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Abstract. The paper presents an explicit maximum-likelihood algo-
rithm for the estimation of the probabilistic-weighting density functions
that are associated with individual adaptive activation functions in neu-
ral networks. A partially unsupervised technique is devised which takes
into account the joint distribution of input features and target out-
puts. Combined with the training algorithm introduced in the companion
paper [2], the solution proposed herein realizes a well-defined, specific in-
stance of the novel learning machine. The extension of the overall training
method to more-than-one hidden layer architectures is pointed out, as
well. A preliminary experimental demonstration is given, outlining how
the algorithm works.

Keywords: Expectation maximization, partially unsupervised learning,
co-training, adaptive activation function.

1 Introduction

In the companion paper an extension of the multilayer perceptron (MLP), named
trainable-activations multilayer perceptron (TA-MLP), is introduced [2]. A TA-
MLP is a flexible neural model having adaptive activation functions learned
during the training procedure. The hidden units can compute task-specific ar-
bitrary functions, learned according to the nature of the data. Each of them
specializes over the input space according to a probabilistic criterion. The latter
can be formalized by associating a pair (f(·), p(·)) with each hidden unit in the
model, where f(·) is the adaptive activation function and p(·) is the correspond-
ing likelihood measure. The quantity f(·) is realized by means of a MLP.

A partially-unsupervised probabilistic framework is used in order to let each
hidden unit specialize on a part of the original problem. Each hidden unit h
contributes to the output according to the probability P (h | x) of that unit
being “competent” on pattern x. As explained in [2], a maximum-likelihood
estimation of the parameters of a Gaussian mixture model (GMM) is required
in order to compute P (h | x). The GMM is expected to have as many component
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densities as the number of hidden units in the TA-MLP (basically, each neuron
specializes over a Gaussian distribution). The estimate of the GMM is then used
within Bayes theorem in order to determine P (h | x) [2].

As we say, each adaptive activation function relies on a standard MLP, called
inner network. Flexibility of the overall learning machine can be increased further
(e.g., when facing severe learning tasks) by replacing the inner net, in turn, with
a TA-MLP. This may be applied recursively, as many times as necessary. In so
doing, multiple levels of model expansion and adaptation are obtained. At each
level, estimation of a new GMM is needed. Given an inner network h, let us call gh

its g-th hidden unit. When estimating P (gh | x), i.e. the posterior probability of
the gh-th inner network (within the h-th hidden unit of the outer MLP) given its
input x, we need to take into account the probabilistic weight introduced at the
previous level(s), i.e. P (h | x). Then, maximum likelihood estimation (after the
very first level) involves a weighting factor inherited from the previous levels. In
Section 2 we introduce a simple refinement of the usual expectation-maximization
(EM) algorithm for the estimation of GMM parameters [1] that accounts for this
peculiar “pattern weighting” mechanism. Furthermore, as observed in [2], cal-
culations occur in the joint input-output space at training time (taking benefit
from knowledge of the target outputs). On the other way around, at test time
the optimal parameters are projected back onto the bare input subspace. The
overall training algorithm emerging from the combination of the general scheme
proposed in [2] and the weighted estimation technique introduced below can be
further extended to more-than-one hidden later (outer) MLPs, as well. The com-
plete algorithm is handed out in Section 3. A preliminary experimental demonstra-
tion of how the TA-MLP works is given in Section 4, while Section 5 draws some
conclusive remarks.

2 Maximum Likelihood Estimation with Weighted
Patterns

Let us define a dataset D =
{(

xk, yk
)
, k = 1, . . . , N

}
, where xk ∈ R

d is a vector
of observed features and yk ∈ R

n is a target vector. In our partially-supervised
framework we take benefit from the knowledge of the target outputs during
training [2], and we define zk =

(
w′

hxk, yk
)
, where w′

h = (wh1, wh2, . . . , whd) is
the vector of weights that connect the input layer to the h-th adaptive hidden
unit. In this notation w′

h is meant to be a row vector and xk is a column
vector, that is, w′

hxk is a scalar quantity. Then, let us define the dataset D′ ={
zk, k = 1, . . . , N

}
. In what follows we will work with the generic h-th inner

net, i.e. all the input patterns xk, k = 1, . . . , N , are projected onto the subspace
defined by the weights w′

h. Assuming that z1, . . . , zN are i.i.d., the likelihood
of the parameters given D′ is

p(D′ | θ) =
N∏

k=1

p(zk | θ) (1)
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and p(zk | θ) is expressed as a Gaussian mixture model (GMM):

p(zk | θ) =
c∑

j=1

P (ωj)p(zk | ωj , θj). (2)

where θj = (μj, Σj) are the parameters of the j-th Gaussian component (i.e.
the mean and the covariance matrix) and P (ωj) is its mixing parameter. If each
pattern zk has a weight vk associated to it (in our case it is the probabilistic
weight), equation (2) becomes

p(zk | θ) = vk
c∑

j=1

P (ωj)p(zk | ωj , θj). (3)

We can write the log-likelihood as

log p(D′ | θ) =
N∑

k=1

log
{
p(zk | θ)

}
. (4)

In order to optimize the log-likelihood w.r.t. its parameters θ the estimation
of the optimal parameters for each component of the mixture is needed. We
assume that θi is functionally independent from θj when i �= j. We assume
also identifiability of the components of the mixture, i.e. θ �= θ̃ ⇒ ∃z ∈ D′ :
p(z | θ) �= p(z | θ̃). Then, we compute the gradient of equation (4) w.r.t. the
parameters of the generic i-th component, θi, and set it equal to zero:

∇θi
log p(D′ | θ) =

N∑

k=1

1
p(zk | θ)

∇θi

⎧
⎨

⎩
vk

c∑

j=1

P (ωj)p(zk | ωj, θj)

⎫
⎬

⎭

=
N∑

k=1

1
p(zk | θ)

∇θi

{
vkP (ωi)p(zk | ωi, θi)

}

=
N∑

k=1

vkP (ωi)
p(zk | θ)

∇θi

{
p(zk | ωi, θi)

}

=
N∑

k=1

vkP (ωi | zk, θ)
p(zk | ωi, θi)

∇θi

{
p(zk | ωi, θi)

}

=
N∑

k=1

vkP (ωi | zk, θ)∇θi
log
{
p(zk | ωi, θi)

}
= 0 (5)

where 0 is a vector whose entries are all equal to zero. Compared to the classical
unweighted estimation, we have the additional weighting factors vk. Since each
component of the mixture is Gaussian, θj = (μj , Σj), we have:

log p(zk | ωj, θj) = − log
{

(2π)d/2 | Σj |1/2
}
− 1

2
(zk −μj)ᵀΣ−1

j (zk −μj). (6)
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Taking the gradient of (6) w.r.t. μj we obtain

∇μj
log p(zk | ωj , θj) = Σ−1

j (zk − μj) (7)

and equation (5) can be rewritten as

N∑

k=1

P (ωj | zk, θ)vkΣ−1
j (zk − μj) = 0 (8)

that is a set of d+d2 equations that represent necessary conditions to be satisfied
by the maximum-likelihood estimator. It follows that

N∑

k=1

P (ωj | zk, θ)vkΣ−1
j zk =

N∑

k=1

P (ωj | zk, θ)vkΣ−1
j μj (9)

and then

μj =
∑N

k=1 P (ωj | zk, θ)vkzk

∑N
k=1 P (ωj | zk, θ)vk

(10)

In a similar manner, the gradient of (6) w.r.t. Σj can be calculated, yielding:

Σj =
∑N

k=1 P (ωj | zk, θ)vk(zk − μj)(zk − μj)ᵀ
∑N

k=1 P (ωj | zk, θ)vk
. (11)

Finally, the mixing coefficients can be calculated taking the gradient of the log-
likelihood w.r.t. P (wj) while imposing the constraint

∑c
i=1 P (wi) = 1. This can

be done using a Lagrange multiplier and maximizing the quantity

L =
N∑

k=1

log
{
p(zk | θ)

}
+ λ

(
c∑

i=1

P (ωi) − 1

)

=
N∑

k=1

log

{

vk
c∑

i=1

P (ωi)p(zk | ωi, θi)

}

+ λ

(
c∑

i=1

P (ωi) − 1

)

(12)

We then calculate the partial derivative of equation (12) w.r.t. the generic mixing
parameter P (wj) and set it equal to zero:

∂L

∂P (ωj)
=

∂

∂P (ωj)

N∑

k=1

log
{
p(zk | θ)

}
+ λ

(
c∑

i=1

P (ωi) − 1

)

=
N∑

k=1

1
p(zk | θ)

∂

∂P (ωj)

{

vk
c∑

i=1

P (ωi)p(zk | ωi, θi)

}

+ λ

=
N∑

k=1

vk p(zk | ωj, θj)
p(zk | θ)

+ λ

=
N∑

k=1

vk P (ωj | zk, θ)
P (ωj)

+ λ = 0 (13)
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where we used the equality

p(zk | ωj , θj)
p(zk | θ)

=
P (ωj | zk, θ)

P (ωj)
(14)

given by Bayes theorem. Multiplying both sides of equation (13) by P (wj) and
summing over j making use of the constraint

∑c
i=1 P (wi) = 1, we obtain

λ = −
c∑

j=1

P (ωj)
N∑

k=1

vk P (ωj | zk, θ)
P (ωj)

= −
N∑

k=1

vk
c∑

j=1

P (ωj)P (ωj | zk, θ)
P (ωj)

= −
N∑

k=1

vk
c∑

j=1

P (ωj | zk, θ)

= −
N∑

k=1

vk (15)

Substitution of (15) into (13) gives

∑N
k=1 vkP (ωj | zk, θ)

P (ωj)
=

N∑

k=1

vk. (16)

Finally, solving for P (ωj):

P (ωj) =
∑N

k=1 vkP (ωj | xk, θ)
∑N

k=1 vk
. (17)

Note that the derived maximum-likelihood estimation does not have a closed-
form analytical solution. Then, following the classical EM approach [1] an itera-
tive algorithm based on a gradient ascent procedure is exploited. Parameters θ
(i.e. μj , Σj and P (ωj), for each Gaussian component j) are initialized arbitrarily
(to this end, the k-means algorithm [1] is applied in this paper). Then, at each
iteration, the E-step consists in computing P (ωj|zk, θ) according to the current
value of θ and for each component j. In the M-step parameters are re-estimated
using such values of P (ωj |zk, θ) according to equations (10), (11) and (17) [1,3].

3 Extension to Multiple Hidden Layers

In this section we extend the training algorithm presented in the companion pa-
per [2] to more-than-one hidden layer architectures. Algorithm 1 hands out the
pseudo-code. The (outer) MLP is assumed to have L layers (L− 1 hidden layers
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with a layer-specific number of hidden units, and an output layer). The extension
is rather straightforward. The basic idea requires an initialization via standard
backpropagation (BP) as in [2]. The activation functions of the topmost hid-
den layer are basically trained as in the single-hidden-layer setup (called routine
Train in the pseudo-code), via computation of the inverse of the output activa-
tion functions and backpropagation of the target outputs (referred to as routine
BackpropagateTargets in Algorithm 1), as explained in [2]. Estimation of the
corresponding GMM takes place according to the calculations given in Section 2.
The weighted, joint pdf estimation of the GMM parameters is referred to as rou-
tine EstimateGMM in the pseudo-code. So far, the only novelty is that the input
dataset (for estimation of the GMM and the training of the inner networks) is no
longer obtained from the original input patters, but from the outputs yielded by
the previous hidden layer (computed via routine FeedForward). Estimation of
GMMs and training of inner MLPs within the lower hidden layers (down to the
bottom-most) occur in an iterative fashion, following (i) a forward propagation
of the original inputs up to the required layer, and (ii) a progressive backward
propagation step of target outputs.

In Algorithm 1 actual inputs to l-th layer, for the k-th pattern are referred
to as xk(l), while x̂k(l) indicate the desired inputs (i.e. obtained through inver-
sion of the activation functions for the L-th layer, and through MLP-inversion
for the hidden layers, see below). The target outputs backpropagated at l-th
layer is referred to as ok(l) [2]. Dh(l) =

{(
xk

h(l), ok
h(l)

)
, k = 1, . . . , N

}
denotes

the training set for the h-th inner net in l-th layer, where xk
h(l) and ok

h(l) are
the h-th entry of vector xk(l) and ok(l), respectively. Finally, DGMM (l) ={(

xk(l), ok(l + 1)
)
, k = 1, . . . , N

}
is the dataset used for GMM estimation at

l-th layer.
The only catch is the definition of suitable target outputs at a generic layer,

starting from the outputs of the upper layer. This is accomplished by means of
the so-called MLP inversion method [5], according to the calculations outlined
in [4]. The method is conceptually simple: starting from a neural network which
realizes a transformation y = φ(x,w) for a given (pre-trained) set of weights w,
the MLP inversion principle prescribes the transformation of the input patterns
x into new patters x′ which better fit the target criterion function C(·). The
update rule for creating x′ follows the usual gradient descent approach, aimed
at minimizing C(·) w.r.t. x (while the weights w are clamped to their original
values). In summary, we let

x′ = x − η∇xC(·) (18)

whose explicit calculation is accomplished in a way similar to standard BP,
η ∈ R

+ being a learning rate. The routine realizing such an inversion scheme
over a generic MLP is referred to as Invert() in the pseudo-code, and it has to
be applied to all inner networks in the model.
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Algorithm 1. Training multilayer networks with adaptive activation functions

Input: D =
{(

xk , yk
)
, k = 1 . . . N

}

L← number of layers (except input layer)
for l = 1 to L− 1 do

m(l)← number of units in l-th layer
end for
for k = 1 to N do

x̂k(L)← inverse of activation functions of L-th layer over yk

ok(L) = yk

end for
for l = L− 1 down to 1 do

DGMM(l)← ∅
for h = 1 to m(l) do

Dh(l)← ∅
end for
for k = 1 to N do

xk(l)← FeedForward(xk ) up to l-th layer
DGM M (l)← DGM M (l)

⋃{(xk(l), ok(l + 1))}
end for
EstimateGMM over DGM M (l)
for k = 1 to N do

ok(l)← BackpropagateTargets(x̂k (l + 1))
for h = 1 to m(l) do

Dh(l)← Dh(l)
⋃{(xk

h(l), ok
h(l))}

end for
end for
for h = 1 to m(l) do

Train h-th inner net on Dh(l)
end for
for k = 1 to N do

x̂k(l)← Invert(inner networks)
end for

end for

4 Demonstration

In this section we present a preliminary evaluation of the proposed model on a
synthetic regression task. We generated piecewise functions defined over three
intervals. In each interval the function is a mixture of basic functions, namely:
a sinusoid multiplied by a quadratic function, a Gaussian mixture multiplied by
a linear function and a cubic function. The order of the intervals is randomly
generated for each piecewise function. Finally, random Gaussian noise was added
to the function. The standard deviation of the noise is a random value varying
between 0.01 and 0.05. The input and output range were normalized in [−1, 1]
and [0, 1], respectively. The cardinality of the training, validation and test sets
was 200, 100 and 200 patterns, respectively.
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The model was evaluated making use of two common criteria, namely the
mean squared error (MSE), that is MSE = 1

N

∑N
k=1

(
yk − ỹk

)2, and the inte-

grated squared error (ISE), defined as ISE =
∫
I
(
f(x) − f̃(x)

)2

dx, where I is
the interval where the x variable is defined. The integral was evaluated using
Simpson method. To this end, the range of the input variable was divided into
1000 intervals. Figure 1a shows the original function (solid line) and the training
set obtained by adding Gaussian noise (later used to train the outer network).
We set m = 2 and then replaced each of the hidden units with the correspond-
ing inner MLPs. The architecture of the latter ones was determined through a
cross-validation procedure.
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Fig. 1. (a) Synthetic function and training set - (b) Comparison between MLP and
TA-MLP

Figures 2a and 2b show the training set, the probabilistic weights and the
activation function learned by the two inner networks, respectively.

Table 1 shows the comparison between standard MLPs and TA-MLPs. For
each network we indicate the total number of free parameters of the model, the
number of hidden units (in case of TA-MLPs, the number of units of inner net-
works is also indicated in brackets), the MSE on both training and test sets, and
the ISE. The best five results for both models are reported (in the order) in the
table. The first row of the table shows that for a fixed number of free parameters
(for both models) the TA-MLP achieves slightly better result than the MLP in
terms of ISE and MSE, on both training and test sets. This confirms the algo-
rithm is effective. Moreover, increased flexibility of the model over the training
sample does not affect its generalization capabilities (i.e. proper, non-overfitting
activation functions are actually learned). The subsequent rows show how the
performance of TA-MLPs remains stable when the number of free parameters
decreases. In traditional MLPs, on the other end, an increased number of free
parameters does not entail a comparable improvement in terms of performance.

Figure 1b shows the approximations obtained with the best TA-MLP (solid
line) and with the best standard MLP (dashed line), respectively, along with
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Fig. 2. Activation functions learned by (a) first inner network and (b) second inner
network (solid lines), together with their training set (points) and their probabilistic
weights (dashed lines)

Table 1. Comparison between MLPs and TA-MLPs

MLP TA-MLP

#Par #Hid MSEtrain MSEtest ISE #Par #Hid MSEtrain MSEtest ISE

40 13 0.033 0.037 0.00137 40 2(5-6) 0.032 0.035 9.25e-4

49 16 0.046 0.052 0.00390 37 2(4-6) 0.033 0.035 9.42e-4

46 15 0.047 0.052 0.00393 34 2(4-5) 0.034 0.038 9.55e-4

34 11 0.047 0.052 0.00392 43 2(6-6) 0.033 0.035 9.67e-4

37 12 0.047 0.052 0.00399 37 2(5-5) 0.035 0.038 9.97e-4

the corresponding training sets. It is seen that modeling the first peak exhibited
by the training data turned up infeasible via standard MLP, while using the
TA-MLP the very peak turns out to be modeled suitably (via the inner network
which focused on the corresponding, specific region). The activation functions
learned by the two inner networks (problem-specific, and quite different from
regular sigmoids) are shown in solid lines in figures 2a and 2b.

5 Conclusion

The paper developed an explicit, weighted maximum-likelihood solution to the
problem of estimating the density functions (defined over the joint input/output
space) associated wit the neurons of neural nets having adaptive activation func-
tions. Combining the result with the generic training scheme introduced in the
companion paper [2], a complete algorithm for this family of connectionist mod-
els emerges. The algorithm was extended to multi-layer architectures in a natu-
ral way. A preliminary experimental demonstration (over a synthetic regression
task) proved the resulting approach being effective. It is seen that in the 1-
hidden-layer scenario the overall machine can be described as a particular case
of the traditional mixture of neural experts [6], having a novel training/gating



Semi-unsupervised Weighted Maximum-Likelihood Estimation 71

policy. In the multi-layer setup this dual interpretation does not hold any longer,
and we are faced with a novel, non-standard neural network (non fully-connected,
and possibly having different depths along separate branches of its graphical
structure), where the probabilistic measures associated with each adaptive neu-
ron are defined over non-linearly transformed images of the original data. Efforts
are currently focused toward (i) the definition of a robust, automatic technique
for the selection of suitable, neuron-specific topologies for the inner MLPs (re-
lying on the evaluation of a cross-validated log-likelihood criterion), as well as
on (ii) a thorough experimental comparative analysis of the behavior of the
proposed machine.
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