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Abstract. A growing interest toward automatic, computer-based tools
has been spreading among forensic scientists and anthropologists wish-
ing to extend the armamentarium of traditional statistical analysis and
classification techniques. The combination of multiple paradigms is often
required in order to fit the difficult, real-world scenarios involved in the
area. The paper presents a comparison of combination techniques that
exploit neural networks having a probabilistic interpretation within a
Bayesian framework, either as models of class-posterior probabilities or
as class-conditional density functions. Experiments are reported on a se-
vere sex determination task relying on 1400 scout-view CT-scan images
of human crania. It is shown that connectionist probability estimates
yield higher accuracies than traditional statistical algorithms. Further-
more, the performance benefits from proper mixtures of neural models,
and it turns up affected by the specific combination technique adopted.
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1 Introduction

In recent times, a growing interest toward automatic, computer-based tools
has been spreading among forensic scientists and anthropologists wishing to
extend the armamentarium of traditional statistical analysis and classification
techniques [8]. In particular, reliable methods for the determination of the sex
from human skeletal remains is of fundamental importance, for identification
in forensic cases and for paleodemographic studies on ancient populations [2].
The sexual dimorphism is better recognizable in the pelvis, but (because of its
complex shape) the latter is often found in very poor condition. A fundamental
alternative is thus represented by the skull, which is generally better preserved
and more easily reconstructed if found fragmented [7]. The paper copes with
sex classification from scout-view computerized tomography (CT)-scan images
of male and female human skulls, relying on 1400 images collected on the field.
In particular, the goal is twofold: (i) searching for a reliable solution to the prob-
lem, applying either statistical or neural network approaches within a Bayesian
framework; (ii) investigating and comparing different techniques for combining
connectionist estimates of the probabilistic quantities involved in the maximum-
a-posteriori classification strategy.
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As reviewed in Section 2, a probabilistic interpretation of the output of a neural
network can be given in terms of a supervised, discriminative posterior-probability
setup, or in terms of unsupervised class-conditional density estimation. While the
former is the traditional practitioner’s choice in pattern recognition applications
of neural networks, the latter is far less investigated in the literature, mostly due
to the intrinsic difficulties which arise in dealing with the unsupervised estima-
tion task. Nonetheless, robust class-conditional density estimates can be used per
se within Bayes theorem as viable classification tools. Moreover, they can capture
and convey relevant information that can be combined with the class-posterior
estimates in order to improve the performance of the overall multiple-classifier
system. To this end, we rely on a neural network approach to the density estima-
tion task that we proposed in [10] (reviewed in Section 2, as well). Note that in [10]
the experimental evaluation of the model was carried out on illustrative, univari-
ate synthetic datasets generated with probability density functions (pdf) having
known form. Therefore, an additional aim of this paper is the evaluation of the
approach in a multivariate, real-world task.

The combination techniques evaluated in the paper are presented in
Section 3. They rely on two common, somewhat complementary notions. First,
having models of probabilistic quantities may ease the definition of meaningful
combination schemes that benefit from the homogeneous nature of the under-
lying classifiers (possibly, turning themselves out to undergo a plausible inter-
pretation in terms of probabilities). Second, on the other way around, posterior
probability models and individual class-conditional density functions are the
carrier of non-completely overlapping information, providing the combination
algorithm with the opportunity to perform better than the separate models ac-
tually do. Sex determination experiments on an original, real-scale dataset are
reported in Section 4. Some conclusions, relevant to the machine learning as well
as to the anthropology/forensic sciences communities are drawn in Section 5.

2 Probabilistic Interpretation of Neural Networks

Artificial neural networks (ANNs) [4,1] have been widely applied to pattern
classification tasks [1]. In most cases, their application takes the form of a con-
nectionist discriminant function, which is trained to yield a high ”score” on
the correct class, along with low scores on all the wrong classes. No probabilis-
tic interpretation of such a discriminant function is usually given, neither it
is even expected. As a matter of fact, minimum classification error is gained
when a maximum class-posterior probability is chosen as a discriminant within
a Bayesian framework [3]. This is accomplished relying on the popular Bayes
theorem[3], i.e. P (ωi | x) = p(x | ωi)P (ωi)/p(x), where x is a pattern (real-
valued feature vector) to be assigned to one out of c distinct and disjoint classes
ω1, . . . , ωc. The theorem transforms a prior knowledge on the probability of
individual classes, i.e. the prior probability P (ωi), into a posterior knowledge
upon observation of a certain feature vector x, namely the posterior probability
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P (ωi | x). Such a transformation relies on the evaluation of the so-called class-
conditional pdf p(x | ωi). Theorems confirm that, under rather mild conditions,
ANNs can be trained as optimal estimates of Bayes posterior probabilities [1].
These theorems give a mathematical foundation to the popular heuristic decision
rules that we mentioned at the beginning of this section. Roughly speaking, it
can be shown that a multi-layer perceptron (MLP) [4] having c output units and
trained via regular backpropagation (BP) [4] over a labeled training set T =

{(xk,yk) | k = 1, . . . , n} where yk = (yk1, . . . , ykc) and yki =
{

1 if xk ∈ ωi

0 otherwise is

an “optimal” non-parametric estimation of the left-hand-side of Bayes theorem.
In practice, it is not necessary to know the class-posterior probabilities in advance
in oder to create target outputs for the BP training, since a crisp 0/1 labeling
(which reminds us of the good, old Widrow-Hoff labeling for linear discriminant
[3]) drives the ANN weights to convergence towards the same result. Since a
probabilistic interpretation of the MLP outputs is sought, some constraints are
required. First, output values are limited to the (0, 1) range. This is readily
accomplished by relying on the usual sigmoid activation functions. Then, since∑c

i=1 P (ωi | x) = 1, a normalization of the MLP outputs is needed.
Whilst estimation of posterior probabilities via ANNs is feasible due to the

simplicity of satisfying the probability constraints, connectionist estimation of
pdfs–i.e., class-conditional pdfs to be used in the right-hand-side of Bayes
Theorem–is much harder, since: (i) a pdf may possibly take any non-negative,
unbounded value; (ii) its integral over the feature space shall equal 1; (iii) above
all, pdf estimation is an intrinsically unsupervised learning problem, and stan-
dard training algorithms do not do. Yet, due to their flexibility and general-
ization capabilities, neural models of pdfs could improve over parametric and
non-parametric statistical estimation techniques. In [10] we proposed a connec-
tionist model for density estimation which overcomes the major limitation of
statistical techniques. A concise review of the approach follows. Let us consider
a pdf p(x), defined over a real-valued, d-dimensional feature space. The model is
introduced along the usual line followed in the traditional kernel-based nonpara-
metric pdf estimates, such as the Parzen window (PW) [3]. These techniques
are built on the observation that the probability that a pattern x′ ∈ Rd, drawn
from p(x), falls in a certain region R of the feature space is P =

∫
R p(x)dx.

Let then T = {x1, . . . ,xn} be an unsupervised sample of n patterns, identically
and independently distributed (i.i.d.) according to p(x). If kn patterns in T fall
within R, an empirical estimate of P can be obtained as P � kn/n. If p(x) is
continuous and R is small enough to prevent p(x) from varying its value over R
in a significant manner, we are also allowed to write

∫
R p(x)dx � p(x′)V , where

x′ ∈ R, and V is the volume of region R. An estimated value of the pdf p(x)
over pattern x′ is thus given by:

p(x′) � kn/n

Vn
(1)

where Vn denotes the volume of region Rn, assuming that smaller regions around
x′ are considered as the sample size n increases. This is expected to allow
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equation (1) to yield improved estimates of p(x), i.e. to converge to the ex-
act value of p(x′) as n (hence, also kn) tends to infinity (a discussion of the
asymptotic behavior of nonparametric models of this kind can be found in [3]).
The basic instance of the PW technique assumes that Rn is a hypercube having
edge hn, such that Vn = hd

n. The edge hn is usually defined as a function of
n as hn = h1/

√
n, in order to ensure a correct asymptotic behavior. The value

h1 has to be chosen empirically, and it heavily affects the resulting model. The
formalization of the idea requires to define a unit-hypercube window function in

the form ϕ(y) =
{

1 if | yj |≤ 1/2, j = 1, . . . , d
0 otherwise , such that ϕ(x′−x

hn
) has value

1 iff x′ falls within the d-dimensional hyper-cubic region Rn centered in x and
having edge hn. This implies that kn =

∑n
i=1 ϕ(x′−xi

hn
). Using this expression,

from equation (1) we can write

p(x′) � 1
n

n∑
i=1

1
Vn

ϕ(
x′ − xi

hn
) (2)

which is the PW estimate of p(x′) from the sample T . The model is usually
refined by considering smoother window functions ϕ(.), instead of hypercubes.
The idea for training a MLP to estimate p(x) from T is to use the PW model
as a target output for the ANN, and to apply standard BP to the MLP. A un-
biased variant of this idea is proposed, according to the following unsupervised
algorithm (expressed in pseudo-code):

Input: T = {x1, . . . ,xn}, h1.
Output: p̃(.) /* the connectionist estimate of p(.) */

1. Let hn = h1/
√

n
2. Let Vn = hd

n
3. For i=1 to n do /* loop over T */

3.1 Let Ti = T \ {xi}
3.2 Let yi = 1

n−1

∑
x∈Ti

1
Vn−1

ϕ(xi−x
hn−1

) /* target output */

4. Let S = {(xi, yi) | i = 1, . . . , n} /* supervised training set */

5. Train the ANN via BP over S
6. Let p̃(.) be the function computed by the ANN
7. Return p̃(.)

Since the ANN output is assumed to be an estimate of a pdf, it must be non-
negative, yet unbounded. For this reason, sigmoids with adaptive amplitude λ
(i.e., in the form y = λ

1+e−x ), as described in [9], are used as output activation
functions. As in several statistical nonparametric models, such as the kn-nearest
neighbor technique [3], the ANN is not necessarily a pdf (in general, the integral
of p̃(.) over the feature space is not 1), but a good (i.e., useful) approximation of
the desired density is obtained, overcoming the limitations of traditional estima-
tion methods [10]. We refer to this model as the Parzen-ANN (P-ANN). In this
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paper, the P-ANN is applied to the estimation of the class-conditional density
functions p(x | ωi) to be used within Bayes theorem. This means that individual,
class-specific networks have to be trained over the data belonging to the corre-
sponding class. Standard Gaussian kernels will be applied in the experiments
(step 3.2 of the algorithm).

3 Combination Techniques

The probabilistic interpretation of different neural models provides us with a
number of simple yet well-grounded combination techniques for a multiple clas-
sifier system. For notational convenience, for each class i = 1, . . . , c we write
P̂ (ωi | x) to denote the posterior estimate of P (ωi | x) yielded by the i-th
output of the supervised MLP, and P̃ (ωi | x) to refer to the quantity p̃(x |
ωi)P (ωi)/p̃(x), where p̃(x | ωi) is the P-ANN for the class-conditional p(x | ωi)
and p̃(x), the estimate of the evidence p(x), is obtained as

∑c
j=1 P (ωj)p̃(x | ωj),

as usual. Plausible combination techniques may be defined as follows.

1. Pseudo-joint probability: let ξ1 and ξ2 be the random quantities yielded by
two distinct functions (or, regression models) of a given random vector x ∈
�d. We refer to ξ1 and ξ2 as the “models”, and the following discussion can
be extended straightforwardly to an arbitrary number of models. For any
generic state of nature ωi, i = 1, . . . , c, we can write:

P (ωi | ξ1, ξ2) =
p(ξ1, ξ2 | ωi)P (ωi)

p(ξ1, ξ2)
(3)

=
p(ξ1 | ωi)p(ξ2 | ξ1, ωi)P (ωi)

p(ξ1, ξ2)
.

Under the assumption that the models are independent of each other, equa-
tion (3) can be rewritten as follows:

P (ωi | ξ1, ξ2) =
p(ξ1 | ωi)p(ξ2 | ωi)P (ωi)

p(ξ1)p(ξ2)
(4)

=
P (ωi | ξ1)p(ξ1)

p(ξ1)P (ωi)
P (ωi | ξ2)p(ξ2)

p(ξ2)P (ωi)
P (ωi)

=
P (ωi | ξ1)P (ωi | ξ2)

P (ωi)

which has the form of a pseudo-joint probability (the product of quantities
at the numerator) normalized by the class-prior. The use of the expression
“pseudo” is enforced by the observation that in real-world scenarios the
models are hardly independent, yet equation (4) can still be fruitfully applied
in a naive-Bayes fashion. If the classes are equally alike a priori (as in the
experiments reported in the paper), i.e. if P (ωi) = P (ωj) for each i, j ∈
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{1, . . . , c}, then a discriminant function gi(.) can be defined for each class
ωi by taking the usual maximum-a-posteriori probability given the models,
i.e. maxi P (ωi | ξ1, ξ2), and dropping the denominator from Eq. (4). In so
doing, discriminant functions are defined as pseudo-joint probabilities in the
form gi(x) = P (ωi | ξ1(x))P (ωi | ξ2(x)), and the corresponding decision rule
assigns a pattern x to class i if gi(x) ≥ gj(x) for each j �= i, as usual. In the
experiments we assume that ξ1(.) is the supervised MLP and ξ2(.) is realized
via P-ANN (and Bayes theorem), and we let P (ωi | ξ1(x)) ≈ P̂ (ωi | x) and
P (ωi | ξ2(x)) ≈ P̃ (ωi | x), according to the notation above.

2. Maximum confidence: when we assign a pattern x to class ωi according to the
maximum-a-posteriori criterion, i.e. i =argmaxjP (ωj | x), we face a certain
Bayesian risk, namely the probability of misclassification given the pattern.
The latter can be written as P (error| x) =

∑c
j=1,j �=i P (ωj | x). It is seen

that the higher the posterior probability of ωi, the lower the probability of
error. In the present setup, a minimum-risk combination strategy for the
two connectionist models follows in a natural manner: if the neural networks
agree on the decision of assigning pattern x to ωi, just do it. Otherwise, if
P̂ (ωi | x) ≥ P̂ (ωj | x) for all j �= i and P̃ (ωk | x) ≥ P̃ (ωj | x) for all j �= k,
then the decision d(x) between ωi and ωk is taken as:

d(x) =
{

ωi if P̂ (error| x) ≥ P̃ (error| x)
ωk otherwise

(5)

where P̂ (error| x) =
∑c

j=1,j �=i P̂ (ωj | x) and P̃ (error| x) =
∑c

j=1,j �=k P̃ (ωj |
x). In other words, the classification relies eventually on the model which
exhibits the highest confidence in its own decision.

3. Minimum expectation: albeit appealing, the combination based on maximum
confidence has a major drawback. In fact, a rough model of the Bayesian
posterior probability turns implicitly out to be a rough estimator of its own
Bayesian risk, as well (e.g., by over-estimating the class-posterior over a cer-
tain pattern, resulting in an under-estimate of the corresponding probability
of error). This may suggest taking a somewhat complementary approach, dis-
carding the (overwhelmingly optimistic) maximum-confidence decision and
opting for the (possibly more realistic) minimum expectation strategy. In
this framework, the latter takes the following form: if the two models are in
disagreement, say d(x) = ωi based on P̂ (ωi | x) and d(x) = ωk based on
P̃ (ωk | x), then assign x to ωi if P̂ (ωi | x) ≤ P̃ (ωk | x), else assign x to
ωk. Albeit heuristic, this conservative strategy reveals to be backed up by
empirical evidence.

4. Average: a natural, simple alternative is represented by the average between
the two estimates, namely taking P (ωi | x) ≈ 1

2 P̂ (ωi | x) + 1
2 P̃ (ωi | x)

for each i = 1, . . . , c. The straightforward extension of the technique relies
on a weighted average over the models in the form P (ωi | x) ≈ αP̂ (ωi |
x) + (1 − α)P̃ (ωi | x) for each class, where the relative weight α ∈ (0, 1)
can be determined empirically via model selection techniques, contributing
to compensate for possible biases and/or numeric mismatches between the
two models.
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5. Rejection on ξι: a variation on the theme of the maximum confidence, which
outsprings from the same background reasoning and from a long-standing
tradition in practical development of classifiers which include the reject op-
tion (i.e. reject current pattern x, refusing to take any decision, whenever the
estimated value of the discriminant functions g1(x), . . . , gc(x) are all below
a given rejection threshold θ, with θ in the (0, 1) interval) can be introduced
as follows. Let ξ1(x) = P̂ (ωi | x) and ξ2(x) = P̃ (ωk | x), where ωi and ωk

are the decisions taken by models ξ1 and ξ2 over x, respectively. We say that
a rejection on ξ1 decision strategy assigns x to ωi if ξ1(x) ≥ θ, and to ωk

otherwise (regardless of the value of ξ2(x)). On the other way around, the
rejection on ξ2 assigns by default to ωk, unless ξ2(x) < θ (in the latter case x
is assigned to ωi). It is seen that these decision rules do not coincide with the
maximum-confidence approach. Suitable values for θ are found empirically,
within a proper model selection framework.

6. Mixture of experts: in principle, the most flexible combination technique
simply avoids arbitrary choices on the explicit combination strategy, and
lets the machine learn its own “optimal” recipe from examples. A straight-
forward, yet sound realization of this principle relies on a committee of
neural experts [4]. In the present setup we consider a third MLP which,
for each pattern x, is fed with the estimates ξ1(x) and ξ2(x) and is ex-
pected to yield in output a more robust estimate of P (ωi | x). We refer
to this third connectionist module as the gating network. More precisely,
in a c-class problem ξ1(x) has c output units, forming an input vector
(P̂ (ω1 | x), . . . , P̂ (ωc | x)) while ξ2(x) is better described as an ordered
collection of c separate P-ANNs, say (p̃(x | ω1), . . . , p̃(x | ωc)). The ag-
gregate vector (P̂ (ω1 | x), . . . , P̂ (ωc | x), p̃(x | ω1), . . . , p̃(x | ωc)) defines
the input space for the gating network, whose target output is the usual,
Widrow-Hoff-like binary coding (0/1) of the correct class whom the current
training pattern belongs to. In so doing, as remarked in Section 2, the gat-
ing network approximates the Bayesian class-posterior probability, learning
the combination law of its inputs which best fits its training criterion. To
practical ends, ξ1(x) and ξ2(x) are separately trained first, as usual. Later
on, the gating network is trained (with regular BP) on the outputs yielded
by ξ1(x) and ξ2(x) over the original training data.

4 Experiments

For this study, a total of 1400 scout-view CT scanogram (of healthy, adult, Cau-
casian subjects) were selected at random from our PACS database, including
700 males and 700 females within an age range of 25–92. The scanogram was
chosen because it is routinely performed before a cranial CT examination, and
since for our purposes (i.e., the determination of the external shape of calvarium
in norma lateralis) it is basically as reliable as the cephalometric lateral radio-
graph. The patients were chosen on the basis of their residence in the province
of Trieste (Italy), since the population of this geographic area is the result of
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complex historical genetic crossover between Italic, Germanic and Slavic popu-
lations. Lateral cranial scanograms were automatically selected and anonymized
by our PACS facilities (registering only the sex and the age) among the CT ex-
aminations performed between the years 2005 and 2010 in the radiological struc-
tures of the Department of Diagnostic Imaging of the Hospital Corporation at
the University of Trieste with similar multislice computed tomography (MSCT)
equipment. Lateral CT scanograms were taken on an Aquilion 16 Toshiba mul-
tislice CT scanner, using the standard preset (120 kVp, 150 mAs, matrix size
512x512). The images were automatically transformed from DICOM to JPG
format, maintaining the original matrix size.

Visual feature extraction from the images underwent the following proce-
dure. A smoothing Gaussian filter (with discrete Weierstrass transform relying
on a 5×5 convolution matrix) is applied first [6], in order to reduce additive
noise. It is followed by a sharpening filter. Starting from the filtered image,
edge detection and edge connection are accomplished by a technique relying on
Canny algorithm, followed by thresholding. Upon removal of the maxilla and
mandible area, the contour of the cranium is extracted automatically (includ-
ing the glabella, calvarium, and opisthion areas). The centroid-distance signature
function is then extracted [12], ensuring translation-invariance. In order to reduce
the dimensionality significantly, and to resort to a fixed-dimensionality represen-
tation, sub-sampling of the overall set of signatures is accomplished via the equal
points sampling technique. Features are finally extracted from the sub-sampled
signatures by application of the usual fast Fourier transform (FFT), retaining
the first 64 parameters. This results in a 64-dim feature space which ensures ro-
tation invariance and scale invariance (by proper normalization of the magnitude
of the first half of the FFT coefficients), as described in [12].

The data were split first into a training and a validation set, for model selec-
tion purposes. Once the selection process was completed and upon replacement
of the original data, the patterns were then randomly partitioned again into a
training set (1000 patterns), and a test set (400 patterns), having an equal bal-
ance between the relative frequencies of male and female samples. Results are re-
ported in Table 1 (the same notation used in the previous section is used to refer
to the specific models). Linear discriminant analysis was applied first (applying
the pseudo-inverse method based on singular value decomposition), in order to
fix a baseline. The results confirm the high-nonlinearity of the classification task.
A more significant baseline was yielded by a regular k-nearest neighbor (k-NN)
classifier with k = 5. The performance turnt out to be improved by the PW ap-
proach. Standard Gaussian kernels were used, with initial width h1 = 9.77×10−2.
Connectionist approaches follow, starting from the individual classifiers relying on
unsupervised estimation of p(x | ωi) (15 hidden sigmoid units for the “male” class,
and 16 such units for the “female” class; sigmoid activation in the output unit, all
activation functions having a smoothness set to 0.4 and layer-by-layer adaptive
amplitude). Training these P-ANNs required 300 epochs only, with learning rates
η = 0.1. The next row of the table shows the results yielded by the supervised esti-
mation of P (ωi | x) via MLP. The latter has 16 hidden sigmoid units and a sigmoid
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Table 1. Sex recognition rate using the cranium contour

Model Accuracy (%)

Linear discriminant 53.80

k-NN 68.25

Parzen Window 70.75

P̃ (ωi | x) 79.25

P̂ (ωi | x) 80.25

Pseudo-joint probability 82.00

Maximum confidence 81.50

Minimum expectation 81.25

Average 82.00

Weighted average 82.75

Rejection on ξ1 83.00

Rejection on ξ2 81.75

Mixture of experts 83.50

output, all having smoothness 1.25. 20000 epochs of BP with learning rate η = 0.1
were applied. Accuracies turn out to outperform the statistical techniques. The P-
ANN performance is even surprisingly higher than the traditional PW, and close
to the supervised, discriminative MLP. The combination techniques proposed in
Section 3 are reported in the next rows of the table. The mixture of experts relies
on a gating MLP with 9-hidden sigmoid units and a sigmoid output (all smooth-
nesses set to 1), and neuron-by-neuron adaptive amplitudes. Training required 150
epochs with a learning rate set to 0.02. It is seen that all the combination methods
are effective (although, with a certain variance in terms of relative performance),
showing that the difference in the information conveyed by the connectionist mod-
els involved are complementary to some extent and can be exploited jointly in or-
der to come up with a more robust classifier. Letting the machine discover the
most suitable combination law (relying on the committee machine) yields higher
recognition rates than fixed (albeit plausible) mixing choices. In the best case sce-
nario (i.e., mixture of experts) a relative error rate reduction of 16.46% is gained
w.r.t the best single-model classifier. Results are of the utmost significance in an
application oriented perspective, if compared with the expected recognition rate
(∼ 80%) by human experts [11], as well as similar classification experiments car-
ried out using statistical approaches in the forensic sciences [5].

5 Conclusions

The paper faced a difficult, real-world classification task having the utmost
relevance to anthropology and the forensic sciences, namely sex determination
from CT-scan images of human skulls. Experiments were accomplished over an
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original, large-scale dataset collected on the field and involving 1400 patients.
Statistical and connectionist approaches were considered. In particular, neural
networks having a probabilistic interpretation of their outputs were reviewed.
The two paradigms can be mixed in a variety of natural, sound ways on the
basis of the probabilistic meaning of their outputs. Several combination tech-
niques were considered and compared on the field. Results are noticeable in an
application perspective, turning out to be higher than the expected correctness
of prediction by human experts, as well as w.r.t. statistical approaches previ-
ously investigated in the literature on forensic sciences. In particular, combina-
tion based on committee machines do particularly fit the task. Finally, P-ANNs
proved themselves to be more effective than traditional statistical techniques
over the multivariate density estimation task at hand.

References

1. Bishop, C.M.: Neural Networks for Pattern Recognition. Oxford University Press,
Oxford (1995)

2. Brasili, P., Toselli, S., Facchini, F.: Methodological aspects of the diagnosis of sex
based on cranial metric traits. Homo. 51, 68–80 (2000)

3. Duda, R.O., Hart, P.E.: Pattern Classification and Scene Analysis. Wiley, New
York (1973)

4. Haykin, S.: Neural Networks. A Comprehensive Foundation. Macmillan, New York
(1994)

5. Hsiao, T.H., Chang, H.P., Liu, K.M.: Sex determination by discriminant function
analysis of lateral radiographic cephalometry. Journal of Forensic Sciences 41(5),
792 (1996)

6. Nixon, M., Aguado, A.S.: Feature Extraction & Image Processing, 2nd edn.
Academic Press (2008)

7. Novotny, V., Iscan, M., Loth, S.: Morphologic and osteometric assessment of age,
sex, and race from the skull. In: Iscan, M.Y., Helmer, R.P. (eds.) Forensic Analysis
of the Skull, pp. 71–88. Wiley-Liss, New York (1993)

8. Rsing, F.W., Graw, M., Marr, B., Ritz-Timme, S., Rothschild, M.A., Rzscher,
K., Schmeling, A., Schrder, I., Geserick, G.: Recommendations for the forensic
diagnosis of sex and age from skeletons. HOMO - Journal of Comparative Human
Biology 58(1), 75–89 (2007)

9. Trentin, E.: Networks with trainable amplitude of activation functions. Neural
Networks 14(4-5), 471–493 (2001)

10. Trentin, E.: Simple and Effective Connectionist Nonparametric Estimation of Prob-
ability Density Functions. In: Schwenker, F., Marinai, S. (eds.) ANNPR 2006.
LNCS (LNAI), vol. 4087, pp. 1–10. Springer, Heidelberg (2006)

11. Walrath, D.E., Turner, P., Bruzek, J.: Reliability test of the visual assessment
of cranial traits for sex determination. American Journal of Physical Anthropol-
ogy 125(2), 132–137 (2004)

12. Zhang, D., Lu, G.: A Comparative Study on Shape Retrieval Using Fourier De-
scriptors with Different Shape Signatures. Journal of Visual Communication and
Image Representation 14(1), 41–60 (2003)


	Comparison of Combined Probabilistic Connectionist Models in a Forensic Application

	Introduction
	Probabilistic Interpretation of Neural Networks
	Combination Techniques
	Experiments
	Conclusions
	References




