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Abstract. In this paper, a partially supervised machine learning ap-
proach is proposed for the recognition of emotional user states in HCI
from bio-physiological data. To do so, an unsupervised learning prepro-
cessing step is integrated into the training of a classifier. This makes it
feasible to utilize unlabeled data or – as it is conducted in this study –
data that is labeled in others than the considered categories. Thus, the
data is transformed into a new representation and a standard classifier
approach is subsequently applied. Experimental evidences that such an
approach is beneficial in this particular setting is provided using clas-
sification experiments. Finally, the results are discussed and arguments
when such an partially supervised approach is promising to yield robust
and increased classification performances are given.

1 Introduction and Related Work

The reliability of a classifier heavily depends on the quality and quantity of
the data, that was available for its construction. Unfortunately, in real world
applications, it is often not trivial to design data bases where the data samples
are exhaustively labeled. The main reason for this is that the general procedure of
labeling data is often time consuming and expensive as it requires the knowledge
of human experts.

There are several techniques in the literature, that aim at circumventing this
issue by incorporating a machine-conducted labeling procedure: to make the an-
notation process more effectively, active learning is often used to guide a human
expert during an annotation process. Hereby, the most informative sample from
the unlabeled data, i.e. the one closest to a precomputed decision boundary, is
selected by the algorithm and passed to an expert [4]. In order to conduct a
fully automatic process, semi supervised learning can be applied: classifiers are
directly used to annotate the unlabeled data. A classifier can label data for itself
by choosing the most confident data samples and add them to the training set
(self training) [15]. Another option is to use several classifiers in order to mutually
select confident samples for the respective training data (co-training) [2,6,9].
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In this contribution, we implement a further learning strategy to exploit un-
labeled data in a classification process. The key idea is to infer the general
structure of the application using methods of unsupervised learning [25]. This
leads to a representation space using the cluster centers as reference system. For
these computations all available data can be used. Such an approach appeared
to be beneficial in previous work such as [19].

The remainder of this paper is organized as follows: The underlying data
collection is described in Section 2 together with the employed features. Section 3
points to the general issues that occur in the application and introduces the
proposed method in greater detail. The experiments and the respective results
are shown in Section 4. Finally, in Section 5 these results are discussed and
conclusions are drawn.

2 Data Collection

The data was collected in a Wizard-of-Oz study [7], which was conducted in
order to investigate affective human computer interaction in the well established
PAD space. The PAD model [17] defines a three dimensional annotation scheme
of emotions using the three dimensions pleasure, arousal and dominance.

In this particular setting, the test persons were instructed to solve multi-
ple games of concentration using a voice controlled interface. The successive
games were used to induce different emotional states to the subject in the order
sketched in Figure 1. To do so, different stimuli were presented to the subject
deliberately: Different negative (dispraise, time pressure, wrongly or delayed ex-
ecuted commands, etc.) as well as positive (e.g. praise, easier game) behaviors of
the computer interlocutor were presented. The subjects were passed through 5
sequences, which induce different states in the PAD space and the subjects each
passed through these sequences twice in two successive sessions (see Figure 1 for
details) [24]. Each of these sequences has a length of 3-5 minutes. Overall, 20
subjects (21 to 55 years, 10 male and 10 female) were passed through the exper-
imental procedure twice and thus for every person two experimental sequences
are available.

As a whole, 5 different channels were recorded at a sample rate of 512 Hz,
namely blood volume pulse (i.e. heart rate), electromyography (attached to mus-
culus zygomaticus and musculus currugator), skin-conductance and respiration.
From these signals, various features were extracted on different time scales.
Hereby, it is crucial to conduct a careful preprocessing procedure in order to
remove artifacts but to retain the respective information. In general, a slow low-
or band-pass filter is applied together with a linear piece-wise detrend1 of the
time series at a 10 s basis. In the following, a list of the extracted features per
channel is provided. The preprocessing together with the time granularity is
given in parentheses.

1 i.e. subtracting piecewise a linear least-squares-fit from the respective chunk of the
data.
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Fig. 1. Experimental design, including the expected position in the space. Experimen-
tal sequences ES-2 and ES-5, marked green and red respectively, are expected to induce
the desired emotional states [24]. The top row in the figure indicates the intended label
in PAD Space, whereby “+” signifies a high value in the respective dimension and “-”
vice versa.

Blood volume pulse (BVP) is recorded from an optical sensor device, attached
to a finger of the subject. The key to characterize the heart rate from the recorded
blood volume pulse is to find the well known QRS complex in the signal e.g.
as described in [16]. The following features are extracted (low pass filtered at
5 Hz, 25 s time window each) : Standard deviation of heart rate variability [18],
standard deviation of RR-intervals [23], pNN502 [12], approximate entropy [13],
RMSSD3 and recurrence rate, Poincaré plot4 [10] and power spectral density [26]
of the signal.

The subject’s respiration [3] is measured using a belt, that is wrapped around
its breast and has a tension measurement device attached to. From this signal
the following features are computed (low pass filtered at 0.15 Hz): Mean and
standard deviation of the first derivatives (10 s time window), breathing vol-
ume, mean and standard deviation of breath intervals, Poincaré plot4 (30 s time
window each).

To record the electromyogram (EMG), 2 electrodes are attached to the skin
near to the respective muscle. Thus electrical potential differences of about 500
μV are recorded. Hereby lies the information of contraction or relaxation of the
muscle in the oscillation of the EMG signal. The following features were com-
puted (bandpass filtered at 20 - 120 Hz, piecewise linear detrend): Mean of first
and second derivatives (5 s time window), power spectrum density estimation [26]
(15 s time window).

2 The pNN50-measure equals the proportion of occurrences of changes in RR-interval
duration of two consecutive RR-intervals that differ more than 50ms.

3 Square root of the mean of squared successive differences of RR-intervals.
4 Ratio of the axes of the fitted ellipse.
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Skin conductance is measured (SCL) using 2 electrodes, where constant elec-
trical current of 10 μA conducted. The respective resistance is then determined
by the sweat, a subject oozes. The following features are extracted for this signal
(low pass filtered at 0.2 Hz): mean and standard deviation of first and second
derivative (5 s time window), mean peak occurrences, average peak-height (20 s
time window each) [5].

In the following, the task to solve in the context of this paper is to discriminate
the samples of ES-2 and ES-5. These two experimental sequences are designed
to elicit rather complementary emotions: “high pleasure/low arousal/high dom-
inance” versus “low pleasure/high arousal/low dominance” (compare Figure 1,
top row) – or short positive vs. negative emotion. The according stimuli that are
presented to the subject were praises and a small board of concentration and
hence an easy play for the positive sequence. In case of the negative class, the
user is given a bigger board and only displeasing feedback is given: e.g. the user
is criticized for his execution of the game and the subject is exposed to time
pressure.

3 Problem Statement and Proposed Method

An application as described above arises several severe issues from a machine
learning perspective. Based on the design of the psychological experiment, the
overall samples that are labeled accordingly are very rare. When attempting to
compute reasonable features from the given data, the respective time window
has to be chosen over several seconds. Due to the high differences of physiology
over different subjects, the given application encourages the commands for a
personalized setting in the training of classifiers. This further toughens the lack
of data.

Further, when evaluating such kind of data it is not recommended to use
some kind of “leave one sample out” technique to evaluate a statistical model.
The employed sensors show a distinct characteristic over time and as the labels
are heavily correlated by definition to time, this would imply a severe bias in
the results. This implies in our application that it is necessary to train and test
using data from different sessions. Hence, it is highly desirable to make use of all
available data from all experimental sequences recorded from a subject. Unfor-
tunately this data is not labeled in the respective classes (compare Figure 1). On
the other hand, it is still data from the same domain. The goal is now to incor-
porate all available data into the construction of a classifier for the considered
two classes.

To do so, it is rather intuitive to refer to techniques of unsupervised learning.
The key idea is now to neglect the actual class labels for the samples and to
process all available data using a unsupervised technique - such as k-means or
Gaussian mixture models. In order to solve the actual classification problem a
further learning step is implemented: Based on the computed partitioning of
the data, an “activation value” of the cluster centers for the data samples is
computed. This activation could either be computed by a distance measure with
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Fig. 2. In order to incorporate the unlabeled data into the classification, an unsuper-
vised learning step is implemented. Thus, the data is transformed into a new represen-
tation, in which the actual classification is conducted.

respect to a cluster center in case of a partitioning algorithm is used, or the
posterior probability of a mixture component of a fitted generative model. This
results in a new representation of the data of the same dimensionality as number
of cluster centers. Based on this new feature vector, a classification on the initial
label is conducted using standard supervised machine learning approaches. This
procedure is sketched in Algorithm 1.

Algorithm 1: Proposed algorithm in pseudo code.
Input:
– Labeled data L = (li)i=1...M

– Respective labels Y = (yi)i=1...M

– Unlabeled data U = (uj)j=1...O

– Number of cluster centers k,

compute k local densities or prototypes p1, . . . , pk using L ∪ U ;
foreach li ∈ L do

l′i = Gp1,...,pk(li) ∈ R
N ;

G is a distance or similarity measure, and N is a natural number
depending on the specific structure of G
examples:

(a) N = k, and Gp1,...,pk (l) =| pi − l |
(b) N = k, and Gp1,...,pk (l) = (exp(− | pi − l | /σi)
(c) N = k(k − 1)/2 and Gp1,...,pk(li) = mini,j(| pi − l |, | pj − l |)

end
Train classifier F on ((l′i)i=1...M , Y );
Output: F

To classify an unseen data sample, it has to be transformed into the new
representation. This is done analogously to the training procedure by calculating
the activation score: These values are computed with respect to the computed
local density or the respective prototype and the obtained new representation is
classified.
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4 Experiments and Results

In this section the conducted experiments and the obtained results are described.
An important step in our approach is the choice of the unsupervised learner:
We decided to evaluate the well known k-means algorithm, neural gas [11] and
Gaussian mixture models (GMM) trained through the well known expectation
maximization (EM) algorithm. In case of neural gas and k-means, the number of
cluster centers is chosen to be 15% of the size of the training set. Due to numerical
issues the number of mixture components for the GMM is set constantly to 4 and
a regularization constant of 0.001 was fixed. Generally, the euclidean distances
to the cluster centers were used as new representation except for GMM, where
the posteriori probability for every Gaussian mixture component was computed.

For the supervised part of the proposed architecture, a support vector ma-
chine (SVM) learning approach was used [1]. To be precise, in this work ν-SVM
as described in [20] was used using an RBF kernel function. To compare the ex-
perimental results, we also conducted a purely supervised reference experiment,
where the training of the classifier is conducted only on the accordingly labeled
data. For this experiment, we used the ν-SVM approach with an RFB kernel as
well.

In Section 3 the general issue of testing a classifier in this application appro-
priately was mentioned briefly. To circumvent this issue and in order to ensure
proper results, the partitioning in training and testing data are separated by
session per class. But to increase the possible settings for testing, the whole ex-
perimental sequences are permuted in all possible combinations. This leads to
four settings of testing and training sets per subject.

The features described in Section 2 are extracted not only from different
modalities but also in different time scales. Hence, the classification study was
conducted in six different experiments, grouping the data by feature and size of
the time window: For the EMG, features that govern in time domain (derivatives
of the signal and related) are grouped together as well as features obtained from
the power spectrum. Also for the skin conductance two groups of features were
defined for classification: The statistics over the derivations are processed in a
different classifier than the statistics of the peaks of the signals. In case of BVP
and respiration such a partitioning is not necessary as the time windows of all
extracted features are the same.

The performances of the classifiers are reported in Table 1. As the distribu-
tion of classes in the data is imbalanced (compare 1) not only the accuracy are
reported, but also the F1 scores for ES-2. The numbers in the rows are mean
values over all subjects and every classifier is evaluated 80 times each. Gener-
ally, the numbers are relatively low, which is not surprising as the application
is rather challenging together with the general lack of data. It can be observed
that the two classifiers using EMG features perform best with an accuracy up
to 0.53. Also the classification on respiration features performs well (0.51 accu-
racy). All classifiers avoid to produce one-sided classification result, i.e. it does
not constantly decide for the class having the higher a priori probability, which
is indicated by the F1 scores.
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Table 1. Accuracies and F1 scores for ES-2 for the 6 classifier configurations averaged
over all subjects and 80 trials per subjects. The row-wise maximal values for both values
are highlighted in bold font. The last row shows the averages over all classification trials.

Feature combination
GMM Neural-Gas K-Means purely supervised

acc. F1 acc. F1 acc. F1 acc. F1

EMG (derivatives) 0.529 0.404 0.530 0.428 0.486 0.389 0.502 0.394
EMG (power spectrum) 0.531 0.404 0.514 0.430 0.461 0.366 0.458 0.342
SCL (derivatives) 0.431 0.325 0.431 0.300 0.415 0.321 0.424 0.323
SCL (inter-peak statistics) 0.437 0.356 0.448 0.399 0.451 0.399 0.421 0.355
BVP 0.475 0.363 0.437 0.355 0.455 0.366 0.483 0.392
Respiration 0.449 0.347 0.510 0.447 0.484 0.407 0.503 0.368

Average 0.475 0.366 0.479 0.393 0.459 0.374 0.465 0.362

Table 1 provides some arguments, that the unsupervised preprocessing does
provide benefits for the classification: In 3 of 6 cases of the classifiers, the partly
supervised method using neural gas outperforms the others. Further, comparing
all partly supervised experiments to the purely supervised case, it performs best
in 5 of 6 cases on average. Also, when averaging over all test runs, there is a
slight preference for the clustering preprocessing approach using neural gas but
also using GMM.

A ranking-like experiment is conducted, where it is counted how often a clas-
sifier outperforms all others for every individual subject averaged over all 80
trials. The results of this are reported in Table 2 as fractions of all comparisons.
This consideration reveals a slight advantage of the GMM based partially super-
vised classifier: It outperforms the others in 32% of the cases. Especially for the
features from EMG, which performed best in Table 1, such an approach appears
to be beneficial.

Table 2. For every classifier it is shown how often it outperforms all others. The lines
of the table show different feature combinations.

Feature combination GMM Neural-Gas K-Means purely supervised

EMG (derivatives) 41.1% 17.7% 17.7% 23.5%
EMG (power spectrum) 47.1% 23.5% 5.9% 23.5%
SCL (derivatives) 23.5% 17.7% 23.5% 35.3%
SCL (inter-peak statistics) 29.4% 17.7% 35.3% 17.7%
BVP 35.3% 5.9% 23.5% 35.3%
Respiration 17.7% 35.3% 11.8% 35.3%

Average 32.4% 19.6% 19.6% 28.4%

5 Discussion and Future Work

In this work a partially supervised machine learning approach has been proposed
and applied to the classification of bio-physiological time series. In this applica-
tion, only few data is available in the considered classes, but there is differently
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annotated data at hand, that did arise in the overall recording process. The goal
was to incorporate these samples into the classification process. To do so, we pro-
pose to use an unsupervised learning approach as a preprocessing step. Three
different learning strategies have been evaluated in this context: k-means, neural
gas as clustering approaches and GMM to estimate the probability distribution.
Thus the data was transformed in a new representation using the activation per
prototype or mixture component. Using the partitioning algorithm, the euclidean
distance has been used, while for the GMM the posterior probability per mixture
component is used. The experimental results reveal a slight advantage over the
purely supervised reference method of such an approach in this application.

In order to provide a rationale of why the proposed method works, the reader
is pointed to the the well known RBF networks. There exists a big research
community exploring how to improve the training of a network from given data
by finding a proper initialization [8,14,21,22]. Hereby, the aim is to make the
results more stable and also to speed up training. A typical approach is to pre-
train the hidden RBF-layer in an unsupervised fashion by clustering or vector
quantization. Afterwards, the network is finally trained by either solely creating
a perceptron for the output layer or back propagation for the whole network. The
unsupervised step in our approach can be regarded as some sort of initialization
of a “hidden layer” using all available data. Thus, the distributions of data can
be estimated more reliably. After that, a second “output layer” is created with
only the labeled data at hand.

Adding additional data the way we did in our experiments, i.e. data, that is
not from the same categories is of course only promising under certain condi-
tions. If the samples of data resolved into clearly delimited classes, where the
probability density functions for the different categories are non-overlapping,
adding data from a very different partition would hardly be reasonable. But
in many real world applications, this optimal setting for a classifier is not re-
ally present: Often the data decomposes into severely overlapping distributions.
There are also applications, where the particular classes are not (yet) irrevoca-
bly defined or such a definition is simply not possible due to distinct properties.
Both circumstances are at hand in the application described earlier: On the one
hand, the features that can be extracted from the bio-signals can be consid-
ered relatively weak compared to the intended – quite ambitious – objective. On
the other hand, even though the induction of the intended emotion succeeds in
the average, it is not guaranteed by any means that every particular sample is
correctly labeled.

The relatively small accuracies reported in Table 1 could be regarded as a
major flaw of this contribution. There are two major ways to heal this issue:
There are still 6 individual classifiers that are evaluated in this study. These
classifiers should be further combined in order to enhance a frame wise classi-
fication process. This has to include of course some kind of alignment of the
different time windows that are used in order to get a coherent classification.
Another promising approach is to integrate the decisions of the classifiers over
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time [24]. On the other hand, one will then have to solve a general segmentation
problem in order to discriminate the sequences.

Further, calculating the new representation of the data samples creates the
opportunity to define mappings into higher dimensional spaces. This could, for
example, conducted as sketched in Algorithm 1 at example (c), where pair-wise
comparisons are used to build the new representation. Thus, it might be more
likely to find a proper linear separation of the respective classes.

Acknowledgments. This paper is based on work done within the Transre-
gional Collaborative Research Centre SFB/TRR 62 ”Companion-Technology for
Cognitive Technical Systems”, funded by the German Research Foundation
(DFG). The work of Martin Schels is supported by a scholarship of the Carl-Zeiss
Foundation.

References

1. Bennett, K.P., Campbell, C.: Support vector machines: hype or hallelujah?
SIGKDD Explor. Newsl. 2, 1–13 (2000)

2. Blum, A., Mitchell, T.: Combining labeled and unlabeled data with co-training.
In: Proceedings of the Eleventh Annual Conference on Computational Learning
Theory, pp. 92–100 (1998)

3. Boiten, F.A., Frijda, N.H., Wientjes, C.J.: Emotions and respiratory patterns: re-
view and critical analysis. International Journal of Psychophysiology 17(2), 103–
128 (1994)

4. Cohn, D.A., Ghahramani, Z., Jordan, M.I.: Active learning with statistical models.
J. Artif. Int. Res. 4, 129–145 (1996)

5. Darrow, C.W.: The equation of the galvanic skin reflex curve: I. the dynamics
of reaction in relation to excitation-background. The Journal of General Psychol-
ogy 16(2), 285–309 (1937)

6. Hady, M.F.A., Schwenker, F., Palm, G.: Semi-supervised learning for tree-
structured ensembles of RBF networks with co-training. Neural Networks 23(4),
497–509 (2010)

7. Kelley, J.F.: An empirical methodology for writing user-friendly natural language
computer applications. In: Proceedings of the SIGCHI conference on Human Fac-
tors in Computing Systems, pp. 193–196 (1983)

8. Kestler, H.A., Schwenker, F., Hoher, M., Palm, G.: Adaptive class-specific parti-
tioning as a means of initializing RBF-networks. In: IEEE International Conference
on Systems, Man and Cybernetics, vol. 1, pp. 46–49 (1995)

9. Ling, C.X., Du, J., Zhou, Z.H.: When does co-training work in real data? In: Pro-
ceedings of the 13th Pacific-Asia Conference on Advances in Knowledge Discovery
and Data Mining, pp. 596–603 (2009)

10. Marciano, F., Migaux, M., Acanfora, D., Furgi, G., Rengo, F.: Quantification of
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