

Intelligent Systems Reference Library 36

Editors-in-Chief

Prof. Janusz Kacprzyk
Systems Research Institute
Polish Academy of Sciences
ul. Newelska 6
01-447 Warsaw
Poland
E-mail: kacprzyk@ibspan.waw.pl

Prof. Lakhmi C. Jain
School of Electrical and Information
Engineering
University of South Australia
Adelaide
South Australia SA 5095
Australia
E-mail: Lakhmi.jain@unisa.edu.au

For further volumes:
http://www.springer.com/series/8578

Barbara Catania and Lakhmi C. Jain (Eds.)

Advanced Query Processing

Volume 1: Issues and Trends

123

Editors
Prof. Barbara Catania
Department of Computer and
Information Science
University of Genoa
Genoa
Italy

Prof. Lakhmi C. Jain
School of Electrical and
Information Engineering
University of South Australia
Adelaide, SA
Australia

ISSN 1868-4394 e-ISSN 1868-4408
ISBN 978-3-642-28322-2 e-ISBN 978-3-642-28323-9
DOI 10.1007/978-3-642-28323-9
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2012933077

c© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of pub-
lication, neither the authors nor the editors nor the publisher can accept any legal responsibility for any
errors or omissions that may be made. The publisher makes no warranty, express or implied, with respect
to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

The last decade has been characterized by the raise of data intensive applications,
with new data querying needs and novel processing environments. Data integra-
tion applications, Web services, sensors networks, P2P, cloud computing, and host-
ing are only few examples of these emerging technologies. The novel processing
requirements characterizing such new applications and environments made tradi-
tional query processing approaches unsatisfactory and required the development of
specific advanced query processing techniques. The aim of this book is to present
key developments, directions, and challenges concerning advanced query process-
ing for both traditional (i.e., relational) and non-traditional data (like XML and spa-
tial data), either stored or available as a stream. A special emphasis is devoted to
approximation and adaptivity issues as well as to integration of heterogeneous data
sources.

The book could be used as a reference book for senior undergraduate or grad-
uate courses on advanced data management issues, which have a special focus on
query processing and data integration. It is also useful for technologists, managers,
and developers who want to know more about emerging trends in advanced query
processing.

The book is organized into five parts. Each part deals with a specific advanced
query processing issue and contains contributions of researchers, selected by the ed-
itors, which are experts in their respective research areas. The first part of the book
consists of three chapters and deals with preference-based query processing for tra-
ditional relational data. The second part, composed of two chapters, deals with ap-
proximate query processing issues for non-traditional data, like XML and spatial
data. The third part consists of two chapters dealing with continuous query process-
ing in data stream management systems and data warehousing environments. The
fourth part contains two chapters concerning adaptive query processing. Finally, the
fifth part is composed of two chapters dealing with the integration of heterogeneous
data sources and related querying issues.

VI Preface

The editors would like to thank all authors of this book for their insights and
excellent contributions to this book. It was a great honour to collaborate with this
team of very talented experts. Most of them also served as referees for chapters
written by other authors. We wish to thank all of them, as well as all the other
reviewers, for their constructive and comprehensive reviews. Special thanks are due
to the publishing team at Springer, for its valuable assistance during the preparation
of this manuscript.

October 2011 Barbara Catania
Italy

Lakhmi C. Jain
Australia

Contents

1 Advanced Query Processing: An Introduction 1
Barbara Catania, Lakhmi Jain
1.1 Introduction . 1
1.2 Preference-Based Query Processing . 5
1.3 Approximate Query Processing for Non-traditional Data 6
1.4 Continuous Query Processing . 8
1.5 Adaptive Query Processing . 9
1.6 Queries over Heterogeneous Data Sources 10
1.7 Conclusion and Discussion . 11
References . 12

Part I

2 On Skyline Queries and How to Choose from Pareto Sets 15
Christoph Lofi, Wolf-Tilo Balke
2.1 Introduction . 15
2.2 Formalization of Skyline Sets Following the Pareto Semantics . . . 17
2.3 Relaxing the Pareto Semantics . 21
2.4 Summarizing the Skyline . 23

2.4.1 Approximately Dominating Representatives 23
2.4.2 Statistical Sampling Skylines . 24

2.5 Weighting Characteristics of Skyline Points 25
2.5.1 Skycubes and Subspace Analysis 26
2.5.2 SKYRANK . 28
2.5.3 k Most Representative Skyline Points 29
2.5.4 Personalized Top-k Retrieval / Telescope 30

2.6 Cooperative Approaches . 31
2.6.1 Interactive Preference Elicitation . 31
2.6.2 Trade-Off Skylines . 32

2.7 Conclusion and Discussion . 33
References . 34

VIII Contents

3 Processing Framework for Ranking and Skyline Queries 37
Seung-won Hwang
3.1 Introduction . 37
3.2 Related Work . 40

3.2.1 Sorted-Order Algorithms . 40
3.2.2 Partitioning-Based Algorithms . 41
3.2.3 Taxonomy and Generalization . 41

3.3 Framework for Ranking Queries . 42
3.3.1 Preliminaries . 42
3.3.2 Extracting Skeleton . 44
3.3.3 Cost-Based Optimization Strategies 45

3.4 Framework for Skyline Queries . 47
3.4.1 Preliminaries . 47
3.4.2 Extracting Skeleton . 49
3.4.3 Cost-Based Optimization Strategies 53

3.5 Conclusion and Open Issues . 55
References . 55

4 Preference-Based Query Personalization . 57
Georgia Koutrika, Evaggelia Pitoura, Kostas Stefanidis
4.1 Introduction . 57
4.2 Preference Representation . 59

4.2.1 Context Specification . 59
4.2.2 Preference Specification . 61
4.2.3 Combining Preferences . 64
4.2.4 Example: A User Profile . 66

4.3 Personalizing Queries Using Preferences . 68
4.3.1 Preference Selection . 68
4.3.2 Personalized Query Processing . 73

4.4 Preference Learning . 76
4.5 Conclusion and Open Issues . 77
References . 78

Part II

5 Approximate Queries for Spatial Data . 83
Alberto Belussi, Barbara Catania, Sara Migliorini
5.1 Introduction . 83
5.2 Background on Spatial Data and Queries . 86
5.3 A Taxonomy of Query-Based Approximation Techniques for

Spatial Data . 89
5.3.1 Query Relaxation . 89
5.3.2 Approximate Query Processing . 92

Contents IX

5.4 Spatial Top-k Queries . 93
5.4.1 Top-k Ranking Function . 94
5.4.2 Top-k Query Processing Algorithms 96

5.5 Spatial Skyline Queries . 104
5.5.1 Spatial Skyline Queries . 105
5.5.2 Spatial Skyline Query Processing Algorithms 106

5.6 Approximate Query Processing . 112
5.6.1 Approximate Algorithms for Multiway Spatial Join 113
5.6.2 Approximate Algorithms for Distance-Based

Queries . 115
5.6.3 Algorithms Based on Approximate Spatial Data 116

5.7 Towards Qualitative Approximation Techniques for
Spatial Data . 118
5.7.1 From Qualitative to Quantitative Spatial Relations 119
5.7.2 Spatial Top-k Queries Based on Qualitative

Relations . 121
5.7.3 Spatial Skyline Queries Based on Qualitative

Relations . 123
5.8 Conclusion and Open Issues . 124
References . 124

6 Approximate XML Query Processing . 129
Giovanna Guerrini
6.1 Introduction . 129
6.2 Twig Queries . 132

6.2.1 XML Documents . 133
6.2.2 Twig Queries: Definition . 134
6.2.3 (Exact) Twig Query Processing . 135
6.2.4 Twig Queries as a Basis for Approximate Querying 136

6.3 Various Extents of Approximation . 138
6.3.1 Vocabulary . 138
6.3.2 Hierarchical Structure . 140

6.4 Ranking . 142
6.4.1 Tree Edit Distance . 143
6.4.2 An Alternative Match Based Similarity 144
6.4.3 Structure and Content tf · idf Scoring 145
6.4.4 Content Scoring with Structure Filters 146

6.5 Approximate Query Processing . 148
6.5.1 Twig-Path Scoring and Whirpool 148
6.5.2 TopX . 149

X Contents

6.5.3 TASM . 150
6.5.4 ArHeX . 150

6.6 Conclusion and Discussion . 151
References . 153

Part III

7 Progressive and Approximate Join Algorithms on Data Streams . . . 157
Wee Hyong Tok, Stéphane Bressan
7.1 Introduction . 157
7.2 Background . 158
7.3 Why Progressive Joins? . 160
7.4 Joins from Different Data Models Flock Together 161

7.4.1 Relational Joins . 161
7.4.2 Spatial Joins . 163
7.4.3 High-Dimensional Distance-Similarity Joins 164
7.4.4 Progressive XML Structural Joins 164

7.5 Generic Progressive Join Framework . 164
7.5.1 Building Blocks for Generic Progressive Join

Framework . 165
7.5.2 Progressive Join Framework . 166
7.5.3 RRPJ Instantiations . 170

7.6 Progressive Approximate Joins . 170
7.6.1 Extreme Scenario . 171
7.6.2 Measuring the Performance of Progressive,

Approximate Joins . 172
7.6.3 Different Types of Progressive, Approximate Joins 174
7.6.4 Discussion . 180

7.7 Open Issues . 181
7.8 Conclusion . 182
References . 183

8 Online Aggregation . 187
Sai Wu, Beng Chin Ooi, Kian-Lee Tan
8.1 Introduction . 187
8.2 Basic Principles . 190

8.2.1 Statistical Model . 192
8.2.2 Sampling . 193

8.3 Advanced Applications . 194
8.3.1 Online Aggregation for Multi-relation Query

Processing . 194
8.3.2 Online Aggregation for Multi-query Processing 197

Contents XI

8.3.3 Distributed Online Aggregation . 203
8.3.4 Online Aggregation and MapReduce 207

8.4 Conclusion and Discussion . 209
References . 209

Part IV

9 Adaptive Query Processing in Distributed Settings 211
Anastasios Gounaris, Efthymia Tsamoura, Yannis Manolopoulos
9.1 Introduction . 211

9.1.1 Distributed Query Processing Basics 213
9.1.2 Related Work . 214

9.2 A Framework for Analysis of AdQP . 214
9.3 AdQP in Centralized Settings . 215

9.3.1 Overview of Techniques . 215
9.3.2 On Applying Conventional AdQP Techniques in

Distributed Settings . 216
9.4 AdQP for Distributed Settings: Extensions to Eddies 217

9.4.1 Techniques . 218
9.4.2 Summary . 220

9.5 AdQP for Distributed Settings: Operator Load Management 220
9.5.1 Intra-Operator Load Management 221
9.5.2 Inter-Operator Load Management 226
9.5.3 More Generic Solutions . 230

9.6 AdQP for Distributed Settings: Other Techniques 230
9.7 Conclusion and Open Issues . 232
References . 233

10 Approximate Queries with Adaptive Processing 237
Barbara Catania, Giovanna Guerrini
10.1 Introduction . 237
10.2 QoD2 Techniques: Some Examples . 241

10.2.1 Adaptively Approximate Pipelined Joins 241
10.2.2 Adaptive Processing of Skyline-Based Queries over

Data Streams . 243
10.3 QoD-Oriented Approximate Queries . 244

10.3.1 Query Rewriting . 245
10.3.2 Preference-Based Queries . 246
10.3.3 Approximate Query Processing . 248

10.4 QoS-Oriented Approximate Queries . 249
10.4.1 Data Reduction . 250
10.4.2 Load Shedding . 253
10.4.3 Approximation of the Processing Algorithm 254

XII Contents

10.5 Adaptive Query Processing . 254
10.5.1 Adapting Query Plans . 255
10.5.2 Adaptively Coping with Limited Resources under

Fixed Plans . 259
10.5.3 Further Adaptation Subjects . 260

10.6 Conclusion and Discussion . 262
References . 263

Part V

11 Querying Conflicting Web Data Sources . 271
Gilles Nachouki, Mohamed Quafafou, Omar Boucelma,
François-Marie Colonna
11.1 Introduction . 272
11.2 Conflicting Web Data Sources . 274

11.2.1 Overview of Conflict Types . 274
11.2.2 Conflicting Data in Life Sciences 275
11.2.3 Assumptions about Conflict Representation 277

11.3 Mediating Biological Conflicting Data with BGLAV 277
11.3.1 BGLAV Overview . 277
11.3.2 Query Processing in BGLAV . 278

11.4 MFA - Multi-source Fusion Approach . 281
11.4.1 MFA Overview . 281
11.4.2 Methodology for Semantic Reconciliation 285
11.4.3 Query Processing in MFA . 287

11.5 Application . 294
11.5.1 Data Source Description . 295
11.5.2 BGLAV Illustrating Examples . 295
11.5.3 MFA Illustrating Examples . 297
11.5.4 Evaluation of MFA Queries . 300

11.6 Conclusion and Open Issues . 301
References . 301

12 A Functional Model for Dataspace Management Systems 305
Cornelia Hedeler, Alvaro A.A. Fernandes, Khalid Belhajjame,
Lu Mao, Chenjuan Guo, Norman W. Paton, Suzanne M. Embury
12.1 Introduction . 305
12.2 Dataspace Life Cycle . 307
12.3 Background . 309

12.3.1 Dataspace Management Systems . 310
12.3.2 Model Management Systems . 312

12.4 Functional Model . 313
12.4.1 An Overview . 313
12.4.2 Preliminary Assumptions . 314
12.4.3 Intensional Descriptions . 315
12.4.4 Sorts . 318

Contents XIII

12.4.5 Operations . 321
12.5 Bioinformatics Use Case . 329

12.5.1 Example: Dataspace Initialization 329
12.5.2 Example: Dataspace Maintenance 331
12.5.3 Example: Dataspace Improvement 334

12.6 Conclusion and Open Issues . 336
References . 337

Author Index . 343

Subject Index . 345

Editors . 349

List of Contributors

Wolf-Tilo Balke
Institute for Information Systems
Technische Universität Braunschweig
Mühlenpfordtstr. 23
D-38106 Braunschweig - Germany
balke@ifis.cs.tu-bs.de

Khalid Belhajjame
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
khalidb@cs.manchester.ac.uk

Alberto Belussi
Department of Computer Science
University of Verona
Strada le Grazie, 15
Verona, 37134 - Italy
alberto.belussi@univr.it

Omar Boucelma
LSIS-UMR CNRS 6168
Aix-Marseille University
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 - France
Omar.Boucelma@lsis.org

Stéphane Bressan
School of Computing
National University of Singapore
13 Computing Drive
Singapore 117417
Republic of Singapore
steph@comp.nus.edu.sg

Barbara Catania
Department of Computer and
Information Science
University of Genoa
Via Dodecaneso, 35
Genoa, 16146 - Italy
barbara.catania@unige.it

François-Marie Colonna
Institut Supérieur de l’Electronique
et du Numérique
Maison des technologies
Place Georges Pompidou
83000 Toulon - France
francois-marie.colonna@isen.fr

Suzanne M. Embury
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
sembury@cs.manchester.ac.uk

Alvaro A. A. Fernandes
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
a.fernandes@cs.manchester.ac.uk

Anastasios Gounaris
Department of Informatics
Aristotle University
54124 Thessaloniki - Greece
gounaria@csd.auth.gr

XVI List of Contributors

Giovanna Guerrini
Department of Computer and
Information Science
University of Genoa
Via Dodecaneso, 35
Genoa, 16146 - Italy
giovanna.guerrini@unige.it

Chenjuan Guo
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
guoc@cs.manchester.ac.uk

Cornelia Hedeler
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
chedeler@cs.manchester.ac.uk

Seung-won Hwang
Department of Computer Science &
Engineering, POSTECH
790-784 San 31, Hyoja-dong,
Nam-gu, Pohang, Gyoungbuk
Republic of Korea
swhwang@postech.edu

Lakhmi C. Jain
School of Electrical and Information
Engineering
University of South Australia
Adelaide, Mawson Lakes Campus
South Australia SA 5095 - Australia
Lakhmi.Jain@unisa.edu.au

Georgia Koutrika
IBM Almaden Research Center
650 Harry Road
San Jose, California 95120-6099
USA
gkoutri@us.ibm.com

Christoph Lofi
Institute for Information Systems
Technische Universität Braunschweig
Mühlenpfordtstr. 23
D-38106 Braunschweig - Germany
lofi@ifis.cs.tu-bs.de

Yannis Manolopoulos
Department of Informatics
Aristotle University
54124 Thessaloniki - Greece
manolopo@csd.auth.gr

Lu Mao
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
maol@cs.manchester.ac.uk

Sara Migliorini
Department of Computer Science
University of Verona
Strada le Grazie, 15
Verona, 37100 - Italy
sara.migliorini@univr.it

Gilles Nachouki
LINA-UMR CNRS 6241
Nantes University
2, rue de la Houssinière
F-44322 Nantes Cedex 03 - France
Gilles.Nachouki@univ-nantes.fr

Beng Chin Ooi
School of Computing
National University of Singapore
13 Computing Drive
Singapore 117417
Republic of Singapore
ooibc@comp.nus.edu.sg

Norman W. Paton
School of Computer Science
University of Manchester
Oxford Road
Manchester, M13 9PL - UK
norm@cs.manchester.ac.uk

List of Contributors XVII

Evaggelia Pitoura
Computer Science Department
University of Ioannina
GR-45110 Ioannina - Greece
pitoura@cs.uoi.gr

Mohamed Quafafou
LSIS-UMR CNRS 6168
Aix-Marseille University
Avenue Escadrille Normandie-Niemen
13397 Marseille Cedex 20 - France
Mohamed.Quafafou@lsis.org

Kostas Stefanidis
Department of Computer Science and
Enginering
Chinese University of Hong Kong
Sha Tin, New Territories, Hong Kong
SAR - China
kstef@cse.cuhk.edu.hk

Kian-Lee Tan
School of Computing
National University of Singapore

13 Computing Drive
Singapore 117417
Republic of Singapore
tankl@comp.nus.edu.sg

Wee-Hyong Tok
Microsoft China
Blk 635 Veerasamy Road
#10-162, Singapore (200635)
Republic of Singapore
weetok@microsoft.com

Efthymia Tsamoura
Department of Informatics
Aristotle University
54124 Thessaloniki - Greece
etsamour@csd.auth.gr

Sai Wu
School of Computing
National University of Singapore
13 Computing Drive
Singapore 117417
Republic of Singapore
wusai@comp.nus.edu.sg

Chapter 1
Advanced Query Processing: An Introduction

Barbara Catania and Lakhmi Jain

Abstract. Traditional query processing techniques have played a major role in the
success of relational Database Management Systems over the last decade. However,
they do not obviously extend to much more challenging, unorganized and unpre-
dictable data providers, typical of emerging data intensive applications and novel
processing environments. For them, advanced query processing and data integration
approaches have been proposed with the aim of still guaranteeing an effective and
efficient data access in such more complex data management scenarios. The aim
of this chapter is to present the main issues and trends arising in advanced query
processing and to relate them to the various parts of this book. For each part, a brief
description of the background concepts and of the presented contributions is also
provided.

1.1 Introduction

One of the main reasons for the success of Database Management Systems (DBMSs)
and of the main key concepts upon which traditional query processing techniques
have been developed is logical data independence. With logical data independence
we mean the neat separation between the specification of ‘what’ we are searching
for from ‘how’ these searches, specified in terms of queries, are processed. The
system is responsible for transforming declarative queries into execution plans, stat-
ically determined before the processing starts. The result obtained by processing

Barbara Catania
University of Genoa, Italy
e-mail: barbara.catania@unige.it

Lakhmi Jain
University of South Australia, Australia
e-mail: Lakhmi.Jain@unisa.edu.au

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 1–13.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

barbara.catania@unige.it
Lakhmi.Jain@unisa.edu.au

2 B. Catania and L. Jain

the query according to the chosen execution plan is the set of items which exactly
satisfy the specified query conditions.

Since the late 1970s and the introduction of System R [17], this approach has
proved to be highly efficient and effective and it has played a major role in the rela-
tional DBMSs success over the last decades. Efficiency is guaranteed by the usage of
several sophisticated optimization techniques. These techniques heavily rely on the
existence of metadata information about the data which have to be processed, such
as the distribution of values and the selectivity of the relational operators. Effec-
tiveness is guaranteed by the usage of simple declarative languages which perfectly
adhered to the needs of traditional database domains and applications, characterized
by data which have a completely known structure, are executed in stable environ-
ments, and for which a reasonable set of statistical information on data is usually
available.

The query processing language-to-engine stack of classical DBMSs embod-
ies advanced and fundamentally elegant concepts and ideas, that however do not
obviously extend to much more challenging, unorganized and unpredictable data
providers, typical of emerging data intensive applications and novel processing en-
vironments. New applications and environments include, to mention only a few,
data integration applications, web services, Future Web, sensors databases and net-
works, P2P, cloud computing, and hosting. They are characterized by: high network
connectivity and resource sharing (as in data integration applications, Future Web,
cloud computing, and hosting); new types of data availability (data can be stored or
produced as a stream as in sensor databases); high data heterogeneity and incom-
pleteness (as in data integration applications, P2P, and cloud computing); extremely
high variability and unpredictability of data characteristics during the processing
(because transactions could be long-running or the data schema may change during
computation); limited user knowledge about the data which have to be processed and
limited resources with respect to the data volumes under processing (the response
time should be low also in presence of high volume of data as in cloud computing or
sensor databases and the space may not be sufficient to store all of the data, which
are sometimes unbounded, as in data streams).

All the characteristics discussed above make traditional query processing and
data integration approaches not feasible for most of the new processing environ-
ments and lead to a radical modification of query processing requirements. As a
consequence, new query processing approaches have been defined, that we call ad-
vanced. Two main innovative aspects are taken into account by advanced query pro-
cessing techniques. A first issue concerns approximation. Data characteristics (e.g.,
heterogeneity, incompleteness, and uncertainty), resource limitations, huge data vol-
umes, and volatility, typical of the new applications and processing environments,
suggest it may be preferred to relax the query definition, using Query Relaxation
(QR) techniques, or to generate an approximate result set, with quality guarantees,
using Approximate Query Processing (ApQP) techniques, instead of getting an un-
satisfactory answer. An answer can be unsatisfactory because either the user has

1 Advanced Query Processing: An Introduction 3

to wait to long for getting the result, the answer is empty, or the answer contains
too many answers, not very significant for the user needs. Among QR techniques,
Preference-based Query Processing (PQP) techniques take user preferences into ac-
count in relaxing the query. Preferences can be specified either in the query as soft
constraint (Preference-based Queries (PQ)) or inside a user profile. On the other
hand, ApQP approaches generate approximate query results by modifying either
the data to be processed or the processing itself. In both cases, the approximation
is finalized at improving either the quality of the result, in terms of Quality of Data
parameters as completeness or accuracy, or the resource usage, in presence of lim-
ited or constrained resource availability, specified according to Quality of Service
parameters.

A second issue concerns runtime adaptation. The instability of the new envi-
ronments, due to the high network connectivity and heterogeneity of the shared
resources, leads to unpredictability. This in turn leads to the impossibility of stat-
ically devising optimization strategies that will be optimal even beyond the very
short term. At the same time, new processing environments have to deal not only
with stored data but also with data continuously arriving as a stream (as in sensor
networks). Continuous Query Processing (CQP) approaches have therefore been
devised in order to be able to process a query in a continuous way along the time.
For them, statically detected execution plans do not constitute a suitable approach;
rather, the processing has to be adapted to dynamic conditions that may change
during the query execution. This approach leads to the definition of Adaptive Query
Processing (AdQP) techniques. AdQP techniques, which have been defined for both
stored data, in centralized and distributed architectures, and data streams, revise the
chosen execution plan on the fly, during processing, based on the changing condi-
tions. For both ApQP and AdQP techniques, user interaction with the query proces-
sor becomes necessary to guide the processing towards the specific user needs.

Besides their application to stored data and data stream processing, approxima-
tion and adaptivity issues are now taken into consideration also for data integration
of Heterogeneous Data Sources (HDS). This is useful in all situations in which data
sources cannot be predefined but should be selected and combined on-demand, as it
happens in mash-up applications [14].

This book addresses the topics mentioned above by giving contributions re-
lated to advanced query processing for both traditional (i.e., relational) and non-
traditional data (like XML and spatial data), either stored or available as a stream.
A special emphasis is devoted to approximation and adaptivity issues as well as to
integration of heterogeneous data sources. More precisely, the book presents key de-
velopments, directions, and challenges related to preference-based query processing
of stored data, preference-based and approximate query processing of non traditional
data, continuous query processing, adaptive query processing, and query processing
on heterogeneous data sources. The book covers those issues and devotes a separate
part of the book to each of them, according to the following organization:

• PART 1 - Preference-based Query Processing.
• PART 2 - Approximate Query Processing for Non-Traditional Data.

4 B. Catania and L. Jain

Fig. 1.1 An overall picture of the problems and techniques surveyed in this book.

• PART 3 - Continuous Query Processing.
• PART 4 - Adaptive Query Processing.
• PART 5 - Queries over Heterogeneous Data Sources.

Figure 1.1 provides an outline of: (i) the query processing issues considered in
this book; (ii) the problems addressed by each group of query processing tech-
niques (limited user knowledge about data, data heterogeneity, limited resources,
data streams processing, dynamic processing conditions, high resource sharing, and
resources combined on demand); (iii) the parts of this book which cover each issue.
In the figure, each issue is represented as a circle while addressed problems are con-
nected by a line to the corresponding issue. We notice that the considered issues have
been rarely investigated in isolation. Approximate query processing techniques have
also been proposed in order to process preference-based queries. Adaptive solutions
have been provided for approximate or preference-based techniques. Continuous
query processing approaches are by definition approximate, in order to cope with
the unboundness of data streams. Finally, techniques for the integration of heteroge-
neous data sources can be applied in an approximate and adaptive way, to cope with
the heterogeneous nature of very dynamic environments (e.g., dataspaces [7, 9]).

In the following, we dedicate a section to each of the book parts, providing a brief
description of the background concepts related to the presented contributions.

1 Advanced Query Processing: An Introduction 5

1.2 Preference-Based Query Processing

New processing environments, like P2P, cloud computing, Future Web, and sensor
networks, to mention only a few, are characterized by the high heterogeneity and an
extremely high variability and unpredictability of data characteristics, which often
result in inconsistent and ambiguous datasets. Under these conditions, it is really dif-
ficult for the user to exactly specify what she looks for since, at query specification
time, the user knowledge about data may be limited. This may happen even if data
come from just one single source (possibly, because such characteristics may change
during query execution, as in mash-up applications [14]) but the problem is more
evident in distributed architectures, where input data may come from many different
sources, with different formats. As a consequence, the quality of the obtained result,
in terms of completeness and effectiveness, may decrease since interesting objects
may not be returned (empty answer problem) [1]. On the other hand, several un-
interesting answers may be returned, thus reducing user satisfaction (many answer
problem) [1].

A typical approach to cope with the empty and many answer problems consists
in involving the user in the query processing. This can be done by letting the user
specify preferences instead of setting hard query constraints, as it happens in tra-
ditional query processing approaches. When executing a query based on some user
preferences, the best query answers are returned with respect to the user preferences,
even if they only partially satisfy the specified request, relying on preference-based
query processing (PQP) techniques.

Preferences can be either specified inside the query as soft constraint, as it hap-
pens in preference-based queries (PQ), or collected in a user profile. In this second
case, preferences can be used by the query processor to detect and return first the
results assumed to be relevant for the user, based on the specified conditions (query
personalization [13]). In both cases, two main categories of preferences can be de-
vised: quantitative and qualitative. Quantitative preferences can be specified in terms
of a ranking function which, on a database item, returns a numeric value represent-
ing the relevance of that item for the user. Quantitative preferences are often used
for computing, through a top-k query, the best k items, i.e., the k items with the
highest rank [12]. Alternatively, qualitative preferences are specified using binary
predicates to compare items. A simple way to specify qualitative preferences is to
first choose a set of interest attributes, then provide a comparison relationship for the
domain of each attribute in this set, and finally consider the dominance relationship
as the preference relationships between pairs of items [3]. An item A dominates an
item B if A is better than B with respect to at least one attribute and it is at least
equal to B with respect to all the other interest attributes. Qualitative preferences as
the ones just described are typically used in skyline queries, which retrieve the set
of items which are not dominated by any other item.

PQP is usually not an easy task. For what concerns top-k queries, the main issue
is to find efficient algorithms which deal with the largest class of ranking func-
tions and, at the same time, which avoid the computation of the ranks for all dataset
items. While top-k operators return a small result at the price of specifying a ranking

6 B. Catania and L. Jain

function, skyline operators avoid this specification at the price of a larger result set.
Even for two dimensional interest attributes, such result set may be quite large. In
order to cope with such curse of dimensionality, specific solutions usually integrate
both top-k and skyline advantages into a single technique. Additionally, depending
on the type of the considered conditions and queries, query personalization tech-
niques may be very expensive and optimized approaches need to be provided.

The aim of Part I, which consists of three chapters, is to discuss complementary
issues and to present some solutions to PQP problems which have been discussed
above, in the context of traditional relational data. The first two chapters deal with
PQ while the third chapter deals with query personalization.

More precisely, Chapter 2 formally introduces skyline queries and focuses on
drawbacks arising from their usage. A special emphasis is devoted to the curse of
dimensionality problem. The chapter first classifies existing techniques to remedy
this problem, based on the selection of the most interesting objects from the multi-
tude of skyline objects in order to obtain truly manageable and personalized query
results; relevant proposals for each identified class are then described in details.

Skyline queries, together with top-k queries, constitute the topic of Chapter 3.
Existing algorithms for top-k and skyline queries are first considered with the aim
of providing a meta-algorithm framework for each query type. The proposed frame-
work generalizes existing algorithms and it allows the observation of important prin-
ciples, which cannot be observed from the analysis of individual algorithms.

Finally, Chapter 4 deals with query personalization methods. The considered
techniques rely on quantitative user preferences provided as a user profile sepa-
rately from the query and dynamically determine how those profiles will affect the
query results. A detailed discussion concerning how preferences can be represented
and stored in user profiles and how preferences are selected from a user profile and
then applied to a query is provided.

1.3 Approximate Query Processing for Non-traditional Data

Spatial and XML data play a relevant role in new application environments, the first
for the diffusion of geo-referenced data on local and distributed applications, the
second being a de-facto standard for data representation and transmission over the
Web.

While spatial data are characterized by a more complex structure with respect
to relational data, XML documents are semi-structured. This means that structure,
i.e., schema information, is only partially represented inside them. Peculiarities of
both data models require a revision of traditional and advanced query processing
techniques to meet the new data model features and processing requirements.

With respect to traditional, non geo-referenced data, spatial data are character-
ized by an intrinsic complexity. This, from the very beginning, has required the

1 Advanced Query Processing: An Introduction 7

usage of specific query processing techniques, based on approximation. In the first
Geographic Information Systems (GISs) [16], approximation mainly concerned data
capture and data representation, that is, the accuracy concerning absolute and rela-
tive positions of objects in the embedded space which directly influences the accu-
racy of query results. Query processing techniques for spatial data usually require
the approximation of arbitrary geometric data to simpler objects, such as rectangles
or convex polygons [16]. Such simpler objects are then indexed and used to answer
queries under a filtering-refinement approach.

When considering XML documents, traditional queries are expressed through
standard XML query languages, such as XPath [19] and XQuery [20]. These lan-
guages extend relational languages to a tree-based structure, typical of XML data,
and are built on the assumption of a regular structure with well-defined parent/child
relationships between the nodes. They allow one to specify conditions over specific
parts of the XML trees and return as query result a new XML document, gener-
ated starting from the subtrees of the original XML tree which satisfy the specified
conditions.

Traditional languages and query processing approaches for spatial and XML data
are not sufficient to cope with data intensive applications and advanced processing
environments. Solutions to the empty and the many answer problems, such as those
introduced in Section 1.2 and presented in Part 1 of this book, and ApQP techniques
have been provided for non-traditional data, possibly revising and extending solu-
tions already defined for relational data. For spatial data, techniques for relaxing or
approximating spatial queries to be executed, instead of data to be processed, have
been proposed. For XML data, solutions to relax content and structure conditions in
queries on XML document collections and approximate processing techniques that
are tolerant to significant variability in document structures have been provided.

Part II consists of two chapters presenting issues concerning PQ and ApQP tech-
niques for stored spatial data and XML documents, respectively.

Approximation techniques for spatial data are the topic of Chapter 5. The chap-
ter focuses on second-generation approximation techniques (either based on QR or
ApQP approaches) which, differently from traditional approximation approaches
for spatial data approximate the query result to be produced and not the data to be
processed. Such techniques are first surveyed and then the issues that need further
investigation are pointed out. Among them, a special emphasis is given to new types
of preference-based queries relying on qualitative relations (namely, topological,
cardinal, and distance-based relations).

Issues concerning query relaxation for XML documents are the topic of Chapter
6. Approaches to relax both content and structure conditions in queries on XML
document collections and to rank results according to some similarity measure, as
well as top-k processing approaches to efficiently evaluate them, are first classified
and alternative solutions are discussed in details.

8 B. Catania and L. Jain

1.4 Continuous Query Processing

In traditional application environments, data is first gathered and then stored, in ei-
ther centralized or distributed architectures. However, the ubiquitous network con-
nectivity, characterizing most of the new application environments, allows data to
be delivered as a stream. A stream is a continuous, potentially unbounded, volumi-
nous, real-time, sequence of data elements, instances of a variety of data models
(e.g., relational, spatial, high-dimensional, XML). Each data item in a stream usu-
ally represents either a notification that an interaction between entities, e.g., a credit
card purchase, has taken place (transactional stream) or a notification that some en-
tity has changed, e.g., the temperature of a room has changed (monitoring stream).

In order to process data streams, besides traditional one-time queries, which are
evaluated once over a point-in-time snapshot of the dataset, with the answer re-
turned to the user, continuous (also called progressive) queries become relevant.
Continuous queries are evaluated continuously as data streams continue to arrive;
query results are then continuously updated (e.g., for aggregates) or produced as a
new stream (e.g., for join) as new data arrive. Continuous query processing (CQP)
on data streams requires advanced approaches which should reconsider most of the
basics of queries on stored data [15]: not only transient, but also persistent (contin-
uous) queries need to be processed; query answers are necessarily approximate due
to the unboundedness of the stream leading to window joins to limit scope and to
synopsis structures to approximate aggregates; because of the hardware constraints
of mobile devices or/and the massive amounts of data that need to be processed, the
size of the main memory is limited with respect to the data to be processed; data
delivery is unpredictable.

Data streams can also be generated during query processing, as it happens in on-
line aggregation in data warehousing contexts [11]. In this case, aggregation queries
are employed to create a statistical result for decision making and represent one of
the most expensive queries in database systems. In order to reduce the processing
cost, and instead of changing the computing models, ApQP techniques, like online
aggregation, can be used. The idea of online aggregation is to continuously draw
samples from the database; the samples are then streamed to the query engine for
processing the query and the query results are refined as more samples are retrieved.
The processing strategy of online aggregation is similar to the one used in contin-
uous queries on data streams. Continuous samples retrieved from the database can
be considered as a stream and the query is evaluated against the stream. At a certain
point of the computation, if the user is satisfied with the current results, she can ter-
minate the processing to save the cost. If the user does not specify her preference,
the query will run to the end and the precise results are returned.

Part III consists of two chapters that cover complementary issues concerning CQP.
Chapter 7 deals with the design and the implementation of join algorithms for

data stream management systems, where memory is often limited with respect to
data to be processed. A framework for progressive join processing, which can be
used for various data models, is presented. Instantiations of the proposed framework

1 Advanced Query Processing: An Introduction 9

over different data models (relational, high-dimensional, spatial, and XML data) are
also provided. Issues concerning the approximate processing of progressive join are
finally discussed.

Online aggregation is the topic of Chapter 8. Besides introducing the basic prin-
ciples of online aggregation, focusing on the sampling approach and the estimation
model used to improve performance, the chapter also reviews some new applica-
tions built on top of it. Techniques for online aggregations in presence of multiple
relations, multiple queries, distributed environments, and MapReduce architectures
are discussed in details. Challenges of online aggregation and some future directions
are also pointed out.

1.5 Adaptive Query Processing

The higher and higher resource sharing and the increasing interactivity in new pro-
cessing environments make even those data properties that are traditionally con-
ceived as static (such as relation cardinality and number of distinct values for an
attribute) difficult to be known a priori and to be estimated. As a consequence, the
traditional plan-first execute-next query processing model, according to which a
query is processed following an execution plan selected on the basis of data statis-
tics and a query optimization strategy, and then executed according to this plan
with little or no run-time decision making, has begun to show its weaknesses. The
need thus emerged to adapt the processing to dynamic conditions, revising the cho-
sen execution plan on the fly, giving up the a priori selection of a single execu-
tion strategy, fixed before processing starts. In this case, query processing is called
adaptive [6].

Adaptive query processing (AdQP) techniques have been proposed for various
processing contexts, for both precise and approximate query execution. The main
motivation for AdQP in local query processing is correcting optimizer mistakes,
mainly due to unavailability of statistics as well as out to date statistics about at-
tribute correlations and skewed attribute distributions. Parametric queries are an-
other motivations for AdQP in this context. Similar issues arise in data management
systems that support queries over autonomous remote data sources, in order to cope
with query executions involving one or more sources for which no statistics are
available. Adaptivity in distributed environments is also relevant in order to maxi-
mize CPU utilization, given the potentially changing rate at which data are received
from the distributed data sources. Based on the characteristics of data streams, query
operators and plans are necessarily adaptive: reacting to changes in input character-
istics and system conditions is a major requirement for long-running query pro-
cessing over data streams. For instance, stream arrival may be bursty, unpredictably
alternating periods of slow arrival and periods of very fast arrival. The system con-
ditions as well, e.g., the memory available to a single continuous query, may vary
significantly over the query running time. In a situation where no input statistics

10 B. Catania and L. Jain

are known initially and input characteristics as well as system conditions vary over
time, all the relevant statistics are estimated during execution.

Part IV consists of two chapters presenting problems, existing solutions, and trends
in AdQP.

Chapter 9 surveys AdQP techniques for distributed environments. To this aim,
a common framework is adopted for the classification of existing approaches. The
framework decomposes the adaptivity loop into the monitoring, analysis, planning
and actuation (or execution) phases. Differences between the main distributed AdQP
techniques developed so far and their centralized counterparts are also discussed in
details.

New trends in AdQP are considered in Chapter 10. In particular, after classifying
adaptive and approximate techniques with respect to various parameters, includ-
ing their goal (either Quality of Service (QoS)-oriented or Quality of Data (QoD)-
oriented), the chapter shows that techniques applying QoD-oriented approximation
in a QoD-oriented adaptive way, though demonstrated potentially useful on some
examples, are still largely neglected. Some hints concerning how existing adaptive
techniques can be extended to the new identified scenarios are also provided.

1.6 Queries over Heterogeneous Data Sources

The increasing number of independent data sources that are available for remote
access by applications makes the problem of reconciling semantic heterogeneity
among such sources a must. This problem has been traditionally referred to as data
integration problem [2, 10] and has been the focus of attention for more than fifteen
years, for both industry and academia.

Initial proposals for data integration approaches rely on a mediator-wrapper ar-
chitecture by which a global schema is designed and the semantic integration is
performed before query execution. Queries are then specified upon such global
schema and specific wrappers are encharged of translating them upon the local
source schemas [8]. Such kind of solutions works well assuming that the schema
of each local source is known a-priori and static and that executable expressions can
be derived in order to translate concepts appearing in one schema (the global one)
into concepts appearing into another schema (a local one).

Unfortunately, such assumptions are not satisfied by data managed in new pro-
cessing environments, where data sources to be integrated are selected and com-
bined on-demand (as in mash-up applications [14]). As a consequence, the idea of
pay-as-you-go data integration has emerged as an alternative approach to mediation-
wrapper architectures. The basic idea is that in such new environments it is usually
better to produce some tentative results in a short time than to have all precise re-
sults but waiting long or even to have nothing at all. This result can be generated in
two steps through an adaptive process: first, a partial result is automatically gener-
ated, then it is continuously improved based on user feedback. Thus, pay-as-you-go

1 Advanced Query Processing: An Introduction 11

Fig. 1.2 Relationships between the chapters presented in the book.

integration approaches introduce a sort of approximation and adaptation in data inte-
gration architectures and, as a consequence, in queries executed upon them. Datas-
paces [7, 9] represent an abstraction in data management upon which pay-as-you-go
integration approaches have been proposed.

Part IV consists of two chapters, dealing with distinct approaches concerning inte-
gration and queries of HDS.

Chapter 11 deals with the problem of querying conflicting data spread over mul-
tiple web sources. First, a traditional solution to this problem is presented and
limitations discussed; then, a more advanced approach to this problem is provided.
Both approaches are illustrated in using genomic data sources accessible through
the Web.

Dataspace management systems (DSMSs) are the topic of Chapter 12, where a
comprehensive model of DSMS functionalities using an algebraic style is presented.
To this aim, a dataspace life cycle is first provided. Then, the relationships be-
tween dataspaces and automatic-mapping generation, based on model management
techniques, are investigated. Relevant model-management capabilities are then for-
mulated in an algebraic structure and the core functionality of a DSMS are charac-
terized as a many-sorted algebra. As a consequence, the core tasks in the dataspace
life cycle are represented as algebraic programs.

1.7 Conclusion and Discussion

In this chapter, we shortly discussed some of the most relevant issues arising in ad-
vanced query processing and we related them to the contributions presented in this

12 B. Catania and L. Jain

book. As pointed out by Figure 1.1, the considered issues have been rarely consid-
ered in isolation. To increase book readability, Figure 1.2 describes the relationships
existing between the chapters presented in this book. An arrow from Chapter i to
Chapter j means that Chapter i refers some of the issues discussed in Chapter j.

Of course, several additional topics related to advanced query processing exist
which are not surveyed by this book. Among them, we recall: additional types of
queries and related processing (e.g., keyword-based queries [4]); query processing
for specific advanced data models and architectures (e.g., graph-based data mod-
els [5] and, more generally, noSQL databases [18]). Even if specific issues re-
lated to this topics are not addressed by this book, the main reference problems
(preferences, approximation, adaptivity, data integration) are in common with those
here discussed. We therefore hope that the presented contributions will also be use-
ful to the readers in the investigation of further advanced query processing topics.

References

1. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query
Results. In: CIDR (2003)

2. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Comput. Surv. 18(4), 323–364 (1986)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430
(2001)

4. Chaudhuri, S., Das, G.: Keyword Querying and Ranking in Databases. PVLDB 2(2),
1658–1659 (2009)

5. Cheng, J., Ke, Y., Ng, W.: Efficient Query Processing on Graph Databases. ACM Trans.
Database Syst. 34(1), 1–48 (2009)

6. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and
Trends in Databases 1(1), 1–140 (2007)

7. Franklin, M.J., Halevy, A.Y., Maier, D.: From Databases to Dataspaces: A New Abstrac-
tion for Information Management. SIGMOD Record 34(4), 27–33 (2005)

8. Halevy, A.Y.: Answering Queries Using Views: A Survey. The VLDB Journal 10(4),
270–294 (2001)

9. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of Dataspace Systems. In: PODS,
pp. 1–9 (2006)

10. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data Integration: The Teenage Years.
In: VLDB, pp. 9–16 (2006)

11. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: SIGMOD Conference,
pp. 171–182. ACM Press (1997)

12. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques
in Relational Database Systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)

13. Koutrika, G., Ioannidis, Y.: Personalizing Queries based on Networks of Composite Pref-
erences. ACM Trans. Database Syst. 35(2), 1–50 (2010)

14. Lorenzo, G.D., Hacid, H., Paik, H.Y., Benatallah, B.: Data Integration in Mashups.
SIGMOD Record 38(1), 59–66 (2009)

15. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S.,
Olston, C., Rosenstein, J., Varma, R.: Query Processing, Approximation, and Resource
Management in a Data Stream Management System. In: CIDR (2003)

1 Advanced Query Processing: An Introduction 13

16. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases - With Applications to GIS.
Elsevier (2002)

17. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access
Path Selection in a Relational Database Management System. In: SIGMOD Conference,
pp. 23–34 (1979)

18. Stonebraker, M.: SQL Databases vs. NoSQL Databases. Commun. ACM 53(4), 10–11
(2010)

19. W3C: XML Path Language (XPath) 2.0 (2007),
http://www.w3.org/TR/xpath20/

20. W3C: XQuery 1.0: An XML Query Language (2007),
http://www.w3.org/TR/xquery/

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 15–36.
springerlink.com © Springer-Verlag Berlin Heidelberg 2013

Chapter 2

On Skyline Queries
and How to Choose from Pareto Sets

Christoph Lofi and Wolf-Tilo Balke*

Abstract. Skyline queries are well known for their intuitive query formalization
and easy to understand semantics when selecting the most interesting database
objects in a personalized fashion. They naturally fill the gap between set-based
SQL queries and rank-aware database retrieval and thus have emerged in the last
few years as a popular tool for personalized retrieval in the database research
community. Unfortunately, the Skyline paradigm also exhibits some significant
drawbacks. Most prevalent among those problems is the so called “curse of di-
mensionality” which often leads to unmanageable result set sizes. This flood of
query results, usually containing a significant portion of the original database, in
turn severely hampers the paradigm’s applicability in real-life systems. In this
chapter, we will provide a survey of techniques to remedy this problem by choos-
ing the most interesting objects from the multitude of skyline objects in order to
obtain truly manageable and personalized query results.

2.1 Introduction

The ever growing amount of available information is one of the major problems of
today’s information systems. Besides solving the resulting performance issues, it
is imperative to provide personalized and tailored access to the vast amount of
information available in information and data systems in order to avoid flooding
the user with unmanageably large query results.

Christoph Lofi
Technische Universität Braunschweig, Germany
e-mail: lofi@ifis.cs.tu-bs.de

Wolf-Tilo Balke
Technische Universität Braunschweig, Germany
e-mail: balke@ifis.cs.tu-bs.de

16 C. Lofi and W.-T. Balke

As a possible remedy to this problem, Skyline queries [1] have been proposed,
filling the gap between set-based SQL queries and rank-aware database retrieval
[2]. Due to the paradigm elegance and simplicity, it has stirred a lot of interest
within the database community in recent years. Skyline queries rely on the notion
of Pareto dominance, i.e., given the choice between two objects, with one object
being better with respect to at least one attribute but at least equal with respect to
all other attributes, users will always prefer the first object over the second one
(the first object is said to dominate the second one). This simple concept can be
used to implement an intuitive personalized data filter as dominated objects can be
safely excluded from the data collection, resulting in the Skyline set of the query.
The semantic justification of this filter is easy to see using an example: if two car
dealers in the neighborhood offer the same model (with same warranties, etc.) at
different prices, why should one want to consider the more expensive car?

In order to compute the Skyline set in a personalized fashion, the user needs on-
ly to provide so-called ceteris paribus (“all other being equal”) preferences on
each individual attribute (e.g., “lower prices are better than higher prices given
that all other attributes are equal”). Although, many works on skyline queries only
consider numerical domains and preferences [1,3,4], skylining can generally also
be extended to qualitative categorical preferences (e.g., on colors, “given two cars
with free color choice, a black car would be better than a red car”) which are
usually modeled as partial or weak orders [5,6]. Furthermore, many of these prefe-
rences don’t require any user input during elicitation as they can be deducted from
common content in the collection of user profiles (e.g., preferences on price; no
reasonable user would prefer the same object for a higher price).

This focus on individual attribute domains and the complete fairness of the Pa-
reto paradigm are the major advantages of skyline queries: they are easy to specify
and the algorithm will only remove definitely suboptimal objects. However, these
characteristics also directly lead to the paradigms major shortcomings: Skyline
queries completely lack the ability to relate attribute domains to each other and
thus prevent compensation, weighting or ranking between attribute domains. This
often results in most objects being incomparable to each other and thus generally
causes skyline sets to be rather large, especially in the quite common case of anti-
correlated attribute dimensions. This effect is usually referred to as “curse of
dimensionality”. It has been shown (under certain assumptions on e.g. the data
distribution) that the skyline size grows roughly exponential with the number of
query attributes [7,8]. However, there is still no reliable and accurate algorithm for
predicting skyline sizes given arbitrary database instances and user preferences.
Experimentally, it has been validated that already for only 5 to 10 attributes, sky-
lines can easily contain 30% or more of the entire database instance [1,9,10]
which is a size clearly unmanageable for most users, rendering the skyline para-
digm inapplicable for many real-world problems.

Thus, reducing the size of result sets by choosing the most interesting or most
relevant objects from the skyline is a major and prominent problem. However, “inte-
restingness” is usually individual perception and is specific for each user and is thus
hard to formalize. Nevertheless, for rendering the skyline paradigm useful for
common real world scenarios, such techniques are mandatorily required. According-
ly, an impressive number of approaches have been developed in the recent years

2 On Skyline Queries and How to Choose from Pareto Sets 17

introducing various heuristics for capturing the semantics of “interesting” in order to
choose meaningful and manageable subsets from skylines in an efficient manner.

Generally speaking there are four major approaches to address the problem:

• Relaxation of Pareto Semantics use weaker variants of the Pareto semantics
which less likely lead to incomparability between database objects. These
approaches include for example Weak Pareto Dominance or k-Dominant
Skylines and are discussed in Section 2.3.

• Summarization approaches are presented in Section 2.4 and aim at return-
ing a representative subset which still maintains the diversity and flavor of
the original skyline set. Often such approaches are intended to enable the
user to grasp a quick overview of the whole skyline set. Examples are Sta-
tistical Sampling Skylines and Approximately Dominating Representatives.

• Weighting approaches try to induce a ranking on the Pareto incomparable
skyline items based on some structural or statistical properties of the data
set. Usually, they numerically quantify the “interestingness” of a skyline
object explicitly and return the k-most interesting objects. These approach-
es are showcased in Section 2.5 and are often based on extensive subspace
skyline computation. They include for example Top-K Frequent Skyline,
Skyrank, or Personalized Top-k Retrieval.

• Cooperative approaches, presented in Section 2.6, interactively try to elicit
more information from users to refine the preferences in order to focus the
skyline sets in a personalized fashion. While abstaining from using heuris-
tics for selecting the skyline objects, they impose an additional interaction
overhead on the user. These approaches include for example Trade-Off
Skylines.

After introducing the basic formalities necessary for modeling preferences and
computing skylines, we will present selected techniques for each of these major
approaches.

2.2 Formalization of Skyline Sets Following the Pareto Semantics

Before we survey the field of skyline selection algorithms let us formally introduce
the skyline paradigm and the underlying Pareto semantics. Skyline sets can be
defined for every database relation … over attributes. Assessing a
preference for the values in domains of each attribute, users can provide a set of
up to complex attribute preferences to personalize the skyline retrieval process:

• A preference on an attribute with domain is a strict partial order
over . If some attribute value is preferred to some other value

, then , . This is often written as (read “ domi-
nates wrt. to ”).

• Analogously, an equivalence on some attribute is an equivalence
relation on compatible with (i.e., no tuple in may contradict a
tuple in the transitive closure of). If two attribute values , are
equivalent, i.e., , , we write .

18 C. Lofi and W.-T. Balke

• Finally, if an attribute value is either preferred over, or equivalent
to another value , we write .

As an example, assume some preferences for buying a car considering the attributes
price, color, horsepower, and air conditioning as illustrated in Figure 2.1.

Fig. 2.1 Example
partial order prefe-
rences for the domain
of cars.

Skyline sets as introduced in [1] are defined using the Pareto semantics from
the field of economy [11]: some object dominates an object , if and only if
is preferred over with respect to any attribute and is preferred over or
equivalent to with respect to all other attributes. Formally the dominance rela-
tionship is denoted as and can be expressed as given in Definition 2.1.

Definition 2.1 (Dominance Relationships following Pareto Semantics). 1, … : o , o , 1, … , : o , o , where o ,
denotes the i-th component of the database tuple o .

The skyline set (or Pareto skyline) can then be defined as the set of all non-
dominated objects of the database instance with respect to all preferences
following the Pareto semantics:

Definition 2.2 (Skyline Set). |

For actually computing a skyline set, there are multiple algorithms available which
can be classified into Block Nested Loop algorithms, Divide-and-Conquer algo-
rithms, and Multi-Scan Algorithms. Basically, each object has to be compared to
each other one and tested for dominance. However, advanced algorithms try to
avoid testing every object pair by employing optimizations and advanced tech-
niques to eliminate as many objects as possible early in the computation process.
Efficient skyline algorithms thus require only a fraction of the number of object
dominance tests than less sophisticated algorithms.

Block-Nested-Loop (BNL) algorithms are probably the most popular algorithm
class and were developed quite early [1]. However, also many state-of-the art
algorithm use the BNL approach [12-16] .These algorithms scan linearly over the

$14000
$18000$20000
Price

Blue Metallic
Blue
White

$16000

Color

110 hp
100 hp
80 hp

Horsepower

Black

be
tt
er

w
or
se

2 On Skyline Queries and How to Choose from Pareto Sets 19

input database and maintain a list containing the current intermediate skyline
(called windows or block). Each newly scanned object is compared to the objects
in the windows, eliminating dominated objects or being eliminated and discarded.
If the object is not dominated by any object in the window, it is also added to the
window. More sophisticated version of this algorithm maintain the basic design
principles of using a single scan and maintaining a window, but employ additional
techniques like presorting or indexing to increase the overall performance. Due to
the single-scan nature, these algorithms are especially suited to be used in data-
base systems which are often optimized for linear access.

The second popular class of skyline algorithms are Divide-and-Conquer ap-
proaches which recursively split the input data and then joins the partial skylines.
Although these algorithms have excellent theoretical properties [1,7], there is no
efficient implementation of this recursive process [12]. Thus, this algorithm class
is very popular from a theoretical point of view but rarely used in actuals software
systems.

The third class of skyline algorithms is based on multiple scans of the database
instance and includes algorithms like Best or sskyline [17-19]. They can especially
provide highly efficient cache-conscious implementations. These algorithms may
eliminate objects especially early, but require scanning and modifying the input
database numerous times. Thus these algorithms are mainly used when the whole
input relation fits into main memory.

From an order-theoretical point of view, in skyline computations all attribute
preferences have to be aggregated, thus forming the full product order . This
product order materializes all dominance relationships between all possible data-
base objects. The Skyline then consists of all those objects existing in which are
not dominated by other existing objects with respect to . The formal notion of the
full product order is given by Definition 2.3. However, for complexity reasons
skyline algorithms obviously cannot materialize the full product order. Neverthe-
less in later sections, we will encounter approaches relying on the materialization
of at least parts of the full product order.

Definition 2.3 (Full Product Order .
The full product order is given by … … , where
for any , holds . The semantics of are given by the Pareto
dominance in Definition 2.1.

As an example for Pareto skylines, consider Figure 2.2: On the left-hand side of the
figure, two partial-order attribute preferences and are given. The resulting
object order of seven example database objects is shown in the top of the figure.
Only two objects are dominated using Pareto semantics, thus five objects form the
skyline. In particular, note that object , 1 is in the skyline as the attribute value
is isolated in the preference , i.e., no database object may ever dominate , 1 .

Please note that partial order preferences reflect an intuitive understanding of
preferences given by simple statements for each attribute like “I like A better
than B”. But when relying on partial orders the additional possibilities for objects

20 C. Lofi and W.-T. Balke

Fig. 2.2 Pareto Semantics
“ dominates
(is better than in one attribute) and
(is better or equal than in all other attributes)”

Left: Example Preferences (with isolated
value) and
Top: Resulting object order with some exam-
ple objects

being incomparable may introduce efficiency issues for the algorithm design
(especially by preventing effective, yet simple pruning conditions). Hence the first
introduction of Skylines in [1] only dealt with attribute scorings (i.e., weak order
preferences). While this allowed for very efficient query evaluation, the prefe-
rences’ expressiveness was rather limited [20]. But this drawback was quickly
remedied by [21] and [22], which both helped to popularize the use of partial
order preferences.

There are multiple reasons for objects being incomparable (e.g., no object can
dominate the other one): a) two objects are incomparable if they have antagonistic
attribute values, e.g., when considering two cars, one with (75 HP, 5 Liter /
100km) and one with (120 HP, 9 Liter / 100km), these two cars would be incom-
parable when using the default preferences “more HP is better” and “lower fuel
consumption is better” as none of the two objects is clearly better than the other.
b) two objects are incomparable if there is no relationship defined between the
respective attribute values (often referred to as “missing information”). For exam-
ple, considering the preferences in Figure 2.2 above, the objects (e, 1) and (f, 3)
are incomparable because the there is no information on whether e is preferred
over f or vice versa. This effect is especially severe for any object sporting an
isolated attribute value like e.g. (i, 2). Incomparability due to missing information
is a problem exclusive to partial order preferences and is non-existent for total or
weak orders. c) two objects are incomparable due to the user being indifferent
with respect to certain attribute values. This happens commonly for weak orders
where there are equivalence classes of attribute values which are considered
equally preferred. But also partial order preferences commonly allow for explicitly
modeling equivalences. As an example, consider a partial user preference with an
equivalence statements “Red is as desirable as yellow”. Then two completely
similar objects with one being red and the other being yellow would be incompar-
able, and both could be potential skyline objects.

a

b c

d

e

g

h

f

i
P1 P2

1

2

3

(b, 2) (c, 3)

(d, 3)

(g, 1)(e, 1)

(i, 3)

(i, 1)Skyline

2 On Skyline Queries and How to Choose from Pareto Sets 21

2.3 Relaxing the Pareto Semantics

As we already argued, the major problem of skyline queries are the often unmana-
geable result sets possibly dumping thousands of items on the user for manual
inspection. Considering the definition of Pareto semantics, it is obvious that the
manageability problems of skylines are heavily aggravated by incomparable
attribute values. As soon as two database items are incomparable with respect to
even a single attribute, the entire objects are incomparable and may both end up in
the skyline. One could say that the Pareto semantics generally is ‘too fair’. The
obvious solution to restrict skyline sizes is to move from full-fledged partial order
preferences to total attribute orders (or at least weak orders), but this in turn might
cause problems in the preference elicitation process (more user interactions, some-
times even the introduction of cyclic preferences). The question is whether it is
possible to keep partial order preference semantics while adapting the Pareto se-
mantics’ fairness to reduce skyline sizes. In this section, we will present skyline
approaches based on partial orders which rely on a weaker definition of domin-
ance relationships than given in Definition 2.1 in order to obtain more manageable
result sets: weaker dominance conditions mean more object dominance relation-
ships and thus smaller skyline sets. From an algorithmic point of view, these
algorithms stay similar to normal Skyline algorithms and just use a different no-
tion of dominance. However, in some cases (like e.g. for weak dominance), the
weaker dominance conditions may allow for additional pruning heuristics which
may increase the algorithms efficiency.

A first straightforward approach is to explicitly derive weak orders from given
partial orders, leading to so-called level order skylines. Here counting from the most
preferred values down to the least preferred ones, all values are assigned a level.
Now any attribute value can be considered dominated by all values on higher levels

Fig. 2.3 Level-Order Semantics
“ dominates :
(is better than in one dimension)
 and (has a higher or the same level as in all other
dimensions)”
Left: Example Preferences and with
levels order equivalences

Top: Resulting object order with example
objects

a

b c

d

e

g

h

f

i
P1 P2

1

2

3

(b, 2)

(c, 3)

(d, 3)

(e, 1)

(g, 1)

(i, 1)

(i, 3)

Skyline

22 C. Lofi and W.-T. Balke

(see Figure 2.3). Especially, isolated values for which the user did not provide any
preference are considered to be part of the lowest level (and are thus easily dominated).

This concept can be extended into weak attribute dominance by further loosen-
ing up the dominance semantics. The Pareto semantics and its previously
presented variants require an object in order to dominate an object to be
better in one dimension and at least equal in all others. In case of an object being
incomparable with respect to one of the dimensions, no dominance relationship
can be established.

However, the basic intuition of skylining is the result should contain all “best”
objects – “best” could be interpreted as “there are no better objects”. This inter-
pretation can be formalized into the weak attribute dominance as illustrated in
Figure 2.4 and can be phrased as “ dominates if is better than in one
dimension and there is no dimension such that is better than ”. In general,
this dominance criterion leads to significantly reduced result sets (called weak
Pareto skylines, and defined by imposing the Pareto semantics on the weak
attribute dominance relationships). Weak Pareto skylines can be quite efficiently
computed, see [23]. However, the size reductions are usually quite significant, and
often even desired skyline objects are removed. When considering the example in
Figure 2.4, it can be observed that the isolated object , 1 now dominates the
object , 2 which shows an overall solid performance, and thus might have been
a good choice for many users which is not available anymore.

A less aggressive dominance criterion is provided by the substitute value (SV)
semantics in [24] which consider Pareto incomparable values within one attribute
preference as being equal if they share the same parents and children within the
partial preference order. Naturally, the resulting SV skylines will be larger than a
corresponding weak skyline.

Fig. 2.4 Weak-Pareto Dominance Semantics
“ dominates :
(is better than in one dimension) and
(there is no dimension such that is better than)”

Left: Example Preferences and with
weak-Pareto equivalences
Top: Resulting object order and restricted
skyline

a

b c

d

e

g

h

f

i

P1 P2

1

2

3

(b, 2)

(c, 3)

(d, 3)

(e, 1) (g, 1)

(i, 3)

(i, 1)Skyline

2 On Skyline Queries and How to Choose from Pareto Sets 23

In [25], the concept of k-dominant skylines is introduced, based on the measure
of k-dominance. An object is said to k-dominate another object if there are at
least dimensions in which is better than or equal to and is strictly
better in at least one of these dimensions. Using this definition, a Pareto skyline
is a k-dominant skyline with . K-dominant skylines with are moti-
vated by the observation that with the growing number of dimensions, it becomes
highly unlikely that an object is equal or worse with respect to all dimensions than
another one as most objects have at least some strong attribute values in an high
dimensional space. Thus, rarely any dominance relationships can be established.
K-dominant skylines allow objects exhibiting only few good attribute values to be
dominated by objects showing many good attribute values. By decreasing the user
provided , the resulting k-skylines are decreased in size. K-Skylines with smaller
k are subsets of those with higher a value for k, e.g., given a fixed dataset, the 2-
skyline is a subset of the 3-skyline, etc. All k-skyline are a subset of the original
skyline. Computing k-dominant skylines requires specialized algorithms which are
also provided in the work.

2.4 Summarizing the Skyline

In this section, approaches are presented which aim at finding a subset of objects
which serves optimally as a summarization of the full skyline. The main idea
behind these approaches is to return just a summarizing set of objects which still
maintains the diversity and characteristics of the original skyline, but exhibits a
much more manageable size, i.e., sacrificing the completeness of skylines for the
sake of manageability. The focus within these approaches is to enable the user to
grasp a quick overview of the nature and contents of the skyline result set such
that she is easily able to further refine her preferences and / or is directly able to
perform subsequent queries for narrowing down the results even further (e.g.,
appending a top-k query which ranks the skyline result, or provide some SQL
constraints to remove unwanted data points).

We will focus on two approaches: a) approximately dominating representatives
[26] which returns a subset minimally covering all skyline objects within -balls
and b) statistical sampling approaches [10] with subsequent top-k ranking. Both
approaches try to maintain the diversity of the original skyline and do not suggest
a ranking of skyline objects.

2.4.1 Approximately Dominating Representatives

Computing approximately dominating representatives (ADR) [26] is a subsequent
refinement technique of skyline queries which aims at covering the full skyline by
an optimal sample in terms of size and accuracy. The ADR query returns a set of
(whereas is a user specified value) objects , … , with the follow-
ing property: based on a user specified value , for any other object
holds that there is an such that the vector · 1 (i.e., boosted by

24 C. Lofi and W.-T. Balke

in all dimensions) dominates . In other words, ADR tries to find a minimal num-
ber of skyline objects such that, if they are assumed to be the center of a sphere
with radius in the data space, all other skyline objects (which are not the center
of such a sphere) are within one of the spheres around the selected skyline objects
(see Figure 2.5).

Fig. 2.5 Approximately Dominat-
ing Representatives with -
spheres. Only the center objects of
each -sphere is returned.

ADR is designed as a subsequent step after the actual skyline computation, thus
no performance advantages can be gained as still the full skyline needs to be com-
puted. Furthermore it has been shown that although finding the smallest possible
ADR (assuming the skyline is given) is in linear time complexity in the number of
skyline elements for two attribute dimensions, the problem is unfortunately NP
hard for more than two dimensions. Accordingly, approximation algorithms have
been developed which run in polynomial time, but sacrifice some of the accuracy
of the cover.

The resulting cover will contain some objects from the full spectrum of the sky-
line, disregarding any additional semantic or structural properties. For example,
when considering a simple two dimensional skyline on cars with the attributes top
speed and price, it will contain all flavors of different cars with respect to those
two attributes: very fast cars which are very expensive, many in-between varia-
tions of less expensive but slower cars, down to very slow and very cheap cars.

2.4.2 Statistical Sampling Skylines

Sampling skylines [10] follow a similar base idea as they are designed to return a
representative subset of the original skyline. However, the sampling skyline ap-
proach is specifically designed for cooperative retrieval scenarios and is intended
to precede a later query-by-example user interaction. Compared to approximately
dominating representative skylines, the focus is more on computational perfor-
mance and less on the accuracy and representativeness of the returned sample.

ε
ε

ε

ε

ε

Attribute1

At
tr

ib
ut

e 2
be

tt
er

better

2 On Skyline Queries and How to Choose from Pareto Sets 25

The intended user workflow is a follows: a) quickly generate an sample set
from the database using the sampling skyline algorithm (this set is intended be
representative for the most interesting objects of the database according to some
provided attribute preferences); b) elicit feedback from the user on which objects
from the sample she prefers; c) discover common characteristics of the chosen
objects algorithm, e.g., in order to derive a top-k utility function; d) return a
ranked list of best database objects to the user.

The main goals of the sampling algorithm is that the resulting sample can be
computed fast (this especially means that it can be computed significantly faster
than the full skyline), and that the result is representative for the full skyline in
terms of the object diversity. Also, the size of the sample should be small and
manageable.

The algorithm is based on the idea that for sampling a skyline with query
attributes, subspace skylines on randomly selected subspaces with a dimensio-
nality of are computed and then summarized (thus, this approach is a ran-
domized variant of the subspace analysis-based approaches presented in the next
section). Each of these subspace skylines represents a “topic of interest” and
contains objects which are “optimal” considering the respective focus of the cho-
sen subspace. Furthermore, these subspace skylines can be computed extremely
fast compared to computing the full skyline. By generating a duplicate-free union
of the cleaned subspace skylines, a sample is obtained (see Figure 2.6).

Fig. 2.6 Statistical Sampling
Skylines. A skyline query on four
attributes , , , is sampled
by a union of the randomly
selected subspace skylines
with 2 dimensions , , , , and , .

This sample can be shown to be statistically representative for certain values of
 and , leading to a sufficient number of different topics of interest to be cov-

ered, e.g., considering a skyline of a car database, the sample could contain some
fuel efficient cars, some cheap cars, some fast cars, and some luxurious cars. Fur-
thermore, the sample contains only real skyline objects and can be computed sig-
nificantly faster than the full skyline.

2.5 Weighting Characteristics of Skyline Points

Approaches presented in this section also aim at generating a sample of the sky-
line. However, in contrast to the approaches presented in the previous section
which try to cover the full diversity of different skyline objects, the following

A C

A B C D

A B C A C DA B D B C D

A B A D B C B D C D

A CB D

26 C. Lofi and W.-T. Balke

section presents approaches which select and also rank a subset of the skyline due
to some explicitly modeled measure of “interestingness”. Especially, in contrast to
summarizing techniques, objects showing some rare and extreme values are often
not considered as being interesting by these approaches. The Pareto skyline opera-
tor treats all skyline objects as being equal, i.e., it does not impose any ranking
on the result set. However, the following approaches claim that there are more
important and less important skyline objects, and that “importance” can be cap-
tured by properties like e.g. the data distribution, the structure of the subspace
skylines, or other statistical means.

 The first approaches presented in this section will focus on the analysis of sub-
space skylines, i.e., objects are more interesting depending on in which and in how
many subspace skylines they appear. The latter approaches will try to capture
semantic importance of skyline objects by relying on the number of objects a
given skyline object dominates.

2.5.1 Skycubes and Subspace Analysis

Focusing on computing and analyzing subspace skylines is a very popular ap-
proach to derive rankings of Skyline objects. However, computing a larger num-
ber of subspace Skylines is prohibitively expensive for online algorithms. Thus, in
order to enable the extended use of subspace analysis, skycubes [27] have been
developed. Skycubes are similar to datacubes used in data warehousing in that
respect that they contain all precomputed non-empty skylines of all (possibly up to 2 1) subspaces of a given dataset. By precomputing all these skylines, drill-
down analysis or subspace skyline membership queries can be answered quickly
and efficiently. Furthermore, when computing all subspace skylines for a skycube,
specialized algorithms can be used which rely on different computation sharing
techniques. Thus, computing a whole Skycube is more significantly more efficient
than computing all subspace skylines individually.

Mainly, two methods have been proposed to compute all skylines for all sub-
spaces, both relying on traversing the lattice of subspaces (see, e.g., Figure 2.7)
either in a top-down or bottom-up manner. In the bottom-up approach, the sky-
lines in a subspace are partly derived by merging the skylines from its child sub-
spaces at the lower level. In the top-down approach, recursively enumerate all
subspaces and compute their skylines from the top to bottom level. During this
computation, lower subspace skylines may reuse results from higher subspace
skylines, thus significantly conserving computation time. This turns out to be
much more efficient than the bottom-up approach. Ultimately, these algorithms
allow for computing a skycube up to two magnitudes faster than computing all
subspace skylines individually.

With having all subspace skylines readily available due to the materialization of
a Skycube, the path is cleared for extensive subspace analysis. For example in
[28], the semantics of subspace skylines are explored and researched. Especially,
the concept of decisive subspaces and skyline groups as semantically interesting
applications of subspace analyses is introduced. As this type of Subspace analysis

2 On Skyline Queries and How to Choose from Pareto Sets 27

synergizes greatly with the skycube algorithm, even a combined research work
unifying both approaches was later provided in [29].

A crucial concept in subspace analysis of skylines are skyline groups. Skylines
in subspaces consist of projections of objects. For a projection of an object that is
in the skyline of a subspace, the set of objects that share the same projection form
a so called coincidence group. The maximal coincidence group for a subspace is a
called skyline group.Whether an object is in the skyline of the full space or of
some subspaces is determined by the values of the object in some decisive
subspaces, i.e., those smallest subspaces for which an object is part of a skyline
group. The decisive subspaces and the values in those subspaces vary from object
to object in the skyline. For a particular object, the values in its decisive subspaces
justify why and in which subspaces the object is in the skyline and thus represent
the deciding semantics for the membership of the object in the skyline. It has been
suggested that Skyline groups can be used to summarize the full skyline by select-
ing some common representatives from the skyline groups of the skycube.

Fig. 2.7 Skycube Lattice of a car
database on attributes ,

, and skyline objects , , , ,

Top-1 Frequent Skyline:
Top-3 Frequent Skyline: , ,

In [30], it is suggested that a metric called skyline frequency can be used to rank
and select skyline objects by their interestingness. Skyline frequency counts for
each skyline object the number of its occurrence in all possible non-empty sub-
space skylines, claiming that skyline objects with a higher subspace skyline
frequency are more interesting to users than those with lower frequencies. This
approach is extended by using skyline frequency to present the user with a ranked
list of most “interesting” skyline objects (so called top-k frequent skyline). As an
example for this approach consider a skyline query on a used car database with the
dimensions mileage, price, and age (see Figure 2.7). The most frequent skyline
object in all subspaces is , while and are similar frequent.

This approach can be seen as a fusion of top-k queries and skyline queries
which retains the easy and intuitive query specification of skyline queries, but also
allows for limiting the number of objects in a result set to the most interesting
objects which are additionally ranked. The ranking function relies purely on struc-
tural properties of the underlying subspace skylines, no additional user input is
necessary.

{mileage, price, age}
{a, b, c, d, e}

{mileage, price}
{b, c}

{mileage, age}
{a, b, c, d}

{price, age}
{a, b}

{mileage}
{c}

{price}
{b}

{age}
{a}

28 C. Lofi and W.-T. Balke

Specialized algorithms are provided for computing the top-k frequent skyline,
in an either exact, or due to the high computational complexity, approximate man-
ner. Also, pre-computed skycubes can be used to further accelerate the computa-
tion of the top-k frequent skyline.

2.5.2 SKYRANK

The SKYRANK algorithm [31] also relies on ranking skyline objects based on
their subspace relationships. However, the measure of “interestingness” is not just
based on the number of appearances of an object in any of the subspace skylines,
but on the dominance relationships of the skyline objects in the respective sub-
spaces. Following heuristic provides the foundation of SKYRANK:

• A skyline object is more interesting if it dominates many other important
skyline points in different subspaces.

• The interestingness of a skyline object is propagated to all skyline object
that dominate it in any subspace.

This means, the interestingness of an object in the full space skyline increases the
more other skyline objects it dominates in any of the subspaces. Furthermore, this
interestingness is amplified if those objects it dominates have been especially
interesting themselves (i.e., were also dominating many original skyline objects in
some subspaces).

To compute this recursive concept of interestingness, SKYRANK relies on the
notion of a skyline graph. The skyline graph contains all skyline objects of the
full data space as nodes. The edges are constructed using the skycube of a data-
set. For every skyline object of the full dimensional space (the nodes of the
graph), each subspace of the skycube is tested if is part of the corresponding
subspace skyline. If it is, no edge is added. However, if is not part of the sub-
space skyline, a directed edge is added from to all objects which dominate
with respect to the current subspace. This concept is illustrated in Figure 2.8 for a
part of the skyline graph of the full skyline graph just focusing on a two dimen-
sional subspace , .

Fig. 2.8 Part of a Skyline
graph the subspace ,
with the respective sub-
space skyline.
Darker nodes / objects
are subspace skyline
objects.

2 On Skyline Queries and How to Choose from Pareto Sets 29

The idea for capturing the semantics of “propagating interestingness” is to use
link-based ranking methods. For SKYRANK, the PageRank [32] algorithm was
chosen which was originally designed for ranking web pages for web search en-
gines. The algorithm models the behavior of a random web surfer and iteratively
approximates the stationary probability of the surfer visiting a web page
(represented by the PageRank score). The basic heuristic is that web pages with
many in-links have more authority and are thus more important than those with
few in-links, and also that a page may transfer some of its authority to another
page by linking to it. The authors of SKYRANK claim that a skyline graph im-
plies similar semantics than a web graph: by linking to an object , an objects
transfers some of its authority to (i.e., is dominated by in some subspace,
thus must be more important). Furthermore, objects with many in-links are
more important than those with few in-links (they dominate more other objects).

Accordingly, SKYRANK presents algorithms for efficiently constructing sky-
line graphs and applies a link-analysis algorithm similar to PageRank in order to
compute scores for each skyline object. These scores can be used to select a ranked
list of the most interesting skyline objects. Furthermore, the algorithm can be
personalized by providing top-k-style weightings for all of the involved subspaces,
thus allowing for an either user agnostic or personalized retrieval model.

2.5.3 k Most Representative Skyline Points

In contrast to the previous approaches which rely on the nature of subspace sky-
lines, the following approach aims at summarizing a skyline by using the most
representative skyline points (RSP) [33]. For capturing the semantics of this
skyline selection, RSP defines the concept of “representative” by the population,
i.e., a skyline point is more representative the more objects it dominates. This
representativeness metric can be used to rank skyline objects. Finally, the k-most
representative problem is stated as finding the skyline points (whereas is given
by the user) with the maximal number of dominated database objects.

This approach also incorporates ideas from top-k retrieval into skyline queries
by returning the most interesting objects in a ranked fashion. Again, the selec-
tion and ranking is based on purely structural properties of the skyline objects, not
requiring additional user feedback.

The underlying problem of this operation is similar the set cover problem
which also underlies the approximate dominating representative approach in Sec-
tion 2.4.1. Thus, the runtime complexity is also similar: for more than three query
dimensions, the problem is NP-hard, but can be approximated by greedy heuris-
tics. In addition, the authors provide a more efficient randomized approach with a
better scalability and establish theoretical accuracy guarantees.

Furthermore, this approach has been extended in [34] to retrieve the repre-
sentative skyline points defined as the set of points that minimize the distance
between a non-representative skyline point and its nearest representative.

30 C. Lofi and W.-T. Balke

2.5.4 Personalized Top-k Retrieval / Telescope

In [35], the authors propose a more personalized approach to selecting the best
ranked skyline objects. Instead of relying on user oblivious ranking functions like
the previous works on k-dominance or k-representatives, the ranking of skyline
objects is steered by additional user provided preferences for weighting individual
attribute dimensions (but is still refraining from unintuitive quantitative ranking
functions as used by traditional top-k querying). Thus, this approach bridges
into the area of cooperative approaches presented in Section 2.6 which focus on
additional user interactions for selecting skyline subsets, but which also avoid
ranking of skyline objects.

In addition to the attribute preferences required to compute the skyline, the user
provides preferences expressing a precedence order of the involved attribute di-
mensions. For example, assuming a used car database, a user can provide attribute
preferences like e.g. higher fuel efficiency is better, lower prices are better than
higher prices, and red is better than blue which is better than yellow. Additionally,
she may state that color is more important to her than for example the price.

For actually returning a ranked skyline containing objects, a data structure
similar to a skycube lattice is traversed based on the precedence preferences.
For each level, the subspace nodes are ordered with respect of the precedence
preference with subspaces containing more important dimensions to the left. The
traversal starts at the top node representing the skyline of the full query space and
an empty result set. The actual navigation follows one of two access modes:

• Vertical to left-most child: If the current node contains too many skyline
objects (i.e., more than - size of current result set), the evaluation
navigates to the child subspace with the highest precedence (i.e., the left
most child).

• Horizontal to right sibling: If the current node contains not too many ob-
jects (i.e., less than - size of the current result set), all skyline object
of the current subspace are added to the result set and the evaluation con-
tinues with the next sibling to the right (the subspace with the next highest
precedence).

This navigation model is further illustrated in Figure 2.9 for a used car database.
The provided precedence is “low mileage is more important than low price, which
is more important than young age”, and 3 skyline objects are to be returned.
In the first step, the algorithm starts at the root node of the full subspace which
contains more than 3 objects. Thus, it navigates to the next lowest subspace with
highest precedence , and adds both objects to the intermediate
result. It continues to the next sibling subspace , which contains
four objects (and thus too many to fit the result of required size). Without select-
ing any of those objects, the algorithm continues to the next lower subspace

 which contains only the object which is already part of the interme-
diate result. The same is the case for the next sibling subspace and the
object . Finally, object is added to the result from the next sibling subspace

 and the computation ends.

2 On Skyline Queries and How to Choose from Pareto Sets 31

Fig. 2.9 Telescope on a car
database with attributes

, , and
skyline objects , , , ,

:=3 with precedence
mileage ⇒ price ⇒ age

Intermediate Results

Step Result
1
2 ,
3 ,
4 , ,

2.6 Cooperative Approaches

The previously presented approaches strictly rely on structural or statistical prop-
erties in order to reduce the size of the skyline set. However, all these approaches
need to introduce quite momentous assumptions with respect of the implicated
semantics (e.g., a skyline object dominating more database objects than another
one is better, Pareto-incomparable objects should be treated as dominated under
certain conditions, objects occurring in more subspaces are more important, etc.).
Thus, although these approaches successfully decrease the size and, in some cases,
also improve the computation speed of the reduced skyline set, it remains unclear
if the resulting sets are more helpful to the user.

The approaches presented in this section choose a different strategy for choos-
ing objects from an unmanageable large skyline. Instead of relying on assumed
structural semantics capturing interestingness, cooperative approaches interactive-
ly elicit additional preference information directly from the user in order to steer
the selection of Skyline tuples from large result sets.

2.6.1 Interactive Preference Elicitation

Early cooperative approaches like e.g. the online algorithm presented in [3] al-
lowed for a progressive computation of the skyline set, enabling the user to halt
the process at any time in order to provide additional or different preferences for
further customizing the result set. In contrast, the works in [36] suggest an interac-
tive preference elicitation process suggesting the most informative preference
decisions to the user and is geared towards partial ordered preferences on categor-
ical domains. Especially partial order preferences are susceptible to overly large
skyline sets, mainly due to incompleteness of the provided user preferences (e.g.,
isolated values, incomparable values within a single domain, etc.). To address this
problem, an iterative elicitation framework is proposed which collects additional

{mileage, price, age}
{a, b, c, d, e}

{price, age}
{b, c}

{mileage, age}
{a, b, c, d}

{mileage, price}
{a, b}

{mileage}
{a}

{price}
{b}

{age}
{c}

①

②

③

④

mileage ⇒ price ⇒ age

32 C. Lofi and W.-T. Balke

user preferences in each iteration. The framework aims at both minimizing the
required amount of user interaction and while also maximizing the resulting sky-
line reduction. At the same time, it tries to identify a reasonably small and focused
skyline set.

This objective is realized by heavily exploiting the knowledge on the cardinali-
ty of different domain values with respect to the database instance. During any
iteration, the currently available user preferences are examined in context of the
current skyline. Based on the distribution of domain values, the algorithm tries to
identify those preference statements (i.e., pairs of domain values and such that
either a preference , a , or ~ could be stated by the user) not part of
the current user preference which would result in the largest skyline reduction.
After identifying the potentially most effective statements in terms of size reduc-
tion, they are presented to the user as questions. Now, the user may choose some
of the suggested statements which are then added to the user preferences. For
example, assume a car database and no previously provided preferences. Assum-
ing that half of the cars are red and the other half is blue, it is sensible to ask
the user whether she prefers red or blue cars (or even if she doesn’t care about the
color). Any decision for either red or blue cars will decrease the skyline signifi-
cantly. But even if the user is indifferent about the color, the resulting larger
skyline set can at least be justified more easily as it can be attributed not to incom-
plete preference domains but to explicit user feedback.

2.6.2 Trade-Off Skylines

Trade-off skylines [37] approach the problem of overly frequent objects pairs
which incomparable by introducing the natural semantics of trade-offs or com-
promises. Trade-offs can be seen as means for compensating between different
attribute domains, thus vastly expanding the semantics of simple attribute
preferences. However, in contrast to top-k queries [2], the compensation is not of
quantitative but of qualitative nature.

Consider for example two database objects representing cars: let object be a
‘blue metallic’ car for $18,000 and object be a ‘blue’ car for $17,000, accompa-
nied by a preference favoring cheaper cars and metallic colors. Looking at the
ranking on attribute level, both cars are incomparable with respect to the Pareto
order: one car is cheaper; the other car has the more preferred color. In this scena-
rio, a natural question of a real-life car dealer would be, whether the customer is
willing to compromise on those attributes, i.e., if he/she is willing to pay the addi-
tional $1,000 for a metallic paint job for that particular car (such a compromise is
called a trade-offs). If the answer is yes, then object is the better choice for the
user and should dominate object with respect to a trade-off enhanced Pareto
order. However, if some object like a ‘blue’ car for $15,000 exists, and
would still be incomparable as the premium for the metallic color on that car is
larger than the $1,000 the user is willing to pay. The basic idea of trade-off sky-
lines is that if users provide several strong trade-offs, many skyline objects can be
removed as they are now dominated with respect to this new user feedback. Thus,
the skyline is reduced in size and focused consistently with the refined trade-off

2 On Skyline Queries and How to Choose from Pareto Sets 33

enhanced user preferences. Additionally, this kind of user interaction closely mod-
els the natural compromises of peoples every day’s decision processes. At the
same time, the approach abstains from assuming arbitrary user agnostic heuristics
for selecting objects.

Trade-offs are elicited interactively, i.e., after computing a preliminary skyline,
the user is guided through a trade-off elicitation process which suggests possible
effective trade-offs (similar to a car dealer asking his customer additional ques-
tions). After the user decides for a trade-off, the trade-off skyline is recomputed
and the user interaction continues until the user is satisfied.

However, computing trade-off skylines is quite hard. This is mainly because
trade-offs directly modify the product order resulting from attribute preferences
which in turn loses its separability characteristic [11]. Seperability describes the
possibility of decomposing the object order losslessly into its respective base pre-
ferences (this why most skyline algorithms can avoid operating on the object order
at all). In contrast, in [38,39], it was shown that trade-offs will induce addional
relationships to the object order, breaking the seperability and thus at least
materializing some parts of the object order is required. This effect can be
explained by the definition of trade-offs: trade-offs can be considered as a user
decision between two sample objects focusing on a subspace of the available
attributes, while treating all other attributes with ceteris paribus semantics.
Furthermore, trade-off relationships are transitive and thus may form complex
dominance relationships structures spanning several trade-offs and dimensions
which are called trade-off chains. Especially, the problem of trade-off inconsisten-
cies poses severe challenges as inconsistencies are difficult to detect as they are
basically circles in the materialized object order. This problem has been success-
fully solved in [40].

The algorithms available for computing trade-off skylines have evolved from
early algorithms relying on the full matrialization of the object order [39], trade-
off sklyines with severly reduced expressivness but not requiring the object order
at all [41], to computing trade-off skylines allowing the specification of any
consistent trade-off without restrictions while still providing acceptable
performance by relying on a compressed datastructure minimally representing
those parts of the object order which are cruicial for computing the trade-off
skyline [37].

2.7 Conclusion and Discussion

In this chapter, we have presented different techniques and approaches to address
the problem of unmanageable skyline result sets. In general, skyline results have
been proven to grow roughly exponential with the number of query dimensions up
to result sets containing a significant part of the overall database. Thus, skyline
results are usually too large to be useful to users. This effect can be explained by
the fairness of the underlying Pareto semantics which cannot establish a sufficient
number of dominance relationships between objects in higher dimensions.

One of the central problems for the actual application of skyline queries is thus
the question of how to select the most interesting objects from skylines in such a

34 C. Lofi and W.-T. Balke

way that the selection best reflects a user’s needs. The resulting selection should
be of manageable size, easy to compute, and should contain those objects being
most interesting for the user.

The techniques for selecting from skyline sets can be classified in four groups:
a) strategies using less strict variations of the Pareto dominance criterion b) ap-
proaches aiming at a diverse summarization of the skyline set c) approaches which
use additional characteristics of skyline objects or subspace skylines to derive a
ranking and selection for the original skyline d) cooperative approaches which
elicit additional preference information interactively from the user.

However, please note that each of these presented approaches in some way
break the absolute fairness of Pareto semantics and replace them by different
heuristics for capturing the notion of a skyline object being “more interesting”
than others.

While every presented approach has benefits and advantages on their own right,
the imposed heuristics all rely on some “ad-hoc” assumptions on what makes a
skyline point more interesting than others. However, the “correctness” and useful-
ness of these assumptions with respect to the real information needs of a given,
individual user is very subjective and thus hard to determine. This issue is
especially aggravated by the fact that no approach thoroughly deals with the psy-
chological and perceptive implications of the chosen heuristics. Thus, given a
particular application scenario and data source with its user base, it is very hard to
decide which approach best tailors to the users’ individual personalization
requirements, and the decision has to be carefully evaluated by the application
designers. Therefore, this chapter is intended to help in choosing a suitable tech-
nique for focusing skyline results by summarizing the most prominent techniques
and their underlying assumptions.

References

[1] Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: Int. Conf. on
Data Engineering (ICDE), Heidelberg, Germany (2001)

[2] Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In:
Symposium on Principles of Database Systems (PODS), Santa-Barbara, California,
USA (2001)

[3] Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In: Int. Conf. on Very Large Data Bases, VLDB, Hongkong,
China (2002)

[4] Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algorithm for
Skyline Queries. In: International Conference on Management of Data (SIGMOD),
San Diego, USA (2003)

[5] Lacroix, M., Lavency, P.: Preferences: Putting More Knowledge into Queries. In: Int.
Conf. on Very Large Data Bases (VLDB), Brighton, UK (1987)

[6] Chan, C.-Y., Eng, P.-K., Tan, K.-L.: Stratified Computation of Skylines with Partial-
ly-Ordered Domains. In: International Conference on Management of Data (SIG-
MOD), Baltimore, USA (2005)

2 On Skyline Queries and How to Choose from Pareto Sets 35

[7] Bentley, J.L., Kung, H.T., Schkolnick, M., Thompson, C.D.: On the Average Number
of Maxima in a Set of Vectors and Applications. Journal of the ACM (JACM) 25
(1978)

[8] Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust Cardinality and Cost Estimation for
Skyline Operator. In: 22nd Int. Conf. on Data Engineering (ICDE), Atlanta, Georgia,
USA (2006)

[9] Godfrey, P.: Skyline Cardinality for Relational Processing. In: Seipel, D., Turull-
Torres, J.M. (eds.) FoIKS 2004. LNCS, vol. 2942, pp. 78–97. Springer, Heidelberg
(2004)

[10] Balke, W.-T., Zheng, J.X., Güntzer, U.: Approaching the Efficient Frontier: Coopera-
tive Database Retrieval Using High-Dimensional Skylines. In: Zhou, L.-z., Ooi, B.-
C., Meng, X. (eds.) DASFAA 2005. LNCS, vol. 3453, pp. 410–421. Springer, Hei-
delberg (2005)

[11] Hansson, S.O.: Preference Logic. In: Handbook of Philosophical Logic, vol. 4, pp.
319–393 (2002)

[12] Godfrey, P., Shipley, R., Gryz, J.: Algorithms and Analyses for Maximal Vector
Computation. The VLDB Journal 16, 5–28 (2007)

[13] Eng, P.-K., Ooi, B.C., Tan, K.-L.: Indexing for Progressive Skyline Computation. Da-
ta 4 Knowledge Engineering 46, 169–201 (2003)

[14] Godfrey, P., Gryz, J., Liang, D., Chomicki, J.: Skyline with Presorting. In: 19th Inter-
national Conference on Data Engineering (ICDE), Bangalore, India (2003)

[15] Papadias, D., Tao, G.F.Y., Seeger, B.: Progressive Skyline Computation in Database
Systems. ACM Transactions on Database Systems 30, 41–82 (2005)

[16] Ciaccia, P., Patella, M., Bartolini, I.: Efficient Sort-Based Skyline Evaluation. ACM
Transactions on Database Systems 33 (2008)

[17] Torlone, R., Ciaccia, P.: Finding the Best When It’s a Matter of Preference. In: 10th
Italian Symposium on Advanced Database Systems (SEBD), Portoferraio, Italy
(2002)

[18] Boldi, P., Chierichetti, F., Vigna, S.: Pictures from Mongolia: Extracting the Top
Elements from a Partially Ordered Set. Theory of Computing Systems 44, 269–288
(2009)

[19] Kim, T., Park, J., Kim, J., Im, H., Park, S.: Parallel Skyline Computation on Multi-
core Architectures. In: 25th International Conference on Data Engineering (ICDE),
Shanghai, China (2009)

[20] Fishburn, P.: Preference Structures and Their Numerical Representations. Theoretical
Computer Science 217, 359–383 (1999)

[21] Kießling, W.: Foundations of Preferences in Database Systems. In: 28th Int. Conf. on
Very Large Data Bases (VLDB), Hong Kong, China (2002)

[22] Chomicki, J.: Querying with Intrinsic Preferences. In: Jensen, C.S., Jeffery, K., Po-
korný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 34–51. Springer, Heidelberg (2002)

[23] Balke, W.T., Güntzer, U., Siberski, W.: Restricting Skyline Sizes Using Weak PA-
RETO Dominance. Informatik - Forschung und Entwicklung 21, 165–178 (2007)

[24] Kießling, W.: Preference Queries with SV-Semantics. In: 11th Int. Conf. On Man-
agement of Data (COMAD 2005), Goa, India (2005)

[25] Chan, C.-Y.: Finding k-Dominant Skylines in High Dimensional Space. In: ACM
SIGMOD Int. Conf. on Management of Data (SIGMOD 2006), Chicago, Illinois,
USA (2006)

36 C. Lofi and W.-T. Balke

[26] Koltun, V., Papadimitriou, C.: Approximately Dominating Representatives. In: Eiter,
T., Libkin, L. (eds.) ICDT 2005. LNCS, vol. 3363, pp. 204–214. Springer, Heidelberg
(2005)

[27] Yuan, Y.: Efficient Computation of the Skyline Cube. In: 31st Int. Conf. on Very
Large Databases (VLDB 2005), Trondheim, Norway (2005)

[28] Pei, J.: Catching the Best Views of Skyline: A Semantic Approach Based on Decisive
Subspaces. In: 31st Int. Conf. on Very Large Databases (VLDB 2005), Trondheim,
Norway (2005)

[29] Pei, J.: Towards Multidimensional Subspace Skyline Analysis. ACM Transactions on
Database Systems (TODS) 31, 1335–1381 (2006)

[30] Chan, C.-Y., Jagadish, H.V., Tan, K.-L., Tung, A.K.H., Zhang, Z.: On High Dimen-
sional Skylines. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzo-
poulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS,
vol. 3896, pp. 478–495. Springer, Heidelberg (2006)

[31] Vlachou, A., Vazirgiannis, M.: Ranking the Sky: Discovering the Importance of Sky-
line Points through Subspace Dominance Relationships. Data & Knowledge Engi-
neering 69, 943–964 (2010)

[32] Brin, S., Page, L.: The Anatomy of a Large-Scale Hypertextual Web Search Engine.
Computer Networks and ISDN Systems 30, 107–117 (1998)

[33] Lin, X., Yuan, Y., Zhang, Q., Zhang, Y.: Selecting Stars: The k Most Representative
Skyline Operator. In: 23rd IEEE International Conference on Data Engineering, Is-
tanbul, Turkey (2007)

[34] Tao, Y., Ding, L., Lin, X., Pei, J.: Distance-Based Representative Skyline. In: 25th
Int. Conf. on Data Engineering (ICDE), Shanghai, China (2009)

[35] Lee, J., You, G.-W., Hwang, S.-W.: Personalized Top-k Skyline Queries in High-
Dimensional Space. Information Systems 34, 45–61 (2009)

[36] Lee, J., You, G.-W., Hwang, S.-W., Selke, J., Balke, W.-T.: Optimal Preference Elici-
tation for Skyline Queries over Categorical Domains. In: Bhowmick, S.S., Küng, J.,
Wagner, R. (eds.) DEXA 2008. LNCS, vol. 5181, pp. 610–624. Springer, Heidelberg
(2008)

[37] Lofi, C., Güntzer, U., Balke, W.-T.: Efficient Computation of Trade-Off Skylines. In:
13th International Conference on Extending Database Technology (EDBT), Lau-
sanne, Switzerland (2010)

[38] Balke, W.-T., Lofi, C., Güntzer, U.: Incremental Trade-Off Management for Prefe-
rence Based Queries. International Journal of Computer Science & Applications
(IJCSA) 4, 75–91 (2007)

[39] Balke, W.-T., Güntzer, U., Lofi, C.: Eliciting Matters – Controlling Skyline Sizes by
Incremental Integration of User Preferences. In: Kotagiri, R., Radha Krishna, P., Mo-
hania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 551–
562. Springer, Heidelberg (2007)

[40] Lofi, C., Balke, W.-T., Güntzer, U.: Consistency Check Algorithms for Multi-
Dimensional Preference Trade-Offs. International Journal of Computer Science &
Applications (IJCSA) 5, 165–185 (2008)

[41] Lofi, C., Balke, W.-T., Güntzer, U.: Efficient Skyline Refinement Using Trade-Offs
Respecting Don’t-Care Attributes. International Journal of Computer Science and
Applications (IJCSA) 6, 1–29 (2009)

Chapter 3

Processing Framework for Ranking
and Skyline Queries

Seung-won Hwang

Abstract. In the previous chapter, the need to support ranking and sky-
line queries for multi-criteria decision-making for given user preferences was
motivated. We now survey existing algorithms for each query and show a
‘meta-algorithm’ framework for each query. The goal of this chapter is to
show that how this framework and cost model enable us to (a) generalize
existing algorithms and (b) observe important principles not observed from
individual algorithms.

3.1 Introduction

Ranking and skyline queries have gained a lot of attention for multi-criteria
decision making in large-scale datasets as Chapter 2 discussed. Ranking en-
ables us to order results based on user preference expressed in numerical
ranking functions. Skyline query relaxes the requirement by replacing the
need for a ranking function with the notion of dominance– if a point p is bet-
ter than another point q in at least one dimension and not worse than q in
all other dimensions, it is said that p dominates q. Given a multi-dimensional
dataset, the skyline query thus returns a subset of “interesting” points that
are not dominated by any other points.

To illustrate, we describe an example using an SQL-style expression, as
also used in [4, 7].

Example 1 (Ranking and skyline queries). Consider a hotel retrieval system
using a database called Hotel(hno, name, price, distance), where distance
represents the distance from the city center.

Seung-won Hwang
POSTECH, Korea
e-mail: swhwang@postech.edu

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 37–56.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

swhwang@postech.edu

38 S.-w. Hwang

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

d1

d2

i(7, 2)

h(7, 6)

l(9, 1)

g(6, 4)

c(3, 9)

m(4, 6)

a(2, 8)

k(8, 3)

b(2, 5)

e(4, 4)

f(5, 7)

j(8, 8)

Fig. 3.1 A toy dataset in two dimensional space.

A user preferring a cheap hotel close to the city center may formulate the
following ranking query, to find the best hotels.

SELECT * FROM Hotel
ORDER BY avg(price,distance)
STOP AFTER 1; (Q1)

Though the above query uses the “average” of price and distance as a rank-
ing function, the function can be changed to arbitrary monotonic functions
to represent different user preferences. For instance, another user may weigh
price significantly higher, while another may weigh distance more. In the toy
dataset shown in Figure 3.1, when the average is used as ranking function,
hotel like b, with equal strength in both price (d1) and distance (d2) will
be retrieved. Meanwhile, another user weighing distance significantly higher
may find hotel l more attractive.

However, finding the adequate ranking function itself is a non-trivial prob-
lem, which has motivated skyline queries. Skyline queries do not require users
to specify ranking functions. Instead, users are only required to specify the at-
tributes they want to minimize (or maximize). The following query illustrates
the skyline query counterpart for Q1.

SELECT * FROM Hotel
SKYLINE OF price MIN, distance MIN; (Q2)

Given these attributes, skyline query algorithms retrieve a set of “desir-
able” objects, for any monotonic function in general. For instance, in Fig-
ure 3.1, hotel m is worse than hotel b in both aspects, i.e., m falls into the
shade of b’s “dominating region”, i.e., m is dominated by b. In other words,
in any monotonic ranking function, m is less preferred than b. Skyline results
correspond to the objects that are not dominated by any other object, i.e.,
{b, e, i, l} in the figure. These hotels are guaranteed to contain the top hotel
for any monotonic ranking function, without requiring users to specify the
exact ranking function.

This chapter extends the detailed discussions on existing algorithms for rank-
ing and skyline queries, which can be categorized into sorted-order algorithms

3 Processing Framework for Ranking and Skyline Queries 39

that leverage the sorted ordering by attributes (or some aggregate function of
attributes) and (2) partitioning-based algorithms that focus on dividing the
problem space into smaller subspaces for divide-and-conquer optimization.

Given existing algorithms, summarized in Section 3.2, the goal of this
chapter is to extend the wisdom of Boolean query optimization [24] for this
space. Specifically, to determine the most efficient way to execute a Boolean
query, the query optimizer enumerates many possible ways, e.g., query plans,
and searches the most “cost-effective” one for the given access scenario. If
indices on a query attribute exist in the given scenario, query plans with index
will have a lower estimated cost and likely be selected, while the same plan
may be disregarded in another scenario. This abstraction, of seeing query
optimization as a “cost-guided” search over possible algorithms, has been
discussed for both ranking [15] and skyline queries [19].

In this article, we will discuss how such perspectives can complement cur-
rent solution “spaces” of many hand-crafted algorithms for various access
scenarios. Such an approach, if successful, can have the following two advan-
tages, as we witnessed from the same success in Boolean query optimization:

• Meta-algorithm framework: a single implementation can be used for a wide
space of access scenarios.

• Systematic optimization: optimization, being systematically guided by
the underlying cost model, can often achieve speedups over hand-crafted
algorithms.

Toward achieving this goal, we enumerate the following steps:

• Extracting a common skeleton: From a “space” of possible algorithms, a
common skeleton can be extracted. For instance, Boolean query process-
ing algorithms are essentially “plan trees” where each node corresponds
to different algorithms (e.g., sort-merge join, hash join, nested loop) lever-
aging the underlying access structure (e.g., index). Similarly, a skeleton
can be observed from existing ranking and skyline algorithms. Then any
algorithm generated from this skeleton is a potential candidate algorithm,
which essentially enumerates a “space” of possible solutions.

• Implementing an efficient search: Once the space is defined, query opti-
mization is essentially a search problem of finding the cost-optimal algo-
rithm for the given scenario. However, typically, the search space is too
large and a naive search for an efficient algorithm can easily outweigh the
cost of executing algorithms, which defeats the whole purpose. To keep
optimization overhead reasonable, techniques, such as reducing the search
space without eliminating good candidate algorithms (e.g., considering
only left-deep joins in Boolean queries), should be developed.

This article will discuss how the above steps have been taken for ranking and
skyline queries respectively.

The rest of this article is organized as follows. Section 3.2 reviews existing
algorithms. Section 3.3 discusses the unified ranking framework and how it

40 S.-w. Hwang

benefits existing ranking algorithms, and Section 3.4 discusses the same for
skyline queries. Finally, Section 3.5 concludes this article.

3.2 Related Work

Ranking and skyline algorithms can be categorized by many criteria, but in
this chapter, we focus on the scope of (a) sequential algorithms (b) catego-
rized by sorted-order and partitioning-based algorithms. For a taxonomy and
survey with larger coverage and diverse criteria, refer to [16] (ranking queries)
and [12] (skyline queries).

3.2.1 Sorted-Order Algorithms

Ranking algorithms depend on pre-sorted ordering, known as “sorted ac-
cess” of objects by some attribute. Pioneering ranking algorithms TA [10]
and FA [11] use sorted accesses. Each of these algorithms materializes the
sorted ordering on each query attribute, and aggregate them into the overall
ranking order. These algorithms require pre-sorted ordering materialized for
all attributes, e.g., using indices on local databases.

However, in some scenarios, such sorted access may not be available or
may be very expensive to access. Algorithm MPro [6] is specifically designed
for such scenarios where sorted access is unavailable, such as when attribute
value is determined by querying external sources (or determined dynamically
by some user-defined function). In this case, algorithms should rely on al-
ternative access mode, i.e., “random access”. Meanwhile, in other scenarios,
some attribute may support both sorted and random access, but random
access is significantly more expensive, for which a batch of algorithms have
been hand-crafted, e.g., CA [11] and Stream-Combine [14].

For skyline query processing, Balke et al. [2] proposed an algorithm using
all attribute orderings for distributed skyline computation. Further, Lo et
al. [21] proposed a progressive skyline computation under the same model
and studied how to find a good “terminating object” using a linear regres-
sion technique for early termination. Meanwhile, Chomicki et al. [8, 9] pro-
posed SFS, pre-materializing a single aggregated ordering of data, using some
monotone ranking function. Later, Godfrey et al. [12] developed LESS as a
combination of both BNL and SFS, which accesses points in stored order (as
in BNL) but keeping skyline candidates in the order of dominance regions
(as in SFS) to reduce the dominance tests for non-skyline points. Recently,
Bartolini et al. [3] enhanced SFS by using minC function to achieve early
termination in distributed data scenarios.

3 Processing Framework for Ranking and Skyline Queries 41

Table 3.1 Taxonomy of existing ranking algorithms.

All sorted accesses Part None

FA [10], TA [11], Quick-Combine [13] (cheap random) MPro [6] NRA [11]
CA [11] SR-Combine [1] (expensive random) Upper [5] Stream-Combine [14]

Table 3.2 Taxonomy of existing skyline algorithms.

Sorted-order Partitioning-based

BNL [4], SFS [8, 9], D&C [4], NN [17],
LESS [12], SaLSa [3], BBS [23], LS [22],

SSkyline [?] ZSearch [20]
OSPS [25],
SkyTree [18]

3.2.2 Partitioning-Based Algorithms

Alternatively, ranking algorithms may use multi-dimensional indices parti-
tioning data space for efficient rank query processing. Similarly, partitioning-
based algorithms can be devised for skyline queries, grouping points into
subregions that share a commonality to carry out region-based dominance
tests. An early algorithm, D&C [4] simply divided the problem into multiple
sub-problems and merged the local skyline points into a global skyline. To
use more efficient region-level access, NN [17] and BBS [23] built upon pre-
constructed spatial indices like the R-tree. Recently, Lee et al. [20] proposed
ZSearch using ZB-tree as a new variant of B-tree, and Morse et al. [22] pro-
posed LS using a static lattice structure for the special case of low-cardinality
datasets.

Partitioning algorithms do not necessarily build upon indices. There are ex-
isting algorithms that partition data at the run time, e.g., Zhang et al. [25] and
Lee et al. [18] proposed partitioning-based algorithms without pre-computed
indices. These algorithms outperformed sorting-based algorithms, by consid-
ering both dominance and incomparability. However, no partitioning-based
ranking algorithm is a “non-index” algorithm, as ranking algorithms without
any prematerialized access structure are at best sequential scans.

3.2.3 Taxonomy and Generalization

We now put the algorithms mentioned above in the taxonomy of ranking and
skyline algorithms. We then discuss a unified framework for each taxonomy.

42 S.-w. Hwang

Ranking algorithms: Table 3.1 summarizes a “matrix” of all possible sce-
narios and shows existing “sorted-order” ranking algorithms (as not many
partitioning-based ranking algorithms exist.) Depending on the scenario, the
given algorithm leverages all, part, or no sorted-ordering on attributes.

Skyline algorithms: Table 3.2 summarizes existing skyline algorithms in
the taxonomy of sorted-order and partitioning-based algorithms.

Meta-algorithm framework: For SQL queries, a standard optimization
framework [24] abstracts possible algorithms as multiple query plans and
performs a cost-driven search for a good query plan. As the space of possible
plans is inherently large, optimizer does not aim at enumerating all plans
and selecting the absolute best. Instead, the optimizer aims at reducing the
space (without eliminating good algorithms much) to select one among low
cost candidates with good trade-off between the time spent on finding a good
plan and time running such a plan.

Similar approach has been taken for ranking [15] and skyline [19] queries.
Similarly, such optimizers first define a space of algorithms and develop op-
timization techniques to guide the search to low-cost algorithms. In this
chapter, we will discuss these two works in detail, in Section 3.3 and 3.4
respectively, to show how extending the wisdom of SQL query optimization
complements existing state-of-the-arts in both problems and opens up new
avenues for further optimization.

3.3 Framework for Ranking Queries

This section first discusses preliminaries, then extracts a common discusses
cost-driven optimization strategies for ranking queries.

3.3.1 Preliminaries

We first introduce some basic notations to formally present ranking and sky-
line queries. Let D be a finite d-dimensional space, i.e., {d1, . . ., dd}, where
each dimension has a domain of nonnegative real number R+, denoted as
dom(di) → R+. Let S be a set of finite n points that is a subset of dom(D),
i.e., S ⊆ dom(D). A point p in S is represented as (p1, . . . , pd) in which
∀i ∈ [1, d] : pi ∈ dom(di). For simplicity, dom(di) has normalized values
of [0,1].

Based on these notations, we formally define monotonicity and ranking
queries.

Definition 1 (Monotonicity). Given p, q ∈ S, ranking function F is mono-
tonic, F(p) ≤ F(q) if ∀ i ∈ [1, d] : pi ≤ qi.

3 Processing Framework for Ranking and Skyline Queries 43

d1 d2 F
a 2
b 2
c 3
m 4
e 4 4 4
g 4
i 2
k 3
l 1

Fig. 3.2 Intermediate table for FA.

d1 d2 F
a 2 8 5
b 2 5 3.5
c 3
e 4
g 4
i 7 2
k 8 3
l 9 1

Fig. 3.3 Intermediate table for A.

Definition 2 (Ranking). Given user-specified retrieval size k and ranking
function F , correct top-k results is a set of points such that KD(S) = {p ∈
S|�q ∈ S − K : F(q) ≥ F(p)} and |KD(S)| = k.

We now describe how existing ranking algorithms are designed, using Q1 in
Section 3.1 as a running query, on the hotel data set described in Figure 3.1.
This query asks for the top k = 1 hotel with the smallest avg(d1, d2). Recall
that, existing algorithms build upon the following two access modes of sorted
access and random access.

Example 2 (Example Algorithm). In this example, we describe FA, known as
a pioneering algorithm, for finding the top-1 hotel. This algorithm uses sorted
access on d1 and d2, which materialize the hotels in ascending order of each
attribute values, i.e., a, b, c,m, e, f, g, h, i, j, k, l (ties broken in alphabetical
order) for d1 and l, i, k, e, g, b,m, h, f, a, j, c for d2. At each iteration, FA re-
trieves one object from each list using sorted access, e.g., a and l in the first
iteration, which continues until the same object is found in both lists. Specif-
ically, after five iterations, e is retrieved from both lists and the attribute
values accessed from the preceding five iterations are shown in Table 3.3.
This is the point where FA safely concludes that the top-1 hotel is among 9
hotels in Table 3.3, even though the full F score is known only for e. That

44 S.-w. Hwang

is, any hotel that does not appear in this table, e.g., hotel f , cannot score
higher than e, as both f1 and f2 values are higher than e1 and e2 (as the
ranking function is monotonic). However, this does not mean we can con-
clude e as the top hotel, as other 8 hotels in the table still have the chance to
outscore e. To eliminate such possibilities, we use random access to fill in the
unknown scores, e.g., random access on a2. Once the Table 3.3 is completely
filled, we can return the result with the smallest average, which is hotel b
with average 3.5.

The above described algorithm, known as FA, can be represented by the se-
quence of accesses it performs. When denoting sorted access on di as sai and
random access on di value of hotel a as raai , the above algorithm executes
the following sequence:
(sa1, sa2, sa1, sa2, sa1, sa2, sa1, sa2, sa1, sa2, ra

a
2 , ra

a
2 , ra

b
2, ra

c
2, ra

m
2 , rag1 , rai1,

rak1 , ra
l
1). However, this is just one algorithm and there can be many more

algorithms, differing in the access sequences they perform. To illustrate, con-
sider an alternative algorithm A, performing deeper sorted access on d2:
(sa1, sa1, sa1, sa2, sa2, sa2, sa2, sa2, ra

a
2 , ra

b
2, ra

i
1, ra

k
1 , ra

l
1).

This algorithm can also return b as the result, as unknown d2 values are no
less than 4 (if less, those values should have been accessed from preceding
sorted access) and unknown d1 values no less than 3. This suggests that the
average of all the hotels in the table (and those now shown in the table) will
be no less than b.

Different algorithms, by performing different accesses in different orders,
incur different costs. For instance, A can answer the same query, performing
only a part of accesses that Algorithm FA performs, i.e., A is better than FA
in all scenarios. In some cases, two algorithms A1 and A2 may have different
strengths. A1 performing more sorted access but less random access than A2.
In that case, A1 is superior in some scenarios while inferior in others.

In most ranking algorithms, cost function C sums up the unit access cost of
sorted and random access performed, which we denote as csi and cri. That is:

C =
∑
i

csi × nsi + cri × nri (3.1)

where nsi and nri denote the number of random and sorted access the given
algorithm performs on di.

3.3.2 Extracting Skeleton

Toward the goal of finding the optimal algorithm in the given scenario, [15]
observed a common skeleton from ranking algorithms. As different algorithms
essentially differ in terms of the access sequence, any such algorithm can be
generated from the following skeleton:

3 Processing Framework for Ranking and Skyline Queries 45

while (unsafe to terminate)
select a from any possible accesses sai and rai;
perform a; update score table;

Fig. 3.4 Algorithm “skeleton”.

With this skeleton, reference [15] abstracts query optimization as searching
with the minimal cost C, from a “space” Ω of possible algorithms, that can
be generated from the above skeleton. Formally,

Aopt = argminA∈ΩC(A)
However, the framework renders too many algorithms, i.e., all possible se-

quences of sorted/random access, which discourages runtime query optimiza-
tion. We thus follow the wisdom of SQL optimization, balancing the trade-off
between time spent on searching for a plan and time spent on running a plan.
Specifically, the SQL optimizer does the following:

• Space reduction: Instead of considering the entire solution space, the opti-
mizer consider a smaller subset. However, to avoid throwing out low-cost
plans, ideally, for every algorithm out of the chosen subset, there should
be a counterpart algorithm in the space doing the same job with no higher
cost. An example of space reduction for SQL query processing is consider-
ing left-deep joins (and throwing out right-deep or bushy joins), as a good
right-deep or bushy plan has its left-deep equivalent in the subset, which
will be considered in optimization.

• Efficient search: Even with this reduced space, performing an exhaustive
search incurs prohibitive cost. To expedite a search, SQL query optimizer
uses dynamic programming or simulated annealing to narrow down to a
low-cost plan fast.

while (unsafe to terminate)
perform sai until the value retrieved gets higher than δi;
perform rao

i on object o with highest upper bound score

Fig. 3.5 Skeleton generating a reduced space.

3.3.3 Cost-Based Optimization Strategies

Strategies to reduce the search space, driven by the cost function C have been
extended to ranking queries in [15]. Specifically, the paper formally discusses
how the space can be significantly reduced without compromising the quality
of the algorithm much. In particular, Figure 3.5 illustrates a new skeleton
generating a much reduced space, which performs all the necessary sorted
accesses (up to certain depth δi), before any random access. With this skele-
ton, different algorithms with varying δ are generated with different costs.

46 S.-w. Hwang

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.7 0.75 0.8 0.85 0.9 0.95 1

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

�
�
�
�

Æ�

Æ�

Fig. 3.6 Illustration of solution space [15].

To illustrate this problem space, Figure 3.6 shows the costs of algorithms
generated by different (δ1, δ2) value pairs (darker cells indicate low cost). In
this figure, the goal of optimization is finding the darkest cell, as shown in
the rectangle (a cell in circle corresponds to TA).

For an efficient search for the lightest cell, a hill climbing approach was
used in [15]. That is, in Figure 3.6, once this reduced space was finalized,
the paper develops a hill-climbing search, which starts with δ1 = δ2 = 1 and
tries neighboring algorithms with lower estimated cost next, which terminates
when no neighboring algorithm incurs lower cost. Comparing the algorithm
found from cost-based framework (in rectangle) with TA (in circle) provides
an interesting insight: TA, by being hard-wired to perform round-robin sorted
access, focuses on looking for algorithms in the diagonal, which is not always
effective. Instead, cost-driven hill-climbing allows us to generate an algorithm
like the one in rectangle, performing sorted access mostly on one attribute,

Fig. 3.7 TA vs cost-based reported in [15].

3 Processing Framework for Ranking and Skyline Queries 47

which would be effective if the sorted access cost of that attribute is much
cheaper.

Due to this “generality”, according to empirical results reported in [15],
which we show here in Figure 3.7, unlike TA showing strength in some sce-
narios (where round-robin sorted access is effective), cost-based optimization
performs well steadily over all the scenarios. However, in the scenarios where
TA performs well, cost-based approach performs comparably well (though it
incurs additional overhead for the solution search). For the details on exper-
imental setting, refer to [15].

3.4 Framework for Skyline Queries

This section first discusses preliminaries, then extracts a common discusses
cost-driven optimization strategies for skyline queries.

3.4.1 Preliminaries

We first formally define dominance, incomparability, and skyline queries
respectively. These definitions are consistent with existing skyline work.
Throughout this paper, we consistently use min operator for skyline
computation.

Definition 3 (Dominance). Given p, q ∈ S, p dominates q on D, denoted
as p ≺D q, if and only if ∀ i ∈ [1, d] : pi ≤ qi and ∃ j ∈ [1, d] : pj < qj .

Definition 4 (Incomparability). Given p, q ∈ S, p and q are incomparable
on D, denoted as p ∼D q if and only if p ⊀D q and q ⊀D p.

Definition 5 (Skyline). A point p is a skyline point on D if and only if any
other point q (�= p) does not dominate p on D. Given dataset S on D, skyline
is a set of skyline points such that SKYD(S) = {p ∈ S|�q ∈ S : q ≺D p}.
For later uses, we straightforwardly extend the notion of dominance and
incomparability to “region-level” notions. Suppose that a hyper-rectangle re-
gion R on D is represented as [u1, v1) × . . . × [ud, vd) in which a virtual
best point and a virtual worst point are denoted as Rb = (u1, . . . , ud) and
Rw = (v1, . . . , vd) respectively. For this regional unit, we formally present the
notions of dominance and incomparability, as done in [20].

Definition 6 (Region-level dominance). Given two regions R and R′ on
D, R dominates R′ if Rw ≺D R′

b.

Definition 7 (Region-level incomparability). Given two regions R and
R′ on D, they are incomparable if Rb ⊀D R′

w and R′
b ⊀D Rw.

48 S.-w. Hwang

For brevity of representation, we replace notations ≺D, ⊀D, ∼D, and
SKYD(S) with ≺, ⊀, ∼, and SKY(S) if it is clear from the context.

As for ranking queries, we aim at finding the optimal algorithm with min-
imal cost C. However, the cost function for skyline algorithm is different from
that of ranking algorithms:

Aopt = argminA∈ΩC(A)

Unlike ranking algorithms incurring a sub-linear scan and low computa-
tion cost, skyline algorithms require many pairwise dominance tests. Con-
sequently, cost function C for skyline algorithms typically counts the
number of dominance tests performed.

Toward this goal, existing algorithms iteratively select a point that domi-
nates a large number of points, e.g., b dominating all the points in the shaded
region in Figure 3.8(b). However, we observe these “dominance-based” algo-
rithms suffer the following limitations:

Incomparability is critical to achieve scalability. While existing skyline al-
gorithms have focused mostly on reducing point-wise dominance tests, incom-
parability, i.e., two points p and q not dominating each other, is another key
factor in optimizing skyline computation. In particular, in high-dimensional
space, most point pairs become incomparable. To illustrate this, Figure 3.11
depicts the number of point pairs with dominance and incomparability. The
dataset was synthetically generated with 200,000 uniformly distributed points
with independent attributes, and was used as a synthetic dataset. The num-
bers in parentheses indicate the average number of skyline points. It is clear
that, in low dimensionality, almost all of the point pairs have dominance re-
lations. In contrast, for a dimensionality higher than 13, incomparable pairs
start to dominate. The graph empirically demonstrates that, to enable sky-
line query processing scalable over dimensionality, considering both the dom-
inance and incomparability is crucial.

Balancing dominance and incomparability is non-trivial. To optimize both
dominance and incomparability, the pivot point selection should be carefully

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

d1

d2

i(7, 2)

h(7, 6)

l(9, 1)

g(6, 4)

c(3, 9)

d(4, 6)

a(2, 8)

k(8, 3)

b(2, 5)

e(4, 4)

f(5, 7)

j(8, 8)

0 1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

7

8

9

10

d1

d2

i(7, 2)

h(7, 6)

l(9, 1)

g(6, 4)

c(3, 9)

m(4, 6)

a(2, 8)

k(8, 3)

b(2, 5)

e(4, 4)

f(5, 7)

j(8, 8)

(a) a dominance region (b) incomparable regions

Fig. 3.8 Dominance vs. incomparability.

3 Processing Framework for Ranking and Skyline Queries 49

designed for a balanced optimization of these two factors. Existing workmostly
optimized for dominance by choosing a pivot point that maximized the dom-
inance region as depicted in Figure 3.8(a). In clear contrast, an alternative
extreme is to optimize solely for incomparability by picking a pivot point e
that “evenly” partitions the entire region as shown in Figure 3.8(b) in order to
maximize incomparable subregions (marked by shaded rectangles). With this
alternative pivot selection, even though the dominance region is reduced, we
can still bypass nine dominance tests on point pairs across the two incompara-
ble regions, {a, b, c} and {i, k, l}, as they are guaranteed to be incomparable.
However, it is non-trivial to find a cost-optimal strategy between these two
extremes.

In a clear contrast, cost-based optimization approach enables to balance
the two, as we discuss in further details below, guided by the cost function,
as we will further elaborate in the next section.

First, region-level dominance is used for reducing dominance tests of non-
skyline points. If R dominates R′, a point p in R dominates all points in R′

after only one dominance test. This property intuitively inspires the idea of
index-based algorithms [17, 23] by pruning a group of points in R′, i.e., an
MBR, by a single dominance test between p and R′

b. Similar intuitions are
used in non-index algorithms [8, 9, 12, 3] to access pivot point maximizing
dominance regions first. These points would be effective in pruning out points
in its dominance region early on.

Second, region-level incomparability is used to avoid dominance tests be-
tween incomparable points (not necessarily skyline points). Suppose that
two regions R and R′ are incomparable. In this case, the two points cor-
responding to each region are also incomparable, i.e., if R ∼ R′, then
∀p ∈ R, ∀q ∈ R′ : p ∼ q. We can thus save computation cost by bypassing
dominance tests for point pairs between incomparable regions. This property
inspires the idea of partitioning-based algorithms [25, 18], using heuristic
pivot selection for incomparability. Recall that, optimizing for incomparabil-
ity becomes more and more critical in high-dimensional space, where most
point pairs become incomparable.

3.4.2 Extracting Skeleton

This section discusses common skeletons of a class of existing algorithms A
from which common modules can be identified as in Figure 3.10. As some
algorithms can leverage indices and some cannot, for fair comparison, we
assume no pre-constructed index for all algorithms. In these skeletons, two
key common modules, SelectPivot() and Prune(), are identified.

The common optimization goal of all algorithms is to design SelectPivot()
module, to minimize the cost in Prune() module. As dominance tests are
the dominating factor in the overall cost (as argued in [20, 25]), we aim at

50 S.-w. Hwang

Algorithm 1. Opt(pV , S)
1: S ← MapPointToRegion(pV , S).
2: // Remove all points in S2d−1 dominated by pV .
3: S ← S − Dominance(pV , S2d−1).
4: B ← {B0, . . . , B2d−2}.
5: for ∀(Bi, Bj) ∈ B × B do
6: // Check partial dominance, and remove dominated points.
7: if Bi ≺Par Bj and Si �= {} then
8: S ← S − Dominance(Si, Sj).
9: else if Bi ∼ Bj then
10: Continue. // Skip dominance tests between Si and Sj .
11: end if
12: end for
13: return S

developing SelectPivot() module that minimizes the number of dominance
tests in Prune() module.

Toward this goal, an optimal implementation Opt of Prune() can be de-
fined, as shown in Algorithm 1, requiring minimal dominance tests to find
correct skyline results. More formally, given an algorithm A and a dataset S,
let us denote the cost model as C(A,S). The optimality of Opt can be stated
as follows:

For the sake of explaining Opt and proving its optimality, we define the
following “lattice” structure.

Given a pivot point pV , the entire region can be divided into disjoint 2d sub-
regions. For instance, Figure 3.8(b) describes four subregions partitioned by
a point e. Every point in S is thus contained in a subregion, e.g., {}, {a, b, c},
{i, k, l} and {m, e, f, g, h, j}. Formally, let R denote a set of subregions on D,
i.e., R = {R0, . . . R2d−1}, based on which we represent region-level relations.

More specifically, to simplify region-level relations, we introduce a d-
dimensional vector B that corresponds to R. Let B denote a set of all d-
dimensional vectors i.e., B = {B0, . . ., B2d−1}, where each vector is mapped
into a subregion such that ∀Bi ∈ B : Bi → Ri. Let B.di denote a value on
di of vector B, where a value di on B corresponds to the ith most significant
bit. Formally, given a pivot point pV and a point q in Ri, B.di is represented
as a binary value:

B.di ←
{
0, if qi < pVi ;
1, otherwise.

We then explain how to infer region-level relations from binary vectors
presenting subregions. For instance, when d = 3, pV divides the entire region
into eight subregions, i.e., B = {B0 = 000, B1 = 001, . . ., B7 = 111}. If
B.di is 0, the range of possible point values is [0, p

V
i). Otherwise, the range is

[pVi , 1]. Thus, vectors B0 and B1 describe subregions [0, pV1)× [0, pV2)× [0, pV3)

3 Processing Framework for Ranking and Skyline Queries 51

000

010001 100

101011 110

111

000(0)

010(2)001(1) 100(4)

101(5)011(3) 110(6)

111(7)

(a) A binary lattice (b) An encoded binary lattice

Fig. 3.9 A lattice for mapping points into regions when d = 3.

and [0, pV1)× [0, pV2)× [pV3 , 1] respectively. The binary vectors are thus suited
for presenting subregions concisely.

Using binary vectors, region-level relations can be formally represented as
the following three cases:

Definition 8 (Dominance in B). Given two vectorsB andB′, B dominates
B′ on D, denoted as B ≺ B′, if and only if ∀i ∈ [1, d] : B.di < B′.di, i.e.,
∀i ∈ [1, d] : B.di = 0 and B′.di = 1.

Definition 9 (Partial dominance in B). Given two vectors B and B′, B
partially dominates B′ on D, denoted as B ≺Par B′, if and only if ∀i ∈ [1, d] :
B.di ≤ B′.di and ∃j ∈ [1, d] : B.dj = B′.dj .

Definition 10 (Incomparability in B). Given two vectors B and B′, B is
incomparable with B′ on D, denoted as B ∼ B′, if and only if ∃i ∈ [1, d] :
B.di < B′.di and ∃j ∈ [1, d] : B′.dj < B.dj .

The relations between binary vectors can thus be organized as a partially
ordered set, represented as a lattice. To illustrate this, Figure 3.9 describes
a binary lattice and its binary encoding when d = 3. In this lattice, adja-
cent node pairs connected by an arrow represent partial dominance relations.
By the transitivity, node pairs reachable by a path of multiple paths also
have partial dominance relations. Among these partially dominated pairs,
(B0, B2d−1) shows a dominance relation according to Definition 8. All of the
remaining non-reachable pairs have incomparability relations.

More specifically, for all relations such that ∀i, j ∈ [0, 2d − 1] : (Bi, Bj) ∈
B × B, we explain how region-level relations are related to point-wise domi-
nance tests. For the sake of representation, let Si denote a subset of points
in Ri mapped into corresponding vector Bi.

• Dominance: For dominance pair (B0, B2d−1), if a point p in S0 exists,
any point q in S2d−1 can be immediately pruned out after a point-wise
dominance test on (p, q).

52 S.-w. Hwang

Sorting-based(S)

S.Sort(). // Optional.

pV ← S.SelectPivot().

S ← Prune(pV , S).

while(1)

if (S.Last() = true) then

Break.
end if

end while

Partitioning-based(S)

pV ← S.SelectPivot().

S ← Prune(pV , S).

Partioning-based(Si).

for ∀ Si ∈ S

end for

if (S.Size() > 1)

end if

// Recursive call.

(a) Sorting-based scheme (b) Partitioning-based scheme

Fig. 3.10 Skeletons of non-index skyline algorithms.

• Partial dominance: The relation can be classified into two subcases: (1)
a self-pair (Bi, Bi) and (2) (Bi, Bj) with an arrow from Bi to Bj . Guided
by these region-level relations, we then perform point-wise dominance tests
to effectively identify point-level relations. First, for self-pairs Bi and Bi,
we perform dominance tests in Si itself. Second, for Bi and Bj with partial
dominance relations, since points in Si are likely to dominate those in Sj ,
we perform dominance tests between Si and Sj . Recall that, we take the
transitivity into account to find all of the partial dominance relations–
If an arrow exists from Bi to Bj and an arrow from Bj to Bk, then Bi

also partially dominates Bk. We thus perform dominance tests for partial
dominance pairs (Bi, Bk).

• Incomparability: For all the remaining pairs, Bi and Bj are incompara-
ble, which suggests that point sets Si and Sj in corresponding regions Ri

and Rj are also incomparable, i.e., if Bi ∼ Bj, then ∀p ∈ Si, q ∈ Sj : p ∼ q.
We can thus bypass point-wise dominance tests between Si and Sj .

We now prove that Opt only requires minimal dominance tests to find correct
skyline results, by showing that the cost of Opt is no higher than that of any
arbitrary algorithm A ∈ A. Suppose that the same pivot is used. Given an
algorithm A and a dataset S, let us denote the cost model as C(A,S). We
formally state the optimality of Opt as follows:

Theorem 1 (Optimality of Opt). Given a set of any non-index algorithms
A, Algorithm Opt incurs the minimal cost, i.e., ∀A ∈ A : C(Opt,S) ≤
C(A, S).
Proof. We prove this by contradiction. In other words, if A skips any domi-
nance test performed by Opt, it may no longer guarantee that A finds correct
skyline results. Specifically, we shows the dominance tests of Opt for the
following three region-level relations described in the lattice.

3 Processing Framework for Ranking and Skyline Queries 53

4 6 8 10 12 14 16 18 20 22
0

10

20

30

40

50

60

70

80

90

100

Dimensionality (n = 200,000)

In
co

m
p

ar
ab

le
 p

ai
r

ra
ti

o
 (

%
)

Incomparability
Dominance

(328) (13,764) (78,476) (153,689) (190,328)

Fig. 3.11 The effect of incomparability.

• Dominance (lines 2-3): When performing dominance tests between a
point q ∈ S2d−1 and a pivot point pV , Opt only requires one dominance
test for each point. For S2d−1, the cost of Opt thus equals |S2d−1|. To
contradict, assume that an algorithm A exists with fewer dominance tests.
For a skipped dominance test, A can include q ∈ S2d−1 as final skyline
if q is only the point dominated by pV . Consequently, A causes incorrect
results, which incurs a contradiction.

• Partial dominance (lines 6-8): Opt needs to check dominance tests
between p and q if Si and Sj have a partial dominance relation. To con-
tradict, assume that A can skip dominance tests between p and q. In this
case, A can contain q as final skyline if q is the only point dominated by
p. As a result, the result of A is incorrect, which incurs a contradiction.

• Incomparability (lines 9-10): Given two regions Ri and Rj , Opt by-
passes all the point-wise dominance tests corresponding to Si and Sj . In
this case, A can save as many equal dominance tests as Opt.

To sum up, an algorithm A performing fewer point-wise dominance tests can-
not guarantee correct skyline results. In other words, a non-index algorithm
has to perform at least as many dominance tests as Opt.

3.4.3 Cost-Based Optimization Strategies

This section designs a systematic pivot point selection. An ideal pivot point
maximizes the power of dominance and incomparability. Formally, at each
iteration, a pivot point pV maximizing both ND(pV ,S) and NI(p

V ,S) should
be selected:

pV = argminp∈SC(p,S).
= argmaxp∈SND(p,S) +NI(p,S).

54 S.-w. Hwang

200K 400K 600K 800K 1000K
10

0

10
1

10
2

10
3

10
4

Cardinality n

R
es

p
o

n
se

 t
im

e
(s

ec
)

SSkyline
SFS
SaLSa
BSkyTree−S
BSkyTree−P

200K 400K 600K 800K 1000K
10

−1

10
0

10
1

10
2

10
3

10
4

10
5

Cardinality n

R
es

p
o

n
se

 t
im

e
(s

ec
)

SSkyline
SFS
SaLSa
BSkyTree−S
BSkyTree−P

200K 400K 600K 800K 1000K
10

2

10
3

10
4

10
5

Cardinality n

D
T

SSkyline
SFS
SaLSa
BSkyTree−S
BSkyTree−P

200K 400K 600K 800K 1000K
10

2

10
3

10
4

10
5

10
6

Cardinality n

D
T

SSkyline
SFS
SaLSa
BSkyTree−S
BSkyTree−P

(a) Independent (b) Anti-correlated

Fig. 3.12 Varying datasize.

A naive solution to this cost-based optimization would be to compute the
function for every point, which would involve performing dominance tests
across all pairs of 2d − 1 subregions. This naive solution thus incurs a pro-
hibitive cost of O(4d). As a result, estimating the exact function scores defeats
the whole purpose of optimizing the pivot point selection.

As one way to handle this challenge, an effective approximation scheme
has been developed in [19], which interleaves the following two phases.

1. Pruning phase: To maximize ND, a dataset is scanned once to consider
skyline points with high dominance power as candidates.

2. Optimization phase: These candidates are then checked to see if NI is
high as well. Specifically, the number of incomparable pairs is estimated
to pick the candidate with the highest NI .

This “balanced” pivot selection scheme Balanced, can then be plugged into
the skeleton of sorted-order and partitioning-based algorithms respectively,
to generate two new algorithms named BSkyTree-S and BSkyTree-P respec-
tively. These algorithms, guided by systematic observations and cost func-
tion, are empirically reported in [19] to outperform the state-of-the-art
non-index algorithms up to two orders of magnitude. Figure 3.12 shows eval-
uation results from [19] on 12-dimensional data with independent and anti-
correlated distribution (for further details on experiment settings, refer to
the paper.)

3 Processing Framework for Ranking and Skyline Queries 55

3.5 Conclusion and Open Issues

This chapter briefly surveyed a class of existing algorithms for supporting
ranking and skyline queries and discussed how having a mega-algorithm
framework can help us to generalize the problem, both ranking and skyline
query processing, and observe new principles neglected in the existing efforts.
The key contribution of this chapter is to suggest a methodology, which can
similarly applied for different classes of algorithms.

As a future direction, one can investigate if the same mega-algorithm
framework would benefit related problems as well, e.g., skycube creation.
More specifically, existing skycube algorithms identify skyline results for all
possible subspaces efficiently, by reusing the “results” from the computation
for another subspace. However, considering point-based partitioning results
can be shared between two subspaces, one can consider reusing this partition-
ing “structure” across subspaces, to enable further saving. Similarly, one can
investigate, whether this mega-algorithm framework can apply for different
cost scenarios, such as parallel processing.

References

1. Balke, W., Guentzer, U., Kiessling, W.: On Real-time Top-k Querying for Mo-
bile Services. In: CoopIS 2002 (2002)

2. Balke, W.-T., Güntzer, U., Zheng, J.X.: Efficient Distributed Skylining for
Web Information Systems. In: Bertino, E., Christodoulakis, S., Plexousakis,
D., Christophides, V., Koubarakis, M., Böhm, K. (eds.) EDBT 2004. LNCS,
vol. 2992, pp. 256–273. Springer, Heidelberg (2004)

3. Bartolini, I., Ciaccia, P., Patella, M.: Efficient Sort-Based Skyline Evaluation.
ACM TODS (2008)

4. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE
(2001)

5. Bruno, N., Gravano, L., Marian, A.: Evaluating Top-k Queries over Web-
Accessible Databases. In: ICDE (2002)

6. Chang, K.C.C., Hwang, S.: Minimal Probing: Supporting Expensive Predicates
for Top-k Queries. In: SIGMOD 2002 (2002)

7. Chaudhuri, S., Dalvi, N., Kaushik, R.: Robust Cardinality and Cost Estimation
for Skyline Operator. In: ICDE (2006)

8. Chomicki, J., Godfery, P., Gryz, J., Liang, D.: Skyline with Presorting. In:
ICDE (2003)

9. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting: Theory
and Optimizations. In: Intelligent Information Systems (2005)

10. Fagin, R.: Combining Fuzzy Information from Multiple Systems. In: PODS,
pp. 216–226 (1996)

11. Fagin, R., Lote, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: PODS 2001 (2001)

12. Godfrey, P., Shipley, R., Gryz, J.: Maximal Vector Computation in Large Data
Sets. In: VLDB (2005)

56 S.-w. Hwang

13. Guentzer, U., Balke, W., Kiessling, W.: Optimizing Multi-Feature Queries in
Image Databases. In: VLDB 2000 (2000)

14. Guentzer, U., Balke, W., Kiessling, W.: Towards Efficient Multi-Feature
Queries in Heterogeneous Environments. In: ITCC 2001 (2001)

15. Hwang, S., Chang, K.: Optimizing Top-k Queries for Middleware Access: A
Unified Cost-based Approach. ACM Trans. on Database Systems (2007)

16. Ilyas, I.F., Beskales, G., Soliman, M.A.:
17. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online

Algorithm for Skyline Queries. In: VLDB (2002)
18. Lee, J., Hwang, S.: SkyTree: Scalable Skyline Computation for Sensor Data.

In: SensorKDD (2009)
19. Lee, J., Hwang, S.: BSkyTree: Scalable Skyline Computation using Balanced

Pivot Selection. In: EDBT (2010)
20. Lee, K.C., Zheng, B., Li, H., Lee, W.C.:
21. Lo, E., Yip, K.Y., Lin, K.I., Cheung, D.W.: Progressive Skylining over Web-

Accessible Database. Data & Knowledge Enginnering (2006)
22. Morse, M., Patel, J.M., Jagadish, H.:
23. Papadias, D., Tao, Y., Fu, G., Seeger, B.: An Optimal and Progressive Algo-

rithm for Skyline Queries. In: SIGMOD (2003)
24. Selinger, P., Astrahan, M., Chamberlin, D., Lorie, R., Price, T.: Access Path

Selection in a Relational Database. In: SIGMOD 1979 (1979)
25. Zhang, S., Mamoulis, N., Cheung, D.W.: Scalable Skyline Computation Using

Object-based Space Partitioning. In: SIGMOD (2009)

Chapter 4
Preference-Based Query Personalization

Georgia Koutrika, Evaggelia Pitoura, and Kostas Stefanidis

Abstract. In the context of database queries, computational methods for handling
preferences can be broadly divided into two categories. Query personalization meth-
ods consider that user preferences are provided as a user profile separately from the
query and dynamically determine how this profile will affect the query results. On
the other hand, preferential query answering methods consider that preferences are
explicitly expressed within queries. The focus of this chapter is on query person-
alization methods. We will first describe how preferences can be represented and
stored in user profiles. Then, we will discuss how preferences are selected from a
user profile and applied to a query.

4.1 Introduction

Preferences have a central role in many disciplines, including philosophy, decision
theory and rational choice theory, a subject that in its turn permeates modern eco-
nomics and other branches of formalized social science. How preferences are con-
ceived and analyzed varies between these disciplines. For example, they could be
conceived of as an individual’s attitude towards a set of objects, typically reflected
in an explicit decision-making process [39]. Alternatively, one could interpret the
term “preference” to mean evaluative judgment, in the sense of liking or disliking
an object (e.g., [47]), which is the most typical definition employed in psychology.

Georgia Koutrika
IBM Almaden Research Center, USA
e-mail: koutrika@stanford.edu

Evaggelia Pitoura
University of Ioannina, Greece
e-mail: pitoura@cs.uoi.gr

Kostas Stefanidis
Norwegian University of Science and Technology, Norway
e-mail: kstef@idi.ntnu.no

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 57–81.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

koutrika@stanford.edu
pitoura@cs.uoi.gr
kstef@idi.ntnu.no

58 G. Koutrika, E. Pitoura, and K. Stefanidis

In other disciplines, particularly in economics, there is a strong tradition to equate
preference with choice [26].

Computer science fields, such as artificial intelligence, human-computer interac-
tion and databases, also deal with preferences. Here, explicit preference modeling
provides a declarative way to choose among alternatives, whether these are solu-
tions of a problem that an agent has to solve, user interaction elements or answers
of database queries.

In databases, attention has been given on representations of preferences and
on computational methods for handling preferences in the context of queries.
Preference representations fall into two main categories. Qualitative preferences
are specified using binary predicates that relatively compare tuples (e.g., [13, 33]).
For example, a tuple a is preferred over tuples b and c. Quantitative preferences
are expressed by assigning scores to particular tuples (e.g., [3]) or query elements
that describe sets of tuples (e.g., [38]), where a score expresses degree of interest. A
tuple a is preferred over tuple b if the score of a is higher than the score of b.

Computational methods for handling preferences in the context of database
queries can be broadly divided into two categories. In query personalization, user
preferences are provided in the form of a user profile. The goal is to find at any time
which preferences should be taken into consideration in the context of a given query
and modify the query results accordingly. On the other hand, preferential query an-
swering considers that preferences are explicitly expressed within queries as soft
conditions. If all preferences are equally important then the Pareto optimal set, i.e.,
all tuples which are not dominated by any other tuple, is computed (for skyline
queries, refer to Chapters 2 and 3). If preferences are expressed using scores and
there is an aggregating function for combining the partial scoring predicates, then
the top-k results are computed (for top-k queries, refer to Chapter 3).

The focus of this chapter is on query personalization. We will first discuss how
preferences can be represented and stored in user profiles (Section 4.2). Then, we
will discuss how preferences are selected from a user profile and applied to a query
(Section 4.3). As a running example, we consider a database that stores information
about movies whose schema graph is described in Figure 4.1.

Fig. 4.1 An example database graph.

4 Preference-Based Query Personalization 59

4.2 Preference Representation

Preferences express personal taste and are naturally context-dependent (or situated
[31]), i.e., they may hold under specific conditions. For example, one may like
watching comedies at home but prefer watching adventures at the movies. Or, one
may like walking to work on a fine day but would always drive on rainy days. Or,
one may always like driving to work under all weather conditions. Consequently,
we consider that preferences are contextual and that, in their general form, have two
parts, namely a context and a preference specification.

Definition 1 (Contextual Preference). A contextual preference CP is a pair (C,P),
where P describes the preference and C specifies the context, i.e., the conditions
under which the preference holds.

A set of user preferences comprise a user profile U , which can be used for query
personalization. We discuss how a user’s preferences can be learnt in Section 4.4.

In the remaining section, first, we will elaborate on the specification of the context
part C and then on the preference part P of a contextual preference. Then, we will
show how individual preferences can be combined together and we will conclude
the section with an example user profile.

4.2.1 Context Specification

The notion of context has been extensively studied in the context-aware computing
community (e.g., [8], [48]), where different definitions of context have been pro-
posed. A commonly used definition is the following [19].

“Context is any information that can be used to characterize the situation of an
entity. An entity is a person, place or object that is considered relevant to the inter-
action between a user and an application, including the user and the application.”

Under this very general definition, user preferences can be also considered part of
the user context, since they characterize the situation of a user. Here, we are inter-
ested in how the context determines when user preferences hold. In particular, we
are interested in external context, that is a situation outside the database. Common
types of external context include the computing context (e.g., network connectiv-
ity, nearby resources), the user context (e.g., accompanying people, location), the
physical context (e.g., noise levels, temperature) and time [11].

A generic way to model external context is through a set of attributes, called
context parameters. The set of context parameters used to model context depends
on the specific application.

Definition 2 (External Context). Given a set of context parameters C1, . . ., Cn with
domains dom(C1), . . ., dom(Cn), respectively, an external context specification C is
an n-tuple of the form (c1, . . . ,cn), where ci ∈ dom(Ci), 1≤ i≤ n.

60 G. Koutrika, E. Pitoura, and K. Stefanidis

Fig. 4.2 Context hierarchies of accompanying people and time period.

The meaning of such a specification C in a contextual preference (C,P) is that the
preference expressed by P holds only when the context parameters take the values
in C. For example, for the movie database, we may consider two context parameters
as relevant, namely, accompanying people and time period. In this case, a context
specification (family, Christmas) can be used to express a preference for specific
movies in this context, that is, when the user is with her family during Christmas.

Additional flexibility in defining context specifications may be achieved by using
context parameters that take values from hierarchical domains. By doing so, the
specification of context C can be done at various levels of detail [42, 51, 52]. For
instance, using a hierarchical context parameter to model time would allow us to
express preferences that hold at the level of a day, a month or a year.

For example, for our movie database, consider that the two relevant context pa-
rameters, i.e., accompanying people and time period, take values from the hierar-
chical domains shown in Figure 4.2. Such hierarchies can be constructed using, for
example, WordNet [43] or other ontologies (e.g., [27]).

The relationships between values at different levels of a hierarchy can be captured
through a family of ancestor and descendant functions [55]. An ancestor function
anc is responsible for assigning each value of a specific level to a value at a higher
level, while a descendant function desc returns the descendants of a value at a spe-
cific level. For the hierarchies in Figure 4.2, holidays is an ancestor of Christmas,
whereas the descendants of weekend are {Sa,Su}. Values at higher levels are con-
sidered more general than values in lower levels. The root of each hierarchy is the
value All denoting the most general value for the corresponding parameter, while
the values at the leaf nodes are the most specific or most detailed ones. In our exam-
ple, value holidays is more general than value Christmas, while f amily and f riends
are at the same level of detail.

Example. Taking advantage of the hierarchical nature of context parameters, we
can express preferences for movies (Figure 4.1) with different levels of details. For
example, a user, say Julie, likes watching cartoons at weekends when accompanied
by her family but enjoys watching action movies when alone. The context part of
the first preference may be defined as (f amily, weekends), while the second one as
(alone, All). We can also express preferences that hold independently of context.
For example, say Julie enjoys also comedies at any time of the year and with any
company. The context part for this preference can be expressed as (All, All). �

4 Preference-Based Query Personalization 61

External context, called situations, is also used along with preferences in [31]. In
this model, each context specification has an identifier cid and consists of a times-
tamp and location as well as other influences, such as physical state, current emo-
tion, weather conditions and accompanying people. External contexts are uniquely
linked through N:M relationships with preferences. Therefore, each contextual pref-
erence can be described as a (cid, pid) relationship instance, expressing that prefer-
ence pid holds in context cid. Such descriptions may be saved in the database.

Finally, a knowledge-based approach is proposed in [9], where contextual prefer-
ences are called preference rules. In these rules, both the context and the preference
specification parts are expressions in description logic.

4.2.2 Preference Specification

We consider that preferences are expressed for tuples of a relational database. There-
fore, let us first introduce some related notation. A database comprises a set of rela-
tions. A relation R has a set A of attributes. We will use R.A j to refer to an attribute in
A or simply A j when R is understood. dom(A j) is the domain of values for attribute
A j. We use t to denote a tuple of R.

There are two fundamental ways of expressing preferences. In qualitative pref-
erence specification, preferences are defined between pairs of tuples. Formally, a
qualitative preference P is a binary relation P over R, where for ti, t j ∈ R, ti P

t j means that ti is preferred over t j. We also say that ti dominates t j. In quantitative
preference specification, preferences are expressed by assigning numerical scores
to each tuple t in R indicating the user interest in t. In this chapter, we focus on
quantitative preference specification.

It is typical to consider scores in the range of [0,1], where the closer the score
to 1, the higher the user interest for the tuple. Clearly, one could consider different
domains of values for scores. Intuitively, larger scores will show stronger preference.
Ideally, there would be a perfect ranking function that would map each tuple t ∈ R
to a score(t) [3].

Definition 3 (Ranking Function). Given a relation R and its attribute set A, a rank-
ing function score(t) : dom(A) → [0,1] maps tuples to scores.

The ranking function imposes an order on the tuples of R. In general, ti in R is
preferred over t j in R, or ti is ranked higher than t j, for a ranking function score,
denoted, ti score t j if and only if, score(ti) > score(t j). Note that the qualitative
model is in general more expressive than the quantitative one. It has been shown
that not all qualitative preferences can be captured by a single function unless they
imply a weak order of the tuples [26].

If such an elaborate ranking function existed, it would yield a perfectly fine-
grained ranking of tuples (e.g., movies, actors, and so forth) and would allow to
return highly personalized answers to user queries. Unfortunately, such perfect rank-
ing functions are also rather rare in practice. One reason is that user preferences are
incomplete by nature. For instance, a user may not fully know or understand her

62 G. Koutrika, E. Pitoura, and K. Stefanidis

preferences on movies. Furthermore, individual user judgments may be conflicting
and produce more than one ranking [15, 32]. For example, a user liked Million Dol-
lar Baby, which is a movie directed by Clint Eastwood, but did not like Torino,
another movie by the same director. What is her preference for Clint Eastwood,
then?

Instead of assigning preference scores to individual tuples, a more convenient
way to describe preferences is to assign preference scores to query constructs, such
as selection and join conditions. These constructs can be then naturally used to
personalize a query. Such scores can be assigned to selection conditions and join
conditions.

Definition 4 (Tuple Preference). A preference P for a set of tuples of a relation R
in the database is expressed as a pair (condition, score) where condition involves a
set B of attributes, B ⊆ A, and score is a function: dom(C)→ [0,1], where C ⊆ A
and A is the set of all attributes of relation R.

The meaning is that all tuples from R that satisfy condition are assigned a score
through function score. Function score may assign the same constant value to all
tuples that satisfy the condition or assign different scores to these tuples based on
the values of the attributes in C. Again, for a tuple preference P, a tuple ti is preferred
over a tuple t j, if and only if, score(ti) > score(t j). Consequently, each preference
generates a partial ranking or order of the tuples in R.

Depending on condition, a preference can be one of the following types [37]:

(i) Selection preference. If condition is a conjunction of atomic selections involv-
ing a set of attributes and atomic joins transitively connecting these attributes
to R on the database graph, then P is called a selection preference.

(ii) Join preference. If condition is a conjunction of atomic join conditions repre-
senting the transitive join of relations R and R′ on the database graph, then P is
called a join preference.

A selection preference indicates a user’s preference for tuples from R that satisfy
the transitive selections in condition. In their simplest form, selection preferences
can assign a preference score to a set of tuples based solely on the values of the
tuple [36, 38, 42, 52]. That is, both B and C include only attributes in R. These
preferences are also called intrinsic [13]. A join preference indicates the degree in
which preferences for tuples in R are influenced by preferences on joining tuples.

Example. To illustrate preferences, we consider the database shown in Figure 4.1.
Julie’s preferences for movies are captured in her profile. For instance, she likes
comedies (P1).

(P1) GENRE : GENRE.genre= ‘comedy’ 0.85

She also likes family adventures with duration around one and a half hour (P2). A
function, such as fd(MOV IE.duration,90min)= 0.9∗ (1− |MOV IE.duration−90|

90), can
be used to give scores to family adventures based on their duration.

4 Preference-Based Query Personalization 63

(P2) MOVIE : MOVIE.mid= GENRE1.mid and GENRE1.genre= ‘family’ and

MOVIE.mid= GENRE2.mid and

GENRE2.genre= ‘adventure’ fd(MOVIE.duration,90min)

Moreover, Julie considers the director of a movie to be more important than the
genre of the movie (P3 and P4). This is expressed through preferences that use join
conditions.
(P3) MOVIE : MOVIE.mid=DIRECTED.mid and DIRECTED.did=DIRECTOR.did 1.0

(P4) MOVIE : MOVIE.mid= GENRE.mid 0.7

One of her favorite directors is Alfred Hitchcock (P5).

(P5) DIRECTOR : DIRECTOR.name= ‘A.Hitchcock’ 0.7 �
In addition to preferences for tuples, we can also have preferences for attributes.

Definition 5 (Attribute Preference). A preference P for an attribute A j of a relation
R in the database is expressed as a pair (A j, score).

Attribute preferences can have different interpretations. One possible interpretation
is to set priorities among tuple preferences based on the attributes involved in the
preferences (e.g., [28]). Alternatively, attribute preferences can express priorities
among the attributes to be displayed in the result of a query (e.g., π-pre f erences
[42]).

Example. Julie considers the release year a movie more important than its duration
(preferences P6 and P7).

(P6) MOVIE : duration 0.7

(P7) MOVIE : year 1.0

If we interpret P6 and P7 as priorities among attributes to display in the result, then
the year of a movie is a more interesting piece of information to display than its
duration. �
It is also possible to score attributes using automatic techniques that estimate the
usefulness of an attribute and its visibility in the results of a query [18, 41].

One may consider the condition part of a preference to be a form of a context
specification [2], in the sense that the preference holds only for the tuples that sat-
isfy the conditions. For example, say Julie, wants the release year for animations
to be after 2000, while for all other movies the year of release should be after
1960. Hence, her preference on more recent movies holds only for, or in the con-
text of, animations. The context for this preference is described by the condition
(MOVIE.mid = GENRE.mid and GENRE.genre = ‘animation’). This type of
context is dictated by the data items in the database and thus can be considered in-
ternal as opposed to external context that depends on conditions on items outside
the database.

In general, such conditional preferences have received little attention in databases
but they have been studied extensively in AI. A commonly used graphical notation
for their representation is a conditional preference network, or CP-net (e.g., [7]).

64 G. Koutrika, E. Pitoura, and K. Stefanidis

CP-nets use conditional ceteris paribus (all else being equal) semantics. A CP-net
over a set of attributes A = {A1, . . . ,Ad} is a directed graph in which there is a
node for each attribute in A. If an edge from an attribute A j to an attribute Ai exists
in the graph, then A j is an ancestor of Ai. Let Zi be the set of all ancestors of Ai.
Semantically, the preferences over Ai depend on the attributes Zi. Each attribute Ai

is annotated with a conditional preference table, CPT , describing the preferences
over Ai’s values given a combination of its ancestor values. That is, the CPT of Ai

contains a set of preference expressions of the form zi : ai1 ai2 , zi ∈ dom(Zi) and
ai1 ,ai2 ∈ dom(Ai). This statement defines the conditional preference of ai1 over ai2
under context zi. In particular, a tuple with ai1 is preferred over a tuple with ai2 when
the value of Zi is zi, only if the values of the remaining attributes are equal.

There are also a few recent proposals of using CP-nets to represent database pref-
erences. Hierarchical CP-nets introduced in [44] extend CP-nets by adding, among
others, attribute preferences; a preference over an attribute is of higher priority than
the preferences over the descendants of this attribute. Thus, each edge of the net
expresses both the conditional dependence and the relative importance between dif-
ferent attributes. In incomplete CP-nets, preferences are only partially specified re-
sulting in pairs of tuples being incomparable or indifferent in some contexts [14].
This approach proposes decoupling CP-nets from the ceteris paribus semantics used
so far, and using the totalitarian semantics, that intuitively consider a tuple ti to be
preferred over t j if the value of ti at some attribute is preferred over the correspond-
ing value of t j and none of the other values of t j is preferred over that of ti (Pareto
semantics). Finally, a new preference constructor to capture the ceteris paribus se-
mantics is introduced in [22] in the context of translating a CP-net into an expression
in the formal preference language over strict partial orders of [33].

4.2.3 Combining Preferences

Each tuple preference yields a partial ranking of the database tuples. Given a set
of preferences defined over a relation, we can define different ways to combine the
partial rankings into a total ranking of the tuples. In this section, we assume that the
applicable preferences have the same external context, thus, in the following, we
ignore the context part. We discuss when preferences are generally applicable to a
query, taking into account context, in Section 4.3.1.

We consider first the case in which a set of preferences may order the same pair
of tuples differently. This situation is sometimes called a conflict.

Definition 6 (Conflicting Preferences). Two tuple preferences Px: (conditionx,
scorex) and Py: (conditiony, scorey) defined over the same relation R are con-
flicting for a tuple t, if and only if, t satisfies both conditionx and conditiony and
scorex(t) �= scorey(t).

Some conflicts can be resolved using conflict resolution rules. An intuitive such rule
is preference overriding [37]. Px is overridden by Py, if conditiony is subsumed by
conditionx, that is, for all potential tuples t in R, if t satisfies conditiony then it also

4 Preference-Based Query Personalization 65

satisfies conditionx. Then, preference Py is called specific, while Px is called generic
and is given priority over Py, that is Px is used, only when Py does not apply. For
example, Px could be a preference for comedies and Py be a preference for comedies
with A. Sandler. Then, a comedy with A. Sandler is assigned scorey(t), while all
other comedies are assigned scorex(t).

Conflicts can be generally resolved by using aggregating functions, which com-
bine all partial scores into one.

Definition 7 (Aggregating Function). Let t be a tuple in a relation R that satisfies a
set of preferences P1, . . ., Pn defined over R and as a result receives the partial scores
scoreP1(t), . . ., scorePn(t). The final score of t can be computed using an aggregating
or combining function F : [0,1]n → [0,1] that combines the partial scores into a
single one.

Commonly used aggregating functions include weighted summation or average,
“min” and “max”. In general, aggregating functions can be distinguished into [36]:

(i) Inflationary: when the score of a tuple that satisfies multiple preferences to-
gether increases with the number of these preferences;

(ii) Dominant: when the score assigned by one of the preferences dominates; and
(iii) Reserved: when the combined score of each tuple lies between the highest and

the lowest scores assigned to it.

Several combining functions have been defined in the context of multimedia
databases in [23, 24]. There, each tuple is assigned a score s ∈ [0,1] based on how
well it satisfies an atomic query. The objective is to compute an aggregated score
for each tuple based on how well the tuple satisfies a boolean combination (dis-
junction or conjunction) of such atomic queries. Several interesting properties that
aggregation function needs to satisfy are defined.

The problem of combining a set of partial rankings into a single ranking of items
is also referred to as rank aggregation. Rank aggregation is a general problem. It has
been studied in several fields including social choice, which studies the problem of
determining the ranking of alternatives that is the most appropriate for a group given
the individual opinions of its members [16, 54], web meta-search, which combines
ranked lists of web pages produced by different search engines [15, 21], database
middleware, where the problem is to combine multiple rankings of a set of ob-
jects based on preferences defined on different dimensions of these objects [25] and
collaborative filtering, which combines known preferences of a group of users to
predict preferences for unrated items [1].

Methods used by rank aggregation can be exploited to combine partial rankings
that are produced by preferences. We outline two such methods from voting theory.
One approach is the Borda count. Given a tuple t and n partial rankings, the proposed
combining function assigns as a final score to t the sum of its positions in the n
rankings [6]. Another approach is known as the Copeland index. In this case, the
final score assigned to t is based on both the number of tuples that t dominates and
the number of tuples t is dominated by in all the n rankings in which t participates.

66 G. Koutrika, E. Pitoura, and K. Stefanidis

So far we have seen methods for combining preferences (or their resulting partial
rankings) over a single relation. It is possible to take into account preferences that
are not explicitly defined over a relation but can implicitly produce a ranking of
the tuples in the relation through the join preferences that relate this relation to
neighboring relations on the database schema graph. Such preferences are called
implicit [36].

Two preferences Px and Py are composeable [36], if and only if: (i) Px is a join
preference of the form (conditionx,scorex) connecting Rx to a relation Ry, and (ii)
Py is a join or selection preference (conditiony,scorey) on Ry.

Definition 8 (Implicit Preference). An implicit preference (condition,score) is de-
fined from the composeable preferences Px and Py, on R ≡ Rx, and: (i) condition is
the conjunction of the conditions conditionx,conditiony and (ii) score is a function
of the degrees of interest of the two preferences, i.e., score = f (scorex,scorey).

Several functions are possible for determining the score of an implicit preference.
Non-increasing functions, such as the product and the minimum, are more natu-
ral since the resulting (implied) preference cannot be stronger than its supporting
preferences.

Example. As we have seen in previous examples, Julie likes director A. Hitchcock
(preference P5) and she considers the director of a movie quite important (prefer-
ence P3). We can define an implicit preference for movies that are directed by A.
Hitchcock (taking, for example, the product of the preference scores), as follows:

(P8) MOVIE : MOVIE.mid=DIRECTED.mid and DIRECTED.did=DIRECTOR.did

and DIRECTOR.name= ‘A.Hitchcock’ 0.7

Finally, note that so far, we have considered preferences of the same user. In many
applications, one needs to combine partial rankings that represent preferences of dif-
ferent people to produce a single ranking for all of them. This is often called group
preference aggregation. Many approaches have been proposed [40]. For example, a
consensus function that takes into account both the tuple scores for the users and the
level at which users disagree with each other can be used [4]. Different strategies
can be implemented, such as the least misery, where the idea is that a group is as
happy as its least happy member.

4.2.4 Example: A User Profile

Above, we have illustrated separately how contexts and preferences can be repre-
sented. Figure 4.3 presents a set of contextual preferences.

In particular, given the database shown in Figure 4.1, CP1 defines that Julie likes
comedies when with friends during holidays, while, she likes adventures when with
family during holidays (CP2). When she is alone at weekends, her favorite direc-
tor is Alfred Hitchcock (CP3). Knowing the production year of a movie is always
important (CP4) but the movie’s duration is less important when she is with friends
than when she is alone (CP5 and CP6). Finally, with respect to (CP7), (CP8) and

4 Preference-Based Query Personalization 67

(CP9), she always considers both the director and the actors of a movie more impor-
tant than the genre.

To map contextual preferences over a database, we extend the concept of the
personalization graph, introduced in [38], to include context. More specifically, let
G(V,E) be a directed graph that is an extension of the database schema graph. Graph
nodes correspond to schema relations, attributes and values for which a user has a
preference. Edges are selection edges, representing a possible selection condition
from an attribute to a value node, join edges, representing a join between relations,
and projection edges connecting an attribute to its container relation. Selection pref-
erences map to selection edges. Join edges capture join preferences. Attribute pref-
erences map to the projection edges. All kinds of edges are associated with pairs
of the form (C, score), where C defines the context under which the preference that
corresponds to the edge holds and score stands for the preference score. Figure 4.4
illustrates a personalization graph that captures the preferences given in Figure 4.3.

(CP1) (C1) (friends,holidays) (P1) GENRE : GENRE.genre= ‘comedy’ 0.85

(CP2) (C2) (family,holidays) (P2) GENRE : GENRE.genre= ‘adventure’ 0.8

(CP3) (C3) (alone,weekend) (P3) DIRECTOR : DIRECTOR.name= ‘A.Hitchcock’ 0.9

(CP4) (C4) (All,All) (P4) MOVIE : MOVIE.year 1.0

(CP5) (C5) (alone,All) (P5) MOVIE : MOVIE.duration 1.0

(CP6) (C6) (friends,All) (P6) MOVIE : MOVIE.duration 0.7

(CP7) (C7) (All,All) (P7) MOVIE : MOVIE.mid=DIRECTED.mid and

DIRECTED.did=DIRECTOR.did 1.0

(CP8) (C8) (All,All) (P8) MOVIE : MOVIE.mid= CAST.mid and

CAST.aid = ACTOR.aid 1.0

(CP9) (C9) (All,All) (P9) MOVIE : MOVIE.mid= GENRE.mid 0.7

Fig. 4.3 Example contextual preferences.

Fig. 4.4 Personalization graph enhanced with context.

68 G. Koutrika, E. Pitoura, and K. Stefanidis

In the sequel, we will use the terms contextual preferences and preferences inter-
changeably.

4.3 Personalizing Queries Using Preferences

Query personalization methods consider that user preferences are provided as a user
profile. At query time, the goal is to find which preferences should be taken into
consideration in the context of a query and integrate them into query processing.

At a high level, query personalization involves two phases (Figure 4.5): prefer-
ence selection and personalized query processing. Preference selection determines
which preferences from a user profile can possibly affect the query based on how
they relate to the query and the external context at query time. For example, as-
sume that Julie wants to find a comedy (the query) to watch with her family (the
external context). Then, her preferences for dramas may not be applicable since she
is searching for comedies. In addition, her movie preferences in the company of
friends are outside the current context. Personalized query processing involves in-
tegrating preferences into the query and returning a preferential (or personalized)
answer. Preferences may be used to rank the query results and potentially return to
the user only the top-k most preferred ones.

In the following sections, we describe each of the two phases in detail.

4.3.1 Preference Selection

Given a query and a user profile, the first phase of query personalization identifies
which preferences can be combined with the query. Let (CQ,Q) be the query, which
is also contextual, i.e., the query Q is formulated over the database and enhanced
with a specification of context, denoted CQ. The query context, CQ, is described
using the same set of context parameters used to specify preferences. CQ may be
postulated by the application or be explicitly provided by the users as part of their
queries. Typically, in the first case, the query context corresponds to the current
context, that is, the context surrounding the user at the time of the submission of
her query. Such information may be captured using appropriate devices and mech-
anisms, such as temperature sensors or GPS-enabled devices for location. Besides
this implicit context, users may explicitly specify CQ. For example, Julie may ex-
press an exploratory query asking for interesting movies to watch with her family
over the coming weekend.

Let (CP, P) denote a preference from the user profile. We decide whether prefer-
ence (CP, P) can be used with query (CQ,Q) based on:

(i) Context Matching: how close their contexts CP and CQ are, and
(ii) Preference Relevance: whether P is relevant to (a subset of) the results of Q.

4 Preference-Based Query Personalization 69

Fig. 4.5 Query Personalization Workflow.

We discuss context matching and preference relevance next. Then, we describe a
methodology for selecting preferences from a user profile to be combined with a
given user query.

Context Matching. Clearly, in terms of context, a preference (CP, P) can be used to
personalize a query (CQ, Q), if CP = CQ. However, when there are no such prefer-
ences in the profile, or when their number is small, we may need to select in addition
preferences whose context CP is not necessarily the same with CQ but close enough
to it. To determine how close contexts CP and CQ are, we rely on appropriate dis-
tance or similarity measures.

When context parameters take values from hierarchical domains, such as those
in Figure 4.2, we can relate contexts expressed at different levels of detail. For in-
stance, we can relate a context in which the parameter time period is instantiated
to a specific occasion (e.g., Christmas) with a context in which the same parameter
describes a more general period (e.g., holidays). Intuitively, a preference defined for
a more general value, e.g., holidays, may be considered applicable to a query about
a more specific one, e.g., Christmas. In general, we can relate the external context
of a preference (CP, P) to the context CQ of a query, if CP is more general than CQ,
that is, if the context values specified in CP are equal to or more general than the
ones specified in CQ. In this case, we say that CP covers CQ [52].

Given CP = (cP
1 , . . . ,c

P
n) and CQ = (cQ

1 , . . . ,c
Q
n), both defined with the help of a set

of hierarchical parameters C1, ... Cn, where CP covers CQ, one way to quantify their
relevance is based on how far away are their values in the corresponding hierarchies.

distH(CP,CQ) =
n

∑
i=1

dH(level(cP
i), level(cQ

i)),

where level(cP
i) (resp. level(cQ

i)) is the hierarchy level of value cP
i (resp. cQ

i) of
parameter Ci and dH is equal to the number of edges that connect level(cP

i) and
level(cQ

i) in the hierarchy of Ci.
A similar metric is the relevance index, which is defined as follows [42]:

relevance(CP) =
dist(CQ,CP

root)− dist(CP,CQ)

dist(CQ,CP
root)

,

70 G. Koutrika, E. Pitoura, and K. Stefanidis

where dist(CQ,CP
root) represents the highest possible distance of the query context

with regard to any other context for which a preference exists. Preferences whose
context is the query context have the maximum relevance index, that is 1, while
preferences whose context is the most general one based on the available hierarchies
have the minimum relevance, that is 0.

Generalizing the discussion above, it is also possible to relate a context CP to a
context CQ, if CP can be attained by relaxing zero or more parameters of CQ in any
of the following ways: a context parameter may be relaxed upwards by replacing
its value by a more general one, downwards by replacing its value by a set of more
specific ones or sideways by replacing its value by sibling values in the hierarchy.
Given all these possible relaxations, appropriate distance metrics that exploit the
number of relaxed parameters and the associated depth of such relaxations can be
employed to measure how well context CP matches CQ [53].

Preference Relevance. Intuitively, the preference part P of a preference (CP,P) is
relevant to (a subset of) the results of Q, if combined together they yield an inter-
esting, non-empty result. In practice, however, it may be difficult to decide when a
preference is relevant to a query.

Consider, for example, a preference P on the genre of a movie and a query Q
about actors born before 1970. The preference seems irrelevant to the query since
it refers to a different “concept” (i.e., movies) from the concepts of the query (i.e.,
actors). On the other hand, one could consider the preference to be implicitly related
to the query, since actors are connected to movies. Perhaps P could be used to rank
the actors in the result of Q based on the genre of the movies in which each actor
appears. Consequently, all preferences that are explicitly connected to the query as
well as those implicitly connected to it can potentially be relevant [38].

A special form of relevance is applicability. A preference P is applicable to a
query Q, if the execution of Q combined conjunctively with P (over the current
database instance) yields a non empty result. This may be also called instance ap-
plicability. For example, consider a query about recent movies and a preference for
movies directed by Steven Spielberg. This preference is instance applicable only if
the database contains recent entries of this director. In general, instance applicability
can only be checked by actually executing the query with the preference.

Another type of applicability is semantic applicability. A preference P is not se-
mantically applicable to a query Q, if the execution of Q combined conjunctively
with P over any database instance yields an empty result. To decide whether a pref-
erence is semantically applicable to a query, knowledge outside the database may
be needed. Consider as an example a query about comedies. Then, a preference for
movies directed by Andrei Tarkovsky is not semantically applicable to this query,
since this director has not directed any comedies.

In some special cases, the applicability of a preference P to a query Q can be
determined simply by a syntactic analysis of P and Q. For example, a query about
movies released after 2000 and a preference for movies released prior to 1990 are
conflicting and will return an empty result when combined through a conjunction.
On the other hand, a preference for movies with actor Ben Stiller is syntactically

4 Preference-Based Query Personalization 71

applicable to a query for movies with Julia Roberts since it is possible that the two
actors play in the same movie. Note that a preference P that is syntactically appli-
cable to Q, it is not necessarily instance applicable. However, the reverse always
hold.

Other definitions of preference relevance have also been considered. For exam-
ple, in [9], both contexts and preferences are defined through description logics con-
cept expressions. Contextual preferences are considered relevant to a query if their
contexts are the same with or more general than the query context and their pref-
erences contain concepts which can be mapped to certain relations of the query. In
[50], the focus is on personalization of keyword queries, where contexts, preferences
and queries are specified through keywords. A contextual preference is considered
relevant to a query if its context is the same with or more general than the query,
i.e., contains a subset of the query keywords.

4.3.1.1 Selecting Preferences Based on Their Context and Relevance

Given a query and a user profile, the first phase of query personalization, i.e., pref-
erence selection, identifies preferences that can be combined with the query. This
phase can be conceptually divided into two steps: context matching and selection of
relevant preferences. The first step identifies the preferences from the user profile
with contexts closest to the query context. Among those preferences, the ones that
are relevant to the query are selected in the second step.

Selecting Preferences based on Context. Given a query context CQ = (cQ
1 , . . . ,c

Q
n),

cQ
i ∈ dom(Ci), 1 ≤ i ≤ n, and a user profile U , the first step of preference selection

identifies the m preferences in U with contexts closest to the query context. For this
purpose, a special data structure, called profile tree can be used [52]. A profile tree
offers a space-efficient representation of contexts defined in the user profile U by
taking advantage of the co-occurrences of context values in U .

Given a set U of external contextual preferences defined over n context param-
eters C1, . . . ,Cn, the profile tree for U has n+1 levels. Each one of the first n levels
corresponds to one of the parameters. For simplicity, assume that parameter Ci is
mapped to level i of the tree. At the first level of the tree, there is a single root node.
Each non-leaf node at level l, 1≤ l ≤ n, contains a set of cells of the form [key, pt],
where key ∈ dom(Cl) and appears in some context of a contextual preference in U .
No two cells within the same node contain the same key value. The pointer pt of
each cell of the nodes at level l, 1≤ l < n, points to the node at the next lower level
(level l + 1) containing all the distinct values of the parameter Cl+1 that appeared
in the same context with key. The pointers of cells of the nodes at level n point to
leaf nodes, where each one contains the preference part of the contextual prefer-
ences with context that corresponds to the path leading to it. As a concrete example,
consider the profile tree of Figure 4.6 constructed for the contextual preferences of
Figure 4.3.

Given the profile tree of U , the algorithm for selecting relevant preferences pro-
ceeds to locate the contexts that appear in at least one preference in U and cover

72 G. Koutrika, E. Pitoura, and K. Stefanidis

Fig. 4.6 An instance of a profile tree.

CQ through a top-down breadth-first traversal of the tree starting from its root. At
each level i, all paths of length i whose context is either the same or more general
than the prefix (cQ

1 ,. . . ,cQ
i) of the input context are kept. The algorithm returns as

its result the preferences of the leaf nodes at level n + 1 and the distances of the
corresponding contexts from CQ.

To find the top-m preferences for CQ, we can sort the returned preferences for
CQ on the basis of the distance of their contexts from CQ and select the m with
the minimum distance. What is the right value for m? By over-relaxing the query
context, we may end up considering preferences that are unexpected for the given
query context. On the other hand, by being very strict, we may end up with having
very few preferences to consider for query personalization. Ideally, we would like to
choose a value for m that would subsequently allow selecting at least top-r relevant
preferences that can be applied to the given query specification, as we will see next.
One way to achieve this is to interleave the two steps of preference selection. First,
select a small number of preferences based on context. If among them there are
fewer than r preferences that are relevant to the query, then further relax the query
context in order to get the next preferences in order of the distance of their contexts
from CQ.

Selecting Relevant Preferences. The output of the first step of preference selection
is a set of preferences whose context match the query context. The second step
determines which of these preferences are relevant and will be ultimately combined
with the query.

All preferences that match the query context and are relevant to the query may
be used for ranking and selecting the most interesting tuples returned by the query.
Alternatively, preferences can be ranked based on their preference score and the top
r most important ones can be selected for personalizing the query.

To select the top-r preferences, a preference selection algorithm may start from
the preferences that match the query context and are relevant to the query. As long as
fewer than r preferences are considered (and there are still candidate preferences),
an approach is to iteratively consider additional preferences that are composeable
with those already known, so as to derive implicit ones that are also relevant to the
query based on their syntactic characteristics. The set of preferences that are related
to the query is kept ordered in decreasing preference score. When r preferences have

4 Preference-Based Query Personalization 73

been found, the algorithm guarantees that these are the top r preferences related to
the query [38].

Selecting the right value for r is an important factor of the success of personaliza-
tion. Selecting too many preferences may lead to over-restricting the result, while
selecting too few preferences may not suffice to express the initial user intent. It is
possible that the user specifies r. A different approach is to view preference selec-
tion as an optimization problem with constraints. The parameters of the problem
are the execution cost of the query, the size of the query result and the preference
scores of the tuples in the query result. The objective is to select a set of relevant
preferences that, in conjunction with the query, will optimize one of the parameters
and satisfy constraints on the others [35].

4.3.2 Personalized Query Processing

The second phase of query personalization integrates preferences with query pro-
cessing. Preferences may be used to rank the results of the query in order to select
the top-k ones or they may impose additional (soft) constraints that combined with
the query constraints will return results that satisfy some preferences.

Conceptually, personalized query processing proceeds in three steps:

(i) Rewriting: A set of queries is built, each one describing a subset of the query
results that satisfies one or more preferences. Each sub-query is built by ex-
tending the initial query by an appropriate qualification involving the partic-
ipating preferences and assigns the corresponding preference score to each
tuple in its results.

(ii) Materialization: The new queries are executed and generate partial results
ranked according to the user preferences. The initial query may be also exe-
cuted if the output of query personalization will be just a ranking of the initial
query results.

(iii) Aggregation: The partial results are combined so that a single ranked list of
results is output, which may contain the top-k items or items that satisfy some
preferences.

Example. Consider the following query Q under some context C:

Q: select MV.title from MOVIE MV, CAST CA, ACTOR AC

where MV.mid= CA.mid and CA.aid= AC.aid and AC.name = ‘S. Bullock’

Assume also that for the given query context, the top-3 relevant preferences (i.e., r
= 3) are the following:

MOVIE : MOVIE.year > 2005 1.0

MOVIE : MOVIE.mid= GENRE.mid and GENRE.genre= ‘comedy’ 0.85

MOVIE : MOVIE.duration< 110 0.7

74 G. Koutrika, E. Pitoura, and K. Stefanidis

Each one of the following queries captures one of these preferences and when exe-
cuted will generate a list of results ranked accordingly:

Q1: select distinct MV.title ,1.0 score

from MOVIE MV, CAST CA, ACTOR AC

where MV.mid= CA.mid and CA.aid= AC.aid and AC.name = ‘S. Bullock’ and

MV.year > 2005

Q2: select distinct MV.title ,0.85 score

from MOVIE MV, CAST CA, ACTOR AC, GENRE GE

where MV.mid= CA.mid and CA.aid= AC.aid and AC.name = ‘S. Bullock’ and

MV.mid= GE.mid and GE.genre= ‘comedy’

Q3: select distinct MV.title ,0.7 score

from MOVIE MV, CAST CA, ACTOR AC

where MV.mid= CA.mid and CA.aid= AC.aid and AC.name = ‘S. Bullock’ and

MV.duration< 110 �
One approach to implementing the materialization and aggregation steps is to build
a personalized query as the union of the sub-queries that map to the individual user
preferences [38]. For example, we could build the following query:

Q′: select distinct MV.title ,F(score) score

from Q1 Union All Q2 Union All Q3 group by MV.title order by F(score)

An aggregating function F (Section 4.2.3) is used to combine partial scores for
each tuple.

Given that each subquery produces a partial ranking of the query results, to con-
struct a total ranking, instead of following the naive approach of computing the
aggregate score of each tuple and ranking the tuples based on these scores, several
more efficient algorithms have been proposed that can generate top-k results from
the partial rankings.

A fundamental algorithm for retrieving the top-k tuples is the FA algorithm [25].
This algorithm considers two types of available tuple accesses: the sorted access
and the random access. Sorted access enables tuple retrieval in a descending order
of their scores, while random access enables retrieving the score of a specific tuple
in one access. The main steps of the FA algorithm are the following:

1. First, do sorted access to each ranking until there is a set of k tuples, such that
each of these tuples has been seen in each of the rankings.

2. Then, for each tuple that has been seen, do random accesses to retrieve the miss-
ing scores.

3. Compute the aggregate score of each tuple that has been seen.
4. Finally, rank the tuples based on their aggregate scores and select the top-k ones.

FA is correct when the aggregate tuple scores are obtained by combining their indi-
vidual scores using a monotone function. This also holds for the TA algorithm [25].
TA ensures further that its stopping condition always occurs at least as early as the
stopping condition of FA. Its main steps of TA are the following:

4 Preference-Based Query Personalization 75

1. First, do sorted access to each ranking. For each tuple seen, do random accesses
to the other rankings to retrieve the missing tuple scores.

2. Then, compute the aggregate score of each tuple that has been seen. Rank the
tuples based on their aggregate scores and select the top-k ones.

3. Stop to do sorted accesses when the aggregate scores of the k tuples are at least
equal to a threshold value that is defined as the aggregate score of the scores of
the last tuples seen in each ranking.

Algorithms equivalent to TA have been proposed focusing on top-k results (e.g.,
[45, 29]). The PPA algorithm builds on the same idea to return personalized top-k
results that satisfy a minimum number of preferences [36]. Instead of executing all
sub-queries at once, the algorithm executes them in order of increasing selectivity.
For each tuple returned by a sub-query Qi, PPA executes a parameterized query that
checks what other preferences are satisfied by the tuple apart from those covered by
Qi. The algorithm stops when the aggregate scores of the k tuples are at least equal
to a threshold value or when the remaining not-executed queries Qi cover fewer
preferences than the number of preferences required to be satisfied in the output.

Furthermore, preferences may not be independent. For example, a preference
for comedies can be combined with a preference for actor Adam Sandler but they
are both overridden by a preference for ‘comedies with Adam Sandler’. Being able
to detect such preference relationships can further help save execution time. The
Replicate Diffuse algorithm decides which preferences to process and in what or-
der based on the preference relationships resulting in reduced preference process-
ing [37]. The algorithm organizes the queries into a hierarchy, where at the higher
level reside queries that integrate the most generic preferences (e.g., a preference
for comedies), and as one moves down in the hierarchy, queries that map to more
fine-grained preferences (e.g., a preference for ‘comedies with Adam Sandler’) are
found. The algorithm executes the root queries and finds all tuples that satisfy at
least one generic preference. For each tuple t and for each preference P satisfied by
t, the algorithm tries to find (if exists) the most specific preference P′ in the hierar-
chy that can override P and that is satisfied by t. In this case, the preference score of
P′ is taken into account when computing the total score for the tuple instead of the
score of P.

A similar approach is found in [28], where given a set of preferences defined over
a relation R the objective is to produce a ranking of R’s tuples that respects these
preferences. To solve this problem, a query lattice with one node for each com-
bination of values of different attributes appearing in the preferences is built. For
example, for preferences: (i) A. Hitchcock is preferred over M. Curtiz or S. Spiel-
berg, (ii) horror movies are preferred over drama movies and (iii) the director of a
movie is as important as its genre, the query lattice of Figure 4.7 is constructed. A
query is formulated for each node in the lattice. All queries in a specific block pro-
duce equally preferable results. The queries of each block are successively executed
starting from the queries of the top block and going down the lattice.

76 G. Koutrika, E. Pitoura, and K. Stefanidis

Fig. 4.7 Query lattice example.

4.4 Preference Learning

In this section, we discuss how preferences can be learnt and stored in a user profile.
Learning and predicting preferences in an automatic way has attracted much cur-

rent attention in the areas of machine learning, knowledge discovery and artificial
intelligence. Approaches to preference learning can be classified along various di-
mensions. Depending on the model learned, we may distinguish between learning
pairwise orderings of items (i.e., qualitative preferences) and learning a utility func-
tion (i.e., quantitative preferences). Depending on the type of information provided
as input, the learning algorithm may or may not use as input positive and/or nega-
tive examples, in analogy to supervised and unsupervised learning, and may or may
not use relevance feedback from the users. Yet another distinction is on whether
the input data is in the form of pairwise preferences, that is, the input is an or-
der relation, or the input data is a set of items for which some knowledge about
the associated preference degree is available. Another dimension for differentiating
preference learning is based on the data mining task they use, such as associative
rule mining, clustering or classification. Finally, the application also determines the
preference learning process, since it affects both the form of input data (for ex-
ample, clickthrough data or user ratings) as well as the desired use of the learned
preferences (for example, personalized search results or recommendations).

Most methods for preference learning utilize information of the past user interac-
tions in the form of a history or log of transactions. User clickthrough data, namely
the query-logs of a search engine along with the log of links that the user actually
clicked on from those in the presented ranked list is the input used by the method
presented in [32]. The fact that a user clicked on a link li and did not click on a link
l j ranked higher in the list than li, is interpreted as a user preference of li over l j.
Clikthrough data are used as training data to learn a ranking function that, for each
query q, produces an order of links based on their relevance to q. This is achieved
by selecting the function that produces the order having the minimal distance from
the orders inferred from the clickthrough data. A support vector machine (SVM)
algorithm is used.

User logs in the form of relational instances are used as input in [30]. Since there
is no explicit ranking information in the log of relations, to detect preferences, the
frequencies of the different attribute values, i.e., their number of entries, in the log
relation are used. Then, x is preferred over y, if and only if, f req(x) > f req(y).

4 Preference-Based Query Personalization 77

Preferences between values of individual attributes are used to infer various types
of preferences as defined in [33].

User feedback is used for improving preference learning. For example, in [15],
the authors consider the problem of learning how to rank items given the feedback
that an item should be ranked higher than another. For a set of items I , the em-
ployed preference function Pre f (i1, i2), Pre f : I ×I → [0,1], returns a value indi-
cating which item, i1 or i2, is ranked higher. The learning phase of such a function
takes place in a sequence of rounds. At each round, items are ranked with respect
to Pre f . Then, the learner receives feedback from the environment. The feedback
is assumed to be an arbitrary set of rules of the form “i1 should be preferred to i2”.
Given that Pre f is a linear combination of n primitive functions, i.e., Pre f (i1, i2) =
∑n

i= j w jFj(i1, i2), at each round the weights wj are updated with regards to the loss
of a function F with respect to the user feedback, where loss is the normalized sum
of disagreements between function and feedback.

Moreover, applying machine learning techniques for learning ranking functions
has recently attracted much attention in the research literature (e.g., [10, 56, 57]).

4.5 Conclusion and Open Issues

In this chapter, we focused on query personalization methods. We discussed how
preferences are represented to express the user interest in specific items under dif-
ferent contexts. Then, given a user query and a set of user preferences, the appropri-
ate preferences are selected and applied to the query. Preference selection is divided
into (i) selection based on context matching and (ii) selection based on preference
relevance. We examined different methods for integrating preferences into query
processing.

Although our primary focus is on personalized query processing, it is worth not-
ing that there are other potential applications of preferences. For example, prefer-
ences can be used for managing the contents of a cache [12] or for combining quality
metrics, such as quality of service, i.e., query response time, and quality of data, i.e.,
freshness of data in the query answer [46]. Preferences are also applied to e-business
applications [34] and in publish/subscribe systems [20].

There are still many open problems with regards to personalization. The fol-
lowing is a list of research directions for future work that we consider particularly
promising:

(i) Hybrid Preference Models: Most current approaches to representing prefer-
ences are either purely qualitative or purely quantitative. However, in real life,
preferences may be both absolute (e.g., ‘I like comedies a lot’) or relative (e.g.,
‘I like comedies better than dramas’). Instead of converting them into a sin-
gle form, a hybrid preference model that allows capturing both qualitative and
quantitative preferences would be very useful. Such a model would also bring
several query processing challenges, such as how to rank the query results

78 G. Koutrika, E. Pitoura, and K. Stefanidis

when both relative (i.e., qualitative) and absolute (i.e. quantitative) preferences
apply.

(ii) Probabilistic Preferences. Recently, there has been considerable interest in
processing uncertain, or probabilistic, data (e.g., [5, 17]). In probabilistic
databases, tuples are associated with membership probabilities that define the
belief that they should belong to the database. There has been also related
work on processing top-k queries over uncertain data [49, 58], where both
preference scores and probabilities of tuples are taken into account. On the
other hand, preferences themselves involve some degree of uncertainty. For
example, we may be certain that a user likes comedies when explicitly stated
but we may be less certain when implying user preferences. Consequently, de-
signing appropriate probabilistic preference models and extending processing
methods to conform with them are interesting directions.

(iii) Efficient Processing of Preference Queries. There are many open problems
with regards to query personalization. The problem of selecting the appropri-
ate preferences for personalizing a query is challenging, since there can be no
single best solution. Furthermore, the performance issues of integrating pref-
erences with query processing are still open. Whereas there has been work on
specific preference operators, such as top-k, skyline and their variants, there is
very little work on tightly integrating more general preference models within
the database engine.

(iv) Group Preferences. Finally, although there has been considerable work on
dealing with preferences at the level of an individual person searching a
database, there has been less work on processing group preferences, i.e., pref-
erences of a group of people. To this direction, there are several interesting
questions, such as solving preference conflicts among the members of the
group and generating efficiently non-empty results that satisfy the group.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the Next Generation of Recommender Systems:
A Survey of the State-of-the-Art and Possible Extensions. IEEE Trans. Knowl. Data
Eng. 17(6), 734–749 (2005)

2. Agrawal, R., Rantzau, R., Terzi, E.: Context-Sensitive Ranking. In: SIGMOD, pp. 383–
394 (2006)

3. Agrawal, R., Wimmers, E.L.: A Framework for Expressing and Combining Preferences.
In: SIGMOD, pp. 297–306 (2000)

4. Amer-Yahia, S., Roy, S.B., Chawla, A., Das, G., Yu, C.: Group Recommendation:
Semantics and Efficiency. PVLDB 2(1), 754–765 (2009)

5. Benjelloun, O., Sarma, A.D., Halevy, A.Y., Widom, J.: ULDBs: Databases with Uncer-
tainty and Lineage. In: VLDB, pp. 953–964 (2006)

6. Borda, J.C.: Mémoire sur les Élections au Scrutin. Histoire de l’Académie Royale des
Sciences (1781)

4 Preference-Based Query Personalization 79

7. Boutilier, C., Brafman, R.I., Domshlak, C., Hoos, H.H., Poole, D.: CP-nets: A Tool for
Representing and Reasoning with Conditional Ceteris Paribus Preference Statements. J.
Artif. Intell. Res. 21, 135–191 (2004)

8. Brown, P.J., Bovey, J.D., Chen, X.: Context-Aware Applications: From the Laboratory
to the Marketplace. IEEE Personal Communications 4(5), 58–64 (1997)

9. van Bunningen, A.H., Feng, L., Apers, P.M.G.: A Context-Aware Preference Model for
Database Querying in an Ambient Intelligent Environment. In: Bressan, S., Küng, J.,
Wagner, R. (eds.) DEXA 2006. LNCS, vol. 4080, pp. 33–43. Springer, Heidelberg (2006)

10. Burges, C.J.C., Shaked, T., Renshaw, E., Lazier, A., Deeds, M., Hamilton, N., Hullender,
G.N.: Learning to Rank using Gradient Descent. In: ICML, pp. 89–96 (2005)

11. Chen, G., Kotz, D.: A Survey of Context-Aware Mobile Computing Research. Tech. Rep.
TR2000-381, Dartmouth College, Computer Science (2000),
ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z

12. Cherniack, M., Galvez, E.F., Franklin, M.J., Zdonik, S.B.: Profile-Driven Cache Man-
agement. In: ICDE, pp. 645–656 (2003)

13. Chomicki, J.: Querying with Intrinsic Preferences. In: Jensen, C.S., Jeffery, K., Pokorný,
J., Saltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287,
pp. 34–51. Springer, Heidelberg (2002)

14. Ciaccia, P.: Querying databases with incomplete CP-nets. In: M-Pref (2007)
15. Cohen, W.W., Schapire, R.E., Singer, Y.: Learning to Order Things. J. Artif. Intell. Res.

(JAIR) 10, 243–270 (1999)
16. Condorcet, J.A.N.: Éssai sur l’ application de l’ analyse á la Probabilité des Décisions

Rendues á la Pluralité des Voix. Kessinger Publishing (1785)
17. Dalvi, N.N., Suciu, D.: Efficient Query Evaluation on Probabilistic Databases. VLDB

J. 16(4), 523–544 (2007)
18. Das, G., Hristidis, V., Kapoor, N., Sudarshan, S.: Ordering the Attributes of Query

Results. In: SIGMOD, pp. 395–406 (2006)
19. Dey, A.K.: Understanding and Using Context. Personal Ubiquitous Comput. 5(1), 4–7

(2001)
20. Drosou, M., Stefanidis, K., Pitoura, E.: Preference-aware Publish/Subscribe Delivery

with Diversity. In: DEBS, pp. 1–12 (2009)
21. Dwork, C., Kumar, R., Naor, M., Sivakumar, D.: Rank Aggregation Methods for the

Web. In: WWW10 (2001)
22. Endres, M., Kießling, W.: Transformation of TCP-net Queries into Preference Database

Queries. In: M-Pref (2006)
23. Fagin, R.: Combining Fuzzy Information from Multiple Systems. In: PODS, pp. 216–

226 (1996)
24. Fagin, R.: Fuzzy Queries in Multimedia Database Systems. In: PODS, pp. 1–10 (1998)
25. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. In:

PODS (2001)
26. Fishburn, P.C.: Preference Structures and Their Numerical Representations. Theoretical

Computer Science 217(2), 359–383 (1999)
27. Fontoura, M., Josifovski, V., Kumar, R., Olston, C., Tomkins, A., Vassilvitskii, S.: Re-

laxation in Text Search using Taxonomies. PVLDB 1(1), 672–683 (2008)
28. Georgiadis, P., Kapantaidakis, I., Christophides, V., Nguer, E.M., Spyratos, N.: Efficient

Rewriting Algorithms for Preference Queries. In: ICDE, pp. 1101–1110 (2008)
29. Güntzer, U., Balke, W.T., Kießling, W.: Optimizing Multi-Feature Queries for Image

Databases. In: VLDB, pp. 419–428 (2000)

ftp://ftp.cs.dartmouth.edu/TR/TR2000-381.ps.Z

80 G. Koutrika, E. Pitoura, and K. Stefanidis

30. Holland, S., Ester, M., Kießling, W.: Preference Mining: A Novel Approach on Mining
User Preferences for Personalized Applications. In: Lavrac, N., Gamberger, D., Todor-
ovski, L., Blockeel, H. (eds.) PKDD 2003. LNCS (LNAI), vol. 2838, pp. 204–216.
Springer, Heidelberg (2003)

31. Holland, S., Kießling, W.: Situated Preferences and Preference Repositories for Person-
alized Database Applications. In: Atzeni, P., Chu, W., Lu, H., Zhou, S., Ling, T.-W. (eds.)
ER 2004. LNCS, vol. 3288, pp. 511–523. Springer, Heidelberg (2004)

32. Joachims, T.: Optimizing Search Engines using Clickthrough Data. In: KDD, pp. 133–
142 (2002)

33. Kießling, W.: Foundations of Preferences in Database Systems. In: VLDB, pp. 311–322
(2002)

34. Kießling, W., Fischer, S., Döring, S.: COSIMAB2B - Sales Automation for
E-Procurement. In: CEC, pp. 59–68 (2004)

35. Koutrika, G., Ioannidis, Y.: Constrained Optimalities in Query Personalization. In: SIG-
MOD, pp. 73–84 (2005)

36. Koutrika, G., Ioannidis, Y.: Personalized Queries under a Generalized Preference Model.
In: ICDE, pp. 841–852 (2005)

37. Koutrika, G., Ioannidis, Y.: Personalizing Queries based on Networks of Composite Pref-
erences. ACM Trans. Database Syst. 35(2) (2010)

38. Koutrika, G., Ioannidis, Y.E.: Personalization of Queries in Database Systems. In: ICDE,
pp. 597–608 (2004)

39. Lichtenstein, S., Slovic, P.: The Construction of Preference. Cambridge University Press,
New York (2006)

40. Masthoff, J.: Group Modeling: Selecting a Sequence of Television Items to Suit a Group
of Viewers. User Modeling and User-Adapted Interaction 14(1), 37–85 (2004)

41. Miah, M., Das, G., Hristidis, V., Mannila, H.: Standing Out in a Crowd: Selecting
Attributes for Maximum Visibility. In: ICDE, pp. 356–365 (2008)

42. Miele, A., Quintarelli, E., Tanca, L.: A Methodology for Preference-based Personaliza-
tion of Contextual Data. In: EDBT, pp. 287–298 (2009)

43. Miller, G.A.: WordNet: a Lexical Database for English. Commun. ACM 38(11), 39–41
(1995)

44. Mindolin, D., Chomicki, J.: Hierarchical CP-networks. In: M-Pref (2007)
45. Nepal, S., Ramakrishna, M.V.: Query Processing Issues in Image (Multimedia)

Databases. In: ICDE, pp. 22–29 (1999)
46. Qu, H., Labrinidis, A.: Preference-Aware Query and Update Scheduling in Web-

databases. In: ICDE, pp. 356–365 (2007)
47. Scherer, K.: What are Emotions? And how can they be Measured? Social Science Infor-

mation 44, 695–729 (2005)
48. Schmidt, A., Aidoo, K.A., Takaluoma, A., Tuomela, U., Van Laerhoven, K., Van de

Velde, W.: Advanced Interaction in Context. In: Gellersen, H.-W. (ed.) HUC 1999.
LNCS, vol. 1707, pp. 89–101. Springer, Heidelberg (1999)

49. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k query processing in uncertain
databases. In: ICDE, pp. 896–905 (2007)

50. Stefanidis, K., Drosou, M., Pitoura, E.: PerK: Personalized Keyword Search in Relational
Databases through Preferences. In: EDBT, pp. 585–596 (2010)

51. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Modeling and Storing Context-Aware Pref-
erences. In: Manolopoulos, Y., Pokorný, J., Sellis, T.K. (eds.) ADBIS 2006. LNCS,
vol. 4152, pp. 124–140. Springer, Heidelberg (2006)

4 Preference-Based Query Personalization 81

52. Stefanidis, K., Pitoura, E., Vassiliadis, P.: Adding Context to Preferences. In: ICDE, pp.
846–855 (2007)

53. Stefanidis, K., Pitoura, E., Vassiliadis, P.: On Relaxing Contextual Preference Queries.
In: MDM, pp. 289–293 (2007)

54. Taylor, A.: Mathematics and Politics: Strategy, Voting, Power and Proof. Springer,
New York (1995)

55. Vassiliadis, P., Skiadopoulos, S.: Modelling and Optimisation Issues for Multidimen-
sional Databases. In: Wangler, B., Bergman, L.D. (eds.) CAiSE 2000. LNCS, vol. 1789,
pp. 482–497. Springer, Heidelberg (2000)

56. Zha, H., Zheng, Z., Fu, H., Sun, G.: Incorporating Query Difference for Learning Re-
trieval Functions in World Wide Web Search. In: CIKM, pp. 307–316 (2006)

57. Zhai, C., Lafferty, J.D.: A Risk Minimization Framework for Information Retrieval. In-
formation Processing and Management 42(1), 31–55 (2006)

58. Zhang, X., Chomicki, J.: Semantics and Evaluation of Top-k Queries in Probabilistic
Databases. Distributed and Parallel Databases 26(1), 67–126 (2009)

Chapter 5
Approximate Queries for Spatial Data

Alberto Belussi, Barbara Catania, and Sara Migliorini

Abstract. Approximation techniques for spatial data traditionally concern data cap-
ture and data representation issues. On the other hand, more recently developed
approximation techniques refer to the query to be executed and not to data repre-
sentation as in the the past monolithic Geographic Information Systems and for this
reason they are called query-based approximation techniques. The aim of this chap-
ter is to survey such approximation techniques and to identify the issues that from
our point of view have still to be investigated to complete the picture. In particular,
we observe that most of the proposed approaches for spatial approximate queries
rely on the usage of quantitative, i.e., metric (distance-based), information. On the
other hand, only few of them take into account qualitative information, e.g., topo-
logical and cardinal spatial relations. Based on this consideration, we provide new
types of queries relying on qualitative relations and we discuss how the query pro-
cessing algorithms already defined for metric relations can be extended to cope with
qualitative information.

5.1 Introduction

With respect to traditional, non geo-referenced data, spatial data are characterized
by an intrinsic complexity that, from the very beginning, has required the usage
of approximation techniques in their processing. In the first Geographic Informa-
tion Systems (GISs) [46], approximation mainly concerned data capture and data

Alberto Belussi · Sara Migliorini
University of Verona, Italy
e-mail: {alberto.belussi,sara.migliorini}@univr.it

Barbara Catania
University of Genoa, Italy
e-mail: barbara.catania@unige.it

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 83–127.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{alberto.belussi,sara.migliorini}@univr.it
barbara.catania@unige.it

84 A. Belussi, B. Catania, and S. Migliorini

representation. As an example, the scale of a vector map, in cartography, implies
a certain spatial accuracy of the spatial objects it contains. This accuracy regards
absolute and relative positions of objects in the embedded space and has a strong
influence in data processing since the result of a user query, while computed in a
precise way, is always represented at a certain level of accuracy. In modern GISs,
although the accuracy problem has not been completely solved, approximation has
became a hot topic also for the processing itself, in order to improve query per-
formance while returning a precise result [46]. Usual query processing techniques
require the approximation of arbitrary geometric data with simpler objects, like rect-
angles or convex polygons [46]. Such simpler objects are then indexed and used to
answer queries in two steps: in the first step, spatial data are filtered based on their
simplified geometries, in order to detect which objects may with high probability
satisfy the query (thus, an approximate result, containing the precise answer, is re-
turned); in the second step, the exact geometry is taken into account in order to
refine the result obtained in the first step and return to the user the precise answer to
the query.

As discussed in Chapter 1, in the last years, there has been a rapid evolution
of environments and applications that has radically modified query processing over
data collections and has lead to a re-interpretation of the concept of approxima-
tion, for traditional and spatial data. In such new environments, data is often het-
erogeneous and their characteristics highly variable. Heterogeneity in spatial data
is often due to the employment of different resolution levels in representing data
referring to the same geographical area or of different accuracy levels. While such
data are often collected by different institutions and produced by different kinds
of processes (e.g., social, ecological, economic), at different times, often they need
to be handled together (as in Spatial Data Infrastructures) [45]; as a consequence,
adequate integration approaches have therefore been provided [12, 24, 38]. Addi-
tionally, data heterogeneity and variability make query specification an issue since
the user may not always be able to specify the query in a complete and exact way
since she may not know all the characteristics of data to be queried, even if data
come from just one single source (possibly, because such characteristics may change
during query execution, as in mash-up applications [32]). Such problems are even
more evident in distributed architectures, where input data may come from many
different sources, in different formats, and can be made available by systems with
different performance and availability. The resources for data integration and query-
ing are in those cases often insufficient to get a precise response in a reasonable time
and space.

In all the contexts cited above, it is too ambitious to get from query execution
only precise answers, exactly satisfying the search condition expressed by the query,
since in the above mentioned contexts it is quite common to find inconsistent or am-
biguous data, it is really difficult to exactly characterize what we are looking for,
and resources for a precise computation may not be available in a reasonable time.
In particular, as a consequence of heterogeneity and limited knowledge about data,
the quality of the obtained result, in terms of completeness and effectiveness, may be

5 Approximate Queries for Spatial Data 85

reduced, since either interesting objects may not be returned (empty answer prob-
lem) or several uninteresting objects can be returned as answer, thus reducing user
satisfaction (many answers problem) [2].

Based on the previous problems, the need thus arises of taking into account het-
erogeneity as well as limited user knowledge and resources in query specification
and processing, with the aim of retrieving a relaxed or approximate solution while
achieving a higher user satisfaction (see Chapters 2, 3, and 4). When considering
such kind of techniques applied to spatial data, the focus is not on the approximate
geometries to be returned as results, as occurred in the past monolithic systems, but
on the (precise) result set which is either stretched, in order to include also objects
that partially satisfy the query or are (spatially or in other sense) similar to the ob-
jects that exactly satisfy the request, or shrunk, in order to return only the objects
which best-fit the request, based on some user preferences. Stretched results can
also be returned in presence of very complex queries or limited resource availabil-
ity, where it could be convenient to give up the target of producing the exact answer
(since it would be too time-wasting) and focus on the retrieval of an approximate so-
lution, using algorithms that often are order of magnitude less complex with respect
to the ones producing a precise answer.

Techniques that approximate the query to be executed and not the data to be
processed are called query-based in the following.1 Due to their relevance for the
development of a new generation of spatial applications, the aim of this chapter is to
survey query-based approximation techniques for spatial data and to identify the is-
sues that from our point of view have still to be investigated to complete the picture.
To this aim, in Section 5.2 we first introduce background theory for spatial data,
through a running example used in the remainder of the chapter for the descrip-
tion of the surveyed techniques. Section 5.3 classifies query-based approximation
techniques for spatial data based on their aim, related data and query model, main
action, information to be supplied for their application, and information used for
approximating the result. Three main groups of techniques, namely top-k queries,
skyline queries, and approximate query processing techniques, are then discussed
for spatial data in Sections 5.4, 5.5, and 5.6, respectively. From the presented analy-
sis, it follows that most of the proposed approaches for spatial approximate queries
rely on the usage of quantitative, i.e., metric (distance-based), information. On the
other hand, only few of them approximate queries taking into account qualitative
information, for example by considering topological and cardinal spatial relations.
Based on this consideration, in Section 5.7 we provide new types of queries based
on qualitative relations, we discuss how the query processing algorithms already de-
fined for metric relations can be extended to cope with qualitative relations as well
as which topics require further research. Finally, Section 5.8 concludes the chapter
by presenting some final remarks and discussing issues to be further investigated,
based on what stated in Section 5.7.

1 Query-based approximation approaches considered in this chapter include both QR and
ApQP approaches as described in Chapter 1, excluding query personalization approaches,
described in Chapter 4.

86 A. Belussi, B. Catania, and S. Migliorini

5.2 Background on Spatial Data and Queries

Based on the spatial relational models supported by the current GISs, a spatial
database can be in general represented as a collection of tables (called feature tables
or maps in the following). Each table contains tuples of values, also called features
or spatial objects, and each value belongs to a specific domain. Besides atomic
domains such as characters, strings, integer and real numbers, spatial domains de-
scribed in the Simple Feature Model of OGC standards are typically available [31].
OGC primitive geometries include: (i) Point: a point is a 0-dimensional geometric
object, representing a single location in the coordinate space; (ii) Curve: a curve is a
1-dimensional geometric object usually stored as a sequence of points, with the sub-
type of curve specifying the form of the interpolation between Points (for example,
LineString, which uses linear interpolation between points); (iii) Surface: a surface
is a 2-dimensional geometric object; a simple surface may consists of a single patch
that is associated with one exterior boundary and 0 or more interior boundaries. A
Polygon is a specialization of Surface, whose boundaries are LineString instances.
In the following, if not otherwise stated, we assume each tuple has only one geomet-
ric attribute with domain: Point, Curve (or its specialization LineString), or Surface
(or its specialization Polygon).

While some of the approaches we describe in the chapter have been defined for
location-based applications, we will show they are relevant also for more typical
GIS applications. To this aim, as running example, we consider a database contain-
ing the provinces, the municipalities, the rivers, the lakes, and the main towns of
Northern Italy, with reference to the region around Venice (called Veneto). Each set
of features is represented as a map. The spatial content of the database is shown in
Figure 5.1. Data are modeled by introducing six different maps (tables), each having
an attribute geometry, characterized by a spatial domain. Maps MitPr, MitRv, MitLk,
MitTw0, MitTw2, and MitMp contain respectively: provinces, represented as polygons;
main rivers, represented as lines; lakes, represented as polygons; main towns rep-
resented as points and as polygons; municipalities represented as polygons. Main
rivers are labeled in the figure with their name; lakes are not labeled. Provinces are
labeled by using their code and main towns by their name. Municipalities are not la-
beled. Feature tables, besides the geometric attribute, may contain other descriptive
information. For example, each lake in MitLk can be represented as a tuple with two
attributes: one representing the lake name and the other its spatial extension.

Spatial data are usually related by spatial relations [46]. Topological, cardinal or
distance-based relations cover almost all kinds of spatial relations usually available
in real systems (even if OGC standards only support topological and distance-based
relations). Topological relations are the most used and known relations in geograph-
ical applications. They are based on properties that are invariant with respect to
homeomorphisms (i.e., transformations of the space, also called rubber sheet trans-
formations, that stretch of shrink the space without cuttings or foldings). Many
different definitions of topological relations have been proposed in literature. Ac-
cording to the one proposed by Egenhofer et al. [22], and taking into account
the OGC standards, topological relations can be formally defined through the

5 Approximate Queries for Spatial Data 87

Fig. 5.1 Datasets used in the running example: Provinces of Veneto (VR, VI, VE, BL, RO,
TV) are filled in light pink; main rivers are drawn as dark blue lines and labeled with their
name; lakes are in light blue; main towns are represented as points and also as polygons filled
in green; municipality boundaries are green.

9-intersection model. In the 9-intersection model, each geometry A is represented
by 3 point-sets: its interior A◦, its exterior A−, and its boundary ∂A. The defini-
tion of binary topological relations between two geometries A and B is based on
the 9 intersections of each geometry component. Thus, a topological relation can be
represented as a 3x3-matrix, called 9-intersection matrix, defined as follows:

R(A,B) =

⎛
⎝A◦ ∩B◦ A◦ ∩∂B A◦ ∩B−

∂A∩B◦ ∂A∩∂B ∂A∩B−
A−∩B◦ A−∩∂B A−∩B−

⎞
⎠

By considering the value empty (�) or not empty (¬�) for each intersection,
one can distinguish many relations between surfaces, lines, and points embedded
in R2. These relations are mutually exclusive and represent a complete coverage.
In [15], this model has been extended by considering for each 9 intersection its di-
mension, giving raise to the extended 9-intersection model. Since the number of
such relations is quite high, various partitions of the extended 9-intersection matri-
ces have been proposed, grouping together similar matrices and assigning a name
to each group. One of the widely used set of binary topological relations is the fol-
lowing: T = {disjoint(d), touches(t), within(i), contains(c), equals(e), crosses(r),

88 A. Belussi, B. Catania, and S. Migliorini

overlaps(o)} [15]. Such topological relations are those proposed by OGC and are
available in many GISs products (e.g., PostGis).2

Cardinal (also called direction-based) and distance-based relations can be defined
on top of topological relations. Indeed, a cardinal/distance-based relation between
two geometries A and B can be defined by considering the topological relations that
exist between A and a subdivision of the space induced by B [25, 53]. According to
the type of the subdivision, a specific relation set is obtained. For cardinal relations,
the subdivision induced by B produces the regions of the space that contain the
points having the same cardinal relations with respect to B (e.g., North, Est, South
and West or other more detailed cardinal sector sets). Such regions are called tiles.
For example, when considering the North-South and Est-West directions, a region
partitions the plane in 9 tiles, where the minimum bounding rectangle (MBR) of the
region is the center tile. Based on such space subdivision, A is North with respect to
B if A is within the sector that describes the region to the North of B.

For distance-based relations [46], the space is subdivided into two regions ac-
cording to a given distance d: the set of points that have a distance from B less than
or equal to d and the set of points that have a distance from B greater than d. For
instance, A is within 3 km from B if A overlaps the circle representing the points
that have a distance from B less than or equal to 3 km.

Spatial relations are the basis for the definition of spatial predicates, to be used
in spatial query operators. Spatial selection, spatial join, nearest neighbor selection
and join are the operators typically available in a spatial query language [46, 60].
More precisely, the following operators will be used in the paper examples:

• Spatial selection (SS). The spatial selection (σ) is applied to a map and returns
the tuples of the map that satisfy a given selection condition. This condition in-
cludes spatial predicates (i.e., atomic formulas that include spatial relations, e.g.,
a topological relation, like touches). For example, we can select from map MitMp

the tuples representing municipalities that overlap a given rectangle R.
• Spatial join (SJ). The spatial join (��) is applied to a pair of maps M1, M2 and

returns the tuples of the cross product between M1, M2 satisfying the spatial con-
dition provided as join predicate. For example, we can join map MitMp with map
MitRv, containing the municipalities and the main rivers of Veneto, respectively,
in order to obtain a set of tuples each representing a municipality and the river it
is crossed by.

• Nearest neighbor selection (NN sel). The nearest neighbor selection operation
is applied to a map M and requires the specification of a spatial query object
o. It returns the tuples in M having the minimum distance from o (usually the
Euclidean distance is adopted, but other types of distance may also be used).
For example, we can look for the municipalities that are closest to the point o
representing a disaster event.

• Nearest neighbor join (NN join). The nearest neighbor join operation is applied
to a pair of maps M1, M2 and returns the tuples of the cross product between M1,

2 http://postgis.refractions.net/

5 Approximate Queries for Spatial Data 89

M2, each representing a feature f of M1 and a feature g of M2, where g is one of
the objects of M2 nearest to f . For example, we can look for the lakes (contained
in map MitLk) and their closest municipalities (contained in map MitMp).

5.3 A Taxonomy of Query-Based Approximation Techniques
for Spatial Data

Query-based approximation techniques are traditionally classified into two main
groups [13]: query relaxation (QR), including preference-based queries (PQ), and
approximate query processing (ApQP). While QR and PQ have been mainly in-
troduced with the aim of improving the quality of the query result, in presence of
limited data knowledge during query specification and data heterogeneity, ApQP
techniques have been proposed for either improving result quality (for example,
by replacing equality checks with similarity checks in presence of highly hetero-
geneous data) or efficiency (for example, by avoiding the analysis of the overall
datasets in order to improve performance).

In the following, QR and ApQP techniques are classified with respect to their
main features and specific issues arising for spatial data are discussed in details.
The result of the classification is presented in Table 5.1. The table provides a broad
overview of each class of query approximation techniques proposed for spatial data
we describe in more details in Sections 5.3.1 and 5.3.2. For each group of tech-
niques, the following features are pointed out: (i) which type of data is consid-
ered (a specific geometric type or any geometric type); (ii) the spatial operators to
which they can be applied (usually, spatial selection and join); (iii) the type of action
(stretching the result, shrinking the result, extract the best); (iv) which information
should be supplied by the user or the system in order to apply the corresponding
technique; (v) which kind of information is considered for relaxation or approxima-
tion (spatial relationships, spatial/non-spatial attributes).

5.3.1 Query Relaxation

The concept of query relaxation (QR) has been introduced in Information Retrieval
(IR) and adopted in several contexts as an approach for avoiding the empty or too
many answers problems [2]. The main idea of QR is to modify the query in order to
stretch or shrink the result set. QR approaches can be classified, depending on their
scope, into query rewriting [6, 33, 35, 37] and preference-based approaches (e.g.,
top-k and skyline queries or preference-based query processing - see Chapters 2, 3,
and 4 and references below).

Techniques based on query rewriting approaches rewrite the query using less
or more strict operators, in order to get a larger or smaller answer set, and can
be used to address both the empty answers and the many answers problems. Most
query rewriting approaches for non spatial data rely either on information concern-
ing data distribution and query size estimation (value-based techniques) or structure

90 A. Belussi, B. Catania, and S. Migliorini

Table 5.1 A summary of existing approximation techniques for spatial data.

Data
model

Query
model Action Supplied

Inform.
Type of used
Information

Single
geom

etric
type

A
ny

geom
etric

type

Selection

Join
Shrink

Stretch

G
etthe

best

R
anking

function

Interesting
attributes

Sim
ilarity

function

Topologicalrelations

C
ardinalrelations

D
istance-based

relations

O
ther

spatialattributes

N
on-spatialattributes

Query
rewriting

NN and Thr
top. relations [6] � � � � � �

Top-k queries Top-k spatial
preference [59] � � � � � � �
Top-k most
influen. site [57]

� � � � � � �
Top-k spatial
join [61]

� � � � �

Skyline
queries

Spatial skyline,
distance based
[50, 51, 54]

� � � � � �

Spatial skyline,
distance and
direction based
[26]

� � � � � � �

Approx. query
processing

Multiway spatial
join [39] � � � �
Approximate
distance-based
queries [17, 20]

� � � � �

Query Processing
using Raster
Signatures
[3, 62]

� � � � � �

information (structure-based techniques). In value-based techniques, input infor-
mation concerning the desired cardinality of the result set and information con-
cerning data distribution are used to relax queries [33, 37]. On the other hand, most
structure-based approaches have been proposed for semi-structured information like
XML documents, where structure information may refer to the type of relationships
existing between nodes and order information [35].

When considering query rewriting approaches for spatial data, some specific is-
sues have to be considered: (i) spatial relations usually are not ordering relations;
(ii) constants appearing in the queries are represented as values in multidimensional
spaces. These considerations make value-based techniques and structure-based tech-
niques not very suitable. Rather, relaxation based on properties of the used query
conditions seem more adequate. In this case, a query predicate is rewritten into one
or more different predicates in order to change the selectivity of the condition. All
types of spatial predicates (topological, cardinal, distance-based) can be considered
to this purpose. A proposal of query rewriting technique based on topological pred-
icates is presented in [6].

5 Approximate Queries for Spatial Data 91

In preference-based approaches, user or system preferences are taken into ac-
count in order to generate the result, with the aim of providing best results first.
Such techniques can also be thought as a shrinking approach with respect to the
overall set of possible results, since they reduce the cardinality of the ranked result
dataset, or as a stretching approach with respect to the set of optimal results. In this
category, we include both the top-k operators and the skyline operators.

The aim of a top-k operator is to restrict the number of returned results to a fixed
number (k), based on some ranking function. Most top-k operators have been pro-
posed for monotone ranking functions (see Chapter 3). This class of functions gives
the opportunity of optimizing top-k query processing, using some threshold value to
prune the visit of data. When considering spatial data, since spatial objects cannot
be totally ordered while maintaining the properties of the space in which they are
located, monotonicity is no more a relevant property. Rather, spatial relationships,
and especially the distance-based ones, are often considered in computing scores.
As a consequence, nearest neighbor operators are examples of top-1 queries, using
distance as ranking function [16, 28, 48, 49].

Other approaches have then been proposed, using different types of ranking func-
tions, based on spatial and non-spatial properties of spatial objects [57, 59, 61]. Such
approaches differ for the reference data model, the used ranking function, and the
provided processing algorithms. The most efficient algorithms assume that data are
indexed and use a branch and bound approach to prune index subtrees that cannot
provide any answer.

Skyline queries represent an alternative way to score objects based on a spe-
cific ranking function (whose definition may be cumbersome) by returning just the
best results among all the possible ones (see Chapters 2 and 3). Best results can
be defined in terms of a partial relation among objects and in terms of a domi-
nance relation with respect to a set of given attributes (representing the user prefer-
ence), by returning those objects that are not dominated by any other object (skyline
objects).

Given a set of points, each corresponding to a list of values for the relevant
attributes, a point A dominates a point B if it is better in at least one dimension
and equal or better in all the others, with respect to some ordering [10]. More
formally, assuming lower values are preferred, given two points p(p1, ..., pd) and
p′(p′1, ..., p′d), p dominates p′ if and only if we have pi ≤ p′i for 1 ≤ i ≤ d and
p j < p′j for some 1 ≤ j ≤ d. Various algorithms have been proposed for skyline
computation. Partition-based and index-based techniques (B-tree [10], bitmap [55],
R-trees [34, 41]) avoid scanning the overall set of data for skyline computation,
improving performance with respect to basic techniques.

When considering the spatial context, the concept of spatial skyline has been in-
troduced. Given a set of data points P and a set of query points Q in a d-dimensional
space, a spatial skyline query retrieves those points of P that are not dominated
by any other point in P, with respect to a set of derived spatial attributes. Such
attributes may refer to both spatial properties with respect to objects in Q (like dis-
tance [50, 51, 54] and direction [26]) and non-spatial attributes of P. Alternative

92 A. Belussi, B. Catania, and S. Migliorini

skyline definitions have also been provided in the context of road networks [56]. We
do not further investigate these proposals in the sequel since more related to graph
databases.

While top-k operators return a small result set at the price of specifying a ranking
function, which is not a simple task, skyline operators avoid this specification at the
price of a larger result set, which, even for two dimensional interest attributes, may
be quite huge. In both cases, processing over join operations is challenging [30].

5.3.2 Approximate Query Processing

While QR deals with the specification of new (kind of) queries, approximate query
processing (ApQP) refers to all the techniques for executing an intrinsically expen-
sive traditional or relaxed query (e.g., a join or a top-k operator) by using ad hoc
query processing algorithms, which automatically apply the minimum amount of
relaxation based on the available data and resources, in order to efficiently com-
pute a non-empty result similar to the user request. ApQP is suitable in all environ-
ments where data are huge, heterogeneous, and resources are limited or queries are
complex [1, 4, 14]. Differently from QR approaches, in this case the query is not
changed; rather, its execution is modified in order to get an approximate answer.

Traditional ApQP techniques for stored data essentially rely on four different ap-
proaches.3 Under the first approach, existing processing algorithms are modified in
order to generate an approximate result: the modification alters some steps of the al-
gorithm by introducing weaker conditions (for instance, equality checks can be sub-
stituted by similarity checks in order to improve quality or, in a branch and bound
approach, the pruning condition could be made more selective in order to prune the
visit of a larger portion of the original dataset, thus improving time efficiency) (see,
e.g., [52]). Under the second approach, new algorithms are provided, sometimes by
reformulating the ApQP problem as a combination of non approximate operations
(for instance, an approximate join on string attributes can be reduced to an aggre-
gated set intersection, as shown in [58]). Under the third approach, heuristics are
provided in order to reduce the computational cost of a given algorithm. They ex-
plore the solutions space in an effective way by exploiting some data properties (e.g.,
by looking for local optimal solutions) [43]. Genetic algorithms are included in this
approach. All the first three categories of ApQP approaches do not alter the input
dataset; on the other hand, the fourth group of techniques alters the input datasets
each time it is too expensive to deal with values of a given domain or with the
overall set of objects, by introducing approximate representations (e.g., synoptics or
wavelets). Specific query processing algorithms are then provided to deal with these
new datasets (see, e.g., [1, 4]).

As expected, also for spatial data ApQP techniques that represent the four ap-
proaches described above have been proposed (e.g., [16, 17, 20] for the first

3 The proposed classification extends that presented in Chapter 10 for approximate tech-
niques having ‘processing algorithm’ as subject. Techniques here belonging to the fourth
group are called data reduction techniques in Chapter 10.

5 Approximate Queries for Spatial Data 93

approach, [39] for the third approach, and [3, 62] for the second and fourth ap-
proach). Such techniques have been provided for expensive operations like multi-
way spatial join [18, 39], i.e., a join of more than two maps, and distance-based
queries, including several variations of the NN queries presented in Section 5.2,
which become quite inefficient in high-dimensional spaces [39]. Since spatial data
processing relies on the usage of index structures (e.g., R-trees [27]), such structures
have also been extended to cope with the approximate processing. Concerning the
fourth approach, due to the high computational complexity in manipulating spatial
values, techniques are usually provided introducing an approximate representation
of the exact geometries of objects, potentially completely different with respect to
the one used for the exact geometries (for example, the exact geometry is in vector
format, while the approximation is a grid of cells or a string of bits) [3, 62]. In this
case, new algorithms have to be designed in order to produce an approximate result
from the processing of traditional operations, by manipulating only the approximate
representations. Differently from solutions based on traditional approximate data
representation, as MBRs, such representations have been provided specifically for
approximate processing and in general they do not allow one to detect the precise
query result.

We remark that many other papers concerning spatial data include the word ap-
proximation in their claims but are specifically dedicated to a particular application
domain where time is relevant. For instance, many efforts have been devoted to the
problem of finding the approximate result of a kNN selection considering a mov-
ing object as query point [29]. Here the approximation is due to the fact the the
query point is moving and we do not have the exact knowledge about its position
that changes over time. Another interesting issue, we are not considering in this
paper, deals with the similarity of trajectories of moving objects [5], which indeed
use some sort of approximation in the definition of similarity among trajectories.
Other papers just integrate other kinds of approximate queries with a spatial predi-
cate; for instance, in [58] the authors propose a data access structure that integrates
the execution of an approximate string search with spatial queries, like kNN and
range-based selection.

5.4 Spatial Top-k Queries

A top-k operator returns the first k objects according to some ranking function and
some ordering among ranking values. As already pointed out in Section 5.3, various
top-k operators have been proposed for spatial data and various query processing
algorithms have been developed for them. Besides the general features already con-
sidered in Section 5.3, top-k operators can be classified depending on: (i) the used
ranking function; (ii) the used query processing algorithm. In the following, existing
proposals will be classified based on these two parameters.

94 A. Belussi, B. Catania, and S. Migliorini

5.4.1 Top-k Ranking Function

In the context of spatial data, three main kinds of ranking functions have been pro-
posed (see Table 5.1). They use in different ways object distances, intersections, and
spatial and non-spatial object properties to compute scores.

Top-k spatial preference queries. A top-k spatial preference query selects the k best
spatial objects (which are points in the proposal but can be extended to any type of
objects) with respect to the quality of features in their spatial neighborhood [59].
Assume that objects in the space are qualified by several features, leading to m fea-
ture sets F1, ...,Fm. The score of an object thus quantifies the quality ω of features,
which may belong to distinct datasets, in its spatial neighborhood (defined either
through a distance-based selection or a nearest neighbor operator). For each feature
set, the score of the selected features is computed and all the scores are then aggre-
gated to generate the overall score for the given object. Quality can be assessed by
considering either spatial or non-spatial properties of features. The following def-
initions refer to points but they can be easily extended to cope with objects of an
arbitrary geometric type.

Definition 1 (Top-k spatial preference ranking function [59]). Let S be a point
dataset and F1, . . . ,Fm datasets of features. The score of a point p ∈ S is defined as
follows:

τθ (p) = agg{τθ
i (p) | i ∈ [1,m]} (5.1)

where agg is a monotone aggregate operator and τθ
i (p) is the i-th component score

of p with respect to the neighborhood condition θ and the i-th feature dataset Fi. �

Typical examples of the aggregate function agg are: SUM, MIN and MAX. The neigh-
bor condition θ defines the spatial neighborhood region of a point p that has to be
considered during the computation of the score function. Two conditions have been
considered in [59]: (i) range condition rng, which considers all features that are
within a parameter distance ε from p; (ii) nearest neighbor condition nn, which
considers nearest neighbor features of p. Such conditions give rise to different
scores τθ

i :

• the range score τrng
i (p) returns the maximum quality ω(s) of features s ∈ Fi

which satisfy the range condition with respect to p (i.e, that are within a param-
eter distance εi from p) or 0 if no such point exists;

• the nearest neighbor score τnn
i (p) returns the quality ω(s) of feature s∈Fi, which

satisfies the nearest neighbor condition with respect to p (i.e., s is the nearest
neighbor of p in Fi).

Example 1. Consider the scenario presented in Section 5.2. The following is an ex-
ample of top-k spatial preference query: “Retrieve the 2 main towns (as polygons)
in Veneto with the highest score, computed as the maximum area of the lakes that
lie within 25 km”. Based on Definition 1, the aggregate function used in modeling

5 Approximate Queries for Spatial Data 95

the previous request is MAX. A single feature set F1 is considered, corresponding to
lakes, the considered quality function ω is the area, a range score is computed with
respect to objects within 25 km from each municipality. ♦

Top-k influential sites. Another ranking function has been proposed by considering
an extension of the Reverse Nearest Neighbor (RNN) problem, called bichromatic
RNN [57]. Given two sets of points, S (sites) and O (input objects), the bichromatic
RNN of a site s (also called the influence set of s) is the set of points in O that
have s as the nearest site. If each spatial object in O has a weight ω , the score of a
site is computed as the sum of the weight of objects in its influence set. While the
ranking function has been originally defined for points, it can be extended to cope
with arbitrary geometric types.

Definition 2 (Top-k influence site ranking function [57]). Let S and O be two sets
of points, representing sites and input spatial objects, respectively. The score of a
site p ∈ S is defined as follows:

τ(p) = sum{ω(o)|o belongs to the influence set of p} �

Example 2. Consider the scenario presented in Section 5.2 and suppose that: the
query is defined on the Veneto region, the set of spatial objects O is composed of
the municipalities in this region, the set of sites S contains the main hospitals as
points (located in the main towns: Verona, Vicenza, Padova, Venezia, Belluno, Tre-
viso and Rovigo), and the weight associated with each object in O is the municipality
inhabitants. A top-k most influential site query may return the first k most influen-
tial hospitals, namely the hospitals for which the total number of inhabitants, with
respect to the municipalities that are closer to such hospitals than to any other, is the
highest. ♦

Top-k spatial join. In the context of the top-k spatial join, a ranking function
based on the number of intersections between pairs of spatial objects has been pro-
vided [61]. More precisely, given two datasets A and B, for each spatial object in
A or B, the ranking function returns the number of intersections with objects in the
other dataset.

Definition 3 (Top-k Spatial Join ranking function [61]). Let A and B two spatial
datasets. Let o∈C, let C ∈ {A,B} (i.e., C is the set to which o belongs among A and
B). The score of o is computed as follows:

τ(o) = card{o′|o′ ∈ (A∪B−C),o intersects o′}. �

Example 3. A top-k spatial join over the river and the municipality datasets (maps
MitRv and MitMp) may return the rivers crossing the maximum number of munici-
palities or the municipalities crossed by the maximum number of rivers. With the
datasets of the running example, as shown in Figure 5.1, with high probability the

96 A. Belussi, B. Catania, and S. Migliorini

k answers will correspond to k rivers, since the municipalities crossing a river are
many more than the rivers that cross a municipality. ♦

5.4.2 Top-k Query Processing Algorithms

As already pointed out, monotonicity of ranking functions for traditional data is
a relevant assumption since it allows the optimization of top-k query processing
through the usage of specific threshold values. Data can be either sequentially ac-
cessed, in an ordered way with respect to each quality used in score computation,
or randomly accessed, through the usage of some index structure. The monotonicity
assumption allows the query processor to maintain some upper/lower bounds on the
score values of objects not yet visited. Using such bounds, the computation can be
stopped as soon as it is clear that no more results can be found.

A similar approach does not work for spatial data. While for traditional data
an ordered sequential access is an option, for spatial data an index-based access
(based on R-trees or other spatial data structures) is usually a must.4 Additionally,
as discussed in the previous section, ranking functions for spatial data rely on spatial
relationships. New approaches have therefore been designed for computing top-k
spatial queries in an optimized way.

Even if spatial objects inside a spatial index are not totally ordered, they are how-
ever spatially organized and properties of such organization can be used to optimize
top-k processing. Whatever visit is used, similarly to the traditional context, the
following structures are usually maintained during top-k result computation:5 (i) a
queue Q, used to store top-k results generated so far, ordered with respect to their
score value; (ii) a threshold value ρ , representing the lowest score value in Q (i.e,
a lower bound of the k highest scores based on objects visited so far); (iii) specific
data structures to efficiently compute the object scores.

Algorithm 1. Algorithm for top-k traditional visit (TV).
INPUT: The node N of the spatial data index structure to be processed.

The queue Q used to store the top-k results generated so far, it is initially empty.
The threshold value ρ representing the lowest score value in Q, it is initially equal to 0.

OUTPUT: An updated queue Q containing the top-k results.
1. Algorithm TV (N,Q,ρ)
2. for all entries e in N do
3. if N is non-leaf then
4. read the child node N ′ pointed by e;
5. TV (N ′,Q,ρ);
6. else
7. compute score(e)
8. if score(e)≥ ρ then
9. update Q and ρ

10. end if
11. end if

12. end for

4 For simplicity, in the following we assume that leaf nodes of the index tree contain objects
and not their approximations.

5 In the following, we assume that highest values are preferred.

5 Approximate Queries for Spatial Data 97

Algorithm 2. Algorithm for top-k Branch and Bound visit: local ordering (BB1).
INPUT: The node N of the spatial data index structure to be processed.

The queue Q used to store the top-k results generated so far, it is initially empty.
The threshold value ρ representing the lowest score value in Q, it is initially equal to 0.

OUTPUT: An updated queue Q containing the top-k results.
1. Algorithm BB1(N,Q,ρ)
2. V := {e|e is an entry in N};
3. if N is non-leaf then
4. for all entries e in N do
5. compute key(e);
6. remove e from V if key(e)< ρ ;
7. end for
8. order V in descending order, according to key values just computed
9. for all entries e in V (accessed in an ordered way) do

10. read node N ′ pointed by e
11. BB1(N ′,Q,ρ)
12. end for
13. else
14. for all entries e in N do
15. compute score(e);
16. remove e from V if score(e)< ρ ;
17. end for
18. update Q and ρ according to entries in V ;

19. end if

Two main types of visits can be implemented:

• Traditional visit. Under this approach, the spatial index is visited usually in
depth-first or breadth-first way [59]. As an example, Algorithm 1 for top-k tradi-
tional visit relies on a depth first search. During the visit, the score is computed
for objects pointed by leaf entries. Thus, Q will contain objects that, based on the
entries visited so far, belong to the top-k result. If, during the visit, the score of an
object o is higher than or equal to ρ , then ρ and Q are updated. More precisely,
o is inserted in Q and all objects that do not belong any more to the top-k result
are removed from Q.

• Branch and Bound visit (BB). Under the Branch and Bound visit, the visit of a
subtree is avoided if and only if it is possible to establish that objects pointed by
its leaves do not belong to the result [28, 59, 61]. To guarantee efficiency, such
property has to be checked locally at the index entry under consideration, using
some key value. The key value usually corresponds to an upper bound of the
score of the objects belonging to the subtree rooted by the node pointed by the
considered index entry. The visit of the subtree can be avoided if the key value is
lower than ρ . An ordering value is also used for determining the ordering upon
which entries are visited, with the aim of visiting first the entries that most proba-
bly will generate some results. In many cases, the value upon which the ordering
is defined coincides with the key value. The ordering can be applied either to
all the entries in each visited node (local ordering) or to all the entries/objects
visited so far (global ordering). In this second case, Q contains not only objects
that, based on the entries visited so far, belong to the top-k result, but also en-
tries (or nodes) that may potentially produce further results. Additionally, the key
value for an entry corresponds to an interval containing all the key values asso-
ciated with objects in the subtree rooted by the considered entry. As an example,

98 A. Belussi, B. Catania, and S. Migliorini

Algorithm 2, denoted as BB1, relies on the local ordering, while Algorithm 3,
called BB2, relies on the global ordering. Under BB2, when an entry is consid-
ered, if based on the key value it is possible to determine that further results can
be produced by such entry, the entry is expanded, i.e., it is replaced by the entries
of the pointed node. While BB2 provides a progressive generation of results, in
BB1 (and in TV) results correspond to the objects contained in Q at the end of
the processing.

We notice that the ability to prune index subtrees in BB comes at the price of man-
aging a potentially longer Q with respect to TV , since in BB Q may contain both
objects and entries.

Query processing algorithms provided for computing top-k results based on the
ranking functions proposed in Section 5.4.1 instantiate the general algorithms pre-
sented above. Table 5.2 summarizes the characteristics of such algorithms, based on
the general description provided above. In the following, they will be shortly de-
scribed, with respect to the type of visit they implement (either traditional or branch
and bound).

Algorithm 3. Algorithm for top-k Branch and Bound visit: global ordering (BB2).
INPUT: The spatial data index structure R.
OUTPUT: The queue Q containing the top-k results.
1. Algorithm BB2(R)
2. PriorityQueue Q := /0
3. Q.insert(R.root,0), where 0 is the priority associated to R.root
4. ρ=0
5. while Q is not empty and the number of reported elements is lower than k do
6. N:=Q.getMax()
7. if N is non-leaf then
8. for all entries e in N do
9. compute key(e);

10. if key(e).max >= ρ then
11. Q.insert(N ′,key(e)), where N ′ is the node pointed by e;
12. update Q and ρ according to e;
13. end if
14. end for
15. else if N is leaf then
16. for all entries e in N do
17. compute score(e);
18. if score(e).max >= ρ then
19. Q.insert(o,score(e)), where o is the object pointed by e;
20. update Q and ρ according to e;
21. end if
22. end for
23. else
24. return N;
25. end if

26. end while

5.4.2.1 Traditional Visit

Top-k Spatial Preference Query. The traditional visit proposed in [59] for top-k
preference queries with MAX as aggregate function and descending score ordering
instantiates Algorithm 1. In order to compute the score of an object, the technique
assumes that each feature dataset Fi is indexed by a max aggregate R-Tree aRi [40].

5 Approximate Queries for Spatial Data 99

Table 5.2 A summary of existing top-k spatial query processing approaches.

Specific data structures for
score computation

Key value Ordering
value

Traditional
visit

Top-k preference
query: probing
algorithm [59]

aR-Tree aRi for each feature dataset Fi -

Branch and
Bound visit

Top-k preference
query: Branch and
Bound algorithm [59]

aR-Tree aRi for each feature dataset Fi

T (e): score upper bound
for the objects in the subtree
rooted by e
relying on the computation of
the Minkowski region

Top-k preference
query: Feature Join
algorithm [59]

heap H of feature combinations f ci
aR-Tree aRi for each feature dataset Fi

T (e) for R, as above
τ(f ci) for H : aggregation of
the quality of each feature in
f ci

Top-k most influential
sites [57]

queuesin entries of Rs inside query region
queuesout entries of Rs outside query region
queueo entries of Ro that effects queuesin

maxInfluence
for queuesin
minExistDNN
for queuesout

maxInfluence
for queuesin

Top-k spatial join [61]
intersection list IL(e) for each entry e of
R-trees Ra and Rb, indexing the two input
datasets

count(e): number of the entries
intersecting e and belonging to
the other dataset

This is an R-tree where each non-leaf entry is augmented with the maximum feature
quality value contained in its subtree. For computing the score of a leaf entry in
the R-tree indexing the input dataset, for each feature dataset Fi, the aR-tree aRi

is accessed and the score is computed by executing either a range search or a NN
search, depending on the type of the query (range score or nearest neighbor score)
and on the leaf entry at hand. Of course, this approach is inefficient for large datasets,
because the score of different objects is separately computed, thus the aR-Tree of
the feature datasets has to be traversed many times. A more efficient variant has
therefore been proposed, called group probing algorithm, in which the score of the
objects in the same leaf node of the R-Tree are computed concurrently with a single
traversal of each aRi tree.

Example 4. Consider the scenario presented in Section 5.2 and the query proposed
in Example 1: “Retrieve the 2 main towns (as polygons) in Veneto with the highest
score, computed as the maximum area of the lakes that lie within 25 km”. The feature
dataset, corresponding to lakes, is indexed by an aR-tree S, where each non-leaf
entry of S is augmented with the maximum area of the lakes in its subtree, while
each leaf entry is annotated with the area of the corresponding lake. The query
requires the computation of a range score, with ε = 25 km. Figure 5.2 shows the
R-Tree R of the input dataset and the aR-Tree S for lakes. Using Algorithm 1, the
nodes of R are visited in depth-first order: [R1, R2, R7, R8, R3, R5, R6, R4, R9, R10,
R11] and the score of each leaf is computed using the aR-Tree S by executing a
range query. The query object of the range query corresponds to the buffer of the
leaf object, computed with distance 25 km. Initially, the queue Q is empty and the
threshold ρ is equal to zero, then for each leaf in R, Q and ρ are updated as in
Table 5.3. Notice that the threshold ρ remains equal to zero until k (in this case two)
objects are loaded onto the queue. The result corresponds to entries R7 and R5, i.e.,
Verona and Belluno. ♦

100 A. Belussi, B. Catania, and S. Migliorini

Fig. 5.2 R-Tree R of the input dataset (i.e., main towns in Veneto) and aR-Tree S of lakes,
considered in Example 4.

Table 5.3 Example of execution of Algorithm TV for a top-k spatial preference query.
Columns “Q BL9”, “Q AL9”, “ρ BL9” and “ρ AL9” contain the value of Q and ρ before and
after executing line 9 of Algorithm 1, respectively, i.e., before and after updating Q and ρ for
each visited entry.

Entry e Main Town score(e) Q BL9 ρ BL9 Q AL9 ρ AL9
R7 Verona 367.87 [] 0 [R7] 367.87
R8 Vicenza 0.56 [R7,null] 0 [R7,R8] 0.56
R5 Belluno 7.12 [R7,R8] 0.56 [R7,R5] 7.12
R6 Treviso 0 [R7,R5] 7.12 [R7,R5] 7.12
R9 Padova 0.56 [R7,R5] 7.12 [R7,R5] 7.12
R10 Rovigo 0 [R7,R5] 7.12 [R7,R5] 7.12
R11 Venezia 0 [R7,R5] 7.12 [R7,R5] 7.12

5.4.2.2 Branch and Bound Visit

Top-k Spatial Preference Query. The branch and bound algorithm proposed in [59]
for top-k preference queries relies on the algorithm scheme BB1. In order to com-
pute the score, each feature dataset Fi is indexed as described in Section 5.4.2.1. The
key value of an entry e of the R-Tree R indexing the input dataset coincides with an
upper bound T (e) of the score of objects contained in the subtree rooted by e. T (e)

5 Approximate Queries for Spatial Data 101

is also used for ordering purposes. The computation of such bounds depends on the
type of the considered query (either range or nearest neighbor queries) and relies on
the computation of the Minkowsky region [9]6 of leaf entries in the R-tree. More
precisely, the key value T (e) of each non leaf entry e in R is the maximum quality
of the lowest level of non-leaf entries of S intersecting the Minkowski region of the
MBR associated with the current entry e of R.7 Score computation coincides with
that described for the traditional visit and suffers of the problems pointed out in Sec-
tion 5.4.2.1. An alternative method, which can be still classified as branch and bound
and is called Feature join, has therefore been presented. It consists in performing a
multiway spatial join of the feature datasets F1, . . . ,Fm to obtain combinations of
features that with a high probability will be in the neighborhood of some object in
the dataset D. Combinations are lists of nodes from aR1, ...,aRm, respectively, and
are maintained in a max-heap H in order of their score. The score of a combination
is denoted by τ(fci) and is computed as the aggregation of the quality of each feature
in the combination. At each iteration, the spatial region in H with the highest score is
examined, in order to find data objects in D having the currently considered feature
combination in their neighborhood. The proposed algorithm applies a branch and
bound visit to both feature trees and object tree. In the first case, the key and order-
ing value for entries in H are represented by the score of each feature combination.
In the second case, key and ordering value correspond to T (e), slightly modified to
take into account clear cases of non interesting visits.

It has been shown that, in order to execute top-k preference queries, the branch
and bound visit is the best method when the object dataset is small whereas the
Feature join algorithm is the best algorithm when there are few and small feature
datasets.

Top-k Most Influential Sites. The algorithm proposed in [57] computes the top-k
most influential sites which are contained in a query region P. Such algorithm does
not rely on the schemes TV, BB1, and BB2 presented above, due to the nature of the
problems (two datasets, sites and objects, are considered and indexed through two
R-trees Rs and Ro). However, it can still be considered a branch and bound approach
since the visit of such trees is pruned based on some heuristics in order to avoid to
search useless portions of the trees. To this aim, three queues are maintained, which
contain index and leaf entries (thus, in some sense, the algorithm adheres to the BB2
scheme):

• queuesin, which keeps the (intermediate or leaf) entries of Rs that are inside the
query region P; each entry S j is associated with an interval (the key value for
S j) (minInfluence,maxInfluence) corresponding to the influence range of sites
indexed below S j. Such values are computed based on the weight of entries in
queueo (see below) that affect the considered entry in queuesin. Potential answers
come from entries in such queue.

6 The Minkowski region with respect to ε of an object o is the set of points whose minimum
distance from o is within a distance ε .

7 The choice of the lowest level non-leaf entries seems to guarantee the best trade-off be-
tween computational cost and result quality, according to [59].

102 A. Belussi, B. Catania, and S. Migliorini

• queueo, which keeps the (intermediate or leaf) entries of Ro that affects some
entry in queuesin. An entry eo of Ro affects an entry es of Rs if some objects in
the subtree rooted by eo considers some sites in es as the closest site among the
sites indexed by entries already contained in queuesin and queuesout . The aim of
entries in queueo is to compute (minInfluence,maxInfluence) intervals for entries
in queuesin.

• queuesout , which keeps the (intermediate or leaf) entries of Rs that are outside the
query region P but are affected by some entry in queueo.

The algorithm starts by initializing the three queues using the root nodes of Rs and
Ro. The elements in queuesin are progressively expanded (i.e., the entry is replaced
by the entries contained in the pointed node) in order of their maxInfluence value,
until their actual influence is computed (i.e., maxInfluence and minInfluence become
equal). In this way, the entries whose corresponding subtree may contain some of
the k most influential site are visited first. An entry S j with maxInfluence = 0 can
be removed, since all sites indexed by S j will have influence = 0, thus they cannot
belong to the result. If a queue entry es in queuesin is not affected by any entry eo in
queueo, it is removed as well. On the other hand, entries in queueo are progressively
expanded only if they affect some entries in the other two queues.

In order to determine which entry in queueo affects the entries in queuesin and
queuesout , some pruning conditions have been proposed based on a new metric called
minExistDNNes(eo), which represents the smallest distance that is an upper bound
of the distance between any object in eo and its nearest site in es. Within such dis-
tance, any object in eo can reach a site in es. Given an object entry eo and two site
entries es and e′s, if minExistDNNes(eo) is lower than the lower bound of the distance
between any object in eo to any site in e′s, then eo does not affect e′s.

The algorithm terminates when there are k sites in queuesin whose minInfluence
is no less than maxInfluence of all the remaining sites. We notice that the algo-
rithm can return a site without computing its actual influence. Indeed, as long as the
minInfluence of a site is big enough, the site can be returned as output.

Top-k Spatial Join: TS Algorithm. A branch and bound algorithm has also been
proposed for the top-k spatial join in [61]. The proposed algorithm is a variation of
a classical join algorithm based on R-trees and adapts the algorithm scheme BB2
to the join case. The two input datasets A and B are indexed by two R-Trees Ra

and Rb, respectively, which for simplicity are assumed to have the same height. The
proposed algorithm inserts in the queue Q all objects or intermediate entries visited
so far, which may contribute to the results.

The key value key(e) associated with each entry e corresponds to the number
of entries of the other tree intersecting e (also denoted by count(e)), together with
the list of such entries (intersection list (IL(e))). If e is a leaf entry (i.e., an ob-
ject) of the R-Tree Ra, count(e) is the number of objects of Rb that intersect e,
thus it corresponds to score(e). If e is an intermediate entry, count(e) is an upper

5 Approximate Queries for Spatial Data 103

bound of the actual count of any object in e, which is obtained as count(e) =

∑ei∈Rb∧ei intersect e maxNum(ei), where maxNum(ei) is estimated as Clevel(e), where
C is the node capacity and level(e) is the level of the node that contains e.

The algorithm starts from the root of the two trees Ra and Rb and computes all
the pairs (ea,eb) of intersecting entries, each contained in one of the roots. For each
entry e that appears in a pair, it then computes key(e). The tuple 〈e,count(e), IL(e)〉
is inserted into a heap Q sorted by the counts in descending order (thus, count is
used both for keys and ordering). We do not need to visit entries whose count is
smaller than that of the top-k results already found (stored in ρ). We notice that,
while in this case Q contains information about entries and not about nodes, the
algorithm adheres to the general scheme BB2, presented in Subsection 5.4.2.

Until the number of reported objects is less than k, the algorithm deheaps the
first entry e of Q. If e is a leaf entry (i.e., an object) it is reported as result. If it is an
intermediate entry pointing to a node n, for each node ni pointed by an entry in IL(e),
the join between n and ni is computed. For each entry e′ in n, based on the detected
intersecting pairs, count(e′) is computed and IL(e′) updated. If count(e′) is greater
than the count of the k-th best object found so far, the tuple 〈e′,count(e′), IL(e′)〉 is
inserted in Q. If it is a leaf entry, ρ is also updated.

Example 5. In order to show an example of usage of branch and bound algorithms,
let us consider data represented in Figure 5.2, the top-k spatial preference query
discussed in Example 4, and the algorithm scheme BB1, as suggested in [59].

The result of the BB1 algorithm execution is presented in Table 5.4. The column
“S entries” contains the entries of the aR-tree S (corresponding to the lake features)
involved in the computation of key(e), i.e., the entries which intersect the Minkowski
region of the MBR associated with e, with respect to 25 km. key(e) coincides with
the highest quality of the S entries involved in the computation, i.e., the maximum
area of the lakes which lie within 25 km from e. Entries e in V are always visited
in the order of their key value. Notice that set V is local at each call of the BB1
algorithm and that the algorithm is recursively called for each entry of non-leaf
nodes.

The result of the computation, according to Algorithm scheme BB2, is presented
in Table 5.5. In this case, entry keys are represented by intervals, corresponding to
a lower and an upper bound of score values contained in the subtree rooted by the
considered entry. The upper bound of an entry e is computed as for BB1 while the
lower bound can be computed as the minimum of the maximum areas associated
with each S entry involved in the computation, as described above. The priority
queue Q is a global variable containing either nodes or objects that may potentially
give some results. Notice that, differently from BB1, entry R4 is pruned.

A similar approach can be used to compute top-k spatial join. In this case, the
queue will contain pairs of either entries or objects and a different key value is used.

On the other hand, the computation of top-k most influential sites relies on a
different (but branch and bound) approach. We refer the reader to [57] for examples
of its applications. ♦

104 A. Belussi, B. Catania, and S. Migliorini

Table 5.4 Example of execution of Algorithm BB1 for a top-k spatial preference query.

N e S entries key(e) score(e) V Q ρ
R1 {R2,R3,R4} [] 0

R2 {S5} 367.87 – – – –
R3 {S4,S6,S7} 7.12 – – – –
R4 /0 0 – – – –

{R2,R3,R4} [] 0
R2 {R7,R8} [] 0

R7 – – 367.87 – – –
R8 – – 0.56 – – –

{R7,R8} [R7,R8] 0.56
R3 {R5,R6} [R7,R8] 0.56

R5 – – 7.12 – – –
R6 – – 0 – – –

{R5} [R7,R5] 7.12
R4 {R9,R10,R11} [R7,R5] 7.12

R9 – – 0 – – –
R10 – – 0 – – –
R11 – – 0 – – –

/0 [R7,R5] 7.12

Table 5.5 Example of execution of Algorithm BB2 for a top-k spatial preference query.

N e S entries key(e) score(e) Q ρ out put
[R1] 0

R1 [] 0
R2 {S5} [367.87,367.87] – [R2] 367.87 –
R3 {S4,S6,S7} [1.26,7.12] – [R2,R3] 1.26 –
R4 /0 [0,0] – [R2,R3] 1.26 –

R2 [R3] 1.26
R7 – – 367.87 [R7,R3] 1.26 –
R8 – – 0.56 [R7,R3] 1.26 –

R7 [R3] 1.26 R7 (367.87)
R3 [] 1.26

R5 – – 7.12 [R5] 7.12 –
R6 – – 0 [R5] 7.12 –

R5 [] 7.12 R5 (7.12)

5.5 Spatial Skyline Queries

When considering spatial data, the notion of skyline query has been redefined by
considering dimensions in the space as attributes of the objects. In the following,
the concept of spatial skyline queries is introduced and related query processing
issues discussed.

5 Approximate Queries for Spatial Data 105

5.5.1 Spatial Skyline Queries

The concept of Spatial Skyline Query has been first proposed in [51], by extend-
ing the classical skyline query to the case where attribute values quantify spatial
relationships between each input object and a given set of query objects, using a
distance metric. In order to formally introduce spatial skyline queries, we first re-
vise the concept of dominance in the spatial context.

Definition 4 (Spatial Dominance [51]). Let P be a set of spatial objects, Q a set
of spatial query objects. Let D(., .) be a distance metric, satisfying the triangular
inequality. A spatial object p ∈ P spatially dominates another object p′ ∈ P with
respect to Q if and only if:

• D(p,qi)≤ D(p′,qi) for all qi ∈ Q, and
• D(p,q j)< D(p′,q j) for some q j ∈ Q. �

The distance metric can be any function that obeys the triangular inequality, in order
to guarantee the transitive property of the dominance. The Euclidean distance be-
tween two points and the Hausdorff distance [47] between two polygons or curves
are examples of distance metric satisfying the triangular inequality. Given such def-
inition of spatial dominance, the concept of skyline query can be easily extended to
the spatial context as follows.

Definition 5 (Spatial Skyline Query [51]). Let P be a set of spatial objects, Q a
set of spatial query objects. Let D(., .) be a distance metric. A spatial skyline query
returns the subset S⊆ P, called spatial skyline, of objects that are not spatially dom-
inated by any other object in P with respect to Q. �

Example 6. Consider the spatial database introduced in Section 5.2 and a spatial
query asking for all the main towns (represented as polygons) in Veneto that are at
distance zero from both the rivers Adige and Brenta. None of the main towns in Fig-
ure 5.1 touches both the desired rivers, so an exact query will return an empty result
set. On the contrary, a spatial skyline query with respect to the set of query objects
{Adige,Brenta} returns the set of main towns that are closest to both rivers. Thus,
the set {Verona,Padova} will be returned. These main towns are not dominated by
any other main town, because no other main town is closer to the river Adige than
Verona, and no other main town is closer to the river Brenta than Padova. ♦

The previous example introduces an important property of (spatial) skyline.

Property 1. [51] Given a set of data objects P and a set of query objects Q, if p ∈ P
is the unique closest point of P to q ∈ Q, then p belongs to the skyline of Q. ♦

It is important to remark that the concept of spatial skyline can be seen as a special
case of the dynamic skyline query, introduced in [41]. A dynamic skyline query first
maps each original point p into a new point p′ such that p′ = (f1(p), ..., fd(p)),
where fi is a function defined upon p coordinates, and then computes the skyline of

106 A. Belussi, B. Catania, and S. Migliorini

this new set of data. The spatial skyline can be seen as a special case of dynamic
skyline where fi = D(p,qi), 1≤ i≤ d.

The notion of spatial skyline relies on a single distance metric. An extension of
this concept has been proposed in [26] by considering, besides distance with respect
to a single point q, also direction in detecting the best objects to be returned. It is
therefore called direction-based spatial skyline. Such definition is quite interesting
in location-based services (mobile recommendations, car navigations, etc.), where
q corresponds to the user position, but, as we will show below, it may be useful
also in more traditional spatial domains. The direction-based spatial skyline query
returns all nearest objects around the user from different directions. Each object p
in the skyline is nearer to q than any other objects having the same direction of p.
The notion of direction has been formalized by considering the angle between the
unit vector (0,1) and the vector between the point p and the query object q. Actually,
directions are not compared by equality but by similarity, by considering an input
tolerance value θ .

Definition 6 (Direction-based Spatial Dominance [26]). Let P be a set of points,
q a query point, and D(., .) a distance metric. A spatial object p ∈ P D−spatially
dominates another objects p′ ∈ P if and only if:

• p and p′ are located in the same direction with respect to q, and
• D(p,q)< D(p′,q). �

Definition 7 (Direction-based Spatial Skyline Query [26]). Let P be a set of
points, q a query point, and D(., .) a distance metric. A direction-based spatial sky-
line query returns the subset S⊆ P, called direction-based spatial skyline, of objects
that are not D−spatially dominated by any other object in P with respect to q. �

Example 7. Let us consider the spatial data introduced in Section 5.2 and a spatial
query that requires to find the nearest main towns to Venice in any direction. This is
an example of direction-based spatial skyline query. The result of this query is the
set of towns: {Treviso, Padova, Rovigo}, since Treviso is the nearest main town in
the North, Padova in the West, and Rovigo in the South direction. ♦

5.5.2 Spatial Skyline Query Processing Algorithms

Spatial skyline queries are more challenging than classical skyline queries since the
dominance check requires the computation of a derived distance attribute. Properties
of the geometric space have therefore to be taken into account in order to define
optimal processing solutions for such queries.

Based on what stated in Section 5.5.1, solutions proposed in [41] for dynamic
skylines, relying on the usage of R-trees, can still be used to compute spatial sky-
lines. However, as remarked in [51], such solutions have been proposed in order to
efficiently process a generic dynamic skyline query. Therefore, they are not tailored
to the spatial domain. This is why new processing approaches have been proposed
in order to get benefits from the properties of the spatial domain to compute the

5 Approximate Queries for Spatial Data 107

Table 5.6 A summary of existing spatial query processing approaches for spatial skyline
queries

Dominance Check Data Structure for Visiting Data

B2S2 [51]
Relationships between skyline points and convex
hull of query points

R-Tree for data points in P

VS2 [51]
Relationships between skyline points, convex hull
of query points, and Voronoi cells

Delaunay graph of data points in P

EC [54] Dominance with respect to the skyline points found
so far

LP list of data points sorted in ascending distance
from a query point q ∈CHv(Q)

DS [26]

(i) Dominance restricted to adjacent points, with re-
spect to their circular list sorted by the order of di-
rections
(ii) Conditions for early termination, based on the
angles between adjacent points

R-Tree for data points in P, ordered visit with re-
spect to the distance from q

skyline. Such new approaches rely on a specific distance function, namely the Eu-
clidean distance, and on a branch-and-bound approach applied upon an index tree
(e.g., R-tree) or a graph (Delaunay graph) visit. Pruning conditions correspond to
the dominance check, in the sense that regions of space that for sure cannot con-
tain skyline points are not visited. Different properties of the spatial domain can be
taken into account for this purpose. In the following, the proposed approaches will
be presented with respect to the considered data structure to be visited during the
computation and the dominance check used for pruning. Table 5.6 summarizes the
properties of the described algorithms.

B2S2: Branch-and-Bound Spatial Skyline Algorithm. The branch and bound al-
gorithm for spatial skyline proposed in [51] relies on a typical branch and bound ap-
proach like the BB2 scheme presented in Section 5.4.2, to search input data points,
indexed by an R-Tree R, avoiding the visit of those subtrees that cannot contain any
skyline points. To this purpose, an heap H is maintained, containing the entries to be
visited (i.e., potentially containing skyline points), initialized with the R root. Sky-
line points are collected into a set S(Q). At each step, an entry in H is considered. If
it is a leaf entry, it is checked for dominance with respect to the skyline points found
so far. In case it is not dominated by any point in S(Q), it is inserted in S(Q) since it
corresponds to a new skyline object. If it is an intermediate entry, dominance check
is first applied to the entry. In case it is not dominated by any point in S(Q), the
dominance check is applied to entries of the pointed node. Each entry whose MBR
is not dominated by the current skyline points is inserted into H for further visit.

In order to apply the dominance check, spatial properties of dominance are ex-
ploited. Indeed, it can be proved that, given a point p, the points that spatially dom-
inate p (called dominator region) and those spatially dominated by p (called domi-
nance region) corresponds to well defined regions of the space. More precisely, let
C(qi, p) be the circle centered at the query point qi with radius D(qi, p). Each point
inside the circle C(qi, p) is closer to qi than p. The dominator region of p corre-
sponds to

⋂
qi∈Q C(qi, p) while the dominance region corresponds to

⋂
qi∈Q C(qi, p),

where C(qi, p) represents the set of points which are outside C(qi, p). Finally, the

108 A. Belussi, B. Catania, and S. Migliorini

union of all C(qi, p) represents the search region, namely the set of points that are
not spatially dominated by p. Of course, skyline points in P are the points which are
not inside the dominance region of any other point.

Based on the previous properties, it is simple to show that, given an entry e, e
may lead to detect some skyline points only if e intersects the intersection of the
(MBRs of the) search regions of skyline points found so far (called condition C1
in the following). Thus, dominance check for leaf or intermediate entries (before
accessing the entries of the pointed node) is performed only if such condition is
satisfied.

Checking dominance using dominance regions is quite expensive, especially
when the number of query points is high. To reduce the check cost, sufficient con-
ditions based on the properties between the convex hull of Q and skyline points are
provided.8 In particular, it can be shown that:

• any point p ∈ P that is inside the convex hull of Q is a skyline point;
• the set of skyline points S ⊆ P does not depend on any point q ∈ Q that is not a

vertex of CH(Q) (called non-convex point).

Based on such properties, if an entry e is completely inside the convex hull CH(Q)
(called condition C2 in the following), e cannot be dominated and therefore it must
be inserted into H, if it is an intermediate entry, or it must be inserted into S(Q) if it
is a leaf entry. If condition C2 is not satisfied, dominance regions of current skyline
points in S(Q) are used to check whether e does not dominate points in S(Q) (called
condition C3 in the following).

The previous properties are also used to define an heuristics for ordering entries
in H. In particular, entries are ordered with respect to the sum of their minimum dis-
tance to points in CHv(Q), where CHv(Q) represents the set of vertexes of CH(Q).

VS2: Voronoi-Based Spatial Skyline Algorithm. An efficient alternative method
for computing a spatial skyline consists in traversing the set of data points P using
their Delaunay graph, instead of an R-Tree [51].9 The visit starts from a definite
skyline point (e.g., the closest point to one query point, based on Property 1), and
proceeds from one point to its Voronoi neighbors. Also in this case, an heap H is
maintained, containing the points to be further traversed. The heap H is ordered
with respect to the sum of the distances of each point with respect to the convex
vertices of CH(Q). A minheap HS is also maintained, containing points that are not
dominated at the time of the visit but that can be dominated by some points further
visited.

8 The convex hull CH(Q) of a set of points Q is the unique smallest convex polytope that
contains all points in Q.

9 The Voronoi cell of a point p∈P includes all points having p as the closest point, according
to some distance metric D(). In R2, the Voronoi cell is a convex polygon. Each edge of
this polygon is a segment of the perpendicular bisector line of the line segment connecting
p to another point p′ ∈ P (neighbor of p). The graph having P as vertices and all segments
connecting a point to its neighbors as edges is called Delaunay graph.

5 Approximate Queries for Spatial Data 109

For each visited point p in H, if it is a skyline point, it is inserted in the result set
S(Q). Sufficient conditions are used to detect skyline points, based on properties of
convex hulls and Voronoi cells, namely:

• Any point p ∈ P that is inside the convex hull of Q is a skyline point.
• If the interior of the Voronoi cell VC(p) intersects the boundary of CH(Q), p is

a skyline point.

If the previous conditions are not satisfied, two other situations may arise: (1) point
p is dominated by at least one point in S(Q)∪HS: in this case, p can be discarded
and its Voronoi neighbors have not to be visited; (2) point p is not dominated by
points in S(Q)∪HS, and therefore it is inserted into HS, since it is not dominated at
the time of its examination but it might be dominated later.

If p is not discarded, each Voronoi neighbor of p is considered and, if its Voronoi
cells is not dominated by objects in S(Q) and HS, it is inserted in H since it may
lead to the identification of further skyline points. A Voronoi cell VC(p) is spatially
dominated by a set of points A if and only if it is completely inside the union of the
dominance regions of all points in A. An heuristic approach is used for checking cell
dominance and reducing the complexity of the computation. As soon as H becomes
empty, HS is visited and points of HS that are not dominated by any point in S(Q)
are skyline points to be inserted into S(Q).

We notice that HS and the final post processing are required to guarantee the
correctness of the algorithm; they were not considered in the preliminary version of
VS2 [50], which was later proved to be incorrect [54]. It has been proved that VS2

outperforms B2S2.

ES: Enhanced Spatial Skyline Algorithm. In [54] the authors propose an alterna-
tive efficient algorithm to VS2 [50], overcoming the problems identified in the first
definition of such algorithm [50]. The proposed algorithm still relies on the usage
of Voronoi cells but, instead of traversing the Delaunay graph, the number of dom-
inance checks is reduced by keeping a sorted list LP of all the data points in the
ascending order of their distance from some given vertex of CH(Q) (which, by defi-
nition of convex hull, is a query point). For each point in LP, the algorithm performs
the dominance test with respect to the skyline points found so far. The correctness
of this algorithm is based on the observation that, if a data point p1 is located before
p2 in LP, then p2 does not spatially dominate p1. Therefore, it is sufficient to per-
form the dominance test on p only with respect to the spatial skyline points that are
located before p in LP. This algorithm can be further improved by computing the
seed skyline points at the beginning. A seed skyline point is a skyline point that can
be identified without dominance test, by checking the properties already considered
in B2S2 and VS2. It has been proved that ES outperforms VS2.

DS: Direction-based Spatial Skyline Algorithm. The branch and bound algorithm
presented in [26] starts from a query point q and a tolerance value θ for determining
when two points are in the same direction. The data points P are indexed with an
R-Tree, which is used to explore them in order of their proximity to q, starting from
the nearest point to q. Visited points are inserted into a direction list l, sorted by

110 A. Belussi, B. Catania, and S. Migliorini

(a) (b)

Fig. 5.3 (a) Main towns and lakes in Veneto. Assuming the center of each lake as a query
point, the figure also shows: (i) convex hull of lake points; (ii) Voronoy cells; (iii) MBRs
constructed upon main towns. (b) Delaunay graph of main towns.

the order of directions with respect to q. Given the i-th nearest point pi, in order to
determine if it is a skyline point, it is sufficient to consider for dominance only its
adjacent points in the circular list sorted by the order of directions. Indeed, based
on θ , these are the only points that may have the same direction of p. If they do
not have the same direction than p (i.e., the angle between each of them and p is
greater than θ), p is a skyline object. Otherwise, p can be discarded because there
are other points previously visited (namely, nearer to q) in the same direction. An
early termination condition, based on the angle between adjacent points, is also
provided, ensuring that all objects visited in the future steps of the algorithms are
dominated by objects visited so far.

Example 8. In order to illustrate skyline query processing, consider the scenario pre-
sented in Section 5.2 and the following spatial skyline query: “Retrieve the main
towns that are at the minimum distance from lakes Garda, Fimon, and S. Croce”.
In the following, we discuss how the three algorithms B2S2, VS2, and ES work.
Figure 5.3(a) shows main towns and lakes, the convex hull of query points (one for
the center of each lake), Voronoy cells, and MBRs constructed upon main towns
(R1 is father of R2, R3, and R4 in the corresponding R-tree). Table 5.7 shows the
distances of each main town/MBR with respect to each considered lake.

B2S2. The various steps of the usage of algorithm B2S2 on the considered query
are presented in Table 5.8. Horizontal lines separate computations performed on
the current top entry of H (in bold), say e. If e is a point and it is not dominated
by any point in S(Q), it is inserted into S(Q) (since it is a skyline point). If e
is an intermediate entry, its entries are visited and, in case they may lead to the

5 Approximate Queries for Spatial Data 111

Table 5.7 Distances between main towns/MBRs and considered lakes. Columns dG, dF , and
dSC contain the distance to the Garda, Fimon, and S.Croce lakes, respectively.

Main Town/MBR dG dF dSC Sum
R2 27 0 88 115
R3 120 55 4 179
R4 89 22 75 395
Vicenza 68 89 8 165
Verona 27 128 43 198
Padona 95 87 27 209
Treviso 124 50 59 233
Belluno 140 11 91 242
Venezia 130 75 61 266
Rovigo 100 123 48 271

Table 5.8 Execution of Algorithm B2S2 on a spatial skyline query. Conditions C1, C2, C3
are evaluated on H.top or on its entries, the corresponding columns point out their truth value
(true (T) or false (F)). C1 ∧ (C2 ∨ C3) has to be satisfied for an entry not to be discarded.

H H.top C1 C2 C3 S(Q)
entries

[R1] T F T /0
[] R2 T F T /0

[R2] R3 T F T /0
[R2,R3] R4 T F T /0

[R2,R3,R4] T F T /0
[R3,R4] pVerona T F T /0

[R3, pVerona,R4)] pVicenza T F T /0
[pVicenza,R3, pVerona,R4] T T T {pVicenza}

[R3, pVerona,R4] T F T {pVicenza}
[pVerona,R4] pBelluno T F T {pVicenza}

[pVerona, pBelluno,R4] pTreviso T F T {pVicenza}
[pVerona, pTreviso, pBelluno,R4] T F T {pVicenza, pVerona}

[pTreviso, pBelluno,R4] T F T {pVicenza, pVerona, pTreviso}
[pBelluno,R4] T F T {pVicenza, pVerona, pTreviso, pBelluno}

[R4] T F T {pVicenza, pVerona, pTreviso, pBelluno}
[] pPadova T F T {pVicenza, pVerona, pTreviso, pBelluno}

[pPadova] pVenezia T F F {pVicenza, pVerona, pTreviso, pBelluno}
[pPadova] pRovigo T F F {pVicenza, pVerona, pTreviso, pBelluno}
[pPadova] T F T {pVicenza, pVerona, pTreviso, pBelluno, pPadova}

identification of skyline points, (i.e., condition C1∧ (C2∨C3) is satisfied, where
C1, C2, and C3 have been introduced when describing the B2S2 algorithm) they
are inserted in H.

VS2. Under VS2, main towns are visited according to the Delaunay graph, pre-
sented in Figure 5.3(b), starting from a skyline point. Vicenza is certainly a sky-
line point, since it is contained in the convex hull of the query points, therefore it is
inserted into H and in S(Q). Then, Vicenza is removed from H and replaced by its

112 A. Belussi, B. Catania, and S. Migliorini

neighborhood main towns, ordered with respect to the sum of their distances from
vertices of CH(Q), obtaining H = {Verona,Padova,Treviso,Belluno,Rovigo}
(see Table 5.7). The algorithm then de-heaps Verona from H. Since the interior of
its Voronoy cell intersects the boundary of CH(Q), Verona is a skyline point and
it is inserted into S(Q). No other main towns are inserted since its neighbor towns
are already contained in H. Then, Padona is considered. Padova does not satisfy
the sufficient conditions for skyline points; at the same time, its Voronoy cell is
not inside the union of the dominance regions of all the other towns, therefore it
cannot be discarded but it is inserted into HS. Its neighbor main town Venezia is
inserted into H, obtaining H= {Treviso,Belluno,Venezia,Rovigo}. All the towns
have now been inserted into H. Then, Treviso is considered and inserted into S(Q)
since it is a skyline point (the interior of its Voronoy cell intersects the boundary
of CH(Q)). The same situation holds for Belluno. When considering Venezia,
it does not satisfy the sufficient conditions for skyline points; at the same time,
its Voronoy cell is not inside the union of the dominance regions of all the other
towns, therefore it cannot be discarded but it has to be inserted into HS. A sim-
ilar situation holds for Rovigo. Since H has been completely visited, points in
HS are taken into account and their dominance with respect to points in S(Q) is
checked. It is simple to show that Belluno is not dominated by points in S(Q) and
it can be inserted into S(Q) while Venezia is dominated by Treviso and Rovigo is
dominated by Vicenza.

ES. Under algorithm ES, main towns are ordered in an increasing way with re-
spect to their distance to a vertex of CH(Q), for example, Santa Croce lake.
We obtain the list: L = [Vicenza(8),Padova(27),Verona(43),Rovigo(48),
Treviso(59),Venezia(61),Belluno(91)]. It is sufficient to check each main town
in the order of the list for dominance with respect to towns that precede it in the
list. By Property 1, Vicenza is a skyline point. Padova, Verona, Treviso, and Bel-
luno are skyline points since they are not dominated by points preceding them in
the list. Rovigo is not a skyline point since it is dominated by Vicenza; Venezia
is not a skyline point since it is dominated by Treviso. ♦

5.6 Approximate Query Processing

Approximate query processing refers to all the techniques for executing an intrin-
sically expensive query by using ad hoc query processing algorithms that automat-
ically apply the minimum amount of relaxation based on the available data and
resources, in order to efficiently compute a non-empty result close to the user re-
quest. These techniques are applied in those situations where limited resources do
not allow to produce an exact answer in a short time or where data can be quite
heterogeneous and may contain errors.

As pointed out in Section 5.3, independently on the considered data model, ApQP
approaches can be classified into four groups, corresponding to: (i) relaxation of ex-
isting query processing algorithms; (ii) definition of new algorithms over the input

5 Approximate Queries for Spatial Data 113

datasets; (iii) usage of heuristics in exploring the solution space; (iv) approxima-
tion of the input datasets and design of ad hoc execution algorithms for the new
data. As a result, differently from the techniques presented in Sections 5.4 and 5.5,
ApQP techniques proposed so far are very heterogeneous and it is not possible to
find additional common aspects beside those leading to the proposed first-level clas-
sification. In order to give the reader a feeling of how such algorithms look like, in
the following we present three specific approaches:

• ApQP techniques for the multiway spatial join operation, relying on heuristics
in exploring the search space in order to more quickly reach a good approximate
result [39] (approach (iii));

• ApQP techniques for kNN selection and join queries, based on the relaxation of
already existing algorithms for NN query execution [16, 17, 20] (approach (i));

• ApQP techniques based on the approximation of input data (approach (iv) and
(ii)); as an example, we illustrate the approach presented in [3, 62], approximat-
ing each spatial object with a raster signature.

5.6.1 Approximate Algorithms for Multiway Spatial Join

A multiway spatial join is a sequence of join operations involving three or more
datasets where the join condition relies on a spatial predicate. Formally, a multiway
spatial join can be defined as follows: given n datasets D1, ...,Dn and m join con-
ditions Q = {Qi, j}, referring to datasets Di and D j, the multiway spatial join ��Q

(D1, ...,Dn) is the set of n-tuples {(t1,w, ..., ti,x, ..., t j,y, ..., tn,z)|∀i, j.ti,x ∈Di, t j,y ∈D j,
and ti,x Qi, j t j,y}. An example of a three-way spatial join, referring to our running
example presented Section 5.2, is the following: “Find all the triples (m, l, r) where
the main town territory m contains the lake l and also crosses the river r”.

Several approaches have been proposed for the processing of the multiway spa-
tial join in an exact way. However, as far as we know, only few approaches exist for
the approximate version of this problem, whose relevance is motivated by the high
computational complexity of multiway spatial join, which is in general exponential.
One of them has been proposed in [39] and considers only intersects as query pred-
icate (two spatial objects satisfy the intersects relation if they are not disjoint). As
shown in [36], a multiway spatial join operation can return an approximate result
by introducing the concept of inconsistency degree of a tuple, corresponding to the
number of join conditions that the tuple does not satisfy. When the multiway spatial
join is executed in a precise way, only the tuples with zero inconsistency degree are
returned as result. This behavior can be approximated by returning also tuples with
low inconsistency degree, thus reducing the number of join conditions that must be
satisfied.

Example 9. Consider the data shown in Figure 5.4, where main towns are repre-
sented as polygons, and the query introduced above. The inconsistency degree of
tuple 〈Mantova,Superiore lake,Mincio〉 is 0 since Mantova contains Superiore
lake and crosses the Mincio river. On the other hand, the inconsistency degree of

114 A. Belussi, B. Catania, and S. Migliorini

Fig. 5.4 Example of data that produce tuple with different inconsistency degrees.

tuple 〈Verona,Garda lake,Adige〉 is 1 since Verona crosses the Adige River but
does not contain the Garda lake; tuple 〈Vicenza,Garda lake,Brenta〉 has 2 as in-
consistency degree since Vicenza neither contains the Garda lake nor crosses the
Brenta river. ♦

Concerning the implementation of approximate multiway spatial join algorithms,
the authors propose three different approaches, Indexed Local Search, Guided In-
dexed Local Search, and Spatial Evolutionary Algorithm, illustrated in the follow-
ing. They all represent the search space as a graph where each solution (a tuple t of
n geometries) corresponds to a node having some inconsistency degree with respect
to the join condition. The number of nodes in the graph depends on the datasets
cardinality and is equal to: |D1| × ...× |Dn| if the join involves n datasets. Edges
connect nodes that are at distance 1, i.e., two connected nodes represent tuples that
differ only in one geometry. Thus, each node is connected to n other nodes.

Indexed Local Search (ILS): ILS searches for a local maximum in the graph start-
ing from a random solution called seed. A local maximum represents a node (i.e., a
tuple) that has lower inconsistency degree with respect to all its neighbors; when a
solution is found, the algorithm restarts with a different seed until a fixed timeout is
reached. The technique uses R*-trees to improve performance.

Guided Indexed Local Search (GILS): GILS improves ILS by introducing some
“memory” mechanism in order to avoid that the algorithm may find the same lo-
cal minimum more times; in particular, GILS keeps a list of geometries that have
participated to some already found local maximum and it assigns them a penalty.
Given a new local maximum, the penalty is assigned to those geometries with the
minimum penalty so far in order to avoid over-punishing. The penalty is then used

5 Approximate Queries for Spatial Data 115

for computing a new inconsistency degree, called effective inconsistency degree,
which is obtained by adding the penalties to the actual inconsistency degree.

Spatial Evolutionary Algorithm (SEA): the evolutionary approach is based on the
concept of natural mutation and survival of the fittest individuals. After instantiating
an initial population of solutions P, three genetic operations are applied: selection,
crossover, and mutation. The first operation evaluates the similarity of the solutions
in P (evaluation), then each solution s is compared with a set of t random solutions
{s1, ...,st} and s is replaced with the best among {s,s1, ...,st} (tournament). The sec-
ond operation applies a combination among the available solutions in P (crossover
mechanism). In particular, pairs of solutions (s1,s2) are selected randomly from P,
then a certain number of geometries are preserved (initially only one, afterward an
increasing number) and the other ones are mutually exchanged. Finally, the muta-
tion operation is applied to each solution s ∈ P; it then modifies s with the same
algorithm used for ILS. These operations are applied in sequence and iteratively
until a timeout is reached.

Experiments presented in [39] show that SEA significantly outperforms both ILS
and GILS with respect to both performance and accuracy of the obtained result.

5.6.2 Approximate Algorithms for Distance-Based Queries

Distance-based queries represent another relevant group of spatial operations for
which approximate algorithms have been proposed. Besides NN selection and join,
distance-based queries include, among the others, kNN selection and kNN join (a
complete list can be found in [19]). KNN queries extend NN selection and join,
presented in Section 5.2, to return the k objects closest to the query object (kNN
selection) or, given two datasets, for each object in the first dataset, its k nearest
neighbors in the second dataset (kNN join) are detected. While algorithms for kNN
queries guarantee good performance for low dimensional spaces, their performance
degrades as the number of dimensions increases.

According to [19], existing approximate solutions for executing kNN selection
and join belong to two distinct groups. Techniques in the first group modify tradi-
tional kNN algorithms by reducing the search space through the usage of ad hoc
pruning conditions and stopping criteria. Thus, they belong to group (i) according
to our classification. The second group coincides with group (iii) according to the
proposed classification. While no specific heuristic-based proposals for distance-
based queries have been presented, as discussed in [19], typical algorithm schemes
proposed for other operators (e.g., multiway spatial join [39]) can however be easily
adapted to the purpose.

Specific approaches belonging to the first group have been presented in [20], for
distance-based selection and join, and in [17] for distance-based multiway spatial
join. They all assume that spatial data are indexed through a tree of the R-tree fam-
ily. Then, a typical R-tree based branch-and-bound visit (like the ones described in
Section 5.4.2) is modified by reducing the search space as follows:

116 A. Belussi, B. Catania, and S. Migliorini

• A depth-first traversal is used, thus giving higher priority to the closest R-tree
nodes and updating the pruning distance very quickly. In this way, acceptable
approximate solutions are usually available when the processing of the algorithm
is stopped before its normal termination, as occurs in the approximate case.

• Some heuristics are introduced in the pruning step, in order to avoid the visit
of some parts of the tree if it is highly probable that they will not contain any
answer.

Various pruning conditions have been proposed. Among them, we recall the
following:

• α-allowance methods: the pruning heuristic is strengthen by discarding an (inter-
mediate or leaf) entry x when MINMINDIST (x,y) + α(z) > z. Here,
MINMINDIST (x,y) is the function that computes the distance between x and the
query point (for selection) or another dataset point y (for join); z is the distance
of the k-th closest point (or pair) found so far. α(z) may return a non negative
constant β or γ× z where γ is a constant in the interval [0,1].

• N-consider: the internal node visiting step is modified by introducing a maximal
percentage N (0 ≤ N ≤ 1) of items to be considered inside each node. All items
above the N percentage are discarded and node visit terminated.

• M-consider: the algorithm terminates when a specified percentage M (0≤M≤ 1)
over the total number of items examined by the exact algorithm is reached. Of
course the number of items examined by the exact solution cannot be computed,
but it is estimated on the basis of the dataset cardinality, distribution and dimen-
sionality and stored in a look-up table.

Experimental results show that the N-consider method exhibits the best performance
and it is recommended when the users are more interested in a good response time at
the price of a lower accuracy; α-allowance guarantees instead an opposite behavior.

Example 10. In order to illustrate the effect of the α-allowance method in the gen-
eration of approximate results, consider the kNN selection query that, given a lake
(specifically the Corlo lake) finds the kNN main towns (assuming they are repre-
sented as polygons) of Northern Italy (see Figure 5.5). In the example the applied
approximation function is α(z) = 0.1∗z. The α-allowance method results in pruning
subtree R2 since it satisfies the condition MINMINDIST (R2,Corlo lake)+α(z) >
z. Notice that, without introducing the α(z) function, the subtree R2 would have
been considered in the execution of the kNN selection, since it does not satisfy the
condition MINMINDIST (R2,Corlo lake) > z. ♦

5.6.3 Algorithms Based on Approximate Spatial Data

The introduction of an approximate representation of the exact geometries is a well-
known approach, typically used to filter out non-interesting data in the processing
of any spatial query. A refinement step then returns the precise result, identifying
all false hits generated by the filter step, at the price of executing potentially ex-
pensive spatial operations over the precise geometry. As an example, R-trees and

5 Approximate Queries for Spatial Data 117

Fig. 5.5 Example of application of the α-allowance methods to the execution of a kNN se-
lection query that retrieves the k closest main towns (considered as polygons).

their variants use the Minimum Bounding Rectangle (MBR) as an approximation
of data geometry [27]. A more efficient but approximate solution to the approach
described above is to consider the result generated by the filtering step as an “ap-
proximate query result”. In case of R-trees, such result is complete (i.e., all results
of the precise queries are returned) but not sound (some false hits can be returned).

The MBR is a coarse representation of a geometry and this leads to a low ac-
curacy of the approximate query result. However, other spatial data approxima-
tion have been proposed that lead to more efficient approximate solutions. One of
such approaches approximate each geometry value with a 4-color raster signature
(4CRS) [3, 62]. 4CRS is a compact description of a geometry shape and extension
composed of a small bit-map of four colors upon a grid of cells. In particular, each
cell has a color representing the percentage of polygon area within the cell: Empty
(0% of polygon area in the cell), Weak (50% or less of polygon area in the cell),
Strong (more than 50% of polygon area in the cell and less than 100%) and Full
(the polygon covers the cell). The grid scale can be changed in order to obtain a
finer or coarser representation of the polygon geometry.

Specific algorithms have been proposed to execute spatial queries over 4CRSs,
including: (i) spatial operators that return some kind of geometry measure, like area,
distance, diameter, length, perimeter, number of components; (ii) spatial selection
and join with respect to various predicates (equal, different, disjoint, inside, area
disjoint, edge disjoint, edge inside, vertex inside, intersects, meet, adjacent, border
in common); (iii) set operators, like intersection, minus and other operators return-
ing geometries like common border, vertices, contour, interior; (iv) other operations

118 A. Belussi, B. Catania, and S. Migliorini

Fig. 5.6 Example of 4CRS representation of real data (Garda lake).

on object sets, like sum, closed, decompose, overlay, fusion. The idea is always to
estimate the operation result, when applied to the exact geometries, by means of a
simplified algorithm applied to the corresponding 4CRSs.

Each spatial predicate is approximated by a function that returns a value between
0 and 1 that indicates the true percentage of the spatial predicate. The function be-
havior depends on the predicate type. As an example, for checking equality, the cells
of the object MBRs are compared and a value between 0 and 1, called affinity de-
gree, is assigned to each pair of corresponding cells. The affinity degree is 1 when
the cells are both Empty or both Full; in all the other cases, it is equal to the expected
intersection area: for instance, the pair Weak ×Weak contributes with 0.0625, while
the pair Strong × Strong with 0.5625. Of course, if the type of two corresponding
cells is different, the objects are not equal. As example of 4CRS, Figure 5.6 shows
the 4CRS of the Garda lake.

Experimental results show that the approximate algorithms are from 3.5 to 14
times faster than the exact processing in response time while the response error is at
most the 3% of the precise result.

5.7 Towards Qualitative Approximation Techniques for Spatial
Data

As we have seen in the previous sections, most of the approaches proposed for
preference-based spatial queries rely on the usage of some ranking function based on
quantitative, i.e., metric (distance-based), information. In top-k queries, such func-
tion is used for ranking the result, in skyline queries, it is used to define dominance.
However, as pointed out in Table 5.1, only few approaches approximate queries
taking into account qualitative information, for example represented by topological
and cardinal spatial relations. Qualitative spatial relations compare pairs of spatial

5 Approximate Queries for Spatial Data 119

objects based on their mutual positions in the space and are frequently used to spec-
ify spatial, not approximate, queries in real applications (see Section 5.2).

Based on this consideration, in the following, for each type of preference-based
query described in this chapter (namely, top-k and skyline), we present a new ver-
sion of the query that, instead of using some kind of metric distance, is based on
spatial qualitative relations. Moreover, we discuss how the query processing algo-
rithms already defined for top-k and skyline queries based on metric distance can
be extended to cope with them. In order to do that, we first introduce an approach
for dealing with qualitative spatial relations in a quantitative way. For the sake of
simplicity, we focus on spatial selection but the provided definitions can be easily
extended to spatial join or other spatial operations.

5.7.1 From Qualitative to Quantitative Spatial Relations

The simplest way to quantify the difference between two qualitative spatial relations
is to rely on a distance function, in order to convert the qualitative difference into
a number. Given a set of qualitative spatial relations G , for example topological
relations, a distance function DG applied on two spatial relations θ1 and θ2 in G
returns a value between 0 and 1 quantifying the difference between θ1 and θ2. A
value equal to zero means that θ1 and θ2 coincide.

In the literature, several distance functions for topological and cardinal relations
have been proposed. Concerning topological relationships, some initial proposals
deal with conceptual neighbor graphs for topological relations [21], which define
a partial order among specific sets of topological relations (e.g., surface-surface
relations).

In [11], topology distance is used to evaluate similarity of spatial scenes, by tak-
ing into account also direction and distance relations. In [23], topology distance is
used to define a model (snapshot model) to compare two different topological rela-
tions between lines and surfaces. In all the papers cited above, similarity is computed
only between pairs of objects with the same dimension. Multiple object representa-
tions are not considered at all. More recent proposals extend the distance functions
proposed in [21] (only for surfaces) and in [23] (for lines and surfaces) to geometry
type-independent set of topological or cardinal relations, computing a value between
0 and 1 based on the matrix representation of the considered relations [6, 7, 44].

Distance functions for cardinal relations have been proposed in [7, 25]. In [25],
two distance functions for cardinal relations have been defined. The first is defined
for single-tile relations, i.e., relations corresponding to intersections of the target
object with a single-tile (see Section 5.2), and it corresponds to the minimum length
of the paths connecting the two directions in a conceptual graph. Such graph con-
tains a node for each tile and one edge between pairs of tiles sharing at least one
border. The second is defined for multi-tile relations, i.e., relations corresponding to
intersections of the target object with multiple tiles, and it considers the percentage
of target object belonging to each tile. The main problem of this second approach

120 A. Belussi, B. Catania, and S. Migliorini

is that it does not rely on the model used for defining cardinal relations. Another
distance function overcoming this problem has been proposed in [7].

Based on the chosen distance function DG , it is possible to define a distance
function dθ

G between pairs of spatial objects, with respect to a query relation θ ∈ G ,
as follows.

Definition 8 (G -based spatial distance). Let G be a set of qualitative spatial rela-
tions. Let θ ∈ G . Let f and g be two spatial objects such that f θ ′g holds, θ ′ ∈ G .
Let DG be a distance function for G . The G -based spatial distance between f and g,
based on DG with respect to θ , is defined as follows: dθ

G (f ,g) = DG (θ ,θ ′).10 �

Example 11. Consider the set of topological relations defined for surfaces G =
{disjoint(d), touches(t),overlaps(o),within(i),contains(c),equals(e),coveredBy(b),
covers(v)} where coveredBy (covers) is like within (contains) with touching bound-
aries, while within and contains require non touching boundaries.

Let DG (θ1,θ2) be defined upon the conceptual neighbor graph, shown in Fig-
ure 5.7 and taken from [21], as the sum of the weight of the edges composing
the shortest path between θ1 and θ2 in the graph. For example, DG (d,d) = 0,
DG (d, t) = 1 and DG (d,e) = 10.

The G -based spatial distance between f and g, based on DG defined as above
with respect to disjoint, namely, dd

G (f ,g), is equal to zero if f and g are disjoint,
otherwise it has a value that measures the similarity between disjoint and the existing
relation θ ′ between f and g. For example, if f is contained into g, then dd

G (f ,g) =
DG (d, i) = 8. ♦

In general, a G -based spatial distance is not symmetric and the triangular inequality
does not hold for it. Additionally, there is no relationship between the space, the
objects which are embedded in, and the values returned by the distance function. As
a consequence, we cannot exploit these concepts for specializing or optimizing the
processing algorithms that have been presented in Sections 5.4 and 5.5, as it will be
explained in Section 5.7.2.

Property 2. A G -based spatial distance is in general not symmetric and the triangu-
lar inequality does not hold for it.

Proof. Consider the set of topological relations and the G -based spatial distance
function presented in Example 11. Such function is not symmetric. Indeed, given
f and g where f contains g, then dc

G (f ,g) = 0, while dc
G (g, f) = 8, since g in f . In

order to show that the triangular inequality is not satisfied, consider two objects f
and g such that f in g and, as consequence, dt

G (f ,g) = 7. Let now consider a third
object h such that f disjoint h and h disjoint g, then dt

G (f ,h) = 1 and dt
G (h,g) = 1,

thus the sum of the two distances is 2 that is less then 7 and the triangular inequality
is not satisfied. �

10 In the following, we omit the reference to DG and θ in presenting a G -based spatial dis-
tance function when they are clear from the context.

5 Approximate Queries for Spatial Data 121

Fig. 5.7 Conceptual graph for topological relationships among surfaces [21].

5.7.2 Spatial Top-k Queries Based on Qualitative Relations

The qualitative spatial distance presented in Section 5.7.1 can be used to define top-
k queries based on relations in G . Examples of queries we may want to answer, with
respect to the scenario introduced in Section 5.2, are the following:

• Assuming that main towns and rivers are both represented as polygons, find the
top-100 main towns that overlap river Piave, using a topological distance func-
tion do

G (o,Piave) to quantify the score between each object o and river Piave
with respect to overlaps. In the result list, we expect municipalities that effec-
tively overlap Piave be listed before, followed by municipalities that satisfy a
topological relation close to overlaps, in the order of their score, according to
the considered distance function (e.g., those touching or covering or are covered
by the river, according to the distance function induced by the graph presented in
Figure 5.7).

• Find the top-2 municipalities in Veneto that are located on the South of Vicenza,
using a cardinal distance function dSouth

G (o,Vicenza) to quantify the score be-
tween each object o and Vicenza with respect to South. In the result list, we
expect Rovigo be listed first, since it is located on the South of Vicenza, followed
by one between Verona and Padova, which represent points that are on the South
or on the West and East of Vicenza, respectively.

The previous queries can be defined as top-k queries with respect to the ranking
function introduced by the following definition.

Definition 9 (G -based ranking function). Let f be a spatial object and q a query
object. Let dθ

G be a G -based spatial distance. A G -based ranking function, on dθ
G ,

can be defined as follows:

τθ
q (f) = F (dθ

G (f ,q))

where F (...) is a function over distance values. �

122 A. Belussi, B. Catania, and S. Migliorini

The query examples presented above can be interpreted as top-k queries based on a
G -based ranking function, defined upon the G -based spatial distance introduced in
Section 5.7.1, where F (...) is the identity function. Other ranking functions may for
example weight a G -based spatial distance with respect to other spatial information,
e.g., Euclidean distance between objects or non-spatial attributes.

We notice that, when F (...) is the identity function, the proposed ranking func-
tion just requires the G -based distance function to compute the score. This means
that top-k algorithms introduced in Section 5.4 can be easily extended to compute
top-k queries based on the considered G -based ranking function. More precisely,
in case of spatial selection and algorithm scheme BB2 (see Subsection 5.4.2), the
visit of an index node is discarded if it can be determined that the subtree rooted by
the node does not contain any object satisfying a predicate, which is closer to the
query predicate than top-k solutions found so far. To this aim, as discussed in [8],
each entry can be associated with a key value [dmin,dmax]. Such interval is defined
by a lower bound for the minimum distance and an upper bound for the maximum
distance between the query relation and the relations satisfied by the query object
and the objects contained in the subtree rooted by the entry. The distance range can
be easily computed relying on the notion of compatibility for topological relations
in an R-tree, first presented in [42]. The basic idea behind compatibility is that the
relationship between any object indexed by a given entry e and the query object O
cannot be arbitrary but must be compatible with the relationship existing between
the MBR associated with e and the MBR of O.

Of course, the solution just described works if F (...) is the identity function.
Other functions may require the usage of additional data structures and the design
of new ad hoc query processing algorithms.

Example 12. Consider the set of topological relations and the G -based spatial dis-
tance function presented in Example 11 as well as the set of main towns in Veneto,
represented as polygons, indexed as described in Example 4 and shown in Fig-
ure 5.2. Suppose you want to compute the top-2 main towns which overlap the Piave
river (see Figure 5.2). The algorithm proceeds as described in Subsection 5.4.2.
Consider the entry e, associated with the MBR R2. key(e) corresponds the interval
[dmin,dmax], where dmin is a lower bound for the minimum distance and dmax is
an upper bound for the maximum distance between the relations satisfied by descen-
dants of R2 (i.e, R7 and R8) with respect to the MBR of Piave and the query relation
overlaps. In order to compute such interval, without accessing the subtree rooted by
R2, first the topological relation satisfied by R2 and the MBR of the query object is
computed. In this case, it is dis joint. Then, based on compatibility relations, the set
of relations that descendants of R2 can satisfy with respect to the query object are
deduced according to the rules provided in [42] and minimum and maximum dis-
tances are computed. In this case, it is simple to show that the only relation which is
compatible with dis joint is dis joint itself, therefore the interval will be set to [4,4],
since DG (d,o) = 4 according to the distance function presented in Example 11. On
the other hand, when considering R3, R3 and the MBR of the query object overlap.
Based on [42], relations which are compatible with overlaps are dis joint, touches,
within, coveredBy, overlaps, whose distances with respect to overlaps are 4, 3, 4,
3, 0, respectively. Thus, key(e) is set to [0,4]. ♦

5 Approximate Queries for Spatial Data 123

5.7.3 Spatial Skyline Queries Based on Qualitative Relations

The qualitative spatial distance presented in Section 5.7.1 can be used to define
spatial skyline queries based on relations in G . Examples of queries we may want
to answer, with respect to the scenario introduced in Section 5.2, are the following:

• Find the municipalities that overlap lake Garda and are crossed by river Adige.
We expect to find all municipalities m that either satisfy the given conditions
or, if no municipality satisfies both of them, those that satisfy in the best way
some similar conditions, according to two topological spatial distance functions
do

G and dr
G .

• Find the provinces located on the South of Verona, using a cardinal distance
function dSouth

G to quantify the score between each province o and Verona with
respect to South. No province precisely satisfies this condition, however, Rovigo
is the best approximation since it is located on South-East with respect to Verona.

The previous queries can be defined as spatial skyline queries, as in Section 5.5,
relying on the following notion of dominance.

Definition 10 (G -based Spatial Dominance). Let P be a set of spatial objects, Q =
{q1, ...,qn} a list of spatial query objects, and Θ = {θ1, ...,θn} ⊆ G a set of query
relations (thus, the query predicate is: pθ1q1∧ ...∧ pθnqn where p ∈ P). Let dθ

G be a
G -based spatial distance. A spatial object p ∈ P spatially dominates another object
p′ ∈ P if and only if:

• dθi
G (p,qi)≤ dθi

G (p′,qi) for all qi ∈Q, θi ∈Θ , and

• d
θ j
G (p,q j)< d

θ j
G (p′,q j) for some q j ∈ Q and θ j ∈Θ . �

The G -based Spatial Skyline can be defined as the subset of the input objects that
are not G -spatially dominated by any other object in the input dataset, with respect
to the query objects, according to a given G -based spatial distance.

It is simple to show that also G -based spatial skyline queries, similarly to spatial
skyline queries, can be defined as a special case of dynamic skyline queries, intro-
duced in [41]. On the other hand, differently from spatial skyline queries, there is no
more a clear relation between the space of input and query objects and the domain
of attributes to be considered for the skyline computation. Additionally, as discussed
in Section 5.7.1, a G -based distance function is not necessarily symmetric and does
not necessarily satisfy the triangular inequality. As a consequence, while techniques
proposed in [41] can still be used for processing G -based spatial skyline queries,
specific techniques proposed for spatial skyline queries cannot.

Future work is therefore needed in order to define optimized query processing
techniques for G -based spatial skyline queries. Some preliminary work in this di-
rection has been proposed in [8], where a best-fit query has been introduced, rep-
resenting a G -based spatial skyline with respect to a single object. The proposed
algorithm explores the data space using an R-tree. Since just one query object is
considered, the dominance check corresponds to verify a disequality between two
distances. Pruning is performed using the [dmin,dmax] key value discussed in Sec-
tion 5.7.2. However, the proposed approach cannot be trivially extended to cope with

124 A. Belussi, B. Catania, and S. Migliorini

more than one query object; new processing solutions have therefore to be designed
in order to cope with this more general problem.

5.8 Conclusion and Open Issues

Approximation techniques for spatial data have recently moved from data represen-
tation to query result issues. As a consequence, query-based approximation tech-
niques previously defined for traditional data have been extended to cope with the
spatial domain. In this chapter, we have classified and surveyed query-based ap-
proximation techniques for spatial data. Three main groups of approaches have
been identified: query rewriting, preference-based queries, and approximate query
processing. Most existing approaches for spatial data belong to the last two cat-
egories. We have therefore presented in details and further classified preference-
based (namely, top-k and skyline queries) and approximate query processing
approaches.

Based on the reported analysis, summarized in Table 5.1, two main considera-
tions follow. First of all, most of the proposed approaches for spatial approximate
queries rely on the usage of quantitative, i.e., distance-based information. On the
other hand, only few of them approximate queries taking into account qualitative
information, for example by considering topological and cardinal relations. Based
on this consideration, we have provided new types of queries relying on qualitative
relations and discussed how the query processing algorithms already defined for
metric relations can be extended to cope with them. Future work is however needed
to provide optimized approaches for processing such new queries in an efficient and
effective way. As a second consideration, as far as we know, no approaches have
been proposed so far for shrinking the result of spatial queries, in order to solve
the many answer problem. An additional relevant issue to be investigated therefore
concerns how solutions already proposed for non-spatial data, like those presented
in [33, 37], can be extended to cope with the spatial domain.

References

1. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate
Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)

2. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query
Results. In: CIDR (2003)

3. Azevedo, L.G., Zimbrão, G., de Souza, J.M.: Approximate Query Processing in Spatial
Databases Using Raster Signatures. In: GeoInfo, pp. 53–72 (2006)

4. Babcock, B., Chaudhuri, S., Das, G.: Dynamic Sample Selection for Approximate Query
Processing. In: SIGMOD Conference, pp. 539–550 (2003)

5. Bakalov, P., Hadjieleftheriou, M., Tsotras, V.J.: Time Relaxed Spatiotemporal Trajectory
Joins. In: GIS, pp. 182–191 (2005)

6. Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards Similarity-
Based Topological Query Languages. In: Grust, T., et al. (eds.) EDBT 2006. LNCS,
vol. 4254, pp. 675–686. Springer, Heidelberg (2006)

5 Approximate Queries for Spatial Data 125

7. Belussi, A., Catania, B., Podestà, P.: Using Qualitative Information in Query Processing
over Multiresolution Maps. In: Spatial Data on the Web: Modeling and Management, pp.
159–186. Springer, Heidelberg (2007)

8. Belussi, A., Catania, B., Podestà, P.: Topological Operators: a Relaxed Query Processing
Approach. GeoInformatica 16(1), 67–110 (2012)

9. Berchtold, S., Böhm, C., Keim, D.A., Kriegel, H.P.: A Cost Model For Nearest Neighbor
Search in High-Dimensional Data Space. In: PODS, pp. 78–86 (1997)

10. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–430
(2001)

11. Bruns, H.T., Egenhofer, M.J.: Similarity of Spatial Scenes. In: 7th Symposium on Spatial
Data Handling, pp. 31–42 (1996)

12. Butenuth, M., Gösseln, G.V.: Integration of Heterogeneous Geospatial Data in a
Federated Database. ISPRS Journal of Photogrammetry and Remote Sensing 62(5),
328–346 (2007), Theme Issue: Distributed Geoinformatics - From Sensors to Systems,
http://www.sciencedirect.com/science/article/
pii/S0924271607000275, doi:10.1016/j.isprsjprs.2007.04.003

13. Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed Ar-
chitectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management
1. Studies in Computational Intelligence, vol. 331, pp. 171–212. Springer, Heidelberg
(2011)

14. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Process-
ing using Wavelets. VLDB J 10(2-3), 199–223 (2001)

15. Clementini, E., Felice, P.D., van Oosterom, P.: A Small Set of Formal Topological Rela-
tionships Suitable for End-User Interaction. In: SSD, pp. 277–295 (1993)

16. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Closest Pair Queries
in Spatial Databases. In: SIGMOD Conference, pp. 189–200 (2000)

17. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Distance Join
Queries of Multiple Inputs in Spatial Databases. In: Kalinichenko, L.A., Manthey, R.,
Thalheim, B., Wloka, U. (eds.) ADBIS 2003. LNCS, vol. 2798, pp. 323–338. Springer,
Heidelberg (2003)

18. Corral, A., Manolopoulos, Y., Theodoridis, Y., Vassilakopoulos, M.: Multi-Way Distance
Join Queries in Spatial Databases. Geoinformatica 8, 373–402 (2004)

19. Corral, A., Vassilakopoulos, M.: Approximate Computation of Distance-Based Queries.
In: Spatial Databases, pp. 130–154 (2005)

20. Corral, A., Vassilakopoulos, M.: On Approximate Algorithms for Distance-Based
Queries using R-trees. Comput. J. 48(2), 220–238 (2005)

21. Egenhofer, M.J., Al-Taha, K.K.: Reasoning about Gradual Changes of Topological
Relationships. In: Spatio-Temporal Reasoning, pp. 196–219 (1992)

22. Egenhofer, M.J., Franzosa, R.D.: Point Set Topological Relations. Int. Journal of
Geographical Information Systems 5, 161–174 (1991)

23. Egenhofer, M.J., Mark, D.M.: Modeling Conceptual Neighborhoods of Topological
Line-Region Relations. Int. Journal of Geographical Information Systems 9(5), 555–565
(1995)

24. Goodchild, M.F.: Measurement-based GIS. In: Shi, W., Fisher, P., Goodchild, M. (eds.)
Spatial Data Quality, pp. 5–17. Taylor and Francis (2002)

25. Goyal, R.K., Egenhofer, M.J.: Consistent Queries over Cardinal Directions across Dif-
ferent Levels of Detail. In: DEXA Workshop, pp. 876–880 (2000)

26. Guo, X., Ishikawa, Y., Gao, Y.: Direction-Based Spatial Skylines. In: MobiDE, pp. 73–80
(2010)

http://www.sciencedirect.com/science/article/pii/S0924271607000275
http://www.sciencedirect.com/science/article/pii/S0924271607000275

126 A. Belussi, B. Catania, and S. Migliorini

27. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD
Conference, pp. 47–57 (1984)

28. Hjaltason, G.R., Samet, H.: Distance Browsing in Spatial Databases. ACM Trans.
Database Syst. 24(2), 265–318 (1999)

29. Hsueh, Y.-L., Zimmermann, R., Yang, M.-H.: Approximate Continuous K Nearest
Neighbor Queries for Continuous Moving Objects with Pre-Defined Paths. In: Akoka,
J., Liddle, S.W., Song, I.-Y., Bertolotto, M., Comyn-Wattiau, I., van den Heuvel, W.-J.,
Kolp, M., Trujillo, J., Kop, C., Mayr, H.C. (eds.) ER Workshops 2005. LNCS, vol. 3770,
pp. 270–279. Springer, Heidelberg (2005)

30. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques
in Relational Database Systems. ACM Comput. Surv. 40(4), 11:1–11:58 (2008)

31. Inc., O.G.C.: OpenGIS Implementation Standard for Geographic information - Simple
feature access - Part 1: Common architecture. OpenGIS Implementation Standard (2010)

32. Jhingran, A.: Enterprise Information Mashups: Integrating Information, Simply. In:
VLDB, pp. 3–4 (2006)

33. Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries
in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS,
vol. 2973, pp. 594–605. Springer, Heidelberg (2004)

34. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm for
Skyline Queries. In: VLDB, pp. 275–286 (2002)

35. Lee, D.: Query Relaxation for XML Model. Ph.D. thesis. University of California (2002)
36. Mamoulis, N., Papadias, D.: Multiway Spatial Joins. ACM Trans. Database Syst. 26(4),

424–475 (2001)
37. Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)
38. Navratil, G., Franz, M., Pontikakis, E.: Measurement-Based GIS Revisited. In: 7th AG-

ILE Conference on Geographic Information Science, pp. 771–775 (2004)
39. Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in

Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino,
E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer,
Heidelberg (2002)

40. Papadias, D., Kalnis, P., Zhang, J., Tao, Y.: Efficient OLAP Operations in Spatial Data
Warehouses. In: Jensen, C.S., Schneider, M., Seeger, B., Tsotras, V.J. (eds.) SSTD 2001.
LNCS, vol. 2121, pp. 443–459. Springer, Heidelberg (2001)

41. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database
Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

42. Papadias, D., Theodoridis, Y., Sellis, T.K., Egenhofer, M.J.: Topological Relations in the
World of Minimum Bounding Rectangles: A Study with R-trees. In: SIGMOD Confer-
ence, pp. 92–103 (1995)

43. Peltzer, J.B., Teredesai, A., Reinard, G.: AQUAGP: Approximate QUery Answers Using
Genetic Programming. In: Collet, P., Tomassini, M., Ebner, M., Gustafson, S., Ekárt, A.
(eds.) EuroGP 2006. LNCS, vol. 3905, pp. 49–60. Springer, Heidelberg (2006)

44. Podestà, P.: Query Processing and Analysis of Multi-resolution Spatial Data in Dis-
tributed Architecture. Ph.D. thesis. University of Genoa, Italy (2010)

45. Radwan, M., Alvarez, L., Onchaga, R., Morales, J.: The Changing Role of the Geo-
Data Infrastructure: from a Data Delivery Network to a Virtual Enterprise Supporting
Complex Services. In: ISPRS 2004 Photogrammetry and Remote Sensing, pp. 194–199
(2004)

46. Rigaux, P., Scholl, M., Voisard, A.: Spatial Databases - with Applications to GIS. Else-
vier (2002)

5 Approximate Queries for Spatial Data 127

47. Rote, G.: Computing the Minimum Hausdorff Distance Between Two Point Sets on a
Line Under Translation. Inf. Process. Lett. 38(3), 123–127 (1991)

48. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest Neighbor Queries. In: SIGMOD
Conference, pp. 71–79 (1995)

49. Shan, J., Zhang, D., Salzberg, B.: On Spatial-Range Closest-Pair Query. In: SSTD,
pp. 252–269 (2003)

50. Sharifzadeh, M., Shahabi, C.: The Spatial Skyline Queries. In: VLDB, pp. 751–762
(2006)

51. Sharifzadeh, M., Shahabi, C., Kazemi, L.: Processing Spatial Skyline Queries in both
Vector Spaces and Spatial Network Databases. ACM Trans. Database Syst. 34(3), 14:1–
14:45 (2009)

52. Silva, Y.N., Aref, W.G., Ali, M.H.: The Similarity Join Database Operator. In: ICDE, pp.
892–903 (2010)

53. Skiadopoulos, S., Giannoukos, C., Sarkas, N., Vassiliadis, P., Sellis, T.K., Koubarakis,
M.: Computing and Managing Cardinal Direction Relations. IEEE Trans. Knowl. Data
Eng. 17(12), 1610–1623 (2005)

54. Son, W., Lee, M.-W., Ahn, H.-K., Hwang, S.-w.: Spatial Skyline Queries: An Efficient
Geometric Algorithm. In: Mamoulis, N., Seidl, T., Pedersen, T.B., Torp, K., Assent, I.
(eds.) SSTD 2009. LNCS, vol. 5644, pp. 247–264. Springer, Heidelberg (2009)

55. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB,
pp. 301–310 (2001)

56. Tian, Y., Lee, K.C.K., Lee, W.C.: Finding Skyline Paths in Road Networks. In: GIS, pp.
444–447 (2009)

57. Xia, T., Zhang, D., Kanoulas, E., Du, Y.: On Computing Top-t Most Influential Spatial
Sites. In: VLDB, pp. 946–957 (2005)

58. Yao, B., Li, F., Hadjieleftheriou, M., Hou, K.: Approximate String Search in Spatial
Databases. In: ICDE, pp. 545–556 (2010)

59. Yiu, M.L., Dai, X., Mamoulis, N., Vaitis, M.: Top-k Spatial Preference Queries. In:
ICDE, pp. 1076–1085 (2007)

60. Zhang, J., Mamoulis, N., Papadias, D., Tao, Y.: All-Nearest-Neighbors Queries in Spatial
Databases. In: SSDBM, pp. 297–306 (2004)

61. Zhu, M., Papadias, D., Zhang, J., Lee, D.L.: Top-k Spatial Joins. IEEE Trans. on Knowl.
and Data Eng. 17(4), 567–579 (2005)

62. Zimbrao, G., de Souza, J.M.: A Raster Approximation for Processing of Spatial Joins.
In: VLDB, pp. 558–569 (1998)

Chapter 6
Approximate XML Query Processing

Giovanna Guerrini

Abstract. The standard XML query languages, XPath and XQuery, are built on the
assumption of a regular structure with well-defined parent/child relationships be-
tween nodes and exact conditions on nodes. Full text extensions to both languages
allow Information Retrieval (IR) style queries over text-rich documents. Impor-
tant applications exist for which the purely textual information is not predominant
and documents exhibit a structure, that is however not relatively regular. Thus, ap-
proaches to relax both content and structure conditions in queries on XML document
collections and to rank results according to some measure to assess similarity have
been proposed, as well as processing approaches to efficiently evaluate them. In the
chapter, the various dimensions of query relaxation and alternative approaches to
approximate processing will be discussed.

6.1 Introduction

Querying XML data on the Web is characterized by data heterogeneity and lim-
ited data knowledge. Data heterogeneity means that data referring to the same
real-world entity may be contained in distinct data collections and represented in
different ways. Heterogeneity in XML data arises from different value representa-
tion formats or structures, which may be due to the different provenance of data
on processing. Specifically, heterogeneity may appear in the collection at different
levels: (i) different tags may be employed in different collections to label the same
information; (ii) the hierarchical structure of documents in different sources may be
slightly different; (iii) different strings may be employed at content level to repre-
sent the same information. Limited data knowledge reflects the fact that the user is
not always able to specify the query in a complete and exact way since she may
not know all the characteristics of data to be retrieved, even if data come from just

Giovanna Guerrini
Università di Genova, Italy
e-mail: giovanna.guerrini@unige.it

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 129–155.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

giovanna.guerrini@unige.it

130 G. Guerrini

one single source. On these premises, the user cannot claim to get only “precise”
answers, that exactly satisfy the search condition expressed by the query, since it is
really difficult to exactly characterize what she is looking for and it is quite com-
mon that data she is interested in are represented in different ways and thus exhibit
different structures.

In such contexts, queries on XML data, expressed through standard XML query
languages, XPath and XQuery, that are built on the assumption of a regular structure
with well-defined parent/child relationships between nodes, may lead to the empty
or few answers problem [2], when the query is too selective or data are quite hetero-
geneous. In this case, it would be relevant for the user to stretch the query in order
to get a set of approximate items as result, ranked according to their relevance to the
original query.

An alternative to structure-based database (DB) style XML query languages is
represented by Information Retrieval (IR) style queries over text-rich documents.
IR-only queries do not pose any structural condition and specify content condition
as a set of keywords. The candidate answers to such queries are from the set of
lowest common ancestors of tree nodes that correspond to the specified keywords.
To support this keyword-based style of querying yet taking advantage of the struc-
ture of XML documents, full text extensions to XML query languages have been
proposed [46]. A contains function allows to look for document elements contain-
ing approximate matches to keywords. These approaches, however, offer limited
support for heterogeneity at the structural level. Thus, from one side we have data-
oriented techniques that handle rich XML structures, but do not tolerate a high level
of variation in them; on the other side, document-oriented techniques are very good
in processing complex textual content, but are limited in their support for complex
structural information.

The adoption of XML as a language for the representation and exchange of in-
formation by diverse communities – Bioinformatics, cultural heritage, ontologies,
GIS and many others – has motivated the appearance of important applications for
which none of these querying approaches is effective, since there is neither a rela-
tively regular structure that can be exploited, nor the purely textual information is
predominant. For these reasons, several approaches to relax in some way content
and structure conditions in queries on XML document collections and approximate
processing techniques that are tolerant to significant variability also in document
structures have been proposed. In most cases, there will be no exact answer to a
given query, but a set of approximate results ranked according to a scoring function,
and to avoid the too many answers problem queries are often thresholded or top-k,
thus returning only the results whose score is above a certain threshold or among
the k highest ranked answers (as discussed in Chapter 2 and in Chapter 3). This
requires the ability to rank results according to some measure to assess similarity,
and to efficiently process such approximate queries, with the ability of early pruning
(partial) answers that would not lead to an answer in the final result set.

Goal of the chapter is to provide an overview of such approaches that allow re-
laxation of both content and structural conditions. Specifically, we try to highlight

6 Approximate XML Query Processing 131

the most relevant issues and discuss in a slightly greater detail some representa-
tive approaches. Specifical dimensions that will be discussed and along which the
approaches will be compared are:

• the type of queries they support,
• the degree of heterogeneity they allow in documents provided as answers to

queries, i.e., the relaxation allowed on query conditions,
• the similarity measures proposed to rank results,
• the processing approach proposed for the queries.

We have selected four different approaches: TopX [43], Twig-Path Scoring [4],
TASM [7], ArHeX [37]. All of the selected approaches support variations of twig
queries, that is, tree patterns in which nodes represent the term the user is interested
in -content part of the query- and edges represent the structural relationships that
the user wants to hold between the terms -structural part of the query. The selected
approaches face approximate XML queries in quite different ways: they account for
different degrees of heterogeneity, rely on different ranking approaches to assess
similarity, and on different processing algorithms.

TopX [43] is a top-k retrieval engine for XML data with XPath Full-Text func-
tionalities, which efficiently supports vague search on both content (also on a se-
mantic base, i.e., through the use of Thesauri and ontologies) and structure-oriented
query conditions. The system is however mainly concerned with optimization for
content search, while for the assessment of structural similarity they basically count
the number of navigational query conditions that are satisfied by a result candidate
in their scoring.

Twig-Path Scoring [4] accounts for both vocabulary and structural heterogeneity
and consists of scoring methods that are inspired by tf · idf and rank query answers
on both structure and content. Specifically, twig scoring accounts for all structural
and content conditions in the query. Path scoring, by contrast, is an approximation
of twig scoring that loosens the correlations between query nodes when computing
scores. The key idea in path scoring is to decompose the twig query into paths, inde-
pendently compute the score of each path, and then combine these scores. An adap-
tive query processing algorithm to evaluate such approximate matches, in which
different plans are permitted for different partial matches, taking the top-k nature of
the problem into account is proposed in [32].

TASM [7] addresses the problem of top-k approximate subtree matching, that
is, of ranking the k best approximate matches of a small query tree (e.g., a DBLP
article with 15 nodes) in a large document tree (e.g., the whole DBLP with 26M
nodes). The k subtrees of the document tree (consisting of nodes of the documents
with their descendants) that are closest to the query tree according to canonical tree
edit distance are returned. Given the hypothesis, the most crucial issue is to be able
to have a runtime cost linear in the size of the document and a space complexity that
does not depend on the document size.

ArHeX [37] is an approach for identifying the portions of documents that are sim-
ilar to a given structural pattern, which is a tree whose labels are those that should be

132 G. Guerrini

retrieved, preferably with the relationship imposed by the hierarchical structure, in
the collection of documents. In the first phase, tags occurring in the pattern are em-
ployed for identifying the portions of the documents in which the nodes of the pat-
tern appear. Exploiting the ancestor/descendant relationships existing among nodes
in the target, subtrees (named fragments) are extracted having common/similar tags
to those in the pattern, but eventually presenting different structures. The structural
similarity between the pattern and the fragments is evaluated as a second step, for
ranking the identified fragments and producing the result.

Since there are many issues and perspectives involved in approximate XML query-
ing, this chapter is by no means exhaustive. First of all, approximate matching for
XML data has been considered also in the context of data-to-data matches [23, 9, 8],
that are relevant in the context of data integration. Since the focus of the book is on
query processing, we do not consider those approaches further in the chapter and
rather we focus on query-to-data matches. Moreover, work on approximated ranked
XML retrieval as opposed to exact conditions with Boolean answers on XML data
started in the early 2000’s, as IR-style of retrieval as opposed to DB-style structural
querying, and corresponding to the two different views of document-centric rather
than data-centric XML documents. As surveyed in [28, 29], approaches in XML
search range from keyword only queries, to tag and keyword queries, to path and
keyword queries, to XQuery and keyword queries (XQuery Full Text) [46]. The need
for integrating such two distinct retrieval modalities emerged soon [13, 6], not only
in the XML context. Given the focus of this book, in this chapter we discuss query-
ing rather than retrieval approaches, that is, approaches that takes the structure of the
XML document to be queried deeply into account in processing the query, and does
not regard it merely as a template to insert keywords in. Specifically, we are inter-
ested in approaches that allow to weaken structural constraints and rank structural
(partial) conformance, rather than applying them as a filter that, if present, has to
be met exactly. One of the approach we survey, namely ArHex, as an extreme case,
disregard content at all and focus on document structure only.

The remainder of the chapter is structured as follows. The following subsections
discuss the main issues we have identified above (i.e., type of queries, approximation
extents, ranking, and processing approaches) with specific reference to the propos-
als we have selected to focus on. The chapter is concluded by a discussion on some
criteria and approaches that can be exploited to choose the best suited way to ap-
proximately querying an XML collection at hand, given the degree of heterogeneity
(in terms of structure as well as of content) exhibited by the collection.

6.2 Twig Queries

In this section we introduce the tree representation adopted for XML documents
and define the notion of twig queries, then we briefly review some of the basic
techniques for twig query (exact) processing, and we discuss the types of (twig)
queries supported by the selected approximate approaches.

6 Approximate XML Query Processing 133

<books>
<book>

<collection> <title> XML </title> </collection>
<editor> <name> MK </name> </editor>

</book>
<book>

<editor>
<name> SA </name>
<company>

<address country = "USA"> <city> New York </city>
</address>

</company>
</editor>

</book>
<book>

<author> <name> SA </name> </author>
<author>

<name> MK </name>
<org> <address/ country = "USA"> </org>

</author>
</book>

</books>

Fig. 6.1 XML document.

6.2.1 XML Documents

An XML document, as shown in Figure 6.1, simply consists of a sequence of nested
tagged elements. An element contains a portion of the document delimited by a
start tag (e.g., <author>), at the beginning, and an end tag (e.g., </author>),
at the end. Empty elements of the form <tagname/> (e.g., <address/>) are
also possible. The outermost element containing all the elements of the document,
element books in Figure 6.1, is referred to as document element. Each element can
be characterized by one or more attributes, that are name-value pairs appearing just
after the element name in the start/empty tag (e.g., country="USA"), and by a
textual content, that is the portion of text appearing between the start tag and the end
tag (e.g.,"New York"). XML documents are often represented as ordered labelled
trees, where the distinction between subelements and attributes is disregarded and
attributes are modelled as subelements with a single textual content. We will rely on
this representation in the remainder of the chapter, and we will only talk of elements
assuming that attributes are represented as subelements. Most querying approaches,
moreover, neglect links between document elements, that would make the document
a graph rather than a tree. We will not consider links in what follows either. In this
way, internal tree nodes are labelled by element tags while leaves are labelled by
data content. Figure 6.2 contains the tree representation of the XML document in
Figure 6.1.

134 G. Guerrini

Fig. 6.2 Tree representation of the XML document of Figure 6.1.

6.2.2 Twig Queries: Definition

Several languages have been proposed for querying XML documents. Specifically,
XPath [44] and XQuery [45] have been accepted as standards by the W3C. Though
a full text extensions of XQuery has been proposed, XQuery Full Text [46], most
approaches focused on a rather restricted set of queries known as twig or tree pattern
queries and we focus on this class of queries in this chapter.

A twig query is a rooted labelled tree with two types of edges: /, child edge,
and //, descendant edge. A child edge represents a downward edge in the XML
document tree whereas a descendant edge represents a downward path in such a
tree. Internal node labels are element tag names whereas leaf node labels can be
tag names as well as predicates or strings, in which case they are interpreted as the
predicate “value equals to the string label”. A twig pattern corresponds to a core of
XPath [44] with only child and descendant axes.

A distinguished node can be explicitly marked as the target of the query [5]. If not
explicitly marked, the root of the query tree is the target node. The various branches
in the tree represent multiple predicates on the corresponding subtree.

Example 1. Figure 6.3 (a) shows an example of twig query, asking for books ele-
ments with a collection child containing “XML” in its full content (i.e., con-
tent of one of its arbitrarily nested subelements) and an editor child whose
name is “SA” and having a descendant address subelement containing “USA”
in its full content. The XPath expression corresponding to this twig query is
//book[collection//*[.=’XML’]][editor/name=’SA’][editor
//address//*[.=’USA’]].

By contrast, the twig query in Figure 6.3 (b) asks for books elements with
a collection child with “XML” value and an editor child whose name is

6 Approximate XML Query Processing 135

(a) (b)

(c) (d)

Fig. 6.3 Twig query (a), twig query with only child edges (b), twig queries with only de-
scendant edges (c), structural pattern (d).

“SA” and whose address is “USA” (with name and address direct subelements of
editor). The XPath expression corresponding to this second query is: //book
[collection=’XML’][editor/name=’SA’][editor/address=’USA’].

If, by contrast, in this second example, we were not interested in imposing any
constraints on the editor address but would rather like to be returned this informa-
tion than the book element, the address node in the twig would have no child and
would be marked as distinguished element, and the corresponding XPath expression
would be://book[collection=’XML’]/editor[name=’SA’]/address.

The term match denotes the assignments of query nodes to document nodes that
satisfy the constraints imposed by the query and the term answer denotes document
nodes for which there is a match that maps the target node (i.e., the root in most
common approaches) of the query to such a node. Note that no match for the query
in Figure 6.3 (a) exists on the document of Figure 6.2. By contrast, if we consider
the query without the subtree rooted at collection there is a match with the
central book child of the target document, which is returned as an answer.

6.2.3 (Exact) Twig Query Processing

Twig pattern matching is essential in evaluating XPath/XQuery queries, and thus
several different approaches for processing (exact) twig queries have been proposed

136 G. Guerrini

(see [19] for a survey). Generally, pre-built indexes on XML data can facilitate twig
query processing by locating target data avoiding exhaustive scans of all the data.
Indexes types include value indexes (as classical B+-tree indexes), which index data
values in the documents, and structural indexes, which index the structure of the
documents. Most relevant structural indexes are instances of two broad classes:
numbering schemes and index graph schemes, also called structural summaries. In-
dex graph schemes are mainly used for path selection and numbering schemes for
path joining. Numbering schemes allow to determine structural relationships among
nodes without tree navigation. Among the best known numbering schemes we men-
tion the Pre- and Post-order encodings of elements within document trees [20] and
the Dewey encoding [41] which is easier to maintain under dynamic updates. The
idea of structural summaries, by contrast, is to summarize an XML data tree into a
smaller structure that can be queried more efficiently, by summarizing path informa-
tion. An early example of such approaches is the Strong Data Guide [18]. Structural
indexes have been extended so to support answering twig queries in, e.g., the F&B-
index [1] that partitions data nodes into equivalence classes based on forward and
backward bi-similarity among nodes.

For what concerns the processing itself, approaches can be categorized into two
classes: the relational approach, by which data are loaded into relational databases
and twig queries are transformed into SQL queries over relational data, and the
native approach, by which XML data are stored on disk in the form of inverted lists,
sequences, or trees and native algorithms are developed to further improve XML
twig query performance. Among the native approaches, that include various forms
of structural joins, multi-predicate merge joins, let us just mention the staircase join
based on PrePost encoding [20], and holistic twig joins [11]. The latter, also known
as path stack algorithm, is probably the most efficient method for twig queries using
a combination of sequential scans over index lists stored on disk and linked stacks
in memory.

6.2.4 Twig Queries as a Basis for Approximate Querying

All the approaches we discuss in this chapter rely on (variations of) twig queries
as query language. Table 6.1 summarizes the variations of twig queries supported
by the four approximate querying approaches we discuss more deeply in this chap-
ter. Twig-Path Scoring [4, 32] considers twig queries with distinguished root node,
string labelled nodes, and both child and descendant edges. In TASM [7] queries are
tree patterns with distinguished root node, string labelled nodes, with tags appear-
ing only at internal nodes (and content at leaves) and only child edges (as the one in
Figure 6.3 (b)).

In TopX [43] queries can be evaluated in two distinct modalities, that can be con-
figured orthogonally to the query formulation, so to return two different granularities
as result. In document mode, TopX returns whole documents as answer to a query

6 Approximate XML Query Processing 137

Table 6.1 Types of tree pattern queries.

Twig-Path Scoring TopX TASM ArHeX

query answer document subtree1 document document subtree1 region
or document subtree

edges child and descendant descendant child child
node labels strings strings and predicates strings strings

(no tag names at leaves) (tag names)

1 Rooted at a node matched to the query root.

whereas in element mode it returns target elements, that may be from the same as
well as from different documents. Only descendant edges are considered, whereas
multiple content-labeled leaves can be associated as children with a node (as in Fig-
ure 6.3 (c)). This also corresponds to the fact that the implicit predicate associated
with such strings is not equality but rather the IR-style about operator (analogous
to contains of XPath Full-Text). In addition, a ∼ operator can be employed in
labels to denote user-requested semantic expansion of the argument term/tag.

In ArHex [37], since the focus is on structure, only tag labelled nodes can appear
in queries. Thus, the considered queries (named structural patterns or twigs) are tree
patterns with only child edges and string labelled nodes, where labels correspond to
element tags only (no conditions are imposed on data content). An example is given
in Figure 6.3 (d)). As a consequence, the answer is not a complete subtree (that is,
reaching the leaves). Rather, it is a (minimal) subtree, referred to as fragment, only
including the relevant nodes, i.e., nodes matching some query node. Such nodes
can be anywhere in the hierarchical structure of the document and several edges
in the original document may be collapsed in a single edge. Actually, since a larger
document portion, obtained by merging different fragments, may exhibit higher sim-
ilarity to the query than the fragments it originates from considered separately, the
answer to the query is a document region. The root of the returned subtree is a node
not necessarily matching the query root.

When twig queries are evaluated approximately, there is the need to limit the
number of results. Either the allowed query relaxation are explicit in the query, and
all the answers to the relaxed queries are returned, or queries are formulated as
threshold or as top-k queries. In all the cases, answers come with a rank, or score,
measuring how closely the answer meets the original query. Usually, the rank or
score is a number between 0 and 1, with the intuition that a precise answer is scored
1, while 0 denotes no (even approximate) match. Results are provided in descending
rank order. In threshold queries a threshold ε is specified, and all the answers whose
score is above ε are returned. In top-k queries, a value k is specified and the k highly
scored answers are returned. In both cases, it is crucial to early prune subtrees that
will not result in a score above the threshold/in the highest k scores.

138 G. Guerrini

6.3 Various Extents of Approximation

In this section we present different ways in which the exact match semantics of
twig queries can be relaxed or approximated, distinguishing between vocabulary
and hierarchical structure issues, and among explicitly requested, limited or arbi-
trary approximation. The considered approaches are then situated in the resulting
approximation framework in Table 6.2.

6.3.1 Vocabulary

Vocabulary approximation refers to the type of approximate match introduced at
string level, which may be different for element tags (strings appearing as labels
of internal nodes) and document content (strings appearing as labels of leaf nodes).
Different types of approximate match can be considered instead of equality, for both
types of nodes. Specifically, stemming [31] reduces inflected (or sometimes derived)
words to their stem, base or root form. For instance, stemmer, stemming, stemmmed
are examples of words based on the root stem. The stem needs not be identical to the
morphological root of the word; it is usually sufficient that related words map to the
same stem, even if this stem is not in itself a valid root. Words with the same stem
are considered as matching, even if they are not equal as strings. Thesauri could be
exploited as well to assess string similarity across different languages.

Another alternative is to consider two strings as matching, even if they are not
equal, provided they can be recognized as synonyms, that is, different as terms but
with the same meaning, according to some Thesaurus, such as WordNet [17]. Note
that this requires to be able to associate an intended meaning with a string, and in
particular to cope with polysemy, that is, a term that may have different meanings
depending on the context that it is used in. Some simple techniques for Word Sense
Disambiguation (WSD) [25] relying on the context the string appears in have to be
used unless we want to cope with multiple possible meanings, and thus multiple
possible synsets (i.e., sets of synonyms), associated with the same term.

In addition to the above two semantic similarity notions for words, a more syntac-
tic approximation can be allowed on strings, relying on any notion of string similarity,
such as string edit distance or q-gram based distances [34] to account for small syn-
tactic differences among strings. Though syntactic approximation seems much less
interesting than semantic one, we have to consider that as tag often a combination of
lexemes (e.g., ProductList, SigmodRecord, Act number), a shortcut (e.g.,
coverpg,cc), a single letter word (e.g.,P for paragraph,V for verse), a preposition
or a verb (e.g., from, to, related) rather than a noun is used.

Example 2. Referring to the document of Figures 6.1 and 6.2, queries containg the
following tags/terms would fail to produce an exact match, but they will produce a
match if element tags/content were approximately matched. As examples of stem-
ming: authors vs author, collect vs collection; as an example of syn-
onyms:monograph vs book; as an example of cross-language similarity: libro
vs book; as an example of syntactic similarity U.S.A. vs USA.

6 Approximate XML Query Processing 139

(a) (b)

Fig. 6.4 Vocabulary variations: explicitly requested (a) and implicitly applied (b).

The approximation on node labels to account for vocabulary heterogeneity may
be implicitly applied or explicitly requested by the user in formulating the query.
Specifically, in TopX, stemming and synonyms according to the WordNet Thesaurus
are accepted as matches, both for tags and for data content, if the ∼ operator is ex-
plicitly used in query formulation. Moreover, the same idea is automatically applied
by relaxing the equality predicates at nodes during incremental query expansion, for
queries for which not enough results can be found. To choose among the possible
meanings of the word which is the right one, they rely on word statistics for some
local context of both the terms that appear in a part of a document or a query and
the candidate meanings that are extracted from the ontology graph containing the
concepts. The idea of accepting and evaluating semantic similarity between terms
in XML queries through a similarity enhanced ontology has been proposed also in
TOSS [24]. The ontology captures inter-term lexical relationships and can use any
measure of semantic similarity among terms.

Vocabulary heterogeneity, both at a syntactic and at a semantic level is considered
in ArHeX, obviously only for tags, since queries in ArHeX are structural queries
with no data content. By contrast, in Twig-Path Scoring [4] they explicitly state
that approximated matches at nodes are orthogonal to and beyond the scope of their
work. The issue of node label similarity is not considered by TASM either, in that
any node relabeling is allowed and the same (unit) cost is applied to any node rela-
beling. Thus, neither semantic nor syntactic similarity is accounted for.

Example 3. Referring to the queries in Figure 6.4, TopX would return for the query
in Figure 6.4 (a) the same answers as for the query in Figure 6.3 (c), and ArHeX
would return for the structural query in Figure 6.4 (b) the same answers as for the
structural query in Figure 6.3 (d). Any modifications to the labels of nodes of the
twigs in Figure 6.3 (a) and Figure 6.3 (b) would result in a node mismatch in Twig-
Path Scoring and TASM, irrespective on how different the new label is from the
original one (syntactically and/or semantically).

140 G. Guerrini

(a) (b)

(c) (d)

Fig. 6.5 Structural variations.

6.3.2 Hierarchical Structure

Structural approximation may be allowed as well, allowing for arbitrary variations
in the structure or through controlled relaxation of structural constraints. Consider
for instance the queries in Figure 6.5, with respect to the actual document struc-
ture illustrated by the tree in Figure 6.5 (a). In Figure 6.5 (b), an intermediate
node series appears between nodes books and book that are thus bound by an
ancestor-descendant rather than by a parent-child relationship. In Figure 6.5 (c), the
ancestor-descendant relationship between author and book (and also books) is
reversed, corresponding to a different organization in which books are represented
grouped by authors. In Figure 6.5 (d), in addition to the above structural variation,
there is also a vocabulary variation since researcher is used instead of author.

In Twig-Path Scoring [4, 32] the same structural relaxations of [5] are considered:

edge generalization: replacing a child edge / with a descendant edge //,
leaf deletion: removing a leaf node from the twig,
subtree promotion: moving a subtree from its parent node to its grand-parent.

6 Approximate XML Query Processing 141

(a) (b)

(c) (d)

Fig. 6.6 Structural query relaxation.

These relaxations generalized the ones previously proposed in [3] and [39]. For
instance, in [3] relax node, delete node, relax edge, and promote node are consid-
ered as possible relaxations whereas in [39] node insertions and node deletions are
considered.

Example 4. Referring to the twig query in Figure 6.6 (a), an example of edge gen-
eralization is given in Figure 6.6 (b) in which the edge between editor and name
has been relaxed. An example of leaf deletion is given in Figure 6.6 (c) in which the
condition on the collection content has been removed. An example of subtree
promotion is given in Figure 6.6 (d), in which the editor node has been deleted
and its children promoted as children of the root.

Structural approximations allowed in the answer with respect to the structure spec-
ified in query pattern are not restricted in the other approaches. However, in TopX,
any path condition is evaluated in its entirety as matched or not matched, and partial
matches of nodes in the path are disregarded. By contrast, in TASM partial structural
matches are considered, since the match is evaluated at a node basis (with a unit
cost model that assigns the same cost to node deletion, insertion, and relabeling).
Matches (referred to node alignments) are however required to be consistent with
the ancestor-descendant and sibling order relationships. Partial structural matches
are considered in ArHeX as well, which also evaluates matches on a node basis, but
do not impose any restrictions to the matches among nodes (provided their tags are
equal or similar according to the devised criterion).

142 G. Guerrini

Table 6.2 Extent of approximation.

Twig-Path Scoring TopX TASM ArHeX

vocabulary
–

semantic on tags
and terms

any relabeling has
unit cost

syntactic and se-
mantic on tags

structural edge generaliza-
tion

patch matches any edit has unit cost arbitrary

leaf deletion are considered ancestor-descendant
subtree promotion only if exact relationships and

sibling order are
preserved

Example 5. Referring to the structural variations of Figure 6.5, all the approaches
would consider document portions like that in Figure 6.5 (b) when looking for a
structure like the one in Figure 6.5 (a). All the approaches but TopX would consider
document portions like that in Figure 6.5 (a) when looking for a structure like the
one in Figure 6.5 (b). In TopX, by contrast, the paths books//series//book
//author and books//series//book//title would be evaluated as not
matched since the node series is missing. Only ArHeX, finally, would consider
document portions like those in Figure 6.5 (c) and Figure 6.5 (d) when looking for
a structure like the one in Figure 6.5 (a).

6.4 Ranking

A consequence of allowing for approximate answers to a query is the need for a
ranking or scoring method, able to assess similarity between the answer and the
original request. An obvious requirement is that an exact answer (exact match) will
be scored higher than an approximate one (partial match). A variety of IR-style scor-
ing functions has been proposed and adopted for XML retrieval, ranging from the
classic vector space model with its tf · idf family of scoring approaches [35, 10], typ-
ically using Cosine measure for score aggregations, over to the theoretically more
sound probabilistic scoring models, such as Okapi BM25 [27], among the most
widely used ranking approaches in current IR benchmark settings such as TREC
or INEX. Similarity measures for XML documents have been proposed in very di-
verse contexts, ranging from data integration to document clustering and change
detection. A complete discussion of this topic is beyond the scope of this chapter.
Extensive surveys can be found in [21, 22, 42]. In this section we present the ranking
methods employed by the approaches we focus on, that are however quite different
and quite representative of alternative approaches that can be employed.

In devising an adequate assessment of similarity there are different aspects to be
traded-off: besides accuracy, efficiency of the ranking function is important as well.
This is the reason why some early approaches assign precomputed weights at nodes
and then combine them according to the tree structure.

6 Approximate XML Query Processing 143

In what follows we discuss the ranking methods of the four approaches dealt with
in greater detail in this chapter. TASM relies on a purely tree edit distance ranking
model, whereas ArHeX supports different ranking models, but basically relies on
the idea to evaluate the goodness of an answer on the basis of the matching portions
in the two trees only, TopX andTwig-Path Scoring, by contrast, take into account
in the ranking more IR-style notions such as measures of specificity of tags/terms
in the whole document/document set and not only the matched document portions
(and their structural relationships). While TopX emphasis is on content scoring,
structure scoring is preeminently addressed by Twig-Path Scoring. Table 6.3 sum-
marizes these main differences.

6.4.1 Tree Edit Distance

Tree edit distance [40, 48] is a well-known measure to quantify the distance among
arbitrary ordered labelled trees, with applications ranging from the comparison of
RNA secondary structures to syntax theory, where to compare two sentential forms
the distance between their parse trees can be computed. The editing operations avail-
able in the tree editing problem are changing (i.e., relabeling), deleting, and inserting
a node. To each of these operations a cost is assigned, that can depend on the labels
of the involved nodes. The distance between trees T1 and T2 is defined to be the cost
of the minimum cost sequence of such operations transforming T1 into T2. Three
kinds of operations for ordered labelled trees are considered. Relabeling a node n
means changing the label on n. Deleting a node n means making the children of n
become the children of the parent of n and then removing n. Inserting n as the child
of m will make n the parent of a consecutive subsequence of the current children
of m.

Edit operations can be defined in terms of edit mappings, such that: each node
is mapped, the mapping is one-to-one, ancestor-descendant relationships are pre-
served, sibling order is preserved. The mapping is represented by a set of node
alignments. Let ε be a unique node not in the set of nodes, denoting the null node.
An edit operation is represented as a node alignment a → b, where a is either ε or
a node in T1 and b is either ε or a node in T2. An operation of the form ε → b is an
insertion, an operation of the form a → ε is a deletion. Finally, an operation of the
form a→ b, with a,b �= ε , is a relabeling. Assuming each node n be assigned a cost
c(n)≥ 1 the cost γ of a node alignment a→ b can be defined as (i) γ(ε → b) = c(b)
(insertion); (ii) γ(a→ ε) = c(a) (deletion); (iii) γ(a→ b) = c(a)+ c(b)/2 if node a
and b labels are different (relabeling); (iii) γ(a → b) = 0 if node a and b labels are
equal (no change).

Function γ is extended to an edit mapping, consisting of a set of node alignments
M = s1, . . . ,sk by letting: γ(M) = Σ k

i=1γ(si). The edit distance between the two trees
T1 and T2 is defined as the minimum cost edit mapping that transforms T1 to T2, that
is: D(T1,T2) = minM{γ(M)|M is an edit mapping from T1 to T2}.

144 G. Guerrini

For instance, assuming as in [7] unit costs for all the edit operations, the twig
query in Figure 6.3 (b) has distance 4 from the leftmost book node of Figure 6.2:
one node deletion (title), a node relabeling ("MK" to "SA"), and two node inser-
tions (address and "USA"). By contrast, it has distance 6 from the central book
node of Figure 6.2: two node insertions (collection and "XML") and four node
deletions (company, city, "New York", country). Note that in this way the
approach is estimating the distance rather than the similarity and thus, in this case,
the best answers are those having lowest distance from the query (and exact answers
have distance 0).

The best known and reference approach to compute edit distance for ordered trees
is by Zhang and Shasha [48]. Their dynamic programming algorithm recursively
decomposes the input trees into smaller units and computes the tree distance bottom
up. The decomposition may produce forests. The algorithm computes the distance
between all pairs of subtree prefixes of two trees.

6.4.2 An Alternative Match Based Similarity

ArHeX employs as well a notion of similarity that relies on the evaluation of a
mapping between nodes. Since the focus is on heterogeneous semi-structured data,
however, the hierarchical organization of the query and the answer are not taken into
account in the definition of the mapping, the only requirement is that the element
labels are similar. Note thus that an important difference is that while the TASM
approach poses some constraints on the allowed node alignments (preservation of
ancestor-descendant relationships and of sibling order) on which tree edit distance
is then evaluated (according to unit cost model), in ArHeX matching only relies on
the identification of nodes with the same or similar tags, and the degree of structure
conformance is only taken into account in ranking the matches.

Several mappings can be established between a query and an answer region. The
best one will be selected by means of a similarity measure that evaluates the degree
of similarity between the two structures relying on the degree of similarity of their
matching nodes. The evaluation of a mapping is defined by the sum of the similari-
ties of nodes in the mapping, that can be computed according to different similarity
measures, as discussed below, normalized by the number of nodes in the query. The
similarity between a query and an answer is then defined as the maximal evaluation
among the mappings that can be determined between them (analogously to what we
have discussed for tree edit distance).

Three different approaches to evaluate similarity among nodes in the mapping are
proposed in [37]. The first one assesses similarity only on the basis of label matches,
whereas the other two take the structure into account. In match-based similarity,
similarity only depends on node labels. Similarity is 1 if labels are identical, whereas
a pre-fixed penalty δ is applied if labels are similar. Any other syntactic or semantic
evaluation of similarity in the range [0,1] could be considered. If they are not similar,
similarity is 0.

6 Approximate XML Query Processing 145

In level-based similarity, the match-based similarity is combined with the evalu-
ation of the levels at which the two nodes in the mapping appear in the query and
in the answer. Whenever they appear in the same level, their similarity is equal to
the similarity computed by the first approach. Otherwise, their similarity linearly
decreases as the number of levels of difference increases.

Since two nodes can be in the same level, but not in the same position, a third
approach is introduced, called distance-based similarity. The similarity is computed
by taking the distance of nodes in the mapping with respect to their roots into ac-
count. Thus, in this case, the similarity is the highest only when the two nodes are in
the same position (i.e., taking into account also order among siblings) in the query
and in the answer.

As an example, consider the structural twig of Figure 6.3 (d) matched against
the document in Figure 6.2, and the three fragments labelled at a book element. In
the ranking, the leftmost one is evaluated more similar to the twig than the central
one that is, in turn, more similar to the twig than the rightmost one. The first one,
indeed, only lacks a level-2 element (i.e., address). The second one lacks a level-1
element (i.e., collection) and an element (i.e., address) appears at a different
level than expected. In the third one, besides the lack of a level-1 element (i.e.,
collection) and the level mismatch for address, there is also tag similarity
rather than equality between author and editor to be taken into account (or the
mismatch of the two nodes if they are not deemed similar).

6.4.3 Structure and Content tf · idf Scoring

The scoring function proposed in [4] (Twig-Path Scoring) is based on the principle
that best answers are matches to the least relaxed query in the graph of query re-
laxation. The scoring function is based on the tf · idf (term frequency and inverse
document frequency) weight proposed in IR [35] to evaluate how important a word
is to a document in a collection or corpus. The importance increases proportionally
to the number of times a word appears in the document but is offset by the frequency
of the word in the corpus. In [4], the idf scoring is however modified to guarantee
that answers to less approximate queries obtain idf scores at least as high as scores to
more approximate ones. The idf score for an answer e is defined as the maximal idf
value of all relaxations of the query having e as an answer. This is also the basis for
assuring that the score monotonicity requirement is met by the overall score, that is,
that more precise answers to the user query are assigned higher scores. Intuitively,
the idf measure of a query Q quantifies the extent to which answers to the most re-
laxed query additionally satisfy Q. Thus, more selective queries are assigned higher
idf scores. This is analogous to the IR case: keywords that appear in a document
collection less frequently are assigned higher idf scores. Note, however, that the idf
measure defined above assigns the same idf score to all exact matches to a query. In
general, all answers having their best match with respect to the same relaxed query
are given the same idf score. The idf scores are then used to rank relaxed matches
based on how closely they match the relaxed query. To distinguish between matches

146 G. Guerrini

of the same relaxed query the analogue of the term frequency tf measure is used.
Intuitively, the tf score of an answer quantifies the number of distinct ways in which
an answer matches a query. This is again analogous to the IR case, where the term
frequency increases with the number of occurrences of a keyword in a document.
The final scoring function for twig queries is based on combining the idf and tf
scores. A lexicographical scoring (idf,tf) is used to satisfy the score monotonicity
requirement.

The twig scoring as specified above requires however to have access to the idf
scores associated to all relaxations of the original query to compute the scores of
answers. Computing (or even pre-computing whenever possible) these scores can be
very expensive. Thus, in order to improve efficiency of the overall query processing,
approaches based on decomposing an original twig query to simpler queries are con-
sidered and in this way the number of different idf scores needed is reduced. Also, in
many cases the scores for such simpler queries are easier to compute. Specifically,
two decompositions for a twig query Q are considered:

• Path Decomposition the set of all paths in the query leading from the root to any
other node; and

• Binary Decomposition the set of all queries rootQ/m or rootQ//m for a node m
in Q such that they subsume Q.

The score of an answer is computed taking occurrences of all structural and content-
related (i.e., keyword) predicates in the query. For example, a match to query of
Figure 6.3 (a) would be assigned an inverse document frequency score, idf, based
on the fraction of the number of book nodes with a collection child containing
“XML” in its full content and an editor child whose name is ”SA” and having a
descendant subelement address containing “USA” in its full content. The match
would then be assigned a term frequency score, tf, based on the number of query
matches for the specific book answer.

6.4.4 Content Scoring with Structure Filters

Ranking in TopX is based on the following components:

• Content related query conditions are split into combined tag-term pairs. Each
matched tag-term pair obtains a pre-computed IR-style relevance score, as dis-
cussed below.

• Hierarchical structural conditions are split into single node tests. Each naviga-
tional query condition that is not part of a tag-term pair contributes to the aggre-
gated score of a matched subtree in a document by a static score mass c if all
transitively expanded structural constraints rooted at it can be matched.

The score is computed differently depending on whether the query is evaluated in
document or element mode, but it is anyway computed as the maximum score of the
matched target element.

6 Approximate XML Query Processing 147

As far as the first component, i.e., content score, is concerned, the relevance of a
tag-term pair is computed relying on the following measures:

• ftf(t,e) (full-content term frequency) models the relevance of a term t for an
element full content, i.e., the frequency of t in all the descending text nodes of
element e;

• NA (tag frequency) is the number of elements with tag name A in the entire set of
documents;

• efA(t) (element frequency) models the specificity of t for a particular element
with tag name A by capturing how many times t occurs under a tag A across the
whole collection having NA elements with this tag name.

The basic idea is thus to evaluate tag-terms pairs so that the score of an element e
with tag A and content condition requiring the occurrence of term t should reflect:
(i) the ftf value of the term t, reflecting the occurrence statistics of the term for the
element content; (ii) the specificity of the search term, with respect to tag-name
specific e fA(t) and NA statitistics; and (iii) the size and thus the compactness of
the subtree rooted at e containing t in its full-content. This leads to the following
template:

score(e,A = t) =
occurrence · speci f icity

size(e)

The TopX engine adapts the empirically very successful Okapi BM25 probabilistic
scoring model [27] to a generic XML setting by computing individual relevance
models for each element type occurring in the collection. For an about operator
with multiple keyword conditions that is attached to an element e with tag name A,
the aggregated score of e is simply computed as the sum of the elements scores over
the individual tag-term conditions.

The structural scoring model essentially counts the number of navigational (i.e.,
tag-only) query conditions that are satisfied by a result candidate and thus connect

Table 6.3 Ranking

Twig-Path Scoring TopX TASM ArHeX

base of the scoring matches for query
relaxations in the
document

connected docu-
ment subtree that
contains the query
target element

node alignment,
node and op costs

node match, tag
similarity mea-
sure

locality1 global global local local
binary evaluations on labels on paths on labels –

(tags and content) (tags and content)
preeminent view structure content structure tags

1 Local denotes that the evaluation depends only on the query and on the document portion
(answer) under evaluation, global that it also depends on the whole document to account for
frequencies of labels and/or structural patterns.

148 G. Guerrini

the content conditions matched. A navigational condition is fully matched by an
element in a document if all the structural constraints, i.e., the element outgoing
edges, are satisfied. A structural score c is assigned to any matched navigational
condition (element-to-leaf path). Score c is tunable to allow to balance in the most
appropriate way structural score and content score. In the scoring model described
in [43] the setting of score c is relatively crude and the possibility of making c
dependent on the goodness of an approximate structural match is mentioned as a
possible direction to explore.

6.5 Approximate Query Processing

The techniques for approximate query processing are very diverse and are deeply
influenced by the degree of approximation accounted for. For instance, some early
approach [14] applies all allowed transformations to data on querying, but this
approach is viable only if the number of possible transformations is quite
limited. Other approaches evaluate all the possible relaxations of the original query,
but, again, this is possible only if they can be obtained on the basis of the query
only.In [39], they take advantage of the presence of a schema for limiting possible
relaxations to generate and to evaluate.

An important issue to consider is that approximate queries on XML data are of-
ten thresholded or top-k queries. In such cases, the ability to early prune candidate
answers that are unlikely to produce highly scored results is crucial for an efficient
processing. In what follows we sketch the basic ideas on which query processing
relies in the reference approaches discussed in the chapter. XML top-k query evalu-
ation techniques are explicitly discussed in [33] and [26].

6.5.1 Twig-Path Scoring and Whirpool

A typical top-k algorithm is employed in [4] to find the top-k elements based on
the score discussed in Section 6.4. Specifically, a DAG maintains pre-computed idf
scores for all possible relaxed queries that a partial match may satisfy. A matrix rep-
resentation is employed for queries, their relaxations, and partial matches to quickly
determine the relaxed query that is best satisfied by a partial match during top-k
query processing and prune irrelevant partial query matches.

Whirpool [32] is a flexible architecture for processing top-k queries on XML
documents adaptively. The approach allows partial matches to the same query to
follow different execution plans, and takes advantage of the top-k query model to
make dynamic choices during query processing. The key features of the processing
approach are: (i) a partial match that is highly likely to end up in the top-k set is
processed in a prioritized manner, and (ii) a partial match unlikely to be in the top-k
set follows the cheapest plan that enables its early pruning.

6 Approximate XML Query Processing 149

The adaptive query evaluation relies on servers, one for each node in the twig
pattern. One of these servers is special in that it generates candidate matches to
the root of the query, which initializes the set of partial matches that are adaptively
routed through the system. Each of the other servers, for an element e, maintains a
priority queue of partial matches (none of which has previously gone through this
server). For each partial match at the head of its priority queue, it (i) computes a
set of extended (partial or complete) matches, each of which extends the partial
match with an e node (if any) that is consistent with the structure of the queries, (ii)
computes scores for each of the extended matches, (iii) determines if the extended
match influences or is influenced by the top-k set. The system maintains a candidate
set of top-k (partial or complete) matches, along with their scores, as the basis for
determining if a newly computed partial match: (i) updates the score of an existing
match in the set, or (ii) replaces an existing match in the set, or (iii) is pruned, and
hence not considered further. Matches that are complete are not processed further,
whereas partial matches that are not pruned are sent to the router. The matches
generated from each of the servers, and not pruned after comparison with the top-k
set, are sent to the router, which maintains a queue based on the maximum possible
final scores of the partial matches over its input. For the partial match at the head
of its queue, the router determines the next server that needs to process the partial
match, and sends the partial match to the queue of that server.

6.5.2 TopX

The TopX engine [43] operates over a combined inverted index for content- and
structure-related query conditions by pre-computing and materializing joins over
tag-term pairs. This simple pre-computation step makes the query processing more
scalable, with an encoding of the index structure that is easily serializable and can
directly be stored sequentially on disk just like any inverted index, for example using
conventional B+-tree indexes or inverted files.

At query processing time, TopX scans the inverted lists for each tag-term pair in
the query in an interleaved manner, thus fetching large element blocks into memory
using only sorted access to these lists and then iteratively joining these blocks with
element blocks previously seen at different query dimensions for the same docu-
ment. Using Pre-/Post-order tree encodings [20] for the structure, TopX only needs
a few final random accesses for the potential top-k items to resolve their complete
structural similarity to a path query. An extended hybrid indexing approach using
a combination of Data Guide-like path indexes and Pre-/Post-order-based range in-
dexes (like those discussed in Section 6.2.3) can even fully eliminate the need for
these random accesses however at the cost of more disk space.

TopX further introduces extensions for probabilistic candidate pruning, as well as
a probabilistic cost-model for adaptively scheduling the sorted and random accesses,
that help to significantly accelerate query evaluations in the presence of additional,
pre-computed index list statistics such as index list selectivities, score distribution
histograms, or parameterized score estimators, and even index list (i.e., keyword)

150 G. Guerrini

correlations. For dynamic expansions of tag and term conditions, TopX can incre-
mentally merge the inverted lists for similar conditions obtained from a background
Thesaurus such as WordNet.

6.5.3 TASM

TASM [7] focuses on finding the k best approximate matches of a small query tree
Q in a large document tree T . The k subtrees of T (consisting of nodes of T with
their descendants) that are closest to Q, according to canonical tree edit distance, are
returned. The naive solution to this problem requires O(m2n2) time and O(mn) space
where m and n are query and document sizes, respectively. This can be improved to
O(m2n) by computing the distance between Q and T with a dynamic programming
approach and ranking the subtrees of T visiting the resulting table.

The TASM approach is based on a prefix ring buffer that performs a single scan of
the document. The size of the prefix ring buffer is independent of the document size.
They rely on a post-order queue that uses the post-order position and the subtree size
of a node to represent the document structure. The post-order queue is a sequence
of (label,size) pairs of the tree nodes in post-order, where label is the node label
and size is the size of the subtree rooted in the node.

Their top-k algorithm relies on the observation that there is an effective bound on
the size of the largest subtrees of a document that can be in the top-k best matches to
a query. Pruning large subtrees efficiently and computing tree edit distance on small
subtrees only (for which the computation is unavoidable) give rise to an efficient
solution to the problem. The pruning algorithm uses a prefix ring buffer to produce
the set of all subtrees that are within a given size threshold τ , but are not contained
in a different subtree also within the same threshold. This set of candidate trees
can be computed for a given size threshold τ dequeuing nodes from the post-order
queue and appending them to a memory buffer. Once a candidate subtree is found,
it is removed from the buffer, and its tree edit distance to the query is computed.

Nodes in the post-order queue are either candidates (i.e., belong to a candidate
tree and must be buffered) or non candidates nodes (root of subtrees too large for
the candidate set). A simple pruning approach is to append all incoming nodes to
the buffer until a non-candidate node nc is found and then all subtrees rooted in
nc children that are smaller than τ are candidate subtrees. An improvement is ring
buffer pruning which buffers candidate trees only as long as needed and uses a
look-ahead of only O(τ) nodes. This buffer is moreover enriched with a prefix array
which encodes tree prefixes and allows the leftmost valid subtree to be found in
constant time.

6.5.4 ArHeX

The main issue in ArHeX is how to efficiently identify fragments, that are portions
of the target containing labels similar to those of the pattern, without relying on

6 Approximate XML Query Processing 151

strict structural constraints. The proposed approach employs ad-hoc data structures:
a similarity-based inverted index (named SII) of the target and a pattern index ex-
tracted from SII on the basis of the pattern labels. Through SII, nodes in the target
with labels similar to those of the pattern are identified and organized in the lev-
els in which they appear in the target. Fragments are generated by considering the
ancestor-descendant relationships among such nodes. Then, identified fragments are
combined in regions, allowing for the occurrence of nodes with labels not appearing
in the pattern, as discussed before. Finally, some heuristics are employed to avoid
considering all the possible ways of merging fragments into regions and for the
efficient computation of similarity, thus making the approach more efficient.

More specifically, in the inverted index for a target, the labels appearing in the
target are normalized with respect to the employed similarity relationship. Each
label is then associated with the list of nodes labeled by the same or a similar label,
ordered relying on the pre-order rank. The pattern index is a structure organized in
levels, with an entry for each node in the pattern. The number of levels of the index
depends on the the levels in the tree in which nodes occur with labels similar to
those in the pattern. For each level, nodes are ordered according to the pre-order
rank. Fragments are generated through a visit of the pattern index. Each node in the
first level of this index is the root of a fragment because of the way the index is built.
Possible descendants of the node can be identified in the underlying levels. Given
a generic level l of the pattern index, a node v can be a root of a fragment if and
only if for none of the nodes u in previous levels, v is a descendant of u. If v is a
descendant of a set of nodes U , v can be considered the child of the node u ∈U s.t.
the distance between v and u is minimal.

A brute-force strategy for obtaining the best k results of a pattern query is to gen-
erate all results, sort them by score and return the k results with the highest score. A
slight refinement saves space by using a heap to keep only the best k results found
so far. The search for more efficient algorithms is constrained by the requirements
of supporting a class of scoring functions as broad as possible, thus not necessar-
ily monotone. Top-k algorithm deriving from Fagin’s TA [16], indeed, requires the
monotonicity of the aggregation function. Top-k processing with arbitrary ranking
functions has been investigated in [47] with the restriction that the function is lower-
bounded. An index-merge framework that performs progressive search over a space
of states composed by joining index nodes is proposed. A state in this space is com-
posed by joining multiple index nodes. Promising search states, in terms of their
scores, are progressively materialized, while the states with no chances to yield the
top-k answers are early-pruned. That approach has been used for top-k query pro-
cessing in ArHeX [38].

6.6 Conclusion and Discussion

In the chapter, the main issues and some alternative approaches to deal with queries
on XML documents accounting for approximation both on content and on structure

152 G. Guerrini

have been discussed. Among the devised approaches, a single preferable approach,
working best than the others, cannot be identified, since this deeply depends on the
characteristics of the XML collection on querying.

The characteristics of data in the collection on querying may suggest the measure
to apply. The use of entropy-based measures to evaluate the level of heterogeneity
of different aspects of documents is proposed in [36]. This allows to quantify the
degrees of vocabulary and structural heterogeneity in a document collection. More
in general, an analysis of the degrees of heterogeneity characterizing a data col-
lection would allow to mine heterogeneity patterns that support the choice of the
most appropriate similarity measure and the most effective approximate querying
approach on the collection. For instance, it is not worth considering approximate
tag matches at nodes, if the collection is very homogeneous at the vocabulary level.
For what concerns the ranking, an interesting opportunity is to consider data for the
selection of the measure to be employed, that is, to follow an exploration-based ap-
proach. In this case, data characteristics are considered to point out the measure (or
the features of the measure) that should return the best result. By extracting different
kinds of information from data (e.g., element tags, relevant words in element con-
tent, attributes, links), the features of the similarity measures to be applied on data
can be revealed. For example, if the structure of the documents is highly regular, a
content-based measure is expected to be more useful.

However, in contexts in which several collections of XML documents, stored at
autonomous sources, are interactively queried, through a web application, it is not
reasonable to fully analyze the documents available in the sources to extract enough
information on their heterogeneity degrees to obtain the best similarity function to
be used in approximating queries over the sources. The most effective approach in
this context could be to start querying the sources with a starting similarity function
and approximation approach and then use feedbacks on query execution to tune the
approximation and similarity functions to be used in subsequent queries. Thus, in
processing the subsequent queries submitted by the same user, that refine, adjust,
or completely modify the previous one, the application will rely on feedbacks from
previous query executions. For instance, feedbacks can reveal that a certain tag or
a certain data content were matched exactly in the exploited source, thus there is
no need to approximate conditions involving them when evaluated against data in
that source. Similarly, one of the components of a composite measure may reveal
not to contribute significantly to the overall score, and thus can be omitted from the
measure. This can be seen as an instance of inter-query adaptive query processing
[15] and can be realized by means of an appropriate Monitor-Assess-Plan-Execute
architecture, through the collection of suitable information during query execution
and their subsequent analysis. Another interesting direction could be to rely on user
feedbacks on results to refine the approximation and the corresponding measure, in
the same spirit of the approaches proposed in [12, 30].

6 Approximate XML Query Processing 153

References

1. Abiteboul, S., Buneman, P., Suciu, D.: Data on the Web: From Relations to Semistruc-
tured Data and XML. Morgan Kaufmann (1999)

2. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query
Results. In: CIDR (2003)

3. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jeffery,
K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS,
vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

4. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and Con-
tent Scoring for XML. In: VLDB, pp. 361–372 (2005)

5. Amer-Yahia, S., Lakshmanan, L.V.S., Pandit, S.: FleXPath: Flexible Structure and
Full-Text Querying for XML. In: SIGMOD Conference, pp. 83–94 (2004)

6. Amer-Yahia, S., Lalmas, M.: XML Search: Languages, INEX and Scoring. SIGMOD
Record 35(4), 16–23 (2006)

7. Augsten, N., Barbosa, D., Böhlen, M.H., Palpanas, T.: TASM: Top-k Approximate
Subtree Matching. In: ICDE, pp. 353–364 (2010)

8. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-
Centric XML. In: ICDE, pp. 814–823 (2008)

9. Augsten, N., Böhlen, M.H., Gamper, J.: Approximate Matching of Hierarchical Data
Using pq-Grams. In: VLDB, pp. 301–312 (2005)

10. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press /
Addison-Wesley (1999)

11. Bruno, N., Koudas, N., Srivastava, D.: Holistic Twig Joins: Optimal XML Pattern Match-
ing. In: SIGMOD Conference, pp. 310–321 (2002)

12. Cao, H., Qi, Y.Q., Candan, K.S., Sapino, M.L.: Feedback-driven Result Ranking and
Query Refinement for Exploring Semi-structured Data Collections. In: EDBT, pp. 3–14
(2010)

13. Chaudhuri, S., Ramakrishnan, R., Weikum, G.: Integrating DB and IR Technologies:
What is the Sound of One Hand Clapping? In: CIDR, pp. 1–12 (2005)

14. Damiani, E., Lavarini, N., Marrara, S., Oliboni, B., Pasini, D., Tanca, L., Viviani, G.: The
APPROXML Tool Demonstration. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S.,
Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 753–755.
Springer, Heidelberg (2002)

15. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and
Trends in Databases 1(1), 1–140 (2007)

16. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware. J.
Comput. Syst. Sci. 66(4), 614–656 (2003)

17. Fellbaum, C.: WordNet: An Electronic Lexical Database. MIT Press (1998)
18. Goldman, R., Widom, J.: DataGuides: Enabling Query Formulation and Optimization in

Semistructured Databases. In: VLDB, pp. 436–445 (1997)
19. Gou, G., Chirkova, R.: Efficiently Querying Large XML Data Repositories: A Survey.

IEEE Trans. Knowl. Data Eng. 19(10), 1381–1403 (2007)
20. Grust, T., van Keulen, M., Teubner, J.: Staircase Join: Teach a Relational DBMS to Watch

its (Axis) Steps. In: VLDB, pp. 524–525 (2003)
21. Guerrini, G., Mesiti, M., Bertino, E.: Structural Similarity Measures in Sources of XML

Documents. In: Darmont, J., Boussaid, O. (eds.) Processing and Managing Complex
Data for Decision Support, pp. 247–279. IDEA Group (2006)

154 G. Guerrini

22. Guerrini, G., Mesiti, M., Sanz, I.: An Overview of Similarity Measures for Clustering
XML Documents. In: Vakali, A., Pallis, G. (eds.) Web Data Management Practices:
Emerging Techniques and Technologies, IDEA Group (2007)

23. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins.
In: SIGMOD Conference, pp. 287–298 (2002)

24. Hung, E., Deng, Y., Subrahmanian, V.S.: TOSS: An Extension of TAX with Ontologies
and Similarity Queries. In: SIGMOD Conference, pp. 719–730 (2004)

25. Ide, N., Véronis, J.: Introduction to the Special Issue on Word Sense Disambiguation:
The State of the Art. Computational Linguistics 24(1), 1–40 (1998)

26. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Techniques
in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)

27. Jones, K.S., Walker, S., Robertson, S.E.: A Probabilistic Model of Information Retrieval:
Development and Comparative Experiments - Part 1 and Part 2. Inf. Process. Man-
age. 36(6), 779–840 (2000)

28. Lalmas, M.: XML Retrieval. Synthesis Lectures on Information Concepts, Retrieval, and
Services. Morgan & Claypool Publishers (2009)

29. Lalmas, M., Trotman, A.: XML Retrieval. In: Encyclopedia of Database Systems, pp.
3616–3621 (2009)

30. Lau, H.L., Ng, W.: A Multi-Ranker Model for Adaptive XML Searching. VLDB J. 17(1),
57–80 (2008)

31. Lovins, J.B.: Development of a Stemming Algorithm. Mechanical Translation and Com-
putational Linguistics 11, 22–31 (1968)

32. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top- k
Queries in XML. In: ICDE, pp. 162–173 (2005)

33. Marian, A., Schenkel, R., Theobald, M.: Ranked XML Processing. In: Encyclopedia of
Database Systems, pp. 2325–2332 (2009)

34. Navarro, G.: A Guided Tour to Approximate String Matching. ACM Comput.
Surv. 33(1), 31–88 (2001)

35. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-Hill
(1983)

36. Sanz, I., Llavori, R.B., Mesiti, M., Guerrini, G.: ArHeX: Flexible Composition of In-
dexes and Similarity Measures for XML. In: ICDE Workshops, pp. 281–284 (2007)

37. Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Fragment-Based Approximate Retrieval
in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)

38. Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Flexible Multi-Similarity XML Data
Querying with Top-k Processing. Tech. rep., Universitat Jaume I (2009)

39. Schlieder, T.: Schema-Driven Evaluation of Approximate Tree-Pattern Queries. In:
Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.)
EDBT 2002. LNCS, vol. 2287, pp. 514–532. Springer, Heidelberg (2002)

40. Tai, K.C.: The Tree-to-Tree Correction Problem. J. ACM 26(3), 422–433 (1979)
41. Tatarinov, I., Viglas, S., Beyer, K.S., Shanmugasundaram, J., Shekita, E.J., Zhang, C.:

Storing and Querying Ordered XML using a Relational Database System. In: SIGMOD
Conference, pp. 204–215 (2002)

42. Tekli, J., Chbeir, R., Yétongnon, K.: An Overview on XML Similarity: Background,
Current Trends and Future Directions. Computer Science Review 3(3), 151–173 (2009)

43. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and
Versatile Top-k Query Processing for Semistructured Data. VLDB J. 17(1), 81–115
(2008)

6 Approximate XML Query Processing 155

44. W3C: XML Path Language (XPath) 2.0 (2007),
http://www.w3.org/TR/xpath20/

45. W3C: XQuery 1.0: An XML Query Language (2007),
http://www.w3.org/TR/xquery/

46. W3C: XQuery and XPath Full Text 1.0 (2010),
http://www.w3.org/TR/xpath-full-text-10/

47. Xin, D., Han, J., Chang, K.C.C.: Progressive and Selective Merge: Computing Top-k
with ad-hoc Ranking Functions. In: SIGMOD Conference, pp. 103–114 (2007)

48. Zhang, K., Shasha, D.: Simple Fast Algorithms for the Editing Distance Between Trees
and Related Problems. SIAM J. Comput. 18(6), 1245–1262 (1989)

http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath-full-text-10/

Chapter 7
Progressive and Approximate Join Algorithms
on Data Streams

Wee Hyong Tok and Stéphane Bressan

Abstract. In this chapter, we discuss the design and implementation of join algo-
rithms for data streaming systems, where memory is often limited relative to the data
that needs to be processed. We first focus on progressive join algorithms for various
data models. We introduce a framework for progressive join processing, called the
Result Rate based Progressive Join (RRPJ) framework which can be used for join
processing for various data models, and discuss its various instantiations for pro-
cessing relational, high-dimensional, spatial and XML data.

We then consider progressive and approximate join algorithms. The need for ap-
proximate join algorithms is motivated by the observation that users often do not
require complete set of answers. Some answers, which we refer to as an approxi-
mate result, are often sufficient. Users expect the approximate result to be either the
largest possible or the most representative (or both) given the resources available.
We discuss the tradeoffs between maximizing quantity and quality of the approxi-
mate result. To address the different tradeoffs, we discuss a family of algorithms for
progressive and approximate join processing.

7.1 Introduction

The emergence of ubiquitous network connectivity allows data to be delivered as
streams. The data on these streams can come in a variety of data models, from
relational to spatial, high-dimensional and XML. New applications (e.g., sensors
databases, P2P, cloud computing, XML aggregators or data exploration, see the

Wee Hyong Tok
Microsoft
e-mail: weetok@microsoft.com

Stéphane Bressan
School of Computing, National University of Singapore
e-mail: steph@comp.nus.edu.sg

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 157–185.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

weetok@microsoft.com
steph@comp.nus.edu.sg

158 W.H. Tok and S. Bressan

CONTROL system [18]) that want to leverage these data need to be able to pro-
gressively process data from these streams. Progressive query processing techniques
produce results as new data arrives. These query processing techniques are suited to
the processing of queries to data streams. They need to be designed under two main
constraints. Firstly, because of the hardware constraints of mobile devices or/and
the massive amounts of data that needs to be processed, the size of main memory is
limited relative to the data. Secondly, data delivery is unpredictable.

Joins are one of the main building blocks of a query processing system. In this
chapter, we focus on the design and implementation of progressive and approximate
join algorithms for data stream applications. The algorithms that we will explore in
this chapter work with limited memory and adapt to unpredictable data delivery rate.

We first present and evaluate a generic progressive join processing framework,
called Result Rate-Based Progressive Join framework (RRPJ), that can deliver re-
sults incrementally using limited memory. In order to demonstrate the generic nature
of the proposed framework, we propose four instantiations of the framework for re-
lational, spatial, high-dimensional and XML join processing. We show that RRPJ
yields good performance compared to other state-of-art progressive join algorithms
for the various data models.

We then present and evaluate join algorithms that are not only progressive but
also approximate. Often, users do not require complete set of answers. Some an-
swers, which we refer to as an approximate result, are often sufficient. Given lim-
ited resources, users expect the approximate result to be either the largest possible
or the most representative (or both). We discuss the tradeoffs between maximizing
quantity and quality of the approximate result. To address the different tradeoffs, we
present and evaluate a family of algorithms for progressive and approximate join
processing.

7.2 Background

Many join processing algorithms [47, 46, 16, 14, 38, 32, 51, 40, 26, 27] have been
proposed. Most of these algorithms focus on the equi-join. In order to ensure that
join processing is non-blocking (or progressive), many of these equi-join algorithms
leverage the seminal work on symmetric hash join’s (SHJ) [49]. SHJ assumes the
use of in-memory hash tables, and makes use of an insert-probe paradigm. This
allows results to be delivered progressively to users. In an insert-probe paradigm,
a newly-arrived tuple is first used to probe the hash partition for the corresponding
data stream. If there are matching tuples (based on the join predicate), the matching
tuples are output as results. The newly-arrived tuple is then inserted into its own
hash partition. This allows results to be output immediately whenever new tuples
arrive.

In order to address the issue of limited memory, many subsequently proposed
progressive relational join algorithms (e.g [47, 46, 32, 40]) considered an exten-
sion of the SHJ model, where both in-memory and disk-based hash partitions are

7 Progressive and Approximate Join Algorithms on Data Streams 159

used. The extended version of the SHJ model consists of three phases: (1) Active
(2) Blocked (3) Cleanup. In the active phase, data is continuously arriving from
the data streams. Whenever a newly tuple arrives, it is first used to probe the hash
partitions for the corresponding data stream, before it is inserted into its own hash
partitions. Whenever memory is full, some of the in-memory tuples are flushed to
disk to make space for new-arriving tuples. Whenever the data stream blocks, the
extended SHJ moves into a blocked phase. During the blocked phase, data from the
disk partitions are retrieved and joined with either in-memory or disk-resident tuples
from the corresponding data streams. This allows the delays from the blocked data
streams to be hidden from the end user. In the cleanup phase, all tuples that have
not been previously joined are then joined to ensure that the results produced are
completed.

In order to maximize result throughput, a key focus of existing progressive join
algorithms is to determine the set of tuples that are flushed to disk whenever mem-
ory is full. Many flushing techniques have been proposed for progressive join algo-
rithms. These techniques can be classified as heuristic-based or statistics-based. In
heuristic-based techniques, a set of heuristics govern the selection of tuples or par-
titions to be flushed to disk. These heuristics ranges from flushing the largest (e.g.,
XJoin [46]) to a concurrent flushing of partitions (e.g., Hash-Merge Join (HMJ)
[32]). In statistics-based techniques, a statistical model is maintained on the input
distribution. Whenever a flushing decision needs to be made, the statistical model
can be used to determine the tuples or partitions that are least likely to contribute to
a future result. These tuples or partitions are then flushed to disk. Amongst the vari-
ous statistical based techniques, the Rate-based Progressive Join (RPJ) and Locality-
Aware (LA) models are the state-of-art in statistic-based progressive join algorithms.
RPJ rely on the availability of an analytical model deriving the output probabilities
from statistics on the input data. This is possible in the case of relational equi-joins
but embeds some uniformity assumptions that might not hold for skewed datasets.
For example, if the data within each partition is non-uniform, the RPJ local unifor-
mity assumption is invalid.

Consider the two partitions, belonging to dataset R and S respectively, presented
in Figure 7.1. The grayed area represent the data and white an empty space. The
vertical axis for the rectangles represents data values. Suppose in both Figure (a)
and (b), N tuples have arrived. In Figure 7.1(a), the N tuples is uniformly distributed
across the entire partitions of each dataset. Whereas in Figure 7.1(b), the N tuples
is distributed within a specific numeric range (i.e., areas marked grey). Assume the
same number of tuples have arrived for both cases, then P(1|R) and P(1|S) would be
the same. However, it is important to note that if partition 1 is selected to be the par-
tition to be kept in memory, the partitions in Figure 7.1(a) would produce results as
predicted by RPJ. Whereas the partitions in Figure 7.1(b) would fail to produce any
results. Though RPJ attempts to amortize the effect of historical arrivals of each re-
lation, it assumes that the data distribution remains stable throughout the lifetime of
the join, which makes it less useful when the data distribution are changing (which
is common in long-running data streams).

160 W.H. Tok and S. Bressan

The LA model is designed for approximate sliding window join on relational
data. It relies on determining the inter-arrival distance between tuples of similar val-
ues in order to compute the utility of the tuple. Consequently, the utility of the tuple
is used to guide the tuples to be flushed to disk. In the case of relational data, a
similar tuple could be one that has the same value with a previous tuple. However,
for non-relational data, such as spatial or high-dimensional data, the notion of sim-
ilarity becomes blurred. Another limitation of the LA model is that it is unable to
deal with changes in the underlying data distribution. This is because with a fre-
quently changing data distribution, which is common in long running data streams,
the reference locality, which is a central concept in the LA model cannot be easily
computed. Hence, both RPJ and LA model cannot be easily extended to deal with
non-relational data models.

Partition 1
from R

Partition 1
from S

Partition 1
from R

Partition 1
from S

(a) Uniform Data (b) Non-Uniform Data
within partition within partition

Fig. 7.1 Data in a Partition.

7.3 Why Progressive Joins?

As many of the existing progressive join techniques are designed for relational data
model, they are not easily adapted to other data models. As a result, new progressive
join techniques, with different flushing policies need to be proposed for each type
of data that needs to be processed. In addition, when processing large datasets or
data streams, the amount of memory available for keeping the data is often limited.
Whenever memory is full, a flushing policy is used to determine the data that are
either flushed to disk partitions, or discarded. Data are flushed to disk partitions if
the user is interested in the complete production of results. On the other hand, if
the user is interested in approximate results, some of the in-memory data can be
discarded.

This research is driven by the need to design a generic, progressive join frame-
work that meets three objectives. Firstly, the framework must be easily generalized
to different data models (e.g., relational, spatial, high-dimensional XML). Secondly,
the progressive join framework must work with limited memory. Thirdly, it is im-
portant to identify the metrics that are suitable for evaluating the performance of the
progressive joins. The chapter is divided into the following parts.

7 Progressive and Approximate Join Algorithms on Data Streams 161

The first part of the chapter presents motivation for a generic progressive join
framework, which can be used in different data models. In order to address all these
issues, we focus on SHJ-based algorithms as one of the building blocks for design-
ing a progressive join framework. This is because the probe-insert paradigm used
in SHJ-based algorithms provides the basis for producing results (if any) whenever
data is available. As SHJ-based algorithms rely on hashing for probing and inser-
tion, the challenge is to identify the appropriate hash-based data structure for each
of the data models. In order to deal with limited memory, the flushing policy is
one of the key factors for maximizing the result throughout or the quality of the
approximate result subset produced. Most importantly, the flushing policy must be
independent of the data model. While heuristics-based flushing policies meet the
criteria of data model independence, they perform poorly compared to the statistics-
based techniques. Most importantly, statistics-based techniques provide strong the-
oretical guarantees on the expected result output. However, existing statistic-based
techniques suffer from the data model dependence. While many good statistic-based
techniques have been proposed for the relational data model, none of these can be
easily extended for other data models. In order to have a generic flushing policy, we
observed that the goal of progressive join algorithms is on result throughput maxi-
mization. Motivated by this, we conjectured that the statistics used to determine the
data that are flushed from memory should be result-driven.

The second part of the chapter is motivated by the observation that users might
not need the production of complete results. Also, in data stream applications, the
notion of complete results is impractical, since the data streams can be potentially
infinite. When approximate results are produced, it is important to distinguish be-
tween the quantity and quality of the results. Noting that sampling-based techniques
have been previously disqualified by the authors of [14] without further investiga-
tions, we show that this disqualification is mistaken. In the chapter, we show that a
stratified sampling approach is both effective and efficient for progressive, approx-
imate join processing.

7.4 Joins from Different Data Models Flock Together

7.4.1 Relational Joins

Many methods [46, 32, 40, 27] have been proposed to deal with the progressive
equi-join problem on relational data streams. A recent trend amongst these methods
is to make use of probabilistic models on the data distribution to determine the best
data to be kept in memory.

RPJ [40] is a multi-stage hash-based join algorithm, for joining data that are trans-
mitted from remote data sources over a unreliable network. Similar to hash-based
join algorithms like XJoin, RPJ stores the data into partitions. Each partition con-
sists of two portions, one residing in memory and the other on disk. Whenever a new
data arrives, RPJ computes the hash value based on the join attribute, and uses this
to probe the corresponding partition to identify matching tuples. The RPJ algorithm

162 W.H. Tok and S. Bressan

consists of several stages. The stages are as follows: (1) Memory-to-Memory (2) Re-
active. In the Memory-to-Memory stage (mm-stage), arriving data are joined with
the in-memory tuples from the other data set. Whenever the memory overflows, se-
lected tuples are flushed to the disk partitions. The Reactive Stage is triggered when-
ever the data source blocks. It consists of two sub-tasks: (i) Memory-Disk (Md-task)
and (2) Disk-Disk (Dd-task). In the Md-task, data that are in memory are joined with
their corresponding partitions on disk. And in the Dd-task, data that are on disk are
joined with the corresponding partitions from the other data sets on disk. One of the
key idea of RPJ is to maximize the number of results tuples by keeping tuples that
have higher chances of producing results with the tuples from the corresponding
data set in memory. An Optimal Flush technique flushes tuples that are not useful
to disk. This is achieved by building a model on the tuples’ arrival pattern and data
distribution. Whenever memory becomes full, the model can be used to determine
probabilistically which tuples are least likely to produce tuples with the other in-
coming data, and hence flushed from memory to disk. RPJ computes parr

i (v), which
denotes the probability that the next incoming tuple would be from data source i,
and has the value v. Using the arrival probabilities, the RPJ strategy is illustrated
by the following example. The tuples from two remote data sources R and S, are
continuously retrieved, and joined. The join condition is R.a = S.a, the domain of
the join attribute, a, is {2,4,6,8}. The arrival probabilities for R are: parr

R (2) = 10%,
parr

R (4) = 15%, parr
R (6) = 4% and parr

R (8) = 6%; whereas the arrival probabilities
for S are: parr

S (2) = 5%, parr
S (4) = 20%, parr

S (6) = 30% and parr
S (6) = 10%. At the

instance when memory overflows, each of the data sources has 2 tuples for each
value in memory. Suppose n f lush=6 tuples need to be flushed from memory. Since
the arrival probability for parr

R (6) = 4% is the smallest, we will need to flush 2 S-
tuples with the value 6 from memory (i.e., these S-tuples would be least likely to
produce results since the corresponding R-tuples do not arrive as often compared
to other tuples). Since n f lush=6, we would need to flush 4 more tuples from mem-
ory. We consider the next smallest arrival probability. In this case, parr

S (2) = 5% is
the smallest. Thus, we flush 2 R-tuples with the value 2 from memory. Finally, we
consider parr

R (8) = 6%, and flush 2 S-tuples with the value 8 from memory.
[27] observes that a data stream exhibits reference locality when tuples with spe-

cific attribute values has a higher probability of re-appearing in a future time inter-
val. Leveraging this observation, the Locality-Aware (LA) model exploits the refer-
ence locality caused by both long-term popularity and short-term correlations. This
is described by the following model: xn = xn−i (with probability ai); xn = y (with

probability b, where 1 ≤ i ≤ h and b +
h
∑

i=1
ai = 1. y denotes a random variable that

is independent and identically distributed (IID) with respect to the probability dis-
tribution of the popularity, P. Using this model, the probability that a tuple t will
appear at the n-th position of the stream is given by Prob(xn = t|xn−1, ...,xn−h) =

bP(t)+
h
∑
j=1

a jδ (xn− j, t) (δ (xk, t) = 1 if xk = t, and it is 0 otherwise). Using the LA

model, the marginal utility of a tuple is then derived, and is then used as the basis
for determining the tuples to be flushed to disk whenever memory is full.

7 Progressive and Approximate Join Algorithms on Data Streams 163

7.4.2 Spatial Joins

In this section, we discuss various types of spatial join processing techniques that
have been proposed. In addition, we have also conducted an extensive survey on
continuous query processing on spatial data, which is presented in [21].

Spatial index structures such as R-tree [17], R+-tree [35], R*-tree [4] and PMR
quad-tree [33] were commonly used together with spatial joins. In [10], Brinkhoff et
al. proposed a spatial join algorithm which uses a depth-first synchronized traversal
of two R-trees. The implicit assumption is that the R-trees has already been pre-
constructed for the two spatial relations to be joined. A subsequent improvement to
the synchronized traversal was proposed by [20], called Breadth First R-tree Join
(BFRJ). By traversing the R-tree level by level, BFRJ was able to perform global
optimization on which are the next level nodes to be accessed, and hence minimize
page faults. In [29], a seeded tree method for spatial joins was proposed. It assumes
that there is a pre-computed R-tree index for one of the spatial relations. The initial
levels of the R-tree index are then used to provide the initial levels (i.e., seeds) for the
dynamically constructed R-tree of the corresponding spatial relation. An integrated
approach for handling multi-way spatial join was proposed in [31]. Noting that the
seeded tree approach performs poorly when the fanout of the tree is large to fit into
a small buffer small, [31] also proposed the Slot Index Spatial Join to tackle the
problem.

The use of hashing was explored in [30, 34]. In [30], the Spatial Hash Join (SHJ)
was proposed to compute the spatial join for spatial data sets which has no indexes
pre-constructed. Similar to its relational counter-part, the spatial hash join consists
of two phases: (1) Partitioning Phase and (2) Join Phase. In the Partitioning Phase,
a spatial partitioning function first divides the data into outer and inner buckets. In
order to address issues due to the coherent assignment problem, a multiple assign-
ment of data into several buckets was adopted. This allows two bucket pairs to be
matched exactly once, and reduces the need to scan other buckets. In the join phase,
the inner and outer buckets are then joined to produce results. The Partition Based
Spatial-Merge (PBSM) method proposed in [34] first divides the space using a grid
with fixed-sizes cells (i.e., tiles). These tiles are then mapped to a set of partitions.
The data objects in the partitions are then joined using a computational geometry
based plane-sweeping approach. In [1], the Scalable Sweeping-Based Spatial Join
(SBSJ) was proposed. The design of SBSJ is based on the observation that in plane-
sweeping approaches, only the objects that intersect with the sweeping line need to
be in memory. In addition, SBSJ ensures that data is not replicated.

Spatial join algorithms based on other novel data structures have also been pro-
posed. The Filter Trees [36], a multi-granularity hierarchical structure, was used
as an alternative to R-trees and its variants. Noting that techniques such as PBSM
and SHJ requires replication of data, the Size Separation Spatial Join (S3J) [23]
was proposed by building incomplete Filter Trees on-the-fly and using them in join
processing.

Existing spatial join processing techniques focus on reducing the number of I/Os
for datasets that reside locally. None of these proposed techniques are optimized for

164 W.H. Tok and S. Bressan

delivering the initial results quickly, and do not consider the case where spatial data
are continuously delivered from remote data sources.

7.4.3 High-Dimensional Distance-Similarity Joins

Many efficient distance similarity joins [37, 25, 6, 7, 22] have been proposed for high-
dimensional data. To facilitate efficient join processing, similarity join algorithms
often relies on spatial indices. R-trees (and variants) [17], X-tree [5] or the ε-kdb tree
[37] are commonly used. The Multidimensional Spatial Join (MSJ) [25, 24] sorts the
data based on their Hilbert values, and uses a multi-way merge to obtain the result.
The Epsilon Grid Order (EGO) [7] orders the data objects based on the position of
the grid-cells. Another related area is the K-nearest Neighbor (KNN) [8, 9]. The
Multi-page Index (MUX) method [9], uses R-trees to reduce the CPU and I/O costs
of performing the KNN join. GORDER [50] uses Principal Component Analysis
(PCA) to identify key dimensions, and uses a grid for ordering the data.

The main limitation of conventional distance similarity join algorithms is that
they are designed mainly for datasets that reside locally. Hence, they are not able to
deliver results progressively.

7.4.4 Progressive XML Structural Joins

[19] proposed a Massively Multi-Query Join Processing (MMQJP) technique for
processing value joins over multiple XML data streams. Similar to our approach,
MMQJP consists of two phases: XPath Evaluation and Join Processing phase. In
the XPath evaluation phase, the XML data streams are matched and auxiliary infor-
mation stored as relations in a commercial database management systems (DBMS)
- Microsoft SQL Server. The auxiliary information are then used during the join
processing phase for computing results. Thus, MMQJP can only deliver results
when the entire XML documents have arrived. In addition, MMQJP have no control
over the flushing policy due to its dependence on the commercial DBMS. In contrast
to MMQJP, our proposed technique delivers results progressively as portions of the
streamed XML documents arrived.

In addition, a physical algebra for XQuery was proposed in [39]. The algebra
allows XML streaming operators to be intermixed with conventional XML and re-
lational operators in a query plan. This allows pipelined plans to be easily defined.
The work in [39] does not consider memory management issues.

7.5 Generic Progressive Join Framework

In this chapter, we present the issues that need to be considered for designing a
generic progressive join framework. These include the need for a data structure

7 Progressive and Approximate Join Algorithms on Data Streams 165

to support efficient frequent probe-insert, and a data-model independent flushing
policy to determine the data to be flushed to disk whenever memory is full.

7.5.1 Building Blocks for Generic Progressive Join Framework

7.5.1.1 Data Structures

We focus on data structures used for hash-based joins. It is important to note that
even though progressive join algorithms based on sort-merge paradigm (e.g., [16])
exists. These algorithms are not able to deliver initial results quickly, as results can
only be produced when the data structure (i.e., sweep area) used is sufficiently full
before sorting can be performed.

A data structure, D, used to store data and support the join algorithm must have
the following required properties: (1) Correctness and (2) Completeness. It must
ensure that the results produced are correct with respect to the join predicate used.
In addition, it must ensure that the complete result set can be produced. A desirable
property is having a minimal data structure. This means that the data structure must
ensure that the minimum number of partitions are scanned in order to compute the
complete result set. For example, given a data structure, D. D is used for storing data
from two data sources R and S. Given a tuple t from R, if all the partitions from S
need to be scanned in order to identify the result set, then D is not minimal.

D divides the data space into equal-sized partitions, each denoted by Pi, where
i denotes the i-th partition. Whenever a new data object o arrives, a partitioning
function f determines the partition which o belongs to. Formally, f(o) → I, where I
denotes a set of partitions, N denotes the total number of partitions, and {1,,N}
∈ I. Ideally, I = 1 (i.e each object is assigned to a single partition).

For relational data, this can be easily achieved by choosing a good hash function,
f, which assigns each data object into a single partition. For spatial data, we make use
of the same spatial partitioning function used in Spatial Hash Joins [30]. Each spatial
object is replicated into the grid-cells in which it intersects. As observed in [30], the
replication is necessary to allow pairwise joins between partitions from each data
source. For high-dimensional data (i.e., n-dimension), each object is inserted into
the partition (i.e., grid-cell) in which it falls into.

Next, we introduce the notion of a correspondence function, κ . κ maps a parti-
tion P to the set of partitions from the other data stream that need to be scanned.
Formally, κ(P) → J, where J denotes the set of partition(s) that need to be scanned
from the other data stream. This is illustrated in Figure 7.2, where a partition P is
mapped to a partition in the other data grid. It is important to note that it is possible
that a partition from one grid need not necessary map to the same partition in the
other data grid.

For both relational data and spatial data, κ is usually the identity correspondence
(i.e., I = J), which is necessary to ensure that only pairwise partitions (one from each
of the data streams) are scanned in order to identify the complete result set. This
help to prevent redundant scanning of partitions which will not yield any results.

166 W.H. Tok and S. Bressan

P

K(P)

Fig. 7.2 Correspondence Function, κ .

If the partitioning functions used for each of the data stream are not the same, then
κ is non-identity. For high-dimensional data, κ is non-identity. This is because, for
each grid-cell from one data stream, the grid-cell that contains data that are epsilon-
distance needs to be scanned in order to find the complete result set. Table 7.1 sum-
marizes the data structure, and the partitioning function used for each data type.

Table 7.1 Various Data Structures.

Data Type Data Structure, DS Partitioning Function, f |I| κ
Relational Hash-based partitions Modulo 1 Identity

Spatial 2-dimensional Grid Insert each object ≥1 Identity
into the grid-cells in
which it intersects

High Dimensional n-dimensional Grid Insert each object 1 Non-identity
Data into the grid-cell it

falls into

7.5.1.2 Flushing Policy

Whenever memory becomes full, the flushing policy determines the tuples to be
flushed to disk. The goal of the generic progressive join framework is to design
flushing policies that are independent of the data model used. Consequently, this
allows the generic progressive join framework to be easily instantiated for other
data models easily. In contrast, flushing policies which are dependent on the input
data distribution and the type of join predicates cannot be easily generalized.

7.5.2 Progressive Join Framework

We consider the problem of performing a join J between two datasets R and S,
which are transmitted from remote data sources through an unpredictable network.
Let R and S be denoted by R = {r1,r2, . . . ,rn}, and S = {s1,s2, . . . ,sm}, where ri

and s j denotes the i-th and j-th data objects. The join predicate is denoted by Jpred .
Formally, (ri, s j) is reported as the result if ri and s j satisfies Jpred . The goal is to
deliver initial results quickly and ensure a high result-throughput.

The general form of a progressive join algorithm presented in Algorithm 1. In
Algorithm 1, we assume that there are two remote data sources, R and S. The in-
memory data structures used to store the data objects from R and S are denoted by

7 Progressive and Approximate Join Algorithms on Data Streams 167

DR and DS respectively. endOfStream(. . .) determines whether data from the stream
has completely arrived. This is usually indicated by an end-of-stream marker sent by
the remote data source. isBlocked(. . .) determines whether data from the stream is
blocked (i.e., data did not arrive for a user-defined duration). ProcessUnJoinedData()
determines the data that has not been previously joined and joins them to produce
results. select(R,S) gets the data from either of the data streams to be processed.

Algorithm 1. Generic Progressive Join.
1: while (!endOfStream(R) and !endOfStream(S)) do
2: if (isBlocked(R) and isBlocked(S)) then
3: //Blocking Phase
4: ProcessUnJoinedData()
5: end if

6: //In-memory Phase
7: tuple t = select(R,S)

8: if (t.src == R) then
9: DS.probe(t)

10: DR.insert(t)
11: else if (t.src == S) then
12: DR.probe(t)
13: DS.insert(t)
14: end if
15: end while

16: //Cleanup Phase
17: CleanUp()

18: return (Results tuples from the join)

In the In-Memory phase, whenever a new data object t arrives, it is used to probe
(line 9 or line 12) the corresponding data structure to identify all the data objects
in DSs that joins with it. Once the probe is completed, t is then inserted the data
structure used to store the in-memory data (line 10 or line 13). During the insertion
of t, the algorithm needs to check whether the memory is full. If it is full, data needs
to be flushed to disk. This is determined by a flushing policy.

When both the data sources block (lines 2-5), the algorithm moves into the Block-
ing Phase. In order to produce results during this phase, the join algorithm joins the
in-memory data with the on-disk data. When all the in-memory data has been joined,
the algorithm would need to join disk-resident data from both the data sources. This
allows results to be produced even though both data streams are blocked.

In the Cleanup phase (line 17), data which have not been joined in the prior phases
are joined. These include joining in-memory data with disk-resident data and disk-
resident data with disk-resident data. These ensure that the complete result set is pro-
duced. It is important to that due to the multiple invocations of the various phases,

168 W.H. Tok and S. Bressan

duplicate results would be produced. These duplicates are removed using online du-
plicate elimination methods which has been extensively described in [46] and [40].

7.5.2.1 Result-Rated Based Flushing

In this section, we present a flushing policy which maintains statistics over the re-
sult distribution, instead of the data distribution. This is motivated by the fact that
in most progressive join scenarios, we are concerned with delivering initial results
quickly and maintaining a high overall throughput. Hence, the criteria used to deter-
mine the tuples that are flushed to disk whenever memory becomes full should be
‘result-motivated’. We refer to join algorithms that make use of the result-rate based
flushing policy as Result-Rate Based Progressive Join (RRPJ).

Whenever memory is full, we compute the Thi values (i.e value computed by
formula given in Equation 7.3) for all the partitions. Partitions with the lowest T hi

values will then be flushed to disk, and the newly arrived tuple inserted. The main
difference between the RRPJ flushing and RPJ is that the Thi values are reflective
of the output (i.e., results) distribution over the data partitions. In contrast, the RPJ
values are based on the input data distribution.

To compute the T hi values (computed using Equation 7.3), we track the total
number of tuples, ni (for each partition), that contribute to a join result from the
probes against the partition. Intuitively, RRPJ tracks the join throughput of each
partition. Whenever memory becomes full, we flush n f lush (user-defined parameter)
tuples from the partition that have the smallest T hi values, since these partitions
have produced the least result so far. If the number of tuples in the partition is less
than n f lush, we move on to the partition with the next lowest T hi values.

Given two timestamps t1 and t2 (t2 > t1)and the number of join results produced
at t1 and t2 are n1 and n2 respectively. A straightforward definition of the throughput
of a partition i, denoted by Thi, is given in Equation 7.1.

Thi =
n2− n1

t2− t1
(version 1) (7.1)

From Equation 7.1, we can observe that since (t2−t1) is the same for all partitions, it
suffices to maintain counters on just the number of results produced (i.e., n1 and n2).
A partition with a high T hi value will be the partition which has higher potential of
producing the most results. Moreover, it is important to note that Equation 7.1 does
not take into consideration the size of the partitions and its impact on the number of
results produced. Intuitively, a large partition will produce more results. It is impor-
tant to note that this might not always be true. For example, a partition might contain
few tuples, but produces a lot of results. This partition should be favored over a rel-
atively larger partition which is also producing the same number of results. Besides
considering the result distribution amongst the partitions, we must also consider the
following: (1) Total number of tuples that have arrived, (2) Number of tuples in
each partition, (3) Number of result tuples produced by each partition and (4) Total
results produced by the system. Therefore, we use an improved definition for Thi,
given below.

7 Progressive and Approximate Join Algorithms on Data Streams 169

Suppose there are P partitions maintained for the relation. Let Ni denote the num-
ber of tuples in partition i (1 ≤ i ≤ P), and Ri denote the number of result tuples
produced by partition i. Then, the T hi value for a partition i can be computed. In
Equation 7.2, we consider the ratio of the results produced to the total number of
results produced so far (i.e., numerator), and also the ratio of the number of tuples
in a partition to to the total number of tuples that have arrived (i.e., denominator).

Thi = (Ri
P
∑

j=1
R j

)/(Ni
P
∑

j=1
Nj

) =
Ri×

P
∑

j=1
Nj

P
∑

j=1
R j×Ni

(version 2) (7.2)

Since the total number of results produced and the total number of tuples is the same
for all partitions, Equation 7.2 can be simplified. This is given in Equation 7.3.

Thi =
Ri
Ni

(version 2 - after simplification) (7.3)

Equation 7.3 computes the T hi value w.r.t to the size of the partition. For example,
let us consider two cases. In case (1), suppose Ni = 1 (i.e., one tuple in the partition)
and Ri = 100. In case (2), suppose Ni = 10 and R1 = 1000. Then, the T hi values for
case (1) and (2) are the same. This prevents large partitions from unfairly dominating
the smaller partitions (due to the potential large number of results produced by larger
partitions) when a choice needs to be made on which partitions should be flushed to
disk.

7.5.2.2 Amortized RRPJ (ARRPJ)

In order to allow RRPJ to be less susceptible to varying data distributions, we intro-
duce Amortized RRPJ (ARRPJ). Suppose there are two partitions P1 and P2, each
containing 10 tuples. If P1 produces 5 and 45 result tuples at timestamp 1 and 2
respectively, the T h1 value is 5. If partition P2 produces 45 and 5 result tuples
at timestamp 1 and 2 respectively, the T h2 value for P2 will also be 5. From the
above example, we can observe that the two scenarios cannot be easily differenti-
ated. However, we should favor partition P1 since it is obviously producing more
results than P2 currently. This is important because we want to ensure that tuples
that are kept in memory are able to produce more results because of its current state,
and not due to a past state.

To achieve this, let σ be a user-tunable factor that determines the impact of his-
torical result values. The amortized RRPJ value, denoted as At

i , for a partition i at
time t is presented in Equation 7.4. When σ = 1.0, then the amortized RRPJ is ex-
actly the same as the RRPJ. When σ = 0.0, then only the latest RRPJ values are
considered. By varying the values of σ between 0.0 to 1.0 (inclusive), we can then
control the effect of historical RRPJ on the overall flushing behavior of the system.

At
i =

σ t r0
i +σ t−1r1

i +σ t−2r2
i +......+σ 1rt−1

i +σ 0rt
i

Ni
=

t
∑

j=0
σ (t− j)r j

i

Ni

(7.4)

170 W.H. Tok and S. Bressan

7.5.3 RRPJ Instantiations

In the various instantiations of the framework, RRPJ is effective and efficient and
is able to ensure a high result throughput using limited memory. An early version
of the generic progressive join framework for spatial data, called JGradient, which
builds a statistical model based on the result output is presented in [41]. Using the
insights from [41], we propose a generic progressive framework, called Result-rate
based progressive join (RRPJ) for relational data streams. RRPJ improves on JGra-
dient in several aspects. Firstly, RRPJ take into consideration the size of each of
the hash partitions. Secondly, an amortized version of RRPJ is introduced to handle
changes in the result distribution from long-running data streams. The results of this
research have been published in [44]. In order to show that the RRPJ can be instanti-
ated for other data models, we studied the issues that arise from using the framework
for high-dimensional data streams. We show that the high-dimensional instantiation,
called RRPJ High Dimensional is able to maximize the results produced using lim-
ited memory.The results of this research have been published in [43].

The use of the the RRPJ framework for progressive XML value join processing
is presented in [45]. In [45], For-Where-Return (FWR) XQuery queries are decom-
posed into a query plan that composes of twig queries and hash joins. In addition,
using the result-oriented approach for query processing, a result-oriented method
for routing tuples in a multi-way join, called Result-Oriented Routing (RoR) is also
presented. RoR is used for routing tuples for join processing over multiple XML
streams. The method is generic and can also be used for other data models.

To demonstrate the real-world applications of the RRPJ framework, a prototype
for continuous and progressive processing of RSS feeds, called Danaı̈des is pre-
sented in [42]. In Danaı̈des, users pose queries in a SQL dialect. Danaı̈des supports
structured queries, spatial query and similarity queries. The Danaı̈des service con-
tinuously processes the subscribed queries on the referenced RSS feeds and, in turn,
published the query results as RSS feeds. Whenever memory is full, Danaı̈des uses
the RRPJ framework to determine the RSS feeds that are flushed to disk. The results
of Danaı̈des is a RSS feed, which can be read by standard RSS readers.

7.6 Progressive Approximate Joins

Users often do not require a complete answer to their query but rather only a sample.
They expect the sample to be either the largest possible or the most representative
(or both) given the resources available. We call the query processing techniques that
deliver such results ’approximate’. Processing of queries to streams of data is said
to be ’progressive’ when it can continuously produce results as data arrives. In this
chapter, we are interested in the progressive and approximate processing of queries
to data streams when processing is limited to main memory. In particular, we study
one of the main building blocks of such processing: the progressive approximate
join. We devise and present several novel progressive approximate join algorithms.
We empirically evaluate the performance of our algorithms and compare them with

7 Progressive and Approximate Join Algorithms on Data Streams 171

algorithms based on existing techniques. In particular we study the trade-off between
maximization of throughput and maximization of representativeness of the sample.

In data stream applications [3, 2, 11] the amount of data to be processed is gen-
erally much larger (potentially infinite) than the available memory. This is particu-
larly true for applications whose processing is running on devices such as handheld
computers, for instance. The progressive production of results therefore requires
query processing algorithms that can make the best use of main memory and uti-
lize secondary storage cleverly. Representative of this family of algorithms are the
progressive joins such as XJoin [46], RPJ [40], HMJ [32], and our own RRPJ [44].

In addition, in many such applications, users are so concerned with rapid produc-
tion of results that they are ready to give up completeness of the result. In this case,
users may prefer results that can be produced in main memory only. In other words,
users often do not require a complete answer to their query but rather only a sample.
They expect the sample to be either the largest possible -they favor quantity-, the
most representative -they favor quality- or both? They may need to seek a compro-
mise between quality and quantity-, given the resources (main memory) available.
We call the query processing techniques that deliver such results ’approximate’.

In this section, we discuss the design of progressive, approximate join algorithms.
The reference progressive approximate join is Prob introduced in [14] and its ex-
tended version [15]. The authors propose the notion of maximum subset (MAX-
Subset) which leads to similar strategies as the ones used by progressive algorithms
such as RPJ [40] and RRPJ [44] to maximize the size of the set of results produced.
The focus of the work is on result quantity. We show that the performance of Prob
can be improved by stratifying the memory available. We propose ProbHash, a di-
rect extension of Prob, in which the memory is hash partitioned and an approximate
version of our progressive algorithm RRPJ also using hash partitioning. Interest-
ingly, the authors of [14] have disqualified reservoir sampling based methods based
on the extreme scenario given in [12] without further experiments. We show that this
disqualification is mistaken. We propose a reservoir sampling-based approximate
progressive join, that we call Reservoir Approximate Join (RAJ), and its stratified
version RAJHash. We show that these algorithms favor the representativeness of the
set of results produced and ensure better quality than the other algorithms.

7.6.1 Extreme Scenario

In this section, we describe a static and dynamic case for the extreme scenario shown
in [12]. In the extreme scenario, the data distributions for the relations to be joined
are skewed.

It was noted that when the data distributions are skewed, the join of the sam-
ples would not produce any results [12]. Given two relations R1(A,B) and R2(B,C),
where A, B and C are attributes of the relations. Each relation consists of N tuples.
Figure 7.3 shows the data in each of the relations. Suppose we obtain two random
samples SR1 and SR2 from R1 and R2 respectively. The likelihood that the value b1 is
selected and included in sample SR1 will be very low. Similarly, the likelihood that

172 W.H. Tok and S. Bressan

the value b2 is selected included in sample SR2 is also very low. Thus, if we compute
the samples first, and then compute SR1 � SR2 , the results will be empty. We refer to
this as the static case. In the static case, we assume that all the data is available, and
we first create the samples from each of the relations. The join is performed only
when the samples are created.

A B B C
a1 b1 b2 c1
a2 b2 b1 c2
a3 b2 b1 c3
a4 b2 b1 c4
.
aN b2 b1 cN

R1 R2

Fig. 7.3 Extreme Case.

In contrast, we consider the dynamic case for data streams applications. In the
dynamic case, we progressively build the sample and perform the join at the same
time. Assume that we maintain two samples SR1 and SR2 , each of size n. In this
example, we set n = 2. Reservoir sampling [48] is used to maintain the two samples.
When the tuple R1(a1,b1) arrives, we first probe SR2 to find any tuples that can be
joined. Since SR2 is empty, no results are produced. We then insert R1(a1,b1) into
SR1 . Next, when the tuple R2(b2, c1) arrives, we probe SR1 . Similarly, no results
are produced. R2(b2, c1) is inserted into SR2 . When the tuple R1(a2,b2) arrives, the
probe of SR2 will generate one result. It is then inserted into SR1 . Similarly, when
the tuple R2(b1,c2) arrives, it will join with the tuple in SR1 . As the two samples
are now full, when the next tuple arrives for R1, it will have a probability of 2/3 to
replace a randomly selected tuple in the reservoir. Since there are only two tuples in
the sample, the probability that the rare tuple R1(a1,b1) is replaced is 1/3. When the
size of the reservoir is large, the probability that the rare tuple will be replaced in
the dynamic case will be small. Thus, for the dynamic case, join results will still be
produced even for skewed distributions.

7.6.2 Measuring the Performance of Progressive, Approximate
Joins

There are two ways to measures the performance of an approximate algorithm. If
we are interested in quantity, the measure of performance for the algorithm is the
amount of results produced. If we are interested in quality, we need to measure the
similarity between the data distribution of the complete set of results and the data
distribution of the set of results produced. Because we are interested in progressive
algorithms, performance is not a unique number but a function of time. It is mea-
sured in term of throughput, quantity over time, when size matters. It is measured
in terms of quality over time (quality throughput), when quality matters. If both

7 Progressive and Approximate Join Algorithms on Data Streams 173

quantity and quality matter, we need both functions. Notice that the comparison of
both functions by looking at quantity as a function of quality (or vice versa) at given
points in time visualizes the compromise realized by a given algorithm.

We considered defining a combined measure of quantity and quality (similarly to
the F-measure, which combines recall and precision). Unfortunately, our measure of
quality using JS Divergence or any comparable statistical measures is unbounded,
and cannot be normalized.

In order to measure quality, we need to compare two data distributions. We can
compute, combine and compare any statistics and obtain more or less significant
measurements at different level of granularity.

A reasonable metric is the Mean-Square Error (MSE) between the normalized
histograms of the complete results and result produced by the approximate join. We,
however choose a slightly more accurate measurement with the Jensen-Shannon di-
vergence [28], which determines the similarity (or divergence) between two proba-
bility distributions.

We first discuss the MSE measure. The MSE measure measures the error differ-
ences between the actual and observed results produced. In the approximate join
scenario, the actual results refer to the results produced if the entire join is com-
puted (or when the memory is unlimited and all data fit into main memory). The
observed results refer to the results produced by the approximate join method. In or-
der to ensure a fair comparison between the actual and observed result distribution,
we compare the normalized frequency instead of the actual frequency for each join
attribute value. Let the total number of results produced by the complete and ap-
proximate join be |R| and |R′| respectively. For each value vi ∈ V , where V denotes
the domain of the join attribute, and 1 ≤ i ≤ |V |. |vi| and |v′i| denotes the number of
actual and observed results with value vi. For each join attribute vi, the normalized

value for the complete and approximate joins is given by |vi|
|R| and

|v′i |
|R′| respectively.

The MSE between the complete join J and approximate join J’ is given by

MSE(J,J′) =
V

∑
i=1

(
|vi|
|R| −

|v′i|
|R′|)

2 (7.5)

In probability and information theory, the Kullback Leibler (KL) and Jensen-
Shannon divergence are used to measure the similarity between two probability
distributions, P and Q. We use the Jensen-Shannon divergence to measure the sim-
ilarity between the actual (P) and observed result (Q) distribution. We measure the
result quality produced by the approximate join using the Jensen-Shannon diver-
gence. The Jensen-Shannon divergence measures the similarity between the actual
result distribution (produced by a join where all tuples fit in memory) and the ap-

proximate join result distribution. Let p(vi) = |vi|
|R| and q(vi) =

|v′i |
|R′| . Before defining

the Jensen-Shannon divergence, we first define the KL divergence, given as follows:

DKL(P||Q) =
V

∑
i=1

p(vi) log(p(vi)/q(vi)) (7.6)

174 W.H. Tok and S. Bressan

The Jensen-Shannon divergence is given by

DJS(P||Q) = 1
2 DKL(P||M)+ 1

2 DKL(Q||M) (7.7)

where M = 1
2(P+Q)

The goal is to minimize either the MSE or the JS divergence. When the value for
either MSE or JS divergence is zero, the result distributions from the complete and
approximate joins are exactly the same.

Given two approximate join methods, J1 and J2, we say that J1 produces better
quality results than J2 if the QMeasure(J1) < QMeasure(J2). QMeasure(Z) refers
to either computing MSE(Z) or DJS(Z). Z refers to an arbitrary approximate join
method.

7.6.3 Different Types of Progressive, Approximate Joins

In this section, we describe five methods for performing approximate joins: (1) Ap-
proximate RRPJ (ARRPJ), (2) Prob, (3) ProbHash, (4) Reservoir Approximate Join
(RAJ) and (5) Stratified Reservoir Approximate Join (RAJHash).

We first present the key idea for an existing progressive approximate join al-
gorithm, Prob. Next, we propose the modification of an existing progressive join
algorithm for approximate join processing, called Approx-RRPJ. Lastly, we propose
three new algorithms (ProbHash, RAJ and RAJHash). ProbHash aims to maximize
the result quantity as well as improve the overall throughput. Both RAJ and RA-
JHash are designed to optimize the result quality.

7.6.3.1 Approximate Join Framework

We first discuss a general framework for designing approximate join algorithms.
The framework explores the tradeoffs between result quantity and quality.

Given two data streams S1(A,B) and S2(B,C). A, B and C are attributes of the data
streams. Let the i-th tuple from S1 and the j-th tuple from S2 be denoted by tS1(ai,bi)
and tS2(b j,c j) respectively. An approximate join is used to join the tuples from the
two streams. The size of the memory available for query processing is small relative
to the size of the data streams, which can be unbounded. When a new tuple arrives
and memory is full, we will need to selectively discard some tuple(s) from memory.
Indeed, an important design criteria for an effective approximate join algorithm is
how tuples are discarded.

We first consider approximate join algorithms which maximizes the quantity of
the results produced. We call such a algorithm DPX (k), which discards k tuples
whenever memory is full. The goal of the DPX (k) policy is to maximize the expected
size of the result subset. To achieve this, we can model the probability of the join
attribute value(s) for tuples arriving on both streams. Let the arrival probabilities be
PS1(B) and PS2(B) for streams S1 and S2 respectively. Whenever a tuple arrives, we

7 Progressive and Approximate Join Algorithms on Data Streams 175

assign a priority to the tuple based on the arrival probabilities from the correspond-
ing stream. For example, when a tuple tS1(ai,bi) arrives, its priority value is given by
PS2(bi). Similarly, the priority of a tuple tS2(b j, c j) can be computed using PS2(b j). A
possible implementation for DPX (k) is to maintain two priority queues (in ascending
priority order) for the data streams. Whenever memory is full, DPX (k) discards the
first k tuples taken from both streams. The intuition is that by keeping in memory
tuples which have higher probability of joining with tuples from the other stream,
the expected number of results produced will be maximized [40].

Next, we consider approximate join algorithms which are sampling-based. The
goal is to optimize the quality of the results produced. We call such a algorithm
DPY . DPY continuously maintains a random uniform sample for each of the data
streams. When the memory is not full, tuples are inserted into the respective reser-
voirs. When memory is full, DPY determines whether the newly arrived tuple should
be discarded, or be used to replace a tuple from the reservoir. Suppose the size of
the memory is M, which is divided equally between the two streams S1 and S2.
Suppose nS1 and nS2 tuples have arrived for stream S1 and S2 respectively. We as-
sume that the number of tuples that have arrived for each stream is greater than the
available allocated memory (i.e., nS1 > (M/2), and nS2 > (M/2)). A newly arrived

tuple tS1(ai,bi) has a (M/2)
nS1

chance of being used to replace a tuple in the reservoir.

Similarly, for a tuple from S2. Even though DPY might not maximize the number
of results produced, the quality of the results produced could be much better than
DPX (k). This is because DPY ensures that the uniformity of the samples for each of
the data streams. When a new tuple arrives, it is used to probe the corresponding
reservoir. Mindful readers might note that DPY might not work well for skewed data
streams if the memory is allocated equally between the two reservoirs. In this chap-
ter, we show how we can tackle this problem by dynamically allocating memory for
the reservoirs.

7.6.3.2 Approximate RRPJ (ARRPJ)

The Result-Rate Based Progressive Join (RRPJ) [44] is a progressive join algorithm.
It builds statistics on the result distribution of the hash partitions. The goal of RRPJ
is to maximize the number of results produced by using the result distribution statis-
tics to determine the non-productive tuples to be flushed to disk whenever memory
is full. In RRPJ, when all the tuples have arrived, a cleanup phase is invoked to
compute the complete results for the join query.

In order to build a progressive, approximate join, we modify the design of RRPJ,
such that only the in-memory processing phase is used during join processing. The
clean-up phase which ensures the complete production of results is removed from
the design. We call this join algorithm, Approximate RRPJ (ARRPJ). Whenever
memory is full, ARRPJ flushes tuples from memory. The tuples are discarded in-
stead of being flushed to disk partitions.

176 W.H. Tok and S. Bressan

7.6.3.3 Prob

The PROB[14, 15] approximate join is an instantiation of DPX (1). The goal of PROB
is to maximize the quantity of results produced. It assigns a priority to each tuple
that arrives. Prob can make use of either a fixed or variable memory allocation to
store tuples from each of the data streams. For fixed allocation, two priority queues
are used, one for each of the data streams. For variable allocation, a single priority
queue is used for both streams. The priority for a tuple is determined by the arrival
probabilities of the partner stream. We describe how Prob works. Given two streams
S1 and S2, a memory size M. Two priority queues, PQ1 and PQ2, (one for each
stream) are created. Using a fixed memory allocation, the size of each priority queue
is M

2 . In order to deliver results progressively, a probe-and-insert paradigm is used.
When a tuple tS1 arrives, it needs to probe all the tuples in the PQ2 in order to
determine join matches. Similarly, when a tuple tS2 arrives, it needs to probe all the
tuples in PQ1 for join matches. At time τ , given that |S1| and |S2| tuples have arrived
for S1 and S2 respectively. Using a variable memory allocation scheme, the size of
the single priority queue is M. Whenever tuples arrive from either stream, it will
have to scan all the tuples in the priority queue. The time complexity for both the
fixed and variable memory allocation is given by O(M(|S1| + |S2|)).

7.6.3.4 ProbHash

In order to reduce the need to probe all in-memory tuples, we propose a progressive
join algorithm, ProbHash. ProbHash relies on hash partitions to organize the in-
memory tuples. In essence, ProbHash is a CPU-efficient extension of Prob [14, 15].

ProbHash organizes the in-memory tuples for each stream by storing the tuples
using p priority queues, instead of a single priority queue. The value of p is de-
pendent on the hash function used. The tuples in each priority queue are organized
based on a ascending priority order. We denote the set of priority queue for data
stream Si as PQSi (1 ≤ i ≤ 2). Figure 7.4 shows the two sets of priority queues.
Whenever a tuple tS1 arrives, its hash value is computed by the hash function (de-
noted by ⊕). It is then used to probe one of the priority queues in PQS2 . If join
matches are found, the result is delivered to the user. Afterwhich, tS1 is inserted to
one of the priority queues of PQS1 . The set of priority queues, PQS1 and PQS2 , are
each allocated M

2 memory. Within each priority queue set, we make use of a variable
memory allocation scheme which allows the size of the priority queues to grow or
shrink dynamically. This mitigates the effect of skewed data distribution, and ensure
that the memory can be better utilized. Suppose the average length of each priority
queue is L (L << M), the time complexity for ProbHash is given by O(L(|S1| +
|S2|)).

When memory is full (|S1| + |S2| = M), and a new tuple arrives, we will need to
select a tuple to be discarded from amongst the 2p priority queues. We first identify
the priority queue PQi (1 ≤ i ≤ 2p) which contains the tuple with the smallest
priority value. The complexity for finding the queue which contains a tuple with the
smallest priority value is given by O(p). This is because we only need to scan the

7 Progressive and Approximate Join Algorithms on Data Streams 177

Priority Queues
for S1

q
1

q
2

q
p

t
S1

Hash function

Priority Queues
for S2

q
1

q
2

q
p

(i) probe(ii) insert

Fig. 7.4 Priority Queue for S1.

first element of each of the 2p priority queues. In the case of a tie (i.e several queues
with tuples having the smallest priority value), we randomly pick a tuple from one
of these queues. Other methods can be used too (e.g., the tuple’s age and preferring
tuples that are older). We dequeue the tuple with lowest priority. We then compute
the hash value for the newly arrived tuple, which is used to determine the priority
queue it is inserted into. Due to the variable memory allocation, it is important to
note that the sizes of the priority queues are not fixed. Hence, if the data distribution
is skewed, some priority queues will be longer.

7.6.3.5 Reservoir Approximate Join (RAJ)

Conventional reservoir sampling [48] is used to produce a fixed size random sample
of data. Algorithm 2 describes the details. While data is arriving (line 2), we get the
next tuple from the data stream S (line 3). n denotes the total number of tuples that
have arrived so far. If the number of tuples in the reservoir is less than the reservoir
size |R|, we insert the tuple into the reservoir (line 5 to 6). Otherwise, the tuple is

inserted into the reservoir with probability |R|
n (line 8 to 10).

Conventional reservoir sampling can also be used in a progressive approximate
join. We call this the Reservoir Approximate Join (RAJ). This is illustrated in Fig-
ure 7.5. Given two streams S1 and S2, and memory with size M. Two reservoirs,
ReservoirS1 and ReservoirS2 are created. Each reservoir is allocated M

2 memory. For
each reservoir, the conventional reservoir sampling technique is used to manage the
reservoir. When a tuple tS1 arrives, it is used to probe ReservoirS2. Results (if any)
are produced. Then, tS1 is inserted into ReservoirS1. The problem with this approach
is that the entire reservoir needs to be scanned in order to find tuples which can be
joined with the newly arrived tuple.

178 W.H. Tok and S. Bressan

Algorithm 2. Conventional Reservoir Sampling.
1: n = 0
2: while (!endOfStream(S)) do
3: Tuple t = getNextTuple(S)
4: n = n + 1

5: if (n < |R|) then
6: Insert t into R
7: else
8: Randomly generate a number ρ between 1 and n
9: if (ρ < |R|) then

10: Replace the ρ-th tuple in R with t
11: end if
12: end if
13: end while

Reservoir Reservoir
S1 S2

(i) probe(ii) insert

t
S1

Fig. 7.5 Reservoir Approximate Join.

7.6.3.6 Stratified Reservoirs Approximate Join (RAJHash)

In statistics, stratified sampling [13] is another effective technique for sampling
from a population. In stratified sampling, the population is divided into disjoint k
sub-populations of sizes N1, N2,...,Nk respectively. Each sub-population is called a
stratum, and is mutually exclusive (i.e., every element in the population must be
assigned to only one stratum). Hashing is an effective way to assign each element
to exactly one stratum. In order to reduce the need to scan the entire reservoir dur-
ing probing, we adopt the idea of stratified sampling to organize the reservoir for
each stream into multiple sub-reservoirs. In (RAJHash), a partitioning scheme is
used to organize the tuples in each of the reservoir. The partitioning scheme effec-
tively organizes the tuples into sub-population. In (RAJHash), this corresponds to
the sub-reservoirs that are maintained. We call this algorithm the Stratified Reser-
voirs Approximate Join (RAJHash).

In the stratified reservoir approach, we allocate M
2 memory to each reservoir.

Each reservoir consists of k sub-reservoirs. For each reservoir, a variable memory
allocation scheme is used to allocate memory for the sub-reservoirs. Given a tuple
t, the hash function, f(t) = t.value mod k, is used to assign the tuple to one of the

7 Progressive and Approximate Join Algorithms on Data Streams 179

t
S1

Hash function

(i) probe(ii) insert

Reservoir S1 Reservoir
S2

Sub-reservoirs

Fig. 7.6 Progressive Approximate Join using Stratified Reservoirs.

sub-reservoirs. t.value denotes the value of the join attribute. Algorithm 3 describes
the insertion of a newly-arrived tuple using the stratified reservoir. In Line 1, h de-
notes the hashed value of the tuple. If n is less than |R|, then we will just add the tuple
to the h-th sub-reservoir (Line 4). If n is greater or equal to |R|, then we will need
to determine whether to replace a tuple from the reservoir with the newly arrived
tuple (Line 6-10). To do this, a random number, ρ (between 1 and n) is generated.
If ρ is greater than |R|, we discard t. Otherwise, t is used to replace a tuple from the
h-th sub-reservoir. In this case, even though ρ is less than |R|, ρ can be greater than
the size of the h-th sub-reservoir. To find the tuple to be replaced, we compute i = ρ
mod S (where S is the size of the h-th sub-reservoir). We then replace the i-th tuple
in the h-th sub-reservoir.

As an implementation optimization, Algorithm 3 first chooses the sub-reservoir
using the hash function, and then replaces a random tuple in the specific sub-
reservoir. It is important to note that in order to maintain a simple random sample
for each of the reservoirs, the decision on the tuple to be replaced should not be
restricted to just a single reservoir. Instead, a random tuple from any of the sub-
reservoirs can be replaced.

RAJHash introduces some advantages over RAJ. Firstly, it is more CPU-efficient
as it reduces the number of in-memory tuples that are probed to identify join
matches. Secondly, even in the presence of a skewed distribution, it is able to grace-
fully allocate more memory for sub-reservoirs which need a large sample, and less
memory for sub-reservoirs which contain the skewed values. This is due to the vari-
able memory allocation for the sub-reservoirs.

In this example, we illustrate how Stratified Reservoir works. Given two streams
S1={10, 22, 34, 11, 30, 90, 2, 1, 13, 10} and S2={ 10, 48, 20, 35, 12, 58, 67, 71,
44, 83 }. In this example, the size of the memory M = 10 tuples. Two reservoirs
ReservoirS1 and ReservoirS2 are created for S1 and S2 respectively. Each reservoir
can hold 5 tuples. In addition, each reservoir is allocated 10 sub-reservoirs. The
hash function f(t) = t.value mod 10 is used to allocate a tuple to one of the 10
sub-reservoirs. We denote a sub-reservoir for stream Si as reservoir j

i (0 ≤ j < 9)
respectively.

For stream S1, the first tuple arrives. This is inserted into reservoir0
1. Next, a tuple

from S2 arrives. This is first used to probe ReservoirS1, which in turn re-directs it to

180 W.H. Tok and S. Bressan

Algorithm 3. Stratified Reservoir - Inserting a tuple.
1: h = f(t)
2: n = n + 1
3: if (n < |R|) then
4: Insert t into the h-th sub-reservoir
5: else
6: Randomly generate a number ρ

between 1 and n (inclusive)
7: if (ρ < |R|) then
8: S = Get the size of the h-th sub-reservoir
9: i = ρ mod S

10: Replace the i-th tuple with t
11: else
12: Discard t
13: end if
14: end if

sub-reservoir reservoir0
1 which produces a result. After 5 tuples have arrived from

each of the data streams, we have the following reservoir0
1 = {10, 30}, reservoir1

1
= {11}, reservoir2

1 = {22}, reservoir4
1 = {34}, reservoir0

2 = {10, 20}, reservoir2
2

= {12}, reservoir5
2 = {35} and reservoir8

2 = {48},. When the sixth tuple from S1

arrives, ReservoirS1 is full. We need to decide whether to discard a tuple from
ReservoirS1. First, we compute the hash value of the sixth tuple to be 0 (i.e., 90
mod 10). In order to determine whether to discard the tuple, we randomly generate
a number ρ between one and six (inclusive). If ρ ≤ 5, then we will replace a tuple
in the sub-reservoir reservoir0

1 with this newly arrived tuple. Suppose the value of ρ
is 4. It is important to note that there are only two tuples in reservoir0

1. To determine
which tuple to be replaced, we compute 4 mod 2 = 0. Thus, the first tuple (value=10)
is then replaced with the newly arrived tuple. Thus, sub-reservoir reservoir0

1 = {90,
30}. Similarly, when the sixth tuple (value = 58) from S2 arrives, we need to decide
whether to discard or replace a tuple from reservoir8

2. We generate a random num-
ber, ρ between one and six (inclusive). Suppose rho = 6. Thus, we discard the newly
arrive tuple. Thus, sub-reservoir reservoir8

2 = {48}.

7.6.4 Discussion

Approx-RRPJ, Prob and ProbHash attempt to maximize the quantity (i.e., number
of results produced) by sacrificing tuples that do not produce any or produce few
results. Therefore, they tend to favour results in certain ranges. In contrast, RAJ and
RAJHash strive to maintain a good representative sample. With limited memory, an
approximate join algorithm need to effectively make use of the available memory,
balancing between quantity and quality of the results produced.

7 Progressive and Approximate Join Algorithms on Data Streams 181

7.7 Open Issues

In this section, we discuss several open research issues. In the generic progressive
join framework, one of the key factors that contribute to the efficiency and effec-
tiveness of the framework is an effective partitioning method. A good partitioning
method provides a uniform distribution of the data into multiple partitions. It re-
duces the number of tuples that need to be probed during join processing. In the
chapter, we have studied the use of hash partitions for relational and XML data,
two-dimension grid for spatial data, and multi-dimension grid for high-dimensional
data. However, for both existing and new data models, an open issue lies in finding
an effective partitioning scheme. In data stream processing, the data distribution can
vary over time. While an effective partitioning scheme can impose a uniform dis-
tribution of data into multiple partitions for the initial data, it may not be effective
for future data that is of a different data distribution. An open issue that needs to be
solved is the design of an adaptive partitioning function that can adapt to evolving
data.

The work on progressive, approximate joins showed that the use of sampling is
an attractive primitive. The framework focuses on balancing between quality and
quantity, and allows it to be easily generalized for other data models (e.g spatial,
high-dimensional, XML). In this chapter, we have discussed two families of pro-
gressive approximate join algorithms which either maximize the quantity or quality
of the results produced. Prob and ProbHash cannot be easily generalized to other
data models. This is due to the dependence on the arrival probabilities of the partner
data stream. While the arrival probabilities for relational data can be computed in
a straightforward manner, it is difficult to compute such probabilities for data from
other data models.

Another limitation of Prob and ProbHash is that they cannot be easily extended
for multi-way approximate join, unless the multi-way join query plan is decomposed
into a series of binary joins. This is because for a multi-way join, it is not clear
which is the partner stream. Decomposing the multi-way join query plan to a series
of binary joins would limit the adaptiveness of the join. One of the advantages of
using RAJ and RAJHash is that they can be easily generalized to other data models.
This is because the decision to discard a tuple from the reservoir (or sub-reservoirs)
does not depend on the data model. For multi-way joins, multiple reservoirs can be
defined for each of the data streams.

In order to address the tradeoff between the two families of algorithms, a tunable
sampling approach can be used. The motivation for tunable sampling is to allow
progressive approximate joins to balance between the quantity and quality of results
produced. Tunable sampling is defined as a sampling technique which allows users
to tune the type of sample produced by the sampling process. The sample can either
favor the frequencies for including popular data values in the sample (i.e., quantity),
or favor representativeness of the data (i.e., quality). Let C denote the set of criteria
that the user wishes to maximize, and ci denotes the individual criterion to be tuned
(ci ∈ C, 1≤ i≤ |C|). Let W denote the set of weights assigned to each criterion, and

182 W.H. Tok and S. Bressan

wi denotes the individual weight assigned to criterion i.
|C|
∑

i=1
wi = 1. We consider C

= {Quantity, Quality }. Next, we introduce the notion of inclusion probability. P(t)
is the probability that a tuple t will be included in the sample. We refer to this as
the inclusion probability. Given a criterion ci, the inclusion probability is given by
Pci(t). We formally define tunable sampling as follows: Given a set of criterias C, a
set of criteria weights W, and the inclusion probability for each of the criterias. The
combined inclusion probability for all the criteria is given by:

|C|
∑
i=1

wiPci(t) (7.8)

For quantity maximization techniques (e.g., Prob, ProbHash), PQuantity = nv / N,
where nv denotes the number of tuples with value v, and N denotes the total number
of tuples that have arrived so far. For quality maximization techniques (e.g., RAJ,
RAJHash), PQuality = |R| / N, where |R| denotes the size of the reservoir, and N
denotes the total number of tuples that have arrived so far.

In this chapter, we focus on the design of join algorithms. Besides join operators,
query plans that are used in data streaming systems make use of different operators.
An open issue is the holistic consideration of the entire query plan w.r.t to optimiza-
tion for result delivery, instead of focusing only on join processing.

7.8 Conclusion

The universe of network-accessible data is expanding. Data streaming applications
need to process data streams from heterogeneous remote sources. In these appli-
cations, the amount of memory available is limited either because of the intrinsic
constraints of the processing device or because of the large data volume. Hence, it
is important that the memory is effectively used during result production.

In this chapter we discuss the design and implementation of progressive and ap-
proximate join algorithms for data streams. The design is guided by several key
requirements. The algorithm must be non-blocking (or progressive), i.e., it must be
able to produce results as soon as possible. The algorithm must maximize either
the result quantity or quality or ensure a compromise between both. We discuss the
design of a novel generic progressive join framework, called Result-Rate based Pro-
gressive Join (RRPJ) framework. We present its various instantiations for different
data models. Based on the foundation built for progressive join, we introduce sev-
eral progressive and approximate join algorithms. Lastly, we discuss several open
research issues that need to be solved in order to improve the state-of-art in progres-
sive query processing.

7 Progressive and Approximate Join Algorithms on Data Streams 183

References

1. Arge, L.A., Procopiuc, O., Ramaswamy, S., Suel, T., Vitter, J.S.: Scalable Sweeping-
Based Spatial Join. In: VLDB, pp. 570–581 (1998)

2. Babcock, B., Babu, S., Datar, M., Motwani, R., Widom, J.: Models and Issues in Data
Stream Systems. In: PODS, pp. 1–16 (2002)

3. Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Record 30(3),
109–120 (2001)

4. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The R*-tree: An Efficient and
Robust Access Method for Points and Rectangles. In: SIGMOD, pp. 322–331 (1990)

5. Berchtold, S., Keim, D.A., Kriegel, H.P.: The X-tree: An Index Structure for High-
Dimensional Data. In: VLDB, pp. 28–39 (1996)

6. Böhm, C., Braunmüller, B., Breunig, M.M., Kriegel, H.P.: High Performance Clustering
Based on the Similarity Join. In: CIKM, pp. 298–305 (2000)

7. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.P.: Epsilon Grid Order: An Algorithm
for the Similarity Join on Massive High-Dimensional Data. In: SIGMOD, pp. 379–388
(2001)

8. Böhm, C., Krebs, F.: Supporting KDD Applications by the k-Nearest Neighbor Join. In:
Mařı́k, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS, vol. 2736, pp.
504–516. Springer, Heidelberg (2003)

9. Böhm, C., Krebs, F.: The k-Nearest Neighbour Join: Turbo Charging the KDD Process.
Knowl. Inf. Syst. 6(6), 728–749 (2004)

10. Brinkhoff, T., Kriegel, H.P., Seeger, B.: Efficient Processing of Spatial Joins Using
R-Trees. In: SIGMOD, pp. 237–246 (1993)

11. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data
Management Applications. In: VLDB, pp. 215–226 (2002)

12. Chaudhuri, S., Motwani, R., Narasayya, V.R.: On Random Sampling over Joins. In: SIG-
MOD, pp. 263–274 (1999)

13. Cochran, W.G.: Sampling Techniques, 3rd edn. John Wiley (1977)
14. Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams.

In: SIGMOD, pp. 40–51 (2003)
15. Das, A., Gehrke, J., Riedewald, M.: Semantic Approximation of Data Stream Joins. IEEE

Trans. Knowl. Data Eng. 17(1), 44–59 (2005)
16. Dittrich, J.P., Seeger, B., Taylor, D.S., Widmayer, P.: Progressive Merge Join: A Generic

and Non-blocking Sort-based Join Algorithm. In: VLDB, pp. 299–310 (2002)
17. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD,

pp. 47–57 (1984)
18. Hellerstein, J.M., Avnur, R., Chou, A., Hidber, C., Olston, C., Raman, V., Roth, T., Haas,

P.J.: Interactive data Analysis: The Control Project. IEEE Computer 32(8), 51–59 (1999)
19. Hong, M., Demers, A., Gehrke, J., Koch, C., Riedewald, M., White, W.: Massively Multi-

Query Join Processing in Publish/Subscribe Systems. In: SIGMOD. ACM Press, Beijing
(2007)

20. Huang, Y.W., Jing, N., Rundensteiner, E.: Spatial Joins using R-trees: Breadth-first
Traversal with Global Optimizations. In: VLDB, pp. 396–405 (1997)

21. Ibrahim, I.K.: Handbook of Research on Mobile Multimedia (N/A). IGI Publishing,
Hershey (2006)

22. Kalashnikov, D.V., Prabhakar, S.: Fast Similarity Join for Multi-Dimensional Data. Inf.
Syst. 32(1), 160–177 (2007)

184 W.H. Tok and S. Bressan

23. Koudas, N., Sevcik, K.C.: Size Separation Spatial Join. In: SIGMOD, pp. 324–335
(1997)

24. Koudas, N., Sevcik, K.C.: High Dimensional Similarity Joins: Algorithms and Perfor-
mance Evaluation. In: ICDE, pp. 466–475 (1998)

25. Koudas, N., Sevcik, K.C.: High Dimensional Similarity Joins: Algorithms and Perfor-
mance Evaluation. IEEE Transactions on Knowledge and Data Engineering 12(1), 3–18
(2000)

26. Lawrence, R.: Early Hash Join: A Configurable Algorithm for the Efficient and Early
Production of Join Results. In: VLDB, pp. 841–852 (2005)

27. Li, F., Chang, C., Kollios, G., Bestavros, A.: Characterizing and Exploiting Reference
Locality in Data Stream Applications. In: ICDE, p. 81 (2006)

28. Lin, J.: Divergence Measures based on the Shannon Entropy. IEEE Transactions on In-
formation Theory 37(1), 145–151 (1991)

29. Lo, M.L., Ravishankar, C.V.: Spatial Joins Using Seeded Trees. In: SIGMOD, pp. 209–
220 (1994)

30. Lo, M.L., Ravishankar, C.V.: Spatial Hash-Joins. In: SIGMOD, pp. 247–258 (1996)
31. Mamoulis, N., Papadias, D.: Integration of Spatial Join Algorithms for Joining Multiple

Inputs. In: SIGMOD, pp. 1–12 (1999)
32. Mokbel, M.F., Lu, M., Aref, W.G.: Hash-Merge Join: A Non-blocking Join Algorithm

for Producing Fast and Early Join Results. In: ICDE, pp. 251–263 (2004)
33. Nelson, R.C., Samet, H.: A Population Analysis for Hierarchical Data Structures. In:

Dayal, U., Traiger, I.L. (eds.) SIGMOD, pp. 270–277. ACM Press, New York (1987)
34. Patel, J.M., DeWitt, D.J.: Partition Based Spatial-Merge Join. In: SIGMOD, pp. 259–270

(1996)
35. Sellis, T., Roussopoulos, N., Faloutsos, C.: R+-tree: A Dynamic Index for Multi-

Dimensional Objects. In: VLDB (1987)
36. Sevcik, K.C., Koudas, N.: Filter Trees for Managing Spatial Data over a Range of Size

Granularities. In: VLDB, pp. 16–27 (1996)
37. Shim, K., Srikant, R., Agrawal, R.: High-Dimensional Similarity Joins. In: ICDE,

pp. 301–311 (1997)
38. Srivastava, U., Widom, J.: Memory-Limited Execution of Windowed Stream Joins.

In: VLDB, pp. 324–335 (2004)
39. Stark, M., Fernández, M., Michiels, P., Siméon, J.: XQuery streaming á la Carte. In:

ICDE (2007)
40. Tao, Y., Yiu, M.L., Papadias, D., Hadjieleftheriou, M., Mamoulis, N.: RPJ: Producing

Fast Join Results on Streams through Rate-based Optimization. In: SIGMOD, pp. 371–
382 (2005)

41. Tok, W.H., Bressan, S., Lee, M.L.: Progressive Spatial Joins. In: SSDBM, pp. 353–358
(2006)

42. Tok, W.H., Bressan, S., Lee, M.-L.: Danaı̈des: Continuous and Progressive Complex
Queries on RSS Feeds. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajee-
warawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 1115–1118. Springer, Hei-
delberg (2007)

43. Tok, W.H., Bressan, S., Lee, M.-L.: Progressive High-Dimensional Similarity Join. In:
Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 233–242.
Springer, Heidelberg (2007)

44. Tok, W.H., Bressan, S., Lee, M.-L.: RRPJ: Result-Rate Based Progressive Relational
Join. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DAS-
FAA 2007. LNCS, vol. 4443, pp. 43–54. Springer, Heidelberg (2007)

7 Progressive and Approximate Join Algorithms on Data Streams 185

45. Tok, W.H., Bressan, S., Lee, M.-L.: Twig’n Join: Progressive Query Processing of Mul-
tiple XML Streams. In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS,
vol. 4947, pp. 546–553. Springer, Heidelberg (2008)

46. Urhan, T., Franklin, M.J.: XJoin: Getting Fast Answers From Slow and Bursty Networks.
Tech. Rep. CS-TR-3994, University of Maryland (1999),
http://citeseer.nj.nec.com/urhan99xjoin.html

47. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays.
In: Haas, L.M., Tiwary, A. (eds.) SIGMOD, pp. 130–141. ACM Press (1998)

48. Vitter, J.S.: Random Sampling with a Reservoir. ACM Trans. Math. Softw. 11(1), 37–57
(1985)

49. Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory
Environment. In: PDIS, pp. 68–77 (1991)

50. Xia, C., Lu, H., Ooi, B.C., Hu, J.: Gorder: An Efficient Method for KNN Join Processing.
In: VLDB, pp. 756–767 (2004)

51. Xie, J., Yang, J., Chen, Y.: On Joining and Caching Stochastic Streams. In: SIGMOD,
pp. 359–370 (2005)

http://citeseer.nj.nec.com/urhan99xjoin.html

Chapter 8
Online Aggregation

Sai Wu, Beng Chin Ooi, and Kian-Lee Tan

Abstract. In this chapter, we introduce a new promising technique for query pro-
cessing, online aggregation. Online aggregation is proposed based on the assump-
tion that for some applications, the precise results are not always required. Instead,
the approximate results can provide a good enough estimation. Compared to the
precise results, computing the approximate ones are more cost effective, especially
for large-scale datasets. To generate the approximate result, online aggregation re-
trieves samples continuously from the database. The samples are streamed to the
query engine for processing the query. The accuracy of the approximate result is
described by a statistical model. Normally, the result is refined as more samples are
obtained. The user can terminate the processing at any time, when he/she is satisfied
with the quality of the result.

The performance of online aggregation relies on the sampling approach and esti-
mation model. In this chapter, our discussion is focused on these two components.
Besides introducing the basic principles of online aggregation, we also review some
new applications built on top of it. We complete the chapter by discussing the chal-
lenges of online aggregation and some future directions.

8.1 Introduction

In data warehouse systems, aggregation query is employed to create a statistical
result for decision making. It is one of the most expensive queries in the database
systems. As an example, some aggregate queries in real applications, such as
the template queries in TPC-H [1] (a database benchmark for evaluation the per-
formance of online analysis), involve multiple tables and a series of joins and
groupbys. Processing such queries may last for hours. Moreover, as the size of

Sai Wu · Beng Chin Ooi · Kian-Lee Tan
School of Computing, National University of Singapore
e-mail: {wusai,ooibc,tankl}@comp.nus.edu.sg

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 187–210.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{wusai,ooibc,tankl}@comp.nus.edu.sg

188 S. Wu, B.C. Ooi, and K.-L. Tan

processed data increases exponentially,1 aggregation queries are becoming more
costly. For example, Figure 8.1 shows the top 6 results for 10T TPC-H datasets.
QphH denotes the number of processed queries per hour. As we can see, even the
most costly servers cannot provide a satisfactory throughput for 10T TPC-H data.

Fig. 8.1 Top 6 Results for 10T TPC-H Dataset.

To address the scalable problem, new computing models, such as parallel
databases and cloud systems, are being developed. But switching to the new com-
puting model needs to change the basic infrastructure, which is not accepted by
many companies. Fortunately, an observation of the real systems motivates a new
processing technique, the approximate query processing (ApQP). In many decision
making applications, approximate results can provide a good enough prediction. For
example, suppose a retailer’s monthly sales is $350,123. If the prediction program
returns $348,000 as the result with confidence 95%, such estimation is good enough
to provide a general view for the sales. Compared to other processing approaches,
ApQP incurs less costs, as

1. ApQP does not need to scan the whole dataset to process a query. Some ApQP
approaches sample the dataset to compute an approximate result, while others
maintain a precomputed synopsis to speed up the query processing.

2. Users can indirectly control the cost of ApQP by specifying the required accuracy
of the results. In most cases, ApQP incurs more overhead to generate a higher
quality result.

ApQP approaches can be classified into two types based on how the approximate
results are generated. [3] and [17] maintain samples or previous query results in the
precomputed synopsis, which are used to process future queries. The precomputed
synopsis can greatly reduce the processing cost, if the query can be fully or partially

1 http://www.b-eye-network.com/view/7188

8 Online Aggregation 189

processed via the synopsis. However, the user cannot control the accuracy of the
results, as samples in the synopsis are precomputed. Moreover, queries whose syn-
opsis are maintained can take advantage of such a scheme. On the contrary, in [10]
and [9], an online aggregation approach is adopted, where samples are continuously
drawn from the database and the results are refined as more samples are retrieved.
The advantage of online aggregation is that the user can control the processing of the
queries. The approximate results are updated periodically and if the user is satisfied
with current results, he can terminate the processing to save the cost. If the user does
not specify his preference, the query will run to the end and the precise results are
returned. In comparison, some other ApQP approach cannot provide precise results,
which limits their usage.

The processing strategy of online aggregation is similar to the one used in the
continuous queries on data streams (see Chapter 7 for details). Continuous samples
retrieved from the database can be considered as a stream and the query is evaluated
against the stream. This observation motivates the work in [21], where a sample
stream is generated to feed multiple queries. Compared to the conventional stream
processing, in online aggregation, the processing engine does not maintain a buffer
for processed samples. Instead, statistics of data distribution are updated to measure
how good the approximate result is.

The basic principle of the online aggregation is derived from well-known statis-
tics theorems. It can be easily embedded into existing database systems, such as
Postgres. Although the idea of online aggregation was proposed more than 10 years
ago, it attracts increasing research efforts in recent years, due to the requirement
of handling large-scale data analysis job. Such job normally involves terabytes of
data and the cost of computing accurate results is prohibitively high. Therefore, on-
line aggregation techniques are applied to effectively reduce the processing cost. To
address the data scale problem, different enhancements of online aggregation are
proposed:

• Online Aggregation for Multiple Relations
The basic online aggregation technique is designed for computing the aggrega-
tion results on one single relation. In data warehouse systems, user queries always
involve multiple relations. Therefore, different schemes [9][15][12] are proposed
to extend the technique to handle aggregations on multiple relations efficiently.

• Online Aggregation for Multiple Queries
Many systems are designed to support multiple concurrent users. By sharing
query results among the users, the system can effectively reduce the cost, as
the same query does not need to be processed repeatedly. The idea of shar-
ing samples/results can be applied to the online aggregation processing as well
[21]. Queries are organized into a dissemination graph, where samples/results are
shared between the neighbor nodes.

• Distributed Online Aggregation
Centralized system is not capable of supporting extremely large data and new
distributed and parallel database systems are implemented to address the prob-
lem. To support online aggregation in distributed databases, the sampling ap-
proach needs to be redesigned and the computation needs to be distributed to

190 S. Wu, B.C. Ooi, and K.-L. Tan

multiple nodes [20]. The performance is improved significantly as both sampling
and query processing are handled in parallel.

• Online Aggregation in MapReduce
MapReduce [8] is a new parallel processing framework proposed by Google.
It is widely used in decision making system, scientific computation system and
data warehouse system. MapReduce can be enhanced with online aggregation
techniques [6] to further improve its performance.

In this chapter, we will review current efforts in adopting online aggregation tech-
niques in database systems. The rest of the chapter is organized as follows. Section
8.2 introduces the basic principle of the online aggregation. In particular, we present
the statistical model and sampling approaches. In Section 8.3, we give an overview
of above new applications that are implemented by extending the basic online ag-
gregation model. And in Section 8.4, we conclude the chapter and discuss the future
and challenges of this new processing technique.

8.2 Basic Principles

Online aggregation is first proposed in [10]. It is based on the assumption that aggre-
gate queries are typically used to get a “rough picture” from a large amount of data
and thus, instead of producing a precise answer, an “approximately correct” answer
suffices. The basic idea is to generate approximate results with randomly selected
samples and refine the results as more samples are retrieved. To indicate how good
the result is, a confidence c and an error bound ε are provided with each result. Sup-
pose the precise result is v and the approximate one is v̄, we have P(|v− v̄| ≤ ε)≥ c.
Namely, the probability of the difference between the real result and estimated result
being less than ε is c.

In this chapter, we use typical aggregation queries (average, sum and count) as
the examples. Consider a typical single relational aggregate query such as

SELECT op(expression(xi)) FROM T

To process the query, k random samples are retrieved from relation T . Let S
denote the sample set. The approximate result v̄ is computed as follows:

1. v̄ = |T |
k ∑
∀ti∈S

c(expression(ti)), where |T | is the size of table T , c(x) = 1 if op =

count and c(x) = x if op = sum.
2. v̄ = 1

k ∑
∀ti∈S

expression(ti), when op = avg.

As an example, Table 8.1 lists the scores of students in class 1. The average score is
69.625 and the total score is 557. If we pick random samples of students 1001, 1003
and 1008, the estimated average score and total score are 68.67 = 63+82+61

3 (with

error rate 1.37% = |69.625−68.67|
69.625) and 549.33 = (63+82+61)×8

3 (same error rate as the
average score), respectively. As more samples are retrieved from the table, we can
get a more precise result. However, the sampling cost increases as well.

8 Online Aggregation 191

Table 8.1 Student Record.

class ID student ID score
1 1001 63
1 1002 65
1 1003 82
1 1004 58
1 1005 66
1 1006 73
1 1007 89
1 1008 61

groups

class 1

class 2

class 3

progress error

±2.0

±2.8

±3.7

confidence

90%

95%

90%

7%

10%

9%

avg score

67.2

75.5

63.8

Fig. 8.2 Scenario of Online Aggregation.

Figure 8.2 illustrates the interface of an online aggregation system. Suppose we
have a table for the students in all classes and try to calculate the average score
of each class. Online aggregation returns an approximate result for each class with
the corresponding estimated error bound and confidence. The sampling progress is
provided to indicate how many samples have been processed. In Figure 8.2, the
average score of class 1 is about 67.2± 2.0 with confidence 90%. Currently, 7%
tuples are used as the samples to compute the result. If the user is satisfied with
the result, he can stop the processing for class 1. And then no more samples are
retrieved for class 1.

sampling

query
processor

statistic
model

query interface

database

Fig. 8.3 Architecture of Online Aggregation.

192 S. Wu, B.C. Ooi, and K.-L. Tan

Adopting online aggregation technique incurs small changes to current DataBase
Management Systems (DBMSs). It is less intrusive and can be built on top of most
existing systems. Figure 8.3 gives an overview of an online aggregation system.
Specifically, given a query, a stream of random samples is generated from the local
database. The samples are then forwarded to the query processor to generate an ap-
proximate result. The samples are also used in statistical analysis, where the central
limit theorem is applied to estimate the error bound and confidence. The sample
stream stops if the user terminates the query processing or all tuples are retrieved.
The efficiency and effectiveness of the online aggregation relies on the statistical
model and the sampling approach.

8.2.1 Statistical Model

The statistical model is employed to estimate the confidence and error bound of
the approximate result. In [10], three types of running confidences are computed,
namely conservative confidence, large-sample confidence and deterministic confi-
dence. In this chapter, we focus on large-sample confidence, which is generated
based on the central limit theorem and provides a good enough result without too
much samples.

Given a random sample set S from table T with size k (|S|= k), each sample xi

in S can be used to compute an approximate result. Let function f denote the ag-
gregation function. We have a set of independent variables f (x0), f (x1), ..., f (xk−1)
(xi ∈ S), which follow the same distribution. Suppose f (xi) has expectation μ and
variance σ2. The central limit theorem states that the distribution of the sample av-
erage of these random variables approaches the normal distribution with a mean μ
and variance σ2.

By estimating μ , we can generate the approximate result. However, the problem
is, we have another variable σ , which needs to be estimated as well. In online ag-
gregation, we compute the variance σ̄ of the samples and apply it to simulate σ . As
Var(x) = E[x2]−E[x]2, we have

σ̄2 =

{
∑ f (xi)

2− (∑ f (xi))
2 if op = avg

|T |2 ∑ f (xi)
2− |T |2(∑ f (xi))

2

k2 if op = sum or op = count

Now, we use σ̄ to replace σ . Let v̄ and v denote the approximate result and the real
result, respectively. And we use ε to represent the error bound. Based on the central
limit theorem,

P(v̄− v)≤ ε ≈ 2φ

(
ε
√

k
σ

)
− 1 (8.1)

Equation 8.1 defines the relationship between the error bound ε and sample size k.
And the probability P(v̄− v)≤ ε is our confidence for the result.

As we have two variables in Formula 8.1, ε and P, we cannot solve the formula
completely. A normal approach is that we set the value of one variable and compute

8 Online Aggregation 193

the other one. For example, if the expected confidence is 95%, then the formula is
transformed into

φ

(
ε
√

k
σ

)
=

0.95+ 1
2

(8.2)

Based on current sample set, we can estimate the error bound ε correspondingly.
In online aggregation, a more commonly used approach is to refine the two vari-

ables iteratively. We can first set confidence to c0 and then we get an error bound
ε0. As more samples are retrieved, we set the error bound to ε0 and compute the
new confidence c1. This process continues and hence, both the confidence and er-
ror bounds are improved sequentially. When user is satisfied with the result, he can
terminate the processing.

In this section, we discuss the most simple case, aggregations on a single relation.
To handle complex queries, the basic statistical model has to be extended and we
will discuss the details in Section 8.3.

8.2.2 Sampling

Previous statistical model is based on the assumption that all samples are randomly
retrieved. Getting random samples seems to be easy, but in fact, it is a very chal-
lenging problem. In MySQL, the following SQL statement can be used to retrieve k
random samples,

select * from T order by RAND() limit k

However, for a large dataset, the above query is very inefficient, as it involves scan-
ning the whole table.

Sampling techniques have been well studied in the database community [16]. To
handle skewed data distribution, a new sampling technique, outlier-indexing, is pro-
posed in [5]. By combining weighted samples from uniform sampling and outlier-
indexing, the hybrid scheme [5] can provide an aggregate result with significantly
reduced approximation error. Sampling process may be too costly for large-size of
samples. In [13], an algorithm is proposed to maintain large number of samples
in disk and apply the precomputed samples to answer queries. The algorithm is
suitable for both biased and unequal probability sampling. In [2, 4], samples are
retrieved and stored in synopsis. New queries can exploit the precomputed samples
to generate approximate result.

Different from traditional sampling approach, in online aggregation, the sampling
process must guarantee the following properties.

• The samples should be randomly distributed over the dataset. Otherwise, the sta-
tistical model cannot generate a correct confidence and error bound.

• The samples cannot be repeated, because when the user does not terminate the
processing, online aggregation should return a precise result.

• The sampling process should not be a performance bottleneck.

194 S. Wu, B.C. Ooi, and K.-L. Tan

In [10], three sampling approaches are proposed for online aggregation, heap scan,
index scan and sampling from indices.

In database, heap files are used as the basic storage file structure. The order of a
heap file relies on the sequence of data insertion or some explicit clustering. If such
order is not correlated with the attributes of the records, we can apply the heap scan
to generate the random samples.

Generally speaking, index scan is not applicable to online aggregation, as index
sorts the values (B-tree index) or groups the values (hash index) by some attribute.
However, if the aggregated attribute is not correlated with the indexed attribute, we
can still apply the index scan to generate usable samples.

In [16], a pseudo-random sampling for various index structures is proposed. The
index sampling approach can provide a meaningful confidence interval. However, its
performance is worse than the heap scan and index scan, because it incurs random
I/Os for the indices.

Besides the three approaches, a scrambling approach [21] is introduced for pro-
viding continuous sampling streams for data warehouse systems, where data are
seldom updated or the batch updates are applied. The scrambling approach per-
mutes the records in a table multiple times, until the sequence of the records is not
correlated to any explicit order. Hence, scanning the table will generate a random
sample stream.

8.3 Advanced Applications

In the last section, we give the basic model of online aggregation. However, it is
quite challenging to apply such a technique to real systems. In this section, we dis-
cuss some efforts that extend the technique to handle different problems. We focus
on non-nested queries. For a discussion on nested queries, readers are referred to
[19].

8.3.1 Online Aggregation for Multi-relation Query Processing

Previous discussion focuses on the single table case, where all samples are retrieved
from the same table. But in practice, aggregations are often processed after joins.
Therefore, we must extend the online aggregation model to handle multi-relation
query. Consider the following query,

SELECT op(expression(xi)) FROM T1,...,Tk WHERE predicate

To process the query, we can retrieve samples from the involved tables and perform
the join for the samples. However, given random samples t1,...,tk from T1,...,Tk re-
spectively, with low probability, the samples can join together to generate a valid
result. Therefore, online aggregation is inefficient due to lack of valid join results.

8 Online Aggregation 195

Only after a large portion of the tables has been scanned will we get a good enough
aggregate result.

To address this problem, a special technique, ripple join [9], is proposed. Ripple
join is similar to the nested loop join, which is also non-blocking. The intuition of
ripple join is to retrieve samples from the tables iteratively. And once a sample is
generated, it is joined with existing samples of other tables. To simplify the dis-
cussion, we focus on the two-table case T1 �� T2; the same approach can be easily
generalized to other cases.

x x x
x

x
x x

x
x
x
xx

x
x

x
x
x

x
x
xx

x
x

xxx

x
x
x
x

n=1 n=2 n=3 n=4

T2 T2 T2 T2

T1 T1 T1 T1

Fig. 8.4 Square Ripple Join.

Figure 8.4 illustrates the idea of ripple join. We use a matrix to denote the
progress of sampling in each table. Each “x” in the matrix denotes a seen result or a
block of seen results of the cartesian product T1×T2. In Figure 8.4, we retrieve sam-
ples from T1 and T2 in an even rate. Namely, after k steps, we have k samples from
T1 and T2, respectively. And we can generate k2 results for the cartesian product,
some of which are valid results and can be used to estimate the aggregate answer.
In ripple join, once we get a sample from a table, we can join it with samples of the
other table. For that purpose, all retrieved samples should be buffered in memory.
Therefore, one limitation of the ripple join is the memory size. When the memory
cannot hold all the retrieved samples, ripple join will switch to the normal nested
loop join.

n=1 n=2 n=3

x
xx

xx
x x

xx
xx

xx
xx

xx
x

x
xx

xx
xx

xx
xx

x

x
xx

xx
xx

xx
xx

x

x
xx

xx
xx

xx
xx

x
x
xx

xx
x
x
xx

xx
x

x
xx

x
x
xx

x
x
xx

x

x
xx
x
x
xT1

T2

T1 T1

T2 T2

Fig. 8.5 Rectangle Ripple Join.

196 S. Wu, B.C. Ooi, and K.-L. Tan

One advantage of ripple join is that we can adaptively adjust the sampling pro-
cess. We can retrieve more samples from a table than the other to provide better
confidence interval. As an example, suppose each T2 tuple can join with 3 T1 tuples,
while each T1 tuple can join with 2 T2 tuples. We can set the sampling rates of T1

and T2 as 2:3 to generate more valid join result. Figure 8.5 illustrates the idea. In
ripple join processing, we can even adaptively change the sampling rate of involved
tables, based on the observed data distribution.

In ripple join, the central limit theorem is used to estimate the confidence, as
discussed in the previous section. However, when multiple tables are involved, the
model needs to be modified. Let xi ∈ T1 and y j ∈ T2, and (xi,y j) be a sample for
T1 �� T2. We make a similar assumption as before. Namely, after enough samples
are retrieved, we assume the estimator follows the normal distribution with the mean
equals to the final result.

Let’s first consider the sum and count queries. For xi ∈ T1, we define μ(xi,T1) as

μ(xi,T1) = ∑
∀y j∈T2

|T1|expression(xi,y j) (8.3)

where |X | and |Y | denote the number of retrieved samples for T1 and T2 respectively,
and expression(xi,y j) is the aggregation operator for the join result of xi and y j

(if xi cannot join with y j or the join result does not satisfy some the predicates,
expression(xi,y j) = 0). As we can see, the average value of μ(xi,T1) for all xi ∈ T1

is equal to the final result μ . Let σ2
x denote the variance computed for T1 in the join

operation. We have

σ2
x =

∑∀xi∈T1
(μ(xi,T1)− μ)2

|T1| (8.4)

Similarly, we can compute μ(y j,T2) and σ2
y for table T2. Then, the variance of the

join operation is computed as

σ2 =
σ2

x

|T1| +
σ2

y

|T2| (8.5)

In online aggregation, suppose X and Y are seen samples from T1 and T2, respec-
tively. We use X and Y to replace T1 and T2 respectively in above definitions.
Namely, we have

σ̄2
x =

∑∀xi∈X(μ(xi,X)− μ̄)2

|X | (8.6)

and

σ̄2 =
σ̄2

x

|X | +
σ̄2

y

|Y | (8.7)

where μ̄ is the result estimated from the sample sets. Applying the central limit
theorem, we can compute the error bound and confidence correspondingly.

Compared to the sum and count queries, estimating the variance of avg queries
are more complex. avg can be considered as a combined operator (sum divided by

8 Online Aggregation 197

count). Given xi ∈ T1 and y j ∈ T2, let f (xi,y j) return 1, if xi can join with y j and the
result satisfies the predicates. Otherwise f (xi,y j) returns 0. Given a record xi in T1,
we define another function μ ′(xi,T1) as

μ ′(xi,T1) = ∑
∀y j∈T2

|T1| f (xi,y j) (8.8)

To estimate the average value, we need to compute the covariance of μ(xi,T1) and
μ ′(xi,T1). Specifically, let xavg and x′avg denote the average values of μ(xi,T1) and
μ ′(xi,T1), respectively. The covariance is computed as:

γ(xi) =
1
|T1| ∑

∀xi∈T1

(μ(xi,T1)− xavg)(μ ′(xi,T1)− x′avg) (8.9)

The above definitions are applied to T2 as well. The covariance of join results is
estimated as

γ =
γ(xi)

|T1| +
γ(y j)

|T2| (8.10)

And finally, we compute the variance of the join results as

σ2 =
1

μ2
c
(σ2

s − 2μγ + μ2σ2
c) (8.11)

where μc and μs denote the count and sum results respectively, μ = μs
μc

, σ2
c and

σ2
s are variances computed for count and sum queries respectively. As before, in

the real processing, the sample sets X and Y are used to replace T1 and T2 in the
computations.

One problem of ripple join is its extensive usage of memory. When the memory
is insufficient to hold the tables, it degrades to block ripple join, which is quite inef-
ficient. In [15], a parallel hash-based ripple join is proposed to address the problem.
The basic idea is to partition the tuples among the processors and each processor can
process the ripple join individually. The final result is obtained by combining all the
estimations. In [12], a disk-based ripple join is used to handle the memory overflow
problem. The disk-based ripple join has several phases. Each phase contains a set
of hash-based ripple join in memory. It maintains the statistical confidence from the
start-up through the completion. Interested readers can refer to the papers for more
details.

8.3.2 Online Aggregation for Multi-query Processing

In [21], online aggregation is used for multi-query processing. Multi-query opti-
mization is well studied in real systems, as

1. The system is designed to support multiple users, who can issue queries
concurrently.

198 S. Wu, B.C. Ooi, and K.-L. Tan

2. A single complex query can be decomposed into multiple sub-queries. For exam-
ple, a nested query involves aggregates in both the outer and inner query blocks.
Such queries always operate on the same set of tables, which can be optimized
together.

3. A user can roll up and drill down in the data cube, which results in multiple
queries being submitted to the system.

Optimizing multiple queries can potentially improve the performance significantly.
For example, consider the following three queries (using TPC-H schema as the
example):

Q1 select avg(discount) from lineitem where quantity<20 group by returnflag;
Q2 select avg(discount) from lineitem where returnflag=’r’ or returnflag=’a’;
Q3 select avg(discount) from lineitem;

Suppose Q1 is submitted to the system and when it is being processed, Q2 is submit-
ted, followed by Q3. All three queries are processed against table lineitem. Every
tuple in lineitem is a valid sample for Q3, while a portion of tuples can be used to
process Q1 and Q2. Instead of processing the queries individually, we can process
them together. Given a tuple t in lineitem, it is firstly used to process Q3. If it satis-
fies the condition quantity < 20, we use it to update the result of Q1. If it also has
the return f lag as ’r’ or ’a’, we use it to compute Q2 as well. In this way, a sample
is shared among multiple queries and we reduce the I/O costs.

However, sharing samples among queries are not easy. A valid sample for one
query is not necessarily applicable to another query. As queries join and leave the
system, the sharing strategy changes dynamically. We need to compute the overlap
between different queries, which are costly. Moreover, in some queries, a sub-query
is evaluated repeatedly, which can be avoided. To address the above issues, in [21],
two techniques are applied, scrambling and space partitioning.

Figure 8.6 shows the general idea of online aggregation for multiple queries.
In the preprocessing phase, a data scrambler is employed to permute the original

Scrambled
(Unscrambled)

Dataset
Sample
Buffer

Q1

Q2

Q5

Q4

Q6

Q7

samples
preprocessing

Involved partitions
Involved partitions

Database scrambler

Fig. 8.6 Architecture of Online Aggregation for Multi-Queries.

8 Online Aggregation 199

dataset iteratively. The result is stored as a scrambled dataset. By scanning the
scrambled dataset, a stream of random samples is generated and used to process
queries. At runtime, the queries are organized into a dissemination graph based
on some partitioning strategy. Both the samples and partial aggregation results are
shared between linked queries. In the following discussion, we briefly introduce the
implementation of the data scrambler and space partitioning strategy.

8.3.2.1 Data Scrambler

Scrambling is used to generate a stream of samples in a low-cost way. Traditional
scheme picks samples randomly from the dataset at runtime, which may incur high
overhead. To solve this problem, the dataset is randomly scrambled in the prepro-
cessing phase. By scanning the scrambled dataset, a stream of random samples is
generated. This strategy has two advantages. First, in conventional scheme, we get
one sample from a random page, while in scrambled dataset, one page of records
can be used as samples. Second, in scrambled dataset, sequential scan is used to
generate sample stream, which is much more efficient than random access in other
approaches. Completely random disk access can be five orders of magnitude slower
than sequential access [11].

To scramble a dataset, a simple strategy can be applied. In particular, the data
file is scanned sequentially; as we scan each tuple, we place it in a randomly picked
position in a scrambled dataset (which is initially empty). The scrambled dataset is
then used as the input and we repeat the above process several times to fully permute
the records. Another approach is relying on the RAND function of DBMS.2 Suppose
we try to scramble table T . We alter the table by adding a new column, rowid.

• ALTER TABLE T ADD rowid int;

Then, we fill the rowid with random integers.

• UPDATE T SET rowid = RAND()×C WHERE always true condition;

C is a constant, defining the range of rowid ([0, C)). In the WHERE clause, we use
an always true condition to update the values of all rowids. Then, a new table is
created by sorting the old table.

• INSERT INTO TABLE T ′ (Column 1, Column 2,..., Column k) SELECT *
FROM T ORDER BY rowid ASC;

The new table T ′ is created by copying the old table T . But we permute the sequence
of records by sorting via the random values of rowid. To further scramble the table,
the above process can be repeated multiple times.

To process join operation, we may need to build scrambled datasets for multiple
tables. Depending on the applications, two approaches can be applied. In a data
warehouse system, we can precompute the join result of dimensional tables and
the fact table. And the result table is scrambled to process queries. Alternatively,

2 DBMSs implement random functions differently. In our discussion, we use MySQL as the
example.

200 S. Wu, B.C. Ooi, and K.-L. Tan

if storage cost is crucial, we just scramble each table and use the index to retrieve
random samples. In particular, we build indexes on the join attributes of queries. To
generate a random sample stream from a two-way join, we pick one relation as the
outer relation (R) and the other relation as the inner relation (S). R is scanned to
retrieve random samples and for each sample record from R, we search the index of
S to generate random join results.

When local datasets are updated, we need to rebuild the scrambled datasets. For-
tunately, in data warehouse system, updates are processed in a batch manner. To
update the scrambled dataset, we can

• Totally rebuild the scrambled datasets, if a large number of updates need to be
performed.

• For each newly inserted tuple t, we randomly select a tuple t ′ from scrambled
dataset and replace t ′ with t. t ′ is appended to the end of the scrambled dataset.

When the first strategy is applied, the query processing is stopped and will resume
after new scrambled datasets are created.

8.3.2.2 Space Partitioning

To facilitate the sample and result sharing among queries, the space is partitioned
adaptively. Figure 8.7 illustrates the idea. Suppose two queries Q1 and Q2 are sub-
mitted to the system and they overlap with each other. We can partition the data
space into 5×5 partitions by the boundaries of the queries. This strategy allows Q1

and Q2 to share a common grid, where samples or even the aggregation results can
be reused.

Fig. 8.7 Query-based Partitioning.

The space partitioning scheme works as follows. First, we collect a set of queries
Sq. Those queries represent the query patterns (we assume the query pattern changes
infrequently). For q∈ Sq, we transfer q into a set of range predicates, one for each at-
tribute. Then, the partitioning scheme in Figure 8.7 is applied to partition the space.
Namely, we split the range of an attribute based on the range predicates of queries.
In this way, a set of grids are generated. For each grid gi, it is fully contained by

8 Online Aggregation 201

sample
source

Q1

1
4
7

2
5
8

3
6
9

n ar
1-10

10-20

20-30

Q2

4,5,6,7,
8,9

2,3

quantity

returnflag

Q1:4,5,6,7,
8,9

Q2:2,3,5,6,
8,9

dest required grids

Q1

Q2

4,5,6,7,8,9
2,3

source required grids
root 4,5,6,7,8,9

dest required grids

Q2

source required grids

Q1

root 2,3

source’s data
flow table

Q1’s data
flow table

Q2’s data
flow table

Q3

Q3:1,2,3,4,
5,6,7,8,9

Q3 1

1

Q3

dest required grids
Q3

Fig. 8.8 Salvaging Results of Queries.

some queries. Thus, we can group the samples by the grids they belong to and com-
pute aggregate results for each grid. However, the above approach may generate too
many grids, which may lead to high maintenance overhead. To handle this prob-
lem, a ranking strategy is provided. We rank the grids by the number of overlapped
queries. And adjacent grids with low ranks are combined to reduce the total number
of grids.

After partitioning, the queries are organized as a dissemination graph to share
samples. Each query acts as a node in the dissemination graph and the sample source
is the root node. Specifically, the root node scans the scrambled data repeatedly to
generate a stream of random samples. If there are other query nodes in the graph,
the root will forward the samples to the corresponding query nodes. Figure 8.8 il-
lustrates the idea of dissemination graph and how to reuse samples in the graph.
Suppose the table is partitioned by quantity and return f lag into 9 grids. We have
three queries, Q1, Q2 and Q3. Suppose Q1 first comes to the system, followed by
Q2 and Q3. Q1 overlaps with grids 4, 5, 6, 7, 8 and 9; Q2 involves grids 2, 3, 5, 6,
8 and 9; and Q3 covers the whole data space. We construct the dissemination graph
by examining the common grids between queries.

When a query is inserted, we search the dissemination graph to find existing
queries that can be exploited to share samples. A greedy strategy is applied to max-
imize the number of shared grids. It works progressively by selecting the query that
overlaps with the incoming query mostly in each iteration. Then, the two queries
create a link and the shared grids are removed from consideration in the next iter-
ation. This progress continues, until no more grids can be shared. The query will
create a link to the root node if some of its grids cannot be shared.

In Figure 8.8, when Q1 joins the system, no other queries exist. Therefore, it
directly retrieves samples from the sample source. So it creates a link with the root
node. When Q1 is being processed, Q2 is submitted. It finds that it can share grid 5,

202 S. Wu, B.C. Ooi, and K.-L. Tan

6, 8 and 9 with Q1. Hence, Q2 is linked with Q1. As not all grids can be obtained
from Q1, Q2 also connects to the root node for grids 2 and 3. Finally, when Q3

comes to the system, except grid 1, all other grids of Q3 can be inherited from Q1

and Q2.
In the dissemination graph, each node keeps records of how samples are shared.

For example, in Figure 8.8, Q1 keeps two tables. One table lists the incoming sample
flows. Since Q1 receives samples from the root node, there is only one record in the
table. The other table keeps the track of outgoing sample flows. In Q1, two records
are created for Q2 and Q3, respectively.

When a query completes (e.g., terminated by user or the whole scrambled dataset
has been scanned), it leaves the dissemination graph, resulting a restructuring pro-
cess. We link its successors with its predecessors. For example, suppose Q1 leaves
the dissemination graph in Figure 8.8. Q1’s successors, Q2 and Q3, will retrieve
grids 4, 5, 6, 7, 8 and 9 from the root instead of Q1.

8.3.2.3 Query Processing

A straight-forward way to process multiple queries is to stream samples to the
queries based on the dissemination graph. Each query, when receiving a set of sam-
ples, will recompute its results and confidence. This strategy shares the samples
among the queries. We can apply a more aggressive sharing strategy. In particular,
we compute the aggregation result for each grid and share the results among the
queries.

Given a query Qi and a grid g j, based on the relationship between Qi and g j,
different processing strategies are used. If g j partially overlaps with Qi or no existing
queries fully cover g j, Qi will directly get samples of g j from the root, as in this case,
no aggregation results can be shared. Otherwise, Qi must create a link to an existing
query, which fully covers g j. Instead of computing the aggregation result for g j, Qi

will reuse the results computed by other queries. Thus, in the dissemination graph,
there are two types of links. Links between root node and query nodes transfer the
samples, while links between queries transfer the aggregation results.

To support the above processing strategy, we need to modify the original online
aggregation algorithm.

1. We compute aggregation results for the grids involved in the query processing
(the grids that register at the outflowing table of the root node). For grid g j,
after receiving a sample, it will update its estimated aggregation results (e.g.,
avg, count, sum and etc.). For each estimation, the grid also keeps the variance.
Variances are used to generate the confidence and error bound. Note that g j only
needs to be computed once, even it may appear in multiple queries. In Figure 8.8,
grid 5 is computed at Q1 and then the results are shuffled to Q2 and Q3.

2. The grid updates its estimation individually. The query engine can terminate the
computation of a specific grid. Then, no sample is retrieved for the grid. Each
grid also keeps track of which samples have been used (by recording the block
pointer of the first seen sample). If all samples in the scrambled dataset are used
up, the grid stops its processing with precise results.

8 Online Aggregation 203

0
1

2

3

4

5

6

7
8

9
10

11

12

13
0
1
2
3

4
4
8

13

routing table of
node 1 relational index of node 1

table database

part

supplier

distribution

Tpc-h

Tpc-h

4:100,13:20

8:120

Fig. 8.9 Chord Overlay.

3. To answer a query, results from multiple grids need to be merged. We assign a
weight to each grid’s estimation based on the data distribution. The variances of
grids are also combined to generate the confidence for the merged result.

The statistical model is similar to the conventional online aggregation. Interested
readers can refer to the paper [21].

8.3.3 Distributed Online Aggregation

Online aggregation can be also applied in the distributed database systems, Peer-to-
Peer systems or other distributed systems. A simple solution is to forward the query
to the corresponding nodes, where a conventional online aggregation algorithm is
applied. The approximate results are then sent back and combined. By parallelizing
the computation, the solution can provide a better performance. But the challenge is
handling queries involving multiple tables in different nodes. In that case, data need
to be shuffled between nodes, which incurs significantly high overhead. To address
this problem, [20] adopts an adaptive processing strategy. In this section, we give a
brief overview of the idea.

The core techniques in [20] are DHT (Distributed Hash Table) and linear hash
function [14]. DHT is used to partition the data, while LSH is used to dynamically
tune the number of nodes involved. Before delving into the online aggregation is-
sues, we first review the two related techniques.

In [20], Chord [18] is used as the DHT to illustrate the idea. Figure 8.9 shows
a Chord ring with 16 nodes. The dark nodes denote the real compute nodes, while
the white nodes are the possible keys. In Figure 8.9, we have four compute nodes
with keys 1, 4, 8 and 13. Each compute node in the overlay maintains successor and
predecessor links. E.g., node 4 and node 13 are the successor and predecessor nodes
of node 1, respectively. Each node is responsible for a key range, starting from its
predecessor’s key to its own key. E.g., the key range of node 4 is (1, 4]. Given a
query for a specific key, we can follow the successor/predecessor links to route the
query. To speed up the search, each node also maintains log2 N routing neighbors,

204 S. Wu, B.C. Ooi, and K.-L. Tan

Database 1

Database 2

Database N

…...

Bucket 1

query
processor

…...

Processing
node

Bucket K

query
processor

Processing
node

coordinator Query
resultLinear

Hash
Function

data node

data node

data node

Fig. 8.10 Data Flow.

where N is the number of nodes in Chord. Specifically, the routing neighbor has 2x

(0≤ x≤ log2 N) distance to the owner node. By applying the routing neighbors, the
query can be completed within O(log2 N) hops.

In normal hash function, a predefined number of buckets are used and the colli-
sion is solved by linked lists. However, searching the linked lists is costly. Therefore,
linear hashing is proposed to dynamically increase the number of buckets. Under
linear hashing, a hash function adaptively doubles the number of buckets in each
cycle; however, the physical buckets are only allocated one at a time whenever an
existing bucket overflows. Whenever a physical bucket is created, the data in the
corresponding bucket are rehashed, and redistributed between the two buckets. We
will show a simple example of linear hashing to demonstrate how the distributed
online aggregation works.

Figure 8.10 shows the data flow of the distributed online aggregation. Each node
in the system maintains its own database individually. And the nodes join a Chord
ring to collaborate for query processing. To process a query, samples are retrieved
from the databases and disseminated by a linear hash function. A unique namespace
is generated for each bucket of the linear hash function. And we use the namespace
of a bucket as the key to publish it in the Chord ring. In this way, all samples of
the same bucket will be sent to the same node for processing. Linear hashing is
adopted to dynamically adjust the number of involved nodes. When the query needs
to scan a large dataset, more nodes will join the processing. In each node, we apply
the conventional online aggregation algorithm to generate an approximate result.
And all the approximate results are sent to a coordinator, where the final result is
computed by merging all the partial results.

8.3.3.1 Distributed Sampling

To generate local samples, the node can invoke sampling approaches discussed in
the previous section. However, combining random samples from different node does

8 Online Aggregation 205

not lead to a random sampling result, as data may follow skewed distribution. For
example, suppose nodes n1, n2 and n3 have 10k, 20k and 30k tuples of table T . If we
combine the samples from n1, n2 and n3 uniformly, n1’s data actually have a higher
probability of being sampled than those of n2 and n3. Therefore, an alternative way
is to retrieve samples from nodes adaptively. In particular, given a table T , suppose
P nodes contain tuples of T . Let the set of tuples of T at node ni be Ti (1 ≤ i ≤ P).
Each node ni provides the number of samples that is proportional to its table size,
i.e., node ni provides (|Ti|

|T | · k) samples, where |T | refers to the size of table T .
To perform the above sampling, we need the statistics about the number of

records in each table. We can build distributed histograms to collect the statistics.
But to save cost, the histograms cannot be updated frequently. Therefore, we may
get stale data distribution information. To correct this, the sampling is performed in
two phases. In the first phase, the samples are retrieved from each node based on
the histograms. The node returns both the samples and the size of the corresponding
table. In the second phase, the sampling process adjusts its strategy based on the
returned table sizes from nodes. By combining the samples of two phases, we can
get a random sample set.

8.3.3.2 Sample Dissemination

When receiving the sampling request, the node publishes its samples based on the
Chord protocol. Samples of the same bucket are sent to the same node for processing
by using the bucket ID as the key. Linear hashing is used to dynamically adjust
the number of involved nodes (e.g., if more samples are required, linear hashing
will increase the number of buckets). When more nodes participant in the query
processing, the query will get a short response time due to the parallelism.

Figure 8.11(a) to Figure 8.11(d) illustrate how samples are disseminated in the
network. Suppose, we have three databases (DB1, DB2 and DB3) maintained by
three data nodes. To process a query, 8 samples are required. Hence, we will retrieve
4, 2 and 2 samples from DB1, DB2 and DB3, respectively. Suppose the size of the
bucket in linear hashing is 2 and the hash function is defined as h(k)=k mod 2i,
where i is the level of the linear hash. In Figure 8.11(a), two samples 8 and 9 are
published. At first, there is only one bucket and all data are inserted into the bucket.
After 8 and 9 are inserted, the bucket is full and cannot accept more samples. When
new value 3 is inserted, the bucket splits and increases its level by 1. Now, the hash
function becomes h(k)=k mod 2. And thus, 8 is kept in B0 and 9 and 3 are stored
in B1.

When new value 5 is inserted into B1, B1 becomes overloaded as shown in
Figure 8.11(b). However, we cannot split it as the level pointer is set to B0. In Fig-
ure 8.11(c), after samples 6 and 10 are inserted, B0 becomes overloaded and splits
half of its data to the new bucket B2 based on the hash function h(k)=k mod 4. The
level of B0 increases by 1 and the level pointer moves to B1. As B1 already satisfies
the split condition, it creates the new bucket B4 and increases its level by 1. And the
level pointer is reset to B0. In the end, Figure 8.11(d) shows the final status of the
buckets.

206 S. Wu, B.C. Ooi, and K.-L. Tan

8

3

6

12

7

9

10

16

5

20

18

14

DB1 DB2

DB3

(8,9)

linear hash

B0

level pointer

(a) Step 1

(3,9,5) B1

8

3

6

12

7

9

10

16

5

20

18

14

DB1 DB2

DB3

(8)

linear hash

B0

level pointer

(b) Step 2

8

3

6

12

7

9

10

16

5

20

18

14

DB1 DB2

DB3

(8)

linear hash

B0

level pointer
(9,5) B1

(6,10)

(3)

B2

B4

(c) Step 3

8

3

6

12

7

9

10

16

5

20

18

14

DB1 DB2

DB3

linear hash

(8) B0

(9,5) B1
level pointer

(6,10)

(3)

B2

B4

(12,20) B5

(d) Step 4

Fig. 8.11 Dissemination of samples.

8.3.3.3 Result Combination

In each bucket, the conventional online aggregation scheme is applied to process the
query. And an approximate result is generated. To combine the results of different
buckets, a node is selected as the coordinator. The buckets send their partial results
to the coordinator periodically, where a final approximate result is created. Suppose
k buckets are used and Xi is the result of bucket bi’s estimation. Let σXi denote the
variance of Xi and Cov(Xi,Xj) represent the covariance of Xi and Xj. The variance
for the final (approximate) result is estimated as:

σ =
k

∑
i=1

wiσXi +
k

∑
i=1

k

∑
j=1, j �=i

Cov(Xi,Xj) (8.12)

We assign a weight wi to each individual estimation (
k
∑

i=1
wi = 1). Based on the anal-

ysis of [12], the covariance can be ignored in most cases. And hence,

wi =
1

σXi

k
∑
j=1

1
σXi

(8.13)

8 Online Aggregation 207

And thus, the final result is computed as:

X =
k

∑
i=1

wiXi (8.14)

Because the sum of normal distributed variants follows normal distribution as well,
we can use the same rule to estimate the confidence and error bound of the result.
The coordinator updates the approximate results for the user. And if the user is
satisfied with the results, the coordinator can terminate the query processing by
stopping the sampling process.

8.3.3.4 Processing Multi-relational Query

To process queries involving join operations, samples need to be shuffled between
nodes. However, a good sample dissemination scheme can reduce the overhead. For
example, given query T1 ��T1.a=T2.b T2, we can use the values of T1.a and T2.b as the
keys in the linear hash function. In this way, ∀ti ∈ T1∀t j ∈ T2, if ti can join with t j,
ti and t j must be mapped to the same bucket of the linear hash function. Therefore,
we can apply the ripple join algorithm in each bucket individually to compute the
approximate results.

In a more complex case, suppose we need to process query T1 ��T1.a=T2.b

T2 ��T2.c=T3.d T3, we have two approaches. First, we can disseminate samples of
T1 and T2 based on T1.a and T2.b. Samples of T3 are published by using T3.d as the
key. And then, the buckets for T1 and T2 use T2.c to re-distribute the samples to the
buckets of T3, where the ripple join algorithm can be applied. Or alternatively, we
can first group samples of T2 and T3 based on T2.c and T3.d. And then the buckets
rehash the samples to the buckets of T1. In either way, we need to guarantee that
joinable samples are hashed to the same bucket.

8.3.4 Online Aggregation and MapReduce

MapReduce [8] is proposed by Google as a programming framework to process
large-scale data analytical jobs in clusters. It soon becomes popular, due to its
flexibility, scalability and fault tolerance. In MapReduce, two interfaces, map and
reduce, are defined. map reads data from distributed file system (DFS), database
system or other storage systems and transforms the data into a set of key-value
pairs. Those key-value pairs are grouped in the reduce function, where user-defined
processing logic is applied to process values of the same key. Finally, the results are
written back to the underlying storage system, e.g., DFS. Figure 8.12 shows the data
flow of MapReduce. As both map and reduce processes can run on multiple nodes
independently, MapReduce achieves its efficiency by the parallelism.

MapReduce is originally designed for batch processing. The reduce phase is
strictly after the map phase. This design is different from most query process-
ing strategies in the database systems, where pipeline is widely used. In [6], a

208 S. Wu, B.C. Ooi, and K.-L. Tan

D
is

tri
bu

te
d

Fi
le

 S
ys

te
m

D
is

tri
bu

te
d

Fi
le

 S
ys

te
m

... ...

map reduce
shuffle

input
data

output
result

Fig. 8.12 Data Flow in MapReduce.

modified MapReduce framework is proposed, which allows data to be pipelined
between the operators. On top of the new framework, online aggregation technique
can be supported seamlessly [7].

The pipelining approaches in [6] can be classified as intra-job pipeline and inter-
job pipeline.

Intra-job Pipeline. A MapReduce job is processed in two phases, the map phase and
the reduce phase. Between the phases, data need to be shuffled from the map pro-
cess to the reduce process. In conventional MapReduce, map process will write
its output (a set of key-value pairs) into local disk. The reduce process pulls the
output files of the map processes. Only when all map processes complete their
processing, will the reduce processes start the work. To address this problem,
instead of writing the output to local disk, the map process directly pushes its
results to the reduce process. And the reduce process can start its processing as
soon as possible.

Inter-job Pipeline. A complex analytical query is always translated into a set of
MapReduce jobs, which are processed one by one. When a job completes, it
writes back all the results back to DFS. The next job will read the results of the
last job to continue the processing. This strategy incurs high I/O costs. There-
fore, in [6], the reduce process of a job can directly pipeline its result to the
map processes of the next job. This strategy avoids the repeated read/write op-
erations. However, fault tolerance is compromised, because partial results may
not be available in DFS. A solution is to add checkpoints after some jobs. When
processing reaches a checkpoint, the system backs up the results into DFS.

To implement the online aggregation in MapReduce framework, users need to cus-
tomize their reduce functions. As reduce processes run independently of each other,
it is difficult to provide a correct estimation about the accuracy. Instead, in [6],
progress (percent of processed data) is used as the indicator on how good the result
is. In particular, the reduce process will generate a result for predefined progresses,
e.g., 10%, 20% and 30% of input data. The results are written back to DFS and can
be identified by the file names. User’s application can search the DFS to get results
of a specific progress, e.g., 10%. By combining the results from all reduce process,
the application can provide an approximate estimation. In [6], online aggregation
for multiple MapReduce jobs is also discussed. Interested readers can refer to the
paper for more details.

8 Online Aggregation 209

8.4 Conclusion and Discussion

As a promising technique, online aggregation has attracted much interests from
many researchers. It can significantly reduce the processing cost of aggregate
queries. In a decision making system that requires fast response, online aggrega-
tion can be applied to provide real-time approximate results. However, up to now,
no commercial database supports this function. This is probably because

• It is challenging to provide a good estimation for skewed data distribution. When
data are skewed, conventional sampling approach cannot work well. The samples
may not be randomly distributed. And therefore, the generated results are more
affected by the dense parts.

• Some “group by” queries may lead to unexpectedly long processing time because
of a small number of samples. For example, given 100k records of students,
suppose we try to compute the average score of each class. If a class A is selected
by 10 students, the next sample comes from class A with probability 0.0001.
Thus, the query processor needs to retrieve a large number of samples, until it
can provide a good enough estimation for class A.

• Handling updates in online aggregation is not a trivial problem. As online ag-
gregation also guarantees to provide a precise result after scanning the whole
dataset, the updates actually affect the sampling process. When online aggrega-
tion stops with a precise result, all existing tuples need to be sampled exactly
once. Moreover, updates may invalid the previous estimation as data distribution
changes.

Addressing the above problems can facilitate the adoption of online aggregation. In
fact, in real systems, queries are generated by the templates (e.g., queries submitted
by the web form). Online aggregation can be specially designed for a subset of
queries, which is easier to optimize. Moreover, online aggregation can also be used
to answer the continuous queries in the streaming system, where query response
time is very important and samples are received at varied rates.

References

1. TPC-H Benchmark, http://www.tpc.org/tpc-h
2. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate An-

swering of Group-By Queries. In: SIGMOD Conference, pp. 487–498 (2000)
3. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approximate

Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)
4. Babcock, B., Chaudhuri, S., Das, G.: Dynamic Sample Selection for Approximate Query

Processing. In: SIGMOD Conference, pp. 539–550 (2003)
5. Chaudhuri, S., Das, G., Datar, M., Motwani, R., Narasayya, V.R.: Overcoming Limita-

tions of Sampling for Aggregation Queries. In: ICDE, pp. 534–542 (2001)

http://www.tpc.org/tpc-h

210 S. Wu, B.C. Ooi, and K.-L. Tan

6. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Elmeleegy, K., Sears, R.: MapRe-
duce Online. Tech. rep., University of California, Berkeley (2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/
EECS-2009-136.pdf

7. Condie, T., Conway, N., Alvaro, P., Hellerstein, J.M., Gerth, J., Talbot, J., Elmeleegy,
K., Sears, R.: Online Aggregation and Continuous Query Support in MapReduce. In:
SIGMOD Conference, pp. 1115–1118 (2010)

8. Dean, J., Ghemawat, S.: MapReduce: Simplified Data Processing on Large Clusters.
In: OSDI, pp. 137–150 (2004)

9. Haas, P.J., Hellerstein, J.M.: Ripple Joins for Online Aggregation. In: SIGMOD Confer-
ence, pp. 287–298 (1999)

10. Hellerstein, J.M., Haas, P.J., Wang, H.J.: Online Aggregation. In: SIGMOD Conference,
pp. 171–182 (1997)

11. Jacobs, A.: The Pathologies of Big Data. Commun. ACM 52(8), 36–44 (2009)
12. Jermaine, C., Dobra, A., Arumugam, S., Joshi, S., Pol, A.: A Disk-Based Join With

Probabilistic Guarantees. In: SIGMOD Conference, pp. 563–574 (2005)
13. Jermaine, C., Pol, A., Arumugam, S.: Online Maintenance of Very Large Random

Samples. In: SIGMOD Conference, pp. 299–310 (2004)
14. Litwin, W.: Linear Hashing: A New Tool for File and Table Addressing. In: VLDB,

pp. 212–223 (1980)
15. Luo, G., Ellmann, C.J., Haas, P.J., Naughton, J.F.: A Scalable Hash Ripple Join Algo-

rithm. In: SIGMOD Conference, pp. 252–262 (2002)
16. Olken, F.: Random Sampling from Databases. Ph.D. thesis. University of California

(1993)
17. Olken, F., Rotem, D.: Maintenance of Materialized Views of Sampling Queries. In:

ICDE, pp. 632–641 (1992)
18. Stoica, I., Morris, R., Karger, D.R., Kaashoek, M.F., Balakrishnan, H.: Chord: A Scalable

Peer-to-Peer Lookup Service for Internet Applications. In: SIGCOMM, pp. 149–160
(2001)

19. Tan, K.L., Goh, C.H., Ooi, B.C.: Online Feedback for Nested Aggregate Queries with
Multi-Threading. In: VLDB, pp. 18–29 (1999)

20. Wu, S., Jiang, S., Ooi, B.C., Tan, K.L.: Distributed Online Aggregation. PVLDB 2(1),
443–454 (2009)

21. Wu, S., Ooi, B.C., Tan, K.L.: Continuous Sampling for Online Aggregation over Multiple
Queries. In: SIGMOD Conference, pp. 651–662 (2010)

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-136.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-136.pdf

Chapter 9
Adaptive Query Processing in Distributed
Settings

Anastasios Gounaris, Efthymia Tsamoura, and Yannis Manolopoulos

Abstract. In this survey chapter, we discuss adaptive query processing (AdQP) tech-
niques for distributed environments. We also investigate the issues involved in ex-
tending AdQP techniques originally proposed for single-node processing so that
they become applicable to multi-node environments as well. In order to make it
easier for the reader to understand the similarities among the various proposals, we
adopt a common framework, which decomposes the adaptivity loop into the moni-
toring, analysis, planning and actuation (or execution) phase. The main distributed
AdQP techniques developed so far tend to differ significantly from their centralized
counterparts, both in their objectives and in their focus. The objectives in distributed
AdQP are more tailored to distributed settings, whereas more attention is paid to is-
sues relating to the adaptivity cost, which is significant, especially when operators
and data are moved over the network.

9.1 Introduction

The capability of database management systems to efficiently process queries,
which are expressed as declarative statements, has played a major role in their suc-
cess over the last decades. Efficiency is guaranteed due to several sophisticated op-
timization techniques, which heavily rely on the existence of metadata information
about the data to be processed, such as the distribution of values and the selectiv-
ity of the relational operators. Since the late 1970s and the introduction of System
R [58], static optimization of query plans and subsequent execution has been the
main choice for database system developers. However, when the metadata required
are not available or accurate at compile time, or when they change during execution,

Anastasios Gounaris · Efthymia Tsamoura · Yannis Manolopoulos
Aristotle University of Thessaloniki, Thessaloniki, Greece
e-mail: {gounaria,etsamour,manolopo}@csd.auth.gr

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 211–236.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{gounaria,etsamour,manolopo}@csd.auth.gr

212 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

the query processor needs to revise the current execution plan on the fly. In this case,
query processing is called adaptive.

In adaptive query processing (AdQP), there is a feedback loop, similar to the one
appearing in autonomic systems, according to which the query processor monitors
its execution properties and its execution environment, analyzes this feedback, and
possibly reacts to any changes identified with a view to ensuring that either the
current execution plan is the most beneficial or a modification of the current plan
can be found that is expected to result in better performance.

Although AdQP is particularly relevant to wide area settings, in which query
statistics are more likely to be limited or potentially inaccurate, and the computa-
tional properties, such as the processing capacity of hosting machines, are volatile,
most AdQP proposals have focused either on completely centralized query process-
ing or on centralized processing of data retrieved or stemming from remote sources
and data streams, respectively. In such settings, there is typically a single physical
machine used for query execution, which is predefined, and thus the focus is mostly
on adapting to changing properties of the data processed, e.g., cardinalities of inter-
mediate results and operator selectivities. This is, of course, of high importance for
distributed query processing (DQP), as crucial information about the data may be
missing at compile time. However, of equal significance are adaptations to changing
properties of a potentially arbitrary set of resources that DQP may employ and of
their communication links. Currently, AdQP with respect to changing resources is
not addressed as satisfactorily as with respect to changing data properties.

In this survey chapter, we systematically discuss AdQP techniques that are tai-
lored to distributed settings both with respect to the data sources and the process-
ing nodes. We also investigate the issues involved in extending AdQP techniques
originally proposed for single-node processing so that they become applicable to
multi-node environments as well. In order to make it easier for the reader to under-
stand the similarities among the various proposals, we adopt a common framework,
which decomposes the adaptivity loop into its constituent phases mentioned above,
i.e, monitoring, analysis, planning and actuation phase. The later corresponds to the
phase, in which the adaptivity decisions are executed by the system.

Structure. The structure of this chapter is as follows. In the remainder of this
section we briefly discuss preliminary concepts of distributed query processing and
optimization (Section 9.1.1), and related work (Section 9.1.2). In Section 9.2, we
present the framework that forms the basis of our analysis. The next section contains
a short review of traditional AdQP for centralized settings and explains the reasons
why such techniques cannot be applied to wide-area environments in a straightfor-
ward manner. The discussion of the AdQP techniques for distributed settings, which
is the core part of this chapter, is in Sections 9.4-9.6. Existing work in distributed
AdQP techniques can be classified in three broad categories. Techniques that do not
rely on the existence of traditional query plans fall into the first category, which is
examined in Section 9.4. The second category comprises approaches that perform
load management at the operator level (Section 9.5), whereas, in Section 9.6, we
discuss distributed AdQP techniques where the adaptivity occurs at a higher level.

9 Adaptive Query Processing in Distributed Settings 213

The final section (Section 9.7) contains an assessment of the current status in the
area, along with directions for future work, and concludes the chapter.

9.1.1 Distributed Query Processing Basics

Distributed query processing consists of the same three main phases as its central-
ized counterpart, namely parsing (or translation), optimization and execution. Dur-
ing parsing, the initial query statement, which is expressed in a declarative language
such as SQL, is translated into an internal representation, which is the same for both
centralized and distributed queries [42].

Query optimization is commonly divided into two parts, query rewriting and cost-
based plan selection. Query rewriting is typically carried out without any statisti-
cal information about the data and independently of any previous physical design
choices (e.g., data locations, existence of indices) apart from the information about
data fragments. In distributed queries over non-replicated fragmented data, the rel-
evant data fragments are identified during this procedure as well [51]. Secondly,
cost-based optimization is performed. The search strategy typically follows a dy-
namic programming approach for both centralized and distributed queries [43, 46]
provided that the query is not very complex in terms of the number of different
choices that need to be examined; in the latter case the plan space is reduced with
the help of heuristics. Traditional cost based optimization is capable of leading to
excellent performance when there are few correlations between the attributes, ade-
quate statistics exist and the environment is stable.

The optimized plan is subsequently passed on to the query execution engine,
which is responsible for controlling the data flow through the operators and imple-
menting the operators. Although in both traditional disk-based queries and contin-
uous queries over data streams the operators are typically those that are defined by
the relational algebra (or their modifications [69]), the execution engine may dif-
fer significantly. In disk-based queries, the pull-based iterator model of execution
is preferable [31], according to which each operator adheres to a common interface
that allows pipelining of data, while explicitly defining the execution order of query
operators and ensuring avoidance of flooding the system with intermediate results in
case of a bottleneck. On the other hand, continuous queries over data streams may
need to operate in a push-based mode [8]. The main difference between the push
and pull model of execution lies in the fact that, in the push model, the processing is
triggered by the arrival of new data items. This property may give rise to issues that
are not encountered in pull-based systems, which have full control on the production
rate of intermediate results. For example, push-based query processors may need to
resort to approximation techniques when data arrival rates exceed the maximum rate
in which the system can process data. We do not deal with approximation issues in
this chapter; we refer the interested reader to Chapters 7 and 10 of this book. How-
ever, it is worth mentioning that AdQP in push-based systems considers additional
issues, such as adaptations to the data arrival rates.

214 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

In conventional static query processing, the three phases of query processing
occur sequentially, whereas, in AdQP, query execution is interleaved with query
optimization in the context of a single query with a view to coping with the unpre-
dictability of the environment, and evolving or inaccurate statistics. According to a
looser definition of AdQP, the feedback collected from the query execution of previ-
ous queries impacts on the optimization of future queries (e.g, [61]); we do not deal
with such flavors here. Note that the need for on-the-fly re-optimizations is mitigated
with the help of advanced optimization methodologies, such as robust optimization
(e.g., [3, 12]). Also, other topics related to AdQP are discussed in Chapter 10 (on
combining search queries and AdQP).

9.1.2 Related Work

A number of surveys on AdQP have been made available [35, 26, 4, 18]. However,
none of them focuses on distributed queries over distributed resources, although the
work in [18] is closer in spirit to this chapter in the sense that it adopts the same
describing framework. Static DQP is described in [51, 42], whereas the work in
[31] discusses query processing issues in detail.

9.2 A Framework for Analysis of AdQP

AdQP can be deemed as the main means of self-optimization in query processing,
and, as such, it relates to autonomic computing. According to the most commonly
used autonomic framework, which is introduced in [41], at the conceptual level,
autonomic managers consist of four parts, namely monitoring, analysis, planning
and execution, whereas they interface with managed elements through sensors and
effectors. In line with this decomposition, a systematic discussion about distributed
AdQP distinguishes between monitoring, analysis, planning and execution. Note
that these parts need not necessarily correspond to distinct implemented components
at the physical level.

Monitoring involves the collection of measurements produced by the sensors. In
the context of query processing, the types of measurements include data statistics
(e.g., cardinalities of intermediate results), operator characteristics (e.g., selectiv-
ities) and resource properties (e.g., machine CPU load). The feedback collected
is processed during the analysis phase with a view to diagnosing whether there
is an issue with the current execution plan. If this is the case, then an adaptation
is planned, which can be thought of as an additional query plan along with opera-
tions that ensure final result correctness. Execution is concerned with the actuation
of the planned adaptations. Planned adaptations are executed either immediately in
simple scenarios, or, in more complex cases (e.g., when internal state of some oper-
ators must be modified first), after certain procedures have been followed.

9 Adaptive Query Processing in Distributed Settings 215

In this chapter, we follow the approach in [18] and we provide a summary of the
measurements collected, and the analysis, planning and actuation procedures that
are encapsulated in each of the main AdQP techniques presented. Note that these
aspects of AdQP may be arbitrarily interleaved with query processing. For exam-
ple, in some techniques, measurements’ collection occurs after query processing
has been suspended (e.g., due to materialization points), whereas other techniques
continuously generate monitoring information during query execution. Also, analy-
sis and planning may be tightly connected, since, in some cases the analysis of the
feedback is done in a way that identifies better execution plans as well. Due to this
fact, we prefer to examine analysis along with planning. Note that other variants
of this framework, such as the one in [27], may regard planning and execution as
a single response phase, whereas, during monitoring, preliminary analysis may be
performed to filter uninteresting feedback.

9.3 AdQP in Centralized Settings

The role of this section is twofold. Firstly, it provides a short review of the main
techniques employed in centralized AdQP, which is thoroughly investigated in sur-
veys such as the one in [18]. Secondly, it discusses the feasibility of applying such
techniques in distributed settings.

9.3.1 Overview of Techniques

In broad terms, the objective of conventional AdQP is to take actions in light of new
information becoming available during query execution in order to achieve better
query response time or more efficient CPU utilization. Although AdQP can be ap-
plied to plans consisting of any type of operators, there exist operators that naturally
lend themselves to adaptivity in the sense that they facilitate plan changes at run-
time. Such operators include symmetric hash joins and the proposals that build on
top of them (e.g, XJoins [63]), multi-way pipelined joins (e.g., [65]) and eddies [2].
All the operators mentioned above can be complemented with additional operators
that encapsulate autonomic aspects within their design; for example, certain opera-
tor implementations provide built-in support to adapt to the amount of the memory
available (e.g., [52]).

Eddies constitute one of the most radical adaptive techniques on the grounds that
they do not require explicit decisions on the ordering of commutative and asso-
ciative operators (e.g., selections and joins). This results in a much simpler query
optimization phase. Eddies have been proposed in order to enable fine-grained adap-
tivity capabilities during query execution; actually, they allow each tuple to follow a
different route through the operators. More specifically, in eddies, the order of com-
mutative and associative operators is not fixed and adaptations are performed by
simply changing the routing order. To this end, several routing policies have been

216 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

proposed. The eddy operator is responsible for taking the routing decisions accord-
ing to the policy adopted and monitoring information produced by the execution
of tuples. As an example, assume that a long-running query over three relations of
equal size is processed with the help of two binary joins. At the beginning, the se-
lectivity of the first join is much lower than the selectivity of the other and the eddy
will route most of the tuples to the most selective one. Later, the second join be-
comes more selective (e.g., due to the existence of a time-dependent join attribute);
the eddy will be capable of swapping the order of join execution. Any static opti-
mization decision on the join ordering would fail to construct a good plan in such
a scenario where a different ordering yields better results in different time periods
during query execution.

Hybrid approaches that combine eddies with more traditional optimization have
been proposed as well. For example, in [49] and [48], a methodology is proposed
where multiple plans exist and the incoming tuples are routed to these plans with
the help of an eddy. Each such plan is designed for a particular subset of data with
distinct statistical properties. In general, several extensions to the original eddy op-
erator have been made (e.g., [56], [16], [10], [14]).

Another notable centralized AdQP technique has been proposed in [6], which
adaptively reorders filtering operators. This proposal takes into account the correla-
tion of predicates and can be used to enhance eddies routing policies. It has also been
extended to join queries [7]. In general, join queries are treated in a different manner
depending on whether they are fully pipelined and whether adaptations impact on
the state that is internally built within operators because of previous routing deci-
sions. Non-pipelined join queries were among the first types of queries for which
AdQP techniques have been proposed. Such techniques are typically based on the
existence of materialization points and the insertion of checkpoints, where statistics
are collected and the rest of the adaptivity loop phases may take place if significant
deviations from the expected values are detected (e.g., [40]). Two specific types
of generalizations of these works are referred to as progressive optimization [47]
and proactive optimization [5], respectively. Adaptive routing history-dependent
pipelined execution of join queries is one of the most challenging areas in AdQP,
where proposals exist that either use conventional query plans (e.g., [39]) or eddies
(e.g., [16]).

9.3.2 On Applying Conventional AdQP Techniques in Distributed
Settings

Undoubtedly, distributed AdQP techniques can benefit from the adaptive techniques
proposed for a centralized environment. In DQP, each participating site receives
a sub-query, which can be executed in an adaptive manner with the help of the
techniques described previously. However, these adaptations, which are restricted to
sub-queries only, are not related to each other, and, as such, they are not guaranteed
to improve the global efficiency of the execution. For example, suppose that a set
of operators in a query plan are sent to multiple machines simultaneously according

9 Adaptive Query Processing in Distributed Settings 217

to the partitioned parallelism paradigm [19]. The execution of a query operator in
a plan may benefit from partitioned parallelism when this operator is instantiated
several times across different machines with each instance processing a distinct data
partition. An eddy running on each of those machines could be very effective in
detecting the most beneficial operator order at runtime; nevertheless, nothing can be
done if the workload allocated to each of these machines is not proportional to their
actual capacity.

In general, when AdQP techniques that were originally proposed for single-node
queries are applied to full DQP, their efficiency is expected to degrade significantly
due to the following reasons.

• Firstly, adaptations may impact on the state built within operators, as explained
in [16, 73]. State movements in DQP incur non-negligible cost due to data trans-
mission over the network. If this cost is not taken into account during the plan-
ning phase, then, the associated overhead may outweigh any benefits. Centralized
AdQP techniques that manipulate the operator state in order to improve perfor-
mance do not consider such costs, whereas, if state movement is avoided, then
the adaptivity effects may be limited [16]. This situation calls for new AdQP
techniques tailored to distributed settings.

• Secondly, several of the AdQP techniques mentioned above involve a final stitch-
up (or clean-up) phase, which is essential for result correctness (e.g., [39]). As
with state movement, when such a phase is applied to distributed plans, then
additional overhead is incurred, which needs to be carefully assessed before pro-
ceeding with adaptations.

• Thirdly, direct applications of centralized AdQP techniques result in techniques
in which there is a single adaptivity controller responsible for all the adaptivity
issues. Obviously, this may become a bottleneck if the number of participating
machines and/or the volume of the feedback collected is high. Scalable solutions
may need to follow more decentralized approaches, which has not been examined
in single-node settings.

• Finally, the optimization criteria may be different, since issues, such as load bal-
ancing, economic cost, energy efficiency are more likely to arise in DQP. These
issues are closely related to load allocation across multiple machines, which is
an aspect that does not exist in centralized environments.

Overall, the focus of distributed AdQP is different due to the fact that overhead
and scalability issues are more involved, while load management is performed at a
different level. The techniques described in the sequel address some of these issues.

9.4 AdQP for Distributed Settings: Extensions to Eddies

The original eddies implementation in [2] and its variants mentioned in Section 9.3
cannot be applied to a distributed setting in a straightforward manner. This is due to
the fact that the eddy architecture is inherently centralized in the sense that all tuples

218 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

eddy eddyeddy

O1

eddy

O2Site 1 Site 2

dd

O2Site 1 Site 2

eddy

O3Site 3 O3Site 3

Fig. 9.1 Example of a distributed eddy architecture. The dashed lines show the statistics flow
among the eddy operators, while the solid lines show the tuple flow.

must be returned to a central eddy; obviously, this paradigm leads to a single-point
bottleneck, unnecessary network traffic and delays when operators are distributed.
This section presents solutions to these problems.

9.4.1 Techniques

In [62], a distributed eddy architecture is proposed, which does not suffer from the
limitations mentioned above. More specifically, in [62], each distributed operator is
extended with eddy functionality. Moreover, a distributed eddy reaches routing de-
cisions independently of any other eddies. Each operator places the received tuples
in a first-come first-served queue. After a tuple has been processed, it is forwarded
to the local eddy mechanism, which decides on the next operator that the tuple may
be passed to based on the tuple’s execution history and statistics. The operators in
the distributed eddy framework learn statistics during execution and exchange such
information among them periodically, e.g., after some units of time have passed or
after having processed a specific amount of tuples. As in traditional eddies, routing
decisions need not take place continuously; on the contrary, they may be applied to
blocks of tuples in order to keep the associated overhead low [15]. Figure 9.1 shows
an example of a distributed eddy architecture in a shared-nothing cluster of three sites.

The differences between centralized and distributed eddies are not only at the
architectural level. The distributed eddies execution paradigm may be employed to
minimize the result response time or to maximize the tuple throughput. For both ob-
jectives, it can be easily proved that the optimal policy consists of multiple execution
plans that are active simultaneously, in the spirit of [17]; note that AdQP techniques
typically consider the adaptation of a single execution plan that is active at each
time point. However, analytical solutions to this problem are particularly expensive
due to the combinatorial number of alternatives, and, in addition, they require the
existence of perfect statistical knowledge; assuming the existence of perfect

9 Adaptive Query Processing in Distributed Settings 219

Table 9.1 Adaptive control in Distributed Eddies [62].

Measurement: The eddy operators exchange statistics periodically regarding (i) the selectiv-
ity, (ii) the cost and (iii) the tuple queue length of the operators they are responsible for.

Analysis-Planning: The routing is revised periodically employing routing policies tailored
to distributed settings. The routing decisions are made for groups of tuples.

Actuation: The planned decisions take effect immediately; no special treatment is needed
since operators’ internal state is not considered.

knowledge in a centralized statistics gathering component is not a realistic approach.
So, the efficiency of distributed eddies relies on the routing policies. Interestingly,
the most effective routing policies are different from those proposed in [2].

More specifically, several new routing policies are introduced in [62], in addition
to those proposed for centralized eddies. Basic routing policies for centralized ed-
dies include back-pressure, which considers operator load, and lottery, which favors
the most selective operators. In the selectivity cost routing policy in [62], both the
selectivity and the cost of the operators are considered in a combined manner. Al-
though the above policy considers two criteria, it does not consider the queuing time
spent while a tuple waits for processing in an operator’s input queue. Thus tuples are
routed to an operator regardless of its current load. In order to overcome this weak-
ness, the selectivity cost queue-length policy takes into account the queue lengths
of the operators as well. Contrary to the spirit of centralized eddies, the policies
mentioned above are deterministic rather than probabilistic; note that this property
is orthogonal to adaptivity. Finally, two more policies are proposed that route tuples
in a probabilistic way that is proportional to the square of the metrics estimated by
the selectivity cost and the selectivity cost queue-length policies, respectively. Ac-
cording to the experiments of the authors of [62], taking the square of the metrics
exhibited better performance than taking the metrics alone.

Overall, during the monitoring phase, the raw statistics that need to be collected
from each operator include its average tuple queue length, its selectivity and its
processing cost. The routing policies effectively plan any adaptations. The actuation
cost incurred when an alternative routing is adopted is negligible; the tuples are
simply routed according to the new paths. Cases where the adaptation overhead
cost is non-negligible, e.g., where operators create and hold internal state, which is
affected by adaptations, are not investigated. The high-level summary of distributed
eddies in [62] is given in Table 9.1.

The work of Zhou et al. in [72] extends the distributed eddies architecture pro-
posed in [62] with SteMs [56]. SteMs add extra opportunities for adaptivity, since,
apart from operator ordering, they can also change the join algorithm implemen-
tation (e.g., index-based vs. hash join) and the data source access methods (e.g.,
table scan vs. indexed access based on an attribute’s column) at runtime. The lo-
cal eddy operators utilize the traditional back-pressure and the lottery-based routing

220 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Table 9.2 Adaptive control in [72].

Measurement: The eddy operators exchange statistics periodically. The exchanged statistics
include (i) the average tuple queue length of the operators and (ii) the number of output tuples
that are generated by the operators for the number of input tuples supplied to them.

Analysis-Planning: The routing is revised periodically. The back-pressure and the lottery
based routing policies are employed for batches of tuples.

Actuation: The planned decisions take effect immediately; no special treatment is needed
since operators’ internal state is not considered.

strategies proposed for centralized settings [2]. In a distributed setting, the former
routing strategy is used to accommodate the network transmission speeds and site
workload conditions, while the latter reflects the remote operators’ selectivity. Note
that, as in [62], statistics are exchanged among the remote eddies at periodic time
intervals, while routing decisions are made for groups of tuples. The statistics re-
quired by an eddy operator in [72] include (i) the average tuple queue length of the
operators, and (ii) the number of output tuples that are generated by the operators.
As in [62], the overhead incurred when an alternative routing is enforced, is negli-
gible (see Table 9.2). Finally, FREddies is a distributed eddies framework for query
optimization over P2P networks [36], which shares the same spirit as [62, 72].

9.4.2 Summary

The proposals described above are an essential step towards the application of ed-
dies in DQP. However, a common characteristic is that the techniques in this cate-
gory tend to avoid costly adaptations that involve manipulation of operators’ internal
state in order to diminish the risk of causing performance regression. A side-effect
of such a reserved policy is that further opportunities to improve the performance
of AdQP may be missed, as shown by successful relevant examples of AdQP tech-
niques in centralized settings (e.g., [16, 21]. Another observation is that more re-
search is needed in order to understand what type of routing policies is more efficient
in distributed settings, and what are the benefits of probabilistic versus deterministic
routing and of routing policies that are closer in spirit to flow algorithms [17].

9.5 AdQP for Distributed Settings: Operator Load
Management

Load management can be performed at several levels; at operator-level load man-
agement, the main unit of load is an operator instance. In intra-operator load man-
agement, the different operator instances correspond to the same logical operator,

9 Adaptive Query Processing in Distributed Settings 221

which implies that partitioned parallelism is employed and adaptivity is concerned
with only a part of the query plan. On the other hand, inter-operator load manage-
ment deals with adaptations that consider the whole plan, and operator instances
may correspond to different logical operators.

9.5.1 Intra-Operator Load Management

Horizontal partitioning is a common approach to scale operators in a shared-nothing
cluster [19]. In horizontal partitioning, an operator is divided into multiple instances.
Each such instance is placed on a different site and processes different subsets of the
input data. The operators on the different sites can work in parallel. Thus the result
of the operator is given by aggregating the partial results that were produced by the
different operator instances. For example, the result of an equi-join operator A��B is
given by the union of the partial results Ai ��Bi, i= 1, . . . ,P, where P is the degree of
parallelism, i.e., the number of operator instances that work in parallel on different
data. Ai and Bi correspond to the subsets of data that are processed at the i− th site
and are partitioned according to the join attribute.

9.5.1.1 Background

A straight-forward way to enable query plans to benefit from partitioned parallelism
without modifying the operators, such as joins and aggregates, is through the in-
sertion of exchanges [30]. The exchange operator is one of the most notable non-
intrusive attempts to parallel operator evaluation. The operator does not modify or
filter any tuples but aims to distribute tuples across different operator instances. The
exchange operator is logically partitioned into two components that may be hosted
on different sites. The consumer component resides at a consumer operator instance
and waits for tuples coming from the upstream producer operator instances. The
producer component encapsulates the routing logic: it is responsible for routing the
tuples to the consumer operator instances. The most common routing policies are
hash-based, value range-based and round-robin.

Figure 9.2(top) shows an example of the partitioned execution of the hash-join
A �� B in a shared-nothing cluster of four sites using an exchange operator. The
tuples from the left relation A are used to build the hash-table, while the tuples from
B probe the hash-table. As the different operator instances in sites 1 and 2 work
in parallel, the time needed to complete the evaluation of the join operator equals
the time needed by the slowest operator instance. Consequently, load imbalances
can degrade the overall query performance. Load balancing aims to minimize the
overall query response time by “fairly” redistributing the processing load among
the consumer sites. By fairly is meant that the amount of work to be done on each
site must be proportional to the capabilities of the site. In a volatile environment, the
capabilities of participating machines or the relative size of the probing partitions
may change at runtime. However, modifications to the routing policy so that the
partitioning reflects better the current conditions lead to incorrect results, unless

222 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Site 2Site 1

Hash tables on the
join attribute

Site 2Site 1

exchange exchangeexchange_
consumer

g _
consumer

A1 A2B1 B2
Outgoing tuple queues of
the producer component

exchange_
producer

exchange_
producer

Scan(A) Scan(B)

Site 3 Site 4

Scan(A) Scan(B)

Site 2Site 1
State partitions
moved from Site 2Site 1

h

moved from
Site 1 to Site 2

exchange_
consumer

exchange_
consumer

A1 A2B1 B2
Outgoing tuple queues of
the producer component

exchange_
producer

exchange_
producer

Scan(A) Scan(B)

Site 3 Site 4

() ()

Fig. 9.2 Top: example of executing a hash-join over a shared-nothing cluster using the
exchange operator. Bottom: example of state relocation.

these modifications are followed by the relocation of the corresponding buckets in
the hash tables. This phenomenon is common to any partitioned operator that builds
and maintains internal state during its execution. An example of state relocation is
shown in Figure 9.2(bottom), where parts of the hash-table in Site 1 are moved to
the hash-table of Site 2 if the routing policy changes at runtime and more tuples are
routed to Site 2.

9.5.1.2 The Flux Approach

Flux [59] is an operator that can be deemed as an extension to the proposals of
the exchange and river [1] mechanisms, accounting for adaptive load balancing
of stateful operators, such as windowed equi-joins and group-bys. Two policies
are proposed for adaptive load balancing in clusters for settings with ample and

9 Adaptive Query Processing in Distributed Settings 223

limited main memory, respectively. The first policy aims to transfer load (which
entails state relocation as well) from an overloaded consumer operator instance to
a less loaded consumer operator instance taking into account only the processing
speed and idle times of consumers, while the second policy extends the former by
considering memory management as well. The goal of the load balancing policy in a
cluster with ample main memory is to maximize tuple throughput, through the min-
imization of utilization imbalances and the number of states moved. On the other
hand, the constrained memory load-balancing policy tries to balance memory use
across the cluster to avoid or postpone pushing states into disk.

In Flux, instead of having only one state partition per consumer instance, each
consumer instance holds multiple “mini”-partitions. This is an effective mechanism
for enabling fine-grained balancing [20]. In order to perform load balancing the
following functionality is added. First, the consumer components maintain execu-
tion statistics tracked over monitoring periods. The maintained statistics differ with
respect to the execution environment, i.e., whether the cluster has ample main mem-
ory or not. In the first case, the statistics are (i) the number of tuples processed per
partition at the consumer side and (ii) the amount of time the consumer operator
instance has spent idle, i.e., the amount of time the consumer component, which
resides on the corresponding consumer operator instance, waits for input to arrive.
From these statistics, the actual utilization of each node is derived. In the second
case, i.e., when the aggregate main memory in the cluster is limited, the runtime
statistics are (i) the available main memory at each consumer side, and (ii) the size
of the partitions, along with indications of whether they are memory-resident or not.
Second, the adaptations are coordinated by a global controller. The controller is re-
sponsible for collecting the runtime statistics from the consumer components and
issuing movement decisions for load balancing.

In both policies mentioned above, load balancing is performed periodically and
proceeds in rounds, where each round consists of two phases: a statistics collection
phase and a state relocation phase. The duration of the state relocation phase impacts
on the length of the next monitoring period with a view to avoiding scenarios where
most of the time is spent shifting state partitions around. Also, in order to minimize
the number of partition moves, for a given pair of sites, only one state partition
is considered for movement, namely the one that reduces the utilization imbalance
between the donor site and the receiver, provided that several threshold requirements
are met.

The steps that take place when state partitions are relocated from one site to an-
other are roughly the following: quiescing the partition to be moved, transferring
the state partitions to the corresponding consumer sites and restarting the partition
input stream. During quiescing, the consumer and the producer exchange messages
in order to ensure that all in-flight tuples have been processed, and, as such, the con-
sistency of the results is guaranteed. In addition, during the state movement period,
each producer component marks the candidate state partition as stalled and buffers
the incoming tuples for that state. After the state movement is performed success-
fully, all buffered tuples are redirected to the consumer operator instances that are
selected to be the new hosts and the producer components resume directing tuples.

224 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Table 9.3 Adaptive control in Flux [59].

Measurement: The following statistics are reported periodically from the local consumer
components to the central controller: (i) the number of tuples processed per partition at the
consumer side, (ii) the amount of time the consumer instance has spent idle, (iii) the available
main memory at the consumer side, and (iv) the size of the partitions.

Analysis-Planning: Load balancing is coordinated by a central controller, which detects im-
balances based on the measurements received. In case of imbalances, the controller forms
pairs of sites that will exchange state partitions based on their utilization (in non memory-
constrained clusters) or their excess memory capacity (in memory-constrained clusters) with
the help of several thresholds.

Actuation: The steps are the following: (i) stall the input to the state partitions to be relocated,
(ii) wait for in-flight tuples to arrive, (iii) transfer the state partitions to the corresponding
consumer sites, and (iv) resume processing. The time spent for state movement will be used
to define the next monitoring period length.

The policy for load balancing in a memory-constrained environment is similar
to the one described above. However, in such an environment, state-movement is
guided by the excess memory capacity criterion. The excess memory capacity at
a consumer site is defined as the difference between the total memory size of the
local states and the total available main memory. Similar to the previous policy, the
state partitions selected to be moved are those that reduce the imbalance in excess
capacity between pairs of sites. Flux can also perform secondary memory manage-
ment, in the sense that each consumer site may autonomously decide to push and
load state partitions into and from disks, respectively, in a round-robin fashion. The
full details of the Flux adaptive load balancing approach can be found in [59]; a
summary is presented in Table 9.3. Note that Flux can be complemented with fault
tolerance capabilities [60].

9.5.1.3 Improvements on the Flux Approach

Paton et al. proposed some modifications to the original Flux operator in [54]. In
one of the proposed variants, the execution proceeds as in the original Flux operator
but state partitions are replicated instead of simply being moved. This entails higher
memory requirements but, at the same time, manages to reduce the number of future
state movements. In another variant, which assumes operators building hash tables,
each hash-table bucket is randomly assigned to three sites. At hash-table build or
probe phase, a tuple is sent to the two most lightly loaded of the three candidate
sites that are associated with the bucket that the tuple is hashed to. During the probe
phase, if a probe tuple matches a build tuple, the join algorithm generates a result
from the probe occurred at the least loaded site, unless the matching (build) tuple
is stored only on the other two sites. This variant reduces the adaptation overhead,
which is mainly due to state movements, but incurs significant amounts of extra

9 Adaptive Query Processing in Distributed Settings 225

Table 9.4 Adaptive control in [45].

Measurement: The following statistics are reported periodically from the local sites to the
central controller: (i) that available main memory on the site, (ii) the size of partitions and (ii)
the corresponding number of tuples that are generated from each partition.

Analysis-Planning: State relocation decisions are triggered by the central controller, when
the available main memory imbalances exceed a user-defined threshold, based upon the pro-
ductivity of each partition and the memory available.

Actuation: Similar to Flux [59] followed by a disk cleanup procedure in order to produce
results from the disk resident state partitions.

work. Also, in [54], more advanced mechanisms for the actuation phase are investi-
gated, which aim to cancel planned adaptations when the expected benefit does not
outweigh the adaptation overhead.

Liu et al. have proposed techniques that deal with load balancing and secondary
memory management of partitioned, stateful operators in an integrated manner [45].
As in Flux, the state relocation decisions are guided by a single controller, which
periodically collects run-time statistics that are locally monitored at the remote sites
during fixed-length time periods and triggers run-time adaptations. The criteria that
guide the load balancing process are (i) the available main memory at each site, (ii)
the partition sizes and (iii) the number of generated tuples from each partition.

State relocation is triggered by the controller when the available main memory
imbalances among the sites exceed a user-defined threshold [45]. In that case, the
most productive partitions from the site with the least available memory are moved
to the site with the most available memory. Regarding secondary memory man-
agement, two different approaches can be followed. One local approach is to push
the less productive partitions at each site into disk, when the amount of available
memory is less than a user-defined threshold. Another global approach is to find
the overall less productive partitions among all the sites and to push them into disk.
The steps that take place during state relocation are similar to those in Flux with the
addition of a disk cleanup procedure to produce results from the disk resident state
partitions. The main characteristics of the integrated approach in [45] are summa-
rized in Table 9.4.

The work in [32] extends Flux by supporting multiway windowed stream joins that
are not necessarily equi-joins; moreover it focuses on the combination of load balanc-
ing and the so-called diffusion overhead. Load balancing is considered by allocating
tuples to the less loaded machines. Diffusion overhead corresponds to tuple repli-
cations and intermediate join result transferring, which is needed to ensure correct
result generation. Two algorithms are presented, which rely on partial tuple duplica-
tion. The first adaptively chooses a master stream, based on which the other streams
are transferred, while the second builds upon a greedy solution of the weighted set
cover problem [13]. The advantage of both approaches is that the routing is not based
on the value of the tuples. Table 9.5 summarizes the main characteristics.

226 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Table 9.5 Adaptive control in [32].

Measurement: The following statistics are reported periodically from the local processing
sites and the aggregation site to the controller: (i) the usage and the capacity of the local CPU,
memory and bandwidth resources (ii) the results throughput. The controller also monitors (iii)
the input data streaming rates.

Analysis-Planning: The controller, apart from dynamically routing input tuples, dynamically
selects the master stream and adapts its window segment length.

Actuation: The algorithm provides for special treatment of the intensionally duplicated tu-
ples in order to ensure result correctness.

[66] addresses the same problem as in [32]. In [66], the notion of Pipelined State
Partitioning (PSP) is introduced, where the operator states are partitioned into dis-
joint slices in the time domain, which are subsequently distributed across a cluster.
Compared to [32], the approach in [66] does not duplicate any tuples and benefits
from pipelined parallelism to a larger extent.

9.5.1.4 Summary

The previous discussion shows that, for the problem of intra-operator load balanc-
ing in DQP, several solutions with different functionality have been proposed. These
solutions also differ in the trade-off between running overheads (which denote the
unnecessary overheads when no adaptations are actually required) and actuation
costs, which may accompany the execution of adaptivity decisions. The original
Flux proposal is a typical example of an approach with low overhead but potentially
high actuation cost, whereas other proposals in [54] mitigate the latter cost at the
expense of higher overheads. Regarding the risk of causing performance regression
due to costly adaptations, a limitation of the techniques mentioned above is that they
do not consider the cost of moving operator state during the planning phase explic-
itly. The work in [29] fills this gap and revisits the problem of [59] by following a
control-theoretical approach, which is capable of incorporating the overhead associ-
ated with each adaptation along with the cost of imbalance into the planning phase
of the adaptivity loop. Initial results are shown to be promising, when machines ex-
perience periodic load variations. This is because the system does not move operator
state eagerly, which is proven to be a more efficient approach [28].

9.5.2 Inter-Operator Load Management

While the techniques discussed in the previous section perform load balancing at
intra-operator level, the approaches in this section perform load management at
inter-operator level. In particular, two representative families of techniques that

9 Adaptive Query Processing in Distributed Settings 227

correspond to different approaches to inter-operator load management are presented.
The former, which is exemplified by [70], discusses cooperative load management
with a view to achieving load balancing, whereas the latter, exemplified by [9], is
concerned with a setting where each node acts both autonomously and selfishly.
However, both groups of techniques deal with the problem of dynamically real-
locating operators to alternative hosts without performing secondary memory man-
agement. Since no secondary memory management is done, the steps that take place
during the operator relocation process are the following: (i) stalling the inputs of the
operators to be moved and local buffering of the operators’ input data, (ii) move-
ment of the operators (along with the data inside their internal states) to their new
locations and (iii) restarting of their execution. These steps constitute the typical
operator migration procedure.

9.5.2.1 Cooperative Load Management

The work in [70], which is part of the Borealis project, assumes that data streams
are processed on several sites, each of which holds some of the operators. Load bal-
ancing in [70] is treated as the problem not only of ensuring that the average load
(e.g., CPU utilization) of each machine is roughly equal, but also of minimizing
the load variance on each site and maximizing the load correlation among the pro-
cessing sites. The rationale of the approach is described in the following example.
Suppose that there exist load measurements of two operators hosted on the same
site that have been taken during the last k monitoring periods; these measurements
form two time-series. If both time series have a small correlation coefficient ([53]),
then, allocating these operators on the same site is a good idea because it means
that when one operator is relatively busy, the other is not. By putting these operators
on the same site, the load variance of the host is minimized with a view to min-
imizing end-to-end latency. The average end-to-end latency degrades when highly
correlated operators are co-located, since the operators may be simultaneously busy.
In addition, if the load time series of two sites have a large correlation coefficient,
then, their load levels are naturally balanced. Following the above rationale, the pro-
posal in [70] tries to balance the load of a distributed environment by placing lowly
correlated operators (in terms of load) at the same site, while maximizing the load
correlation among the processing sites.

Under the proposed load balancing scheme, adaptations are performed periodi-
cally. The site and operator loads are locally monitored over fixed-length time pe-
riods and are reported to a single controller, which takes load balancing decisions.
The load of an operator during a monitoring period is defined as the fraction of the
CPU time needed by that operator in order to process incoming tuples (that arrived
during that monitoring period) over the length of the monitoring period. The load
of a site during this period is defined as the sum of the loads of all its hosted op-
erators. Note that the controller keeps only the site and operator load statistics of
the k most recent monitoring periods. Several algorithms are proposed in [70] for
load balancing. However, all of them follow the same pattern: given a site pair, they
decide which operators to transfer between the sites. The site pairs are decided by

228 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Table 9.6 Adaptive control in Borealis [70].

Measurement: The sites periodically report the site/operator load statistics to the central
controller. The controller retains the k most recent load statistics for each site/operator.

Analysis-Planning: The variance and the correlation is computed. Operator relocation is
triggered periodically by the central controller. The operator redistribution algorithm first
detects pairs of sites and then defines the operators to be moved.

Actuation: The re-distribution decisions are enforced through operator migration, which in-
curs non-negligible cost. This cost is only implicitly taken into account.

the controller based on their average load (the mean value of a site’s load time se-
ries) following a procedure similar (to an extent) to the one used in Flux[59]. The
proposed load balancing algorithms aim to optimize different objectives, i.e., the
amount of load (operators) that is moved between a pair of nodes or the quality of
the resulting operator mapping. The former technique considers operator migration
cost implicitly. A summary of the adaptivity characteristics is given in Table 9.6.

In the context of the same project, a technique for failure recovery, which is
equipped with dynamic load balancing characteristics has been proposed [37]. The
proposed technique aims to provide low-latency recovery in case of a node’s failure
using multiple servers for collectively taking over the required actions. In particular
the data that is produced and the data that is in the internal states of query frag-
ments is backuped on a selected site. A site’s failure is masked by other sites, which
host backups and collectively rebuild the latest aggregate state of the failed server.
However, new queries that may be submitted for execution or changes in the input
streaming rates may change the sites’ load and consequently the failure-recovery
time. To solve this problem, the proposal in [37] may adaptively relocate the query
fragment backups and move them from heavily loaded sites to less loaded ones.

Wang et al., in [67], deal with a problem that is similar to the one in [70]. The
distinct feature of this work is that operator placement decisions are based on mech-
anisms inspired by the physical world. In the physical world, each physical object
tries to minimize its energy, whereas its behavior is driven by several types of poten-
tials and the potential energy of an object depends on the location of other objects.
In [67], each query operator is considered as a physical object, the potential energy
of which reflects its output latency and depends on the site and on the network load
conditions. The operator/site load is estimated as in [70], while the network load ac-
counts for the overhead incurred by the network transmissions. As in [70], operator
redistribution is performed by a single controller at periodic time intervals. All exe-
cution sites monitor the operator/site and network load conditions over fixed-length
time periods and send the appropriate statistics to this controller. The controller per-
forms load balancing utilizing heuristics that approximate the optimal solution. In
order to minimize the overhead that is incurred during operator movement, only
the most loaded operators are considered for redistribution. The fact that network

9 Adaptive Query Processing in Distributed Settings 229

Table 9.7 Adaptive control in Medusa [9].

Measurement: Each site monitors its load.

Analysis-Planning:
The operator relocation process is triggered asynchronously when (i) a site becomes over-
loaded and (ii) another site (not-overloaded) is willing to accept (part of) its load in exchange
of payment. The overloaded sites select a maximal set of operators that are more costly to
process locally. Each not overloaded site, in turn, continuously accumulates load offers and
periodically accepts subsets of offered operators.

Actuation: Typical operator migration, where operator migration overhead is considered
small.

conditions are considered helps in mitigating the risk of performing non-beneficial
adaptations, which is more likely to occur in [70].

9.5.2.2 Non-cooperative Load Management

The problem of load management in the Medusa project, which is a predecessor of
Borealis, is treated under a different perspective, according to which the distributed
systems are regarded as computational economies and the participants provide com-
putational resources and accept to host and execute operators from other participants
at a specified price [9]. Another difference with the load balancing techniques that
are presented so far is that there is no single controller that decides which operators
should be transferred to other hosts. In contrast, the hosts decide independently on
the amount of load to transfer or accept.

In Medusa, the hosts aim to select an appropriate operator set in order to maxi-
mize the difference between the payment they receive and the cost incurred locally
when processing this operator set. They negotiate with other hosts the amount of
load to transfer or receive and the corresponding payment through contracts. The
operator relocation process is not triggered at predefined time periods, but when,
firstly, a site becomes overloaded and, secondly, another (not-overloaded) site is
willing to accept at least part of the former’s site load in exchange of a payment.
To this end, the overloaded sites select a maximal set of operators that they are
more costly to process locally than to offload, and offer them to another site. Each
site continuously accumulates load offers and may periodically accept subsets of
offered operators, on the grounds of higher unit-price offers. As such, the negotia-
tion is asynchronous. If a new site accepts some of the offered operators, operator
migration takes place. Note that in [9], a negotiation scheme is also proposed for
non fixed-price contracts, due to the implications the fixed-price contracts may lead
to. Table 9.7 summarizes the main characteristics of this adaptive load management
approach.

230 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

9.5.2.3 Summary

This section discussed two different approaches to inter-operator load management.
For cooperative scenarios, the solutions presented are interesting but still suffer from
significant limitations, such as centralized control mechanism and increased risk
to cause performance degradation due to the fact that the adaptation costs are not
considered during planning explicitly. On the other hand, in non-cooperative sce-
narios an interesting alternative is proposed, according to which each node decides
autonomously. Although the latter approach is more scalable, an issue that merits
further investigation is to assess the messaging overhead in both approaches: in de-
centralized settings, nodes exchange messages in order to reach decisions as part of
a negotiation protocol, whereas in centralized settings, nodes transmit monitoring
information.

9.5.3 More Generic Solutions

Intra-operator and inter-operator load management techniques can be combined to-
gether. An example appears in [27], which considers partitioned pipelined queries
running on distributed hosts. Intra-operator load management is responsible for
balancing the load across partitioned operator instances in a way that reflects the
runtime machine capacities. Inter-operator load management is responsible for de-
tecting bottlenecks in the pipelines and removing them by increasing the degree
of partitioned parallelism of the operators that form the bottlenecks. Another in-
teresting feature of the same work is that operator state is not removed from any
machine. Moreover, slow machines, for which the proportion of the workload as-
signed is decreased, do not participate in building operator state at the new sites.
The responsibility for state movement rests with operators upstream in the query
plan, which hold copies of data mainly for fault tolerance purposes at the expense
of higher memory requirements.

A combination of inter- and intra-load management has been proposed for stream
processing systems as well. This can be achieved through load sliding and splitting
techniques, respectively [11]. Distributed eddies can be leveraged to behave in a
similar way, too. However, understanding the interplay between efficient resource
allocation and load balancing is a challenging topic because the goals are often
conflicting, as explained also in [62].

9.6 AdQP for Distributed Settings: Other Techniques

In this section, we present techniques that deal with the problem of adaptive query
optimization in distributed environments where the issues are not investigated at
the operator level. In particular, we discuss proposals for adaptive parallelization
of queries and web service (WS) calls (e.g., [64], [57], [68]). Additionally, a few

9 Adaptive Query Processing in Distributed Settings 231

works that propose robust algorithms for distributed query optimization are briefly
described (e.g., [34], [22]).

In [64], an adaptive technique is proposed that aims to optimize the execution of
range queries in a distributed database. The tables are horizontally partitioned and
the resulting partitions are replicated at multiple storage hosts. In order to minimize
the query response time, the queries are executed in parallel. The hosts that store the
data of interest are firstly identified, and then, the identified hosts process the same
query using the local data partitions. However, setting the maximum level of paral-
lelism does not necessarily minimizes the result consumption rate, since, if a query
is sent to too many storage hosts, results may be returned faster than the client who
submitted the query can consume them. Apart from that, things become more com-
plicated when multiple queries run in parallel and need to access the same storage
hosts due to disk contention, which may slow down all queries. To solve this prob-
lem, Vigfusson et al. have proposed an algorithm that can adaptively (i) determine
the optimal parallelism level for a single query and (ii) schedule queries to the stor-
age hosts. In order to find the optimal parallelism level for each query, the algorithm
randomly selects to modify the number of hosts that process the query in parallel for
a short period. If this change results in an increase in the client consumption rate,
then the change is adopted. The algorithm also employs a priority-based approach
in order to schedule queries to hosts. The work in [57] deals with a similar problem,
where adaptive approaches are explored for parallelizing calls to WSs. Also, in [38],
substitution of data sources on the fly is supported to tackle data source failures.

Wu et al. proposed an adaptive distributed strategy for approximately answering
aggregate queries in P2P networks [68]. In particular, data samples are distributed
to sites for further processing. At each processing site, local aggregates are com-
puted that are subsequently sent to a coordinator site, which combines them in order
to produce the global aggregate value. The proposed strategy adaptively grows the
number of processing nodes as the result accuracy increases with a view to mini-
mizing the query response time.

Han et al. have proposed an extension to the initial proposal of progressive opti-
mization in [47] to account for distributed environments [34]. This distributed pro-
posal proceeds similarly to its centralized counterpart. Each plan fragment is marked
at special points, where the optimality of the overall plan can be validated. The exe-
cution sites monitor the cardinalities of the local intermediate results at these special
points and send a positive or negative vote for re-optimization to the controller; if
the observed cardinality lies in the validity range, then the vote for re-optimization
is negative, otherwise it is positive. The controller employs a voting scheme in order
to decide whether re-optimization must be triggered or not. Several voting schemes
are proposed in [34]. For example, in the majority voting scheme, re-optimization is
triggered if at least half of the total execution sites vote for re-optimization. On the
other hand, in the maximum voting scheme, re-optimization is triggered if at least
one site sends a positive vote independently of the votes that the other sites send.
Another extension to [47] is presented in [22]; the work in [22] focuses on queries
that access data from remote data sources.

232 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

Finally, some earlier proposals defer resource allocation decisions until more ac-
curate information about data statistics becomes available (e.g., [33, 71, 50]).

9.7 Conclusion and Open Issues

In this chapter, we investigated the state of the art in distributed adaptive query
processing. The main techniques developed so far deal with issues such as exten-
sions to eddies (e.g., [62]), intra-operator load balancing (e.g., [59]), inter-operator
load balancing (e.g., [70]) and inter-operator load management with selfish hosts
(e.g., [9]). These techniques differ significantly from their centralized counterparts,
both in their objectives and in their focus. The objectives in distributed AdQP are
more tailored to distributed settings, whereas more attention is paid to issues relat-
ing to the adaptivity cost, which is significant, especially when operators and data
are moved over the network. Nevertheless, most of the techniques consider the in-
creased adaptivity cost in an implicit heuristic-based manner, with the exception of
the work in [29]. Apart from the adaptation costs, the overall performance of AdQP
techniques needs to be investigated in a more systematic way, since only very few
works are accompanied with theoretical guarantees about their behavior [6].

Other issues that have not been adequately addressed include scalability and the
interplay between distinct AdQP techniques. Decentralized control in co-operative
settings has been discussed in [62], but it is still an open issue how to apply the
same approach in broader scenarios. Moreover, the relationship between load bal-
ancing and efficient resource allocation should be further explored. Also, in stream
environments, load management may include load shedding techniques as well; it is
worth conducting research to better understand the relationship between the AdQP
techniques presented in this chapter and load shedding methodologies (e.g., [24]).
For example, when the data production rate of a streaming data source increases
beyond the capacity of the consuming operator, any technique from the following
is applicable: to perform load shedding or to move the consumer to a more power-
ful node or to increase the degree of intra-operator parallelism of the consumer and
subsequently perform load balancing. An interesting research issue is to develop
hybrid techniques that combine these different approaches with a view to improving
efficiency.

An additional interesting topic for further research is not merely to combine dif-
ferent query processing techniques, but also to combine AdQP with more generic
adaptive techniques in distributed settings. For example, the problem of load bal-
ancing has also been studied in the area of P2P networks (e.g., [25, 55, 23]); it is
not clear how AdQP behaves when applied to an adaptively managed distributed in-
frastructure. AdQP in distributed settings may also both benefit from and influence
techniques in distributed workflow processing (e.g., [44]). Finally, advanced AdQP
techniques should be coupled with techniques that mitigate the need for adaptivity,
such as robust initial operator allocation (e.g., [69]).

9 Adaptive Query Processing in Distributed Settings 233

References

1. Arpaci-Dusseau, R.H.: Run-time Adaptation in River. ACM Trans. Comput. Syst. 21(1),
36–86 (2003)

2. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. SIG-
MOD Record 29(2), 261–272 (2000)

3. Babcock, B., Chaudhuri, S.: Towards a Robust Query Optimizer: A Principled and Prac-
tical Approach. In: Proceedings of the 2005 ACM SIGMOD International Conference
on Management of Data, pp. 119–130 (2005)

4. Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: Proceedings
of the 2nd Biennial Conference on Innovative Data Systems Research (CIDR), pp. 238–
249 (2005)

5. Babu, S., Bizarro, P., DeWitt, D.: Proactive Re-Optimization. In: Proceedings of the 2005
ACM SIGMOD International Conference on Management of Data, pp. 107–118 (2005)

6. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of
Pipelined Stream Filters. In: Proceedings of the ACM SIGMOD International Confer-
ence on Management of Data, pp. 407–418. ACM (2004)

7. Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptive Caching for Continuous
Queries. In: ICDE, pp. 118–129 (2005)

8. Babu, S., Widom, J.: Continuous Queries over Data Streams. SIGMOD Record 30(3),
109–120 (2001)

9. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Contract-based Load Management
in Federated Distributed Systems. In: Proceedings of the 1st Conference on Symposium
on Networked Systems Design and Implementation (NSDI), pp. 15–28 (2004)

10. Bizarro, P., Babu, S., DeWitt, D., Widom, J.: Content-based Routing: Different Plans for
Different Data. In: Proceedings of the 31st International Conference on Very Large Data
Bases (VLDB), pp. 757–768 (2005)

11. Cherniack, M., Balakrishnan, H., Balazinska, M., Carney, D., Çetintemel, U., Xing, Y.,
Zdonik, S.B.: Scalable Distributed Stream Processing. In: CIDR (2003)

12. Chu, F.C., Halpern, J.Y., Gehrke, J.: Least Expected Cost Query Optimization: What
Can We Expect? In: Proceedings of the Twenty-first ACM SIGACT-SIGMOD-SIGART
Symposium on Principles of Database Systems, pp. 293–302. ACM (2002)

13. Chvatal, V.: A Greedy Heuristic for the Set-Covering Problem. Mathematics of Opera-
tions Research 4(3), 233–235 (1979)

14. Claypool, K.T., Claypool, M.: Teddies: Trained Eddies for Reactive Stream Processing.
In: Haritsa, J.R., Kotagiri, R., Pudi, V. (eds.) DASFAA 2008. LNCS, vol. 4947, pp. 220–
234. Springer, Heidelberg (2008)

15. Deshpande, A.: An Initial Study of Overheads of Eddies. SIGMOD Record 33(1), 44–49
(2004)

16. Deshpande, A., Hellerstein, J.M.: Lifting the Burden of History from Adaptive Query
Processing. In: Proceedings of the 30th International Conference on Very Large Data
Bases (VLDB), pp. 948–959 (2004)

17. Deshpande, A., Hellerstein, L.: Flow Algorithms for Parallel Query Optimization. In:
ICDE, pp. 754–763 (2008)

18. Deshpande, A., Ives, Z., Raman, V.: Adaptive Query Processing. Foundations and Trends
in Databases 1(1), 1–140 (2007)

19. DeWitt, D., Gray, J.: Parallel Database Systems: The Future of High Performance
Database Systems. Communications of the ACM 35(6), 85–98 (1992)

234 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

20. DeWitt, D.J., Naughton, J.F., Schneider, D.A., Seshadri, S.: Practical Skew Handling in
Parallel Joins. In: Proceedings of the 18th International Conference on Very Large Data
Bases (VLDB), pp. 27–40 (1992)

21. Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., Lynden, S.J.: Adaptive Join Pro-
cessing in Pipelined Plans. In: EDBT, pp. 183–194 (2010)

22. Ewen, S., Kache, H., Markl, V., Raman, V.: Progressive Query Optimization for Feder-
ated Queries. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W., Matthes, F., Hatzopoulos,
M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT 2006. LNCS, vol. 3896,
pp. 847–864. Springer, Heidelberg (2006)

23. Gedik, B., Liu, L.: PeerCQ: A Decentralized and Self-Configuring Peer-to-Peer Infor-
mation Monitoring System. In: ICDCS, pp. 490–499 (2003)

24. Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: GrubJoin: An Adaptive, Multi-Way, Windowed
Stream Join with Time Correlation-Aware CPU Load Shedding. IEEE Trans. Knowl.
Data Eng. 19(10), 1363–1380 (2007)

25. Godfrey, B., Lakshminarayanan, K., Surana, S., Karp, R., Stoica, I.: Load Balancing
in Dynamic Structured P2P Systems. In: Proceedings of the 23rd Annual Joint Confer-
ence of the IEEE Computer and Communications Societies (INFOCOM), pp. 2253–2262
(2004)

26. Gounaris, A., Paton, N.W., Fernandes, A.A.A., Sakellariou, R.: Adaptive Query Pro-
cessing: A Survey. In: Eaglestone, B., North, S., Poulovassilis, A. (eds.) BNCOD 2002.
LNCS, vol. 2405, pp. 11–25. Springer, Heidelberg (2002)

27. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A., Watson, P.: Adap-
tive Workload Allocation in Query Processing in Autonomous Heterogeneous Environ-
ments. Distrib. Parallel Databases 25(3), 125–164 (2009)

28. Gounaris, A., Yfoulis, C.A., Paton, N.W.: Efficient Load Balancing in Partitioned
Queries Under Random Perturbations. ACM Transactions on Autonomous and Adap-
tive Systems (to appear)

29. Gounaris, A., Yfoulis, C.A., Paton, N.W.: An Efficient Load Balancing LQR Con-
troller in Parallel Databases Queries Under Random Perturbations. In: 3rd IEEE Multi-
conference on Systems and Control, MSC 2009 (2009)

30. Graefe, G.: Encapsulation of Parallelism in the Volcano Query Processing System. In:
Garcia-Molina, H., Jagadish, H.V. (eds.) Proceedings of the 1990 ACM SIGMOD Inter-
national Conference on Management of Data, pp. 102–111 (1990)

31. Graefe, G.: Query Evaluation Techniques for Large Databases. ACM Comput.
Surv. 25(2), 73–170 (1993)

32. Gu, X., Yu, P., Wang, H.: Adaptive Load Diffusion for Multiway Windowed Stream
Joins. In: Proceedings of the 23rd IEEE International Conference on Data Engineering
(ICDE), pp. 146–155 (2007)

33. Hameurlain, A., Morvan, F.: CPU and Incremental Memory Allocation in Dynamic Par-
allelization of SQL Queries. Parallel Computing 28(4), 525–556 (2002)

34. Han, W.S., Ng, J., Markl, V., Kache, H., Kandil, M.: Progressive Optimization in a
Shared-Nothing Parallel Database. In: Proceedings of the 2007 ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), pp. 809–820 (2007)

35. Hellerstein, J.M., Franklin, M.J., Chandrasekaran, S., Deshpande, A., Hildrum, K., Mad-
den, S., Raman, V., Shah, M.A.: Adaptive Query Processing: Technology in Evolution.
IEEE Data Eng. Bull. 23(2), 7–18 (2000)

36. Huebsch, R., Jeffery, S.R.: FREddies: DHT-Based Adaptive Query Processing via Fed-
eRated Eddies. Technical Report No. UCB/CSD-4-1339, University of California (2004)

37. Hwang, J.H., Xing, Y., Cetintemel, U., Zdonik, S.: A Cooperative, Self-Configuring
High-Availability Solution for Stream Processing. In: Proceedings of the 23rd IEEE In-
ternational Conference on Data Engineering (ICDE), pp. 176–185 (2007)

9 Adaptive Query Processing in Distributed Settings 235

38. Ives, Z.: Efficient Query Processing for Data Integration. Ph.D. thesis. University of
Washington (2002)

39. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data
Integration Queries. In: Proceedings of the 2004 ACM SIGMOD International Confer-
ence on Management of Data, pp. 395–406 (2004)

40. Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans. In: Proceedings of the ACM SIGMOD International Conference on
Management of Data, pp. 106–117. ACM Press (1998)

41. Kephart, J.O., Chess, D.M.: The Vision of Autonomic Computing. IEEE Com-
puter 36(1), 41–50 (2003)

42. Kossmann, D.: The State of the Art in Distributed Query Processing. ACM Computing
Surveys (CSUR) 32(4), 422–469 (2000)

43. Kossmann, D., Stocker, K.: Iterative Dynamic Programming: a New Class of Query
Optimization Algorithms. ACM Trans. Database Syst. 25(1), 43–82 (2000)

44. Lee, K., Paton, N.W., Sakellariou, R., Deelman, E., Fernandes, A.A.A., Mehta, G.: Adap-
tive Workflow Processing and Execution in Pegasus. Concurrency and Computation:
Practice and Experience 21(16), 1965–1981 (2009)

45. Liu, B., Jbantova, M., Rundensteiner, E.A.: Optimizing State-Intensive Non-Blocking
Queries Using Run-time Adaptation. In: Proceedings of the 2007 IEEE 23rd Interna-
tional Conference on Data Engineering Workshop (ICDEW), pp. 614–623 (2007)

46. Mackert, L.F., Lohman, G.M.: R* Optimizer Validation and Performance Evaluation for
Distributed Queries. In: VLDB 1986 Twelfth International Conference on Very Large
Data Bases, pp. 149–159 (1986)

47. Markl, V., Raman, V., Simmen, D., Lohman, G., Pirahesh, H., Cilimdzic, M.: Robust
Query Processing through Progressive Optimization. In: Proceedings of the 2004 ACM
SIGMOD International Conference on Management of Data, pp. 659–670 (2004)

48. Nehme, R.V., Rundensteiner, E.A., Bertino, E.: Self-Tuning Query Mesh for Adaptive
Multi-Route Query Processing. In: Proceedings of the 12th International Conference on
Extending Database Technology (EDBT), pp. 803–814 (2009)

49. Nehme, R.V., Works, K.E., Rundensteiner, E.A., Bertino, E.: Query Mesh: Multi-Route
Query Processing Technology. Proceedings of the VLDB Endowment 2(2) (2009)

50. Ozcan, F., Nural, S., Koksal, P., Evrendilek, C., Dogac, A.: Dynamic Query Optimization
in Multidatabases. IEEE Data Eng. Bull. 20(3), 38–45 (1997)

51. Ozsu, M., Valduriez, P. (eds.): Principles of Distributed Database Systems, 2nd edn.
Prentice-Hall (1999)

52. Pang, H., Carey, M.J., Livny, M.: Memory-Adaptive External Sorting. In: 19th Interna-
tional Conference on Very Large Data Bases, pp. 618–629 (1993)

53. Papoulis, A.: Probability, Random Variables, and Stochastic Processes, 3rd edn.
54. Paton, N.W., Buenabad-Chavez, J., Chen, M., Raman, V., Swart, G., Narang, I., Yellin,

D.M., Fernandes, A.A.: Autonomic Query Parallelization using Non-Dedicated Comput-
ers: an Evaluation of Adaptivity Options. The VLDB Journal 18(1), 119–140 (2009)

55. Pitoura, T., Ntarmos, N., Triantafillou, P.: Replication, Load Balancing and Efficient
Range Query Processing in dHTs. In: Ioannidis, Y., Scholl, M.H., Schmidt, J.W.,
Matthes, F., Hatzopoulos, M., Böhm, K., Kemper, A., Grust, T., Böhm, C. (eds.) EDBT
2006. LNCS, vol. 3896, pp. 131–148. Springer, Heidelberg (2006)

56. Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive Query
Processing. In: Proceedings of the IEEE 19th International Conference on Data Engi-
neering (ICDE), pp. 353–364 (2003)

57. Sabesan, M., Risch, T.: Adaptive Parallelization of Queries over Dependent Web Service
Calls. In: Proceedings of the 25th IEEE International Conference on Data Engineering
(ICDE), pp. 1725–1732 (2009)

236 A. Gounaris, E. Tsamoura, and Y. Manolopoulos

58. Selinger, P.G., Astrahan, M.M., Chamberlin, D.D., Lorie, R.A., Price, T.G.: Access Path
Selection in a Relational Database Management System. In: Proceedings of the 1979
ACM SIGMOD International Conference on Management of Data. ACM (1979)

59. Shah, M., Hellerstein, J., Chandrasekaran, S., Franklin, M.: Flux: An Adaptive Partition-
ing Operator for Continuous Query Systems. In: Proceedings of the IEEE 19th Interna-
tional Conference on Data Engineering (ICDE), pp. 25–36 (2003)

60. Shah, M.A., Hellerstein, J.M., Brewer, E.A.: Highly-Available, Fault-Tolerant, Parallel
Dataflows. In: Weikum, G., König, A.C., Deßloch, S. (eds.) Proceedings of the ACM
SIGMOD International Conference on Management of Data, Paris, France, June 13-18,
pp. 827–838. ACM (2004)

61. Stillger, M., Lohman, G.M., Markl, V., Kandil, M.: LEO - DB2’s LEarning Optimizer. In:
VLDB 2001, Proceedings of 27th International Conference on Very Large Data Bases,
pp. 19–28 (2001)

62. Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: Proceedings
of the 29th International Conference on Very Large Data Bases (VLDB), pp. 333–344
(2003)

63. Urhan, T., Franklin, M.J.: XJoin: A Reactively-Scheduled Pipelined Join Operator. IEEE
Data Engineering Bulletin 23(2), 27–33 (2000)

64. Vigfusson, Y., Silberstein, A., Cooper, B.F., Fonseca, R.: Adaptively Parallelizing Dis-
tributed Range Queries. Proceedings of the VLDB Endowment 2(1), 682–693 (2009)

65. Viglas, S.D., Naughton, J.F., Burger, J.: Maximizing the Output Rate of Multi-Way Join
Queries over Streaming Information Sources. In: Proceedings of the 29th International
Conference on Very Large Data Bases (VLDB), pp. 285–296 (2003)

66. Wang, S., Rundensteiner, E.: Scalable Stream Join Processing with Expensive Predicates:
Workload Distribution and Adaptation by Time-Slicing. In: Proceedings of the 12th In-
ternational Conference on Extending Database Technology (EDBT), pp. 299–310 (2009)

67. Wang, W., Sharaf, M.A., Guo, S., Özsu, M.T.: Potential-driven Load Distribution for
Distributed Data Stream Processing. In: Proceedings of the 2nd International Workshop
on Scalable Stream Processing System (SSPS), pp. 13–22 (2008)

68. Wu, S., Jiang, S., Ooi, B.C., Tan, K.L.: Distributed Online Aggregations. Proceedings of
the VLDB Endowment 2(1), 443–454 (2009)

69. Xing, Y., Hwang, J.H., Çetintemel, U., Zdonik, S.: Providing Resiliency to Load Varia-
tions in Distributed Stream Processing. In: Proceedings of the 32nd International Con-
ference on Very Large Data Bases (VLDB), pp. 775–786 (2006)

70. Xing, Y., Zdonik, S., Hwang, J.H.: Dynamic Load Distribution in the Borealis Stream
Processor. In: Proceedings of the 21st International Conference on Data Engineering
(ICDE), pp. 791–802 (2005)

71. Yu, M.J., Sheu, P.C.Y.: Adaptive Join Algorithms in Dynamic Distributed Databases.
Distributed and Parallel Databases 5(1), 5–30 (1997)

72. Zhou, Y., Ooi, B.C., Tan, K.L.: Dynamic Load Management for Distributed Continuous
Query Systems. In: Proceedings of the 21st International Conference on Data Engineer-
ing (ICDE), pp. 322–323 (2005)

73. Zhu, Y., Rundensteiner, E.A., Heineman, G.T.: Dynamic Plan Migration for Continuous
Queries over Data Streams. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data, pp. 431–442 (2004)

Chapter 10
Approximate Queries with Adaptive Processing

Barbara Catania and Giovanna Guerrini

Abstract. The traditional query processing approach, by which queries are exe-
cuted exactly according to a query execution plan selected before query execution
starts, breaks down in heterogeneous and dynamic processing environments that
are becoming more and more common as query processing contexts. In such envi-
ronments, queries are often relaxed and query processing is forced to be adaptive
and approximate, either to cope with limited processing resources or with limited
data knowledge and data heterogeneity. When approximation and adaptivity are ap-
plied in order to cope with limited processing resources, possibly sacrificing re-
sult quality, we refer to as Quality of Service (QoS)-oriented techniques. On the
other hand, when they are a means to improve the quality of results, in presence of
limited data knowledge and data heterogeneity, we refer to as Quality of Data
(QoD)-oriented techniques. While both kinds of approximation techniques have
been proposed, most adaptive solutions are QoS-oriented. In this chapter, we first
survey both kinds of approximation and introduce adaptive query processing tech-
niques; then, we show that techniques which apply a QoD-oriented approximation
in a QoD-oriented adaptive way, though demonstrated potentially useful on some
examples, are still largely neglected.

10.1 Introduction

The last decade has been characterized by a radical modification of query process-
ing requirements. It has seen the raise of new applications with data querying needs
and a substantial evolution of the processing environments. As discussed in Chapter
1, these emerging data intensive applications and novel processing environments,
such as data integration applications, web services, data streams, P2P systems, and

Barbara Catania · Giovanna Guerrini
University of Genoa, Italy
e-mail: {barbara.catania,giovanna.guerrini}@unige.it

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 237–269.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{barbara.catania,giovanna.guerrini}@unige.it

238 B. Catania and G. Guerrini

hosting, to mention a few, are characterized by high heterogeneity, limited data
knowledge, extremely high variability and unpredictability of data characteristics
and dynamic processing conditions. The higher and higher resource sharing and the
increasing interactivity in query processing make even those data properties that are
traditionally conceived as static (such as relation cardinality and number of distinct
values for an attribute) to be rarely known a priori and difficult to be estimated. This
radical modification of requirements impacted in two main ways query processing.
On one side, the need emerges to adapt the processing to dynamic conditions, thus
giving up the a priori selection of a single execution strategy, fixed before process-
ing starts. Techniques allowing to modify the execution strategy during the query
execution are known as adaptive techniques. On the other side, relaxed queries are
often executed, either as a user or a processor choice, or query evaluation is approx-
imate, in order to cope with data heterogeneity, with limited data knowledge during
query specification, or with limited available resources during processing.

More precisely, a query processing technique is said to adaptive if the way in
which a query is executed is changed on the basis of the feedbacks obtained from
the environment during evaluation. Specifically, we refer to: (i) as subject of the
adaptive technique the elements in the processing affected by the adaptation, that
are changed during the processing (e.g., the query execution plan, or the assign-
ment of load to processors); (ii) as target of the adaptive technique what it attempts
at adapting to, that is, the properties monitored and the feedbacks collected dur-
ing evaluation (e.g., data characteristics, arrival rates, network condition, processors
load); (iii) as goal or aim of the adaptive technique the parameter(s) appearing in
the objective function, that is, what it attempts to maximize/minimize (e.g., result
data quality, time, throughput, energy consumption).

A query is said to be relaxed if its result is either stretched or shrunk when the
results of the original query are too few or too many. In this chapter, preference-
based queries like top-k or skyline queries (see Chapters 2 and 3) are considered
relaxed queries: they can be thought as a shrinking approach with respect to the
overall set of possible results, since they reduce the cardinality of the ranked result
dataset, or as a stretching approach with respect to the set of optimal results. A
processing technique is said to be approximate if it does not produce the exact result
but an approximate one, possibly with some guarantees on the “distance” of the
generated solution from the exact one.

While approximate query processing (ApQP) for stored data is an option, for
data streams it is always a must, due to the impossibility to cope with the overall
dataset during query execution. Indeed, data streams are intrinsically unbounded.
Therefore, it is not possible to provide a precise semantics for the operators that
need to access all data items before generating the result, like join and aggregates
(blocking operators). A first approximation level for data streams therefore consists
in providing an approximate semantics to blocking operators. This is usually done
by introducing the concept of window. A window is a mechanism to superimpose
a region of definite cardinality over a stream whose cardinality is unknown. Using
windows, even blocking operators can retain their semantics at the price of returning
an approximate, and continuously updated, answer.

10 Approximate Queries with Adaptive Processing 239

In the following, for the sake of simplicity but with abuse of terminology, we refer
to both relaxed queries and queries executed in an approximate way as to approxi-
mate queries (or approximate techniques when focusing on the query specification
and/or processing approach). Each approximate technique is characterized by: (i) a
subject, representing the query processing task or the data to which approximation
is applied (e.g., query specification, through rewriting or preferences, or processing
algorithm); (ii) a target, representing the information used for the approximation
(e.g., ranking function, set of relevant attributes, similarity function, pruning condi-
tion, used summary); (iii) a goal or aim, i.e., the parameter(s) appearing in the object
function of the technique, that is, what it attempts to maximize/minimize (e.g., result
data quality, time, throughput, energy consumption).

Based on their aim, approximate and adaptive techniques can be classified into
two main groups. When they are finalized at improving the quality of result, either in
terms of completeness or in terms of accuracy, we refer to as Quality of Data (QoD)-
oriented techniques. By contrast, when they are used in order to cope with limited
or constrained resource availability during query processing, we refer to as Quality
of Service (QoS)-oriented techniques. Usually, a QoD/QoS aim implies the presence
of a QoD/QoS target. For example, in order to maximize/minimize completeness or
accuracy, QoD parameters have to be taken into account for adapting or approxi-
mating query specification and processing. Often, both QoD and QoS parameters
are taken into account, in order to provide a good trade-off between resource usage
and data quality.

While both QoS-oriented and QoD-oriented approximate techniques have been
proposed, most adaptive solutions are QoS-oriented. QoS-oriented approximation
is often applied in an adaptive way, that is, when targeted at achieving a QoS goal
(related to load, throughput, memory, etc.), approximation is applied adapting to
runtime conditions, possibly ensuring that certain QoD constraints are met or,
less frequently, with a QoD-oriented goal (that is, minimizing the introduced in-
acurracy). By contrast, very few approaches apply QoD-oriented approximation
techniques in an adaptive way. While some adaptive QoD-oriented approximate
techniques exist [58, 86], they address the problem of the efficient computation of
a relaxed query. That is, they only consider QoS-based parameters (specifically, re-
sponse time) with the aim of adapting processing so to maximize efficiency but
maintaining the same approximation degree (which is inherently specified in the
operation on processing).

In [29], we claimed instead that QoD-oriented adaptive approaches for QoD-
oriented approximation techniques, called QoD2 techniques in the following, may
also help in getting the right compromise between precise and approximate com-
putations. For example, this can be achieved by providing execution plans which
interleave both precise and approximate evaluations in the most efficient way, dy-
namically taking decisions concerning when, how, and how much to approximate.
Examples of QoD2 techniques will be provided in Section 10.2. Unfortunately, as
far as we know, no general solutions have been provided so far for the problem de-
scribed above. Some analogies hold between the considered topic and quality-based

240 B. Catania and G. Guerrini

��������	
���

����

�������	

��	

���

������������	
���
���������
����
����

������������	
���
�������������	�� ���
��!�

"�	 ��#� ����
$�!�

�	%	��� ��
���
$���

������������	
���
���������
����

&����������	'����%#��
$���

&����������	'����%#��
����

� 	�
(�%��

�������	

��	
���

"���%� �����������
�� ������ ��'	���
)�!�

������'	���
)���

*��%#���	 	�%	
���
���+��%��
)���

Fig. 10.1 Classification of the surveyed approximate and adaptive techniques.

query processors (see, e.g., [27, 126]), which take into account quality parameters in
choosing the best execution plan. However, they usually consider a broad spectrum
of quality criteria and have the goal of computing precise answers.

The aim of this chapter is twofold: (i) to present some relevant examples showing
why and how QoD2 techniques can be useful for advanced data management appli-
cations (Section 10.2); (ii) to survey currently existing approximate techniques and
related adaptive solutions, with the aim of classifying and discussing existing ap-
proaches and pointing out their lack in providing QoD2 techniques. To this purpose,
approximation techniques will be first classified with respect to their aim type (ei-
ther QoD-oriented - Section 10.3 - or QoS-oriented - Section 10.4 -) and then with
respect to their subject; adaptive techniques will be classified with respect to their
subject, since, as pointed out before, the aim of most of them is QoS-oriented (Sec-
tion 10.5). Figure 10.1 shows how approximation and adaptive techniques will be
classified, giving pointers to the related sections of the chapter. Section 10.6, based
on the conducted analysis, focuses on when and how adaptivity is used in approx-
imate query processing approaches, showing that QoD2 techniques still constitute
an open research direction.

10 Approximate Queries with Adaptive Processing 241

10.2 QoD2 Techniques: Some Examples

In this section we provide some concrete examples motivating and illustrating QoD2

techniques.

10.2.1 Adaptively Approximate Pipelined Joins

Approximate joins are widely employed in data integration to cope with hetero-
geneous surface representation of the same real world object. The problem of
record linkage [45] is at the heart of these data integration scenarios, where dif-
ferent and autonomously maintained tables are joined on the expectation that the
values of some common attributes match, at least approximately. When two cus-
tomer databases that belong to different organizations are merged, for example, it is
reasonable to expect that the common customers can be found by means of a join.
Unless those customers are represented in exactly the same way (i.e., the identifying
attributes are the same, and with the same naming conventions) in both tables and
in all instances, however, the result will in general be incomplete.

Existing techniques for off-line record linkage typically require advanced access
to and analysis of the tables. This requirement is increasingly becoming unrealistic
and the need for on-line techniques is emerging. The use of on-line techniques for
data integration has been advocated also in [81] for data fusion. Off-line data inte-
gration is not applicable, for instance, in mashup-style integration scenarios, where
two or more data sources are integrated on-the-fly, often by a third party who has no
control over either source, or when the data to be joined are a continuous stream.

Consider, as an example, a mashup-based integration, where an organization col-
lects data from various insurance companies into a large table of car accidents that
have occurred nationwide over a period of time, and that is updated frequently.
These data are then overlaid onto a map based on the accidents location, in or-
der to visualize “accidents hot spots”. Suppose that the geographical information is
obtained by joining this table –itself collated from various sources– with a reference
table containing an atlas of all streets in every city, along with their precise map
location. In this case, the accuracy of the overlay map can be sacrificed in part, in
return for a faster visual presentation.

In such dynamic, on-the-fly relational data integration settings, there is the need
to reconcile values heterogeneity across sources, in order to ensure consistency
and completeness of the integrated data. In this scenario, the use of exact joins to
match records across sources may lead to incomplete integration, while approx-
imate joins are computationally expensive. Approximate joins could be adopted
with a pessimistic approach, that is, assuming that it is always worth paying the
full computational cost of using a complex join operator, in return for the guaran-
tee that all potential mismatches among tuples with sufficiently high similarity are
caught.

242 B. Catania and G. Guerrini

In [77], the use of adaptive techniques for combining exact (fast) and approxi-
mate (accurate) joins when performing dynamic integration has been proposed. The
adaptive algorithm uses an a-priori expectation of the join result size combined with
the monitoring of join progress to statistically determine, at various points during
query execution, which join operator should be used. Depending on its configu-
ration, the algorithm can achieve various trade-offs between completeness of the
join result and query execution time. The approach proposed is an optimistic one,
whereby the initial assumption is that no mismatches will occur at all, thus a regular
exact join is employed at the beginning. At the same time, however, a mechanism
for detecting mismatches when they do occur, and for reacting to them by switching
to a different query execution plan, where the exact join is replaced by a similarity
join, is put in place.

The main issues that have to be solved in this context are: (i) how to assess that
some mismatch is occurred and thus approximate join is needed; (ii) how to inter-
leave approximate and exact join execution. As per the first issue, in the described
scenario there is no prior knowledge of how many tuples in the source tables will
fail to match when using an exact join. It may be the case, therefore, that for at least
a portion of the tables a fast exact join could be used instead, without loss of joined
tuples. In [77], the monitor component of the adaptive strategy is based on the as-
sumption that a parent-child relationship is expected between the two input tables,
a common case exemplified by the car accidents scenario. Under this assumption,
join cardinality can be estimated easily and deviations from the expected cardinal-
ity reveal that mismatches are occurring and thus some approximation should be
introduced.

For what concerns the second issue, approximate joins that can be elaborated in
pipeline are needed. We recall that a pipelined plan executes all operators in the
query plan in parallel, by sending the output data of an operator directly to the next
operator in the pipeline, as opposed to materialized plans in which operators are
applied in sequence, computing (and materializing if needed) whole intermediate
results. An example of operator that can be elaborated in pipeline is Symmetric
Set Hash Join, exploited in [77], which is a pipelined symmetric hash implemen-
tation of the q-gram based set join of [33]. Another example is a pipelined imple-
mentation of Trie-Join [123], that allows to assess tuple similarity as edit-distance
constraints rather than as number of common q-grams. Both these operators can
interplay with an exact symmetric hash join [125], provided that the needed data
structures (the q-gram based hash tables and the trie, respectively) are built during
exact join computation and that switches occur in quiescent states, as characterized
by [46].

In this example, the target of both adaptation and approximation is QoD-oriented,
while the aim of both adaptation and approximation is both QoD and QoS since the
techniques aim at achieving the best trade-off between a QoD parameter, namely
result completeness, and a QoS parameter, namely response time, by recurring
to (more expensive) approximate joins when needed and by avoiding them if not
needed.

10 Approximate Queries with Adaptive Processing 243

10.2.2 Adaptive Processing of Skyline-Based Queries over Data
Streams

Selection operations over streams are quite simple since they are not blocking oper-
ations. Therefore, each tuple can be evaluated as soon as it enters the system. How-
ever, users may not be acquainted of the actual data arriving in streaming, therefore
they may issue queries that return an empty result set. As a consequence, users may
want to modify the selection conditions and execute them again, until a satisfac-
tory result is obtained. This may happen, for example, each time the query relies on
constants whose relevance may vary over time.

Consider for example an application of habitat monitoring and assume that sen-
sors have been located inside nests, returning several properties of the place around
the nest, including light. Assume the user is interested in detecting the nests under a
light above a certain threshold. Suppose also this monitoring should last for a long
period, thus a continuous selection query is issued. Suppose the query is submitted
during daytime, a given light threshold, say 400, is chosen, and the answer, probably
non-empty, is computed. However, at sunset, the light is getting low and few (or no)
data may be returned as answer. Two scenarios may arise: (i) this is exactly what
the user wants and no modification to the query has to be specified; (ii) the user may
anyway want some results to be returned, the closest to the specified conditions.
In the second case, the system should modify the query in order to provide a non-
empty result with accuracy guarantees. This behavior can be obtained, for example,
by either changing selection conditions, similarly to what has been done in [68, 89]
for stored data, or by relaxing the query using a skyline-based approach, similarly
to what has been proposed in [72] for stored data and in [95] for sensor networks.
As will be discussed further in Section 10.3.2, the basic idea of a skyline-based
approach to query relaxation of selection and join operations is to use a relaxing
function (usually, a numeric function) to quantify the distance of each tuple (pair
of tuples) from the specified condition. The relaxed version of the query provides a
non-empty answer while being ‘close’ to the original query formulated by the user.

While the empty answer problem has been deeply investigated for stored data,
few proposals exist for data stream management (see Section 10.3). Specifically, no
solutions have been proposed so far for skyline-based relaxation over data streams
(while proposals for skyline query processing do exist - see, e.g., [83, 113, 115]).
Even if such solutions were available, skyline-based computation is blocking and
therefore a window-based computation would be required in order to restrict the
set of items upon which dominance has to be checked. A trade-off therefore arises:
the definition of skyline-based relaxation techniques may help in solving the empty
answer problem but the price to pay, at least for selection, is the introduction of a
window-based computation and therefore, in general, a decrease of performance.

A solution to this problem could be that of providing an approach for switch-
ing from precise selection operations to skyline-based ones as soon as, based on
some dynamically monitored QoD parameters, the system understands that this is
needed for improving result quality. The same technique may then switch from a

244 B. Catania and G. Guerrini

skyline-based computation to a precise one as soon as a QoD parameter indicates
that a precise computation can again generate a result with QoD guarantee.

Similarly to the example presented in Section 10.2.1, in this scenario the target of
both adaptation and approximation is QoD-oriented, while the aim of both adapta-
tion and approximation is both QoD and QoS since the techniques aim at achieving
the best trade-off between a QoD parameter, namely result completeness, and a QoS
parameter, namely response time, by recurring to (more expensive) skyline-based
computations when needed and by avoiding them if not needed.

Monitored QoD parameters should help in detecting an empty or few answers
problem. Various alternatives could be devised and should be investigated. Of
course, global cardinality constraints (e.g., return N items) are not suitable for a
stream-based context. A possible alternative choice would be that of providing some
rate constraints, specifying how many items should at least be retrieved from each
W items processed or from each fixed period of time (e.g., return N items - or at least
N items - every W tuples processed). Checking such constraints require a window-
based computation that, for non blocking operations like selection, is not needed.
Another simpler (and more efficient from a QoS point of view) option would be
that of maintaining only the current selection selectivity, based on already pro-
cessed tuples. Different parameters will obviously have different impact on query
performance.

10.3 QoD-Oriented Approximate Queries

QoD-oriented approximate techniques provide approximate answers in situations
where precise results are not always satisfactory from a user point of view. Indeed,
due to high data heterogeneity and limited user knowledge about such data, precise
evaluation may frequently produce result sets containing either empty/few answers
or too many answers. A solution to these problems consists in modifying traditional
queries, such as selections and joins, by relaxing their definition or by approximat-
ing their evaluation, in order to improve result quality, in terms of completeness and
relevance with respect to the original query. Query rewriting (QR) and preference-
based queries, such as top-k and skyline, are examples of QoD-oriented approxima-
tion techniques which relax the original query definition with the goal of returning a
more satisfactory answer set. Of course, in defining QoD-oriented techniques, QoS
guarantees have to be provided, in order to cope with the available resources in the
most efficient way (a sort of second-level aim).

In this section, which aims by no means to be an exhaustive survey of the
field, QoD-oriented approaches will be briefly surveyed, according to Figure 10.1,
with respect to three subjects: query specification (by rewriting); query specifica-
tion (by preferences); processing algorithm. While for stored data some techniques
for each subject have been proposed, we are not aware of QoD-oriented propos-
als for data streams and related window-based queries based on QR. In present-
ing the approaches, we will point out the main properties and aspects upon which

10 Approximate Queries with Adaptive Processing 245

Table 10.1 Some representative QoD-oriented approximate techniques.

Subject Target Approaches

Values [68, 89]
Query rewriting Structure [76, 131]

Query predicates [24]
Top-k queries Ranking function [41, 59, 80, 88, 91, 130]

Skyline queries Set of relevant attributes [26, 71, 83, 98, 106, 113, 114, 115]
System-specified top-k queries Ranking function [4]

System-specified skyline queries Set of relevant attributes [72, 82, 95]
Numeric similarity function [109]

Similarity-based join Edit-based distance over strings [33, 74]
Token-based distance over strings [53, 74]

approximation is applied (i.e., their target). The surveyed approaches concern rela-
tional as well as XML data. Some of the approaches mentioned for XML data are
more extensively discussed in Chapter 6, to which we refer the interested reader for
additional details. We remark that in this section the main approximation aim is
always QoD-oriented, namely result data quality in terms of completeness or
optimality with respect to some specified QoD criteria. Table 10.1 summarizes some
representative approaches among the ones surveyed in the following in terms of ap-
proximation subject and target.

10.3.1 Query Rewriting

The aim of query rewriting is to rewrite the user query into a new one when the
results of the original query are too few or too many. The main advantage of the
query rewriting approach for query relaxation is that the generated queries can be
executed using already existing query processing algorithms without the need of
additional infrastructure. Of course, more efficient query processing algorithms can
be provided in order to exploit the properties of the resulting query set.

Existing approaches, mainly proposed for stored data, can be classified into
value-based, structure-based, and query-based depending on the information used
for rewriting the query (i.e., depending on their target). More precisely: (i) value-
based techniques rely on information concerning data distribution and query size
estimation for rewriting queries, usually taking into account range and equality
predicates on numerical and categorical attributes [68, 89]; (ii) structure-based tech-
niques use schema or structure information (in case of semi-structured information
like XML documents) during the relaxation process [76, 131]; (iii) query-based ap-
proaches relax queries based on properties of the employed query conditions. An
example of query-based technique is given by the spatial relaxed topological selec-
tion operators and nearest neighbor operators proposed in [24] (see also Chapter 5).

246 B. Catania and G. Guerrini

10.3.2 Preference-Based Queries

In preference-based techniques, preferences are taken into account, as target, in or-
der to generate the result, with the aim of providing best results first. In this category
we include both top-k and skyline operators. Preferences can be either specified by
the user or automatically chosen by the system. In both cases, they may correspond
to ranking functions or sets of relevant attributes.

Preference-based queries have been proposed for both stored and stream-based
data management. In the last case, they take into account that, based on the fact
that data streams are unbound by definition, precise results are inherently not pos-
sible. Two main types of queries have therefore been considered: (i) continuous
preference-based queries, whose result is continuously monitored over the stream,
through the usage of a window, changing the result in a continuous way; (ii) one-spot
preference-based queries, whose result has to be computed over the overall stream,
assuming the set of possible items is fixed, in an approximate way with guarantees
on errors. Typically, these last approaches rely on the usage of some sketch of data
streams.

In the following, existing preference-based queries will be briefly surveyed by
classifying them into three categories, namely: (user-specified) top-k queries, (user-
specified) skyline queries, and system-specified preference-based queries.

Top-k queries. The aim of the top-k operator is to restrict the number of returned
results to a fixed number (k), based on some ranking function (which constitutes
the target of the relaxed query). Most of the existing top-k processing approaches
rely on monotone ranking functions, which give the opportunity of optimizing top-k
query processing, using some threshold value to prune the visit of data. However, for
complex applications, the ranking function can be expressed as a generic numeric
expression to be optimized [130]. A survey and a classification of existing top-k
processing approaches for traditional and XML data has been proposed in [59].
Concerning XML documents, as discussed in Chapter 6, top-k approaches rely on
ranking functions that take into account similarity of both the content and the struc-
ture of the documents with respect to the considered query [7, 55, 118].

When considering stream-based management systems, traditional top-k
approaches have been extended to cope with the continuous query processing
paradigm. As an example, in [91], a set of registered top-k queries are continuously
evaluated over a sliding time-based or count-based window. Information about the
ranking function is used to organize data in the window and continuously compute
the result. On the other hand, in [41], a different buffer organization is provided,
based on a dual representation of tuples by which any top-k query relying on a linear
ranking function can be evaluated. Approximate solutions to precise top-k queries
have been proposed in [88], with a space-bound guarantee. Some results presented
in that paper have been proved to be imprecise in [80] and updated accordingly.

Skyline queries. The aim of the skyline operator is to return the best objects without
relying on a specific ranking function, which sometimes could be cumbersome, but
only specifying the attributes of interests. More precisely, given a set of points, each

10 Approximate Queries with Adaptive Processing 247

representing a list of values for the list of relevant attributes, the skyline contains the
points that are not dominated by any other point. A point A dominates a point B if
it is better in at least one dimension and equal or better in all the others, by consid-
ering a specific ranking function [26]. Various algorithms have been proposed for
skyline computation [26]. Index-based techniques (B-tree [26], bitmap [114], near-
est neighbor [71, 98]) avoid scanning the overall set of data for skyline computation,
improving performance with respect to basic techniques.

While top-k operators return a small result at the price of specifying a ranking
function, which is not a simple task, skyline operators avoid this specification at
the price of a larger result set, which, even for two dimensional interest attributes,
may be quite huge. In order to address this problem, a common approach is to inte-
grate both top-k and skyline advantages in a single technique. We refer the reader to
Chapter 2 for further information about this topic.

Solutions for continuous skyline query processing have also been provided, both
in centralized [115] and distributed [83, 113] architectures. Similarly to stored data,
these approaches deal with totally ordered numerical domains. Other proposals exist
to deal with skylines over categorical attributes over streams [106].

System-specified preference-based queries. Preferences are not necessarily specified
by the user. Rather, they can be implicitly specified by the system and automatically
taken into consideration during query execution. This is the case of the relaxation
technique proposed in [72]. Here, relaxation is applied to relational selection and
join conditions over numeric attributes by redefining the semantics of such operators
based on a relaxing function, quantifying the distance of each tuple (pair of tuples)
with respect to the specified condition, using a numeric function (usually, the dif-
ference between numeric values appearing in the condition and in the tuple(s)). The
relaxed version of the query provides a non-empty answer while being ‘close’ to
the original query formulated by the user, using a skyline-based approach. Another
approach for automatic ranking database results has been presented in [4], where
techniques for automatically deriving ranking functions are investigated, adapting
typical Information Retrieval approaches to the database context.

When considering stream-based management systems, the only work we are
aware of for what concerns system-based preferences has been proposed for sen-
sor networks. Sensor networks are a special case of distributed stream management
system where each data stream refers to data related to some environmental property
collected through the usage of sensors. In such environments, an approach similar
to that presented in [72] for relational data has been provided with the aim of solv-
ing the empty answer problem [95] (probing queries). The proposed solutions for
processing probing queries take into account sensor network features and try to re-
duce communication costs and energy consumption during the execution. Another
approach that can be classified as system-based is presented in [82], where various
types of queries are executed in an approximate way at increasing accuracy levels.
By refining the actual result set, the user can get further results at the price of a
higher response-time.

248 B. Catania and G. Guerrini

10.3.3 Approximate Query Processing

Approximate query processing (ApQP) refers to all the techniques for executing a
traditional query (e.g., a join) by using ad hoc query processing algorithms which
automatically apply the minimum amount of relaxation based on the available data,
in order to return a non-empty result more similar to the user request. Most QoD-
oriented ApQP techniques concern the join operator [74] and face approximate
match issues for strings [33, 53, 105] or numeric values [109]. These techniques
are quite relevant in case of join between tables coming from different data sources.
The presence of distinct strings representing the same information may arise for hu-
man factors (incorrect data entry or ambiguity during data specification), application
factors (errors in database population or not enforced constraints), or obsolescence,
since data are usually dynamic, that is, they are frequently updated and thus vary
over time. Formally, an approximate (or similarity-based) join of two tables R1 and
R2 is a subset of the Cartesian product of R1 and R2. Specified attributes of R1 and
R2 are matched and compared using a similarity function, instead of a usual equality
predicate. The used similarity functions have strong analogies with those used in the
context of data quality, for detecting that two values are distinct representations of
the same real world entity (record linkage [73] or removal of duplicate records [45]).

Matching can be performed by considering as matching field either a single at-
tribute, a set of attributes, or an entire tuple. The general problem thus becomes
that of, given two field values, quantifying their similarity, as a number between 0
and 1. If the field is numeric, numeric methods can be used. If fields are strings,
the problem is more challenging. The existing techniques can be broadly classified
into edit-based functions, if they compare strings with respect to the single charac-
ters they contain [33, 74], and token-based, if they compare strings with respect to
the tokens their contain, where a token is in general a substring satisfying specific
properties [53, 74].

The naive method for executing an approximate join consists in computing the
similarity score for each pair of fields and keeping only those whose similarity value
is greater than a given threshold. This method is of course I/O and CPU intensive
and therefore not scalable. Several algorithms have been proposed with the aim of
reducing the number of pairs over which similarity is computed, by taking advantage
of efficient relational join methods [74].

For XML data, ApQP has been deeply investigated, due to the very flexible struc-
tures and to the highly heterogeneous contexts in which XML data are used. The
proposed approaches share the goal of integrating conditions over structure with
the generation of approximate results. As discussed in Chapter 6, queries are typi-
cally expressed through twigs (i.e., small trees) to which data have to conform. Ap-
proaches differ on how conditions over structure are relaxed during approximation
and on how similarity is quantified [6, 7, 104]. In addition, approaches for approx-
imately joining XML trees [10, 54] and XML-specific record linkage techniques
have been proposed [124].

10 Approximate Queries with Adaptive Processing 249

10.4 QoS-Oriented Approximate Queries

The aim of QoS-oriented approximate techniques is to provide approximate an-
swers, with accuracy guarantees, to computationally expensive operations also in
environments characterized by limited or unavailable resources, where a precise
result can be obtained only at the price of a unacceptably high response time, com-
munication overhead, occupied space, or it cannot be obtained at all. QoS-oriented
techniques have been mainly defined for queries to be executed over either huge
amount of data (as in data warehousing systems and in stream-based management
systems) or complex data (like spatial data) or because corresponding to very ex-
pensive computations (as multiway joins).

In QoS-oriented approximate techniques, the parameters with respect to which
efficiency is evaluated (i.e., the specific QoS goal) depend on the specific environ-
ment to be considered. Specifically, while processing time and occupied space are
always relevant, communication cost is a parameter to take into account in dis-
tributed contexts. On the other hand, the target corresponds to the specific informa-
tion taken into account during the approximation process.

Concerning the subject, three main aspects have been considered for approxima-
tion: query rewriting, data representation, processing algorithm. QoS-oriented ap-
proximation techniques based on rewriting have been called static techniques in [90]
and have mainly been proposed for stream data management. Static techniques mod-
ify the queries as soon as they are submitted to the system with the aim of using less
resources at execution time. This can be done by statically changing some query
conditions or parameters that may have an impact on resource usage. This includes
windows, since by reducing the window size both memory and CPU time can be
reduced, and sample rate, for those languages allowing its specification [90].

In techniques based on the approximation of data, data themselves are approxi-
mated with the aim of reducing or simplifying the dataset over which queries have to
be executed. This approach is used each time it is too expensive to deal with values
of a given domain (as it happens for spatial data) or with the overall set of objects
(as it happens in data warehousing applications or data streams). In the last case,
in presence of data streams, the term load shedding is typically used to define the
process of dropping excess load from the system, in order to process only a subset
of input data. Due to the specificity of load shedding approaches, in the follow-
ing we use the term data reduction to refer any QoS-oriented data approximation
approach but load shedding and we will describe the two groups of techniques sep-
arately. Specific query processing algorithms are usually provided to deal with the
new simplified dataset, obtained by data reduction. With respect to techniques for
generating precise results over non-approximate data, algorithms designed for ap-
proximate data are usually more computationally efficient since the size and the
structure of input data is simplified and, as a consequence, also the new developed
algorithms are.

When the processing algorithm is approximate, the input dataset is not necessar-
ily changed but the processing used to execute a query against it is modified in order

250 B. Catania and G. Guerrini

Table 10.2 Some representative QoS-oriented approximate techniques.

Subject Target Approaches

Index-based data structures [12, 56, 132]
Samples [2, 14, 32, 66, 108]

Data reduction Histograms [42, 62, 99]
Wavelets [30, 122]

TuG synopses [111]
Sketches [8, 22, 36, 37, 38, 85, 103, 120, 128]

Random drop/ reducing probes [69, 116]
Load shedding Semantic drop/discarding tuples [15, 40, 75, 116, 117]

Semantic drop/reducing probes [47, 48, 49, 57, 112]
Synopsis usage [101]

Approximate processing algorithm Pruning conditions [5, 9, 35, 39, 129]
Heuristics [51, 60, 70, 96, 97]

to generate an approximate result in an efficient way, with respect to the available
resources. Designing good approximate algorithms is a very complex task since they
have to fully exploit the inherent properties of the data while making an efficient
usage of available resources.

In the following, QoS-oriented approaches will be briefly surveyed with respect
to their reference subject. In presenting the approaches, we will point out the main
properties and aspects upon which approximation is applied (i.e., their target) and
the specific goals. Table 10.2 summarizes some representative approaches among
the ones surveyed in the following in terms of approximation subject and target.1

10.4.1 Data Reduction

Data reduction refers to all techniques in which input data is summarized into a syn-
opsis, significantly smaller than the input dataset, for which ad hoc efficient query
processing algorithms can be defined. Historically, summaries have been used for
selectivity estimation, recently they have been proved to be very useful for approx-
imating query answers. On stored data, summaries are often pre-computed for the
overall dataset and used mainly to provide computationally efficient approximate
algorithms for expensive operations, e.g., join and aggregates, in environment char-
acterized by massive data sets, like data warehouses. In general, there is a trade-off
between the size of the summary and the accuracy of the result. Summaries can also
be used, especially for window-based operations, for returning approximate results
in an efficient way or for allowing computations over past data, in data streams.
More precisely, for operations that need to access past data (like aggregates), data
reduction is often a need. For other operations (like join), data reduction is an option
to further improve efficiency, in presence of limited resources.

As pointed out in [50], when using summaries for query processing, the main
challenges are: (i) what summary to maintain in a limited space in order to

1 Notice that query rewriting is not further discussed in the following.

10 Approximate Queries with Adaptive Processing 251

maximize accuracy and confidence of the approximate result that can be computed
starting from it; (ii) how the summary can be efficiently updated as soon as data
it refers change. Of course, different types of summaries are tailored to the execu-
tion of different operations. For example, table-level summaries, such as histograms
or wavelets, are usually not suitable for capturing join-based correlations since their
aim is to summarize the content of a single table. In this case, schema-level synopses
(such as join synopses introduced in [3]) can be used to summarize the combined
join and value distribution across several tables.

Various types of summaries have been proposed. For a survey concerning sum-
maries for stored data, we refer the reader to [23, 50]. In the following, we briefly
present some of the more relevant proposals.

Index-based data structures. The usage of index-based data structures as summary
is quite useful each time processing domain values have an intrinsically high
computational cost while dealing with key values is computationally less ex-
pensive. This is what happens for spatial data (see Chapter 5). The introduction
of an approximate representation of the exact geometries is a well-known ap-
proach, typically used to filter out non-interesting data in the processing of spatial
queries. A refinement step then returns the precise result, identifying all false hits
generated by the filter step, at the price of executing potentially expensive spatial
operations over the precise geometry. A more efficient but approximate solution
to the approach described above is to consider the result generated by the filtering
step as an “approximate query result”. Various approximate data representations
can be used, with different accuracy levels (e.g., R-trees and their variants, using
the Minimum Bounding Rectangle (MBR) as an approximation of data geome-
try [56], 4-color raster signature, 4CRS [12, 132]).

Samples. A sample is a small random subset of the dataset. Samples have been used
in query processing for a very long time. They guarantee accurate estimates for
aggregate operations (see e.g., [2, 32]), however their application to join opera-
tions is limited due to the fact that the join of two samples usually results in a
non-uniform sample of the join result. Additionally, their effectiveness degrades
when the underlying data distribution is skewed. Join synopses (i.e., samples of
the join result) have been proposed to cope with this problem, but they can be
used only for foreign-key joins, known beforehand [3].

Histograms. Histograms approximate data in one or more attributes by grouping
values into buckets and approximating attribute values and their frequencies in
the dataset based on statistics maintained for each bucket. Nowadays they repre-
sent a relevant approach for ApQP for both aggregate and non-aggregate opera-
tions [62, 99]. The main problem related to histograms is their construction cost
and storage overhead, which make them not usable for high dimensional data.

Wavelets. Wavelets are a mathematical tool for the hierarchical decomposition of
functions. Few wavelet coefficients can be used as a synopsis for handling aggre-
gate [30, 122] and non-aggregate queries; such queries can be executed directly
over the wavelet-coefficient synopsis to provide accurate answers in an efficient
way [30].

252 B. Catania and G. Guerrini

TuG synopses. Tuple Graph (TuG) synopses have been recently introduced as
a form of schema-level summary that rely on graph-based models in order
to summarize the combined distribution of joins and values in a relational
database [111]. They guarantee accurate approximate answers for a large class of
practical join queries, with aggregates and with several selection conditions over
different tables.

Summaries in data stream query processing can be used for two different purposes:
for approximating data inside a window or for approximating past data, required
for example for general computations. While the various types of summaries intro-
duced above for stored data can still be used (see, e.g., [14, 66, 108] for the usage
of random samples, [42], for histogram-based approximation for window-based op-
erations, [30] for wavelets), motivated by the fact that data in those environments is
not totally available and therefore summaries should be incrementally computed in
an efficient way, specific types of summaries, called sketches have been proposed.

Sketches are a specific type of summary, which can be incrementally computed.
In order to be useful, sketches should be significantly smaller with respect to data
they represent (typically, for window-based operations, polylogarithmic in the size
of the data within the window) and should be updated very fast. Linear sketches
are a special case of sketches that can be though as a linear transform of the in-
put: a sketch matrix multiplies the input, seen as a vector or matrix, and returns
the sketch vector. As soon as a new data item comes, in order to update the sketch
it is sufficient to multiply the new item for the sketch matrix (which often is im-
plicitly defined). Sketches have been successfully used for queries with expensive
filters [93], frequency-based queries [85], distinct-value queries [22], aggregates
[8, 36, 38, 37, 42, 66, 110, 120, 128], spatial window queries as well as value range
queries [82], and in combination with other summaries (e.g., with samples [103]).
Specific types of constraints, defined for data streams, can be used to adapt the size
of the sketch assuming that some data properties hold [20].

Features of specific approximation techniques for data streams based on sum-
maries depend on the QoS parameters taken into account, i.e., on the specific aim
which in turn depends on the considered architecture. For centralized stream man-
agement, memory limitations are typically considered [8, 22, 38, 42, 66, 85, 103,
120, 128]. On the other hand, communication costs [38, 120] are usually taken
into account in distributed stream management systems. In sensor networks, since
data is usually collected at some sensor nodes, working under energy limitations,
summary-based approaches have been provided with the aim of reducing energy
consumption [82].

A sensor network can be viewed as a distributed sensor data management sys-
tem where the computations is pushed to the sensor nodes. Thus, data streams no
longer consist of raw sensor readings but also of partial query results (in-network
computation) [110] and summary-based approaches have therefore been adapted to
this new architecture (see, e.g., [36, 37, 108]). Additionally, based on the considera-
tion that sensor data refer to environmental features, it has been proved that, besides
summary-based approaches, models of real-world processes can help to provide
more robust interpretations of sensor readings: for example, they can account for

10 Approximate Queries with Adaptive Processing 253

biases in spatial sampling, can help to identify sensors that are providing faulty data,
and can extrapolate the values of missing sensors or sensor readings at geographic
locations where sensors are no longer operational [43].

10.4.2 Load Shedding

Load shedding can be defined as the process of dropping excess load from the sys-
tem. As a result, only a subset of input data is processed. There is therefore an
analogy between load shedding and sampling, since both approaches reduce the
number of tuples to be considered. However, while load shedding is applied on data
queues, before entering query processing, sample is usually performed upon a set of
tuples for which processing has already been activated. The target for load shedding
approaches includes criteria by which the set of tuples to be shed are selected and
drops are performed and can be either QoD- or QoS-oriented.

Load shedding approaches are typically proposed with the aim of optimizing
the usage of limited CPU [15, 40, 47, 48, 49, 57, 69, 92, 101, 116, 117] or mem-
ory capabilities [40, 69, 75, 112], especially for window-based processing. Indeed,
even with window predicates, operations may lack of CPU or memory resources
in presence of high stream arrival rates. Typical operations considered for shedding
are window-based join [40, 48, 49, 47, 57, 75, 69, 112, 116], multiway join [49],
aggregates [15, 92, 117], select-project-join (SPJ) queries [101].

Drop operators can be either random, if they drop tuples based on the arrival
rates but not on the properties of the tuple itself [69, 116], or semantic, also called
utility-based, if they use a filter operator to decide which tuples have to be dropped,
based on their utility in generating the result. To this aim, different metrics can be
used, in order to: (i) minimizing the maximum error at outputs, by using either QoD
or QoS utility functions that relate each output tuple to its utility [48, 49, 92, 116],
learning approaches [47], or specific accuracy measures [15, 75]; (ii) producing the
maximum subset result (also in case of random drops) [40, 57, 69, 117, 112]; (iii)
producing a good sampled result [112].

The drop operation can be implemented in several ways. In general, it corre-
sponds to simply discard input tuples from processing. In presence of windowed
join, however, shedding can be realized by keeping the tuple in the window and
limiting the number of probes, i.e., the number of checks against the opposite win-
dow for matching tuples [47, 48, 49, 57, 112]. Specific approaches depend on dif-
ferent assumptions about the tuples in a window: under the frequency-based ap-
proach [112], each join attribute value is assumed to have a roughly fixed frequency
of occurrences in each stream (in [57], frequencies are dynamically maintained); on
the other hand, the age-based or time-correlation approach [47, 48, 49, 112] assumes
there is a time-based correlations between streams. An additional approach consists
in removing tuples from the standard data flow but, instead of not further consider-
ing them, generating some synopsis of such tuples and use a fast but approximate
shadow query plan to estimate the result [101].

254 B. Catania and G. Guerrini

Many load shedding operators are adaptive, meaning that their usage depends on
dynamic processing conditions (see, e.g., [15, 47, 48, 49]).

10.4.3 Approximation of the Processing Algorithm

Several approximate algorithms have been proposed for stored datasets, to cope
with high-dimensional data, typically arising in data warehousing or multimedia and
spatial domains. They can be classified into one of the two following approximate
strategies: search-space reduction and heuristic search techniques.

Search-space reduction techniques, instead of searching the overall data space for
solutions, restrict the search-space by some means, thus reducing the computational
cost of the processing but possibly affecting the accuracy of the result. Usually,
search-space reduction techniques are obtained by altering some steps of existing
algorithms for precise computation, by introducing weaker conditions (e.g., prun-
ing condition could be weakened). Various techniques of this kind have been pro-
posed for approximating kNN selection and join over spatial data (which become
quite inefficient in high-dimensional spaces). They modify traditional kNN algo-
rithms by reducing the search space through the usage of ad hoc pruning conditions
and stopping criteria [9, 35, 39]. Even if top-k operators can be themselves consid-
ered as a QoD-oriented approximation approach, they can further be executed in an
approximate way, using search-space reduction approaches, in order to improve per-
formance. In those cases, approximate answers are associated with a probabilistic
measure pointing out how far they are from the exact top-k answers [5, 129].

Heuristic search techniques might not find the best solution but they always find
a good solution in reasonable time. Local search [96], simulated annealing [60, 70,
97], or genetic algorithms [51, 96] are usually applied in implementing heuristic-
based approaches. They have been applied to both spatial join and kNN selection
and join.

10.5 Adaptive Query Processing

In adaptive query processing (AdQP), the way in which a query is executed is
changed on the basis of the feedbacks obtained from the environment during evalu-
ation. The classical plan-first execute-next approach to query processing is replaced
either by giving away the notion of query plan at all, as in routing based approaches,
where each single data item can participate to the production of the final result taking
its own way (route) through operators composing the query, or by a dynamic opti-
mization process, in which queries are on-the-fly re-optimized through a two-steps
solution. In the first step, the optimizer dynamically selects a new yet equivalent
query plan based on system statistics gathered at runtime. In the second step, the
system needs to be migrated from the query plan that is currently running to the
plan identified in the first step (dynamic plan migration). A migration strategy must

10 Approximate Queries with Adaptive Processing 255

guarantee that it will not alter the results produced by the system during as well as
after the plan transition. This correctness requirement implies that results are nei-
ther missing nor contain duplicates. Both the approaches can be seen as instances
of an adaptivity measure-analyze-plan-actuate loop [44], with different adaptation
frequencies. As an extreme case, in routing based approaches adaptation is on a per-
tuple basis. Note that though routing-based approaches do not rely on a notion of
plan during execution, we can still talk of plans as a way to explain how data have
been processed.

A query plan may consist of stateless as well as stateful operators. A stateless
operator does not need to maintain intermediate data nor other auxiliary state infor-
mation to be able to generate complete and correct results. A stateful operator, by
contrast, at intermediate points of its execution stores data (or auxiliary information
extracted from them) that have been processed so far in order to be able to gener-
ate complete and correct results. When processing queries over data streams, only
pipelined plans can be exploited, and operators realizing joins and aggregates need
to be stateful. Care must be taken to reduce the state continuous query accumulate.

Existing proposals can be classified according to different dimensions: (i) the
frequency of the adaptivity loop (as in [63]); (ii) as plan-based, routing-based, or
specifically targeted to continuous queries (as in [16]); (iii) the properties of the
operation they apply to (as in [44]). In this section, which aims by no means to be
an exhaustive survey of the field, we discuss some approaches broadly classified by
adaptation subject, but pointing out as well the main properties and aspects to which
query processing attempts at adapting (target), and which is the main adaptation
objective (which we remark is a QoS objective in all the approaches). We notice
that some of the described approaches [15, 20, 94, 116] introduce approximation,
thus they have an impact on QoD, and some others [58, 86] process approximate
operators (i.e., top-k), but the aim of the adaptation is QoS. Some adaptive load
shedding approaches with a QoD objective exist (see Section 6), but they are not
particularly relevant from an adaptive viewpoint and thus they are not discussed in
this section.

We also remark that most adaptive techniques, even all those not introducing any
approximation in the processing, do employ approximate data summaries, that are
incrementally updated during processing, to collect data characteristics needed to
drive adaptation.

Table 10.3 summarizes some representative approaches among the surveyed ones
in terms of adaptation subject and target.

10.5.1 Adapting Query Plans

A first basic issue faced by AdQP techniques concerns adaptively coping with wrong
cost estimates that lead to the selection of non-optimal plans. On stored data, this
results from predicate selectivity estimates that may be revised according to runtime
monitoring to reflect correlations between columns that were not considered by the
cost model of the optimizers. On streaming data, data characteristics are unavailable

256 B. Catania and G. Guerrini

Table 10.3 Some representative AdQP techniques.

Subject Target Approaches

Query plan data characteristics [17, 67, 87, 86]
Tuple routing data characteristics [25]

(post-mortem plan)
Tuple routing data characteristics and arrival rate [11]

(post-mortem plan)
Query plan data arrival rate and order [65]
Query plan data characteristics and arrival rate [18, 102]
Query plan processing environment [58]

Operator scheduling data arrival rates [13]
Load shedding data arrival rates [15, 116]

Remote filter installation data characteristics and arrival rate [20, 94]
Load balancing machine capabilities and actual workload distribution [1, 52, 102]

Subquery sharing workload, data and system conditions [34, 84, 93]

and unreliable. More accurate and complete cost information may result from run-
time selectivities, allowing either an appropriate data routing or to create a revised
query plan reflecting them. Thus, the subject of adaptation (i.e., what is dynamically
modified by adaptation) is the execution plan or the processing technique, and the
adaptation goal is to minimize query processing time.

If we consider a distributed setting, other elements than wrong cost estimates
affect the efficiency of query processing and thus have been coped with by adapta-
tion. In case processing is made at one node, but data are gathered from different
nodes, processing needs to adapt to network bandwidth and to rates at which data
can be received from other nodes. The adaptation goal, in the distributed setting, in
addition to minimize query completion time, is also continuity in producing results
(result production rate, early production of first results). Dynamic adaptation in this
context allows systems to react to (wide-area) network I/O delays and flow rates,
due to different bandwidth or data provider resources, that can be subject to change
without notice [64, 119, 121].

In query processing over data streams, both data characteristics and data arrival
rates are varying and unpredictable. The cost of a plan for a continuous query de-
pends on the current stream conditions (e.g., data distribution, arrival rate) and sys-
tem conditions (e.g., query load, memory availability). Both these conditions may
vary significantly over the lifetime of a long-running continuous query. The goal
usually is to maximize query efficiency in terms of throughput.

In what follows, we briefly discuss the main proposals that face these issues by
adapting the way the query is executed on data, distinguishing between routing and
plan-based approaches, and, for the latter ones, classifying them according to the
extent of partial work reuse they support upon plan migration.

Routing based approaches. Eddies [11] establish the order in which data are routed
through operators dynamically on the basis of the costs and selectivities of the

10 Approximate Queries with Adaptive Processing 257

operations, collected and monitored throughout query execution. This results in a
per-tuple adaptation that does not consider at all the notion of query plan, rather
it views query processing as routing of tuples through operators and realizes plan
changes by changing the order tuples are routed. The eddy operator is a special
operator that sits at the center of a tuple dataflow, intercepting the input and the
output tuples of all other operators. It monitors the plan execution, and takes the
decision concerning how to route tuples relying on some criteria grounded on
the runtime information it collects. Most tuples exploit the route that is currently
more efficient, while the rest explore other routes. Routes through operators simu-
lates pipelined plans. After an adaptive routing-based technique has completed (that
is, post-mortem [44]), we can explain what it did over time in terms of data partitions
and corresponding adopted query plans.

The flexible routing approach of data through operators is particularly attrac-
tive in a data stream context and has been exploited in the TelegraphCQ [31]
system. For join operators, however, it generally involves materializing partially pro-
cessed tuples in hash tables (state modules) [100]. In such a way, the original eddies
architecture is extended so that it can simulate multiway joins. Content-based rout-
ing [25] reverses the prevalent focus from adapting a single plan as data character-
istics change, to detecting classes of data characteristics that can be used to route
different data to different plans, through classifier attributes that allow to detect cor-
relations and thus to produce conditional plans on-the-fly.

No reuse of partial results (Non-pipelined plans). In these approaches, most of
which focus on join reordering during query evaluation [17, 67, 87], an optimizer is
invoked at query runtime to identify a new plan on the basis of information on the
processing progress to date. They are coarse grained approaches in that they either
reuse complete join results or restart join evaluation from scratch, discarding results
achieved with earlier plans.

Mid-query re-optimization [67] utilizes a run-time statistics collector and
reconfigures only the unprocessed portion of the running query plan to improve
performances. As in POP [87], the new plan can reuse materialized results from op-
erators that are run to completion, but results of any partially computed subqueries
are discarded, thus they are unsuitable for use with pipelined evaluation. Moreover,
a plan may repeat work already performed by another plan. In Rio’s proactive re-
optimization [17] a switch operator is introduced that enables certain decisions on
the plan to adopt to be deferred to run-time without discarding intermediate results.
Switchable plans must have similar structures. Parametric query optimization [61]
describes a query plan competing model to dynamically change the running query
plan to another plan. The approach requires that before the query starts several plans
have been chosen and are executed in parallel. After a while, the plan with the best
exhibited performance thus far is kept running alone and the other ones are dis-
carded. This allows for one-time dynamic plan migration.

The limited ability for dynamic plan migration makes these approaches not well
suited for use in pipelined plans in which many operators are likely to be used
simultaneously.

258 B. Catania and G. Guerrini

Pipelined plans and partial results reuse. Pipelined plans are addressed, and reuse
of previously computed results supported, in [46, 65, 78]. In a distributed setting,
Tukwila [65] proposes an approach of adaptive data partitioning that allows to
discover and exploit order in source data, as well as data that can be effectively
pre-aggregated. For instance, it combines hash join and merge join operators to take
advantage of mostly ordered inputs. Tukwila works with pipelined plans, and sup-
ports reuse of previously computed results. Adaptation suspends a partially evalu-
ated plan and creates a new plan that completes the work required to answer the
query. To construct the query results from the values produced by the two plans, a
post-processing in the form of a stitch-up phase is needed. This phase requires ac-
cess to intermediate results produced by the two plans, and specifically to the state
associated with a specific join algorithm (symmetric hash join).

In [78], adaptive reordering of pipelined indexed nested loop joins is consid-
ered. States are identified in which adaptation can safely take place. Adaptation
however concerns only join order, whereas a single physical join operator, namely,
index nested loop, is considered. Adaptive join re-optimization for pipelined plans
based on the same approach but considering multiple join algorithms is investigated
in [46]. Fine grained reuse of intermediate results is achieved, and redoing work is
avoided, but some constraints are posed on the plans produced after re-optimization.
Specifically, the new plan must complete partially evaluated scans and it makes use
of intermediate data structures from the original plan.

In the data stream context, [28] (Aurora) adopts pause-drain-resume strategy
for dynamic plan migration. That is, (i) the execution of the current query plan is
paused, (ii) all existing tuples in the current query plan are drained out, (iii) the cur-
rent plan is replaced by the new plan, and the execution restarted. This approach is
appropriate to dynamically migrate a query plan that consists of only stateless opera-
tors, such as select and project. All intermediate tuples in a stateless query plan exist
only in intermediate queues and can be cleaned completely by the drain step during
the migration process. The pause-drain-resume strategy is unable to handle stateful
operators such as window join with intermediate states. In the context of StreaMon,
adaptive ordering of filter operators in pipelined plans over a single stream, to max-
imize throughput at all points in time, has been investigated in [18]. The challenge
is to maintain the order in which the filters are evaluated over input stream tuples
that is most efficient for the stream and system conditions at any point in time. The
proposed A-Greedy algorithm devises the best filter ordering depending on current
stream and filter characteristics, and can be applied to a wide class of multiway
joins over streams. To minimize re-computation of intermediate results, an adaptive
caching approach is proposed in [19]. The proposed A-Caching algorithm selects
caches, monitors their costs and benefits in current conditions, allocating memory
to caches and adapting as conditions change. Thus, adaptation is provided both to
data characteristics and arrival rates, but also to memory availability. Like Strea-
Mon [21], CAPE [102] supports adaptive processing at the level of operators, e.g.,
within a join operator, as well as at the level of query plans, e.g., switching among
different plans for a query. Two different approaches for plan migration for stateful

10 Approximate Queries with Adaptive Processing 259

operators are supported in CAPE, only for join re-ordering: moving states and par-
allel track. More flexible plan migration strategies are proposed in HybMig [127].

Finally, adaptive execution for top-k ranking queries is investigated in [58]. Dif-
ferent types of change in the optimality conditions of the current executing plan
(e.g., cost parameters and fluctuations in the computing environment) are con-
sidered. Top-k ranking queries are indeed extremely relevant in less-stable envi-
ronments, characterized by unexpected delays and frequent disconnections. The
proposed algorithm allows the system to alter the current pipelined ranking plan
at runtime and to resume with the new optimal (or better) execution strategy. The
plan alteration mechanism employs an aggressive reuse of the old ranking state from
the current plan in building the state of the new plan. The adaptive approach for top-
k approximate XML query processing proposed in [86] and discussed in Chapter 6,
by contrast, allows partial matches to the same query to follow different execution
plans, so that a partial match that is highly likely to end up in the top-k set is pro-
cessed in a prioritized manner, whereas a partial match unlikely to be in the top-k
set follows the cheapest plan that enables its early pruning.

10.5.2 Adaptively Coping with Limited Resources under Fixed
Plans

The arrival rate of a data stream may be extremely high or bursty, thus placing
constraints on processing time or memory usage; typically, data must be processed
on-the-fly as it arrives and can be spooled to disk only in background. A first issue
that data stream processing systems have coped adaptively with is thus how to han-
dle bursty data arrival rates. The main approaches are to drop unprocessed tuples to
reduce system load (load shedding, see Section 10.4.2) and improving the efficiency
of allocation of memory among query operators (operator scheduling). In both cases
the goal is to improve system performances, in the first case, some approximation is
introduced while in the second one the primary resource bottleneck that is aimed at
overcoming is limited main memory. Approximation can be adaptively introduced
in processing queries over data streams also to maintain a certain throughput or to
reduce memory occupancy. This kind of adaptive approximation is typically driven
by QoS metrics, ensuring that certain result precision guarantees are ensured.

Adaptive operator scheduling. When processing high-volume, bursty data streams,
the natural way to cope with temporary burst of unusually high data arrival rates
is to buffer the backlog of unprocessed tuples and process them during light load
periods. However, it is crucial for the system to minimize the memory required for
backlog buffering, which may otherwise exceed available memory during periods
of heavy loads. An operator scheduling strategy, ideally invoked at the end of every
unit of time (smallest duration for which operators should be run without preemp-
tion), selects an operator from those with non-empty input queues and schedules it
for the next time unit. The operator scheduling strategy has a significant impact on
the total amount of memory required for backlog buffering. The problem of how to

260 B. Catania and G. Guerrini

most efficiently schedule the execution of query operators to keep the total memory
required for backlog buffering at a minimum, assuming query plans and operator
memory allocation are fixed, is addressed in [13]. Since reasonable output latency
must be ensured, the maximum runtime memory is minimized while maintaining
the output latency within pre-specified bounds.

Adaptive load shedding. In case of bursty data arrival, the system drops input tuples
to bring the system load down to manageable levels. As discussed in Section 10.4.2,
alternative approaches are possible: a fraction of the input is dropped, and approx-
imate answers are provided as output [15, 47], or entire windows are dropped so
that the output is a subset of the actual one (subset result, [117]). Moreover, shed-
ding may not simply discard data, it may also capture through synopsis properties
of missing data [101]. In Aurora [116] shedding relies on QoS functions that spec-
ify the utility of processing each function from a data stream. A different quality of
service function is provided for each query. In [15] load shedding is formulated as
an optimization problem where the objective function is minimizing inaccuracy in
query answers in the context of sliding window aggregate queries, taking also op-
erator sharing into account. In [34, 40] the problem is addressed for windowed join
between data streams, and the metric being optimized is the number of tuples pro-
duced in the approximate answer in [40], and the output rate of tuples in [34]. In [47]
time correlation among windows is taken into account for window join (age-based
load shedding). In [92] the problem is tackled for aggregates taking into account that
each query has different processing cost, importance and maximum user-specified
tolerated error.

Adapting filters at remote data sources. An approach is proposed in [94] to reduce
communication overhead in a setting where distributed data sources stream data to a
central processor. Filters are installed at remote data sources that adapt to changing
conditions to minimize stream rates while guaranteeing that all continuous queries
still receive the data necessary to provide answers of adequate precision at all times.
Through an adaptive policy, the filter bound widths are adjusted continually to match
current conditions. Many continuous queries with different precision constraints in-
volving overlapping sets of data objects are considered.

Query plans for continuous queries often need to maintain significant runtime
state in memory, which limits the number of queries the system is able to process
simultaneously. For instance, a query plan for a windowed stream join query needs
to store all tuples in the current window over the streams. The approach of [20] is
to monitor input streams for various data or arrival patterns that can be exploited to
reduce runtime state, without compromising correctness.

10.5.3 Further Adaptation Subjects

Further dimensions of adaptation include load balancing, that encompasses further
issues in distributed query processing, and subexpression sharing, peculiar of con-
tinuous query processing (see also Chapter 9).

10 Approximate Queries with Adaptive Processing 261

Adaptive load balancing. If the query is to be processed in a distributed way on
several machines, dynamic adaptation extends to runtime load balancing by moving
certain workload across machines. The issue is extremely relevant in environments
where dynamic out-sourcing of processing tasks to non-dedicated, heterogeneous
computers can take place and the effectiveness of parallelism depends more on the
exploitation of the actual machine capabilities and efficient workload distribution,
than on the way data is partitioned. Adaptivity in such environments mainly re-
lates to runtime monitoring and learning the behavior of participating machines,
the actual communication bandwidth between them, and the impact of this behav-
ior on the progress of query processing. Moreover, it manifests itself as changes in
the way available resources contribute to the query execution rather than as run-
time modifications of the query plan, and the order in which data or operators are
processed. For instance, in [52] a technique is proposed that dynamically balances
intra-operator load across computational nodes both for stateful and stateless opera-
tions, and is capable of changing the degree of parallelism and moving load to new
resources on-the-fly to overcome bottlenecks.

In distributed continuous query systems the basic unit being moved during the
adaptation may be one whole operator, assuming that each operator is small enough
to fit on one machine. We refer to this adaptation, supported for instance in Bore-
alis [1] and CAPE [102], as operator-level adaptation. Many operators in continuous
queries need states to keep tuples they have received so far for future processing. In
case of high stream workloads, the states in one operator can grow too large to fit in
the main memory of a single machine. Moreover, moving around large amounts of
states at run time can be inefficient. Flux [107] addresses this problem by proposing
strategies to divide one large operator state into many smaller partitions. One parti-
tion can then be treated as one moving unit during runtime adaptation. We refer to
this type of adaptation as state-level adaptation. In [107] stateful operators with a
single input (i.e., aggregate operators) are considered, whereas operators with mul-
tiple inputs and multiple states, such as binary or multi-way joins, which are more
likely to have bigger operator states, are considered in D-CAPE [79].

Adaptive sharing of computation in continuous queries. The issue of minimizing
redoing of work in multiple queries being continuously evaluated and sharing some
subexpression is relevant not only for data streams but also for monitoring persistent
data sets spread over a wide-area network (web sites over internet). NiagaraCQ [34]
addresses adaptive regrouping of queries based on changes in workload, data or
system conditions. No other dimensions of adaptation are however considered. An
adaptive approach to shared filter evaluation is proposed in [93], where the goal is to
minimize the overall cost of evaluation by sharing filter evaluations across multiple
queries. They assume that operator costs and selectivities do not change over time,
and different plans may be chosen for different tuples since the next filter to be
evaluated is based on the results of filters evaluated so far. Sharing of computation
among queries in eddies has been addressed in [84].

262 B. Catania and G. Guerrini

10.6 Conclusion and Discussion

Query processing in several new application contexts is characterized by two main
features: adaptivity, in order to adapt the processing to dynamic conditions that pre-
vent the selection of a single optimal execution strategy, and approximation, in
order to cope with data heterogeneity, limited data knowledge during query spec-
ification, and limited resource availability, which make precise answers impossible
to compute or unsatisfactory from a user point of view. The aim of the chapter
was to survey currently existing ApQP and AdQP approaches and to show potential
lacks in their combined usage. To this aim, based on the analysis performed in Sec-
tions 10.3, 10.4, and 10.5, we provide in Table 10.4 an overall picture of the query
processing approaches both exhibiting an adaptive behavior and introducing some
approximation, that we have separately discussed in the previous sections.

In Table 10.4, some representative approaches are classified with respect to the
type of their target and aim. Notice that, since for approximation techniques a
QoD/QoS aim usually implies the presence of a QoD/QoS target, a single dimen-
sion is considered. For each dimension, we highlight whether the approach relies on
the usage of QoS or QoD parameters. For instance, the approach presented in [94]
adaptively introduces some approximation, by omitting to transfer some tuples from
remote data sources to the central processor (elaborating an aggregate operator). The
introduced QoS-oriented approximation is adaptively achieved, the adaptive process
is QoS-targeted at reducing communication overhead and has a QoS goal in mini-
mizing the transfer rates of data from the sources to the central processor.

Table 10.4 Adaptively approximate query processing.

Approximation

Adaptation QoD QoS

Target
QoD
QoS [58], [86] [15], [20], [48],[94], [116]

Aim
QoD [15],[48]
QoS [58], [86] [15], [20], [48], [94], [116]

Table 10.4 highlights the following facts:

• Some approaches to QoS-oriented adaptive processing of QoD-oriented approx-
imate queries have been proposed. Specifically, adaptive processing techniques
for top-k queries on relational and XML data are proposed in [58] and [86], re-
spectively, but the target and goal of the adaptation is QoS, namely processing
efficiency.

• Adaptive approaches have been proposed for QoS-oriented approximation tech-
niques (namely, load shedding and data summarization) in the data stream con-
text [15, 20, 48, 94, 116]. Only few of them take QoD-information into account

10 Approximate Queries with Adaptive Processing 263

as aim [15, 48]. Constraints on data (which are adaptively kept up-to-date) are ex-
ploited in [20] to improve QoS (specifically, to reduce memory overhead). How-
ever, none of the existing approach has QoD as a target of adaptation, consistently
with the fact that none of them exploits QoD-oriented approximation.

From the performed analysis, it emerges that the definition of QoD-oriented adap-
tive approaches for QoD-oriented approximation techniques (i.e., QoD2 techniques)
has been so far neglected. However, the motivating and illustrating examples dis-
cussed in Section 10.2, that would fill the gap in the QoD-QoD cell of the table,
show that QoD2 techniques could be very relevant for various data management
applications. Some preliminary efforts towards the definition of a reference frame-
work for QoD2 techniques have been presented in [29], where they are called ASAP
(Approximate Search with Adaptive Processing) techniques, and some specific con-
crete techniques have already been proposed [77]. Much more work is required in
order to determine their concrete impact on stored data and data stream manage-
ment. As discussed in [29], we think it is important to start from the definition of
a general framework, in order to capitalize on the experience gained in a decade of
development of exact and QoS-oriented approximate adaptive technique. Adaptive
techniques, indeed, have been proposed as largely independent solutions to simi-
lar problems being experienced in various data processing contexts. Only later they
have been recognized as different instantiations of a same adaptive query process-
ing approach, based on the common basic schema of adaptivity loop, with varying
instantiation frequencies. As pointed out in existing surveys (e.g., [44]), adaptive
query processing can take many forms, and, in general, a particular adaptive so-
lution must find a particular point among the spectrum of trade-offs defined by a
variety of different dimensions. In the development of QoD2 techniques, reliance
on that unified view will help to develop an organic set of techniques, coherently
specified as different instantiations of a single framework.

References

1. Abadi, D.J., Ahmad, Y., Balazinska, M., Çetintemel, U., Cherniack, M., Hwang, J.H.,
Lindner, W., Maskey, A., Rasin, A., Ryvkina, E., Tatbul, N., Xing, Y., Zdonik, S.B.:
The Design of the Borealis Stream Processing Engine. In: CIDR, pp. 277–289 (2005)

2. Acharya, S., Gibbons, P.B., Poosala, V.: Congressional Samples for Approximate An-
swering of Group-By Queries. In: SIGMOD Conference, pp. 487–498 (2000)

3. Acharya, S., Gibbons, P.B., Poosala, V., Ramaswamy, S.: Join Synopses for Approxi-
mate Query Answering. In: SIGMOD Conference, pp. 275–286 (1999)

4. Agrawal, S., Chaudhuri, S., Das, G., Gionis, A.: Automated Ranking of Database Query
Results. In: CIDR (2003)

5. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region Proximity in Metric Spaces and its
Use for Approximate Similarity Search. ACM Trans. Inf. Syst. 21(2), 192–227 (2003)

6. Amer-Yahia, S., Cho, S., Srivastava, D.: Tree Pattern Relaxation. In: Jensen, C.S., Jef-
fery, K., Pokorný, J., Šaltenis, S., Bertino, E., Böhm, K., Jarke, M. (eds.) EDBT 2002.
LNCS, vol. 2287, pp. 496–513. Springer, Heidelberg (2002)

264 B. Catania and G. Guerrini

7. Amer-Yahia, S., Koudas, N., Marian, A., Srivastava, D., Toman, D.: Structure and
Content Scoring for XML. In: VLDB, pp. 361–372 (2005)

8. Arasu, A., Manku, G.S.: Approximate Counts and Quantiles over Sliding Windows. In:
PODS, pp. 286–296 (2004)

9. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An Optimal Algo-
rithm for Approximate Nearest Neighbor Searching Fixed Dimensions. J. ACM 45(6),
891–923 (1998)

10. Augsten, N., Böhlen, M.H., Dyreson, C.E., Gamper, J.: Approximate Joins for Data-
Centric XML. In: ICDE, pp. 814–823 (2008)

11. Avnur, R., Hellerstein, J.M.: Eddies: Continuously Adaptive Query Processing. In: SIG-
MOD Conference, pp. 261–272 (2000)

12. Azevedo, L.G., Zimbrão, G., de Souza, J.M.: Approximate Query Processing in Spatial
Databases Using Raster Signatures. In: Advances in Geoinformatics, pp. 53–72 (2006)

13. Babcock, B., Babu, S., Datar, M., Motwani, R., Thomas, D.: Operator Scheduling in
Data Stream Systems. VLDB J. 13(4), 333–353 (2004)

14. Babcock, B., Datar, M., Motwani, R.: Sampling From a Moving Window over Stream-
ing Data. In: SODA, pp. 633–634 (2002)

15. Babcock, B., Datar, M., Motwani, R.: Load Shedding for Aggregation Queries over
Data Streams. In: ICDE, pp. 350–361 (2004)

16. Babu, S., Bizarro, P.: Adaptive Query Processing in the Looking Glass. In: CIDR,
pp. 238–249 (2005)

17. Babu, S., Bizarro, P., DeWitt, D.J.: Proactive Re-optimization. In: SIGMOD Confer-
ence, pp. 107–118 (2005)

18. Babu, S., Motwani, R., Munagala, K., Nishizawa, I., Widom, J.: Adaptive Ordering of
Pipelined Stream Filters. In: SIGMOD Conference, pp. 407–418 (2004)

19. Babu, S., Munagala, K., Widom, J., Motwani, R.: Adaptive Caching for Continuous
Queries. In: ICDE, pp. 118–129 (2005)

20. Babu, S., Srivastava, U., Widom, J.: Exploiting k-Constraints to Reduce Memory Over-
head in Continuous Queries over Data Streams. ACM Trans. Database Syst. 29(3),
545–580 (2004)

21. Babu, S., Widom, J.: StreaMon: An Adaptive Engine for Stream Query Processing. In:
SIGMOD Conference, pp. 931–932 (2004)

22. Bar-Yossef, Z., Jayram, T.S., Kumar, R., Sivakumar, D., Trevisan, L.: Counting Distinct
Elements in a Data Stream. In: Rolim, J.D.P., Vadhan, S.P. (eds.) RANDOM 2002.
LNCS, vol. 2483, pp. 1–10. Springer, Heidelberg (2002)

23. Barbará, D., DuMouchel, W., Faloutsos, C., Haas, P.J., Hellerstein, J.M., Ioannidis,
Y.E., Jagadish, H.V., Johnson, T., Ng, R.T., Poosala, V., Ross, K.A., Sevcik, K.C.: The
New Jersey Data Reduction Report. IEEE Data Eng. Bull. 20(4), 3–45 (1997)

24. Belussi, A., Boucelma, O., Catania, B., Lassoued, Y., Podestà, P.: Towards Similarity-
Based Topological Query Languages. In: Grust, T., Höpfner, H., Illarramendi, A.,
Jablonski, S., Fischer, F., Müller, S., Patranjan, P.-L., Sattler, K.-U., Spiliopoulou, M.,
Wijsen, J. (eds.) EDBT 2006. LNCS, vol. 4254, pp. 675–686. Springer, Heidelberg
(2006)

25. Bizarro, P., Babu, S., DeWitt, D.J., Widom, J.: Content-Based Routing: Different Plans
for Different Data. In: VLDB, pp. 757–768 (2005)

26. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE, pp. 421–
430 (2001)

27. Braumandl, R., Keidl, M., Kemper, A., Kossmann, D., Kreutz, A., Seltzsam, S., Stocker,
K.: ObjectGlobe: Ubiquitous Query Processing on the Internet. VLDB J. 10(1), 48–71
(2001)

10 Approximate Queries with Adaptive Processing 265

28. Carney, D., Çetintemel, U., Cherniack, M., Convey, C., Lee, S., Seidman, G., Stone-
braker, M., Tatbul, N., Zdonik, S.B.: Monitoring Streams - A New Class of Data Man-
agement Applications. In: VLDB, pp. 215–226 (2002)

29. Catania, B., Guerrini, G.: Towards Adaptively Approximated Search in Distributed Ar-
chitectures. In: Vakali, A., Jain, L.C. (eds.) New Directions in Web Data Management
1. Studies in Computational Intelligence, vol. 331, pp. 171–212. Springer, Heidelberg
(2011)

30. Chakrabarti, K., Garofalakis, M.N., Rastogi, R., Shim, K.: Approximate Query Pro-
cessing using Wavelets. VLDB J. 10(2-3), 199–223 (2001)

31. Chandrasekaran, S., Cooper, O., Deshpande, A., Franklin, M.J., Hellerstein, J.M.,
Hong, W., Krishnamurthy, S., Madden, S., Raman, V., Reiss, F., Shah, M.A.: Tele-
graphCQ: Continuous Dataflow Processing for an Uncertain World. In: CIDR (2003)

32. Chaudhuri, S., Das, G., Narasayya, V.R.: Optimized Stratified Sampling for Approxi-
mate Query Processing. ACM Trans. Database Syst. 32(2), 9 (2007)

33. Chaudhuri, S., Ganti, V., Kaushik, R.: A Primitive Operator for Similarity Joins in Data
Cleaning. In: ICDE, p. 5 (2006)

34. Chen, J., DeWitt, D.J., Tian, F., Wang, Y.: NiagaraCQ: A Scalable Continuous Query
System for Internet Databases. In: SIGMOD Conference, pp. 379–390 (2000)

35. Ciaccia, P., Patella, M.: PAC Nearest Neighbor Queries: Approximate and Controlled
Search in High-Dimensional and Metric Spaces. In: ICDE, p. 244 (2000)

36. Considine, J., Hadjieleftheriou, M., Li, F., Byers, J.W., Kollios, G.: Robust Approximate
Aggregation in Sensor Data Management Systems. ACM Trans. Database Syst. 34(1)
(2009)

37. Considine, J., Li, F., Kollios, G., Byers, J.W.: Approximate Aggregation Techniques for
Sensor Databases. In: ICDE, pp. 449–460 (2004)

38. Cormode, G., Garofalakis, M.N.: Sketching Streams Through the Net: Distributed
Approximate Query Tracking. In: VLDB, pp. 13–24 (2005)

39. Corral, A., Cañadas, J., Vassilakopoulos, M.: Approximate Algorithms for Distance-
Based Queries in High-Dimensional Data Spaces Using R-Trees. In: Manolopoulos,
Y., Návrat, P. (eds.) ADBIS 2002. LNCS, vol. 2435, pp. 163–176. Springer, Heidelberg
(2002)

40. Das, A., Gehrke, J., Riedewald, M.: Approximate Join Processing Over Data Streams.
In: SIGMOD Conference, pp. 40–51 (2003)

41. Das, G., Gunopulos, D., Koudas, N., Sarkas, N.: Ad-hoc Top-k Query Answering for
Data Streams. In: VLDB, pp. 183–194 (2007)

42. Datar, M., Gionis, A., Indyk, P., Motwani, R.: Maintaining Stream Statistics over Slid-
ing Windows. SIAM J. Comput. 31(6), 1794–1813 (2002)

43. Deshpande, A., Guestrin, C., Madden, S., Hellerstein, J.M., Hong, W.: Model-Driven
Data Acquisition in Sensor Networks. In: VLDB, pp. 588–599 (2004)

44. Deshpande, A., Ives, Z.G., Raman, V.: Adaptive Query Processing. Foundations and
Trends in Databases 1(1), 1–140 (2007)

45. Elmagarmid, A.K., Ipeirotis, P.G., Verykios, V.S.: Duplicate Record Detection: A Sur-
vey. IEEE Trans. Knowl. Data Eng. 19(1), 1–16 (2007)

46. Eurviriyanukul, K., Paton, N.W., Fernandes, A.A.A., Lynden, S.J.: Adaptive Join Pro-
cessing in Pipelined Plans. In: EDBT, pp. 183–194 (2010)

47. Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: Adaptive Load Shedding for Windowed Stream
Joins. In: CIKM, pp. 171–178 (2005)

48. Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: CPU Load Shedding for Binary Stream Joins.
Knowl. Inf. Syst. 13(3), 271–303 (2007)

266 B. Catania and G. Guerrini

49. Gedik, B., Wu, K.L., Yu, P.S., Liu, L.: GrubJoin: An Adaptive, Multi-Way, Windowed
Stream Join with Time Correlation-Aware CPU Load Shedding. IEEE Trans. Knowl.
Data Eng. 19(10), 1363–1380 (2007)

50. Gibbons, P.B., Matias, Y.: Synopsis Data Structures for Massive Data Sets. In: Abello,
J.M., Vitter, J.S. (eds.) External Memory Algorithms, pp. 39–70. American Mathemat-
ical Society (1999)

51. Goldberg, D.E.: Genetic Algorithms in Search, Optimization and Machine Learning,
1st edn. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

52. Gounaris, A., Smith, J., Paton, N.W., Sakellariou, R., Fernandes, A.A.A., Watson, P.:
Adaptive Workload Allocation in Query Processing in Autonomous Heterogeneous En-
vironments. Distributed and Parallel Databases 25(3), 125–164 (2009)

53. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Srivastava,
D.: Approximate String Joins in a Database (Almost) for Free. In: VLDB, pp. 491–500
(2001)

54. Guha, S., Jagadish, H.V., Koudas, N., Srivastava, D., Yu, T.: Approximate XML Joins.
In: SIGMOD Conference, pp. 287–298 (2002)

55. Guo, L., Shao, F., Botev, C., Shanmugasundaram, J.: XRANK: Ranked Keyword Search
over XML Documents. In: SIGMOD Conference, pp. 16–27 (2003)

56. Guttman, A.: R-Trees: A Dynamic Index Structure for Spatial Searching. In: SIGMOD
Conference, pp. 47–57 (1984)

57. Han, D., Wang, G., Xiao, C., Zhou, R.: Load Shedding for Window Joins over Streams.
J. Comput. Sci. Technol. 22(2), 182–189 (2007)

58. Ilyas, I.F., Aref, W.G., Elmagarmid, A.K., Elmongui, H.G., Shah, R., Vitter, J.S.: Adap-
tive Rank-aware Query Optimization in Relational Databases. ACM Trans. Database
Syst. 31(4), 1257–1304 (2006)

59. Ilyas, I.F., Beskales, G., Soliman, M.A.: A Survey of Top-k Query Processing Tech-
niques in Relational Database Systems. ACM Comput. Surv. 40(4) (2008)

60. Ioannidis, Y.E., Kang, Y.: Randomized Algorithms for Optimizing Large Join Queries.
SIGMOD Rec. 19, 312–321 (1990)

61. Ioannidis, Y.E., Ng, R.T., Shim, K., Sellis, T.K.: Parametric Query Optimization. In:
VLDB, pp. 103–114 (1992)

62. Ioannidis, Y.E., Poosala, V.: Histogram-Based Approximation of Set-Valued Query-
Answers. In: VLDB, pp. 174–185 (1999)

63. Ives, Z.G., Deshpande, A., Raman, V.: Adaptive Query Processing: Why, How, When,
and What Next? In: VLDB, pp. 1426–1427 (2007)

64. Ives, Z.G., Florescu, D., Friedman, M., Levy, A.Y., Weld, D.S.: An Adaptive Query
Execution System for Data Integration. In: SIGMOD Conference, pp. 299–310 (1999)

65. Ives, Z.G., Halevy, A.Y., Weld, D.S.: Adapting to Source Properties in Processing Data
Integration Queries. In: SIGMOD Conference, pp. 395–406 (2004)

66. Jiao, Y.: Maintaining Stream Statistics over Multiscale Sliding Windows. ACM Trans.
Database Syst. 31, 1305–1334 (2006)

67. Kabra, N., DeWitt, D.J.: Efficient Mid-Query Re-Optimization of Sub-Optimal Query
Execution Plans. In: SIGMOD Conference, pp. 106–117 (1998)

68. Kadlag, A., Wanjari, A.V., Freire, J.-L., Haritsa, J.R.: Supporting Exploratory Queries
in Databases. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS,
vol. 2973, pp. 594–605. Springer, Heidelberg (2004)

69. Kang, J., Naughton, J.F., Viglas, S.: Evaluating Window Joins over Unbounded
Streams. In: ICDE, pp. 341–352 (2003)

70. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing.
Science 220, 671–680 (1983)

10 Approximate Queries with Adaptive Processing 267

71. Kossmann, D., Ramsak, F., Rost, S.: Shooting Stars in the Sky: An Online Algorithm
for Skyline Queries. In: VLDB, pp. 275–286 (2002)

72. Koudas, N., Li, C., Tung, A.K.H., Vernica, R.: Relaxing Join and Selection Queries. In:
VLDB, pp. 199–210 (2006)

73. Koudas, N., Sarawagi, S., Srivastava, D.: Record Linkage: Similarity Measures and
Algorithms. In: SIGMOD Conference, pp. 802–803 (2006)

74. Koudas, N., Srivastava, D.: Approximate Joins: Concepts and Techniques. In: VLDB,
p. 1363 (2005)

75. Kulkarni, D., Ravishankar, C.V.: iJoin: Importance-Aware Join Approximation Over
Data Streams. In: Ludäscher, B., Mamoulis, N. (eds.) SSDBM 2008. LNCS, vol. 5069,
pp. 541–548. Springer, Heidelberg (2008)

76. Lee, D.: Query Relaxation for XML Model. Ph.D. thesis. University of California
(2002)

77. Lengu, R., Missier, P., Fernandes, A.A.A., Guerrini, G., Mesiti, M.: Time-completeness
Trade-offs in Record Linkage using Adaptive Query Processing. In: EDBT, pp. 851–
861 (2009)

78. Li, Q., Shao, M., Markl, V., Beyer, K.S., Colby, L.S., Lohman, G.M.: Adaptively
Reordering Joins during Query Execution. In: ICDE, pp. 26–35 (2007)

79. Liu, B., Zhu, Y., Jbantova, M., Momberger, B., Rundensteiner, E.A.: A Dynamically
Adaptive Distributed System for Processing Complex Continuous Queries. In: VLDB,
pp. 1338–1341 (2005)

80. Liu, H., Wang, X., Yang, Y.: Comments on “An Integrated Efficient Solution for
Computing Frequent and Top-k Elements in Data Streams”. ACM Trans. Database
Syst. 35(2) (2010)

81. Liu, X., Dong, X.L., Ooi, B.C., Srivastava, D.: Online Data Fusion. In: VLDB (2011)
82. Liu, Y., Li, J., Gao, H., Fang, X.: Enabling epsilon-Approximate Querying in Sensor

Networks. PVLDB 2(1), 169–180 (2009)
83. Lu, H., Zhou, Y., Haustad, J.: Continuous Skyline Monitoring Over Distributed Data

Streams. In: Gertz, M., Ludäscher, B. (eds.) SSDBM 2010. LNCS, vol. 6187, pp. 565–
583. Springer, Heidelberg (2010)

84. Madden, S., Shah, M.A., Hellerstein, J.M., Raman, V.: Continuously Adaptive Contin-
uous Queries over Streams. In: SIGMOD Conference, pp. 49–60 (2002)

85. Manku, G.S., Motwani, R.: Approximate Frequency Counts over Data Streams. In:
VLDB, pp. 346–357 (2002)

86. Marian, A., Amer-Yahia, S., Koudas, N., Srivastava, D.: Adaptive Processing of Top-k
Queries in XML. In: ICDE, pp. 162–173 (2005)

87. Markl, V., Raman, V., Simmen, D.E., Lohman, G.M., Pirahesh, H.: Robust Query
Processing through Progressive Optimization. In: SIGMOD Conference, pp. 659–670
(2004)

88. Metwally, A., Agrawal, D., Abbadi, A.E.: An Integrated Efficient Solution for Comput-
ing Frequent and Top-k Elements in Data Streams. ACM Trans. Database Syst. 31(3),
1095–1133 (2006)

89. Mishra, C., Koudas, N.: Interactive Query Refinement. In: EDBT, pp. 862–873 (2009)
90. Motwani, R., Widom, J., Arasu, A., Babcock, B., Babu, S., Datar, M., Manku, G.S.,

Olston, C., Rosenstein, J., Varma, R.: Query Processing, Approximation, and Resource
Management in a Data Stream Management System. In: CIDR (2003)

91. Mouratidis, K., Bakiras, S., Papadias, D.: Continuous Monitoring of Top-k Queries over
Sliding Windows. In: SIGMOD Conference, pp. 635–646 (2006)

92. Mozafari, B., Zaniolo, C.: Optimal Load Shedding with Aggregates and Mining
Queries. In: ICDE, pp. 76–88 (2010)

268 B. Catania and G. Guerrini

93. Munagala, K., Srivastava, U., Widom, J.: Optimization of Continuous Queries with
Shared Expensive Filters. In: PODS, pp. 215–224 (2007)

94. Olston, C., Jiang, J., Widom, J.: Adaptive Filters for Continuous Queries over Dis-
tributed Data Streams. In: SIGMOD Conference, pp. 563–574 (2003)

95. Pan, L., Luo, J., Li, J.: Probing Queries in Wireless Sensor Networks. In: ICDCS, pp.
546–553 (2008)

96. Papadias, D., Arkoumanis, D.: Approximate Processing of Multiway Spatial Joins in
Very Large Databases. In: Jensen, C.S., Jeffery, K., Pokorný, J., Šaltenis, S., Bertino,
E., Böhm, K., Jarke, M. (eds.) EDBT 2002. LNCS, vol. 2287, pp. 179–196. Springer,
Heidelberg (2002)

97. Papadias, D., Mantzourogiannis, M., Kalnis, P., Mamoulis, N., Ahmad, I.: Content-
based Retrieval using Heuristic Search. In: SIGIR, pp. 168–175. ACM, New York
(1999)

98. Papadias, D., Tao, Y., Fu, G., Seeger, B.: Progressive Skyline Computation in Database
Systems. ACM Trans. Database Syst. 30(1), 41–82 (2005)

99. Poosala, V., Ganti, V., Ioannidis, Y.E.: Approximate Query Answering using His-
tograms. IEEE Data Eng. Bull. 22(4), 5–14 (1999)

100. Raman, V., Deshpande, A., Hellerstein, J.M.: Using State Modules for Adaptive Query
Processing. In: ICDE, p. 353 (2003)

101. Reiss, F., Hellerstein, J.M.: Data Triage: An Adaptive Architecture for Load Shedding
in TelegraphCQ. In: VLDB (2004)

102. Rundensteiner, E.A., Ding, L., Sutherland, T.M., Zhu, Y., Pielech, B., Mehta, N.: CAPE:
Continuous Query Engine with Heterogeneous-Grained Adaptivity. In: VLDB, pp.
1353–1356 (2004)

103. Rusu, F., Dobra, A.: Sketching Sampled Data Streams. In: ICDE, pp. 381–392 (2009)
104. Sanz, I., Mesiti, M., Guerrini, G., Llavori, R.B.: Fragment-based Approximate Retrieval

in Highly Heterogeneous XML Collections. Data Knowl. Eng. 64(1), 266–293 (2008)
105. Sarawagi, S., Kirpal, A.: Efficient Set Joins on Similarity Predicates. In: SIGMOD Con-

ference, pp. 743–754 (2004)
106. Sarkas, N., Das, G., Koudas, N., Tung, A.K.H.: Categorical Skylines for Streaming

Data. In: SIGMOD Conference, pp. 239–250 (2008)
107. Shah, M.A., Hellerstein, J.M., Chandrasekaran, S., Franklin, M.J.: Flux: An Adaptive

Partitioning Operator for Continuous Query Systems. In: ICDE, pp. 25–36 (2003)
108. Silberstein, A., Braynard, R., Ellis, C.S., Munagala, K., Yang, J.: A Sampling-Based

Approach to Optimizing Top-k Queries in Sensor Networks. In: ICDE, p. 68 (2006)
109. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE, pp.

892–903 (2010)
110. Skordylis, A., Trigoni, N., Guitton, A.: A Study of Approximate Data Management

Techniques for Sensor Networks. In: Intelligent Solutions in Embedded Systems, pp.
1–12 (2006)

111. Spiegel, J., Polyzotis, N.: TuG Synopses for Approximate Query Answering. ACM
Trans. Database Syst. 34(1) (2009)

112. Srivastava, U., Widom, J.: Memory-Limited Execution of Windowed Stream Joins. In:
VLDB, pp. 324–335 (2004)

113. Sun, S., Huang, Z., Zhong, H., Dai, D., Liu, H., Li, J.: Efficient Monitoring of Skyline
Queries over Distributed Data Streams. Knowl. Inf. Syst. 25(3), 575–606 (2010)

114. Tan, K.L., Eng, P.K., Ooi, B.C.: Efficient Progressive Skyline Computation. In: VLDB,
pp. 301–310 (2001)

115. Tao, Y., Papadias, D.: Maintaining Sliding Window Skylines on Data Streams. IEEE
Trans. Knowl. Data Eng. 18(2), 377–391 (2006)

10 Approximate Queries with Adaptive Processing 269

116. Tatbul, N., Çetintemel, U., Zdonik, S.B., Cherniack, M., Stonebraker, M.: Load Shed-
ding in a Data Stream Manager. In: VLDB, pp. 309–320 (2003)

117. Tatbul, N., Zdonik, S.B.: Window-Aware Load Shedding for Aggregation Queries over
Data Streams. In: VLDB, pp. 799–810 (2006)

118. Theobald, M., Bast, H., Majumdar, D., Schenkel, R., Weikum, G.: TopX: Efficient and
Versatile Top-k Query Processing for Semistructured Data. VLDB J. 17(1), 81–115
(2008)

119. Tian, F., DeWitt, D.J.: Tuple Routing Strategies for Distributed Eddies. In: VLDB, pp.
333–344 (2003)

120. Tirthapura, S., Xu, B., Busch, C.: Sketching Asynchronous Data streams over Sliding
Windows. Distributed Computing 20(5), 359–374 (2008)

121. Urhan, T., Franklin, M.J., Amsaleg, L.: Cost Based Query Scrambling for Initial Delays.
In: SIGMOD Conference, pp. 130–141 (1998)

122. Vitter, J.S., Wang, M.: Approximate Computation of Multidimensional Aggregates of
Sparse Data Using Wavelets. In: SIGMOD Conference, pp. 193–204 (1999)

123. Wang, J., Li, G., Feng, J.: Trie-Join: Efficient Trie-based String Similarity Joins with
Edit-Distance Constraints. PVLDB 3(1), 1219–1230 (2010)

124. Weis, M., Naumann, F.: DogmatiX Tracks down Duplicates in XML. In: SIGMOD
Conference, pp. 431–442 (2005)

125. Wilschut, A.N., Apers, P.M.G.: Dataflow Query Execution in a Parallel Main-Memory
Environment. In: PDIS, pp. 68–77 (1991)

126. Wu, J., Tan, K.-L., Zhou, Y.: QoS-Oriented Multi-Query Scheduling Over Data
Streams. In: Zhou, X., Yokota, H., Deng, K., Liu, Q. (eds.) DASFAA 2009. LNCS,
vol. 5463, pp. 215–229. Springer, Heidelberg (2009)

127. Yang, Y., Krämer, J., Papadias, D., Seeger, B.: HybMig: A Hybrid Approach to Dy-
namic Plan Migration for Continuous Queries. IEEE Trans. Knowl. Data Eng. 19(3),
398–411 (2007)

128. Yi, K., Li, F., Cormode, G., Hadjieleftheriou, M., Kollios, G., Srivastava, D.: Small
Synopses for Group-by Query Verification on Outsourced Data Streams. ACM Trans.
Database Syst. 34(3) (2009)

129. Yu, H., Hwang, S.-w., Chang, K.C.C.: Enabling Ad-hoc Ranking for Data Retrieval. In:
ICDE, pp. 514–515 (2005)

130. Zhang, Z., Hwang, S.-w., Chang, K.C.C., Wang, M., Lang, C.A.3., Chang, Y.C.:
Boolean Ranking: Querying a Database by k-constrained Optimization. In: SIGMOD
Conference, pp. 359–370 (2006)

131. Zhou, X., Gaugaz, J., Balke, W.T., Nejdl, W.: Query Relaxation using Malleable
Schemas. In: SIGMOD Conference, pp. 545–556 (2007)

132. Zimbrao, G., de Souza, J.M.: A Raster Approximation For Processing of Spatial Joins.
In: VLDB, pp. 558–569 (1998)

Chapter 11
Querying Conflicting Web Data Sources

Gilles Nachouki, Mohamed Quafafou, Omar Boucelma,
and François-Marie Colonna

Abstract. Over the last twenty years, information integration has received consider-
able efforts from both industry and academia. Approaches to information integration
developed so far can be categorized as follows: (1) first-generation approaches, that
require the definition of a global schema and a semantic integration which should
be performed upfront (before query execution); (2) second-generation approaches,
well illustrated by the dataspace management concept, which promote a pay-as-
you-go data integration. The first category has led to well known mediation ap-
proaches such as GAV (Global as View), LAV (Local as View), GLAV (Generalized
Local As View), BAV (Both As View), and BGLAV (BYU Global-Local-as-View).
Approaches pertaining to the second category are geared towards the development
of dataspace management systems and are currently gaining a lot of attention. In
this chapter we are interested in exploiting both types of approaches in querying
conflicting data spread over multiple web sources. To this aim, first we show how
an XML-based BGLAV approach can handle these conflicting data sources, then
we describe how the same problem can be addressed by using the Multi Fusion
Approach (MFA), an approach pertaining to second-generation techniques. Both
BGLAV and MFA are illustrated in using genomic data sources accessible through
the Web.

Gilles Nachouki
LINA-UMR CNRS 6241, Nantes University, France
e-mail: Gilles.Nachouki@univ-nantes.fr

Mohamed Quafafou · Omar Boucelma
LSIS-UMR CNRS 6168, Aix-Marseille University, France
e-mail: {mohamed.quafafou,omar.boucelma}@lsis.org

François-Marie Colonna
Institut Supérieur de l’Electronique et du Numérique, France
e-mail: francois-marie.colonna@isen.fr

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 271–303.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

Gilles.Nachouki@univ-nantes.fr
{mohamed.quafafou,omar.boucelma}@lsis.org
francois-marie.colonna@isen.fr

272 G. Nachouki et al.

11.1 Introduction

Over the past two decades, the database communities (both industry and academia),
have intensively addressed data integration problems. A first-generation category
of approaches and systems has been developed, and significant contributions has
been made in various subtopics [16] such as: source descriptions, schema mappings,
query reformulation, and incomplete information modeling. Approaches pertaining
to this first category require upfront semantic integration, that is a global/mediation
schema needs to be supplied beforehand. As an example, in mediation approaches
such as GAV (Global as View) [12], LAV(Local as View) [23], GLAV(Generalized
Local As View) [11] or BAV(Both As View) [5], the mediator provides the user with
a global schema and allows him/her to access heterogeneous data sources providing
the illusion to access a single local database. The wrapper, another component of
mediation systems, plays the role of an interface between the mediator and the data
sources: it receives queries from a mediator and uses its own knowledge (source
descriptions and mapping rules) in order to access the data sources.

As an example, in LAV the content of each data source is expressed in terms
of a view over the global schema. Mapping rules associate a query over the global
schema to each element of the local sources. On the other hand, in GAV each el-
ement of the global schema is expressed in terms of a view over the data sources.
Each mapping rule associates a query over a local source to each element in the
global schema.

The main component of first-generation data integration systems is the query
rewriting module; it explores a set of mappings in order to rewrite queries, expressed
upon the global schema, in terms of local sources’ schemas. The complexity of the
query rewriting phase depends on how the global schema is defined. For example,
GAV query rewriting is very simple since the elements in the global schema are
defined in terms of the source schemas [22]. In this case, query rewriting simply
consists in unfolding the definitions of the elements in the global schema. However,
in this case, adding a new source to the data integration system is not trivial. The new
source may indeed have an impact on the definition of various elements of the global
schema, whose associated views need to be redefined. On the other hand, LAV query
rewriting is not straightforward (exponential time complexity) and many rewriting
algorithms have been developed; among them, we recall the Bucket, Inverse Rules
and MiniCon algorithms [14], to cite a few. At the same time, however, the LAV
approach favors the extensibility of the system: adding a new source simply means
enriching the mapping with a new assertion, without other changes.

In general, query rewriting works well assuming that the schema of the local
source is known a-priori and static. Unfortunately, such assumptions are not satis-
fied by data managed in several new processing environments, where data sources to
be integrated are selected and combined on-demand. New second-generation data
integration approaches have therefore been proposed. Dataspaces and Dataspace
Management Systems (DSMSs), described in Chapter 12, represent a significant

11 Querying Conflicting Web Data Sources 273

example of second-generation integration approaches. A dataspace has the follow-
ing features [10]:

1. It can handle data with different formats accessible through different interfaces
(e.g., database system, data file etc.). A dataspace is designed to support all kinds
of data (e.g., structured, semi-structured or unstructured data etc.).

2. It provides an interface to search, retrieve, update and manage a dataspace,
through a DSMS. Unlike a Database Management System (DBMS), a DSMS
does not completely control its data; but it offers various levels of services in
order to return the best answer.

3. A dataspace provides all software in order to improve data integration.

The requirements and the architecture of a DSMS is presented in detail in [15].
DSMSs promote a pay-as-you-go integration system where “the system starts with
very few (or inaccurate) semantic mappings and these mappings are improved over
time as deemed necessary” [33, 19].

In this chapter, we exploit both first-generation and second-generation approaches
in describing how to query multiple heterogeneous conflicting web data sources. To
this aim, we assume that web data sources are represented in XML; a concrete ex-
ample drawn from Genomics will be used to illustrate the proposed concepts. Two
different data integration techniques will be considered. The first relies on a medi-
ation approach [8, 7] based on BGLAV [36],1 first defined for relational data and
then extended to deal with XML data sources [7]. BGLAV has been proposed to
overcome both GAV and LAV limitations. BGLAV improves both GAV and LAV
because the global schema remains unchanged when a data source is added or up-
dated. BGLAV, as a first-generation data integration approach, is characterized by
the presence of a global schema and the need to specify a set of predefined, hard-
coded correspondence queries (mappings), which specify how to solve conflicts
among local sources. Mappings have to be specified before submitting queries to
the mediator, which is in charge of the translation process, that leads to the genera-
tion of the sub-queries posed over local schemas.

In the web context, the definition of such a global schema and the maintenance
of mappings become cumbersome. As an alternative approach to BGLAV we there-
fore consider the Multi-Fusion Approach (MFA), a data fusion method developed
by Nachouki et al [26]. MFA, although not being directly inspired by the dataspace
management systems concepts, relates to the second-generation of data integration
approaches. MFA does not assume the definition of a global schema beforehand;
rather, it relies on the Multi-data source Fusion Language (MFL) for the definition
of a multi-data source schema (a kind of dataspace) and the retrieval of data issued
from conflicting sources. With MFA, conflicts (i.e., assertions or mappings) between
data sources can be specified by a (skilled) user who has some domain knowledge.
Users have the possibility to refine these conflicts later in order to increase grad-
ually the accuracy of their queries. In MFA, unlike BGLAV, retrieving data from
conflicting data sources is established using semantic queries, which may include
conflicting elements in their bodies. MFA query processing consists in resolving

1 BYU Global-Local-as-View, where BYU stands for Brigham Young University.

274 G. Nachouki et al.

conflicts and then in decomposing the query into a set of sub-queries to be sent to
data sources for execution.

The contributions of this chapter are therefore twofold: (1) it fully illustrates the
various phases of the data integration process, namely, schema integration, data rec-
onciliation (fusion), query rewriting, etc., in taking into account both a traditional
and a more advanced integration approach; (2) it demonstrates the application of
the presented concepts and algorithms in using a real data set, drawn from the Ge-
nomics domain. The chapter is organized as follows. Section 11.2 describes conflicts
between (biological) data sources and provides a taxonomy of conflicts in a gen-
eral context. Section 11.3 illustrates how to process mediated queries in BGLAV.
Section 11.4 is devoted to MFA. An overall example taken from the biological do-
main is provided in Section 11.5. Finally, Section 11.6 presents some discussion and
conclusions and outlines future work.

11.2 Conflicting Web Data Sources

In the following, we first briefly classify conflicts that may arise from multiple data
sources to be integrated. Then, we discuss various types of conflicts arising from
the life science domain through an example and we present some assumptions about
conflict representation upon which the results presented in the chapter rely.

11.2.1 Overview of Conflict Types

In most data integration examples covered in the literature, data sources present
various types of heterogeneity, concerning differences in names, data structures,
types, scale, just to cite a few. This is due to the fact that several perceptions of
the same real world lead to different data modeling of the same entity. In order to
integrate a set of data sources, all such conflicts have first to be solved. Conflicts can
be classified as follows [35]:

• Data conflicts, referring to differences among definitions, such as attribute types,
formats, or precision.

• Structural conflicts, arising from the description of the same concept in different
ways and in different data sources. For example, a concept can be defined as an
attribute in a relational schema Sch1 and as a relation in another schema Sch2.

• Descriptive conflicts, including the usage of different names for the same entity
(e.g., homonymous, synonymous), identity conflicts (e.g., a person is identified
by a number in Sch1 and social-security number in Sch2), scale conflicts (e.g.,
salaries are given in Dollar and Euro respectively in Sch1 and Sch2).

• Abstraction conflicts, concerning the presence of generalization/specialization
concepts (e.g., the concept of employee in Sch1 generalizes the concept of

11 Querying Conflicting Web Data Sources 275

teacher in Sch2) and aggregation (e.g., date of birth in Sch1 is a string while it
is composed of three fields month, day and year in Sch2).

• Semantic conflicts, referring to differences and similarities in the meaning of
concepts in the data sources.

Many works have investigated semantic conflicts in the literature. In [6], authors
propose an algorithm which takes two schemas as input and returns the mappings
that identify corresponding concepts in the two schemas, namely the concepts with
the same or the closest meaning. In [32], authors provide a survey of different ap-
proaches to automatic schema matching.

11.2.2 Conflicting Data in Life Sciences

Many data management applications require the integration of data from multiple
sources [9], often available on the Web as XML documents. For instance, in the field
of biology, the number of data sources and tools available in the Web has grown in
recent years. This huge augmentation of data sources has led to a deep heterogeneity
between data sources and to a variety of interfaces. Until today, the reconciliation
between data sources is performed manually by biologists. Scientific investigations
on Genes or Proteins -for annotations or predictions- or information retrieval from
scientific publications (journals, conferences, etc.) often lead researchers to submit
queries to several (yet heterogeneous) data sources that are available on the Web. As
an example, Mootha et al. [25] discovered one of the genes responsible of Leigh syn-
drome by integrating both expression, genomic and sub-cellular localization data.

In the biological domain, the same/identical information may be stored using
distinct formats or structures such as ASN 1.0 [2] or Fasta [30], HTML or XML,
leading to some data conflicts. As an example, Figure 11.1 shows a description of
ILB12, a gene that encodes a subunit of interleukin 12, which is one of the regulatory
proteins that are released by cells of the immune system. As illustrated, the same
entity, ILB12, is described by means of several heterogeneous schemas.

Semantic conflicts are also quite common in the life sciences domain. For exam-
ple, in [34] two definitions of the concept of gene have been compared: in GDB [18],
a gene is a DNA fragment that can be transcribed and translated into a protein; for
Genbank [3] and GSDB [21], a gene is a “DNA region of biological interest with a
name and that carries a genetic trait or phenotype”, which includes nonstructural
coding DNA regions like intron, promoter and enhancer. There is a clear semantic
distinction between those two notions of gene but both are still being used, hence
adding another level of complexity into the data integration process. Another term
that comes with multiple meanings is protein function, that could be defined either
as a biochemical function (e.g., enzyme catalysis), a genetic function (e.g., tran-
scription repressor), a cellular function (e.g. scaffold), or as a physiological function
(e.g., signal transducer).

276 G. Nachouki et al.

<!-- HTML -->
<!-->
<table border="0" width="100" cellpadding="1" cellspacing="1">

<tr>
<td nowrap="nowrap">Entry name</td>
<td width="100">

IL12B_HUMAN
</td>

</tr>
<tr>

<td nowrap="nowrap">Primary accession number</td>
<td>

P29460
</td>

</tr>
<tr>

<td nowrap="nowrap">Integrated into Swiss-Prot on</td>
<td>April 1, 1993</td>

</tr>
</table>

<!-- ASN 1.0 -->
<!-->
Seq-entry ::= set {

descr {title "Interleukin-12 subunit beta" ,
update-date std {year 1991 ,month 5 ,day 17} ,
source {org {taxname "Homo sapiens" , common "human" ,

db {db "taxon" , tag id 9606}
}

}
}

<!-- FASTA -->
<!-->
>IL12B|chr5|-|158674369|158690059
GATTACAAAGAAGAGTTTTTATTAGTTCAGCCTCAGAATGCAAAAATAAA
%TAAATAAATAAACAAACAGGAAACAAATGTAATCACTTTACAGAGCGCAC
ATACATTACTTAAAAGTAGCACCTTCATGGAGCCATATTTTCTGGTCATA
..

<!-- XML -->
<!-->
<SNPPER-RPC SOURCE="*RPCSERV-NAME*" VERSION="$Revision: 1.38$" >

GENOME="hg17" DBSNP="123">
<GENEINFO>

<GENEID>16348</GENEID>
<NAME>IL12B</NAME>
<CHROM>chr5</CHROM>
<STRAND>-</STRAND>
<TRANSCRIPT>
<START>158674369</START>
<END>158690059</END>

</TRANSCRIPT>
</GENEINFO>

</SNPPER-RPC>

Fig. 11.1 Structural conflicts between Genomics data sources.

11 Querying Conflicting Web Data Sources 277

11.2.3 Assumptions about Conflict Representation

In this chapter, we will consider the most important types of conflicts detailed above,
i.e., data conflicts, structural conflicts, descriptive conflicts, and semantic conflicts.
In order to deal with conflicts between data sources, we assume that all data sources
schemas are represented according to a common data model (e.g., XML schema,
DTD, relational model, etc.). In this chapter, we consider XML documents; we as-
sume that schema information is represented as a DTD document. To simplify the
discussion, we rely on a tree-based representation of both XML documents and
schema information. Under this assumption, semantic conflicts between elements
are specified using the concept of contexts of elements. The context of an element
E is the set of elements connected to E by a parent-child or ancestor-descendant
relationship. The context of an element is therefore the set of elements semantically
depending on it. In other words, if a node E2 is a child of a node E1, the element E2
has to be interpreted in the scope of E1’s meaning. As a consequence, different oc-
currences of the same label do not have the same meaning: for example, label Name
may appear several times in the same tree under different contexts, thus representing
different semantic entities.

11.3 Mediating Biological Conflicting Data with BGLAV

In this section, we illustrate the BGLAV approach for querying conflicting web data
sources.

11.3.1 BGLAV Overview

BGLAV was proposed initially by Li Xu et al. in [36] in the context of rela-
tional databases. We adapted this approach for mediating web data sources, rep-
resented as XML documents and optionally conflicting, queried through XQuery
[7]. BGLAV [36] alleviates GAV and LAV drawbacks in defining source-to-target
mappings based on a predefined conceptual target schema (global schema), which is
specified independently of any of the sources. More precisely, in a GAV approach,
changes in information sources or adding a new information source require revisions
of the global schema and mappings between the global schema and source schemas.
In a LAV approach, automating query reformulation is hard (i.e., it has exponential
time complexity with respect to query and source schema definitions).

To resolve these problems, BGLAV offers an alternative point of view in defin-
ing source-to-target mappings based on a predefined conceptual global schema. In
particular, the global schema in BGLAV is ontologically specified, independently
of any of the sources. BGLAV keeps the advantages of the two approaches GAV
and LAV: GAVs simple query reformulation and LAVs scalability. Additionally, it
is characterized by the following features:

278 G. Nachouki et al.

• Each concept in a target schema (global schema) is predefined and independent
of any source schema. In contrast, under GAV, Data Base Administrators (DBAs)
revise the global schema to include all concepts represented inside any source;
under LAV, DBAs adjust the source schemas such that they contain only source
relations that can be described by views over the global schema.

• A set of source-to-target mappings maps a source schema to a target schema.
Source and target schemas can use different structures and vocabularies.

• When a new local source becomes available (i.e., a change occurs), a source-to-
target mapping must be created (or adjusted).

11.3.2 Query Processing in BGLAV

In this section, we highlight BGLAV query processing. First we provide some nec-
essary background, then we illustrate the query rewriting steps. We start by intro-
ducing the concept of correspondence query between a source schema and a global
schema. The idea is that of defining a correspondence, i.e., a mapping, between (a
part of) the source schema and (a part of) the global schema, taking into account
existing conflicts.

Definition 1 (Correspondence query). Let Sl be a source schema and G be a global
schema. Let TSl and TG be two sub-trees belonging to Sl and G respectively. A corre-
spondence query (or mapping query) is defined as a set of transformation operations
which are applied to TSl and produce a new tree denoted by TSl′ whose elements are
in direct correspondence with those of TG. We assume that transformation operators
are specified using XQuery.

Example 1. Consider the data sources S1 and S2 and the global schema G, repre-
sented in Figure 11.2. Let TSl and TG be the sub-trees showed in the figure. What
follows is an example of a correspondence query between S1 and G:

<length>
for $x in document(S1)/strands/dna/strand/length
return $x/3

</length>

This query illustrates a scale conflict between the two elements length in G and S1.
The following is an example of a correspondence query between S2 and G:

<date_seq>
for $x in document(S2)/genes_list/gene/strand/date_seq
return concat($x/day,’/’, $x/month, ’/’, $x/year)

</date_seq>

This second query illustrates a structural conflict due to the different representations
of element date in G and S2, respectively.

11 Querying Conflicting Web Data Sources 279

journal num article

G

id content

num_chr snps*

protein

journal*

title authors

article num

title authors

conference*date_seqlength

sequences

pubs

id

snp_id freq

dna_sequence*

genes_list

gene*

journal* conf*

chr

art num

length

date_seq

sequence

refs

yearlastname articlelastname

strandsS_1

dna*

date_seq citations*prot_idstrandid

sequence length chr snps

snp_id*

S_2

strandlastname

lastname
paperlastnameyearday month

Fig. 11.2 Examples of queries in BGLAV.

Given a set of correspondence queries, from each local source it is possible to
generate a derived schema, which is not (or at least partially) conflicting with G.

Definition 2 (Derived schema). Let Sl be a source schema and Ml be a set of corre-
spondence queries that associate Sl to the global schema G. The schema Vl obtained
by applying the mapping queries to Sl is called derived schema. The transformed
elements in Vl are in direct correspondence with those of G.

Derived schemas satisfy the following property (inclusion dependency) with respect
to the global schema.

Proposition 1 (Inclusion dependency). Let V = {Vi|i ∈ [1,n]} be a set of derived
schemas and G be the global schema. For each sub-tree TG of G, there exists a
subset of derived schemas V = {Vi1 , ...,Vik} such that TG corresponds to a set of
sub-trees {Tj,h} of Vj ∈ V, j ∈ {i1, ..., ik}. The instances of TG and Tj,k satisfy an
inclusion dependency defined as follows: I(Tj,k) ⊆ I(TG), where I(T) denotes the
set of instances (i.e., XML documents) of the sub-tree T .

User queries can now be defined as follows.

Definition 3 (User query). Let G be the global schema, represented by a tree TG. A
query Q over G is expressed in XQuery over TG and can be defined by a logical rule
as Q(TG):- T1, T2,..., Tp, CQ, where:

280 G. Nachouki et al.

• Ti, i ∈ [1, p], is a sub-tree of TG, specified through an XQuery expression, in
accordance with the following sentence: � ∃i ∈ [1, p], � ∃ j ∈ [1, p], i �= j, and Ti is
a sub-tree of Tj;

• CQ is a set of conditions upon trees T1, T2,..., Tp, specified according to XQuery.

Depending on the relationship existing between the query tree and derived schemas,
three distinct types of queries can be devised, as defined below. Different query
types will lead to different choices during the query rewriting step.

Definition 4 (Completely and partially covered query). Let G be the global
schema, represented by a tree TG. Let V = {Vi|i ∈ [1,n]} be a set of derived schema.
Let Q(TG):- T1, T2,..., Tp, CQ be a query over TG. Sub-trees Ti, i ∈ [1; p], appearing
in Q can be classified according to the three cases described below:

1. Complete coverage: Ti is completely covered by a sub-tree in all derived schemas
in V .

2. Partial coverage on some derived schemas: Ti is partially covered by some de-
rived schemas in V and completely covered by some others derived schemas
in V ;

3. Partial coverage on all derived schemas: Ti is partially covered by all derived
schemas in V .

In case of complete coverage, the answer is the union of the results coming from
local sources. In case of partial coverage on some derived schemas, from some
sources only a partial result can be retrieved. In case of partial coverage on all de-
rived schemas, partial results should be joined (through XQuery) by means of the
key elements they share in order to get query answers.

Figure 11.3 illustrates a case of partial coverage, which is quite common in the
web context. The partial answers returned by the two data sources are joined by
means of the common values of key elements (e.g., id gene or gene id).

Query processing is performed in mainly two steps [8, 7]:

1. The first step of the algorithm consists in identifying the correspondence queries
that should be taken into account in processing the user query Q specified over the
global schema. These correspondence queries will be used to define the queries
to be executed against the local sources. The overall idea is that of trying to com-
pletely cover the query trees by joining local results obtained from correspon-
dence queries together. Correspondence queries generating deriving schemas
which are either totally or partially covering trees Ti in Q are taken into account.
When the query is decomposed into sub-queries, each tree Ti in Q is then replaced
by such correspondence queries, according to the local sources that should be
accessed.

2. The second step consists in generating the query plan, which contains the set
of sub-queries that access data sources in order to extract the results. Then, the
results obtained from each data source are merged together (i.e., they are fused)
and returned to the user. For detailed description of the algorithm that performs
this step, we refer the reader to [7].

11 Querying Conflicting Web Data Sources 281

journal*

publications

article+title

author+title

lastname

S_4

gene_id

number

S_3 publications

id_gene

S_G

id content

num_chr snps*

protein

journal*

title authors

article num

title authors

conference*date_seqlength

sequences

pubs

id

snp_id freq

dna_sequence*

conference*

year article+

author+

firstname

title

lastname

lastname
firstname

lastname lastname yeararticle

Fig. 11.3 Queries over partially covered global schema.

11.4 MFA - Multi-source Fusion Approach

In this section, we describe a second-generation of data integration approach and
we show its use in querying conflicting web data sources.

11.4.1 MFA Overview

A lot of data sources are freely accessible on the Web and users often need to in-
tegrate them quickly without any help. Classical approaches based on mediator’s
reasoning do not facilitate the user’s task since it is hard to unify data sources
in a dynamic way. Rather, they assume a global mediated schema to model data
sources. As such, these approaches often require an administrator to control the me-
diated schema. MFA differs from traditional approaches, like LAV, GAV, GLAV
and BGLAV, in the two following aspects: (i) it does not require a global schema
or ontology; (ii) mappings are established only between data sources (unlike other
approaches). The motivation behind this approach is that, in some context, making
calls to an administrator to check the mediated schema is not always required and it
may be too onerous and restrictive. For example, in the web context, a user which
wishes to integrate biological data is not forced to call an administrator to control

282 G. Nachouki et al.

the mediated schema. MFA thus provides an inexpensive solution to a hard problem
of data integration. By cons, this approach requires a minimal user knowledge about
these sources and of their conflicts.

Under MFA, the user just locates its data sources (e.g., web sites), builds the
multi-data source schema, and submits the queries. Submitting queries may be ac-
complished before resolving all the conflicts between data sources: users have the
possibility to add (or refine) conflicts later in order to increase gradually the accu-
racy of their queries. This approach facilitates the integration of new data sources
or deletion of an existing source. It also provides some languages that permit to de-
fine and retrieve data from multiple data sources while taking into account conflicts
between sources.

A data integration system that follows the MFA approach is defined as a triple
〈MS,Si,M〉, where:

• MS is the multi-data source schema;
• Si is the set of data sources’ schemas;
• M is the set of source-to-source mappings expressed as functionals f: TS1 →

TS2; f maps elements s1 appearing in the tree TS1 corresponding to the source
schema S1 into elements s

′
1 appearing in the tree TS2 corresponding to the source

schema S2.

MFA is based on the Multi-data source Fusion Language (MFL). MFL allows the
definition and the retrieval of data originating from conflicting data sources, through
the concept of multi-data source as a set of local sources. MFL is a simple and
powerful language. It facilitates queries over conflicting data sources and controls
the semantics expressed in user queries. For each query posed over a multi-data
source schema, MFL will search for conflicts in the query body. If no conflict is
detected, the query is validated and executed; otherwise three cases may arise (for
more details, we refer the reader to [26, 27, 28]):

1. conflicts can be solved at query execution time by using the available source-to-
source mappings: in this case, the query is validated and executed;

2. conflicts cannot be solved (e.g., in the case of homonymies): the query is
rejected;

3. only a subset of the conflicts can be solved: in this case, only a part of the query,
related to the solved conflicts, will be executed and the results will be returned
to the user with a warning message informing him/her of the detected conflict
nature.

MFL provides two sub-languages [26]: MDL, the Multi-data source Definition Lan-
guage for the definition of a multi-data source, and MRL, the Multi-data source
Retrieval Language for data retrieval from a multi-data source. Defining a multi-
data source in MDL is quite simple and intuitive: a collective name is assigned to
a group of data sources. A collective name simplifies query expression; users spec-
ify inter-source conflicts between elements composing the multi-data source and
store them into an additional specific data source. MRL extends XQuery in order to

11 Querying Conflicting Web Data Sources 283

access multiple conflicting data sources through a single query. With MRL, it is
easy to smooth out all semantic data differences which often exist in autonomous
data sources.

In MDL a multi-data source schema is a collection of data source or multi-source
schemas. It can be defined as an XML document, according to the Document Type
Definition (DTD) presented in Figure 11.4. In such DTD, < multisources > and <
source> elements refer to a specific multi-data source or a data source, respectively.
Attribute < name > denotes either the name of a source, of a multi-data source, or
of a property in a data source. Attribute < url > describes the path to reach a data
source. Element < f eature > represents a property of a data source.

Conflicts between data sources are represented in a specific data source (thus,
an XML document) called Conflicts.xml. Such data source represents the set M of
mappings among data sources, specified to deal with conflicts. The structure of Con-
flicts.xml is detailed in Figure 11.5. Three distinct types of semantic and data conflict
information can be represented for elements of a multi-data source: similarity and
dissimilarity (elements Similar and Dissimilar) and scale conflicts (element Scale).
In all the three cases, the children elements Node contain information concerning
the elements involved in the declaration. Thus, any two elements children of ele-
ment Similar are considered as semantically equivalent or synonym; any two ele-
ments children of element Dissimilar are considered as semantically different; any
two elements children of element Scale are considered semantically similar with
conflict of type scale (e.g., currency type).

Scale conflicts are resolved through a service. Element Services specifies the ser-
vices (e.g., functions) devoted to resolve a conflict of a specific type (e.g., currency
type) available in the multi-data source. A service is selected (during a query’s treat-
ment) following the type of conflict that occurs. For example, to resolve a conflict
between two nodes N1 and N2 under a tag Scale with Currency type, a specific ser-
vice corresponding to this type of conflicts may take node N1 as input and returns a
value that conforms with the currency of the second node N2.

Example 2. Figure 11.7 shows the schema of the Genome MDS. It is composed of
two conflicting data sources SL1 and SL2. They are conflicting since they contain el-
ements with the same name. Conflicts are illustrated in Figure 11.6. File Conflict.xml
specifies that features (i.e., element) id1 and Description (in SL1) are respectively
similar to id2 and Description (in SL2).

<!ELEMENT multisources (source|multisources)+) >
<!AT T LIST multisources name CDATA #REQUIRED >
<!ELEMENT source (f eature)+ >
<!AT T LIST source name CDATA #REQUIRED >
<!AT T LIST source url CDATA #REQUIRED >
<!ELEMENT f eature (#PCDATA)>
<!AT T LIST f eature name CDATA #REQUIRED >

Fig. 11.4 Multi-source DTD.

284 G. Nachouki et al.

Element Children(s) Attribute(s) Description
Conflicts Similar∗, Dissimilar∗, Scale∗, Services∗ - Root element

Similar Node∗ Id Similar elements. Each similar
element has an identifier

Node Path, Elt, Unit? -
Description of a Node (i.e.,
name, path, etc.)

Dissimilar Path, Elt,Path Id Dissimilar elements. Each dis-
similar element has an identifier

Scale Node Type
Scales conflicts
and their types
(e.g., currency)

Services Service∗ Type Available services
Service Name,Path,Convert - Description of a service

Convert Unit1, Unit2 - Information used in conversion
services

Name PCDATA - Text to be parsed
Unit1 PCDATA - Text to be parsed
Unit2 PCDATA - Text to be parsed
Path PCDATA - Text to be parsed
Elt PCDATA - Text to be parsed
Unit PCDATA - Text to be parsed

Fig. 11.5 Structure of data source conflicts; labels in italic identify element names.

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFLICTS SYSTEM "conflicts.dtd">
<CONFLICTS>
<SIMILAR id="s1">

<Node>
<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>id1</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>id2</ELT>

</Node>
</SIMILAR>
<SIMILAR id="s2">

<Node>
<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>description</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>description</ELT>

</Node>
</SIMILAR>
...

</CONFLICTS>

Fig. 11.6 Conflicts between SL1 and SL2.

11 Querying Conflicting Web Data Sources 285

Fig. 11.7 Genome MDS.

11.4.2 Methodology for Semantic Reconciliation

Differently from traditional data integration approaches, like BGLAV, MFA does
not require full semantic integration of data sources in order to execute queries on
the multi-data source schema. Rather, mappings could be partial or approximated.
Hence, MFA offers tools for semantic reconciliation between data sources, i.e., for
identifying and solving conflicts between data sources. To this aim, ontologies can
be used as part of the integration approach. Alternative approaches should be used
whenever no ontology is available for the domain at hand. Examples of alternative
methods are: similarity functions between data source elements; methods that in-
fer mappings from answers of queries executed over data sources. The discovered
semantic mappings are stored in the data source Conflicts.xml, as described in Sec-
tion 11.4.1, and used later by the query rewriting module in order to answer queries.
A user which is unsatisfied of the answers has the opportunity to add (or modify)
mappings and submit once again its query. In doing so, the data source Conflicts.xml
is gradually enriched and the quality of responses becomes increasingly accurate.

Figure 11.8 illustrates a methodology of reconciliation between data sources. The
method relies on an ontology for defining concepts, properties, and relationships
between these concepts. The usage of an ontology allows the user, at one side, to
clearly specify the interest domain and, at the other side, improves the user’s knowl-
edge about the data source by clarifying the meaning of all its elements. For exam-
ple, a user interested in a Biological domain must specify an ontology conformed to
this domain. The user can then assign to each element of the data source schema
the equivalent semantic element in the specified ontology. This step involves a

286 G. Nachouki et al.

Fig. 11.8 Approach for semantic reconciliation between data sources.

semantic enrichment of the data source schema; such enrichment can be repre-
sented as an XML document conformed to the DTD presented in Figure 11.9, called
SemEnr.dtd.

<!ELEMENT source (ontology+) >
<!AT T LIST source name CDATA #REQUIRED >
<!AT T LIST source url CDATA #REQUIRED >
<!ELEMENT ontology (f eature)>
<!AT T LIST ontology name CDATA #REQUIRED >
<!ELEMENT f eature (ontology?) >
<!AT T LIST f eature name CDATA #REQUIRED >

Fig. 11.9 Semantic Enrichment DTD.

The next step is to represent data source instances according to the chosen on-
tology language and the semantically enriched data source schemas generated in
the previous step. This conversion is performed by the wrapper component, using a
defined template (e.g., Biological.xslt).

11 Querying Conflicting Web Data Sources 287

The final step consists in generating the Conflicts.xml data source. This activity
is performed by the mediator component, which has two main tasks:

1. For each data type property, all the instances sharing that property are grouped
together. Such step can be accomplished by querying directly the ontology. As-
suming the ontology is represented as an OWL/RDF document, ontology queries
can be considered at three different levels [17, 4]: syntactic level by using the
XQuery language; structure level and semantic level by using an RDF query lan-
guage such as RQL [20] and SPARQL [31, 17], respectively. A survey and more
comparative analysis of different query languages has been published in [13].
The result is stored in an XML document named GroupInst.xml.

2. Generate information about similarities (dissimilarities) between data source in-
stances by transforming the document GroupInst.xml, using an appropriate tem-
plate (e.g., Similarity.xslt or Dissimilarity.xslt). The result of this step is stored
in the document Conflicts.xml. In this document, a node with a tag Similar rep-
resents a semantic link between two elements of equivalence or synonym types.
A node with a tag Dissimilar represents a semantic link between two elements
of homonym or disjoint types. Each node, with a tag Similar or Dissimilar, is
associated with an identifier si(di).

11.4.3 Query Processing in MFA

In this section, we highlight MFA query processing. First we provide some neces-
sary background on the type of the supported queries, then we illustrate the query
rewriting steps.

11.4.3.1 Type of Queries in MRL

In MRL, a query is defined as follows:

Use (multi-)datasource1 name1 [,(multi-)datasource j name j]
∗

Allow $ < semantic− variables>
(E)XQuery query
Close name1 [,name j]

∗

Clauses Use, (E)XQuery and Close are mandatory whereas clause Allow is optional.
Clause Use delimits the scope of the query and connects to (multi-)data sources for
processing whilst Close disconnects from such data sources. name j is a given alias
for either a data source or a multi-data source; clause Allow is used for the dec-
laration of semantic variables. Through these variables, the user declares his/her
intention to access data, in a given query, semantically similar and differently
named. An (E)XQuery expression can be formulated as an XQuery query [1] or
as an EXQuery query, as defined in [29]. In this last case, active data sources repre-
senting processing unit (e.g., web services) can also be invoked.

288 G. Nachouki et al.

Fig. 11.10 Classification of MRL queries.

MRL queries can be classified depending on the type of paths (also called desig-
nators) appearing inside the (E)XQuery query component. Indeed, it is important to
distinguish queries which access elements whose tag belongs to a single data source
(elementary queries) from queries which access elements whose tag belongs to sev-
eral data sources (semantic queries). The overall query classification is presented
in Figure 11.10. Elementary and semantic queries can therefore be defined depend-
ing on the type of identifiers they contain. Elementary queries only contain unique
identifiers, as defined below.

Definition 5 (Unique identifier). A unique identifier is a designator that univocally
identifies an element in the scope of the query.

Semantic queries are used when various data sources represent the same universe
in possibly different ways. Semantic queries are also called broadcast queries [24]
because a user may have to broadcast the same query to several data sources. In its
current form, XQuery does not easily capture such situations: indeed, with XQuery,
the user needs to formulate as many queries as there are data sources. In contrast,
semantic queries allow to broadcast the user intention in a single query. This is a
major simplification, especially for a larger scope. Syntactically, semantic queries
are formulated as elementary queries but rely on the usage of multiple identifiers
and semantic variables.

Definition 6 (Multiple identifiers). A multiple identifier is a designator that identi-
fies more than one element in the scope of the query.

Definition 7 (Semantic variables). A semantic variable is a variable whose domain
is a set of elements that are semantically similar.

The aim of semantic variables is to enable the user to broadcast his/her intention
over different elements which are related by similarity relationships inside the Con-
flicts.xml data source. A semantic query with semantic variables is considered as the
set of pertinent elementary sub-queries resulting from all possible substitutions of
semantic variables and multiple identifiers by unique identifiers.

Semantic variables can be declared inside the Allow clause of a MRL query ac-
cording to the following syntax:

11 Querying Conflicting Web Data Sources 289

Allow $< semantic− variable> = < designator >[,< designator >]+

< semantic− variable> ::= < simple− variable > | < composed− variable >
< composed− variable > ::=< simple− variable >[.< simple− variable >]+

< simple− variable > ::= < string >
< designator > ::= < string >[.< string >]+

We notice that, in MFA, unlike in BGLAV, we are faced with a single type of queries
where the tree of the user’s query is completely covered by the schemas of data
sources. This is due to the fact that while in BGLAV an element E in the global
schema is mapped into one or several elements (E1, E2, Ei) in the data sources, in
MFA each element E in the global schema is mapped onto itself in the corresponding
data source.

Example 3. Consider the MDS presented in Example 2. The query Q1 below ex-
tracts the description associated with a gene identifier, posed over the Genome MDS.

Q1:

Use Adn ad
Allow $a = id1.id2
For $x in document(’mds’)/Genome/ad
where $x/*/$a=’ENSG000001018941’ or $x/*/$a=’ENSG00000146950’ return

<Result>
$x/*/$a, $x/*/Description

</Result>

In query Q1, variable a is a semantic variable whose domain is {id1, id2}. Feature
Description is a multiple identifier since it designates the Description feature in both
data sources SL1 and SL2.

Example 4. Figure 11.11 describes a multi-data source named DNA, composed of
two static data sources Fragments and List genes. Concat and Convert are two ac-
tive data sources that compose a multi-data source called Services. Conflicts de-
scribes the conflicts between Fragments and List genes (not detailed in this figure).
Services, Conflicts and DNA constitute a multi-data source called Biology which,
in this case, is the root of the overall multi-data source. An MRL query is expressed
directly over the Biology MDS; the answer is the union of answers returned by each
component data source, namely S1 and S2. The only problem that arises here is how
to solve conflicts between elements belonging to the user’query: Subsection 11.4.3.2
details the solution.

11.4.3.2 Query Rewriting in MFA

In this section, we detail step by step the algorithm for Rewriting Semantic Queries
(RSQ) [28]. The overall process involves five steps: (i) query analysis; (ii) creation
of the query tree; (iii) searching for semantic ambiguous elements; (iv) generation
of sub-queries; (v) query execution. In the following, each step will be discussed in
details.

290 G. Nachouki et al.

Fig. 11.11 Examples of queries in MFA.

Step 1: Query analysis (see Algorithm 1). This step consists in analyzing clauses
Use, Allow, For (or Let) and Return (the last three appearing in the (E)XQuery
query) of an input MRL query. It returns the following tables:

• table MsoVarTab, containing the names of data sources or multi-data sources
with their related aliases;

• table SemVarTab, containing the semantic variables that have been specified in
the Allow clause and their corresponding definition;

• ConVarTab, containing the different context variables specified in clauses For or
Let and their respective values;

• ResVarTab, containing the (sub-)set of context variables specified in the clause
Return.

The outcome of Step 1 for the query presented in Example 3 is illustrated in
Figure 11.12.

Step 2: Creation of the query tree (QTree) (see Algorithm 2). Information gath-
ered in Step 1 (MsoVarTab, SemVarTab, ConVarTab, ResVarTab) is used to build

Fig. 11.12 Analysis of the query’s clauses.

11 Querying Conflicting Web Data Sources 291

Algorithm 1. AnalyseQuery(QMRL): Analysis of the user query.
Require: Input: QMRL MRL query which is syntactically correct

Output: MsoVarTab, SemVarTab, ConVarTab and ResVarTab:
MsoVarTab contains the names of multi-data sources and their alias present in the clause
Use
MsoVarTab contains the semantic variables present in the clause Allow
ConVarTab contains the variables declared in the body of the query
ResVarTab contains the variables present in the clause Return

1: Initially, these variables are Empty.
2: MsoVarTab ⇐ AnalyseClauseUse(Use)
3: SemVarTab ⇐ AnalyseClauseAllow(Allow)
4: ConVarTab ⇐ AnalyseVarOfQuery(Body)
5: ResVarTab ⇐ AnalyseVarOfQuery(Return)
6: Return MsoVarTab, SemVarTab, ConVarTab and ResVarTab

the query tree, denoted by QTree. QTree describes the context of each element used
in the query. The context of an element E is defined as the path that connects the
root of the MDS to E . Each node in the QTree is labeled either with the path char-
acterizing a given data source or with the path characterizing an element inside a
data source. Paths are generated from those appearing in the query by replacing
each variable with the corresponding values, according to the content of the input
tables. Each leaf node in QTree is decorated with the two following information: (1)
the set of conflict identifiers in Conflicts.xml where the element associated with the
leaf node appears; (2) the name of the variables in clause Return (e.g., $a) in which
the element associated with the leaf node appears. These information are used later
in order to generate semantically coherent sub-queries. The result of this step is
illustrated in Figure 11.13.

Fig. 11.13 QTree Creation.

Step 3: Searching for Semantically Ambiguous Elements (see Algorithm 3). For
the sake of simplicity, we suppose that the query tree is represented through a table
called QTab. QTab contains a column for each data source involved in the query
and a row for each variable specified in the Return clause of the query. The table
cell corresponding to a given data source S and a given variable x contains a set of

292 G. Nachouki et al.

Algorithm 2. BuildQueryTree(MsoVarTab,SemVarTab,ConVarTabandResVarTab):
Construction of the tree of the query.
Require: Input: MsoVarTab, SemVarTab, ConVarTab, ResVarTab

Output: QTree
1: QTree ⇐ /0 { Tree of the query}
2: QTree ⇐ BuildTree(MsoVarTab, SemVarTab, ConVarTab, ResVarTab)
3: QTree ⇐ EnrichedTree(QTree,Conflicts.xml)
4: Return QTree

elements assigned to x in S. Each element can be associated with either a unique
or multiple identifier in the query. The set is empty if no element in S is associated
with x in the query.

Algorithm 3 checks each element in QTree as follows: if an element is a multi-
ple identifier for a data source (i.e., it is associated with at least two contexts inside
a data source), then this element is considered semantically ambiguous and conse-
quently the QTree is ambiguous. In the example illustrated in Fig 11.14, QTree is
not ambiguous and we move to Step 5.

Algorithm 3. Check(QTree): Search ambiguous elements in QTree.
Require: Input: QTree

Output: Boolean
1: Boolean ⇐ CheckQTree(QTree) { Checks if any element in QTree is semantically am-

biguous}
2: Return True or False

Fig. 11.14 Checking semantic conflicts in QTab.

Step 4: SubTrees Generation (see Algorithm 4). This step is invoked only if
QTree has been considered ambiguous in the previous step. Recall that QTree con-
tains all semantic information about the user’s query. This tree allows to check all
semantic equivalences between elements and therefore all query conflicts. A Sub-
Tree is a semantic tree with the same structure of QTree but with the following
restriction: each return variable and each data source in a SubTree is associated
with elements (if any) defined within a single context (i.e., unique identifiers). Each
SubTree leads to a set of pertinent sub-queries, which are semantically coherent.

11 Querying Conflicting Web Data Sources 293

When QTree is considered ambiguous, it means that one identifier is associated
with an element with at least two contexts. in a data source. In this case at least two
semantic trees (SubTrees) are generated. The overall idea is hat of separating each
context in a sub-tree. Thus, each sub-tree contains only elements of the query which
are semantically coherent.

From there, the generation of SubTrees requires the control of conflicts between
elements of the QTree. Controlling conflicts between elements consists in checking,
for each variable of a user’s query (e.g., $a, given in a row) and for each data source
involved in the query (given in column), the elements that have similar identifiers
(i.e., the elements designated with the same number si means that these elements are
semantically similar). The result is stored in the corresponding SubTree. This task
is repeated until all cases are processed and the set of SubTrees is generated.

Algorithm 4. GenerateSubTrees(QTree): Generate SubTrees which are semanti-
cally coherent.
Require: Input: QTree

Output: at least two trees (SubTree) are generated
1: SetOfSubTrees ⇐ /0
{while remains cases not treated:}

2: while true do
3: SubTree ⇐ GenerateSubTree()

{Generate empty SubTree having the same structure as QTree}
4: for all Variable (V) ∈ QTree do
5: SimilarElement ⇐ CheckConflicts(V,QTree)

{for a variable V (e.g., $a) asked by the user in the clause RETURN of the query,
check conflicts between elements through the set of data sources involved in this
query, and returns similar elements}

6: SubTree ⇐ UpdateSubTree(V, SimilarElement)
{Update the SubTree which is semantically consistent}

7: end for
8: SetOfSubTrees ⇐ SetOfSubTrees ∪ SubTree
9: end while

10: return SetOfSubTrees

Step 5: Generate pertinent sub-queries and Query Execution Plan (see Algo-
rithm 5). For each SubTree, a set of pertinent sub-queries is generated, which are
semantically coherent with each others. Each generated sub-query is an (E)XQuery
expression. This step generates ultimately the query plan for each local source.

Notice that, in a general settings, since the number of sub-queries can be very
high, after this step the user has three choices:

1. to refine his/her query semantically;
2. to execute the sub-queries which require the maximal number of data sources

(and/or a minimum number of missing elements in the sub-queries);

294 G. Nachouki et al.

3. by default, to browse the whole set of possible responses. This last choice is not
realistic since exploring this set is costly.

Algorithm 5. GenerateQEP(SetOfSubTrees): Generate sub-queries.
Require: Input: SetOfSubTrees

Output: Query Execution Plan (QEP)
1: for all SubTree ∈ SetOfSubTree do
2: subqueries ⇐ GenerateSubQueries(SubTree)

{Generate semantically consistent subqueries}
3: Scheduling(P)
4: Save(P)
5: Return P
6: end for

Example 5. Query Q1 presented in Example 3, during Step 5, is decomposed into
two sub-queries Q11 and Q12, to be executed over data sources SL1 and SL2,
respectively.

Q11:

For $x in document(’SL1’)/liste_gene_X/gene
where $x/id1=’ENSG000001018941’ or $x/id1=’ENSG00000146950’
return

<Result>
$x/id,$x/description

</Result>

Q12:

For $x in document(’SL_2’})/liste/EnsemblGeneID
where $x/id2=’ENSG000001018941’ or $x/id2=’ENSG00000146950’
return

<Result>
$x/id2, $x/description

</Result>

11.5 Application

In this section, we consider an application in Genomics and we discuss query rewrit-
ing performed according to BGLAV and MFA approaches. In particular, we start by
providing the description of the considered data sources, assuming that some restric-
tions exist concerning data access in each source. Then, for both BGLAV and MFA
approaches, we first propose a global schema, i.e., a mediation schema for BGLAV
and a multi-data source schema for MFA. We also provide information about con-
flict management, i.e., a set of correspondence queries for BGLAV and document
Conflicts.xml for MFA. Finally, we present some queries and we show how they can
be rewritten into queries over the data sources.

11 Querying Conflicting Web Data Sources 295

11.5.1 Data Source Description

Figure 11.15 illustrates three data sources that contain information about the DNA
of the human X chromosome. Data are extracted from the well known Ensembl
database,2 then split into different files in order to simulate conflicts such as scale
and name conflicts.

Fig. 11.15 Human chromosomes schemas.

We suppose that there are access restrictions on data sources. In our example, we
assume the following constraints:

1. for SL1, the value of the feature [/liste Genes X/Gene/ID] must be specified in
order to access its data;

2. for SL2, the value of the feature [/liste/EnsemblGene ID/ID] must be specified in
order to access its data;

3. for SL3 the value of the feature [/liste/EnsemblGeneID/GeneStart] must be spec-
ified in order to access its data.

11.5.2 BGLAV Illustrating Examples

Figure 11.16 shows the global schema and some correspondence queries between
the schemas of data sources SL1, SL2 and SL3 and this global schema.

2 www.ensembl.org

www.ensembl.org

296 G. Nachouki et al.

Fig. 11.16 Correspondence queries in BGLAV.

First, let us consider query (Q2) that extracts values associated with the identifier
of a given gene. This query illustrates the concept of query introduced in Defini-
tion 3.

Q2:

For $x in document(’S_G’)/Gene_Chr_X/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID,$x/Description,$x/GeneStart,$x/GeneEnd}

</Result>

Query Q2 is decomposed into two sub-queries Q21 and Q22 targeting respectively
SL1 and SL2 and presented below. Data source SL3 is not involved in this query since
the restriction access to this source is not satisfied.

Q21:

For $x in document(’SL_1’)/liste_genes_X/gene
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Aff
<Ids_GO>

<GO_ID> $x/Ids_GO/@GO_ID$ </GO_ID>
</Ids_GO>

</EnsemblGeneID>

11 Querying Conflicting Web Data Sources 297

Q22:

For $x in document(’SL_2’)/liste/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Aff, $x/Ids_GO

</EnsemblGeneID>

Now, lets us consider query Q3 below which involves data source SL3:

Q3:

For $x in document(’$S_{G}$’)/Gene_Chr_X/EnsemblGeneID
where $x/GeneStart > ’7770303’ or $x/GeneEnd < 9092647
return

<Result>
$x/ID, $x/Description, $x/GeneStart, $x/GeneEnd,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</Result>

Query Q3 is translated into sub-query Q31 posed over data source SL3 and whose
expression is as follows: Notice that, due to access restrictions on SL1 and SL2, no
sub-queries are generated.

Q31:

For $x in document(’SL_3’)/liste/EnsemblGene_ID
where $x/GeneStart > 7770303 or $x/GeneEnd < 9092647
return

<EnsemblGeneID>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</EnsemblGeneID>

11.5.3 MFA Illustrating Examples

Figure 11.17 shows the Genome MDS composed of the three data sources SL1, SL2

and SL3 presented in Figure 11.15 while Figure 11.18 shows part of the conflicts.
Notice that the node<SCALE> describes the elements which are semantically sim-
ilar but in addition they also represent scale conflicts between them. For example,
the two elements GeneStart in the two data sources SL1 and SL2 are similar and
they represent a scale conflict of type Measure.

Consider now query (Q4) that extracts the values associated with a gene identifier.

Q4:

Use Adn ad
For $x in document(’mds’)/Genome/ad
where $x/*/ID=’ENSG000001018941’ or $x/*/ID=’ENSG00000146950’
return

<Result>
$x/*/ID, $x/*/Description, $x/*/GeneStart, $x/*/GeneEnd

</Result>

298 G. Nachouki et al.

Fig. 11.17 The Genome MDS.

In query Q4, id is a multiple identifier since it designates the feature id in the three
data sources SL1, SL2 and SL3. The same remark applies to features Description
and GeneEnd. In addition, id, Description, and GeneEnd are similar both in the
set {SL1, SL2, SL3} and the Conflicts data source (see Figure 11.18). Element
GeneStart is a multiple identifier in the scope of the query and it represents a scale
conflict between the two data sources SL1 and SL2.

Query Q4 is decomposed into two sub-queries Q41 and Q42 targeting respectively
SL1 and SL2. Data source SL3 is not involved in this query since the restriction access
to this source is not satisfied. Sub-query Q41 is an EXQuery expression that involves
a static data source and an active one (i.e., the Gene service), while the second sub-
query is an XQuery expression.

Q41:

For $x in document(’SL1’)/liste_gene_X/gene
For $y in document(’Gene’)/service
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID, $x/Description, $x/GeneEnd, $x/AssociatedName, $x/Aff,
service($y/interpreter,$x/GeneStrart), $x/Ids_GO/@GO_ID

</Result>

11 Querying Conflicting Web Data Sources 299

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE CONFLICTS SYSTEM "conflicts.dtd">
<CONFLICTS>
...

<SIMILAR id=’s4’>
<Node>

<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL3/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
</SIMILAR>
<SCALE type=’Measure’>
<Node>

<PATH>Bio/Adn/SL1/liste_genes_X/gene</PATH>
<ELT>GeneStart</ELT>

</Node>
<Node>

<PATH>Bio/Adn/SL2/liste/EnsembleGene_ID</PATH>
<ELT>GeneStart</ELT>

</Node>
</SCALE>
...

</CONFLICTS>

Fig. 11.18 Excerpt of conflicts in the Genome MDS.

Q42:

For $x in document(’SL_2’)/liste/EnsemblGeneID
where $x/ID=’ENSG000001018941’ or $x/ID=’ENSG00000146950’
return

<Result>
$x/ID, $x/Description, $x/GeneStart, $x/GeneEnd,
$x/AssociatedName, $x/Aff, $x/Ids_GO

</Result>

Finally, let us consider query Q5 below:

Q5:

Use Adn ad
For $x in document(’Multi-Data Source’)/Genome/ad
where $x/*/GeneStart > ’7770303’ or $x/*/GeneEnd < ’9092647’
return

<Result>
$x/*/ID, $x/*/Description, $x/*/GeneStart, $x/*/GeneEnd,
$x/*/AssociatedName, $x/*/Affy, $x/*/Ids_GO

</Result>

300 G. Nachouki et al.

Query Q5 is translated into sub-query Q51 below and targets data source SL3:
Q51:

For $x in document(’$SL_{3}$’)/liste/EnsemblGene_ID
where $x/GeneStart > ’7770303’ or $x/GeneEnd < ’9092647’
return

<Result>
$x/ID, $x/Description, $x/GeneStart*1000, $x/GeneEnd*1000,
$x/AssociatedName, $x/Affy, $x/Ids_GO

</Result>

11.5.4 Evaluation of MFA Queries

In this section, we study the performance of RSQ algorithms. In particular, we focus
on Step 2 of the algorithm, dealing with the generation of the query tree. Recall that
this step substitutes each context variable (e.g., $a) in the input tables with their
corresponding values and validates the correctness of their paths on the multi-data
source schema. The processing of this step is compared with a baseline version
that uses a Cartesian Product (Cart. Prod.) between the set of values taken by the
semantic variables in order to find the valid paths on the multi-data source schema.

Fig. 11.19 Two semantic variables; each variable takes values varying from 2 to 10.

For each experiment, we considered 20 data sources and we assumed the values
taken by each semantic variable vary from 2 to 10. Figure 11.19 shows the case of a
query that uses in its body two semantic variables. In this experiment, the response
time increases faster in the baseline method, based on ’Cartesian Product’, with
the increase of the number of values taken by the semantic variables. Figure 11.20
shows the case of a query that uses in its body five semantic variables. In this exper-
iment, the response time in the baseline method increases dramatically, compared
to RSQ algorithm, with the increase of the number of values taken by the semantic
variables. From the reported experiments, we also observe that the response time is
more sensitive to variations concerning the number of semantic variables in a query
than to the number of values taken by these variables.

11 Querying Conflicting Web Data Sources 301

Fig. 11.20 Five semantic variables; each variable takes values varying from 2 to 10.

11.6 Conclusion and Open Issues

In this chapter, we described how to query distributed conflicting web data sources,
by means of two data integration approaches. For illustration purposes, we used con-
crete data drawn from the Genomics domain in a real experimental settings. In order
to tackle the data integration problem, we described two approaches: the first one is
an XML adaptation of a the well know BGLAV, which pertain to the first-generation
of data integration approaches. The second approach, MFA (for multi-source fu-
sion approach) which does not rely on a preexisting mediation schema but rather
on a multi-data source schema composed of various data sources, allows flexibility
and bootstrapping. Although not being directly inspired by the dataspace manage-
ment systems concepts, MFA relates to this second-generation of data integration
approaches.

Because large scale data integration is still a challenge, for future work, we
are planning to extend MFA by leveraging existing automated techniques such as
schema matching and reference reconciliation: this will help in providing initial
correspondences between data sources, hence auto-bootstrapping the system. Feed-
back from a (more or less) skilled user could be solicited in order to accommodate
additional information and build an efficient pay-as-you-go integration system.

References

1. XQuery 1.0: An XML Query Language. http://www.w3.org/TR/xquery/
2. ASN.1: Abstract Syntax Notation One, http://asn1.elibel.tm.fr/en/
3. Benson, D., Boguski, M., Lipman, D., Ostell, J., GenBank., J.: Nucleic Acids Res. 1–6

(1997)

http://www.w3.org/TR/xquery/
http://asn1.elibel.tm.fr/en/

302 G. Nachouki et al.

4. Bönström, V., Hinze, A., Schweppe, H.: Storing RDF as a Graph. In: Proc. of the First
Conference on Latin American Web Congress. IEEE Computer Society (2003)

5. Brien, M., Poulovassilis, A.: Data Integration by Bi-Directional Schema Transformation
Rules. In: ICDE, pp. 227–238 (2003)

6. Castano, S., Ferrara, A., Montanelli, S.: H-Match: An Algorithm for Dynamically
Matching Ontologies in Peer-based Systems. In: Proc. of the 1st Int. Workshop on Se-
mantic Web and Databases (SWDB) VLDB 2003, pp. 231–250 (2003)

7. Colonna, F.M.: Intégration de Données Hétérogènes et Distribuées sur le Web et Appli-
cations à la Biologie. Ph.D. thesis. University Paul Cézanne, Aix-Marseille 3 (2008)

8. Colonna, F.M., Sam, Y., Boucelma, O.: Database Integration for Predisposition Genes
Discovery. In: Challenges and Opportunities of Healthgrids, Proc. of 4th HealthGrid
Annual Conference. Studies in Health Technology and Informatics, vol. 120. IOS Press
(2006)

9. Dong, X.L., Berti-Equille, L., Srivastava, D.: Integrating Conflicting Data: The Role of
Source Dependence. In: Proceedings of VLDB 2009, pp. 562–573 (2009)

10. Franklin, M.J., Halevy, A.Y., Maier, D.: From Databases to Dataspaces: a New Abstrac-
tion for Information Management. SIGMOD Record 34(4), 27–33 (2005)

11. Friedman, M., Levy, A., Millstein, T.: Navigational Plans for Data Integration. In: Proc.
of the National Conference on Artificial Intelligence (1999)

12. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y., Ullman,
J., Vassalos, V., Widom, J.: The TSIMMIS Approach to Mediation: Data Models and
Languages. Journal of Intelligent Information Systems 8, 17–132 (1997)

13. Haase, P., Broekstra, J., Eberhart, A., Volz, R.: A Comparison of RDF Query Lan-
guages. In: McIlraith, S.A., Plexousakis, D., van Harmelen, F. (eds.) ISWC 2004. LNCS,
vol. 3298, pp. 502–517. Springer, Heidelberg (2004)

14. Halevy, A.: Answering Queries using Views: A Survey. Journal of the VLDB, 270–294
(2001)

15. Halevy, A., Franklin, M., Maier, D.: Principles of Dataspace Systems. In: Proc. of PODS,
pp. 1–9. ACM Press (2006)

16. Halevy, A., Rajaraman, A., Ordille, J.: Data Integration: The Teenage Years. In: Proceed-
ings of VLDB (2006)

17. Hertel, A., Broekstra, J., Stuckenschmidt, H.: RDF Storage and Retrieval System. In:
Staab, S., Studer, R. (eds.) Handbook on Ontologies, pp. 489–508. Springer, Heidelberg
(2009)

18. International, R.: The GDB Human Genome Database (2006),
http://www.gdb.org

19. Jeffery, S., Franklin, M., Halevy, A.: Pay-as-you-go User Feedback for Dataspace Sys-
tems. In: Proc. of ACM SIGMOD, pp. 847–859. ACM Press (2008)

20. Karvounarakis, G., Alexaki, S., Christophides, V., Plexousakis, D., Scholl, M.: RQL: A
Declarative Query Language for RDF. In: Proc. of the 11th International Conference on
World Wide Web, pp. 592–603 (2002)

21. Keen, G., Burton, J., Crowley, G., Dickinson, E., Espinosa-Lujan, A., Franks, E., Harger,
C., Manning, M., March, S., McLeod, M., O’Neill, J., Power, A., Pumilia, M., Reinert,
R., Rider, D., Rohrlich, J., Schwertfeger, J., Smyth, L., Thayer, N., Troup, C., Fields, C.:
The Genome Sequence DataBase (GSDB): Meeting the Challenge of Genomic Sequenc-
ing. Nucleic Acids Res. 24, 13–16 (1996)

22. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: PODS, pp. 236–246
(2002)

23. Levy, A., Rajaraman, A., Ordille, J.: Query-Answering Algorithms for Information
Agents. In: Proc. of the 13th National Conference on Artificial Intelligence (IAAI 1996),
AAAI Press, MIT Press, pp. 40–47 (1996)

http://www.gdb.org

11 Querying Conflicting Web Data Sources 303

24. Lyngbaek, P., McLeod, D.: An Approach to Object Sharing in Distributed Database Sys-
tems. In: Proc. of the VLDB, pp. 364–375 (1983)

25. Mootha, V., Lepage, P., Miller, K., Bunkenborg, J., Reich, M., Hjerrild, M., Delmonte,
T., Villeneuve, A., Sladek, R., Xu, F., Mitchell, G.A., Morin, C., Mann, M., Hudson,
T., Robinson, B., Rioux, J., Lande, E.S.: Identification of a Gene Causing Human Cy-
tochrome Oxidase Deficiency by Integrative Genomics. Proc. of the National Academy
of Sciences, 605–610 (2003)

26. Nachouki, G., Quafafou, M.: Multi-Data Source Fusion. Information Fusion 9(4), 523–
537 (2008)

27. Nachouki, G., Quafafou, M.: MashUp Web Data Sources and Services based on Seman-
tic Queries. Special Issue: Semantic Integration of Data, Multimedia and Services 36(2),
151–173 (2011); ISSN 0306-4379

28. Nachouki, G., Quafafou, M.: Using Semantic equivalence for MRL Queries Rewriting in
Multi-Data Source Fusion System. In: Jin, H. (ed.) Data Management in Semantic Web,
pp. 345–382. Nova Science Publishers (2011)

29. Nachouki, G., Quafafou, M., Chastang, M.: A System Based on Multidatasource Ap-
proach for Data Integration. In: IEEE-International Conference on Web Intelligence
(WI), pp. 438–441 (2005)

30. NCBI: Fasta format. (2006),
http://www.ncbi.nlm.nih.gov/blast/fasta.shtml

31. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF, W3C Recom-
mendation. (2008), http://www.w3.org/TR/rdf-sparql-query/

32. Rahm, E., Bernstein, P.: A Survey of Approaches to Automatic Schema Matching. Jour-
nal of the VLDB 10(4), 334–350 (2001)

33. Sarma, A.D., Dong, X., Halevy, A.: Bootstrapping Pay-As-You-Go Data Integration
Systems. In: Proc. of ACM SIGMOD, pp. 663–674. ACM Press (2008)

34. Schulze-Kremer, S.: Ontologies for Molecular Biology. In: Proc. of the 3rd Pacific Sym-
posium on Biocomputing, pp. 705–716 (1998)

35. Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed, Heteroge-
neous, and Autonomous Databases. ACM Computing Surveys (CSUR), 183–236 (1990)

36. Xu, L., Embley, D.W.: Combining the Best of Global-as-View and Local-as-View for
Data Integration. In: ISTA, pp. 123–136 (2004)

http://www.ncbi.nlm.nih.gov/blast/fasta.shtml
http://www.w3.org/TR/rdf-sparql-query/

Chapter 12
A Functional Model for
Dataspace Management Systems

Cornelia Hedeler, Alvaro A.A. Fernandes, Khalid Belhajjame, Lu Mao,
Chenjuan Guo, Norman W. Paton, and Suzanne M. Embury

Abstract. Dataspace management systems (DSMSs) hold the promise of pay-as-
you-go data integration. We describe a comprehensive model of DSMS functional-
ity using an algebraic style. We begin by characterizing a dataspace life cycle and
highlighting opportunities for both automation and user-driven improvement tech-
niques. Building on the observation that many of the techniques developed in model
management are of use in data integration contexts as well, we briefly introduce
the model management area and explain how previous work on both data integra-
tion and model management needs extending if the full dataspace life cycle is to
be supported. We show that many model management operators already enable im-
portant functionalities (e.g., the merging of schemas, the composition of mappings,
etc.) and formulate these capabilities in an algebraic structure, thereby giving rise
to the notion of the core functionality of a DSMS as a many-sorted algebra. Given
this view, we show how core tasks in the dataspace life cycle can be enacted by
means of algebraic programs. An extended case study illustrates how such algebraic
programs capture a challenging, practical scenario.

12.1 Introduction

Given the explosion in the number of data sources that are available for remote ac-
cess by applications in all areas of activity, it is no surprise that the problem of recon-
ciling the inherent semantic heterogeneity, which such independently designed and
maintained sources cannot but exhibit, has grown in importance in the information

Cornelia Hedeler · Alvaro A. A. Fernandes · Khalid Belhajjame · Lu Mao · Chenjuan Guo ·
Norman W. Paton · Suzanne M. Embury
University of Manchester
e-mail: {chedeler,a.fernandes,khalidb,maol}@cs.manchester.ac.uk,

{guoc,norm,sembury}@cs.manchester.ac.uk

B. Catania and L.C. Jain (Eds.): Advanced Query Processing, ISRL 36, pp. 305–341.
springerlink.com c© Springer-Verlag Berlin Heidelberg 2013

{chedeler,a.fernandes,khalidb,maol}@cs.manchester.ac.uk,

306 C. Hedeler et al.

management area. This problem, under the label of data integration [5, 21, 31, 45],
has been the focus of attention for more than fifteen years. Much progress has
been made and several enduring contributions can be discerned such as the idea
of mediator-wrapper architectures and techniques for view-based query rewriting
that allow a query that is posed against an integration schema to be rewritten as a
set of separate queries against the many independent, remote sources it draws data
from [29]. Most of these techniques are grounded on two basic capabilities: the
first is the ability to perform a semantic matching operation between two sources
(typically at both schema and instance levels) that ultimately yields semantic cor-
respondences between them; the second is the ability to derive from these corre-
spondences a semantic mapping, i.e., ultimately, an executable expression that can
correctly populate concepts in one schema with instances drawn from concepts in
the other.

This technical progress notwithstanding, data integration systems (DISs) have
only been successful in circumstances where (a) the scale of the required integra-
tion is small, (b) the set of data sources (as well as their schemas) is broadly static,
and (c) the integration schema has sufficient strategic importance to merit incurring
the significant expenditure involved in the expert-intensive matching and mapping
stages of the process. As such, and with the benefit of hindsight, one can characterize
these achievements as giving rise to integrated resources that have high upfront costs
and high quality from the start but whose quality may decay as a result of changes
unless high maintenance costs are incurred in the expert-intensive process of prop-
agating the changes. Unfortunately, the continuously growing need for on-the-fly,
on-demand combination of data resources (as manifested in the rise of techniques
such as web data mash-ups [48], for example, see also Chapter 11) makes this ap-
proach (that we might call traditional, or first-generation, data integration) fail in
terms of cost-effectiveness.

In response to this state of affairs, the idea of pay-as-you-go data integration has
gained momentum. The realization has grown that users would rather have some-
thing that produces results that may be tentative at the start than to have nothing at
all (or to have to wait long and pay a lot to have something close to perfect). The
vision of dataspaces originally proposed by Halevy, Franklin and Maier [27, 30] is
that such artefacts will enable agile data integration with much lower upfront and
maintenance costs. This second-generation approach to data integration is founded,
therefore, on the pervasive use of automation in the bootstrapping stages, on the
one hand, and on continuous improvement based on user feedback and automated
change propagation, on the other hand. The automatic bootstrapping includes the
identification of matches and their representation as semantic correspondences and
the derivation of mappings. The underlying strategy is based on the idea that if the
upfront costs are low, speculative integrations can be attempted among which some
will prove useful. Those that do prove useful in principle will thereby motivate users
to provide the feedback that, over time, will compensate for the shortcomings as-
sociated with the pervasive use of automation in initializing and maintaining the
integrated resource.

12 A Functional Model for Dataspace Management Systems 307

Among the different conceptions associated with dataspace management systems
(DSMSs), we have pursued one [6, 7, 33, 34, 35, 36, 50] founded on model man-
agement research [2, 9, 10]. Here, we build upon our previous work with a view
to describing a comprehensive model of dataspace functionality. We adopt an alge-
braic style, that is inspired by a tradition of work on database query languages that
goes back to E. F. Codd’s seminal work and was elegantly continued in the model
management area [2, 9, 10]. In particular, we build upon the model management
operations in [55, 54]. Our main contribution, therefore, is a formalization of how
a dataspace can be operated on, i.e., of a functional model for dataspaces, building
on a history of advances by data integration and model management researchers
whilst giving crisp contours to the notion of a dataspace, contours that had been
hitherto only ambiguously and vaguely drawn by other research in dataspaces. The
hope is that the proposed formalization encourages the use of a consistent termi-
nology in dataspace research and helps consolidate the various research efforts. We
do not claim, however, that the operations presented are exhaustive, as we only
introduce operations we have been exploring in our previous work. We note, fur-
thermore, that whilst our previous work in dataspaces [6, 7, 33, 34, 35, 36, 50] is
not incompatible or inconsistent with the model presented here, there are some de-
partures, mostly due to an attempt to be more comprehensive and didactic, whereas,
in contrast, our previous work has focussed on more specific aspects or areas of the
dataspaces literature and has been backed by practical implementation and empirical
experimentation.

In our work, we adopt a conception of dataspaces as building upon existing re-
search areas. We will make the relationships clearer later but, broadly speaking, we
see dataspaces as being dependent on automating mapping generation, for which
one can use model-management techniques, whose outcome is improved through
user feedback. This means that we see model-management techniques primarily as
a tool for data integration of existing data resources.

The remainder of the chapter is organized as follows: Section 12.2 introduces the
dataspace life cycle. Related work on DSMSs and on model management is dis-
cussed in Section 12.3. Section 12.4 introduces the functional model of dataspaces
as an algebra. Section 12.5 presents examples and use cases to illustrate how the
functional model can support the dataspace life cycle and Section 12.6 concludes
the chapter and discusses future work.

12.2 Dataspace Life Cycle

It is also useful to consider a dataspace life cycle. This is because a DSMS is a
data integration system that relies heavily on automation for bootstrapping and on
feedback for improvement, while still having to respond effectively and efficiently
to changes to data sources by propagating them through.

308 C. Hedeler et al.

We envisage dataspaces to have a life cycle with the following main stages, or
phases: initialization, use, maintenance and improvement [32]. As expected, the ini-
tialization stage is a one-off, whereas use, maintenance and improvement phases
transition from one to the other until the dataspace is disposed of. We now discuss
the stages in slightly more detail.

Initialization: A dataspace must be initialized, or bootstrapped, typically relying
on automation whenever past DISs relied heavily on human expertise. In this
phase, sources are identified (or discovered), and possibly ranked, before being
chosen for participation in the dataspace. Matching techniques [62] can then be
used to yield associations between sources that are scored in terms of similarity.
Such associations can give rise to semantic correspondences (e.g., of the kind
studied in [44], such as, that a concept c in a source s is horizontally partitioned
into two concepts c1 and c2 in another source s′).

The semantic correspondences generated over a set of schemas can then be
operated upon using model-management techniques [10]. For example, one can
take pairs of semantic correspondences and compose them, so that if a construct
c1 corresponds to a construct c2, and c2 corresponds to a construct c3, one can ob-
tain from them the semantic correspondence that relates c1 to c3. As another ex-
ample, the model management technique known as merge takes two models (e.g.,
schemas) along with whatever semantic correspondences hold between them and
produces from these a new model that reflects the input correspondences along
with two new semantic correspondences that relate the new model to each of the
models passed as input. This is, of course, crucial to generate integrated schemas.
Note that, unlike in traditional DISs, more than one integrated schema can co-
exist in such a dataspace. Semantic correspondences, in turn, can give rise to
mappings (e.g., a view that describes c in s as the union of c1 and c2 in s′). Once
mappings are available, the dataspace has been initialized and is ready for use.

We note that the model-management literature originally focussed on seman-
tic correspondences that are relatively inexpressive. Indeed, [10] seems to be
the first paper in that literature to make a case for more expressive semantic
correspondences. In our own work, as explained below, we have distinguished
between associations, which, as the outcome of matching techniques, are in-
terpretable as claims of similarity; correspondences, which are associations for
which there exists evidence that they capture semantic heterogeneity; and map-
pings, which are correspondences to which one can attach (through algorithmic
derivation or through human expertise) an executable expression that reconciles
the semantic heterogeneity that the correspondence captures, thereby allowing
their use in view-based query evaluation against a mediated schema over au-
tonomous data sources.

Use: A dataspace can be queried using the traditional DIS wrapper-mediator ar-
chitecture in which a query q against an integrated schema S is rewritten, using
the mappings available, in terms of queries q1, . . . ,qn against sources s1, . . . ,sn.
The results r1, . . . ,rn from those queries are rewritten, again using mappings, into
a result s for the query q against S.

12 A Functional Model for Dataspace Management Systems 309

In our own work, we have focussed on query evaluation, but there are many
other ways in which a dataspace could be used, e.g., browsing [38], keyword
searching [15, 46, 49, 65], or interaction based on the notion of trails [19, 67].

Improvement: This stage is characteristic of dataspaces and aims to counteract
the shortcomings ensuing from the reliance on automation for bootstrapping (the
other characteristic feature of DSMSs in this context). Here, feedback is gathered
to which the system response is, under the pay-as-you-go approach, to make the
most of the feedback that is given in terms of whatever increase in perceived
quality can be obtained from that feedback.

In our own work [6], we have used feedback on query results to annotate,
select and refine the collection of mappings that can be used to answer a given
query by taking into account the possibilities for trading off precision and recall.
We have explored the question of feedback validity and consistency [7]. It is
possible and useful to gather other kinds of feedback, e.g., on queries [16]; on
mappings [1]; or for query specification [64, 65].

Maintenance: Changes to the sources must be propagated throughout. Thus,
changes in source schemas need to be reflected in the mappings, changes in
source extents may change the scores that can be assigned to associations,
thereby potentially changing which semantic correspondences (and hence map-
pings) are backed by sufficient empirical evidence.

Figure 12.1 depicts this life cycle in abstract form (using a loosely-notated state-
transition diagram, in which ε denotes an automatic transition) while Figure 12.2
zooms into the initialization phase (the other phases being, of course, more
application/scenario-specific and, hence, less amenable to being abstracted in the
same way).

12.3 Background

This section briefly recalls prior work on DSMSs and on model management. In
the case of DSMSs, the picture that emerges is of a field mostly characterized by
attempts at defining components (which deliver partial functionality only) or point
solutions (i.e., DSMSs that are very specialized either by targeting a specific appli-
cation domain or by espousing assumptions that significantly narrow the problem
scope). In the case of model management, most research has stopped short of ty-
ing operations on models to operations on the modelled constructs as supported by
traditional database management systems (DBMSs). Indeed, proposals for model
management systems (MMSs) have mainly focussed on the capabilities needed to
manipulate and evolve collections of models, as opposed to those that must be avail-
able for one to be able to use and improve them. For example, MMSs have often
targeted metadata-intensive applications (those in which operations like translating
models, manipulating mappings, etc., occur very often) without fully supporting the
use of the managed models and mappings (e.g., in query answering, or in extract-
transform-load application in data warehousing).

310 C. Hedeler et al.

Fig. 12.1 Dataspace: Life cycle.

Fig. 12.2 Dataspace life cycle: Initialization stage.

12.3.1 Dataspace Management Systems

We have recently surveyed the literature on dataspaces and refer the reader to the
detailed findings there [34]. In that work, we devised a classification framework
(extending our previous work [32]) in order to characterize and contrast a num-
ber of dataspaces proposals. Here, we simply delineate the major categories in that
framework in order to draw an overall picture of how dataspaces are seen by the
researchers involved, and, in particular, with respect to what is perceived to be the
functionality a DSMS should provide.

12 A Functional Model for Dataspace Management Systems 311

DB2 [28] can be seen as a baseline system. It provides queries over heteroge-
neous sources using a mapping-based mediation approach where mappings are built
with significant human intervention, but, significantly, some of the advances result-
ing from the Clio project [58, 59, 17, 37] were incorporated into DB2. ALADIN [46]
supports semi-automatic data integration in the life sciences, with the aim of eas-
ing the addition of new data sources. ALADIN is, in this sense, an example of the
importance of taking a life cycle view of dataspaces. SEMEX [23, 47] integrates
personal information. It requires a merged model to be provided upfront and uses it
as a pivot to match with and map into the constituent sources. SEMEX responds to
changes in sources and to the addition of new sources. iMeMeX [19, 11] also targets
personal information, and supports incremental improvement through the manual
provision of path-based queries known as iTrails [67]. PayGo [49] aims to integrate
web resources. It relies on automation to produce a union schema, uses match to
determine how similar constituent schemas are and clusters them. PayGo supports
keyword searches but reformulates them into queries that attempt to identify rele-
vant sources using the clusters previously built. UDI [18, 24, 25, 63] is a dataspace
proposal for integration of a large number of domain independent data sources au-
tomatically. In contrast to the proposals introduced so far, which either start with
a manually defined integration schema or use the union of all source schemas as
integration schema, UDI aims to derive a merged integration schema automatically,
consolidating schema and instance references. In this respect, the conception of a
dataspace adopted in UDI is close to the one adopted in our work. Roomba [41]
is the first proposal that places a significant emphasis on the improvement phase.
It aims to improve the degree of semantic integration by asking users for feedback
on matches and mappings between schemas and instances. It addresses the problem
of choosing which matches should be confirmed by the user, as it is impossible for
a user to confirm all uncertain matches. Matches are chosen based on their utility
with respect to a query workload that is provided in advance. ORCHESTRA [65, 39],
a collaborative data sharing system, covering the three phases initialization, usage
and improvement, uses a generic graph structure to store the schemas and matches
between schema elements, which are derived semi-automatically and annotated with
costs representing the bias of the system against using the matches. Mappings in
the form of query templates are derived from keyword queries posed by the user
and matched against the schemas and matches. Cimple [22, 51] aims to reduce the
up-front cost of data integration by leveraging user feedback from the community.
An integration schema is provided manually, sources matched in a semi-automatic
manner in which an automatic tool is used as a starting point and users are asked to
answer questions, thus confirming or rejecting matches suggested by the automatic
tool. CopyCat [40] follows a more interactive approach to data integration, combin-
ing the integration-, usage- and improvement phases by providing a spreadsheet-like
workspace in which users copy and paste examples of the data they would like to
integrate to answer the queries they have. Similar to CopyCat, OCTOPUS [15] pro-
vides the means for integrating multiple sources on the web interactively by provid-
ing several operations that can be used to create an integrated data source. Using the
SEARCH operator, the user states a keyword query, for which the system tries to find

312 C. Hedeler et al.

sources which are ranked according to their relevance with respect to the query. If
multiple data sources are required to gather the required information, users can use
the EXTEND operator, providing a column of a table with which to join the new ta-
ble and a keyword stating the information desired. With that information the system
tries to find appropriate source tables which are ranked according to their relevance
with respect to the query and their compatibility with the column provided as input.
Throughout the whole integration process, users can provide feedback by editing
or annotating in form or rejecting or accepting the suggested source tables. Neither
CopyCat nor OCTOPUS distinguish between the various phases of the dataspace life-
cycle, e.g., initialization, usage, and improvement. Instead, they promote a seamless
combination of initialization, usage and improvement of the dataspace, albeit with
a fair amount of user input required.

This brief overview shows that there is broad consensus that dataspaces should be
construed as second-generation integration platforms in which pervasive automation
is deployed to push down costs and user feedback is gathered and responded to
increase result quality.

12.3.2 Model Management Systems

The idea of endowing information management systems with the capability to man-
age models was first formulated in [9] and then revisited in [10]. By model is meant,
in the information management context, an intensional description of a data re-
source. By management is meant, here, the reification of models as objects of a
generic type over which an algebra (i.e., operations on models) is defined.

Model management can be seen as an attempt to simplify the support for a large
set of information management tasks that involve operating on models and, in par-
ticular, morphisms between models. As listed in [10], such tasks include extract-
transform-load in data warehousing; message or data translation; designing portals,
forms processors, query interfaces, report writers; and, of particular interest here,
wrapper and mediator generation. The most important model-management opera-
tions are match (which takes models and yields associations or correspondences,
i.e., morphisms, between model elements), merge (which takes models and corre-
spondences between them and yields a merged model obtained from the input mod-
els and correspondences between the former and each of the latter), extract (which
takes models and correspondences between them and yields the submodel of one
of the inputs that can be populated using the input correspondences), diff (which
takes models and correspondences between them and yields the submodel of one
of the inputs that cannot be populated using the input correspondences), and com-
pose (which takes two sets of correspondences and yields the correspondences that
comprise the composition morphism of the two inputs, seen as morphisms).

The simplification sought by the model management vision is seen to arise from
the generic nature of internal representations and the high-level, expressive nature
of the generic operations defined on them. The algebraic approach implies compo-
sitionality and, for subsets of the algebra, closure. The overall outcome is envisaged

12 A Functional Model for Dataspace Management Systems 313

as an expressive algebraic language that can formalize important usage scenarios
that would otherwise be quite complex to specify precisely in an error-free man-
ner due to the ad-hoc nature of the representations and the transformations used, as
induced by the multiplicity of concrete data modelling formalisms adopted at the
user/application level.

The model management area has been surveyed in [9] with respect to previous re-
search that inspired the vision, and in [10] with respect to the proposals that emerged
in the wake of [9]. The literature is quite vast and encompasses topics, such as
conceptual similarity matching, that, in themselves, have seen voluminous research
activity [62].

Broadly construed to encompass systems that are primarily concerned with
matching management or with mapping management, as well as the full gamut of
model management capabilities, the area has produced impressive research systems
such as COMA [20, 4], Clio [58, 59, 17, 37] (some of whose contributions have been
incorporated into DB2), AutoMed [13, 12, 61], Rondo [57, 56, 54], GeRoMe [43]
and MISM/MIDST [2, 3], among others.

12.4 Functional Model

The purpose of this section is the formulation of a functional model of dataspaces
as an algebra that modifies, extends, and complements the core model management
techniques in the literature. We make no claim either that different conceptions of
dataspaces that emerge from the formulation below are in any way less preferable
nor that different formulations of the same conception than the one described below
are not possible or as desirable.

We start with the assumption that dataspaces are derived from a collection of ex-
isting data resources. We conclude with an algebraic account of the functionalities
that our conception of dataspaces makes available. Later, we show how these func-
tionalities can capture interesting, challenging data management scenarios. Firstly,
we provide a broad overview of how we construe DSMSs in relation to DBMSs,
DISs and MMSs.

12.4.1 An Overview

As already mentioned, we construe DSMSs as combining, adapting and extend-
ing the functionality of DBMSs and MMSs. In this respect, we draw the contrast
that DISs do not resort to automated matching and mapping generation techniques
from MMSs and hence are not as dependent on gathering and responding to user
feedback. As broadly suggested by Figs. 12.1 and 12.2, it is possible to provide a
clearer picture of the functional relationships between these four classes of systems
by building upon and extending previous work in the areas surveyed in Sec. 12.3.
The goal, in this case, is to elucidate, with respect to existing functionality from

314 C. Hedeler et al.

DBMSs, DISs, and MMSs, what parts of it can be built upon, what changes and
extensions to it are needed, and what additions to it are required.

Figure 12.3 offers a broad overview of how we construe the functional relation-
ships between the four classes of systems. The notation is, loosely, that of data flow
diagrams in which arrows denote data (whose types are made clear below), darker
boxes denote operations (such as merging or composing models, and annotating
or refining mappings) and lighter ovals denote stores (that hold instances of ob-
jects such as models, morphisms and feedback). The irregular, dashed-line shapes
are used to informally denote the boundaries between the four classes of systems
involved thereby roughly indicating what distinctive functionality they contribute.
We do not mean to imply a strictly component-based architecture by this notational
device, e.g., a DIS often comes with its own internal, specialized query evaluation
component, and so may a DSMS.

With Figure 12.3 we only aim to note that DSMSs build upon techniques and
mechanisms that have been explored in the literature on DBMSs, DISs, and MMSs.
Thus, broadly speaking, query evaluation is a core concern in DBMS research,
the provision of explicit mappings that give rise to integrated models over exist-
ing sources and allow querying over such integrated models to take place lies at the
heart of DIS research, and MMS research has focussed from the outset on providing
correspondence-driven operations on models by means of which new mappings and
models can be derived. In this respect, DSMSs benefit from the research results in
those areas and bring a specific concern with improving query results by using feed-
back to compensate for the shortcomings of the pervasive use of automation instead
of intensive reliance on human experts.

The remainder of this section contains our main contribution, viz., an algebraic
formulation of the broad functionality depicted in Figure 12.3. Inspiration for this
work was drawn primarily from the work on model management, particularly [2, 3,
57, 56, 54]. As we have pointed out, different formulations of the same conception
than the one described below (e.g., drawing inspiration from [43] or [13, 12, 61])
are possible and, possibly, as desirable.

12.4.2 Preliminary Assumptions

We assume the existence of a collection D of data resources. We further assume that
a data resource d ∈ D can be associated with an intensional description (e.g., a set
of statements in some data definition language), as made more precise later, but we
abstract over the precise semantics that underpins such intensional descriptions (e.g.,
the semantics of such modelling notions as inheritance, referential integrity, and
similar ones) insofar as our formulation aims to be agnostic as to the data modelling
theory or paradigm used for individual data resources.

One of the main purposes of an intensional description is, of course, to char-
acterize the valid states of the corresponding data resource. In other words, from
the intensional description of a data resource, one must be able to formally decide
whether the data resource is in a valid, or conformant, state at any point in time.

12 A Functional Model for Dataspace Management Systems 315

Fig. 12.3 Relating databases, data integration, model management and dataspaces.

Here, too, we do not go into the detail of this validity relation, and, instead, assume
that the concrete implementations of the many operations on intensional descrip-
tions we characterize later are validity-preserving.

12.4.3 Intensional Descriptions

Let Σ be an infinite set of symbols that can act as identifiers of the concepts and
values that are modelled in any collection D of data resources.

The intensional description of a data resource d ∈ D draws a finite set C(d) ⊂ Σ
comprising three pairwise disjoint subsets SL(d), SA(d) and SR(d) containing the
symbols used as identifiers of, respectively (and in the terminology of [3]) superlex-
icals (e.g., attributes, in the relational data model), superabstracts (e.g., relations)
and superrelationships (e.g., primary-foreign key pairings).

The intensional description of a data resource d ∈D is, as alluded to above, asso-
ciated with the set IC of well-formedness conditions (often referred to as integrity
constraints) that characterize any state of d as conformant or not to the particu-
lar modelling theory or paradigm used to design and deploy it (e.g., in the case of
the relational data model, IC comprises the formalization of notions such as do-
main integrity, entity integrity, referential integrity, etc.). Since IC is common to the
intensional descriptions of data resources that conform to the data modelling theory

316 C. Hedeler et al.

or paradigm from which IC stems, we omit any reference to it henceforth, thereby
assuming that every intensional description is known to be further associated with
the set of integrity constraints that is appropriate for it, which, in turn, we assume
to be known from the context of the occurrence of the intensional description in the
text. In this sense, for the purposes of this chapter, we consider intensional descrip-
tions as syntactic structures over which we define an algebra, as described later.

We use the term constructs to refer to superlexicals, superabstracts and super-
relationships indistinctly. Thus, given a data resource d ∈ D, the set of construct
identifiers in its intensional description is C(d) = SL(d)∪SA(d)∪SR(d).

Let L(d) be a set of literals that are possibly specific to a resource d (and hence
to the paradigm used to model d). These are used to describe constructs (e.g., in the
case of a SQL-based relational data resource, one might find a schema named per-
sonnel, containing, among many others, a column of type varchar named address
in a table named employee, where the terms in sans-serif are literals used in that
data resource). We assume L to be the union of a set CT of construct type names
(e.g., schema, table, column), a set CD of domain names (e.g., int, varchar),
and a set CN of construct names (e.g., personnel, employee, name, address,
salary). Note that construct names and construct identifiers are distinct notions
with non-overlapping extensions. Construct identifiers are a notion at the super-(or
meta-)model level. They are, therefore, resource-, paradigm- and implementation-
independent. Construct names are resource-specific notions (just as construct type
names and domain names are paradigm- and implementation-specific ones).

As others have done (most notably [54]) we characterize the intensional de-
scriptions of a data resource d as a graph in which non-leaf nodes are (or are la-
belled by) construct identifiers in C, leaf nodes are (or are labelled by) literals in
L =CN ∪CT ∪CD, and edges are subsets of the following relations:1

isA : C×CT

withDomain : C×CD

isNamed : C×CN

has : C×C

We use the relation names (i.e., isA, withDomain, isNamed, and has) to label the
edges of the graph and define, for a data resource d ∈D, its intensional description
(or model) to be a graph G(d) with node set C(d)∪L(d) and edge set E1 ⊆ isA∪
E2 ⊆ withDomain∪E3 ⊆ isNamed∪E3 ⊆ has. Note that, in most practical cases,
withDomain is more informative for superlexicals. Note also, that one can bind a
construct with its extensional description when the data resource is in a given state
(indeed this is one way of construing query evaluation, where the query defines a
construct whose extension is sought) and represent that with a relation inState,
though we do not delve into this possibility here.

1 We abuse notation and omit the reference to a data resource if what we write is valid for all
data resources or if the intended reference to specific data resources is clear from context.
Thus, we sometimes write C and L rather than the more precise C(d) and L(d), and so on.

12 A Functional Model for Dataspace Management Systems 317

Figure 12.4 shows an example intensional description notated as a set of Horn
clauses (with an example state of the resource) and Figure 12.5 shows the partial
graphical form of the intensional description.

% an example intensional description of a resource
% (notated as a set of Horn clauses)

isA(m1, ’schema’).
isNamed(m1, ’MGD’).
has(m1, r1).
has(m1, r2).

isA(r1, ’relation’). isA(r2, ’relation’).
isNamed(r1, ’geneticMarker’). isNamed(r2, ’synonyms’).
has(r1, c1). has(r2, c4).
has(r1, c2). has(r2, c5).
has(r1, c3).

isA(c1, ’column’). isA(c4, ’column’).
isNamed(c1, ’accessionID’). isNamed(c4, ’accessionID’).
isA(c2, ’column’). isA(c4, ’column’).
isNamed(c2, ’chromosome’). isNamed(c4, ’synonym’).
isA(c3, ’column’).
isNamed(c3, ’symbol’).

withDomain(c1, ’varchar’). withDomain(c2, ’integer’).
withDomain(c3, ’varchar’). withDomain(c4, ’varchar’).
withDomain(c5, ’varchar’).

Fig. 12.4 Example intensional description.

m1

schema MGD r1

relation geneticMarker c1

isA

isNamed hasisA

isNamed has

column accessionID varchar

isA isNamed
withDomain

c2

has

column chromosome varchar

isA
isNamed

withDomain

r2

has

...

c3

has

...

Fig. 12.5 Partial graph representation of example intensional description.

318 C. Hedeler et al.

12.4.4 Sorts

Our algebraic specification makes use of several sorts, all of which are alluded to
in Figure 12.3 and can be construed as structuring the data from which the oper-
ations hinted at in Figure 12.3 and described more formally in Sec. 12.4.5 draw
inputs and outputs. For all the sorts described below, we assume that their elements
may be described by a feature set. For example, an association between ‘worker’
on the one hand and ‘partTimeWorker’ and ‘fullTimeWorker’ on the other typi-
cally has a similarity score ∈ [0,1], which helps distinguish it, when there is an
occasion to use that association, from a possibly lower-scored association between
‘worker’, on the one hand, and ‘partTimer’ and ‘fullTimer’, on the other. The for-
mer might be reflected in a feature-value pair such as similarityScore= 0.75
while the latter might have instead similarityScore= 0.70. Likewise, a seman-
tic correspondence that postulated that ‘worker’ in schema s1 is horizontally par-
titioned into ‘part-time worker’ and ‘full-time worker’ in schema s2 might have
as one of its features the list of selection predicates that decide which tuple in
‘worker’ in s1 belongs to which partition in the corresponding relations in s2 (e.g.,
selectionPredicateList= [(s2.partTimeWorker,s1.numberOfHours< 8),
(s2.fullTimeWorker,s1.numberOfHours≥ 8)]). However, we leave the precise,
comprehensive and exhaustive definition of such feature sets undiscussed here ex-
cept where it is crucial for our exposition to consider one or more features.

Table 12.1 summarizes the sorts used in our formulation, which are introduced
in the following:

Table 12.1 Sorts.

Sorts Description
resources the collection of usable data resources
sources the subset of resources that have been discovered, identified, ranked or cho-

sen
models the intensional descriptions of sources
queries the expressions against a model and a state that, upon evaluation, returns

results
results the instances in the extension of a query returned when the latter is evaluated

against a model and a state
associations the morphisms that relate two sets of constructs by the similarity associated

to them by the matching algorithms used
correspondences the morphisms that, given the matching information, are judged to represent

semantic relationships between two sets of constructs
mappings the morphisms that relates two expressions Q and Q′ such that Q computes

the extension of Q′ and Q′ computes the extension of Q when evaluated
against their respective models

feedback the judgements provided by users on the various objects to which they are
given access (e.g., query results may be judged for being expected and
present, expected and not present, present but unexpected, etc.)

12 A Functional Model for Dataspace Management Systems 319

resources. We assume the existence of a collection D of data resources to each
of which an intensional description can be associated. We assume that a data
resource is interacted with by means of (G)UI/API mechanisms, i.e., we take
it to be an independent software artefact that exposes an interface by means of
which people and systems can interact with it.

sources. The set of sources in a dataspace is that subset of the available data
resources D that one has discovered, identified, ranked or chosen to operate on.
We assume that the intensional description associated with a data source, as well
as a sample of its state, can be obtained. We denote a set of sources with D.

models. In line with most of the background literature, we refer to intensional
descriptions (i.e., an instance of a supermodel theory or paradigm) as models, as
defined above. We denote a set of models with M.

queries. A query is an expression against a model that, upon evaluation, returns a
set of results that, as mentioned above, characterizes the extension, at evaluation
time, of the construct in the model defined by the query expression. We denote a
set of queries with Q.

results. The results returned by query evaluation can be construed as a set of
superabstract instances (e.g., tuples in relation ‘employee’), each of which con-
strued, in turn, as a set of pairs, of which the first element is a construct (e.g., a
superlexical instance such as the attribute name ‘dept’) and the second denotes
the state of that construct (e.g., it is a value, in this case of an attribute, in the
domain of the superlexical instance such as ‘Sales’). We denote a set of query
results with R.

associations. With or without human intervention, data sources are matched (typ-
ically taking account of their models and, sometimes, of samples of their state)
in order to produce a similarity score between constructs (e.g., that ‘worker’ in
a schema is similar to both ‘partTimeWorker’ and ‘fullTimeWorker’ in another),
which sets a feature in the association. We construe an association as a pair of
sets of constructs. Thus, we foresee associations as being not just 1 : 1 but also
1 : n and n : m both at superabstract and superlexical levels. It is useful to think
of a set of associations as a bidirectional morphism between sets of constructs.
We denote a set of associations with A.

correspondences. The associations found through matching can suggest to a hu-
man expert or to an algorithm that some semantic relationship (typically equiv-
alence, but also subsumption, and others) is likely to hold. For example, given
strong evidence that ‘worker’ in a schema is similar to both ‘partTimeWorker’
and ‘fullTimeWorker’ in another, one could postulate that ‘worker’ in the former
is horizontally partitioned, i.e., is the union of ‘partTimeWorker’ and ‘fullTime-
Worker’ in the latter, on the basis of a predicate on the attribute ‘numberOfHours’
of ‘worker’. We construe a semantic correspondence as a pair of sets of con-
structs. Again, it is useful to think of a set of correspondences as a bidirectional2

morphism between sets of constructs and we note that, as such, they bear close
structural similarity with associations. However, as hinted above, the feature set

2 Note that if the relationship is inherently unidirectional, e.g., one of subsumption, then the
construal postulated here would have to be refined.

320 C. Hedeler et al.

that describes an association is presumed to be different from the feature set that
describes a correspondence. This reflects the distinct interpretations we place
upon each and, hence, the roles they play in the algebra. An association is pre-
sumed to possess very little semantic import (essentially, it postulates a degree
of syntactic and structural similarity on the basis of the evidence available to
the matching algorithms that were used to derive them). In contrast, a semantic
correspondence is presumed to carry significantly more semantic import (e.g.,
it postulates the existence of a relationship that, more or less directly, points the
way to the semantic reconciliation between the related sets of constructs). The ad-
ditional information that stems from the interpretation we place upon correspon-
dences and that distinguish them from associations and mappings is assumed to
be captured in a feature set. We denote a set of semantic correspondences with F .

mappings. The semantic correspondences that are found to be supported by suf-
ficient evidence can be selected by a human expert or by an algorithm for use in
mapping a query against a derived, integrated model onto a set of queries against
the primary models (i.e., those of the data sources included in the dataspace and
involved in the query) and in translating the results emitted by the data source
into results structured in terms of the derived, integrated model. We construe a
mapping element as a pair of sets of constructs. This means, once more, that
mappings (i.e., sets of mapping elements) are bidirectional3 morphisms between
sets of constructs and, as such, are structurally similar to sets of associations
and to sets of semantic correspondences, with the difference lying, again, on the
feature set that describes a mapping element (e.g., as described below, mappings
can be annotated for precision and recall on the basis of feedback on the results
they produce when used in a query). In this respect, there is one particular char-
acteristic of mappings, viz., that we can, and often do, construe them as views,
i.e., executable expressions in a query language. Such an expression can be un-
derstood as an intensional description of the mapping (understood, extensionally,
as a set of pairs of constructs). As we have shown in [50], given correspondences
whose semantic import leads fairly directly to the derivation of view expressions
that reconcile some semantic heterogeneities [44], we can algorithmically derive
from them the view expression that allows us to populate the source construct(s)
with data obtained from the target construct(s) (and vice versa), and make it a
bound feature in the feature set of a mapping. For example, if there is a seman-
tic correspondence relating ‘worker’ in s1 to ‘partTimeWorker’ and ‘fullTime-
Worker’ in s2 and if its feature set contains

selectionPredicateList= [
(s2.partTimeWorker,s1.numberOfHours< 8),
(s2.fullTimeWorker,s1.numberOfHours≥ 8)]

then we have shown in [50] how it is possible to derive the view

s1.worker← s2.partTimeWorker∪ s2.fullTimeWorker

3 Note, once more, for inherently unidirectional relationships this construal is too coarse.

12 A Functional Model for Dataspace Management Systems 321

that populates the construct in the s1 side of the mapping in terms of the con-
structs in the s2 side, as well as the views

s2.partTimeWorker← σs1.numberOfHours<8 s1.worker
s2.fullTimeWorker← σs1.numberOfHours≥8 s1.worker

that populate the constructs in the s2 side of the mapping in terms of the construct
in the s1 side. In summary, in the case of mappings, we sometimes construe them
intensionally as views and sometimes extensionally, as a set of mapping elements
(i.e., pairs of sets of constructs). In what follows, we make use of both construals
(as exemplified above) without remarking on it unless the context does not suffice
to make it clear which one we are using. We denote a set of mapping elements
with V .

feedback. The central tenet of a pay-as-you-go approach to dataspaces is the re-
course to feedback to compensate for the shortcoming of pervasively automat-
ing the generation of associations, correspondences and mappings. Feedback can
take many forms and an open model of what constitutes feedback is desirable
while dataspace research has not yet reached maturity. In our own work [6], we
have explored a particular kind of user feedback. More specifically, given the
result of evaluating a query that relied on mappings from an integrated schema
onto existing sources, if a user provides feedback as to which tuples are true pos-
itives (i.e., are in the result and should have been), false positives (i.e., are in the
result but should not have been) and false negatives (i.e., are not in the result but
should have been), we have shown how such feedback can be used to annotate
mappings with estimates of quality (in the form of estimates of precision and re-
call) that are then used to select which mappings to use in answering queries, as
well as to refine mappings (i.e., to derive new mappings from existing ones that
are estimated to have better quality than the latter). We denote a set of feedback
instances with U .

12.4.5 Operations

This section introduces two groups of operations. The first group acts on elements
of the sorts above, or collections formed with such elements. This first group is not
characteristic of the functionality exhibited by DBMSs, DISs, MMSs or DSMSs.
The second group is, in contrast, characteristic of such systems and constitutes the
main focus of interest.

12.4.5.1 Structural Operations

The first group of operations are structural in intention, i.e., they access, trans-
form and derive new elements of the three underlying collection types, viz., sets,
graphs, and morphisms. In this sense, they are paradigm- and domain-independent
and, mainly, supportive. They were first proposed in [55] and revisited in [54]. Our

322 C. Hedeler et al.

account here is closer to the former work in using set comprehension notation for
the definition of the operations.

In defining this first group of operations, we use unconventional notation, as fol-
lows. Whenever in a signature the type F occurs, we mean that the signature is
valid if every occurrence of F is simultaneously bound by one of A, F or V (i.e.,
associations, correspondences or mappings, resp.). Whenever the type S occurs, the
signature is valid if every occurrence of S is simultaneously bound to either C or
L (i.e., construct names or literals, resp.); and, finally, whenever the type X occurs,
the signature is valid if every occurrence of X is simultaneously bound to the same
sort. The signatures of the structural operations, their formal definitions, using set
comprehension notation, with short informal descriptions are given in Table 12.2.
We note that it is possible to formally define the semantics of these operations more
precisely because of their being paradigm- and domain-independent. In contrast, for
the second group of operations, their precise definition is more dependent on a mod-
elling paradigm or theory being fixed and made more precise than we can do in the
confines of this specific document.

We note that, using the set comprehension notation employed in Table 12.2, we
can express the transformation of a set of sets X into the iterative union of its el-
ements as iUnion(X) ≡ {x′|x ← X ,x′ ∈ x}. Correspondingly, assuming a set of
membership predicates P = {p1, p2, . . . , pn}, we can express the transformation of
a set X into a set of n subsets {X1,X2, . . . ,Xn}, where Xi contains those elements for
which pi ∈ P is true, as setOfSubsetsOf(X ,P)≡ {{x|x← X , p(x)}|p ∈ P}.

In what follows, the operations in Table 12.2 are not resorted to intensively
(though a few definitions in Sec. 12.4.5.5 depend on some of them). This is be-
cause the scenarios in Sec. 12.5 can by and large be handled by the operations in
Table 12.3. However, those operations are necessary for manipulation of structures
(e.g., to convert objects of one sort into objects of another sort). As such, along
with syntax for transforming sets into sets of sets and vice versa, they are impor-
tant in making the algebra more effective in modelling less simplified use cases and
scenarios than those in Sec. 12.5.

12.4.5.2 Dataspace Operations

The second group of operations is characteristic of the functionality exhibited by
DBMSs, DISs, MMSs or DSMSs. Their signatures are given, grouped by system
type, in Table 12.3. We construe DISs to subsume the functionality of DBMSs and
that of DSMSs to subsume the functionalities of DBMSs, DISs and MMSs. MMSs
are seen as providing useful functionality for both DBMSs and DISs and have, there-
fore, typically been construed as standalone systems with respect to them. As far as
we are aware, ours is the first detailed proposal that construes DSMSs as building
upon MMS. We note that to assign these operations a precise formal definition is
somewhat dependent on a modelling paradigm or theory being fixed (e.g., this is
the case for evalQ). A semantics for the model-management operations is proposed
(and studied for its formal properties) in some detail in [55], which addresses the
challenges identified in [9].

12 A Functional Model for Dataspace Management Systems 323

Table 12.2 Structural operations.

Operation Signature Set comprehension semantics Description
Primitive
genId S→ S genId(X)≡ x ∈ Σ ∧ x �∈ X Returns a new symbol.
identity S→ F identity(X)≡ {(x,x)|x← X} Returns the identity morphism over the

members of X .
domain F→ S domain(X)≡ {x|(x,y)← X} Returns the elements in the domain of

morphism X .
invert F→ F invert(X)≡ {(y,x)|(x,y)← X} Returns the inverse of the morphism X .
restrictD F×S→ F restrictD(X ,X ′)≡{(x,y)|(x,y)← X ,x∈ X ′} Returns the morphism whose domain

is that of X restricted to those elements
that are in X ′.

transitive F→ F transitiveClosure(X) Returns the transitive closure of the
Closure ≡ {(x,y)|(x,y)← X} morphism X .

∪{(x,z)|(x,y)← X ,(y,z)← X}
constructsIn M → S constructsIn(X) Returns all the constructs that occur

≡ {x|(x,y)← X ,x ∈C(X)} in the morphism X .
∪{y|(x,y)← X ,y ∈C(X)}

copyUpdate M×S→M copyUpdate(X ,X ′) Returns a copy of the model X
≡ {(z,y)|(x,y)← X ,x ∈ X ′,z ≡ genId(X)} in which those of its elements
∪ {(x,z′)|(x,y)← X ,y ∈ X ′,z′ that occur in X ′ are given new ids.
≡ genId(X ∪{z})}

submodelOf M×S→M submodelOf(X ,X ′) Returns the submodel of X consisting
≡ {(x,y)|(x,y)← X ,x ∈ X ′ ∨ y ∈ X ′} of its constructs that also occur in X ′.

Derived
range F→ S range(X)≡ domain(invert(X)) Returns the elements in the range of

morphism X .
restrictR F×S→ F restrictR(X ,X ′) Returns the range of the morphism X

≡ invert(restrictD(invert(X),X ′)) restricted to those elements that are in
X ′.

restrict F×M×M restrict(X ,X ′,X ′′) Returns the morphism whose domain
→ F ≡ restrictR(restrictD(X , is that of X restricted to members of X ′

constructsIn(X ′)),constructsIn(X ′′)) and whose range is that of X restricted
to members of X ′′.

traverse S×F→ S traverse(X ,X ′) Returns the range of the morphism
≡ range(restrictD(X ,X ′)) returned by restricting the domain of X

to elements in X ′.
Generic
union X×X→ X union(X ,X ′)≡ {x|x← X}∪{x|x← X ′} Returns the union of two given sets.
minus X×X→ X minus(X ,X ′)≡ {x|x← X ,x �∈ X ′} Returns the difference between two

sets.
intersection X×X→ X intersection(X ,X ′) Returns the intersection of two sets.

≡ {x|x← X ,x ∈ X ′}

We now comment on the operations whose signatures are given in Table 12.3.
Again, we group them by system type.

12.4.5.3 Data Source Operations

r := evalQ(d,q) A query q can be evaluated against a data source d to produce
a result r. The modelling theory or paradigm that constrains the representations
of superabstracts, superrelationships and superlexicals in d and the syntax and
semantics of q define the representation and semantics of the result r. In the
classical case of the relational model, d can be construed as a set of tables, q as
relational algebraic expression over d and r is characterized by the semantics of
the relational algebraic language of which q is an element.

324 C. Hedeler et al.

Table 12.3 Dataspace operations.

Operation Signature Example invocation Description
DBMS
evalQ D×Q → R r := evalQ(d,q) Evaluate query q against a data source d to

produce a result r.
DIS
discover D→ D D1 := discover(D) Discover data sources.
identify D→ D D2 := identify(D1) Identify data sources.
rank D→ D D3 := rank(D2) Rank data sources.
choose D→ D D′ := choose(D3) Choose data sources.
obtain D→M m := obtain(d) Obtain model m of data source d.
evalIQ Q×M×V → R r := evalIQ(q,m,v) Evaluate query q over mediated model m us-

ing mappings v to produce result r.
MMS
sample D→ D d′ := sample(d) Sample data source d, i.e., get representative

content.
match D×D×M×M a := match(d,d′,m,m′) Match data sources d and d′ with models m

→ A and m′ to obtain set a of associations between
them.

infer A → F f := Generate set f of semantic correspondences
Correspondences inferCorrespondences(a) from set a of associations.
compose F ×F → F f := compose(f 1, f 2) Compose two sets f 1 and f 2 of semantic cor-

respondences into f .
merge M×M×F (m, f 1, f 2) Generate merged model m with corresponding

→M×F ×F := merge(m1,m2, f) correspondences f 1, f 2 of models m1 and m2
and set f of semantic correspondences be-
tween them.

extract M×F →M×F (m′, f ′) := extract(m, f) Return from model m, given its correspon-
dences f with another model, that portion m′
of m that participates in f .

difference M×F →M×F (m′, f ′) := difference(m, f) Return from model m, given its correspon-
dences f with another model, that portion m′
of m that does not participate in f .

difference F →M×F (f ′) := difference(m, f) Given model m and its correspondences f
with another model, return the correspon-
dences f ′ that represent the differences be-
tween m and the other model.

DSMS
viewGen F →V v := viewGen(f) Derive the mappings v from a set f of seman-

tic correspondences.
gather R →U u := gather(r) Gather set u of feedback instances.
annotate U →V v := annotate(u) Given set u of feedback instances on results

r computed using mapping v annotate v with
estimates of its precision and recall.

select Q×V →V v′ := select(q,v) Given query q and set of mappings v, select
set v′ of mappings for evaluating q to produce
better quality results.

refine V →V v′ := refine(v) Given mappings v, derive new mappings v′
from v.

propagateToV V →V v′ := propagateToV(v) Given set of annotated mappings v, use their
precision & recall to annotate set of mappings
v′ with estimated precision & recall.

propagateToQ V ×Q → Q Q′ := propagateToQ(v,q) Given set of annotated mappings v, use their
precision and recall to annotate query q with
estimated precision & recall of its results.

12.4.5.4 Data Integration Operations

D1 := discover(D); D2 := identify(D1); D3 := rank(D2); D′ := choose(D3)
It seems important to distinguish within the set D of available data resources that
subset D′ of it whose elements are believed to be useful, usable and used. There

12 A Functional Model for Dataspace Management Systems 325

are obviously many ways in which the distinction can be drawn on the basis of a
different set of operations. Here, for illustration only, we assume that resources
are discovered (i.e., ascertained to be useful through mechanisms like search en-
gines, or directory services), identified (i.e, ascertained to be usable, e.g., open to
being accessed, in possession of appropriate APIs, sufficiently described, etc.),
ranked (i.e., scored with metrics such as authoritativeness, freshness, complete-
ness, etc.) and chosen (i.e., made members of the dataspace) for actual use. We
note that while we seem, above, to suggest that these four operations thread their
outputs into inputs, sequentially, this need not be the case.

m := obtain(d) A model m of a data source d must be obtained so that, as a
first class object, it can be scrutinized and manipulated. Under the assumption
that the DSMS uses a supermodel theory or paradigm, then m is the outcome of
a translation step from the theory or paradigm that constrains d into the DSMS
supermodel.

r := evalIQ(q,m,v) This operation stands in contrast to its single-source form in
Sec. 12.4.5.3 above. Here, a query q can be evaluated against an integrated set
of data D sources to produce a result r, where the integration arises from a set
of mappings v over the mediated model m obtained from D. In a global-as-view
approach [29], the query q posed against the mediated schema arising from the
integration of D is translated using the mapping elements in v over m into single-
source queries (see [29] for a survey of the techniques involved and see [36] for
an example). Thus, if D = {d1,d2}, then, broadly speaking, two operations are
issued, viz., r1 := evalQ(d1,q1) and r2 := evalQ(d2,q2) using v over m to derive
both q1 and q2 from q, and, on the way back, r from r1 and r2.

12.4.5.5 Model Management Operations

d′ := sample(d) Given a data source d, a sample d′ of it can be constructed. This
operation, among other potential uses, enables a principled reduction (by which
we mean one that is representative of the information content of d) in the size of
the inputs to the match operation. While many MMSs constrain themselves to
matching at schema-level only, additionally matching at instance-level is often
a more effective policy if it can be done efficiently, and we construe sample as
contributing to this purpose. In implementing this operation (and many others
below), one expect further parameters (e.g., in the case of sample, the desired
size of the sample, whether it should be drawn from some given distribution, etc.)
but, here, we focus on the abstract operation.

a := match(d,d′,m,m′) Given two data sources (or samples thereof) d and d′
with their obtained models m and m′ respectively, a matching algorithm is used
to obtain a set a of associations between them, where each element in a is a pair in
which the first and the second element are sets of constructs. Each such pair has
in its feature set an assigned similarityScore produced by the matching al-
gorithm. There are many ways in which this operation can be implemented [62],
the most important dimensions of variation in the present context perhaps be-
ing (a) whether the operation uses, internally, multiple matchers making a the

326 C. Hedeler et al.

result of an aggregation of similarity scores, possibly independently, produced
by distinct matching algorithms; (b) whether both instance- and schema-level
information is taken as evidence of similarity or only one of them (typically,
schema-level in that case); (c) whether, as suggested above, matching is done
pairwise or, alternatively, whether matching is done over a set of data sources
taken together, with the former approach being based on an assumption that the
associations a1,a2, . . . ,an resulting from a sequence of pairwise matching opera-
tions can be aggregated (e.g., by simple union); and (d) whether the associations
are, as suggested above, between sets of constructs or between single constructs.
In implementing this operation, one might use one or many algorithms, and in the
latter case, one might use different strategies for aggregating the scores returned
by individual algorithms (see, e.g., [20, 4]).

f := inferCorrespondences(a) Given a set a of associations, a set f of se-
mantic correspondences can be generated from it. As pointed out in Sec. 12.4.4,
semantic correspondences only differ from associations in their information con-
tent, i.e., how they are interpretable. It was also pointed out that this distinction
can be construed as being captured in a different feature set which annotates as-
sociations and correspondences differently. Thus, the former is annotated with,
essentially, a similarity score, while the latter are annotated with sufficient infor-
mation for mappings to be derived that mediate between the sets of constructs
involved. Now, invoking f := inferCorrespondences(a) derives from a sub-
set of the associations in a a set f for each of whose elements, on the basis of
matching evidence (i.e., the similarity scores associated with the elements of a),
it can be postulated that it can be interpreted as a semantic correspondence. In
our own work [50], we have focussed on the semantic correspondences identified
in [44] (essentially, same name for distinct constructs, distinct names for the same
construct, missing constructs, horizontally- or vertically-partitioned constructs).

f := compose(f 1, f 2) Given two sets f 1 and f 2 of semantic correspondences,
compose(f 1, f 2) ≡ {(x,z)|(x,y) ∈ f 1∧ (y,z) ∈ f 2}. In other words, when f 1
and f 2 are construed as morphisms, in f := compose(f 1, f 2) is the composite
morphism from f 1 and f 2.

(m, f 1, f 2) := merge(m1,m2, f) Informally, this operation aims to retain, in the
merged model, the information content of the input models. More precisely,
given two models m1 and m2 and the set f of semantic correspondences that
are postulated to hold between them, this operation derives a new model m
such that f 1 is a set of correspondences between m and m1 and f 2 is a set
of correspondences between m and m2, with the following assumption being
made in [55]: m is minimal, constructsIn(m) = domain(f 1)∪ domain(f 2),
range(f 1) = constructsIn(m1), range(f 2) = constructsIn(m2), and f =
compose(invert(f 1), f 2).

(m′, f ′) := extract(m, f) Informally, this operation aims to return from the in-
put model m, given its correspondences with another model (that may remain
unnamed), that portion m′ of m that participates in f while making the ensu-
ing adjustments in the input correspondences. More precisely, given a model
m and a set f of semantic correspondences, this operation derives a model

12 A Functional Model for Dataspace Management Systems 327

m′ and set of semantic correspondences f ′ such that [55] m′ is minimal, f =
compose(f ′,compose(invert(f ′), f)), and constructsIn(m′) = range(f ′).

(m′, f ′) := difference(m, f) Conceptually, this operation acts as the comple-
ment of extract. Informally, this operation aims to return from the input model
m, given its correspondences with another model (that may remain unnamed),
that portion m′ of m that does not participate in f while making the ensu-
ing adjustments in the input correspondences. More precisely, given a model
m and a set f of semantic correspondences, this operation derives a model m′
and set of semantic correspondences f ′ such that [55] m′ is minimal, (mt, f t) =
extract(m, f) and (m, f t, f ′) = merge(mt,m′,compose(invert(f t), f ′)).

f ′ := difference(m, f) A variant of the above, this operation, given a model
m and its correspondences f with another model, only returns those correspon-
dences f ′ that express the difference between the input model m and the other
model. This variant is the one implemented in [35], but for the purposes of this
chapter, we use the version above.

An extended discussion of the properties stemming from the above semantics of
compose, merge, extract, and difference can be found in [55].

12.4.5.6 Dataspace-Specific Operations

v := viewGen(f) Given a set f of semantic correspondences, it is possible to
derive, algorithmically, the mappings v that the correspondences, conceptually
speaking, encode. As mentioned above, in [50] we have shown how viewGen

can, in fact, generate executable expressions (in our case, view expressions
against the supermodel we use). In the more general case, the operation is
expected to select from the set of semantic correspondences those that are avail-
able for use by evalIQ in generating queries for evalQ, as described above.

u := gather(r) This operation is construed as providing the means by which a set
u of feedback instances can be gathered. Incremental improvement based on user
feedback can take a variety of forms: through the manual provision of mappings
(e.g., [67]); through the annotation of query results as to which items are spurious
or which should be ranked higher (e.g., [65]); through a more intensively interac-
tive approach requiring a fair amount of user input during the integration process
(e.g., [40]), or through a process by which mappings are debugged (e.g., [53]).
We observe that all these approaches require, to different degrees, an understand-
ing of the syntax and semantics of mapping and schema languages on the part of
the person providing the feedback. This has the drawback that only experts can
provide feedback, shutting out casual, non-expert users from the process. This
is one reason why, in this formulation, feedback as described in Section 12.4.4
is gathered on query results r (which is the case we have explored in our own
work [6]), as this seems to require less expertise and more closely taps into the
conceptions and expectations that users have of the dataspace content. The effort
in doing this is, so to speak, what the user pays. The operations below illustrate
the use that can be made of this kind of feedback and hence the payback for
the user in providing it. It is possible, as we have discussed in [33] and [7], to

328 C. Hedeler et al.

have different kinds of annotation for which annotation, selection, refinement and
propagation would require different algorithms, techniques and strategies which
are, for the most part, yet to be pursued in the literature. In [7], we have also
discussed approaches to identifying and handling inconsistent feedback.

v := annotate(u) Given a set u of feedback instances on results r computed us-
ing a mapping v, if the instances characterize subsets TP, FP and FN of r, then
we can annotate v with estimates of its precision and recall as shown in [6].
The idea in this case is to learn from the feedback given which, among alterna-
tive mappings that could be used to answer a query, have the best precision-recall
trade-off. Over time, these annotations enable the system to discriminate between
mappings that produce good results from those that do not. This is crucial in the
dataspace context because of the reliance on automation to derive associations,
correspondences and mappings (i.e., the morphisms that give rise to mediated
models over independent data sources). The next operations seek to make use of
these annotations on mappings.

v′ := select(q,v) Given a query q and set of (presumably annotated) alternative
mappings v which could be used for evaluating q, we can select the set v′ of map-
pings that are estimated to produce better quality results (e.g., results to which
users assign a better precision-recall trade-off). Our work [6] has provided evi-
dence that with relatively small amounts of effort in the provision of TP, FP, and
FN feedback, it is possible to select mappings with a good precision-recall trade-
off for a query. However, this assumes that such mappings are already available
in the first place, i.e., that the automated generation of mappings succeeded in
generating good initial ones. The next operation seeks to cater for the possibility
that this may not happen.

v′ := refine(v) Given a set of (presumably annotated) mappings v, we can use
their estimated precision and recall to guide a search process over the space of
refined mappings, i.e., mappings that are derivable from v, in order to yield a set
of mappings v′ with better estimates than v. Our work [6] describes the trans-
formations on mappings that generate the space of mappings and an evolution-
ary algorithm that searches that space. The experimental evidence indicates that
this approach is effective in making the most of the feedback (in line with the
pay-as-you-go philosophy) to compensate for the potential shortcomings of the
pervasive use of automation to bootstrap dataspaces.

v′ := propagateToV(v); q′ := propagateToQ(v,q) Given a set of (presumably
annotated) mappings v, we can use their estimated precision and recall to anno-
tate a set of mappings v′ with estimates of precision and recall, provided that v
and v′ stand in some relationship (e.g., v′ uses v). As a variant operation with
a similar intent, given a set of (presumably annotated) mappings v, we can use
their estimated precision and recall to annotate a query with an estimate of the
precision-recall trade-off that its results would exhibit. These two operations also
seek to make the most of feedback. They enable, in the cases described in [6],
the propagation of estimates from mappings to mappings and from mappings to
queries. This was shown, once again, to compensate, to a cost-effective extent
for shortcoming in the bootstrapping phase.

12 A Functional Model for Dataspace Management Systems 329

This section has formulated a functional model of dataspaces using an algebraic
approach that builds on, complements, and extends previous work, particularly in
the model management literature. The next section shows how the resulting many-
sorted algebra can express frequently occurring use cases and scenarios of great
practical interest.

12.5 Bioinformatics Use Case

In this section we illustrate how the functional model in Sec. 12.4 can support
the dataspace life cycle using a use case from bioinformatics. Thus, we show in
Sec. 12.5.1 how, in our functional model, one can initialize a dataspace and bring it
to the point in which it can be used for querying. Then, in Sec. 12.5.2, we show how
the functional model supports dataspace maintenance and, in Sec. 12.5.3, dataspace
improvement. We illustrate this, firstly, by capturing the consequences of a change
in the intensional description of a data source after which the dataspace is, again,
ready for querying, and, secondly, by capturing the consequences of the inclusion
of additional data sources in the dataspace.

For the purpose of this example, we assume that a group of immunologists is
studying malaria. They have decided to use the mouse as a model organism and
have carried out a variety of transcriptomics and proteomics experiments, whose
results have been deposited in local copies of, resp., Array Express [60], a database
of gene expression and other microarray data, and Pride [68], a standards-compliant
repository for proteomics data. In order to support the analysis of the data they
obtained, various databases need to be integrated. The immunologists choose to
bootstrap a dataspace by including in it the following data sources: Genbank [8],
which stores the genetic sequences of a large number of organisms; MGD (the
Mouse Genome Database) [14], which stores information on mouse including on
genetics and on pathways; Gene Ontology [66], which is a knowledge base on the
function of genes; and KEGG [42], a pathway database that is conjectured to contain
relevant information on pathways additional to those in MGD.

12.5.1 Example: Dataspace Initialization

In this section we present, in Figure 12.6, an example of how a dataspace may
come into being by bootstrapping, i.e., by recourse to automation of the matching
and merging of data sources and of mapping generation to mediate the interactions
between the merged model and that of each data source.

The example can be seen as illustrating how the core functionality of a traditional
DIS can be captured in our model of DSMSs. Note that while a traditional approach
to integration would be more effective (i.e., deliver high quality results) from start,
it would also incur higher costs due to human involvement throughout the set up of

330 C. Hedeler et al.

1: /* Discover, identify, rank and choose relevant data sources out of a set of bioinformatics data sources
DS. */

2: {d1, ...,dn} := discover(DS)
3: {d1, ...,dm} := identify({d1, ...,dn})
4: {d1, ...,dm} := rank({d1, ...,dm}) /* with {d1, ...,dm} potentially being in a different order. */
5: /* The data sources chosen are the local copy of ArrayExpress, AEloc; the local copy of Pride, PRloc;

Genbank, denoted by GB; MGD, and KEGG. */
6: {dAEloc,dPRloc,dGB,dMGD,dKEGG} := choose({d1, ...,dm})
7: D := {dAEloc,dPRloc,dGB,dMGD,dKEGG}
8: /* Obtain the models from the data sources and sample them. */
9: {mAEloc,mPRloc,mGB,mMGD,mKEGG} := obtain(dAEloc) ∪

10: obtain(dPRloc) ∪ obtain(dGB) ∪ obtain(dMGD) ∪ obtain(dKEGG)
11: {dsAEloc ,dsPRloc ,dsGB ,dsMGD ,dsKEGG} := sample(dAEloc) ∪
12: sample(dPRloc) ∪ sample(dGB) ∪ sample(dMGD) ∪ sample(dKEGG)
13: /* Match the obtained models and generate the correspondences needed to derive merged models. */
14: aAEloc−PRloc := match(dsAEloc , dsPRloc , mAEloc, mPRloc)
15: aAEloc−MGD := match(dsAEloc , dsMGD , mAEloc, mMGD)
16: aGB−MGD := match(dsGB , dsMGD , mGB, mMGD)
17: aMGD−KEGG := match(dsMGD , dsKEGG , mMGD, mKEGG)
18: fAEloc−PRloc := inferCorrespondences(aAEloc−PRloc)
19: fAEloc−MGD := inferCorrespondences(aAEloc−MGD)
20: fGB−MGD := inferCorrespondences(aGB−MGD)
21: fMGD−KEGG := inferCorrespondences(aMGD−KEGG)
22: /* Derive the comprehensive merged model by firstly creating a merged model of the data sources with

the experimental data sources, then a merged model of Genbank, MGD and KEGG, then merging the
two resulting models. Then, generate the correspondences between models, composing the correspon-
dences as needed to map the merged model over all data sources onto the latter. */

23: (mExp, fExp−AEloc, fExp−PRloc) := merge(mAEloc, mPRloc, fAEloc−PRloc)
24: (mGenetic, fGenetic−GB, fGenetic−MGD) := merge(mGB, mMGD, fGB−MGD)
25: fGenetic−KEGG := compose(fGenetic−MGD, fMGD−KEGG)
26: (mGenKEGG, fGenKEGG−Genetic, fGenKEGG−KEGG) := merge(mGenetic, mKEGG, fGenetic−KEGG)
27: fMGD−GenKEGG := compose(invert(fGenetic−MGD), invert(fGenKEGG−Genetic))
28: fExp−GenKEGG := compose(compose(fExp−AEloc, fAEloc−MGD), fMGD−GenKEGG)
29: (mMouse1, fMouse1−Exp, fMouse1−GenKEGG) := merge(mExp, mGenKEGG, fExp−GenKEGG)
30: fMouse1−AEloc := compose(fMouse1−Exp, fExp−AEloc)
31: fMouse1−PRloc := compose(fMouse1−Exp, fExp−PRloc)
32: fMouse1−GB := compose(compose(fMouse1−GenKEGG, fGenKEGG−Genetic), fGenetic−GB)
33: fMouse1−MGD := compose(compose(fMouse1−GenKEGG, fGenKEGG−Genetic), fGenetic−MGD)
34: fMouse1−KEGG := compose(fMouse1−GenKEGG, fGenKEGG−KEGG)
35: /* Generate the mappings needed to evaluate queries against the merged model over the data sources

in the dataspace. */
36: vMouse1 := viewGen(fMouse1−AEloc) ∪ viewGen(fMouse1−PRloc) ∪
37: viewGen(fMouse1−GB) ∪ viewGen(fMouse1−MGD) ∪ viewGen(fMouse1−KEGG)
38: /* The bootstrapping is complete. */
39: /* We can now evaluate a query q against the merged model using the generated mappings. */
40: r1 := evalIQ(q, mMouse1, vMouse1)

Fig. 12.6 Bioinformatics use case: Bootstrapping a dataspace with Genbank, MGD, KEGG
and local copies of ArrayExpress and Pride based on traditional data integration using views
to query against a mediated schema over multiple data sources.

12 A Functional Model for Dataspace Management Systems 331

the DIS, making this route the slower and more expensive in terms of reaching the
stage in which queries can be posed against the mediated model.

Figure 12.6 showing the bootstrapping of this dataspace shows how our func-
tional model captures such tasks as discovering, identifying, ranking (lines 2-4)
and choosing the data sources (line 6), then creating the dataspace over the cho-
sen sources by generating a merged integration schema to the point in which it is
possible to evaluate a query against this schema that resolves into queries over the
sources in the dataspace. To achieve this, the models of the chosen data sources are
obtained (lines 9-10) and the data sources sampled (lines 11-12). The models and the
samples of the data sources are then used to match them with each other (lines 14-
17) and to generate the semantic correspondences (lines 18-21) required to generate
a merged schema. Derive the merged model by firstly creating a merged model of
the data sources with the experimental data sources (line 23), then a merged model
of Genbank, MGD and KEGG (lines 24-26), then merging the two resulting mod-
els (lines 27-29), which includes the generation of the semantic correspondences
using compose. The correspondences between the final merged model and each of
the source models are also generated using compose (lines 30-34), from which the
mappings are generated using viewGen (lines 36-37). This completes the bootstrap-
ping process. A query q against the merged model can then be evaluated using the
generated mappings (line 40).

Figure 12.6 illustrates how dataspaces can support the automated bootstrapping
of an artefact which in a traditional data integration would be carefully crafted by
human experts.

12.5.2 Example: Dataspace Maintenance

Automated bootstrapping of the kind illustrated in Sec. 12.5.1, can significantly
reduce upfront costs. These are not the only high costs incurred in traditional data
integration. Another cause for human intervention in traditional data integration sce-
narios is the need to respond to changes in the data sources, which is particularly
problematic when the latter are autonomous (i.e., outside the managerial control of
the stakeholder of the integrated resource). There are, among others, the issues of
timeliness (i.e., how quickly can changes in the sources be reflected in the mod-
els that integrate them) and of cost (insofar as there is a need to resort to human
expertise to propagate the changes). This section illustrates how dataspaces aim to
tackle this issue by automating the propagation of changes in one of the integrated
data sources, and the addition of other data sources. The example in Figure 12.7 as-
sumes that the data sources {dAEloc,dPRloc,dGB,dMGD, dKEGG} have been integrated
as described in Figure 12.6.

For the purpose of the example, we assume that after a period in which the
scientists analyse the experimental data using the dataspace, they would like to
know how the information gathered and the knowledge obtained transfers across
to humans. Therefore, they decide to add two more sources to their dataspace,
viz., OMIM (Online Mendelian Inheritance in Man) [52], a database containing

332 C. Hedeler et al.

information on human genes and phenotypes, and Ensembl [26], a software system
and data resource, that produces, provides and maintains automatic annotation on
selected eukaryotic genomes, including both mouse and human. However, they no-
tice that some changes have been made to MGD and decide to update the dataspace
first to account for those changes.

The steps involved in updating the dataspace to account for the changes in MGD
and those required for adding the two new sources are shown in Figure 12.7. Firstly,
the updated model of MGD is obtained and it is sampled (lines 3-4). The new and the
old version are matched (line 6), the correspondences over the resulting associations

1: /* Assume that dMGD has changed but we have its previous model mMGD and a previous sample dsMGD
from it. */

2: /* Obtain the new, changed model of dMGD and sample the latter again. */
3: mMGD′ := obtain(dMGD)
4: ds′MGD

:= sample(dMGD)
5: /* Match the new model and the old, generate correspondences over the resulting associations, iden-

tify the differences between the new model and the old, and, through composition, generate the new
correspondences needed to derive the new merged model. */

6: aMGD−MGD′ := match(dsMGD , ds′MGD
, mMGD, mMGD′)

7: fMGD−MGD′ := inferCorrespondences(aMGD−MGD′)
8: (m′

MGD′ , f ′MGD−MGD′) := difference(mMGD, fMGD−MGD′)
9: f ′Mouse1−MGD′ := compose(fMouse1−MGD, f ′MGD−MGD′)

10: /* Derive the new merged model from the previous merged model and the changed model mMGD′ ,
then, through composition, generate the correspondences between the new merged model and the
unchanged data sources. */

11: (mMouse1′ , fMouse1′−Mouse1, fMouse1′−MGD′) := merge(mMouse1, m′
MGD′ , f ′Mouse1−MGD′)

12: fMouse1′−AEloc := compose(fMouse1′−Mouse1, fMouse1−AEloc)
13: fMouse1′−PRloc := compose(fMouse1′−Mouse1, fMouse1−PRloc)
14: fMouse1′−GB := compose(fMouse1′−Mouse1, fMouse1−GB)
15: fMouse1′−KEGG := compose(fMouse1′−Mouse1, fMouse1−KEGG)
16: /* Generate the mappings needed to evaluate queries against the new merged model over the changed

source(s) in the dataspace. */
17: vMouse1′ := viewGen(fMouse1′−AEloc) ∪ viewGen(fMouse1′−PRloc) ∪
18: viewGen(fMouse1′−GB) ∪ viewGen(fMouse1′−MGD′) ∪ viewGen(fMouse1′−KEGG)
19: /* This maintenance action is complete. */
20: /* We can now evaluate a query q against the new merged model using the generated mappings. */
21: r := evalIQ(q, mMouse1, vMouse1′)
22: /* Two additional data sources, viz., OMIM and Ensembl, denoted by ES are to be added to the datas-

pace. */
23: /* Obtain the models from the new data sources and sample them. */
24: {mOMIM ,mES} := obtain(dOMIM) ∪ obtain(dES)
25: {dsOMIM ,dsES} := sample(dOMIM) ∪ sample(dES)
26: /* Match the obtained models with each other and with MGD, which was part of the previous integration

and contains overlapping information with Ensembl. Then, generate the correspondences needed to
derive new merged models. */

27: aOMIM−ES := match(dsOMIM , dsES , mOMIM , mES)
28: aMGD′−ES := match(dsMGD′ , dsES , mMGD′ , mES)
29: fOMIM−ES := inferCorrespondences(aOMIM−ES)
30: fMGD′−ES := inferCorrespondences(aMGD′−ES)

Fig. 12.7 Bioinformatics use case: Maintenance by evolving the mediated schema in re-
sponse to changes in MGD and the addition of OMIM and Ensembl to the dataspace.

12 A Functional Model for Dataspace Management Systems 333

31: /* Derive the new merged model to include the incoming models, then, through composition, generate
the correspondences between the new merged model and the preexisting data sources. */

32: (mHuman1, fHuman1−OMIM , fHuman1−ES) := merge(mOMIM , mES, fOMIM−ES)
33: fMouse1′−Human1 := compose(compose(fMouse1′−MGD′ , fMGD′−ES), invert(fHuman1−ES))
34: (mMH1, fMH1−Mouse1′ , fMH−Human1) := merge(mMouse1′ , mHuman1, fMouse1′−Human1)
35: fMH1−AEloc := compose(fMH1−Mouse1′ , fMouse1′−AEloc)
36: fMH1−PRloc := compose(fMH1−Mouse1′ , fMouse1′−PRloc)
37: fMH1−GB := compose(fMH1−Mouse1′ , fMouse1′−GB)
38: fMH1−MGD′ := compose(fMH1−Mouse1′ , fMouse1′−MGD′)
39: fMH1−KEGG := compose(fMH1−Mouse1′ , fMouse1′−KEGG)
40: fMH1−OMIM := compose(fMH1−Human1, fHuman1−OMIM)
41: fMH1−ES := compose(fMH1−Human1, fHuman1−ES)
42: /* Generate the mappings needed to evaluate queries against the new merged model over the enlarged

collection of sources in the dataspace. */
43: vMH1 := viewGen(fMH1−AEloc) ∪ viewGen(fMH1−PRloc) ∪ viewGen(fMH1−GB) ∪
44: viewGen(fMH1−MGD′) ∪ viewGen(fMH1−KEGG) ∪ viewGen(fMH1−OMIM) ∪
45: viewGen(fMH1−ES)
46: /* This maintenance action is complete. */
47: /* We can now evaluate a query q against the new merged model using the generated mappings. */
48: r1 := evalIQ(q, MH1, vMH1)

Fig. 12.7 (continued)

generated (line 7), the differences between the new model and the old identified
(line 8), and, through composition, the new correspondences generated (line 9) that
are needed to derive the new merged model. The new merged model is generated
from the previous merged model and the changed model mMGD′ (line 11), and then,
through composition, the correspondences between the new merged model and the
unchanged data sources are generated (lines 12-15). The mappings are generated
that are needed to evaluate queries against the new merged model over the changed
source(s) in the dataspace (lines 17-18) and queries can now be evaluated (line 21).

To add the two new data sources, their models are obtained and they are sam-
pled (lines 24-25). The obtained models are matched with each other and with the
updated model of MGD (lines 27-28), which contains overlapping information with
Ensembl, and the correspondences are generated (lines 29-30) that are needed to
derive new merged models. Derive the new merged model to include the incoming
models (line 32-34), and then, through composition, generate the correspondences
between the new merged model and the preexisting data sources (lines 35-41). The
mappings needed to evaluate queries against the new merged model are generated
over the enlarged collection of sources in the dataspace (line 43-45) and the updated
dataspace is ready for queries to be evaluated (line 48).

The scientists then decide that they would like to study some additional experi-
mental data made public by other researchers working on malaria in mouse as well
as in human. This requires the integration of the public repositories of ArrayExpress
and Pride. As the schemas of ArrayExpress and Pride used for bootstrapping in Fig-
ure 12.6 may have evolved since the scientists installed their own local copies, the
schemas need to be compared first and differences identified.

334 C. Hedeler et al.

The steps involved in integrating the public versions of ArrayExpress and Pride in
the dataspace and generating merged schemas for both mouse and the study across
mouse and human are shown in Figure 12.8.

12.5.3 Example: Dataspace Improvement

We note that, largely relying on the model-management operations, this conception
of dataspaces provides the basis for supporting more than mediated schema, e.g.,

1: /* Two additional data sources, viz., the public versions of ArrayExpress, denoted by AE pub, and of Pride,
denoted by PRpub are added to the dataspace. */

2: /* Obtain the models from the new data sources and sample them. */
3: {mAE pub,mPRpub} := obtain(dAE pub) ∪ obtain(dPRpub)
4: {dsAE pub ,dsPRpub} := sample(dAE pub) ∪ sample(dPRpub)
5: /* Match the models of the public versions of ArrayExpress and Pride with the local versions, generate the

correspondences and identify the differences, and, through composition, generate the correspondences
needed to create a new merged model for mouse and another one for mouse and human. */

6: aAEloc−AE pub := match(dsAEloc , dsAE pub , mAEloc, mAE pub)
7: aPRloc−PRpub := match(dsPRloc , dsPRpub , mPRloc, mPRpub)
8: fAEloc−AE pub := inferCorrespondences(aAEloc−AE pub)
9: fPRloc−PRpub := inferCorrespondences(aPRloc−PRpub)

10: (mAE pubLocDi f f , fAE pub−AEloc−Di f f) := difference(mAE pub, invert(fAEloc−AE pub))
11: (mPRpubLocDi f f , fPRpub−AEloc−Di f f) := difference(mPRpub, invert(fPRloc−PRpub))
12: fMouse1′−AE pubLocDi f f := compose(fMouse1′−AEloc, invert(fAE pub−AEloc−Di f f))
13: fMouse1′−PRpubLocDi f f := compose(fMouse1′−PRloc, invert(fPRpub−PRloc−Di f f))
14: fMH1−AE pubLocDi f f := compose(fMH1−AEloc, invert(fAE pub−AEloc−Di f f))
15: fMH1−PRpubLocDi f f := compose(fMH1−PRloc, invert(fPRpub−PRloc−Di f f))
16: /* Derive the new merged models for both mouse and the study across mouse and human from the

previously merged models and the parts of the public versions of ArrayExpress and Pride that are
different from the local versions and generate the correspondences between the new merged models
and the integrated data sources. */

17: (mMouse1.5, fMouse1.5−Mouse1′ , fMouse1.5−AE pubLocDi f f) := merge(mMouse1′ , mAE pubLocDi f f ,
fMouse1′−AE pubLocDi f f)

18: fMouse1.5−PRpubLocDi f f := compose(fMouse1.5−Mouse1′ , fMouse1′−PRpubLocDi f f)
19: (mMouse2, fMouse2−Mouse1.5, fMouse2−PRpubLocDi f f) := merge(mMouse1.5, mPRpubLocDi f f ,

fMouse1.5−PRpubLocDi f f)
20: fMouse2−Mouse1′ := compose(fMouse2−Mouse1.5, fMouse1.5−Mouse1′)
21: fMouse2−AEloc := compose(fMouse2−Mouse1′ , fMouse1′−AEloc)
22: fMouse2−PRloc := compose(fMouse2−Mouse1′ , fMouse1′−PRloc)
23: fMouse2−GB := compose(fMouse2−Mouse1′ , fMouse1′−GB)
24: fMouse2−MGD′ := compose(fMouse2−Mouse1′ , fMouse1′−MGD′)
25: fMouse2−KEGG := compose(fMouse2−Mouse1′ , fMouse1′−KEGG)
26: fMouse2−AE pubLocDi f f := compose(fMouse2−Mouse1.5, fMouse1.5−AE pubLocDi f f)
27: (mMH1.5, fMH1.5−MH1, fMH1.5−AE pubLocDi f f) :=
28: merge(mMH1, mAE pubLocDi f f , fMH1−AE pubLocDi f f)
29: fMH1.5−PRpubLocDi f f := compose(fMH1.5−MH1, fMH1−PRpubLocDi f f)
30: (mMH2, fMH2−MH1.5, fMH2−PRpubLocDi f f) :=
31: merge(mMH1.5, mPRpubLocDi f f , fMH1.5−PRpubLocDi f f)
32: fMH2−MH1 := compose(fMH2−MH1.5, fMH1.5−MH1)
33: fMH2−AEloc := compose(fMH2−MH1, fMH1−AEloc)
34: fMH2−PRloc := compose(fMH2−MH1, fMH1−PRloc)

Fig. 12.8 Bioinformatics use case: Adding the public versions of ArrayExpress and Pride.

12 A Functional Model for Dataspace Management Systems 335

35: fMH2−GB := compose(fMH2−MH1, fMH1−GB)
36: fMH2−MGD′ := compose(fMH2−MH1, fMH1−MGD′)
37: fMH2−KEGG := compose(fMH2−MH1, fMH1−KEGG)
38: fMH2−OMIM := compose(fMH2−MH1, fMH1−OMIM)
39: fMH2−ES := compose(fMH2−MH1, fMH1−ES)
40: fMH2−AE pubLocDi f f := compose(fMH2−MH1.5, fMH1.5−AE pubLocDi f f)
41: /* Generate the mappings needed to evaluate queries against the new merged models over the enlarged

collection of sources in the dataspace. */
42: vMouse2 := viewGen(fMouse2−AEloc) ∪ viewGen(fMouse2−PRloc) ∪
43: viewGen(fMouse2−GB) ∪ viewGen(fMouse2−MGD′) ∪
44: viewGen(fMouse2−KEGG) ∪ viewGen(fMouse2−AEloc ∪ fMouse2−AE pubLocDi f f) ∪
45: viewGen(fMouse2−PRloc ∪ fMouse2−PRpubLocDi f f)
46: vMH2 := viewGen(fMH2−AEloc) ∪ viewGen(fMH2−PRloc) ∪ viewGen(fMH2−GB) ∪
47: viewGen(fMH2−MGD′) ∪ viewGen(fMH2−KEGG) ∪ viewGen(fMH2−OMIM) ∪
48: viewGen(fMH2−ES) ∪ viewGen(fMH2−AEloc ∪ fMH2−AE pubLocDi f f) ∪
49: viewGen(fMH2−PRloc ∪ fMH2−PRpubLocDi f f)
50: /* This maintenance action is complete. */
51: /* We can now evaluate a query q against the new merged model using the generated mappings. */
52: r2 := evalIQ(q, MH2, vMH2)

Fig. 12.8 (continued)

alternative ones, and, in the scope of each mediated schema, the coexistence of al-
ternative mappings into the data sources. This pervasive use of automation and this
support for alternative models and for alternative mappings for a given model is
likely to result in results of lesser quality in comparison to traditional data integra-
tion. This section illustrates how dataspaces aim to tackle this issue by procuring
and responding to feedback. It is assumed that the example in Figure 12.9 uses the
dataspace created in the example in Figure 12.8.

For the purpose of the example, we assume that running a set of initial queries
shows that the results contain tuples that the immunologists working on mouse and
human are not interested in. In particular, since Genbank and KEGG contain infor-
mation not just on mouse and human but on a variety of other organisms, the queries
tend to return tuples containing information on those other organisms too.

The steps for improvement are shown in Figure 12.9, where, for simplicity, the
improvement is applied to one query only, and are described in the following. The
scientists decide to spend some effort on improving the initial integration by re-
running a set of queries and providing feedback on the results, indicating which
result tuples they expect to see and which they do not expect to see in the result.
The feedback provided is gathered (line 3) and then used to annotate the mappings
that were used to evaluate the queries (line 4). This underpins the selection of the
mappings to be used in future query evaluations (line 5) and has effects of increasing
the likelihood that mappings that have lower quality (e.g., worse precision-recall
trade-offs) are excluded.

However, another run of the queries with the new set of mappings (line 10) shows
that more improvements can possibly be made. The scientists provide more feed-
back (line 14) and try refining the mappings (line 16) with the aim of obtaining new
mappings that better reflect the expectations of the immunologists.

336 C. Hedeler et al.

1: /* Assume, following on from Figure 12.8 that some alternative mappings to those initially generated

have been made available. For the purposes of this example, we assume that alternative mappings

use μ rather than v in the naming scheme we are using. We now wish to pursue opportunities for

improvement. */

2: /* We start by gathering user feedback on the query result r2 in Figure 12.8, then using it to annotate

the available mappings and to select those to be used in the next evaluation of queries (and possibly

future ones). */

3: u := gather(r2)
4: {va

MH2,μ
a
MH2} := annotate(u)

5: {v′aMH2,μ
′a
MH2} := select(q, {va

MH2,μ
a
MH2})

6: /* Note that some of the alternative mapping μ ′aMH2 could be selected over some of the initial mappings

v′aMH2 on the grounds that they have been annotated with better quality estimates. */

7: /* For the purposes of informing users (for one example), we can also propagate the quality estimates

for the selected, annotated mappings to any query that uses them. */

8: qa := propagateToQ({v′aMH2,μ
′a
MH2}, q)

9: /* Now, when we reevaluate the query q, we can use the selected mappings. */

10: r3 := evalIQ(q, mMH2, {v′aMH2,μ
′a
MH2})

11: /* These gather-annotate-select steps can be repeated as many times as necessary in order to select

the best set of mappings. */

12: /* Assume we still want to pursue further opportunities for improvement. */

13: /* We can gather more user feedback but now on the latest query result r3. */

14: u2 := gather(r3)
15: /* We can then try to refine the mappings in light of the latest quality estimates. */

16: {v′rMH2,μ
′r
MH2} := refine({v′aMH2,μ

′a
MH2})

17: /* Now, when we reevaluate the query q, we can use the refined mappings. */

18: r4 := evalIQ(q, mMH2, {v′rMH2,μ
′r
MH2})

19: /* Of course, selection and refinement steps can be interleaved as needed. */

Fig. 12.9 Bioinformatics use case: Improvement by gathering feedback on query results then
using it for mapping selection and refinement.

12.6 Conclusion and Open Issues

In this work, we have built on our recent research on dataspaces [6, 7, 33, 34, 35,
36, 50] and have aimed to present in some detail:

1. a view of dataspace management systems as second-generation data integration
platforms in which pervasive automation is deployed to push down costs and user
feedback is gathered and used to increase result quality;

2. a view of the life cycle of a dataspace that captures, albeit coarsely, the func-
tionality of a growing body of literature (which we have most recently surveyed
in [34]), is consistent with (1) and consisting of initialization, use, maintenance
and improvement stages;

3. a conceptualization of the functional architecture of dataspace management sys-
tems that is consistent with (1) and explains more precisely than has been done
so far in what ways they are related to classical database, data integration and
model management systems;

12 A Functional Model for Dataspace Management Systems 337

4. a formalization of the functional model for dataspace management systems as
a many-sorted algebra that is consistent with (3), and, while building on a his-
tory of advances by data integration and model management researchers, gives
crisp contours to the notion of a dataspace, contours that had been hitherto only
ambiguously and vaguely drawn;

5. examples of algebraic programs that illustrate how the functional model in (4)
can capture and support the various stages of the data space life cycle in (2) as
well as a more extended use case in bioinformatics that shows how important
practical scenarios can be supported.

There is much still to accomplish in dataspace research, even though the literature,
as shown here, has grown in breadth and depth and is very much thriving at the time
of writing. Among the areas for further work in which the contribution we have
made in this work may play a helpful role, we identify (without in any way aiming
to be exhaustive):

1. refining and completing the formalization;
2. studying the mathematical and computational properties of the algebra;
3. proposing concrete algorithms for the algebraic operations;
4. implementing a dataspace management system that can be construed as an engine

for the programs our algebra gives rise to;
5. considering rewriting strategies for heuristic optimization based on the mathe-

matical properties of the algebra and cost-based optimization techniques based
on the concrete algorithms available;

6. encompassing more forms of use;
7. studying the cost-benefit properties of more forms of feedback;
8. providing a principled treatment of how uncertainty can be quantified in relation

to the evidence used and then propagated through operator applications.

Dataspaces are, in many respects, still but a promise, and it is too early to tell
whether the belief that they could be effective and efficient in complementing classi-
cal database and data integration systems will be vindicated. The work we presented
here aims to make the issues and challenges clearer and to constitute a step towards
the exploration of this exciting hypothesis.

Acknowledgements. This work has been funded by the UK EPSRC under Grant
EP/F031092/1. We are grateful for this support.

References

1. Alexe, B., Chiticariu, L., Miller, R.J., Tan, W.C.: Muse: Mapping Understanding and
deSign by Example. In: ICDE, pp. 10–19. IEEE (2008)

2. Atzeni, P., Bellomarini, L., Bugiotti, F., Gianforme, G.: MISM: A Platform for Model-
Independent Solutions to Model Management Problems. In: Spaccapietra, S., Delcam-
bre, L. (eds.) Journal on Data Semantics XIV. LNCS, vol. 5880, pp. 133–161. Springer,
Heidelberg (2009)

338 C. Hedeler et al.

3. Atzeni, P., Cappellari, P., Torlone, R., Bernstein, P.A., Gianforme, G.: Model-
Independent Schema Translation. VLDB J. 17(6), 1347–1370 (2008)

4. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and Ontology Matching with
COMA++. In: Özcan, F. (ed.) SIGMOD Conference, pp. 906–908. ACM (2005)

5. Batini, C., Lenzerini, M., Navathe, S.B.: A Comparative Analysis of Methodologies for
Database Schema Integration. ACM Comput. Surv. 18(4), 323–364 (1986)

6. Belhajjame, K., Paton, N.W., Embury, S.M., Fernandes, A.A.A., Hedeler, C.: Feedback-
based Annotation, Selection and Refinement of Schema Mappings for Dataspaces. In:
EDBT, pp. 573–584 (2010)

7. Belhajjame, K., Paton, N.W., Fernandes, A.A.A., Hedeler, C., Embury, S.M.: User Feed-
back as a First Class Citizen in Information Integration Systems. In: CIDR (2011)

8. Benson, D.A., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., Wheeler, D.L.: GenBank.
Nucleic Acids Research 31(1), 23–27 (2003); Databases in biology: Genbank

9. Bernstein, P.A., Halevy, A.Y., Pottinger, R.: A Vision of Management of Complex Mod-
els. SIGMOD Record 29(4), 55–63 (2000)

10. Bernstein, P.A., Melnik, S.: Model Management 2.0: Manipulating Richer Mappings. In:
Chan, C.Y., Ooi, B.C., Zhou, A. (eds.) SIGMOD Conference, pp. 1–12. ACM (2007)

11. Blunschi, L., Dittrich, J.-P., Girard, O.R., Karakashian, S.K., Salles, M.A.V.: A Datas-
pace Odyssey: The iMeMex Personal Dataspace Management System (Demo). In:
CIDR, pp. 114–119 (2007)

12. Boyd, M., Kittivoravitkul, S., Lazanitis, C., Mçbrien, P., Rizopoulos, N.: AutoMed: A
BAV Data Integration System for Heterogeneous Data Sources. In: Persson, A., Stirna,
J. (eds.) CAiSE 2004. LNCS, vol. 3084, pp. 82–97. Springer, Heidelberg (2004)

13. Boyd, M., Mçbrien, P.: Comparing and Transforming Between Data Models Via an In-
termediate Hypergraph Data Model. In: Spaccapietra, S. (ed.) Journal on Data Semantics
IV. LNCS, vol. 3730, pp. 69–109. Springer, Heidelberg (2005)

14. Bult, C., Eppig, J., Kadin, J., Richardson, J., Blake, J., the members of the Mouse
Genome Database Group: The Mouse Genome Database (MGD): Mouse Biology and
Model Systems. Nucleic Acids Research 36(Database issue), D724–D728 (2008)

15. Cafarella, M.J., Halevy, A.Y., Khoussainova, N.: Data Integration for the Relational Web.
PVLDB 2(1), 1090–1101 (2009)

16. Cao, H., Qi, Y., Candan, K.S., Sapino, M.L.: Feedback-driven Result Ranking and Query
Refinement for Exploring Semi-structured Data Collections. In: EDBT, pp. 3–14 (2010)

17. Chiticariu, L., Hernández, M.A., Kolaitis, P.G., Popa, L.: Semi-Automatic Schema Inte-
gration in Clio. In: VLDB, pp. 1326–1329 (2007)

18. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping Pay-As-You-Go Data Integration
Systems. In: SIGMOD, pp. 861–874 (2008)

19. Dittrich, J.-P., Vaz Salles, M.A.: iDM: A Unified and Versatile Data Model for Personal
Dataspace Management. In: VLDB, pp. 367–378 (2006)

20. Do, H.-H., Rahm, E.: COMA: A System for Flexible Combination of Schema Matching
Approaches. In: VLDB, pp. 610–621 (2002)

21. Doan, A., Halevy, A.Y.: Semantic Integration Research in the Database Community: A
Brief Survey. AI Magazine 26(1), 83–94 (2005)

22. Doan, A., Ramakrishnan, R., Chen, F., DeRose, P., Lee, Y., McCann, R., Sayyadian, M.,
Shen, W.: Community Information Management. IEEE Data Eng. Bull. 29(1), 64–72
(2006)

23. Dong, X., Halevy, A.Y.: A Platform for Personal Information Management and Integra-
tion. In: CIDR, pp. 119–130 (2005)

12 A Functional Model for Dataspace Management Systems 339

24. Dong, X., Halevy, A.Y., Yu, C.: Data Integration with Uncertainty. In: VLDB, pp. 687–
698 (2007)

25. Dong, X.L., Halevy, A.Y., Yu, C.: Data Integration with Uncertainty. VLDB J. 18(2),
469–500 (2009)

26. Flicek, P., Aken, B.L., Ballester, B., et al.: Ensembl’s 10th Year. Nucleic Acids Research
38(Database issue), D557–D562 (2010)

27. Franklin, M.J., Halevy, A.Y., Maier, D.: From Databases to Dataspaces: A New Abstrac-
tion for Information Management. SIGMOD Record 34(4), 27–33 (2005)

28. Haas, L.M., Lin, E.T., Roth, M.A.: Data Integration through Database Federation. IBM
Systems Journal 41(4), 578–596 (2002)

29. Halevy, A.Y.: Answering Queries using Views: A Survey. The VLDB Journal 10(4),
270–294 (2001)

30. Halevy, A.Y., Franklin, M.J., Maier, D.: Principles of Dataspace Systems. In: Vansum-
meren, S. (ed.) PODS, pp. 1–9. ACM (2006)

31. Halevy, A.Y., Rajaraman, A., Ordille, J.J.: Data Integration: The Teenage Years. In:
Dayal, U., Whang, K.Y., Lomet, D.B., Alonso, G., Lohman, G.M., Kersten, M.L., Cha,
S.K., Kim, Y.K. (eds.) VLDB, pp. 9–16. ACM (2006)

32. Hedeler, C., Belhajjame, K., Fernandes, A.A.A., Embury, S.M., Paton, N.W.: Dimen-
sions of Dataspaces. In: Sexton, A.P. (ed.) BNCOD 26. LNCS, vol. 5588, pp. 55–66.
Springer, Heidelberg (2009)

33. Hedeler, C., Belhajjame, K., Mao, L., Paton, N.W., Fernandes, A.A.A., Guo, C., Embury,
S.M.: Flexible Dataspace Management Through Model Management. In: EDBT/ICDT
Workshops (2010)

34. Hedeler, C., Belhajjame, K., Paton, N.W., Campi, A., Fernandes, A.A.A., Embury, S.M.:
Dataspaces. In: Ceri, S., Brambilla, M. (eds.) Search Computing. LNCS, vol. 5950, pp.
114–134. Springer, Heidelberg (2010)

35. Hedeler, C., Belhajjame, K., Paton, N.W., Fernandes, A.A.A., Embury, S.M., Mao, L.,
Guo, C.: Pay-As-You-Go Mapping Selection in Dataspaces. In: SIGMOD, pp. 1279–
1282 (2011)

36. Hedeler, C., Paton, N.W.: Utilising the MISM Model Independent Schema Management
Platform for Query Evaluation. In: Fernandes, A.A.A., Gray, A.J.G., Belhajjame, K.
(eds.) BNCOD 2011. LNCS, vol. 7051, pp. 108–117. Springer, Heidelberg (2011)

37. Hernández, M.A., Ho, H., Popa, L., Fuxman, A., Miller, R.J., Fukuda, T., Papotti, P.:
Creating Nested Mappings with Clio. In: ICDE, pp. 1487–1488 (2007)

38. Howe, B., Maier, D., Rayner, N., Rucker, J.: Quarrying Dataspaces: Schemaless Profiling
of Unfamiliar Information Sources. In: ICDE Workshops, pp. 270–277 (2008)

39. Ives, Z.G., Green, T.J., Karvounarakis, G., Taylor, N.E., Tannen, V., Talukdar, P.P., Ja-
cob, M., Pereira, F.: The ORCHESTRA Collaborative Data Sharing System. SIGMOD
Record 37(3), 26–32 (2008)

40. Ives, Z.G., Knoblock, C.A., Minton, S., Jacob, M., Talukdar, P.P., Tuchinda, R., Ambite,
J.L., Muslea, M., Gazen, C.: Interactive Data Integration through Smart Copy & Paste.
In: CIDR (2009), www.crdrdb.org

41. Jeffery, S.R., Franklin, M.J., Halevy, A.Y.: Pay-As-You-Go User Feedback for Dataspace
Systems. In: SIGMOD, pp. 847–860. (2008)

42. Kanehisa, M., Goto, S., Furumichi, M., Tanabe, M., Hirakawa, M.: KEGG for Repre-
sentation and Analysis of Molecular Networks Involving Diseases and Drugs. Nucleic
Acicds Research 38(Database issue), D355–D360 (2010)

www.crdrdb.org

340 C. Hedeler et al.

43. Kensche, D., Quix, C., Li, X., Li, Y., Jarke, M.: Generic Schema Mappings for Compo-
sition and Query Answering. Data Knowl. Eng 68(7), 599–621 (2009)

44. Kim, W., Seo, J.: Classifying Schematic and Data Heterogeneity in Multidatabase
Systems. IEEE Computer 24(12), 12–18 (1991)

45. Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Popa, L. (ed.) PODS,
pp. 233–246. ACM (2002)

46. Leser, U., Naumann, F.: (Almost) Hands-off Information Integration for the Life
Sciences. In: CIDR, pp. 131–143 (2005)

47. Liu, J., Dong, X., Halevy, A.: Answering Structured Queries on Unstructured Data. In:
WebDB, pp. 25–30 (2006)

48. Lorenzo, G.D., Hacid, H., Paik, H.Y., Benatallah, B.: Data Integration in Mashups. SIG-
MOD Record 38(1), 59–66 (2009)

49. Madhavan, J., Cohen, S., Dong, X.L., Halevy, A.Y., Jeffery, S.R., Ko, D., Yu, C.: Web-
scale data integration: You can afford to pay as you go. In: CIDR, pp. 342–350 (2007)

50. Mao, L., Belhajjame, K., Paton, N.W., Fernandes, A.A.A.: Defining and Using
Schematic Correspondences for Automatically Generating Schema Mappings. In: van
Eck, P., Gordijn, J., Wieringa, R. (eds.) CAiSE 2009. LNCS, vol. 5565, pp. 79–93.
Springer, Heidelberg (2009)

51. McCann, R., Shen, W., Doan, A.: Matching Schemas in Online Communities: A Web
2.0 Approach. In: ICDE, pp. 110–119 (2008)

52. McKusick, V.A.: Mendelian Inheritance in Man and Its Online Version, OMIM. Am. J.
Hum. Genet. 80(4), 588–604 (2007), http://www.ncbi.nlm.nih.gov/omim/

53. Mecca, G., Papotti, P., Raunich, S., Buoncristiano, M.: Concise and Expressive Mappings
with +Spicy. PVLDB 2(2), 1582–1585 (2009)

54. Melnik, S.: Generic Model Management. LNCS, vol. 2967. Springer, Heidelberg (2004)
55. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: A Semantics for Model Management

Operators. Technical Report MSR-TR-2004-59, Microsoft Research (2004)
56. Melnik, S., Bernstein, P.A., Halevy, A., Rahm, E.: Supporting Executable Mappings in

Model Management. In: SIGMOD, pp. 167–178 (2005)
57. Melnik, S., Rahm, E., Bernstein, P.A.: Rondo: A Programming Platform for Generic

Model Management. In: SIGMOD, pp. 193–204 (2003)
58. Miller, R.J., Haas, L.M., Hernández, M.A.: Schema Mapping as Query Discovery. In:

VLDB, pp. 77–88 (2000)
59. Miller, R.J., Hernández, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa, L.: The

Clio Project: Managing Heterogeneity. SIGMOD Record 30(1), 78–83 (2001)
60. Parkinson, H., Sarkans, U., Kolesnikov, N., et al.: ArrayExpress Update - an Archive of

Microarray and High-Throughput Sequencing-based Functional Genomics Experiments.
Nucleic Acids Research (2010)

61. Poulovassilis, A., McBrien, P.: A General Formal Framework for Schema Transforma-
tion. Data Knowl. Eng. 28(1), 47–71 (1998)

62. Rahm, E., Bernstein, P.A.: A Survey of Approaches to Automatic Schema Matching.
VLDB J. 10(4), 334–350 (2001)

63. Sarma, A.D., Dong, X. L., Halevy, A.Y.: Data Modeling in Dataspace Support Platforms.
In: Borgida, A.T., Chaudhri, V.K., Giorgini, P., Yu, E.S. (eds.) Mylopoulos Festschrift.
LNCS, vol. 5600, pp. 122–138. Springer, Heidelberg (2009)

64. Talukdar, P.P., Ives, Z.G., Pereira, F.: Automatically Incorporating New Sources in Key-
word Search-based Data Integration. In: Elmagarmid, A.K., Agrawal, D. (eds.) SIGMOD
Conference, pp. 387–398. ACM (2010)

65. Talukdar, P.P., Jacob, M., Mehmood, M.S., Crammer, K., Ives, Z.G., Pereira, F., Guha,
S.: Learning to Create Data-Integrating Queries. PVLDB 1(1), 785–796 (2008)

http://www.ncbi.nlm.nih.gov/omim/

12 A Functional Model for Dataspace Management Systems 341

66. The Gene Ontology Consortium: Gene Ontology: Tool for the Unification of Biology.
Nature Genetics 25(1), 25–29 (2000); Databases in Biology: Gene Ontology

67. Vaz Salles, M.A., Dittrich, J.-P., Karakashian, S.K., Girard, O.R., Blunschi, L.: iTrails:
Pay-as-you-go Information Integration in Dataspaces. In: VLDB, pp. 663–674 (2007)

68. Vizcaı́no, J.A., Côté, R., Reisinger, F., Foster, J.M., Mueller, M., Rameseder, J., Herm-
jakob, H., Martens, L.: A Guide to the Proteomics Identifications Database Proteomics
Data Repository. Proteomics 9(18), 4276–4283 (2009)

Author Index

Balke, Wolf-Tilo 15
Belhajjame, Khalid 305
Belussi, Alberto 83
Boucelma, Omar 271
Bressan, Stéphane 157

Catania, Barbara 1, 83, 237
Colonna, François-Marie 271

Embury, Suzanne M. 305

Fernandes, Alvaro A.A. 305

Gounaris, Anastasios 211
Guerrini, Giovanna 129, 237
Guo, Chenjuan 305

Hedeler, Cornelia 305
Hwang, Seung-won 37

Jain, Lakhmi 1

Koutrika, Georgia 57

Lofi, Christoph 15

Manolopoulos, Yannis 211
Mao, Lu 305
Migliorini, Sara 83

Nachouki, Gilles 271

Ooi, Beng Chin 187

Paton, Norman W. 305
Pitoura, Evaggelia 57

Quafafou, Mohamed 271

Stefanidis, Kostas 57

Tan, Kian-Lee 187
Tok, Wee Hyong 157
Tsamoura, Efthymia 211

Wu, Sai 187

Subject Index

adaptive technique
for computation sharing 261
for distributed query optimization 231
for filters at remote data sources 260
for load balancing 261
for load management 220–230
for load shedding 260
for non-pipelined plan 257
for operator scheduling 149, 259
for pipelined plan 241–242, 258–259
for query parallelization 231
for query plan selection 255–259
for space partitioning 200–202
routing-based 256–257

AdQP - Adaptive Query Processing see
query processing, adaptive

algorithm
branch and bound 97, 100–103, 107
partitioning-based 41
sorted-order 40

ApQP - Approximate Query Processing
see query processing, approximate

BGLAV - Brigham Young University
Global-Local-as-View 277–280,
295–297

bioinformatics see Genomics, 329–335

cardinal relation 88, 118
context

matching 69–70
specification 59–61

CQP - Continuous Query Processing
see query processing, continuous

curse of dimensionality 16

data conflict 274–277
data fusion 281–294
data heterogeneity 89, 131, 274, 305
data integration 3, 10, 272, 306

first-generation 272, 306
pay-as-you-go 10, 273, 306
second-generation 273, 306

data reduction see summary, 116–118
data scrambler 199–200
dataspace 11, 273, 306

functional model 313–329
life cycle 307–309
management system 272, 310–312
operation 327–329

data stream 8, 158, 189, 238, 243, 252
data warehousing system 8, 187
direction-based relation see cardinal

relation
distance-based relation 88, 115–116
dominance 5, 18, 47, 91

k-dominance 23
spatial 105
weak 21–23, 51

eddy 215–216, 257
distributed 218–219

empty answer problem 5, 85, 243

flushing policy 166, 168–169
Flux operator 222–226

346 Subject Index

GAV - Global as View 272
Genomics 275, 294–300
GIS - Geographic Information System 83

HDS - Heterogeneous Data Sources 3,
10, 272, 305

heuristic search 92, 113, 254
histogram 251

index-based data structure 84, 91, 163,
251

Information Retrieval 130

LAV - Local as View 272
load management

adaptive see adaptive technique,
for load management

cooperative 227–229
inter-operator 226–229
intra-operator 221–226
non-cooperative 229

load shedding 253
logical data independence 1

many answer problem 5, 85
MAPE architecture 214, 255
MapReduce 207–208
match-based similarity 144–145
mediator 10, 272, 306, 308
model management 307

operation 325–327
system 312–313

non-pipelined plan 216, 242

online aggregation 8, 189
for multi-relation queries 194–197
for multiple queries 197–199
in distributed environments 203–204
in MapReduce 207–208

Pareto semantics see dominance
relaxed see dominance, weak

performance evaluation 54, 172–174, 300
pipelined plan 216, 242
PQ - Preference-based Queries see query,

preference-based
PQP - Preference-based Query

Processing see query processing,
preference-based

preference
composition of 64–66
conditional network of 63
conflicting 64
contextual 59
elicitation 31–32
hybrid model 77
implicit 66
learning 76–77
of a user group 78
on attribute 63
on tuple 62
probabilistic model 78
qualitative 5, 61, 76
quantitative 5, 61, 76
relevance 70–71
representation 59–68
selection 68–73
specification 61–64

profile tree 71–72
progressive technique

for approximate join 170–180
for join 158–160, 194–197
for relational join 161–162
for similarity join 164
for spatial join 163–164
for XML structural join 164
join framework 164–170

QoD - Quality of Data 3, 239, 244
QoS - Quality of Service 3, 239, 249, 254
QR - Query Relaxation 2, 6, 89–92,

138–142, 245
query

continuous see progressive technique,
8, 213

multiway spatial join 113–115
nearest neighbor 88
preference-based 3, 58, 91, 246–247
similarity join 248
skyline 5, 16, 47, 91, 243–244,

246–247
spatial join 88
spatial selection 88
spatial skyline 104–112, 123–124
spatial top-k 93–103, 121–123
top-k 5, 26–32, 42–43, 91, 137, 246
twig 132–137

Subject Index 347

query optimization 230–231
cost-based 45–47, 53–54, 213
dynamic 214, 254
static 211, 214

query personalization 5, 68–75
query processing

adaptive 3, 9, 131, 148, 149, 152, 196,
200, 212, 254–261

approximate 2, 6, 92–93, 112–118,
150, 170–180, 188, 248–254

centralized 9, 215–216
continuous 3, 8, 158, 189, 243, 246,

253, 256, 260
distributed 9, 203–207, 212
of heterogeneous data sources

278–280, 287–294
personalized 73–75
preference-based 3, 5, 39, 58, 96–103,

106–112, 148–151
query rewriting 89–90, 213, 245

ranking function 28, 42, 61, 91, 94–96,
142–148, 246

routing policy 215–216, 218–220

sampling 8, 175, 177–180, 190, 193–194,
251, 325

distributed 204–205
semantic mapping 278–279, 283–287,

308, 319–321, 326–328
semantic reconciliation see data fusion
sketch 252
skyline 18

approximately dominating representative
23–24

frequency 27
k-most representative points 29

level order 21
query see query, skyline
sampling 24–25
skycube 26–28, 55
SKYRANK 28–29
spatial see query, spatial skyline
summarization 23–25
top-k frequent 27
trade-off 32–33

source discovery 324–325
spatial data 6, 85–86
spatial relation 86–88
statistical model 192–193
structural approximation 140–142
structure filter 146–148
summary 250–253
synopsis 252

td-idf scoring 145–146
top-k

frequent skyline see skyline, top-k
frequent

personalized retrieval 30–31, 68
query see query, top-k

topological relation 86–88, 118
tree-edit distance 143–144

user feedback 25, 31–32, 321, 327–328
user profile 59

vocabulary approximation 138–139

wavelet 251
Web 273

XML 6, 130, 133, 164, 245, 246, 248,
259, 277

Editors

Barbara Catania is Associate Professor at the Department
of Computer and Information Sciences of the University of
Genova, Italy. From 1999 until April 2004, she has been
an assistant professor at the same department. She re-
ceived the MS degree in Information Sciences from the
University of Genoa, Italy, in 1993. In 1998, she received
a Ph.D. in Computer Science from the University of Mi-
lan, Italy. She has been Visiting Researcher at the Euro-
pean Computer-Industry Research Center of Bull, ICL,
and Siemens in Munich, Germany, and at the National
University of Singapore. Her research activities are related

to various aspects of data management, including: pattern management, geo-
spatial databases, query processing and indexing techniques for advanced models
and applications, deductive and constraint databases, access control. She is a
member of the ACM and the IEEE.

Professor Lakhmi C. Jain is a Director/Founder of the
Knowledge-Based Intelligent Engineering Systems (KES)
Centre, located in the University of South Australia. He is
a fellow of the Institution of Engineers Australia.

His interests focus on the artificial intelligence paradigms
and their applications in complex systems, art-science fu-
sion, virtual systems, e-education, e-healthcare, unmanned
air vehicles and intelligent agents.

	Title
	Preface
	Contents
	Advanced Query Processing: An Introduction
	Introduction
	Preference-Based Query Processing
	Approximate Query Processing for Non-traditional Data
	Continuous Query Processing
	Adaptive Query Processing
	Queries over Heterogeneous Data Sources
	Conclusion and Discussion
	References

	Part I
	On Skyline Queriesand How to Choose from Pareto Sets
	Introduction
	Formalization of Skyline Sets Following the Pareto Semantics
	Relaxing the Pareto Semantics
	Summarizing the Skyline
	Approximately Dominating Representatives
	Statistical Sampling Skylines

	Weighting Characteristics of Skyline Points
	Skycubes and Subspace Analysis
	SKYRANK
	k Most Representative Skyline Points
	Personalized Top-k Retrieval / Telescope

	Cooperative Approaches
	Interactive Preference Elicitation
	Trade-Off Skylines

	Conclusion and Discussion
	References

	Processing Framework for Rankingand Skyline Queries
	Introduction
	Related Work
	Sorted-Order Algorithms
	Partitioning-Based Algorithms
	Taxonomy and Generalization

	Framework for Ranking Queries
	Preliminaries
	Extracting Skeleton
	Cost-Based Optimization Strategies

	Framework for Skyline Queries
	Preliminaries
	Extracting Skeleton
	Cost-Based Optimization Strategies

	Conclusion and Open Issues
	References

	Preference-Based Query Personalization
	Introduction
	Preference Representation
	Context Specification
	Preference Specification
	Combining Preferences
	Example: A User Profile

	Personalizing Queries Using Preferences
	Preference Selection
	Personalized Query Processing

	Preference Learning
	Conclusion and Open Issues
	References

	Part II
	Approximate Queries for Spatial Data
	Introduction
	Background on Spatial Data and Queries
	A Taxonomy of Query-Based Approximation Techniques for Spatial Data
	Query Relaxation
	Approximate Query Processing

	Spatial Top-kQueries
	Top-kRanking Function
	Top-kQuery Processing Algorithms

	Spatial Skyline Queries
	Spatial Skyline Queries
	Spatial Skyline Query Processing Algorithms

	Approximate Query Processing
	Approximate Algorithms for Multiway Spatial Join
	Approximate Algorithms for Distance-Based Queries
	Algorithms Based on Approximate Spatial Data

	Towards Qualitative Approximation Techniques for Spatial Data
	From Qualitative to Quantitative Spatial Relations
	Spatial Top-k Queries Based on Qualitative Relations
	Spatial Skyline Queries Based on Qualitative Relations

	Conclusion and Open Issues
	References

	Approximate XML Query Processing
	Introduction
	Twig Queries
	XML Documents
	Twig Queries: Definition
	(Exact) Twig Query Processing
	Twig Queries as a Basis for Approximate Querying

	Various Extents of Approximation
	Vocabulary
	Hierarchical Structure

	Ranking
	Tree Edit Distance
	An Alternative Match Based Similarity
	Structure and Content

	Approximate Query Processing
	Twig-Path Scoring and Whirpool
	TopX
	TASM
	ArHeX

	Conclusion and Discussion
	References

	Part III
	Progressive and Approximate Join Algorithmson Data Streams
	Introduction
	Background
	Why Progressive Joins?
	Joins from Different Data Models Flock Together
	Relational Joins
	Spatial Joins
	High-Dimensional Distance-Similarity Joins
	Progressive XML Structural Joins

	Generic Progressive Join Framework
	Building Blocks for Generic Progressive Join Framework
	Progressive Join Framework
	RRPJ Instantiations

	Progressive Approximate Joins
	Extreme Scenario
	Measuring the Performance of Progressive, Approximate Joins
	Different Types of Progressive, Approximate Joins
	Discussion

	Open Issues
	Conclusion
	References

	Online Aggregation
	Introduction
	Basic Principles
	Statistical Model
	Sampling

	Advanced Applications
	Online Aggregation for Multi-relation Query Processing
	Online Aggregation for Multi-query Processing
	Distributed Online Aggregation
	Online Aggregation and MapReduce

	Conclusion and Discussion
	References

	Part IV
	Adaptive Query Processing in DistributedSettings
	Introduction
	Distributed Query Processing Basics
	Related Work

	A Framework for Analysis of AdQP
	AdQP in Centralized Settings
	Overview of Techniques
	On Applying Conventional AdQP Techniques in Distributed Settings

	AdQP for Distributed Settings: Extensions to Eddies
	Techniques
	Summary

	AdQP for Distributed Settings: Operator Load Management
	Intra-Operator Load Management
	Inter-Operator Load Management
	More Generic Solutions

	AdQP for Distributed Settings: Other Techniques
	Conclusion and Open Issues
	References

	Approximate Queries with Adaptive Processing
	Introduction
	QoD2 Techniques: Some Examples
	Adaptively Approximate Pipelined Joins
	Adaptive Processing of Skyline-Based Queries over Data Streams

	QoD-Oriented Approximate Queries
	Query Rewriting
	Preference-Based Queries
	Approximate Query Processing

	QoS-Oriented Approximate Queries
	Data Reduction
	Load Shedding
	Approximation of the Processing Algorithm

	Adaptive Query Processing
	Adapting Query Plans
	Adaptively Coping with Limited Resources under Fixed Plans
	Further Adaptation Subjects

	Conclusion and Discussion
	References

	Part V
	Querying Conflicting Web Data Sources
	Introduction
	Conflicting Web Data Sources
	Overview of Conflict Types
	Conflicting Data in Life Sciences
	Assumptions about Conflict Representation

	Mediating Biological Conflicting Data with BGLAV
	BGLAV Overview
	Query Processing in BGLAV

	MFA - Multi-source Fusion Approach
	MFA Overview
	Methodology for Semantic Reconciliation
	Query Processing in MFA

	Application
	Data Source Description
	BGLAV Illustrating Examples
	MFA Illustrating Examples
	Evaluation of MFA Queries

	Conclusion and Open Issues
	References

	A Functional Model forDataspace Management Systems
	Introduction
	Dataspace Life Cycle
	Background
	Dataspace Management Systems
	Model Management Systems

	Functional Model
	An Overview
	Preliminary Assumptions
	Intensional Descriptions
	Sorts
	Operations

	Bioinformatics Use Case
	Example: Dataspace Initialization
	Example: Dataspace Maintenance
	Example: Dataspace Improvement

	Conclusion and Open Issues
	References

	Author Index
	Subject Index
	Editors

