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Abstract. In spite of the nice theoretical properties of mixtures of lo-
gistic activation functions, standard feedforward neural network with
limited resources and gradient-descent optimization of the connection
weights may practically fail in several, difficult learning tasks. Such tasks
would be better faced by relying on a more appropriate, problem-specific
basis of activation functions. The paper introduces a connectionist model
which features adaptive activation functions. Each hidden unit in the net-
work is associated with a specific pair (f(·), p(·)), where f(·) (the very
activation) is modeled via a specialized neural network, and p(·) is a
probabilistic measure of the likelihood of the unit itself being relevant
to the computation of the output over the current input. While f(·)
is optimized in a supervised manner (through a novel backpropagation
scheme of the target outputs which do not suffer from the traditional
phenomenon of “vanishing gradient” that occurs in standard backpropa-
gation), p(·) is realized via a statistical parametric model learned through
unsupervised estimation. The overall machine is implicitly a co-trained
coupled model, where the topology chosen for learning each f(·) may
vary on a unit-by-unit basis, resulting in a highly non-standard neural
architecture.

Keywords: Co-training, partially unsupervised learning, adaptive acti-
vation function.

1 Introduction

Neural networks are one of the most common models used in the machine learn-
ing community: they have been successfully used for regression, classification and
function approximation tasks. In spite of their popularity and their nice theo-
retical properties, practical training difficulties are often met in severe learning
tasks. Indeed, the model could require a high number of hidden units in order
to perform well. This would lead to an architecture with a high number of free
parameters, more difficult to train, prone to overfit the training data and to get
stuck into poor local minima of the criterion function. In this paper we introduce
a neural model having adaptive activation functions, learned during the training
procedure itself. The aim is to define a more flexible model (yet possibly simpler
overall) in which the hidden units can compute arbitrary functions. Learning
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problems that would require a huge number of logistic activation functions are
expected to turn up way simpler once their solution relies on a basis of “right”,
problem-specific activation functions. Since no such basis is known in advance,
the approach we propose suggests learning the functions from scratch, accord-
ing to the very nature of the data at hand. Each function is specialized over
the input space by means of a well-defined likelihood criterion. This can be for-
malized by saying that each hidden unit in the model is associated with a pair
(f(·), p(·)) where f(·) is the unit-specific, adaptive activation function, while p(·)
is the corresponding likelihood measure.

Neural networks are usually trained over a supervised dataset defined as D ={(
xk,yk

)
, k = 1 . . . N

}
, where xk ∈ R

d is a vector of observed features and
yk ∈ R

n is a target vector. The net is taught to reproduce the target output
yk when the feature vector xk is presented in input. Usually, a gradient descent
algorithm, like backpropagation [1], is used in order to minimize the criterion
function

C(w) =
1

2

N∑

k=1

n∑

i=1

(
yki − ỹki (w)

)2
(1)

where w are the connection weights, yki and ỹki (w) are the target and the output
of the i-th output unit of the network over k-th input pattern, respectively. Each
unit j in layer Ll, receives an activation given by aj =

∑
u∈Ll−1

quwju, where
qu is the output of u-th unit in the previous layer and wju is the connection
weight from unit u ∈ Ll−1 to unit j ∈ Ll. The output of the unit is computed
applying an activation function fj(·) to aj , namely oj = fj(aj). According to
the universal approximation theorem of neural networks [2], multilayer percep-
trons (MLPs) having one hidden layer made of sigmoidal units (see figure 1a)
are universal approximators on a compact subset of Rd. Although this theorem
guarantees the existence of a network able to approximate any function given
at least one hidden layer and sigmoid transfer functions, the network may need
an arbitrary amount of weights. From a practical point of view, the number of
hidden units required could be arbitrarily high, leading to difficulties during the
training phase and to limited generalization capability. In the following, we out-
line a viable way out relying on adaptive activation functions. It is worth noting
that using such functions f(·) realized via connectionist models will not affect
the overall network’s capability of being a “universal approximator”, due to the-
oretical results drawn from the investigation of non-sigmoid activation functions
[3,4]. As we say, a probabilistic weighting strategy is used in order to train and
apply f(·) within the overall learning machine. A unit-specific likelihood measure
p(·) is associated with f(·), affecting its optimization and its contribution to the
computation of the network outputs. A co-training procedure of a supervised
model f(·) and a partially unsupervised model p(·) will emerge. To all practi-
cal ends, the underlying idea is that p(·) forces f(·) to focus on input patters
that are likely to be drawn from a specific probability distribution (whilst stan-
dard backpropagation implicitly assumes a uniform distribution over all input
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patterns), simplifying the learning task by reducing it to easier sub-tasks whose
support is homogeneous (meaning that it presents certain regularities).

The idea of learning activation functions while training the network has been
investigated in [5] where Catmull-Rom splines are proposed. In so doing, a re-
duction in terms of model complexity is achieved, but the constraints imposed
on the number of hidden units do not guarantee universal approximation. Con-
versely, if we do not impose any constraint on the number of hidden units and we
use a MLP to model the activation functions, the whole model is still a universal
approximator.

In order to realize a network of adaptive activation functions, a simple MLP
architecture (the outer network) with a limited number m of hidden units is ini-
tialized and trained with backpropagation (BP) first. If the learning task is not
trivial, the connectionist solution obtained this way is expected to be far sub-
optimal. Once BP training has been completed (e.g., when the generalization
error evaluated over a validation set does not improve any longer) the hidden
units are replaced with simple MLP architectures (the inner networks). The ar-
chitecture of the inner networks may differ on a unit-by-unit basis. This results
in a non-standard, not-fully-connected topology (figure 1b). Inner networks are
then trained in order to contribute solving the overall learning problem. The al-
gorithm for our trainable-adaptive multilayer perceptron (TA-MLP) is presented
in detail in the next section. In the following we assume that the outer network
has only one hidden layer, while the extension of the algorithm to deeper archi-
tectures is presented in the companion paper [6]. Furthermore, since the tech-
nique does not rely on straightforward BP of the partial derivatives of the error
function w.r.t. the parameters, it does not suffer from the phenomenon of “van-
ishing gradient” which may be met in multilayer standard networks. It turns out
that estimation of p(·) may take a variety of forms, either entirely unsupervised
or partially-unsupervised. Explicit solution of the latter estimation problem is
presented in the companion paper, where an experimental demonstration of the
overall algorithm is given. Preliminary conclusions are drawn in Section 3.

oj

a j

...

...j

(a)

... ... ... ...

...

...

(b)

Fig. 1. (a) Classical MLP - (b) MLP with adaptive activation functions
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2 The Training Algorithm

In order to train the inner networks, a training setDh =
{(

xk
h, o

k
h

)
, k = 1, . . . , N

}

must be specified for each net h, with h = 1, . . . ,m. Note that both xk
h and okh

are scalar quantities. Regular backpropagation can then be applied. Section 2.1
elaborates on how Dh is generated. Once the creation of the network-specific
training sets is accomplished, the probabilistic technique presented in Section
2.2 is applied for weighting individual input patterns on a network-by-network
basis. Partially-supervised maximum-likelihood estimation of the quantities in-
volved in the probabilistic weighting scheme is outlined in Section 2.3.

2.1 Generation of Locally-Supervised Training Sets

The k-th input pattern xk
h for the h-th inner network can be easily obtained

from its activation ah:

xk
h =

∑

u∈L0

xk
uwhu (2)

where xk
u is the u-th entry of the original input vector xk and L0 is the input layer.

More effort is required in order to define the target outputs. The supervision is
available only at the output layer of the outer network, then it is necessary to
define a strategy to back-propagate it. For each output unit i of the outer net,
and for each pattern k, values of okh are sought that satisfy the following equation:

ỹki = fi

(
m∑

h=1

okhwih

)

. (3)

First of all, we compute the target activations ai of the output units of the
outer network, by inversion of their activation function. In both cases of linear
or sigmoidal activation function, computing the inverse is trivial. In the former
case we have yi = fi(ai) = ai, that is ai = yi. If the activation is a sigmoid,
i.e. yi = 1/(1 + exp(−ai)), then ai = − log(1 − yi) + log(yi). In the latter case
it is assumed that yi ∈ (0, 1). Then, the target activations ai should be further
backpropagated in order to compute the desired outputs okh for each inner net.
For clarity, the overall procedure is outlined in figure 2a and 2b. The former
shows the trivial case where the outer network only has one output unit, while
in the latter the straightforward extension to several output units is represented.
Two different methods may be exploited: gradient descent and inversion of the
weight matrix. Both are effective, and they generally lead to closely similar
solutions. Of course, the target outputs okh must be determined for each pattern
in the training set, but for notational convenience we concentrate on a generic
target oh (i.e., from now on we drop the index k).

A gradient descent procedure can be exploited in almost exactly the same
way as in the backpropagation algorithm. We are interested in minimizing the
criterion function C(·) (see equation (1)) w.r.t. the output of the inner networks,
oh, with h = 1, . . . ,m. At this stage the weights between hidden and output
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Fig. 2. Back-propagation of the target with (a) single a (b) multiple output units

layer of the outer MLP are considered to be constants (i.e., they are kept fixed
at the values reached after the BP initialization of the outer network). At every
iteration of BP the target output oh of the generic h-th inner network is updated
to a new value o′h, according to the following rule:

o′h = oh +Δoh = oh − η
∂C

∂oh
(4)

where η is the learning rate and, for instance, if the output activation is linear

∂C

∂oh
=

∂

∂oh

{
1

2

n∑

i=1

(yi − ỹi)
2

}

=
1

2

n∑

i=1

∂

∂oh
(yi − ỹi)

2

=
n∑

i=1

(yi − ỹi)
∂

∂oh

⎛

⎝yi −
m∑

j=1

wijoj

⎞

⎠

= −
n∑

i=1

(yi − ỹi)wih (5)

where n is the number of output units of the outer network, yi and ỹi are respec-
tively the target and current output of the i-th output unit of the
outer net.

A faster approach (albeit possibly less stable from a numeric standpoint)
is provided by the inversion of the weight matrix of the outer network WOH ∈
R

nxm that connects the hidden to the output layer. Upon inversion of the output
activation functions, we are provided with the array of desired activation at the
n output units of the outer MLP, AO ∈ R

n. If OH ∈ R
m is the desired array of

outputs of the inner networks, then AO = WOHOH and

OH = W−1
OHAO. (6)
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Since the matrix WOH usually does not have full rank, its pseudo-inverse is
exploited. At this point, we have a generic, basic technique for creating the
training sets for the inner networks. The next section investigates how a proba-
bilistic weight p(·) is associated with each inner MLP. It will turn out that such
probabilistic weights affect the very generation of target data, namely equation
(5) and (6).

2.2 Probabilistic Weighting of Patterns

Since m hidden units are available, the original learning problem can be split
into m smaller and easier tasks, and every inner net is specialized on one of
such problems. This would be easily done having a method to evaluate the
“competence” of each inner net on a given pattern. For this purpose, the posterior
probability P (h | xk) of the h-th inner net given pattern xk, can be exploited.
Explicit calculation of P (h | xk) relies on a neuron-specific probability density
function (pdf), namely ph(·), that is the probabilistic quantity p(·) which we
associate with each of the adaptive activation functions f(·) as anticipated in
Section 1. In order to train inner networks we define a modified, neuron-specific
criterion function in which every pattern xk is weighted by P (h | xk), i.e. its
probability of being in the region of competence of h-th inner net:

Ch (wh) =
1

2

N∑

k=1

P (h | xk)
(
okh − õkh

)2
(7)

where wh are the connection weights of the inner net itself and õkh is its output.
In so doing, the individual contribution each pattern xk gives to the training
of h-th inner MLP is proportional to the probability of the very MLP being
competent over xk. Probabilistic weighting are also exploited while computing
target data for inner networks. Indeed, each inner net is expected to contribute to
the activation of the output units of the outer net proportionally to P (h | xk).
The weights from the hidden to the output units of the outer MLP can then
incorporate the probabilistic weight. This means that, when the outer net is fed
with pattern xk, the activation of its i-th output unit is

ai =

m∑

h=1

okhwihP (h | xk) =

m∑

h=1

okhw̃ih (8)

where we defined the variable weight w̃ih (as a function of xk) as w̃ih = wihP (h |
xk). Computation of the target dataset for inner networks (see equation (6)) is
then redefined in terms of these modified weights:

AO = W̃OHOH and OH = W̃−1
OHAO. (9)

Two examples drawn from a synthetic, one-dimensional regression task (gener-
ated as discussed in the companion paper [6]) are presented in figures 3a and
3b. The dots indicate the datasets obtained applying equation (9), while dashed
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lines represent the probabilistic weights themselves. Finally, note that the con-
straint imposed through equation (8) makes it possible to recover the target
output during the feedforward phase. The next section outlines the steps for the
actual calculation of P (h | xk).
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Fig. 3. Synthetic training set (dots) and the corresponding probabilistic weights
(dashed line) generated for (a) first inner network and (b) second inner network

2.3 Partially Supervised Maximum-Likelihood Estimation of the
Probabilistic Weights

In this section we point out how the probabilistic weights P (h | xk) may be
computed. Let us introduce a general, fully unsupervised framework first. Later
on, we will extend the approach in a semi-supervised fashion, such that the
probabilistic weights can be estimated by taking benefit from the knowledge of
the neuron-specific target outputs during training. According to Bayes theorem
the posterior probability P (h | x) of the h-th inner net given the pattern x is

P (h | x) = p(x | h)P (h)

p(x)
.

In practice, we associate a pdf ph(x) = p(x | h) with each adaptive neuron h =
1, . . . ,m. A classical Gaussian mixture model (GMM) can be used to estimate
the likelihood term p(x | h) [1]. If we denote with θ the parameters of the GMM,
then

P (h | x, θ) = p(x | h, θ)P (h)

p(x | θ) . (10)

Assuming that the feature vectors x1, . . . ,xN in the training sample are i.i.d.
according to p(x | θ), the likelihood of the parameters given the data is

p(x1, . . . ,xN | θ) =
N∏

k=1

p(xk | θ)
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where (following the usual GMM approach for a generic pattern x)

p(x | θ) =
c∑

j=1

P (ωj)p(x | ωj , θj)

=

c∑

j=1

P (ωj)N (x;μj , Σj) (11)

where c is the number of Gaussian components, μj , Σj and P (ωj) are respec-
tively the mean, the covariance matrix and the probability of the j-th component
N (x;μj , Σj), and θj = (μj , Σj). Since we are interested in computing a proba-
bilistic measure for each inner network h, we associate each activation function
with a specific component density of the Gaussian mixture, i.e. c = m. In so
doing, we are implicitly giving a rough probabilistic interpretation of the sig-
moids realized by standard activation functions. In fact, the sigmoid (with a
specific bias b and smoothness σ) is the cumulative distribution function of a
corresponding logistic density function, that is close to a Gaussian distribution
having mean b and variance (π2/3)σ2 (technically, the gap between multivariate
Gaussian components and univariate distributions is going to be closed shortly).
Standard maximum-likelihood estimation techniques can now be applied [6] in
order to find θj, j = 1, . . . ,m, providing us with a complete algorithm.

So far, a viable and fully unsupervised approach has been outlined. A partially-
supervised extension of the framework may benefit from the knowledge of the
target outputs for the adaptive neurons during training. We perform an estima-
tion of the joint probability of input and output data, i.e. instead of applying
equation (11) we are interested in computing

p
(
xk,yk | θ) =

c∑

j=1

P (ωj)p(x
k,yk | ωj, θj). (12)

A GMM can still be used. When the outer network is fed with pattern xk,
the latter is projected first onto a subspace defined by the weight matrix WHI

(i.e., the connections between the input and the hidden layer). This defines the
activations of the hidden units, that forms the input of the inner nets. Each
Gaussian component is then defined on a different, univariate subspace, depend-
ing on the weights w′

h = (wh1, wh2, . . . , whd) connecting the input layer to the
h-th adaptive hidden unit (see figure 4).

This translates in defining m univariate Gaussian probability density func-
tions, each one defined on the subspace obtained applying to the input pat-
terns the linear transformation given by the weights WHI . Equation (12) is
rewritten as

p
(
xk,yk | θ) =

c∑

j=1

P (ωj)p
′(xk,yk | ωj , θj) (13)
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Fig. 4. Projection in hidden subspaces

where, referring to the h-th hidden unit,

p′(xk,yk | ωj , θj) = p(w′
hx

k,yk | ωj , θj). (14)

In this notation w′
h is meant to be a row vector and xk is a column vector,

then w′
hx

k is a scalar quantity. If we let zk =
(
w′

hx
k,yk

)
then we can rewrite

equation (13) in the form

p
(
xk,yk | θ) =

c∑

j=1

P (ωj)p(z
k | ωj , θj) (15)
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Fig. 5. (a) Pattern assigned to each Gaussian component after EM - (b) Gaussian
components projected in input space - (c) probabilistic weights
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An explicit maximum-likelihood solution of this estimation problem (including
the probabilistic weighting of pattern we outlined in Section 2.2) based on the
expectation-maximization (EM) algorithm, is developed in the companion paper
[6]. During the test phase, the target yk is not available, and then it is not
possible to compute the exact value of P (h | xk,yk). In practice, we project the
Gaussian components in the original input space.

A graphic, illustrative example (taken from the same regression task plotted
in figure 3a and 3b) is given in figure 5. Figure 5a shows the partition of the
input patterns after running the EM algorithm. Each pattern xk is assigned to
the Gaussian component h for which P (h | xk) is higher. Figures 5b and 5c
show respectively the two Gaussian components projected in input space and
the probabilistic weights (the posterior probabilities P (h | x) for h = 1, 2).

3 Preliminary Conclusions

The paper introduced the idea of adaptive activation functions in order to im-
prove the learning capability of ANNs. A general form for the gradient-based
training algorithm was outlined. Each adaptive activation is associated with a
probabilistic measure p(·). Estimation of the latter may take place according
to a standard, unsupervised maximum-likelihood, or in a partially unsupervised
framework which exploits the joint pdf of feature vectors and target outputs. Ex-
plicit solution of the ML estimation in the latter scenario are developed in the
companion paper [6], where the extension of the algorithm to multi-layer archi-
tectures is pointed out, too, and an experimental demonstration of the proposed
model is given.
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