designed to segment pathological images well using LARM [3] and
MCEM [8]. To examine if the uncertainty correlates to the abnormality of the
patients, we assume that segmentation uncertainty which comes from intensity
and geometry distribution relates to abnormal intensity like ischemic cardiomy-
opathy while registration uncertainty which comes from geometry distribution
corresponds well to abnormal geometry like dilated cardiomyopathy. Figure.2
shows that myocardial segmentation uncertainty is a very good predictor for
separating ischemic cardiomyopathy from the rest of subjects (ischemic subjects
0.82 ± 0.012, other subjects (normal and dealated) 0.80 ± 0.016 p < 0.001),
meanwhile myocardial registration uncertainty is a good predictor for separat-
ing dilated cardiomyopathy from normal subjects (dilated subjects 0.38± 0.08,
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Fig. 3. End Diastolic Volume(EDV) of the subjects from the segmentation, p value
between normal and ischemic is 0.025, between normal and dilated is 0.054 and between
dilated and ischemic is 0.287

normal subjects 0.33 ± 0.04 p < 0.05) but not from ischemic subjects. Com-
pare to EDV Figure.3, uncertainty outperforms EDV by distinguishing ischemic
(p < 0.001 against p < 0.05) from other and separate dilated (p < 0.05 against
p > 0.05) from normal.

5 Conclusion and Future Work

In this paper we present a novel two-step multiple image segmentation framework
using three widely available MR image sequences. Using LARM and MCEM we
are able to deal with local shape variations as well as infarcted myocardium.
The segmentation is performed simultaneously from all images using a multi-
image graph cut approach. The accuracy is significantly improved compared to
previous segmentation methods by utilizing both intra- and inter-image infor-
mation Table.1. We finally define a system that detects segmentation failures
using registration and segmentation uncertainties.

Cardiac pathology is not always easily detectable in images, e.g. the trans-
position of vessels, but likely to be detected by registration and segmentation
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uncertainty. Since we can define uncertainty for every part of the cardiac anatomy,
it is desirable to investigate if the relationship between uncertainty and abnor-
mality could help to detect these pathologies automatically.
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Abstract. Noninvasive Cardiac electrophysiological (EP) imaging aims
to compute cardiac electrical dynamics from body surface potential.
Anatomical data acquisition and processing computations, to reconstruct
detailed geometry of heart and torso, are complex and time consuming
tasks that are incompatible with clinical requirements. Our ultimate goal
is to improve noninvasive EP imaging techniques toward clinical feasi-
bility by investigating the minimum anatomical information. As the first
step toward this goal, in this study we investigate the impact of lo-
cal geometrical details on cardiac EP imaging. It is known that, global
geometrical factors such as size, position and orientation of heart are
important in noninvasive electrocardiography problem; but the effect of
local geometrical details is unknown and it is difficult to accurately cap-
ture. We hypothesize that, as long as global geometrical parameters are
captured, local details of realistic cardiac geometry do not significantly
impact diagnostic effectiveness of cardiac EP imaging. We verify this
hypothesis by developing simple geometrical model instead of realistic
heart that enables us to measure local anatomical error, and applying it
in EP imaging for detection of myocardial infarction. The results com-
puted based on simple geometrical model are comparable to that of the
realistic heart geometry. Thus, it confirms our hypothesis that discarding
local geometrical details does not affect diagnostic cardiac EP imaging.
The findings of this study pave the road for further studies on tomo-
graphic input data processing toward clinical feasibility.

Keywords: Cardiac electrophysiology, Simplified geometry of heart.

1 Introduction

Noninvasive cardiac electrophysiological (EP) imaging aims to combine body
surface potential (BSP) and image-derived anatomical information to computa-
tionally reconstruct cardiac electrical dynamics. Decades of research on cardiac
EP imaging resulted in methods that are able to reconstruct EP details either on
heart surface [1,2,3] or transmurally through myocardium [4,5]. Different phases
of state-of-the-art noninvasive cardiac EP imaging techniques [1-5] are presented
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Fig. 1. Diagram of state-of-the-art cardiac electrophysiological methods

in Figure 1. Common input data to all of these state-of-the-art methods in-
clude large number of high quality tomographic images to reconstruct detaild
3D geometry of heart and torso and body surface potential (BSP) maps.

Detailed 3D heart/torso geometry reconstruction puts high demand on high-
quality tomographic data. As a result, the tomographic data mainly used for
noninvasive cardiac EP imaging are magnetic resonance (MR) and computed
tomography (CT) images and more commonly available imaging tools such as
ultrasound have not been exploited for the detailed 3D geometry reconstruction
due to lower images quality. Furthermore, varying quality and artifacts of ob-
tained CT/MR images have direct effect on detailed 3D geometry reconstruction.
On the other hand, generating detailed realistic geometry of heart and torso vol-
umes requires complex and most oftenly non-automatic image processing such
as segmentation and surface mesh generation [6]. Thus, tomographic data pro-
cessing step is a challenging, time-consuming and complex task that demands
expertise and high level of user intervention and can not be fulfilled in clinics.

To be feasibile clinical routins, noninvasive cardiac EP methods have to be
inexpensive, fast and easy with reproducible diagnostic results. Our research
addresses this problem by investigating the minimum tomographic data required
for diagnostic cardiac EP imaging. We start by asking this question: “what are
the minimum geometrical details needed for diagnostic cardiac EP imaging?”
Although several studies [7] have shown that global geometrical features such as
size, orientation and position of heart with respect to torso are very critical in
reconstruction of cardiac electrical potential, impacts of local anatomical details
such as heart surface irregularities or errors caused by segmentation are unclear.
How these local geometrical details affect cardiac EP imaging is the main focus
of this study. In order to do so, we develop simple geometrical model for heart
and apply it in noninvasive EP imaging of myocardial infarction to evaluate the
impact of discarding local geometrical details. The findings of this study will
further enable us to develop an adaptive geometrical modeling framework for
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cardiac EP imaging that incorporates anatomical information based on available
images quality and quantity and clinical needs as well.

2 Optimization of 3D Geometry Reconstruction

Detailed 3D geometry reconstruction needs complex processing including the
segmentation of tomographic images. Varying quality of tomographic images
makes this task more challenging that demands high level of user intervention
and expertise and may introduce ambiguos input error to the system. This in-
put error and its effects should be determined and investigated. In this study,
we assess the impact of local geometrical details (e.g segmentation error, heart
surface irregularities) on noninvasive cardiac electrophysiological imaging.

Cardiac Simplified Geometry: To evaluate the impact of local geometrical details
on cardiac EP imaging, we propose a simple geometrical model for heart that
only employs patient‘s heart size, position and orientation with respect to torso
while ignores local details of the heart. In this model, left ventricle epicardium
and endocardium are represented by two concentric circles at short axis and an
ellipsoid at long axis according to equation 1.

R2
Lendo = (ε− ε0)2 + (η − η0)2 + a2(ζ − ζ0)2 (1)

where ε−η plane is considered as the heart short axis and ζ is related to the long
axis, (ε, η, ζ) represents coordinates of the left ventricle, (ε0, η0, ζ0) represents
center of the left ventricle, RLendo is the radius of left ventricle endocardium
(inner circle radius), and ellipticity of the shape is described by parameter a.
Left ventricle epicardium would be modeled with the same formulation as the
left ventricle endocardium only with different radius, called RLepi, which is larger
than RLendo. It has been experimentally shown that this model of left ventricle
can better represent its geometry compared to other geometrical models [8].
The required parameters are radius of the two circles, which determine the left
ventricle wall thickness and would be obtained from the base slice MR image. The
center of these two concentric circles is placed at the center of the left ventricle.
This model and its corresponding 3D reconstruction of the left ventricle is shown
in Figure 2.

Right ventricle endocardium is modeled using two intersecting circles at short
axis and a parabola at long axis according to [9]. The following equation rep-
resents a shape which is a circle in ε − η plane and a parabola in ζ direction
perpendicular to ε− η plane.

ζ = ζ0 + a[(ε− ε0)2 + (η − η0)2] (2)

Similarly, (ε, η, ζ) represents surface coordinates of this shape, (ε0, η0, ζ0) is the
center of this geometrical shape and a is a scaling factor which refers to the
elongation of the shape in ζ direction.

It should be noted that the distance between these two intersecting circles
changes along the long axis such that the center of the circle representing free
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(a) (b) (c) (d)

Fig. 2. (a) Left ventricle, and (b) right ventricle simplified geometry model in short
axis. 3D reconstruction of (c) left ventricle, and (d) right ventricle.

(a) (b) (c) (d)

Fig. 3. (a) Simplified geometry of heart in short axis, (b) 3D reconstruction of the
heart. Surface mesh of cadiac (c) realistic geometry, and (d) simplified geometry.

wall of the right ventricle moves toward the center of the circle representing
the septum. This is automatically controlled by a ceofficient that decreases the
distance between to circles center gradually along the long axis from the base to
the apex. Figure 2b and 2d clarify the geometrical model used for right ventricle
surface mesh generation. The grey area represents the right ventricle myocardium
in ε−η plane. By integrating the right ventricle and the left ventricle, simplified
heart volume would be constructed as presented in Figure 3.

It is worth mentioning that by applying the simplified geometry of heart there
is no need for manual segmentation of MRI slices. The simplified geometry en-
ables us to reconstruct 3D geometry of heart by only eight parameters including
center of the left ventricle, radii of the left ventricle endocardium and epicardium
(representng left ventricle wall thickness), and center of the right ventricle, radii
of the right ventricle epicardium and endocardium (representing right ventricle
wall thickness), and lentgh of left ventricle and right ventricle. To obtain these
8 parameters, only the base and the apex slices of cardiac MR image series are
required for user intervention.

Torso Geometry Customization: After generation of 3D heart geometry, torso
geometry would be constructed followed by adjustment of heart into torso ac-
cording to subject’s heart orientation and position. Surface mesh of torso can
be reconstructed using electrodes’ positions on body surface that are used for
recording body surface potentials. High resolution electrode arrays employed in
different BSPM models can sufficiently represent torso surface without using
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tomographic images [10]. Position and orientation of patient’s heart with re-
spect to torso would be obtained from MRI metadata. The subject’s heart size
is reflected in the parameters used for generating the simplified geometry such
as left and right ventricle wall thicknesses as well as parameter a which controls
elongation of the ventricles along the long axis. Customization of the simplified
heart geometry would ensure correct location and orientation of the heart rel-
ative to torso. Correct position of the heart would be achieved by finding the
location of left ventricle center on the short axis base slice MRI and translat-
ing the origin of{ε, η, ζ}coordinate system to that location. Rotation of {ε, η, ζ}
coordinate system to the subject’s coordinate system corrects the orientation of
the heart as well. Figure 4a shows the subject-specifiec heart/torso model used
in our experiments.

3 Results

To assess the impact of discarding local geometrical details, we apply the sim-
plified geometry model of heart to noninvasive cardiac EP imaging in simulated
myocardial infarction (MI).

Experiments are conducted on synthesized and real data with MI condition.
Heart and torso geometry models provided by [11] are used to generate syn-
thesized MI data set. The cardiac simplified geometry is constructed based on
the realistic canine heart geometry as presented in Figure 3c and 3d. The torso
geometry is also shown in Figure 4a. In order to measure impact of local ge-
ometrical details, we ensure that global geometrical parameters are preserved
as explained in section 2.2. Experiments are conducted on 88 synthesized cases
with MI of different sizes and locations in the left ventricle for both realistic and
simplified heart geometries. Simulation of each MI condition is performed on
the cardiac realistic geometry, using Aliev–Panfilov model [12] for TMP activ-
ity and quasi-static electromagnetism for the bioelectric field of BSP. Next, the
simulated BSP is corrupted with 20-dB white gaussian noise. Without any prior
knowledge about the infarct size and location, the inverse step estimates the car-
diac transmembrane potential (TMP) based on the noisy BSP for the simplified
and realistic heart geometries according to the inverse EP method described in
[13]. In this way, identical BSP is provided to the inverse EP imaging technique
with the simplified and realistic heart geometries; hence the only factor affecting
the output would be discarding local details of heart geometry. In addition to
synthesized cases, cardiac simplified geometry of one post-MI patient (case 2
provided through 2007 PhysioNet/Computers in Cardiology Challenge [14]) is
generated and corresponding TMP is estimated based on the provided BSP.

Geometrical Error Measurment : To quantify the geometrical error introduced
in input using the cardiac simplified geometry, difference of two volumes (heart
simplified geometry and realistic one) is calculated. This difference is simply ob-
tained by finding non-overlapping area of realistic and simplified heart volumes.
The difference of realistic heart geometry and simplified geometry for the base
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(a) (b) (c) (d)

Fig. 4. (a) Torso surface mesh with heart mesh free points. The base slice of (b) realistic
heart geometry, and (c) simplified heart geometry. (d) The difference of two geometries’
base slices.

slice is shown in Figure 4d, where the non-overlapping area is highlighted by
grey. Since our TMP estimation method is formed on meshfree points represen-
tation of the heart, the geometrical error is calculated based on the number of
meshfree points residing in the difference volume. The number of meshfree points
located in the difference volumes for heart geometries provided by [11] and [14]
are 12.42% and 14.23% respectively.

Infarct quantification: Experimental studies have shown that TMP character-
istics of infarct scar change such as action potential duration (APD) and de-
polarization rate [15], regardless of the EP imaging technique used for TMP
estimation. Therefore in this study, infarct quantification parameters including
infarct center (CE) and size (IS) are calculated based on the abnormality in
activation time (AT) and APD of TMP dynamics to quantitatively evaluate the
impact of simplified geometry application to cardiac EP imaging. AT and repo-
larization time are extracted from maximum first derivative of TMP upstroke
and maximum second derivative of TMP downstroke respectively [16]. Differ-
ence between repolarization time and AT shows APD. Infarct center represents
the center of infarcted meshfree points and infarct size is obtained by dividing
the number of infarcted meshfree points by the total number of meshfree points.
Overlap between the detected infarct scar and true infarct scar determines the
precision, sensitivity and specificity of infarct identification.

Synthesized cases : These experiments on 88 different cases have infarct size rang-
ing from less than 10% to 60% of the left ventricle distributed in different lo-
cations. Cardiac transmembrane potential dynamics for realistic and simplified
geometries are computed, with the difference of local anatomical details mea-
sured above as the only factor affecting cardiac EP imaging. Figure 5 presents
the simulated volumetric TMP dynamics of simplified heart for normal case and
estimated TMP for a heart with MI in 4 time instances; delayed excitation is
visible in the infarct area. The true (green points) and estimated (red points)
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infarct extents for this example are shown in Figure 6a. The precision and speci-
ficity are degraded from 0.45 to 0.34 and 0.97 to 0.95, respectively while the
sensitivity is improved to 0.53. Table 1 summarizes the quantitative comparison
of infarct parameters for simplified and realistic geometries.

Table 1. Comparison of Infarct Parameters for the Cardiac Simplified and Realistic
Geometries. ISD (CED) is the difference of simulated and estimated IS (CE).

IS CED ISD Precision Sensitivity Specificity
Simplified Geometry

0%-10% 11.86±6.8 0.05±0.03 0.23±0.12 0.41±0.15 0.94±0.02
10%-20% 5.48±2.18 0.02±0.04 0.42±0.13 0.47±0.08 0.94±0.02
20%-30% 4.21±1.42 0.01±0.06 0.52±0.17 0.45±0.12 0.94±0.03

>30% 3.15±2.19 0.01±0.03 0.83±0.13 0.42±0.11 0.97±0.02
Realistic Geometry

0%-10% 9.87±7.24 0.03±0.03 0.55±0.04 0.27±0.01 0.97±0.03
10%-20% 10.84±7.92 0.05±0.03 0.52±0.04 0.31±0.09 0.96±0.04
20%-30% 7.98±6.11 0.11±0.02 0.66±0.07 0.28±0.03 0.96±0.02

>30% 7.53±3.42 0.22±0.03 0.88±0.05 0.29±0.02 0.98±0.01

The minimum infarct size detectable using cardiac simplified geometry is 5%.
However, better results are obtained based on CED and ISD for infarct with
larger sizes. The center and size of myocardial infarct are not negatively affected
by replacement of detailed geometry of heart with the simplified geometry. Sen-
sitivity of the estimation using simplified geometry outperforms the one using re-
alistic geometry; it may be due to regular shape of simplified geometry. However,
the precision and specificity of the simplified geometry are degraded compared
to realistic geometry.

(a)

(b)

Fig. 5. Volumetric TMP dynamics (a) simulated normal results, (b) estimated results
using the simplified geometry in 4 times instances from 10 ms to 130 ms
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(a) (b) (c)

Fig. 6. (a)Estimated and true infarct extent for one synthesized case presented in
figure 5. Estimated infarct for post-MI patient in (b) realistic heart, (c) simplified
heart. Estimated infarct area is shown by red points while the green points represent
the ground truth infarct extent.

Real case: Figure 6b and 6c show the infarct extent of post-MI patient estimated
using realistic and simplified heart. Red points represent estimated infarct area
inside the heart while green points represent the ground truth infarct extent.
In the simplified geometry the infarct area is correctly identified with overesti-
mation at inferolateral mid-cavity. Replacing the realistic heart with simplified
one decreases the specificity from 0.76 to 0.5 and increases the sensitivity from
0.25 to 0.37 . However, more experiments on real cases are required for valid
conclusion.

4 Conclusion

To be able to use the state-of-the-art EP methods in clinical applications, the
anatomical data aquisition and processing should be fast, easy and inexpensive.
As the begining step toward clinically-feasible cardiac EP imaging, we inves-
tigated the impact of local geometrical details on cardiac EP imaging by de-
veloping cardiac simplified geometry. The cardiac simplified geometry proposed
here describes the 3D geometry of heart with minimum tomographic information
as input. The results do not show significant change in terms of infarct extent
and infarct center compared to the results of realistic geometry. The smallest
infarct size detected using simplified geometry is 5%; however, increasing the
infarct size improves the results. Therefore, the experiment results preliminar-
ily confirm our hypothesis that local geometrical details of heart do not have
critical effects on diagnostic EP imaging of myocardial infarction cases as long
as global geometrical details are preserved. This would allow application of the
simplified geometry in cardiac EP imaging which in addition eliminates MR im-
age segmentation phase, reduces the user intervention and expedites geometry
reconstruction as well. In addition, personalized cardiac simplified geometry gen-
eration only requires two slices of MR images; the images quality does not have
significant effect on geometry reconstruction as long as the center of ventricles
and wall thicknesses can be extracted. Thus, using simplified geometry enables
us to employ other imaging modalities such as ultrasound in cardiac EP imaging.

In this study, only one geometry is used to generate the synthesized data set;
In the future work, furthur experiments would be performed on different heart
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geometries to provide statistically significant results. In addition, the findings of
our study are restricted to the EP technique [5] utilized for TMP estimation;
to be able to generalize the findings of this study to other EP methods, we
will also employ cardiac simplified geometry to other EP techniques [1,4]. It is
worth mentioning that cardiac EP imaging methods [1-4], disregard other cardiac
anatomical structures such as purkinje fibers and papillary muscles for TMP
estimation. The EP technique [5], used in this study, follows that assumption as
well. Based on our preliminary study, we focus on investigating the impact of
cardiac simplified geometry on diagnosis and quantification of infarct scar. Since
different error measures are required for diagnostic effectiveness comparison of
cardiac simplified geometry on other cardiac pathological conditions, it would
be considered in our future works.
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Abstract. We previously developed a hybrid spatio-temporal method
for the segmentation of the left ventricle in 2D+time magnetic reso-
nance (MR) image sequences and here extend this model-based approach
towards 3D+time sparse stacks of cine MR images with random ori-
entation. The presented method combines an explicit landmark based
statistical geometric model of the inter-subject variability at the end-
diastolic and end-systolic time frames with an implicit geometric model
that constraints the intra-subject frame-to-frame temporal deformations
through deterministic non-rigid image registration of adjacent frames.
This hybrid model is driven by both local and global intensity similarity,
resulting in a combined spatio-temporal segmentation and registration
approach. The advantage of our hybrid model is that the segmentation
of all image slices and of the whole sequence can be performed at once,
guided by shape and intensity information of all time frames. In addi-
tion, prior shape and intensity knowledge are incorporated in order to
cope with ambiguity in the images, while keeping training requirements
limited.

1 Introduction

Assessment of left ventricular function from 3D+time cine cardiac magnetic res-
onance (MR) images requires segmentation of the myocardial wall of the left
ventricle (LV) in all short-axis (SA) and long-axis (LA) slices of these time se-
ries images. In clinical practice, such segmentation is often performed manually,
which is labor intensive and susceptible to observer variability, for which reason
it is often limited to the end-diastolic (ED) and end-systolic (ES) frames only.
Several automatic and semi-automatic model-based methods for LV segmenta-
tion from cardiac MR images have been proposed.

Explicit landmark based statistical shape and appearance models (such as
active shape models (ASM) [1]) learn realistic shapes and shape variations as
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well as local or global intensity models from a data set of (manually) segmented
training images. These landmark based models can generate good segmentation
results, even in ambiguous image regions, because of the prior knowledge that is
incorporated in the statistical shape model. These methods have been extended
towards the segmentation of deforming objects in dynamic image sequences by
modeling all landmarks in all image frames together as one large feature vec-
tor [2]. But this implicitly assumes that all image sequences consist of the same
number of frames and the need for a sufficiently large number of completely (and
likely largely manually) segmented training image sequences makes the training
quite labor intensive. Landmark based methods have also been extended towards
the segmentation of sparse 3D MR image stacks of SA and LA slices. Some meth-
ods assume that the slices of all stacks image identical LV regions [3], which is
not always the case in clinical practice. Alternative methods combine a 3D shape
model with a simplified intensity model of the global characteristics of the in-
tensities of e.g. the blood pool, myocardium and background [4], not requiring
correspondence of the image slices. Methods with localized and spatially variant
intensity models such as ASM may, however, capture more knowledge.

Alternatively, shape information can be encoded implicitly in the form of an
annotated gray scale image or template that is non-rigidly deformed or regis-
tered towards the image to be segmented using a suitable similarity measure
and deformation regularizer. Such registration based approach has been used to
segment entire image sequences by propagating segmentations from one initially
segmented frame to all others after frame-to-frame registration [5] or by regis-
tration of the entire 2D or 3D image sequence with an atlas or pre-segmented
image sequence [6]. This approach is typically well suited for capturing small
and smooth frame-to-frame deformations, provided that sufficient registration
clues are present. However, inaccuracies in the frame-to-frame registrations will
accumulate during propagation, especially in regions where registration clues are
absent or ambiguous (e.g. the papillary muscle at ED vs. ES) or where contrast
varies between frames (e.g. at the interface of LV and pericardium).

The benefits and limitations of explicit landmark based and implicit registra-
tion based approaches for the segmentation of image sequences are thus largely
complementary. Hence, we proposed a 2D+t hybrid method that integrates ex-
plicit landmark based and implicit image registration based representations in
a unified framework, thus combining the advantages of both models [7]. This
resulted in a spatio-temporal model that performs joint segmentation and
registration of all frames in the image sequence combined. In the proposed
approach, explicit statistical shape and intensity models were constructed for
selected frames (in casu ED and ES) only, strongly reducing the need for te-
dious manual delineation during training. These models were explicitly (for ED
and ES) and implicitly (for all other frames) used to guide the segmentation of
all image frames simultaneously through non-rigid image registration. While the
method in [7] considers 2D+t joint registration and segmentation, we here extend
this hybrid method towards sparse 3D+time MR image sequences, consisting of
a sparse set of (i.e. limited number of) randomly oriented SA and LA slices with
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SA inter-slice distances of approximately 1cm. The main focus of this paper is
on the methodological concept of our method. Evaluation on two data sets of
70 image sequences shows that joint 3D+time segmentation and registration of
all frames of all SA and LA slices combined performs better than segmentation
of each frame individually due to the spatio-temporal integration of all available
information.

2 Methods

The proposed hybrid model combines a statistical landmark based model, that
captures inter-subject shape and intensity variability, with a deterministic reg-
istration based model, that captures the intra-subject temporal variation. Con-
sistency between both models is assured by the used shape representation.
The resulting model consists of four components: (1) frame-specific statistical
landmark based shape models that are constructed for some selected key frames
only (in casu ED and ES) to limit training requirements; (2) statistical local
image appearance models constructed for each landmark separately on these
selected frames that guide their segmentation on all frames; (3) frame-to-frame
non-rigid image registration parameterized by the landmark locations and driven
by global intensity similarity between consecutive frames; and (4) a temporal
smoothness penalty imposed on the registration.

2.1 Shape Representation

We consider a 3D+time cardiac cine MRI data set to consist of separate 2D+time
image slices that together define the 3D shape of the LV endo- and epicardial
surface at each time frame f ∈ {1, 2, · · · , F}. These surfaces are represented

by a set qf = [qf
1 ,q

f
2 , · · · ,qf

C ]
T of C corresponding control points (CPs) qf

c =
[qfx,c, q

f
y,c, q

f
z,c]

T , that is defined as a standardized sampling of the 3D LV endo-
and epicardial surfaces (Fig. 1). All the CPs of one time frame are organized
in a mesh, that completely represents the 3D surface (Fig. 1c), with mesh lines
perpendicular to and mesh lines in plane with the central axis of the LV. As the
CPs do not necessarily coincide with the image planes, a second set of points
vf,s, i.e. the in-plane landmarks (LMs) vf,s

l = [vf,sx,l , v
f,s
y,l ]

T for each slice s, is
defined as the intersection of the mesh lines with the image planes (Fig. 1d). As
all landmarks coincide with the image planes, they will be used to define the
position of intensity profiles and to guide in-plane registrations.

2.2 Model Component 1: Shape Model

A 3D shape model is statistically learned for the ED and ES frames separately
from relative CP positioning of the training data, after global Procrustes align-
ment to remove differences in pose and scale. Independent component analysis
(ICA) is used to construct the modes of variation, as this was found to perform
better than traditional principal component analysis (PCA) [7]. A new shape
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(a) (b) (c) (d)

Fig. 1. CP and LM definition for the epicardial surface of one 3D training image. (a)
Manual segmentations. (b) 3D surface fitted through the manual segmentations. (c)
Standardized sampling of the surface, yielding the CPs (gray) with interpolation lines.
The mesh lines perpendicular to the central axis are used to define the LMs in the LA
slices and the mesh lines in plane with the central axis to define the LMs in the SA
slices. (d) Definition of the LMs (light gray dots) in one SA slice.

qf is thus defined as qf = T(qf +
∑Kf

k=1 b
f
k · Φf

k), with T the global align-
ment transformation, bf the model parameters, Φf the modes of shape varia-
tion and Kf the retained number of modes of variation. The shape cost is then
defined as the squared Mahalanobis distance of the current shape qf to the train-

ing shapes: Cf
S(b

f ) =
(
T−1qf − qf

)T

(Sf )−1
(
T−1qf − qf

)
=

∑Kf

k=1
(bfk)

2

λf
k

, for

f ∈ {fED, fES}, with qf the mean and Sf the covariance matrix of the globally
aligned training shapes and λf the variance of the model parameters.

2.3 Model Component 2: Local Appearance Model

We construct statistical local intensity appearance models, capturing the vari-
ability of the intensity (or derived) features within a local region around each
LM l of the ED and ES frames independently. To this end, training LMs are
defined by the intersection of image planes, that are sufficiently close to the
current LM, with the same mesh line of the shape model as LM l. Kernel PCA
(KPCA) was used to construct the local appearance models, as this was found to

perform best [7]. Based on these models, the local intensity cost Cf
LI(b

f ) (with
f ∈ {fED, fES}) is calculated for each LM l of the ED or ES image stack as
the squared Mahalanobis distance of the feature vector around the current LM
l from the ones of the training set, in the higher dimensional feature space of

KPCA, expressed by [8]: Cf
LI(b

f ) =
∑N

l=1

∑Mf

k=1
((αf,l

k
)TKf,l(bf ))

2

λf,l
k

, withKf,l(bf )

the kernel vector of the landmark considered and αf,l
k and λf,l

k (k = 1, . . . ,Mf)

the Mf eigenvectors and eigenvalues of the training kernel matrix Kf,l
train of LM

l in frame f . For all other frames of the entire image sequence, for which no
explicit training data are assumed to be available, we define the local intensity
cost Cf

LI(q
f ) as the linearly weighted sum of the intensity costs of the landmarks

in that frame f according to the corresponding ES and ED intensity models [7].
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2.4 Model Component 3: Global Intensity Similarity

We incorporate global intensity similarity between different frames in the seg-
mentation process by reformulating the landmark based segmentation of multi-
ple frames simultaneously as a non-rigid registration problem. The registration
transformation F f,f−1,s between frames f and f -1 of slice s is defined as the
thin-plate spline (TPS) warp of corresponding landmarks vf,s in frame f onto
vf−1,s in frame f -1, smoothly extrapolating the correspondences defined by the
landmarks towards the whole image domain. All registrations are calculated in-
plane, slice by slice. We thus neglect the out-of-plane motion, but assume this
to be small between consecutive time frames and, moreover, to be practically
unmeasurable due to the sparseness of the data. We here chose mutual informa-
tion (MI) [9] as similarity measure S to assess the quality of the registration and
thus the agreement between the landmarks on each set of neighboring frames is
given by

Cf
GI(q

f−1,qf ,qf+1)

= −
∑
s

(S(If,s, If−1→f,s(qf−1,qf )) + S(If,s, If+1→f,s(qf+1,qf ))). (1)

with If−1→f,s(qf−1,qf ) image slice If−1,s warped to If,s using a TPS defor-
mation based upon corresponding landmark locations vf−1,s and vf,s which are
defined by qf−1 and qf respectively. If+1→f,s(qf ,qf+1) is similarly defined.
Denoting the joint and marginal intensity probability distributions of If,s and
If−1→f,s by pf,f−1,s(a, b), pf−1,s(a) and pf,s(b) (with a and b intensity values),
the mutual information between both images is given by

S(If,s, If−1→f,s) =
∑
a

∑
b

pf,f−1,s(a, b) · log pf,f−1,s(a, b)

pf−1,s(a) · pf,s(b) , . (2)

As we only assume frame-to-frame similarity within or near the object of interest
itself (in casu the LV) and not in its background [9], computation of the mutual
information in Eq. 2 is restricted to a ROI.

2.5 Model Component 4: Temporal Regularization

We regularize the propagation of shape information by constraining the shape
changes of the CPs between consecutive time frames f -1, f and f+1 by the
spatiotemporal smoothness penalty

Cf
R(q

f−1,qf ,qf+1) =|qf+1 − qf |+ |qf−1 − 2qf + qf+1|. (3)

Although ad hoc, this temporal regularization captures the intuitive expectations
of inter-frame landmark motion. Specifically, inter-frame landmark motion is
expected to be small and smooth which is reflected by penalizing large first
order and second order derivatives of landmark locations respectively. Obviously,
other spatial regularization terms are possible, including statistically learned
deformation models (increasing the amount of training data required).
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2.6 Hybrid Model

We combine the individual models described above to guide the joint segmen-
tation of all frames in an image sequence by statistically learned and through
landmark correspondence propagated shape and intensity knowledge. Hence, the
quality of the simultaneous segmentation of all F frames is expressed as a global
cost function that balances the four model components by a weighted sum of
cost terms:

C(Q) =

CfED

S (bfED ) + CfES

S (bfES ) + γ2

(
CfED

LI (bfED ) + CfES

LI (bfES )
)
+

F−1∑
f=2

(
γ1C

f
R(q

f−1,qf ,qf+1) + γ2C
f
LI(q

f ) + γ3C
f
GI(q

f−1,qf ,qf+1)
)
, (4)

with Q = [T,bfED ,bfES ,qf /∈{fED ,fES}] the set of parameters to be determined
and γ1, γ2 and γ3 suitably chosen weighing factors. T represents the parame-
ters of the global geometric alignment between the model and the image data,
while bfED and bfES are the ICA model parameters of the ED and ES shape
models respectively. In addition, qf /∈{fED ,fES} are the landmark locations in
the other image frames for which no shape model was trained. The joint seg-
mentation and registration amounts to the minimization of Eq. 4 w.r.t. Q:
Qopt = argminQC(Q). This minimization is performed for all parameters si-
multaneously using a conjugate gradient approach with analytically determined
derivatives.

3 Experimental Evaluation

A first data set of 70 3D+time MR image sequences was obtained in one clin-
ical center, from patients with valve stenosis. A second data set consisted of
70 randomly selected 3D+time MR image sequences from the DETERMINE
(Defibrillators to Reduce Risk by Magnetic Resonance Imaging Evaluation) co-
hort [10], which were acquired at multiple sites using a range of different scanner
types and manufacturers. The images consist of 2 (data set 1) or 2 to 6 (data
set 2) LA slices and on average 12 SA slices and 26 time frames. Manually
supervised contours of the 4D LV segmentation were provided through expert
analysis. Possible breath hold related misalignments between different LA and
SA slices were corrected using the method of [11].

We evaluate the proposed 3D hybrid method with a leave-one-out experiment.
After construction of the ED and ES shape and intensity models, the results
of separate ED and ES ASM segmentation is compared to the segmentation
results for these frames obtained with the method proposed. In both experiments
(ASM and method proposed), the mean shape is used for initialization purposes
along with manually obtained pose and scale parameters T. More principled
initialization approaches are imaginable but are not considered in this work.
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Moreover, as a temporary simplification, the global alignment parameters T
were kept fixed during model fitting.

To evaluate the fitted shapes, segmentations for each SA and LA image slice
interpolating the from the shape derived LMs are compared with manual ground
truth segmentations. The remaining mean radial point-to-point errors ε for each
endo- and epicardial contour in each image slice and on each frame separately are
reported in pixel units in Fig. 2 for the initialization and after both experiments.

The largest segmentation errors were obtained for the LA slices with a median
of 2.3 times the pixel size for both data sets, after application of our hybrid
method (Fig. 2). For the SA slices, segmentation results are best in the mid-
ventricular region with median errors of respectively 1.42 and 1.57 times the
pixel size for data sets 1 and 2.

A statistically significant difference was found between the segmentation er-
rors of the initialization, Experiment 1 and Experiment 2, showing that the
registration based coupling improves segmentation of ED and ES over individ-
ual segmentation of each frame separately using the same statistical shape and
intensity models, as knowledge of the separate time frames becomes available
for the entire image sequence. This is illustrated in Fig. 3, showing the ED and
ES frame of 3 SA and 1 LA slice of a selected patient of data set 2, with the
resulting segmentations of Experiments 1 and 2 and the manual segmentations.

The maximal segmentation errors are higher for data set 2, due to its higher
shape and intensity variability, as the images were acquired in different clinical
centers, from patients with different pathologies. This is disadvantageous for
statistical modeling, as a sufficiently large and representative training data set
is assumed to be available.
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Fig. 2. Segmentation errors ε per contour for the initialization (Init) and after fitting of
our hybrid model without (Exp1) and with (Exp2) the registration component enabled.
The errors are given for all LA slices (LA), and for the apical (Apex), mid (Mid) and
basal (Base) SA slices separately. Statistically different values are indicated above the
graph: *p < 0.05.
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ED
ES

Fig. 3. ED and ES frame of 3 SA and 1 LA slice of a selected patient, with the resulting
segmentations of Experiments 1 (dotted) and 2 (dashed) and the ground truth manual
segmentations (full).

4 Discussion and Conclusion

We propose a hybrid spatio-temporal segmentation+registration approach for
3D+time image sequences. The method combines statistical global shape and
local intensity models of only a few selected time frames with simultaneous
frame-to-frame non-rigid registration. Segmentation clues are passed in both
directions to guide the segmentation of all frames simultaneously using all avail-
able intensity and shape information. Hence, our hybrid model allows the use of
prior knowledge, necessary for the segmentation of ambiguous image regions, in
all time frames, while keeping training requirements within bounds. It was shown
that the simultaneous registration improves landmark-based segmentation. The
different orientations of the slices and the sparseness of the entire image stack
was taken into account by defining a set of in-plane landmarks to guide the in-
tensity models, next to the shape-defining control points. The focus of this work
was on the theoretical concept of the 3D hybrid model. The presented frame-
work was intentionally kept as general as possible, allowing easy adaptation of
individual components, such as the used intensity features, number of control
points etc. Alternative model choices may improve the segmentation results. E.g.
the large LA segmentation errors may be explained by large local errors near
the apex and base, due to the current control point mesh definition with limited
apical and basal sampling. Hence, segmentation performance may be improved
by a more sophisticated definition of the underlying 3D interpolation mesh, a
more robust optimization procedure, alternative local intensity features, etc.

The proposed hybrid segmentation and registration method can as well be
used to segment entire image sequences, based on statistically learned shape and
intensity models of only a few selected frames, as previously shown for 2D+time
MR sequences [7].
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Abstract. Criteria of normality of the cardiac fibers are important in
cardiomyopathies. In this paper, we investigate the differences in the car-
diac fiber structures between 10 hearts classified as healthy and 6 hearts
classified as abnormal, and determine if properties of the cardiac fiber
structures can be discriminants for abnormality. We compare the vari-
ability of the fiber directions from abnormal hearts to an atlas of healthy
hearts. The human atlas of the cardiac fiber structures is built with an
automated framework based on symmetric Log-domain diffeomorphic
demons. We study the angular variability of the different fiber struc-
tures. Our preliminary results might suggest that a higher variability of
the fiber structure directions could possibly characterize abnormality of
a heart.

1 Introduction

Cardiovascular diseases are by far the number one killer in the US with over
930,000 deaths annually and 71 millions, more than a fifth of the population,
live with a form of cardiovascular disease [20]. The characterization of the con-
sequences lead by specific cardiopathies is essential to a better diagnosis and a
better treatment of these diseases. Among the possible causes, the differences in
the cardiac fiber architecture could be an promising topic. The heart is composed
of myocardial fibers organized in a complex laminar structure [18,10], and the
cardiac fiber structures have an important role in electrophysiology [8], in me-
chanical functions [4], and in remodeling [23] of the heart. Changes in the fiber
structures are for instance inherent in myocardial hypertrophy [9,19,6]. Myocar-
dial disarray, or disorganisation of the fibers, is also still the focus of contentious
studies [2]. The question of normality of the cardiac fiber structures arises when
trying to assess the role of myocardial disarray in cardiomyopathies. In this pa-
per, we try to assess whether there is a difference in the cardiac fiber structures
between hearts classified as normal and hearts considered as abnormal.

The directions of the fiber structures and their variability can be measured
with Diffusion Tensor Imaging (DT-MRI). A human atlas of the cardiac fiber
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Fig. 1. Construction of the healthy atlas: The myocardia are segmented. Images are
then aligned and registered non-rigidly toward a reference image. The atlas is con-
structed iteratively by averaging acquired images in the average heart shape. Compar-
ison with the atlas: Abnormal hearts are registered to the average healthy heart. The
cardiac fiber structures of each abnormal heart are compared with the structures of
the average healthy heart.

structures from DT-MRI [12,13] has recently been built with 10 healthy ex vivo
hearts. We register 6 ex vivo hearts classified as abnormal to the atlas of healthy
hearts and analyze the angular differences between the fiber structure directions
of the abnormal hearts and the ones of the average healthy heart. The statistical
study shows that the directions of the cardiac fiber structures vary more in ab-
normal hearts than in healthy hearts. The preliminary results might suggest that
a higher variability of the fiber structure directions could possibly characterize
abnormality.

2 Material and Method

2.1 Dataset

The human dataset [5,16] consists of 10 healthy and 6 abnormal ex vivo human
hearts acquired during forensic autopsies. All cases are from extra cardiac sudden
deaths. However, the true nature of deaths is not available. The images have
been acquired on a 1.5T MR scanner (Avanto Siemens), all within 24 hours
after death and prior to the examination by the pathologist, with a bipolar echo
planar imaging using 4 repetitions of 12 gradient images. The diffusion-weighted
images, from which are estimated the diffusion tensors, are of size 128x128x52
with an isotropic resolution of 2 mm. Criteria of abnormality [17] are based on
the heart weight (with given permitted weight limits within the 95% percentile),
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the septal thickness (with a maximal thickness defined at 12 mm for women and
14 mm for men), and on subsequent pathology examination.

2.2 Registration of Abnormal Hearts

The atlas of diffusion tensors is constructed using the automated framework
described in [12]. The method is summarized in Fig. 1 and has four steps. The
myocardium is segmented [3] and its mask is used to guide the nonrigid pairwise
registration [21,22,14]. All hearts are registered to an initial reference image,
which is updated toward the morphological average of all hearts [7]. Once the
transformations of all hearts toward the average cardiac shape are computed,
the diffusion tensors are warped [15] to the morphological atlas.

The processing of abnormal hearts is performed within the same framework
[12]. Firstly, the myocardia of the abnormal hearts are segmented using a minimal
user interaction. Secondly, their masks are registered to the newly computed
average healthy heart. The diffusion tensors are warped accordingly to the shape
of the average healthy heart.

2.3 Comparison with Abnormal Hearts

The diffusion tensors fields from all hearts, {D(i)}i=1...N (with N = 10 healthy
+ 6 abnormal hearts), are warped to the morphological average of the healthy
hearts (i.e., in a common reference). The Log-Euclidean metric [1] is used to
compute efficiently the average diffusion tensor of the healthy hearts (hearts #1

to #10) with the Fréchet mean, D = exp
(

1
10

∑10
i=1 log(D

(i))
)
.

The eigendecomposition of the diffusion tensor matrix D gives the principal
directions v1,2,3 describing the fiber structures. More precisely, the first eigen-
vector v1 gives the fiber orientation, the second eigenvector v2 is believed to
lie within the laminar sheet and to be perpendicular to the fiber, and the third
eigenvector v3 is assumed to give the normal of the laminar sheet.

The abnormal hearts are compared with the average healthy heart by measur-
ing the angular deviations of the fiber structures of each heart with the average
heart. The angle θ between the direction of an eigenvector vj of the ith heart
and the direction of the corresponding average eigenvector vj is defined between
0◦ and 90◦ with:

θ
(i)
j = arccos

(
|v(i)

j · vj |
‖ v

(i)
j ‖‖ vj ‖

)
(1)

The absolute value of the dot product removes the inherent ambiguity in the
orientation of the eigenvectors (i.e., |a · b| = |a · (−b)|).

3 Results

We study the deviation of the fiber structures of each heart (healthy and ab-
normal) to the average structures of the healthy hearts (i.e., to the atlas). The
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#1 (21yo): 11.4o #2 (20yo): 7.5o #3 (21yo): 11.4o #4 (17yo): 12.3o

#5 (21yo): 8.1o #6 (47yo): 16.6o #7 (27yo): 10.5o #8 (47yo): 20.8o

#9 (74yo): 22.0o #10 (50yo): 9.6o #11 (43yo): 19.3o #12 (42yo): 26.2o

#13 (19yo): 17.5o #14 (19yo): 8.1o #15 (35yo): 33.7o #16 (49yo): 21.1o
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Fig. 2. (Left) Deviation of the fiber direction of each heart to the atlas of healthy
hearts. Coloring is the angular difference in degree. Abnormal hearts are with gray
background. The age of each subject is provided in each sub figure. (Right) Histograms
of the angular variability (in degrees) of (a) the 1st eigenvector, (b) 2nd eigenvector,
and (c) 3rd eigenvector (abnormal hearts in dark lines, healthy hearts in light lines).

structures in the healthy hearts are, as expected, very similar to the atlas. The
histograms of the angular differences of the first, second, and third eigenvec-
tors of the healthy hearts to the atlas (gray curves in Fig. 2) show average
modes of respectively (i.e., the curves are peaking at) θ1 = 13.03◦, θ2 = 21.76◦,
and θ3 = 15.77◦. Abnormal hearts show by contrast fiber structures that have
larger deviations to the atlas of healthy hearts. The histograms of the angular
differences of structures show higher modes in abnormal hearts (black in Fig.
2), with a deviation of θ1 = 20.96◦ for the fibers (i.e., first eigenvector) and
of θ2 = 48.21◦ and θ3 = 34.36◦ for the laminar sheets (i.e., second and third
eigenvector). The visualization of the angular difference in a slice of each heart
shows large discrepancies in the left ventricle with localized high-variability ar-
eas for patient #12, #15, and #16 (shown in the sub-figures of Fig. 2 with gray
backgrounds). This is again confirmed when visualizing the angular difference of
the second and third eigenvectors (i.e., the laminar sheets). It is to note that the
registration of the right ventricle (which exhibited a very small volume) failed for
the last patient (#16). The patients #13 and #14, even if classified as abnormal,
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presented consistently very small deviations to the average fiber structures of
the healthy atlas (Fig. 2).

4 Discussion and Conclusion

The question whether the variability of the cardiac fiber structures is a marker
to normality or abnormality is relevant to the study of many cardiomyopathies,
including left ventricular hypertrophy or myocardial disarray. In this paper, we
compared the structural changes between a population of abnormal hearts and of
healthy hearts. It was shown that the three eigenvectors of the diffusion tensors
have measurable differences between abnormal hearts and healthy hearts. When
compared to an atlas of healthy hearts, the fibers of abnormal hearts showed
an angular difference of 20.96◦, while the fibers of healthy hearts showed less
deviation with 13.03◦. The laminar sheets also showed a greater deviation and a
greater variability in abnormal hearts than in healthy hearts. Even though the
laminar sheet is known to be more variable than the fiber structure in humans
[12], the difference in both populations is non negligible (deviation of the laminar
sheet normal of 34.36◦ in abnormal hearts compared to 15.77◦ in healthy hearts).
The abnormal hearts also experience a large fiber angle difference around tra-
beculae areas. A localized study might reveal the origin of such large deviance.
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Fig. 3. Possible correlation between
the age and the fiber variability
(healthy hearts in blue with a cor-
relation factor ρ = 0.73, abnormal
in cyan with ρ = 0.86)

Nonetheless, two outliers are present
(hearts #13 and #14 as shown in Fig. 2).
They were initially classified as abnormal
even though their cardiac fiber structures
are very similar to the average healthy heart
(deviation of 17◦ and 8◦). We hold the at-
tention on the age of both subjects, both
very young (19 years old). Furthermore, the
modes in healthy hearts, i.e., the peaks of
the histograms in Fig. 2(a), also show that
the cardiac fibers are less variable in younger
subjects than in older subjects. Age is
thought to have an impact in the fiber struc-
ture of skeletal muscles [11]. No study has yet
been performed in cardiac muscles. For that
matter, the mode of the angular differences
of the first eigenvector (i.e., the fiber direction) was plotted against the age of
each subject (Fig. 3). The correlation factor between age and fiber variability is
0.73 when considering only the 10 healthy hearts (with a low p-value of 0.016).
When considering only the abnormal hearts, the correlation factor is higher at
0.86 (with a p-value of 0.029). The estimated least-square fit lines of both popu-
lation are overlaid in Fig. 3. Before hypothesizing that the variability of the fiber
directions increases faster with age in abnormal hearts, many unknown parame-
ters should be considered firstly (for instance, the distinction between primitive
hypertrophy or secondary hypertrophy, known to occur in old subjects, is here
unknown).
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In conclusion, our study comparing a population of abnormal hearts and of
healthy hearts showed that there are observable differences in the fiber directions
in both populations. Abnormal hearts have fiber directions that are more variable
and that are on average 20.96◦ different from the average healthy heart. Future
studies will include additional hearts in order to further study these preliminary
findings.
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1 Introduction

It is often necessary to compare two shape representations arising from different
imaging protocols, for example as imaging hardware or acquisition parameters
are refined and developed over time. However, the difference in imaging protocols
may lead to regional bias in the shape estimate which must be removed before
any statistical shape comparisons can be made. In the field of cardiac Magnetic
Resonance Imaging, GRE (Gradient Recalled Echo, also known as FGRE or
FLASH) was the clinical standard until 2001. Since then, SSFP (Steady-State
Free Precession) emerged as the new standard protocol for Cardiac MRI given
its advantages in terms of signal quality and acquisition time.

Typically, SSFP results in larger estimates of left ventricular cavity volume
and smaller estimates of left ventricular (LV) mass than GRE [1]. However, the
effect of imaging protocol on statistical shape representations is unknown. In
the Cardiac Atlas Project [2], approximately 2500 GRE cases have been con-
tributed as part of the MESA study [3]. In order to compare statistical shape
models between this cohort and others obtained using the SSFP protocol, a
shape mapping must be generated which corrects for bias between the two pro-
tocols. Other approaches, not necessarily in these 2 protocols, are also presented
in the literature: see [4] for an intensity inter-scanner correction, [5] for a review
of various methods for PET/MRI and [6] for a comparison between PET-MRAC
and PET-CTAC in the torso.

To our knowledge, this is the first attempt at mapping the protocol effect
across a population of shape models. This is of key importance for we intend
to compare large populations using algorithms that can automatically detect
regional abnormalities in patients regardless of the imaging protocol in which
they were acquired (see for example [7]). It is also important to ensure that
any local mapping not only corrects local bias, but also corrects differences
in clinical indices of global function, including mass and volume, which have
previously been noted in the literature [1]. Since the mapping is derived on the
local parameters only, it is not obvious whether the global functional indices will
also be corrected. Volume and mass were not included in the optimisation of the
local mapping, but must also be validated for clinical application.

This paper derives such a mapping from 46 patients scanned in both GRE
and SSFP modalities. The shape model used in this paper is described in detail
in [8]. Section 2 describes the methodology of our approach, Section 3 explains
the experimentation and validation in terms of leave-one-out experiments as well
as volume and mass, and conclusions are discussed in Section 4.

2 Methods

The image dataset consisted of 50 normal volunteers who were scanned with
both GRE and SSFP protocols on a Siemens 1.5 T scannner. Four patients were
excluded due to inconsistent images arising from breath-holding artefacts. The
demographics are summarised in Table 1. Finite Element (FE) shape models of
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the LV were then fitted by experts using a standardised interactive procedure
[8]. Each model was generated independently using its own coordinate system.
Thus, even though each patient must have had the same patient coordinates, the
model coordinates were expressed in different reference systems (see Figure 1).

λ
μ

θ

2f
λ

(A) (B)

Fig. 1. On the left (A), 3D SSFP model (blue) superimposed to the GRE model (red)
in model coordinates for example-case no. 25 (ED). On the right (B), prolate spheroidal
coordinate system: focal length (f), radial parameter (λ), hyperboloidal parameter (μ)
and azimuthal angle (θ) [8].

Table 1. Age and sex distribution of the 46 cases analysed

Number Age (μ± σ)

Male 26 42.5 ± 11.7

Female 20 37.3 ± 13.9

Total 46 40.2 ± 12.9

The FE models were represented by 215 Bzier parameters (in 16 elements both
for the endocardial and epicardial surfaces) in the prolate spheroidal coordinate
system [9], as can be seen in Figure 1-B. The Bzier parameters were statistically
modelled in GRE and SSFP space and a global mapping was derived through
the Maximum Likelihood (ML) parameters of their probability distributions.

The first step to determine the systematic differences was to align the GRE
and SSFP model coordinate systems for each patient so that we could then
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compare the parameters in the same reference. This was achieved by means of
rigid body alignment of the SSFP model to GRE coordinates. In Figure 4-A
the average difference between GRE and SSFP surfaces is presented. The most
significant regional differences appear in the apical endocardium and around the
papillary muscles. Also some differences arise in the basal plane. These regional
differences are physically reasonable since GRE contrast is dependent on blood
flow to a greater extent than SSFP, leading to possible differences in regions
where apical trabeculation or papillary muscles disrupt the local blood flow [1].

Once the models were aligned in a common reference system (GRE’s), the sta-
tistical distributions of the model parameters were examined. Anderson-Darling’s
test for normality [10] reported that 88% of the parameter distributions could
have been drawn from a Gaussian distribution with a critical level of 5%. A
Gaussian approximation was therefore employed for all cases. The parameters
of the Gaussian distributions were estimated by means of ML. An example of
these distributions is shown in Figure 2.

Fig. 2. Sample distributions of the values for parameters’ numbers j = 21 and j = 110
of the FE models (out of M = 215 parameters). The blue distribution corresponds to
the GRE protocol and the yellow one to SSFP. The histograms have been approximated
by Gaussian distributions N (μGRE

j , σGRE
j ) and N (μSSFP ′

j , σSSFP ′
j ) respectively.

In Figure 3 we formalise the different signals that we have used through-
out our experiments. For each one of the parameters j = 1, . . . ,M , and each
patient n = 1, ..., 46, let GREj(n) be the GRE samples, SSFPj(n) the SSFP
samples, SSFP ′

j(n) the aligned SSFP samples in the GRE coordinate system

and ̂SSFP j(n) the estimated SSFP samples from the GRE models. Therefore,
we define Tj as the mapping derived for each parameter which is applied to
GREj(n) as per equation 1.

̂SSFP j(n) ≡ Tj(GREj(n)) =

(
GREj(n)− μGRE

j

σGRE
j

)
σSSFP ′
j + μSSFP ′

j (1)

Given the four Gaussian-distribution parameters (mean and standard devia-
tion of GRE and of SSFP, namely N (μGRE

j , σGRE
j ) and N (μSSFP ′

j , σSSFP ′
j )
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Fig. 3. Signal model for the GRE-SSFP correction mapping

respectively), we can estimate any parametric value ̂SSFP j(n) from its corre-
sponding GREj(n) with equation 1, which may be understood as a form of linear
regression.

Estimating the correct mass and volume of the LV is of crucial importance in
the diagnosis of a number of cardiovascular diseases [1]. Any local correction of
shape parameters must also correct global clinical indices of mass and volume.
Therefore, in Section 3, we validated our statistical model through the mass and
volumes of the resulting models.

3 Results

Validation was performed in two steps. Firstly, leave-one-out (L1) experiments
were run to test the predictive power of the models by training the ML pa-
rameters with N − 1 cases, leaving one out at a time. Secondly, we trained the
algorithm with all the available cases (L0). In both cases, we computed the vol-
ume of the resulting models. This was done to ensure that the local mapping
also corrects the global discrepancy previously noted in mass and volume.

Thus, using the model described in Section 2, the SSFP parameters were esti-
mated from their corresponding GRE distributions for each parameter.
Figure 4-B shows that the transformation T (L0) has corrected the regional bias
present in the uncorrected shape parameters.

The initial error (expressed as log10|μ|± log10σ
−1) in normalised radial shape

coordinate (average value of λ = 0.67 for SSFP ′ models) between the original
GRE and SSFP ′ models was of −2.38± 0.96. In the L1 experiments, the error
between estimated and actual SSFP values went down to −4.32 ± 1.02, and in
L0, it was of −5.88± 0.98.
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Table 2. Volume comparison of the original volumes versus the leave-one-out (L1 )
and estimated volumes from all cases (L0 ). The error in volume is computed using the
SSFP volume as the reference.

Cavity vol. ED (ml) GRE SSFP ̂SSFPL1
̂SSFPL0

Mean (μ) 126.2 134.8 135.6 135.1

Std. deviation (σ) 27.0 28.4 29.0 28.8

Error mean −8.6 – 0.9 0.4

Error std. deviation 12.4 – 12.9 12.4

Cavity vol. ES (ml) GRE SSFP ̂SSFPL1
̂SSFPL0

Mean (μ) 52.8 53.5 54.3 54.0

Std. deviation (σ) 12.6 13.8 13.4 13.0

Error mean −0.6 – 0.9 0.5

Error std. deviation 8.2 – 8.8 8.3

LV mass ED (g) GRE SSFP ̂SSFPL1
̂SSFPL0

Mean (μ) 145.3 132.3 130.9 131.1

Std. deviation (σ) 33.1 32.1 30.7 30.7

Error mean 12.34 – −1.2 −1.2

Error std. deviation 10.16 – 11.1 11.1

Table 2 reports the mean and standard deviation of the computed volumes
for these experiments. The table is structured in 2 vertical sections: the original
volumes (GRE,SSFP ) and the validation volumes from the leave-one-out ex-
periments (L1) and the corrected ones (L0) using all available cases. The volume
is provided for the endocardial cavity of the LV at ED, ES and the estimated
mass through the myocardial volume at ED. The error in volume was calculated
using the SSFP models as a reference since this is the most accurate of the
available measures.

Results show that the corrected volumes from the GRE signal (L0) follow
the SSFP ones very closely with an average bias of ≤ 0.5 ml in the cavity and
of −1.2 g in the LV mass. This is also evident in the Bland-Altman plots [11]
in Figure 5 which show how the cloud of points move toward zero after the
correction whilst preserving the intrinsic variance of the GRE population. Also,
the close agreement of the leave-one-out volumes (L1) portray the robustness
and the goodness of the predictive power of the algorithm.
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0
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Fig. 4. On the left (A), average difference between the GRE and SSFP models before

the mapping and on the right (B), average difference between the estimated ̂SSFPL0

models and the SSFP . The arrow points toward the RV and the colour indicates the
Euclidean norm of the 3D vector for the same point distribution sampled from the LV
FE models.

4 Conclusions and Future Work

In this work, we provided a methodology for mapping FE models derived from
GRE and SSFP images. This methodology is applicable to other protocols as
well since it is not limited to any particularities found in the present acquisition
sequences. The uncorrected and corrected differences in mass and volume were
similar to those reported (in a different patient group) using simple linear re-
gression of global indices [1]. The uncorrected difference in mass and volume is
similar to expected changes due to disease and treatment [12]. Our method can
therefore be used to correct both local and global functional indices.

In the future, we plan to use this mapping to remove the protocol-induced bias
and statistically compare models from different patient populations irrespective
of their acquisition sequence. This is of key importance in moving forward toward
the automatic detection of regional abnormalities.

A limitation of the current work is that the mapping was learnt using data
from normal volunteers. It is not known whether the transformation derived
from this normal dataset set will show the same degree of robustness when ap-
plied to patients with disease, such as, hypertensive hypertrophy where the wall
becomes greatly thickened, or heart failure, where the ventricle becomes more
spherical and the wall thins out. The transformation may primarily reflect the
difference between the SSFP and GRE protocols and remain relatively invariant
with disease, or it may have some dependence on ventricular geometry. A further
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Fig. 5. Bland-Altman plots of the difference between the volumes of GRE and SSFP
before correction (red) and between ̂SSFPL0 and SSFP after correction (blue). The
plots show the endocardial cavity volume (top) and the myocardial volume (bottom),
both at ED. The values for each case are connected by a dotted line. The dashed
horizontal levels indicate the mean values for both data clouds.
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question relates to the known increase in wall thickness that occurs with slow
moving blood with GRE imaging in heart failure where the ventricle has very
poor function and this effect may be accentuated. These topics should be the
subject of further research.

Another area of interest could be to target the bias at the image level, well
before the models are derived.
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Abstract. Heart is an electromechanical coupled organ, thus it is im-
portant to integrate electrical and mechanical functions when building a
computational model of the heart. The existing models either treat elec-
trical and mechanical functions separately, or follow a so-called ”one-
way” electromechanical coupling. However, electrical and mechanical
functions of the heart are depended on each other, and realistic sim-
ulation results can only be achieved when such coupled relationship is
considered. In this paper, we propose a generic model to simulate elec-
tromechanics of the heart that takes both electromechanical coupling and
mechanoelectrical feedback into account. The model contains four com-
ponents: cardiac electrophysiological model, electromechanical coupling,
cardiac mechanics model and mechanoelectrical feedback. We report nu-
merical simulations of a cube to provide an insight of the electrome-
chanical coupled behavior of our model. Experiments have also been
performed on a biventricular heart which present physiological plausible
values, such as transmembrane potential (TMP) maps and strain maps.

1 Introduction

Cardiovascular disease remains the leading cause of death in the developed coun-
tries. Computational modeling of heart activities provides a powerful tool for
understanding the mechanisms behind healthy and aberrant heart behaviors.
That’s why the modeling of electromechanical activities of the heart has been
an active research area [1,2,3,4]. Due to the electromechanical coupled prop-
erty of the heart, a complete computational heart model should contain four
components: cardiac electrophysiological model, electromechanical coupling, car-
diac mechanics model and mechanoelectrical feedback [4]. Cardiac electrophysi-
ology model details the spatiotemporal dynamics of electrical wave propagation.
Electromechanical coupling determines active contraction stresses resulting from
electrical activation. Cardiac mechanics model describes attributions of the my-
ocardium and the deformation related to the active contraction stresses. Cardiac
mechanoelectrical feedback depicts the effect of mechanical activity to cardiac
electrophysiology.
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Table 1. Comparison of cardiac computational models, ”
√
” means the model contains

this component, ”×” means the model does not contain this component

��������Models
Components

Cardiac electro-
physiological model

Electromechanical
coupling

Cardiac mechan-
ics model

Mechanoelectrical
feedback

[5]
√ × × ×

[7,9,8]
√ √ √ ×

[1]
√ √ √ √

Proposed
√ √ √ √

However, most of existing models do not contain all the four components. On
one hand, a variety of models composed of a cardiac electrophysiological model
have been widely used in personalized cardiac electrophysiology (EP) simula-
tion and recovery [5,6]. The drawback of these models is electrical activity of
the heart is solved separately from mechanical activity, since the heart is as-
sumed to be static. On the other hand, a so-called ”one-way” electromechanical
coupling models are popularly used in cardiac electromechanical modeling [7,8]
and motion tracking [7,9]. In these works, electrical activity is first determined
by the solution of a cardiac electrophysiological model and then be treated as
an input for mechanical activity. Although the effect of electromechanical cou-
pling is considered, the effect of mechanoelectrical feedback was ignored. In [1],
the authors proposed an integrated heart model that included both electrome-
chanical coupling and mechanoelectrical feedback. They found that the heart
deformation contributed significantly to the dynamics of electrical wave prop-
agation. However, the assumption of isotropic and homogeneous myocardium
material properties limited its application in clinical environment. What’s more,
the simulations were performed only in two dimensional space. More recently,
some more complex models coupled a cellular electrophysiology model and an
active mechanics model for cardiac electromechanics simulation were proposed
[2,3]. However, it is not practical to measure ion concentrations in clinical en-
vironment. In this paper, we mainly focus on models in tissue level. A detailed
component comparison among existing computational heart models is listed in
table 1.

In this paper, we propose an electromechanical coupled model for volumetric
simulation electromechanical activities of the heart under the assumption that
the myocardium is both anisotropic and inhomogeneous. The model includes
all the aforementioned four components. To demonstrate its ability of modeling
electromechanical coupled behavior, a simulation is performed on a cube with
myocardial material properties. We also present simulation results of a biventric-
ular heart, which provide us with physiological plausible values, such as TMP
maps and strain maps.

The structure of this paper is as follows: in section 2, we detail the four
components of the proposed electromechanical coupled model, and also give a
description of numerical implementation. In section 3, we present experimental
results of a cube and a biventricular heart. After having a discussion in section
4, the paper ends with a brief conclusion in section 5.
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2 Methodology

2.1 Cardiac Electrophysiological Model

Although there are various electrophysiological models from cellular level to or-
gan level [4], we have selected the monodomain two-variable Aliev-Panfilov model
[10] to keep a balance of computational feasibility and physiological plausibility.
The model has been widely used in cardiac EP simulation [7] and cardiac EP
imaging [5].

{
∂u
∂t = � · (D� u) + su(u− a)(1− u)− uv
∂v
∂t = −e(v + su(u− a− 1))

(1)

where the variable u stands for normalized TMP, and v is a recovery current
variable. D is the conductivity tensor reflecting the anisotropic properties of the
myocardium tissue. Parameters a, e, and s are constants determine the shape of
TMP.

2.2 Electromechanical Coupling

The electromechanical coupling component determines the active contraction
stresses resulting in electrical activation. Many active contraction models have
been proposed in the literature, from realistic complex cellular models [11] to
ordinary differential equation (ODE) based phenomenological model [7,1]. To
keep a balance of computational feasibility and physiological plausibility, we
have selected the ODE-based phenomenological model from [7]

σ̇c + σc = uσ0 (2)

where σc is a scalar related to active contraction stress, and σ̇c is the time
derivative of σc. σ0 controls the magnitude of active stress. u is the normalized
TMP from cardiac electrophysiological model. Through equation (2), electrical
activity is coupled to mechanical activity. Further, we can get the contraction
Cauchy stress tensor σ by :

σ = −σcf ⊗ f (3)

where f is the fiber orientation of a point inside the computational domain, and
⊗ represents the tensor product.

2.3 Cardiac Mechanics Model

Cardiac mechanics model describes the material properties of the myocardium,
which relates the active stresses generated by electromechanical coupling with
the resulted heart deformation through equation (6). Since the length of a single
cardiac cell changes up to 20% during a heart beat [1], the mechanical analysis



Volumetric Modeling Electromechanics of the Heart 227

should follow finite deformation elasticity theory. With the assumption that the
myocardium is elastic, we can establish the stress-strain relation by Hooke’s Law:

S = Cε (4)

Here S is the second Piola-Kirchhoff stress tensor and ε the Green-Lagrangian
strain tensor. C is the stiffness matrix accounts for the materials properties of
the tissue, which refers to Young’s modulus and Poisson’s ratio in this paper.

2.4 Mechanoelectrical Feedback

Many previous works assumed the effect of mechanical activity to electrical ac-
tivity can be ignored [9,5,8]. However, electrical activity and mechanical activity
are depending on each other, realistic simulation results can only be achieved
when their inter-depended relationship is considered. Experimental and clin-
ical research has demonstrated that mechanical activity of the heart affects
cardiac electrophysiology [3]. Mechanical activity affects cardiac electrophysi-
ology mainly in two ways: firstly, the position of electrical source inside the
myocardium will be changed while the geometry of the heart changes; secondly,
stretch-activated ion channels in the cell membrane will be activated when the
heart deforms [3,12]. In the paper, we only consider the effect of heart motion
to the electrical source position. The reason are twofold: first, it is not prac-
tical to measure ion concentrations in clinical environment; second, we want
our model to be solved efficiently and to have fewer parameters. Following this
mechanoelectrical feedback, cardiac electrophysiological model will be solved in
updated deformed geometry. Finally, we can modify the original electrophysio-
logical model in equation (1) as follows

{
∂u
∂t = � · (D(E)� u) + su(u− a)(1 − u)− uv
∂v
∂t = −e(v + su(u− a− 1))

(5)

{
∂u
∂t = � · (D(F)� u) + su(u− a)(1− u)− uv
∂v
∂t = −e(v + su(u− a− 1))

(6)

The variable E is deformation gradient tensor. The conductivity tensor D is
depended on E, thus mechanoelectrical feedback is naturally introduced into
the model.

2.5 Numerical Implementation

Using principle of virtual work, we can put the above four components into the
same framework by using total-Lagrangian formulation, whose matrix formula-
tion can be represented as follows:
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Fig. 1. Comparison of static EP simulation and electromechanics simulation. Top row:
static EP simulation with electrophysiological model introduced in section 2.1; Bottom
row: electromechanics simulation with proposed model. Left to right with time: 0ms,
13ms, 110ms, 140ms, and 148ms (white lines are fiber directions, the color indicates
normalized TMP value).

tMt+ΔtÜ + tC
t+Δt

U̇ + (tK+ tKb)ΔU = t+ΔtR+ tRb − tRI (7)

Variables with superscript t are measured at time t, and variables with super-
script t+Δt are measured at time t+Δt. With tM the mass matrix, tC is the
damping matrix, tK the stiffness matrix, tKb the stiffness matrix from bound-
ary conditions, and t+ΔtÜ , t+ΔtU̇ , ΔU are acceleration, velocity and incremental
displacement vectors. The matrix t+ΔtR is active force from electromechanical
coupling, and matrix tRb is external forces from boundary conditions. tRI is
an internal term. By using Newmark method for time integration, the only un-
known in equation (7) is incremental displacement ΔU , and the equation can be
solved by Newton’s method [13].

3 Experimental Results

To show the importance of integrating electrical and mechanical activities within
the same model, we have made a comparison between static EP simulation by a
cardiac electrophysiological model and electromechanics simulation by the pro-
posed model. Experiments have been performed on a cube with myocardium
properties and a biventricular heart.

3.1 A Cube

A cube with size 60mm*60mm*60mm has been used to emulate a piece of heart
muscle as listed in Fig. 1. By using meshfree method [14], the cube is repre-
sented by 729 unstructured points. The electrical propagation wave is initialized
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Fig. 2. Strain maps of electromechanics simulation. From top to bottom: strain map
along fiber, fiber cross direction, fiber cross direction. Negative and positive values
indicate contraction and extension respectively. Left to right with time: 13ms, 110ms,
140ms, and 148ms.

from the left face of the cube, and then propagates through the whole object.
Moreover, the right face of the cube is fixed to emulate the constraints from
myocardium. One cycle of 200ms is simulated.

Fig. 1 depicts the comparison between static EP simulation and electrome-
chanics simulation. The top row shows the spatiotemporal dynamics of TMP
propagation with static geometry. The bottom row exhibits spatiotemporal dy-
namics of TMP propagation and the corresponding deformation caused by elec-
tromechanical coupling. Through comparison, we find that action potential du-
ration (APD) of electromechanics simulation is shorter than that of static EP
simulation. Obviously, the difference of APD between these two simulations re-
flects the effect of mechanoelectrical feedback. Electrical wave propagation in-
duces active stresses, which cause the cube shortening along the fiber direction,
and thus shortens the time between the cube depolarization and repolarization.
This result is consistent with findings in [15], in which the authors found heart
motion can shorten APD through a two dimensional heart simulation.

To verify the mechanical behavior of the cube, we provide strain maps in
Fig. 2. As expected, the values along the fiber direction are almost negative due
to the cube contraction, which is showed in the top row. The values along fiber
cross directions are positive due to the extension, which are listed in the bottom
two rows.
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(a) (b)

Fig. 3. A biventricular model of heart from MRI. (a) MRI image. (b)Heart geometry
along with fiber directions.

3.2 A Biventricular Heart

To show the physiological plausibility of our model, electromechanics simulation
has been performed on a biventricular heart. The geometry of the heart is ex-
tracted from MRI images, which can be publicly downloaded [16], as showed in
Fig. 3 (a). After image segmentation slice by slice, a three dimensional surface
mesh of the heart can be built. By using meshfree method, the biventricular heart
is represented by 2017 meshfree points surrounded by the surface mesh. Fiber di-
rection of each point is mapped from the Auckland heart [17]. The biventricular
heart with fiber directions is listed in Fig.3 (b). Since realistic Purkinje network
of this heart is not available, we have selected points on the endocardium and
within segments 1, 8, 9 and 15 as initial activation sites (according to American
Heart Association suggestion, we have divided the left-ventricular myocardium
into 17 segments [18]). Two boundary conditions have been taken into account
for describing the following two phenomena: first, the apex of the myocardium
is almost still during the heart cycle; second, the base is constrained by the
myocardium and the arteries.

Again, a comparison of static EP simulation and electromechanics simulation
is listed in (a) and (b) of Fig. 4, in which the color reflects the normalized TMP
value. As we can see, the pattens of TMP propagation for both simulations
are almost the same before the heart repolarization. However, electromechanics
simulation repolarizes faster than static EP simulation as showed in the figures
at 144ms. This is consistent with the findings in the work [15]. The authors
compared two ECG signals mapped from a two-dimensional static heart and
dynamic heart respectively, and found the T-wave of the dynamic heart had a
left-side shift. Since T-wave represents ventricular repolarization period, this is
the same as to say the APD of the biventricular heart is shortened.

For a normal heart, the fiber directions in the myocardium are typically per-
pendicular to the radial direction. As a result, circumferential strain value is
typically negative during the heart contraction, and positive during the heart
extension, while the values of radial strain are opposite. In Fig.4, we list radial
and circumferential strain in (c) and (d), the color reflects strain value. In this
simulation, we find circumferential strain values are always positive at the top
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(a) Static EP simulation

(b) Electromechanics simulation

(c) Radial strain

(d) Circumferential strain

Fig. 4. Simulation on real biventricular model. Left to right with time: 9ms, 100ms,
126ms and 144ms.

of the septum, which may be not realistic. The possible reason is that we did
not include a physiological model to control the blood pressure within the left
and right ventricles.

4 Discussion

The main advantage of the proposed model is it integrates both electrical and
mechanical activities. Through the experiments, we have found that APD of
the proposed is shorter than that of a static heart model due to the effect of
mechanoelectrical feedback. As a result, the proposed model is supposed to be
better describe the behaviors of the heart. We believe our model should be useful
in cardiac EP simulation and cardiac deformation recovery.

However, there are still several ways for us to improve our model. First, our
model is a generic model, the parameters of the model are all from literature
[10,7], thus it only can simulate normal heart behaviors at this time. The simula-
tion results can not be compared with subject-specific data. Actually, personaliz-
ing the parameters of the model will be our future work. One possible solution is
to recover the parameters from clinical measurements through inverse problems.
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For example, we can build a three dimensional mapping between TMP dynamics
and body surface potential maps, and then recover the TMP dynamics and cor-
responding parameters through data assimilation [5]. Second, each component
model may not be the best model to describe the heart behaviors. For example,
some nonlinear mechanical models are said to be better for describing the heart
behavior [9]. Finding the best model for each component is underway. Third,
we have simplified the effect of mechanoelectrical feedback by only considering
the effect of heart deformation to the position of electrical source. The realistic
mechanoelectrical feedback simulation can only be achieved through models in-
clude the contribution of stretch-activated channels (SACs) [3,12]. However, this
kind of models usually contain a lot of parameters and are much more complex
than phenomenal models used in the paper. For clinical usage, computational
heart models need to have fewer parameters and be low computational cost. This
is the reason why when did not consider the models describing the mechanism
of SACs. To keep a balance of physiological plausibility and computational cost
of the models will be our ongoing work. Fourth, there is no knowledge of ven-
tricular blood pressure of the current used MRI data. A potential solution for
this issue is to introduce a blood pressure control model [8] into our model.

5 Conclusion

In this paper, we presented an electromechanical coupled model and detailed
each component of the model. To demonstrate the electromechanical coupled
property of the model, we have performed numerical simulations on a cube and
a biventricular heart. Compared to static EP simulation, simulation results of the
proposed model presented the effect of mechanoelectrical feedback that shortens
the APD due to the contraction of the objects during electrical wave propagation.
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Abstract. The purpose of this study is to illustrate the application
of large deformation diffeomorphic metric mapping to perform registra-
tion among sparsely sampled cardiac magnetic resonance imaging (MRI)
data. To evaluate the performance of this method, we use two sets of
data: 1) contours that are generated from sparsely sampled left ventric-
ular sections and extracted from short axis cardiac MRI of patients with
hypertrophic cardiomyopathy and 2) left ventricular surface mesh that is
generated from higher resolution cardiac computed tomography image.
We present two different discrepancy criteria, one based on a measure
that is embedded in the dual of a reproducing kernel Hilbert space of
functions for curves and the other is based on a geometric soft matching
distance between a surface and a curve.

1 Introduction

Cardiac disease is often associated with remodeling, which is a process by which
mechanical, neurohormonal, and genetic factors alter ventricular size, shape, and
function. Because ventricular shape and function are influenced by this remod-
eling, metrics related to the shape and motion may be used as an early indicator
of disturbances in myocardial organization that occur during disease progress
and may have great value in risk prediction and treatment evaluation. Assessing
regional differences in left ventricular (LV) shape and motion at the population
level requires establishing anatomical correspondence using registration-based
techniques. In this process, transformations that deform a reference heart shape
to assume the shape of an individual heart characterize shape variation and allow
for statistical comparison of patient groups.

Cardiac magnetic resonance imaging (MRI) is a non-invasive imaging modal-
ity that provides detailed quantitative data about cardiac function and geometry.
Its main advantage is the ability to acquire functional and anatomical images
in any plane and direction using different contrast and magnetic field gradient
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mechanisms. However, in routine clinical studies, cardiac MRI data are usu-
ally collected with relatively low through-plane resolution that is not optimum
for using standard image intensity-based registration methods. Several methods
have been proposed that rely on fitting a smooth surface to the segmented con-
tours using either shape-based interpolation or Hermite basis functions in the
spheroidal prolate coordinate systems [3], [10], [7]. This may produce artifacts in
the registration process, because it is difficult to separate shape differences that
were truly present in the original (sparse) data from those that were induced by
the interpolation process. In this paper, we develop methods that directly regis-
ter shapes of interest within a single framework, using methods that are referred
to as large deformation diffeomorphic metric mapping (LDDMM) for matching
curves and surfaces [4], [8], [9], [2], [5]. The advantage of these algorithms is to
compute transformations that are smooth and one to one with smooth inverse
(diffeomorphic) that preserves connectivity and topology, therefore enabling one
to study local variations.

The main objective of this work is to adapt these algorithms to the regis-
tration of sparsely sampled cardiac MR volumes, and to study their feasibility.
We consider two specific problems, namely the registration between two sparsely
sampled MR images, and the registration between a full LV template represented
as a triangulated surface and a sparsely sampled image. This will be illustrated
with cardiac MR images of patients with hypertrophic cardiomyopathy and a
template surface mesh that has been constructed from high-resolution computed
tomography (CT) images.

2 Method

2.1 Subjects

All human studies were approved by the Institutional Review Board for human
investigation. Cardiac MR data were selected from a set of patients (n = 5,
4 females, mean age of 50.4 ± 15.24 years) who were diagnosed with familial
cardiomyopathy. The in-plane resolution was approximately ∼1.4 mm × 1.4
mm and thickness was of 8 mm with 2 mm gap.

2.2 Preprocessing

Segmentation. From the MRI data, epicardial and endocardial contours were
isolated using Segment [6], which is a semi-automatic freely available software.

Breath Hold Correction. Differences in expiration level due to the cardiac
MRI acquisition at separate breath-holds can lead to the misalignment of short
axis (SA) image slices. We implemented an Euclidean distance-based matching
approach to estimate an optimum 2D within-slice translation that corrects for
breath-hold related motion. To drive the matching algorithm, we used contour
points from 3 different perpendicular planes: short axis, horizontal long axis
(HLA), and vertical long axis (VLA). Let SSA represent a set of endocardial
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and epicardial points in a particular slice at SA plane, and SSA∩LA represent a
set of endocardial and epicardial points from the LA planes that are located on
the intersection lines between these planes and the SA plane. The goal is to seek
an optimum in-plane translation that minimizes the cost function

e(Π) =
∑

p∈SSA∩LA

d2(T (p,Π), SSA) , (1)

where d is the Euclidean norm and T (p,Π) represents space translation of point
sets in p with respect to Π = (πx, πy) which is a vector of two parameters for
translation in the (x, y) plane.

Rigid Alignment. Before performing nonrigid matching, we roughly aligned
and scaled the objects (curves and surfaces) by orienting the long axis of LV
geometry along the z axis, translating the centroid of LV geometry to the center
of the coordinate system, aligning the line that connects mid-ventricular insertion
points (place where right ventricle connects to the left ventricle) with the y axis,
and normalizing the variance of curve (vertex) points.

Template Surface. The template surface is a triangulation of a binary volume,
that was obtained using shape averaging in a previous study [1], in which the
shape average was obtained from intensity CT images from 25 subjects. We
refer to [1] for details. The triangulation used the image-to-mesh conversion
method provided in the ParaView software (http://www.paraview.org/), and
a triangulated surface mesh with 61262 vertices was generated from the CT-
based intensity template.

2.3 Registration Methods

We now discuss two approaches that perform nonrigid alignment on sparse cross-
sectional data. We start with a curve-based approach that takes as input two
families of segmented cross-sections and computes a 3D registration between
them. We will then describe an algorithm that aligns a full three-dimensional
template, represented as a triangulated surface, to a family of cross-sectional
segmentations.

To be more specific, we introduce some notation to describe cross-sectional
segmentations. They can be seen as families of plane curves, taking the form

Γ = {γk, k = 1, . . . , N} , (2)

where each γk is a curve included in one of the cross-sections, all parametrized
over a fixed interval, I = [0, 1]. Choosing a coordinate frame (x, y, z) where z
represents the long-axis coordinate, this means that all points in γk share the
same z coordinate, denoted by zk. Even if N is typically larger than the total
number of cross-sectional images, because there are several curves per section,
the possible number of different zk coincides with the number of cross-sections.

http://www.paraview.org/
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Nonrigid Alignment between Segmentations. Our first registration method
takes as input two families of curves, Γ (0) and Γ (1), represented as in (2), possi-
bly with different values of N , and finds an optimal transformation, say φ, such
that φ(Γ (0)) � Γ (1), where φ(Γ (0)) is the family of curves obtained by applying
the transformation φ to each of the curves that constitute Γ (0).

Because we cannot assume that Γ (0) and Γ (1) contain the same number of
curves, or even the same number of cross-sections, we use a variant of the current-
based curve matching algorithm described in [4], and minimize an objective
function taking the form

E(Γ, α) =

∫ 1

0

F (Γ (t), α(t))dt +
1

σ2
D(Γ (1), Γ (1))2 . (3)

We now describe the terms involved in this expression. The variables, Γ and α,
are time dependent. At time t, Γ (t) is a deformation of the template family of
curves, Γ (0) taking the form Γ (t) = {γk(t, ·), k = 1, . . . , N}; α(t) represent a
family of functions α(t) = {αk(t, ·), k = 1, . . . , N}, such that αk(t, ·) takes values
in R

3; Γ and α are linked by the evolution equation

d

dt
γk(t, v) =

N∑
l=1

∫
K(γk(t, v), γl(t, u))αl(t, u)du . (4)

with γk(0, v) = γ
(0)
k (v), where K is a reproducing kernel that we specify below.

The deformation cost function, F , is defined by

F (Γ (t), α(t)) =

N∑
k,l=1

∫ ∫
αk(t, u)

TK(γk(t, u), γl(t, v))αl(t, v)dudv .

The data-attachment term, D, is a norm measuring the discrepancy between
the families of curves Γ (1) (deformed template at time t = 1) and Γ (1) (target).
This norm is defined via a mathematical construction that embeds families of
curves into a Hilbert space of linear forms over vector fields, and we refer the
reader to [4, 11] for details.

Finally, (p, p′) �→ K(p, p′) is a smoothing kernel function, whose presence
ensures that curves evolve via (4) without creating singularities, self-intersection
or topological changes. It is defined over all p, p′ in R

3, and differs from kernels
used in [4] and subsequent works in order to ensure that cross-sections have
a uniform long-axis motion over time, so that they remain planar. This leads
to modeling K as a 3 by 3 diagonal matrix given by K(p, p′) = diag(g(‖p −
p′‖), g(‖p−p′‖), g(z−z′)) with g(t) = exp(−t2/2a2) for some parameter a (where
z and z′ are the long-axis coordinates of p and p′). Doing so ensures that the
velocity of γk in (4) has a long-axis component that only depends on the third
coordinate, so that γk has a uniform motion in the long axis direction.

Surface to Curves Registration. Our second algorithm matches a template
defined as a closed surface, S(0) (delimiting the left ventricle), to a collection
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of curves, which will be denoted by Γ (1) as above. The approach is similar and
minimizes an objective function taking the form

E(S, α) =

∫ 1

0

F (S(t), α(t))dt +
1

σ2
D(S(1), Γ (1))2 . (5)

where S and α depend on time. Here S is an evolving surface, parametrized over
S(0), with S(0, p) = p for all p ∈ S(0), and α(t, ·) is a function defined over S(0)

with values in R
d. The evolution equation now takes the form

d

dt
S(t, q) =

∫
S(0)

K(S(t, q), S(t, p))α(t, p)ds(p) . (6)

(where ds(p) denotes the area form over S(0)). The deformation cost is given by

F (S(t), α(t)) =

∫
S(0)

∫
S(0)

α(t, p)TK(S(t, p), S(t, q))α(t, q)ds(p)ds(q) .

and the kernel K is now chosen isotropic, such that K(p, p′) = g(‖p− p′‖)IdR3

with g as above. Finally, the data-attachment term, D, computes the sum of the
integrals of the squared distances between each point in each curve in Γ (1) and
the deformed surface S(1), so that, assuming N curves in Γ (1),

D(S(1), Γ (1))2 =
N∑

k=1

∫
dist(γ

(1)
k (u), S(1))2‖γ̇(1)

k (u)‖du . (7)

To simplify the computation of derivatives, we slightly relax this expression in
our implementation, defining, for a point x ∈ R

3 and a surface S,

distT (x, S) = inf
ηx

(∫
S

ηx(p)‖x− p‖2ds(p)− T

∫
S

ηx(p) log ηx(p)ds(p)

)
(8)

where T > 0 is a small relaxation constant and the infimum is over all positive
functions ηx defined over S. The optimal ηx is given by

η∗x(p) =
e−‖x−p‖2/T∫

S e−‖x−p‖2/Tds(p)
, (9)

which gives an alternate expression of distT which does not involve an infimum.
It is easy to show that, if x has a unique closest point on S, distT (x, S) converges
to dist(x, S) when T tends to 0. Our implementation uses distT instead of dist
in (7), with a small value of T , using the variational expression in (8) (therefore
adding the η functions as auxiliary variables) rather than the more complex
explicit expression derived from (9).

Measure of Robustness. To evaluate the robustness of our nonrigid align-
ment algorithms, we set up four experiments: 1) we matched the high resolution
triangulated surface mesh template to the endo and epicardial contours (com-
plete curve set) that were extracted from the cardiac MR images of 5 subjects,
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then 2) we generated an incomplete curve set by randomly removing contours
from one of the cross-section image planes in each of the cardiac MR image
sets and repeated the surface to curve matching; 3) we conducted the same pro-
cedure for the curve to curve matching by first generating a set of curves that
were 10 mm apart using the same high resolution CT image template and match
these template curves to the curves that were obtained from the MRI dataset,
and finally 4) we matched the template curves to the set of curves with the
removed planes. For experiments 3 and 4, in addition to the deformed template
curves, we used equation (4) to estimate the transformation that deformed ver-
tices in the surface template, therefore for each experiment a set of deformed
surface templates were generated. To evaluate the robustness of surface-to-curve
and curve-to-curve matching methods, a closest-distance measure between the
removed curve points and the center of triangulated faces from the deformed
template was calculated.

3 Results

Figures 1(a) and 1(b) illustrate the results of the breath-hold correction algo-
rithm to correct SA slice-to-slice misalignment. Note that despite severe mis-
alignment, the algorithm was mostly able to recover the overall 3D geometry of
left ventricle as presented by the contours of LA planes.

(a) (b) (c) (d)

Fig. 1. (a-b): Correction of slice-to-slice misalignment in SA view due to breath-holding
motion.(a): Before correction. (b): After correction. Note that endocardial and epicar-
dial contours from two perpendicular planes have been used to align short axis slices
(Blue and red : endocardial and epicardial surfaces from SA view, Cyan and green:
endocardial and epicardial contours from vertical long axis view, Pink and black: en-
docardial and epicardial contours from horizontal long axis view. (c-d) Curve-to-curve
matching using LDDMM. (c): LV epicardial contours from 2 different subjects. (c): LV
contours before curve matching (green: template contours, yellow: target contours). (d):
LV contours after deforming template subject contours (red) to match target subject
(yellow).
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(a) (b) (c)

(d) (e)

Fig. 2. Surface-to-curve matching using distance-based LDDMM. (a): Surface tem-
plate with target contours. (b): After registration.(c): Map of the surface area ratio of
triangulated faces in deformed template relative to template superimposed on template
mesh (scale is based on log10). (d): After registration using projection of gradients on
the first 24 eigenvectors of smoothing kernel. (e): same as (c) but for the deformation
estimated from (d). Grey wireframe represents high resolution triangulated mesh tem-
plate. Yellow contours are representing LV epicardial and endocardial regions from the
MRI cross-sections.

Visual assessment of the curve-matching method described in section 2.3 in-
dicates that this method can successfully register two LV geometries despite
limited volume sampling (figures 1(c) and 1(d) ). Note that, as explained in sec-
tion 2.3, the specific choice of kernel configuration ensured that the curves have
remained planar.

Figure 2(b) demonstrates the result of matching of a high-resolution trian-
gulated surface mesh to the LV cross-section contours using the approach de-
scribed in section 2.3. A careful examination of the result indicates that the
surface mesh has been fully deformed to assume the shape of LV contours. How-
ever, this matching has resulted in the introduction of artificially large curvature
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variation on the deformed surface. To remedy this problem and increase the ro-
bustness of the method, we have slightly modified the approach by projecting
the gradient of the objective function on the principal directions (first eigenvec-
tors) of the smoothing kernel. The result has been shown in Figure 2(d). It is
clear that by projecting the gradient, we were able to reduce curvature variation,
while preserving matching accuracy. Regional surface area expansion or shrink-
age can be examined by estimating the determinant of the Jacobian matrix from
the transformation that matches the template to the target object. Figures 2(c)
and 2(e) show the determinant of the Jacobian maps that were calculated for
the surface-to-curve matching, with and without eigen-projection, respectively.
Examination of the maps indicates an overall smooth transformation, except
for a small region with a relatively high area expansion on the base of the left
ventricle in the non-projected matching. However, projecting the gradient of the
objective function on the principal directions of the smoothing kernel resulted
in a more uniform transformation.

Table 1 summarizes the distance error for different experiments. All the surface-
to-curve experiments are based on eigen-projection using the largest 24 principal
directions. While, due to the limited data size, it would be difficult to draw any
conclusion, it appears that curve-to-curve matching and surface-to-curve match-
ing are both performing equally well. However, surface-to-curve matching is more
robust with respect to missing data.

Table 1. Distance Error (mm): I) Distance error associated with the matching of
the surface template to the complete curve set, measured from the removed cross-
sectional curves to the deformed surface template. II) Distance error associated with
the matching of the surface template to the incomplete curve set, measured from the
removed cross-sectional curves to the deformed surface template. III) Repeating case
(I) with the curve to curve matching. IV) Repeating case (II) with the curve to curve
matching. V) Pre-registration distance between the complete curve set and surface
template. VI) Surface to curve matching error estimated by using the entire curve set
as opposed to using curves from a single cross section (case I) VII) Curve to curve
matching error estimated by the complete curve set.

subjects I II III IV V VI VII

1 0.88 1.79 1.34 6.94 3.35 1.47 1.08

2 1.79 2.10 0.90 3.89 3.29 1.85 1.24

3 1.27 3.34 1.60 3.72 3.09 1.42 1.10

4 1.69 3.61 2.04 4.73 3.42 1.98 1.32

5 2.74 3.10 0.95 2.28 3.03 2.03 0.98

Mean(SD) 1.67(0.70) 2.79(0.80) 1.37(0.47) 4.31(1.71) 3.24(0.17) 1.75(0.29) 1.15(0.14)

4 Discussion

In this study we have presented the application of LDDMM to match cardiac MR
cross-sections. In particular, LDDMM surface-to-curve matching can be used to
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deform a high-resolution triangulated surface mesh to match cardiac MR cross-
sections with low out-of-plane resolution. This algorithm does not require the
selection of same number of points (for curves) and vertices (for surfaces) and
does not rely on a predefined geometric model; it therefore eliminates the need
to specify an arbitrary correspondence between points and surfaces. This can
be extremely useful considering that there are only very few unique cardiac
anatomic landmarks that could be easily identified.

LDDMM surface-to-curve matching permitted regions with sharp curvature
to be matched accurately. However, due to the limited number of contours, this
enhanced accuracy resulted in overfitting, and an artificially large curvature
variation while transitioning form one cross-section to another on the cardiac
surface of the deformed high resolution triangulated mesh. Projecting the gradi-
ent of the objective function onto the space defined by the principal directions
of smoothing kernel captures geometrical scales that are relatively larger, there-
fore maintaining the accuracy of registration while reducing the large curvature
variation.

LDDMM curve-to-curve matching provides an alternative to the surface-to-
curve matching, allowing for the comparison of MR images without the
intervention of a surface template. However, this method is more sensitive to
the variations in landmark spacing and geometry coverage as demonstrated by
larger distance error while matching data with missing cross-sections. Therefore
to achieve superior performance, it would be critical to have two sets of curves
that represent similar geometry coverage. Furthermore, to enhance the quality
of curve-to-curve matching, we have included constraints to enforce uniform de-
formation of points in curves, that belong to the same cross-section, along the
through-plane direction.

In conclusion, methods that have been presented here provide potentially
valuable tools to perform a quantitative analysis of cardiac shape and motion
using sparsely sampled ventricular geometry. Particularly, this would be useful
while integrating information from several imaging modalities that are collected
at different spatial scales.
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Abstract. Guidance of electrophysiological (EP) procedures by mag-
netic resonance imaging (MRI) has significant advantages over x-ray fluo-
roscopy. Display of electroanatomic mapping (EAM) during an
intervention fused with a prior MR volume and DE-MRI derived tis-
sue classification should improve the accuracy of cardiac resynchroniza-
tion therapy (CRT) for ventricular arrhythmias. Improved accuracy in
the spatial localization of recorded EP points will produce an EAM to
constrain and customize patient-specific cardiac electroanatomic mod-
els being developed for understanding the patterns of arrhythmogenic
slow conduction zones causing reentry circuits and treatment planning.
The Vurtigo software presented here is a four dimensional (3D+time)
real-time visualization application for guiding interventions capable of
displaying prior volumes, real-time MRI scan planes, EAM (voltage or
activation times), segmented models, and tracked catheters. This paper
will describe the architecture and features of Vurtigo followed by the ap-
plication example of guiding percutaneous cardiac electroanatomic map-
ping in porcine models.

1 Introduction

Magnetic resonance imaging (MRI) has been used primarily as a diagnostic tool
in clinical practice and has recently been applied to the guidance of interven-
tional procedures with the development of rapid imaging acquisition protocols.
In practice, real-time MR imaging refers to the acquisition and reconstruction of
images in less than one heart cycle [1]. Guidance by real-time MRI is attractive
compared with x-ray fluoroscopy, because MRI has better soft tissue contrast
and is capable of displaying ischemic, infarcted or arrhythmogenic tissue that im-
pacts interventional decisions to target isthmuses of infarct tissue that form slow
conduction regions[16]. Furthermore, MRI is not a source of harmful radiation
which is a concern for long procedures under x-ray fluoroscopy[2]. Physiologi-
cal, clinical and modelling evidence suggest that the isthmus size that generates
reentry circuits is 1-2mm [18,17,21,19,20] which we hypothesize is of the order
of targeting accuracy achievable for our MR-guided, real-time interventional EP
platform, Vurtigo.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 244–253, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The Vurtigo software [22] presented in this paper is designed to enhance the
use of real-time computer imaging for therapeutic interventions. The Vurtigo
platform has an open-source (modified BSD) license, although it permits propri-
etary plugins. Frameworks for various image-guided applications such as surgery
[4], and specifically for MRI-guided, percutaneous cardiovascular interventions
[5] have been previously described. There are a number of 2D and 3D visual-
ization applications for MRI such as the Slicer[6] project. However, Slicer was
designed to perform a wide range of tasks from real-time tracking of interven-
tional equipment to post-processing, segmentation, registration and analysis of
data. Vurtigo is focused on features that are useful in a EP interventional setting,
and designed to achieve the performance and stability for real-time updates. This
project represents an attractive alternative, and is open-source, cross-platform
and portable to a variety of systems outside of the original communication
system.

Vurtigo provides a roadmap, or 3D visual context, for the 2D real-time im-
ages using a volume acquired just before real-time scanning begins. The pre-
operative volume, real-time image(s) and actively tracked catheters are acquired
in the same coordinate system and can be rendered together in proper spatial
alignment. By comparison, using the prevalent commercial CARTO XP system
(Biosense Webster, Diamond Bar, CA) an EAM is acquired under fluoroscopic
(2D) guidance. This is subsequently aligned with a previously acquired MR/CT
volume by manually selecting anatomical landmarks for spatial registration and
then post-processing to correct for errors associated with cardiac, respiratory
or patient torso motion.[14,15,16] Vurtigo allows importing an existing EAM
dataset or composing it from tracked catheter EP recordings, and then fusing
the EAM with a prior MR volume and tissue classification map. These fea-
tures will be demonstrated by data from several experimental interventions with
porcine models of myocardial infarct and ventricular tachycardia.

2 Architecture

This section of the paper will discuss both Vurtigo and the communication sys-
tem connecting it to the MRI scanner.

2.1 Communication System Design

The communication system is composed of several pieces of software that com-
municate over TCP/IP sockets, (Fig. 1(a)). The central piece is the Geometry
Server that serves a storage location for the most recent information, including
images, image plane orientations, physiological data, and catheter information.
Multiple clients can send and receive information to the server simultaneously,
and all server data will remain synchronized. Between the MRI scanner and
the Geometry Server is RTHawk [7]. RTHawk is both a 2D viewer and a real-
time MRI scan control system, allowing customizable real-time image sequences.
The communication system has been tested on GE 1.5 T Signa Excite 12.0 and
14.0 systems, and is theoretically compatible with all RTHawk-supported MRI
systems.
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(a) Pipeline (b) Software Architecture

Fig. 1. Design. a) Communication pipeline. Vurtigo is able to passively receive infor-
mation from the MRI scanner or actively prescribe the scan. EP catheter recordings
are via the Imricor bridge system. b) Software components and libraries.

Vurtigo and any other client applications connect directly to the Geometry
Server and as such are independent of MRI scanner architecture. Vurtigo can
passively read the scan plane orientation from the server, or drive the location
of the scan plane. The latency of communication, from sending an image from
RTHawk through the Geometry Server to display in Vurtigo was measured: 46
± 11 ms (empty scene) or 64 ± 14 ms (typical EP application scene including
two views, contours, and 480 EP points). Currently a work in progress, we have
integrated Vurtigo into the RTHawk application and measured latencies an order
of magnitude smaller: 5.6 ± 7.3 ms (empty scene) or 6.3 ± 7.7 ms (typical
EP scene). The latency statistics were measured with ≥ 60,000 samples, by
execution on a computer having an Intel R©quad-core i7 2.8 GHz, 8 GB RAM,
and NVIDIA R©GTX 470 graphics. The unmeasured latency of communication
from the scanner acquisition board to the RTHawk application (raw data client)
is ∼3 ms.

2.2 Vurtigo Design

Vurtigo was designed and written from the beginning to provide real-time visual-
ization for image guided interventions, and has an open-source license, (download
available from www.vurtigo.ca). The architecture is illustrated in Fig. 1(b).

Vurtigo was written in C++ and uses cross-platform libraries, including Qt
[9], VTK [8], DICOM Toolkit (DCMTK) [10], Insight Toolkit [11], and CUDA
Toolkit [12]. CMake [13] is used as the build system. The application has been
compiled on WinXP, Ubuntu Linux and MacOSX 10.6, and in principle should
be compatible with most variants.

Vurtigo’s plugin design provides a modular and easily extensible framework
for developers, making it easy to implement desired features without advanced
knowledge of VTK. The application can be conceptually separated into the core
and plug-ins. The core comprises the Graphical User Interface (GUI) as well as
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storage and rendering of a dynamic set of objects, e.g. an MRI volume, a trans-
formation matrix, or a tracked device. Plug-ins add functionality by adding, re-
moving, and editing these objects or enabling object interaction. Plugins can also
extend Vurtigo’s object framework to define new object types. Vurtigo provides
developers considerable design flexibility. For example, a plug-in can provide a
user interface that will be loaded dynamically. The plug-ins may be threaded,
although care must be taken to track the threads internally to the plug-in. As
a consequence of the modular design, plug-in developers need not be concerned
with rendering updates, external objects or plug-in states, or the memory man-
agement of objects.

3 Features

3.1 Core Features

While many of Vurtigo’s features are written as plug-ins, the core manages ren-
dering and dynamic object management. Objects in the core are of two different
types, those that can be rendered (e.g. 3D voxel volumes or polygonal meshes),
and those that represent the state of another object (e.g. transformation matrix,
colour map). There is no software-imposed limit on the number of objects that
can be simultaneously loaded into Vurtigo. The software has been designed such
that if an object were loaded but not rendered, then it will not have an impact
on processing resources. The capacity for loaded objects, however, will be re-
stricted by the memory (RAM) of the computer. Vurtigo on a Intel Core2 Duo
laptop with 2GB RAM was able to operate normally with five volumes loaded
(8 bit gray levels, matrix 512× 512× 60). Rendering loaded objects will impact
Vurtigo’s execution speed depending on the object type and rendering quality.

3.2 Visualization

The MRI scanner obtains real-time updates for one or two 2D planes, depend-
ing on the pulse sequence configuration. The two scan planes are completely
independent and each can have a different orientation, position, and field of
view (FOV). Vurtigo can display and update these real-time planes and within a
prior volume visualization. If there are other real-time image sources then Vur-
tigo can render those images in the same 3D context. Breath-hold MRI pulse
sequences can produce high-quality 3D or 4D (3D+time) datasets. After export
of these files in Digital Imaging and Communications in Medicine (DICOM)
format, Vurtigo can read them with accompanying meta-data describing the im-
age and its orientation. Vurtigo has three display techniques for this content:
3-Plane, Composite, and Maximum Intensity Projection (MIP).

Rendering a set of three orthogonal planes that cut the volume and may slide
along each axis or be tilted is the fastest. The 3-Plane view is texture-mapped
and renders quickly even while the planes are being manipulated. A stack of
DICOM slices can also be rendered as a volume by ray tracing, and opacity is
determined by voxel intensity. A Maximum Intensity Projection (MIP), a type
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of ray tracing that emphasizes the high intensity regions of the volume, can
also be displayed. 4D volumes can be rendered and played in a loop to show
cardiac motion. Hardware-accelerated rendering by CUDA compatible graphics
processing units is utilized where available, increasing frame rates by a factor
of 10.

All the visual objects including 2D planes, 3D volumes, 4D volumes or catheter
devices that are loaded into Vurtigo are oriented and positioned in a global 3D
coordinate system, and any number of these can be displayed simultaneously in
their correct relative positions. The options for multiple render windows, object
visibility settings, and overlay provide the means for intuitive visual comparison
of MRI volumes, real-time planes, catheters, and EP mesh surfaces. An example
is Fig. 2(a).

(a) Tracked catheter (b) Tissue map

Fig. 2. a)Tracked EP catheter (blue) having three microcoils fused with EP recordings
(red), a prior cine MR and associated endocardial surface contours (white). b) Tissue
classification map from DE-MRI fused with prior cine SSFP MR volume showing blood
(red), healthy myocardium (blue), infarct (green) and heterogeneous tissue (yellow).
Points are EP catheter recording locations with separate colour coding by activation
time.

3.3 Interactive and Automated 2D Plane Control

Vurtigo can remotely control the MRI scan plane prescription if RTHawk is
placed in read mode. Vurtigo has both a drive mode and a passive mode. In
passive mode it will listen for and render new information from the scanner. In
drive mode the Vurtigo interface allows the user to move the plane to a new
position or orientation in the 3D view to actively change the position of the
scan plane. The scanner will acquire an image at the requested position and
then pass the new image back to be rendered by Vurtigo. This way of mov-
ing scan planes is more intuitive since it has the advantage that once a prior 3D
volume is loaded, or a catheter tip is located, those objects can be used as a guide
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to determine where the plane should be positioned. Automated prescription of
real-time and/or prior roadmap planes to follow the catheter tip has also been
implemented in Vurtigo.

4 Methods for EP Interventions

4.1 Active Tracking of Catheters

Catheters can be actively tracked in the MR using microcoils placed on the
catheter which are sensitive to a small region in their vicinity. The location of
a microcoil can be determined using a non-selective (or weakly selective) RF
pulse and acquiring projections in three orthogonal directions. A centroid-based
peak detection is usually used to determine the location of the microcoil in three
dimensions [23].

Tracking was done with a projection (TR of 12 ms) along each direction
and a tracking field of view (FOV) of 40 cm to give a true tracking rate of
approximately 28 frames per second (fps) and a resolution of 1.6 mm. Active
detuning of the surface coil was used to avoid coupling with the catheter coils,
and requires less time (∼3 ms) than the shortest TR using for imaging/tracking.
The accuracy of tracking was measured in a water bath to be ≤2 mm, but
requires further validation in-vivo.[24]

The signal in the coil is susceptible to the orientation of the catheter microcoils
with respect to the main magnetic field. Additionally, tracking projections are
poor when there are magnetic susceptibility differences between the catheter
and tissues or materials near the microcoil. These could result in double peaks
or other artifacts in the projection [25]. These are the main sources of errors in
our tracking procedures. Peak offsets due to off-resonance frequencies are not an
issue in practice due to the higher bandwidths (125 KHz) in our acquisition.

The tracking sequence is sensitive to off-resonance frequencies; these may
be due to field inhomogeneities in the main magnetic field and variations in the
local magnetic susceptibility. The field inhomogeneities were minimized by a pre-
scan with a prescribed shim volume over the heart. We used higher bandwidths
(125KHz) for the acquisition to give a 488 Hz bandwidth per pixel, so that any
remaining centre frequency offset has negligible effect on positioning.

Depending on the number and location of tracked coils, Vurtigo is able to
display the device’s tip, the tip and direction, or a spline indicating the catheter’s
shape. With Vurtigo in drive mode, prior volume image planes can be attached
to a tracked location on or near the catheter tip to follow its movement.

4.2 EP Recordings and EAM Generation

EP interventional procedures usually use two catheters. A mapping catheter
is used to map the surface electrophysiological signals. A pacing catheter is
used to pace the heart slightly above its natural rate. In our EP interventions,
anywhere from one to three microcoils on a mapping catheter are tracked as it
is maneuvered in the LV, as well as one microcoil on the pacing catheter placed
in the RV that provides programmed stimulation.[26]
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EP measurements were performed using a prototype Bridge EP Recording
System with two Vision MR conditional catheters (Imricor Medical Systems,
Burnsville, MN). A porcine model of myocardial infarct was used for experimen-
tal EP recordings, with three of six subjects completing the entire procedure
(catheter insertion, recording, removal) successfully.

MR-guided activation EP data was post-processed by Vurtigo to generate
voltage amplitude maps or isochronal maps of local activation time (LAT). Each
EP recording is matched to the simultaneously captured catheter position data
with cardiac diastolic gating of both datasets (approximately 200ms window).

After labelling each recording point with the EP data (voltage or LAT), the
data is mapped to a LV endocardial surface mesh that was automatically seg-
mented by an in-house MATLAB R©(Mathworks) post-processing algorithm [27]
from the diastolic phase of the prior cine SSFP volume, (Fig. 3). Each mesh
vertex is assigned the weighted average of the EP values of the recorded points
(eg. voltage or LAT) located within a 10 mm (user defined) area of effect. The
weightings are calculated by the inverse squared distance between the vertex and
the EP recording locations, with the weight sum normalized to one. The vertices
are coloured by a lookup table which maps the scalar values to RGB colours, and
there is linear interpolation of colour between the vertices of each mesh triangle.
This method improves upon conventional EAM by ensuring that the map has
an anatomical shape rather than the best fit mesh derived from asymmetrically
sampled EP recording locations that often has an irregular shape.[26]

Validation of the spatial and temporal fusion is a work in progress. For fusion
of prior cine volumes with catheter locations, the catheter points were filtered to
match the cardiac phase (diastole). A limiting factor is the temporal resolution
(50 ms) of the prior cine volume. Therefore an estimate of the synchronization
error would be approximately 65 ms, due to cine temporal resolution and vari-
ation in communication latency, assuming regular cardiac rhythm. The spatial
error would correspond to the displacement of the cardiac wall over this time
interval, though diastolic motion is slow. Additional spatial registration errors
that require estimation and/or compensation are gross patient motion between
the time of prior volume acquisition and the intervention, and the cycle-to-cycle
variation due to cardiac and respiratory motion.

4.3 MR Imaging

MR imaging was performed on a 1.5 T CV/i scanner (GE Healthcare, Milwau-
kee, WI, USA) using a 5” surface coil. For real-time imaging, spoiled gradient
echo images (128x128 pixel, 30 cm FOV, 2.3 mm resolution) were continuously
acquired with a 6.8 ms TR for a true frame rate of about 9 fps. Prior vol-
ume cine SSFP parameters: 256 × 256 pixels, TR 3.7-4.7 ms, 20 phases, 19-23
cm FOV. During in-vivo experiments catheter tracking positions were rendered
with the prior volume. Tracking was occasionally alternated with 2D real-time
scan planes to observe the current state, albeit with lower resolution and smaller
FOV than the prior volume images. Rendering the volume, the real-time planes
and the catheters in a fused visualization improves the interventionalist’s ability
to navigate with respect to the patient’s anatomy.
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Fig. 3. Long (left) and short axis (right) views of the LV endocardial surface segmented
from the prior MR volume in a fused display. Surface colour coding represents an LAT
map obtained from an EP recording catheter.

One or more prior MR volumes were also acquired to provide detailed visual-
ization of anatomy (cine SSFP series) or infarct. (Infarct was determined by a
novel late Gadolinium enhanced (LGE) MRI series, multi-contrast delayed en-
hancement (MCDE)[28] with imaging parameters: SAX, 256×256 mm, 4-4.3 ms
TR, 20 phases, 22-23 cm FOV.) Automatic segmentation and classification of
MCDE provides maps that indicate healthy, infarcted and heterogeneous tissue.
The latter has been shown to be predictive of arrhythmia events (inducibility of
VT, appropriate activation of an implanted intracardiac defibrillator), and may
provide an additional target for cardiac resynchronization therapy[29]. Vurtigo
has the capability of fusing the tissue map with the anatomy and EP catheter
information, either by same-day imaging or post-processing with landmark reg-
istration, (Fig. 2(b)).

5 Conclusions

Vurtigo is a cross-platform, freely available, open-source application, that pro-
vides advanced visualization for image-guided interventions, and has a vital role
in supporting our image-guided, in-vivo EP experiments. Several new features
are works in progress at this time including real-time calculation of EP data
(voltage and LAT maps) from tracked EP recording catheters, and the implemen-
tation of improved signal processing and motion correction of EP data points.
Further validation of the registration and synchronization accuracy, especially
in-vivo, is required to assess the fusion errors of catheter locations and imaging.
Work is in progress to analyse the correspondence of tissue heterogeneity from
MR and slow conduction zones from electroanatomic mapping, before and after
RF ablation therapy.
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Abstract. Delayed-enhancement magnetic resonance imaging is an effective 
technique for imaging left atrial (LA) scars both pre- and post- radio-frequency 
ablation for the treatment of atrial fibrillation. Existing techniques for LA scar 
segmentation require expert manual interaction, making them tedious and prone 
to high observer variability. In this paper, a novel automatic segmentation algo-
rithm for segmenting LA scar was validated using digital phantoms and clinical 
data from 11 patients. The performance of the approach was compared to the 
two leading semi-automatic techniques and the ground truth of manual segmen-
tations by 2 expert observers. The novel approach was shown to be accurate in 
terms of Dice coefficient, robust to typical image intensity variability, and much 
faster in terms of execution time. 

Keywords: Cardiac MRI, atrial fibrillation, scar segmentation, graph-cuts, 
Markov random fields. 

1 Introduction  

Atrial fibrillation (AF) affects approximately 2.2 million people in the USA. One of 
the most common catheter laboratory procedures is catheter-based radio-frequency 
ablation (RFA) that can provide a cure for AF by electrically isolation of the pulmo-
nary veins (PVs). With a success rate of 50-80%, the assessment of the LA substrate 
in terms of scarring becomes important. Gadolinium delayed enhancement (DE) mag-
netic resonance imaging (MRI) has been shown effective for LA scar imaging [1,2]. 
Quantification of the DE-MRI has been proposed using thresholding techniques for 
either endocardial surface-based segmentation [3] or volumetric segmentation [2]. 
Such quantification has been shown to predict likely response to RFA in clinical stu-
dies [4,5]. It will also be critical for applying cardiac biophysical models of AF for 
patient selection and RFA planning [6]. 
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Existing techniques [2,3] for LA scar segmentation require expert user interaction 
making them tedious and prone to high inter- and intra-observer variability. In this 
paper, we evaluated an automatic LA scar segmentation algorithm [11] based on a 
probabilistic tissue intensity model of DE-MRI data. The algorithm employs a Mar-
kov random field (MRF)-based energy formulation that is solved using graph-cuts. 
We validated the automatic method using digital phantoms and 11 patient data and 
compared the performance to expert manual segmentations and semi-automatic ap-
proaches in [2,3]. 

2 Methods 

2.1 Automatic Segmentation of Atrial Lesions 

Segmentation Framework: The segmentation approach [13] is based on a MRF-
based energy formulation solved using graph-cuts [9]. Segmentation of scars from 
DE-MRI images can be described as assigning a label 0,1  to every voxel  in 
the image I. The MRF-based energy function over a neighborhood of voxels N and 
labeling f :  ∑ ∑ , , .,   (1) 

The weighting term  weights the influence of the energy terms. The intensity energy 
 measures the disagreement between the a prior probabilistic model and the ob-

served data, and ,  is a smoothness term within a tissue class that penalizes any 
discontinuities between voxel pairs , . The scar segmentation problem is solved 
by minimization of the energy function described in Eq. 1. To optimize Eq. 1 with 
graph cuts, a graph ,  with a node  for each voxel p is defined on I. 
The edges  consists of connections between neighbouring voxels. The terminal 
nodes S and H of the graph represent labels for scar and non-scar (i.e. healthy) tissues. 
By determining an S-H cut on G, the desired segmentation is obtained.  

Tissue Priors: The intensity priors for the scar and non-scar tissue classes are mod-
eled using Gaussian distributions. As scar tissue normally borders with a multitude of 
tissues, a multi-modal intensity distribution is necessary and this is accomplished 
using a mixture of Gaussian distributions. Given segmentations of the LA endocar-
dium from the an atomical images is available, regions of blood pool, atrial wall and 
pericardium can be approximated. This is accomplished by obtaining regions within 
fixed distances from the LA endocardium using a distance transform. It is important 
to note that the non-scar tissue Gaussian mixture model is obtained from the image to 
be segmented (i.e. unseen image).  

The intensity model for scar is built from training data. These are DE-MRI images 
with manually segmented scars with some regions of blood pool and pericardium 
outlined. To derive an intensity distribution model for scar tissues, a Gaussian density 
function is used: 1 exp   (2) 
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scar, however, its intensity Gaussian is obtained by varying the scar to blood pool 
mean intensity ratio. This simulates the typical variability seen in DE-MRI data that is 
caused by selecting different inversion times, the goal of which is to null the healthy 
myocardium and blood-pool as much as possible. It is this ratio that has a direct and 
important effect on the quality of segmentation.  

Finally, to simulate partial volume effect and anisotropic voxel sizes in DE-MRI, 
where the in-plane resolution is normally higher than the through-plane resolution, an 
anisotropic blur is applied with a kernel size of 2 mm in the through-plane direction 
and 1 mm in the in-plane direction. Note that the image resolution of the phantom is 
set to 1.3×1.3×2 mm3. 

Clinical Data Validation: 11 patients with paroxysmal AF were recruited into the 
study under a local ethics committee approved protocol. The patients underwent RFA 
circumferential ablation to achieve isolation of the PVs. At 6 months post-ablation, 
the patients underwent MRI (1.5T Achieva, Philips Healthcare, The Netherlands). 
The MR examination included (a) a 3D magnetic resonance angiography (MRA) scan 
with whole-heart coverage, reconstructed to 1mm3 isotropic resolution, following 
injection of a Gd-DTPA contrast agent; (b) a 3D respiratory-navigated and cardiac-
gated, balanced steady state free precession (bSSFP) acquisition with whole-heart 
coverage, reconstructed to 1.3mm3 isotropic resolution; and (c) 20 minutes after con-
trast injection, the delayed enhancement scan, which was a 3D respiratory-navigated 
and cardiac-gated, inversion recovery turbo field echo with whole LA coverage, re-
constructed to 1.3×1.3×2mm3 resolution. 

The best quality anatomical scan was selected from either the bSSFP or MRA 
scans and the endocardial boundary of the LA was segmented using an automatic 
approach based on a statistical shape model [7]. The automatic segmentation was 
verified by a clinical expert and manual corrections were made whenever required to 
achieve a high-fidelity result. The anatomical images were registered to the DE im-
ages using initialization by the DICOM header data, followed by affine registration 
[8]. Thereby the endocardial LA boundary was defined in the DE images. 

3 Results 

3.1 Digital Phantom 

A series of experiments was conducted with the digital phantoms to test the accuracy 
and robustness of the automatic algorithm. Using grey level intensities measured from 
real DE-MRI scans, the scar to blood pool (SC-BP) ratio was varied in each set of 
experiments (see Table 1). 

Table 1. The grey-level intensities (mean and standard deviation) used for the phantom experiments 
obtained using measurements from real DE-MRI scans.  Note that the grey-level intenisty for scar is 
varied by varying its ratio to the blood-pool. 

Background Atrial wall (AW) Blood-pool (BP) Scar (SC) SC:BP BP:AW 

30 (20) 117 (20) 140 (15) 154-420 (50) 1.1 – 3.0 (0.35) 1.2 
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In a separate set of experiments, the robustness of the algorithm was tested by con-
structing three new phantoms, each with new and unique scar geometry. However, the 
algorithm was trained separately only on its best-performing SC-BP bands: 1.5-1.8 
and 1.8-2.1. The Dice coefficient with ground truth is reported for each training band 
in Fig. 4. In the final set of experiments, the algorithm was tested on phantoms that 
have a randomly varying SC-BP ratio within the 1.1 – 3.0 range. 100 random phan-
toms were generated and run on two separately trained models. The mean Dice coef-
ficients were 0.847 (0.004) and 0.749 (0.002) for training bands 1.5-1.8 and 1.8-2.1, 
respectively. 

The phantom tests reveal that the algorithm performs consistently within its train-
ing band zone (Fig. 3). The consistency increases when images have good scar clarity 
(high SC-BP). The algorithm also demonstrated that it is robust to differing scar geo-
metries and SC-BP ratios (when SC-BP > 1.5). 

3.2 Clinical Data 

In these set of experiments, the algorithm was evaluated against expert manual seg-
mentations and two different semi-automatic techniques [3, 5]. All experiments were 
run on a 2.8 Ghz PC. The automatic algorithm was trained using the leave-one-out 
principle. The pre-processing (LA segmentation and registration) was the same for 
each approach, i.e. automatic, semi-automatic and manual, and took typically 5 mi-
nutes. The automatic algorithm completed the segmentation process for each DE im-
age in typically 30 seconds whereas the semi-automatic approach in [3] took 5 mi-
nutes, whilst the technique in [5] took 7 minutes. Manual segmentation of the scars 
took typically 45 minutes per observer. See Fig. 2 for results on a single patient data.  

Here we describe how the semi-automatic approaches in both [3] and [5] were 
implemented. The semi-automatic approach in [3] employs a maximum intensity 
projection (MIP) followed by thresholding for mapping scar onto the segmented 3D 
LA shell. The scar information is thus only available on the shell’s 2D surface. As the 
automatic and manual segmentations generate volumetric segmentations, a MIP was 
performed to project the segmentation information to the 2D surface shell. The 
consequence of this step is loss of volumetric information, but is an essential step for 
allowing comparison with the semi-automatic approach. Note that the thresholding 
step for the semi-automatic approach was obtained from an expert-observer. For the 
semi-automatic approach in [5], a first step is to acquire the atrial wall which was 
accomplished by applying a signed distance transform on the segmented LA’s 
contour.  The approximate wall was then automtically obtained as 1 pixel inside and 
outside the LA contour. Scar is defined in [5] as 2-4 standard deviations from the 
lower mean of the bi-modal intensity histogram of the atrial wall. The selection of this 
threshold cut-off was based on an expert observer. The segmentation is then projected 
onto the LA surface shell. We compared all segmentations by computing the Dice co-
efficient on the LA surface shell (see Table 2). 
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It is envisaged that user-independent lesion segmentation with low computational 
cost will allow for standardization of DE-MRI as a marker of cardiac injury. Future 
work will focus on improved training of the probabilistic intensity model and valida-
tion using a larger patient cohort with more expert segmentations per data set. 
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Abstract. Quantification of cardiac function is important for the assess-
ment of abnormalities and response to therapy. We present a method
to reconstruct dense cardiac motion from sparse features in tagging
MRI, decomposed into solenoidal and irrotational parts using multi-scale
Helmholtz decomposition. Reconstruction is based on energy minimiza-
tion using covariant derivatives exploiting prior knowledge about the mo-
tion field. The method is tested on cardiac motion images. Experiments
on phantom data show that both covariant derivatives and multi-scale
Helmholtz decomposition improve motion field reconstruction.

Keywords: Cardiac function, MRI tagging, multi-scale, Helmholtz de-
composition, covariant derivatives.

1 Introduction

MRI tagging admits detailed noninvasive intramural assessment of myocardial
motion, quantification of which may help in (early) diagnosis of cardiac abnor-
malities such as ischemia and myocardial infarction.

Motion extraction may be based on the optic flow constraint equation (OFCE),
originally developed for scalar images [1,2], which can be adapted to MRI tag-
ging and extended to multiple scales [3]. Alternatively, feature tracking based on
“demons” has been proposed in which certain features are preserved [4]. Multi-
scale feature tracking with dense flow field reconstruction from a sparse set of
anchor point velocities has been proposed for scalar sequences [5], but not for
MRI tagging.

Kohlberger et al. [6] and Corpetti et al. [7] already exploited the Helmholtz
decomposition to study the behavior of fluid flows. Cuzol et al. [8] did so for the
characterization of fluid flows by a map of vortex and source particles, whereas
we use it for separate regularization of the the irrotational and solenoidal parts
of the flow field based on covariant derivatives and gauge fields. Furthermore, our
algorithm aims at tracking cardiac motion, whereas Cuzol et al. applied their
method to meteorological data, airplane wings, and brain data. Based on [4],
Mansi et al. proposed a nonrigid registration algorithm incorporating tissue in-
compressibility, and applied it to cardiac 3D cardiac MR tagging and cardiac
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cine MRI [9]. An incompressibility constraint is not desired in our approach, as
in 2D incompressibility does not apply, and due to through-plane motion. Fur-
thermore, during systole myocardial volume is reduced by approximately 8%,
because blood is squeezed out.

Many optic flow methods are based on the brightness constancy assumption
without taking into account the physical properties of the data. The motivation
to embed the Helmholtz decomposition in our method is the fact that the cardiac
motion consists of a combination of rotation and contraction. Such a combination
can be well characterized by div-curl regularizers. Moreover, from a clinical point
of view, solenoidal and irrotational parts of the vector field may be analyzed
independently to reveal and quantify abnormal deformation in the tissue. The
novelty of our contribution is threefold:

(i) we propose a multi-scale variational feature tracking and dense flow field
reconstruction method for MRI tagging;

(ii) we separate motion into independently regularized solenoidal and irrota-
tional components using Helmholtz decomposition [10];

(iii) we extend standard Tikhonov regularization by incorporating covariant
derivatives biased by a “gauge field”.

Performance is assessed quantitatively on two phantoms, and on MRI tagging
data obtained from a healthy volunteer and a patient with myocardial infarcts.
For a schematic overview of our method, see Fig. 1.

2 Multi-scale Feature-Based Tracking Using Optical Flow

2.1 Image Data Set and Preprocessing

MR tags are artificial periodic intensity patterns, obtained by spatial modula-
tion of magnetization (SPAMM) [11], cf. Fig. 2(a). Current methods for analysing
MRI tagging images are optical flow [12,13], finite element models [14], nonrigid

Dense reconstructionFeature tracking
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OutputInput

tagged
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reconstruction from sparse
velocities with constant
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Fig. 1. Schematic overview of our method
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registration [15], stripe following [16,17], and Fourier methods, such as (3D)
HARP [18,19], sine wave modeling [20], and Gabor filtering [21]. The constant
brightness assumption underlying some techniques is not applicable to MRI tag-
ging due to T1 relaxation (causing tag fading). Other methods are limited in
that they are based on sparse landmark sets degrading resolution. For a review
of MRI motion analysis protocols, see [22].

We extract discontinuity-free sine phase images using Gabor filters [23], cf.
Fig. 2(b). Horizontal and vertical tags are combined into a grid, cf. Fig. 2(c).

2.2 Calculation of Sparse Velocity Features

At a critical point the spatial gradient—obtained using Gaussian derivatives at
scale s>0—vanishes, ∇I(x, s, t) = 0. From this one can infer subpixel estimates
of its position x at time t as a function of scale s [24]. A label q = 1, . . . , NB

identifies a critical point. Given s, tracking relies on the implicit constraint

∇I(xq
s(t), s, t) = 0 , (1)

in which I(xq
s(t), s, t) represents the intensity at xq

s(t) = xq
s(0) +

∫ t

0 ẋ
q
s(τ)dτ . By

partitioning the time interval [0, T ] into discrete intervals labeled by tk, with
k = 1, . . . ,K, t0 = 0, tK = T , this yields a sparse set of velocities ṽ(xq

s(tk)) =
ẋq
s(tk) = v(xq

s(tk), tk). Differentiation of (1) with respect to t yields [24]

ṽ(xq
s(tk)) =

[
ũ(xq

s(t))
ṽ(xq

s(t))

]
=

[
u(xq

s(t), t)
v(xq

s(t), t)

]
= −(H(xq

s, s, t))
−1 ∂(∇I(xq

s, s, t))

∂t
(2)

where H represents the spatial Hessian matrix of image I. In the remainder of
this article we will denote the velocity vectors at the critical points as

dk
q :=

(
dk,1q

dk,2q

)
:=

(
ũ(xq

s(tk))
ṽ(xq

s(tk))

)
. (3)

Velocities are necessarily retrieved at a certain scale. The most appropriate scale
may vary from point to point. The slope of the tangent vector along a critical
path s �→ (xq

s(t), s) in scale space (t fixed) provides a measure for its spatial
stability. Hence for each critical path q at fixed time t ≥ 0 we choose the highest
scale sq such that the slope of the tangent vector along the critical path is below
a certain a priori angle ϑ with respect to the scale direction [24].

(a) (b) (c)

Fig. 2. (a) Tagged short axis views of a left ventricle. (b) Sine-phase images. (c) Sum
of sine-phase images. Images are 80× 80 pixels with pixel size of 1.36× 1.36 mm2.
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3 Vector Field Decomposition

The cardiac muscle exhibits twistings and contractions, suggesting a Helmholtz
decomposition [10]. Given a bounded domain Ω ⊆ R

3 and a vector field v ∈
C0(Ω)

⋂
C1(Ω), functions Φ,A ∈ C1(Ω) exist such that

v = ∇Φ +∇×A and ∇ ·A = 0 . (4)

The functions Φ and A are the so-called scalar potential and vector potential,
and ∇Φ and ∇×A represent the irrotational and solenoidal components of v.
However in our cardiac MRI tagging application we consider Ω ⊂ R

2, and in R
2

one does not have an outer product. We therefore need the following definition.

Definition 1. In terms of Euclidean coordinates we define the rotation of a
2D-vector vector field and of a 2D-scalar field, respectively, as

rotv = ∂xv
2 − ∂yv

1 resp. r̃ot f =

(
∂yf

−∂xf

)
. (5)

3D Helmholtz decomposition is extended to 2D by applying (5) consistently. To
obtain explicit formulas, we approximate1 a solution to the Poisson equation [25]
on Ω:

Δξ = v (6)

viz.

ξ(x) =

∫
Ω

G2D(x− x′)v(x′)dx′
(7)

where

G2D(x− x′) =
1

2π
ln ‖(x− x′)‖ . (8)

is the so-called Green’s function of the two-variables Poisson equation. Moreover,
ξ satisfies Δξ = ∇(∇ · ξ)− r̃ot (rot ξ). From this and (6) we obtain

v = ∇Φ + r̃otA , (9)

cf. (4), with Φ = ∇ · ξ and A = −rotξ. However, this decomposition is not
unique. The decomposition is unique if we subtract the harmonic infilling ψ
from the original vector field [26]. Hence

ṽ = v −ψ (10)

vanishes at the boundaries. Our aim is a dense reconstruction of ṽ and its unique
Helmholtz decomposition from the sparse evidence represented by (3).

1 If Ω = R
2 it is an exact solution.
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3.1 Multi-scale Helmholtz Decomposition of the Optical Flow Field

Instead of using standard derivatives in (7–10), the Green’s function can be dif-
ferentiated by convolution with derivatives of a Gaussian kernel. This introduces
a scale parameter s = 1

2σ
2, and simultaneously removes the singularity at the

origin. The first order Gaussian derivatives of the Green’s function are:

∂xiG2D
s (x) =

1

2π

xi
(
1− exp(−x2+y2

4s )
)

x2 + y2
. (11)

By combining (7–10) and (11) one obtains

ṽs := grad (∂x1G2D
s ∗ ṽ1+∂x2G2D

s ∗ ṽ2)− r̃ot (−∂x2G2D
s ∗ ṽ1+∂x1G2D

s ∗ ṽ2) (12)

where ∗ denotes convolution. We note that the effective kernel operators can be
pre-computed analytically [26]. The original vector field (at scale s) is given by

vs = ṽs +ψ . (13)

3.2 Experiments on the Decomposition of the Vector Field

To assess the accuracy of the irrotational and solenoidal components, and of
the recomposed vector field (12–13), a ground-truth phantom was created for a
multi-scale Helmholtz decomposition (Fig. 3 top row)

vs := Gs ∗ v0 = −2γ

(
∂xφs+γ

∂yφs+γ

)
− 2γ

(−∂yφs+γ

∂xφs+γ

)
, (14)

with (x, y) ∈ [−1, 1] × [−1, 1], s > 0, γ = 0.02 fixed, where φs denotes the
Gaussian kernel. Computations were performed at scale s = 1 on a uniform
101×101 grid with spatial step size 0.02, and evaluated using the average angular
error (AAE) [27]. Comparing the recomposed vector field vs=1 to the original
vector field v0 yields AAE = 0.40◦, confirming the visual similarity of the original
and recomposed vector fields (see Fig. 3). Comparing vs=1 numerically computed
using the exact effective kernels [26, Thm 4.4] to the true vs=1 vector field at
the same scale, yields negligible angular error (AEE = 0.0043◦).

3.3 Covariant Derivatives and Reconstruction

The covariant derivative of a function f : Ω → R with respect to an a priori
gauge function h : Ω → R is defined as

Dh
xif(x, y) = ∂xif(x, y)− ∂xih(x, y)

h(x, y)
f(x, y) (15)

where (x1, x2) = (x, y) ∈ Ω ⊂ R
2 and h(x, y) �= 0. Tikhonov regularization by

regular derivatives (h(x, y) = constant) suffers from the drawback that at areas
where only few features are present the solution tends towards a constant.
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Fig. 3. Top row: ground truth Helmholtz decomposition of the phantom field vs=0,
cf. (14). Bottom row: output vs=1 of the Helmholtz decomposition algorithm, cf. (13).
Left to right: divergence free, rotation free, full field.

The use of covariant derivatives drives the solution towards the a priori gauge
function instead (“background field”). We construct the gauge function as the
solution of a sparse velocity reconstruction using Tikhonov regularization with
standard derivatives, and subsequently refine the reconstruction using covariant
derivatives instead. The refinement is less biased towards constant velocities
and moreover it employs the features twice, both in the data- and regularization
term. For details, cf. [26].

3.4 Feature Based Optic Flow Equation with Covariant Derivatives
and Helmholtz Decomposition (CDHD)

We aim to retrieve vk at time-step k, by minimizing the energy functional

Eλ,hk,dk

(vk) = Ehk

reg(v
k) + Edk

data(v
k) =

NB∑
q=1

wk
q

2∑
j=1

|(φsq ∗ vk,j)(xq)− dk,jq |2 + λ

∫
Ω

2∑
i=1

2∑
j=1

|Dhk,j

xi vk,j(x)|2 dx
(16)

where wk
q ∈ R

+ is a weight factor, λ > 0 provides balance between regulariza-
tion and the data term, q enumerates the extremal branches. Index j ∈ {1, 2}
indicates the vertical and horizontal component of the field and xi ∈ {x, y}.
Moreover, φq

k(x) := φsq (x − xq) denotes the Gaussian kernel centered around
xq with scale sq > 0 and the sparse velocity components dk,jq in (3) are derived
by solving (2). Minimization of (16) was carried out by exact solutions of the
discrete Euler Lagrange equations [26].
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(a) (b) (c) (d)

Fig. 4. Phantom 1 frame 5: ground truth (a), reconstructed vector field (b). Phantom
2 frame 3: ground truth (c) and reconstructed vector field (d). Arrows are magnified.

To reconstruct the rotation-free and divergence-free components of a vector
field separately, we include the multi-scale Helmholtz decomposition in (16).
To this end we also decompose the sparse velocities into divergence-free and
rotation-free components: dk = dk

df + dk
rf . Namely, we reconstruct the velocity

field by a regularization with standard derivatives at very small 0 < λ � 1, to
obtain a regularized velocity field that (nearly) satisfies the hard constraints (as
0 < λ � 1). Then we apply a multi-scale Helmholtz decomposition on this field
and we extract its divergence-free and rotation-free parts at the position xq and
scale sq of interest (we use pre-computed exact analytic kernels [26, Thm 4.4]).

Hence, to calculate a dense motion field, we minimize (16) separately over
solenoidal (df) and irrotational (rf) parts,

vk = argmin
v

Eλ1,h
k
rf ,d

k
rf (v) + argmin

w
Eλ2,h

k
df ,d

k
df (w). (17)

4 Experiments and Results

Our method was evaluated on two different ground truth phantoms. Phantom 1
consists of 19 time-frames (99× 99 pixels) of an irrotational pattern (Fig. 4(a)).
Phantom 2 [28] has 13 frames (93×93 pixels) and shows non-rigid rotation (Fig.

4(c)). The analytic function for phantom 1 is vi(x, y, t) = (xi−l)(m−2n·t)
(l+(m−n·t)t , l=50,

m=5, and n=0.25. In both phantoms the motion vanishes at the boundaries.
We index our parameters as follows. The smoothness in the dense flow field
reconstruction is controlled by λ1, and η1 denotes the interpolation parameter
between covariant and standard derivatives, both of the rotation-free part. The
parameters for the divergence-free part are λ2 and η2. Parameter η governs the
influence of the covariant derivative by taking the η (sign-preserving) power of

the gauge function; Dhη

f = ∂xif − η · ∂xih

h f .
Increasing λ ∈ {10−2, 10−1, 1, 10, 100, 103, 104, 105, 106} increases the smooth-

ness of the reconstructed motion field. We choose λ such that the AAE and the
L2 norm error w.r.t. the ground truth is minimized.
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Table 1. Performance of our method using different reconstructions on phantom 1

Reconstruction Methodology ↓ AAE L2 Norm parameter

Conventional Derivatives 1.26◦ ± 1.11◦ 4.2 × 10−2 ± 0.04 λ = 10−2

Covariant Derivatives 1.20◦ ± 1.01◦ 3.6 × 10−2 ± 0.03 λ = 102, η = 0.7

Covariant Derivatives and
Helmholtz Decomposition

0.97◦ ± 0.62◦ 3.3 × 10−2 ± 0.03 λ1 = 10−2, λ2 = 102

η1 = 0.9, η2 = 0.5

Table 2. Performance of our method using different reconstructions on phantom 2

Reconstruction Methodology ↓ AAE L2 Norm parameter
Conventional Derivatives 8.05◦ ± 9.09◦ 0.21 ± 0.26 λ = 1
Covariant Derivatives 7.30◦ ± 9.81◦ 0.19 ± 0.25 λ = 10, η = 0.9

Covariant Derivatives and
Helmholtz Decomposition

6.68◦ ± 9.48◦ 0.16 ± 0.24 λ1 = 102, λ2 = 103

η1 = 0.5, η2 = 0.7

Table 3. Performance comparison with other optic flow methods on phantom 2

Method ↓ AAE L2 Norm parameter
Horn & Schunck [1] 5.78◦ 0.16 λ = 0.5
Lucas & Kanade [2] 5.08◦ 0.22 λ = 0.01
Conventional Derivatives 5.33◦ 0.14 λ = 1

Covariant Derivatives and
Helmholtz Decomposition

3.84◦ 0.11 λ1 = 102, λ2 = 103

η1 = 0.5, η2 = 0.9

When reconstructing based on CDHD, λ2 and λ1 were fixed for phantoms 1
and 2 respectively and the other λ component was optimized. Once the λi param-
eter is tuned, parameter ηi ∈ {0.5, 0.7, 0.9, 1., 1.1, 1.3}, i = 1, 2 is investigated,
which governs the influence of the gauge field in the velocity field reconstruction.
The outcome of the optic flow method based on conventional derivatives of time
frame k is used as the gauge field to reconstruct the motion field at time k. This
is only one of the possible gauge field choices. For the reconstruction based on
CDHD, η2 and η1 are fixed for phantoms 1 and 2 respectively. The other ηi are
selected such that the AAE is minimized (see Tables 1, 2, 3).

The error measurements during algorithm evaluation are an average over
three subsequent frames. Tables 1 and 2 show the performance of our optic
flow method, using multi-scale maxima as feature points only, based on the
AAE and the L2 norm, comparing standard derivatives, covariant derivatives,
and CDHD respectively. For both phantoms, one frame of the retrieved motion
fields together with their ground truths is shown in Fig. 4. Table 3 shows a
comparison of our methods with Horn & Schunk [1] and Lucas & Kanade [2] on
phantom 2. For a fair comparison, we included more features (maxima, minima
and saddle points) in our method to get a less sparse set of velocity vectors dk

q

before dense field reconstruction. This led to a slightly different optimal value
for η2 for CDHD. For the Horn & Schunk method, λ ∈ {0.05, 0.5, 5, 50, 500} was
also optimized for best performance. In our implementation of the Lucas and
Kanade algorithm, the eigenvalues of the motion matrix were thresholded, using
λ ∈ {0.1, 0.05, 0.01, 0.005, 0.001} as the threshold, which was optimized (Tab. 3).

We compared the motion fields extracted from a healthy volunteer and a
patient, who suffered a number of small infarctions. Systolic tagged MR images
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(a) (b) (c) (d)

Fig. 5. Rotation-free (a,c) and divergence-free (b,d) parts of true cardiac motion fields
for a healthy volunteer (a,b) and the patient (c,d), frames 3 (top) and 6 (bottom).
Note that the patient lacks rotational motion (div-free part) in both frames, whereas
the rotation-free part is affected locally.

were acquired; 11 frames, pixel size of 1.2 × 1.2mm2, slice thickness of 8mm.
In Fig. 5 the rotation-free (a,c) and divergence-free (b,d) parts of boths hearts
are shown. At early systole, the healthy heart shows little contraction and a
strong rotation (Fig. 5(a,b), top). Later, the contribution of both parts becomes
comparable (Fig. 5(a,b), bottom). The infarcted heart lacks rotation in both
frames (Fig. 5(d)), leaving contraction only (Fig. 5(c)).

5 Discussion and Conclusion

Multi-scale Helmholtz decomposition allows assessment of irrotational and sole-
noidal motion separately. We have shown that extending Tikhonov regularization
by incorporating a gauge field based on multi-scale covariant derivatives improves
dense motion field reconstruction. The proposed approach outperforms similar
techniques that use regular derivatives and without Helmholtz decomposition,
and outperforms other optic flow methods. The influence of noise is reduced by
scale selection based on the slope of the tangent vector along each critical path in
scale space [24], thus providing also a measure for spatial stability of each critical
point. Furthermore, the Gabor filters remove the influence of noise outside their
frequency band. Inclusion of more features than maxima only improves motion
field reconstruction. Application to tagged MR images showed its potential for
diagnostics. Currently, we are evaluating our technique on a large population.
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Abstract. Quantitative motion analysis from echocardiography is an
important yet challenging problem. We develop a motion estimation al-
gorithm for echocardiographic sequences based on diffeomorphic image
registration in which the velocity field is spatiotemporally smooth. The
novelty of this work is that we propose a functional of the velocity field
which minimizes the intensity consistency error of the local unwarped
frames. The consistency error is measured as the sum of squared dif-
ference of the four frames evolving to any time point between the two
inner frames of them. The estimated spatiotemporal transformation has
maximum local transitivity consistency. We validate our method by using
simulated images with known ground truth and real ultrasound datasets,
experiment results indicate that our motion estimation method is more
accurate than other methods.

1 Introduction

Quantitative analysis of cardiac deformation and motion is important for study-
ing architecture of heart and illness related to ischemia or infarct [1]. Echocar-
diography (echo) is the most widely used cardiac imaging tools because it is
non-ionizing, real-time, cost-effective and convenient. With the development of
the new transducer array technology, 3D echo now provides real-time images of
the whole heart [2]. However, due to the low signal-noise-ratio, general methods
for motion estimation do not work well on echo images. In addition, the 4D
(3D+t) data is acquired with a compromise that both the spatial and temporal
resolutions are reduced comparing to 2D+t sequences. As a result, 3D motion
analysis from echo sequences remains a challenging problem.

Motion estimation from cardiac imaging falls into two categories: model based
methods and intensity based methods. Various deformable models have been
proposed for use of cardiac motion tracking and segmentation [3]. Papademet-
rics et al. [4] used a finite element model whose deformation between frames is
estimated from the tracked features from the segmented myocardium surfaces.

O. Camara et al. (Eds.): STACOM 2011, LNCS 7085, pp. 274–284, 2012.
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Wang et al. [5] tracked myocardial surface points by maximizing the likelihood
of a combined surface and a two-steps motion prediction model. Both the initial
myocardial surface detector and the motion prediction model need to be learned
in advance. Comparing to model based methods, intensity based methods esti-
mate motion directly from voxel intensity. They have the important advantage
that there is no requirement of prior knowledge and the result is not limited
by the accuracy of feature extraction method. We focus our work on intensity
based approach. Methods directly applying the nonrigid registration algorithms
sequentially to estimate motion have been proposed in [6,7,8]. However, these
methods separate the motion estimation problem into a series of independent
image registrations, the temporal continuity of motion is not taken into account.
Temporal smoothness is very important in cardiac motion estimation since the
particle trajectory of the myocardium is continuous. Consideration of the tem-
poral smoothness will reduce the particle motion irregularity. Temporal smooth-
ness have been reinforced in various ways in current motion estimation methods.
Methods using spatiotemporal models have been proposed in [9,10,11]. Carbayo
et al. [9] proposed a spatiotemporal deformation model for cardiac motion esti-
mation by using 2D+t B-spline, the parameters of the model are estimated by
optimizing a similarity metric between the transformed reference frame and the
following frames. Metz et al. [10] proposed a generic nD+t B-spline deformation
model with the option of temporal periodicity. Bertrand et al. [11] proposed a
3D+t B-spline model in which each control point coordinate varying with time
is a function in form of a sum of periodic harmonic functions. Particle trajectory
constraint such as polynomial modeling has been used to regularize the spa-
tiotemporal motion smoothness [12]. Properties of symmetry and transitivity
have been used to constrain the spatial transformation [13,14]. Sundar et al. [13]
used an inverse consistent registration energy and a temporal consistent energy
term to make the transformation spatiotemporally smooth. Skrinjar et al. [14]
used transformation transitivity property of three consecutive frames to make
that the composition of transformation from second frame to the third frame
with that from first frame to the second frame equals to the transformation
from first frame to the third frame. Diffeomorphic image registration has been
proposed to estimate the spatial transformation which is implicitly smooth and
invertible [15,16,17]. In this method, the spatial transformation is considered as
the end point of an evolution process with a smooth velocity field and the spatial
displacement field is considered as the integral of the velocity field over time.
This method is physically plausible for cardiac motion analysis since the particle
motion between sequence is continuous in velocity. Khan et al. [18] extended
the method to solve the motion estimation problem by minimizing a variational
energy of the velocity field in form of a summed dissimilarity function between
the reference image and the unwarped image frames. De Craene et al. [19] used
a smooth and invertible spatiotemporal transformation which is the Euler inte-
gral of a velocity field defined by a series of 3D B-spline functions. The B-spline
parameters are optimized by minimizing the summed image difference between
the reference frame to each of the unwarped following frames. In a following
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work [20], the velocity field is defined as a 3D+t spatiotemporal B-spline model
to reduce the number of control parameters in temporal direction.

The above methods only constrain the reference image to have the smallest
error with the unwarped following frames on time points of each frames, we
propose a novel method to enforce the intensity consistency of the velocity field
on each time points including those within frames. We propose a diffeomorphic
variational motion estimation method in which the optimal velocity field is ob-
tained by making the frames local to a time points evolving to this time point
along the flow to have maximal intensity transitivity consistency. Experimental
results shows motion estimated by using our method is more accurate and more
temporally smooth than other methods.

2 Method

2.1 Parameterized Diffeomorphic Registration

We define a flow φ(x, t), t ∈ [0, T ],x ∈ Ω ⊂ Rd(d = 2, 3) with its smooth
velocity field v(x, t) by using the differential equation of dφ

dt = v(x, t). It has been
proven in [21] that if v(x, t) is smooth with a differential operator L in a Sobolev
space V , then the transformation φ(x, t) defines a group of diffeomorphisms
with t varying from 0 to T . The diffeomorphic image registration is stated as a
variational problem, that given two images I0 and I1, to find an optimal velocity
field v̂ which minimizes an energy functional consisting of a measurement of SSD
between the pull-back images of I0(φt,0(x)) and I1(φt,T (x)) at each time point
t and a distance metric between transformations φ(x, 0) and φ(x, T ):

v̂ = arg inf
v∈V

λ

∫ T

0

||v(x, t)||2V dt+

∫ T

0

∫
Ω

(I0(φt,0(x))− I1(φt,T (x)))
2dxdt, (1)

with λ being the weight to balance these two energies, φt,0(x) and φt,T (x) being
the transformations from time t to 0 and from t to T.

The direct solution for the dense velocity field function is expensive. Alter-
natively, a parameterized representation of the velocity field is used like [17],
where the velocity field continuous in time is represented as a series of B-
spline functions on discrete time points. The transformation can be expressed
as the forward Euler integral of velocity field by assuming that the velocity
is piecewise constant within a time step. The B-spline function is defined as
v(x, tk) =

∑
ci;kβ(x − xi), with ci;k being the B-spline control vectors located

on a uniform grid of xi at tk, β(x−xi) being the B-spline kernel function which
is the tensor product of the 1-D B-spline functions. Denote φk = φ(x, tk) the
transformation from t0 to tk, because the velocity is piecewise constant within a
time step, we have φk = φk−1 + v(φk−1, tk−1)Δt = (Id+ vk−1Δt) ◦φk−1, with
Δt = T/Nt being the length of a time step, φ0(x) = x, k = 1, 2, ..., Nt, with
Nt being the total number of time steps of the discretized velocity field. The
second term in Eqn.(1) will be discretized as

∑
k

∫
(I0(φk,0) − I1(φk,Nt

))2dx,
which is a sum of SSD metrics of the pull back image I0(φk,0) and I1(φk,Nt

) at
each tk(k = 0, 1, ..., Nt). The forward transformation φk,Nt

from tk to tNt can be
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represented as φk,Nt
= (Id+vNt−1Δt)◦ ...◦(Id+vkΔt), and by considering the

reverse motion whose velocity is −v(x, t) at each time, the backward transforma-
tion from time tk to t0 can be represented as φk,0 = (Id−v1Δt)◦...◦(Id−vkΔt).
The registration energy functional Eqn.(1) is then parameterized as a function
of a group of parameters ci;k and it can be optimized by using a gradient based
method [17].

2.2 Diffeomorphic Image Sequence Registration

We use ns time steps between each two consecutive frames. For convenience
of illustration, we explain our method by using ns = 2 as an example, but
the idea is the same when other integers are used. Fig.(1) shows the princi-
ple of intensity transitivity consistency along the particle trajectories at a time
point. Assume that we have an image sequence and a point x in a virtual
plane Iv at t2k+1 moves through four consecutive frames Ik−1, Ik, Ik+1, Ik+2.
We use the notation φ2k+1,2k as the transformation which maps x from t2k+1

to t2k, then the trajectories of point x in the four nearest frames in time are
φ2k+1,2k(x), φ2k+1,2k+2(x), φ2k+1,2k−2(x),φ2k+1,2k+4(x). Their intensity values
of Ik(φ2k+1,2k), Ik+1(φ2k+1,2k+2), Ik−1(φ2k+1,2k−2), Ik+2(φ2k+1,2k+4) should be
identical since they are from the same particle trajectory and their intensity
should be preserved. Theoretically the point x at t2k+1 can be replaced by any
time point along the trajectory and the four frames can be extended to all image
frames in the sequences. In real implementation we will consider up to four frames
as a compromise of intensity consistency context and computational efficiency.
At one hand, considering consistency between two frames before and after a time
point will give us enough temporal constraint for the transformation; on the other
hand, consideration of far away frames will bring correspondence ambiguity due
to the speckle decorrelation [23]. Then we define an SSD energy term to mea-
sure the image errors as: Essd(2k+ 1) =

∫
(Ik(φ2k+1,2k)− Ik+1(φ2k+1,2k+2))

2 +
(Ik−1(φ2k+1,2k−2)−Ik+1(φ2k+1,2k+2))

2+(Ik(φ2k+1,2k)−Ik+2(φ2k+1,2k+4))
2. We

call this function as transitivity consistency error at time point t2k+1 since this
function measures that how consistent the intensity values of local frames under
a velocity field is. The optimal velocity field will be estimated by minimizing a
variational energy:

v̂ = arg inf
v∈V

λ

∫ T

0

||v(x, t)||2V dt+

(Nf−1)∗ns∑
k=1

Essd(tk), (2)

The first term regularizes the velocity field to make it spatiotemporally smooth
and the second term assures that the optimized velocity field minimizes the local
transitivity consistency at all time points tk.

We use an adaptive scheme to choose the value of ns. It is initialized as 2. The
B-spline parameters during optimization is checked at each iteration to make sure
that the transformation between each two time points, that is Id + vkΔt, is a
diffeomorphism [22]. If the condition is broken due to large deformation between
two frames, the number of ns will be doubled to tolerate larger deformation
while keeping the transformation between time points to be diffeomorphic.
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Fig. 1. The intensity of a point along the particle trajectory should be preserved.
We use two time steps between each two frames as an example. The optimal velocity
field should minimize the difference of evolving image Ik(φ2k+1,2k), Ik+1(φ2k+1,2k+2),
Ik−1(φ2k+1,2k−2),Ik+2(φ2k+1,2k+4) at time point t2k+1.

2.3 Regularization

In order to assure the φ(x, t) to be diffeomorphic, we need to define v(x, t) to
be spatiotemporally smooth under a differential operator L. The linear operator
we choose is: L = ∇2v +wt

dv
dt , with ∇2(·) being a Laplacian operator and wt a

constant weight. In the discrete time form of velocity field, the time integral of

the norm in V space of Eqn.(2) will be approximated by: Ereg =
Nt∑
k=1

∑
x
(∇2vk)

2+

wt

Nt∑
k=2

∑
x

|vk(x + vk−1Δt) − vk−1|2, with vk = v(x, tk). The first term makes the

velocity field spatially smooth, we denote it as Esr. The second term keeps the
particle velocity smooth and it is denoted as Etr . The overall effect is to keep
the velocity field spatiotemporally smooth.

2.4 Optimization

We use a steepest descent method to optimize the parameterized function. The
derivative of the total registration energy with respect to the transformation
parameters will be calculated analytically.

Due to the fact that the transitivity consistency error at each time point tk is
made up of the SSD functions of three pair of local frames, the derivative of the
second term in Eqn.(2) with respect to the B-spline parameters is equalized to
calculate derivatives of SSD functions of three separate two image registrations
at each tk with respect to the B-spline parameters and then add the gradient to-
gether. Suppose we have two images I0 and I1, we want to estimate the derivative
of SSD energy term E0,1(j) =

∫
Ω
(I0(φj,0(x))− I1(φj,N1

(x)))2dx at each tj with
respect to a series of discrete velocity field B-spline parameters vk(0 ≤ k ≤ N1),
with N1 being the total number of time steps. We know from Sec.(2.1) that
φj,N1

is only affected by the velocity field vk with j ≤ k ≤ N1 − 1 and φj,0 is
only related to −vk with 1 ≤ k ≤ j. If we denote ci,m;k as the mth (m = x, y, z)
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component of the ith B-spline parameter of vk, the derivative of E0,1(j) with
respect to ci,m;k is:

∂E0,1(j)

∂ci,m;k
=

∑
Ω′

(I1(φj,N1
)− I0(φj,0))∇mI1(φj,N1

)
∂φj,N1

∂ci,m;k
, (j ≤ k ≤ N1 − 1),

∂E0,1(j)

∂ci,m;k
=

∑
Ω′

(I0(φj,0)− I1(φj,N1
))∇mI0(φj,0)

∂φj,0

∂ci,m;k
, (1 ≤ k ≤ j), (3)

with Ω′ being the local support of the B-spline kernel function, ∇m(·) being the

mth component of the image gradient,
∂φj,N1

∂ci,m;k
and

∂φj,0

∂ci,m;k
being the derivative

of the concatenated B-spline function with respect to the B-spline parameters
which are calculated using chain rule [17,19]. By replacing image pair of I0 and
I1 with the three pairs of images used in intensity transitivity consistency error
at each tk, we can get the derivative of the total similarity metric with respect
to the velocity field parameters.

For the derivative of the spatial and temporal regularization energies with
respect to ci,m;k, we have:

∂Esr

∂ci,m;k
=

∑
x∈Ω′

β
′′
m(x− xi), (4)

with β
′′
m(·) being the second derivative of the B-spline function with respect to

mth component. Considering that the displacement between two time step is
small, we have:

∂Etr

∂ci,m;k
≈ wt

∑
x∈Ω′

(2 ∗ vi,m;k − vi,m;k−1 − vi,m;k+1)β(x− xi). (5)

The registration energy can be optimized by starting from initial position and
descending along the negative gradient direction at each iteration until there is
no significant decrease.

2.5 Implementation

In our implementation, we use a series of B-spline transformations with grid
spacing of 10 in each dimension to represent the velocity field. The values of λ
and wt are set to be 0.1 and 0.005. The algorithm is implemented with Matlab
under a windows XP 64 bit system on a machine with 2.13GHz CPU and 6GB
RAM. For 2D image sequence of 11 frames with frame size of 274× 192, it takes
20 minutes to estimate the motion, for a 3D sequence of 16 frames with frame
size of 104× 112× 104 the computing time is about 5 hours.

3 Experiment and Data

We use simulated and real ultrasound sequences to validate the proposed method.
In the simulated data experiment, a longitudinal view of a diastolic left ven-
tricle (LV) image with size of 274 × 192 is used as the reference image. This
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frame is then deformed with a series of continuous displacement field func-
tions. The deformations are symmetrical along the long axis of the LV to sim-
ulate the myocardial contraction effect along radial and longitudinal directions.

The displacement functions are in form of: fx(i) = axsin
π(x−xc)

2rd
sin( iπ

Nf
) and

fy(i)=aysin
π(y−yapex)

2(ybase−yapex)
(sin( iπ

Nf
+ π

16 ) − sin π
16 ), with xc, rd the axis center co-

ordinate and the average axial radius of LV, yapex and ybase the height of base
and apex planes, Nf and i the number of frames and the frame index, and ax,
ay are the magnitudes of displacement fields which are the largest shift in axial
and longitudinal directions. An image sequence with Nf +1 frames is generated
when i varies from 0 to Nf to simulate the cardiac motion in one cycle from
diastolic to systolic and then back.

Three sequences with 11 frames each are simulated with multiplicative speckle
noise of variance 0.06, 0.08 and 0.10 added to each frames. The magnitude pa-
rameter ax and ay used are 5 and 15 respectively. The reference frame and the
6th frame with speckle noise variance 0.10 are shown together with the ground
truth displacement field in Fig.(2).
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Fig. 2. The reference frame and the 6th frame in speckle variance 0.1 test and the
displacement field (only displacement field inside a bell-shaped mask is displayed and
the displacement vectors are normalized for ease of display.)

In the real dataset tests, 3D echo sequences are chosen from the STACOM
challenge datasets. A sequence of 16 frames each of which is downsampled into
size of 104× 112× 104 is used for our test.

We compare the proposed method with two other diffeomorphic motion
estimation methods. The first one is a B-spline method with transformation
transitivity as temporal constraint. The constraint enforce that in each three
consecutive frames, the composition of the transformations obtained from each
two consecutive frame registration should be equal to the transformation from
the first frame to the third one [14], we call this as method with transitivity con-
straint. The second one is a method which optimizes a spatiotemporal B-spline
velocity field function by minimizing the SSD errors between the reference to
each of the deformed following frames [19], referred as LDFFD method. Same
regularization parameters are used for the three algorithms.
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4 Result

We compare the proposed method with the other two methods by tracking the
trajectories of the points in the myocardial wall during the motion process.
Fig.(3) shows the 11-frame trajectories of nine tracked points in myocardium for
the test of speckle noise variance 0.06. For contrast, the ground truth trajectories
are overlaid for comparison. We can see generally coordinates of the points in
each time step in the proposed method are closer to the ground truth position,
larger errors can be seen in the right part of the trajectories in transitivity
constraint method, and in LDFFD method, larger errors appear in time steps
near the end of the trajectories.
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Fig. 3. Trajectories of nine points in 11 frames in transitivity constraint method,
LDFFD method and the proposed method. The ground truth trajectories (blue) are
overlaid with the estimated curves (multiple color) for comparison. The arrow shows
the velocity at each time step.
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Fig. 4. The motion estimation errors (unit in pixel) in x (left) and y (right) coordi-
nates in the transitivity constraint method (green), LDFFD method (blue) and the
proposed method (red). The error bars show the mean and standard deviation of the
transformation errors in each image frames.
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Fig. 5. Deformation estimation of a real ultrasound dataset. From left to right, the first
two columns show the three center orthogonal views of the diastolic and systolic frames,
the third column shows the grid deformation between the diastolic and systolic frames
in three center orthogonal planes, the last column shows the axial plane alignment
errors in transitivity constraint method, LDFFD method and the proposed method.

In Fig.(4) we illustrate the motion estimation errors in both x and y coordi-
nates in noise level 0.08 dataset. The estimated transformation error of all the
pixels in each frame is shown as an error bar at the frame index. We can see
the mean of motion estimation errors in both x and y directions in the proposed
method is smaller than the other two methods and the variance of the estimated
transformation error is also smaller in the proposed method.

We calculate the mean of magnitude of transformation errors in the three
noise variance levels in three registration methods. In our proposed method, the
errors are 0.225, 0.267 and 0.312, while in the transitivity constraint method
and the LDFFD method they are 0.329, 0.365, 0.403 and 0.314, 0.347, 0.392
respectively.

For the real dataset, we show the result in Fig.(4). The first two columns show
center orthogonal views of the diastolic and systolic frames. The deformations
in three center orthogonal plane from diastolic to systolic frames are shown in
third column. The last column shows the error image in axial view between
the diastolic and systolic frames after registration, we can see the error in the
proposed method is smaller than other two methods.
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5 Conclusion

We propose a diffeomorphic motion estimation method with temporal smooth-
ness by constrain the velocity flow to have maximum transitivity consistency
with local image frames. Simulation image and real dataset tests show that
results in our motion estimation method are more smooth and accurate than
other methods with temporal constraint. Our future work includes to develop
algorithm using robust similarity measurement instead of SSD and increase the
algorithm speed with the aid of parallel computing.
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Lu, Xiaoguang 98
Lutz, Anja 33

Maes, Frederik 198
Magnin, Isabelle 160, 207
Mansi, Tommaso 1, 55
Mao, Hongda 188, 224
Margeta, Ján 109
Martelli, Yves 33
McLeod, Kristin 55
McVeigh, Elliot R. 1
Medrano-Gracia, Pau 88, 214
Miller, Michael I. 234

Nash, Martyn P. 149



286 Author Index

Oduneye, Samuel O. 244
O’Neill, Mark 254
Orderud, Fredrik 168
Ourselin, Sebastien 45, 178

Peitgen, Heinz-Otto 78
Pennec, Xavier 55
Penney, Graeme 139
Peyrat, Jean-Marc 160, 207
Piella, Gemma 68
Pierre, Charles 1
Pintilie, Stefan 244
Pop, Mihaela 1
Prakosa, Adityo 55

Qiang, Beiping 1

Radau, Perry E. 244
Rahimi, Azar 188
Ramanan, Venkat 244
Rasche, Volker 33
Razavi, Reza 45, 139, 178, 254
Relan, Jatin 1, 14
Rhode, Kawal S. 33, 68, 139, 254
Riccobene, Chiara 33
Rinaldi, C. Aldo 254
Rueckert, Daniel 45, 178, 254

Sahn, David J. 274
Schaeffter, Tobias 33, 254
Sermesant, Maxime 1, 14, 55
Shi, Pengcheng 23, 188, 224
Shi, Wenzhe 45, 178
Simon, Duckett 178

Song, Xubo 274
Strandmark, Petter 129
Suetens, Paul 198
Suinesiaputra, Avan 88, 214

Tao, Wenchao 88
Tautz, Lennart 78
Tobon-Gomez, Catalina 33, 68
Truong, Michael 139
Tung, KaiPin 45, 178

Ulén, Johannes 129

van Assen, Hans C. 263

Wang, Haiyan 45, 178
Wang, Linwei 23, 188, 224
Wang, Vicky Y. 149
Warfield, Simon K. 88
Winslow, Raimond L. 234
Wolz, Robin 178
Wong, Ken C.L. 23, 224
Wright, Graham A. 1, 244

Xue, Hui 98

Younes, Laurent 234
Young, Alistair A. 88, 149, 214

Zhang, Heye 23
Zhang, Zhijun 274
Zhuang, Xiahai 45, 178
Zimmerman, Stefan 234


	Title 
	Preface
	Organization
	Table of Contents
	EP Simulation Challenge
	EP Challenge - STACOM’11: Forward Approaches to Computational Electrophysiology Using MRI-Based Models and In-Vivo CARTO Mapping in Swine Hearts
	Introduction
	EP-CARTO and DW-MRI Data Acquisition and Processing
	In-Vivo Electrophysiology Study and Ex-Vivo MRI Study
	Fiber Directions from DW-MRI and Histological Evaluation of the Scar

	Forward Problems Applied to Computational Electrophysiology
	A Simple Macroscopic Two-Variable Modelling Approach
	Other Mathematical Models and Computation Results of Forward Problems

	Discussion
	References

	Personalisation of a 3D Ventricular Electrophysiological Model, Using Endocardial and Epicardial Contact Mapping and MRI
	Introduction
	3D Electrophysiology Model with Chronic Infarction
	Contact Mapping and MR Dataset Processing
	Building Personalised Electrophysiological Model
	Coupled Personalisation Approach (EK-MS)
	Application

	Conclusion
	References

	Transmural Electrophysiologic and Scar Imaging on Porcine Heart with Chronic Infarction
	Introduction
	Methods
	Experimental Setup and Data Processing
	Transmural EP and Scar Imaging

	Results and Discussions
	References


	Motion Tracking Challenge
	A Multimodal Database for the 1st Cardiac Motion Analysis Challenge
	The Challenge
	The Data
	Ultrasound Acquisition
	MR Acquisition
	Distribution

	The Evaluation
	Ground Truth
	3DUS Quality Assessment

	Results
	Response to the Challenge
	Inter-observer Variability
	Qualitative and Quantitative Results

	Outlook
	References

	Automatic Cardiac Motion Tracking Using Both Untagged and 3D Tagged MR Images
	Introduction
	Spatial and Temporal Correction
	Temporal Alignment
	Spatial Alignment

	Comprehensive Motion Tracking
	Weighted Similarity Measure

	Detection and Tracking of Cardiac Landmarks
	Valve Annulus Modelling and Detection
	Simultaneous Valve Plane Detection in Multiple Views
	Valve Plane Motion Tracking
	Constrained Myocardial Motion Tracking Using Tagged and Untagged MR Images

	Results
	Conclusion and Future Work
	References

	An Incompressible Log-Domain Demons Algorithm for Tracking Heart Tissue
	Methodology
	Cardiac Motion Tracking Using Physiological Constraints
	Review of the Log-Domain Demons Algorithm
	Modeling Elasticity in the Myocardium
	Incorporating Strong Incompressibility in the Myocardium

	Implementation
	Image Pre-processing
	Application to Challenge Data
	Results for Echocardiography Sequences
	Results for Cine-MR Image Sequences
	Results for Tagged-MR Image Sequences

	Strain Estimation
	Discussion
	Incompressibility Constraint
	Field of View

	Conclusion
	References

	Temporal Diffeomorphic Free Form Deformation (TDFFD) Applied to Motion and Deformation Quantification of Tagged MRI Sequences
	Introduction
	Methods
	Preprocessing
	Segmentation
	Mesh Postprocessing
	Motion and Deformation Quantification
	Strain Quantification

	Experiments
	Conclusions
	References

	Motion Analysis with Quadrature Filter Based Registration of Tagged MRI Sequences
	Introduction
	Materials and Methods
	Image Data
	Method

	Results
	Discussion
	Conclusions
	References


	Segmentation Challenge
	Left Ventricular Segmentation Challenge from Cardiac MRI: A Collation Study
	Introduction
	Methods
	Cardiac MRI Data
	Raters
	Evaluation Method
	Region of Interest Definition
	Binary STAPLE Algorithm

	Results
	Discussion
	References

	Automatic Segmentation of the Myocardium in Cine MR Images Using Deformable Registration
	Introduction
	Left Ventricle Segmentation
	LV Blood Pool Detection
	Mitral Valve Base Plane Segmentation
	Slice Segmentation
	Segmentation of the Entire LV

	Experiments
	Conclusions
	References

	Layered Spatio-temporal Forests for Left Ventricle Segmentation from 4D Cardiac MRI Data
	Introduction
	Layered Spatio-temporal Decision Forests
	Strategy to Learn from Spatio-temporal Data
	Features
	Data Preprocessing

	First Layer: Decision Forests for Image Intensity Standardization and Position Normalization
	Intensity Standardization
	Orientation Normalization

	Second Layer: Learning to Segment with the Shape
	Using Voxel Coordinates
	Transforming the Volumes Back

	Results
	Conclusions
	References

	Myocardial Segmentation Using Contour-Constrained Optical Flow Tracking
	Introduction
	Method
	Energy Function of the Optical Flow Constraint
	Contour Constraints
	Contour-Constrained Optical Flow Energy Function
	Evaluation of the Segmentation Method

	Results and Discussion
	Conclusion
	References


	Regular Papers
	Optimization for Multi-Region Segmentation of Cardiac MRI
	Introduction
	Model
	Solving the Optimization Problem
	Using the Lagrangian Dual

	Experiments
	Future Work and Limitations
	Concluding Discussion
	References

	Analysis of Catheter-Based Registration with Vessel-Radius Weighting of 3D CT Data to 2D X-ray for Cardiac Catheterisation Procedures in a Phantom Study
	Introduction
	Methods
	Phantom Experiment

	Results
	Discussion and Conclusion
	References

	Myocardial Contractility and Regional Work throughout the Cardiac Cycle Using FEM and MRI
	Introduction
	Methods
	Results
	Discussion and Conclusions
	References

	Variability of the Human Cardiac Laminar Structure
	Introduction
	Material and Method
	Dataset
	Atlas Construction
	Statistical Analysis

	Results
	Variability of the Laminar Sheet Normal
	Variability of the Intersection Angle

	Conclusion
	References

	Polynomial Regression Based Edge Filtering for Left Ventricle Tracking in 3D Echocardiography
	Introduction
	Tracking Framework
	State Prediction
	Evaluation of Tracking Model
	Edge Measurements
	Measurement Assimilation
	Measurement Update

	Edge Detection
	Step Criterion Edge Detector (STEP)
	Local Polynomial Regression Edge Detector (LPR)

	Results
	Discussion and Conclusion
	References

	A Multi-image Graph Cut Approach for Cardiac Image Segmentation and Uncertainty Estimation
	Introduction
	Cardiac Segmentation Using Multiple Images
	Spatio-Temporal Registration
	Atlas Based Segmentation
	Multi-image Graph Cut Refinement

	Uncertainty Definition and Evaluation
	Registration Uncertainty
	Segmentation Uncertainty
	Uncertainty Quantification and User Interaction

	Results
	Conclusion and Future Work
	References

	Toward Clinically-Feasible Noninvasive Electrophysiological Imaging: Investigating the Impact of Local Anatomical Details
	Introduction
	Optimization of 3D Geometry Reconstruction
	Results
	Conclusion
	References

	A 3D+Time Spatio-temporal Model for Joint Segmentation and Registration of Sparse Cardiac Cine MR Image Stacks
	Introduction
	Methods
	Shape Representation
	Model Component 1: Shape Model
	Model Component 2: Local Appearance Model
	Model Component 3: Global Intensity Similarity
	Model Component 4: Temporal Regularization
	Hybrid Model

	Experimental Evaluation
	Discussion and Conclusion
	References

	Statistical Atlas of Human Cardiac Fibers: Comparison with Abnormal Hearts
	Introduction
	Material and Method
	Dataset
	Registration of Abnormal Hearts
	Comparison with Abnormal Hearts

	Results
	Discussion and Conclusion
	References

	Maximum Likelihood Correction of Shape Bias Arising from Imaging Protocol: Application to Cardiac MRI
	Introduction
	Methods
	Results
	Conclusions and Future Work
	References

	Volumetric Modeling Electromechanics of the Heart
	Introduction
	Methodology
	Cardiac Electrophysiological Model
	Electromechanical Coupling
	Cardiac Mechanics Model
	Mechanoelectrical Feedback
	Numerical Implementation

	Experimental Results
	A Cube
	A Biventricular Heart

	Discussion
	Conclusion
	References

	Matching Sparse Sets of Cardiac Image Cross-Sections Using Large Deformation Diffeomorphic Metric Mapping Algorithm
	Introduction
	Method
	Subjects
	Preprocessing
	Registration Methods

	Results
	Discussion
	References

	VURTIGO: Visualization Platform for Real-Time, MRI-Guided Cardiac Electroanatomic Mapping
	Introduction
	Architecture
	Communication System Design
	Vurtigo Design

	Features
	Core Features
	Visualization
	Interactive and Automated 2D Plane Control

	Methods for EP Interventions
	Active Tracking of Catheters
	EP Recordings and EAM Generation
	MR Imaging

	Conclusions
	References

	Validation of a Novel Methodfor the Automatic Segmentation of Left Atrial Scarfrom Delayed-Enhancement Magnetic Resonance
	Introduction
	Methods
	Automatic Segmentation of Atrial Lesions
	Validation of the Automatic Algorithm

	Results
	Digital Phantom
	Clinical Data

	Discussion and Conclusion
	References

	Cardiac Motion Estimation Using Covariant Derivatives and Helmholtz Decomposition
	Introduction
	Multi-scale Feature-Based Tracking Using Optical Flow
	Image Data Set and Preprocessing
	Calculation of Sparse Velocity Features 

	Vector Field Decomposition
	Multi-scale Helmholtz Decomposition of the Optical Flow Field
	Experiments on the Decomposition of the Vector Field
	Covariant Derivatives and Reconstruction
	Feature Based Optic Flow Equation with Covariant Derivatives and Helmholtz Decomposition (CDHD) 

	Experiments and Results
	Discussion and Conclusion
	References

	Temporal Diffeomorphic Motion Analysis from Echocardiographic Sequences by Using Intensity Transitivity Consistency
	Introduction
	Method
	Parameterized Diffeomorphic Registration
	Diffeomorphic Image Sequence Registration
	Regularization
	Optimization
	Implementation

	Experiment and Data
	Result
	Conclusion
	References


	Author Index



