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Abstract. In this chapter we present the new capabilities of QosCos-
Grid (QCG) middleware for advanced job and resource management in
the grid environment. By connecting many computing clusters together,
QosCosGrid offers easy-to-use mapping, execution and monitoring capa-
bilities for a variety of complex computations, such as parameter sweep,
workflows, MPI or hybrid MPI-OpenMP as well as multiscale simula-
tions. Thanks to QosCosGrid, large-scale programming models written
in Fortran, C, C++ or Java can be automatically distributed over a net-
work of computing resources with guaranteed Quality of Service – for
example guaranteed startup time of a job. Consequently, applications
can be run at specified periods with reduced execution time and waiting
times. This enables more complex problem instances to be addressed.
In order to prove the usefulness of the new functionality of QosCosGrid
a detailed description of the system along with a real use case scenario
from the quantum chemistry science domain will be presented in this
chapter.

Keywords: parallel computing, MPI, metascheduling, advance reserva-
tion, QoS, High Performance Computing, High Throughput Computing.

1 Introduction

End users interested in the PL-Grid infrastructure have frequently voiced their
demand for efficient programming and execution tools to run large parallel sim-
ulations and experiments requiring a certain Quality of Service. Highly parallel
and coupled applications with significant inter-process communication that are
not supported by existing grid infrastructures based on gLite [14] or UNICORE
[19], represent a growing and promising class of simulations. To meet end-user
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needs, a new middleware infrastructure called QosCosGrid (or QCG for short)
was designed, developed and deployed in the PL-Grid project [11]. QCG success-
fully integrates many new services and tools in order to deliver to PL-Grid users
a new multilayered e-Infrastructure capable of dealing with computationally in-
tensive simulations, including parameter sweep studies, workflows and, more
importantly, large-scale parallel applications. QCG enables computing clusters
in different administrative domains to be integrated into a single powerful virtual
computing resource that can be treated as a quasi-opportunistic supercomputer,
whose computational power exceeds the power offered by a single administrative
domain (data center). In order to bring this supercomputer-like performance
and structure (requested and expected by scientists) to bear on cross-cluster
computations in an user-friendly way, various well-known application tools and
services, including the OpenMPI and ProActive programming and execution en-
vironments, have been tuned to work in a multi-cluster QCG environment [1,11].
The cross-cluster scheduling enabled by QCG supports not only parallel simula-
tions on many clusters (creating new possibilities and offering improvements for
end users), but also – and more importantly from the resource owners’ point of
view – utilizing PL-Grid computing resources in a more efficient way, thus in-
creasing the overall system throughput. The decomposition of large-scale tasks
between many clusters decreases cluster “defragmentation” and results in better
resource utilization.

The rest of the chapter is organized as follows. In Section 2 we present the
key features of QCG. Section 2.1 describes QCG support for creating and run-
ning parallel applications. Section 2.2 describes how QCG enables execution of
workflows. Section 2.3 presents QCG functions for Advance Reservation and
Co-allocation. The following section, 3, describes the QCG architecture from a
general point of view and introduces the main QCG components. A real usage
scenario, based on a legacy application and exploiting the capabilities and fea-
tures of QCG is discussed in Section 4. Finally, in Section 6, we present a short
summary and list the ongoing and future work in the scope of QCG.

2 QCG Capabilities

2.1 QCG for Parallel Applications

To support large-scale applications in multi-cluster environments many novel
mechanisms have been implemented. As presented in [9], QCG services are able
to schedule and execute parallel applications consisting of groups of processes
with different and often mutually contradictory resource requirements. For ex-
ample, functional decomposition of the application and its implementation can
result in a situation in which some processes should be run on a vector machine
(for performance reasons) while others reside on a regular computing cluster. By
defining groups of parallel processes it becomes possible to determine different
resource requirements for each group and specify whether a given group can be
split between resources or whether it should be allocated to a single resource.
To avoid performance and communication bottlenecks caused by the fact that
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local connections have lower latency and higher bandwidth than long-distance
ones (by two to four orders of magnitude), the QCG resource manager can either
schedule the application in a topology-aware manner to meet its requirements or
expose the physical topology to the application which then dynamically adapts
itself to that topology. Such topology-awareness implies that, while matching the
resource offers with requests, the scheduler has to take into account not only the
computational properties of the resources, but also their interconnections. All
these scenarios, except for the one involving self-adaptation of the application to
match the available topology, do not require any changes in application code and
are fully implementable owing to tight integration of QCG services with adapted
OpenMPI and ProActive frameworks [11]. Running large-scale simulations, both
sequential and parallel, in a multi-cluster environment requires not only launch-
ing and controlling processes on the available resources, but also some means
of enabling inter-process communication between parts of a parallel application.
Parallel processes running on different computing clusters must be able to com-
municate with one another without running afoul of the security mechanisms
protecting each cluster (such as firewalls blocking connections and NATs reduc-
ing the number of public IPs required by the cluster). To address this primary
requirement an open-source implementation of the MPI standard – OpenMPI –
as well as the Java ProActive library have been extended with several basic and
advanced connectivity techniques intended to bypass firewalls and NATs, and
integrated with QCG services [1].

2.2 QCG for Workflow Applications

As has already been mentioned, QCG supports not only large-scale parallel ap-
plications but also other kinds of popular computational experiments. QCG is
able to deal with complex applications defined as a set of tasks with precedence
relationships (workflows). The workflow model is based on direct acyclic graphs
(DAG). In this approach the end user has to specify (in advance) task prece-
dence constraints in the form of task state relationships. A very interesting and
novel feature of QCG, which distinguishes it from other middleware services
supporting workflows, is that – in addition to being associated with input or
output files – every task can be triggered by any combination of other tasks or
conditional rules. This feature is very useful in many scenarios. For instance, one
can imagine that a user would like to execute an application as soon as another
one starts running, e.g. for client-server communication. Another example could
involve redirecting the flow of computations in the event of a failure of one of
the scheduled tasks (failover mechanisms). QCG also supports popular parame-
ter sweep experiments and supports many instances of a single application, each
with a different set of arguments. For every task in the collection, the value of
one or more of the task parameters may be changed in some preordained fashion,
creating a parameters space. This is also a very useful feature, providing the end
user with an easy way to browse the parameters space in search for a specific set
of parameters that meet the defined criterion. Parameter sweep tasks can be a
part of a larger experiment, e.g. a workflow, and all parent-child dependencies are
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automatically converted by the system to take the whole collection of generated
tasks into consideration. What distinguishes QCG from other middleware pack-
ages dealing with parameter sweep tasks, is its support for multi-dimensional
parameter spaces, in which many variables can be regulated to construct the
aforementioned space of parameters.

2.3 Advance Reservation and Co-allocation in QCG

The next feature distinguishing QCG from other e-Infrastructures offering access
to PL-Grid resources like gLite and UNICORE is support for scenarios which call
for a specific level of quality of service. As the only such infrastructure, QCG sup-
ports advance reservation of computational resources to guarantee the requested
execution parameters. Advance reservation is used internally by QCG services
in the case of cross-cluster execution but is also provided directly to end users.
The reservation mechanism is applied in the scheduling process to co-allocate re-
sources and then to synchronize execution of application parts in a multi-cluster
environment. Cross-cluster scheduling and co-allocation of resources are tightly
connected with support for groups of processes and communication topologies.
When co-allocating resources and assigning tasks to specific resources, QCG
may also consider user requirements regarding task execution time. Upon sub-
mitting a task to the system the user may specify resource requirements as well
as the requested quality of service, including task duration and – optionally –
the period when the task should be executed. QCG supports both the strict and
best-effort approaches to resource reservation. In the former approach resources
are reserved only if it is possible to fully meet user requirements (also known
as the “all or nothing” approach), whereas in the the latter case the system re-
serves as much resources as possible and there is no guarantee that all requested
resources (cores) will be reserved [13].

Recently, the QCG infrastructure has been extended to support new types
of parallel applications based on the MPI/OpenMP hybrid programming ap-
proach. The user may request the application to execute on a given number of
computational nodes with a predefined number of slots (cores) on each. In this
solution, for each node participating in the computations, the user can specify
the number of MPI processes that should be started.

The functional comparison of QCG middleware with gLite and UNICORE is
presented in Table 1.

Table 1. Functional comparison of three grid middleware solutions: QCG, gLite and
UNICORE.

Middleware Single jobs Workflows MPI jobs Cross-
cluster
MPI jobs

Interactive
jobs

Parametric
jobs

gLite Yes Yes Yes No Yes Yes
UNICORE Yes Yes Yes No No Yes
QCG Yes Yes Yes Yes No Yes
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3 QosCosGrid Architecture

Though QCG middleware generally follows a multi-layered design approach, two
main levels can be distinguished: grid domain and administrative domain. Ser-
vices belonging to the grid domain provide a high-level interface to the grid or
cloud environments (e.g. GridSpace [7], Nano-Science Gateway [8]) and control
and schedule the execution of applications which are distributed over indepen-
dent administrative domains. In turn, the administrative domain represents a
single resource provider (e.g. HPC or data center) which contributes computa-
tional resources (e.g. clusters) to a particular grid or cloud infrastructure. Note
that logical separation of administrative domains is intentional and corresponds
to the fact that resources (and also users) may come from different institutions
or resource owners. It is fully natural that each institution may need to preserve
a certain level of independence and enforce its own resource allocation/sharing
policies.

The general architecture of QCG is presented in Fig. 1. The critical service on
the grid level is QCG-Broker; a meta-scheduling framework controlling execution
of applications via services located in the administrative domains. On this level
the QCG-Computing component (tightly connected with QCG-Broker) provides
remote access to underlying queuing systems. Among others, QCG-Computing
supports execution of jobs in several parallel execution environments, namely
OpenMPI, ProActive and MUSCLE. Additionally, it exposes an interface for
creation and management of advance reservations. Another relevant service in

Fig. 1. General QCG middleware architecture
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the administrative domain is called QCG-Notification: its task is to implement
a notification mechanism. The QCG middleware structure is complemented by
coordinator services controlling cross-cluster execution, as well as data movement
services managing input and output data for applications.

3.1 QCG-Broker

The QCG-Broker1 is an open-source metascheduling system which allows
developers to build and deploy resource management systems for large-scale
distributed computing infrastructures. Based on dynamic resource selection,
mapping and advanced scheduling methodology combined with feedback con-
trol mechanisms, QCG-Broker deals efficiently with various metascheduling chal-
lenges, e.g. co-allocation, load balancing among clusters, remote job control, file
staging support and job migration, as has been demonstrated in [10]. The main
goal of QCG-Broker is to manage the whole process of remote job submission
to administrative domains controlled by domain-level QCG components, and
then to underlying clusters and computational resources. It has been designed
as an independent core component for resource management processes which can
take full advantage of various low-level core and grid services and existing tech-
nologies, such as QCG-Computing and QCG-Notification or GridFTP, as well
as various grid middleware components, e.g. Grid Authorization Service, Data
Management Service and others. All these services work together to provide a
consistent, adaptive and robust grid middleware layer which fits dynamically to
many different distributed computing infrastructures, enabling large scale simu-
lations and providing the requested Quality of Service. One of the main assump-
tions for QCG-Broker is to perform remote jobs control and management in a
way which satisfies users (Job Owners) and their applications while respecting
the constraints and policies imposed by other stakeholders, i.e. resource own-
ers and grid or Virtual Organization administrators. Simultaneously, Resource
Administrators (Resource Owners) have full control over resources on which all
jobs and operations are performed, through appropriate setup and installation of
QCG components. Note that QCG-Broker, together with administrative-domain
level QCG components, reduces the operational and integration costs for Admin-
istrators by enabling grid deployment across previously incompatible cluster and
resources. The heart of QCG-Broker is its metascheduling framework, respon-
sible for scheduling tasks in the controlled environment. QCG-Broker has been
successfully integrated with the scheduling framework designed, implemented
and used in the Grid Scheduling SIMulator [12], enabling grid administrators to
modify scheduling policies in an easy and flexible way, using different scheduling
plugins. All experiments controlled by QCG-Broker (including workflows, large-
scale parallel applications with groups of processes and topology requirements,
parameter sweep tasks and simple jobs) can be easily expressed in a formal way
using the XML-based job definition language called Job Profile.

1 http://www.qoscosgrid.org/trac/qcg-broker

http://www.qoscosgrid.org/trac/qcg-broker
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3.2 QCG-Computing

The key component in the QCG administrative domain is the QCG-Computing
service. Technically, QCG-Computing2 is an open implementation of SOAPWeb
services for multiuser access and policy-based job control routines by various
queuing and batch systems managing local computational resources. To com-
municate with underlying queuing systems, the service uses the Distributed Re-
source Management Application API (DRMAA) [20]. It has been successfully
tested with many products and supports a variety of well-known queuing sys-
tems, including:

– Grid Engine,
– Platform LSF,
– Torque/Maui,
– PBS Pro,
– Condor,
– Apple XGrid,
– SLURM,
– LoadLeveler.

The QCG-Computing service is compliant with the OGF HPC Basic Profile
specification [22], which serves as a profile over other Open Grid Forum standards
like JSDL and OGSA Basic Execution Service. Moreover, it offers innovative
remote interfaces for advance reservation management and supports basic file
transfer mechanisms.

QCG-Computing has been designed to support a variety of plugins and mod-
ules for external communication as well as to handle a large number of concurrent
requests from external clients and services. Consequently, it can be used and in-
tegrated with various authentication, authorization and accounting services. An
example of integration with other PL-Grid services is described in Section 3.5.

3.3 QCG-Notification

QCG-Notification3 is another service belonging to the administrative domain.
Its main function in QCG is brokering asynchronous notifications concerning job
state changes between the QCG-Computing and QCG-Broker services. Never-
theless, depending on demands, QCG-Notification may be variously configured
and adapted to specific requirements. In general, QCG-Notification is based
on the OASIS standards for Web Service notifications – WS-BaseNotification,
WS-BrokeredNotification and WS-Topics [23], and provides an adjustable and
efficient interface for message exchange between interested parties. Thanks to
QCG-Notification, components which produce notifications may be logically sep-
arated from components interested in receiving those notifications, as presented
in Fig. 2. Therefore, since some features required for communication between

2 http://www.qoscosgrid.org/trac/qcg-computing
3 http://www.qoscosgrid.org/trac/qcg-notification

http://www.qoscosgrid.org/trac/qcg-computing
http://www.qoscosgrid.org/trac/qcg-notification
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Fig. 2. Brokered notification scenario supported by QCG-Notification

specific components are delegated to an external entity, the overall performance
of the system may significantly increase. Such a situation is also common in QCG.
QCG-Notification implements many patterns defined in the WS-Notification
specification and provides some extensions to the standard. Performed tests
and comparisons with other well-known WS-Notification implementations have
shown that QCG-Notification offers a rich feature set while remaining highly
efficient. QCG-Notification is characterized by the following list of features:

– support for HTTP/HTTPS and XMPP transport protocols,
– subscription and publishers’ registration handling,
– advanced two-level notification filtering based on hierarchical topic names-

paces and notification message contents (XPath-based filters),
– pull and push styles of distributing notification messages with fault tolerance

mechanisms,
– good performance owing to carefully selected data structures and internal

algorithms,
– plenty of configuration and customization options, available through a bun-

dled management interface,
– extensible architecture (pluggable modules for transport, authentication and

authorization protocols).

3.4 Cross-Cluster Communication

QCG support for parallel cross-cluster execution consists of the three environ-
ments, namely QCG-OMPI [1], QCG-ProActive and MUSCLE, each targeting a
different groups of application developers. The first environment, QCG-OMPI4,

4 http://www.qoscosgrid.org/trac/qcg-openmpi

http://www.qoscosgrid.org/trac/qcg-openmpi
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is based on OpenMPI and preserves all standard properties of this library. There-
fore it aims at C/C++ and FORTRAN code. QCG-ProActive, in turn, is an
extended version of the ProActive Java library which may be easily used in new
or existing parallel Java applications. The final environment, MUSCLE (still
under development in the MAPPER [26] project), simplifies the development of
multiscale computation scenarios.

Since the standard deployment methodologies used in OpenMPI or
ProActive are limited to single-cluster runs, in order to support cross-cluster exe-
cution and spawning of parallel application processes on co-allocated
computational resources, QCG (besides minor extensions to the OpenMPI and
ProActive libraries) provides special services called coordinators. Coordinators
are implemented as Web Services and should be accessible from all participating
administrative domains. Depending on particular scenarios, coordinators may be
configured in various ways. In general, two situations which influence deployment
of QCG middleware can be distinguished:

1. All computing clusters have public IP addresses,
2. At least one computing cluster has private IP addresses.

In the former case, port range techniques can be applied to enable communi-
cation between processes executing in separate clusters. It is a simple approach
founded upon the idea of using a predefined range of unprivileged ports. If, how-
ever, some clusters use private set(s) of IP addresses, a different solution is nec-
essary. We have decided to take advantage of proxy mechanisms, where SOCKS
services are deployed on frontend machines to route incoming traffic to the MPI
and ProActive processes running inside clusters with private IP addresses.

3.5 Integration with PL-Grid Infrastructure

Almost every e-Infrastructure enforces its own authentication, authorization and
accounting (called AAA for short) through a set of custom policies. Those polices
are usually governed by a separate unit called the Operations Center. Therefore,
any new middleware stack wishing to become a part of such an infrastructure
must integrate itself with the existing AAA ecosystem.

The PL-Grid infrastructure offers two authentication mechanisms: password-
based and X.509 certificate-based. The former is usually used while logging into
the PL-Grid Portal, gLite UI machines and batch job submission hosts. The lat-
ter is required while contacting grid services. In PL-Grid every QCG-Computing
instance is configured to accept RFC3820 [21] compliant proxy certificates.

The QCG-Computing services in PL-Grid are configured to use the plain grid-
mapfile. This means that, much like UNICORE and contrary to gLite, QCG uses
static accounts. The grid-mapfile is generated automatically based on informa-
tion available in a local LDAP (Lightweight Directory Access Protocol) replica.
Hence, each PL-Grid user who applies for QCG services and is cleared by lo-
cal administrators, may be automatically added to this file. Moreover, system
administrators are able to define their own lists of locally denied/accepted users.
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In the PL-Grid project a completely new system called BAT5, used for col-
lecting accounting information, has been developed. The system consists of one
central service (called BAT broker), which gathers resource usage records pro-
duced by clients (called BAT agents) deployed in every organizational unit. There
exist two classes of BAT agents: local and grid. The former rely on information
available in the batch system’s (Torque and PBS Professional in PL-Grid) log
files such as the job’s wall-clock time, local id, etc., while the latter augment
such information with high-level data – e.g. the user’s certificate, distinguished
name or grid job id. In PL-Grid a new BAT agent has been developed for QCG-
Computing, alongside gLite and UNICORE agents. This agent periodically reads
job data from the QCG-Computing accounting database and sends it over a se-
cure channel to the BAT broker.

The QCG-Computing service also acts as a lightweight information service,
providing (via a Web Service interface) information about PL-Grid users, groups
and grants in a particular organizational unit. The consumer of this information
is the QCG-Broker service, which later exploits it for scheduling purposes.

In addition, as every production infrastructure has to be monitored constantly,
a set of Nagios6 probes was provided for the QCG-Computing, QCG-Notification
and QCG-Broker services.

The final requirement of the Operations Center was to provide binary RPM
(Red Hat Package Manager) packages compatible with the Scientific Linux op-
erating system.

4 Quantum Chemistry Application Using QCG

4.1 Motivation

This section presents the main assumptions and challenges for computationally
demanding simulations for quantum chemistry, in particular an actual scientific
application called NEL, representing numerical algorithms related to large-scale
quantum-chemical calculations. The legacy quantum chemistry application dis-
cussed in [4], originally implemented in Fortran, has been redesigned and op-
timized to take full advantage of QCG. The optimization was performed in
cooperation with the author of the original version, as part of the user support
activity in the PL-Grid project.

The electronic structure of atoms and molecules is determined on the basis
of the Schrödinger equation. However, in the case of many-electron systems this
equation is not solvable and approximation schemes have to be employed. More-
over, the solving is often performed numerically with the use of advanced com-
putations. Orbital methods, which posit that each electron moves in the average
field of the other electrons, are quite ubiquitous but, in spite of their being gen-
erally successful, they are not applicable to a wide variety of quantum-chemical
problems in which high precision of physical outcome is expected. Numerous

5 https://gforge.cyfronet.pl/projects/bat-plgrid/
6 http://www.nagios.org/

https://gforge.cyfronet.pl/projects/bat-plgrid/
http://www.nagios.org/
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variational methods of solving the Schrödinger equation with high precision
have been developed – for instance basing on the explicitly correlated Gaussian
(ECG) functions, exploiting the growing computational power of state-of-the-art
supercomputers and clusters. This is mostly associated with the ECG method’s
potential that might be used in the case of atoms with more than three electrons
and many-electron, multicenter molecules [2,5].

There have also been variational attempts to solve the Schrödinger equation

H Ψ = E Ψ , (1)

in which Ψ constitutes the wave function reflecting a particular state of a molecule
or an atom and H is the clamped nuclei Hamiltonian, describing all the Coulomb
interactions between electrons and nuclei as well as the electrons’ kinetic ener-
gies. E stands for the electronic energy of the system. Both the energy and wave
function are sought when trying to solve this equation for a given Hamiltonian.
The following equation reflects the so-called trial wave function. This function
will be represented as a K-term linear combination of N -electron ECG basis
functions φi

Ψ =

K∑

i=1

ci φi , (2)

in which

φi = AN

{
P
[
exp

(
−

N−1∑

p=1

N∑

q=p+1

Aipq (rp − sip) (rq − siq)

)]
Θ

}
. (3)

Within this formula, spatial electronic coordinates are marked as rk, antisym-
metrizer (working on space and spin coordinates) as AN , the spatial symmetry
projector as P , and Θ is the N -electron spin function.

Identical particles are indistinguishable from the point of view of their physi-
cal properties and the antisymmetry projector AN is responsible for taking this
feature into account. When electron coordinates are considered and the calcu-
lations performed on them, it returns a sum of N ! terms differing by electron
coordinate permutations. All the elements of the Hamiltonian matrix are affected
by the N ! explosion, which is one of the factors limiting the size of examined
systems to a few electrons. The total number of nonlinear parameters, collected
in Ai and si which are variables of the optimization process, depends on the size
of atoms or molecules (assessed by the number of electrons N and nuclei) and
the expansion (2). In the most advanced/complex cases, there are over 100 000
non-linear parameters which have impact on the wave function (and energy).
In such cases determining the energy minimum becomes a very computationally
demanding task. A solution of the Schrödinger equation presented in the matrix
form of the general symmetric eigenvalue problem (GSEP) offers the optimal
vector of the linear parameters ci and the corresponding approximation ε for the
exact electronic energy
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H c = εS c . (4)

The HamiltonianH and the overlap S matrices are composed of elements defined
using 4N -dimensional integrals over all coordinates dV1 . . . dVN of the electrons
[3,18,5]

Hij =

∫
φiHφj dV1 . . . dVN , (5)

Sij =

∫
φiφj dV1 . . . dVN . (6)

Although the proposed method is general and can theoretically be applied to
any N -electron atomic or molecular system, these calculations are commonly
employed for systems containing no more than four electrons in order to preserve
the accuracy level [5,6,17]. An extension of the applicability of the ECG method
to larger systems is the challenge we face. QCG opens up yet another possibility
of reaching this goal.

The ECG wave functions within the above mentioned conditions are accu-
rate; however, any additional electron appearing in the system would require
reassessment of the algorithms. When the number of electrons in a system is
increased to five, accurate calculations call for ∼ 103 − 104 φi functions. More-
over, the energy has to be minimized by the variational parameters within a
multidimensional space. Arriving at a near-exact estimate of energy E would
imply evaluations of the energy ε conducted 106 − 107 times. On the grounds
of the aforementioned theory, computations within a hybrid parallel computing
model which involve the Message Passing Interface (MPI) are carried out so as
to facilitate communication of processes over the network, along with a shared
memory model (OpenMP) on local nodes.

4.2 Application Requirements

The scalar part of the program is responsible for the matrix elements of Hamil-
tonian H, Eq. (5), and the overlap matrix S, Eq. (6), whereas the vector part
is composed of GSEP solutions, Eq. (4), and they are both deemed the most
demanding parts with respect to computations. Cholesky decomposition of the
matrix H−εt S with a trial value εt (close to the desired energy ε) lays the foun-
dations for the aforementioned demanding parts of the algorithm. As the next
step on the way to optimizing the energy εt, an inverse iteration procedure is
implemented [16]. In this computation a triangular system of equations is solved
in each iteration and, consequently, the energy converges to ε following a few
iterations. Optimization of the very large number of non-linear variational pa-
rameters Ai and si is yet another vital part of the algorithm. It is recommended
to apply the iterative optimization procedure from i = 1 to i = K tuning (in
the i-th step) the parameters of a single-basis function φi. Therefore, during the
optimization process and within the Powell’s conjugate directions method [15],
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variational parameters reflecting the objective energy function undergo changes
and if these changes do not improve the energy, the algorithm is stopped.

The optimization shot is another important concept which should be men-
tioned here. It involves a single execution of the above mentioned parts that is
scalar- and vector-based, returning a single value of the energy ε. The number
of shots required to achieve convergence approaches 100 times the number of
nonlinear parameters. For instance, in the case of a four-electron wave function
with 2400 terms and 14 nonlinear parameters per term (LiH molecule), these
tasks have to be performed more than 106 times:

– scalar part – evaluation of the matrix elements Hij , Sij , with thousands of
floating-point operations per each element,

– vector part – solution of the GSEP for matrices with K = 2400 rows and
columns.

The whole application works as follows. First, the multithreaded master MPI
process reads all input parameters. Subsequently, it forwards tasks to other MPI
processes. Once data is received, an MPI process calculates H and S elements.
Different matrix parts are computed by different processes. Having completed
all the tasks, the initial energy is calculated by the master process with the use
of the GSEP algorithm. The GotoBLAS2 library is employed in this part of the
application.

The nonlinear optimization process for subsequent rows of the H and S can
commence once the initial energy is known. Dozens of optimization shots are
carried out, on average, for a single basis function. These shots are computations
of the elements of a single row in the GSEP algorithm. All worker processes are
responsible for calculating row elements while the master process manages the
GSEP algorithm with the use of parallel threads.

A recent version of the presented application was successfully and efficiently
executed in a multi-cluster environment managed by QCG services using geo-
graphically distributed resources in Poznań and Kraków. In both cases resources
used in this experiment belonged to the production PL-Grid infrastructure and
the main motivation to use co-allocated resources was to shorten the time which
the task (requiring hundreds of computational cores) spends in the queue until it
obtains the requested resources. We have observed that, especially in the case of
the application implementing a master/slave paradigm with no intensive commu-
nication between processes, the performance overhead stemming from network
delays incurred by the geographical distribution of participating computations is
more than compensated for by the shorter queuing time. The requested number
of cores (256) was co-allocated by the QCG-Broker on Reef and Zeus clusters
respectively in Poznań and Kraków and parts of the application were started
in a synchronous way by local QCG-Computing services. The main comput-
ing and communications steps in the hybrid parallel NEL application, with its
decomposition between two clusters, are shown in Fig. 3.
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Fig. 3. Main computing and communications steps of the NEL application with its
decomposition between two clusters

5 Deployment Status

The QCG middleware was successfully deployed in several production
HPC environments belonging to the PL-Grid infrastructure (e.g. Poznań
Supercomputing and Networking Center – PSNC, Academic Computer Cen-
tre Cyfronet AGH, TASK). Moreover, there are ongoing deployment activities
at the Leibniz-Rechenzentrum – LRZ, University College London – UCL, Na-
tional Institute for Research in Computer Science and Control – INRIA, and the
Dortmund University.

6 Future Work

National and international grid e-Infrastructures provide resources comparable
to the largest existing large-scale parallel computing environments. However,
current grids typically do not address sophisticated scenarios which require spe-
cific Quality of Service guarantees to support simultaneous management of many
kinds of resources, storage and networks. Existing grid middleware solutions, in-
cluding the popular gLite [14] and UNICORE [19] systems, do not satisfy all
demands of modern scientific simulations and computing models. One of the
shortcomings of these systems is poor support for advance reservation, which
makes it difficult (or indeed impossible) to run jobs on co-allocated resources.
Basing on the outcome of earlier European projects (e.g. GridLab [25], BREIN



54 B. Bosak et al.

[24], QosCosGrid [28]) we propose QCG as an alternative grid middleware plat-
form. QCG services support the latest open standards, including OGF HPC
Basic Profile, JSDL, OGSA BES and WS-Notification, thereby providing a flex-
ible, interoperable interface upon which to run, execute and monitor complex
jobs as well as create advance reservations and co-allocations. To the best of
our knowledge, QCG currently provides the most efficient and powerful multi-
user access to job management and co-scheduling features, compared to other
existing grid middleware services.

In order to meet the emerging end-user requirements, QCG will be integrated
with various new services and application tools for distributed multiscale com-
puting in the scope of the MAPPER project [26]. QCG middleware will also
be evaluated by partners involved in other National Grid Infrastructures and
PRACE partners [27].
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