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Abstract. Over the last twenty years, information integration has received consider-
able efforts from both industry and academia. Approaches to information integration
developed so far can be categorized as follows: (1) first-generation approaches, that
require the definition of a global schema and a semantic integration which should
be performed upfront (before query execution); (2) second-generation approaches,
well illustrated by the dataspace management concept, which promote a pay-as-
you-go data integration. The first category has led to well known mediation ap-
proaches such as GAV (Global as View), LAV (Local as View), GLAV (Generalized
Local As View), BAV (Both As View), and BGLAV (BYU Global-Local-as-View).
Approaches pertaining to the second category are geared towards the development
of dataspace management systems and are currently gaining a lot of attention. In
this chapter we are interested in exploiting both types of approaches in querying
conflicting data spread over multiple web sources. To this aim, first we show how
an XML-based BGLAV approach can handle these conflicting data sources, then
we describe how the same problem can be addressed by using the Multi Fusion
Approach (MFA), an approach pertaining to second-generation techniques. Both
BGLAV and MFA are illustrated in using genomic data sources accessible through
the Web.
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11.1 Introduction

Over the past two decades, the database communities (both industry and academia),
have intensively addressed data integration problems. A first-generation category
of approaches and systems has been developed, and significant contributions has
been made in various subtopics [16] such as: source descriptions, schema mappings,
query reformulation, and incomplete information modeling. Approaches pertaining
to this first category require upfront semantic integration, that is a global/mediation
schema needs to be supplied beforehand. As an example, in mediation approaches
such as GAV (Global as View) [12], LAV(Local as View) [23], GLAV(Generalized
Local As View) [11] or BAV(Both As View) [5], the mediator provides the user with
a global schema and allows him/her to access heterogeneous data sources providing
the illusion to access a single local database. The wrapper, another component of
mediation systems, plays the role of an interface between the mediator and the data
sources: it receives queries from a mediator and uses its own knowledge (source
descriptions and mapping rules) in order to access the data sources.

As an example, in LAV the content of each data source is expressed in terms
of a view over the global schema. Mapping rules associate a query over the global
schema to each element of the local sources. On the other hand, in GAV each el-
ement of the global schema is expressed in terms of a view over the data sources.
Each mapping rule associates a query over a local source to each element in the
global schema.

The main component of first-generation data integration systems is the query
rewriting module; it explores a set of mappings in order to rewrite queries, expressed
upon the global schema, in terms of local sources’ schemas. The complexity of the
query rewriting phase depends on how the global schema is defined. For example,
GAV query rewriting is very simple since the elements in the global schema are
defined in terms of the source schemas [22]. In this case, query rewriting simply
consists in unfolding the definitions of the elements in the global schema. However,
in this case, adding a new source to the data integration system is not trivial. The new
source may indeed have an impact on the definition of various elements of the global
schema, whose associated views need to be redefined. On the other hand, LAV query
rewriting is not straightforward (exponential time complexity) and many rewriting
algorithms have been developed; among them, we recall the Bucket, Inverse Rules
and MiniCon algorithms [14], to cite a few. At the same time, however, the LAV
approach favors the extensibility of the system: adding a new source simply means
enriching the mapping with a new assertion, without other changes.

In general, query rewriting works well assuming that the schema of the local
source is known a-priori and static. Unfortunately, such assumptions are not satis-
fied by data managed in several new processing environments, where data sources to
be integrated are selected and combined on-demand. New second-generation data
integration approaches have therefore been proposed. Dataspaces and Dataspace
Management Systems (DSMSs), described in Chapter 12, represent a significant
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example of second-generation integration approaches. A dataspace has the follow-
ing features [10]:

1. It can handle data with different formats accessible through different interfaces
(e.g., database system, data file etc.). A dataspace is designed to support all kinds
of data (e.g., structured, semi-structured or unstructured data etc.).

2. It provides an interface to search, retrieve, update and manage a dataspace,
through a DSMS. Unlike a Database Management System (DBMS), a DSMS
does not completely control its data; but it offers various levels of services in
order to return the best answer.

3. A dataspace provides all software in order to improve data integration.

The requirements and the architecture of a DSMS is presented in detail in [15].
DSMSs promote a pay-as-you-go integration system where “the system starts with
very few (or inaccurate) semantic mappings and these mappings are improved over
time as deemed necessary” [33, 19].

In this chapter, we exploit both first-generation and second-generation approaches
in describing how to query multiple heterogeneous conflicting web data sources. To
this aim, we assume that web data sources are represented in XML; a concrete ex-
ample drawn from Genomics will be used to illustrate the proposed concepts. Two
different data integration techniques will be considered. The first relies on a medi-
ation approach [8, 7] based on BGLAV [36],1 first defined for relational data and
then extended to deal with XML data sources [7]. BGLAV has been proposed to
overcome both GAV and LAV limitations. BGLAV improves both GAV and LAV
because the global schema remains unchanged when a data source is added or up-
dated. BGLAV, as a first-generation data integration approach, is characterized by
the presence of a global schema and the need to specify a set of predefined, hard-
coded correspondence queries (mappings), which specify how to solve conflicts
among local sources. Mappings have to be specified before submitting queries to
the mediator, which is in charge of the translation process, that leads to the genera-
tion of the sub-queries posed over local schemas.

In the web context, the definition of such a global schema and the maintenance
of mappings become cumbersome. As an alternative approach to BGLAV we there-
fore consider the Multi-Fusion Approach (MFA), a data fusion method developed
by Nachouki et al [26]. MFA, although not being directly inspired by the dataspace
management systems concepts, relates to the second-generation of data integration
approaches. MFA does not assume the definition of a global schema beforehand;
rather, it relies on the Multi-data source Fusion Language (MFL) for the definition
of a multi-data source schema (a kind of dataspace) and the retrieval of data issued
from conflicting sources. With MFA, conflicts (i.e., assertions or mappings) between
data sources can be specified by a (skilled) user who has some domain knowledge.
Users have the possibility to refine these conflicts later in order to increase grad-
ually the accuracy of their queries. In MFA, unlike BGLAV, retrieving data from
conflicting data sources is established using semantic queries, which may include
conflicting elements in their bodies. MFA query processing consists in resolving

1 BYU Global-Local-as-View, where BYU stands for Brigham Young University.
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conflicts and then in decomposing the query into a set of sub-queries to be sent to
data sources for execution.

The contributions of this chapter are therefore twofold: (1) it fully illustrates the
various phases of the data integration process, namely, schema integration, data rec-
onciliation (fusion), query rewriting, etc., in taking into account both a traditional
and a more advanced integration approach; (2) it demonstrates the application of
the presented concepts and algorithms in using a real data set, drawn from the Ge-
nomics domain. The chapter is organized as follows. Section 11.2 describes conflicts
between (biological) data sources and provides a taxonomy of conflicts in a gen-
eral context. Section 11.3 illustrates how to process mediated queries in BGLAV.
Section 11.4 is devoted to MFA. An overall example taken from the biological do-
main is provided in Section 11.5. Finally, Section 11.6 presents some discussion and
conclusions and outlines future work.

11.2 Conflicting Web Data Sources

In the following, we first briefly classify conflicts that may arise from multiple data
sources to be integrated. Then, we discuss various types of conflicts arising from
the life science domain through an example and we present some assumptions about
conflict representation upon which the results presented in the chapter rely.

11.2.1 Overview of Conflict Types

In most data integration examples covered in the literature, data sources present
various types of heterogeneity, concerning differences in names, data structures,
types, scale, just to cite a few. This is due to the fact that several perceptions of
the same real world lead to different data modeling of the same entity. In order to
integrate a set of data sources, all such conflicts have first to be solved. Conflicts can
be classified as follows [35]:

• Data conflicts, referring to differences among definitions, such as attribute types,
formats, or precision.

• Structural conflicts, arising from the description of the same concept in different
ways and in different data sources. For example, a concept can be defined as an
attribute in a relational schema Sch1 and as a relation in another schema Sch2.

• Descriptive conflicts, including the usage of different names for the same entity
(e.g., homonymous, synonymous), identity conflicts (e.g., a person is identified
by a number in Sch1 and social-security number in Sch2), scale conflicts (e.g.,
salaries are given in Dollar and Euro respectively in Sch1 and Sch2).

• Abstraction conflicts, concerning the presence of generalization/specialization
concepts (e.g., the concept of employee in Sch1 generalizes the concept of



11 Querying Conflicting Web Data Sources 275

teacher in Sch2) and aggregation (e.g., date of birth in Sch1 is a string while it
is composed of three fields month, day and year in Sch2).

• Semantic conflicts, referring to differences and similarities in the meaning of
concepts in the data sources.

Many works have investigated semantic conflicts in the literature. In [6], authors
propose an algorithm which takes two schemas as input and returns the mappings
that identify corresponding concepts in the two schemas, namely the concepts with
the same or the closest meaning. In [32], authors provide a survey of different ap-
proaches to automatic schema matching.

11.2.2 Conflicting Data in Life Sciences

Many data management applications require the integration of data from multiple
sources [9], often available on the Web as XML documents. For instance, in the field
of biology, the number of data sources and tools available in the Web has grown in
recent years. This huge augmentation of data sources has led to a deep heterogeneity
between data sources and to a variety of interfaces. Until today, the reconciliation
between data sources is performed manually by biologists. Scientific investigations
on Genes or Proteins -for annotations or predictions- or information retrieval from
scientific publications (journals, conferences, etc.) often lead researchers to submit
queries to several (yet heterogeneous) data sources that are available on the Web. As
an example, Mootha et al. [25] discovered one of the genes responsible of Leigh syn-
drome by integrating both expression, genomic and sub-cellular localization data.

In the biological domain, the same/identical information may be stored using
distinct formats or structures such as ASN 1.0 [2] or Fasta [30], HTML or XML,
leading to some data conflicts. As an example, Figure 11.1 shows a description of
ILB12, a gene that encodes a subunit of interleukin 12, which is one of the regulatory
proteins that are released by cells of the immune system. As illustrated, the same
entity, ILB12, is described by means of several heterogeneous schemas.

Semantic conflicts are also quite common in the life sciences domain. For exam-
ple, in [34] two definitions of the concept of gene have been compared: in GDB [18],
a gene is a DNA fragment that can be transcribed and translated into a protein; for
Genbank [3] and GSDB [21], a gene is a “DNA region of biological interest with a
name and that carries a genetic trait or phenotype”, which includes nonstructural
coding DNA regions like intron, promoter and enhancer. There is a clear semantic
distinction between those two notions of gene but both are still being used, hence
adding another level of complexity into the data integration process. Another term
that comes with multiple meanings is protein function, that could be defined either
as a biochemical function (e.g., enzyme catalysis), a genetic function (e.g., tran-
scription repressor), a cellular function (e.g. scaffold), or as a physiological function
(e.g., signal transducer).
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<!-- HTML -->
<!---------------------------------------------------------------->
<table border="0" width="100" cellpadding="1" cellspacing="1">

<tr>
<td nowrap="nowrap">Entry name</td>
<td width="100">

<b>IL12B\_HUMAN</b>
</td>

</tr>
<tr>

<td nowrap="nowrap">Primary accession number</td>
<td>

<b>P29460</b>
</td>

</tr>
<tr>

<td nowrap="nowrap">Integrated into Swiss-Prot on</td>
<td>April 1, 1993</td>

</tr>
</table>

<!-- ASN 1.0 -->
<!---------------------------------------------------------------->
Seq-entry ::= set {

descr {title "Interleukin-12 subunit beta" ,
update-date std {year 1991 ,month 5 ,day 17} ,
source {org {taxname "Homo sapiens" , common "human" ,

db {db "taxon" , tag id 9606}
}

}
}

<!-- FASTA -->
<!---------------------------------------------------------------->
>IL12B|chr5|-|158674369|158690059
GATTACAAAGAAGAGTTTTTATTAGTTCAGCCTCAGAATGCAAAAATAAA
%TAAATAAATAAACAAACAGGAAACAAATGTAATCACTTTACAGAGCGCAC
ATACATTACTTAAAAGTAGCACCTTCATGGAGCCATATTTTCTGGTCATA
..................................................

<!-- XML -->
<!---------------------------------------------------------------->
<SNPPER-RPC SOURCE="*RPCSERV-NAME*" VERSION="$Revision: 1.38$" >

GENOME="hg17" DBSNP="123">
<GENEINFO>

<GENEID>16348</GENEID>
<NAME>IL12B</NAME>
<CHROM>chr5</CHROM>
<STRAND>-</STRAND>
<TRANSCRIPT>
<START>158674369</START>
<END>158690059</END>

</TRANSCRIPT>
</GENEINFO>

</SNPPER-RPC>

Fig. 11.1 Structural conflicts between Genomics data sources.
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11.2.3 Assumptions about Conflict Representation

In this chapter, we will consider the most important types of conflicts detailed above,
i.e., data conflicts, structural conflicts, descriptive conflicts, and semantic conflicts.
In order to deal with conflicts between data sources, we assume that all data sources
schemas are represented according to a common data model (e.g., XML schema,
DTD, relational model, etc.). In this chapter, we consider XML documents; we as-
sume that schema information is represented as a DTD document. To simplify the
discussion, we rely on a tree-based representation of both XML documents and
schema information. Under this assumption, semantic conflicts between elements
are specified using the concept of contexts of elements. The context of an element
E is the set of elements connected to E by a parent-child or ancestor-descendant
relationship. The context of an element is therefore the set of elements semantically
depending on it. In other words, if a node E2 is a child of a node E1, the element E2
has to be interpreted in the scope of E1’s meaning. As a consequence, different oc-
currences of the same label do not have the same meaning: for example, label Name
may appear several times in the same tree under different contexts, thus representing
different semantic entities.

11.3 Mediating Biological Conflicting Data with BGLAV

In this section, we illustrate the BGLAV approach for querying conflicting web data
sources.

11.3.1 BGLAV Overview

BGLAV was proposed initially by Li Xu et al. in [36] in the context of rela-
tional databases. We adapted this approach for mediating web data sources, rep-
resented as XML documents and optionally conflicting, queried through XQuery
[7]. BGLAV [36] alleviates GAV and LAV drawbacks in defining source-to-target
mappings based on a predefined conceptual target schema (global schema), which is
specified independently of any of the sources. More precisely, in a GAV approach,
changes in information sources or adding a new information source require revisions
of the global schema and mappings between the global schema and source schemas.
In a LAV approach, automating query reformulation is hard (i.e., it has exponential
time complexity with respect to query and source schema definitions).

To resolve these problems, BGLAV offers an alternative point of view in defin-
ing source-to-target mappings based on a predefined conceptual global schema. In
particular, the global schema in BGLAV is ontologically specified, independently
of any of the sources. BGLAV keeps the advantages of the two approaches GAV
and LAV: GAVs simple query reformulation and LAVs scalability. Additionally, it
is characterized by the following features:
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• Each concept in a target schema (global schema) is predefined and independent
of any source schema. In contrast, under GAV, Data Base Administrators (DBAs)
revise the global schema to include all concepts represented inside any source;
under LAV, DBAs adjust the source schemas such that they contain only source
relations that can be described by views over the global schema.

• A set of source-to-target mappings maps a source schema to a target schema.
Source and target schemas can use different structures and vocabularies.

• When a new local source becomes available (i.e., a change occurs), a source-to-
target mapping must be created (or adjusted).

11.3.2 Query Processing in BGLAV

In this section, we highlight BGLAV query processing. First we provide some nec-
essary background, then we illustrate the query rewriting steps. We start by intro-
ducing the concept of correspondence query between a source schema and a global
schema. The idea is that of defining a correspondence, i.e., a mapping, between (a
part of) the source schema and (a part of) the global schema, taking into account
existing conflicts.

Definition 1 (Correspondence query). Let Sl be a source schema and G be a global
schema. Let TSl and TG be two sub-trees belonging to Sl and G respectively. A corre-
spondence query (or mapping query) is defined as a set of transformation operations
which are applied to TSl and produce a new tree denoted by TSl′ whose elements are
in direct correspondence with those of TG. We assume that transformation operators
are specified using XQuery.

Example 1. Consider the data sources S1 and S2 and the global schema G, repre-
sented in Figure 11.2. Let TSl and TG be the sub-trees showed in the figure. What
follows is an example of a correspondence query between S1 and G:

<length>
for $x in document(S1)/strands/dna/strand/length
return $x/3

</length>

This query illustrates a scale conflict between the two elements length in G and S1.
The following is an example of a correspondence query between S2 and G:

<date_seq>
for $x in document(S2)/genes_list/gene/strand/date_seq
return concat($x/day,’/’, $x/month, ’/’, $x/year)

</date_seq>

This second query illustrates a structural conflict due to the different representations
of element date in G and S2, respectively.
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Fig. 11.2 Examples of queries in BGLAV.

Given a set of correspondence queries, from each local source it is possible to
generate a derived schema, which is not (or at least partially) conflicting with G.

Definition 2 (Derived schema). Let Sl be a source schema and Ml be a set of corre-
spondence queries that associate Sl to the global schema G. The schema Vl obtained
by applying the mapping queries to Sl is called derived schema. The transformed
elements in Vl are in direct correspondence with those of G.

Derived schemas satisfy the following property (inclusion dependency) with respect
to the global schema.

Proposition 1 (Inclusion dependency). Let V = {Vi|i ∈ [1,n]} be a set of derived
schemas and G be the global schema. For each sub-tree TG of G, there exists a
subset of derived schemas V = {Vi1 , ...,Vik} such that TG corresponds to a set of
sub-trees {Tj,h} of Vj ∈ V, j ∈ {i1, ..., ik}. The instances of TG and Tj,k satisfy an
inclusion dependency defined as follows: I(Tj,k) ⊆ I(TG), where I(T ) denotes the
set of instances (i.e., XML documents) of the sub-tree T .

User queries can now be defined as follows.

Definition 3 (User query). Let G be the global schema, represented by a tree TG. A
query Q over G is expressed in XQuery over TG and can be defined by a logical rule
as Q(TG):- T1, T2,..., Tp, CQ, where:
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• Ti, i ∈ [1, p], is a sub-tree of TG, specified through an XQuery expression, in
accordance with the following sentence: � ∃i ∈ [1, p], � ∃ j ∈ [1, p], i �= j, and Ti is
a sub-tree of Tj;

• CQ is a set of conditions upon trees T1, T2,..., Tp, specified according to XQuery.

Depending on the relationship existing between the query tree and derived schemas,
three distinct types of queries can be devised, as defined below. Different query
types will lead to different choices during the query rewriting step.

Definition 4 (Completely and partially covered query). Let G be the global
schema, represented by a tree TG. Let V = {Vi|i ∈ [1,n]} be a set of derived schema.
Let Q(TG):- T1, T2,..., Tp, CQ be a query over TG. Sub-trees Ti, i ∈ [1; p], appearing
in Q can be classified according to the three cases described below:

1. Complete coverage: Ti is completely covered by a sub-tree in all derived schemas
in V .

2. Partial coverage on some derived schemas: Ti is partially covered by some de-
rived schemas in V and completely covered by some others derived schemas
in V ;

3. Partial coverage on all derived schemas: Ti is partially covered by all derived
schemas in V .

In case of complete coverage, the answer is the union of the results coming from
local sources. In case of partial coverage on some derived schemas, from some
sources only a partial result can be retrieved. In case of partial coverage on all de-
rived schemas, partial results should be joined (through XQuery) by means of the
key elements they share in order to get query answers.

Figure 11.3 illustrates a case of partial coverage, which is quite common in the
web context. The partial answers returned by the two data sources are joined by
means of the common values of key elements (e.g., id gene or gene id).

Query processing is performed in mainly two steps [8, 7]:

1. The first step of the algorithm consists in identifying the correspondence queries
that should be taken into account in processing the user query Q specified over the
global schema. These correspondence queries will be used to define the queries
to be executed against the local sources. The overall idea is that of trying to com-
pletely cover the query trees by joining local results obtained from correspon-
dence queries together. Correspondence queries generating deriving schemas
which are either totally or partially covering trees Ti in Q are taken into account.
When the query is decomposed into sub-queries, each tree Ti in Q is then replaced
by such correspondence queries, according to the local sources that should be
accessed.

2. The second step consists in generating the query plan, which contains the set
of sub-queries that access data sources in order to extract the results. Then, the
results obtained from each data source are merged together (i.e., they are fused)
and returned to the user. For detailed description of the algorithm that performs
this step, we refer the reader to [7].
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Fig. 11.3 Queries over partially covered global schema.

11.4 MFA - Multi-source Fusion Approach

In this section, we describe a second-generation of data integration approach and
we show its use in querying conflicting web data sources.

11.4.1 MFA Overview

A lot of data sources are freely accessible on the Web and users often need to in-
tegrate them quickly without any help. Classical approaches based on mediator’s
reasoning do not facilitate the user’s task since it is hard to unify data sources
in a dynamic way. Rather, they assume a global mediated schema to model data
sources. As such, these approaches often require an administrator to control the me-
diated schema. MFA differs from traditional approaches, like LAV, GAV, GLAV
and BGLAV, in the two following aspects: (i) it does not require a global schema
or ontology; (ii) mappings are established only between data sources (unlike other
approaches). The motivation behind this approach is that, in some context, making
calls to an administrator to check the mediated schema is not always required and it
may be too onerous and restrictive. For example, in the web context, a user which
wishes to integrate biological data is not forced to call an administrator to control
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the mediated schema. MFA thus provides an inexpensive solution to a hard problem
of data integration. By cons, this approach requires a minimal user knowledge about
these sources and of their conflicts.

Under MFA, the user just locates its data sources (e.g., web sites), builds the
multi-data source schema, and submits the queries. Submitting queries may be ac-
complished before resolving all the conflicts between data sources: users have the
possibility to add (or refine) conflicts later in order to increase gradually the accu-
racy of their queries. This approach facilitates the integration of new data sources
or deletion of an existing source. It also provides some languages that permit to de-
fine and retrieve data from multiple data sources while taking into account conflicts
between sources.

A data integration system that follows the MFA approach is defined as a triple
〈MS,Si,M〉, where:

• MS is the multi-data source schema;
• Si is the set of data sources’ schemas;
• M is the set of source-to-source mappings expressed as functionals f: TS1 →

TS2; f maps elements s1 appearing in the tree TS1 corresponding to the source
schema S1 into elements s

′
1 appearing in the tree TS2 corresponding to the source

schema S2.

MFA is based on the Multi-data source Fusion Language (MFL). MFL allows the
definition and the retrieval of data originating from conflicting data sources, through
the concept of multi-data source as a set of local sources. MFL is a simple and
powerful language. It facilitates queries over conflicting data sources and controls
the semantics expressed in user queries. For each query posed over a multi-data
source schema, MFL will search for conflicts in the query body. If no conflict is
detected, the query is validated and executed; otherwise three cases may arise (for
more details, we refer the reader to [26, 27, 28]):

1. conflicts can be solved at query execution time by using the available source-to-
source mappings: in this case, the query is validated and executed;

2. conflicts cannot be solved (e.g., in the case of homonymies): the query is
rejected;

3. only a subset of the conflicts can be solved: in this case, only a part of the query,
related to the solved conflicts, will be executed and the results will be returned
to the user with a warning message informing him/her of the detected conflict
nature.

MFL provides two sub-languages [26]: MDL, the Multi-data source Definition Lan-
guage for the definition of a multi-data source, and MRL, the Multi-data source
Retrieval Language for data retrieval from a multi-data source. Defining a multi-
data source in MDL is quite simple and intuitive: a collective name is assigned to
a group of data sources. A collective name simplifies query expression; users spec-
ify inter-source conflicts between elements composing the multi-data source and
store them into an additional specific data source. MRL extends XQuery in order to
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access multiple conflicting data sources through a single query. With MRL, it is
easy to smooth out all semantic data differences which often exist in autonomous
data sources.

In MDL a multi-data source schema is a collection of data source or multi-source
schemas. It can be defined as an XML document, according to the Document Type
Definition (DTD) presented in Figure 11.4. In such DTD, < multisources > and <
source> elements refer to a specific multi-data source or a data source, respectively.
Attribute < name > denotes either the name of a source, of a multi-data source, or
of a property in a data source. Attribute < url > describes the path to reach a data
source. Element < f eature > represents a property of a data source.

Conflicts between data sources are represented in a specific data source (thus,
an XML document) called Conflicts.xml. Such data source represents the set M of
mappings among data sources, specified to deal with conflicts. The structure of Con-
flicts.xml is detailed in Figure 11.5. Three distinct types of semantic and data conflict
information can be represented for elements of a multi-data source: similarity and
dissimilarity (elements Similar and Dissimilar) and scale conflicts (element Scale).
In all the three cases, the children elements Node contain information concerning
the elements involved in the declaration. Thus, any two elements children of ele-
ment Similar are considered as semantically equivalent or synonym; any two ele-
ments children of element Dissimilar are considered as semantically different; any
two elements children of element Scale are considered semantically similar with
conflict of type scale (e.g., currency type).

Scale conflicts are resolved through a service. Element Services specifies the ser-
vices (e.g., functions) devoted to resolve a conflict of a specific type (e.g., currency
type) available in the multi-data source. A service is selected (during a query’s treat-
ment) following the type of conflict that occurs. For example, to resolve a conflict
between two nodes N1 and N2 under a tag Scale with Currency type, a specific ser-
vice corresponding to this type of conflicts may take node N1 as input and returns a
value that conforms with the currency of the second node N2.

Example 2. Figure 11.7 shows the schema of the Genome MDS. It is composed of
two conflicting data sources SL1 and SL2. They are conflicting since they contain el-
ements with the same name. Conflicts are illustrated in Figure 11.6. File Conflict.xml
specifies that features (i.e., element) id1 and Description (in SL1) are respectively
similar to id2 and Description (in SL2).

<!ELEMENT multisources (source|multisources)+) >
<!AT T LIST multisources name CDATA #REQUIRED >
<!ELEMENT source ( f eature)+ >
<!AT T LIST source name CDATA #REQUIRED >
<!AT T LIST source url CDATA #REQUIRED >
<!ELEMENT f eature (#PCDATA)>
<!AT T LIST f eature name CDATA #REQUIRED >

Fig. 11.4 Multi-source DTD.
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Element Children(s) Attribute(s) Description
Conflicts Similar∗, Dissimilar∗, Scale∗, Services∗ - Root element

Similar Node∗ Id Similar elements. Each similar
element has an identifier

Node Path, Elt, Unit? -
Description of a Node (i.e.,
name, path, etc.)

Dissimilar Path, Elt,Path Id Dissimilar elements. Each dis-
similar element has an identifier

Scale Node Type
Scales conflicts
and their types
(e.g., currency)

Services Service∗ Type Available services
Service Name,Path,Convert - Description of a service

Convert Unit1, Unit2 - Information used in conversion
services

Name PCDATA - Text to be parsed
Unit1 PCDATA - Text to be parsed
Unit2 PCDATA - Text to be parsed
Path PCDATA - Text to be parsed
Elt PCDATA - Text to be parsed
Unit PCDATA - Text to be parsed

Fig. 11.5 Structure of data source conflicts; labels in italic identify element names.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFLICTS SYSTEM "conflicts.dtd">
<CONFLICTS>
<SIMILAR id="s1">

<Node>
<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>id1</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>id2</ELT>

</Node>
</SIMILAR>
<SIMILAR id="s2">

<Node>
<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>description</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>description</ELT>

</Node>
</SIMILAR>
...

</CONFLICTS>

Fig. 11.6 Conflicts between SL1 and SL2.
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Fig. 11.7 Genome MDS.

11.4.2 Methodology for Semantic Reconciliation

Differently from traditional data integration approaches, like BGLAV, MFA does
not require full semantic integration of data sources in order to execute queries on
the multi-data source schema. Rather, mappings could be partial or approximated.
Hence, MFA offers tools for semantic reconciliation between data sources, i.e., for
identifying and solving conflicts between data sources. To this aim, ontologies can
be used as part of the integration approach. Alternative approaches should be used
whenever no ontology is available for the domain at hand. Examples of alternative
methods are: similarity functions between data source elements; methods that in-
fer mappings from answers of queries executed over data sources. The discovered
semantic mappings are stored in the data source Conflicts.xml, as described in Sec-
tion 11.4.1, and used later by the query rewriting module in order to answer queries.
A user which is unsatisfied of the answers has the opportunity to add (or modify)
mappings and submit once again its query. In doing so, the data source Conflicts.xml
is gradually enriched and the quality of responses becomes increasingly accurate.

Figure 11.8 illustrates a methodology of reconciliation between data sources. The
method relies on an ontology for defining concepts, properties, and relationships
between these concepts. The usage of an ontology allows the user, at one side, to
clearly specify the interest domain and, at the other side, improves the user’s knowl-
edge about the data source by clarifying the meaning of all its elements. For exam-
ple, a user interested in a Biological domain must specify an ontology conformed to
this domain. The user can then assign to each element of the data source schema
the equivalent semantic element in the specified ontology. This step involves a
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Fig. 11.8 Approach for semantic reconciliation between data sources.

semantic enrichment of the data source schema; such enrichment can be repre-
sented as an XML document conformed to the DTD presented in Figure 11.9, called
SemEnr.dtd.

<!ELEMENT source (ontology+) >
<!AT T LIST source name CDATA #REQUIRED >
<!AT T LIST source url CDATA #REQUIRED >
<!ELEMENT ontology ( f eature)>
<!AT T LIST ontology name CDATA #REQUIRED >
<!ELEMENT f eature (ontology?) >
<!AT T LIST f eature name CDATA #REQUIRED >

Fig. 11.9 Semantic Enrichment DTD.

The next step is to represent data source instances according to the chosen on-
tology language and the semantically enriched data source schemas generated in
the previous step. This conversion is performed by the wrapper component, using a
defined template (e.g., Biological.xslt).
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The final step consists in generating the Conflicts.xml data source. This activity
is performed by the mediator component, which has two main tasks:

1. For each data type property, all the instances sharing that property are grouped
together. Such step can be accomplished by querying directly the ontology. As-
suming the ontology is represented as an OWL/RDF document, ontology queries
can be considered at three different levels [17, 4]: syntactic level by using the
XQuery language; structure level and semantic level by using an RDF query lan-
guage such as RQL [20] and SPARQL [31, 17], respectively. A survey and more
comparative analysis of different query languages has been published in [13].
The result is stored in an XML document named GroupInst.xml.

2. Generate information about similarities (dissimilarities) between data source in-
stances by transforming the document GroupInst.xml, using an appropriate tem-
plate (e.g., Similarity.xslt or Dissimilarity.xslt). The result of this step is stored
in the document Conflicts.xml. In this document, a node with a tag Similar rep-
resents a semantic link between two elements of equivalence or synonym types.
A node with a tag Dissimilar represents a semantic link between two elements
of homonym or disjoint types. Each node, with a tag Similar or Dissimilar, is
associated with an identifier si(di).

11.4.3 Query Processing in MFA

In this section, we highlight MFA query processing. First we provide some neces-
sary background on the type of the supported queries, then we illustrate the query
rewriting steps.

11.4.3.1 Type of Queries in MRL

In MRL, a query is defined as follows:

Use (multi-)datasource1 name1 [,(multi-)datasource j name j]
∗

Allow $ < semantic− variables>
(E)XQuery query
Close name1 [,name j]

∗

Clauses Use, (E)XQuery and Close are mandatory whereas clause Allow is optional.
Clause Use delimits the scope of the query and connects to (multi-)data sources for
processing whilst Close disconnects from such data sources. name j is a given alias
for either a data source or a multi-data source; clause Allow is used for the dec-
laration of semantic variables. Through these variables, the user declares his/her
intention to access data, in a given query, semantically similar and differently
named. An (E)XQuery expression can be formulated as an XQuery query [1] or
as an EXQuery query, as defined in [29]. In this last case, active data sources repre-
senting processing unit (e.g., web services) can also be invoked.
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Fig. 11.10 Classification of MRL queries.

MRL queries can be classified depending on the type of paths (also called desig-
nators) appearing inside the (E)XQuery query component. Indeed, it is important to
distinguish queries which access elements whose tag belongs to a single data source
(elementary queries) from queries which access elements whose tag belongs to sev-
eral data sources (semantic queries). The overall query classification is presented
in Figure 11.10. Elementary and semantic queries can therefore be defined depend-
ing on the type of identifiers they contain. Elementary queries only contain unique
identifiers, as defined below.

Definition 5 (Unique identifier). A unique identifier is a designator that univocally
identifies an element in the scope of the query.

Semantic queries are used when various data sources represent the same universe
in possibly different ways. Semantic queries are also called broadcast queries [24]
because a user may have to broadcast the same query to several data sources. In its
current form, XQuery does not easily capture such situations: indeed, with XQuery,
the user needs to formulate as many queries as there are data sources. In contrast,
semantic queries allow to broadcast the user intention in a single query. This is a
major simplification, especially for a larger scope. Syntactically, semantic queries
are formulated as elementary queries but rely on the usage of multiple identifiers
and semantic variables.

Definition 6 (Multiple identifiers). A multiple identifier is a designator that identi-
fies more than one element in the scope of the query.

Definition 7 (Semantic variables). A semantic variable is a variable whose domain
is a set of elements that are semantically similar.

The aim of semantic variables is to enable the user to broadcast his/her intention
over different elements which are related by similarity relationships inside the Con-
flicts.xml data source. A semantic query with semantic variables is considered as the
set of pertinent elementary sub-queries resulting from all possible substitutions of
semantic variables and multiple identifiers by unique identifiers.

Semantic variables can be declared inside the Allow clause of a MRL query ac-
cording to the following syntax:
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Allow $< semantic− variable> = < designator >[,< designator >]+

< semantic− variable> ::= < simple− variable > | < composed− variable >
< composed− variable > ::=< simple− variable >[.< simple− variable >]+

< simple− variable > ::= < string >
< designator > ::= < string >[.< string >]+

We notice that, in MFA, unlike in BGLAV, we are faced with a single type of queries
where the tree of the user’s query is completely covered by the schemas of data
sources. This is due to the fact that while in BGLAV an element E in the global
schema is mapped into one or several elements (E1, E2, Ei) in the data sources, in
MFA each element E in the global schema is mapped onto itself in the corresponding
data source.

Example 3. Consider the MDS presented in Example 2. The query Q1 below ex-
tracts the description associated with a gene identifier, posed over the Genome MDS.

Q1:

Use Adn ad
Allow $a = id1.id2
For $x in document(’mds’)/Genome/ad
where $x/*/$a=’ENSG000001018941’ or $x/*/$a=’ENSG00000146950’ return

<Result>
$x/*/$a, $x/*/Description

</Result>

In query Q1, variable a is a semantic variable whose domain is {id1, id2}. Feature
Description is a multiple identifier since it designates the Description feature in both
data sources SL1 and SL2.

Example 4. Figure 11.11 describes a multi-data source named DNA, composed of
two static data sources Fragments and List genes. Concat and Convert are two ac-
tive data sources that compose a multi-data source called Services. Conflicts de-
scribes the conflicts between Fragments and List genes (not detailed in this figure).
Services, Conflicts and DNA constitute a multi-data source called Biology which,
in this case, is the root of the overall multi-data source. An MRL query is expressed
directly over the Biology MDS; the answer is the union of answers returned by each
component data source, namely S1 and S2. The only problem that arises here is how
to solve conflicts between elements belonging to the user’query: Subsection 11.4.3.2
details the solution.

11.4.3.2 Query Rewriting in MFA

In this section, we detail step by step the algorithm for Rewriting Semantic Queries
(RSQ) [28]. The overall process involves five steps: (i) query analysis; (ii) creation
of the query tree; (iii) searching for semantic ambiguous elements; (iv) generation
of sub-queries; (v) query execution. In the following, each step will be discussed in
details.
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Fig. 11.11 Examples of queries in MFA.

Step 1: Query analysis (see Algorithm 1). This step consists in analyzing clauses
Use, Allow, For (or Let) and Return (the last three appearing in the (E)XQuery
query) of an input MRL query. It returns the following tables:

• table MsoVarTab, containing the names of data sources or multi-data sources
with their related aliases;

• table SemVarTab, containing the semantic variables that have been specified in
the Allow clause and their corresponding definition;

• ConVarTab, containing the different context variables specified in clauses For or
Let and their respective values;

• ResVarTab, containing the (sub-)set of context variables specified in the clause
Return.

The outcome of Step 1 for the query presented in Example 3 is illustrated in
Figure 11.12.

Step 2: Creation of the query tree (QTree) (see Algorithm 2). Information gath-
ered in Step 1 (MsoVarTab, SemVarTab, ConVarTab, ResVarTab) is used to build

Fig. 11.12 Analysis of the query’s clauses.
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Algorithm 1. AnalyseQuery(QMRL): Analysis of the user query.
Require: Input: QMRL MRL query which is syntactically correct

Output: MsoVarTab, SemVarTab, ConVarTab and ResVarTab:
MsoVarTab contains the names of multi-data sources and their alias present in the clause
Use
MsoVarTab contains the semantic variables present in the clause Allow
ConVarTab contains the variables declared in the body of the query
ResVarTab contains the variables present in the clause Return

1: Initially, these variables are Empty.
2: MsoVarTab ⇐ AnalyseClauseUse(Use)
3: SemVarTab ⇐ AnalyseClauseAllow(Allow)
4: ConVarTab ⇐ AnalyseVarOfQuery(Body)
5: ResVarTab ⇐ AnalyseVarOfQuery(Return)
6: Return MsoVarTab, SemVarTab, ConVarTab and ResVarTab

the query tree, denoted by QTree. QTree describes the context of each element used
in the query. The context of an element E is defined as the path that connects the
root of the MDS to E . Each node in the QTree is labeled either with the path char-
acterizing a given data source or with the path characterizing an element inside a
data source. Paths are generated from those appearing in the query by replacing
each variable with the corresponding values, according to the content of the input
tables. Each leaf node in QTree is decorated with the two following information: (1)
the set of conflict identifiers in Conflicts.xml where the element associated with the
leaf node appears; (2) the name of the variables in clause Return (e.g., $a) in which
the element associated with the leaf node appears. These information are used later
in order to generate semantically coherent sub-queries. The result of this step is
illustrated in Figure 11.13.

Fig. 11.13 QTree Creation.

Step 3: Searching for Semantically Ambiguous Elements (see Algorithm 3). For
the sake of simplicity, we suppose that the query tree is represented through a table
called QTab. QTab contains a column for each data source involved in the query
and a row for each variable specified in the Return clause of the query. The table
cell corresponding to a given data source S and a given variable x contains a set of
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Algorithm 2. BuildQueryTree(MsoVarTab,SemVarTab,ConVarTabandResVarTab):
Construction of the tree of the query.
Require: Input: MsoVarTab, SemVarTab, ConVarTab, ResVarTab

Output: QTree
1: QTree ⇐ /0 { Tree of the query}
2: QTree ⇐ BuildTree(MsoVarTab, SemVarTab, ConVarTab, ResVarTab)
3: QTree ⇐ EnrichedTree(QTree,Conflicts.xml)
4: Return QTree

elements assigned to x in S. Each element can be associated with either a unique
or multiple identifier in the query. The set is empty if no element in S is associated
with x in the query.

Algorithm 3 checks each element in QTree as follows: if an element is a multi-
ple identifier for a data source (i.e., it is associated with at least two contexts inside
a data source), then this element is considered semantically ambiguous and conse-
quently the QTree is ambiguous. In the example illustrated in Fig 11.14, QTree is
not ambiguous and we move to Step 5.

Algorithm 3. Check(QTree): Search ambiguous elements in QTree.
Require: Input: QTree

Output: Boolean
1: Boolean ⇐ CheckQTree(QTree) { Checks if any element in QTree is semantically am-

biguous}
2: Return True or False

Fig. 11.14 Checking semantic conflicts in QTab.

Step 4: SubTrees Generation (see Algorithm 4). This step is invoked only if
QTree has been considered ambiguous in the previous step. Recall that QTree con-
tains all semantic information about the user’s query. This tree allows to check all
semantic equivalences between elements and therefore all query conflicts. A Sub-
Tree is a semantic tree with the same structure of QTree but with the following
restriction: each return variable and each data source in a SubTree is associated
with elements (if any) defined within a single context (i.e., unique identifiers). Each
SubTree leads to a set of pertinent sub-queries, which are semantically coherent.
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When QTree is considered ambiguous, it means that one identifier is associated
with an element with at least two contexts. in a data source. In this case at least two
semantic trees (SubTrees) are generated. The overall idea is hat of separating each
context in a sub-tree. Thus, each sub-tree contains only elements of the query which
are semantically coherent.

From there, the generation of SubTrees requires the control of conflicts between
elements of the QTree. Controlling conflicts between elements consists in checking,
for each variable of a user’s query (e.g., $a, given in a row) and for each data source
involved in the query (given in column), the elements that have similar identifiers
(i.e., the elements designated with the same number si means that these elements are
semantically similar). The result is stored in the corresponding SubTree. This task
is repeated until all cases are processed and the set of SubTrees is generated.

Algorithm 4. GenerateSubTrees(QTree): Generate SubTrees which are semanti-
cally coherent.
Require: Input: QTree

Output: at least two trees (SubTree) are generated
1: SetOfSubTrees ⇐ /0

{while remains cases not treated:}
2: while true do
3: SubTree ⇐ GenerateSubTree()

{Generate empty SubTree having the same structure as QTree}
4: for all Variable (V) ∈ QTree do
5: SimilarElement ⇐ CheckConflicts(V,QTree)

{for a variable V (e.g., $a) asked by the user in the clause RETURN of the query,
check conflicts between elements through the set of data sources involved in this
query, and returns similar elements}

6: SubTree ⇐ UpdateSubTree(V, SimilarElement)
{Update the SubTree which is semantically consistent}

7: end for
8: SetOfSubTrees ⇐ SetOfSubTrees ∪ SubTree
9: end while

10: return SetOfSubTrees

Step 5: Generate pertinent sub-queries and Query Execution Plan (see Algo-
rithm 5). For each SubTree, a set of pertinent sub-queries is generated, which are
semantically coherent with each others. Each generated sub-query is an (E)XQuery
expression. This step generates ultimately the query plan for each local source.

Notice that, in a general settings, since the number of sub-queries can be very
high, after this step the user has three choices:

1. to refine his/her query semantically;
2. to execute the sub-queries which require the maximal number of data sources

(and/or a minimum number of missing elements in the sub-queries);
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3. by default, to browse the whole set of possible responses. This last choice is not
realistic since exploring this set is costly.

Algorithm 5. GenerateQEP(SetOfSubTrees): Generate sub-queries.
Require: Input: SetOfSubTrees

Output: Query Execution Plan (QEP)
1: for all SubTree ∈ SetOfSubTree do
2: subqueries ⇐ GenerateSubQueries(SubTree)

{Generate semantically consistent subqueries}
3: Scheduling(P)
4: Save(P)
5: Return P
6: end for

Example 5. Query Q1 presented in Example 3, during Step 5, is decomposed into
two sub-queries Q11 and Q12, to be executed over data sources SL1 and SL2,
respectively.

Q11:

For $x in document(’SL1’)/liste_gene_X/gene
where $x/id1=’ENSG000001018941’ or $x/id1=’ENSG00000146950’
return

<Result>
$x/id,$x/description

</Result>

Q12:

For $x in document(’SL_2’})/liste/EnsemblGeneID
where $x/id2=’ENSG000001018941’ or $x/id2=’ENSG00000146950’
return

<Result>
$x/id2, $x/description

</Result>

11.5 Application

In this section, we consider an application in Genomics and we discuss query rewrit-
ing performed according to BGLAV and MFA approaches. In particular, we start by
providing the description of the considered data sources, assuming that some restric-
tions exist concerning data access in each source. Then, for both BGLAV and MFA
approaches, we first propose a global schema, i.e., a mediation schema for BGLAV
and a multi-data source schema for MFA. We also provide information about con-
flict management, i.e., a set of correspondence queries for BGLAV and document
Conflicts.xml for MFA. Finally, we present some queries and we show how they can
be rewritten into queries over the data sources.
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11.5.1 Data Source Description

Figure 11.15 illustrates three data sources that contain information about the DNA
of the human X chromosome. Data are extracted from the well known Ensembl
database,2 then split into different files in order to simulate conflicts such as scale
and name conflicts.

Fig. 11.15 Human chromosomes schemas.

We suppose that there are access restrictions on data sources. In our example, we
assume the following constraints:

1. for SL1, the value of the feature [/liste Genes X/Gene/ID] must be specified in
order to access its data;

2. for SL2, the value of the feature [/liste/EnsemblGene ID/ID] must be specified in
order to access its data;

3. for SL3 the value of the feature [/liste/EnsemblGeneID/GeneStart] must be spec-
ified in order to access its data.

11.5.2 BGLAV Illustrating Examples

Figure 11.16 shows the global schema and some correspondence queries between
the schemas of data sources SL1, SL2 and SL3 and this global schema.

2 www.ensembl.org

www.ensembl.org
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Fig. 11.16 Correspondence queries in BGLAV.

First, let us consider query (Q2) that extracts values associated with the identifier
of a given gene. This query illustrates the concept of query introduced in Defini-
tion 3.

Q2:

For $x in document(’S_G’)/Gene_Chr_X/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID,$x/Description,$x/GeneStart,$x/GeneEnd}

</Result>

Query Q2 is decomposed into two sub-queries Q21 and Q22 targeting respectively
SL1 and SL2 and presented below. Data source SL3 is not involved in this query since
the restriction access to this source is not satisfied.

Q21:

For $x in document(’SL_1’)/liste_genes_X/gene
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Aff
<Ids_GO>

<GO_ID> $x/Ids_GO/@GO_ID$ </GO_ID>
</Ids_GO>

</EnsemblGeneID>
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Q22:

For $x in document(’SL_2’)/liste/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Aff, $x/Ids_GO

</EnsemblGeneID>

Now, lets us consider query Q3 below which involves data source SL3:

Q3:

For $x in document(’$S_{G}$’)/Gene_Chr_X/EnsemblGeneID
where $x/GeneStart > ’7770303’ or $x/GeneEnd < 9092647
return

<Result>
$x/ID, $x/Description, $x/GeneStart, $x/GeneEnd,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</Result>

Query Q3 is translated into sub-query Q31 posed over data source SL3 and whose
expression is as follows: Notice that, due to access restrictions on SL1 and SL2, no
sub-queries are generated.

Q31:

For $x in document(’SL_3’)/liste/EnsemblGene_ID
where $x/GeneStart > 7770303 or $x/GeneEnd < 9092647
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</EnsemblGeneID>

11.5.3 MFA Illustrating Examples

Figure 11.17 shows the Genome MDS composed of the three data sources SL1, SL2

and SL3 presented in Figure 11.15 while Figure 11.18 shows part of the conflicts.
Notice that the node<SCALE> describes the elements which are semantically sim-
ilar but in addition they also represent scale conflicts between them. For example,
the two elements GeneStart in the two data sources SL1 and SL2 are similar and
they represent a scale conflict of type Measure.

Consider now query (Q4) that extracts the values associated with a gene identifier.

Q4:

Use Adn ad
For $x in document(’mds’)/Genome/ad
where $x/*/ID=’ENSG000001018941’ or $x/*/ID=’ENSG00000146950’
return

<Result>
$x/*/ID, $x/*/Description, $x/*/GeneStart, $x/*/GeneEnd

</Result>
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Fig. 11.17 The Genome MDS.

In query Q4, id is a multiple identifier since it designates the feature id in the three
data sources SL1, SL2 and SL3. The same remark applies to features Description
and GeneEnd. In addition, id, Description, and GeneEnd are similar both in the
set {SL1, SL2, SL3} and the Conflicts data source (see Figure 11.18). Element
GeneStart is a multiple identifier in the scope of the query and it represents a scale
conflict between the two data sources SL1 and SL2.

Query Q4 is decomposed into two sub-queries Q41 and Q42 targeting respectively
SL1 and SL2. Data source SL3 is not involved in this query since the restriction access
to this source is not satisfied. Sub-query Q41 is an EXQuery expression that involves
a static data source and an active one (i.e., the Gene service), while the second sub-
query is an XQuery expression.

Q41:

For $x in document(’SL1’)/liste_gene_X/gene
For $y in document(’Gene’)/service
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID, $x/Description, $x/GeneEnd, $x/AssociatedName, $x/Aff,
service($y/interpreter,$x/GeneStrart), $x/Ids_GO/@GO_ID

</Result>
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<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFLICTS SYSTEM "conflicts.dtd">
<CONFLICTS>
...

<SIMILAR id=’s4’>
<Node>

<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL3/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
</SIMILAR>
<SCALE type=’Measure’>
<Node>

<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
</SCALE>
...

</CONFLICTS>

Fig. 11.18 Excerpt of conflicts in the Genome MDS.

Q42:

For $x in document(’SL_2’)/liste/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID, $x/Description, $x/GeneStart, $x/GeneEnd,
$x/AssociatedName, $x/Aff, $x/Ids_GO

</Result>

Finally, let us consider query Q5 below:

Q5:

Use Adn ad
For $x in document(’Multi-Data Source’)/Genome/ad
where $x/*/GeneStart > ’7770303’ or $x/*/GeneEnd < ’9092647’
return

<Result>
$x/*/ID, $x/*/Description, $x/*/GeneStart, $x/*/GeneEnd,
$x/*/AssociatedName, $x/*/Affy, $x/*/Ids_GO

</Result>
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Query Q5 is translated into sub-query Q51 below and targets data source SL3:
Q51:

For $x in document(’$SL_{3}$’)/liste/EnsemblGene_ID
where $x/GeneStart > ’7770303’ or $x/GeneEnd < ’9092647’
return

<Result>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</Result>

11.5.4 Evaluation of MFA Queries

In this section, we study the performance of RSQ algorithms. In particular, we focus
on Step 2 of the algorithm, dealing with the generation of the query tree. Recall that
this step substitutes each context variable (e.g., $a) in the input tables with their
corresponding values and validates the correctness of their paths on the multi-data
source schema. The processing of this step is compared with a baseline version
that uses a Cartesian Product (Cart. Prod.) between the set of values taken by the
semantic variables in order to find the valid paths on the multi-data source schema.

Fig. 11.19 Two semantic variables; each variable takes values varying from 2 to 10.

For each experiment, we considered 20 data sources and we assumed the values
taken by each semantic variable vary from 2 to 10. Figure 11.19 shows the case of a
query that uses in its body two semantic variables. In this experiment, the response
time increases faster in the baseline method, based on ’Cartesian Product’, with
the increase of the number of values taken by the semantic variables. Figure 11.20
shows the case of a query that uses in its body five semantic variables. In this exper-
iment, the response time in the baseline method increases dramatically, compared
to RSQ algorithm, with the increase of the number of values taken by the semantic
variables. From the reported experiments, we also observe that the response time is
more sensitive to variations concerning the number of semantic variables in a query
than to the number of values taken by these variables.
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Fig. 11.20 Five semantic variables; each variable takes values varying from 2 to 10.

11.6 Conclusion and Open Issues

In this chapter, we described how to query distributed conflicting web data sources,
by means of two data integration approaches. For illustration purposes, we used con-
crete data drawn from the Genomics domain in a real experimental settings. In order
to tackle the data integration problem, we described two approaches: the first one is
an XML adaptation of a the well know BGLAV, which pertain to the first-generation
of data integration approaches. The second approach, MFA (for multi-source fu-
sion approach) which does not rely on a preexisting mediation schema but rather
on a multi-data source schema composed of various data sources, allows flexibility
and bootstrapping. Although not being directly inspired by the dataspace manage-
ment systems concepts, MFA relates to this second-generation of data integration
approaches.

Because large scale data integration is still a challenge, for future work, we
are planning to extend MFA by leveraging existing automated techniques such as
schema matching and reference reconciliation: this will help in providing initial
correspondences between data sources, hence auto-bootstrapping the system. Feed-
back from a (more or less) skilled user could be solicited in order to accommodate
additional information and build an efficient pay-as-you-go integration system.
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