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Abstract. “The statistical problem of testing cluster validity is essen-
tially unsolved” [5]. We translate the issue of gaining credibility on the
output of un-supervised learning algorithms to the supervised learning
case. We introduce a notion of instance easiness to supervised learning
and link the validity of a clustering to how its output constitutes an easy
instance for supervised learning. Our notion of instance easiness for su-
pervised learning extends the notion of stability to perturbations (used
earlier for measuring clusterability in the un-supervised setting). We fol-
low the axiomatic and generic formulations for cluster-quality measures.
As a result, we inform the trust we can place in a clustering result using
standard validity methods for supervised learning, like cross validation.
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1 Introduction

From its very beginning, the field of knowledge discovery and data mining con-
sidered validity as a core property of any outcome. The supervised case assumes
a function c(x) and attempt to fit a model F (x) given the training set (or data
points) {(xi, c(xi))}i=1,...,n. One can evaluate the quality of the fit with many
solid alternatives [7,13]. However, in the un-supervised setting we are only pre-
sented with the set of cases {xi}i=1,...,n. Most likely we are performing such
learning with no solid grounds for what is the actual (real-world) generator of
these examples and any assumption on our part may actually constitute a far
too large unjustified bias. What in fact constitutes learning and what is the goal?

How can we establish some confidence (or “credibility” in the language of
Witten and Frank [13, Chapter 5]) on the result delivered by a clustering algo-
rithm? This constitutes a fundamental question. The very well known distance-
based clustering algorithm k-means is among the top 10 most used algorithms
in knowledge discovery and data mining applications [14], however it is statis-
tically inconsistent and statistically biased (converging to biased means even if
the input is generated from k spherical multi-variate normal distributions with
equal proportions). How do the users of such a method derive any trust in their
results? Or in the credibility of any other clustering methods?
� Work performed while hosted by Universitat Popeu Fabra, Barcelona, Spain.

L. Cao et al. (Eds.): PAKDD 2011 Workshops, LNAI 7104, pp. 197–208, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://vladestivill-castro.net


198 V. Estivill-Castro

This paper proposes two new measures of cluster quality. The fundamental
idea is that no matter what clustering algorithms is used, in the end one de-
sires to obtain a model that can accurately answer the question “are xi and xj

in the same cluster?” When clusterings are partitions, this questions has only
two disjoint answers (yes or no), and thus, the results of a clustering algorithm
can be scrutinized by the facility by which supervised learning algorithms can
discover a suitable classifier. We show that these two measures have mathe-
matical properties that have been considered desirable by several authors. The
measures are inspired by the intuition that if the clustering results does identify
classes that are well-separated, these results constitute an easy problem in the
supervized-learning sense. This implies formalizing a notion of “instance easi-
ness”. We measure how easy is to learn in the supervized-learning case by using
a similar approach or easiness previously introduced for unsupervised learning.
That is, we will draw on the notions of “clusterability” [2] to suggest the mech-
anisms to achieve this.

2 Instance Easiness

In the machine learning literature, instance easiness has been applied with the
notion of clusterability [2] to the un-supervised learning (or clustering) case.
That is, Ackerman and Ben-David introduced notions to measure how easy is to
cluster a particular instance X into k clusters.

2.1 Generic Definitions

We now introduce formal definitions and nomenclature for the clustering problem
(un-supervised learning) that follow the general formulations of Ackerman and
Ben-David [1] since this is a generic form that is widely applicable.

Let X be some domain set (usually finite). A function d : X × X → � is a
distance function over X if

1. d(xi, xi) ≥ 0 for all xi ∈ X ,
2. for any xi, xj ∈ X , d(xi, xj) > 0 if and only if xi �= xj , and
3. for any xi, xj ∈ X , d(xi, xj) = d(xj , xi) (symmetry).

Note that a distance function is more general than a metric; because the triangle
inequality is not required1.

A k-clustering of X is a k-partition, C = {C1, C2, . . . , Ck}. That is,
⋃k

j=1 Ci =
X , Cj �= ∅, for all j ∈ {1, . . . , k}; and Ci ∩ Cj = ∅ for all i �= j. A clustering of
X is a k-clustering of X for some k ≥ 1. A clustering is trivial if |Cj | = 1 for
all j ∈ {1, . . . , k} or k = 1. For xi, xj ∈ X and a clustering C of X , we write
xi ∼C xj if xi and xj are in the same cluster of clustering C, and we write
xi �∼C xj if they are in different clusters.
1 Most authors prefer to call these functions dissimilarities and use distance as syn-

onym to metric, but here we keep this earlier use of distance so our notation follows
closely the notation in the clustering case [1,2].
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A clustering function for some domain set X is a function (algorithm) that
takes as inputs a distance function d over X , and produces as output a clustering
of X . Typically, such clustering function is an algorithm that attempts to obtain
the optimum of a loss function that formalizes some induction principle. In
this form, a clustering problem is an optimization problem. For example, if we
minimize the total squared error when we chose a set of k representatives in
an Euclidean space (that is, d is the Euclidean metric Eucl) we obtain the
problem that k-means attempts heuristically to solve. Given X with |X | = n
and k > 1, minimize ErrorSQEucl(R) =

∑n
i=1[Eucl(xi, rep[xi, R])]2 where R

is a set of k representatives and rep[xi, R] is the nearest representative to xi

in R. This problem can be solved exactly by first enumerating all k-clusterings
of X , and by taking the mean of each cluster as a representative and finally
by evaluating the loss. However, the number of k-clusterings corresponds to the
Stirling numbers of the second kind, and this approach has complexity at least
exponential in n. A discrete version is usually referred as medoids where we also
require that R ⊆ X . In this case, the problem remains NP-hard as it reduces to
the p-median problem; however, we can now exhaustively test all subsets R ⊂ X
with |R| = k. The complexity of this exhaustive search algorithm is now at least
proportional to

(
n
k

)
. This approach would have complexity O(nk+1) and would

now be polynomial in n. While Ackerman and Ben-David [1,2] refer to this as
“polynomial” for some of their easiness results alluded earlier, it is perhaps more
appropriate to refer to it as polynomial in n for each fixed k and thus our use of
quotation marks (this class is also known as the class XP).

2.2 Instance Easiness for Supervised Learning

We introduce here a notion of instance easiness for the supervised learning prob-
lem. To the best of our knowledge, this is the first use of instance easiness applied
to supervised learning. It also will be the building block for our presentation of
cluster-quality measures. Our approach follows the notion of stability to per-
turbation of a problem (this approach was used for the unsupervised case by
Ackerman and Ben-David [2]). Consider an instance of the supervised learning
problem given by

1. a set of n pairs {(xi, c(xi))}n
i=1, where X = {x1, . . . , xn} is the training set

of labeled examples, and Y is a finite2 set of labels (thus, c(xi) ∈ Y ),
2. a family of models F , so that if F ∈ F , then F : X → Y , and
3. a real valued loss function L.

The goal is to find FO ∈ F that optimizes the loss function. For brevity we will
just write [X, Y ] for an instance of the supervised learning problem. For example,
the family of models could be all artificial neural networks with a certain number
of layers and neurons per layer and the loss function could be the total squared

2 In this paper we consider |Y | ∈ N and small. Thus we focus on classification and
not on interpolation/regression.
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error. Then, back-propagation can be seen as a gradient-descent approach to the
corresponding optimization problem.

We also make some generic observations of what we require of a loss function.
First, the loss function in the supervised learning setting is a function of the
instance [X, Y ] and the classifier F : X → Y , thus, we write L([X, Y ], F ).
We expect F to always be a mathematical function (and not a relation). In the
supervised learning setting, the instance [X, Y ] is typically formed by data points
for a mathematical function c (that for each element in the domain, associates
one and no more than one element in the codomain). However, in practice, it
is not unusual to have contradictory examples; that is, it is not uncommon for
data sets derived from practice to have two (or more) contradictory examples
(xi, c) and (xi, c

′) with c �= c′. Nevertheless, what we will require is that the loss
function cannot be oblivious to the requirement that the classifier be a function
in the following sense. Given an instance [X, Y ], at least for every classifier FO

that optimizes the loss function L([X, Y ], F ) the optimal value L([X, Y ], FO)
cannot be the same to L([X ′, Y ], FO) when X ′ is the same as X except that
X ′ contains one or more additional contradictory examples (perturbations can
cause more contradictory examples, and that cannot improve the loss).

What we propose is that, if there is a distance function d over X , then we can
consider an instance of supervised learning as easy if small perturbations of the
set X result also in small perturbations of the loss. More formally, we say that
two set X and X ′ are ε-close (with respect to a distance function d over X ∪X ′)
if there is a bijection3 π : X → X ′ so that d(xi, π(xi)) ≤ ε, for all i = 1, . . . , n.
With these concepts we introduce our first fundamental definition.

Definition 1. Let [X, Y ] and [X ′, Y ′] be two instances of the supervised learning
problem, we say they are ε-close if

1. Y ′ ⊆ Y (no new classes are introduced),
2. X and X ′ are ε-close, and c(xi) = c(π(xi)) where π : X → X ′ provides the

ε-closeness.

That is, the training sets are ε-close and there are no more class labels.
Now, let OPTL(X, Y ) be the optimum value of the loss function L for the

instance [X, Y ]; that is, OPTL(X, Y ) = min{L([X, Y ], F ) | F ∈ F} = L(FO).

Definition 2. We say that the instance [X, Y ] is (ε, δ)-easy if

1. there is F0 : X → Y a classifier that optimizes the loss, and
2. for all instances [X ′, Y ] that are ε-close to [X, Y ], we have

L([X ′, Y ], F0) ≤ (1 + δ)OPTL(X, Y ).

The loss does not depend on any distance function on X . We also assume that
the loss is based on the categorical/nominal nature of the set Y , and thus the loss
value does not change if we rename the classes with any one-to-one function. We
say such loss functions are isomorphism-invariant. Common loss functions are
isomorphism-equivalent; that is, they do not depend on the name of the classes.
3 Originally ε-closeness was defined [2] with a one-to-one mapping, but we ensure the

relation “X is ε-close to X ′” is symmetric, but this is not necessary for what follows.
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2.3 Illustration

We here illustrate the concepts introduced earlier. For visualization purposes, we
consider a two-dimensional data set, and for simplicity, we assume we are using a
clustering algorithm like k-means and, because of some intuition, we are seeking
two clusters4, i.e. k = 2. The data set in Fig. 1 consist of 4 normal distributions
in a mixture with equal proportions (1/4). The respective means µ1 = (0, 0),
µ2 = (20, 20), µ2 = (−25, 25), µ2 = (−5, 45). All have diagonal covariance
matrices and all elements of the diagonal are equal to 10. While this data is not
challenging for k-means, there are at least two local minima for the clustering loss
function. Therefore, depending on its random initialization, k-means produces
two clusterings. One with centers M = {(−15, 35), (10, 9)} and another with
centers M ′ = {(−12, 11), (7, 33)}. We used WEKA’s SimpleKMeans [8] and
the first set is obtained with 7 iterations on average (see Fig. 1) while the second
one required 29 iteration on average (see Fig. 1).

Fig. 1. Data with 4,000 points and two clusterings resulting from centers M and M ′

For each of this clusterings we can draft a supervised learning problem. We
argue that the corresponding supervised learning problem that results from this
two clusters are different in terms of how easy they are. Note however, that Fig. 1
illustrates the corresponding supervised learning problems; and therefore, they
correspond to linearly separable classes (if fact, k-means classes are a Voronoi
partition of the universe and therefore, always separable by k-hyperplanes).
This suggest that k-means always produces what can be regarded as an “easy”
supervised-learning problem (we would expect linear discriminant, support vec-
tor machines, CART and many classifiers to do very well).

We suggest that if the clusters do reflect genuine structure and we have dis-
covered meaningful classes, the corresponding job of using these concepts for
learning a classifier should be “easier”, and we measure “easier” by how stable
the supervised learning instance is to perturbations. Obtaining very accurate
classifiers for the two supervised learning problems in Fig. 1 can be achieved with
the simplest of WEKA’s algorithms. Using WEKA’s stratified cross-validation to
4 Although here we know the ground-truth, in a practical clustering exercise we would

not know much about the data and identifying the value of k would be part of the
challenge; one approach is to test if there are clusters by evaluating k = 1 vs. k = 2.
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evaluate accuracy, NaiveBayes achieves 99.7% accuracy, only misclassifying 11
instances for M while it achieves 99.1% accuracy, only misclassifying 36 instances
for M ′. Similarly, WEKA’s NNge (Nearest-neighbor-like algorithm using non-
nested generalized exemplars which are hyper-rectangles that can be viewed as
if-then rules) achieves 99.2% accuracy, only misclassifying 32 instances for M
while it achieves 99.2% accuracy, only misclassifying 33 instances for M ′. How-
ever, if one takes the data set in Fig. 1 and associates all those points that have
one or more negative coordinates to one class and those points that have both
positive coordinates to another class, we obtain a supervised learning problem
Problem: N = x1 > 0 ∧ x2 > 0 that is also “easy” because the two classifiers
above can also obtain high accuracy. In fact, (also evaluated by WEKA’s strat-
ified cross-validation) NNge achieves 99.95% accuracy only missing 2 instances
and NaiveBayes achieves 91% accuracy only missing 361 instances.

However, clearly the last supervised learning problem is not the result of a
good clustering. What we do now is keep those classifiers learned with the unper-
turbed data, and use perturbed data as test data. We see that those classifiers
that come from less quality clusterings degrade their accuracy more rapidly in
proportion to the perturbation. We perturbed the 3 supervised learning problems
by adding a uniformly distributed random number in [−1, 1] to the attributes
(but the class remains untouched). Now in M , NaiveBayes is 99.5% accurate
(19 errors on average), NNge is 99.6% accurate (14 errors on average). In M ′

NaiveBayes is 99% accurate (40 errors on average), NNge is 99% accurate

Fig. 2. Deterioration of performance of classifiers as perturbations on the attributes is
larger. But classifiers derived from good clusters preserve accuracy.
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(26 errors on average), In Problem N: x1 > 0 ∧ x2 > 0 NaiveBayes is 90%
accurate (369 errors on average), NNge is 99% accurate (44 errors on average),

Fig. 2 shows points (ε, y) where misclassification rate y in the test-set corre-
sponds to data that has suffered a perturbations with uniformly distributed ran-
dom noise is [−ε, ε]. The behavior (effects on the loss) is essentially independent
of the classifier, with the two classifiers for M remaining stable to perturbation.
However, for the other supervised learning problems, the misclassification rate
rapidly grows (classification accuracy deteriorates).

In fact, while the growth rate is important, we will be interested on the stabil-
ity. That is, we focus on the largest ε > 0 where the problem remains easy since
in this region the loss suffers small impact. In Fig. 1, this correspond to how far
right does the misclassification line remain flat before it starts to increase.

This experimental observation will be formalized in the next section to con-
struct measures of cluster quality. Note that Problem N has a simple boundary
but not a good clustering. Although M ′ is a good clustering, the M clustering
is the best because the groups are essentially the clouds at (0, 0) and (20, 20) on
one side and the clouds at (−25, 25) and (−5, 45) on the other. These pairing
has more separation that the paring by M ′.

We emphasize that this example is mainly for illustration purposes. By no rea-
sonable standard data of 4 normal distributions with equal cylindrical covariance
in two dimensions and equal proportions corresponds to a challenging clustering
exercise. In fact, with 4, 000 points, it hardly corresponds to a challenging data
mining setting. However, we believe this illustrates our point further. The most
widely used clustering algorithm (k-means) even on this data set (which is sup-
posed to be suitable for k-means since clusters are spherical and separated) can
provide wrong answers. Clearly, part of the problem is the inappropriate value
k = 2. Can the loss function for k-means indicate the better clustering between
M and M ′? This example is so simple that such is the case. For example, WEKA
standard evaluation with SimpleKMeans indicates a better loss function for M
than for M ′. But this example is for illustration only.

2.4 The Clustering-Quality Measure

A clustering-quality measure (CQM) is a function that is given a clustering C
over (X, d) (where d is a distance function over X) and returns a non-negative
real number. Many proposals of clustering-quality measures have been suggested
for providing some confidence (or ensuring validity) of the results of a clustering
algorithm. Before we introduce two new CQM, we need a bit of notation. If d
is a distance function over X and λ > 0 with λ ∈ �, then the λ-scaled version
of d is d′ = (λd) and is defined by (λd)(xi, xj) = λ · d(xi, xj). If d is a distance
function over X , the normalized version of d is denoted by nor(d) and is defined
as the 1/λ-scaled version of d when λ = max{d(xi, xj) | xi, xj ∈ X}; that is,
nor(d) = (d/λ) = (d/ max{d(xi, xj) | xi, xj ∈ X}).
Definition 3. Given a clustering C = {C1, . . . , Ck} of (X, d), the CQM by
classification mc is the largest ε > 0 so that, if we construct a supervised learning
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instance [X, C] derived from the clustering by Y = C and c(xi) = Cj such that
xi ∈ Cj, then [X, C] is (ε, 0)-easy with respect to nor(d).

Definition 4. Given a clustering C = {C1, . . . , Ck} of (X, d), the CQM by
pairing mp is the largest ε > 0 so that, if we construct a supervised learning
instance [X × X, {Yes,No}] derived from the clustering C by

c(xi, xj) =
{

Yes if xi ∼C xj

No if xi �∼C xj ,

then the instance [X × X, {Yes,No}] is (ε, 0)-easy with respect to nor(d).

We are now in a position to prove the four (4) properties required by Ackerman
and Ben-David of a CQM. These properties were inspired by the 3 axioms sug-
gested by Kleinberg [9]. Kleinberg proved that although the axioms are desirable
of all clustering functions, they were inconsistent. This is usually interpreted as
the impossibility of defining what clustering is. However Ackerman and Ben-
David properties are sound, thus suggesting it is feasible to describe what is
good clustering. Scale invariance means that the output is invariant to uniform
scaling of the input.

Definition 5. Scale invariance: A CQM m satisfies scale invariance if ∀C a
clustering of (X, d) and λ > 0, we have m[C, X, d] = m[C, X, (λd)].

Lemma 1. On a bounded study region, The CQM mc and the CQM mp satisfy
invariance.

Since nor(d) = nor(λd) for all λ > 0 and the definitions of mp and mc use the
normalized version of d the lemma follows. Thus, we now assume all distance
functions are normalized to the largest ball that includes the study region.

For the next property we need to introduce the notion of isomorphic clusters,
denoted C ≈d C′. A distance-preserving isomorphism φ : X → X satisfies that
∀xi, xj ∈ X , d(xi, xj) = d(φ(xi), φ(xj)). Two clusters C and C′ of the same
domain (X, d) are isomorphic if there exists a distance-preserving isomorphism
such that ∀xi, xj ∈ X , we have xi ∼C xj if and only if φ(xi) ∼C′ φ(xj).

Definition 6. Invariant under isomorphism: A CQM is invariant under iso-
morphism (isomorphism-invariant) if ∀C, C′ non-trivial clusterings over (X, d)
where C ≈d C′, we have m[C, X, d] = m[C′, X, d].

Lemma 2. The CQM mc and mp are isomorphism-invariant.

Definition 7. Richness: A CQM satisfies richness if for each non-trivial par-
tition C of X there is a distance function d̂ such that C maximizes m[C, X, d̂]
when considered as a function of C.

Lemma 3. The measures mc and mp satisfy richness.

The final property of a CQM is consistency. Given a clustering C over (X, d)
(that is, d is a distance function over X), we say that another distance function
d′ over X is a C-consistent variant of d if
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1. d′(xi, xj) ≤ d(xi, xj) ∀xi ∼C xj , and
2. d′(xi, xj) ≥ d(xi, xj) ∀xi �∼C xj .

Definition 8. Consistency: A CQM satisfies consistency if ∀ C a clustering of
(X, d) and d′ that is C-consistent variant of d, we have m[C, X, d′] ≥ m[C, X, d].

Lemma 4. The CQM mc and the CQM mp satisfy consistency.

3 Discussion

We have introduced two CQM and mathematically demonstrated fundamental
properties that have several favorable implications. First, CQM that satisfy rich-
ness, scale invariance, consistency and isomorphism-invariance can be combined
to produce new measures with also these properties [1]. Thus, we have not only
enriched the set of CQM since mc and mp become generators to produce CQM.

Secondly, the methods to verify accuracy in supervised learning are now well
established and many strong and solid implementations exist (like WEKA [8]).
Therefore, the issue of cluster quality can now be simplified as we did in the
earlier illustration. Before the proposal here, it is not surprising to find state-
ments like: “Evaluation of clusterers is not as comprehensive as the evaluation
of classifiers. Since clustering is unsupervised, it is a lot harder determining how
good a model is” [4]. Our proposal here shows that the machinery for evaluating
supervised learning can be useful to tackle the issue of cluster validity without
the need of already classified (supervised) instances. We should aim for cluster
validity methods that are as close as possible to the “comprehensive” landscape
we have for supervised learning. Our proposal here suggests this direction.

Our proposal is applicable to the issue of alternative clusterings. The outputs
from these algorithms are several alternative clusterings, because the data-miner
believes there may be several meaningful ways to create such clusterings [3].
While this approach needs to resolve the issue of cluster similarity or dissimilarity
(as in external cluster validity), it is also guided by a measure of cluster quality.
That is, the approach also needs to provide some credibility for each of the
multiple answers provided to an unsupervised learning problem.

Traditionally, cluster validity has taken three avenues: internal cluster validity,
external cluster validity [7], and experimental cluster validity. A comprehensive
discussion of the issues and challenges with each appears elsewhere. Approaches
to cluster validity since then continue along these lines. But, typically there is an
admission that evaluating a model built from a clustering algorithm is challeng-
ing [7]. Proposals like comparing a matrix of two clusterings [7] still face many
problems, and lead to the challenges of measures of similarity between clusters.
In the handbook of Data Mining and Knowledge Discovery, Chapter 15 [11] has
a discussion of clustering methods, and some material on cluster evaluation and
validity. M. Halkidi and M. Vazirgiannis [7, Chapter 30] also offer a discussion
of cluster validity. The fact of the matter all remain variations of earlier meth-
ods. Our approach is perhaps most similar to other experimental approaches [6,15]
which have justification in the intuition that the boundary of clusters should show
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sparsity. Since implicitly, support vector machines offer to find margins that are
as wide as possible, one can hypothesize about outliers and boundaries and filter
them out [6]. If removing few boundary items and repeating the clustering passes
an external validity test that shows the clustering is robust to this change, then
we can raise our confidence that the clustering has good quality. Otherwise the
clustering is suspicious. A similar idea is derived from mathematical properties of
proximity-graphs [15]. Here as well, a candidate clustering can be polished on the
boundaries of clusters simply by removing those data points that the proximity
graph suggests are on fringes of cluster. If repeating the alternation of polishing
and clustering offers stable clusters (clusters do not change with respect to some
external clustering validity measure), trust in the clustering is raised.

Both of these mechanisms [6,15] have a notion of robustness, and the founda-
tions are derived from proximity structure reflected in the clusterer (clustering
function) itself. However, they are computationally costly as clustering needs
to be repeated, external cluster-validity functions need to be computed and the
test can only be one of similarity between pairs of clusters. Our approach here
is mathematically more formal, and it is easy to implement by the availability
of supervised learning techniques and their implementations.

Consensus clustering or ensemble of clusters [10,12,16] is an extension of these
earlier ideas [6,15] of agreement between clusterings. Although initially proposed
for problems in bio-informatics, the concept seems quite natural, since in fact,
many clustering algorithms will produce different clusters if initialized with dif-
ferent parameters. So, the same clustering approach leads to multiple answers.
Proponents of consensus clustering argue it is sensible to produce a clustering
that maximizes the agreement (a similar idea occurs with multiple classifiers or
a classifier ensemble).

Our approach here also enables to give some assessment of the clustering
participating in the ensemble as well as the resulting combined clustering. Our
approach does not need to deal with the issues of cluster similarity. But, we
illustrate we can apply our approach to consensus clustering with the data set
made available by Dr. A. Strehl x8d5k.txt [12]. This is a mixture of 8 non-
symmetrical Gaussians in 8 dimensions. The data consist of 1000 points, and
the Original cluster labels from the mixture are provided. These original labels
provide 200 data points from each cluster. Also, 5 clusterings V1, V2, V3, V4,
and V5 are provided and the consensus clustering (Combined) of these five is
the 6-th clustering. It corresponds to “the best known labels in terms of average
normalized mutual information (ANMI)”. We applied our approach to these 7
clustering and present our results in a similar way to our earlier illustration in
Fig. 3. Because we have the Original clustering (sometimes referred as the true
clustering), we can see that the alternative clusters are in fact weaker that the
truth. However, the Combined cluster is extremely satisfactory and our approach
shows that it is essentially equivalent for our CQM to the Original. These con-
clusions are also in agreement if the supervised learner is WEKA’s NaiveBayes
or NNge. This is what we would expect.
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Fig. 3. Deterioration of performance of classifiers as perturbations on the attributes
are larger (data set is x8d5k.txt[12]. But classifiers derived from true clusters and
consensus cluster preserve accuracy.

4 Summary

Despite decades of research the fundamental issue of clustering validity has re-
mained unsolved. So much so that widely accepted software like WEKA has
minimal tools and resources for it. This contrasts with the large set of tools for
validity for the supervised learning case. This paper enables to use the set of
tools for the supervised case in the unsupervised case.

The intuition of our work is a simple idea. When we have to discover groups
(classes) in a data set where we have no information regarding this, whatever
results must be assessed for validity. A clustering algorithm’s output must be
evaluated and external validity approaches are out of the question, since if we
had knowledge of the true clustering, why would be trying to find it? However,
we would expect that the classes obtained by the clustering function are in some
way separable and constitute meaningful concepts. They should be robust to
small perturbations. A classifier obtained from corresponding supervised learn-
ing result should have performance that degrades rather slowly when presented
with data that is close. Such data can be obtained by perturbations and then
the robustness of the classifier measured by the now standard approaches of
supervised learning.

We have provided illustrations that this idea is manifested in practical
clustering scenarios including consensus clustering. We have also provided the-
oretical foundations by formalizing a notion of instance easiness for supervised
clustering and then deriving measures of cluster quality. We have shown
that these measures satisfy the generic properties of richness, scale invariance,
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isomorphism-invariance and consistency that are common to many measures
(however, some of these other measures are very costly to compute). Thus, our
approach enables a practical and theoretical useful mix.
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