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Abstract. The quality of rankings can be evaluated by computing their
correlation to an optimal ranking. State of the art ranking correlation
coefficients like Kendall’s τ and Spearman’s ρ do not allow for the user
to specify similarities between differing object classes and thus treat the
transposition of objects from similar classes the same way as that of ob-
jects from dissimilar classes. We propose ClasSi, a new ranking correla-
tion coefficient which deals with class label rankings and employs a class
distance function to model the similarities between the classes. We also
introduce a graphical representation of ClasSi akin to the ROC curve
which describes how the correlation evolves throughout the ranking.
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1 Introduction and Related Work

Evaluating the performance of an algorithm by comparing it against others is an
important task in many fields such as in data mining and information retrieval.
There are several evaluation methods developed for this purpose which can be
integrated in the algorithm design process to improve effectiveness. Data mining
and information retrieval models often return a ranking of the database objects.
This ranking can be evaluated by checking if relevant documents are found before
non relevant documents. Available measures for this evaluation are precision and
recall as well as their weighted harmonic mean, known as the F-measure [9].
Related evaluation measures include the mean average precision [8], the ROC
curve and the area under the ROC curve (AUC) [2]. These measures are all
limited to binary class problems, distinguishing only between relevant and non
relevant objects. Extensions of ROC to multi-class problems such as generalized
AUC [4], the volume under the curve [1], and the scalable multi-class ROC [5]
are combinations of two-class problems and do not consider class similarities.
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When evaluating object rankings, statistical methods to measure the corre-
lation between two rankings can also be employed (e.g. Kendall’s τ [6] and
Spearman rank correlation coefficient ρ [11]). A positive correlation coefficient
indicates an agreement between two rankings while a negative value indicates
a disagreement. Variants of τ such as τb, τc [7], gamma (Γ ) [3], and Somers’
asymmetric coefficients [10] address the case of tied objects through different
normalizations. However, these rank correlation measures only take the order of
objects into account and the degree of similarity between objects is ignored.

In this work we propose ClasSi, a rank correlation coefficient which is capable
of handling rankings with an arbitrary number of class labels and an arbitrary
number of occurrences for each label. The main advantage of ClasSi is that it
incorporates a class similarity function by which the user is able to define the
degree of similarity between different classes.

In Section 2.1 we describe existing rank correlation coefficients τ and ρ. Sec-
tion 2.2 defines ClasSi and Section 2.3 examines its properties, showing that all
requirements of a rank correlation coefficient are met. In Section 2.4 we discuss
how to compute ClasSi for the first k ranking positions, obtaining a graphi-
cal representation similar to the ROC curve. Section 3 analyzes the behavior of
ClasSi in an experimental setup. Finally, in Section 4 we conclude the paper.

2 Ranking Quality Measures for Objects in Classes

We propose a new ranking correlation coefficient which allows for a user defined
class distance measure and also comes with a graphical representation.

As mentioned before, the state of the art evaluation measures cannot han-
dle class label rankings where objects in the database are grouped into classes
according to some property that confers a notion of group similarity. For ex-
ample, in an image similarity search system, if an object from a query test
set is assigned the class label “bonobos”, it only matters that other objects
from the class “bonobos” are retrieved early on, but it does not matter which
particular bonobo appears early on. In addition, objects from the similar class
“chimpanzees” should appear before objects from the dissimilar class “tigers”.

The preferred order of object classes in a ranking then depends on the class
of the object for which the other objects were ranked (e.g., a query object in a
similarity search scenario). An optimal ranking in the presence of classes is one
where objects from the same class as the query object come first, then objects
from the neighboring classes and so on. For example, a query from the class
“bonobos” may have following optimal ranking where the order of the objects
within the classes is arbitrary (b = bonobo, c = chimpanzee, t = tiger):

rbc:
b b b c c c c t t t
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A worst-case ranking is one in which objects from the most dissimilar class
come first, then objects from one class closer and so on. The objects from the
class coinciding with the query are the last ones in this ranking. For the same
example query, a worst case ranking is:

rwc:
t t t c c c c b b b

To evaluate the quality of a computed ranking we look at its correlation to
the optimal ranking. A positive correlation coefficient indicates a certain agree-
ment between the two rankings. The higher the coefficient the more the ranking
coincides with the optimal one, and if its value is 1 then it corresponds to it.

Additionally ClasSi accounts for the different degrees of dissimilarities be-
tween classes. For the example above, we can see that the classes “bonobos” and
“chimpanzees” are more similar to each other, and both of them are dissimilar
from the class “tigers”. Consider the following two rankings:

r1:
c b b b c c c t t t

r2:
b b b c t c c c t t

Intuitively, the r1 ranking coincides better with rbc than r2 does although
both r1 and r2 have exactly one non bonobo object moved forward by three
slots and r1 has a non bonobo object at the very first position. The reason is
that mistaking a tiger for a bonobo is a much bigger mistake than mistaking a
chimpanzee for a bonobo.

2.1 Preliminaries: Measuring Ranking Quality

Throughout the paper we consider a database DB = {o1, . . . , om} of cardinality
m. A ranking of the objects in DB is defined as a bijective mapping r from DB
to {1, . . .m} where r(o) gives the position of object o ∈ DB in the ranking and
r−1(a) gives the ath object from DB according to the ranking.

Measures such as Kendall’s τ [6] and Spearman’s rank correlation coefficient
[11] assess the correlation between two ranking. As they will serve as the basis
for the measure proposed in Section 2.2, they shall be reviewed here shortly.
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Definition 1. Kendall’s τ. Given a database DB = {o1, . . . , om} and two
ranking r1, r2, Kendall’s correlation coefficient τ is defined as

τ =
Con − Dis
1
2m(m − 1)

= 1 − 2 · Dis
1
2m(m − 1)

with

Con = |{(r−1
1 (a), r−1

1 (b)
) | 1 ≤ a < b ≤ m ∧ r−1

1 (a) ≺r2 r−1
1 (b)}| and

Dis = |{(r−1
1 (a), r−1

1 (b)
) | 1 ≤ a < b ≤ m ∧ r−1

1 (b) ≺r2 r−1
1 (a)}|

where oa ≺r ob ⇔ r(oa) < r(ob).

Kendall’s τ can be used to evaluate the quality of a ranking r by comparing
r to an optimal ranking r∗. Kendall’s τ then measures the correlation of these
two rankings by counting the number of concordant object pairs (those, that are
sorted the same way by both rankings) minus the number of discordant object
pairs (those that are sorted differently by the two rankings). The result is then
divided by the total number of pairs (1

2m(m − 1)) to normalize the measure
between -1 and 1 where 1 is reached for identical rankings and -1 for reversed
rankings.

While Kendall’s τ takes the number of discordant pairs into account Spear-
man’s rank correlation coefficient ρ explicitly considers the difference in ranking
positions when comparing two rankings.

Definition 2. Spearman’s ρ. Given a database DB = {o1, . . . , om} and two
ranking r1, r2, Spearman’s rank correlation coefficient ρ is defined as

ρ = 1 − 6
∑

o∈DB(r1(o) − r2(o))2

m(m2 − 1)
.

Similar to Kendall’s τ , Spearman’s ρ is normalized between -1 and 1. Even
though the difference in ranking position is considered by ρ, it is conceivable
that two mismatches (each for example by ten ranking positions) may be of
notably differing importance to the quality of the rankings. In the following
we propose to incorporate knowledge on cross object (class) similarity into the
evaluation of rankings. This allows for a more meaningful assessment of for
instance similarity search results, which currently are mostly evaluated using
either simple precision/recall measures or ranking quality measures that ignore
class similarity information.

2.2 Class Similarity Ranking Correlation Coefficient ClasSi

We next introduce according class labeling and comparison functions that help us
assess the quality of rankings in this scenario. The function l : DB → C assigns
a class label from C = {c1, . . . cn} to each object o ∈ DB. The class distance
function d : C × C → R conveys the notion of (dis)similarity between indi-
vidual classes (e.g., d(bonobos, bonobos) = 0 and d(bonobos, chimpanzees) <
d(bonobos, tigers)). Based on the class distance function and a query object, the
best case and worst case rankings are defined as follows.
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Definition 3. Optimal class ranking. For a query object q with class label c
a ranking rbc is said to be optimal iff

d(c, l(r−1(a))) ≤ d(c, l(r−1(a + 1))) ∀a ∈ {1, . . . , m − 1}

where l(r−1(a)) is the label of the ath object according to ranking r.

Definition 4. Worst-case class ranking. For a query object q with class
label c a ranking rwc is said to be a worst-case ranking iff

d(c, l(r−1(a))) ≥ d(c, l(r−1(a + 1))) ∀a ∈ {1, . . . , m − 1}.

The ClasSi ranking correlation coefficient not only takes into consideration the
number of discordant pairs but also as their dissimilarities. The dissimilarity of a
discordant pair of class labels ci and cj is appraised by looking at their distances
to the query class label cq.

cost(i, j) =

{
0, if d(cq, ci) ≤ d(cq, cj),
d(cq, ci) − d(cq, cj), else.

For a given class ranking r as defined above, we compute ClasSi by iterating
through all positions and sum up the dissimilarity cost for each discordant pair.

Definition 5. Given a database DB = {o1, . . . , om}, a class distance function
d : C × C :→ R, a query object q which defines best and worst case rankings
rbc and rwc, and the dissimilarity cost function cost : C × C :→ R, the ClasSi
correlation coefficient between an arbitrary ranking r and rbc is defined as

ClasSi = 1 − 2 · DisCostr
DisCostrwc

where DisCostr is the cost generated by the discordant pairs of r compared to
rbc and DisCostrwc is the according cost generated by the worst case ranking:

DisCostr =
m∑

a=1

m∑

b=a+1

cost(l(r−1(a)), l(r−1(b)))

DisCostrwc =
m∑

a=1

m∑

b=a+1

cost(l(rwc
−1(a)), l(rwc

−1(b)))

For the example above we define following class distance measure: d(b, c) = 1,
d(b, t) = 6. The dissimilarity costs between classes in this case are: cost(c, b) = 1,
cost(t, b) = 6, cost(t, c) = 5, and 0 for all other cases. To compute ClasSi we
iterate through the ranking positions and sum up the cost of the discordant
pairs. For ClasSi between r1 and rbc we count 3 discordant pairs: there are
3 labels b which occur after a c label, thus DisCostr1 = 3 · cost(c, b) = 3.
Between rbc and rwc all possible discordant pairs occur. The corresponding cost
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is DisCostwc = 4 · 3 · cost(t, c) + 3 · 3 · cost(t, b) + 3 · 4 · cost(c, b) = 126. The
ClasSi correlation coefficient is then ClasSir1 = 1− 2·3

126 = 0.95. For r2 there are
3 labels c which occur after a t label, thus DisCostr2 = 3 · cost(t, c) = 15. We
obtain ClasSir2 = 1 − 2·15

126 = 0.76 which is considerable smaller than ClasSir1,
since the dissimilarity between a tiger and a bonobo is much higher than the
dissimilarity between a chimpanzee and a bonobo.

2.3 Properties of ClasSi

After introducing ClasSi in the previous section, we now show that it has all the
properties of a correlation coefficient. With ClasSi we measure the correlation
between an arbitrary ranking r and the optimal ranking rbc of a set of class
labels. If r is also an optimal ranking then ClasSi equals 1 as the two are
perfectly correlated. If r is a worst case ranking then ClasSi equals −1 as they
perfectly disagree. Finally, if r is a random ranking then the expected value of
ClasSi is 0 which means that the two rankings are independent.

Theorem 1. The ClasSi correlation coefficient between ranking r and the op-
timal ranking rbc is 1 if r corresponds to rbc:

l(r−1(a)) = l(r−1
bc (a)) ∀a ∈ 1, ..., m

Proof. If r corresponds to the optimal ranking, then there are no discordant
pairs and thus no dissimilarity cost. In this case:

ClasSi = 1 − 2 · 0
DisCostrwc

= 1

Theorem 2. The ClasSi correlation coefficient between ranking r and the op-
timal ranking rbc is −1 if r corresponds to rwc:

l(r−1(a)) = l(r−1
wc (a)) ∀a ∈ 1, ..., m

Proof. If r corresponds to the worst case ranking, then DisCostr = DisCostrwc

and in this case:
ClasSi = 1 − 2 · DisCostrwc

DisCostrwc

= −1

Theorem 3. The expected correlation coefficient E(ClasSi) between a random
ranking r and the optimal ranking rbc is 0.

Proof. Assume w.l.o.g. that there are mi objects with label ci. Then for each
object with label ci there are Disi possible objects with a different label which
are more similar to the query object and would be discordant if they were to be
ranked after the ci-labeled objects. More formally:

Disi = | {oa | d(cq, ci) > d(cq, l(oa)), ∀1 ≤ a ≤ m} |
The probability for the occurrence of a discordant pair can be modeled by means
of the hypergeometric distribution. For a sequence of s drawings without replace-
ment from a statistical population with S entities, out of which M have a certain
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property, the hypergeometric distribution describes the probability that k is the
number of successful draws, i.e. the number of draws having that property:

P (X = k) =

(
M
k

)(
S−M
s−k

)

(
S
s

) E(X) = s
M

S

Let us consider position m − e in the class ranking r which is followed by e
entries and assume label l(r−1(m − e)) = ci at this position. The probability
that there are k discordant entries among the e following entries, is according to
the hypergeometric distribution

P (Dis = k|ci) =

(
Disi

k

)(
m−1−Disi

e−k

)

(
m−1

e

) (1)

The expected number of discordant entries occurring in the remaining e entries
is then:

Ee(Dis|ci) =
e∑

k=0

k

(
Disi

k

)(
m−1−Disi

e−k

)

(
m−1

e

) = e
Disi

m − 1
(2)

For each object with label ci we compute the average cost of a discordant pair:

costi =
1

Disi
·

∑

1≤j≤n

d(cq,ci)>d(cq,cj)

mj · cost(i, j).

The expected associated cost at position m − e is obtained by multiplying the
expected number of discordant pairs with the average cost costi of a discordant
pair for the label ci:

Ee(DisCostr|ci) = e
Disi · costi

m − 1
(3)

For an arbitrary label and e entries left, the expected associated cost is:

Ee(DisCostr) =
n∑

i=1

pie
Disi · costi

m − 1
(4)

where pi = mi

m denotes the a priori class probability. If the expected costs at
each position are summed up, then the expected costs generated by the expected
number of discordant entries is obtained as

E(DisCostr) =
m−1∑

e=1

n∑

i=1

pi · eDisi · costi
m − 1

=
1

m − 1

m−1∑

e=1

e

n∑

i=1

pi · Disi · costi

=
1

m − 1
(m − 1)m

2

n∑

i=1

pi · Disi · costi
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=
m

∑n
i=1 pi · Disi · costi

2

Knowing that mi is the number of entries with label ci

E(DisCostr) =
m

∑n
i=1 pi · Disi · costi

2
=

∑n
i=1 mi · Disi · costi

2

At this point we obtained the following expected correlation coefficient:

E(ClasSi) = 1 − 2 ·
∑ n

i=1 mi·Disi·costi

2

DisCostrwc

Considering that for rwc we have all possible discordant pairs, the associated
dissimilarity cost can be computed by iterating over all n classes and taking all
their objects, their possible discordant pairs, and their average cost of discordant
pairs into account:

DisCostrwc =
n∑

i=1

mi · Disi · costi

Thus, the expected correlation coefficient between r and rbc is

E(ClasSi) = 1 − 2 ·
∑ n

i=1 mi·Disi·costi

2∑n
i=1 mi · Disi · costi = 0.

Thus a ranking returned by a similarity measure can be also assessed by con-
sidering the ClasSi correlation coefficient to the optimal ranking. Since for a
random ranking the expected ClasSi value is 0, a computed ranking should
have a higher ClasSi correlation coefficient to the optimal ranking.

Another important property of ClasSi is that it not only considers the number
of discordant pairs, but also the degree of their dissimilarity. By specifying the
class distance function, the user specifies different degrees of dissimilarity for the
discordant pairs. Nevertheless, only the relative differences matter.

Theorem 4. Let d and d′ be two class distance functions such that d′(ci, cj) =
α · d(ci, cj), and ClasSi(d) and ClasSi(d

′) be the corresponding rank correlation
coefficients, then:

ClasSi(d) = ClasSi(d
′)

Proof. From the relationship between the class distance functions we also obtain
following relationship between the dissimilarity cost functions

cost′(ci, cj) = α · cost(ci, cj)

Thus the scaling of DisCost′r = α·DisCostr and of DisCost′rwc
= α·DisCostrwc

cancel each other.
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2.4 ClasSi on Prefixes of Rankings

Up to now, the ClasSi measure has been computed for a complete ranking of
objects in a database yielding a single value that reflects the overall quality of
the ranking. In some situations, it might be more interesting to have a quality
score for a subset of the ranked objects. The first k positions of a ranking are
of particular interest, since only these results might either be presented to a
user (e.g., in a retrieval system) or be considered in a data mining process.
The proposed ClasSi measure can easily be adapted to suite this need in a
meaningful manner. Instead of measuring the cost of misplaced objects for the
whole ranking, the ClasSi measure restricted to the top k positions measures
the guaranteed cost of objects placed in the first k positions. That is, for each
object o within the top k objects, it is checked how much cost will be generated
due to objects o′ appearing after o when they were supposed to appear before o
in the ranking. Likewise, the cost of the worst case scenario is restricted to the
cost guaranteed to be generated by the top k objects of the worst case ranking.

Definition 6. Given a database DB = {o1, . . . , om}, a class distance function
d : C × C :→ R, a query object q which defines best and worst case rankings
rbc and rwc, and the dissimilarity cost function cost : C × C :→ R, the ClasSi
correlation coefficient for the top k positions between a ranking r and rbc is
defined as

ClasSik = 1 − 2 · DisCostr,k
DisCostrwc,k

where DisCostr,k is the cost generated by the discordant pairs of r rooted within
the top k positions of r and DisCostrwc,k is the according cost generated by the
worst case ranking:

DisCostr,k =
k∑

a=1

m∑

b=a+1

cost(l(r−1(a)), l(r−1(b)))

DisCostrwc,k =
k∑

a=1

m∑

b=a+1

cost(l(rwc
−1(a)), l(rwc

−1(b)))

Algorithms 1 and 2 return arrays filled with cumulative discordant pair costs
and ClasSi values in O(k ∗ m) time. By keeping track of the number of objects
seen for each class up to position k in O(k ∗ n) space, it is possible to speed up
the computation to O(k ∗n) if the number of objects per class is known a priori.

By plotting ClasSik for all k ∈ {1, . . . , m} we obtain a curve, which describes
how the correlation evolves. If the first ClasSik values are small and the curve
is growing, this means that most of the discordant pairs are at the beginning
and towards the end the ranking agrees with the optimal one. If the curve is
decreasing, this means that the quality of the ranking is better at the beginning
and decreases towards the end of the ranking.
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Algorithm 1. DisCost(Prefix k, Ranking r, Labeling l, Costs cost)

dc = Float[k];1

for a = 1 to k do // iterate over position pairs (a,b) in ranking r2

dc[a] = 0;3

for b = a+1 to m do4

dc[a] += cost[l(r−1(a))][l(r−1(b))]; // sum discordant pair costs5

end for6

if (a > 1) then dc[a] += dc[a-1];7

end for8

return dc;9

Algorithm 2. ClasSi(Prefix k, Rankings r, rwc, Labeling l, Costs cost)

classi = Float[k];1

rc = DistCost(k, r, l, cost);2

wc = DistCost(k, rwc, l, cost);3

for a= 1 to k do4

classi[a] = 1 - (2 * rc[a] / wc[a]);5

end for6

return classi;7

3 Examples

Using the values given by Algorithm 2, it is possible to track the progression of
the ClasSi value for ascending values of k. Figure 1(a) shows graphs for four
rankings as described in Section 2.2. The best case ranking results in a constant
graph at value +1.0. Analogously, the ClasSik values for the worst case ranking
are constant at −1.0. Ranking r1 with one c (i.e., chimpanzee) moved forward
by 3 positions to the first position results in a graph that starts at 0.84 and then
increases up to a value of 0.95 as all further positions do not include any more
discordant pairs while the number (and cost) of potential discordant pairs grows.
Ranking r2 on the other hand starts with four objects ranked identically to the
best case ranking, thus the resulting curve starts at 1. On the fifth position an
object with high cost for discordant pairs appears and significantly reduces the
quality of the ranking to 0.75.

The dissimilarity between “bonobos” and “tigers” is specified by the user
through the class distance function. In Figure 1(b) we see how the ClasSi-curve
for r2 drops when the distance d(b, t) is increased while d(b, c) remains constant.
The higher d(b, t), the smaller ClasSi gets.

We further investigate the behavior of ClasSi for an increasing number of
discordant pairs. We consider a synthetically generated optimal ranking and
another one, which emerged from the optimal one by randomly choosing a pair
of objects and switching their position. The rankings have 250 entries and are
divided into 10 classes. The randomly generated class distance function from the
target class to the other classes is plotted in Figure 2(b). In Figure 2(a) ClasSi
curves are plotted for an increasing number of discordant pairs and we can see
that the ClasSi values decrease with an increasing number of discordant pairs.
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Fig. 1. ClasSi in our example from Section 2 for varying k
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Fig. 2. ClasSi for an increasing number of object permutations
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Fig. 3. ClasSi for the simple case

Note that although ClasSi can deal with multiple entries with the same label
and allows the user to define the class similarities, this coefficient can be also used
for rankings in which each entry occurs only once and/or the user only specifies
the desired order of classes. In this particular case, ClasSi behaves similarly to
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Kendall’s τ as it can be seen in Figure 3(a). The simple class distance function
resulted from the specified class ordering is plotted in Figure 3(b).

4 Conclusion

In this paper we introduced a new measure to evaluate rankings of class labels
by computing the correlation to an optimal ranking. It also allows for the user
to specify different similarities between different classes. We have also proven
that ClasSi has all the properties required for a correlation coefficient. ClasSi
can be computed by iterating through the ranking and can be stopped at every
position k, delivering an intermediate result ClasSik. By plotting these values
we obtain a representation akin to the ROC curve from which we can recognize
where the agreements and disagreements w.r.t. the optimal ranking occur.
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