
Studying Self- and Active-Training Methods

for Multi-feature Set Emotion Recognition
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Abstract. Automatic emotion classification is a task that has been sub-
ject of study from very different approaches. Previous research proves
that similar performance to humans can be achieved by adequate combi-
nation of modalities and features. Nevertheless, large amounts of training
data seem necessary to reach a similar level of accurate automatic classi-
fication. The labelling of training, validation and test sets is generally a
difficult and time consuming task that restricts the experiments. There-
fore, in this work we aim at studying self and active training methods
and their performance in the task of emotion classification from speech
data to reduce annotation costs. The results are compared, using con-
fusion matrices, with the human perception capabilities and supervised
training experiments, yielding similar accuracies.

Keywords: Human perception of emotion, automatic emotion classi-
fication, semi-supervised learning, active learning, emotion recognition
from speech.

1 Introduction

Emotion classification relies, as all classification problems, in the features that
support it and their variability for the different classes considered. Literature
shows that in the case of emotion classification, there exist many situations
where not even an expert - human - is capable of emitting a decision with
absolute confidence, due to real overlappings between the different classes. For
these scenarios, where cross-class confusions are unavoidable in some cases, large
training sets are often required in order to achieve accurate enough results.

Previous research aimed at emulating human perception capabilities shows
that by means of choosing appropriate feature sets and exhaustive training,
similar accuracies and confusions may be obtained by using large training sets.
This, however, implies a tedious labelling process conducted by experts which, in
general, may represent a very expensive and time consuming effort. Further, not
all manual annotations might improve the automatic classifier’s performance,
as uninformative data (e.g. data far from decision boundaries) hardly influences
the discriminative performance of the classifier.
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Obtaining unlabelled samples, however, does not necessarily incur in high
costs and large amounts of data should be exploitable even without annotations.
For this reason, there is continuous research being conducted with the aim of
using unlabelled data for training. To make use of this unlabeled training data,
different approaches and research lines, each of them focusing on different prop-
erties of the training process, exist. There is research conducted, for example, on
semi-supervised learning, where both labelled and unlabelled data are used for
model training ([3], [20], [2]), unsupervised learning, where only unlabelled data
is used (eg. Clustering algorithms - [4]) or active learning, where the system is
allowed to choose its training data from a pool of samples [8].

In this work we use both a semi-supervised approach based on k-nearest neigh-
bor algorithm providing preliminary fuzzy estimates and an active learning ap-
proach for training multi-classifier multi-class support vector machines (SVM).
Eight separate feature sets extracted from speech data are combined to assess
the performance on a standard emotion dataset.

The remainder of the paper is organized as follows: Section 3 introduces the
used datasets and the human perception benchmarks, reported as confusion
matrices. Section 4 then describes the employed feature sets, as well as the
encoding of sequential features. The experimental setup is briefly described in
Section 2 and the results are reported in Section 5. The automatic classification
performances are then compared with the human perception in Section 6, and
Section 7 concludes the paper.

2 Methods

The experiments were conducted on the full WaSeP dataset with six target
categories. The gender-independent experiment was conducted with data from
both male and female speakers. For each feature set and class, two hidden
Markov models (HMM) are trained with male-only data and another 2 with
female-only data. To train the SVM, also equal amount of data from male and
female speakers was used. Results were calculated without considering whether
the test samples were produced by a male or female speaker. In the following
the three separate experimental setups are introduced briefly.

2.1 Supervised Learning Experiment

For the supervised learning, which serves as a benchmark for the latter experi-
ments, we utilized the F2SVM introduced in [16]. For each feature set an F2SVM
was trained separately. The different fuzzy outputs of each SVM are combined
by a simple multiplication fusion and normalization. A ten fold cross validation
with a 90% training and 10% test data-set split for the evaluation was conducted.

2.2 Self-training Experiment

In this experiment, we would like to aim at automatically generate fuzzy la-
bels for unseen data, starting from a small reference set, for which labels are
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available, before training the same F2SVM architecture as in Section 2.1. Al-
though there exist different techniques for self-training, only k-nearest neigh-
bour (k-NN) is utilized in this work, with k = 5. For each unlabeled point, a
new fuzzy label is generated by averaging the labels of the closest k reference
points. The newly generated label is then included into the reference set and
considered as correct for all the still unlabeled samples, thereby the reference set
increases iteratively. The iterations are repeated for all the unseen data-points.
When the new fuzzy labels are generated, the SVMs are trained in a supervised
style, assuming that the automatically generated labels are correct, leading to
a semi-supervised approach. In order to control the amount of error introduced
by the automatically generated labels, they are processed discrimination process
with a pivot parameter p. Labels with a confidence higher than p are used for
training the SVMs and those with a lower confidence are discarded. A graphical
representation of the process and the training set selection can be seen in Figures
1 and 2 respectively.

Initially
Labeled

Data

Unlabeled 
Data

Reference

k-NN

Reference

Confidence > p? Discard

Test

SVM Training

Trained SVM

Fuzzy 
Classification

Stop

Yes

No

Automatic Labeling Process Confident Label Selection & Evaluation

Fig. 1. k-NN Flow Chart

2.3 Active Learning Experiment

Traditional machine learning approaches rely on a large amount of labelled data
distributed over the feature spaces with as much information as possible con-
cerning the underlying generative distribution. These experiments are aimed at
reducing the required amount of training data by letting the system choose the
samples itself. The most striking research question here is of course the choice
and selection of the most relevant samples that could improve the performance.

First of all, the whole available dataset with available labels is divided in two
groups (i.e. training and test1). The training set, represents the pool of available

1 Note that the test set remains unchanged during the whole process.
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data from which the system will decide on every iteration which labels it wants to
have labels for and use for training. The evolution of the sets over the iterations
is represented in Figure 3.

A small number of labels is initially used for the training, then evaluation is
conducted on the unused training points. For each of these points, the SVMs
produce a fuzzy output label that represents the degree of membership to all
the classes. The accumulated membership to the classes must be equal to 1 and,
therefore, considering the highest membership in one label also accounts for the
most likely class. It is then possible to define the confidence of the label as the
degree of membership to the most likely class.

Considering only the most likely class for each label can be assumed to provide
a measure of how confident a decision is. In this case the more confident a decision
might be the less relevant for improvement it might be. Under this assumption, it
makes sense to believe that low confidence labels are the ones that the system has
trouble in classifying. Further, while considering the architecture of the utilized
classifiers, i.e. F2SVM, low values indicate proximity to the decision boundary.
Therefore, these samples might be the most informative influencing the decision
boundary in further iterations. On the other hand, for the output labels that
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show a good confidence, the system does not require more information since they
represent an easier task for it. A flow chart representing the whole learning and
evaluation process is presented in Figure 4.

3 Dataset Description

The experiments in this work are based on the “Corpus of spoken words for
studies of auditory speech and emotional prosody processing” (WaSeP c©) [19],
which consists of two main parts: a collection of German nouns and a collection
of phonetically balanced pseudo words, which correspond to the phonetical rules
of German language, such as “hebof”, “kebil”, or “sepau”. For this study the
pseudo words have been chosen as the basis. This pseudo word set consists of 222
words, repeatedly uttered by a male and a female actor in six different emotional
prosodies: neutral, joy, sadness, anger, fear, and disgust. The average duration
of the speech signals depends on the specific emotion, ranging from .75 sec. in
the case of the “neutral” prosody, to 1.70 sec. in the case of “disgust”. The
data was recorded using a Sony TCD-D7 DAT-recorder and the Sennheiser MD
425 microphone in an acoustic chamber with a 44.1 kHz sample rate and later
down-sampled to 16 kHz with a 16 bit resolution. Furthermore, a perception
test has been conducted with 74 native German listeners, who were asked to
rate and name the category or prosody that they were just listening to, resulting
in an overall accuracy of 78.53%. Table 1 shows the confusion matrix of the
human perception test. It was also observed that the most confused emotion is
“disgust”, which is conform with the assumptions of [12].
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Table 1. Confusion matrix of the human performance test generated from the available
labels for each of the utterances listed in the WaSeP database, [18]

F D H N S A

Fear 0.77 0.01 0.08 0.03 0.10 0.01
Disgust 0.05 0.72 0.06 0.03 0.07 0.07
Happiness 0.01 0.00 0.75 0.22 0.02 0.00
Neutral 0.01 0.02 0.05 0.79 0.00 0.13
Sadness 0.05 0.01 0.04 0.13 0.76 0.01
Anger 0.01 0.03 0.00 0.01 0.01 0.94

4 Features

In similar work, different combinations of audio features are said to perform well
in classification of emotional audio data [7]. Given the characteristics of the used
data set, the chosen features for this work are the following:

1. MFCC / ΔMFCC : based on the human perceptual scale of pitches. For the
MFCC extraction a window length of 25 ms and a shift time of 10 ms is
used, with a total of 20 cepstral coefficients, as well as their derivatives [11].

2. modSpec: implemented in an attempt to measure the modulation of the spec-
tral coefficients. This is a way of accounting how much and how fast the
features vary over time [9,5].

3. Voice Quality: the dynamic use of voice qualities in spoken language can
reveal useful information on a speakers attitude, mood and affective states.
The exact set of the utilized features is described in detail in [13].

4. f0: it is possible to obtain different values of f0 over time. From the f0 trail
different statistics are calculated: mean, standard deviation, maximum and
quartile values, forming the feature set.

5. Energy: the frame average energy is calculated using a window size of 32 ms
with an overlap of 16 ms. Similar statistics to those of f0 are used for this.

6. PLP : perceptual linear predictive (PLP) analysis is based on perceptually
and biologically motivated concepts, the critical bands, and the equal loud-
ness curves, as described in [6].

7. Periodicity: This set is designed based on correlation measures of the speech
signals. From the idea that vowels have a higher periodicity than consonants,
this measures can be considered as an indicator of the syllables speed. For
this purpose, different statistics from the relation of periodic segments over
the total length are used as feature. Similar parameters are also obtained
from the energy distribution.

Emotion classification from speech data proves to be a challenging problem due
to the sequential nature of the data. Therefore, dynamic features extracted on
short segments of speech (32ms windows) are useful for the classification of ex-
pressive clips. However, in order to be able to compare and combine these sequen-
tial features in a multi-classifier architecture with static features it is necessary
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to encode them into vectors of a fixed length. There exist different approaches
for dealing with this type of situations. In this work, vectorial HMM, as in [1],
are used to encode the sequential data to a new representation space, where
every sequence can be represented in terms of a fixed number of dimensions.

Additionally, since the feature spaces are usually very heterogeneous, data
normalization is performed. During the training of the system, mean and stan-
dard deviation (μtrain and σtrain) are calculated in each feature domain and for
each class, prior to the HMM training. To remove the effect of outliers, all values
above and below the 95% and 5% percentiles, respectively, are discarded. With
the normalized data, the HMM are trained and the same normalization values
(μtrain and σtrain) are later used to normalize the unseen data in the test step,
before calculating their likelihood values.

5 Experiments

Confusion matrices have been computed to analyse decisions. Every row sums
up to one, showing how much data from one class is classified by the system as
belonging to any of the possible ones. The columns (which do not necessarily
sum up to one) show how much data from all classes is classified as part of a
given one. Results for supervised learning experiment results are also included
for comparison with the partially-supervised experiments performance.

5.1 Supervised Learning

The classification accuracy in the gender-independent test is resulted in an aver-
age accuracy of 84%. Happiness produces the lowest number of hits, being highly
confused with fear and neutral. A paired t-test shows a highly statistically signif-
icant improvement for the fusion over the single best feature set, namely MFCC
(p < .001). For example, in the case of disgust or happiness (the categories with
the lowest accuracy), an increase of .08 in F1 measure can be achieved. The
confusion matrix is shown in Table 2.

Table 2. Confusion matrix of fused features for the gender-independent automatic
classification experiments, conducted with the WaSeP dataset

F D H N S A

Fear 0.80 0.03 0.08 0.01 0.02 0.06
Disgust 0.01 0.88 0.05 0.00 0.04 0.03
Happiness 0.08 0.02 0.71 0.12 0.04 0.03
Neutral 0.00 0.01 0.16 0.82 0.01 0.00
Sadness 0.02 0.00 0.03 0.01 0.95 0.00
Anger 0.01 0.07 0.02 0.03 0.00 0.86

5.2 Self-training Experiment

Several experiments have been conducted within this approach with the aim
to produce a significant improvement in the classification performance when the
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Discrimination parameter p

F D H N S A

Fear 0.58 0.05 0.14 0.04 0.08 0.12
Disgust 0.05 0.71 0.04 0.02 0.09 0.08
Happiness 0.16 0.13 0.34 0.17 0.12 0.09
Neutral 0.04 0.06 0.13 0.74 0.02 0.01
Sadness 0.01 0.02 0.01 0.01 0.95 0.00
Anger 0.04 0.09 0.02 0.06 0.02 0.76

F D H N S A

Fear 0.65 0.02 0.15 0.06 0.07 0.05
Disgust 0.05 0.77 0.05 0.01 0.05 0.06
Happiness 0.12 0.10 0.50 0.17 0.07 0.04
Neutral 0.02 0.07 0.17 0.73 0.01 0.00
Sadness 0.03 0.02 0.03 0.02 0.91 0.00
Anger 0.03 0.09 0.03 0.04 0.01 0.80

F D H N S A

Fear 0.63 0.04 0.18 0.04 0.06 0.05
Disgust 0.05 0.77 0.08 0.01 0.05 0.05
Happiness 0.10 0.08 0.50 0.16 0.07 0.08
Neutral 0.02 0.06 0.14 0.74 0.01 0.01
Sadness 0.03 0.02 0.02 0.02 0.92 0.00
Anger 0.06 0.07 0.04 0.04 0.00 0.79

Fig. 5. Average accuracy obtained for different values of the discrimination parameter
p. The confusion matrices obtained for values of p 0.1 and 0.8 are shown. As well as
these, the confusion matrix that represent the baseline for this experiment is obtained
for a value of p equal to 1, since this is the highest value of the discrimination parameter
and only real labels are able of reaching it.

system is trained with a reduced set of crisp labels, extended with a large number
of fuzzy automatically generated labels.

The baseline in this experiment has been lowered to resemble a situation with
small amounts of data available. This baseline provides an average accuracy of
73% for the gender-independent case, with only 20 samples per emotional cate-
gory available. A sweep analysis over the parameter p shows that the maximum
is found for a discrimination value of p = 0.8, achieving also an average of 73%.
Graphical representation of this analysis is shown in Figure 5, where gender-
independent results obtained are also shown as confusion matrices for values of
the discrimination parameter p equal to 0.1, 0.8 and 1. Since no improvement
is observed by extending the SVM training set with automatically labelled sam-
ples, it seems logical to believe that either the used confidence measure is not
valid or the generated kNN labels contain too much error.

A second experiment has been carried out to check the effect of the error
introduced into the labels by the k-NN algorithm. For this purpose, a larger
reference set was used for generating k-NN labels, but not completely used for
training the SVMs, as described in Figure 6. In this way it is possible to observe
the effect of the discriminative parameter p over the system accuracy, as shown
in Figure 7.

5.3 Active Learning Experiment

In the iterative training and evaluation process, each iteration represents an
increase of 10 samples in the training set. For evaluation of the results obtained in
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Fig. 7. Classification accuracy for different values of p using k-NN labels generated
with a large reference set. The reference set was later reduced and only a 10% of it was
used in the SVM training together with the new labels.

this section, Figure 8 has been generated. This figure shows the average accuracy
of the trained system for each step of the iterative process. Table 3 shows the
confusion matrix of the active learning experiment after the last iteration (with
all the available training data used). Average accuracy in this case, 88.2% is
higher than the 84% obtained in section 5.1 due to a larger training set utilized
for a better representation of the effect produced by the active learning. Further,
it should be noted that after only a few iterations some sort of saturation point
is reached, that comprises only a small portion of the available data for training.
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Fig. 8. Active learning accuracy over iterations, for the gender-independent case con-
ducted with the WaSeP dataset. Each iteration represents 10 new labels used for
training.

Table 3. Confusion matrix of the gender-independent active learning experiments

F D H N S A

Fear 0.83 0.01 0.11 0.01 0.01 0.02
Disgust 0.01 0.89 0.05 0.01 0.02 0.03
Happiness 0.05 0.02 0.79 0.10 0.02 0.02
Neutral 0.01 0.00 0.10 0.88 0.00 0.01
Sadness 0.01 0.00 0.02 0.01 0.97 0.00
Anger 0.01 0.02 0.02 0.01 0.00 0.93

6 Discussion

The confusion matrix provided in Section 5 provides a good basis for the com-
parison of human and machine capabilities and errors, as well as the different
training approaches under study. A first glance at the numbers shows that hu-
man and machine performances are quite similar on an overall scale. With the
WaSeP dataset, the 84% accuracy rate obtained is exactly the same as that of
humans in average. These figures, however, shall be used to compare the wellness
of the experiments conducted within the partially-supervised framework.

As for the semi-supervised experiments with the data labelled by the k-NN
algorithm, analysis of the obtained results (see Figure 5) shows that the use
of unlabelled data in the training process does not improve the baseline. The
baseline in this experiment has been lowered to resemble a situation with small
amounts of data available (i.e. only 20 samples per category). This baseline
provides an average accuracy of 73% for the gender-independent case. As already
commented in section 5.2, a sweep simulation over different values of p was
conducted, finding its maximum at p = 0.8. This maximum, however, is not
an increase with respect to the case where no unlabelled data is considered for
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training. Given the large amount of automatically generated labels used in the
training, it is wise to think that the style in which the experiments were designed
was not correct. There might be different reasons for this, like a bad selection
of the confidence measure or the excessive amount of error present in the self-
labelled samples. Assuming that the chosen confidence measure is correct, better
results are to be expected if the artificial labels are more accurately generated. To
prove this assumption, a second experiment has been conducted where the aim
was to reduce the error artificially put into the k-NN labels. The set of labelled
data used for training the SVMs is now reduced in order to be able to measure the
accuracy with most of the training data obtained by the k-NN process. As can
bee seen in Figure 7, when not a large amount of error is introduced artificially,
good performance improvements can be achieved if training with unlabelled data.
It makes sense to believe that with an automatically labelling algorithm that
inserts less error than k-NN it may be possible to use semi-supervised learning
with good accuracy results. As, the utilised confidence measure proved to give
good results when the artificial labels contain more correct information.

In opposition to the poor results encountered with the semi-supervised ap-
proach, active learning proved to be a very good approach for reducing the
amount of labelled data required. It can be seen that after approximately 60
iterations (100 training samples per class) the accuracy already reaches a sim-
ilar level performance to that of the supervised learning approach, using twice
as much data. This means a large reduction of the required amount of labelled
data, proving that the approach works and produces good results. In Figure 8
it is observed that after a certain iteration, the addition of new labelled data
does not lead to an accuracy increase. We can, therefore, affirm that the active
learning works well and can significantly reduce the required amount of data
without penalising the obtained results.

7 Conclusions

In the task of emotion classification, there is documented prove that humans
perform with higher error rates than in other recognition tasks. In this work,
we compared automatic emotion classification with the human performance and
studied different partially supervised approaches for training a classifier. In par-
ticular, we proved that a semi-supervised approach with artificial labels gener-
ated by k-NN does not produce good results due to a large amount of error
introduced automatically by the system. In opposition to these, good results
were obtained for experiments conducted in an active learning style, where a
reduction of the training data with respect to the supervised training case still
produces an accuracy comparable to that achieved in the human perception
tests. Future work should include the study of more sophisticated self-labelling
methods in order to improve the poor self-training results obtained. As for the
active training, different approaches to the one utilized exist and should also be
studied [15,14,10,17]. Further, as the utilized datasets were composed of acted
speech segments, future work should include the study of natural data as well as a
deeper knowledge of the representative characteristics of each different emotion.
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