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Abstract. In multi-hop radio networks, such as wireless ad-hoc and
sensor networks, nodes employ a MAC (Medium Access Control) proto-
col such as TDMA to coordinate accesses to the shared medium and to
avoid interference of close-by transmissions. These protocols can be im-
plemented using standard node coloring. The (Δ + 1)-coloring problem
is to color all nodes in as few timeslots as possible using at most Δ + 1
colors such that any two nodes within distance R are assigned different
colors, where R is a given parameter and Δ is the maximum degree of
the modeled unit disk graph using the scaling factor R. Being one of
the most fundamental problems in distributed computing, this problem
is well studied and there are a long chain of algorithms for it. However,
all previous work are based on models that are highly abstract, such
as message passing models and graph based interference models, which
limit the utility of these algorithms in practice.

In this paper, for the first time, we consider the distributed Δ + 1-
coloring problem under the more practical SINR interference model. In
particular, without requiring any knowledge about the neighborhood,
we propose a novel randomized (Δ + 1)-coloring algorithm with time
complexity O(Δ log n+ log2 n). For the case where nodes can not adjust
their transmission power, we give an O(Δ log2 n) randomized algorithm,
which only incurs a logarithmic multiplicative factor overhead.

1 Introduction

The node coloring problem underpins the design of interference avoidance mech-
anisms in many multi-hop radio networks including wireless ad-hoc and sensor
networks. In these networks, radio communications are subject to interference,
and messages may be lost due to interference. Without any interference avoid-
ance mechanism, coordinating the nodes to achieve efficient and reliable commu-
nication is a time consuming task. Traditionally, nodes employ MAC (Medium
Access Control) protocols to coordinate their accesses to the shared medium and
to avoid interference of close-by transmissions, such as TDMA (Time Division
Multiple-Access). These MAC protocols can all be reduced to the classical node
coloring problem. For example, by assigning different colors to different time
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slots in a TDMA scheme, a proper coloring with parameter d corresponds to a
MAC layer without “close-by” interference, i.e., no two nodes within distance
d of each other transmit at the same time. In [3], it is shown that even under
the complicated (but more realistic) SINR model, we can still implement an in-
terference free TDMA-like MAC protocol by computing a proper coloring for a
well defined d if we adopt a uniform power assignment. Conventionally, the node
coloring problem is one of the most fundamental problems related to symmetry
breaking, and therefore has attracted a great deal of attention in the distributed
computing community.

Almost all previous work to derive distributed node coloring algorithms as-
sume the graph based model in which interference is represented by a local-
ized function—a message can be correctly received only if there are no other
simultaneously transmitting senders in the receiver’s neighborhood. However,
in multi-hop radio networks, interference is cumulative and is caused by all si-
multaneously transmitting nodes, near by and far away. The physically based
Signal-to-Interference-plus-Noise-Ratio (SINR) model [7] captures this reality in
wireless networks more closely. Under the SINR model, the signal strength fades
with distance to the power of some path-loss exponent α and a message can be
successfully received if the ratio of the received signal strength and the sum of
the interference caused by simultaneously transmitting nodes plus noise is above
a certain hardware-defined threshold β.

1.1 Related Work

In the absence of global knowledge, to derive a (Δ+1)-coloring in a distributed
manner is challenging and has attracted much attention in the distributed com-
puting community for more than two decades. The traditional message passing
model was first considered. Since Cole and Vishkin presented the first distributed
(Δ+1)-coloring for rings in [2], a long line of papers were devoted to this prob-
lem. The state-of-the-art results are the O(Δ) + 1

2 log
∗ n algorithm for arbitrary

graphs in [1] and the optimal O(log∗ n) algorithm for bounded-independence
graphs in [14]. However, the message passing model abstracts away some cru-
cial elements of wireless networks, such as interference, collision and asynchrony.
Taking interference into account and assuming a locally synchronous circum-
stance, Schneider and Wattenhofer [15] proposed a distributed (Δ+ 1)-coloring
algorithm with running time O(Δ + logΔ logn) and O(Δ + log2 n) with and
without knowledge of Δ respectively. When further considering asynchrony, as-
suming prior knowledge of n and Δ, Moscibroda and Wattenhofer [10] gave an
O(Δ log n) distributed coloring algorithm for the simple unit disk graph model
which only considers direct interferences from neighbors. In an extended ver-
sion [11], the result was generalized for the bounded-independence graph. In a
recent paper [3], Derbel and Talbi showed that the algorithm in [11] also works
under the SINR model within the same time bound. However, all the above three
algorithms need O(Δ) colors instead of at most Δ+ 1 colors.

In the SINR model, the interference is modeled as a global function, which
makes the design of efficient distributed algorithms with global performance
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guarantee difficult. In spite of this, there have been many attempts in recent
years. In [13], assuming that all nodes can perform physical carrier sensing, Schei-
deler et al. derived an O(log n) distributed algorithm for computing a constant
approximate dominating set. The first distributed local broadcasting algorithm
was presented by Goussevskaia et al. in [4] and the result is improved in a re-
cent paper [17]. Kesselheim and Vöcking [8] considered the contention resolution
problem and showed that their distributed algorithm is asymptotically optimal
up to a log2 n factor.

1.2 Our Contribution

To the best of our knowledge, this work is the first one considering the distributed
(Δ + 1)-coloring problem under the physical model. Without any knowledge
on neighborhood, we give an O(Δ log n + log2 n) time randomized distributed
(Δ+ 1)-coloring algorithm for asynchronous wake-up multi-hop radio networks
under the physical model. Our result even matches the coloring algorithm in [3]
for large Δ, e.g., Δ ≥ logn, which needs a linear estimate of Δ and uses O(Δ)
colors. In our algorithm, we adopt a clustering coloring strategy, i.e., a Maximal
Independent Set (MIS) is first computed, and then the nodes in the MIS assign
colors for their neighbors. To make the strategy available, we first show that the
MIS algorithm in [12] still works under the SINR model by carefully tuning the
parameters. This algorithm is of independent interest, since it is the first MIS
algorithm in the physical model.

Furthermore, if nodes can not adjust their transmission powers, we also give a
distributed (Δ+1)-coloring algorithm with time complexity O(Δ log2 n) by iter-
atively carrying out the MIS algorithm, which also does not need any knowledge
on neighborhood.

2 Problem Definitions and Model

For two nodes u and v, we use d(u, v) to denote the Euclidian distance between
u and v. Given a distance parameter R, we say two nodes u and v are neighbors
if d(u, v) ≤ R. The neighborhood of a node v is the set of all its neighbors,
denoted by N(v). Additionally, we use N [v] to denote the set N(v) ∪ {v}. For
a node v, we denote by Δv the number of nodes in v’s neighborhood. We write
Δ = maxv∈V Δv. A set of nodes S is called an independent set if any two nodes
of S are not in each other’s neighborhood. A node coloring is proper if each set
of nodes with the same color is an independent set, i.e., the distance between
any two nodes with the same color is larger than R. Then the (Δ+ 1)-coloring
problem is to color all nodes properly in as few timeslots as possible using at
most Δ+ 1 colors.

In this work, we deal with unstructured radio networks [9]. In particular,
nodes may wake up asynchronously or be woken up by incoming messages with-
out access to a global clock. After waking up, nodes may start executing the
algorithm at any time and nodes can not perform physical carrier sensing. The
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only prior knowledge given to nodes is a polynomial estimate of the number n
of nodes in the network and nodes are clueless about the number of nodes in its
close proximity. We also assume that every node v has a unique IDv. Addition-
ally, we assume that nodes are placed arbitrarily on the plane. We define a node
v’s running time as the length of the interval from the timeslot when v starts
executing the algorithm to the timeslot when v quits the algorithm. The time
complexity of the algorithm is the maximum of all the nodes’ running times.

We adopt the practical physical model (or the SINR model) [7] in this paper.
In particular, a message sent by node u to node v can be correctly received
at v iff

Pu

d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β, (1)

where Pu (Pw) is the transmission power for node u (w), α is the path-loss
exponent whose value is normally between 2 and 6, β is a hardware deter-
mined threshold value which is greater than 1, N is the ambient noise, and∑

w∈V \{u,v}
Pw

d(w,v)α is the interference experienced by the receiver v caused by

all simultaneously transmitting nodes in the network.
The transmission range RT of a node v can be defined as the maximum

distance at which a node u can receive a clear transmission from v (SINR ≥ β)
when there are no other simultaneous transmissions in the network. From the
SINR condition (1), RT ≤ Rmax = ( P

β·N )1/α for the given power level P . We

further assume that RT < Rmax and define RT = (P/cNβ)1/α, where c > 1 is a
constant determined by the environment.

In subsequent sections, when we say “an event occurs with high probability”
we mean that the event occurs with probability 1 − n−c for a constant c > 0,
and “a node correctly get a color” means that the resulting coloring of the
network is proper. Greek letters represent constants. The following Definition 1
and Lemma 1 will be used in the analysis of algorithms.

Definition 1. For a node v ∈ V , the probabilistic interference at v, Ψv, is de-
fined as the expected interference experienced by v in a certain timeslot t.

Ψv =
∑

u∈V \{v}

Pupu
d(u, v)α

, (2)

where Pu is the transmission power and pu is the sending probability of node u
in timeslot t.

Lemma 1 ( [4]). Consider two disks D1 and D2 of radii R1 and R2, R1 > R2,
we define χ(R1, R2) to be the smallest number of disks D2 needed to cover the

larger disk D1. It holds that: χ(R1, R2) ≤ 2π
3
√
3
· (R1+2R2)

2

R2
2

.
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3 An O(Δ logn + log2 n) (Δ+ 1)-Coloring Algorithm

In this section, we give a distributed randomized coloring algorithm as described
in Algorithm 1. It is assumed that every node v possesses a color list from which
it chooses a color. Without loss of generality, we assume that all nodes’ color lists
are {0, 1, . . . , n−1}, where n is the estimate of the number of nodes. Algorithm 1
has two main steps. A Maximal Independent Set (MIS) in terms of 3R, i.e.,
every pair of nodes in the MIS has distance larger than 3R, is first computed;
the nodes in this MIS are the leaders of their neighbors. Then by communicating
with their neighbors within distance R, each leader decides when their neighbors
can choose an available color. Without confusion, we will just call Algorithm 1
excluding the MIS algorithm as the coloring algorithm. In order to compute
a maximal independent set, we first show that the distributed MIS algorithm
in [12] still works under the SINR model by carefully tuning the parameters.
Due to asynchrony, when some nodes execute the MIS algorithm, other nodes
may be carrying out the coloring algorithm. Here we show that under such
an asynchronous circumstance, the MIS algorithm can still correctly output an
independent set in any timeslot with high probability. Due to the space limit, we
put the description and the analysis of the MIS algorithm in the full version [16].
In addition, nodes adopt different transmission powers when executing different
operations in Algorithm 1. Generally speaking, nodes adopt the transmission
power of PM = c ·3αNβRα when they execute the MIS algorithm and transmit a
StartT ransmit message in state G, while nodes adopt the transmission power of
PC = cNβRα when they perform other operations. By the definition in Section 2,
the transmission ranges of nodes are 3R and R for PM and PC , respectively.

There are four states in the coloring algorithm. After executing the MIS algo-
rithm, all leaders in the computed independent set join state G, while all nodes
within distance 3R from these leaders join state S. Then each node in G makes
its neighbors within distance R join state C1. By continuously transmitting an
AskColor message, each node in state C1 endeavors to acquire a Grant message
from its leader. After receiving the Grant message from the leader, a node in
state C1 joins state C2, in which it chooses a color that has not been chosen by its
neighbors, and transmits its choice to all neighbors. Nodes still in state S keep
silence so that they do not interfere with the coloring process of their neighbors.
Next we describe Algorithm 1 in more details.

After waking up, a node v will first wait for at most 2μ logn timeslots. During
the process, if v received a messageDoNotT ransmitu, it enters state S and adds
u into its forbidden set Fv. Otherwise, it starts executing the MIS algorithm
after waiting for 2μ logn timeslots. After executing the MIS algorithm, each
node will either join state M meaning that it is a member of the computed
independent set, or join state S. Here we must point out a difference of our
MIS algorithm from that in [12] in state M. In our algorithm, when a node v
joins state M, it first uses μ logn timeslots to wake up all nodes within distance
3R by transmitting a message with constant probability. Then v transmits a
DoNotT ransmitv message forcing all nodes within distance 3R to join state S.
After doing this, v will join state G and start executing the coloring algorithm.
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In the coloring algorithm, the leaders in state G first choose color 0 as its
own color. Then they transmit a StartColoring message making their neighbors
within distance R join state C1. While in state G, a node v adds each of its
neighbors that send an AskColor message to v into a set Qv. If Qv is not empty,
it deletes the first node u fromQv and transmits a Grantu message with constant
probability for 2μ logn timeslots. We assign two counters cv and bv to each node
v in state G. In particular, cv is used to count the number of timeslots that
v has not received any AskColor message since the last one, while bv is for
counting the number of Grant messages that have been transmitted by v. These
two counters are set for guaranteing that with high probability, v will not quit
the algorithm until all neighbors have been colored. Then if Qv is empty and
cv > bv · 5μ logn + 3μ log2 n + μ logn, v quits the algorithm after transmitting
a StartT ransmitv message for μ logn timeslots adopting power PM . By doing
so, v removes its restriction on nodes within distance 3R caused by the message
DoNotT ransmitv.

For each node u in state S, it will do nothing except listening. When u stays
in state S, it adds the nodes that send DoNotT ransmit messages to u into
its forbidden set Fu, and it removes a node v from Fu if it receives a message
StartT ransmitv. Node u will not leave state S until Fu is empty or it receives a
StartColoring message from a leader node v. For the first case, u starts executing
the MIS algorithm. For the second case, it joins state C1 and starts competing for
the right of choosing a color. After joining state C1, node u starts transmitting an
AskColoru message with a small initial transmission probability. Then if u did
not receive any Grant message and did not change its transmission probability
for 3μ logn timeslots, it doubles the transmission probability. While in state C1,
if u receives a Grant message and the Grant message is not for u, it halves
the transmission probability. By doing this, it is guaranteed that the sum of
transmission probabilities in any local region of the network can be bounded with
high probability, which helps bound the interference caused by simultaneously
transmitting nodes. If the received Grant message is for u, it joins state C2. After
joining C2, u chooses the first color remaining in its color list except color 0 and
transmits a Coloru message with constant probability for μ logn timeslots to
inform its neighbors of its choice. After waking up, each node will delete the color
in the received Color message from its color list; hence it will not choose a color
that has been chosen by its neighbors. In order to make sure that Algorithm 1

is correct with high probability, we assign μ = 2ω+8·43·21−ω ·χ(31+2/(α−2)RI+3R,0.5R)

1−1/ρ ,

where ρ and RI (Equation (3) below) are constants defined in the following
analysis.

3.1 Analysis

In this section, we will show that with high probability, each node can correctly
get a color after executing Algorithm 1 for O(Δ log n+log2 n) timeslots, and the
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Algorithm 1. (Δ+ 1)-Coloring

Initially, pv = 2−ω−1

n
; cv = 0; bv = 0; tv = 0;Qv = ∅;Tv = ∅;ω = 6.4;

Upon node v wakes up
1: wait for 2μ log n timeslots
2: if Received DoNotTransmitu from node u then add u into Fv; state = S ;
3: Else execute the MIS algorithm adopting transmission power PM end if

Message Received
1: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state G
1: choose color 0;
2: for μ log n timeslots do transmit StartColoringv adopting power PC with proba-

bility 2−ω end for
3: if Qv is not empty then
4: bv = bv + 1;
5: for 2μ log n timeslots do delete the first node u from Qv and transmit Grantu

adopting power PC with probability 2−ω ; cv = cv + 1 end for
6: else cv = cv + 1 end if
7: if Qv is empty and cv > bv · 5μ log n+ 3μ log2 n+ μ log n then
8: for μ log n timeslots do transmit StartT ransmitv adopting power PM with prob-

ability 2−ω end for
9: quit
10: end if

Message Received
1: if Received AskColoru then add u into Qv; cv = 0 end if

Node v in state S
1: if Fv is empty then execute the MIS algorithm with power PM else listen end if

Message Received
1: if Received DoNotTransmitw from node w then add w into Fv end if
2: if Received Colorw then delete the color in Colorw from its color list end if
3: if Received StartT ransmitw from node w then delete w from Fv end if
4: if Received StartColoringw from node w then state = C1 end if

Node v in state C1

1: tv = tv + 1
2: if tv > 3μ log n then pv = 2Pv ; tv = 0 end if
3: transmit AskColorv adopting power PC with probability pv;

Message Received
1: if received Grantv then state = C2 end if
2: if received Grantw for some node w that has not been received before then pv =

pv/2; tv = 0 end if
3: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state C2

1: choose the first available color from its color list;
2: for μ log n timeslots do transmit a message Colorv containing its color adopting

power PC with probability 2−ω end for
3: quit;
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total number of colors used is at most Δ+ 1. We first give some definitions and
notations that will be used in the subsequent analysis. A new parameter RI is
defined as follows, for bounding the interference.

RI = R

(

27−ω3α+1
√
3πρβ · 1

1− 1/c
· α− 1

α− 2

)1/(α−2)

, (3)

where ρ is a constant larger than 1. We choose ρ such thatRI > 2R. Furthermore,
we denote Ti, Di and Ii as the disks centered at node i with radius R, R

2 and
RI , respectively. By Er

i we denote the disk centered at node i with radius r.
Without confusion, we also use Ti, Di, Ii and Er

i to denote the set of nodes in
Ti, Di, Ii and Er

i , respectively.
Before analyzing Algorithm 1, we first give a lemma on the time complexity

and the correctness of the MIS Algorithm, which is proved in the full version [16].

Lemma 2. With probability 1 − O(n−3), every node v ∈ V decides whether it
joins the computed independent set or state S after executing the MIS algorithm
for at most O(log2 n) timeslots. Furthermore, with probability at least 1−O(n−3),
in any timeslot t, the independent set computed by the MIS algorithm is correct.

The following property is also proved to be correct with probability at least 1−
O(n−3) in the analysis of the MIS algorithm which is put in the full version [16].

Property 1. For any disk Di and in any timeslot t throughout the execution of
the algorithm, the sum of transmission probabilities of nodes that are executing
the MIS algorithm is at most 3 · 2−ω.

In order to bound the interference, we present Property 2 which can be proved
to be correct with probability at least 1−O(n−1) in Lemma 9.

Property 2. For any disk Di and in any timeslot t throughout the execution of
the algorithm,

(i) There is at most one node in state C2;
(ii) The sum of transmission probabilities of nodes in state C1 is at most∑
u∈C1

≤ 2−ω;
(iii) There is at most one node in state G.

Based on Property 1, Property 2 and the transmission probability in each state,
we can bound the sum of transmission probabilities as follows.

Lemma 3. Assume that Property 1 and Property 2 hold. For any disk Di and in
any timeslot t throughout the execution of the algorithm, the sum of transmission
probabilities can be bounded as

∑
v∈Di

pv ≤ 3 · 21−ω.

In the subsequent lemma 4, we show that the interference by far-away nodes can
be bounded by a constant, and then in Lemma 5, we give a sufficient condition
for a successful transmission. The proofs of Lemma 4 and Lemma 5 are put in
the full version [16].
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Lemma 4. Assume that Property 1 and Property 2 hold. Then for every node
u, the probabilistic interference caused by nodes outside Iu can be bounded as:

Ψv/∈Iu
u ≤ (1−1/c)PC

ρβRα .

Lemma 5. Assume that Property 1 and Property 2 hold. If node v is the only
sending node in ERI+R

v , with probability 1 − 1
ρ , the message sent by v will be

received successfully by all nodes in Tv.

Based on the sufficient condition for a successful transmission in Lemma 5, in
the following Lemma 6, we show the successful transmissions of messages used
in the algorithm in given timeslots with high probability. Then in Lemma 7, we
state that with high probability, a leader will not quit the algorithm until all its
neighbors have been colored.

Lemma 6. Assume that Property 1 and Property 2 hold. Then with probability
at least 1− 1

n4 , the following results are correct:
(i) After entering state G, a node v can successfully send a message

StartColoring to all its neighbors in μ logn timeslots.
(ii) A node v in state G can successfully send a message Grant to all its

neighbors in μ logn timeslots.
(iii) A node v in state G can successfully send a message StartT ransmit to

all nodes within distance 3R in μ logn timeslots.
(iv) A node v in state C2, after choosing a color, can successfully send a

message Colorv to all neighbors in μ logn timeslots.

Proof. We only prove (i) here. (ii), (iii), (iv) can be proved similar to (i).
Proof of (i): As shown in Lemma 5, if v is the only sending node in ERI+R

v ,
with probability 1 − 1

ρ , the message StartColoring sent by v can be received
successfully by all nodes in Tv. Let P1 denote the event that v is the only sending
node in ERI+R

v , then

P1 = 2−ω
∏

u∈E
RI+R
v \{v}

(1− pu) ≥ 2−ω
∏

u∈E
RI+R
v

(1 − pu)

≥ 2−ω ·
(
1

4

)∑

u∈E
RI+R
v

pu

≥ 2−ω ·
(
1

4

)3·21−ω·χ(RI+R,0.5R)
(4)

The last inequality is by Lemma 1 and Lemma 3. Then the probability Pno that
v fails to transmit the message StartColoring to all nodes in Tv is at most

Pno ≤
(

1− (1− 1/ρ)2−ω ·
(
1

4

)3·21−ω·χ(RI+R,0.5R)
)μ logn

≤ e−(1−1/ρ)2−ωμ logn·( 1
4 )

3·21−ω ·χ(RI+R,0.5R) ∈ n−4.

(5)

Lemma 7. Assume that Property 1 and Property 2 hold. Then with probability
at least 1 − 1

n4 , a node v in state G will not quit the algorithm until all its
neighbors have been colored.



154 D. Yu et al.

Proof. Assume that v quits the algorithm in timeslot t when there are d > 0
neighbors staying in state C1. Denote the set of these d nodes as T . We fur-
ther assume that v forces dv neighbors joining state C1 after transmitting the
StartColoringv message. Thus before time t, v has transmitted (dv − d) Grant
messages. Then by Algorithm 1, v has not receive an AskColor message since
the timeslot t− ((dv − d) · 5μ log n+3μ log2 n+μ logn). Next we show that dur-
ing the interval [t− ((dv − d) · 5μ logn+ 3μ log2 n+ μ logn), t), there is at least
one node that can successfully transmit an AskColor message to v with high
probability. Then v will not quit the algorithm in timeslot t. This contradiction
completes the proof.

By Algorithm 1, the initial transmission probability of each node in T is

assigned as 2−ω−1

n , and each node in T will either doubles its transmission prob-
ability every 3μ logn timeslots, or received a Grant message from v and halves
the transmission probability. Because v received the last AskColor message be-
fore the timeslot t − ((dv − d) · 5μ logn + 3μ log2 n + μ logn) and v transmits
each Grant message for 2μ logn timeslots, v have completed the transmission of
(dv−d)Grantmessages by the timeslot t−((dv−d)·5μ logn+3μ log2 n+μ logn)+
2(dv−d)μ logn−1. So in timeslot t∗ = t−((dv−d)·3μ logn+3μ log2 n+μ logn),

each node in T has transmission probability at least 2−ω−1−dv+d

n . From t∗, each
node in T doubles its transmission probability every 3μ logn timeslots. In times-
lot t−μ logn, each node in T has a constant transmission probability of 2−ω−1.
Then using a similar argument as in the proof of Lemma 6, we can get that with
probability at least 1−n−4, there is at least one node in T that can successfully
transmit an AskColor message to v by the timeslot t− 1. ��

Lemma 8. Assume Property 1 and Property 2 hold. A node v will correctly
get a color after waking up for O(Δ log n + log2 n) timeslots with probability
1−O(n−2).

Proof. After waking up for at most 2μ logn timeslots, v enters state S or starts
executing the MIS algorithm. If v takes part in the MIS algorithm, by Lemma 2,
with probability 1 − O(n−3), it will correctly enter state S or state G after
O(log2 n) timeslots. Next we bound the time v stays in state C1, C2 and G.

We first bound the time that node v would stay in state C1. Assume that
u is the leader of v. By Algorithm 1, during every 3μ logn timeslots, either v
receives at least one new Grant messages from u, or it doubles its transmission
probability. If the received Grant message is not for v, it means that a node in
N(u) will join state C2. By Lemma 2, with probability 1−O(n−3), when u stays
in state M, there is not another node in E3R

u staying in state M. By the MIS
algorithm and the analysis for the MIS algorithm in the full version [16], with
probability 1 − O(n−4), u can force all other nodes in E3R

u to join state S and
not to restart competing for joining state M until receiving a StartT ransmitu
message from u. Thus, with probability 1−O(n−3), there are no other nodes in
E3R

u joining state G when u stays in state G. Additionally, only nodes in N(u)
and E3R

u \E2R
u may join state C1 by receiving a StartColoring message before u

quits. Thus all nodes in E2R
u \N(u) will stay in state S while u stays in state G.
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Then after at most (Δ− 1 + logn)3μ logn timeslots, either v receives a Grantv
message and joins state C2, or v has transmission probability of 2−1−ω, since v
can receive at most Δ − 1 Grant messages not for v and each of which would
halve v’s transmission probability. Then by a similar argument as in Lemma 6,
v will successfully transmit an AskColor message to u in 2μ logn timeslots with
probability 1 − n−4. Furthermore, by Lemma 7, with probability 1 − n−4, u
did not quit the algorithm before receiving the AskColor message from v. After
successfully transmitting message AskColorv to u, by Algorithm 1 and Lemma 6
(ii), with probability 1−n−4, v will receive a Grantv message from u in at most
2μΔ logn timeslots. So each node will stay in state C1 for at most 5μΔ logn +
3μ log2 n timeslots with probability at least 1 − O(n−3). By Algorithm 1, it is
easy to see that each node stays in state C2 for μ logn timeslots.

Next we bound the time that a node v stays in state G. By Lemma 6 (i), after
entering state G for μ logn timeslots, v will successfully send a StartColoring
message to all its neighbors with probability 1 − n−4. Then all nodes in N(v)
without choosing their colors will enter state C1. As shown above, with probabil-
ity at least (1−O(n−3))Δ ∈ 1−O(n−2), each node in N(v) will join state C2 after
joining state C1 for at most O(Δ log n+log2 n) timeslots. Then by the algorithm,
v will quit from the algorithm after waiting for additional O(Δ log n + log2 n)
timeslots by noticing that bv is at mostΔ. So with probability at least 1−O(n−2),
the total time that v stays in state G is at most O(Δ log n+ log2 n).

Next we bound the time from v waking up to it next entering state C1 or G.
By the algorithm, after waking up for at most 2μ logn timeslots, either v starts
executing the MIS algorithm or there comes a node in E3R

v joining state G. If
v starts executing the MIS algorithm, by Lemma 2, with probability at least
1 − O(n−3), there will be a node in E3R

v joining state G. So after waking up
for at most O(log2 n) timeslots, a node in E3R

v will join state G. From then on,
by Algorithm 1 and the analysis above, with probability at least 1 − O(n−2),
after every O(Δ log n + log2 n) timeslots, there will be at least one node u in
E3R

v joining state G and all nodes in N [u] quit from the algorithm. We can see
that all nodes joining state G are independent in terms of R. So there are only a
constant number of nodes in E3R

v being able to join state G, denoted by c
′
. Then

after at most c
′
O(Δ log n+log2 n) timeslots, there will be a node in N [v] joining

state G. Thus, with probability at least 1−O(n−2), the total time that v spends
before entering state C1 or G after waking up is at most O(Δ log n+ log2 n).

Combining all the above, with probability 1−O(n−2), every node stays in the
algorithm for at most O(Δ log n+ log2 n) timeslots. Finally, we prove that each
node can correctly get a color with probability at least 1 − O(n−2). As shown
before, with probability 1 − O(n−3), when a node v is in state G, there is not
another node in E3R

v staying in state G as well. By Lemma 7, with probability
1−O(n−4), v will not leave state G until all its neighbors get colored. Thus, with
probability 1 − O(n−2), all nodes with color 0, i.e., all nodes used to join state
G, are independent in terms of R. If v chooses another color, by the algorithm, it
will choose an available color and broadcast the chosen color to its neighbors as
soon as it receives the Grant message from its leader. By Property 2 (i), there



156 D. Yu et al.

is not a node in N(v) staying in state C2 when v is in state C2. By Lemma 6
(iv), when staying in state C2, v can successfully send its color to its neighbors
with probability 1 − n−4. Note also that in Algorithm 1, v has been woken up
before the first node in its neighborhood starts choosing a color with probability
1 − n−4. Thus when v chooses a color in state C2, with probability 1 − n−3, v
has received all the colors chosen by its neighbors and there are no other nodes
in N(v) choosing a color at the same time. So v will correctly select a color with
probability 1−O(n−2). ��
Lemma 9. Property 2 holds with probability 1−O(n−1).

Proof (Sketch proof). We prove Property 2 by showing that with high probabil-
ity, none of (i) (ii) and (iii) is the first property to be violated.

Claim. With probability at least 1 − O(n−1), Property 2 (i) is not the first
property to be violated.

Proof. Otherwise, assume that Di is the disk violating Property 2 (i) in timeslot
t. We further assume that node v ∈ Di joins state C2 in timeslot t and another
node u also stays in state C2 in timeslot t. Assume that w is u’s leader.We can still
assume that all properties are correct before t. Then it can be shown that w must
also be v’s leader with probability 1−O(n−4). Furthermore, w must have started
transmitting Grantv before the timeslot t. Hence, by Algorithm 1, w must have
started transmit Grantu by the timeslot t− 2μ logn. Then by Lemma 6 (ii), u
have received Grantu from w by t−μ logn− 1 with probability 1−n−4. Noting
that u stays in state C2 for μ logn timeslots, u have quit from the algorithm
before t with probability 1 − n−4. This contradiction shows that Property 2
(i) is not the first violated property when u stays in state C2 with probability
1 − O(n−3). Then for Di, the Claim is true with probability 1 − O(n−2). And
the Claim is correct for every disk with probability 1−O(n−1). ��
Claim. With probability at least 1−n−1, Property 2 (ii) is not the first property
to be violated.

Proof. Otherwise, assume that Di is the first disk violating Property 2 (ii) in
timeslot t∗. Before timeslot t∗, we can still assume that all properties hold. As-
sume that v is the leader of some nodes of Di that stays in C1. Denote Cv1(t) as
the set of node in N(v) that are in state C1 in timeslot t. Then it can be shown
that in timeslot t∗, with probability at least 1−O(n−4), all nodes in Di that are
in state C1 have the same leader v. Next we prove a little stronger result: with
probability at least 1−O(n−2), in any timeslot t, the sum of transmission prob-
ability of all nodes in Cv1(t) is at most 2−ω. Otherwise, assume that in timeslot
t,
∑

u∈Cv1(t)
pu > 2−ω. Denote I = [t− 3μ logn, t). By Algorithm 1, every node

in Cv1 doubles its transmission probability at most once during the interval.
Furthermore, the sum of transmission probabilities of newly joined nodes is at

most 2−ω−1

n ·n = 2−ω−1. Hence, it holds that in timeslot t− 3μ logn, the sum of
transmission probabilities is at least 2−2−ω. Consequently, during the interval I,
2−2−ω ≤ ∑

u∈Cv1
pu < 2−ω. Furthermore, during the interval I, for any disk Dj ,
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j 	= i,
∑

v∈Dj
pv ≤ 3 · 21−ω. Then using these transmission probability bounds,

it can be shown that at least one node in Cv1 can send a message AskColor to
v during the interval I1 = [t− 3μ logn, t− 2μ logn− 1] with probability 1−n−4.
Then in the interval (t − 3μ logn, t − 1], with probability 1 − n−4, all nodes in
Cv1 receives a new Grantw message and halve their transmission probability
except w which enters state C2. Thus with probability 1 − O(n−4), Di will not
violate Property 2 (ii) in timeslot t. By Lemma 8, v stays in state G for at most
O(Δ log n + log2 n) timeslots with probability 1 − O(n−2). Thus when v stays
in state G, there is not a violation timeslot for Di with probability 1− O(n−2).
Additionally, when there are nodes in Di which are in state C1, it means that

there is a node staying in state G in E
3R
4

i . From Algorithm 1, we know that
all nodes that joined state G during executing the algorithm are independent

in terms of R. Hence, there are at most constant nodes in E
3R
4

i which can join
state G. Thus Di is not the first disk violating Property 2 (ii) with probability
1−O(n−2). Then the Claim is true for all disks with probability 1−O(n−1). ��

Claim. With probability at least 1 − O(n−2), Property 2 (iii) is not the first
property to be violated.

Proof. Otherwise, assume that Di violates it in timeslot t for the first time. Then
there is a new node u in Di joining state G in timeslot t, while there has been
another node v in Di staying in state G in timeslot t. Before t, we can still assume
that all properties are correct. By Algorithm 1, each node in E3R

v will not try
to join state G until it receives the StartT ransmitv from v. By Algorithm 1, v
has not started transmitting StartT ransmitv by the timeslot t − μ logn, since
v still stays in state G in timeslot t. Also noticing that each node need Ω(log2 n)
timeslots to join state G by executing the MIS algorithm. So there will not
come up another node in E3R

v joining state G by the timeslot t+Ω(log2 n) with
probability 1 − O(n−4). This contradicts with the fact that u joins state G in
timeslot t. Thus when v stays in state G, there is not such a violation timeslot t
with probability 1 − O(n−4). Then with probability 1 − O(n−3), there is not a
timeslot such that Property 2 (iii) is first violated in Di. This is true for every
disk with probability 1−O(n−2). ��

Theorem 1. After waking up for O(Δ log n + log2 n) timeslots, every node v
will correctly get a color from {0, 1, . . . , Δv} with probability at least 1−O(n−1).

Proof. Since Properties 1 and 2 have been shown to be correct with probability
1 − O(n−1), by Lemma 8, with probability at least 1 − O(n−1), every node v
will correctly choose a color after executing Algorithm 1 for at most O(Δ log n+
log2 n) timeslots. Furthermore, when v chooses a color, either v chooses color 0,
or it chooses the first available color in its color list by Algorithm 1. Because
v receives at most Δv − 1 colors from its neighbors (one of its neighbors is a
leader), v can still choose a color from {0, 1, . . . , Δv}. ��
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4 Distributed (Δ + 1)-Coloring for Uniform Power
Assignment

In some multi-hop radio networks, nodes may not be able to adjust their trans-
mission powers. In such a case, assuming that nodes adopt uniform power as-
signment, i.e., all nodes transmit with the same power level, we can obtain a
distributed (Δ+1)-coloring algorithm by iteratively carrying out the MIS algo-
rithm. We only need to change the operations in the last state M in the MIS
algorithm. Each node in state M first chooses an available color that has not
been chosen by its neighbors, and then transmits a message mC containing its
choice to its neighbors for μ logn timeslots with constant probability after wak-
ing up all its neighbors. Then all the nodes having received the message mC

delete the received color from their color list and restart executing the algo-
rithm. By Lemma 2, we know that with high probability, in any timeslot, all
nodes in state M form an independent set. Furthermore, similar to the proof of
Lemma 6, we can show that with high probability, each node can successfully
transmit its choice to its neighbors before any neighbor starts choosing a color.
These two points ensure the correctness of the computed coloring. We assume
that all nodes transmit with power P = cNβRα. Then we can get the following
lemma, based on which the theorem on the correctness and the time complexity
of the proposed coloring algorithm can be proved.

Lemma 10. With probability at least 1 − O(n−2), a node v will correctly get
a color in O(Δ2R

v log2 n) timeslots after starting executing the algorithm, where
Δ2R

v is the number of nodes in E2R
v . Furthermore, v will choose a color from

{0, 1, · · · , Δv}.
Proof. Using a similar argument as in the analysis of the MIS algorithm (in the
full version[16]), we can get that after a node v starts or restarts the algorithm for
O(log2 n) timeslots, there will be a node in E2R

v joining state M with probability
1−O(n−3). Thus after at most O(Δ2R

v log2 n) timeslots, v will join state M with
probability at least 1−O(n−2). Furthermore, using a similar manner for proving
Lemma 6, we can show that all neighbors of v which have chosen colors before
v have informed v their choices with probability 1−O(n−3). And by Lemma 2,
when v is in state M, with probability 1 − O(n−3), none of v’s neighbors stay
in state M simultaneously. Thus v will correctly choose a color different from
all its neighbors with probability at least 1 − O(n−3). Putting all together, we
know that with probability at least 1 − O(n−2), v will correctly get a color
in O(Δ2R

v log2 n) timeslots after starting executing the algorithm. Finally, since
there are Δv nodes in v’s neighborhood, v have deleted at most Δv different
colors from its color list when v chooses a color. Thus v can choose a color from
{0, 1, · · · , Δv}. ��
Theorem 2. If the nodes adopt the uniform power assignment, there exists a
distributed algorithm such that with probability at least 1 − O(n−1), each node
will correctly get a color after executing the algorithm for O(Δ log2 n) timeslots.
Furthermore, the total number of colors used is at most Δ+ 1.
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Proof. By Lemma 10, for a node v, with probability at least 1 − O(n−2), it
will correctly get a color in O(Δ2R

v log2 n) timeslots after starting executing
the algorithm, where Δ2R

v is the number of nodes in E2R
v . Furthermore, v will

choose a color from {0, 1, · · · , Δv}. Thus the theorem is correct for all nodes
with probability 1− O(n−1) by noting that Δ2R

v ≤ χ(2R,R)Δ ∈ O(Δ).

5 Conclusion

In this paper, we study the distributed Δ + 1-coloring problem in unstruc-
tured multi-hop radio networks under the SINR interference model. Without any
knowledge of the neighborhood, our proposed new distributed (Δ+ 1)-coloring
algorithm has time complexity O(Δ log n+ log2 n). Our result even matches the
O(Δ)-coloring algorithm in [3] for large Δ; their algorithm needs a prior esti-
mate of Δ. For networks in which the nodes can not adjust their transmission
powers, we give a (Δ+1)-coloring algorithm with time complexity O(Δ log2 n).
Furthermore, by carefully tuning the parameters, we show that the maximal in-
dependent set algorithm in [12] still works under the SINR constraint, which is
of independent interest.
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8. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Net-
works. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343,
pp. 163–178. Springer, Heidelberg (2010)



160 D. Yu et al.

9. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Initializing newly deployed Ad Hoc
and sensor networks. In: MOBICOM (2004)

10. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. In: SPAA
(2005)

11. Moscibroda, T., Wattenhofer, R.: Coloring unstructured radio networks. Dis-
tributed Computing 21(4), 271–284 (2008)

12. Moscibroda, T., Wattenhofer, R.: Maximal independent sets in radio networks. In:
PODC (2005)

13. Scheideler, C., Richa, A., Santi, P.: An O(logn) dominating set protocol for wireless
ad-hoc networks under the physical interference model. In: Mobihoc (2008)

14. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: PODC (2008)

15. Schneider, J., Wattenhofer, R.: Coloring unstructured wireless multi-hop networks.
In: PODC (2009)

16. Yu, D., Hua, Q.-S., Wang, Y., Lau, F.C.M.: Distributed (Δ + 1)-Coloring in the
Physical Model, http://i.cs.hku.hk/~qshua/algosensorsfullversion.pdf

17. Yu, D., Wang, Y., Hua, Q.-S., Lau, F.C.M.: Distributed local broadcasting
algorithms in the physical interference model. In: DCOSS (2011)

http://i.cs.hku.hk/~qshua/algosensorsfullversion.pdf

	Distributed (Δ + 1)-Coloringin the Physical Model
	Introduction
	Related Work
	Our Contribution

	Problem Definitions and Model
	AnO(Δlog n + log2 n) (Δ + 1)-Coloring Algorithm
	Analysis

	Distributed (Δ + 1)-Coloring for Uniform Power 
Assignment
	Conclusion
	References




