
Homeokinetic Reinforcement Learning

Simón C. Smith and J. Michael Herrmann

Institute of Perception, Action and Behaviour, School of Informatics,
The University of Edinburgh, 10 Crichton St, Edinburgh, EH8 9AB, U.K.

{artificialsimon,michael.herrmann}@ed.ac.uk

Abstract. In order to find a control policy for an autonomous robot by
reinforcement learning, the utility of a behaviour can be revealed locally
through a modulation of the motor command by probing actions. For
robots with many degrees of freedom, this type of exploration becomes
inefficient such that it is an interesting option to use an auxiliary con-
troller for the selection of promising probing actions. We suggest here
to optimise the exploratory modulation by a self-organising controller.
The approach is illustrated by two control tasks, namely swing-up of a
pendulum and walking in a simulated hexapod. The results imply that
the homeokinetic approach is beneficial for high complexity problems.

1 Introduction

Reinforcement Learning, discrete [1,12,13] as well as continuous [5], aims at
solving dynamical optimisation problems. For this purpose a utility function
and/or a control policy is constructed. Optimal performance can be reached
asymptotically under certain conditions. However, because often Markovian state
transitions and slow decay of the learning rate cannot be asserted in practical
problems, only suboptimal solutions are found.

Additionally, in high dimensions, the exploration of the state space is time
consuming. Gradient-based reinforcement learning can speed-up the optimisa-
tion process, but is prone to local optima, and if the gradient is not known then
probing actions must be used in order to obtain gradient information. High-
frequency probing [14] tests two alternative actions virtually at the same time
which seems appropriate for an autonomous agent which may not be able to
apply different actions in the same state. In addition, the set-up of the prob-
ing actions requires some domain knowledge and becomes cumbersome in high
dimensions. Furthermore, what priorities should be used when sequentially prob-
ing the manifold of behaviours in robots with many degrees of freedom? A robot
with a reinforcement learning (RL) controller is biased to keep trying the path
that is expected to give him the best reward in the future, thus seemingly non
rewarding nearby states are less likely to be explored.

We propose to use an auxiliary algorithm that learns to probe the system. For
this purpose we will not follow the gradient of the utility function, but will aim at
maximising the learning success achieved by the probing actions. This will help
to obtain a more reliable representation of the utility function in shorter time,
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while the reinforcement learning component will be responsible for the actual
increase of the expected reward.

The probing algorithm relies on a self-organising (SO) control paradigm de-
scribed in Ref. [10]. The SO controller generates motors signals based on esti-
mated next sensor values. This signal will be used by the reinforcement learning
controller as exploration mode and to update the parameters values in an actor-
critic configuration. A representation of the world and the controller are modelled
and updated based on the time loop error, see [3,4]. In Fig. 1 a scheme of the
architecture can be seen, the reinforcement learning controller generates a motor
signal ut given the actual states xt and the exploratory signal nt provided by
the SO controller. Given the actual motor signal and the actual state the model
predicts the next sensor input which is used to calculate the time loop error and
to update the SO controller. It is essential to the approach followed here that
the full loop through the environment is monitored by the robot. This loop can
be represented by a map of previous to new sensor values, but as well also as
a map from previous to new motor commands. The latter case is actually more
convenient if as often the dimensionality of the motor space is lower than that
of the sensor space.
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Fig. 1. Architecture of the sensorimotor loop (RL: Reinforcement learning controller,
HK: Homeokinetic controller; for other symbols see Section 2)

We present a comparison of our approach with a standard version of contin-
uous reinforcement learning [5] in the low dimensional task of swinging up a
pendulum with limited torque and in an hexapod robot with twelve degrees of
freedom where walking speed is to be optimised.

2 Reinforcement Learning in Continuous Space and Time

Following [5], the control command is given by

ut = Ut (xt) = s
(
A

(
xt; wA

)
+ σnt

)
, (1)
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where s is the output function, n is a probing input of strength σ and

A
(
xt; wA

)
= N (x)

∑

i

wA
i exp

(

−‖xt − μi‖2

2ρ2
i

)

(2)

is a policy function that depends on parameters wA (ρi and μi are assumed

to be fixed). The factor N (x) =
(∑

i exp
(
− ‖xt−μi‖2

2ρ2
i

))−1

normalises the actor

output. The parameters wA are updated according to

ΔwA
i = ηAδtnt

∂A
(
xt; wA

)

∂wA
i

, (3)

where ηA is a learning rate.
While the last term in (3) is easily obtained from (2), the essential part of

this learning rule includes the correlation of the probing input n and the delta
error

δt = rt − 1
τ

Vt + V̇t (4)

The utility function V is represented by another parametrised function which is
simultaneously updated.

There are various ways of choosing the probing excitation of the robot control
in Eq. 1. Gullapalli [7] suggested to use noise while others [14,2] have proposed
high-frequency oscillatory modulations of the motor command. Our experiments
confirm that the type of the probe does not matter in low-dimensional problems.
For robots with many degrees of freedom, the dynamics of the correlation among
the degrees of freedom of the controlled system becomes crucial such that the
choice of the probing stimulus becomes non-trivial. In high-dimensional prob-
lems it is obviously not possible to test all actions in all states infinitely often as
it would be required in discrete reinforcement learning algorithms. Also for con-
tinuous algorithms orienting the exploration to promising directions is essential.
We propose to use an approach in the present context that we have previously
developed in a different setting [8].

3 Learning in Motor Space

Instead of using noisy probing, we propose to modulate the motor command (1)

ut = s
(
A

(
xt; wA

)
+ σK (xt)

)
(5)

by an exploratory controller

K (xt) = g (Cxt + C0) . (6)

This controller receives the current sensory input vector xt and determines the
direction of exploration in dependence on the multidimensional parameters C ∈
R

m×n and C0 ∈ R
m and a further nonlinear function g. In order to adapt the
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parameters C and C0, the new sensory inputs are compared with a prediction
x̂ by a world model M based on previous inputs or outputs. For simplicity we
use a linear predictor that uses only the motor commands (5) and receives thus
information about previous inputs only indirectly.

x̂t+1 = M (ut) = Dut + D0 (7)

The comparison of the corresponding sensory input xt+1 and its estimate by the
internal model x̂t+1 results in the prediction error ξt+1 = x̂t+1 − xt+1 which is a
vector in the perceptual space.

In order to formulate a learning rule for the exploratory controller (7) we will
follow the procedure in Ref. [8] and express the error in the motor space which
can be achieved by defining a transformed error ηt via

M (ut) + ξt+1 = M (ut + ηt) . (8)

Because M (ut) + ξt+1 = xt+1, the motor error η can be interpreted as the
control correction required to compensate the inaccuracy of the model M . η is
a retrospective error that can be determined only after the event of receiving
the new stimulus xt+1. Nevertheless, minimisation of η is a relevant goal for
the adaptation of the system. The definition (8) is implicit and may be empty
which calls for the use of a regularised inverse of M to explicitly obtain an
approximation of η. Practically, Eq. 8 is transformed into a motor level error
exploiting the assumed linearity of the model (7),

ηt = M ′+ξt+1, (9)

where M ′+ is the pseudo-inverse of the derivative of the model (7), i.e. the
pseudoinverse of D in Eq. 7. In analogy to Ref. [3] this defines a homeokinetic
error function in the motor space

Et = η�
t

(
JtJ

�
t

)−1
ηt (10)

where J is the Jacobian of the sensorimotor loop, see below. We are going to
perform a gradient descent with respect to this error function in order to adapt
the parameters of the controller (6).

To calculate the Jacobian, we use the derivatives M ′
u = D and U ′

x = s′ ◦(
∂A
∂x + σg′ ◦ C

)
such that we find from Jt = φ′

u = U ′
x (xt)M ′

u (xt−1; ut−1)1

Jt =
(

∂A

∂x
+ σg′t ◦ Ct

)
Dt.

This gives rise to the following formulation of the shift ν, i.e. the change in motor
command that would have been required to correctly predict the following motor
command, namely

νt−1 = J−1
t ηt

1 The dependence dx
du

of the new sensory input on the motor command is approximated
here based on the assumption of a correct model (certainty equivalence). The symbol
◦ denotes component-wise multiplication.
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While the above interpretation (9) of η as retrospective error connects sensor and
motor space, we have here a connection between the two points in time within
the motor space that reflects the dynamical properties of the full sensorimotor
loop. The error function (10) becomes thus simply

Et = ν�
t−1νt−1

which lead to a convenient update rule of the controller matrix C. Omitting the
time indices we find

1
εC

ΔC = −∂E

∂C
= −2ν� ∂ν

∂C
= 2ν�J−1 ∂J

∂C
J−1η − 2ν�J−1 ∂η

∂C

using the rule ∂Y −1

∂X = −Y −1 ∂Y
∂X Y −1. The derivative ∂η

∂C cannot be determined,
because we have no information of the dependence of the prediction error on the
controller parameters, therefore we set ∂η

∂C = 0 and are left with

1
εC

ΔC = 2ν�J−1 ∂J

∂C
J−1η = 2ν�J−1 ∂J

∂C
ν

where
∂Jt

∂C
=

∂

∂C

(
∂A

∂x
+ σg′t ◦ Ct

)
Dt.

We may ignore the effect of the controller on the sensitivity of the actor in the
reinforcement learning component, i.e. set ∂

∂C
∂A
∂x = 0. We may also assume that

the details of the actor are not specified by the reward but will follow essentially
the homeokinetic control. In this case the term ∂

∂C
∂A
∂x is parallel to the remainder

and the resulting numerical factor can be absorbed into the learning rate. We
have thus arrived at essentially the same learning rule as in Ref. [8],

1
εC

ΔC = χ (Dν)� − χ� ∂g′−1 ◦ η

∂C
,

which, however, is to be evaluated at the controller with the reinforcement learn-
ing component.

Inserting the correct time indexes we obtain

1
εC

ΔC = χt−1 (Dtνt−2)
� − 2

(
χt−1 ◦ gt−2 ◦

(
g′t−2

)−1 ◦ ηt−1

)
x�

t−2

with χt−1 =
(
R�

t

)−1
νt−2. The update rule for C0 can be found analogously,

1
εC

ΔC0,t = −2
(
χt−1 ◦ gt−2 ◦

(
g′t−2

)−1 ◦ ηt−1

)

4 Homeokinetic Reinforcement Learning: Experiments

In order to test our approach two nonlinear control task were implemented. The
first one is the pendulum swing-up task (number of sensors n = 2, number of
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motors m = 1) where a pendulum has to be brought to the upright position to
obtain the maximum reward. The second task consist in teaching an hexapod
robot (n = 12, m = 12) to walk based on a measure of the overall speed. Both
pendulum and robot are realised in the LpzRobots simulator [11].

For comparability, we follow the procedure in Ref. [5] and compare the per-
formance to an RL controller configured as an actor-critic, see Eq. 1 for the
actor output, and Eq. 3 for the learning rule. The critic is approximated by the
relation V̇ (t) ∼= (V (t)−V (t−�t))/�t using the backward Euler approximation,
which rises from the error signal (4)

δ (t) =r (t) +
1
�t

[(
1 − �t

τ

)
V (t) − V (t −�t)

]
. (11)

The update of the wi follows a gradient descent with respect to δ.

ẇi = ηCδ (t)
∂V (x (t −�t) ; w)

∂wi
, (12)

where ηC is a learning rate.
Actor and critic functions are implemented as a normalised Gaussian net-

work. The sigmoid function is defined as s (x) = 2
π arctan

(
π
2 x

)
. In the classic

RL approach we use coloured noise with a correlation length of 0.1 as prob-
ing input with strength σ, in the case of self-exploring RL controller the same
value σ is used to weigh the output n of the SO controller. The strength of
the probing signal is weighted by σ, following the idea of [7], while the reward
become bigger the probing input should become weaker, the value is calcu-
lated by σ = σ0 min

{
1, max

{
0, V1−V (t)

V1−V0

}}
where V0 and V1 are the minimal

and maximal levels of the reward. For the SO controller the activation function
g (·) = tanh(·) is used.

4.1 Performance in a Toy Example

In a pendulum swing-up task, we use the same configuration as in Ref. [5] where
the actor and the critic function are implemented in a 15×15 grid with the angle
θ ∈ [−π, π] against the vertical line and the angular velocity ω ∈ [−2π, 2π].
The reward function r(θ) = cos(θ) assumes the maximum at the upright and
the minimum at the downward position of the pendulum. Each trial lasts for 20
seconds if | θ |< 5π, otherwise a minimal reward is given for one second and the
trial is reinitialised in a random state. The performance of the trial is measured
by the time when the pendulum is in the range | θ |< π/4. For the SO controller
mostly the same setup is used. This problem is not trivial given the maximum
applicable force to the pendulum umax < mγl, this maximum force is multiplied
to Eq. 5 with m as the mass of the pendulum, γ as the gravitational constant
and l as the length from the pivot to the end of the pendulum, with a small
enough umax the pendulum has to build up momentum to be able to reach the
upper position.
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Fig. 2. Average of 50 experiments, each with 400 trials of the swing-up task with RL
(upper trace) and with the combined controller (lower trace). The physical parameters
are m = 1, γ = 9.8, friction μ = 0.01, umax = 5.0. The parameters for the RL controller
are τ = 1.0, σ0 = 0.5, V0 = −1, V1 = 1, �t = 0.02. The learning rate for the C values
were εc = 0.01. The errorbars indicate deviations over 100 runs for each control task.

Fig. 2 shows the result of the average balance time per trial for 100 experiments
with 400 trials each. Results discusion in section 5.

4.2 Self-organisation of Walking in an Hexapod

The hexapod (Fig. 3) resembles a insect with the three pairs of legs, two antennae
and a thorax. A two-axis joint is placed where the legs meet the thorax allowing
vertical and horizontal rotations, a servo motor actuate over each axis of the
joint. In every axis a sensor measures angle θ with respect to the initial position
and another sensor measures the angular velocity ω of the leg with pivot on the
joint with the thorax. The joint between the femur and the tibia rotate in one
axis with a damping action as springs.

The task of the hexapod robot was to improve its overall speed. A reward
function is directly proportional to the speed in the (x,y)-plane. Due to the
symmetry of the robot no particular movement direction is implied, i.e. in some
trials the robot moved in direction of the antennae and in other ones in the
opposite direction. The setup of the experiment is similar to the Pendulum,
where a trial of 20 seconds is conducted by the controller, after that time the
position and the velocities of each leg are set randomly. The performance of each
trial is measured by the average speed of the trial. Again, normalised Gaussian
networks are used as basis functions for each axis of the thorax-femur joints
with 15×15 centers in the range

[−π
8 , π

8

]×[− 5
4π, 5

4π
]

for vertical movements and[−π
4 , π

4

]×[− 5
4π, 5

4π
]

for horizontal movements of the legs. This high-dimensional
task was performed over 4000 trials with SO controller and with noise probing
signal, see Fig. 4.
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Fig. 3. Hexapod robot realised in the LpzRobots simulator. Joints between legs and
thorax have two degrees of freedom and a servo motor for each axis. The joint in the
middle of each leg contains only an unactuated spring.

5 Results and Discussion

5.1 Pendulum Results

A comparison of the results for a standard RL controller and for the SO controller
are shown in Fig. 2. The swing-up task appears to be easily learned by the RL
controller, its slope is steepest, a stable performance is reached earlier, and the
total time spent in the upright position is longer. Interestingly, the SO controller
never reaches a higher count of maximally rewarded states. This and the evidence
that the behaviour is learned, shows that this controller continues to explore new
states even if the maximum of the reward function has been already discovered.
Because learning is driven merely by the correlation between exploratory action
and utility function consistency, the results for this low-dimensional problem are
little impressive, whereas in high dimensional tasks, where exploration is a less
trivial problem, this SO controller will allow the robot to keep exploring such
that local maxima of the expected reward or regions and directions with low
gradients can be avoided more easily.

5.2 Hexapod Results

The results for the hexapod with the RL and the SO controller are shown in
Fig. 4. As expected, the SO controller shows an advantage in the sense that
throughout the experiment the increase of the average speed is higher than the
maximal speed that was achieved by the RL controlled robot. It is, moreover,
obvious that a stable performance is not clearly achieved by either approach, even
after 4000 trials. The relatively high speed is produced by the SO controller even
in spite the exploratory tendency of the SO controller, which can be considered
as a further advantage of the explorative strategy.
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Fig. 4. Average speed for the hexapod with RL controller (lower trace) and with the
combined controller (upper trace) during 4000 trials at a learning rate εC = 0.1. The
errorbars indicate deviations over three runs for each control task.

6 Conclusion

We have presented an integration of two approaches to the unsupervised gener-
ation of behaviour in robots. The interaction is based on an objective function
that maximises the sensitivity of the learning systems with respect to mismatches
in the utility function while simultaneously a RL component aims to maximise
the future reward. We have tested our approach with two exemplary tasks of
different complexity and have shown that

– the exploration induced by the SO controller may counteract the reward
maximisation in an optimally tuned low dimensional task, while

– the SO controller seems to aid the learning process by guiding the exploration
in a high dimensional task, and that

– the variable coherency of the action modulation in the SO controller improves
the capability of the algorithm to escape local minima and flat regions of the
goal function.

For comparability of the two variants of learning we ran the experiments with
restarts after each trial. This is necessary in RL with random exploration but it
is not required in the self-organized variant. If a stable performance is reached at
any local or global optimum the sensitivity of the SO controller increases until
the state of the systems escapes from the stationary behaviour. Restarting may
not be an option for an autonomous robot such that an SO controller may be
required here also for practical reasons.

Current work includes the comparison of the quality and frequency of the
visited states as well as more systematic assessment of the scaling properties
which are promising as we have shown recently in the context of guided self-
organisation [9].
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