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Abstract. Microarrays are standard tools for measuring thousands of gene ex-
pression levels simultaneously. They are frequently used in the classification pro-
cess of tumor tissues. In this setting a collected set of samples often consists
only of a few dozen data points. Common approaches for classifying such data
are supervised. They exclusively use categorized data for training a classification
model. Restricted to a small number of samples, these algorithms are affected
by overfitting and often lack a good generalization performance. An implicit as-
sumption of supervised methods is that only labeled training samples exist. This
assumption does not always hold. In medical studies often additional unlabeled
samples are available that can not be categorized for some time (i.e., “early re-
lapse” vs. “late relapse”). Alternative classification approaches, such as semi-
supervised or transductive algorithms, are able to utilize this partially labeled
data. Here, we empirically investigate five semi-supervised and transductive al-
gorithms as “early prediction tools” for incompletely labeled datasets of high
dimensionality and low cardinality. Our experimental setup consists of cross-
validation experiments under varying ratios of labeled to unlabeled examples.
Most interestingly, the best cross-validation performance is not always achieved
for completely labeled data, but rather for partially labeled datasets indicating the
strong influence of label information on the classification process, even in the
linearly separable case.

1 Introduction

In modern clinical studies the progress of a disease is monitored by DNA microarrays.
These tools are high-throughput molecular biology devices for measuring thousands of
gene expression levels simultaneously. The data collected within a clinical study usually
does not exceed a few dozen gene expression profiles. These profiles can for example
be used to discriminate the patients into clinical relevant groups (e.g. “inflammation”
vs. “tumor”). In this setting a classifier performing this task has to deal with data of
high dimensionality and low cardinality.

The standard learning scheme for training such a classifier is the supervised one.
Here, a classifier is trained on a set of labeled samples. An implicite assumption of this
scheme is that a training set of appropriate size exists.
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Clinical relevant classification tasks do not always perfectly fit into this basic su-
pervised scenario. In many cases the unlabeled data is available years before the corre-
sponding diagnoses. For example, it could be of interest how a patient reacts to a certain
treatment. It is important to know if a patient will suffer from an “early relapse” or have
a "late relapse” of a disease. Applying the standard supervised scheme, the earliest mo-
ment to start the analysis of the collected dataset is after receiving the last label. Often
it is desirable to receive preliminary predictions within an earlier stage.

Alternative learning schemes, like semi-supervised learning, are able to handle par-
tially labeled datasets. They utilize the positional information of a data point during
training. Although semi-supervised algorithms fit better into the setting described above,
they are normally applied in fields with much more available observations. So far it is
unclear how these algorithms perform on small sample sizes.

In our study we investigate the usability of semi-supervised algorithms as early pre-
dictors for small (microarray) datasets. Five of these classifiers were tested on seven
public available microarray datasets under varying conditions. We utilize an experi-
mental setup consisting of adapted / X k cross-validation experiments allowing to assess
the performance of semi-supervised and transductive algorithms under varying ratios of
labeled to unlabeled examples.

2 Methods

In general a classifier ¢ can be seen as a function mapping ¢ : £ — % from an input
space 2" to the space of class labels #. In the following only binary classifiers will be
considered and the space of class labels will be fixed to the Boolean space % := {0, 1}.
Normally it is assumed that 2~ x % is associated with a fixed but unknown probability
distribution. A common objective for a classifier is to minimize its generalization risk
according to this distribution

R =Pr(c(X)#7Y). (1)

Here (X,Y) denotes a random example drawn iid from 2" x #'. As the distribution

of 2" x % is unknown, the generalization risk of this classifier has to be estimated
. . /

according to a finite set ., = {(x}, 7))}/ of test samples.

1
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Here I}) denotes the indicator function, which is equal to 1, if the condition in [] is
fulfilled and O otherwise. R, is called the empirical risk.

During an initial training phase a classifier has to be adapted to the current classifica-
tion task. This is done according to a finite set of training examples .77, = {(x;, i)},
with ., N %, = 0. Different learning paradigms exist, varying in how the available
samples are incorporated. We will use .2;, := {x/}", and 2, := {x/}", as additional
notation to denote the unlabeled training and test samples.
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2.1 Supervised Learning

Supervised learning schemes only incorporate knowledge from labeled samples. A pre-
diction of a supervised classifier will be denoted by ¢, (x). They can be distinguished
by how they use the training data in categorization.

Inductive learning: In this scheme the classifier ¢ is chosen from a concept class ¢ and
adapted according to .%}, within a learning procedure /. Once trained, the classifier can
be abstracted from the original training data; it can be independently applied on .%,.

E, L) —c (3)

Model-free learning: Training and application of a classifier can not be separated in
this setting. The label of a single test sample x’ is directly predicted according to mea-
surements on .%;,.

Sir X X — )A}/ (€]

2.2 Semi-supervised Learning

The term semi-supervised learning will here be used for algorithms incorporating knowl-
edge from both labeled and unlabeled samples during their training phase. A prediction
of such a classifier will be denoted by ¢, 4;,(x). This category will subsume the real
semi-supervised algorithms and the transductive learning algorithms.

Semi-supervised learning: This term is normally used for inductive algorithms that
can also incorporate knowledge of unlabeled samples within their training. The final
classifier is again independent of the training data used to adapt it and can be applied
without knowing it.

U(C, Sirs Zie) — € 5)

Transductive learning: This can be seen as the generalization of model-free learning.
Here, the label of a single test sample x’ is determined according to measurements on
the labeled and unlabeled training data.

Lsﬂtrxf%;e_’g? (6)

2.3 [ x k Cross-Validation

In supervised classification one standard evaluation method for datasets of small sample
size is the k-fold cross-validation experiment (see e.g. [3,/7,9]). The benefit of this
method is its guarantee that each sample is used as training as well as test sample.
Subsampling effects resulting in misleading performance measures are minimized.

For this experiment the available data of n samples is split into k-folds (2 < k < n) of
approximately equal size (Figure[T)). A subset of k — 1 folds is used as a labeled training
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set. The remaining fold is used as an independent test set. The procedure is repeated for
each of the k possible splits into training sets .7/ and test sets .7/, with i € {1,...,k}.
In this way each sample is used once as an test sample; the cross-validation results in
one prediction per datapoint. These predictions are then used to estimate the risk of the
classifier.

Rey=_Y Y 1

A [ )

S

The estimate can be affected by the particular choice of splits. In order to minimize
their influence, the k-fold cross-validation is repeated on / different permutations (runs)
of the original dataset. The risk of the classifier is then estimated by the average over
the / cross-validation errors. The final experiment is called a [ x k cross-validation.

M

available (labeled) data

test beled trainin,

.V

|

Fig. 1. Basic concept of a k-fold cross-validation. The available data is split into k folds of approx-
imately equal size. The samples of £ — 1 folds are used as (labeled) training set for a classification
model. The remaining fold is used as an independent set of test samples. The procedure is re-
peated for all k possible splits. The number of misclassifications over the whole dataset is used
for estimating the risk of the classifier.

2.4 Cross-Validation Experiments for Semi-supervised Classifiers

In order to gain insight into the usability of semi-supervised algorithms as early predic-
tion methods, two different cross-validation types were used (Figure2]).

Standard cross-validation: In this setting a classifier ¢ ;i ,-i (x) is adapted to all avail-
< trrte

able samples. The labeled samples come from .7, while the unlabeled samples come

from Z;.. The tests are performed on .7/’

lk
RCV:nz Yy I
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Inverted cross-validation: The algorithms were also compared in a setting we call in-
verted cross-validation. Here for each fold i the .7, was used as labeled training set and
the samples of .Z;. were used unlabeled. The algorlthm receives more unlabeled than
labeled training examples. The error of a classifier is estimated according to

©))

Rey-1= 2 >

) £ L (xy)esi [y,fe,%y',@‘)#y]

The results of the inverted cross-valdiation will be indexed by / x —k. The learning
task given by the inverted cross-validation setting better fits to the typical proportion
of labeled and unlabeled training samples of known semi-supervised applications. Its
benefit is the more systematic evaluation of the performance of a classifier than for
example the evaluation done by experiments on randomly drawn splits.

standard cross-validation: [ l l l l l l l l - labeled training data: _

Fig. 2. Differences between the standard cross-validation and the inverted cross-validation: The
figure shows the splits of the available data for the two kinds of experiments in the semi-
supervised scenario. While the standard cross-validation setting utilizes k — 1 folds as labeled
training data and 1 fold as unlabeled training (test) data, the inverted cross-validation uses one
fold as labeled training data and k — 1 as unlabeled training (test) data.

2.5 Algorithms

We have tested following five algorithms on their usability as “early prediction tools™:

Transductive support vector machines (tsvin) [10]: The algorithm applied here is a ver-
sion of the standard (linear) inductive svm [[16]. The basic strategy of both classification
methods is to find a linear hyperplane @ maximizing the margin to the given samples.
If it is not possible to separate the data correctly, a tradeoff between the misclassified
datapoints (distance to margin) and the diminished margin has to be found.

In contrast to the inductive version, the class labels 2 of the test samples are directly
included in the optimization process of the tsvm algorithm. They become estimated by
solving an optimization task, described by the following system of linear equations:

m m
. 2 / /
min wl|;3+C i +C i
ool Dy Ol ;5 ;5
s.t. "oyl —0>1-6,6>0

m—1 3}’1'(60 x)—0>1-&§.&>0
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The available labeled samples x; and the unlabeled samples x; are separately treated
within this optimization problem. For each kind of data there is a combination of cost
parameter and distance measure, called C and &; for the labeled samples and C’ and &/
for the unlabeled ones. The binary variables y; are chosen within the algorithm accord-
ing to the solution of the optimization task. The cost parameters of this algorithm were
fixed to a value of 1 in our experiments.

Penalized likelihood based pattern classification algorithm (plc) [2|]: This algorithm
estimates the likelihood P, = P(Y = 1|X = x;) for each given sample. As the algorithm
does not estimate a likelihood function, it belongs to the category of transductive algo-
rithms. The estimates are determined in a penalized optimization task.

min J=log(L)—AS, (10)

where L is the likelihood for the labeled samples .},
m
L=TTR"(—p) (11
=1

and S (smoothness) is a penalty on the roughness of the estimations

1 m+m’

S= > (PP (12)

I=1 I'eK(x)

The smoothness of each prediction is calculated according to the neighbourhood K. The
size K of this neighbourhood is determined within the algorithm. As proposed in [2],
we set parameter A = 0.4.

Transductive k-nearest neighbors classifier (tknn) [14]: This version of the k-nearest
neighbor classifier (e.g. [8]) determines the label of a single sample according to mea-
surements on its k; labeled and k, unlabeled neighbors. The influence of the single
samples on the classification of a datapoint x; is thereby regulated according to a weight
vector w;.

K(xi,xj), ifXjE,%r/\XjEKz(xi,kl)
wij = { aK(xi,x;), ifxj € Zie Axj € Ki(xi,ky) (13)
0, otherwise
Here K (x;,x;) denotes following distance kernel function

1 xi—xj||?
K(xi,xj) = \/2nhexp (—H l2h2]|| ) (14)

The label of a sample x; is determined within a label propagation process iteratively
calculating the class membership probabilities p;, r € {0, 1}.

m+m'

pit Y vl (15)
j=1
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Here v;; corresponds to the row normalized value of w;;. The initial class membership
probabilities is initialized by 0.5 for unlabeled samples and fixed to O and 1 for labeled
ones. The propagation process is repeated until the last class membership probability
of an unlabeled test sample has converged. We have fixed the number of labeled (un-
labeled) neighbors to k; = 1 (k, = 3). The influence of the unlabeled neighbors was
regularized by a € {0.3,0.7,1.0}.

Yarowsky’s algorithm (yar) [I8|]: This algorithm is a general iterative procedure for
modifying an inductive classifier ¢ &, into a semi-supervised one. The inductive algo-
rithm must therefore be able to give confidence values p o, for its predictions. We used
a svm, which returns class probabilities, as a base classifier [[12] . Yarowsky’s algorithm
iteratively includes unlabeled samples into the (labeled) training set, if they allow a
prediction above a fixed confidence level d.

S = APV ¥ € Zies = (¥), p ) 2 d) (16)

The classifier is retrained on the modified training sets until 5”,[,’“] = XE]. In our ex-
periments the confidence level is chosen from d € {0.6,0.7,0.8,0.9}.

Mincut algorithm (mc) [5]]: This algorithm is based on a weighted graph connecting
the samples of the dataset. The graph is extended by a node for each class label of
the dataset. These nodes are connected with all samples of the corresponding class.
The weights of these edges are set to infinity. During the training process the graph
is pruned according to a max-flow algorithm. The remaining paths to one of the label
nodes determine the labels of the samples. The graph we have chosen in our experiments
is based on the dataset’s distribution of pairwise (Euclidian) distances. An edge between
two datapoints is drawn, if the corresponding distance is smaller than the g-quantile of
this distribution (¢ € {0.1,0.2,0.3}).

3 Experimental Setup

We compared the five semi-supervised algorithms mentioned before in a series of cross-
validation experiments on seven microarray datasets (see Table [T)). The series include
10 x k cross-validations for k = 10,. ..,2 and inverted 10 x —k cross-validations for k =
2,...,10. The single experiments differ in their fold number and the number of available
training and test samples; while the number of (unlabeled) training samples decreases
with k, the number of (labeled) test samples increases. An overview on the available
positive and negative samples in the 10 x k setting can be found in Figure 3l Over the
seven datasets the mean number of labeled training samples per fold varies from 25.6
to 91.8 within the 10 x 10 experiment and 14.0 to 51.0 in the 10 x 2 experiment; the
corresponding mean number of unlabeled test samples per fold vary from 2.8 to 10.2
(10 x 10) and 14.0 to 51.0 (10 x 2). In the inverted cross-validation the numbers of
training and test samples are reversed.
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Table 1. Key properties of the utilized datasets

Dataset Features Positive samples Negative samples
Armstrong (AR) [1] 12582 24 48
Bittner (BI) [4] 8067 19 19
Nutt (NU) [[L1]] 12625 14 14
Pancreas (PA) 6] 169 37 25
Shipp (SH) [13] 7129 58 19
Singh (SI) [15] 12600 52 50
West (WE) [17]] 7129 25 24
Train samples Test samples

6 46 56 66 76
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Fig. 3. Number of samples (microarray datasets): The figure shows the influence of the chosen k
within a standard / x k cross-validation experiment on the number of available (labeled) training
and (unlabeled) test examples per fold. While the number of (labeled) training examples increases
with the number of folds, the number of (unlabeled) test examples decreases. The number of
(labeled) training samples within a standard / X k cross-validation is corresponding to the number
of (unlabeled) test samples within a inverted / X —k cross-validation and vice versa.

4 Results

The results of the cross-validation experiments can be found in Figures @ and 5l The
accuracies were additionally compared to the results of a ”prevalence” classifier always
predicting the class label of the larger class. The accuracy of the constant classifier can
be seen as a lower bound for a beneficial ("meaningful”) classification performance. In
the case of imbalanced data, this bound is tighter than the 50% bound. For the semi-
supervised classifiers following results could be observed:

Two of the algortihms, zsvm and plc, showed a better performance than the “preva-
lence” classifier on all datasets. Despite of its performance in the 10 x —9 and 10 x —10
cross-validation experiment on SH, the same is true for the tknn algorithm. For some
datasets, the performance of yar and mc did not cross the minimal accuracy level; while
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Fig. 6. Results of the 10 x k cross-validation experiments (k € 10,...,42,...,—10): The figure
summarizes the results of the tsvm. A legend for the different experimental setups can be found
in Figure[@l The dotted line corresponds to the results of a “prevalence” classifier.
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Fig.7. Results of paired one-sided Wilcoxon rank tests done for the cross-validation accuracies
(over all k) of every pair of algorithms on each dataset. The black color in cell ij denotes that
the median cross-validation accuracy of algorithm i is significantly higher than the median cross-
validation accuracy of algorithm j. For each dataset, the tests were corrected for multiple-testing
(Bonferroni n = 132).

mc did not attain good results on Bl and SH, yar did not excel on AR. On the other
datasets these algorithms showed a low performance in the inverted cross-validation
setting and again did not achieve the minimal accuracy level. In general lower accu-
racies were achieved within the inverted cross-validations than in the standard cross-
validations. An exception is yar for the datasets AR and NU.

The plc is with a mean range (max accuracy — min accuracy) of about 13.5% the
steadiest of the analysed algorithms. The mean range of yar (over all ¢) is with about
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18.5% the largest. The other algorithms tsvm, tknn and mc achieved mean ranges of
16.2%, 17.0% (over all [), and 16.5%.

We applied paired one-sided Wilcoxon rank sum tests on the cross-validation ac-
curacies (over all k) of every pair of algorithms on each dataset (Figure [7). The null
hypothesis was that the first classifier has an equal or lower median cross-validation
accuracy than the second. For each dataset, the tests were corrected for multiple-testing
(Bonferroni n = 132). According to these tests, there was no algorithm which was sig-
nificantly better than zsvm. The tsvm itself was significantly better than all other tested
algorithms on four datasets (AR, BI, SI, SH). The plc was only outperformed by the tsvin
on five datasets (AR, BI, PA, SH, SI). The tknn was not outperformed on the datasets
NU and PA. tknn completely outperformed yar on the datasets AR, BI, NU and WE. The
mc algorithm was outperformed by all algorithms on the datasets BI, SH, WE and SI.

5 Discussion

The major challenge in our settings is the low cardinality of the datasets (< 100) lim-
iting the number of available labeled and unlabeled training samples. Although this
is an unusual constraint for semi-supervised learning, some of the algorithms achieved
good classification results in our experimental setting. The results on the standard cross-
validation experiments were mostly better than those of the inverted ones. Coupled to
a smaller number of labeled training samples, the results gained on the inverted cross-
validation indicate that the lack of labeled training samples can often not be compen-
sated by an increasing number of samples (which do not have a label). Nevertheless,
and most interestingly the best cross-validation performance is not always achieved for
completely labeled data, but rather for partially labeled datasets indicating the strong
influence of label information on the classification process.

The lower performance of Yarowsky’s algorithm and the mincut strategy can may be
related to the small number of available samples. The iterative process of Yarowsky’s
algorithm is controlled by confidence predictions for the single data points. Related to
the distance between the samples and the decision boundary these confidence predic-
tions get less distinguishable and less informative in high dimensional settings.

The initial graph constructed by the mincut strategy was also effected by the small
sample sizes. Here the majority of unlabeled test samples built separate subgraphs
which were not connected to one of the label nodes. In this case the algorithm is not
able to determine the class label of these samples.

The classifiers tsvm and plc showed better accuracies than a constant classifier
throughout all experiments. The same holds true for tknn except for two single ex-
periments. These three algorithms can therefore be used as early predictors. Finally, the
tsvm achieved the best classification performance in our study followed by plc and tknn.

The accuracy of this algorithm is summarized in in Figure [6l Besides the overall
trend of receiving higher accuracies for higher values of k an additional behavior of
this algorithm can be seen. In some of the settings the best classification results is not
directly achieved for k = 10. Better results can be found for slightly smaller values of k.
We believe that this is not a direct effect of the tradeoff between labeled and unlabeled
samples. Disturbances such as measurement and label noise seem to be related to this
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behavior with different severity. The benefit of this diminished label information even
in the linearly separable case can serve as a starting point for future work.
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