
Towards Cost-Sensitive Learning

for Real-World Applications�

Xu-Ying Liu1,2 and Zhi-Hua Zhou2

1 School of Computer Science and Engineering, Southeast University, China
2 National Key Laboratory for Novel Software Technology, Nanjing University, China

liuxy@seu.edu.cn, zhouzh@nju.edu.cn

Abstract. Many research work in cost-sensitive learning focused on
binary class problems and assumed that the costs are precise. But real-
world applications often have multiple classes and the costs cannot be ob-
tained precisely. It is important to address these issues for cost-sensitive
learning to be more useful for real-world applications. This paper gives
a short introduction to cost-sensitive learning and then summaries some
of our previous work related to the above two issues: (1) The analysis
of why traditional Rescaling method fails to solve multi-class problems
and our method Rescalenew . (2) The problem of learning with cost in-
tervals and our CISVM method. (3) The problem of learning with cost
distributions and our CODIS method.

1 Introduction to Cost-Sensitive Learning

1.1 Unequal Costs

Machine learning and data mining methods often aim at minimizing error rate.
This implies that the costs of different misclassification errors are all equal. But
in many real-world applications misclassification costs are often different. For a
guard system, it is very dangerous to let in a stranger by mistake while a false
alarm can be endured. In medical diagnosis, the cost of misdiagnose a patient
having a life-threatening disease being healthy is much larger than the cost of
misdiagnose a healthy person as a patient.

Here are two real applications of unequal costs. The first one is the network
intrusion detection problem of KDD Cup 1999 [11]. The goal is to detect four
types of network intrusions from normal connections: DOS (denial-of-service),
R2L (unauthorized access from a remote machine), U2R (unauthorized access to
local superuser (root) privileges) and probing (surveillance and other probing).
The costs of different types of classification errors are different. For example, the
consequence of giving access to a R2L connection is much more serious than to
a probe one.
� The content of this paper is mainly from the Ph.D dissertation of the first au-

thor. This research was supported by Startup Foundation of Southeast University
(4009001126) and Open Foundation of National Key Laboratory for Novel Software
Technology of China (KFKT2011B01).

L. Cao et al. (Eds.): PAKDD 2011 Workshops, LNAI 7104, pp. 494–505, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Cost-Sensitive Learning for Real-World Applications 495

In this application, the costs are only dependent on classes. That is to say,
the costs of misclassifying the examples of one class to another class are all the
same. This kind of cost is called class-dependent cost, and it can be represented
by a matrix which is called cost matrix.

The second one is the donation problem of KDD Cup 1998 [11]. The task
is to send promotions by mail to potential donors to achieve maximum benefit.
The donation amounts are different for different person. Some people will donate
more than $100, some people will donate about $5, while some others will not
donate at all resulting a loss of $0.68 of sending a mail. Therefore, the cost of
missing a major donor is quite larger than missing a common one, and sending
to those who will not donate will lose money.

In this application, there are two classes, i.e., donor and non-donor. The cost
of sending a mail to a non-donor is mail cost, and the benefit of sending a mail to
a donor is donate amount−mail cost. So the costs dependent on examples. This
type of cost is called example-dependent cost. It is different from class-dependent
cost and cannot be represented by a cost matrix.

1.2 Formulation

Cost-sensitive learning tries to minimize total cost instead of error rate to handle
unequal costs.

Suppose X is the d-dimensional input space and Y is the output space with
y ∈ {1, 2, ..., c}. When costs are class-dependent, a training set S = {(xi, yi)}n

i=1

are i.i.d. drawn from distribution D over X×Y . Assume the cost of misclassifying
an i-th class example to j-th class is costij . The learning goal is to learn a
hypothesis h : X → Y to minimize the expected cost:

argmin
h

E(x,y)∼D[costyh(x)]. (1)

When costs are example-dependent, let cost(x, y, y1) denote the cost of predict-
ing example x belong to class y to class y1, and C̄x,y denote the cost vector of
[cost(x, y, 1), . . . , cost(x, y, c)]. Then, a training set T = {(xi, yi, C̄xi,yi)}n

i=1 are
i.i.d. drawn from distribution D over X ×Y ×R+c. The learning goal is to learn
a hypothesis h : X → Y to minimize the expected cost:

argmin
h

E(x,y,C̄x,y)∼D[cost(x, y, h(x))]. (2)

1.3 Evaluation

It is reasonable to use total cost for evaluation when costs are fixed for a specific
application. To evaluate a cost-sensitive learning method, it should be tested
with different costs since learning methods are designed for general usage. Cost
curve [6] is a popular evaluation method for cost-sensitive learning. The x-axis
is the probability-cost function for positive examples, which is defined as:

PC(+) =
p(+)cost+,−

p(+)cost+,− + p(−)cost−,+
, (3)

496 X.-Y. Liu and Z.-H. Zhou

where, p(+)/p(−) is the prior distribution of positive/negative class. The y-axis
is the total cost normalized by the cost of every example being misclassified:

Norm(E[Cost]) =
fnr ∗ p(+) ∗ cost+,− + fpr ∗ p(−) ∗ cost−,+

p(+)cost+,− + p(−)cost−,+
, (4)

where, fpr is the false positive rate and fnr is the false negative rate. The lower
a cost curve, the better the performance.

ROC curve [9] can also be used to evaluate cost-sensitive learning methods.
It plots (fpr, tpr) (tpr is true positive rate) pairs. ROC curve is a dual represen-
tation of cost curve. But it cannot directly show how a method performs with a
specific cost. While Cost curve is designed particular for cost-sensitive learning,
and it has many good properties that ROC curve does not have.

1.4 Learning Methods

Cost-sensitive learning has attracted much attention from machine learning
and data mining communities and has become an important research field
[3,31,37,32,2]. The inclusion of costs into learning has been regarded not only as
one of the most relevant topics of future machine learning research [22], but also
one of the most challenging problems in data mining research [34].

Many cost-sensitive learning methods are developed, which can be roughly
categorized into two types: (1) general methods which can adapt any standard
classification methods minimizing error rate to handle unequal costs, includ-
ing threshold-moving, sampling, and instance-weighting; (2) embedded methods
which embed cost sensitivity specifically for a particular learning method.

Threshold-moving is a very popular cost-sensitive learning method and it is
guaranteed by Bayes risk theory [25]. It lowers the decision threshold of posterior
probability p(y|x) for the class with higher cost so that expensive examples are
easier to be predicted right. Suppose there is a positive class and a negative
class, an example x should be predicted as positive when p(+|x) ≥ 0.5 according
to Bayes theory. When positive class has higher cost, the decision for x to be
positive is made when p(+|x) ≥ p0, where p0 is smaller than 0.5. This is because
Bayes risk theory predicts an example to the class with the minimum expected
loss. MetaCost [4], one of the pioneering work, is a threshold-moving method.
It uses bagging on decision trees to predict posterior probability p(y|x), then
relabels training examples to the class with the minimum expected risk. After
that, the relabeled data is used to train a classifier minimizing error rate. Many
work devoted to improve the quality of probability estimation since threshold-
moving relies greatly on it, such as [35,20].

Sampling methods gain cost-sensitivity by altering the class distributions p(y).
This type of methods increases or decreases examples for the class with higher
cost or lower cost, respectively. Then a classifier trained to minimize error rate
of the new data is sensitive to unequal costs of the original problem. Sampling
methods are guaranteed by Elkan theorem [7]. Over-sampling can increase ex-
amples and under-sampling can decrease examples. Random over-sampling has
the risk of over-fitting since it replicates examples and the new data is not i.i.d.

Towards Cost-Sensitive Learning for Real-World Applications 497

sampled. Costing is proposed [36] to overcome this problem by using rejection
sampling which samples an example from the data and then keep it with a prob-
ability proportional to its misclassification cost. The size of the sampled data by
rejection sampling is usually small. Costing uses bagging to ensemble classifiers
trained by multiple sampled data to ease this problem. Roulette sampling [23] is
proposed to solve this problem further. It can generate sampled data sets with
different sizes.

Instance-weighting methods assign weights to examples proportional to their
misclassification costs. The examples with higher costs have larger weights so
that they are easier to be predicted correctly. C4.5CS [28] is very popular in
cost-sensitive learning and it is one of instance-weighting methods. It exploits
C4.5’s ability of handling missing values [21] to utilize weighted examples. That
is, the weights are used to calculate the probability of node t belong to the
j-th class p(j|t). There are also other instance-weighting methods, such as cost-
sensitive Naive Bayes [36] and cost-sensitive support vector machines [36,1].

Though threshold-moving, sampling and instance-weighting make classifiers
sensitive to unequal costs in different ways, they are closely connected to each
other via Bayes risk theory. These general cost-sensitive methods are called
Rescaling methods [41], since they all rescale the influence of different exam-
ples in the learning process in proportion to their misclassification costs. This
will be introduced with more details in Section 3.1.

There are many embedded methods which design cost sensitivity in a par-
ticular way. Many efforts were devoted to make AdaBoost [10] cost-sensitive,
such as CSB0, CSB1, CSB2 [27], AdaC1, AdaC2, AdaC3 [24], AdaCost [8],
Asymmetric-AdaBoost [30] and Asymmetric Boosting [18]. And there are many
cost-sensitive decision trees [5,29], cost-sensitive neural networks [14,40], and
cost-sensitive Naive Bayes [12,13].

2 Towards Real-World Applications

Though cost-sensitive learning has gained some achievements, there are often
strong assumptions for these methods to be applied successfully in real-world
applications.

Before the year of 2004, most of the cost-sensitive learning methods were
designed for binary-class problems. While many real-world applications have
multiple classes, such as the network intrusion detection problem of KDD Cup
1999 (see Section 1.1). Simple extension of the methods designed for binary-class
cases failed to reduce total cost for these multi-class problems.

In 2004, Lee et al. [15] proposed a multi-class cost-sensitive SVM and Abe et
al. proposed an iterative method GBSE for multi-class cost-sensitive learning. In
2006, our previous work [39] analyzed why Recaling method fails to solve multi-
class problems and proposed Rescalenew

1, which will be introduced in Section 3.
These are some early work on multi-class cost-sensitive learning. Recent advances
on this problem include a logistic regression method mcKLR proposed by Zhang
1 A longer version is [41].

498 X.-Y. Liu and Z.-H. Zhou

and Zhou [38], a Boosting method Lp-CSB proposed by Lozano and Abe [17],
a threshold-moving method proposed by O’Brien et al. [19], and a reduction
method proposed by Xia et al. [33]. Though our method Rescalenew is one of
the early methods, it still achieves good results compared to many others [33].

On the other hand, the cost information is provided by domain knowledge
and is assumed to be precise. The classifiers will then be well tuned to reduce
the total cost w.r.t. this particular cost value. However, in many real-world
situations, although the user knows that one type of mistake is more severe than
another type, it may be difficult to specify a precise cost value. The aspects that
can lead to imprecise costs include but not limited to:

• Inherent impreciseness. Some information is naturally stochastic, e.g., one
may donate $1 or $5 randomly.

Unknown information. Sometimes we can’t know everything about a sys-
tem. For example, customers’ SSN and salary information can’t be obtained
because of privacy.

•• Variations in modeling. In the process of modeling risk, the approach may
sample data, transform input space, or using different parameters. Due to
these variations, the model may not provide precise assessment for costs.

• Expert opinions. Experts may have different opinions. And sometimes, ex-
perts can just give fair estimates of real risks.

• Dynamic environments. Environments always change. The risk assessed to-
day may change tomorrow, e.g., due to the appearance of a new competitor.

Our previous work [16] quantifies imprecise costs with cost intervals and cost dis-
tributions and then proposed methods for both cases, which will be introduced in
Section 4. Current cost-sensitive methods can be applied only when precise costs
are given. To the best of our knowledge, there is no methods learning with cost
intervals or cost distributions. A related work is [26], which considers that costs
change over time. But it assumes true cost is known at time of classification. In
our assumption, true cost is always unknown. ROC curve can evaluate classifiers
under imprecise class distributions or misclassification costs. The classifiers with
larger AUC (area under ROC curve) are regarded as better ones. This essentially
assumes that nothing whatsoever is known about the relative severity of costs,
which is a very rare situation in real-world problems. In our problem settings,
cost interval or cost distribution is known.

3 Extending Rescaling to Multi-class Problems

Our previous work [39] analyzed why traditional Rescaling methods are not
effective for multi-class problems and then proposed Rescalenew method.

3.1 Analysis

Suppose the costs are class-dependent. Recall the notations defined in
Section 1.2. We further assume that correct predictions cost zero, i.e., costii = 0

Towards Cost-Sensitive Learning for Real-World Applications 499

for i = 1, . . . , c. Let ni denote the size of the i-th class. To simplify the discussion,
all classes have the same size, that is, ni = n/c, (i = 1, . . . , c).

Bayes risk theory predicts x to the class with the minimum expected cost.
When there are 2 classes, the optimal decision of x to be the 1st class when the
following holds:

(1 − p) × cost21 ≤ p × cost12, (5)

where p = p(class = 1|x). The left and right term is the expected cost of
predicting the 1st class and 2nd class, respectively (recall that correct predictions
cost zero). When the inequality of Eq. 5 becomes equality, predicting either class
is optimal. And the p value making the equality holds is called decision threshold,
which is denoted by p∗:

p∗ =
cost21

cost21 + cost12
. (6)

When p ≥ p∗, the optimal decision for x is the 1st class. Threshold-moving
directly applies Bayes risk theory. It firstly estimates posterior probability p(y|x),
then makes decisions according to Eq. 5. In threshold-moving, the reverse of the
decision threshold for a class reflects how important this class is, which satisfies:

1/p∗

1/(1 − p∗)
=

cost12
cost21

. (7)

Sampling methods are guaranteed by Elkan theorem, which can be easily derived
from Bayes risk theory. Due to page limit, please refer to [7] for details.

Theorem 1. Elkan Theorem [7]: To make a target probability threshold p∗ cor-
respond to a given probability threshold p0, the number of the 2nd class examples
in the training set should be multiplied by p∗

1−p∗
1−p0

p0
.

When the classifier has no bias to any class (i.e., minimizing error rate), the
threshold p0 is 0.5. Then according to Elkan Theorem and Bayes risk theory,
when the number of the 2nd class examples is multiplied by cost21/cost12, p∗

is the optimal solution of Bayes risk theory. This means when the 2nd class
has higher cost, its size should be increased. Thus, a cost-sensitive problem can
be reduced to a standard classification problem by altering class distributions
accordingly. Suppose n′

i is the altered class size, then we have:

n′
1/n1

n′
2/n2

=
1

cost21
cost12

=
cost12
cost21

. (8)

That implies the change of the size of a class reflects its importance.
Instance-weighting uses examples’ weights to reflect their importance. Assum-

ing wi is the weight for the examples in the i-th class, then,

w1

w2
=

cost12
cost21

. (9)

Therefore, threshold-moving, sampling and instance-weighting can be repre-
sented in a unified framework, which is Rescaling method. It rescales the 1st

500 X.-Y. Liu and Z.-H. Zhou

class against the 2nd class according to:

τopt(1, 2) =
cost12
cost21

. (10)

Where, τopt(1, 2) is called the rescaling ratio.
When there are c classes with c > 2, the rescaling ratio should satisfy:

τopt(i, j) =
costij
costji

. (11)

The traditional Rescaling method uses costi to reflect the importance of a class:

costi =
∑c

j=1
costij , (12)

τold(i, j) =
costi
costj

. (13)

When c = 2, τold(i, j) = τopt(i, j). When c > 2, τold(i, j) is usually not equal to
τopt(i, j). This explains why tradition Rescaling method fails to solve multi-class
problems.

3.2 Rescalenew

Suppose each class is assigned a weight wi by instance-weighting. In order to
appropriately rescale all the classes simultaneously, the weights are expected to
satisfy:

wi

wj
= τopt(i, j) =

costij
costji

. (14)

This implies the following (2c) constraints should hold in the meanwhile:

w1
w2

= cost12
cost21

, w1
w3

= cost13
cost31

, . . . , w1
wc

= cost1c

costc1
w2
w3

= cost23
cost32

, . . . , w2
wc

= cost2c

costc2

.
wc−1
wc

= costc−1,c

costc,c−1

(15)

When these constraints hold simultaneously, Rescalingnew directly applies the
rescaling method, with the weights being the values that satisfy these constraints.
When they can not hold simultaneously, Rescalingnew splits the multiclass prob-
lem into a series of binary-class problems via pairwise coupling, then uses Rescal-
ing to solve them one by one. The pseudo code can be found in [41].

4 Handling Imprecise Costs

Our previous work [16] studies two forms of imprecise costs: cost intervals and
cost distributions.

Cost intervals is the cost information represented by intervals. There are sev-
eral ways to obtain cost intervals, including but not limited to:

Towards Cost-Sensitive Learning for Real-World Applications 501

1. Natural cost intervals. In some applications, costs naturally have upper and
lower bounds, e.g., stock investigating.

2. Expert opinions. It is much easier for domain expert to provide a cost interval
than “precise” costs.

3. Transforming from confidence intervals. When there’s no clear upper and
lower bound of cost, we can use a confidence interval of cost instead. For
example, the 95% confidence interval indicates cost will appear in the interval
with a probability of 0.95.

In additional to cost intervals, sometimes we can known more information about
costs, such as cost distributions. In some applications, experts can provide the
costs distributions according to their experience. For example, the normal and
uniform distributions are very popular and can be easily recognized from ex-
perience. For complex distributions, we can build models to assess costs. Then
the values provided by different models can be regarded as samples from the
underlying cost distribution.

4.1 Learning with Cost Intervals

We consider class-dependent costs and binary classification problems with y ∈
{= 1,−1}. Assume correct prediction cost 0, and let c+ and c− denote the cost
of misclassifying a positive and negative example, respectively. Assume positive
class has higher cost, i.e., c+ ≥ c−. Since the optimal decisions are unchanged
when a cost matrix is multiplied by a positive constant [7], we can simplify the
costs by fixing the cost of negative class so that we only need to consider the
cost of positive class, i.e., c− = 1, c+ = c (c ≥ 1). Let Cμ = 0.5(Cmin + Cmax)
denote the mean cost. The empirical risk w.r.t. a cost value c of a classifier h is:

R̃(h, c) =
∑n

i=1 l(c, h(x), y), (16)
l(c, h(x), y) = cI(h(x) �= y ∧ y = +) + I(h(x) �= y ∧ y = −) (17)

where, l(c, h(x), y) is the real loss of x, I(a) = 1 if a = true and 0 otherwise.
When the true cost is unknown and a cost interval is available, we assume that

the unique true cost C∗ is a random value in the interval [Cmin, Cmax]. The goal
is to learn a classifier H∗ minimizing the true risk R̃∗ = R̃(h, C∗). Unfortunately,
since the true cost is unknown, R̃∗ can’t be obtained to guide the learning
process. To overcome this difficulty, some risk R̃s can be used instead to learn a
classifier, which is in fact determined by some cost Cs, i.e., R̃s = R̃(h, Cs). Since
in general R̃s and Cs are different from the true risk R̃∗ and the true cost C∗,
respectively, we call them “surrogate risk” and “surrogate cost”. By minimizing
surrogate risk R̃s, the optimal classifier h∗

s is expected to minimize the true risk
R̃∗. But this is infeasible since R̃∗ is unknown. However, since the true cost can
be any value in the cost interval, it is expected that any possible risk of h∗

s should
be small enough. Obviously, not all surrogate risk will be good enough for this
purpose, so an appropriate surrogate cost Cs must be carefully chosen. Thus,
in order to learn a classifier making any possible risks small enough, we can

502 X.-Y. Liu and Z.-H. Zhou

formulate the problem of learning with cost intervals as Eq. 18, by considering
Cs as a variable for learning.

min
h,Cs

R̃(h, Cs) (18)

s.t. p(R̃(h, c) < ε) > 1 − δ, ∀c ∈ [Cmin, Cmax]
Cmin ≤ Cs ≤ Cmax.

Since there are infinite constrains in Eq. 18, it is intractable to get optimal
solutions. To overcome this difficulty, CISVM tries to solve a relaxation with a
small number of informative constraints. The first one is the worst case risk which
is the upper bound of the risks w.r.t. any c in [Cmin, Cmax]. its optimal solution
can make all the constraints in Eq. 18 hold. So, the worst case risk is appropriate
to be used as surrogate risk R̃(h, Cs) to guide the learning process. However, the
worst case risk could be far away from the true risk. So its optimal solution could
not make the true risk small enough sometimes. CISVM overcomes this difficulty
by minimizing a second risk, the “mean” risk (the risk w.r.t. the mean cost Cμ)
in the meanwhile to avoid overfitting to surrogate risk. This is because when
cost distribution is unknown, the mean risk has the smallest maximal distortion
of the true risk, so it is the best choice to reflect how good a classifier performs
on the entire interval.

Assuming that the prediction function is f = wTx + b, CISVM utilizes a
surrogate loss in the following form:

L(Cp, f(x), y) = Iy=+[Cp − yf(x)]+ + Iy=−[1 − yf(x)]+, (19)

where [a]+ = max(a, 0) and Ia = I(a). It means that, the loss for a negative and
positive example is L− = [1 − yf(x)]+ and L+ = [Cp − yf(x)]+, respectively.
L(Cmax, f(x), y) is the worse case risk and L(Cμ, f(x), y) is the mean risk. This
form of loss has theoretical guarantee to have smaller risk distortion than SVM’s
hinge loss.

CISVM involves two parts: (1) minimizing the regularized worst case risk by
learning a variation of SVM:

min
w,b,ξ≥0

‖w‖2/2 + λ
∑n

i=1
ξi (20)

s.t. yi(wTφ(xi) + b) ≥ Cmax − ξi, ∀i : yi = +1
yi(wTφ(xi) + b) ≥ 1 − ξi, ∀i : yi = −1

where φ(x) is a feature map induced by a kernel function. (2) minimizing the
mean risk by parameter selection on a validation set. The pseudo code can be
found in [16].

An intuitive way to handle cost intervals is that, taking some value in a cost
interval as the true cost, such as the minimal value, mean value, or maximal
value, and then applying standard cost-sensitive learning methods. We showed
theoretically that, they are not the best solutions. Experiments showed that
CISVM is significantly superior to all of them.

Towards Cost-Sensitive Learning for Real-World Applications 503

4.2 Learning with Cost Distributions

Assume that cost c is independently drawn from distribution v with domain C,
which is independent of X . Then the goal is to find a classifier h minimizing the
expected risk over v:

RCD(h, v) = Ec∼v[R(h, c)] (21)
= Ec∼vED(X,Y)[l(c, h(x), y)].

Note that, this is different from learning with example-dependent costs (see
Section 1.2) because costs are independent of examples in our settings.

An intuitive way to handle cost distributions is taking the expected cost E[c]
as true cost then exploiting standard cost-sensitive learning methods to mini-
mize R(h, E[c]) = ED(X,Y)[l(E[c], h(x), y)]. However, minimizing the risk is not
equivalent to minimizing RCD(h, v) generally. So the intuitive way is not the
optimal solution.

CODIS handles cost distributions by reducing the problem to a special case
of example-dependent cost-sensitive learning problem, which has a theoretical
guarantee (see Theorem 3 in [16]). Firstly, a cost sample ci is drawn from v
(or provided by a risk model) for each example (xi, yi) in training set S to
form a new example set Ŝ = {(xi, yi, ci)}n

i=1. Secondly, a standard example-
dependent cost-sensitive method is called to learn a classifier minimizing the
risk of Ŝ. Furthermore, to reduce the variance caused by sampling from v, cost
are sampled multiple times from v for a single example (xi, yi) since v and D
are independent. Thus, the first two steps are repeated several times and all the
classifiers form an ensemble. The pseudo code can be found in [16].

5 Conclusion

Many research work in cost-sensitive learning focused on binary class problems
and assumed that the costs are precise. But these assumptions cannot hold in
many real-world applications. This paper summaries some of our previous work
towards relaxing these assumptions: (1) The analysis of the failure of traditional
Rescaling method in multi-class problems and our method Rescalenew. (2) pro-
pose two methods to learn from cost intervals and cost distributions, respectively.
Due to page limit, we only introduce the analysis and the proposed methods in
this paper. Please refer to [39,41,16] for the detailed experimental results.

References

1. Brefeld, U., Geibel, P., Wysotzki, F.: Support Vector Machines with Example De-
pendent Costs. In: Lavrač, N., Gamberger, D., Todorovski, L., Blockeel, H. (eds.)
ECML 2003. LNCS (LNAI), vol. 2837, pp. 23–34. Springer, Heidelberg (2003)

2. Chawla, N., Japkowicz, N., Zhou, Z.-H. (eds.): Proceedings on PAKDD 2009 Work-
shop on Data Mining When Classes are Imbalanced and Errors Have Costs (2009)

504 X.-Y. Liu and Z.-H. Zhou

3. Dietterich, T., Margineantu, D., Provost, F., Turney, P. (eds.): Proceedings of the
ICML 2000 Workshop on Cost-Sensitive Learning (2000)

4. Domingos, P.: MetaCost: A general method for making classifiers cost-sensitive.
In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data mining, San Diego, California, pp. 155–164 (1999)

5. Drummond, C., Holte, R.C.: Exploiting the cost of (in)sensitivity of decision tree
splitting criteria. In: Proceedings of the 17th International Conference on Machine
Learning, pp. 239–246. Morgan Kaufmann, San Francisco (2000)

6. Drummond, C., Holte, R.C.: Cost curves: An improved method for visualizing
classifier performance. Machine Learning 65, 95–130 (2006)

7. Elkan, C.: The foundations of cost-sensitive learning. In: Proceedings of the 17th
International Joint Conference on Artificial Intelligence, Seattle, Washington, pp.
973–978 (2001)

8. Fan, W., Stolfo, S.J., Zhang, J., Chan, P.K.: AdaCost: Misclassification cost-
sensitive boosting. In: Proceedings of the 16th International Conference on Machine
Learning, Bled, Slovenia, pp. 97–105 (1999)

9. Fawcett, T.: ROC graphs: Notes and practical considerations for researchers. Tech.
rep., HP Laboratories, Palo Alto, CA (2004)

10. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences 55(1),
119–139 (1997)

11. Hettich, S., Bay, S.D.: The UCI KDD archive. University of California, Department
of Information and Computer Science, Irvine, CA (1999),
http://kdd.ics.uci.edu

12. Kolcz, A.: Local sparsity control for Naive Bayes with extreme misclassification
costs. In: Proceedings of the 11th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Chicago, Illinois, pp. 128–137 (2005)

13. Ko�lcz, A., Chowdhury, A.: Improved Naive Bayes for Extremely Skewed Misclas-
sification. In: Jorge, A.M., Torgo, L., Brazdil, P.B., Camacho, R., Gama, J. (eds.)
PKDD 2005. LNCS (LNAI), vol. 3721, pp. 561–568. Springer, Heidelberg (2005)

14. Kukar, M., Kononenko, I.: Cost-sensitive learning with neural networks. In: Pro-
ceedings of the 13th European Conference on Artificial Intelligence, pp. 445–449
(1998)

15. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and
application to the classification of microarray data and satellite radiance data.
Journal of American Statistical Association 99(465), 67–81 (2004)

16. Liu, X.-Y., Zhou, Z.-H.: Learning with cost intervals. In: Proceedings of the 16th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining, Washing-
ton, DC, pp. 403–412 (2010)

17. Lozano, A.C., Abe, N.: Multi-class cost-sensitive boosting with p-norm loss func-
tions. In: Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, pp. 506–514 (2008)

18. Masnadi-Shirazi, H., Vasconcelos, N.: Asymmetric boosting. In: Proceedings of the
24th International Conference, Corvalis, Oregon, pp. 609–61 (2007)

19. O’Brien, D.B., Gupta, M.R., Gray, R.M.: Cost-sensitive multi-class classification
from probability estimates. In: Proceedings of the 25th International Conference
on Machine learning, pp. 712–719 (2008)

20. Provost, F., Domingos, P.M.: Tree induction for probability-based ranking. Ma-
chine Learning 52(3), 199–215 (2003)

21. Quinlan, J.R.: C4. 5: Programs for machine learning. Morgan Kaufmann (2003)

http://kdd.ics.uci.edu

Towards Cost-Sensitive Learning for Real-World Applications 505

22. Saitta, L., Lavrac, N.: Machine learning - a technological roadmap. Tech. rep.
University of Amsterdam, The Netherland (2000)

23. Sheng, V.S., Ling, C.X.: Roulette Sampling for Cost-Sensitive Learning. In: Kok,
J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron,
A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701, pp. 724–731. Springer, Heidelberg
(2007)

24. Sun, Y., Wong, A.K.C., Wang, Y.: Parameter Inference of Cost-Sensitive Boosting
Algorithms. In: Perner, P., Imiya, A. (eds.) MLDM 2005. LNCS (LNAI), vol. 3587,
pp. 21–30. Springer, Heidelberg (2005)

25. Theodoridis, S., Koutroumbas, K.: Pattern Recognition, 3rd edn. Elsevier (2006)
26. Ting, K.M., Zheng, Z.: Boosting Trees for Cost-Sensitive Classifications. In:

Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS, vol. 1398, pp. 190–195.
Springer, Heidelberg (1998)

27. Ting, K.M.: A comparative study of cost-sensitive boosting algorithms. In: Pro-
ceedings of the 17th International Conference on Machine Learning, Standord, CA,
pp. 983–990 (2000)

28. Ting, K.M.: An instance-weighting method to induce cost-sensitive trees. IEEE
Transactions on Knowledge and Data Engineering 14(3), 659–665 (2002)

29. Turney, P.D.: Cost -sensitive classification: empirical evaluation of a hybrid genetic
sensitive classification. Journal of Artificial Intelligence Research 2, 369–409 (1995)

30. Viola, P., Jones, M.: Fast and robust classification using asymmetric AdaBoost
and a detector cascade. In: Advances in Neural Information Processing Systems,
vol. 14, pp. 1311–1318 (2002)

31. Weiss, G.M., Saar-Tsechansky, M., Zadrozny, B. (eds.): Proceedings of the 1st
International Workshop on Utility-Based Data Mining. ACM Press, Chicago (2005)

32. Weiss, G.M., Saar-Tsechansky, M., Zadrozny, B.: Special issue on utility-based data
mining. Data Mining and Knowledge Discovery 17(2) (2008)

33. Xia, F., Yang, Y., Zhou, L., Li, F., Cai, M., Zeng, D.D.: A closed-form reduc-
tion of multi-class cost-sensitive learning to weighted multi-class learning. Pattern
Recognition 42(7), 1572–1581 (2009)

34. Yang, Q., Wu, X.: 10 challenging problems in data mining research. International
Journal of Information Technology and Decision Making 5(4), 597–604 (2006)

35. Zadrozny, B., Elkan, C.: Learning and making decisions when costs and probabil-
ities are both unknown. In: Proceedings of the 7th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, pp.
204–213 (2001)

36. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of the 3rd IEEE International Conference on
Data Mining, Melbourne, Florida, pp. 435–442 (2003)

37. Zadrozny, B., Weiss, G.M., Saar-Tsechansky, M. (eds.): Proceedings of the Second
International Workshop on Utility-Based Data Mining. ACM Press, Philadelphia
(2006)

38. Zhang, Y., Zhou, Z.-H.: Cost-sensitive face recognition. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence 32(10), 1758–1769 (2010)

39. Zhou, Z.-H., Liu, X.-Y.: On multi-class cost-sensitive learning. In: Proceedings of
the 21st National Conference on Artificial Intelligence, pp. 567–572 (2006)

40. Zhou, Z.H., Liu, X.Y.: Training cost-sensitive neural networks with methods ad-
dressing the class imbalance problem. IEEE Transactions on Knowledge and Data
Engineering 18(1), 63–77 (2006)

41. Zhou, Z.-H., Liu, X.-Y.: On multi-class cost-sensitive learning. Computational
Intelligence 26(3), 232–257 (2010)

	Towards Cost-Sensitive Learning for Real-World Applications
	Introduction to Cost-Sensitive Learning
	Unequal Costs
	Formulation
	Evaluation
	Learning Methods

	Towards Real-World Applications
	Extending Rescaling to Multi-class Problems
	Analysis
	Rescalenew

	Handling Imprecise Costs
	Learning with Cost Intervals
	Learning with Cost Distributions

	Conclusion
	References

