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Preface

Wireless ad hoc sensor networks have recently become a very active research
subject due to their great potential of providing diverse services to numerous
important applications, including remote monitoring and tracking in environ-
mental applications and low-maintenance ambient intelligence in everyday life.
The effective and efficient realization of such large-scale, complex ad hoc net-
working environments requires intensive, coordinated technical research and de-
velopment efforts, especially in power-aware, scalable, robust wireless distributed
protocols, due to the unusual application requirements and the severe resource
constraints of the sensor devices. On the other hand, a solid foundational back-
ground seems necessary for sensor networks to achieve their full potential. It
is a challenge for abstract modeling, algorithmic design and analysis to achieve
provably efficient, scalable and fault-tolerant realizations of such huge, highly
dynamic, complex, unconventional networks. Features including the extremely
large number of sensor devices in the network, the severe power, computing
and memory limitations, their dense, random deployment and frequent failures
pose new interesting abstract modeling, algorithmic design, analysis and imple-
mentation challenges of great practical impact. ALGOSENSORS aims to bring
together research contributions related to diverse algorithmic and complexity
theoretic aspects of wireless sensor networks.

Starting from 2011, ALGOSENSORS has broadened its thematic scope, keep-
ing its focus on sensor networks but also including other related types of ad hoc
wireless networks such as mobile networks, radio networks and distributed sys-
tems of robots. Papers were solicited into two tracks, one on Sensor Networks
(Track A) and one on Ad Hoc Wireless and Mobile Systems (Track B). Fur-
thermore, the status of the event was upgraded to “Symposium” and its length
extended to two days. ALGOSENSORS 2011, the 7th International Symposium
on Algorithms for Sensor Systems, Wireless Ad Hoc Networks and Autonomous
Mobile Entities, was held in Saarbrücken, Germany, during September 8–9, 2011.

This year the event received a total of 31 submissions. After a careful selec-
tion procedure (involving at least two reviews for each paper and at least three
reviews for the vast majority of papers, and fruitful discussions by the Program
Committees), 16 papers were selected. This volume contains these papers as well
as invited contributions for the two keynote talks.

The ten papers in Track A (Sensor Networks) present original research on
topics such as localization, lifetime maximization, interference control, neighbor
discovery, self-organization, detection, and aggregation. The topics covered by
the six papers in Track B (Ad Hoc Wireless and Mobile Systems) include routing,
scheduling and capacity optimization in the SINR model, continuous monitoring,
and broadcasting.
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We would like to warmly thank the ALGO/ESA 2011 organizers (and espe-
cially Kurt Mehlhorn) for kindly accepting the proposal of the Steering Com-
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Dynamic Multi-party Computation Forever

for Swarm and Cloud Computing
and Code Obfuscation�

Shlomi Dolev

Department of Computer Science,
Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel

dolev@cs.bgu.ac.il

Intuitive and Basic Description of Secure Multi-party Computation.
Secure multi-party computation [1,3] schemes allow participants to calculate a
function of their inputs, such that the inputs of the participants are not revealed
to each other.

An important building block in secure multi-party computation is secret shar-
ing [11]. In secret sharing each participant (with identifier) i gets the value
f(i) = y of a polynomial function f of degree t over a finite field. The secret is
the value of the function f in zero, namely f(0), which is a value in the finite
field over which f is defined.

Since there is a need for at least t+1 (x, y) values for reconstructing f , it holds
that no information about the secret is revealed when t or less participants expose
their x and y values to each other. Thus, any coalition of t or less participants
cannot reveal the function f and therefore has no information about the secret.

Assuming private channels between every two participants, a participant can
distribute a secret s by choosing a random polynomial f among all the polynomi-
als for which their value in 0 is s, and sending directly to each other participant
(with identifier) j the value of f(j).

Verifiable secret sharing schemes are used to ensure a coherent distribution of a
secret, namely, that the distributer sends shares obtained by a single polynomial
[2]. A bivariate polynomial f(x, y) is used in this case, so that the secret is the
value of f(0, 0), the shares for the i’th participant is the polynomial for which the
first variable is fixed to i, namely f(i, ∗), and the polynomial f(∗, i), for which
the second variable is fixed to i. Then participants i and j can check the shared
points of their four polynomial without revealing additional information to each
other, and broadcast contradicting values, if found. Thus, ensuring coherent
distribution of secrets.

The fact that two secret shares can be added and multiplied by the partici-
pants to obtain a global secret that is the result of the addition or multiplication,
respectively, allows a general secure multi-party computation of any function.
Note however that multiplications result in changing the degree of the polyno-
mial. Multiplication can be followed by a procedure to reduce the degree to the

� Partially supported by the US Air-Force, Israel Science Foundation (grant number
428/11), and Rita Altura Trust Chair in Computer Sciences.

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 1–3, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



2 S. Dolev

original degree of the polynomial by a procedure that adds random polynomials
of the desired degree, compute the obtained polynomial and subtract the values
associated with the too high degrees, then subtract the random polynomials to
get the desired secret sharing.

Dynamic Secure Multi-party Computation. Suppose participants can leave
and join the group that got the shares of the secret [4]. When a participant leaves
the rest of the participants may nullify the share of the leaving participant by
randomly choosing a polynomial f of degree t, among the polynomials for which
their value is zero at zero, f(0) = 0, and adding the shares of f to their shares.
This is in fact a way to refresh the security of the secret sharing scheme. When a
participant j joins t+ 1 participants, i1, i2, · · · , it+1, send the values f(i, j) and
f(j, i) to j allowing j to construct the polynomials f(j, ∗) and f(∗, j).

Additional dynamic operations among group of participants that share a se-
cret may include merge, clone and split. In the case of merge of two groups of
participants, each group member joins the other group. In the case of clone, new
participants join and then the refresh security operation (adding a random poly-
nomial that does not change the secret) in each group ensure that the cloned
groups are independent. Split partitions the group of participants without per-
forming the join to new member. All the dynamic operations may increase the
secret threshold (number of shares needed to reveal the secret) by using a poly-
nomial with the new threshold during the refresh security operation (the way to
reduce the threshold has been described in the multiplication procedure above).

Secure Multi-party Computation Forever. Secure multi-party computa-
tion has been considered for a one-shot computation of a particular function. A
circuit of additions and multiplications is performed to get the result. However,
in reality some computations are non-terminating, such as operating systems,
or web services, and some computations can be completed in a bounded time,
but the bound is unknown. A general computation can be represented by a Tur-
ing machine where the current state is represented by the content of the tape
of the Turing machine. If the Turing machine uses bounded memory then the
computation can be implemented and continue forever.

Still the secure multi-party computation reveals information concerning the
function being computed and the stage in the current state of the computation.
Strongly oblivious Turing machine can be used to avoid such revealing [4]. The
idea is to have a universal Turing machine that uses a circular working tape in
which the head of the Turing machine seems to move to the same direction in
every step. The computation of the next state and the symbol to be written is
securely done using multiplications and additions.

Thus, we gain a provable information theoretic code obfuscation, where an ad-
versary that compromises a subset of the participants does not get any informa-
tion (but the upper bound on the space used) on the computation they perform.
Note that inputs from the environment/operator can arrive to the members as
shares of secrets.
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Communication versus No-communication. Performing multi-party com-
putation with no-communication is appealing since it can hide the participants
in a crowd of computing entities, for example this crowd can be part of cloud pro-
cesses or swarm computing entities [12,8]. One simple solution is to give to each
participant a vector of several states such that only the current state appears
in these vectors more than any other state [5]. State transitions are executed
according to a common global input. In case distinct states in a vector of a user
are transfered to the same state, all but one of them are randomly changed to
different and distinct states.

A more sophisticated solution that avoids communication among the partic-
ipants and assumes a common global input is based on Krohn-Rhodes compo-
sition. A composition of automata into a cascade of permutation and flip flop
automata [9,10,6]. The solution is able to secure the current state in informa-
tion theoretical fashion in unbounded computations in the presence of one-shot
compromising adversary — an adversary that can only reveal the current state
of less than a given threshold of participants.

Lastly fully homomorphic encryption [7] enables communication-less secure
multi-party computational schemes, but still leaves the case of information the-
oretic schemes for future investigation.
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Local, Self-organizing Strategies

for Robotic Formation Problems

Barbara Kempkes and Friedhelm Meyer auf der Heide

Heinz Nixdorf Institute & Department of Computer Science,
University of Paderborn, 33102 Paderborn
{barbaras,fmadh}@uni-paderborn.de

Abstract. We consider a scenario with a set of autonomous mobile
robots having initial positions in the plane. Their goal is to move in
such a way that they eventually reach a prescribed formation. Such a
formation may be a straight line between two given endpoints (Robot
Chain Problem), a circle or any other geometric pattern, or just one point
(Gathering Problem). In this survey, we assume that there is no central
control that guides the robot’s decisions, thus the robots have to self-
organize in order to accomplish global tasks like the above-mentioned
formation problems. Moreover, we restrict them to simple local strate-
gies: the robots are limited to ”see” only robots within a bounded viewing
range; their decisions where to move next are solely based on the relative
positions of robots within this range.

We survey recent results on local strategies for short robot chains and
gathering, among them the first that come with upper and lower bounds
on the number of rounds needed and the maximum distance traveled.
Finally we present a continuous local strategy for short robot chains,
and present a bound for the ”price of locality”: for every configuration
of initial robot positions, the maximum distance traveled by the robots
is at most by a logarithmic (in the number of robots) factor away from
the maximum distance of the initial robot positions to the straight line.

1 Introduction

We envision a scenario, in which large swarms of small and cheap mobile robots
cooperate in order to perform global tasks like the exploration of an unknown
environment, or the support of evacuations in hazardous environments. A fun-
damental kind of tasks of such a swarm is to build geometric formations out
of an arbitrary configuration of initial positions. It is especially interesting to
figure out which sensor and actor capabilities are needed to do so. Naturally, the
goal is to require as few capabilities as possible in order to be able to use robots
which are as cheap as possible. Current research focuses on basic tasks such as
building lines [1–5] or circles [6, 7], or simply gathering in a point [8–13].

In this talk, we present an approach to such formation problems that presents
algorithms on a sufficiently abstract level, so that correctness and efficiency
proofs are possible. For this, we consider very simple models of robots and their

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 4–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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environment: The environment is a plane without obstacles (for environments
with obstacles see, e.g. [4, 14, 15]). The robots are considered as points in the
plane (for robots with an extent see, e.g. [16, 17]). The main restriction we are
focusing on is their bounded viewing range: robots can only ”see” other robots
within a fixed viewing radius around their current positions. In the sequel, this
viewing radius is normalized to one. They have no compass, but can compute
the exact relative positions of their neighbors within their viewing range, i.e.
the distances and the angles between the rays to these neighbors (for inaccurate
measurements see [18, 19]). Thus a robot has to base its decision where to move
next solely on the relative positions of its neighbors within its current viewing
range. A strategy consists of such so-called local rules. In this talk, we will
distinguish among several execution modes, namely on discrete-synchronous,
asynchronous, and continuous strategies.

A discrete-synchronous strategy consists of synchronous rounds. In each round,
each robot senses the relative positions of its neighbors and computes a target
position as a function of these relative positions. Then it moves to this target po-
sition. This type of strategies is often referred to as Look-Compute-Move (LCM)
strategies. We further assume that the initial unit disk graph defined by the
robot’s position and their viewing ranges (the start configuration) is connected.
All our strategies will always maintain the connectivity of their configurations.
For a given strategy and a connected start configuration with n robots, we are
interested in the correctness of the strategy, the number of rounds needed, and
the maximum distance traveled by the robots. The number of rounds and es-
pecially the maximum distance traveled represent the major sources for energy
consumption of such strategies.

In an asynchronous strategy, the robots are activated one at a time. When a
robot is active, it performs a complete LCM cycle, before it is deactivated again
and the next robot is activated. The order of activation can be determined by an
adversary or alternatively by a randomized process. In order to measure progress
and runtime of our stratgies, we use the following well-established notion of a
round: a round ends as soon as every robot was active at least once. We also need
a connected start configuration, and as above we are interested in the correctness
of the strategy, the number of rounds needed, and themaximum distance traveled
by the robots.

In a continuous strategy, the robots continuously sense their neighborhood
and directly adjust their direction and speed. We only demand a speed limit
which we normalize to one, the viewing radius. We abstract from several physi-
cal limitations of real robots; the most severe one is our assumption that there
is no delay between sensing the neighborhood and reacting to the gathered in-
formation: The robots can adjust their direction and speed at the same time as
they observe their neighborhood. As above we demand a connected start con-
figuration; our strategies will maintain this connectivity. Besides correctness, we
are interested in the maximum distance traveled by the robots.

The formation problems considered in this talk are the gathering problem and
the robot chain problem.
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The gathering problem is to let the n mobile robots r1, . . . , rn gather in one
point. This point does not have to be prescribed.

The robot chain problem is defined as follows: In addition to n mobile robots
r1, ..., rn, a base camp r0 and an explorer rn+1 are given, which are both sta-
tionary. We assume that, in the beginning, ri−1 and ri+1 are in the viewing
range of ri for i = 1, ..., n. Moreover, the decisions of ri are only based on the
relative positions of its direct neighbors ri−1 and ri+1. Thus, the robots form a
maybe winding chain connecting the base camp with the explorer. The goal is
to let all robots move towards the straight line connecting the base camp and
the explorer, the so-called target line.

The next chapters survey the state of the art for the two above-mentioned
formation problems.

2 The Gathering Problem

A local, self-organizing strategy for gathering is defined by a local rule that is
executed by each robot. In the discrete setting, this local rule receives as an
input the relative positions of its neighbors within its viewing range. Based on
this local information, it computes a target position, and then moves to this
position.

A very simple and intuitive local rule for the gathering problem is called
Go-To-The-Center : the robots take the center of the smallest enclosing circle
(SEC) around the robots in their viewing range as their target position. Unfor-
tunately, this simple algorithm used in a synchronous setting does not necessarily
keep the configuration connected. An example is shown in Fig. 1: The two robots
in the middle will move to two points which are in distance more than one from
each other, and so the configuration becomes disconnected.

We will therefore examine variants and extensions of Go-To-The-Center.

Asynchronous Go-To-The-Center. In the asynchronous setting, only one
robot is active in a time step. (In fact it suffices to make sure that no neighbor-
ing robots are active concurrently.) In this case, it is shown in [8] that the robots
gather in one point in finite time, but no time bound is proven.

The first local gathering algorithm with a proven time bound is

Asynchronous Extended Go-To-The-Center. This strategy, introduced in
[9], is also executed asynchronously. Moreover, robots need the ability to assign
a target position to their neighbors, and therefore the robots are not as simple as
in [10]. The idea is that when a robot is active, it tries to reduce the size of the
convex hull of the robots by moving itself and its neighbors far inside the convex
hull of its local neighborhood. A detailed description of this more complicated
strategy can be found in [9]. There it is also shown that the robots gather in
expected O(n2) asynchronous rounds, if the order of activation is random.
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Fig. 1. A configuration which becomes disconnected when using the synchronous
Go-To-The-Center algorithm

In order to modify the Go-To-The-Center rule so that it maintains connec-
tivity of the underlying unit disk graph, a self evident idea is to let a robot only
walk part of the distance towards its SEC. This yields the algorithm

Synchronous Extended Go-To-The-Center. In [10], the movement of each
robot towards the center of the SEC is restricted in such a way that a robot
stays within the circles with radius 1/2 around the middle between itself and
each of its neighbors (see Figure 2). The authors show that this rule maintains
connectivity of the configuration and that the robots gather in finite time. In
[20], a time bound of Θ(H2+n) for the number of synchronous rounds is shown.
Here H denotes the diameter of the convex hull of the start configuration. As H
is at most n, this yields a a worst case Θ(n2) bound.

Ideas of the Analyses. Proving that connectivity is maintained is done using sim-
ple geometric arguments. In case of Synchronous extended Go-To-The-Center,
this argument is illustrated in in Figure 2. Since two neighbors stay inside the
same circle with radius 1/2, they are within distance at most one of each other
also in the next round, and therefore they remain neighbors.

The lower bound for Synchronous extendedGo-To-The-Center uses a start con-
figuration with n robots placed on a circle, so that neighbors have distance≈ one.

The correctness proofs and time bounds for the three variants of Go-To-The-
Center use a similar basic idea: Two measures for progress of a round are identi-
fied. (i): Two robots ”fuse”, i.e. they move to the same position. Our algorithms
make sure that fused robots will never split again. Thus, there are atmostn rounds



8 B. Kempkes and F. Meyer auf der Heide

Fig. 2. The method to maintain connectivity with Synchronous extended Go-To-The-
Center. ri moves towards r′i, the center of the SEC around its neighbors, but must stay
inside the indicated circles.

with a fusion. (ii): The diameter (in case of Synchronous extended Go-To-The-
Center) or the area of the convex hull (in case of Asynchronous extended Go-To-
The-Center) of the robots is decreased. For correctness, it suffices to show that
this diameter or area converges to zero. This implies that they even reach zero
(i.e. gather in finite time), because our algorithms make sure that one round (plus
maybe some of the fusion rounds in case of area) suffices to gather the robots, as
soon as the diameter or the area of the convex hull is smaller than one.

In order to bound the number of rounds we need a lower bound for the re-
duction of the diameter or area. Geometric arguments are used to show that
the for Asynchronous extended Go-To-The-Center, the area is in expectation
reduced by a constant in each round without fusion, if the order of activation is
at random. Since the area can be at most O(n2) in the beginning, this yields an
expected runtime of O(n2). For the Synchronous extended Go-To-The-Center,
the diameter is reduced by Ω(1/h) in a round that contains no fusion and starts
with a configuration with diameter h. Thus, the algorithm gathers the robots in
Θ(H2 + n) rounds, when the start configuration has diameter H . Note that H
is upper bounded by n, since the start configuration is connected. This yields
the bound Θ(n2). Further note that even in an optimal global algorithm some
robots have to walk a distance of Θ(H). As, in the local algorithms mentioned
above, the robots move only a constant distance per round, they travel at most a
distance O(H2+n). Thus, for sufficiently large H , the ”price of locality” consists
of at most squaring the distance traveled.
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3 The Robot Chain Problem

A local, self-organizing strategy for the Robot Chain Problem is based on even
less information about the overall configuration: the local rule gets as an input
the relative positions only of its two direct neighbours in the chain. Based on this
local information, it computes a target position, and then moves to this point.
In this setting, the Go-To-The-Center strategy lets a robot move to the middle
position between its neighbors. It is therefore called

Go-To-The-Middle. Unlike Go-To-The-Center, Go-To-The-Middle keeps the
chain connected even in the synchronous setting [2]. On the other hand side, the
robots can in general not reach the target line, but can only come arbitrarily
close. In [2] an upper bound of O(n2 logn/ε) is shown for the number of syn-
chronous rounds needed until all robots are in distance at most ε from the target
line. The matching lower bound has only been found recently [5].

The Go-To-The-Middle strategy is an example for so-called

Linear Strategies. A synchronous round of such strategies can be expressed
by a linear transformation of the spatial vectors connecting neighboring robots.
This yields surprising correlations between several strategy properties and char-
acteristics of these transformations. E.g., strategies that maintain connectivity
of the chain and converge towards the target line correspond to transformations
given by doubly stochastic, irreducible, and aperiodic matrices, see [5]. Based
on these results, almost tight bounds on the strategies’ convergence speed can
be shown, by applying and extending results about the mixing time of Markov
chains. Eventually, this framework enables us to define strategies that assume a
weaker notion of locality: each relay bases its decision where to move only on
the positions of its k next left and right neighbors. In [5], a convergence speed

of Θ
(
n2

k2 logn
)
for these strategies is shown, establishing a trade-off between

convergence time and locality.

The only known strategywhich needs onlyO(n) rounds (which is optimal) is the

Hopper Strategy. This asynchronous strategy, presented in [3], relies on a spe-
cific activation order where the robots are activated sequentially starting at the
explorer. It is very fast in that it reduces the length of the chain to at most three
times the distance between the base camp and the explorer in linear time. The
strategy is more complicated, a detailed description can be found in [3].

The worst case distance traveled by the Go-To-The-Middle strategy is Θ(n2),
as shown in [21]. Therefore the question arises whether it is possible to reduce
this bound. A positive answer to this question is given by the

δ-bounded Go-To-The-Middle Strategy. This strategy is introduced in [21].
In this modification of the Go-To-The-Middle strategy, the step size of the robots
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is reduced to δ, for 0 < δ ≤ 1. A robot reaches its target position only if it is
in distance at most δ from its current position. Otherwise, it moves towards its
target position for a distance δ. Whereas the number of rounds only increases to
O(n2 logn/ε+n/δ) andΩ(n2+n/δ), the distance traveled decreases toΘ(δn2+n).
Thus, choosing δ ∈ Θ(1/n), O(n2 logn/ε) and Ω(n2) rounds are required in the
worst case, and the maximum traveled distance is reduced to Θ(n).

Assuming δ tending to zero yields continuous versions of the Go-To-The-
Middle strategy. The above results include a O(n) bound for the maximum
distance traveled. An even stronger result for continuous strategies yields the

Move-On-Bisector Strategy. This continuous strategy, introduced in [1], lets
a robot move in direction of the bisector of the angle defined by the rays to its two
neighbors. As soon as a robot reaches the straight line between its neighbors, it
stays on this line. It is shown in [1] that the robots travel a maximum distance of
O(min{n, (OPT+d) logn}), where d denotes the distance between the base camp
and the explorer. This strategy is O(log(n))-competitive compared to an optimal
global algorithm, if the distance between the base camp and the explorer is not
too large.

4 Outlook

We mention a few open problems closely related to the results shown above.
Regarding the gathering problem, there exists no algorithm with tight upper and
lower bounds for the traveled distance. Note that, since the robots only travel a
constant distance in each round, the number of rounds also constitutes an upper
bound for the traveled distance. But tighter upper bounds or (matching) lower
bounds are unknown. Equally, the gathering problem has not been studied in
a δ-bounded or continuous variant. A possibility would be to adapt the Move-
On-Bisector Strategy to the gathering problem, by letting the a robot move in
direction of the bisector of the angle of the robot’s local convex hull. It should
then be possible to adapt some of the proof ideas of Move-On-Bisector.

Some of the algorithms state a “price of locality”, which compares the costs of
the local algorithm with those of an optimal global one. But the bounds which
are known so far are not tight. For Move-On-Bisector, the price of locality for
the traveled distance is O(log n) for small d, but it is unknown whether it is even
better. Simulations suggest that the price of locality is constant.

Furthermore, general lower bounds for local algorithms would be of interest.
For example, assuming very simple robots, is it possible to show that gathering
with bounded viewing range is not possible in linear time?

References

1. Degener, B., Kempkes, B., Kling, P., Meyer auf der Heide, F.: A Continuous, Lo-
cal Strategy for Constructing a Short Chain of Mobile Robots. In: Patt-Shamir,
B., Ekim, T. (eds.) SIROCCO 2010. LNCS, vol. 6058, pp. 168–182. Springer,
Heidelberg (2010)



Local, Self-organizing Strategies for Robotic Formation Problems 11

2. Dynia, M., Kutylowski, J., Lorek, P., Meyer auf der Heide, F.: Maintaining Com-
munication Between an Explorer and a Base Station. In: IFIP 19th World Com-
puter Congress, TC10: 1st IFIP International Conference on Biologically Inspired
Computing (BICC 2006), pp. 137–146 (2006)

3. Kutylowski, J., Meyer auf der Heide, F.: Optimal strategies for maintaining a
chain of relays between an explorer and a base camp. Theoretical Computer Sci-
ence 410(36), 3391–3405 (2009)

4. Dynia, M., Kutylowski, J., Meyer auf der Heide, F., Schrieb, J.: Local Strategies for
Maintaining a Chain of Relay Stations between an Explorer and a Base Station.
In: SPAA 2007: Proceedings of the 19th Annual ACM Symposium on Parallel
Algorithms and Architectures, pp. 260–269. ACM Press, New York (2007)

5. Kling, P., Meyer auf der Heide, F.: Convergence of Local Communication Chain
Strategies via Linear Transformations. In: SPAA 2011: Proceedings of the 23rd
ACM Symposium on Parallelism in Algorithms and Architectures, pp. 159–166
(2011)
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Abstract. We present two distributed, constant factor approximation
algorithms for the metric facility location problem. Both algorithms have
been designed with a strong emphasis on applicability in the area of wire-
less sensor networks: in order to execute them, each sensor node only
requires limited local knowledge and simple computations. Also, the al-
gorithms can cope with measurement errors and take into account that
communication costs between sensor nodes do not necessarily increase
linearly with the distance, but can be represented by a polynomial. Since
it cannot always be expected that sensor nodes execute algorithms in a
synchronized way, our algorithms are executed in an asynchronous model
(but they are still able to break symmetry that might occur when two
neighboring nodes act at exactly the same time). Furthermore, they can
deal with dynamic scenarios: if a node moves, the solution is updated
and the update affects only nodes in the local neighborhood. Finally, the
algorithms are robust in the sense that incorrect behavior of some nodes
during some round will, in the end, still result in a good approximation.
The first algorithm runs in expected O(log1+ε n) communication rounds

and yields a μ4(1 + 4μ2(1 + ε)1/p)p approximation, while the second has
a running time of expected O(log2

1+ε n) communication rounds and an

approximation factor of μ4(1 + 2(1 + ε)1/p)p. Here, ε > 0 is an arbitrar-
ily small constant, p the exponent of the polynomial representing the
communication costs, and μ the relative measurement error.

1 Introduction

Facility location is one of the most studied optimization problems in operations
research and can be found as an important building block in a large variety
of applications. A classical motivation is placing facilities (e.g., warehouses) in
such a way that their combined costs of customer satisfaction and warehouse
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construction are minimized. There are also plenty of applications in distributed
scenarios. For instance, when dealing with wireless sensor networks it is often
the case that a subset of nodes has to be chosen to provide some costly service.
This can be the maintenance of a distributed database, the gathering of measure-
ment data, the control of the remaining nodes or energy intensive computations.
Making these services available incurs high costs at the facility nodes, while all
remaining nodes act as clients. These clients use the services of the nearest facil-
ity node, and are charged a cost proportional to the corresponding distance. The
objective is to find a set of nodes to assume the facility role such that the costs
incurred by the clients and by setting up the facilities are as low as possible.

Problem Definition. We are given a complete, undirected, weighted graph
G = (V,E) as input. Each edge {i, j} in G is weighted with a nonnegative value
c(i, j) ∈ R≥0 that represents the distance between (or the costs of connecting)
node i with node j. These weights satisfy the triangle inequality (i.e., ∀ i, j, k
we have c(i, j) ≤ c(i, k) + c(k, j)), are symmetric and c(i, i) = 0. Also, there are
two values di, fi ∈ R≥0 associated with each node i. The objective is to assign
one of two roles to each node. A node must either become a facility or a client.
We say that a node opens (resp. closes) if it changes its role to facility (resp.
client). The value fi represents the costs for opening node i and di represents
the demand of a node with the client role. The assignment (partition of V into
the sets F and C) has to be chosen in such a way that the objective function∑

i∈F fi +
∑

j∈C dj · c(j, F )p is minimized. Here, F (resp. C) represents the set
of nodes with the facility (resp. client) role (thus, we have C = V \ F ). The
value c(j, F ) = mini∈F {c(j, i)} describes the distance between client j and its
nearest facility i, while p > 0 is the exponent representing the communication
costs. Since an arbitrary number of clients can use a single facility, we deal with
the uncapacitated facility location problem.

The model used for the execution of our algorithm is based on the CONGEST
model, which was introduced by Peleg (see [20]) and is commonly used to model
the execution of distributed algorithms on graphs. Here, algorithms are executed
in synchronous send-receive-compute cycles. In one cycle, each node sends a mes-
sage to each of its neighbors in the graph. Note that the messages sent to each
neighbor by a single node are not required to contain the same information. Once
all nodes have sent their messages, they receive a single message from each of
their neighbors. After all the messages have been received, every node is allowed
to spend an arbitrary amount of time for computation (i.e., computation is for
free and we are only interested in the number of communication rounds). The end
of the computation by all nodes marks the start of a new send-receive-compute
cycle.

The message size in the CONGEST model is bounded. We limit the size of the
messages used in our algorithms to O(log(n)) bits, where n = |V |. The same lim-
itations are also used in [9, 16, 19]. This bound is reasonable, because it allows
the nodes to send their IDs in single messages. Due to this constraint, we restrict
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the values fi, di, and c(i, j) to be at most polynomial in n such that they can
be represented with O(log(n)) bits (i.e., to be able to send them in a single
message).

We generalize the CONGEST model as follows. First, we limit the communica-
tion range of the nodes by only allowing the nodes i and j to communicate with
each other if the weight c(i, j) of the edge {i, j} is smaller than O(rmax) where
rmax := maxi∈V {fi/di}. One can assume that, with regard to sensor nodes, rmax

is independent of the number of nodes, and thus nodes only need to be able to
communicate within a constant distance when executing our algorithm. Second,
again to better reflect the abilities and limitations of sensor nodes, we allow the
nodes to execute the algorithm in asynchronous rounds. In such a round every
node can be active multiple times. Nodes are not required to (but still can) act
at the same time. A round is completed as soon as all nodes have been active at
least once (note, that if all nodes would be required to act at the same time, a
round in our model would be equal to a round in the standard CONGEST model).
We abstract from message transmission delays and computation time. Here, a
node that becomes active at time t receives all messages that have been sent be-
fore t (but not the message sent exactly at time t). Furthermore, all computation
is done instantly and messages are sent immediately.

In order to represent errors that might occur when nodes measure distances
between each other, we introduce relative measurement errors bounded by the
parameter μ with 1 ≤ μ. In other words, a node i’s measurement may yield a
distorted distance ĉ(i, j) to node j instead of the exact distance c(i, j) where
1/μ · c(i, j)p ≤ ĉ(i, j)p = ĉ(j, i)p ≤ μ · c(i, j)p.

Based on the distance ĉ(i, j) between i and neighboring nodes j, their de-
mands dj and its own opening costs fi, each node i computes a value to which
we will refer to as the radius of i. The exact value of a radius will be denoted as
ρi, while ri will denote a specific approximation done by a node including mea-
surement errors. Finally, as a simplification for our decision rules, we introduce

r̂i := μ2/p · r1/pi for all i ∈ V .

Our Contribution. We present two similar approximation algorithms for the
facility location problem. Both algorithms are based on the approach by Mettu
and Plaxton presented in [15]. The first algorithm runs in expected O(log1+ε n)

rounds and yields a μ4(1 + 4μ2(1 + ε)1/p)p approximation, while the second has
an expected running time of O(log21+ε n) rounds and an approximation factor of

μ4(1 + 2(1 + ε)1/p)p, where ε > 0 is an arbitrarily small constant.
These two algorithms are particularly suitable for sensor networks. They are

fast (expected running time is polylogarithmic with high probability) and very
simple to implement (once the radius value mentioned above is computed, the
nodes only need to perform a relatively easy operation to ensure a specific prop-
erty is satisfied). Since expecting the nodes to act in a synchronized manner
might not always be appropriate, the model used allows for an asynchronous
execution. To represent the fact that distances between nodes can not always
be measured accurately, the parameter μ is introduced. It relates the result-
ing approximation factor to the relative measurement errors. Robustness is also
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added to the algorithms; if during the algorithms’ execution some nodes do not
execute the algorithms correctly for some rounds, the solution computed will
(at the price of an increased number of rounds) still have the desired approxi-
mation factor (i.e., no restart of the algorithm is required). The algorithms can
also deal with changes that might occur when nodes change their positions or
are removed/added to the network. We show that such a change only forces our
algorithms to update the role of nodes close by (i.e., nodes far away from this
change are not affected).

Even though our algorithms were developed with sensor networks in mind
(i.e., problem instances where the given metric is Euclidean), all results are
valid for general metrics.

Related Work. During the last two decades, the uncapacitated metric fa-
cility location problem was of great interest, and a lot of progress has been
made concerning upper bounds for the running time and approximation factor of
sequential algorithms (see [5, 6, 11, 12, 14]).

Under the assumption that NP �⊆ DTIME(nlog(log(n))), Guha et al. showed
in [10] that no polynomial time algorithm for the facility location problem with
an approximation factor better than 1.463 exists.

The following results concerning the facility location problem can be found for
the distributed scenario: In [19], Pandit et al. present an algorithm yielding a 7-
approximation (which can be improved to (3+ε) by changing the incrementation
factor used in their algorithm from 2 to (1 + ε) and bounding the difference
between the highest and the lowest facility cost by a polynomial in n, where
n is the number of nodes) and a running time of O(log(n)). Their algorithm
is a parallel version of the primal-dual algorithm by Jain et al. [12]. A similar
result to [19] was presented by Blelloch et al. in [3]. Instead of the CONGEST,
they use a PRAM model and achieve a (3.722 + ε) approximation with running
time of O(log21+ε(n)) rounds by parallelizing the greedy algorithm by Jain et
al. [11]. Building upon this they developed a parallel algorithm that yields a
1.861 approximation in O(log41+ε(n)) rounds in [4]. Although their algorithm has
a better approximation factor than our algorithms, it has a higher running time
than both of them. Also, the way our algorithms work is, in our opinion, more
fitting for sensor nodes due to their simplicity and robustness when dealing with
errors. In [18], Pandit et al. present a log∗(n) rounds algorithm that, contrary
to ours, requires a Unit Disc Graph and the graph’s geometrical representation
for its execution.

The approach by Mettu and Plaxton [15], on which our algorithms are based
on, has been successful in a lot of other settings as well: in the kinetic setting [7],
in game theoretic settings [17], for algorithms working in sublinear time [2],
for the uniform facility location problem [9] (i.e., opening each facility incurs
the same costs), and when confronted with perpetual changes to the problem
instance [8]. Regarding [8], which is a preceding paper of ours, we improve the
approximation factor and introduce a more realistic model of computation.
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2 Preliminaries

This section describes two building blocks that are used by our algorithms de-
fined in Section 3. In the first part the concept of invariants is introduced.
These are rules that are used to guarantee and to analyze the algorithms’ ap-
proximation factors. The second part deals with the distributed computation of
a maximal independent set, which is required to execute both algorithms.

The Invariant and the Radius. Here, we describe the basic intuition for our
algorithms. Assuming that all neighbors of node i are clients, the radius value
of i represents how advantageous it is to open i (a node’s quality increases with
a decreasing radius value). With the help of the invariant defined below, the
algorithms try to find a balance between opening and closing nodes (preferring
nodes with small radii to be opened).

Whenever node i becomes active during the algorithms’ execution, it is re-
sponsible to assign a role (facility or client) to itself. This role might change in
subsequent rounds. The invariant is a rule that describe how this role assign-
ment works: in the case that i is a facility, it checks whether there are facilities
that are more advantageous (i.e., have a smaller radius) than itself in its neigh-
borhood. If this is true, then i is superfluous and becomes a client, otherwise it
remains a facility. Now, in the case that i is a client, it checks whether there are
facilities close by that have a smaller radius than its own radius. If this is the
case, i remains a client (in the final solution i can be connected to one of those
facilities). Otherwise, if there are no facilities i can use, it becomes a facility
itself. Applying these rules will result in nodes changing their state over and
over again. In Section 3 we show that at some point in time the invariant will
hold for all nodes and thus no node will be required to change its role again.
This section is dedicated to show that, once this point is reached, the solution
induced by the nodes’ roles is a solution with the claimed approximation factor.

Given r ∈ R and a node i we define the set B(i, r) to contain all nodes j such
that c(i, j) ≤ r. The radius ρi of a node i is the unique number satisfying∑

j∈B(i,ρ
1/p
i )

dj · (ρi − c(i, j)p) = fi ,

while the distorted radius ρ̂i, which takes measurement errors into account,
satisfies ∑

j∈B(i,ρ̂
1/p
i )

dj · (ρ̂i − ĉ(i, j)p) = fi .

Note that to define B(i, ρ̂
1/p
i ) the values ĉ(i, j) are used. The value ri is defined

to be ρ̂i rounded to the next power of (1 + ε) (where ε > 0). This implies
1

μ(1+ε) · ri ≤ ρi ≤ μ · ri. In order to describe our algorithms we will only use

r̂i = μ2/p · r1/pi , while ri will be used for the analysis of the approximation
factors.
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Proposition 1. For every problem instance with n nodes, there exists a
polynomial P such that 1/P (n) < ri < P (n) for all nodes i.

Therefore, the number of distinct rounded radius values is logarithmic in n and
can be sent using at most O(log1+ε n) bits (even O(log log1+ε n) is possible if
only the exponent is encoded). Later on, we will use this property to bound the
number of rounds that our algorithms require.

Now, we can state the invariant and the theorem describing the approximation
factor of a solution where the invariant at each node is satisfied.

Definition 1 (Invariant). The invariant is said to be fulfilled if and only if
the following conditions that depend on the node’s role are satisfied:

Facility Role. If node i is a facility (i.e., i ∈ F ), then no other facility j, j �= i

with rj ≤ ri and ĉ(i, j) ≤ 2 · μ2/p · r1/pi (= 2 · r̂i) exists.
Client Role. If node i is a client (i.e., i ∈ C), then at least one facility j with

rj ≤ ri and ĉ(i, j) ≤ 2 · μ2/p · r1/pi (= 2 · r̂i) exists.

Since we have C = V \ F , and the property that a client is connected to its
closest facility, all that is necessary to describe a solution to any given instance
of the facility location problem is the set F (i.e., the set of nodes with the facility
role).

Theorem 1. Let Fopt be an arbitrary optimal solution and Finv be a solution
where, for each facility and client, the invariant is satisfied. Then, the cost of
Finv can be bounded as follows,

cost(Finv) ≤ μ4(1 + 2(1 + ε)1/p)p cost(Fopt) .

Proof. Analogously to [15], we introduce a charge value for each node i which is
dependent on a solution F , i.e.,

charge(i, F ) = c(i, F )p +
∑
j∈F

max{0, ρj − c(i, j)p} .

Note that given a solution F , the sum over all charges is equal to the costs of
the solution F , namely

∑
i∈V di charge(i, F ) =

∑
i∈F fi +

∑
j∈C dj · c(j, F )p.

The theorem is proven by showing that for a solution Finv satisfying the
invariants (in particular a solution computed by our algorithms) and for any
solution F (in particular an optimal solution) it holds that

charge(i, Finv) ≤ μ4(1 + 2(1 + ε)1/p)p charge(i, F ) .

This is done with the help of the following claims (the proofs of Claim 1 to
Claim 3 can be found in the appendix):

Claim 1. Let i be a node, let F be a set of facilities, and let j be a facility. If
c(i, j) = c(i, F ), then charge(i, F ) ≥ max{ρj, c(i, j)p}.
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Claim 2. Let i be a node and let Finv be a set of facilities such that all invariants

are satisfied. If j ∈ Finv with i ∈ B(j, ρ
1/p
j ), then charge(i, Finv) ≤ ρj.

Claim 3. Let i be a node and let Finv be a set of facilities such that all in-

variants are satisfied. For any facility j ∈ Finv with i �∈ B(j, ρ
1/p
j ) we have

charge(i, Finv) ≤ c(i, j)p.

Using these claims, for each node we compare the charge of solution Finv to its
charge of an optimal solution Fopt:

Claim 4. For any node i and any set of facilities Finv, where all invariants are
satisfied, we have charge(i, Finv) ≤ μ4(1 + 2(1 + ε)1/p)p · charge(i, Fopt).

Proof of Claim 4: Let j ∈ Fopt such that c(i, Fopt) = c(i, j). By the invariant

there exists a facility k ∈ Finv such that ĉ(j, k) ≤ 2μ2/pr
1/p
j and rk ≤ rj . We

distinguish two cases, either i ∈ B(k, ρ
1/p
k ), or i �∈ B(k, ρ

1/p
k ).

In the first case, by Claim 2, we have charge(i, Finv) ≤ ρk. Thus, by Claim 1,
charge(i, Finv) ≤ ρk ≤ μrk ≤ μrj ≤ μ2(1 + ε)ρj ≤ μ2(1 + ε) · charge(i, Fopt). In
the second case, by Claim 3, we have

charge(i, Finv) ≤ c(i, k)p ≤
(
c(i, j) + μ1/pĉ(j, k)

)p
≤
(
c(i, j) + 2μ3/pr

1/p
j

)p
≤
(
c(i, j) + 2μ4/p(1 + ε)1/pρ

1/p
j

)p
≤ μ4(1 + 2(1 + ε)1/p)p · charge(i, Fopt) .

The last estimation follows by distinguishing whether ρj or c(i, j)
p is the biggest

element of the term. 
�

Note that if all invariants hold, μ = 1, and p = 1, then the solution is a (3 + ε)
approximation, which is an improvement to the 17-approximation of [8].

Distributed Computation of a Maximal Independent Set. Here we re-
state an inclusion maximal independent set (MIS) algorithm (see [1, 13, 20])
which was originally introduced by Luby. This distributed algorithm calculates
a MIS in expected O(logn) communication rounds and forms a building block
of our approach.

The algorithm (given by Algorithm 1) works as follows on an arbitrary graph:
When node i awakes, itmarks itself with probability of 1/(2 deg(i)), where deg(i)
is the number of i’s neighbors. The next time i awakes, it checks whether a
neighbor has joined the MIS in the meantime and decides to stay out of the
MIS if this is the case. If not, then i decides to join the MIS if there is no other
marked neighbor of a higher degree. When calculating the degree, only neighbors
are considered which have not yet decided. If two neighboring nodes with same
degree are marked, then the node with highest ID is selected. The decision to join
or to stay out of the MIS is final and each node stops executing the algorithm
as soon as it has decided.
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Algorithm 1.CreateMIS(G) executed by each node i (Luby’s algorithm)

if ∃ neighbor j of i with j ∈ MIS then1

Not-in-MIS ← Not-in-MIS ∪ {j};2

stop execution;3

else4

G′ ← subgraph of G induced by {j ∈ V |j �∈ Not-in-MIS};5

if state(i) = marked then6

if ∃ j ∈ G′ with state(j) = marked and (degG′(j) > degG′(i) or7

degG′(j) = degG′(i) and id(j) > id(i)) then
state(i) ← unmarked;8

else9

MIS ← MIS ∪ {i};10

stop execution;11

if state(i) = unmarked then12

with probability 1
2degG′ (i) : state(i) ← marked;13

Please note that if some nodes start executing the algorithm belatedly, then
the MIS is still calculated in expected O(log n) communication rounds after the
last node has started since previous decisions can only cause a faster termination.
This is important for the interleaved calculation of an MIS in Algorithm 3.

3 Approximation Algorithms

Due to Theorem 1, we know that a solution, where the invariants are satisfied
for every node, yields a good approximation. Also note that if the invariant of
node i is violated, i can always remedy this by changing its own role. Thus, a
straightforward idea for a distributed approximation algorithm would be to allow
each node to change its role if its invariant is violated (and by doing so possibly
violate the invariants of other nodes). As a result, all nodes would switch back
and forth between being a client or a facility until they eventually reach a role
assignment where all invariants are satisfied. This is essentially the idea used
in [8]. The reason why this approach worked is that the model used in [8] only
allowed a single node to be active (i.e., able to change its role) at any point
in time. However, this approach is no longer feasible in our (more realistic and
more general) model, where nodes can execute the algorithm simultaneously.
For example, imagine a problem instance with only two nodes, both have the
facility role and the same radius, and they are positioned in such a way that they
mutually violate each other’s invariant. If both become active at the same time,
they will both become clients. Now, both their invariants are violated again so
they both change their role to facility and everything is repeated. This process
never reaches a state where all invariants are satisfied.

Therefore, we present two algorithms that can deal with this problem and
show their approximation factors, expected running time in communication
rounds and how they cope with dynamic scenarios. In oder to simplify the pre-
sentation we will set μ = p = 1 and refer to the (μ4(1 + 4μ2(1 + ε)1/p)p) (resp.,
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(μ4(1 + 2(1 + ε)1/p)p)) approximation algorithm as the (5 + ε) (resp., (3 + ε))
approximation algorithm. These two algorithms are presented in the following
two sections.

3.1 (5 + ε)-Approximation in O(log1+ε n) Rounds

As we could see above, nodes with the same radius that are close to each other
can cause undesired behavior if they act at the same time. To be able to avoid
this, we introduce the radius graph as follows:

Definition 2. A radius graph Gr = (Vr , Er) for radius r is defined by the nodes
Vr = {i ∈ V |r̂i = r} ⊆ V and edges Er = {{i, j}|i, j ∈ Vr ∧ ĉ(i, j) ≤ 2r}.

A node belongs to exactly one radius graph. We will prevent the nodes with the
same radius r̂ to influence each other by calculating a MIS on each radius graph
Gr̂. The algorithm proceeds in three steps:

1. Every node i calculates its radius r̂i and sends it to all neighbors (nodes at
a distance of at most 2 · r̂max). Now, each node is aware of its neighbors and
their radii in the specific radius graph Gr̂ it belongs to.

2. For each radius graph the nodes compute a maximal independent set (MIS)
using Algorithm 1.

3. If a node is not member of a MIS, it becomes a client. Otherwise, whenever
a node becomes active, it checks whether its invariant is satisfied and, if
necessary, changes its role such that its invariant is satisfied again.

As mentioned before, the radius (as well as all other information required to
execute the algorithm) can be sent in a single message. A pseudocode description
is given by Algorithm 2.

The expected number of rounds required to compute a solution, for which the
invariant is satisfied for each node, is O(log1+ε n). Step (1) requires a constant
number of rounds, while step (2) is finished after O(log n) communication rounds
in expectation (see Section 2). Finally, step (3) requires O(log1+ε n) rounds. To
see this, note that a node i changing its status to facility can only violate in-
variants of nodes that have a strictly larger radius than r̂i (nodes with strictly

Algorithm 2. FiveApproximation executed by each node i ∈ V

r̂i ← CalculateRoundedRadius(i);1

CreateMIS(Gr̂i )2

if i ∈ Not-in-MIS then3

become client;4

else if i ∈ MIS then5

if i is client and not Invariant then6

become facility;7

else if i is facility and not Invariant then8

become client;9
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smaller radius are never affected by node i’s role changes and the MIS compu-
tation guarantees that nodes with equal radius are not affected either). With
each round, the invariants of the nodes with the next higher radius become (and
remain) satisfied, starting with the nodes with the smallest radius. Since there
are O(log1+ε n) distinct radius values, the claim follows.

Theorem 2. When the invariant holds for all nodes that are in the MIS and
all nodes not in the MIS are clients, then the resulting set of facilities yields a

μ4(1 + 4μ2(1 + ε)
1
p )p-approximation.

Proof. Since only a node that is a member of the MIS can be a facility, the
invariant is satisfied for every facility. The invariant of clients that are not in
the MIS is not necessarily satisfied. Consider a client i with a violated invariant.
There must be another client j with the same radius in distance 2r̂i which is part
of the MIS, otherwise i itself would be part of the MIS. Since the invariant of j is
satisfied, there is a facility k with a smaller or equal radius in distance 2r̂j of j.
Thus, due to the triangle inequality, facility k is at a distance of at most 4 times
μ2r̂i of i. A small modification to Claim 4 yields the desired approximation. 
�

3.2 (3 + ε)-Approximation in O(log2
1+ε n) Rounds

This section presents an algorithm with the improved approximation factor of
μ4(1 + 2(1 + ε)1/p)p, but increased running time of O(log21+ε n) communication
rounds. In contrast to the algorithm before, we want to guarantee that at every
single node the invariant is satisfied.

In order to describe the algorithm, the following states are introduced: un-
decided, marked, MIS/facility, or no-MIS/client. We say a node has decided if it
is either in state MIS/facility or no-MIS/client. Also, if a node i is in the state
undecided or marked and all neighbors j of i with a smaller radius and within
distance c(i, j) ≤ 2ri have decided, then we say this node is playing.

The state diagram in Figure 1 and Algorithm 3 illustrate the nodes’ behavior.
At the beginning, each node i is in the state undecided and calculates its radius r̂i.
Once a node enters the state MIS/facility (resp. no-MIS/client) it never changes
its state again and has the facility (resp. client) role in the final solution. A
node that is in the marked or undecided state changes its state to no-MIS/client
if by assuming the client role its invariant is fulfilled (i.e., the change of its role
to client satisfies its invariant). A node i, that cannot satisfy its invariant by
assuming the client role, starts computing a MIS once all nodes j with r̂j < r̂i
within distance 2 · r̂i of i have decided. The MIS is computed on a conflict graph
consisting of all playing nodes which is a subgraph of the radius graph defined
in Section 3.1.

Definition 3. A conflict graph Cr(t) = (Vr(t), Er(t)) for radius r at the begin-
ning of round t is defined by the vertices Vr = {i ∈ V |ri = r ∧ i is playing at
beginning of round t} ⊆ V and edges Er = {{i, j}|i, j ∈ Vr ∧ c(i, j) ≤ 2r}.
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undecided marked MIS/
facility

no-MIS/
client

all neighbors with smaller
radius have decide, then with

probability 1/(2degC(k))

no neighbor
in C with

higher degree is marked

client role
fulfills invariant

client role
fulfills invariant

a neighbor in the conflict
graph with higher degree is marked

Fig. 1. A state diagram showing all possible states and their transitions in Algorithm 3

Once a node enters the MIS, it changes its state to MIS/facility. Otherwise (if one
of its neighbors in the conflict graph joined the MIS and is therefore a facility),
its state is changed to no-MIS/client.

Theorem 3. After O(log1+ε n · logn) communication rounds in expectation all

nodes have decided. The resulting solution is a μ4(1+2(1+ε)1/p)p-approximation.

Proof. We prove by induction over the radius values that once a node has decided
to change its state toMIS/facility (i.e., it becomes a facility) or no-MIS/client (i.e.,
it becomes a client), its invariant will never be violated again.

All nodes with the smallest radius r̂small start playing and compute a MIS
(which takes O(log n) expected rounds). If a node of this radius enters the MIS,
it is a facility. No other node with this radius within distance 2rsmall will ever
enter the MIS, and therefore its invariant will always be fulfilled. Each node j
which is not in the MIS is within distance 2r̂small of a node contained in the
MIS and therefore within distance 2r̂small of a facility node. Thus, such a node’s
invariant is, and will remain, fulfilled.

Consider all nodes with radius r̂′ > r̂small. Assume that in some round the
nodes with radius less than r̂′ have decided and do not change their roles any-
more. Then, we have two cases for node i with radius r̂′. First, there is a facility
j with radius less r̂′ within distance 2r̂′ (i.e., assuming the client role satis-
fies the invariant of i). By the induction hypothesis facility j will never change
its state again and thus the invariant of node i will not be violated in future
rounds. Second, there is no facility j within distance 2r̂′. Here, using the same
argumentation as for the nodes with the smallest radius (i.e., nodes with radius
r̂′ compute a MIS on their conflict graph), we can state that the invariant of
i is satisfied after O(logn) rounds. Since there are O(log1+ε n) different radius
values, the expected number of communication rounds is O(log1+ε n · logn). 
�

3.3 Dealing with Dynamics

Until now, we only considered a static scenario where the distances between
nodes, facility costs and client demands do not change over time. Next, we in-
troduce a dynamic scenario where such changes are possible. Starting with a
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Algorithm 3. ThreeApproximation executed by each node i ∈ V

r̂i ← CalculateRadius(i);1

if state(i) = undefined or (state(i) = client and not Invariant) or2

(state(i) = facility and not Invariant) then
state(i) ← undecided;3

if Invariant then4

state(i) ← client;5

C ← conflict graph Gr̂i(t);6

if state(i) = marked then7

if ∃ j ∈ C with state(j) = marked and (degC(j) > degC(i) or8

degC(j) = degC(i) and id(j) > id(i)) then
state(i) ← undecided;9

else10

state(i) ← facility;11

if state(i) = undecided and ∀ j ∈ V with r̂j < r̂i and c(j, i) ≤ 2r̂i and12

state(j) ∈ {facility, client} then
with probability 1

2 degC(i)
: state(i) ← marked;13

problem instance and a role assignment where the invariant is satisfied for each
node, we modify the instance (e.g., by changing the distance between two nodes)
such that the invariant is violated at a single node (we call this “triggering an
event at a node”). We want to enable our algorithm to deal with such a change
and analyze the effect of this change on the roles of other nodes.

To be able to react to such changes, the algorithms have to be slightly ex-
tended. Regarding the (5 + ε)-algorithm we have two cases to consider. First,
assume the change did not invalidate the MIS on the nodes’ radius graph. If
the affected node is part of the MIS, the node needs just to correct its invariant
(which will possibly trigger role changes of other MIS nodes). Otherwise, the
node does nothing. Second, the change invalidates (by adding or removing edges
in the radius graph) the MIS. Here, nodes at which the MIS property is violated
change their states to unmarked (and thus start executing the (5+ ε)-algorithm).
The modification of the (3+ε)-algorithm is simpler: here, whenever the invariant
of a decided node is violated, it just needs to change its state back to undecided.

The following lemma states that, given a solution satisfying the invariants of
all nodes, both modified algorithms will compute a new solution with the desired
approximation factor, and only nodes with a small distance to the node where
the change occurred could have a different role in this new solution. Its proof,
which is an adaptation of the proof in [8], can be found in the appendix.

Lemma 1. A node i can only be affected by an event if it is triggered at a node
which is at most in distance 4μ3/p(1 + 1

ε )ri from i.

Notice that a node i can only be affected by a change occurring at node j, if
c(i, j) ∈ O(r̂i). Also, r̂i ∈ O(fi/di). This means that, if fi and di are independent
of the number of nodes (which might be reasonable in sensor networks) the area
of effect of a change is independent of the number of nodes.
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4 Conclusion

We converted the sequential algorithm by Mettu and Plaxton [15] to a dis-
tributed sensor nodes scenario by providing two constant factor approximation
algorithms that require a polylogarithmic number of rounds. One of these algo-
rithms retains the sequential algorithm’s approximation factor up to an arbitrar-
ily small constant ε. This is arbitrarily close to the best approximation factor
one can achieve using this approach.
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Appendix

Proof of Claim 1:

Proof. We distinguish two cases: i ∈ B(j, ρ
1/p
j ) and i �∈ B(j, ρ

1/p
j ). The first case

gives charge(i, F ) ≥ c(i, j)p + max{0, ρj − c(i, j)p} ≥ ρj ≥ c(i, j)p, while the
second case yields charge(i, F ) ≥ c(i, j)p ≥ ρj . 
�

Proof of Claim 2:

Proof. First, we prove by contradiction that a node cannot be contained in the
balls of two different facilities. Assume there are two facilities j, k ∈ Finv, j �= k,

such that i ∈ B(j, ρ
1/p
j ) and i ∈ B(k, ρ

1/p
k ). Without loss of generality, assume

ρ
1/p
j ≥ ρ

1/p
k . Then, the invariant at j must be violated, since there is another

facility k within distance c(j, k) ≤ c(j, i)+c(i, k) (by the triangle inequality) and

c(j, i) + c(i, k) ≤ ρ
1/p
j + ρ

1/p
k ≤ 2ρ

1/p
j ≤ 2μ1/pr

1/p
j = 2r̂j .

Thus, i ∈ B(j, ρ
1/p
j ) and i is in no other facility’s ball. Then,

charge(i, Finv) = c(i, Finv)
p +

∑
j∈Finv

max{0, ρj − c(i, j)p}

= c(i, Finv)
p + ρj − c(i, j)p ≤ ρj ,

since c(i, Finv)
p ≤ c(i, j)p. 
�



Local Approximation Algorithms for Facility Location in Sensor Networks 27

Proof of Claim 3:

Proof. We distinguish two cases. In the first case, let there be no facility k ∈ Finv

with i ∈ B(k, ρ
1/p
k ). It follows that for all facilities l ∈ Finv: c(i, l) ≥ ρ

1/p
l . Thus,

charge(i, Finv) = c(i, Finv)
p ≤ c(i, j)p.

In the second case, let k ∈ Finv be such that i ∈ B(k, ρ
1/p
k ). This implies

that c(i, k) ≤ ρ
1/p
k . We know that ĉ(j, k) > 2μ2/p max{r1/pj , r

1/p
k } because of the

invariants. This yields

c(i, j) ≥ c(j, k)− c(k, i) ≥ 1

μ1/p
· ĉ(j, k)− ρ

1/p
k ≥ 1

μ1/p
2μ2/pr

1/p
k − μ1/pr

1/p
k

≥ μ1/pr
1/p
k ≥ ρ

1/p
k ≥ charge(i, Finv)

1/p .


�

Proof of Lemma 1:

Proof. Let k be the node at which an event is triggered. Let ei ·ri be the maximal
range around k in which nodes with radii at most ri = (1 + ε)i · rk are affected
by the state change of k. First, we give an upper bound for e0 which implies
that r0 = (1 + ε)0 · rk = rk. Nodes with radius < r0 cannot be affected by
the state change of k, as the invariant only depends on nodes with smaller or
equal radii. If k changes its state from closed to opened, this cannot violate the
invariant of nodes with radius r0 because then the invariant of k would have
been fulfilled (note that the distorted distances are symmetric). If k changes its
state from opened to closed, then this change affects only nodes with radius r0
within distance ≤ 2μ3/prk since they might underestimate their distance to k by
a factor of μ1/p when checking their invariant. Therefore, we have e0 = 2μ3/p.

Now, we describe the step from ei−1 to ei and claim ei ≤ ei−1

1+ε + 4μ3/p for

i > 0. By definition of ei−1, nodes with radii at most ri−1 = (1 + ε)i−1 · rk
can be at a distance of at most ei−1 · rk from k. Let m be such a node and let
l be a node with radius ri = (1 + ε)i · k which changes its role due to a role
change of m. This node l must be within distance 2μ3/pri of m. If l needs to
be opened, then m must have closed. No invariant of nodes with radius ri is
affected. If l needs to be closed, then m must have opened. Another node n with
the same radius ri might have to open and n can be in distance of at 2μ3/pri of
l. Again, the opening of n cannot violate the invariant of a node with the same
radius. Therefore, c(k, n) ≤ ei−1 · rk + 2 · 2μ3/pri ≤ ( ei−1

1+ε + 4μ3/p)ri and thus

ei ≤ ei−1

1+ε + 4μ3/p. Finally, the recurrence can be solved,

ei ≤
ei−1

1 + ε
+ 4μ3/p =

e0
(1 + ε)j

+

i−1∑
j=0

4μ3/p

(1 + ε)j
=

e0
(1 + ε)i

+ 4μ3/p
1− 1

(1+ε)i

1− 1
1+ε

= 4μ3/p · 1 + ε

ε
−

4μ3/p 1+ε
ε − e0

(1 + ε)i
≤ 4μ3/p

(
1 +

1

ε

)
.


�
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Abstract. Given n sensors on a line, each of which is equipped with a
unit battery charge and an adjustable sensing radius, what schedule will
maximize the lifetime of a network that covers the entire line? Trivially,
any reasonable algorithm is at least a 1

2
-approximation, but we prove

tighter bounds for several natural algorithms. We focus on developing
a linear time algorithm that maximizes the expected lifetime under a
random uniform model of sensor distribution. We demonstrate one such
algorithm that achieves an average-case approximation ratio of almost
0.9. Most of the algorithms that we consider come from a family based
on RoundRobin coverage, in which sensors take turns covering predefined
areas until their battery runs out.

Keywords: wireless sensor networks, adjustable range, restricted strip
cover, lifetime, area coverage.

1 Introduction

We consider the following disaster-relief scenario: Suppose you have a highway,
supply line, or fence that you want to cover with a wireless sensor network (WSN)
for as long as possible. Each sensor has a fixed location along the highway and a
unit battery charge that drains in inverse proportion to its sensing radius, which
you control. Given a deployment of sensors, what schedule will maximize the
lifetime of the network? We analyze both the case where the sensors are placed
by an adversary, and the case where they are deployed uniformly at random (e.g.
- perhaps they have been dropped from an airplane).

Formally, let U = [0, 1] be a line, and suppose that n sensors are deployed
on U with locations X = {x1, ..., xn}. For any time t ≥ 0, we associate with
each sensor i a sensing radius ri(t) ∈ [0, 1] and a corresponding coverage interval
Ri(t) = [xi − ri(t), xi + ri(t)], and say that U is covered at time t if for every
x ∈ U , there exists an 1 ≤ i ≤ n such that x ∈ Ri(t). We impose the constraint
that each sensor has a unit battery charge that drains at the rate (ri(t))

1/α for
some fixed α > 0. Our goal is to construct a sensing schedule S = {ri(t)}ni=1 that
covers U for as long as possible, and call this value the lifetime of the network.
That is, the lifetime T of a network is the largest time value t such that for every
point (x, t) ∈ U × [0, T ], there exists some sensor i such that x ∈ Ri(t).

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 28–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Problem 1 (Adjustable Range Restricted Strip Cover). Given a set of
sensor locations X and a battery drainage rate α, compute a schedule S =
{ri(t)}ni=1, where ri(t) is the sensing radius of sensor i at time t, that maximizes
T , subject to the constraints that for all pairs (x, t) ∈ U × [0, T ], there exists an

i such that x ∈ Ri(t), and for all i,
∫ T
0
(ri(t))

1/α dt ≤ 1.

In this paper, we provide both worst case (adversarial deployment) and aver-
age case (random deployment) analysis of several natural algorithms, for the
particular situation in which α = 1.

1.1 Previous Research

A closely related (and known NP-hard) problem is Restricted Strip Cover

(RSC) [4], in which each sensor has a fixed sensing radius and a fixed duration
indicating the length of time that it can be active. Our problem extends RSC
by replacing the notion of duration with a that of a finite battery charge, and
converting the sensing radius from a fixed input to a variable to be optimized.
This introduces considerable complexity to the problem.

To see this, note that in RSC, each sensor can be represented in space-time by
a single rectangle of fixed dimensions whose center has a fixed x-coordinate. The
only variable to consider is the time (t-coordinate) at which the sensor becomes
activated (e.g. - the rectangles can only be moved up and down). In our problem,
the regions of space-time occupied by each sensor still have a fixed central x-
coordinate and a fixed area, but the height and width may vary as a continuous
function of time, so they are not even necessarily rectangles. Furthermore, in
general we allow pre-emptive scheduling, meaning that a sensor can activate and
deactivate more than once, splitting a region into multiple non-contiguous parts.
In some cases, pre-emptive scheduling can increase the achievable lifetime. We
show one such example in Figure 1.

Buchsbaum et al. [4] proved the NP-hardness of RSC and gave an
O(log log logn)-approximation algorithm. Recently, a constant factor approxi-
mation algorithm for RSC was discovered by Gibson and Varadarajan [7].

Much of the related work on network lifetime has focused on duty cycling,
wherein the goal is to maximize the number of covers k, rather than explicitly
maximizing the network lifetime T . The notion of decomposability of multiple
coverings can be found in Pach [10]. The connection to sensor networks was made
more recently, but it has brought with it increased attention and results. Pach
and Tóth [11] showed that a k-fold cover of translates of a centrally-symmetric
open convex polygon can be decomposed into Ω(

√
k) covers. This result was

improved to the optimal Ω(k) covers by Aloupis et al. [1]. Gibson and Varadara-
jan [7] showed the same result without the centrally-symmetric restriction.

In the plane, Berman et al. [3] gave the first provably good O(log n)-
approximation algorithm for the Maximum Lifetime problem with fixed sensing
ranges. Wu and Yang [12] initiated the study of area coverage with adjustable
sensing ranges, and Cardei et al. [5] pursued a duty cycling approach involving
set covers. Dhawan et al. [6] extended the work of [3] to the adjustable range
setting.
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Fig. 1. Illustration of the advantages of pre-emptive scheduling for X = { 1
8
, 1
2
, 7
8
}. The

lifetime of the network is shown on the vertical axis, while location is shown on the
horizontal axis. Each sensor is indicated by a red dot, and each rectangle represents
a coverage assignment. The dashed arrows indicate periods of activity. Note that the
total area of space-time consumed by each sensor is exactly 2.

In the one-dimensional setting, Peleg and Lev-Tov [8] found an optimal poly-
nomial time solution to the one-time target coverage problem using dynamic
programming. However, this question was about coverage efficiency, and not ex-
plicitly about network lifetime. The running time of the one-dimensional target
coverage algorithm was later improved to O(n+m), where m is the number of
target points to be covered [2]. A PTAS is known for the area coverage version
of the problem (again, for coverage efficiency, not lifetime), but no NP-hardness
result is known. These results may offer optimal solutions for one moment in
time, but do not necessarily lead to an optimal lifetime.

1.2 Our Contribution

Our extension of Restricted Strip Cover is the first to consider the true
lifetime for area coverage on the line with adjustable sensing ranges. For the spe-
cial case where α = 1, any reasonable algorithm is at least a 1

2 -approximation,
but we prove tigher bounds for several natural algorithms. However, since a con-
stant factor approximation is trivial, most of our efforts are focused on raising
the approximation ratio in the average case, which in an application scenario,
is likely to be of greater value. Our main result is a constructive proof that a
linear time algorithm exists that achieves an approximation ratio of nearly 0.9
in the average case. We accomplish this by employing RoundRobin coverage on a
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hierarchical system of pre-defined coverage areas. Although we allow pre-emptive
scheduling, we do not explicitly use it in our algorithms. Thus, our results are
also valid for the special case in which pre-emptive scheduling is not allowed. A
summary of our results is shown in Table 1.

Table 1. Summary of lifetime results for RoundRobin algorithms. T is a random variable
describing the per sensor lifetime under uniform random deployment.AC andWC show
lower bounds for the average-case and upper bounds for the worst-case approximation
ratios, respectively.

Algorithm E[T ] V ar[T ] AC WC

RoundRobin 1.386 0.078 0.693 2/3
k-RoundRobin 1.386 0.078 0.693 2/3

log2-RoundRobin 1.738 0.022 0.869 2/3
Optimized log2-RoundRobin 1.791 0.896 2/3

2 Preliminaries

For any set of sensor locations X , we assume that there exists some optimal
schedule S = {ri(t)}ni=1 that will produce the longest possible lifetime TOPT . As
the battery charges are finite, we can bound this value.

Proposition 1. If n sensors are deployed, then n ≤ TOPT ≤ 2n.

Proof. The lower bound is immediate since any reasonable algorithm achieves
T ≥ n. Consider the case where all of the sensors were located at 0; each could
cover U for exactly 1 time unit.

For any time t, each sensor i covers a subinterval of U of width 2ri(t). The total
energy consumed is given by

∫∞
0

ri(t) dt, which is at most 1 since the battery
has unit capacity. Thus, if Vi is the region of space-time consumed by the sensor
i, then |Vi| =

∫∞
0

2ri(t) dt ≤ 2. The total area of space-time consumed then
satisfies ∣∣∣∣∣

n⋃
i=1

Vi

∣∣∣∣∣ ≤
n∑

i=1

|Vi| ≤ 2n .

It is easy to see in this geometric setting that the goal of maximizing T is
equivalent to the goal of minimizing coverage overlap (i.e. - intersections Vi∩Vj),
and any extraneous coverage outside of U .

In some cases, we can bound TOPT away from 2n. For any subset Y =
{x1, ..., xm} ⊆ X , let f(Y ) = − 1

2 +
∑m

j=1(−1)m−jxj . We show (see the Ap-
pendix for a full proof) that if f(Y ) = 0, then the sensors in Y have the
proper spacing to create a pinned disk coverage assignment, which has no wasted
coverage.

Proposition 2. A radial assignment that gives perfect coverage over [0, 1] at
time t exists if and only if there is a subset Y ⊆ X such that f(Y ) = 0.

Corollary 1. If no subset Y ⊆ X satisfies f(Y ) = 0, then TOPT (X) < 2n.
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Our work in this paper is focused on RoundRobin algorithms, but we show a
worst-case approximation bound for Greedy, which iteratively schedules the
least-wasteful assignment of radii until a sensor runs out of battery life.

Observation 1. The approximation ratio of Greedy is at most 5
6 .

Proof. Consider X = { 16 − ε, 12 ,
5
6}, for some ε > 0. Greedy chooses to activate

the middle sensor by itself on U first, since that is the only perfect assigment
possible. This produces a T approaching 5 as ε→ 0, but TOPT = 6 is achievable
in the limit (see Figure 2).
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(a) TOPT → 6
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(b) TGreedy → 5

Fig. 2. Proof that Greedy is at best a 5
6
-approximation. Both diagrams show what

happens as ε → 0.

3 Analysis of RoundRobin Algorithms

Let T̄ = T/n ∈ [0, 2] be the average network lifetime per sensor. For a group of
sensors working simultaneously, it is often convenient to discuss the normalized
lifetime T̂ , which is scaled so that T̂ ∈ [0, 2].1

3.1 RoundRobin

In its simplest incarnation, RoundRobin simply forces each sensor to successively
cover all of U for as long as possible. That is, each sensor i is assigned a radius
of ri = max(xi, 1 − xi), and is pushed onto a single queue. It is easy to show
that this algorithm is at best a 2

3 -approximation of TOPT .

Lemma 1. RoundRobin is at best a 2
3 -approximation.

1 This distinction will be made clear in Section 3.2.
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Proof. Consider X = { 14 ,
3
4}. The only two sensible assignments are shown in

Figure 3. But while TOPT = 4, RoundRobin achieves a lifetime of only 2 2
3 .
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Fig. 3. Proof that RoundRobin is at best a 2
3
-approximation

A more complicated argument (presented in the Appendix) shows that
RoundRobin is at least a 0.548-approximation of TOPT .

Clearly, RoundRobin performs best when sensors are located close to 1/2,
where the lifetime is close to 2, and poorly for sensors near 0 and 1, where the
lifetime is 1. We analyze the average case by assuming that X is a uniform
random variable over [0, 1]. Then the function T0,1(X) = 1

max (X,1−X) yields a

new r.v. giving the lifetime of an individual sensor. It is easy to calculate its
mean

μT � E[T0,1(X)] =

∫ 1

0

dx

max(x, 1− x)
= 2

∫ 1

1
2

dx

x
= 2 lnx

∣∣∣∣
1

1
2

= 2 ln 2 , (1)

and variance

σ2
T � E[T 2

0,1(X)]− μ2
T =

∫ 1

0

dx

(max(x, 1 − x))2
− μ2

T = 2− 4 ln2 2 . (2)

We will develop algorithms that improve on this expected lifetime of μT .

Central Limit Theorem. Of course, with n sensors, we are more interested in
the distribution of T̄ , as opposed to that of T . Since we know μT and σ2

T , the
Central Limit Theorem implies that the distribution of T̄ approaches a normal
distribution with mean μT and variance σ2

T /n as n → ∞. For this reason we
report the variance but focus most of our attention on the expected average
lifetime of each algorithm.

Theorem 1. The approximation ratio of RoundRobin is between 0.548 and 2/3,
but it achieves at least a 0.693-approximation ratio in the average case.
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3.2 k-RoundRobin

A natural extension of RoundRobin is to partition U into k equally-spaced subin-
tervals, and run it independently on each of those. Somewhat surprisingly, the
performance is no better in either the worst or the average case.

Let k be a fixed positive integer, and let Uk(i) = [ i−1
k , i

k ] for i = 1, ..., k de-
fine a partition of U . We define k-RoundRobin to be the algorithm that runs
RoundRobin independently on each subinterval Uk(i); maintaining k parallel
queues. However, over any subinterval [a, b] ⊆ U , the r.v. giving the lifetime
of a sensor in Uk(i) is simply a rescaling of T from the original RoundRobin.

Remark 1. For any interval [a, b] ⊆ U , the expected lifetime Ta,b(X) of a sensor
running RoundRobin on [a, b] is μT

b−a with variance ( σT

b−a )
2.

With b − a = 1/k, the expected lifetime of each sensor in k-RoundRobin is
E[T ] = kμT , with a maximum lifetime of 2k. However, in order to cover the
whole line, we have to run k parallel queues, so that the expected normalized
lifetime of each sensor is E[T̂ ] = μT . For a set of n sensors, the total expected
lifetime is nμT , so the expected average network lifetime E[T̄ ] is μT . Similar
calculations show that the variance of each sensor’s lifetime is (kσT )

2, while the
normalized variance is σ2

T and the variance of the mean is V ar(T̄ ) = σ2
T /n.

Load Balancing. Since we are maintaining k parallel queues that must work
together to cover U , our calculations are sensitive to the requirement that the
lifetime be the same in each queue.

Following [9], we can think of the observation of each sensor location as an
independent Poisson trial, and use a Chernoff bound to ensure that the prob-
ability of a sub-interval Uk(i) getting too few sensors is o(1). Let Ni be a r.v.
denoting the number of sensors in Uk(i). Then for any k < n

3 lnn , we have that

Pr

[∣∣∣Ni −
n

k

∣∣∣ ≥
√

3n lnn

k

]
≤ 2 exp

{
−1

3

n

k

3k lnn

n

}
=

2

n
.

In our case, we need to bound the probability that some Uk(i) has too few sensors
in it, but using a union bound, the probability of this is at most 2k

n , which still
goes to 0 as n → ∞ for a fixed k. This shows that with high probability, the
deviations from the mean number of sensors in each interval are on the order of
O(
√
n lnn) for a fixed k.

Set n = n1 + n2, where n1 = k · min1≤i≤k Ni. Our scheduler allows the
n1 sensors to run k-RoundRobin on perfectly balanced stacks, and then throws
the n2 leftover sensors away. Thus, the actual expected average lifetime of the
algorithm is

E[T̄actual] =
n1

n
· E[T̄ ] + n2

n
· 0→ E[T̄ ] = μT , as n→∞ ,

since n2 = O(
√
n lnn) and thus n2

n → 0 as n→∞.
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Observation 2. k-RoundRobin provides the same worst-case and average-case
performance as RoundRobin.

3.3 log2-RoundRobin

Nevertheless, clever applications of RoundRobin can yield efficient algorithms.
While the expected lifetime of a sensor in RoundRobin is independent of the
length of the interval it covers, it still performs better when it is near the center
of the interval. Specifically, the expected lifetime of a sensor covering an interval
[a, b], that is located within a subinterval Ua,b(c) = [ b+a

2 − c, b+a
2 + c] ⊆ [a, b] for

some c ∈ [0, b−a
2 ], is given by

E[Ta,b(X ; c)] =
1

2c

∫ b+a
2 +c

b+a
2 −c

dx

max(x− a, b− x)
=

1

c
ln

(
1 +

2c

b− a

)
. (3)

Since the maximum lifetime is 2/(b − a), the expected normalized lifetime is

E[T̂a,b(X ; c)] = b−a
c ln
(
1 + 2c

b−a

)
, and the normalized variance is:

V ar(T̂a,b(X ; c)) = 4

[
1− 1

1 + b−a
2c

−
(
b− a

2c
· ln
(
1 +

2c

b− a

))2
]
. (4)

Within the framework of using RoundRobin on subintervals [a, b], but selecting
only those sensors that are closest to the midpoints of those intervals, an algo-
rithm emerges naturally: partition U into subintervals, but employ RoundRobin

only on those sensors that are close to the midpoint of each subinterval. To make
efficient use of each sensor, we construct a hierarchical series of such partitions.
We call this algorithm log2-RoundRobin, and it is indexed by a depth parameter
k, which indicates the number of partitions it employs.

Formally, for a fixed positive integer k, we partition U into 2k+1 subintervals
Uk(i) = [ i

2k −
1

2k+1 ,
i
2k + 1

2k+1 ] ∩ U for i = 0, 1, ..., 2k. 2 If sensor x ∈ Uk(i),

then x is responsible for covering the interval around i/2k with radius gcd(i,2k)
2k .

For example, any sensor that lies within 2−k−1 of 1
2 is assigned to cover all

of U . Similarly, sensors within 2−k−1 of either 1
4 or 3

4 are assigned to cover the
subintervals [0, 1

2 ] and [ 12 , 1], respectively. A graphical depiction of the normalized
sensor network lifetime as a function of location in shown in Figure 4.

For j = 1, ..., k, we define Γk(j) to the be the set of intervals that comprise
the jth level of the algorithm. Formally, we denote

Γk(j) =

⎧⎨
⎩

2k−1⋃
i=1

Uk(i) : log2 (gcd(i, 2
k)) = k − j

⎫⎬
⎭ .

2 Note that the first and last intervals, Uk(0) = [0, 2−k−1] and Uk(2
k) = [1−2−k−1, 1],

respectively, are only half as wide as the others, all of which have width 2−k.
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Fig. 4. Normalized Sensor Network Lifetime for k = 1, 2, 3, 4 using the log2-RoundRobin
algorithm. Each color represents the lifetime of the sensors in Γk(j). Note that while
the actual lifetime of a sensor in Γk(j) may reach 2j , it must run in parallel with 2j−1

partners, so the normalized lifetime of the group is at most 2. The expected average
lifetime of the network approaches 1.737752 as k → ∞.

Note that Γk(j) consists of 2j−1 disjoint intervals, each of width 2−k.3 Thus
Γk(j) occupies 2j−k−1 of U . We can compute the expected normalized lifetime
for Γk(j) using Equation 3

E[T̂k(j)] = E[T̂0,2−j+1(X ; 2−k−1)] = 2k−j+2 ln
(
1 + 2j−k−1

)
,

and the variance using Equation 4:

V ar(T̂k(j)) = 4

[
1− 1

1 + 2k−j+1
−
(
2k−j+1 · ln

(
1 + 2j−k−1

))2]
.

Summing over the Γk(j)’s to find the total expected normalized lifetime, we
obtain

E[T̂k] =

k∑
j=1

E[T̂k(j)]

2k−j+1
= 2 ln

k∏
j=1

(
1 + 2j−k−1

)
= 2 ln

k∏
�=1

(
1 + 2−�

)
. (5)

3 We let Γk(0) be the set of sensors assigned to Uk(0) or Uk(2
k), and have those cover

their respective half-intervals. Their contribution to the network lifetime becomes
negligible as k → ∞, so we omit it from our calculations.
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The analogous infinite product is a q-series [13], denoted here by
(
−1; 12

)
∞, for

which we can compute an approximate limiting value. This leads directly to the
expected average lifetime:

μ∗
T � E[T̂ ] = lim

k→∞
E[T̂k] = 2 ln

( ∞∏
�=1

1 + 2−�

)
≈ 1.737752 .

The mean normalized variance satisfies

E[V ar(T̂k)] =
k∑

j=1

V ar(T̂k(j))

2k−j+1
= 4

[
k∑

�=1

1

1 + 2�
− 2� · ln2

(
1 + 2−�

)]
,

which has the approximate limit of 0.02202547 as k → ∞. Computation of the
total variance is omitted, but it will converge to the above as k →∞.

Furthermore, it is clear from Figure 4 that the worst-case lifetime occurs when
a sensor in Γk(k) lies near one of the endpoints of the interval on which it is
active. The normalized lifetime at this point is 4/3, a constant. This provides
the same worst-case performance as RoundRobin.

Load Balancing, Revisited. In log2-RoundRobin, each set Γk(j) for j = 1, ..., k
maintains 2j−1 parallel queues. Proper functioning of our algorithm requires
balanced loads across these queues, but the hierarchical structure of log2-
RoundRobin alleviates the load balancing issue if the Γk(j)’s are pushed onto
a central stack in ascending order of j. To see this, suppse that the left half of
Γk(2) runs out, while the right half is still going. U remains covered if the left
half of Γk(3) starts running alongside the right half of Γk(2). In this manner load
imbalances are averaged out over the k levels of the algorithm.

Nevertheless, a Chernoff bound analogous to the one used above for
k-RoundRobin will show that for k < lnn, with high probability Ni will deviate
from its mean of n

2k
by O(

√
n lnn). Setting n1 = 2k ·min1≤i≤2k−1 Ni yields

E[T̄actual] ≥
n1

n
· μ∗

T +
n2

n
· 0→ μ∗

T , as n→∞ .4

Theorem 2. The log2-RoundRobin algorithm is at best a 2
3 -approximation of

TOPT , but for sufficiently large n, achieves an average-case 0.869-approximation
ratio with high probability.

3.4 Optimizations

Still, it is clear from Figure 4 that efficiency is highest in Γk(1) and lowest in
Γk(k). We can show that in fact, the relative efficiency of Γk(k) is the constant

4 The inequality is justified by the preceding argument that in practice, the actual
load balancing will work at least this well.
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2 ln 3
2 ≈ 0.81. On the other hand, it is easy to see that the relative efficiency of

Γk(1) approaches 1 as k →∞. Therefore, we can improve the efficiency of log2-
RoundRobin by shrinking the intervals over which Γk(k) is active. Note that since
every Γk(j) for j = 1, ..., k−1 borders Γk(k) on both sides, we maintain balanced
loads across each Γk(j) even as we shrink the width of Γk(k). Let ε(k) ∈ [0, 1] be
a parameter measuring the inward shift of the boundaries of Γk(k). Then using
Equation 3, the expected normalized lifetime becomes

E[T̂k(j, ε)] = E

[
T̂0,2−j+1

(
X ;

1 + ε

2k+1

)]
=

2k−j+2

1 + ε
ln
(
1 + (1 + ε)2j−k−1

)
for j = 1, ..., k − 1, and

E[T̂k(k, ε)] = E

[
T̂0,2−k+1

(
X ;

1− ε

2k+1

)]
=

4

1− ε
ln

(
3− ε

2

)
.

Taking the weighted average again, we have a generalization of Equation 5 that
can be expressed as another q-series:

E[T̂k(k, ε)] = 2 ln

(
3− ε

2

) ∞∏
i=2

1 + (1 + ε)2−i = 2 ln
(3 − ε)

(
−(1 + ε); 1

2

)
∞

(ε+ 3)(ε+ 2)
.

We can find the optimal ε(k) using elementary calculus, but unfortunately a
general solution requires factoring a polynomial of degree k − 1:

T ′
k(ε) = 0⇒ 1

3− ε
=

k−1∑
j=1

1

2j+1 + 1 + ε
. (6)

However, since T ′
k(0) > 0 for k > 3, and T ′

k(1) < 0 for k > 0, the derivative has
a root between 0 and 1 for k > 3 by the Intermediate Value Theorem. Moreover
the Second Derivative Test confirms that for k > 1, each of these roots is a local
maximum.

Numerical approximations of some relevant roots of this polynomial are shown
in Table 2, alongside the expected network lifetime of the optimized algorithm.
Our optimizations improve the expected average network lifetime by more than
3% above that of log2-RoundRobin.

Theorem 3. For sufficiently large n, the optimized log2-RoundRobin algorithm
achieves an average-case approximation ratio of 0.895 with high probability.

Convergence. The Ratio Test, combined with L’Hôpital’s Rule, will show that
both series Tk(ε) and T ′

k(ε) converge as k → ∞ for any fixed ε ∈ [0, 1]. As we
have not found a closed functional form for either limit, we cannot prove that
the optimal ε converges to a limit.
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Table 2. Numerical Approximations for Optimal Choice of ε. Note that T20(0) equals
T∞(0) = μ∗

T to six digits. The rightmost column shows the percentage of U that is
covered by Γk(k; ε).

k ε Tk(0) Tk(ε) Gain % |Uk(k; ε)|%
2 0 1.492783 1.492783 0 50.00
3 0 1.614033 1.614033 0 50.00
4 0.211103 1.675576 1.696157 1.23 39.44
5 0.371297 1.706584 1.743439 2.16 31.44
6 0.448178 1.722149 1.767123 2.61 27.59
7 0.485871 1.729946 1.778990 2.84 25.71
8 0.504537 1.733848 1.784931 2.95 24.77
10 0.518459 1.736777 1.789391 3.03 24.08
12 0.521929 1.737509 1.790506 3.05 23.90
15 0.522941 1.737723 1.790831 3.06 23.85
20 0.523081 1.737752 1.790876 3.06 23.85

4 Open Problems

One obvious variation on this problem is to change the battery drainage rate. If
α > 1 then larger coverage regions become more expensive, so that, for example,
the performance of Γ1 would decline. Secondly, the average-case analysis could
be studied for any probability distribution with finite support.

Another avenue for exploration would be to extend the analysis to higher
dimensions, including one in which the sensors are not necessarily located on
the line, but rather in the plane, and one in which the sensors remain on the
line, but the coverage region extends into the plane.

Lastly, while we allow for pre-emptive scheduling in our definition, we did not
actually use it in the case of random deployment. We hope to tackle some of
these questions in future research.
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Appendix

Pinned Disks. For a fixed time t, let Y = {x1, ..., xm} ⊆ X be the locations of
active sensors, so that ri > 0 for all 1 ≤ i ≤ m. The unique radial assignment
function R∗(Y ) corresponding to pinned disks is then given recursively by

(R∗(Y ))i = ri =

{
x1 if i = 1

xi − (xi−1 + ri−1) if 2 ≤ i ≤ m
.

Setting xm + rm = 1 to ensure a perfect fit yields

1 = 2

m∑
j=1

(−1)m−jxj .

We then define the polynomial f(Y ) = − 1
2 +
∑m

j=1(−1)m−jxj , and use it in the
proof of Lemma 2.

Proof. (of Proposition 2) ⇒ From our previous argument, a radial assignment
that gives perfect coverage necessarily consists of pinned disks that satisfy
f(Y ) = 0.
⇐ Suppose that there exists Y ⊆ X satisfying f(Y ) = 0. Then R∗(Y ) gives

perfect coverage.

RoundRobin. We present the proof of the lower appoximation bound for RoundRobin
given in Lemma 1.

http://mathworld.wolfram.com/q-Series.html
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Proof. (of Lemma 1) To prove the lower bound, let β ∈ (0, 1
4 ) be a parameter

to be determined later. Let A = [0, β], B = [β, 1 − β], and C = [1 − β, 1] be a
division of I into three closed intervals. Let t(1,0,0) denote any block of time in
OPT in which sensors from A are active (i.e. - have non-zero radius), but no
sensors from B or C are active. Note that in t(1,0,0) (respectively t(0,0,1)), exactly
one sensor is active in A (resp. C). Thus, for any such time block, RoundRobin
gives the same solution as OPT. Furthermore, any non-empty time interval in
OPT in which only one sensor is active gives the same solution as RoundRobin.

It remains to consider the following situations:

– t(0,1,0): The worst position for the sensors are at β and 1−β, where the radii
must be set to at least 1 − β. So the total network lifetime of RoundRobin
in this situation is T ≥ n

1−β . Since the maximum network lifetime is 2n, we

know that RoundRobin is at least a 1
2(1−β) -approximation in this case.

– t(1,1,0) ∼ t(0,1,1): The worst case here is to have n
2 pairs of sensors at 0

and β, which then must be assigned radii of 1 and 1−β, respectively, under
RoundRobin. The lifetime of RoundRobin is thus at least T ≥ n

2 ·1+
n
2 ·

1
1−β =

2−β
2(1−β)n. The approximation ratio of RoundRobin is thus at least 2−β

4(1−β) .

– t(1,0,1): With no sensors active in B, the worst case scenario for RoundRobin
is a lifetime of n, with all n sensors at either 0 or 1. However, note that since
β < 1

4 , OPT cannot achieve a lifetime of 2n under these conditions. [Note
in light of Corollary 1, that no subset Y ⊆ X satisfies fk(Y ) = 0.] In fact,
the maximum network lifetime for OPT occurs when there are n

2 pairs of
sensors at β and 1 − β, each with radii set to 1

2 − β. Thus, the lifetime of
OPT is at most n

2 ·
1

1
2−β

= n
1−2β . The approximation ratio of RoundRobin is

thus at least 1− 2β.
– t(1,1,1): Here the worst case is to have n

3 sensors at β or 1 − β, and corre-
sponding pairs at 0 and 1. The lifetime of RoundRobin under this scenario
is T ≥ n

3 ·
1

1−β + 2n
3 · 1 = 3−2β

3(1−β)n. The approximation ratio of RoundRobin

is then at least 3−2β
6(1−β) .

Thus, for any possible arrangement of active sensors, the approximation ratio of
RoundRobin is at least

ρ(β) ≥ min

{
1,

1

2(1− β)
,

2− β

4(1− β)
, 1− 2β,

3− 2β

6(1− β)

}

Since 1 ≥ 1
2(1−β) ≥

2−β
4(1−β) ≥

3−2β
6(1−β) for any 0 < β < 1

4 , the optimal choice of β

occurs when 1− 2β = 3−2β
6(1−β) ⇒ β = 4−√

7
6 ≈ 0.226. The minimum value of ρ is

thus
√
7−1
3 ≈ 0.54857.
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Abstract. Consider the two related problems of sensor selection and
sensor fusion. In the first, given a set of sensors, one wishes to identify a
subset of the sensors, which while small in size, captures the essence of
the data gathered by the sensors. In the second, one wishes to construct
a fused sensor, which utilizes the data from the sensors (possibly after
discarding dependent ones) in order to create a single sensor which is
more reliable than each of the individual ones.

In this work, we rigorously define the dependence among sensors in
terms of joint empirical measures and incremental parsing. We show
that these measures adhere to a polymatroid structure, which in turn
facilitates the application of efficient algorithms for sensor selection. We
suggest both a random and a greedy algorithm for sensor selection. Given
an independent set, we then turn to the fusion problem, and suggest a
novel variant of the exponential weighting algorithm. In the suggested
algorithm, one competes against an augmented set of sensors, which
allows it to converge to the best fused sensor in a family of sensors,
without having any prior data on the sensors’ performance.

1 Introduction

Sensor networks are used to gather and analyze data in a variety of applications.
In this model, numerous sensors are either spread in a wide area, or simply mea-
sure different aspects of a certain phenomenon. The goal of a central processor
which gathers the data is, in general, to infer about the environment the sensors
measure and make various decisions. An example to be kept in mind can be a set
of sensors monitoring various networking aspects in an organization (incoming
and outgoing traffic, addresses, remote procedure calls, http requests to servers
and such). In many cases, an anomalous behavior detected by a single sensor may
not be reliable enough to announce the system is under attack. Moreover, differ-
ent sensors might have correlated data, as they measure related phenomenons.
Hence, the central processor faces two problems. First, how to identify the set of
sensors which sense independent data, and discard the rest, which only clutter
the decision process. The second, how to intelligently combine the data from the
sensors it selected in order to decide whether to raise an alarm or not.

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 42–56, 2012.
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In this work, we target both problems. First, we consider the problem of
sensor selection. Clearly, as data aggregated by different sensors may be highly
dependent, due to, for example, co-location or other similarities in the envi-
ronment, it is desirable to identify the largest set of independent (or nearly
independent) sensors. This way, sensor fusion algorithms can be much more ef-
ficient. For example, in the fusion algorithm we present, identifying the set of
independent sensors allows us to create families of fused sensors based on fewer
sensors, hence having a significantly smaller parameter space. Moreover, iden-
tifying independent sensors is of benefit also to various control methods, were
a few representative independent inputs facilitate easier analysis. Note that the
sensor selection problem is different from the data compression problem, where
the independence among the data sets is reduced via some kind of Slepian-Wolf
coding [17]. Herein, we do not wish all data to be reconstructed at the center,
but focus only identify good sets of independent sensors, such that their data
can be sent and analyzed, disregarding other sensors. Note that, in this context,
we do not wish to replace Slepian-Wolf coding by sending data of independent
sensors, only identify the independent subsets. For example, the randomized al-
gorithm we suggest gathers data only from small subsets of the sensors, yet is
assured to identify independent sets with high probability. A greed algorithm we
suggest can identify subset of sensors with relatively high independence among
them (compared to other subsets), even in cases we do not wish to identify a
subset containing all the information.

Given two data sets, a favored method to measure their dependence is through
various mutual information estimates. Such estimates arise from calculating
marginal and joint empirical entropies, or the more efficient method of incre-
mental (Lempel-Ziv) parsing [22]. Indeed, LZ parsing was used, for example,
for multidimensional data analysis [23], neural computation [2] and numerous
other applications. However, although the ability of the parsing rule to approx-
imate the true entropy of the source, and hence, as one possible consequence,
identify dependencies in the data, applications reported in the current literature
were ad-hoc, using the resulting measures to compare between mainly pairs of
sources.

To date, there is no rigorous method to analyze independence among large
sets, and handle cases where one sensor’s data may depend on measurements
from many others, including various delays. In this work, we give the mathe-
matical framework which enables us to both rigorously define the problem of
identifying sets of independent sources in a large set of sensors and give highly
efficient approximations algorithms based on the observations we gain.

Still, when no single sensor is reliable enough to give an accurate estimate of
the phenomenon it measures, sensor fusion is used [5,14,19]. In the second part
of this work, we consider the problem of sensor fusion. In this case, for a given
set of sensors, one wishes to generate a new sensor, whose performance over time
is (under some measure) better than any single sensor in the set. Note, however,
that in most cases, choosing the best-performing sensor in the set might not be
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enough. We wish, in general, to create a sensor whose performance is strictly
better than any given sensor in the original set, by utilizing data from several
sensors simultaneously and intelligently combining it.

Contribution. Our main contributions are the following. First, we show how
to harness the wide variety of algorithms for identifying largest independent sets
in matroids, or the very related problems of minimum cycle bases and spanning
trees in graphs to our problem of identifying sets of independent sensors in a
sensor network. Our approach is based on highly efficient (linear time in the size
of the data) methods to estimate the dependence among the sensors, such as
the Lempel-Ziv parsing rule [22]. The key step is in showing how these estimates
can either yield a polymatroid, or at least approximate a one, facilitating the
use of polynomial time algorithms to identify the independent sets, such as [7,1].
We construct both random and a greedy selection algorithms, and analyze their
performance.

We then turn to the problem of (non-correlated) sensor fusion. In particu-
lar, we describe an online fusion algorithm based on exponential weighting [18].
While weighted majority algorithms were used in the context of sensor networks
[6,21,12], in these works, the exponential weighting was used only to identify
good sensors and order them by performance. Hence, applied directly, this algo-
rithm does not yield a good fused sensor. In this part of our work, we suggest a
novel extension by creating parametric families of synthesised sensors. This way,
we are able to span a huge set of fused sensors, and choose online the best fused
sensor. That is, given a set of sensors S, this algorithm constructs synthesised
sensors, from which it selects a sensor whose performance converges to that of
the best sensor in both S and the constructed parametric family of synthesised
sensors. Hence, the algorithm results in online sensor fusion.

We rigorously quantify the regret of the suggested algorithm compared to the
best fused sensor. In this way, a designer of a sensor fusion algorithm has a well-
quantified trade-off: choosing a large number of parameters, thus covering more
families of fusion possibilities, at the price of higher regret.

Due to space limitations, proofs are not included in this proceedings.

2 Preliminaries

The basic setting we consider is the following. A set of sensors, S = {S1, . . . , SK}
is measuring a set of values in a certain environment. Each sensor may depend on
a different set of values, and may base its decision on these values in a different
way. However, each sensor, at each time instance, estimates whether a target
exists in the environment or not. Thus, the input to sensor Sj at time t is some

vector of measurements V j
t , based on which it will output a value pjt ∈ [0, 1],

which is his estimate for the probability a target exists at time t. Throughout,
capital letters denote random variables while lower case denotes realizations.
Hence, P j

t denotes the possibly random output of sensor Sj , j = 1, 2, . . . ,K at
time t, t = 1, 2, . . . , n.
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Let {xt}nt=1 be the binary sequence indicating whether a target actually ap-
peared at time t or not. The normalized cumulative loss of the sensor Sj over

n time instances is defined as LSj (x
n
1 ) = 1

n

∑n
t=1 d(p

j
t , xt), for some distance

function d : [0, 1] × {0, 1} �→ R. If the sensor’s output is binary (a sensor ei-
ther decides a target exists or not), then pjt ∈ {0, 1} and a reasonable distance
measure is the Hamming distance, that is, d(a, b) = 0 if a = b and 1 oth-
erwise. If the sensor’s output is in [0, 1], then we think of it as the sensor’s
estimate for the probability a target exists, and a reasonable d is the log-loss,
d(p, x) = −x log(p)− (1− x) log(1− p). In any case, the goal of a good sensor S
is to minimize the normalized cumulative loss LS(x

n
1 ).

Polymatroids, Matroids and Entropic Vectors. Let K be an index set
of size K and N be the power set of K. A function g : N �→ R defines a
polymatroid (K, g) with a ground set K and rank function g if it satisfies the
following conditions [11]:

g(∅) = 0, (1)

g(I) ≤ g(J) for I ⊆ J ⊆ K, (2)

g(I) + g(J) ≥ g(I ∪ J) + g(I ∩ J) for I, J ⊆ K. (3)

For a polymatroid g with ground set K, we represent g by the vector (g(I) : I ⊆
K) ∈ R

2K−1 defined on the ordered, non-empty subsets of K. We denote the set
of all polymatroids with a ground set of size K by ΓK . Thus w ∈ ΓK if and only
if w(I) and w(J) satisfy equations (1)–(3) for all I, J ⊆ K, where w(I) is the
value of w at the entry corresponding to the subset I. If, in addition to (1)–(3),
g(·) ∈ Z

+ and g(I) ≤ |I|, then (K, g) is called a matroid.
Now, assume K is some set of discrete random variables. For any A ⊆ K, let

H(A) denote the joint entropy function. An entropy vector w is a (2K − 1)-
dimensional vector whose entries are the joint entropies of all non-empty subsets
of K. It is well-known that the entropy function is a polymatroid over this ground
setK. Indeed, (1)–(3) are equivalent to the Shannon information inequalities [20].
However, there exists points w ∈ ΓK (K > 3) for which there is no set of K
discrete random variables whose joint entropies equal w. We denote by Γ ∗

K the
set of all w ∈ ΓK for which there exists at least one random vector whose joint
entropies equalw. A w ∈ Γ ∗

K is called entropic. Finally, denote by Γ̄ ∗
K the convex

closure of Γ ∗
K . Then Γ̄ ∗

K = ΓK for K ≤ 3 but Γ̄ ∗
K �= ΓK for K > 3 [20].

3 A Matroid-Based Framework for Identifying
Non-correlated Sensors

In this section, we use the incremental parsing rule of Lempel and Ziv [22] to
estimate the joint empirical entropies of the sensors’ data. We then show that
when the sensors data is stationary and ergodic, the vector of joint empirical
entropies can be approximated some point in the polyhedral cone ΓK . In fact,
this point is actually in Γ̄ ∗

K . As asymptotically entropic polymatroids are well
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approximated by asymptotically entropic matroids [13, Theorem 5], the point in
R

n which corresponds to the joint empirical entropies of the sensors is approxi-
mated by the ranks of some matroid. This enables us to identify independent sets
of sensors, and, in particular, largest independent sets, by identifying the bases
(or circuits) of the matroid. Doing this, the most complex dependence struc-
tures among sensors, including both dependence between past/future data and
dependence among values at the same time instant can be identified. Non-linear
dependencies are also captured.

We now show how to approximate an entropy vector (hence, a polymatroid)
for the sensor data. We prove that indeed for large enough data and ergodic
sources the approximation error is arbitrarily small. This polymatroid will be
the input from which we will identify the independent sensors.

We first consider the most simple case in which one treats the sensors as
having memoryless data. That is, sensors for which each reading (in time) is
independent of the previous or future readings. Note, however, that this model
still allows the reading of a sensor to depend on the readings of other sensors at
that time instant. The dependence might be a simple (maybe linear) dependence
between two sensors, or a more complex one, where one sensor’s output is a
random function of the outputs of a few others. It is important to note that it is
inconsequential if the sensors are indeed memoryless or not. Using this simplified
method, only dependencies across a single time instant will be identified.

For the sake of simplicity, assume now all P j
t are binary. Given a sequence

{pi}ni=1, denote by N(0|{pi}ni=1) and N(1|{pi}ni=1) the number of zeros and ones
in {pi}ni=1, respectively. That is, N(0|{pi}ni=1) =

∑n
i=1 1{pi=0}, where 1{·} is the

indicator function. When the sequence indices are clear from the context, we will
abbreviate this by N(0|p). Hence, T n

p =
(
1
nN(0|p), 1

nN(1|p)
)
denotes the type of

the sequence p, that is, its empirical frequencies [4].
In a similar manner, we define the empirical frequencies of several sequences

together, e.g. pairs. For example, N
(
0, 1|p1, p2

)
=
∑n

i=1 1{p1
i=0,p2

i=1}. In this

case, the 4-tuple

T n
p1,p2 =

(
1

n
N
(
0, 0|p1, p2

)
,
1

n
N
(
0, 1|p1, p2

)
,
1

n
N
(
1, 0|p1, p2

)
,
1

n
N
(
1, 1|p1, p2

))

denotes the joint type of p1, p2, hence, it includes the empirical frequencies of the
two sequences together, over their product alphabet {0, 1}×{0, 1}. For more than
two sequences, we denote by T n

p1,...,pS the joint type of the sequences pj , j ∈ S.
For a probability vector q = (q1, . . . , qm), let H(q) denote its entropy, that

is, H(q) = −
∑m

i=1 qi log(qi). Let wn be the (2K − 1)-dimensional vector whose

entries are all the joint empirical entropies calculated from {(pjt)j∈S}nt=1. I.e,

wn =
(
H(T n

p1), . . . , H(T n
pK ), H(T n

p1,p2), H(T n
p1,p3), . . . , H(T n

p1,...,pK )
)

Under these definitions, we have the following.
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Proposition 1. For every realization of the sensors’ data, wn ∈ Γ ∗
K .

Let w denote the true (memoryless) entropy vector of the sources. That is,

w =
(
H(P 1

1 ), . . . , H(PK
1 ), H(P 1

1 , P
2
1 ), H(P 1

1 , P
3
1 ), . . . , H(P 1

1 , . . . , P
K
1 )
)
.

For stationary and ergodic sources, the following Proposition is a direct
application of Birkhoff’s ergodic theorem.

Proposition 2. Let {(pjt )j∈S}nt=1 be drawn from a stationary and ergodic source

{(P j
t )j∈S}∞t=1 with some probability measure Q. Then, for any subset S ′ ⊆ S, we

have limn→∞ H(T n
pj,j∈S′) = H

(
(P j

1 )j∈S′
)

Q-a.s. (almost surely). As a result,

Pr (limn→∞ wn = w) = 1.

That is, the entropy calculated from the empirical distribution converges to the
true entropy. Moreover, the vector of empirical entropies converges almost-surely
(a.s.) to the true entropy vector, which is, of course, an entropic polymatroid.
To be able to harness the diverse algorithmic literature on matroids (such as
matroid optimization relevant for our independence analysis application), we
mention that by [13, Theorem 5], describing the cone of asymptotically entropic
polymatroids, Γ̄ ∗

K , is reduced to the problem of describing asymptotically en-
tropic matroids.

Dependence Measures for Sensors with Memory. Till now, we considered
sensors for which the data for any individual sensor is a stationary and ergodic
process, yet, through first-order empirical entropies, only the dependence along a
single time instant was estimated. While being very easy to implement (linear in
the size of the data), this method fails to capture complex dependence structures.
For example, consider a sensor whose current data depends heavily on previous
data acquired by one or several other sensors.

To capture dependence in time, we offer the incremental parsing rule [22]
as a basis for an empirical measure. We show that indeed such a measure will
converge almost surely to a polymatroid, from which maximal independent sets
can be approximated. We start with a few definitions.

Let {pi}ni=1 be some sequence over a finite alphabet of size α. The ZL78 [22]
parsing rule is a sequential procedure which parses the sequence p in a way where
a new phrase is created as soon as the still unparsed part of the string differs
from all preceding phrases. For example, the string 0100011011000001010011 . . .
is parsed as 0, 1, 00, 01, 10, 11, 000, 001, 010, 011, . . .. Let c({pi}ni=1) denote the
number of distinct phrases whose concatenation generates {pi}ni=1. Furthermore,
let ρE(s)({pi}ni=1) denote the compression ratio achieved by the best finite-state
encoder with at most s state, and define

ρ(p) = lim
s→∞ lim sup

n→∞
ρE(s)({pi}ni=1).

In a nutshell, the main results of [22] states that

HLZ({p1i }ni=1) =
c({p1i }ni=1) log c({p1i }ni=1)

nα
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is an asymptotically attainable lower bound on the compression ratio ρ(p). De-
note by H̄(P ) the entropy rate of a stationary source P , that is,
limn→∞ 1

nH(P1, . . . , Pn). For K sources P 1, . . . , PK , the entropy rate vector w̄
is defined as

w̄ =
(
H̄(P 1), . . . , H̄(PK), H̄(P 1, P 2), H̄(P 1, P 3), . . . , H̄(P 1, . . . , PK)

)
.

It is not hard to show that w̄ ∈ Γ̄ ∗
K .

Analogously to the memoryless case, herein we also define the joint parsing
rule in the trivial way, that is, parsing any subset of 1 < k ≤ K sequences
as a single sequence over the product alphabet. Define the LZ-based estimated
entropy vector wLZ

n as (suppressing the dependence on n)

wLZ
n =

(
HLZ(p1), . . . , HLZ(pK), HLZ(p1, p2), . . . , HLZ(p1, . . . , pK)

)
.

The following is the analogue of Proposition 2 for the non-memoryless case.

Proposition 3. Let {(pjt )j∈S}nt=1 be drawn from a stationary and ergodic source

{(P j
t )j∈S}∞t=1. Then, Pr

(
limn→∞ wLZ

n = w̄
)
= 1.

To see that w̄ ∈ Γ̄ ∗
K , remember that H({P j

i }ni=1, j ∈ I), ranging over all subsets

I ⊆ S forms an entropic polymatroid [20]. Hence 1
nH({P j

i }ni=1, j ∈ I) forms
an asymptotically entropic polymatroid (as the closure of the entropic region is
convex), hence w̄ ∈ Γ̄ ∗

K .
Note, however, that the analogue of Proposition 1 is not true in this case. That

is, for finite n,wLZ
n might not satisfy the polymatroid axioms at all. Nevertheless,

by Proposition 3, for large enough n, wLZ
n is sufficiently close to Γ̄ ∗

K . A fortiori,
it is sufficiently close to ΓK . Moreover, for ergodic sources with finite memory,
namely, sources for which

Pr(Pn = an|Pn−1 = an−1, Pn−2 = an−2, . . .)

= Pr(Pn = an|Pn−1 = an−1, . . . , Pn−m = an−m)

for some finite m, there exist a few strong tail bounds on the probability that the
LZ compression ratio exceeds a certain threshold. For example, if ‖w‖0 denotes
the maximal entry in w, we have the following proposition.

Proposition 4. Let {(pjt )j∈S}nt=1 be drawn from a stationary and ergodic

Markov source {(P j
t )j∈S}∞t=1. Then, with probability at least 1 − O(2

K−1√
n

),

‖wLZ
n − w̄‖0 ≤

H̄(P j ,j∈S)
logn .

The usefulness of Proposition 4 is twofold. First, it gives a practical bound on the
approximation the vectorwLZ

n gives to w̄. However, assume w̄ is a matroid. This
is the case, for example, when bits in the sensors’ data are either independent or
completely dependent (in fact, in this case w̄ is a linearly representable binary
matroid). Since wLZ

n might not satisfy the polymatroid axioms at all, using
Proposition 4 one can then easily check when can the entries of wLZ

n be rounded
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to the nearest integer in order to achieve w̄ exactly. Finally, note that if the
number of sensors is small, and the complexity of calculating all entries of wLZ

n

is not an issue, then the problem caused by wLZ
n not satisfying the polymatroid

axioms is a non-issue as well - to find a subset with high enough entropy (strong
independence) simply take the smallest set of sensors with high enough c log c

nα .

Identifying Independent Sensors. Having set the ground, it is now possi-
ble to utilize optimization algorithms for submodular functions, and matroids
in particular, in order to find maximal independent sets of sensors. Herein, we
include two examples: a random selection algorithm, which fits cases where true
data forms a matroid, for which possibly many subsets of sensors include the
desired data, and a greedy algorithm, which easily fits any dependence structure
(while matroids asymptotically span the entropic cone, an additional approx-
imation step is required [13]). It is important to note that, unlike the greedy
selection (also used in [16] in the context of maximum a posteriori estimates)
which approximates the optimum value up to a constant factor, the random
selection process we suggest here can guarantee exact approximation.

Algorithm RandomSelection
% Input: A set of S sensors. A parameter 0 ≤ q ≤ 1.
% Output: A subset I ⊆ S, of expected size qK, which with high probability contains
a maximal independent set of S (see conditions in Corollary 1).

– Include a sensor j in subset I with probability q, independently of the other sensors.

The randomized algorithm is given in Algorithm RandomSelection. As simple
as it looks, by [7, Theorem 5.2] and Proposition 4, under mild assumptions on
the true distribution of the data, it guarantees that indeed with high probability
such a random selection produces a subset of sensors which is a q-fraction of the
original, yet if the original contains enough bases (maximal independent sets),
then the subset contains a base as well. This is summarized in the following
corollary.

Corollary 1. Let {(pjt)j∈S}nt=1 be drawn from a stationary and ergodic Markov
source. Assume that w̄ is a matroid of rank r which contains a+2+ 1

q ln r disjoint

bases. Then, with probability at least 1− e−aq −O(2
K−1√

n
), the subset I produced

by Algorithm RandomSelection contains a maximal independent set of sensors.

At first sight, Algorithm RandomSelection does not depend on any of the
discussed dependence measures in this paper. Yet, it power is drawn from them:
once we have established the estimated entropy vector as the key variable in
determining dependence, we know that this asymptotic matroid is the one we
should analyze for independent sets, according to its features we should choose
the parameters in RandomSelection and these features will indeed eventually
determine the success probability of RandomSelection.
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Algorithm GreedySelection
% Input: Data of K sensors, {p1t , . . . , pKt }nt=1.
% Output: At each time instant, a set I of sensors.

– Initialization: I = φ, Ĥ = 0.

1. j∗ = argmaxj /∈Iw
LZ
n (I ∪ {j})

2. if wLZ
n (I ∪ {j∗}) > Ĥ

– I ← I ∪ {j∗}, then Ĥ ← wLZ
n (I)

– Go to step 1.

On the other hand, algorithm GreedySelection takes a different course of action,
to answer a slightly different question: how to choose a small set of sensors with
a relatively hight entropy (hence, independence)? How bad can one subset of
sensors be compared to another of the same size? What is a good method to
choose the better one? The algorithm sequentially increases the size of the sensors
set I until its entropy estimate wLZ

n (I) does not grow. In a similar manner, one
can choose empirical entropies. Due to the polymatroid properties we proved, a
bound on the performance compared to the optimum can be given. In practice, it
might be beneficial to stop the algorithm if the entropy estimate does not grow
above a certain threshold, to avoid steps which may include only a marginal
improvement. In fact, this is exactly where the polymatroid properties we proved
earlier in the section kick in, and we have the following (proof is omitted due to
space limitation).

Proposition 5. Assume Algorithm GreedySelection is stopped after the first
time wLZ

n (I) was incremented by less than some ε > 0. Then, for stationary
and ergodic sources, the difference between the entropy of the currently selected
subset of sensors and the entropy that could have been reached if the algorithm
concluded is upper bounded by Kε+ o(1).

The LZ parsing rule on an alphabet of size α can be implemented in O(n logα)
time (using an adequate tree and a binary enumeration of the alphabet). Hence,
the complexity of GreedySelection is O(nK3). [10] analyzed the performance of
greedy schemes for submodular functions. As noted in [16] also for such algo-
rithms, they achieve a factor of 1− 1

e of the optimum.

4 A Sensor Fusion Algorithm via Exponential Weighting

In this section, we present an online algorithm for sensor fusion. In [18], Vovk
considered a general set of experts and introduced the exponential weighting
algorithm. In this algorithm, each expert is assigned a weight according to its
past performance. By decreasing the weight of poorly performing experts, hence
preferring the ones proved to perform well thus far, one is able to compete with
the best expert, having neither any a priori knowledge on the input sequence
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nor which expert will perform the best. This result was further extended in [8],
where various aspects of a “weighted majority” algorithm were discussed. It is
important to note that the exponential weighting algorithm assumes nothing on
the set of experts, neither their distribution in the space of all possible experts
nor their structure. Consequently, all the results are of the “worst case” type.

Given a set of sensors S, our goal, however, is to construct a new sensor, Ŝ,
whose output depends on the outputs of the given sensors, yet its performance
is better than the best sensor in the set S. We call Ŝ a synthesised (fused) sen-
sor. Clearly, when the true target appearance sequence xn

1 is known in advance,
suggesting such a sensor is trivial. However, we are interested in an online algo-
rithm, which receives the sensors’ outputs at each time instant t, together with
their performance in the past (calculated by having access to xt′ for t′ < t or
estimating it), and computes a synthesised output. We expect the sequence of
synthesised outputs given by the algorithm at times t = 1, . . . , n to have a lower
cumulative loss than the best sensor in S, for any possible sequence xn

1 and any
set of sensors S.

Towards this goal, we will define a parametric set of synthesised sensors. Once
such a set is constructed, say SΘ for some set of parameters Θ (|Θ| possible new
sensors), we will use the online algorithm to compete with the best sensor in
S ∪ SΘ. Clearly, a good choice for SΘ is such that on the one hand |S ∪ SΘ|
is not too large, yet on the other hand SΘ includes “enough” good synthesised
sensors, so the best sensor in S ∪ SΘ will indeed perform well.

Example 1. An example to be kept in mind is a case where the set of sensors,
S1, . . . , SK , has the property such that all under-estimate the probability that a
target exists (for example, since each sensor measures a different aspect of the
target, which might not be visible each time the target appears). In this case,
a sensor Ŝ whose output at time t is maxj{pjt , 1 ≤ j ≤ K} will have a much
smaller cumulative loss LŜ(x

n
1 ) compared to any individual sensor, LSj (x

n
1 ). As a

result, when designing families of synthesised sensors for such a set of K sensors,
one can think of a set synthesised family Sm, which includes, for example, all
sensors of the type max{pj1t , . . . , pjmt } for some subset {j1, . . . , jm} ⊂ {1, . . .K}.
If the miss-detection probabilities of the sensors are not all equal, clearly some
synthesised set of m sensors will perform better than the others.

This example can be easily extended to a case where sensors either under-
estimate or over-estimate. Following a single sensor will give a non-negligible
error, while a simple median filter (sensor-wise) on a sufficiently large set of
sensors might give asymptotically zero error.

Exponential Weighting for a Parametric Family of Sensors. Recall that
for any time instant t ≤ n, LSj(x

t
1) denotes the intermediate normalized cumu-

lative loss of sensor Sj . Hence, tLSj (x
t
1) is simply the unnormalized cumulative

loss until (and including) time instant t. For simplicity, we denote this loss by
Lj,t. Furthermore, note that for each 1 ≤ j ≤ K + |Θ|, Lj,0 = 0. At each time
instant t, the exponential weighing algorithm assigns each sensor Sj ∈ S ∪ SΘ
a probability Pt(j|{Lj,t}K+|Θ|

j=1 ). That is, it assumes the cumulative losses of all
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sensors up to time t are known. Then, at each time instant t, after computing

Pt(j|{Lj,t}K+|Θ|
j=1 ), the algorithm selects a sensor in S∪SΘ according to that dis-

tribution. The selected sensor is used to compute the algorithm output at time
t+1, namely, the algorithm uses the selected sensor as the synthesised sensor Ŝ
at time t+ 1. Note that this indeed results in a synthesised sensor, as even if it
turns out that the best sensor at some time instant is in S, it is not necessarily
always the same sensor, hence the algorithm output will probably not equal any
fixed sensor for all time instances 1 ≤ t ≤ n. The suggested algorithm in sum-
marized in Algorithm OnlineFusion below. The main advantage in this algorithm

Algorithm OnlineFusion
% Input: K + |Θ| sensors, S ∪ SΘ; Data xn

1 , arriving sequentially.
% Output: At each time instance, a synthesised sensor Ŝ ∈ S ∪SΘ, chosen at random,
such that the excess cumulative loss compared to the best synthesised sensor is almost
surely asymptotically (in n) negligible (see Proposition 6 and the discussion which
follows).

– Initialization:
W = K + |Θ|; ∀1≤j≤K+|Θ| Lj = 0, P (j|{}) = 1

W
; η =

√
8 log(K+|Θ|)

nd2max
.

– For each t = 1, . . . , n:
• Choose Ŝ according to P (j|{}).
• For each j = 1, . . . ,K + |Θ|:

∗ Lj ← Lj + d(pjt , xt).

• W ←
∑K+|Θ|

j=1 e−ηLj .
• For each j = 1, . . . ,K + |Θ|:

∗ P (j|{}) ← e
−ηLj

W
.

is that, under mild conditions, the normalized cumulative loss of the synthesised
sensor Ŝ it produces is approaching that of the best sensor in S ∪ SΘ, hence it
converges to the best synthesised sensor in a family of sensors, without knowing
in advance which sensor that might be. By the standard analysis of exponential
weighing, similar to [9], the following proposition holds.

Proposition 6. For any sequence xn
1 , any set of sensors S of size K and any

set of synthesised sensors SΘ, the expected performance of Algorithm OnlineFu-

sion is given by E[LŜ(x
n
1 )] ≤ minS∈S∪SΘ LS(x

n
1 ) + dmax

√
log(K+|Θ|)

2n , where the

expectation is over the randomized decisions in the algorithm and dmax is some
upper bound on the instantaneous loss.

As a result, as long as log(K + |Θ|) = o(n) the synthesised sensor Ŝ has a
vanishing redundancy compared to the best sensor in S ∪ SΘ. This gives us an
enormous freedom in choosing the parametrized set of sensors SΘ, and even sets
whose size grows polynomially with the size of the data are acceptable.
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The performance of the exponential weighting algorithm can be summarized
as follows. For any set of stationary sources with probability measure Q, as long
as the number of synthesised sensors does not grow exponentially with the data,
we have lim infn→∞ EQELŜ(X

n
1 ) ≤ lim infn→∞ minS∈S∪SΘ EQLS(X

n
1 ), where

the inner expectation in the left hand side is due to the possible randomization
in Ŝ. When the algorithm bases its decisions on independent drawings, we have
limn→∞ LŜ(x

n
1 ) ≤ limn→∞ minS∈S∪SΘ LS(x

n
1 ) almost surely (in terms of the

randomization in the algorithm). If, furthermore, the sources are strongly mixing,
almost sure convergence in terms of the sources distribution is guaranteed as well
[3]: lim infn→∞ LŜ(X

n
1 ) ≤ lim infn→∞ minS∈S∪SΘ LS(X

n
1 ), Q-a.s.

A by product of the algorithm is the set of weights it maintains while running.
These weights are, in fact, good estimates of the sensors’ reputation. Moreover,
such weights can help us make intelligent decisions for synthesised control and
fine-tuning of the sensor selection process, namely, we are able to clearly see
which families of synthesised sensors perform better, and within a family, which
set of parameters should be described in higher granularity compared to the
others (since sensors with these values perform well).

5 Results on Real and Artificial Data

To validate the proposed methods in practice, simulations were carried out on
both real and synthetic data. We present here some of the results.

To demonstrate Algorithm OnlineFusion, We used real sensors data collected
from 54 sensors deployed in the Intel Berkeley Research Lab between February
28th and April 5th, 2004.1 To avoid too complex computations, we used only the
first 15 real sensors (corresponding to a wing in the lab) and artificially created
from them 225 fused (synthesised) sensors. For this basic example, the fused
sensors were created by simply averaging the data of any two real sensors. Yet,
the results clearly show how the best fused sensor outperforms the best real sen-
sor, with very fast convergence times. Figure 1(a) demonstrates the convergence
of the weight vectors created by the algorithm. At start (top row), all weights
are equal. Very fast, the two best sensors have a relatively high weight (approx-
imately 0.5), while the weight of the others decrease exponentially. Hence, the
algorithm identifies the two best sensors very fast. The two best sensors are in-
deed synthesised ones, with the real sensors performing much worse. Note that
there was no real data (xt) for this sample. The real data was artificially created
from all 15 sensors with a more complex function than simple average (first,
artifacts where removed, then an average was taken). Thus, an average over
simply two sensors, yet the best two sensors, outperforms any single one, and
handles the artifacts in the data automatically. Figure 1(b) depicts the data of
two random real sensors (to avoid cluttering the graph), the artificially created
true data xt and the best synthesised sensor.

To demonstrate the greedy and random selection algorithms, we used the
same data. Table 1 includes the results. The entropy of the maximal triplet of

1 For details, see http://db.csail.mit.edu/labdata/labdata.html.
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Fig. 1. (a) Weight vectors generated by OnlineFusion for 240 sensors - 15 real sensors
and 225 synthesised ones. While at first (top row) all sensors have equal weight, as time
evolves (downwards) some sensors gain reputation (white color), while others loose it
exponentially fast (dark color). Very soon, the two best sensors are identified. (b) Real
temperature data from the Intel Research Lab, Berkeley.

sensors can be compared to that of random selections of triplets. Note that since
many sensors are spread in a relatively small aria, there are several triplets which
include an amount of information very close to the maximal (for a triplet). To
get a sense of how correlated sensors can be, the entropy of a minimal triplet
(also achieved by a greedy algorithm) is also depicted.

We also demonstrate the random sensor selection algorithm on artificial data.
To do this, we artificially created randomized data for 5 independent sensors, and
used them to create 5 additional depend ones, which are a function of the original
sensor. Sensors with even numbers are independent of each other, while sensors
with odd number are linearly dependent on the even number sensors. Note that
this is a very simplified model, which is included here only to demonstrate in
practice the number of rounds the random selection algorithm requires in order
to find an independent set. Furthermore, note that dependent sensors may still
be independent of each other, depending on the other sensors in the group.
For example, if P 1 and P 2 are independent bits (with entropy 1 each), and
P 3 = P 1⊕P 2, then P 2 and P 3 are still independent, with joint entropy 2, while
the three are dependent, with joint entropy 2 as well.

The algorithm then chose sets of 5 sensors at random. Entropy estimates of
the 5 selected sensors are computed according to the joint first order probability
estimate, that is, H(T n

pj1 ,...,pj5
), where pj1 , . . . , pj5 is the data for the five selected

sensors. It is easy to see from Table 2 that 5 independent sensors were drawn
very fast, with 4 out of 20 trials succeeding.
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Table 1. Entropy estimates for sensors from the Intel Research Lab, Berkeley

Method Sensor Numbers Entropy Estimate

Max. triplet 1, 2, 8 4.0732

Random 15, 7, 2 2.9340

Random 2, 4, 13 3.3720

Random 10, 11, 6 3.4966

Random 2, 10, 8 3.5630

Random 5, 7, 1 3.7798

Random 7, 9, 15 3.8290

Random 1, 9, 14 3.8511

Random 2, 9, 4 3.8528

Random 11, 10, 1 3.8570

Random 12, 7, 2 3.8730

Min. triplet 15, 5, 7 2.4758

Table 2. Entropy estimate results of 20 independent drawings of 5 out of 10 sensors

Draw Number Entropy Estimate Draw Number Entropy Estimate

1 3.9938 11 3.9899

2 3.9938 12 2.9966

3 3.9938 13 4.9829

4 3.9915 14 3.9938

5 3.9938 15 3.9938

6 2.9970 16 4.9829

7 1.9976 17 4.9829

8 4.9829 18 2.9966

9 3.9895 19 2.9943

10 3.9938 20 3.9938
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Abstract. Consider a network of n directional antennae in the plane.
We consider the problem of efficient neighbor discovery in a (synchronous)
network of sensors employing directional antennae. In this setting sen-
sors send messages and listen for messages by directing their antennae
towards a specific direction (which is not necessarily known in advance).
In our model the directional antennae can be rotated by the sensors as
required so as to discover all neighbors in their vicinity. In this paper we
will limit ourselves to the (D,D) communication model whereby sensors
employ directional antennae with identical transmission/reception beam
widths. Our methodology is based on techniques for symmetry breaking
so as to enable sender/receiver communication. We provide 1) determin-
istic algorithms that introduce delay in the rotation of the antennae and
exploit knowledge of the existence of a vertex coloring of the network,
and 2) randomized algorithms that require knowledge only of an upper
bound on the size of the network so as to accomplish neighbor discovery.
In both instances we study tradeoffs on the efficiency of the algorithms
proposed.

Keywords and Phrases: Deterministic, Randomized algorithms,
Neighbor discovery, Rotating directional antennae, Sensor network.

1 Introduction

Directional antennae are known to reduce energy consumption because they
can reach further for the same amount of energy consumed. However, unlike
sensors with omnidirectional antennae sensors with directional antennae take
longer to discover their neighbors. This is due to the fact that although sensors
may be within transmission range the sender (respectively, receiver) sensor may
not necessarily be located within the given sector determined by the beaming
antenna of the transmitting sensor. This raises the question of what algorithms to
employ so as to attain efficient communication (e.g., routing, broadcasting, etc.)
using only directional antennae. This approach can be particularly beneficial
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in delay tolerant sensor networks, for example, whereby sensors may be able
to take advantage of opportunistic appearances of sensors due to mobility and
other factors.

For a given radius r > 0, assume that a given sensor, say S, can reach all other
sensors within the disc having centre S and radius r. There are several directional
antenna models, but for our study it will suffice to consider the following direc-
tional antenna model. We assume that either 1) the sensors are standing on a
swivel and can rotate in any desired direction or 2) the sensors’ coverage area
can be divided into non-overlapping sectors that can be activated by an antenna
switch so as to reach other sensors within a particular region. It is clear that in
the former mode of operation the rotation of the antenna is continuous around
the circle while in the latter the circular sectors are in discrete predefined sectors
around the circle. We will not elaborate further in this paper the differences and
similarities between these two modes of operation for directional antennae.

1.1 Preliminaries and Notation

In this subsection we discuss several related antenna models that are related to
our study.

Communication Models with Directional Antennae. Several communica-
tion models are possible for a pair of sensors with omnidirectional and directional
antennae. Consider the pair (X,Y ), where the first parameter X indicates the
capability of the sender sensor and the second parameter Y the capability of
the receiver sensor. To be more precise, X,Y may take either of the values
O,D, where O means omnidirectional and D directional antenna. Thus, the
(X,Y ) communication model for a pair of communicating sensors means that
the sender uses antenna of type X and the receiver of type Y . We also assume a
duplex communication model whereby sensors can send and receive messages at
the same time ignoring collisions. It is clear from the previous discussion that

– in the (O,O) model two sensors can communicate if they are within trans-
mission range of each other,

– in the (D,O) (respectively, (O,D)) model, the sender (respectively, receiver)
must turn its antenna so as to reach its neighbor, and

– in the (D,D) model both sender and receiver must direct their antennae
towards each other at the same time.

More specifically, in all four models the sensors must be within range of each
other so as to communicate. However, in the (D,O) and (O,D) models the sensor
with the directional antenna must also turn its antenna toward the other sensor,
while in the (D,D) model both sensors’ antennae must face against each other.
Therefore it follows that (D,D) is the weakest and (O,O) is the strongest among
the four communication models.

More general models are also possible whereby a sensor’s transmission beam
width is not necessarily the same with its reception beam width. To simplify
notation and terminology, in this paper we will limit ourselves to the (D,D)
communication model with identical transmission/reception beam widths. Our
results generalize without much difficulty to this more general setting.
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The neighbor discovery process usually entails the exchange of identities
(e.g., MAC addresses) between two adjacent nodes. It will not be necessary to
go into the details of such an exchange and for our purposes it will be sufficient
to assume that this is a one step process whereby one sensor sends its identity
and the other acknowledges by sending back its own. Throughout this paper
we will assume that the sensors have distinct identities but their corresponding
locations (i.e., (x, y)-coordinates) in the plane are not known to each other.

Antenna Models. The transmission area of an omnidirectional antennae is
modelled by a circular disk in the plane while the transmission area of a di-
rectional antennae is modelled by a circular sector in the disk. We assume that
sensors have the capability to rotate their directional antenna and change sectors.
so as to establish communication.

Consider a set of n sensors in the plane. Each sensor u is equipped with a
directional antenna having beam width φu. Further we will assume that φu = 2π

ku
,

for some integer ku.
1 In particular, if ku = 1 then we have an omnidirec-

tional antenna at u. The sensors are synchronous and can rotate their antennae
counter-clockwise (see Figure 1). Assume that the UDG formed by the sensors

uφ

u

Fig. 1. An antenna at u rotating counter-clockwise

is connected and c-colorable, i.e., there is a coloring of its vertices χ : V →
{0, 1, . . . , c − 1} such that if sensors u, v are adjacent in the UDG then u and
v have different colors, i.e., χ(u) �= χ(v). Observe any “integer based” identity
scheme, e.g., the n sensors are numbered 0, 1, 2, . . . , n−1, that provides different
numbering to different sensors satisfies this property (albeit it is not efficient).

1.2 Related Work

There are protocols using directional antennas in neighbor discovery processes.
In [4], the authors proposed the gradual increase of directional communication
range levels for neighbor discovery purposes. Nearby neighbors are discovered
first and faraway neighbors will be discovered at later stages. Directional trans-
mission and reception are used in this work. In [5], a direct discovery protocol
and a gossip based neighbor discovery protocol using directional antennas in a

1 It turns out that this assumption is not required for the subsequent results; we use
it because it makes the proofs simpler.
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static wireless network were proposed. During direct discovery process, a node
discovers a neighbor node only when information is received from this neighbor,
while nodes exchange their neighbors’ location information to enable faster dis-
covery in gossip based algorithm. The protocol tries to optimize the discovery
probability in a randomized neighbor discovery process using directional trans-
mission and reception. In [1], a neighbor discovery protocol which considers node
movements was proposed where directions with less possibility of discovering
new nodes will be bypassed during neighbor scanning and neighbor discovery
frequency is adjusted according to node mobility. It uses directional antenna
for transmissions and omnidirectional antenna for receptions. In [6], two Scan
Based Algorithms (SBA-D, SBA-R) and one Completely Random Algorithm
(CRA-DD) were proposed, which use only directional antennae. In SBA-D, a
node decides whether to scan or listen depending on node ID, while a node trans-
mits at one direction or receives at the opposite direction with probability 1

2 in
SBA-R. SBA-D and SBA-R algorithms require perfectly synchronized antenna
rotation direction, time and instantaneous antenna rotation to any direction,
which are very strong assumptions. In CRA-DD, at each time slot, nodes decide
whether to transmit/receive and which direction to transmit/receive completely
randomly, which is the simplest algorithm one can imagine and it also requires
instantaneous antenna rotation to any direction. In [3], an analytical model was
proposed for synchronized 2D neighbor discovery protocols. The model is based
on directional transmission and directional reception and a node transmits in
one direction and receives in the opposite direction simultaneously.

1.3 Outline and Results of the Paper

In this paper, we propose novel neighbor discovery algorithms in a (D,D) com-
munication model whereby sensors employ directional antennae with identical
transmission/reception beam widths and each sensor has only one directional an-
tenna. Our methodology is based on techniques for symmetry breaking so as to
enable sender/receiver communication. We provide 1) deterministic algorithms
that introduce delay in the rotation of the antennae and exploit knowledge of
the existence of a vertex coloring of the network, and 2) randomized algorithms
that require knowledge only of an upper bound on the size of the network so as
to accomplish neighbor discovery. In both instances we study tradeoffs on the
efficiency of the algorithms proposed. Through experimentation, we also show
that the algorithms achieve desirable neighbor discovery delays with efficiency
in energy consumption. Details can be found in the full version of the paper [2].

The rest of the paper is organized as follows. Deterministic algorithms on
neighbor discovery are presented in Section 2. As an alternative scenario, Sec-
tion 3 gives out the randomized algorithm and its analysis. We conclude with
possible future directions in Section 4.

2 Deterministic Algorithms for Neighbor Discovery

In this section we give algorithms for neighbor discovery in the (D,D) communi-
cation model and analyze their complexity. First we give a simple lower bound
that indicates the complexity of the neighbor discovery problem.
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In all the results below as measure of complexity for neighbor discovery we
will use the time required for sensors to discover each other and we will ignore
collisions during simultaneous transmissions. For two sensors, this is the number
of steps until the first successful send/receive exchange. For a sensor network,
this is the minimum for any algorithm taken over the maximum time required
for any two adjacent sensors in the network to communicate.

2.1 Lower Bound

In a setting whereby two adjacent sensors know each other’s location all they
need to do is turn their antennae towards each other in the specified locations.
Therefore the observation below is useful when sensors do not know each other’s
location.

Theorem 1. Consider two sensors u, v within communication range of each
other and respective antenna beam widths 2π

ku
and 2π

kv
, respectively. If the sensors

do not know each other’s location then any algorithm for solving the neighbor
discovery problem in the (D,D) communication model requires at least Ω(kukv)
time steps.

Proof. For a successful communication to occur each sensor must be within
the beam of the other sensor’s antenna at the same time. Since the sensors
do not know each other’s location they must attempt transmissions in all their
respective sectors. This completes the proof of Theorem 1.

2.2 Antenna Rotation Algorithms

Given these preliminary definitions we consider the following class of antenna
rotation algorithms. For each sensor u, let du be an integer delay parameter and
ku be defined so that φu = 2π

ku
. Given u, du, ku the sensor executes the following

algorithm.

Algorithm 1. Antenna Rotation Algorithm ARA(du, ku)

1 Start at a given orientation;
2 while true do
3 for i ← 0 to du − 1 do

//For du steps stay in chosen sector
4 Send message to neighbor(s);
5 Listen for messages from neighbor(s) (if any);
6 Rotate antenna beam one sector counter-clockwise;

//rotate by an angle equal to φu

Remarks and Observations on the ARA Algorithm. There are several
issues concerning interpretations of the execution of the rotation algorithm which
are worth discussing.

– In Step 1 the initial antenna orientation is selected. There are many consis-
tent ways to define this but for simplicity in this paper it is taken to be the
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u

North

South

West East

(a) An antenna at u with sectors
counted counter-clockwise.

u

φu
φv

v

(b) Neighbor discovery for sensors u, v.

Fig. 2. Directional antennae

bisector of the angle which defines the antenna beam. Also, if the sensors
are equipped with a compass then we may assume that they all start with
identical orientations, say East (see Figure 2a). Otherwise, the initial orien-
tation may be chosen in an arbitrary manner. It turns out that our analysis
is valid in this more general setting.

– The main neighbor discovery algorithm is executed in Step 2. We are inter-
ested in measuring the number of steps until all (available) neighbors are
discovered. For the duplex communication model being considered here, it is
clear that two sensors u, v will be able to discover each other if (see Figure 2b)

1. each sensor is within each other’s range, and
2. the corresponding antennae of the two sensors are oriented so that each

sensor is within the other sensor’s beam at the same time.

These are the basic requirements we employ in order to prove the correctness
and running time of our algorithm.

– In Step 3, the algorithm imposes a rotation delay, i.e., for du (equal to the
delay imposed) steps the sensor sends messages and also listens for messages
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from neighbors. The delay imposed in Step 3 is required so as to break sym-
metry and ensure that neighboring sensors’ antennae are within each other’s
beam range and will eventually communicate using the (D,D) communi-
cation model. There are several possibilities here. The sensor may elect to
send/receive messages 1) at each step during the delay interval [0, du− 1], 2)
select a time within the delay interval [0, du − 1] at random. In our analysis
we will assume the former.

– Step 6 involves rotation of the antenna by φu which is also equal to the
beam width of the antenna. This ensures that after each rotation a new
region (located counter-clockwise from the old region) is covered. Several
possibilities exist, for example 1) allow overlap between the new and old
antenna beaming location, 2) select the new antenna beaming location at a
sector chosen at random among the ku possible sectors in the disk.2

2.3 Complexity of Deterministic Antenna Orientation Algorithm

Now we consider the complexity of the various antenna orientation algorithms.
Assume the sensor network is synchronous. Recall our basic assumption that
there is a coloring χ : V → {0, 1, . . . , c− 1} of the vertices of the sensor network
using c colors. Table 1 summarizes the results of this section.

Table 1. List of theorems and running times of deterministic algorithms

Antenna at u Knowledge Running Time Theorems

2π/k Identical O(kc−1) Theorem 2
2π/k Identical O(k(c ln c)3) Theorem 3

The simplest possible delay model is for a sensor to wait “sufficient amount
of time” so as to send to (receive from) the desired node.

However, there are choices of delay under which sensors with directional an-
tennae will never be able to communicate as illustrated in Figure 3.

Example 1. Assume the antenna beam width is 2π
4 = π

2 and the four sectors are
labelled 0, 1, 2, 3. Both sensors depicted in Figure 3 start beaming East. Sensor u
employs delay du = 2 and sensor v delay dv = 1. Sensors can communicate only
if u’s antenna faces East and v’s antenna faces West at the same time. Observe
that sensor u faces East only at time t = 0, 1, 8, 9, 16, 17, . . . while sensor v faces
West only when t = 2, 6, 10, . . .. Therefore u, v can never communicate.

The previous example indicates that sensor delays must be chosen judiciously
so as to enable communication. The first theorem considers the simplest model
whereby a sensor delays the rotation of its antenna sufficient time so as to allow
all its neighbors’ antennae to perform a complete rotation.

2 The point of these assumptions is to consider collision models. In this paper we
assume that the sensors send/receive messages at each step during the delay interval.
Further, if we were to analyze a collision model we would have to assume that the
corresponding intervals of adjacent nodes are disjoint.
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Fig. 3. Neighbor discovery for sensors u, v is not possible

Theorem 2. Consider a set of sensors in the plane with identical antenna beam
widths equal to φ = 2π

k . For each sensor u let the delay be defined by du := kχ(u).
If each sensor u executes algorithm ARA(du, k) then every sensor in the network
will discover all its neighbors in at most kc−1 time steps.

Proof. Consider two adjacent sensors u, v. Clearly, χ(u) �= χ(v) since they must
have different colors. By assumption, du = kχ(u) and dv = kχ(v). Without loss of
generality assume that χ(u) < χ(v). Observe that for each chosen sector the sen-
sor v beams its antenna in this sector for kχ(v) steps. But kχ(v) = kχ(v)−χ(u)kχ(u)

and hence kχ(v) is a multiple of kχ(u). In particular, while sensor v waits in a
given sector the other sensor u will execute kχ(v)−χ(u) rotations around the circle
before returning to its original sector. It follows that sensors u, v will discover
each other within the specified number of steps. This completes the proof of
Theorem 2.

The running time of the algorithm depends on the coloring being used in The-
orem 2. If no knowledge on the network is available then any integer identity
scheme will work, however this will typically be of size Ω(n) thus giving an ex-
ponential running time kΩ(n). If the sensor network is bipartite (e.g., tree) then
it is easy to see that c = 2 is sufficient. For random UDGs with range at the con-
nectivity threshold the number of colors required is c = Θ(log n) in which case
the running time of the algorithm is about klogn = nlog2 k, which is polynomial
in n with exponent log2 k (In many applications a typical value of k is 6.)

Nevertheless we would be interested to provide algorithms with running time
not dependent on the size n of the network but rather on the number of colors
of a vertex coloring. Indeed, this is the case as shown by the next theorem.

Theorem 3. Consider a set of sensors in the plane with identical antenna beam
widths equal to φ = 2π

k . Assume the sensor network is synchronous. Suppose that
the delays du at the nodes are chosen so that

1. gcd(k, du) = 1, and du > k, for all u, and
2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA(du, k) then every sensor in the network
will discover all its neighbors in at most O

(
k(maxu du)

3
)
time steps. In addition,
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the delays du can be chosen so that every sensor in the network will discover all
its neighbors in at most O(k(c ln c)3) time steps. In particular, this is at most
O
(
(c ln c)3

)
time steps provided that k ∈ O(1).

Proof. Without loss of generality, in the proofs below we assume that the sensors
can determine a fixed starting antenna sector facing East, say (see Figure 2a).
Proofs carry over to the more general case and the necessary modifications are
omitted. Consider two adjacent sensors u, v. Without loss of generality assume
that

1. sensor u is to the left of sensor v, and
2. that both antennae orientations are initially set to East, say.

First we consider the case when the line segment connecting u to v is horizontal.
Observe that u, v can communicate when v’s antenna is facing West which is
sector �k2 �. Since gcd(du, dv) = 1, by Euclid’s algorithm there exist integers
0 < au < du, 0 < av < dv such that

audu = avdv + 1. (1)

Lets look at sensor u first. Recall that because of the delay constrains of the
algorithm, the sensor stays in the same sector for du steps before it rotates its
antenna. After duk steps sensor u will be in its starting position and, clearly, the
same applies for any time duration that is a multiple of duk. Thus sensor u is
in its initial position (facing East) at time jauduk, for any j > 0. If we multiply
both sides of Equation audu = avdv + 1 by jk we have that

jauduk = javdvk + jk

It follows that at time t = jauduk the sensor at u is facing East. If there is a
j such that jk = �k2 �dv + r for 0 ≤ r < dv, then sensor v is facing West and
therefore the sensors u, v can discover each other. Starting from j = 1, with
k ≤ �k2 �dv, we can find a j such that,

jk ≤ �k
2
�dv < jk + k (2)

which means that jk + k = �k2 �dv + r, with r ≤ k < dv. A simple modification
of the proof will prove the result when the two sensors are not necessarily on a
horizontal line.

The number of rotations required is jauduk, where j satisfies Inequality (2).
Since jauduk ≤ k(maxu du)

3 it follows that k(maxu du)
3 is an upper bound on

the time required by all pairs of sensors to discover each other.
If k ∈ O(1) (this is a reasonable assumption since in practice k = 6) then

we can satisfy the conditions of Theorem 3 by choosing the dus to be prime
numbers. Since the number of colors is c, we will need c prime numbers (one for
each color class of vertices of the graph). Hence by the prime number theorem
the largest prime needed in order to define the delays {du : u ∈ V } will be in
the order of the c-th prime number, which is in O(c ln c). Therefore every sensor
in the network will discover all its neighbors in at most O

(
(c ln c)3

)
time steps.

This completes the proof of Theorem 3. 
�
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Theorem 3 can be improved further with only slight modifications in the proof
even in the case where 2π

φ is not necessarily an integer. To this end define k :=

� 2πφ �. We can modify algorithm ARA(du, k) to a new algorithm ARA′(du, φ) as
follows: we still have k sectors and we can modify Step 6 in algorithm ARA(du, k)
so that the antenna at u rotates along the corresponding sectors 0, 1, . . . , k − 1
(thus there is overlap between the new and the old sector). It is easy to prove
the following generalization of Theorem 3.

Theorem 4. Consider a set of sensors in the plane such that the antenna beam
width of sensor u is equal to φ. Define k := � 2πφ � Assume the sensor network is

synchronous. Suppose that the delays du at the nodes are chosen so that

1. gcd(du, k) = 1 and du > k, for all u, and
2. if u, v are adjacent then gcd(du, dv) = 1.

If each sensor u executes algorithm ARA′(du, φ) then every sensor in the network

will discover all its neighbors in at most k (maxu du)
3 time steps. In addition,

the delays du can be chosen so that every sensor in the network will discover all
its neighbors in at most O(k(c ln c)3) time steps. In particular, this is at most
O
(
(c ln c)3

)
time steps provided that k ∈ O(1).

Proof. With some simple modifications, this is identical to the proof of
Theorem 3. Details are left to the reader.

Observe that for a random UDG at the connectivity threshold we have that
c = Θ(lnn) and therefore the running time of the algorithms in Theorems 3 and 4
will be O((lnn ln lnn)3).

3 Randomized Neighbor Discovery Algorithms

In this section we consider several randomized algorithms. The main advantage
of the algorithms in Theorems 5 and 6 is that no a priori knowledge of coloring
or of any proper identity scheme is required; just an upper bound n on the size
of the network. Moreover, the algorithm in Theorem 7 requires only a bound on
the antennae beam widths. Table 2 summarizes the results of this section.

Table 2. List of theorems and running times of randomized algorithms

Antenna at u Knowledge Running Time Theorems

2π/k Identical knO(1) Theorem 5
2π/k Identical O(k2 log n) Theorem 6
2π/ku maxu ku ≤ k O(k4 log n) Theorem 7

3.1 Deterministic Algorithm with Selection of Random Delay

In this algorithm each sensor u selects a random prime number as delay du (in
a range k..R to be specified) and runs the deterministic algorithm ARA(du, k).
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Algorithm 2. Randomized Antenna Rotation Algorithm RARA(du, k)

1 Select du ← RANDOMPRIME(k..R);
2 Execute ARA(du, k);

Theorem 5. Consider a set of sensors in the plane such that the antenna beam
width of sensor u is equal to φ = 2π

k . Assume the sensor network is synchronous.

If each sensor u executes algorithm RARA(k;R), where R = nO(1) and n is
an upper bound on the number of sensors, then every sensor in the network
will discover all its neighbors in at most knO(1) expected time steps, with high
probability.

Proof. For every node u, let N(u) denote the neighborhood of u and deg(u) the
degree of u. Further, let D = maxu deg(u) denote the maximum degree of a node
of the sensor network. By the prime number theorem, the number of primes ≤ R
and > k is approximately equal to R

lnR −
k

ln k and therefore the probability that

the primes chosen by two adjacent nodes, say u and v, are different is 1− 1
R

lnR− k
ln k

.

Let Eu be the event that the prime chosen at u is different from all the primes
chosen by its neighbors. It is easily seen that

Pr[Eu] = 1− Pr[¬Eu]

= 1− Pr [∃v ∈ N(u)(du = dv)]

≥ 1−
∑

v∈N(u)

Pr [du = dv]

≈ 1− deg(u)
1

R
lnR −

k
ln k

≥ 1−D
1

R
lnR −

k
ln k

.

Similarly, we can prove that

Pr

[⋂
u

Eu

]
= 1− Pr

[⋃
u

¬Eu

]

≥ 1−
∑
u

Pr[¬Eu]

≥ 1− nD
1

R
lnR −

k
ln k

≥ 1− 1

n
.

By choosingR in nO(1) and recalling thatD ≤ n we see that all the primes chosen
by all the nodes in the network are pairwise distinct, with high probability. The
claim concerning the expected number of time steps follows immediately from
the analysis of the antenna rotation algorithm in Theorem 3. This completes the
proof of Theorem 5.
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3.2 Algorithm with Random Selection of Rotation Mechanism

In the algorithms below we assume that the antenna beam width of u is equal to
2π
k . In the main algorithm a sensor chooses a “rotation mechanism” between two
given rotation mechanisms independently at random. In the first mechanism, the
antenna cycles k rounds with no sector delay, while in the second the antenna
cycles only one round but with delay k per sector. The two rotation mechanisms
can be described formally as follows.

Algorithm 3. Rotate with no Sector Delay Mech0(k, d)

//Cycle k rounds with no sector delay
1 for j ← 1 to d do
2 for i ← 0 to k − 1 do
3 Send message to neighbor(s) in sector i;
4 Listen for messages from neighbor(s) (if any) in sector i;
5 Rotate antenna one sector;

Algorithm 4. Rotate with Delay k per Sector Mech1(k, d)

//Cycle one round with delay k per sector
1 for i ← 0 to k − 1 do
2 for j ← 0 to d do
3 Send message to neighbor(s) in sector i;
4 Listen for messages from neighbor(s) (if any) in sector i;
5 Rotate antenna one sector;

Algorithm 5. Random Selection Rotation Mechanism Algorithm
RSRMA(k)

//Choose rotation mechanism at random.
1 Select bit ← RANDOM({0, 1});
2 if bit = 0 then Execute Mech0(k, k) ;
3 if bit = 1 then Execute Mech1(k, k) ;

Thus algorithm RSRMA(u, k) selects the rotation mechanism at random. We
can prove the following theorem.

Theorem 6. Consider a set of n sensors in the plane with identical antenna
beam width equal to φ = 2π

k . Assume the sensor network is synchronous. If each
sensor u executes algorithm RSRMA(u; k) for O(log n) times then every sensor
in the network will discover all its neighbors in at most O(k2 logn) expected time
steps, with high probability.

Proof. The proof of correctness is not difficult. The sensor flips a coin. If the
outcome is bit = 0 (Step 2) then it rotates the antenna k rounds around the
circle; in each round it rotates the antenna with no delay and sends messages
and listens for messages. However, if the outcome is bit = 1 (Step 3) then it
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rotates the antenna once around the circle; in each sector it sends messages
and listens for messages k times and then rotates the antenna one sector. Now
consider two sensors u, v within range of each other and assume, without loss
of generality, that u is to the left of v (The same proof will work regardless
of the direction of the line segment uv connecting u to v). Both sensors start
beaming East. We know that a necessary and sufficient condition to establish
communication is for u’s antenna to beam East and v’s antenna to beam West at
the same time. If both sensors’ coin-flips give the same bit then the sensors will
select the same rotation mechanism and their antennae will not face “against”
each other. However, if their coin-flips give different bits then it is clear that
their corresponding antennae will face East and West, respectively, at the same
time.

Let m = 3 logn and suppose that all sensors run algorithm RSRMA(k) for
m times. The only case that two adjacent sensors u, v cannot communicate in
m steps is that the coin flips yield identical outcomes m times. In particular we
have two random binary strings of length m each one drawn from u and another
from v. The probability that the strings are identical is equal to 2−m = n−3

since m = 3 logn.
Finally, we can prove the main result of the theorem. Let Eu,v denote the

event that sensors u, v can communicate (at some time). Consequently, from the
discussion above we conclude that

Pr[¬Eu,v] ≤ n−3, for any pair u, v of sensors. (3)

Therefore we obtain that the probability that any two adjacent sensors
communicate is at least

Pr[∀u, vEu,v] = 1− Pr[¬(∀u, vEu,v)]

= 1− Pr[∃u, v¬Eu,v]

= 1− Pr

[⋃
u,v

¬Eu,v

]

≥ 1−
∑
u,v

Pr[¬Eu,v]

≥ 1− n2 1

n3

= 1− 1

n
.

This proves our assertion and completes the proof of Theorem 6.

3.3 Algorithm If Bound on Antenna Beam Widths Is Known

We now indicate how to extend Theorem 6 to the case of sensors with arbi-
trary antenna beam widths. First of all, we modify the rotation mechanisms by
introducing the delay as a parameter.

Following the proof of Theorem 6, observe that if two adjacent sensors u, v
execute the following algorithm for m = 3 lnn times then they will discover each
other with high probability.
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Algorithm 6. Random Selection Rotation Mechanism Algorithm
RSRMA′(ku, d)
//Choose rotation mechanism at random

1 Select bit ← RANDOM({0, 1});
2 if bit = 0 then Execute Mech0(ku, d);
3 if bit = 1 then Execute Mech1(ku, d);

This idea is for each sensor to use the neighbor sensor’s antenna beam width
to determine an appropriate delay. However, this will not work because sensor u
(respectively, v) does not necessarily know the beam width of v’s (respectively,
u’s) antenna. However, this difficulty is easy to resolve if an upper bound, say k,
on max{ku, kv} is known by both u and v. Namely, sensor u executes algorithm
RSRMA′(k′u, k

′
v) and sensor v executes algorithm RSRMA′(k′v, k

′
u), for all pairs

(k′u, k
′
v) such k′u, k

′
v ≤ k. To maintain synchronicity all k2 pairs of algorithms are

executed in the same lexicographic order by all pairs of sensors each algorithm
for m = 3 lnn times. Clearly, the running time of the algorithm is O(k4 logn)
with high probability.

Putting these ideas together and repeating the proof of Theorem 6 it is easy
to prove the following theorem.

Theorem 7. Consider a set of n sensors in the plane such that sensor u has
antenna beam width equal to φu = 2π

ku
. Assume the sensor network is synchronous

and that an upper bound k is known to all sensors so that maxu ku ≤ k. If each
sensor u executes algorithm RSRMA′(a, b), for each pair (a, b), with a, b ≤ k,
for O(log n) times then every sensor in the network will discover all its neighbors
in at most O(k4 logn) expected time steps, with high probability. 
�

4 Conclusion and Open Problems

An interesting class of problems arises in considering the efficiency of broadcast-
ing in the single channel UDG model, i.e., if first there is a single send/receive
channel and multiple transmissions on the same node produce packet collisions,
and second a link between two sensors u, v exists if and only if d(u, v) ≤ 1.
In general, broadcasting with omnidirectional antennae requires scheduling of
transmissions (typically using group testing techniques) so as to avoid collisions.
Clearly, if broadcasting time with omnidirectional antennae without collisions is
B then the result of Theorem 3 indicates that broadcasting in the directional an-
tennae model can be accomplished in time O(B(c ln c)3), where c is the number
of colors of a vertex coloring of the sensor network. The main question arising is
whether we can improve on this time bound when using directional antennae.
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Abstract. We present LiMoSense, a fault-tolerant live monitoring algo-
rithm for dynamic sensor networks. This is the first asynchronous robust
average aggregation algorithm that performs live monitoring, i.e., it con-
stantly obtains a timely and accurate picture of dynamically changing
data. LiMoSense uses gossip to dynamically track and aggregate a large
collection of ever-changing sensor reads. It overcomes message loss, node
failures and recoveries, and dynamic network topology changes. We for-
mally prove the correctness of LiMoSense; we use simulations to illustrate
its ability to quickly react to changes of both the network topology and
the sensor reads, and to provide accurate information.

1 Introduction

To perform monitoring of large environments, we can expect to see in years to
come sensor networks with thousands of light-weight nodes monitoring condi-
tions like seismic activity, humidity or temperature [2,14]. Each of these nodes is
comprised of a sensor, a wireless communication module to connect with close-by
nodes, a processing unit and some storage. The nature of these widely spread
networks prohibits a centralized solution in which the raw monitored data is
accumulated at a single location. Specifically, all sensors cannot directly com-
municate with a central unit. Fortunately, often the raw data is not necessary.
Rather, an aggregate that can be computed inside the network, such as the sum
or average of sensor reads, is of interest. For example, when measuring rainfall,
one is interested only in the total amount of rain, and not in the individual reads
at each of the sensors. Similarly, one may be interested in the average humidity
or temperature rather than minor local irregularities.

In dynamic settings, it is particularly important to perform live monitoring,
i.e., to constantly obtain a timely and accurate picture of the ever-changing data.
However, most previous solutions have focused on a static (single-shot) version
of the problem, where the average of a single input-set is calculated [10,4,12,11].
Though it is in principle possible to perform live monitoring using multiple
iterations of such algorithms, this approach is not adequate, due to the inherent
tradeoff it induces between accuracy and speed of detection. For further details
on previous work, see Section 2. In this paper we tackle the problem of live

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 72–85, 2012.
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monitoring in a dynamic sensor network. This problem is particularly challenging
due to the dynamic nature of sensor networks, where nodes may fail and may be
added on the fly (churn), and the network topology may change due to battery
decay or weather change. The formal model and problem definition appear in
Section 3.

In Section 4 we present our new Live Monitoring for Sensor networks al-
gorithm, LiMoSense. Our algorithm computes the average over a dynamically
changing collection of sensor reads. The algorithm has each node calculate an
estimate of the average, which continuously converges to the current average.
The space complexity at each node is linear in the number of its neighbors, and
message complexity is that of the sensed values plus a constant. At its core,
LiMoSense employs gossip-based aggregation [10,12], with a new approach to
accommodate data changes while the aggregation is on-going. This is tricky,
because when a sensor read changes, its old value should be removed from the
system after it has propagated to other nodes. LiMoSense further employs a new
technique to accommodate message loss, failures, and dynamic network behav-
ior in asynchronous settings. This is again difficult, since a node cannot know
whether a previous message it had sent over a faulty link has arrived or not.

In Section 5, we review the correctness proof of the algorithm, showing that
once the network stabilizes, in the sense that no more value or topology changes
occur, LiMoSense eventually converges to the correct average, despite message
loss. The complete analysis can be found in the technical report [5].

We evaluate the algorithm’s behavior in general (unstable) settings in
Section 6. As convergence time is inherently unbounded in asynchronous sys-
tems, we analyze convergence time in a synchronous uniform run, where all
nodes take steps at the same average frequency. We show that in such runs, once
the system stabilizes, the estimates nodes have of the desired value converge
exponentially fast (i.e., in logarithmic time). Furthermore, to demonstrate the
effectiveness of LiMoSense in various dynamic scenarios, we present results of
extensive simulations, showing its quick reaction to dynamic data read changes
and fault tolerance. In order to preserve energy, communication rates may be
decreased, and nodes may switch to sleep mode for limited periods. These issues
are outside the scope of this work.

In summary, this paper makes the following contributions: (1) It presents
LiMoSense, a live monitoring algorithm for highly dynamic and error-prone envi-
ronments. (2) It proves correctness of the algorithm, namely robustness and even-
tual convergence. (3) It shows, through analysis and simulation, that LiMoSense
converges exponentially fast and demonstrates its efficiency and fault-tolerance
in dynamic scenarios.

2 Related Work

To gather information in a sensor network, one typically relies on in-network
aggregation of sensor reads. The vast majority of the literature on aggregation
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has focused on obtaining a single summary of sensed data, assuming these reads
do not change while the aggregation protocol is running [11,10,4,12]. The only
exception we are aware of is work on aggregation with dynamic inputs by Birk
et al. [3]; however, this solution is limited to unrealistic settings, namely a static
topology with reliable communication links, failure freedom, and synchronous
operation.

For obtaining a single aggregate, two main approaches were employed. The
first is hierarchical gathering to a single base station [11]. The hierarchical
method incurs considerable resource waste for tree maintenance, and results
in aggregation errors in dynamic environments, as shown in [7].

The second approach is gossip-based aggregation at all nodes. To avoid count-
ing the same data multiple times, Nath et al. [13] employ order and duplicate
insensitive (ODI) functions to aggregate inputs in the face of message loss and
a dynamic topology. However, these functions do not support dynamic inputs
or node failures. Moreover, due to the nature of the ODI functions used, the
algorithms’ accuracy is inherently limited – they do not converge to an accurate
value [6].

An alternative approach to gossip-based aggregation is presented by Kempe et
al. [10]. They introduce Push-Sum, an average aggregation algorithm, and show
that it converges exponentially fast in fully connected networks where nodes op-
erate in lock-step. Shah et al. analyze this algorithm in an arbitrary topology [4].
Jelasity et al. periodically restart the push-sum algorithm to handle dynamic
settings, trading off accuracy and bandwidth. Although these algorithms do not
deal with dynamic inputs and topology as we do, we borrow some techniques
from them. In particular, our algorithm is inspired by the Push-Sum construct,
and operates in a similar manner in static settings. We analyze its convergence
speed when the nodes operate independently. Jesus et al. [9,1] also solve aggrega-
tion in dynamic settings, overcoming message loss, dynamic topology and churn.
However, they consider synchronous settings, and they do not prove correctness
nor analyze the behaviour of their algorithm with dynamic inputs.

Note that aggregation in sensor networks is distinct from other aggregation
problems, such as stream aggregation, where the data in a sliding window is
summarized. In the latter, a single system component has the entire data, and
the distributed aspects do not exist.

3 Model and Problem Definition

3.1 Model

The system is comprised of a dynamic set of nodes (sensors), partially connected
by dynamic undirected communication links. Two nodes connected by a link are
called neighbors, and they can send messages to each other. These messages
either arrive at some later time, or are lost. Messages that are not lost on each
link arrive in FIFO order. Links do not generate or duplicate messages.
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The system is asynchronous and progresses in steps, where in each step an
event happens and the appropriate node is notified, or a node acts spontaneously.
In a step, a node may change its internal state and send messages to its neighbors.

Nodes can be dynamically added to the system, and may fail or be removed
from the system. The set of nodes at time t is denoted Nt. The system state
at time t consists of the internal states of all nodes in Nt, and the links among
them. When a node is added (init event), it is notified, and its internal state
becomes a part of the system state. When it is removed (remove event), it is not
allowed to perform any action, and its internal state is removed from the system
state.

Each sensor has a time varying data read in R. A node’s initial data read is
provided as a parameter when it is notified of its init event. This value may
later change (change event) and the node is notified with the newly read value.
For a node i in Ni, we denote1 by rti , the latest data read provided by an init

or change event at that node before time t.
Communication links may be added or removed from the system. A node

is notified of link addition (addNeighbor event) and removal (removeNeighbor
event), given the identity of the link that was added/removed. We call these
topology events. For convenience of presentation, we assume that initially, nodes
have no links, and they are notified of their neighbors by a series of addNeighbor
events. We say that a link (i, j) is up at step t if by step t, both nodes i and j had
received an appropriate addNeighbor notification and no later removeNeighbor
notification. Note that a link (i, j) may be “half up” in the sense that the node
i was notified of its addition but node j was not, or if node j had failed.

A node may send messages on a link only if the last message it had received
regarding the state of the link is addNeighbor. If this is the case, the node may
also receive a message on the link (receive event).

Global Stabilization Time. In every run, there exists a time called global sta-
bilization time, GST, from which onward the following properties hold: (1)
The system is static, i.e., there are no change, init, remove, addNeighbor or
removeNeighbor events. (2) If the latest topology event a node i ∈ NGST has
received for another node j is addNeighbor, then node j is alive, and the latest
topology event j has received for i is also addNeighbor (i.e. there are no “half
up” links). (3) The network is connected. (4) If a link is up after GST, and
infinitely many messages are sent on it, then infinitely many of them arrive.

3.2 The Live Average Monitoring Problem

We define the read average of the system at time t as Rt Δ
= 1

|Nt|
∑

i∈Nt
rti . Note

that the read average does not change after GST. Our goal is to have all nodes

1 For any variable, the node it belongs to is written in subscript and, when relevant,
the time is written in superscript.
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estimate the read average after GST. More formally, an algorithm solving the
Live Average Monitoring Problem gets time-varying data reads as its inputs, and
has nodes continuously output their estimates of the average, such that at every
node in NGST, the output estimate converges to the read average after GST.

Metrics. We evaluate live average monitoring algorithms using the following
metrics: (1) Mean square error, MSE, which is the mean of the squares of the
distances between the node estimates and the read average; and (2) ε-inaccuracy,
which is the percentage of nodes whose estimate is off by more than ε.

4 The LiMoSense Algorithm

In Section 4.1 we describe a simplified version of the algorithm for dynamic
inputs but static topology and no failures. Then, in Section 4.2, we describe the
complete robust algorithm.

4.1 Failure-Free Algorithm

We begin by describing a version of the algorithm that handles dynamically
changing inputs, but assumes no message loss, and no link or node failures. This
algorithm is shown in Algorithm 1.

The base of the algorithm operates like Push-Sum[10,4]: Each node main-
tains a weighted estimate of the read average (a pair containing the estimate
and a weight), which is updated as a result of the node’s communication with
its neighbors. As the algorithm progresses, the estimate converges to the read
average.

A node whose read value changes must notify the other nodes. It needs not
only to introduce the new value, but also to undo the effect of its previous read
value, which by now has partially propagated through the network.

The algorithm often requires nodes to merge two weighted values into one.
They do so using the weighted value sum operation, which we define below
and concisely denote by ⊕. Subtraction operations will be used later, they are
denoted by � and are defined below.

〈va, wa〉 ⊕ 〈vb, wb〉 Δ
= 〈vawa + vbwb

wa + wb
, wa + wb〉 . (1)

〈va, wa〉 � 〈vb, wb〉
Δ
= 〈va, wa〉 ⊕ 〈vb,−wb〉 . (2)

The state of a node (lines 2–3)consists of a weighted value, 〈esti, wi〉, where esti
is an output variable holding the node’s estimate of the read average, and the
value prevReadi of the latest data read. We assume at this stage that each node
knows its static set of neighbors. We shall remove this assumption later, in the
robust LiMoSense algorithm.
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Algorithm 1: Failure Free

1 state
2 〈esti, wi〉 ∈ R

2

3 prevReadi ∈ R

4 on initi(initVal)
5 〈esti, wi〉 ← 〈initVal, 1〉
6 prevReadi ← initVal

7 on receivei(〈vin, win〉) from j
8 〈esti, wi〉 ← 〈esti, wi〉 ⊕ 〈vin, win〉

9 periodically sendi()
10 Choose a neighbor j uniformly at random.
11 wi ← wi/2
12 send (〈esti, wi〉) to j

13 on changei(newRead)
14 esti ← esti +

1
wi

· (newRead− prevReadi)

15 prevReadi ← newRead

Node i initializes its state on its init event. The data read is initialized to
the given value initVal, and the estimate is 〈initVal, 1〉 (lines 5–6).

The algorithm is implemented with the functions receive and change, which
are called in response to events, and the function send, which is called
periodically.

Periodically, a node i shares its estimate with a neighbor j chosen uniformly
at random (line 10). It transfers half of its estimate to node j by halving the
weight wi of its locally stored estimate and sending the same weighted value to
that neighbor (lines 11-12). When the neighbor receives the message, it merges
the accepted weighted value with its own (line 8).

Correctness of the algorithm in static settings follows from two key obser-
vations. First, safety of the algorithm is preserved, because the system-wide
weighted average over all weighted-value estimate pairs at all nodes and all com-
munication links is always the correct read average; this invariant is preserved
by send and receive operations. Thus, no information is “lost”. Second, the algo-
rithm’s convergence follows from the fact that when a nodes merges its estimate
with that received from a neighbor, the result is closer to the read average.

We proceed to discuss the dynamic operation of the algorithm. When a node’s
data read changes, the read average changes, and so the estimate should change
as well. Let us denote the previous read of node i by rt−1

i and the new read at
step t by rti . In essence, the new read, rti , should be added to the system-wide
estimate with weight 1, while the old read, rt−1

i , ought to be deducted from it,
also with weight 1. But since the old value has been distributed to an unknown
set of nodes, we cannot simply “recall” it. Instead, we make the appropriate
adjustment locally, allowing the natural flow of the algorithm to propagate it.

We now explain how we compute the local adjustment. The system-wide es-
timate should move by the difference between the read values, factored by the
relative influence of a single sensor, i.e., 1/n. To achieve this, we could shift a
weight of 1 by rti − rt−1

i . Alternatively, we can shift a weight of w by this differ-
ence factored by 1/w. Therefore, in response to a change event at time t, if the
node’s estimate before the change was estt−1

i and its weight was wt−1
i , then the

estimate is updated to (lines 14-15)

estti = estt−1
i + (rti − rt−1

i )/wt−1
i .
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Algorithm 2: LiMoSense

1 state
2 〈esti, wi〉 ∈ R

2

3 prevReadi ∈ R

4 neighborsi ⊂ N

5 senti : n → (R2 × R
2) ∪ ⊥

6 receivedi : n → (R2 × R
2) ∪ ⊥

7 on initi(initVal)
8 〈esti, wi〉 ← 〈initVal, 1〉
9 prevReadi ← initVal

10 neighborsi ← ∅
11 ∀j : senti(j) = ⊥
12 ∀j : receivedi(j) = ⊥
13 function pushSendi(sendVal)
14 〈esti, wi〉 ← 〈esti, wi〉 � sendVal
15 senti(j) ← senti(j)⊕ sendVal
16 send (senti(j), push), to j

17 periodically sendi()
18 if wi < 2q then return (weight min.)
19 Choose a neighbor j uniformly at random.
20 type ← choose at random from {push, pull}
21 if type = push then
22 pushSend(〈esti, wi/2〉)
23 else (type = pull)
24 send (〈esti, wi/2〉, pull) to j

25 on receivei(〈vin, win〉, type) from j
26 if type = push then
27 diff ← 〈vin, win〉 � receivedi(j)
28 〈esti, wi〉 ← 〈esti, wi〉 ⊕ diff
29 receivedi(j) ← 〈vin, win〉
30 else (type = pull)
31 pushSend(〈vin,−win〉)
32 on changei(rnew)
33 esti ← esti +

1
wi

· (rnew − prevReadi)

34 prevReadi ← rnew

35 on addNeighbori(j)
36 neighborsi ← neighborsi ∪ {j}
37 senti(j) ← 〈0, 0〉
38 receivedi(j) ← 〈0, 0〉
39 on removeNeighbori(j)
40 〈esti, wi〉 ← 〈esti, wi〉 ⊕ senti(j)� receivedi(j)
41 neighborsi ← neighborsi \ {j}
42 senti(j) ← ⊥
43 receivedi(j) ← ⊥

4.2 Adding Robustness

Overcoming failures is challenging in an asynchronous system, where a node
cannot determine whether a message it has sent was successfully received. In
order to overcome message loss and link and node failure, each node maintains
a summary of its conversations with its neighbors. Nodes interact by sending
and receiving these summaries, rather than the weighted values they have sent
in the failure-free algorithm. The data in each message subsumes all previous
value exchanges on the same link. Thus, if a message is lost, the lost data is
recovered once an ensuing message arrives. When a link fails, the nodes at both
of its ends use the summaries to retroactively cancel the effect of all the messages
transferred over it. A node failure is treated as the failure of all its links. There
is a rich literature dealing with the means of detecting failures, usually with
timeouts. This subject is outside the scope of this work.

Implementing the summary approach näıvely would cause summary sizes to
increase unboundedly as the algorithm progresses. To avoid that, we devised a
hybrid approach of push and pull gossip that negates this effect without resorting
to synchronization assumptions.

The full LiMoSense algorithm, shown as Algorithm 2, is based on the failure-
free algorithm. In addition to the state information of the failure-free algorithm,
is also maintains the list of its neighbors, and a summary of the data it has sent
to and received from each of them (lines 5-6). On initialization, a node has no
neighbors (lines 10–12).
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The change function is identical to the one of the failure-free algorithm. The
functions receive and send, however, instead of transferring the weighted values
as in the failure-free case, transfer the summaries maintained for the links. In
addition, when a node i wishes to send a weighted value to a node j, it may do
so using either push or pull.

When pushing, node i adds the new weighted value to senti(j) and sends
senti(j) to j (lines 14–16). When receiving this summary, node j calculates the
received weighted value by subtracting the appropriate received variable from the
newly received summary (line 27). After acting on the received message (line 28),
node j replaces its received variable with the new weighted value (line 29). Thus,
if a message is lost, the next received message compensates for the loss and brings
the receiving neighbor to the same state it would have reached had it received
the lost messages as well. Whenever the last message on a link (i, j) is correctly
received and there are no messages in transit, the value of sentji is identical to
the value of receivedij .

Since the weights are (usually) positive, push operations, if used by them-
selves, cause the sent and received variables to grow to infinity. In order to
overcome that, LiMoSense uses a hybrid push/pull approach, which keeps these
weights small without requiring bilateral coordination. A node uses pull opera-
tions to decrease the sent variables of its neighbors, and thereby its own received.
The pull message is a request from a neighbor to push an inverse weighted
value, and does not change any state variables; these are only changed when the
neighbor performs the requested push. The effect of a node pushing a value is
equivalent to that of a node pulling (requesting) the inverse value and its neigh-
bor pushing the inverse. Therefore, the use of pull messages does not hamper
correctness.

In line 20, the algorithm randomly decides whether to perform push or pull2.
When pulling, i sends the weighted value to j with the pull flag. Once node
j receives the message, it merges it with its own value, and relays i the same
weighted pair using the standard push mechanism, but with a negative weight
(line 31). Thus, the weights of the sent and received records fluctuate around 0
rather than grow to infinity. To prevent infinitesimal weights, a node does not
perform a send step if the result would bring its weight to be smaller than a
quantization constant q.

Upon notification of topology events, nodes act as follows. When notified of
an addNeighbor event, a node initializes its transfer records sent and received
for this link, noting that 0 weight was transferred in both directions. It also
adds the new neighbor to its neighbors list (lines 36-38). When notified of a
removeNeighbor event, a node reacts by nullifying the effect of this link. Pull
messages that were sent and/or received on this link had no effect. Nodes there-
fore need to undo only the effects of sent and received push messages, which are
summarized in the respective sent and received variables. When a node i dis-
covers that link (i, j) has failed, it adds the outgoing link summary sentji to its

2 We use random choice for ease of presentation. One may choose to perform pull less
frequently to conserve bandwidth.
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estimate, thus cancelling the effect of ever having sent anything on the link, and
subtracts the incoming link summary receivedji from its estimate, thereby can-
celling the effect of everything it has received (line 40). The node also removes
the neighbor from its neighbors list and discards its link records (lines 41–43).

After a node joins the system or leaves it, its neighbors are notified of the
appropriate topology events, adding links to the new node, or removing links
to the failed one. Thus, when a node fails, any parts of its read value that had
propagated through the system are annulled, and it no longer contributes to the
system-wide estimate.

5 Correctness Overview

We defer the correctness proof of LiMoSense to the full version of this paper.
We overview here the key theorems.

First, define the invariant I. The estimate average at time t, Et, is the
weighted average over all nodes of their weighted values, their outgoing link
summaries in their sent variables and the inverse of their incoming logs in their
received variables. We denote the read average at time t by Rt. We define the

read sum to be 〈Rt, n〉 Δ
=
⊕n

i=1〈rti , 1〉 and the estimate sum to be:

〈Et, n〉 Δ
=

n⊕
i=1

⎛
⎝〈estti, wt

i〉 ⊕
⊕

j∈neighborst
i

(
sentti(j)� receivedti(j)

)⎞⎠ .

The invariant I states that the estimate sum equals the read sum: 〈Rt, n〉 =
〈Et, n〉.

We prove the following theorem, which states that the invariant is maintained
throughout the system’s asynchronous operation, despite message loss, topology
changes and churn.

Theorem 1. In a run of the system, the read average equals the estimate
average at all times.

Then, we prove the following theorem, that shows that after GST the estimates
of the nodes eventually mix, i.e., all node estimates converge to the estimate
average, which, as the invariant states, equals the read average.

Theorem 2 (Liveness). After GST, the estimate error at all nodes converges
to zero.

6 Evaluation

6.1 Static

We say that the suffix of a run is uniform synchronous if (1) the choice of
which node runs and choice of which neighbor it chooses for data exchange is
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uniformly random, and (2) the latency of all operations and links is 0 (negligible
with respect to the time between periodic sends). This assumption means that
there are no asynchrony issues; it is still weaker than the lock-step assumption
often used to evaluate sensor networks.

In uniform synchronous runs, we argue that the nodes’ estimates are normally
distributed, and it is possible to show analytically that after each push operation,
the expected variance decreases by 1− 1

n . The details of this discussion may be
found in the technical report [5].

We have conducted simulations to verify the predicted convergence rate of
LiMoSense. We simulated a fully connected network of 100 sensors. The samples
were taken from a standard normal distribution. Figure 1 shows mean square
error of the nodes and the value predicted by the analysis. The simulation value
is averaged over 100 instances of the simulation. The result perfectly fits the
predicted behavior. This result also corresponds to those obtained in [8], where
a similar static algorithm is analyzed with the nodes running in lock step.
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Fig. 1. Exponential convergence rate — Simulation and theory

6.2 Dynamic

In order to evaluate LiMoSense in the dynamic settings it was designed for, we
have conducted simulations of various scenarios. Our goal is to asses how fast
the algorithm reacts to changes, and succeeds to provide accurate information.
Some of the results are described below. Further details can be found in the
technical report [5].

We performed the simulations using a custom made Python event driven
simulation that simulated the underlying network and the nodes’ operation.
Unless specified otherwise, all simulations are of a fully connected network of
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100 nodes, with initial values taken from the standard normal distribution. We
have seen that in well connected networks, the convergence behavior is similar
to that of a fully connected network. The simulation proceeds in steps, where in
each step, the topology and read values may change according to the simulated
scenario, and one node performs a pull or push action. Scheduling is uniform
synchronous, i.e., the node performing the action is chosen uniformly at random.

Unless specified otherwise, each scenario is simulated 1000 times. In all sim-
ulations, we track the algorithms’ output and accuracy over time. In all of our
graphs, the X axis represents steps in the execution. We depict the following
three metrics for each scenario:

(a) base station. We assume that a base station collects the estimated read av-
erage from some arbitrary node. We show the median of the values obtained
in the runs at each step.

(b) ε-inaccuracy. For a chosen ε, we depict the percentage of nodes whose
estimate is off by more than ε after each step. The average of the runs is
depicted.

(c) MSE. We depict the average square distance between the estimates at all
nodes and the read average at each step. The average of all runs is depicted.

We compare LiMoSense, which does not need restarts, to a Push-Sum algo-
rithm that restarts at a constant frequency — every 5000 steps unless specified
otherwise. This number is an arbitrary choice, balancing between convergence
accuracy and dynamic response. In base station results, we also show the read
average, i.e., the value the algorithms are trying to estimate.

Slow Monotonic Increase. This simulation investigates the behavior of the algo-
rithm when the values read by the sensors slowly increase. This may happen if
the sensors are measuring rainfall that is slowly increasing. Every 10 steps, the
read values of a random set of 5 nodes increase by 0.01. The results are shown
in Figures 2a–2c. LiMoSense closely follows the correct dynamically changing
average, whereas a restarting Push-Sum is unable to get close to the moving
target.

Step Function. This simulation investigates the behavior of the algorithm when
the values read by some sensors are shifted. This may occur due to a fire outbreak
in a limited area, as close-by temperature nodes suddenly read high values. At
step 2500, the read values of a random set of 10 nodes increase by 10. The results,
shown in Figures 2d–2f, demonstrate how the LiMoSense algorithm updates
immediately after the shift, whereas the periodic Push-Sum algorithm updates
at its first restart only.

Robustness. To investigate the effect of link and node failures, we construct the
following scenario. The sensors are spread in the unit square, and they have
a transmission range of 0.7 distance units. The neighbors of a sensor are the
sensors in its range. The system is run for 3000 steps, at which point, due to
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Fig. 2. (a)–(c) Creeping value change: LiMoSense promptly tracks the creeping
change, providing an accurate estimates at 95% of the nodes. (d)–(f) Response to
a step function: LiMoSense immediately reacts, quickly propagating the new values.
(g)–(i) Failure robustness: LiMoSense quickly overcomes link loss and node crash.
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battery decay, the transmission range of 10 sensors decreases by 0.99. Due to
this decay, about 7 links are lost in the entire system, and the relevant nodes
employ their removeNeighbor functions. In step 5000, a node fails, removing its
read value from the read average. Upon node failure, all its neighbors call their
removeNeighbor functions.

The results, shown in Figures 2g–2i, shows the small error caused at some
of the nodes due to the link failure. A much stronger interruption is caused by
the node failure, which actually changes the read average. While the restarting
Push-Sum algorithm is oblivious to the link failure, it is unable to recover from
the node failure until its next restart.

7 Conclusion

We presented LiMoSense, a fault-tolerant live monitoring algorithm for dynamic
sensor networks. This is the first asynchronous robust average aggregation algo-
rithm to accommodate dynamic inputs. LiMoSense employs a hybrid push/pull
gossip mechanism to dynamically track and aggregate a large collection of ever-
changing sensor reads. It overcomes message loss, node failures and recover-
ies, and dynamic network topology changes. We have proven the correctness of
LiMoSense and illustrated by simulation its ability to quickly react to network
and value changes and provide accurate information.

Acknowledgements. This work was partially supported by the Hasso-Plattner
Institute for Software Systems Engineering.
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Abstract. In network interdiction problems, evaders (e.g., hostile agents
or data packets) may be moving through a network towards targets and
we wish to choose locations for sensors in order to intercept the evaders
before they reach their destinations. The evaders might follow deter-
ministic routes or Markov chains, or they may be reactive, i.e., able to
change their routes in order to avoid sensors placed to detect them. The
challenge in such problems is to choose sensor locations economically,
balancing security gains with costs, including the inconvenience sensors
inflict upon innocent travelers. We study the objectives of 1) maximizing
the number of evaders captured when limited by a budget on sensing cost
and 2) capturing all evaders as cheaply as possible.

We give optimal sensor placement algorithms for several classes of spe-
cial graphs and hardness and approximation results for general graphs,
including for deterministic or Markov chain-based and reactive or obliv-
ious evaders. In a similar-sounding but fundamentally different problem
setting posed by [7] where both evaders and innocent travelers are re-
active, we again give optimal algorithms for special cases and hardness
and approximation results on general graphs.

1 Introduction

In network interdiction problems, one or more evaders (e.g., smugglers or terror-
ists, or hostile data packets) travel through a network, beginning at some initial
locations and attempting to reach some targets. Our goal is to stop them. We do
so by placing sensors on nodes in hopes that most or all the evaders will pass by
a sensor and thus be captured (or intercepted) before reaching their destinations.
We take as given the evader movement dynamics, which may be either deter-
ministic (each evader specified by a path from source to target) or stochastic,
e.g. each evader specified by a Markov chain whose states are the nodes of the
network. Evader ei induces a subgraph Gi ⊆ G in which she roams, according
to the probabilities specified by her Markov chain. An unreactive or oblivious
evader [10] behaves the same regardless of the choice of sensor locations (or in-
terdiction sites), and so her set of possible routes can be construed as objects we
wish to pierce.

We try to make economical use of the sensors—i.e., to balance the benefits of
security (the interdiction of many or all evaders) with the total cost (widely de-
fined) of doing so. The cost of placing a sensor at a given node can incorporate
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T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 86–100, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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the cost of the device itself, the effort or danger involved in performing the
placement, and the inconvenience it causes to any innocent travelers subjected
to it. If traffic flow estimates on the graph’s edges are known for both evaders
and innocent travelers, then it is natural to try to place sensors where they will
intercept many evaders but inconvenience few innocents. If a sensor acts as a
checkpoint, capturing the evaders but examining and then letting pass the inno-
cents, then the inconvenience cost can be incorporated directly into the node’s
sensor placement cost since placing two sensors on an innocent’s path inconve-
niences her twice. In this model we study two natural objectives: 1) maximizing
the (expected, weighted) number of evaders captured while respecting a budget
on sensing cost, and 2) capturing all evaders (with probability 1) as cheaply
as possible. In the latter case evaders may be reactive, i.e., able to observe the
sensor locations and choose a different path in Gi. Regardless, ei is guaranteed
to be captured only if her target node is separated from all her source nodes
within subgraph Gi. We solve these problems optimally in several special graph
settings and give hardness and approximation results in general settings.

Fig. 1. A bridges problem in-
stance represented as network
interdiction with three interme-
diate nodes corresponding to
bridges. An innocent begins at
node 2 and evaders begin at
nodes 1,3,4.

In contrast, allowing the innocents also to re-
act to sensor locations changes the character
of the problem significantly. In this setting we
study a special case of the problem which was
posed by Glazer & Rubinstein [7], motivated by
the following scenario: there are a collection of
bridges crossing a river, with each traveler p re-
stricted to using some set σ(p) of bridges (be-
cause of p’s preferences or geography, say), and
the task is to decide which bridges to open and
close. This can be viewed as a special case of
our network setting in which every travel path
is of length 2 but with the restriction that sen-
sors cannot be placed on a traveler’s start node
(see Fig. 1). Note that in this special case, sen-
sors can also be viewed as roadblocks, in the
sense that placing a sensor on a node effectively
means deleting the node from the network for evader and innocent alike.

This change yields a setting in which the problem instance is specified by a
set system with real-valued elements that may be either positive or negative,
corresponding to the value or cost (respectively) of capturing evaders or block-
ing innocents. Several possible objective functions could be considered, such
as capturing all evaders while blocking as few innocents as possible or cap-
turing as many evaders as possible given a budget allowing a certain number of
blocked innocents. Unfortunately, the former is precisely the Red-Blue Set Cover
problem, which is “strongly inapproximable” (hard to approximate with factor

Ω(2log
1−ε

m) for any ε > 0 (where m is the number of sets, or bridges) unless
NP ⊆ DTIME(mpolylog(m))) [20]; the latter turns out to be harder still (see
Appendix B). Instead, we next study objectives suggested by [7] that combine
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the two goals into a single score, where captured (i.e. unsuccessful) innocents and
uncaptured (i.e. successful) evaders can be construed as false positives (FP ) and
false negatives (FN), respectively: maximize the “net flow” (TN−FN) or min-
imize the total errors (FP + FN). Although the TN − FN model turns out
to be hard to approximate with factor n1−ε (once again, see Appendix B), we
obtain nontrivial approximation results for the FP + FN setting.

Contributions. With oblivious evaders and innocents, we solve the budgeted
problem optimally in path and cycle graphs. With oblivious innocents (and
evaders either oblivious or not), we solve the full interdiction problem opti-
mally in paths, cycles, and trees. (In the edge sensor model, full interdiction is
2-approximable, which is the optimal approximation factor assuming UGC.)

In general graphs, we give hardness results including showing that the bud-
geted problem is NP-hard with even one Markovian evader, strengthening the
hardness result of [8] which held only for two or more such evaders. In contrast,
we show that full interdiction with a single evader is in P. With m possible
evader paths, the problem is Hm-approximable (where Hm =

∑m
i=1

1
i ), which is

essentially optimal, given certain complexity-theoretic assumptions.
When both evaders and innocents are reactive, we optimally solve a special

case in which the graph and travelers’ sets of paths can be represented by bridges
and convex bridge sets, respectively. We also show that FP+FN is approximable
with factor one plus the maximum size of any innocent’s bridge set.

Due to space limitations, a number of proofs appear in Appendix A.

Related Work. The problems analyzed here belong to a large class of discrete
optimization problems, collectively termed Network Interdiction [16, 2, 19, 9].
They are motivated by applications such as supply chains, electronic sensing,
and counter-terrorism and relate to classical optimization problems like Set
Cover and Max Coverage. Our setting of budgeted interdiction with determin-
istic evaders on the path graph can be solved by a complicated algorithm given
by [17], but we present a much simpler algorithm. Recent work on Set Cover
with submodular costs [15, 12] applies to some of our settings. Previous work
on the Unreactive Markovian Evader (UME) interdiction problem (maximiz-
ing the expected number of Markov chain-based evaders captured with B sen-
sors) showed that it is already NP-hard with just two evaders [8] and that it
is e

e−1 -approximable by the natural greedy algorithm [10], which is the optimal
approximation factor (we prove this for completeness in Proposition 4).

Other evader models have been studied such as the Most Vital Nodes Problem,
in which the task is to delete a set of nodes in order to maximize the weight of
the shortest path from source to destination [2, 1] or to decrease the maximum
flow [11,21], both of which could be construed as frustrating an evader’s progress.
Such evaders are reactive in the sense that the routes they take are modified based
on the set of available edges or nodes. In [9], an intermediate model was studied
in which the evader follows a parametrized generalization of shortest path and
random walk.
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The Bridges problem was introduced by Glazer & Rubinstein [7] in an eco-
nomics context, primarily motivated in terms of strategies for a listener to accept
good arguments and reject bad arguments. In this setting, (positive/negative)
states correspond to (positive/negative) people and allowing oneself to be
persuaded by a statement corresponds to opening a bridge.

2 Preliminaries

Given is a graph G(V,E) with |V | = n unless otherwise noted, used by travelers
(or people) of two types: evaders (or bads) and innocents (or goods). (These
terms are used interchangeably.) Each person p can travel within some subgraph
Gp ⊆ G. Depending on the setting, sensors can be placed on nodes or edges
to capture the flow passing through. A user p’s Markov chain determines the
probability weight fp,v of p’s traffic through each node v. If oblivious, p is unable
to shift her flow fp,v from the path going through v to some other path, so
placing a sensor at v captures all of fp,v (or at least whatever portion of it was
not captured upstream). In some settings we assume all innocents, all evaders,
or both are oblivious, as discussed below.

We emphasize that reactive indicates a two-stage setting in which all the
sensors are placed and then p can choose an unblocked path in Gp if one exists.
Sensors are not deployed in sequence over time.We also emphasize that person p
is restricted to subgraph Gp regardless of whether p is oblivious or reactive, an
evader or an innocent.

Edge and Node Interdiction. In edge interdiction, sensors are installed on
edges and are represented by a matrix of decision variables r: ruv = 1 if (u, v)
has a sensor placed at it (with cost cuv) and 0 otherwise. If an evader crosses
an edge with a sensor she is detected with probability 1. In node interdiction,
placing a sensor on node u (with cost cu) means setting ruv = 1 for every edge
(u, v), that is, interdicting all evaders leaving u). A sensor on a target node does
not protect that node itself but will stop evaders as they pass through it.

The node and edge settings are equivalent in general, directed graphs with
location-varying costs, in the sense that a problem in one setting can be trans-
formed into the other [10]. Although the UME model is defined for convenience in
terms of edge interdiction, unless otherwise stated we assume node interdiction.

Oblivious Evaders. An evader is specified in terms of the probabilities of her
taking various routes, where a route is a walk (possibly containing cycles) ending
at a target node. A Markovian evader is represented by a Markov chain given by
an initial source distribution a over nodes and a transition probability matrixM.
The matrix M has the property that a specified target node t is an absorbing
state: upon reaching t the evader is removed from the network. Under mild
restrictions on the Markov chain such as this, the probability of capturing the
evader can be expressed in closed form [10]:

J(a,M, r) = 1−
(
a [I− (M−M r)]

−1
)
t

(1)
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where the symbol  indicates element-wise (Hadamard) multiplication. This
formulation generalizes to a setting of multiple simultaneous evaders, each re-
alized with probability we, or equivalently having weight wi representing the
importance of capturing her. The probability of capturing ei is denoted by Ji(r).

Definition 1. An evader ei is specified by a (Mi, ai) pair. Evader ei is deter-
ministic if from each of her possible starting nodes, Mi specifies a single next
node with probability 1, and is nondeterministic otherwise. In both cases, ai may
specify multiple starting points with positive probability.

Budgeted Interdiction (BI). The BI objective is to capture as many evaders
as possible, given a budget on sensors. More precisely, suppose we have a bound
on the number of nodes we can monitor (or on their total cost, with costs always
scaled to be integral). Any choice of some subset of nodes to observe deter-
mines a probability that a given evader will be captured (i.e., that she will pass
through at least one observed node) prior to reaching her target t. The task in
Budgeted Interdiction is to maximize the expected (weighted) number of evaders
interdicted, subject to a budget B on sensor costs:

maximize
∑
i

wiJi(r) such that
∑
u

rucu ≤ B

Full Interdiction (FI). This problem seeks a minimum-cost set of nodes to
observe in order to capture all evaders (denoted by D) with probability one.

minimize
∑
u

rucu such that
∑
i

Ji(r) = |D|

Reactive Evaders and Innocents. In this setting both types of travelers are
reactive, which means a traveler is captured only if all her paths within Gp from
source nodes to target node have received a sensor placed on some node prior
to the target. Let ŵp indicate the cost of having person p succeed, which is
negative if p is good, and let binary variables xp = 1 indicate p’s success and
ys = 1 indicate that bridge s is open. Let N indicate the goods and D the bads.
Then in the following formulation of the Bridges Problem the constraints code
for the requirement that xp = maxs∈σ(p) ys, i.e., traveler p can cross iff at least
one of her bridges is open, and the objective is to minimize the sum of errors
(failed goods + successful bads).

minimize
∑

p∈D

ŵpxp+
∑

p∈N

ŵp(1−xp) such that xp ≤
∑

s∈σ(p)

ys ∀p and xp ≥ ys ∀p,∀s ∈ σ(p)

Let TP, FP, TN, FN indicate the weighted numbers of true positives (bads
failing to cross), false positives (goods failing), true negatives (goods succeeding),
and false negatives (bads succeeding), respectively. We focus on the objective of
minimizing FP + FN , in the problem setting in which each traveler’s path
from source to target passes through exactly one other node, a bridge. Since the
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bridges are the decision points, with closed corresponding to receiving a sensor
and open corresponding to not, in this problem we use n to denote the number
of bridges. The problem setting as defined generalizes to graphs in the roadblock
model by replacing each bridge set σ(p) with a set of paths to some target node.
A traveler p (either bad or good) is then captured if her target is disconnected
from all her starting nodes in Gp as for evaders before (where placing a sensor
on a node means deleting it), and otherwise inflicts cost ŵp. Since each path
is essentially a single edge, sensors can (as mentioned above) be thought of as
either checkpoints or roadblocks.

3 Oblivious Innocents and Evaders Oblivious or Not

3.1 Paths, Trees, and Cycles

In this section we consider the Budgeted (BI) and Full Interdiction (FI) problems
where the graph G (on n nodes) is one of several special topologies.

Definition 2. In a path graph P with nodes numbered 1 through n, an interval
[x, y] indicates the sequence of nodes numbered x through y (with x ≤ y) the inter-
val’s startpoint and endpoint, respectively. Half-open intervals [x, y) = [x, y− 1]
and (x, y] = [x + 1, y] are defined similarly. For nodes x, y we write x < y to
indicate that x precedes y in P . Similarly, in a tree T , an interval [x, y] is the
sequence of nodes lying on the path in T from x to y. A node v pierces interval
[x, y] if v ∈ [x, y]. An interval sequence is a set of intervals that can be ordered
so that each interval is strictly contained by the previous one. All the intervals in
a suffix sequence share the same endpoint; all the intervals in a prefix sequence
share the same start point.

The budgeted problem is solvable in polynomial time as we show below. It will
follow that FI is also solvable by searching for the smallest budget B that permits
full interdiction. The problem can be solved more efficiently, however.

Theorem 1. When cv = 1 ∀v, Full Interdiction is optimally solvable in
O(n log n) time on paths.

We then obtain the following.

Theorem 2. When cv = 1 ∀v, Full Interdiction is optimally solvable in O(n3)
time on trees.

Proof. The O(n2) intervals are now paths in the tree, whose intersection graph
(constructable in O(n3)) is a chordal graph, on which Minimum Clique Cover
can also be solved in linear time [6]. 
�

For the setting of edge sensors, Full Interdiction is closely related to the Minimum
Directed Multicut (MDM) problem, in which the task is to find a minimum cut
that separates each of k source-sink pairs (si, ti).
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Proposition 1. In the edge interdiction setting, Full Interdiction is 2-
approximable on trees, which is the optimal factor (assuming the Unique Games
Conjecture [14]).

Proof. When restricted to an underlying tree graph, the Full Interdiction
problem is identical to Directed Multicut. 
�

Definition 3. For a possible route r traveled by some evader, let Vr indicate the
nodes visited along route r before reaching its target, or the route set of r. Let
m be the number of distinct route sets among all evaders.

Note that multiple distinct routes can give rise to the same route set, and that
a route set in a path graph is always an interval with an end point at the target
node. We now turn to Budgeted Interdiction.

Theorem 3. Let m be the total number of different evader route sets. Bud-
geted Interdiction with deterministic evaders and (integer) budget B is optimally
solvable on the path graph in time O(Bnm) = O(Bn3).

Proof. We give a dynamic programming solution in Algorithm 1. We compute
an optimal solution using a table opt[�, v̂, b] that stores the optimal solution
restricted to the � left-most intervals, nodes 1...v̂ and budget b. We first compute
the value of node v restricted to the first � intervals, i.e., val[�, v] is the sum of
the weights of those intervals when the only sensor is node v. Each subproblem
solution is computed in constant time: given inputs �, v, b, if v is not chosen,
then the optimal solution value is the same as inputs �, v − 1, b; if v is chosen,
then the optimal solution value is the value of choosing v in this situation, plus
optimal solution on the intervals lying to the left of v, using the first v− 1 nodes
and a budget of b− cv (or 0 if b− cv < 0).

Proof of correctness is by induction: if node v is chosen, then due to the linear
ordering, nodes prior to v only contribute to piercing intervals 1 through pr(v).
Note that correctness holds also when interval weights may be negative. 
�

The case of nondeterministic evaders is more complicated since, as noted above,
it gives rise to sequences of suffix intervals and sequences of prefix intervals.
For each such sequence corresponding to a single nondeterministic evader, the
computation of val[�, v] will be based on all the intervals in the sequence that
v pierces. More precisely, let {[1, t), [2, t), ..., [s, t)} be a suffix sequence for some
nondeterministic evader ei with source s and target t. For each node v < t there
is some probability pv that placing a sensor at node v suffices for capturing ei.
Namely, pv is 1 for any v ∈ [s, t), while for each node v < s the probability pv
can be computed based on the Markov chain of ei, that is, just the probability
that her Markov chain visits v and is computed as follows. For ei’s Markov chain
(a,M), let M−v denote a transition matrix where row v has been replaced by

zeros, i.e. the chain with v as a killing state. Then pv =
(
a [I−M−v]

−1
)
v
.

For each interval in the sequence, we now define a marginal probability p̂v
as follows: p̂1 = p1; p̂v = pv − pv−1 for 1 < v ≤ s, and p̂v = 1 − ps−1 for
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Algorithm 1. Budgeted Interdiction DP for Evaders on the Path Graph

1: sort the O(n2) intervals by right endpoint
2: pr[v] = index of the last interval lying before node v, or 0 if none for every v
3: val[	, v] = value of node v, restricted to intervals 1 to 	, for every v, 	
4: opt[0, v, b] = 0 for every v, b
5: opt[	, 0, b] = 0 for every 	, b
6: opt[	, v, 0] = 0 for every 	, v
7: for b = 1 to B do
8: for 	 = 1 to m do
9: for v = 1 to n do
10: opt[	, v, b] = max{opt[	, v− 1, b], val[	, v] + opt[pr[v], v− 1,max(0, b− cv)]}
11: end for
12: end for
13: end for
14: return opt[m,n,B]

s ≤ v < t. By construction, the p̂v values for all intervals containing a given
node u will sum to exactly the probability of evader ei reaching node u, and
hence of such a sensor placement sufficing to capture evader ei. (The values
labeling the intervals in Fig. 2 are the marginal probabilities, weighted by the
probability of choosing their starting points.) Marginal probabilities are assigned
to prefix intervals similarly. Therefore the value of a set of sensor locations for a
given instance of the problem with nondeterministic evaders is exactly the value
of those locations for the resulting problem instance with interval sequences
of deterministic evaders; that is, the nondeterministic problem reduces to the
deterministic problem (albeit with up to a factor n more intervals). Thus we
have the following.

Theorem 4. Budgeted Interdiction with nondeterministic evaders is optimally
solvable on the path graph, in time O(Bn2m) = O(Bn4).

These problems can also be solved on the cycle by reduction to path graphs.

Theorem 5. Full Interdiction is optimally solvable in O(n2) time on the cycle
graph. Budgeted Interdiction with deterministic or nondeterministic evaders and
budget B is optimally solvable on the cycle graph in time O(Bn4) or O(Bn5),
respectively.

Proof. For the minimization problem, we reduce to a collection of n path graph
instances, corresponding to n ways to “cut” the cycle graph, as follows. For each
node v ∈ V , consider placing a sensor at node v. It will pierce some set of inter-
vals, with the effect that none of the remaining intervals to pierce include node
v, yielding a path graph instance with nodes v + 1, ..., n, 1, ..., v − 1. Solve each
resulting path graph instance in linear time, and return the cheapest solution
(combined with v). The budgeted problems are solved by a similar reduction. 
�

The process can be generalized to arbitrary graphs containing c cycles, though
at a cost of O(nc): find all the cycles [13] and then explore all possible cuts.
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3.2 General Graphs

We show in Appendix A that Budgeted Interdiction (BI) is hard already with
one Markovian evader. This improves on the result in [8] which held for two or
more evaders.

Theorem 6. Budgeted Interdiction is NP-hard even with a single Markovian
evader.

It follows from the hardness proof of [8] that Full Interdiction is NP-hard with
2 evaders. It does not remain hard when limited to a single evader, however.

Theorem 7. Full Interdiction with one evader is solvable in polynomial time.

We now turn to approximation algorithms for the general setting, by relating
interdiction to the Set Cover and Maximum Coverage problems. It was shown in
[10] that weighted Budgeted Interdiction with any number of Markovian evaders
is 1-1/e-approximable, which is the optimal factor (see Appendix B).

Identifying nodes and route sets with elements and sets in the Hitting Set
problem yields a reversible reduction, and hence the following immediately
resulrs:

Corollary 1. Full Interdiction is hard to approximate with factor (1 − ε) lnm
for any ε > 0, assuming NP ⊆ DTIME(mO(log logm)) but can be approximated
with factor Hm in time polynomial in n+m.

Proof. We reduce from Set Cover, as in [10], creating a node for each set and a
route set (with a corresponding deterministic evader) for each element. 
�

4 Reactive Innocents and the Bridges Problem

Since maximizing the “net flow” TN − FN [7] turns out to be as hard to ap-
proximate as Maximum Independent Set (see Appendix B), we focus primarily
on the the min-error FP + FN setting. A geometric or “convex” version of the
min-error problem is optimally solvable, however. Since the two objective func-
tions differ only by a constant and a negation (TN − FN = (wN − FP )− FN ,
where wN indicates the total value of all goods), the same holds for the net flow
problem.

4.1 Convex Bridge Sets

Definition 4. An instance of the Bridges Problem is convex if the bridges can
be ordered so that if two bridges x and y are accessible to a person p then any
bridge z with x < z < y is accessible to p as well.

The problem example shown in Figure 1 in the introduction is convex.We assume
that the indices of people are sorted in order of their positions from left to right
and the bridge indices are sorted in order of their rightmost accessing person.
This setting can be solved by mapping it to Budgeted Interdiction on the path
graph and adaptating Algorithm 1.
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Corollary 2. The convex Bridges problem is solvable in time O(n|N | + n|D|)
= O(n3).

Proof. Given a Bridges problem instance (say in the min-error formulation), we
introduce a Budgeted Interdiction instance (with budget arbitrarily large) as
follows. Each of the bridges is identified with a node on the path graph. For
each traveler p we define an evader p on the interval Ip, where Ip are all bridges
available to p. This produces |N |+ |D| ≤ n(n− 1) distinct intervals. The weight
of evader p is set to negation of the traveler’s cost: wp = −ŵp.

The formulations are now equivalent: in the Bridges Problem, a traveler suc-
ceeds iff one or more of her bridges is open; in BI, an evader is interdicted iff
one or more of the nodes in her interval is interdicted by a sensor.

Then we pass the instance to an adaptation of Algorithm 1: we remove the
budget dimension from the dynamic programming table and also remove the
outer loop iterating over budget values, saving a factor of O(b) in running time.
The resulting algorithm computes an optimal interdiction solution. (Recall that
Algorithm 1 supports intervals with weights both positive and negative.) Given
this solution, we then solve the Bridges problem by openning a bridge iff the
corresponding node has a sensor placed at it. 
�

4.2 The Min-error FP + FN Setting

NP-hardness of optimally solving the min-error setting follows from the hard-
ness of the net-flow setting: maximizing TN − FN is the same as minimizing
FN − TN = FN − (|N | − FP ) = FP + FN − |N |. The hardness of approxi-
mation properties, however, are not the same. In fact, the min-error problem
is precisely the Positive-Negative Partial Set Cover Problem [18], which, as
a generalization of Red-Blue Set Cover, is strongly inapproximable (hard to

approximate with factor Ω(2log
1−ε

m)) (where m is the number of sets) unless
NP ⊆ DTIME(mpolylog(m)) though approximable with factor 2

√
(m+ π) log π,

where π is the number of goods.
Glazer & Rubinstein define what we will call a claw as an object c consisting

of a good gc and minimal set of bads Bc such that for each bridge s ∈ σ(gc), s is
also in σ(bi) for some bad bi ∈ Bc, which means that in any consistent solution,
either gc must fail or at least one bi must succeed. They show that this is also
a sufficient condition for being a valid solution, and hence obtain a Set Cover
problem: for each claw, choose a person to err on, with minimum total error
cost over all claws. Unfortunately, this instance in general has exponentially
many constraints (since for each good g with bridge set σ(g), each of whose
bridges admit some number bads(s) of bads, there will be |C| = Πs∈σgbads(s)
many claws), and so the O(log |C|) approximability of set cover becomes trivially
weak. We therefore modify the definition of claw slightly as follows.

Definition 5. A claw is an object c consisting of a good gc and, for each bridge
si ∈ σ(gc) the set b ∈ σ−1(si) of all the bads who can use bridge si.
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Each claw c therefore imposes the following constraint: in any valid solution,
either gc must fail or all the bads in σ−1(si) for some si ∈ σ(gc) must succeed.
Given c, let a kill move be the action of killing gc; let an open bridge move be
the action of opening some bridge si. Now we can interpret this problem as an
instance of Submodular Cost Set Cover [15, 12] in which the elements are claws
and there are two kinds of sets. For each possible kill move mg, introduce a set
Mg = {g}; for each possible open bridge move mi, introduce a set Mi consisting
of all the claws that opening bridge i would satisfy. There are N elements (claws)
and N +m sets (moves).

Theorem 8. The general FP + FN Bridges problem is (1 + maxg∈N |σ(g)|)-
approximable.
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A Proofs

Proof (of Theorem 1). Consider an evader ei with start nodes Si and a target
node ti. We must capture evader ei in the case of each starting point s ∈ Si

before she reaches node ti. Node s lies either to the left or right of ti, assume
to the left, i.e., s < ti (e.g., node 3 in Fig. 2). Evader ei may (probabilistically)
move to the left before returning right, and so a sensor placed to the left of s may
capture the evader with positive probability. For capturing ei with probability 1,
however, it is necessary and sufficient to place a sensor somewhere in the interval
[s, ti) ([3, 6) for the first evader e1 in Fig. 2).

Each starting point s of evader ei will correspond to an interval [s, ti) or
interval (ti, s], depending on the relative location of s to ti. Each such interval
must be pierced. Intervals of the former kind (with the evader approaching the
target from the left) will form a sequences of suffix intervals; intervals of the
latter kind (with the evader is approaching from the right) will form a sequence
of prefix intervals. In the worst case, it could be necessary to consider m =
O(n2) intervals because each interval may be traversed with positive probability
by some evader. It suffices to consider each evader’s smallest left interval and
smallest right interval ([3, 6) and (6, 8] for e1 in Fig. 2)), since each such interval
is contained within all others in the sequence. We build an interval graph H
by associating a node with each smallest interval (each of which can be found
in time O(log n) by binary search) and placing an undirected edge for any two
smallest intervals that intersect. Because the cost of piercing any interval is
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Fig. 2. An instance with two evaders in the graph P12, one traveling from nodes 3 and
8 to 6, and one traveling from nodes 3 and 11 to 9

cv = 1, and because each intersection of intervals corresponds to a clique of H ,
Full Interdiction is equivalent to Minimum Clique Cover on H . The latter is
solvable in linear time on the interval graph (plus time for sorting) [3]. 
�

Proof (of Theorem 6). We reduce from Vertex Cover (VC) to the decision prob-
lem of determining whether the interdiction probability J can be raised to a
certain threshold using at most B sensors. Given a VC problem instance, i.e., a
graph G on n nodes and an integer B, we construct a network interdiction (NI)
instance with a Markovian evader on a graph G′. The graph G′ extends graph
G by adding a target node t, which is made adjacent to all other nodes. We
define the evader e thus. Each node corresponds to a state of its Markov chain.
All non-target nodes are equally likely to be chosen as e’s start node. When at a
given node v, e moves to the target t with probability 50%; otherwise, e moves
to one of v’s other neighbors, chosen uniformly at random.

For a particular solution, let the profit for a node be the probability of inter-
diction if the evader starts at that node. We will now show that the VC instance
admits a vertex cover of size B iff the NI instance admits a size-B solution of
profit at least B + (n − B)/2. Note that an overall interdiction probability of
(n+B)

2n is the same as a total profit of (n+B)/2 = B+(n−B)/2 over all nodes.
First assume there is a size-B vertex cover C of G. Then an NI solution with

sensors placed at all the nodes in C will have profit B+ (n−B)
2 : 1 for each of the

B nodes in C plus 1/2 for each of the remaining n−B nodes, since for any node
v not in C, all v’s neighbors in G must be in C.

Now assume there is no size-B vertex cover, and consider a set S of B nodes,
a set which must fail to cover some edge. Again for each of the B nodes in S we
have profit 1. Every other node v will have profit at most 1/2, since without its
own sensor, an evader starting at v goes directly to t with probability 1/2. But
now consider an edge (u, v) that is left uncovered by S. The evasion probability
when starting at u is greater than 1/2—at least 1/2 + 1/(4 deg(G))—since if e
reaches node v, it now has a second chance to move to t, and so the profit of u is
less than 1/2. Therefore the total profit is strictly less than B + (n−B)/2. 
�

Proof (of Theorem 7). We solve the problem by reducing to a Min Cut problem.
Given a set of routes specifying the evader’s behavior, we introduce a source
node s pointing to all start nodes of its Markov chain. All edges that the evader
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has zero probability of reaching and crossing are removed from the graph G. Any
unreachable nodes are also removed. Now, in order to interdict the evader before
they reach t, we must delete vertices in order to separate s from t in G. It is
well known that this Min Vertex Cut problem can be solved in polynomial time,
by reduction to Directed Min Cut, as follows [4]. First replace any undirected
edge with a pair of directed edges. Then replace each node v (other than s or t)
with a pair of nodes and directed edge (va, vb), where each edge directed to v is
now directed to va and each edge directed from v is now directed from vb. We
compute a Min Cut on the resulting graph G′. If any edge is chosen that does not
correspond to a node in G, we can substitute one of the edges corresponding to
its two vertices (if one of these is the target, then the non-target node is chosen).
The resulting modified Min Cut solution to G′ will correspond to a Min Vertex
Cut solution to G, and moreover to a Full Interdiction solution. 
�

Proof (of Theorem 8). First we claim that the cost of a set of moves is sub-
modular. Indeed, the cost of each kill move is simply the additive cost of the
specified good failing; the marginal cost of an open bridge move is monotoni-
cally decreasing since it is based on the number of additional bads that opening
the bridge then allows to succeed. Second we claim that the value of the total
error of the Bridge solution returned is at most the cost of the moves chosen.
Indeed, first, the only time bridges are opened is during bridge moves, and so
the total cost of bads succeeding is at most the cost of the open bridge moves;
second, when bridges are closed at the end, all constraints have been handled,
and so the failures of all goods have already been “paid for”, in the cost of the
kill moves. Therefore the algorithms of [15, 12] apply, which provide a solution
with approximation factor f , which is the maximum number of sets that any
element appears in. In the constructed set cover instance, f translates into 1
plus maxg∈N |σ(g)|. 
�

B Other Hardness Results

The following two results are approximation-preserving reductions from the Max-
imum Independent Set (MIS) problem, which is hard to approximate with factor
n1−ε (where |V | = n) for any ε > 0 [22]. A MIS instance consists of a graph
G = (V,E) and a positive integer k.

Proposition 2. The Bridges problem variant in which the goal is to maximize
TN subject to a bound on FN is NP-hard to approximate with factor n1−ε.

Proof. In our reduction, each vertex v becomes a bridge sv and a bad bv who
can cross only sv. Each edge (u, v) becomes k+1 goods who can cross bridges su
and sv. The bound on FN is set to k, which prevents any two goods connected
by an edge from both failing. 
�

Proposition 3. The net-flow TN − FN setting of the Bridges problem is
NP-hard to approximate with factor n1−ε.



100 M.P. Johnson and A. Gutfraind

Proof. Omitted due to lack of space. 
�

Proposition 4. The Budgeted Interdiction problem in NP-hard to approximate
within factor 1− 1/e− ε for any ε > 0.

Proof. We reduce from Maximum Coverage, which has the stated hardness
property [5].

Given is a family of subsets Si of a ground set U = {e1, ..., en}. The task
is to choose k subsets whose union is of maximum cardinality. For each set
Si we introduce a corresponding node vi. For each element ej we introduce a
corresponding evader whose Markov chain takes it deterministically (in some
arbitrary order) through all the nodes corresponding to sets containing ej and
thence to a special target node. Then a selection of sets covering evader paths is
equivalent to a selection of sets covering elements, with exactly the same solution
value. 
�
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Abstract. Network localization is important for networks with no prefixed posi-
tions of network nodes such as sensor networks. We are given a subset of the set
of
(

n
2

)
pairwise distances among n sensors in some Euclidean space. We want to

determine the positions of each sensors from the (partial) distance information.
The input can be seen as an edge weighted graph. In this paper, we present some
efficient algorithms that solve this problem using the structures of input graphs,
which we call the cores of them. For instance, we present a polynomial-time
algorithm solving the network localization problem for graphs with connected
dominating sets of bounded size. This algorithm allows us to have an FPT algo-
rithm for some restricted instances such as graphs with connected vertex covers
of bounded size.

Keywords: Network localization, Point set reconstruction, Weighted graph
embedding, Graph turnpike problem, Chordal graph, Connected dominating set.

1 Introduction

Nowadays sensor networks are used for many important practical applications such as
monitoring environmental data (see e.g. [9,26]). Since the nodes in a sensor network do
not have physical access to each other, sometimes we should construct it without pre-
fixed positions of the nodes even if it is not a dynamic ad-hoc network; that is, the nodes
are not moving. For example, assume that we want to monitor some contaminated en-
vironment. It is not possible to put a sensor node manually at a prefixed position since
the area is contaminated. Thus we use some flying devices like unmanned helicopters
to drop sensor nodes from high altitude. After that we can collect data by crawling the
area by the same flying device. Using unmanned aerial vehicles has become a common
technique in practical sensor networking [6]. To analyze the contaminated area in detail,
it is useful to have spatial data of the nodes. With spatial information, we can decide
which area is contaminated and which area is not. The problem to determine the posi-
tions of each node in network is the network localization problem [2]. Equipping each
node with a GPS (Global Positioning System) device might be an answer. However,
it would be too expensive and impractical if the number of nodes is large. Instead of
equipping GPS devices, we consider the following setting:

– each node can communicate with some other nodes;
– if two nodes communicate, then they can measure the distance between them;
– the central device (e.g. a helicopter) collects the distance information with IDs.

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 101–114, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



102 M. Li, Y. Otachi, and T. Tokuyama

The localization problem of this setting is formalized by using graphs as follows.

Problem: Weighted Graph Embeddability in d-space (WGEd)
Instance: A graph G with nonnegative weights we ≥ 0 on each edge e ∈ E(G).
Question: Is there a mapping f : V(G) → Rd such that wuv = dist( f (u), f (v)) for each

uv ∈ E(G), where dist( f (u), f (v)) is the Euclidean distance between f (u) and f (v)?
(We call such a mapping f a d-embedding of G.)

Unfortunately, WGEd is known to be strongly NP-hard in general and weakly NP-hard
for cycles.

Theorem 1.1 (Saxe [24], Feder and Motwani [12]). For every positive integer d,
WGEd is NP-hard even if every edge has weight one or two. Furthermore, WGE1 is
weakly NP-complete even for cycles.

Theorem 1.1 implies that a partial distance matrix corresponding to a graph is not al-
ways helpful to decide the embeddability. Therefore, it is an interesting problem to ask
which graphs (and which d) provide a sufficient condition for designing an efficient
algorithm for deciding embeddability. This paper gives an initial work for this direc-
tion of research. Considering Theorem 1.1, we have the following natural questions:
(1) If there is no long cycle without a chord, does the problem remain hard? (2) Is the
complexity of the problem monotone with respect to the dimension d of the embed-
ded space? (3) If there is a dominating set S for which the embedding can be uniquely
determined or the number of possible embeddings is small enough, can we design an
efficient algorithm for the reconstruction (this corresponds to the problem in surveying
engineering)? We answer each of these questions. Namely, we give polynomial-time al-
gorithms to solve WGEd for chordal graphs (d ≥ 1), for cycles (d ≥ 2), and for graphs
with small connected dominating sets (d = 1). Our results with Theorem 1.1 give an
evidence of that the complexities of the problem in lower- and higher-dimensions are
incomparable in general. We also consider a variant of the problem defined by Feder
and Motwani [12], in which two distinct points cannot have the same position.

We assume a computational model used by Saxe [25] in which real numbers are
primitive data objects on which exact arithmetic operations (including comparisons and
extraction of square roots) can be performed in constant time.

2 Preliminaries

All graphs in this paper are finite, undirected, edge-weighted, and without self-loops
and parallel edges. We denote the vertex set and the edge set of a graph G by V(G) and
E(G), respectively. A graph is connected if it has a path between each pair of vertices.

A graph H is a subgraph of G, if V(H) ⊆ V(G) and E(H) ⊆ E(G). A subgraph H of
G is induced with V(H) if E(H) = E(G)∩

(
V(H)

2

)
. A graph G is chordal if every induced

cycle of G is of length three [15].
A vertex set S ⊆ V(G) is a dominating set of G, if each vertex in V(G) \ S has a

neighbor in S . A vertex set S ⊆ V(G) is a p-dominating set if every vertex in V(G) \ S
has at least p neighbors in S . For example, in K3 any two vertices form a 2-dominating
set. A vertex set S ⊆ V(G) is a vertex cover of G, if every edge of G has an end in
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Connected Dominating Set Connected Vertex Cover

Fig. 1. A connected dominating set and a connected vertex cover

S . From the definitions, it is easy to see that if a graph G has no isolated vertex, then
any vertex cover of a graph G is a dominating set of G. A dominating set (a vertex
cover) S is a connected dominating set (a connected vertex cover, respectively) if G[S ]
is connected (see Fig. 1).

Feder and Motwani [12] studied th problem Graph Turnpike (GT), which is equiva-
lent to the problem WGE1. They also studied the following variant of GT in which two
distinct points are not allowed to have the same position.

Problem: Graph Turnpike with Distinctness (GTwD)
Instance: A graph G with nonnegative weights we ≥ 0 on each edge e ∈ E(G).
Question: Is there a mapping f : V(G) → R such that f (u) � f (v) for u � v, and

wuv = | f (u) − f (v)| for each uv ∈ E(G)?

They showed that this variant is also weakly NP-hard for cycles [12]. Obviously, GTwD
can be generalized to higher-dimensions. We call a variant of WGEd, in which two
distinct points must have different positions, WGEd with Distinctness (WGEdwD).

3 The Length of Longest Induced Cycles and the Dimension of
Spaces

In this section, we present answers to the following questions in Introduction.

1. If there is no long cycle without a chord, does the problem remains hard?
2. Is the complexity of the problem monotone with respect to the dimension d of the

embedded space?

The first question is natural since no NP-hardness is known for the graphs of bounded
length of induced cycles (this can be seen by carefully reading the proofs in [24,12]).
We shall prove that if the length of every induced cycle is no more than three, then
the problems WGEd and WGEdwD can be solved in polynomial time for any d. To
answer the second question, we consider the problem for cycles in d-space with d ≥ 2.
It turns out that the problem is hard for cycles only if d = 1. Thus the case d = 1 is
somewhat exceptional for them. We first show the easier result on cycles and then prove
the tractability for chordal graphs.

3.1 Cycles in Higher-Dimensional Spaces

As we mentioned, it is known that WGE1 is NP-complete on cycles. Here, we shall
show that for d ≥ 2, WGEd can be solved in linear time for cycles.
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Fig. 2. Reducing a cycle

Theorem 3.1. If d ≥ 2, then WGEd is solvable in linear time for cycles

Proof. Let C be a cycle with n vertices v1, v2, . . . , vn and edges v1v2, . . . , vn−1vn, vnv1.
For the sake of simplicity, we denote wvivi+1 by wi for 1 ≤ i ≤ n (with wn = wvnv1 ).
Let W =

∑
1≤i≤n wi. If there exists an index i such that wi > W/2, then C has no d-

embedding for any positive integer d. We shall prove that C is 2-embeddable (and thus
d-embeddable for d ≥ 2) if wi ≤ W/2 for 1 ≤ i ≤ n.

We proceed by an induction on n. If n ≤ 3, then it is trivially true. Assume that n ≥ 4
and the statement is true for any cycle with less than n vertices. Now there exists an
index i such that wi+wi+1 ≤ W/2, since otherwise 2W =

∑n
i=1(wi+wi+1) > nW/2 which

implies n < 4. Let i be an index such that wi + wi+1 ≤ W/2. By the following steps, we
derive the new cycle C′ (see Fig. 2):

1. remove the edges vivi+1 and vi+1vi+2;
2. remove the vertex vi+1;
3. add the edge vivi+2 with the weight wi + wi+1.

Then C′ has a 2-embedding from the induction hypothesis. From a 2-embedding f
of C′, we can derive a 2-embedding of C by mapping vi+1 on a suitable point on the
segment between f (vi) and f (vi+2).

From the above observations, it follows that for d ≥ 2, C is d-embeddable if and only
if wi ≤ W/2 for 1 ≤ i ≤ n. This characterization can be verified in linear time, and thus
the theorem holds. ��

3.2 Polynomial-Time Algorithm for WGEd on Chordal Graphs

Next we prove that WGEd on chordal graphs can be solved in polynomial time for
every fixed positive integer d. To this end, we need some definitions.

A separator of a graph G is a vertex set S ⊆ V(G) such that there exist two vertices
of G that are connected in G but not in G − S . A separator of a graph G is a clique
separator if it induces a complete graph in G. A vertex v of G is simplicial if NG(v)
induces a complete graph. Let G be an n-vertex graph and v1, v2, . . . , vn be an ordering
of V(G). For 1 ≤ i ≤ n, we define Gi to be the subgraph of G induced by {vi, vi+1, . . . , vn}.
Then the ordering v1, v2, . . . , vn is a perfect elimination ordering if for 1 ≤ i ≤ n, the
vertex vi is simplicial in the graph Gi. Note that NGi (vi) is a clique separator of Gi.

It is well known that chordal graphs are characterized by perfect elimination order-
ing, and a perfect elimination ordering of a chordal graph can be found in linear time.
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Theorem 3.2 (Fulkerson and Gross [13]). A graph G is chordal if and only if G has
a perfect elimination ordering.

Theorem 3.3 (Rose, Tarjan, and Lueker [23] and Tarjan and Yannakakis [27]). A
perfect elimination ordering of a chordal graph can be found in linear time.

Saxe [25] showed that if a graph is a complete graph, then WGEd on it is easy and its
d-embedding, if any, is unique.

Theorem 3.4 (Saxe [25, Appendix II]). For any fixed d, WGEd can be solved in O(m)
time for an edge-weighted complete graph G of m edges. Furthermore, if G has a d-
embedding f , then it is unique up to rotation and translation and f can be found in
O(m) time.

Using Theorems 3.2, 3.3, and 3.4, we shall prove the polynomial-time solvability of
WGEd on chordal graphs. We first prove the following lemma, which is of independent
interest.

Lemma 3.5. Let G be a connected edge-weighted graph, d be a fixed positive integer,
and S ⊆ V(G) be a clique separator of G. Let G1 and G2 be two induced subgraphs of
G such that V(G1)∩V(G2) = S and V(G1)∪V(G2) = V(G). Then, G has a d-embedding
if and only if both G1 and G2 have d-embeddings.

Proof. For the only-if part, assume that G has a d-embedding f . Then, it is not difficult
to see that f |V(Gi ) is a d-embedding of Gi for each i, where f |V(Gi) is the subfunction of
f induced by V(Gi) ⊆ V(G).

For the if part, assume that each Gi has a d-embedding fi. By Theorem 3.4, d-
embeddings of S is unique. Therefore, by appropriate rotation and translation of points
in f2(V(G2)), we can obtain a d-embedding f ′2 of G2 such that f1|S = f ′2 |S . Then it is not
difficult to see that the mapping f : V(G)→ Rd such that

f (v) =

⎧⎪⎪⎨⎪⎪⎩
f1(v) if v ∈ V(G1),

f ′2(v) otherwise,

is a d-embedding of G. This completes the proof. ��
Now we are ready to prove the theorem.

Theorem 3.6. For edge-weighted chordal graphs, WGEd can be solved in polynomial
time for any fixed positive integer d.

Proof. Let G be a given chordal graph with n vertices. We may assume without loss of
generality that G is connected, since otherwise we can compute G’s connected compo-
nents in linear time by a standard DFS algorithm, and apply the following argument for
each connected component.

We first compute a perfect elimination ordering v1, v2, . . . , vn of G in linear time.
Since vi is simplicial in Gi for 1 ≤ i ≤ n, each NGi (vi) is a clique of Gi. Thus, by
Lemma 3.5, Gi has a d-embedding if and only if both Gi[NGi [vi]] and Gi − vi = Gi+1

have d-embeddings. This implies that Gi has a d-embedding if and only if each complete
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graph Gi[NGi [vi]] has a d-embedding for 1 ≤ i ≤ n. There are O(n) complete graphs,
and the number of edges of each complete graph is O(n2). Therefore, by Theorem 3.4,
we can check in O(n3) time whether Gi[NGi [vi]] has a d-embedding for all 1 ≤ i ≤ n.
Thus the theorem holds. ��
Note that the result in this subsection can be seen as a variant of a result by Laurent [22]
who showed that the problem to decide whether a chordal graph can be embedded in
d-space, for some d (not given), is solvable in polynomial time.

4 Algorithms for Graphs with Dominating Cores

In geometry and surveying engineering, it is well known that if we have a position
of a simplex T and one knows all distances from p to the set of d + 1 vertices of T ,
the position of p is uniquely determined. Thus, we can consider d(d + 1) variables
corresponding to the positions of vertices of T to have a system of equations that seems
to be numerically soluble if d is a constant. However, we need to consider a degenerate
case. For example, suppose that d = 3 and we have m points on a line in space, and
the rest of n − m points are located on a plane perpendicular to the line. Then, there
remains exponential number of possible locations even if we have the set of all distances
corresponding to the bipartite graph, and we currently have no polynomial-time solution
for the general case. However, for d ∈ {1, 2}, we can solve the problem with some
assumption.

4.1 General Frameworks for d ∈ {1, 2}
For d ∈ {1, 2}, we can solve the problem if a graph has a dominating set for which the
possible embeddings are efficiently enumerated. Such a dominating set can be seen as
a core of the sensor network. We first present the following general frameworks.

Theorem 4.1. Let G and S be a given n-vertex graph and its dominating set which is
also given. If the number of all possible candidates of 1-embeddings of G[S ] is g(|S |),
and all these candidates can be enumerated in poly(n) time for each, then we can solve
WGE1 and WGE1wD in O(g(|S |) · (poly(n) + n2)) time.

Proof. First we fix a 1-embedding fS of G[S ]. We can check in O(n2) time whether fS
can be extended to a 1-embedding f of G such that f |S = fS by reducing the problem
to 2-SAT as follows.

Let V(G) \S = {v1, . . . , vn−|S |}. For each vi ∈ V(G) \S , choose arbitrarily its neighbor
in S and denote it by ui. (Note that ui = u j may hold for some i � j.) Then, it is easy to
see that

f (vi) ∈ { fS (ui) + wuivi , fS (ui) − wuivi }.
We put a variable xi for each vi ∈ V(G) \ S . We think that xi = 1 means f (vi) =
fS (ui) + wuivi and xi = 0 means f (vi) = fS (ui) − wuivi .

Now it is easy to see that for each vi ∈ V(G) \ S ,

f (vi) ∈
⋂

u∈NG (vi)

{ fS (u) + wuvi , fS (u) − wuvi }.
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If the right-hand side has two elements, then we do nothing here. If the right-hand
side is empty, then we can conclude that this fS can not be extended to a 1-embedding
of G, and introduce two clauses xi and x̄i which make the SAT instance unsatisfiable.
If the right-hand side has exactly one elements, then we can fix the position of vi by
introducing a clause with only one literal xi or x̄i; if f (vi) must be fS (u) + wuvi , then
the clause has the literal xi, otherwise the clause has the literal x̄i. The set C of clauses
introduced in this phase is as follows:

C =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x̄i | fS (ui) + wuivi �

⋂

u∈NG (vi)

{ fS (u) + wuvi , fS (u) − wuvi }
⎫⎪⎪⎪⎬⎪⎪⎪⎭

∪
⎧⎪⎪⎪⎨⎪⎪⎪⎩

xi | fS (ui) − wuivi �
⋂

u∈NG (vi)

{ fS (u) + wuvi , fS (u) − wuvi }
⎫⎪⎪⎪⎬⎪⎪⎪⎭
.

Next, for each edge in E(G − S ), we put at most four clauses with at two literals.
Let vi, v j ∈ V(G) \ S be adjacent vertices. For each combination of the positions of
vi and v j, we check whether the combination contradicts the weight of the edge viv j.
If it does, then we put a clause that forbids the combination. For example, if wviv j �
|( fS (ui)+wuivi )− ( fS (u j)+wujv j )|, then we put the clause x̄i ∨ x̄ j. More precisely, the set
C′ of clauses is defined as follows:

C′ = {x̄i ∨ x̄ j | viv j ∈ E(G), wviv j � |( fS (ui) + wuivi ) − ( fS (u j) + wujv j )|}
∪ {x̄i ∨ x j | viv j ∈ E(G), wviv j � |( fS (ui) + wuivi) − ( fS (u j) − wujv j )|}
∪ {xi ∨ x̄ j | viv j ∈ E(G), wviv j � |( fS (ui) − wuivi) − ( fS (u j) + wujv j )|}
∪ {xi ∨ x j | viv j ∈ E(G), wviv j � |( fS (ui) − wuivi) − ( fS (u j) − wujv j )|}.

Clearly, C ∪ C′ is satisfiable if and only if fS is a 1-embedding of S and fS can be
extended to a 1-embedding f of G such that f |S = fS . If the problem is WGE1wD,
then we need the following set C′′ of additional clauses that forbid any coincidence of
points:

C′′ = {x̄i | ∃u ∈ S , fS (ui) + wuivi = fS (u)}
∪ {xi | ∃u ∈ S , fS (ui) − wuivi = fS (u)}
∪ {x̄i ∨ x̄ j | |( fS (ui) + wuivi ) − ( fS (u j) + wujv j)| = 0}
∪ {x̄i ∨ x j | |( fS (ui) + wuivi ) − ( fS (u j) − wujv j)| = 0}
∪ {xi ∨ x̄ j | |( fS (ui) − wuivi ) − ( fS (u j) + wujv j)| = 0}
∪ {xi ∨ x j | |( fS (ui) − wuivi ) − ( fS (u j) − wujv j)| = 0}.

It is not difficult to verify that C∪C′∪C′′ is satisfiable if and only if fS is a 1-embedding
of S with distinctness and fS can be extended to a 1-embedding f of G with distinctness
such that f |S = fS . In both cases, the number of variables is O(n) and the number of
clauses is O(n2). Since 2-SAT is solvable in linear time in the number of variables and
clauses [3], we can check whether fS can be extended to f in O(n2) time for both cases.

From the above observation, we can solve the problem by checking all the candidates
of embeddings of G[S ], the number of which is g(|S |), whether it is a 1-embedding of
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G[S ] (with or without distinctness) in O(m) time and whether it can be extended to a
1-embedding of G (with or without distinctness, respectively) in O(n2) time. Therefore,
we have the theorem. ��
Theorem 4.2. Let G and S be a given n-vertex graph and its 2-dominating set which is
also given. If the number of all possible candidates of 2-embeddings of G[S ] is g(|S |),
and all these candidates can be enumerated in poly(n) time for each, then we can solve
WGE2wD in O(g(|S |) · (poly(n) + n2)) time.

Proof. Since the problem has the distinctness constraint, we can assume that each edge
in G has positive weight. Here we use an almost the same argument as in the proof
of Theorem 4.1. We first guess a 2-embedding fS of S . Next we construct an instance
of 2-SAT from G and fS such that the instance is a yes-instance if and only if fS can
be extended to a 2-embedding of whole G. The construction of the 2-SAT instance is
almost the same as in the proof of Theorem 4.4. There are only two differences: the first
one is the distance function; the second one is that for each vertex vi ∈ V(G) \ S , we
select its two neighbors ui and wi arbitrarily from S (these two vertices in S restrict the
position of vi to only two points). The instance has O(n) variables and O(n2) clauses.
Thus for each guessed embedding of S , we can check its extendability in O(n2) time.
This completes the proof. ��
Note that our proof technique used in the proofs of Theorems 4.1 and 4.2 can not be
used directly for the case d ≥ 3. This is because instead of assuming distinctness, we
have to assume the general position constraint for d ≥ 3. However, if we use SAT as
in the proofs to check the general position constraint, then we have some clauses with
more than two literals. This make the SAT instance intractable since the k-SAT problem
is NP-hard for any fixed k ≥ 3 [14].

4.2 Applications of General Frameworks

In this subsection, we present several practical applications of our frameworks; that is
Theorems 4.1 and 4.2. The simplest application is for graphs with dominating cliques.
Combining Theorems 3.4, 4.1, and 4.1, we have the following corollary.

Corollary 4.3. For graphs with dominating cliques, WGE1 and WGE1wD can be
solved in O(n2) time. For graphs with 2-dominating cliques, WGE2wD can be solved in
O(n2) time, where n is the number of vertices.

From the corollary above, one may think that if a graph has a dominating core with a
unique embedding, then the localization problem can be solved in polynomial time. In
practice, if sensors of a two-dimensional sensor network are densely enough distributed,
then it is likely that the sensor network has a large subgraph G that has 2-dominating
set S such that G[S ] has a unique embedding. If the localization problem can be solved
for G[S ], then the problem is also solvable for G by Theorems 4.2. If G covers a large
part of the sensor network, then we can just ignore the remaining part or may locate
the remaining part using the embedding of G. Aspnes et al. [2] studied the localization
problem for graphs with unique embeddings using rigidity theory (see e.g. [16,20,21]),
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and show that the localization problem for these graphs is NP-hard, unfortunately. How-
ever, it is not known whether the problem is NP-hard for rigid graphs with additional
conditions; for example, rigid unit disk graphs (see [5] for the definition of unit disk
graphs).

The next application shows that although its embedding is not unique, a small con-
nected dominating set makes the problem easy.

Theorem 4.4. Given an edge-weighted graph G with n vertices and its connected dom-
inating set S of size k, WGE1 and WGE1wD can be solved in O(2kn2) time.

Proof. Let T be a spanning tree of G[S ]. From a 1-embedding of T , we can obtain
an orientation of the edges E(T ). If fS is a 1-embedding of G[S ], then it is also a 1-
embedding of T . Since the number of possible orientations of T is 2k−1, we can conclude
that the number of all non-congruent 1-embeddings of G[S ] is at most 2k−1. Now we
can apply Theorem 4.1. This completes the proof. ��
Note that the above theorem is a generalization of Theorem 3 in [12], which states that
WGE1 and WGE1wD can be solved in polynomial time if the input graph has a vertex
adjacent to all other vertices.

An example of graphs that have small connected dominating sets is a graph G with
a spanning complete bipartite graph Kn1,n2 . Let v1, v2 ∈ V(G) be vertices that have
different colors in a proper coloring of its spanning complete bipartite graph. Clearly,
S = {v1, v2} is a connected dominating set of G. Thus we have the following corollary.

Corollary 4.5. Let G be an edge-weighted n-vertex graph with a spanning complete
bipartite graph. Then WGE1 and WGE1wD can be solved in O(n2) time.

Graphs with spanning complete bipartite graphs are called join graphs, since they are
constructed by the join operation [18]. The class of join graphs includes very impor-
tant graphs such as complete graphs, complete bipartite graphs, and complete k-partite
graphs. More generally, any connected cograph [7] is a join graph. Cographs play im-
portant roles in algorithmic graph theory, since they are precisely the graphs of clique-
width at most two [8,19].

In Theorem 4.4, we assumed that a small connected dominating set is given. There-
fore, if it is not given, then we should find a small connected dominating set. A naive
way is to enumerate all vertex subset of size at most k in O(nk) time. For each subset, we
can check whether it is a connected dominating set in O(m) time. Therefore, we have
the following corollary.

Corollary 4.6. Given a graph with n vertices and m edges, we can solve WGE1 and
WGE1wD in O(nkm + 2kn2) time if the graph has a connected dominating set of size at
most k.

Note that since the problem of finding a connected dominating set is W[2]-hard when
parameterized by the solution size (see e.g. [11]), it is impossible to improve upon the
O(nk) time complexity for finding a connected dominating set to O(ckpoly(n)) time for
any constant c unless W[2] = FPT.1 Since every vertex cover of a connected graph is

1 If W[2] = FPT, then Exponential Time Hypothesis fails [10].
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its dominating set an FTP algorithm for connected vertex covers immediately yields an
FPT time algorithm for WGE1 and WGE1wD parameterized by the size of the mini-
mum connected vertex cover. It is known that a connected vertex cover of size k can be
found, if any, in O(6kn+4kn2+n2 log n+mn) time [17]. However, we use an O(mn)-time
2-approximation algorithm presented by Arkin, Halldórsson, and Hassin [1] to obtain a
better running time.

Corollary 4.7. Given a graph with n vertices and m edges, we can solve WGE1 and
WGE1wD in O(4kn2 + mn) time if the graph has a connected vertex cover of size at
most k.

Proof. We first find a connected vertex cover C of size at most 2k by using the O(mn)-
time 2-approximation algorithm of Arkin et al. [1]. By Theorem 4.4, we can solve
WGE1 and WGE1wD in O(4kn2) time since C is also a connected dominating set of
size at most 2k. The combined time complexity is O(4kn2 + mn). ��
In the rest of this section, we shall discuss the two-dimensional case. We need the notion
of k-trees which is defined as follows:

– the complete graph of k vertices is a k-tree;
– if G is a k-tree, then the graph obtained from G by adding a simplicial vertex of

degree k is also a k-tree.

It is easy to see that a k-tree is a chordal graph. With these terminologies, we can have
a two-dimensional generalization of Theorem 4.4 as follows.

Theorem 4.8. Given an edge-weighted graph G with n vertices and its 2-dominating
set S of size k such that G[S ] have a spanning 2-tree, WGE2wD can be solved in
O(2kn2) time.

Proof. By Theorem 4.2, it suffices to show that all 2-embeddings of G[S ] can be enu-
merated in O(2k) time. Since the problem has the distinctness constraint, we can assume
that each edge in G has positive weight. Let R be a spanning 2-tree of G[S ], and let
r1, . . . , rk be a perfect elimination ordering of R. We shall construct a 2-embedding by
embedding vertices in the reverse ordering rk, rk−1, . . . , r1. We can first embed rk and
rk−1 uniquely. Then, when embedding each ri, 1 ≤ i ≤ k − 2, ri has two neighbors that
are already embedded and have different positions. Thus, we have only two possibilities
for each ri. This implies that the number of possible 2-embeddings (up to motion) of S
is 2k−2. The enumeration of the candidates can be easily done in O(2k) time. Thus the
theorem holds. ��
An example of graphs that have small 2-dominating sets with 2-tree spanning trees is
a graph G with a spanning complete tripartite graph Kn1 ,n2,n3 . Let v1, v2, v3 ∈ V(G) be
vertices that have different colors in a proper coloring of its spanning complete tripartite
graph. Then, it is not difficult to see that the set S = {v1, v2, v3} is a 2-dominating set of
G, and the triangle G[S ] itself is a spanning 2-tree of G[S ]. It is easy to see that such a
set S can be found in O(n4) time by naively examine all

(
n
3

)
vertex triples in O(n) time.

Therefore, we have the following corollary.

Corollary 4.9. Let G be an edge-weighted n-vertex graph with a spanning complete
tripartite graph. Then WGE2wD can be solved in O(n4) time.
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5 Concluding Remarks

We approached the localization problem from a graph embedding perspective. Since it
is hard to embed cycles into a line, we analyzed difficulty of the problem according to
the dimension of the space and structures of graphs. We have shown that WGEd can
be solved in polynomial time for chordal graphs (d ≥ 1) and for cycles (d ≥ 2). We
have also studied the problems on graphs with small connected dominating set, and
have shown that for such graphs WGE1 and WGE1wD can be solved in polynomial
time and WGE2wD can be solved in polynomial time if we add a condition. Our results
on graphs with small connected dominating set may be considered as that if a sensor
network has a small core, then the localization problem can be solved efficiently.

To obtain a practical localization method, there are still many issues to resolve. Our
general framework is hard to be extended into higher dimension case due to the general
position assumption. The running time is also highly depend on the rigidity of cores.
For instance, it will be quite fast when the core is a clique as we can compute its unique
embedding efficiently. In contrast, the running time will be exponential to the size of
the core in the case that the core is a tree. In the latter case, it requires the network to
have cores of logarithmic size if we are eager to achieve an efficient computing time
and this requirement is difficult to be fulfilled in practice. These remain our future work
to do.

In addition, the rigidity of graphs is still not studied thoroughly yet now. This prop-
erty is important because that not only it relates to computing time but also it is a basic
requirement for the network localization. The localization problem is NP-hard even for
the graph with a unique embedding [2]. It is not known whether the problem is NP-hard
for rigid graphs with additional conditions; for example, rigid unit disk graphs. If the
sensor network is dense enough, it is likely that there exist a core such that it has a
unique embedding. However, we still lack of a theoretical guarantee by now. How to
obtain a rigid and easily localizable graph structure remains a challenge for us.

Furthermore, we only consider exact graph embedding in this paper. However, there
are many errors with the input data in actual engineering. It is likely that there is no
solution for the input instance. Instead, an approximation one is necessary in this case.
In the 2-SAT part of our general framework, it is possible to allow some forbidden cases
happen to receive an approximate solution. A naive idea is to obtain an approximation
such that it satisfies the forbidden clauses as much as possible and this is MAX 2-SAT
problem. How to adjust the graph to obtain a high quality approximation, further study
is necessary.

Finally, there is a problem left for theoretical interest. Feder and Motwani [12] stud-
ied a variant of WGE1, denoted by GTwD, in which two distinct points cannot have the
same position. This variant is very natural, and should be investigated more extensively.
There is an interesting problem on GTwD.

Problem 5.1. Can GTwD be solved in polynomial time for trees?

We think it might be NP-hard. It is not difficult to see that any tree can be embedded
in the line (if we do not care about distinctness) by putting the roof r of a tree at the
origin and putting the other points v at the point �, where � is the sum of the weights of
edges in a unique r–v path in the tree. Also, by slightly modifying this embedding, we
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can derive an 2-embedding of the tree in which any two distinct vertices have different
positions. Note that embedding trees in Z2 with distinctness is NP-hard even if every
edge has the same weight [4].
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A Proof of Theorem 3.4

For readers’ convenience, we provide a proof of Theorem 3.4 due to Saxe [25] (the
technical report is not available online).

Theorem A.1 (Saxe [25, Appendix II]). For any fixed k, WGEk can be solved in O(m)
time for an edge-weighted complete graph G of m edges. Furthermore, if G has a k-
embedding f , then it is unique up to rotation and translation and f can be found in
O(m) time.

Proof. Let G = (V, E) be a complete weighted graph with n vertices x1, . . . , xn, where
each edge xix j ∈ E has weight wi, j. To test the embeddability of G, we will attempt
to position successively the vertices of G in a (k + 1)-dimensional coordinate space.
Without loss of generality, we may send x1 to the origin and x2 to (wi, j, 0, . . . , 0). For
each m, 1 ≤ m ≤ n, we define

d(m) = min{ j | G[{xi | 1 ≤ i ≤ m}] is j-embeddable}.
If G[{xi | 1 ≤ i ≤ m}] is not j-embeddable for any j, then d(m) is undefined. For each j,
0 ≤ j ≤ k, we define

p( j) = min{m | d(m) = j}.
If there is no m such that d(m) = j, then p( j) is undefined. Note that if p( j) is well de-
fined, then p(0), . . . , p( j) are all well defined. As we locate each vertex, we enforce the
restriction that at most the first d(m) coordinates of xm may be non-zero. By following
this rule, we guarantee that after the xm has been located (if this is possible), we will
know the value of d(m) and of p(0), . . . , p(d(m)). The procedure for locating xm+1 (for
1 ≤ m ≤ n) is as follows:

1. Note that there is at most one possible location for xm+1 which will satisfy the
following criteria:

– The correct weights are induced for the d(m)+1 edges xp( j)xm+1, 0 ≤ j ≤ d(m).
– At most the first d(m) + 1 coordinates of the location are non-zero.
– The (d(m) + 1)st coordinate of the location is non-negative.
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2. If there are no such locations, or if the (k + 1)st coordinate of the unique location
satisfying the criteria is non-zero, halt asserting that G is not k-embeddable. Oth-
erwise, without loss of generality, assign xm+1 to the unique location satisfying the
criteria.

3. Check that the weights induced for the remaining xixm+1 (where 1 ≤ i ≤ m and
i � p( j) for any j) are correct. If any are not, the halt asserting that G is not k-
embeddable. Note that the time for this step is O(n), since we always have m < n.

If we manage to place all the vertices without discovering that G is not k-embeddable,
then we will have found a k-embedding for G (and this embedding is unique up to
congruence). In any case, the time required is linear in the number of edges and the
space will be linear in the number of vertices. ��
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Abstract. Reducing interference is one of the main challenges in wire-
less communication. To minimize interference through topology control
in wireless sensor networks is a well-known open algorithmic problem.
In this paper, we answer the question of how to minimize the average
interference when a node is receiving a message. We assume the receiver-
centric interference model where the interference on a node is equal to the
number of the other nodes whose transmission ranges cover the node. For
one-dimensional (1D) networks, we propose a fast polynomial exact al-
gorithm that can minimize the average interference. For two-dimensional
(2D) networks, we give a proof that the maximum interference can be
bounded while minimizing the average interference. The bound is only
related to the distances between nodes but not the network size. Based
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imum average interference in 2D networks. Optimal topologies with the
minimum average interference can be constructed through traceback in
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1 Introduction

A wireless sensor network (WSN) consists of a set of nodes deployed across
a region of interest. The nodes can adjust their transmission powers to achieve
their desired transmission ranges with which a multi-hop network is then formed.
WSNs have many applications in real life such as environmental monitoring,
intrusion detection, and health care.

Energy is a precious resource in wireless sensor networks. One way to conserve
energy, and to simultaneously improve communication efficiency, is to reduce in-
terference due to concurrent transmissions of two or more nearby nodes. There
exist numerous models for capturing the essence of interferences in a wireless net-
work at various abstraction levels of interest. Two types of models that have been
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frequently studied in recent algorithmic research on wireless sensor networks are
graph-based protocol models and SINR-based physical models [1]. Each type has
its own merits. SINR-based protocols capture more accurately certain important
wireless signal propagation characteristics([2]). The graph-based protocol mod-
els, although simplistic, are a good estimation of interference, which have been
particularly popular with high-layer protocol designers.

One of the graph-based protocol models is the sender-centric model, where
interference is computed for each edge [3–8]. The interference of an edge (u, v)
is the number of other nodes that are covered by the disk centered at u or v
with radius |uv|—that is, interference is considered at the sender but not the
receiver. However, interference actually prevents correct data reception in the
real networks. Thus, the authors in [9, 10] proposed the receiver-centric model,
where the interference on a node is the number of other nodes whose transmission
ranges cover the node. In Figure 1, the interference on the node v is 3 as all the
other nodes can interfere with it. In this work, we consider ways to minimize the
number of the other nodes that can interfere with a node when it is receiving a
message. Therefore, the receiver-centric model is adopted.

v

Fig. 1. The receiver-centric interference: the disk centered at a node is the node’s
transmission range; the number beside a node is interference on it

Generally, topology control refers to selecting a subset of the available communi-
cation links for data transmission, which helps save energy and reduce
interference. The problem of minimizing (receiver-centric) interference through
topology control is one of the most well-known open algorithmic problems in wire-
less communication. Researchers study the problem in two directions: minimizing
the maximum interference and minimizing the average interference. Interference
minimization is hard because it entails an unusually complicated combinatorial
structure, and some intuitive ideas, such as low node degree, spare topology and
Nearest Neighbor Forest (connecting each node to its nearest neighbor) can not
guarantee low interference [4, 9].

In the literature, interference minimization is studied in both 1D and 2D
networks. Despite their simplicity, 1D networks, i.e. the nodes are arbitrarily
distributed along a line, have revealed many interesting challenges and features
of the problem in general. Studying 1D networks is justified also from a practical
point of view as some real networks are one-dimensional, such as the sensors de-
ployed along a railway, a corridor, or inside a tunnel. For 1D networks, paper [9]
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bounded the minimum maximum interference (MMI) by O(
√
Δ) and presented

an approximation with ratio O( 4
√
Δ). Here Δ is the maximum node degree when

each node is connected to all the other nodes within the maximum transmission
range rmax. The only sub-exponential-time (but super-polynomial) exact algo-
rithm to minimize the maximum interference was given in [11]. For 2D networks,
the problem of computing the MMI was shown to be NP-complete in [12]. The
algorithm in [13] could bound the maximum interference by O(

√
Δ). For the

problem of computing the minimum average interference (MAI), better results
are known. In [11], a polynomial-time, O(n3Δ3) algorithm is proposed to mini-
mize the average interference in a 1D network, where n is the network size. For
2D networks, the authors of [14] gave an asymptotically optimal approximation
algorithm with an approximation ratio O(log n).

Our Contribution: In this paper, we answer the question of how to minimize
the average interference when a node is receiving a message.

1. To minimize the average interference in 1D networks, we propose an exact
algorithm that substantially improves the time complexity from O(n3Δ3)
[11] to O(nΔ2).

2. In previous work, the MAI and the MMI were studied separately. We give
a proof that the maximum interference can be bounded by O(log λ) while

minimizing the average interference. Here λ = min(dmax,rmax)
dmin

, where dmax

and dmin are the longest and shortest distance between two nodes respec-
tively. The upper bound is only determined by the distances between nodes
but not the network size.

3. Based on the upper bound, we propose an exact algorithm to compute the
MAI in 2D networks exactly in time nO(m log λ), where m is the minimum
number of parallel lines so that all the nodes are located on the lines. Optimal
topologies with the MAI can be constructed trough traceback. To the best
of our knowledge, it is the first exact algorithm that computes the MAI in
2D networks.

The rest of the paper is organized as follows. We give some formal definitions in
Section 2. In Section 3, we propose a fast exact algorithm to compute the MAI
in 1D networks. The upper bound of the MMI while minimizing the average
interference is proved in Section 4. Section 5 presents the exact algorithm to
compute the minimum average interference in 2D networks. Section 6 concludes
the paper and suggests some future work.

2 Problem Definitions

We model a wireless sensor network as an undirected graph G = (V,E), where
V is the set of nodes and E is the set of communication links. The nodes have
the same maximum transmission radius, rmax. Each node can self-adjust its
transmission radius from 0 to rmax in a continuous manner. An edge (u, v) ∈
E exists only if both transmission radii, ru and rv, are not shorter than the
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Euclidean distance |uv|. Therefore, in G, the transmission radius of a node is
set to the distance to its farthest neighbor. (Two nodes are neighbors means
there is an edge incident on them.) We assume the unit disk graph UDG(V ),
in which each node connects to all the other nodes within a distance of rmax, is
connected.

We adopt the receiver-centric interference model. The interference of a node
v, denoted as RI(v), is defined as the number of other nodes whose transmission
ranges can cover v:

RI(v) = |{u|u ∈ V \ {v}, |uv| ≤ ru}|. (1)

The average node interference in G, RIavg(G), can be defined as:

RIavg(G) =

∑
v∈V RI(v)

|V | . (2)

For a node v with transmission radius rv, the interference created by v is defined
as the number of the other nodes covered by the transmission range of v:

CI(v, rv) = |{u|u ∈ V \ {v}, |uv| ≤ rv}|. (3)

Therefore, we can have

RIavg(G) =

∑
v∈V RI(v)

|V | =

∑
v∈V CI(v, rv)

|V | . (4)

It will not increase any interference by deleting an edge. Therefore, the opti-
mal connected topology with minimum interference should be a spanning tree.
Therefore, our problem can be defined as:

Problem 1. Given n nodes arbitrarily distributed in a 1D or 2D region, construct
a spanning tree, G = (V,E), to connect all the nodes with edges no longer than
rmax, that induces the minimum average interference.

3 Minimizing Average Interference in 1D Networks

3.1 Independent Subproblems

For a 1D network, the n nodes in V = {v0, v1, ..., vn−1} are arbitrarily deployed
along a line from left to right. We can view the line as an x-axis, and set v0 = 0.
For a segment vsvt on the line, where s ≤ t, the nodes located on vsvt are
{vs, vs+1, ..., vt−1, vt}; the nodes outside vsvt are the other nodes not including
the ones that are on the line; the nodes inside vsvt are {vs+1, , ..., vt−1}.

We draw all the edges on one side of the line. A cross is defined as two edges
that share at least a common point excluding their endpoints. Paper [11] presents
the no-cross property as described in Theorem 1.

Theorem 1 (No-cross Property). For any spanning tree connecting the nodes
on a line with crosses, there is always another spanning tree to remove the crosses
without increasing interference on any node.
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Based on the no-cross property, if there is an edge (vsvt) , s < t, the nodes
inside the segment vsvt can not be adjacent to the nodes outside. Further, ac-
cording to Equation 4, we compute the average interference by dividing the sum
of the interference created by all the nodes by the network size. The interference
created by a node is only related to its transmission radius and the positions of
the other nodes. Recall that the node transmission radius is set to be the distance
to its farthest neighbor, and the nodes are stationary after deployment. There-
fore, for an edge (vs, vt), s < t, the total interference created by the nodes inside
vsvt is independent of the topology of the nodes outside, and vice versa. Thus,
we can now compute the MAI in 1D networks through dynamic programming.

3.2 Algorithms

For s < t, we define a topology A(s, t), called an arch, for the nodes from vs
to vt, such that 1) there is an edge (vs, vt); 2) A(s, t) is a connected subgraph;
and 3) there is no cross. In addition, several auxiliary functions are defined in
Table 1.

Table 1. Definition of the functions (s < t)

Function Definition
f(s, t) In A(s, t), returns the minimum total interference created by

the nodes inside vsvt
f1(s, p,m) In A(s, t) and s ≤ p < m < t, returns the minimum total inter-

ference created by nodes inside vsvm when vp is the leftmost
node adjacent to vm.

f2(m, p, t) In A(s, t) and s < m < p ≤ t, returns the minimum total inter-
ference created by nodes inside vmvt when vp is the rightmost
node adjacent to vm.

f
′
1(s,m) In A(s, t) and s ≤ m < t, returns the minimum total interfer-

ence created by nodes vs+1, vs+2, ..., vm.

f
′
2(m, t) In A(s, t) and s < m ≤ t, returns the minimum total interfer-

ence created by nodes vm, vm+1, ..., vt−1.
g(p,m) When vp is the leftmost node adjacent to vm, returns the min-

imum total interference created by nodes v0, v1, ..., vm−1.

As there is no cycle, in A(s, t), there must be a node vm (s ≤ m < t) such
that no other links cross the line x = vm+vm+1

2 except (vs, vt) (Figure 2). So, we
calculate

f(s, t) =

{
0 t ≤ s+ 1

min{f ′
1(s,m) + f

′
2(m+ 1, t)|s ≤ m < t} otherwise. (5)

Here, we have

f ′
1(s,m) = min{f1(s, p,m) + CI(vm, |vpvm|)|s ≤ p < m}, (6)

f ′
2(m+ 1, t) = min{f2(m+ 1, p, t) + CI(vm+1, |vm+1vp|)|m+ 1 < p ≤ t}. (7)
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vm vm+1vs vq vp vt

Fig. 2. The structure of A(s, t): f
′
1(s,m) is the minimum total interference created by

the nodes on the red segment, and f
′
2(m+ 1, t) that on the blue segment.

Specifically, we show how to compute f1(s, p,m) efficiently (Figure 2). When
p = s, f1(s, p,m) = f(s,m). For p > s,

f1(s, p,m) = min{f1(s, q, p) + f(p,m) + CI(vp,max(|vpvq|, |vpvm|)) |s ≤ q < p}.

By setting

Case1 = min{f1(s, q, p)+CI(vp, |vpvq|) |s ≤ q < p & |vpvq| ≥ |vpvm|}+f(p,m),
(8)

Case2 = min{f1(s, q, p) |s ≤ q < p& |vpvq| < |vpvm|}+CI(vp, |vpvm|)+f(p,m),
(9)

we have when p > s,

f1(s, p,m) = min{Case1, Case2}. (10)

In Equations 8 and 9, the values of q are continuous numbers. Therefore, we can
use RMQ (Range Minimum Query) [15] to compute them. f2(m+1, p, t) can be
computed similarly.

With f(s, t), the function g(p,m) can be computed as:

g(p,m) =

⎧⎨
⎩

f(0,m) + CI(v0, |v0vm|) p = 0,
min{g(q, p) + CI(vp,max(|vpvq|, |vpvm|)) + f(p,m)|0 ≤ q < p}

0 < p < m ≤ n− 1.
(11)

Finally, the minimum average interference, AV Gmin, can be calculated as:

AV Gmin =
min{g(p, n− 1) + CI(vn−1, |vn−1vp|)|0 ≤ p < n− 1}

n
. (12)

3.3 Analysis

Our algorithm actually compares the average interference on all the spanning
trees without a cross, which guarantees the output is optimal with the MAI.
Further, our methods have also been verified by comparing the results with the
outputs generated by the brute-force search, which runs slowly in time O(nΔ).

According to the process of dynamic programming, the computation of the
different functions f1(s, p,m) and f2(m, p, t) (as defined in Table 1) contributes
the main part of the time complexity. Δ is the maximum number of neighbors for
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a node constrained by the maximum transmission radius rmax. vt is a neighbor
of vs. For a given s, there are at most Δ different choices of t and at most
t − s choices of m. Since all the nodes are deployed along a line, t − s ≤ Δ.
Also, for a given m, there are at most Δ choices of p as vp is a neighbor of
vm. Therefore, the total amount of different functions f1(s, p,m) is O(nΔ2).
A similar result can be achieved for f2(m, p, t). Thus, the time complexity to
compute the MAI in 1D networks is O(nΔ2). The optimal spanning tree can be
computed through traceback efficiently. Because of limited space, we omit the
details of the traceback here.

4 Bound on MMI while Minimizing Average Interference

In this section, we derive an upper bound on the MMI while minimizing the
average interference.

4.1 Preliminaries

Firstly, we define the following property, dubbed the EX property which stands
for ‘mutual EXclusion of the long edges’.

Definition 1 (EX property). For four nodes a, b, c, and d, if min(|ab|, |cd|) >
max(|ad|, |bc|), the edges (a, b) and (c, d) are not in a spanning tree simultane-
ously. It also holds when a = d.

Fig. 3. Four nodes in
T = (V,E)

Fig. 4. Replace
(a, b) with (b, c)

Fig. 5. Replace
(a, b) with (a, d)

Next, we show that we can always find an optimal spanning tree with the
MAI that satisfies the EX property.

Theorem 2. For a set of nodes V deployed in a 2D plane, there is always a
spanning tree, Tex = (V,Eex), with the MAI that satisfies the EX property.

Proof. For a spanning tree T = (V,E) with the MAI, if it satisfies the EX
property, we set Tex = T and we have the proof. If not, we can construct Tex

as follows. For each set of four nodes a, b, c and d such that min(|ab|, |cd|) >
max(|ad|, |bc|) and (a, b) ∈ E, (c, d) ∈ E (Note that here a and d can be the same
node.) (Figure 3),
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1. if a has a path to d in the graph T1(V,E − {(a, b), (c, d)}), we set E′ =
E − (a, b) + (b, c) (Figure 4);

2. if a does not have a path to d in the graph T1(V,E − {(a, b), (c, d)}), we set
E′ = E − (a, b) + (a, d) (Figure 5).

Firstly, we show that Tex is a spanning tree. According to the construction
of Tex, in case 1, as a and d have a path, the four nodes are still connected
and |Eex| = |E| = n − 1; therefore, Tex is a spanning tree. The same result
can be obtained similarly for case 2. Secondly, we show that Tex also has the
MAI. In case 1, we delete (a,b) and add (b,c). As |bc| < |ab| and |bc| < |cd|,
the modification does not increase the transmission radii of any node, which
means that the total interference created by the nodes is not increased. The
same conclusion applies to case 2. Thus, Tex is a spanning tree with the MAI
that satisfies the EX property. The theorem is proved.


�
As Tex satisfies the EX property, we have

Corollary 1. For two regions S1 and S2 of diameters d1 and d2 respectively,
there is at most one edge (u, v) ∈ Eex such that |u, v| > max(d1, d2) with u ∈ S1

and v ∈ S2. (Figure 6).

d1/2

u v

S1 S2

d2/2

Fig. 6. There is at most one edge (u, v) ∈ Eex where u ∈ S1, v ∈ S2 and |u, v| >
max(d1, d2)

4.2 The Upper Bound

According to Corollary 1, we can bound the maximum interference in Tex as
described in Theorem 3.

Theorem 3. In the spanning tree Tex, the maximum interference is bounded by

O(logλ), where λ = min(dmax,rmax)
dmin

. dmax and dmin are the longest and shortest
distance between any two nodes respectively.

Proof. For any node v ∈ Eex, the set H contains the other nodes that can
interfere with v. We separate the elements in H into subsets according to their
transmission radii as follows:

hi = {u|u ∈ H and (1 + ε)i−1dmin ≤ ru < (1 + ε)idmin}, i = 1, 2, 3... (13)

where ε is a positive constant. The subsets have the following properties:

H =
∑
i

hi and {hi ∩ hj = ∅ if i �= j}. (14)
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Since the possible longest transmission radius in Tex is λ × dmin, we have the
maximal i, denoted as imax as

(1 + ε)i ≤ λ⇒ imax = O(log λ). (15)

As the transmission radii of the nodes in hi are smaller than (1 + ε)idmin, the
nodes and their neighbors are all inside the circle1 c(v, 2(1 + ε)idmin). We use a

set of squares, the length of whose edges is
√
2
4 (1 + ε)i−1dmin, to fully cover the

area inside the circle c(v, 2(1 + ε)idmin). So, the number of the squares needed
is

c0 = (! 2× 2(1 + ε)idmin√
2
4 (1 + ε)i−1dmin

")2 = (!8
√
2(1 + ε)")2. (16)

For each node u ∈ hi, since ru ≥ (1+ε)i−1dmin, u must have an edge (uu′) ∈ Eex

which lies inside the circle c(v, 2(1 + ε)idmin) such that |uu′| ≥ (1 + ε)i−1dmin.

The diameter of each square is (1+ε)i−1dmin

2 . According to Corollary 1, for
each pair of the squares, s1 and s2, there is at most one edge (v1v2) such that
|v1v2| ≥ (1 + ε)i−1dmin and v1 ∈ s1, v2 ∈ s2. Therefore, the number of nodes in
hi is:

|hi| ≤ 2×
(
c0
2

)
= c1 (17)

where c1 is a constant. Based on Equation 15, the interference on the node v is

RI(v) = |H | =
∑
i

|hi| ≤ c1 × imax. (18)

According to Equations 15 and 18, we have

RI(v) = O(log λ). (19)

Therefore, the maximum interference in Tex is bounded by O(log λ). The theorem
is proved.


�
Based on the above theorem, we have the following corollary:

Corollary 2. In 2D networks, it is possible to bound the MMI by O(log λ) while
minimizing the average interference.

5 Minimizing Average Interference in 2D Networks

5.1 Basic Ideas

Given n nodes arbitrarily deployed in a 2D region, we can simply find the min-
imum number, denoted as m, of parallel lines so that all the nodes are located

1 c(v, r) stands for a circle centering at point v with radius of r.



124 T. Lou et al.

on the lines (Figure 7). We set a parallel line as the x-axis, and list the n nodes
from left to right as V = {v0, v1, ..., vn−1}, where for two nodes vi = (xi, yi) and
vj = (xj , yj),

i < j iff xi < xj or {xi = xj and yi < yj}. (20)

According to Equation 18, we can construct the topology with the MAI while
the maximum interference does not exceed k = min(c1 × imax, n− 1). Here, we
restrict the maximum interference because it is a critical parameter to determine
the time complexity of our algorithm which will be analyzed in Section 5.3.

Fig. 7. 12 nodes deployed in a 2D region with the minimum number of parallel
lines covering them.

We assume a virtual line clin that separates the nodes into the left and the
right parts. Initially, there is only v0 that is on the left of clin. We move rightward
(and rotate if necessary) the line to include one more node on its left each time
until all the nodes are on the left of clin. When moving clin to include vp
(0 ≤ p < n) in the left part, we compute the minimum total interference created
by the nodes inside [0, p].2 while the maximum interference does not exceed k
and the total topology for the n nodes is connected. Here, the nodes left of clin
may connect to and interfere with the nodes on the right, and vice versa. When
computing the topology for the nodes left of clin, we need to assume a topology
on the right and take the mutual interference into account. Thus, for an interval
[s, t] (0 ≤ s ≤ t ≤ n− 1), we define the following items:

– c[s,t]: record how the nodes inside [s, t] interfere with the nodes outside. c[s, t]
contains the nodes and their transmission radii that can interfere with the
nodes outside [s, t].

– s[s, t]: record all the connected components of the nodes in c[s, t].

2 For an interval [s, t], s ≤ t, the nodes inside [s, t] are the ones from vs to vt. The
nodes outside [s, t] are the ones left of [s, t] (the nodes from v0 to vs−1) and right of
[s, t] (the nodes from vt+1 to vn−1).
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As the maximum interference does not exceed k, we call c[s, t] valid if and only
if there are no more than k nodes inside [s, t] that interfere with the same node
outside [s, t]. With the above definitions, we now introduce the algorithms to
compute the MAI while the maximum interference does not exceed k.

5.2 Algorithms to Compute MAI

We define a function F (p, c[0, p], c[p+1, n−1], s[0, p]), 0 ≤ p < n−1, to construct
a topology minimizing the interference created by the nodes inside [0, p] while
satisfying the following conditions:

1. the interference from nodes inside [0, p] to the nodes inside [p + 1, n − 1] is
the same as that recorded in c[0, p];

2. the interference from nodes inside [p + 1, n− 1] to the nodes inside [0, p] is
the same as that recorded in c[p+ 1, n− 1];

3. the connectivity of the nodes in c[0, p] is the same as that recorded in s[0, p];
4. all the nodes inside [0, p] but not in c[0, p] have a path to at least one node

in c[0, p];
5. the interference on each node inside [0, p] does not exceed k.

If F returns +∞, it means there is no such topology that satisfies all the condi-
tions. Here, conditions 1, 2 and 5 are to guarantee that the maximum interference
in the final topology does not exceed k. Conditions 3 and 4 are for the require-
ment of connectivity. Specifically, condition 4 is to guarantee that the nodes
in [0, p] but not in c[0, p] can connect to the nodes in [p+ 1, n− 1] through the
nodes in c[0, p]. The function F can be calculated in Algorithm 1. In Algorithm 1,
R(v) = {|uv||u ∈ V and |uv| ≤ rmax}, which is the set of potential transmission
radii of u. Lines 1–5 are the boundary condition. Lines 7–10 are to enumerate
the possible situations. Line 11 is to connect vp to nodes in [0, p− 1] to maintain
connectivity. In Line 12, c′[0, p] and s′[0, p], which are defined as the same as
c[0, p] and s[0, p] respectively, are computed based on c[0, p− 1], s[0, p− 1] and
the newly added edges in Line 11. Line 13–16 are to check all the conditions and
compute the minimum total interference.

The MAI of all the nodes can be computed in the algorithm MAI-GRID
(Algorithm 2). MAI-GRID checks the interference on vn−1 and makes sure that
all the nodes in s[0, n−2] have a path to vn−1 such that the network connectivity
is maintained. MAI-GRID computes the minimum total interference by the sum
of interference created by nodes in [0, n−2] and the interference created by vn−1.
After computing MAI-GRID, we can also construct the optimal spanning tree
with the MAI through traceback. Figure 8 is an example of the optimal topology.

5.3 Analysis

Based on the definition of the function F , Condition 4 and the operation of
connecting vn−1 to all the nodes within its transmission range (Line 5 in Algo-
rithm 2) guarantee the connectivity of our output; Condition 5 and the check of
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Algorithm 1. Compute F (p, c[0, p], c[p+ 1, n− 1], s[0, p])

if p = 0 then /* the boundary condition */1

if there are more the k nodes in c[p + 1, n− 1] that can interference with v02

then
return +∞;3

else4

return CI(v0, rv0);5

total ← +∞;6

foreach valid c[0, p− 1] do7

foreach valid c[p, n− 1] do8

foreach s[0, p− 1] do9

foreach rvp ∈ R(vp) do10

Connect vp to the nodes in11

{v|v is inside [0, p− 1] and |vvp| ≤ min(rv, rvp)};
Compute c′[0, p] and s′[0, p];12

if c[0, p] = c′[0, p] and s[0, p] = s′[0, p] and all the nodes in [0, p]13

but not in c[0, p] have a path to at least one node in c[0, p] and
the interference on vp does not exceed k then

tmp ← F (p−1, c[0, p−1], c[p, n−1], s[0, p−1])+CI(vp, rvp);14

if tmp < total then15

Total ← tmp;16

return Total;17

Algorithm 2. MAI-GRID: compute the MAI in a grid network

k ← min(c1 × imax, n− 1), total ← +∞;1

foreach valid c[0, n− 2] do2

foreach s[0, n− 2] do3

foreach rvn−1 ∈ R(vn−1) do4

Connect vn−1 to the nodes in5

{v|v is inside [0, n− 2] and |vvn−1| ≤ min(rv, rvn−1)};
c[n− 1, n− 1] = {vn−1, rvn−1};6

if the interference on vn−1 does not exceed k and all the nodes in7

s[0, n− 2] has a path to vn−1 then
t ← F (n−2, c[0, n−2], c[n−1, n−1], s[0, n−2])+CI(vn−1 , rvn−1);8

if t < total then9

Total ← t;10

return total
n

;11
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the interference on vn−1 (Line 7 in Algorithm 2) guarantee the maximum inter-
ference of our output does not exceed k. Further, our algorithm actually com-
pares all the possible connected topology with the maximal interference equal
or smaller than k. Therefore, our method output the optimal topology with the
MAI while the maximum interference does not exceed k. The correctness of the
algorithms has been established through comparing our results with the outputs
of the brute-force search which runs in time O(nΔ).

Fig. 8. The optimal topology with the MAI, which is 29
12

The main complexity to construct the optimal spanning tree is to compute
the F functions. In our optimal topologies, the maximum interference does not
exceed k. If there are more than mk nodes in c[s, t] that interfere with the nodes
on the left of [s, t], there must be a parallel line, and the rightmost node left
of [s, t] on the line will experience interference larger than k. Therefore, in a
valid c[s, t], there are at most min(mk, n) nodes that can interfere with one node
left of [s, t]. Similarly, there are at most mk nodes interfering with one node
right of [s, t]. The number of different transmission radii of a node v is at most
Δ. Therefore, the number of valid c[0, p] is O((nΔ)mk). A similar result can be
achieved for c[p + 1, n − 1]. The number of variations of s[0, p] is O((mk)mk).
As Δ ≤ n − 1 and k = O(logλ), the time complexity to construct the optimal
spanning tree with the MAI is nmO(log λ).

As the minimum number of parallel lines to cover all the nodes can be linear
to n, m = O(n). Therefore, the time complexity is still exponential in the worst
cases. However, in some cases when the nodes are deployed along a few parallel
lines, e.g. m is a small constant, our algorithm runs fast.

6 Conclusion

In this paper, we study how to minimize the average interference while preserv-
ing connectivity through topology control in wireless sensor networks. In 1D
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networks, based on the no-cross property and dynamic programming, we pro-
pose a fast exact algorithm to compute the minimum average interference. In
2D networks, using computational geometry, we prove that the minimum maxi-
mum interference can still be bounded while minimizing the average interference.
Moreover, we propose exact algorithms to compute the minimum average inter-
ference in 2D networks. In this work, we assume that the interference range is
the same as the transmission range. It is meaningful in the future to study in-
terference minimization in networks where the interference range is larger than
the transmission range. Other future work directions include interference mini-
mization in 3D networks, and how to reduce interference for network properties
besides connectivity, such as planarity, low node degree and small spanner.

Acknowledgements. The research was supported in part by the National Ba-
sic Research Program of China grants 2007CB807900 and 2007CB807901, the
National Natural Science Foundation of China grants 61073174, 61033001, and
61061130540, the Hi-Tech research and Development Program of China grant
2006AA10Z216, and Hong Kong RGC-GRF grants 714009E and 714311.

References

1. Gupta, P., Kumar, P.R.: The Capacity of Wireless Networks. IEEE Transactions
on Information Theory 46(2), 388–404 (2000)

2. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based
Models. In: Proc. of the 5th Workshop on Hot Topics in Networks, HotNets (2006)

3. Benkert, M., Gudmundsson, J., Haverkort, H., Wolff, A.: Constructing minimum-
interference networks. Computational Geometry 40(3), 179–194 (2008)

4. Burkhart, M., von Rickenbach, P., Wattenhofer, R., Zollinger, A.: Does Topology
Control Reduce Interference? In: Proc. of the 5th ACM International Symposium
on Mobile Ad Hoc Networking and Computing (MobiHoc), pp. 9–19 (2004)
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On Barrier Resilience of Sensor Networks

Kuan-Chieh Robert Tseng and David Kirkpatrick

Department of Computer Science,
University of British Columbia, Canada

Abstract. Various notions of coverage have been introduced as basic
quality-of-service measures for wireless sensor networks. One natural
measure of coverage is referred to as resilience: given a starting region S
and a target region T , the resilience a sensor configuration with respect
to S and T is the minimum number of sensors that need to be deacti-
vated before an S−T path can exist that does not cross any active sensor
region. We demonstrate that determining resilience of a network of unit-
line-segment sensors is NP-hard. Furthermore, we can extend our proof
to show that the resilience problem remains NP-hard for other types of
non-symmetric sensor coverage regions.

Keywords: resilience, barrier coverage, wireless sensor network.

1 Introduction

The specification and evaluation of domain coverage continue to be fundamental
issues in analysing the effectiveness of wireless sensor networks. A comprehensive
overview of research on coverage problems, including the identification of differ-
ent notions of coverage, can be found in the survey papers of Meguerdichian et
al. [11], Cardei and Wu [3] as well as the Ph.D. thesis of Kumar [8]. In general,
coverage problems can be expressed geometrically. Individual sensors are repre-
sented by their coverage region, which specifies the set of points, within some
underlying surveillance domain, that are covered by the sensor. For brevity, we
specify the type of a sensor by the shape of its coverage region (e.g. disk sensors
denote sensors with a disk shape coverage region).

Coverage problems arise in many different applications, for example border
control [9], multi-robot mine sweeping and sentry duty [4], oceanographic anal-
ysis using satellite data [6], and habitat monitoring [8]. Different applications
motivate different notions of coverage. In this paper, we focus on the notion of
barrier coverage, introduced in [4,9]. The goal here is to ensure that all paths
joining a specified start region S to a specified target region T must intersect
the coverage regions associated with one or more distinct sensors.

Barrier coverage is attractive because it guarantees that there are no unde-
tected transitions from S to T , without requiring that every point in the surveil-
lance domain be covered. However, in its simplest formulation, barrier coverage
is not robust in the face of sensor change or failure: if even one sensor has its
coverage region slightly reduced, the sensor configuration may no longer form

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 130–144, 2012.
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a barrier. Several methods have been suggested to capture more robust notions
of barrier coverage. For example, Meguerdichian et al [11] proposed measuring
the coverage of a sensor network using a maximal breach path - a path that
maximizes the distance to the closest sensor. A closely related idea is a mini-
mum exposure path [12] - a path that minimize the total degree of “exposure”
to sensors. Other models of barrier coverage introduce probabilistic assumptions
[10].

Perhaps the most natural way to address the robustness of barrier coverage
is the notion of k-barrier coverage, introduced by Kumar et al. [9]: a sensor
network is said to provide k-barrier coverage if every path from the start region
S to target region T intersects the coverage regions of at least k distinct sensors.
Kumar et al. showed that in one restricted setting, where unit disk sensors are
deployed in a rectangular strip, one can efficiently determine the maximum k for
which the sensor configuration forms a k-barrier to paths crossing the strip of
the sensor network by a straightforward reduction to network flow. Furthermore,
by a direct application of Menger’s theorem, it follows that in this setting any
k-barrier can be realized as the disjoint union of 1-barriers. Unfortunately, these
results do not seem to generalize.

In an attempt to address k-barrier coverage in a more general setting, Bereg
and Kirkpatrick [2] specified two measures of barrier impermeability, with respect
to a given pair of regions S and T : thickness, defined as the minimum number
of sensors regions crossed–including duplicate crossings–by any S−T path, and
resilience, defined as the minimum number of distinct sensors regions crossed, i.e.
ignoring duplicate crossings. They used barrier thickness, which can be efficiently
computed using shortest path algorithms, as the basis of an efficient algorithm
that approximates the resilience of an arrangement of unit-disk sensors to within
a factor of 3 (or 5/3 with mild assumptions on the separation of S and T ). The
computational complexity of the exact resilience problem for unit disks, or other
basic sensor types, as well as the problem of constructing efficient algorithms
with tighter guaranteed approximation factors, were left as an open problems.

In this paper we return to the general resilience problem, with sensors de-
ployed at at arbitrary locations and S and T located at arbitrary points in
the corresponding arrangement. A sensor network is described by a pair (U,A),
where U is a set of sensors described by the shape of their coverage regions and
A : U → R

2 is an arrangement of the sensors in U on the plane. We only consider
the case where the coverage regions of all sensors in U are congruent.

We focus our attention on unit-line-segment sensors. As shown in [2] for the
case of unit disk sensors, the thickness of a configuration of unit-line-segment
sensors with respect to a given pair of points S and T can be computed efficiently.
Unfortunately the ratio of thickness to resilience can be arbitrarily large for unit-
line-segment sensors, so even finding a constant approximation of resilience seems
to be challenging in this case. In fact, we will show that determining (or even
finding a fully polynomial-time approximation scheme for) the resilience of a
configuration of unit-line-segment sensors is NP-hard.
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The decision problem for the resilience of unit-line-segment sensors is defined
as follows:

Resilience of Unit-Line-Segment Sensor Network (ULS-RES )
Instance: (A, S, T,m), where A is an arrangement of unit-line-segment sensors
in the plane, S and T are two points in the plane, and m is a positive integer.
Question: Is ρ(A, S, T ), the resilience of A with respect to S and T , at most m?

We will establish the NP-hardness of ULS-RES by reduction from the following
problem that is well known to be be NP-complete [5] (and, in fact,APX-hard [7]):

Maximum 2-Satisfiability (MAX-2-SAT )
Instance: {X,C, k}, where X = {x1, x2, . . . , xn} is a set of Boolean variables,
C = {c1, c2, . . . , cm} is a set of 2-literal clauses overX and k is a positive integer.
Question: Is σ(X,C), the maximum number of clauses in C satisfiable by some
truth assignment to the variables of X , at least k?

We present our reduction in two stages. First, in Section 2, we reduce the MAX-
2-SAT problem to an edge-colouring problem in a special family of graphs.
Then, through a careful embedding, we reduce this edge-colouring problem to
ULS-RES , in Section 3. Due to space constraints, it is not possible to present
all of the details. (See [13] for an expanded version of this paper.) An extension
of the proof to sensors with other shapes is discussed in Section 4.

It should be noted that the NP-hardness of the problem of determining the
resilience of a collection of sensors whose coverage regions form line segments of
arbitrary length (and orientation) was recently established by Alt et al. [1]. In
fact, their proof also uses a reduction from MAX-2-SAT . In this sense, although
our stronger result involves a fundamentally different construction for unit line
segments, the result of Alt et al. should be recognized as an important precursor
of our work.

2 Reduction to Edge Colouring of (Bi)3-graphs

2.1 Problem Statement

A bi-vertex −v|v+ is a special type of node that consists of two halves: the neg-
ative half (−v) and the positive half (v+). A k-chain is an alternating sequence
(e1,

−v1|v+1 , . . . ek−1,
−vk−1|v+k−1, ek), where

−vi|v+i , 1 ≤ i < k, is a bi-vertex and

ej , 1 ≤ j ≤ k, is an edge, with ej incident on −vj , for 1 ≤ j < k, and v+j−1, for
1 < j ≤ k. Edges e1 and ek are referred to as the end-edges of the chain. Any
k-chain with even k is referred to as a bi-chain.

A bipartite, bi-vertex, bi-chain graph (a (bi)3-graph for short) is a triple
(−V +

1 ,−V +
2 , B), where −V +

1 and −V +
2 are disjoint sets of bi-vertices, and B

is a set of bi-chains each of which has one end-edge incident with one half of a
bi-vertex in −V +

1 and the other end-edge incident with one half of a bi-vertex in
−V +

2 . For each bi-vertex we refer to the edges incident with its positive (resp.,
negative) half as the positively (resp., negatively)-incident edges.
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x1

x2

x3

x4

x2 ∨ x1

x2 ∨ x3

x4 ∨ x1

x1 ∨ x3

x3 ∨ x4

x2 ∨ x4

(a)

(b)

Fig. 1. (a) an example of a (bi)3-graph arising from our transformation of a 2-SAT
instance; and (b) an embedding of the same graph using unit line-segment sensors

An edge bi-colouring of a (bi)3-graph is an assignment of the colour red or blue
to each of the edges making up its bi-chains. Such a colouring is said to saturate
a bi-vertex if either all of its positively-incident edges or all of its negatively-
incident edges are coloured red; it is said to saturate the entire graph if it
saturates all of its bi-vertices (including those in the interior of bi-chains).

Saturating Edge Bi-Colouring of (Bi)3-graphs (SEB-C )
Instance: (G, r), where G = (−V +

1 ,−V +
2 , B) is a (bi)3-graph and r is a positive

integer.
Question: Does there exists an edge bi-colouring saturating G, that colours at
most r edges red?
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Note that in any saturating bi-colouring, every k-chain has the property that
at least one of every pair of consecutive edges must to be coloured red. Con-
sequently, at least half of the edges of every bi-chain must be coloured red.
Furthermore, any colouring that assigns red to exactly half of the edges of a
bi-chain must, like its complementary colouring, assign red to exactly one of its
two end-edges.

2.2 Reduction

Let P = (X,C, k) be an instance of MAX-2-SAT . We begin by describing how
to construct a corresponding (bi)3-graph G = (−V +

1 ,−V +
2 , B). The first step is

to represent each variable xi in X by a bi-vertex −v1,i|v+1,i in −V +
1 and each

clause cj in C by a bi-vertex −v2,j |v+2,j in −V +
2 . We will refer to the bi-vertices

in −V +
1 and −V +

2 as variable bi-vertices and clause bi-vertices, respectively. For
each clause cj = l1 ∨ l2 in C, we add two bi-chains to B:
(a) The first bi-chain has one of its end-edges incident on −v2,j . Its other end-
edge is incident to −v1,i (resp., v+1,i) if l1 = xi (resp., l1 = xi).

(b) The second bi-chain has one of its end-edges incident on v+2,j . Its other end-

edge is incident to −v1,i (resp., v+1,i) if l1 = xi (resp., l1 = xi).
To complete the reduction, we set r = |E|/2 + |C| − k, where E denotes

the set of edges appearing in bi-chains of C. Fig. 1a depicts the (bi)3-graph
obtained from the instance of MAX-2-SAT with X = {x1, x2, x3, x4} and C =
{(x1 ∨ x2), (x3 ∨ x2), (x1 ∨ x4), (x3 ∨ x1), (x4 ∨ x3), (x4 ∨ x2)}. The positive and
negative half of each of the variable and clause bi-vertices are the right and left
half, respectively.

2.3 Proof of Correctness

We will show that P = (X,C, k) is a yes-instance of MAX-2-SAT if and only if
P ′ = (G, r) is a yes-instance of SEB-C .

Suppose we are given a truth assignment T to X that satisfies exactly k of the
|C| clauses in P . If T assigns true to the variable xi then we alternately colour
the edges of every bi-chain incident with v+1,i (resp., −v1,i), starting with blue
(resp., red). Similarly, if T assigns false to the variable xi then we alternately
colour the edges of every bi-chain incident with −v1,i (resp., v+1,i), starting with
blue (resp., red). It follows, by the even length of bi-chains, that if clause cj is
satisfied by the truth assignment T then at least one of the two bi-chains incident
on the vertex −v2,j |v+2,j must have its incident end-edge coloured red. Thus the
only bi-vertices of G left unsaturated by the specified chain colourings are those
corresponding to the clauses that are not satisfied by T . Hence, if we change
the colour (from blue to red) of either one of the end edges incident on each of
the |C|−k such bi-vertices, we produce an edge bi-colouring of G that saturates
all of its bi-vertices. The total number of red edges used is r (|E|/2 from the
alternate colouring of the bi-chains, plus |C| − k to complete the saturation of
the bi-vertices corresponding to unsatisfied clauses).
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On the other hand, suppose we are given an edge bi-colouring that saturates
G and uses r = |E|/2+ |C| − k red edges. Since all of the blue edges incident on
a variable bi-vertex −v1,i|v+1,i are incident with just one side, we can interpret
this as a truth assignment to the variable xi: if all of the blue edges are incident
with v+1,i then xi is assigned true, otherwise false. (If −v1,i|v+1,i has no incident
blue edges the assignment can be made arbitrarily.) Since (i) every bi-chain must
have at least half of its edges coloured red, and (ii) a colouring with exactly half,
including exactly one of the end-edges, coloured red is always possible, we can
assume, without loss of generality, that at least one of the end edges of each bi-
chain is coloured red, and at most |C|−k bi-chains have both end-edges coloured
red. But, if clause cj is not satisfied by the this truth assignment it must have
an incident bi-chain both of whose end-edges are coloured red. Thus, the truth
assignment must satisfy at least k of the clauses in C.

It follows from the discussion above that the SEB-C problem is NP-hard.
Thus, to establish the NP-hardness of ULS-RES it will suffice to describe a
polynomial-time reduction from SEB-C . We turn to this in the next section.

3 Reduction to ULS-RES

3.1 Relationship to Resilience of a Sensor Network

Consider the (bi)3-graph shown in Fig. 1a. We have purposely drawn all the
clause and variable bi-vertices on one vertical line, with the clause bi-vertices
above the variable bi-vertices to accentuate the bipartite nature of the graph.
Furthermore the bi-chains depicted are of two types: 2-chains joining bi-vertices
on the same (either positive or negative) side and 4-chains joining bi-vertices
on opposite sides. The fact that all edges are drawn as straight lines in one of
the two diagonal directions foreshadows the representation of this graph in our
next construction where it appears embedded in the plane with edges realized
by unit-line-segment sensors in restricted orientations. (For the latter, we will
exploit the fact that our first reduction did not need to specify the actual length
of the bi-chains.)

To understand the reduction to the sensor resilience problem, first pretend
that the line segments in Fig. 1a are line segment sensors placed in the plane at
the illustrated locations (ignoring for now the constraint that all line segments
sensors need to have the same length). Bi-vertices represent points in the plane
where the end points of multiple sensors happen to coincide. We partition the
sensors (segments) whose end points are incident to a common point into posi-
tively and negatively incident sensors based on a line through the point: those
segments above (or to the right of) the line are positive; those below (or to the
left of) the line are negative. Consequently, these points still retain the “two-
halves” property: any sensor whose end points coincide with a bi-vertex attaches
either to its positive half or its negative half.

In addition to sensors that correspond to the edges of the underlying (bi)3-
graph G, we will introduce additional sensors to create an environment of ob-
stacles that must be avoided by any path that minimizes the total number of
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sensor crossings. Suppose now that we have identified two points S and T in
the plane, and that we have embedded the entire configuration of sensors in an
environment of obstacles. We say that an obstacle-avoiding S − T path skirts
bi-vertex −v|v+ positively (resp., negatively) if it crosses all of the sensors that
are positively-incident (resp., negatively-incident) at −v|v+. Our objective is to
construct the obstacle environment such that the following property holds:

Environment Property: For every obstacle-avoiding S−T path π and
every bi-vertex −v|v+(including clause, variable and chain bi-vertices):
(i) π must skirt −v|v+, either positively or negatively, and
(ii) if π skirts −v|v+ positively (resp., negatively) then there is another
obstacle-avoiding S − T path π′ that skirts −v|v+ negatively (resp., pos-
itively) and skirts all other bi-vertices on the same side as π.

The first part of this property is very similar to the condition of a colouring
scheme that saturates bi-vertex −v|v+ – we have simply replaced the notion of
colouring an edge red by crossing the corresponding sensor with an S − T path,
and saturating a bi-vertex by skirting its associated point. The second condition
ensures that all possible colourings that saturate G can be represented.

With this interpretation, a colouring scheme that saturates G using exactly r
red edges corresponds to an obstacle-avoiding S−T path that intersects exactly
r distinct sensors (and vice versa). The latter, of course, is a demonstration that
the resilience of the full sensor network (including the environment) is at most
r. This is the core idea that we will use to reduce SEB-C to ULS-RES . The full
reduction involves a number of details that have been necessarily brushed over
above. Specifically, two main issues need to be dealt with: (i) we need to ensure
that in our reduction, all sensors used are the same length (this is clearly not
the case for the example illustrated in Fig. 1a); and (ii) we need to show how to
construct an environment of obstacles that imposes the Environment Property.

The first of these issues is handled by exploiting the fact that we are free to
replace the bi-chains of G by bi-chains of any (polynomially bounded) length.
Fig. 1b demonstrates the desired embedding of the SEB-C instance shown in
Fig. 1a. The second issue, constructing a suitable obstacle environment, is where
most of the subtlety of our reduction resides; we describe the overall form of the
construction in the next section. While our running example serves to illustrate
many of the general features of the reduction (for example, it is easy to see
from their general form that all of the edges of our bi-chains are paired by their
common projection on the x-axis, making it trivial to confirm that these chains
do, in fact, have even length), other issues (for example the apparent overlap of
some of the embedded bi-chains in Fig. 1b) requires some additional treatment
to ensure that it is possible for an S − T path to only cross some of the sensors
but not others even if they reside at the same location in this embedding of bi-
chains. The reader is invited to consult [13] for the full details of the embedding
of both the sensors and the environment.
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3.2 Building the Obstacle Environment

We now deal with the second issue of the reduction - how to configure “sensor ob-
stacles” in such a way that the Environment Property is enforced. The key idea
is to arrange barriers into one long corridor that straddles every bi-vertex in the
underlying graph with one side of the corridor intersecting all of the positively-
incident edges and the other side intersecting all of the negatively incident edges.
It is not obvious a priori that such an arrangement is always possible. What we
describe is a rather generic maze-like construction using horizontal and verti-
cal corridor segments that makes it easy to visualize the interactions with the
diagonally-aligned segments that describe the underlying (bi)3-graph.

Walls and Corridors. A wall is a collection of unit-line-segment sensors su-
perimposed to form an unbroken unit. The key property is that the number
of coincident sensors at any point on a wall must be large enough so that any
path which crosses the wall can not possibly realize the minimum number of
sensor crossings. This allows us to restrict our attention to S − T paths that
avoid walls. Walls in turn are the basic building blocks for creating the environ-
ment of obstacles. By using several walls, we can create “obstacle” corridors to
steer the minimal resilience path. For example, Fig. 2a illustrates how a corridor
can be used to implement a bi-vertex with two incident edges. Any S − T path
that follows the corridor must intersect either the right (positively-incident) sen-
sors or the left (negatively incident) sensors. This enforces the first part of the
Environment Property. Furthermore if all bi-vertices interact with the corridor
independently, in this same fashion, then the second part of the Environment
Property is also ensured.

Some coordinated bi-vertex/corridor interactions are straightforward. For ex-
ample, Fig. 2b shows how a corridor that sweeps back and forth horizontally can
be used to enforce the Environment Property for a bi-chain. Establishing the
independence of other bi-vertex/corridor interactions requires some care.

S

T

(a) Implementing a bi-vertex

S

T

(b) Implementing a bi-chain

Fig. 2. Constructing parts of the environment. Bold lines represent walls.
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Constructing the Maze Environment. Given an realization of a (bi)3-graph
as a configuration of unit-line-segment sensors, as described above, we now show
how to construct the full environment of corridors so that all of the bi-vertex
constraints are obeyed. We illustrate how this can be done by continuing our
example. Fig. 3 shows how the (bi)3-graph realization illustrated in Fig. 1b can
be embedded in a generic (i.e. graph-independent) maze-like obstacle environ-
ment. For clarification, the points S and T lie at the ends of the right-most and
leftmost columns (shown highlighted). By design any obstacle-free S − T path
must traverse all of the corridors on the right half, from top to bottom, then all
of the corridors on the left side, from bottom to top, before traversing the full
central column.

For the most part the interactions between elements of the embedded (bi)3-
graph and the obstacle environment are exactly as illustrated in Fig. 3. Where
two embedded bi-chains intersect some local adjustments are needed to keep
the bi-vertex/corridor interactions independent. The local adjustments are illus-
trated in the uppermost blow-up shown to the right in Fig. 3. The idea is to use
an additional wall segment as an island in the middle of the corridor, making it
possible to slightly offset one of the chains so that the intersection between the
two bi-chains does not occur exactly at a bi-vertex. In a sense such islands play
the role of extended bi-vertices.

Fig. 3 illustrates two additional subtleties–shifts to ensure a proper bi-vertex/
corridor interaction at corridor turn points, and shifts to avoid coincident bi-
chains–both of which are also addressed by the use of island barriers.

3.3 Correctness of the Reduction

To establish the correctness for the reduction let P = (G, r) be an instance
of SEB-C problem, where G = (−V +

1 ,−V +
2 , B) is a (bi)3-graphand et P ′ =

(A, S, T, r) be the ULS-RES instance constructed from P as described above.

Lemma 1. If there exists a saturating edge colouring scheme for G with r red
edges, then the resilience of the sensor network described in P ′ is at most r.

Proof. It suffices to show that there exists a S−T path for P ′ which intersects at
most r distinct sensors. Since the path does not intersect any walls, it will only
intersect the sensors used to construct the bi-chains. Thus, by the Environment
Property, we can treat such a path as a series of independent decisions where
for each bi-vertex, the path chooses whether to intersect all positively or all
negatively incident sensors (or both).

We now construct an S − T path based on the colouring scheme. First, the
path considers the bottom and top bi-vertices. For each bi-vertex, the path will
choose intersect all positively incident sensors if and only if for the corresponding
bi-vertex in G, the edge colouring scheme coloured all positively incident edges
red. Otherwise, the path will choose to intersect all negatively incident sensors
(this means that the colouring scheme must have coloured all negatively incident
edges red).
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T

S

Fig. 3. Full reduction from SEB-C to ULS-RES

At this point, it must be the case that that for every embedded bi-chain, the
S − T path has already decided whether to intersect the two end sensors or not
(since the end sensors of the bi-chains are exactly the sensors incident on the
top and bottom bi-vertices). These bi-chains are no longer correlated and we
can analyze each chain independently. There are three cases to consider: when
neither end sensor is intersected by the path, when exactly one end sensor is
intersected by the path, and when both end sensors are intersected by the path.

We can skirt every bi-vertex in the bi-chain by intersecting exactly p sensors
(if one or fewer of the end sensors are intersected) or p+ 1 sensors (if both end
sensors are intersected). Thus, by following the above scheme for every bi-chain,
the total number of sensors crossed is r. 
�

Lemma 2. If the resilience of the sensor network described in P ′ is at most r,
then there exists a saturating edge colouring scheme for G with r red edges.

Proof. If the resilience of the sensor network is at most r, then there must exists
a S−T path π which intersects at most r distinct sensors. By construction, this
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path will not cross any walls and will satisfy the Environment Property. There-
fore, for every embedded bi-chain, at least half of the sensor must be intersected
by the path.

We now construct a saturating colouring scheme for G. We begin by colouring
the edges incident on the bi-vertices in −V +

1 and −V +
2 (whose corresponding

bi-vertices in P ′ are the bottom and top bi-vertices, respectively). For each bi-
vertex, we colour all positively incident edges red if and only if the path π
intersected all positively incident sensors for the corresponding bi-vertex in P ′.
Otherwise, we colour all negatively incident edges red (this means that that path
must have intersected all negatively incident sensors). Similarly, we colour the
internal edges of a bi-chain red if the corresponding sensor was crossed by π.

Since the resulting colouring scheme saturates all of the bi-vertices in G and
uses no more than r red edges, the result follows. 
�

With all of the details of the reduction in hand (cf. [13]) it is straightforward to
establish the following:

Lemma 3. Let P = (G, r) be an instance of SEB-C , where G = (−V +
1 ,−V +

2 , B)
is a (bi)3-graph. The reduction to an instance P ′ of ULS-RES is constructible
in time that is bounded by some polynomial in |−V +

1 | and |−V +
2 |.

The following theorem is an immediate consequence of the preceding three lem-
mas:

Theorem 1. ULS-RES is NP-hard.

4 Extension to Other Sensor Shapes

The core idea of our reduction is to first construct a sensor network consisting
of bi-chains connecting appropriate bi-vertices. Then, the network is embed-
ded within a maze of sensor obstacles in order to implement the constraint on
each bi-vertex (expressed as the Environment Property). The realization of bi-
chains or the environment maze are individually independent on the shape of
the sensors. However once the embedding occurs, we need to ensure that the
Environment Property is imposed. Thus, there are two things we need to handle
when extending the reduction to other sensors shapes. First, we need to be able
to implement the basic components: bi-vertices, bi-chains, walls and corridors.
Second, we need to be able to handle bi-chains as they intersect with each other
(ie. a cross-over gadget) and with the environment.

We believe that for any sensor shapes except for disks, the above two require-
ments can be satisfied. We sketch below the modifications necessary to extend
our hardness result for unit square sensors; in [13], we demonstrate the corre-
sponding result for (proper) elliptical sensors . The reason that the reduction
does not extend for disk sensors is due to the inability to construct a cross-over
gadget. Consider the cross-over gadget for the examples given (Fig. 3 and 5).
For both squares and ellipses, we exploited the fact that the associated sensor
regions do not intersect as pseudo-disks (i.e. they can be made to cross).
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Fig. 4 demonstrates how to implement a biparite chain with square sensors.
Note that consecutive sensors in the chain are not physically connected. This is
because corridors of the maze are too wide. Instead, we add additional walls to
connect the two consecutive sensors. Since a S − T path will not intersect the
wall, the result is that one of the two consecutive sensors must still be intersected.
We remark that adding walls between consecutive sensors of a bi-chain is not
necessary. The alternative is to make the corridor width more narrow. We have
opted for the former approach here simply because it makes the picture clearer.

Fig. 4. Realizing a bi-chain with square sensors

Fig. 5. Realizing cross-overs with other square sensors
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Fig. 5 demonstrates how to construct a cross-over gadget using square sensors.
Note that we needed to slightly rotate the square sensors at the cross-over point.
The result is that one square sensor “pokes” out of the square sensor from the
other chain.

Of course, we have only sketched how one may approach extending the reduc-
tion for other sensor shapes. The problem of designing a a precise construction
for every non-symmetric shape contains many subleties and, although we believe
that a general proof is possible, establishing this is certainly beyond the scope
of this paper.

5 Hardness of Approximation

Recall that if (X,C) is an instance of 2-SAT, we defined σ(X,C), to be the
maximum number of clauses in C satisfiable by some truth assignment to the
variables of X . Furthermore, if A is an arrangement of sensors then we defined
ρ(A, S, T ) to be the resilience of A, with respect to faces S and T of A.

Our reductions described in Sections 2 and 3 can be composed to show that
any 2-SAT instance (X,C) can be transformed, in time bounded by some poly-
nomial in its size, to an arrangement A, with distinguished faces S and T , such
that

σ(X,C) = ρ(A, S, T )− |A|/2− |C|

where |A| denotes the number of sensors in A. Thus, the reduction can be used
to convert an approximation algorithm Ξ ′ for ρ(A, S, T ) into an approximation
algorithm Ξ for σ(X,C).

Specifically, suppose that A, S and T are formed by our reduction from a 2-
SAT instance (X,C). We know that ρ(A, S, T ) is bounded by some polynomial
λ(|X |, |C|). Suppose that ε′ is chosen to be ε/λ(|X |, |C|). Now if Ξ ′ guarantees
a (1 + ε′)-approximation ρ′(A, S, T )of ρ(A, S, T ), then the value ρ′(A, S, T ) −
|A|/2− |C| provides a (1− ε)-approximation of σ(X,C), since

ρ′(A, S, T ) ≤ (1 + ε′)ρ(A, S, T )
≤ ρ(A, S, T ) + εσ(X,C)

≤ |A|/2 + |C| − (1 − ε)σ(X,C)

The MAX-2-SAT problem is known to be APX-hard [7]. This implies that,
unless P=NP, it does not admit a polynomial-time approximation scheme. Our
results imply a similar (but weaker) hardness-of-approximation result for the
ULS-RES problem.

Theorem 2. Unless P=NP, there does not exists a fully polynomial-time ap-
proximation scheme for the ULS-RES problem.

Proof. Suppose the contrary and let Ξ ′ be a fully polynomial-time approxima-
tion scheme (FPTAS) for the ULS-RES problem. By the discussion above, this
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implies the existence of an FPTAS for the MAX-2-SAT problem, contradicting
the fact that, being APX-hard, MAX-2-SAT does not admit a polynomial-time
approximation scheme, unless P=NP [7]. (Note that our reduction is not guar-
anteed to produce a polynomial-time approximation scheme (PTAS) if Ξ ′ is a
PTAS but not a FPTAS, since ε′ depends on the size of the problem instance,
as well as ε.) 
�

6 Conclusion

Resilience is a natural measure of the robustness of a sensor network. What we
have shown is that computing robustness is hard if the network is formed by unit-
line-segment sensors. In fact, our reduction shows that this is true even if the
segments-sensors are oriented horizontally, vertically, and diagonally. It is natural
to ask if this remains true even if sensors are restricted to two orientations, say
horizontal and vertical. In fact our constructions can be modified (replacing
diagonal chains by “staircases”) to establish this slightly stronger result, at the
cost of considerable additional complexity.

We also argued that the reduction can be extended to sensors with non-
symmetric shape. Unfortunately, our techniques do not allow us to show whether
the problem is hard for circular sensors. This is because circles are perfectly
symmetrical and we could not construct a cross-over gadget (even if the circles
can be different sizes). Thus, the complexity of computing resilience for networks
of disk sensors remains an open problem. It should be noted that the three-
dimensional version of the problem (computing resilience for a network unit
sphere sensors) has been shown to be NP-hard [13].

For practical applications, we often turn to approximation algorithms for NP-
hard problems. In Section 5, we showed that, unless P=NP, there does not
exists a fully polynomial-time approximation scheme for the ULS-RES problem.
However, it remains open whether there exists a less demanding PTAS. We note
that it has been shown that for 2D unit disk sensors, the thickness of the sensor
network (which is computable using a shortest path algorithm) provides a 2-
approximation for resilience [2] . Unfortunately, this does not extend for other
type of sensor shapes. Thus, finding constant approximation algorithm for the
resilience of line-segment sensor networks is another problem worth exploring.

References

1. Alt, H., Cabello, S., Giannopoulus, P., Knauer, C.: On some connection problems
in straight-line segment arrangements. In: 27th European Workshop on Computa-
tional Geometry, pp. 27–30 (2011)

2. Bereg, S., Kirkpatrick, D.: Approximating Barrier Resilience in Wireless Sensor
Networks. In: Dolev, S. (ed.) ALGOSENSORS 2009. LNCS, vol. 5804, pp. 29–40.
Springer, Heidelberg (2009)

3. Cardei, M., Wu, J.: Coverage in wireless sensor networks. In: Handbook of Sensor
Networks: Compact Wireless and Wired Sensing Systems, pp. 432–446. CRC Press
(2005)



144 K.-C. Robert Tseng and D. Kirkpatrick

4. Gage, D.W.: Command control for many-robot systems. In: Proceedings of the
19th Annual AUVS Technical Symposium, AUVS 1992, pp. 28–34 (1992)

5. Garey, M.R., Johnson, D.S., Stockmeyer, L.: Some simplified NP-complete graph
problems. Theoretical Computer Science pp. 237 – 267 (1976)

6. Gregg, W., Esaias, W., Feldman, G., Frouin, R., Hooker, S., McClain, C., Wood-
ward, R.: Coverage opportunities for global ocean color in a multimission era. IEEE
Transactions on Geoscience and Remote Sensing, 1620–1627 (1998)

7. H̊astad, J.: Some optimal inapproximability results. In: Proceedings of the 29th
Annual ACM Symposium on Theory of Computing, pp. 1–10 (1997)

8. Kumar, S.: Foundations of coverage in wireless sensor networks. Ph.D. thesis, Ohio
State University (2006)

9. Kumar, S., Lai, T.H., Arora, A.: Barrier coverage with wireless sensors. In: Pro-
ceedings of the 11th Annual International Conference on Mobile Computing and
Networking, pp. 284–298 (2005)

10. Liu, B., Dousse, O., Wang, J., Saipulla, A.: Strong barrier coverage of wireless
sensor networks. In: Proceedings of the 9th ACM International Symposium on
Mobile Ad Hoc Networking and Computing, pp. 411–420 (2008)

11. Meguerdichian, S., Koushanfar, F., Potkonjak, M., Srivastava, M.: Coverage prob-
lems in wireless ad-hoc sensor networks. In: INFOCOM 2001. Twentieth Annual
Joint Conference of the IEEE Computer and Communications Societies. Proceed-
ings. IEEE, pp. 1380–1387 (2001)

12. Meguerdichian, S., Koushanfar, F., Qu, G., Potkonjak, M.: Exposure in wireless ad-
hoc sensor networks. In: Proceedings of the 7th Annual International Conference
on Mobile Computing and Networking, pp. 139–150 (2001)

13. Tseng, K.C.R.: Resilience of Wireless Sensor Networks. Master’s thesis, University
of British Columbia (2011)



Distributed (Δ + 1)-Coloring

in the Physical Model

Dongxiao Yu1, Yuexuan Wang2, Qiang-Sheng Hua2,1, and Francis C.M. Lau1

1 Department of Computer Science, The University of Hong Kong,
Pokfulam, Hong Kong, P.R. China

2 Institute for Interdisciplinary Information Sciences,
Tsinghua University, Beijing, 100084, P.R. China

Abstract. In multi-hop radio networks, such as wireless ad-hoc and
sensor networks, nodes employ a MAC (Medium Access Control) proto-
col such as TDMA to coordinate accesses to the shared medium and to
avoid interference of close-by transmissions. These protocols can be im-
plemented using standard node coloring. The (Δ + 1)-coloring problem
is to color all nodes in as few timeslots as possible using at most Δ + 1
colors such that any two nodes within distance R are assigned different
colors, where R is a given parameter and Δ is the maximum degree of
the modeled unit disk graph using the scaling factor R. Being one of
the most fundamental problems in distributed computing, this problem
is well studied and there are a long chain of algorithms for it. However,
all previous work are based on models that are highly abstract, such
as message passing models and graph based interference models, which
limit the utility of these algorithms in practice.

In this paper, for the first time, we consider the distributed Δ + 1-
coloring problem under the more practical SINR interference model. In
particular, without requiring any knowledge about the neighborhood,
we propose a novel randomized (Δ + 1)-coloring algorithm with time
complexity O(Δ log n+ log2 n). For the case where nodes can not adjust
their transmission power, we give an O(Δ log2 n) randomized algorithm,
which only incurs a logarithmic multiplicative factor overhead.

1 Introduction

The node coloring problem underpins the design of interference avoidance mech-
anisms in many multi-hop radio networks including wireless ad-hoc and sensor
networks. In these networks, radio communications are subject to interference,
and messages may be lost due to interference. Without any interference avoid-
ance mechanism, coordinating the nodes to achieve efficient and reliable commu-
nication is a time consuming task. Traditionally, nodes employ MAC (Medium
Access Control) protocols to coordinate their accesses to the shared medium and
to avoid interference of close-by transmissions, such as TDMA (Time Division
Multiple-Access). These MAC protocols can all be reduced to the classical node
coloring problem. For example, by assigning different colors to different time
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slots in a TDMA scheme, a proper coloring with parameter d corresponds to a
MAC layer without “close-by” interference, i.e., no two nodes within distance
d of each other transmit at the same time. In [3], it is shown that even under
the complicated (but more realistic) SINR model, we can still implement an in-
terference free TDMA-like MAC protocol by computing a proper coloring for a
well defined d if we adopt a uniform power assignment. Conventionally, the node
coloring problem is one of the most fundamental problems related to symmetry
breaking, and therefore has attracted a great deal of attention in the distributed
computing community.

Almost all previous work to derive distributed node coloring algorithms as-
sume the graph based model in which interference is represented by a local-
ized function—a message can be correctly received only if there are no other
simultaneously transmitting senders in the receiver’s neighborhood. However,
in multi-hop radio networks, interference is cumulative and is caused by all si-
multaneously transmitting nodes, near by and far away. The physically based
Signal-to-Interference-plus-Noise-Ratio (SINR) model [7] captures this reality in
wireless networks more closely. Under the SINR model, the signal strength fades
with distance to the power of some path-loss exponent α and a message can be
successfully received if the ratio of the received signal strength and the sum of
the interference caused by simultaneously transmitting nodes plus noise is above
a certain hardware-defined threshold β.

1.1 Related Work

In the absence of global knowledge, to derive a (Δ+1)-coloring in a distributed
manner is challenging and has attracted much attention in the distributed com-
puting community for more than two decades. The traditional message passing
model was first considered. Since Cole and Vishkin presented the first distributed
(Δ+1)-coloring for rings in [2], a long line of papers were devoted to this prob-
lem. The state-of-the-art results are the O(Δ) + 1

2 log
∗ n algorithm for arbitrary

graphs in [1] and the optimal O(log∗ n) algorithm for bounded-independence
graphs in [14]. However, the message passing model abstracts away some cru-
cial elements of wireless networks, such as interference, collision and asynchrony.
Taking interference into account and assuming a locally synchronous circum-
stance, Schneider and Wattenhofer [15] proposed a distributed (Δ+ 1)-coloring
algorithm with running time O(Δ + logΔ logn) and O(Δ + log2 n) with and
without knowledge of Δ respectively. When further considering asynchrony, as-
suming prior knowledge of n and Δ, Moscibroda and Wattenhofer [10] gave an
O(Δ log n) distributed coloring algorithm for the simple unit disk graph model
which only considers direct interferences from neighbors. In an extended ver-
sion [11], the result was generalized for the bounded-independence graph. In a
recent paper [3], Derbel and Talbi showed that the algorithm in [11] also works
under the SINR model within the same time bound. However, all the above three
algorithms need O(Δ) colors instead of at most Δ+ 1 colors.

In the SINR model, the interference is modeled as a global function, which
makes the design of efficient distributed algorithms with global performance
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guarantee difficult. In spite of this, there have been many attempts in recent
years. In [13], assuming that all nodes can perform physical carrier sensing, Schei-
deler et al. derived an O(log n) distributed algorithm for computing a constant
approximate dominating set. The first distributed local broadcasting algorithm
was presented by Goussevskaia et al. in [4] and the result is improved in a re-
cent paper [17]. Kesselheim and Vöcking [8] considered the contention resolution
problem and showed that their distributed algorithm is asymptotically optimal
up to a log2 n factor.

1.2 Our Contribution

To the best of our knowledge, this work is the first one considering the distributed
(Δ + 1)-coloring problem under the physical model. Without any knowledge
on neighborhood, we give an O(Δ log n + log2 n) time randomized distributed
(Δ+ 1)-coloring algorithm for asynchronous wake-up multi-hop radio networks
under the physical model. Our result even matches the coloring algorithm in [3]
for large Δ, e.g., Δ ≥ logn, which needs a linear estimate of Δ and uses O(Δ)
colors. In our algorithm, we adopt a clustering coloring strategy, i.e., a Maximal
Independent Set (MIS) is first computed, and then the nodes in the MIS assign
colors for their neighbors. To make the strategy available, we first show that the
MIS algorithm in [12] still works under the SINR model by carefully tuning the
parameters. This algorithm is of independent interest, since it is the first MIS
algorithm in the physical model.

Furthermore, if nodes can not adjust their transmission powers, we also give a
distributed (Δ+1)-coloring algorithm with time complexity O(Δ log2 n) by iter-
atively carrying out the MIS algorithm, which also does not need any knowledge
on neighborhood.

2 Problem Definitions and Model

For two nodes u and v, we use d(u, v) to denote the Euclidian distance between
u and v. Given a distance parameter R, we say two nodes u and v are neighbors
if d(u, v) ≤ R. The neighborhood of a node v is the set of all its neighbors,
denoted by N(v). Additionally, we use N [v] to denote the set N(v) ∪ {v}. For
a node v, we denote by Δv the number of nodes in v’s neighborhood. We write
Δ = maxv∈V Δv. A set of nodes S is called an independent set if any two nodes
of S are not in each other’s neighborhood. A node coloring is proper if each set
of nodes with the same color is an independent set, i.e., the distance between
any two nodes with the same color is larger than R. Then the (Δ+ 1)-coloring
problem is to color all nodes properly in as few timeslots as possible using at
most Δ+ 1 colors.

In this work, we deal with unstructured radio networks [9]. In particular,
nodes may wake up asynchronously or be woken up by incoming messages with-
out access to a global clock. After waking up, nodes may start executing the
algorithm at any time and nodes can not perform physical carrier sensing. The
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only prior knowledge given to nodes is a polynomial estimate of the number n
of nodes in the network and nodes are clueless about the number of nodes in its
close proximity. We also assume that every node v has a unique IDv. Addition-
ally, we assume that nodes are placed arbitrarily on the plane. We define a node
v’s running time as the length of the interval from the timeslot when v starts
executing the algorithm to the timeslot when v quits the algorithm. The time
complexity of the algorithm is the maximum of all the nodes’ running times.

We adopt the practical physical model (or the SINR model) [7] in this paper.
In particular, a message sent by node u to node v can be correctly received
at v iff

Pu

d(u,v)α

N +
∑

w∈V \{u,v}
Pw

d(w,v)α

≥ β, (1)

where Pu (Pw) is the transmission power for node u (w), α is the path-loss
exponent whose value is normally between 2 and 6, β is a hardware deter-
mined threshold value which is greater than 1, N is the ambient noise, and∑

w∈V \{u,v}
Pw

d(w,v)α is the interference experienced by the receiver v caused by

all simultaneously transmitting nodes in the network.
The transmission range RT of a node v can be defined as the maximum

distance at which a node u can receive a clear transmission from v (SINR ≥ β)
when there are no other simultaneous transmissions in the network. From the
SINR condition (1), RT ≤ Rmax = ( P

β·N )1/α for the given power level P . We

further assume that RT < Rmax and define RT = (P/cNβ)1/α, where c > 1 is a
constant determined by the environment.

In subsequent sections, when we say “an event occurs with high probability”
we mean that the event occurs with probability 1 − n−c for a constant c > 0,
and “a node correctly get a color” means that the resulting coloring of the
network is proper. Greek letters represent constants. The following Definition 1
and Lemma 1 will be used in the analysis of algorithms.

Definition 1. For a node v ∈ V , the probabilistic interference at v, Ψv, is de-
fined as the expected interference experienced by v in a certain timeslot t.

Ψv =
∑

u∈V \{v}

Pupu
d(u, v)α

, (2)

where Pu is the transmission power and pu is the sending probability of node u
in timeslot t.

Lemma 1 ( [4]). Consider two disks D1 and D2 of radii R1 and R2, R1 > R2,
we define χ(R1, R2) to be the smallest number of disks D2 needed to cover the

larger disk D1. It holds that: χ(R1, R2) ≤ 2π
3
√
3
· (R1+2R2)

2

R2
2

.
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3 An O(Δ logn + log2 n) (Δ+ 1)-Coloring Algorithm

In this section, we give a distributed randomized coloring algorithm as described
in Algorithm 1. It is assumed that every node v possesses a color list from which
it chooses a color. Without loss of generality, we assume that all nodes’ color lists
are {0, 1, . . . , n−1}, where n is the estimate of the number of nodes. Algorithm 1
has two main steps. A Maximal Independent Set (MIS) in terms of 3R, i.e.,
every pair of nodes in the MIS has distance larger than 3R, is first computed;
the nodes in this MIS are the leaders of their neighbors. Then by communicating
with their neighbors within distance R, each leader decides when their neighbors
can choose an available color. Without confusion, we will just call Algorithm 1
excluding the MIS algorithm as the coloring algorithm. In order to compute
a maximal independent set, we first show that the distributed MIS algorithm
in [12] still works under the SINR model by carefully tuning the parameters.
Due to asynchrony, when some nodes execute the MIS algorithm, other nodes
may be carrying out the coloring algorithm. Here we show that under such
an asynchronous circumstance, the MIS algorithm can still correctly output an
independent set in any timeslot with high probability. Due to the space limit, we
put the description and the analysis of the MIS algorithm in the full version [16].
In addition, nodes adopt different transmission powers when executing different
operations in Algorithm 1. Generally speaking, nodes adopt the transmission
power of PM = c ·3αNβRα when they execute the MIS algorithm and transmit a
StartT ransmit message in state G, while nodes adopt the transmission power of
PC = cNβRα when they perform other operations. By the definition in Section 2,
the transmission ranges of nodes are 3R and R for PM and PC , respectively.

There are four states in the coloring algorithm. After executing the MIS algo-
rithm, all leaders in the computed independent set join state G, while all nodes
within distance 3R from these leaders join state S. Then each node in G makes
its neighbors within distance R join state C1. By continuously transmitting an
AskColor message, each node in state C1 endeavors to acquire a Grant message
from its leader. After receiving the Grant message from the leader, a node in
state C1 joins state C2, in which it chooses a color that has not been chosen by its
neighbors, and transmits its choice to all neighbors. Nodes still in state S keep
silence so that they do not interfere with the coloring process of their neighbors.
Next we describe Algorithm 1 in more details.

After waking up, a node v will first wait for at most 2μ logn timeslots. During
the process, if v received a messageDoNotT ransmitu, it enters state S and adds
u into its forbidden set Fv. Otherwise, it starts executing the MIS algorithm
after waiting for 2μ logn timeslots. After executing the MIS algorithm, each
node will either join state M meaning that it is a member of the computed
independent set, or join state S. Here we must point out a difference of our
MIS algorithm from that in [12] in state M. In our algorithm, when a node v
joins stateM, it first uses μ logn timeslots to wake up all nodes within distance
3R by transmitting a message with constant probability. Then v transmits a
DoNotT ransmitv message forcing all nodes within distance 3R to join state S.
After doing this, v will join state G and start executing the coloring algorithm.
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In the coloring algorithm, the leaders in state G first choose color 0 as its
own color. Then they transmit a StartColoring message making their neighbors
within distance R join state C1. While in state G, a node v adds each of its
neighbors that send an AskColor message to v into a set Qv. If Qv is not empty,
it deletes the first node u fromQv and transmits a Grantu message with constant
probability for 2μ logn timeslots. We assign two counters cv and bv to each node
v in state G. In particular, cv is used to count the number of timeslots that
v has not received any AskColor message since the last one, while bv is for
counting the number of Grant messages that have been transmitted by v. These
two counters are set for guaranteing that with high probability, v will not quit
the algorithm until all neighbors have been colored. Then if Qv is empty and
cv > bv · 5μ logn + 3μ log2 n + μ logn, v quits the algorithm after transmitting
a StartT ransmitv message for μ logn timeslots adopting power PM . By doing
so, v removes its restriction on nodes within distance 3R caused by the message
DoNotT ransmitv.

For each node u in state S, it will do nothing except listening. When u stays
in state S, it adds the nodes that send DoNotT ransmit messages to u into
its forbidden set Fu, and it removes a node v from Fu if it receives a message
StartT ransmitv. Node u will not leave state S until Fu is empty or it receives a
StartColoring message from a leader node v. For the first case, u starts executing
the MIS algorithm. For the second case, it joins state C1 and starts competing for
the right of choosing a color. After joining state C1, node u starts transmitting an
AskColoru message with a small initial transmission probability. Then if u did
not receive any Grant message and did not change its transmission probability
for 3μ logn timeslots, it doubles the transmission probability. While in state C1,
if u receives a Grant message and the Grant message is not for u, it halves
the transmission probability. By doing this, it is guaranteed that the sum of
transmission probabilities in any local region of the network can be bounded with
high probability, which helps bound the interference caused by simultaneously
transmitting nodes. If the received Grant message is for u, it joins state C2. After
joining C2, u chooses the first color remaining in its color list except color 0 and
transmits a Coloru message with constant probability for μ logn timeslots to
inform its neighbors of its choice. After waking up, each node will delete the color
in the received Color message from its color list; hence it will not choose a color
that has been chosen by its neighbors. In order to make sure that Algorithm 1

is correct with high probability, we assign μ = 2ω+8·43·21−ω ·χ(31+2/(α−2)RI+3R,0.5R)

1−1/ρ ,

where ρ and RI (Equation (3) below) are constants defined in the following
analysis.

3.1 Analysis

In this section, we will show that with high probability, each node can correctly
get a color after executing Algorithm 1 for O(Δ log n+log2 n) timeslots, and the
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Algorithm 1. (Δ+ 1)-Coloring

Initially, pv = 2−ω−1

n
; cv = 0; bv = 0; tv = 0;Qv = ∅;Tv = ∅;ω = 6.4;

Upon node v wakes up
1: wait for 2μ log n timeslots
2: if Received DoNotTransmitu from node u then add u into Fv; state = S ;
3: Else execute the MIS algorithm adopting transmission power PM end if

Message Received
1: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state G
1: choose color 0;
2: for μ log n timeslots do transmit StartColoringv adopting power PC with proba-

bility 2−ω end for
3: if Qv is not empty then
4: bv = bv + 1;
5: for 2μ log n timeslots do delete the first node u from Qv and transmit Grantu

adopting power PC with probability 2−ω ; cv = cv + 1 end for
6: else cv = cv + 1 end if
7: if Qv is empty and cv > bv · 5μ log n+ 3μ log2 n+ μ log n then
8: for μ log n timeslots do transmit StartT ransmitv adopting power PM with prob-

ability 2−ω end for
9: quit
10: end if

Message Received
1: if Received AskColoru then add u into Qv; cv = 0 end if

Node v in state S
1: if Fv is empty then execute the MIS algorithm with power PM else listen end if

Message Received
1: if Received DoNotTransmitw from node w then add w into Fv end if
2: if Received Colorw then delete the color in Colorw from its color list end if
3: if Received StartT ransmitw from node w then delete w from Fv end if
4: if Received StartColoringw from node w then state = C1 end if

Node v in state C1

1: tv = tv + 1
2: if tv > 3μ log n then pv = 2Pv ; tv = 0 end if
3: transmit AskColorv adopting power PC with probability pv;

Message Received
1: if received Grantv then state = C2 end if
2: if received Grantw for some node w that has not been received before then pv =

pv/2; tv = 0 end if
3: if Received Colorw then delete the color in Colorw from its color list end if

Node v in state C2

1: choose the first available color from its color list;
2: for μ log n timeslots do transmit a message Colorv containing its color adopting

power PC with probability 2−ω end for
3: quit;
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total number of colors used is at most Δ+ 1. We first give some definitions and
notations that will be used in the subsequent analysis. A new parameter RI is
defined as follows, for bounding the interference.

RI = R

(
27−ω3α+1

√
3πρβ · 1

1− 1/c
· α− 1

α− 2

)1/(α−2)

, (3)

where ρ is a constant larger than 1. We choose ρ such thatRI > 2R. Furthermore,
we denote Ti, Di and Ii as the disks centered at node i with radius R, R

2 and
RI , respectively. By Er

i we denote the disk centered at node i with radius r.
Without confusion, we also use Ti, Di, Ii and Er

i to denote the set of nodes in
Ti, Di, Ii and Er

i , respectively.
Before analyzing Algorithm 1, we first give a lemma on the time complexity

and the correctness of the MIS Algorithm, which is proved in the full version [16].

Lemma 2. With probability 1 − O(n−3), every node v ∈ V decides whether it
joins the computed independent set or state S after executing the MIS algorithm
for at most O(log2 n) timeslots. Furthermore, with probability at least 1−O(n−3),
in any timeslot t, the independent set computed by the MIS algorithm is correct.

The following property is also proved to be correct with probability at least 1−
O(n−3) in the analysis of the MIS algorithm which is put in the full version [16].

Property 1. For any disk Di and in any timeslot t throughout the execution of
the algorithm, the sum of transmission probabilities of nodes that are executing
the MIS algorithm is at most 3 · 2−ω.

In order to bound the interference, we present Property 2 which can be proved
to be correct with probability at least 1−O(n−1) in Lemma 9.

Property 2. For any disk Di and in any timeslot t throughout the execution of
the algorithm,

(i) There is at most one node in state C2;
(ii) The sum of transmission probabilities of nodes in state C1 is at most∑
u∈C1

≤ 2−ω;
(iii) There is at most one node in state G.

Based on Property 1, Property 2 and the transmission probability in each state,
we can bound the sum of transmission probabilities as follows.

Lemma 3. Assume that Property 1 and Property 2 hold. For any disk Di and in
any timeslot t throughout the execution of the algorithm, the sum of transmission
probabilities can be bounded as

∑
v∈Di

pv ≤ 3 · 21−ω.

In the subsequent lemma 4, we show that the interference by far-away nodes can
be bounded by a constant, and then in Lemma 5, we give a sufficient condition
for a successful transmission. The proofs of Lemma 4 and Lemma 5 are put in
the full version [16].
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Lemma 4. Assume that Property 1 and Property 2 hold. Then for every node
u, the probabilistic interference caused by nodes outside Iu can be bounded as:

Ψv/∈Iu
u ≤ (1−1/c)PC

ρβRα .

Lemma 5. Assume that Property 1 and Property 2 hold. If node v is the only
sending node in ERI+R

v , with probability 1 − 1
ρ , the message sent by v will be

received successfully by all nodes in Tv.

Based on the sufficient condition for a successful transmission in Lemma 5, in
the following Lemma 6, we show the successful transmissions of messages used
in the algorithm in given timeslots with high probability. Then in Lemma 7, we
state that with high probability, a leader will not quit the algorithm until all its
neighbors have been colored.

Lemma 6. Assume that Property 1 and Property 2 hold. Then with probability
at least 1− 1

n4 , the following results are correct:
(i) After entering state G, a node v can successfully send a message

StartColoring to all its neighbors in μ logn timeslots.
(ii) A node v in state G can successfully send a message Grant to all its

neighbors in μ logn timeslots.
(iii) A node v in state G can successfully send a message StartT ransmit to

all nodes within distance 3R in μ logn timeslots.
(iv) A node v in state C2, after choosing a color, can successfully send a

message Colorv to all neighbors in μ logn timeslots.

Proof. We only prove (i) here. (ii), (iii), (iv) can be proved similar to (i).
Proof of (i): As shown in Lemma 5, if v is the only sending node in ERI+R

v ,
with probability 1 − 1

ρ , the message StartColoring sent by v can be received
successfully by all nodes in Tv. Let P1 denote the event that v is the only sending
node in ERI+R

v , then

P1 = 2−ω
∏

u∈E
RI+R
v \{v}

(1− pu) ≥ 2−ω
∏

u∈E
RI+R
v

(1 − pu)

≥ 2−ω ·
(
1

4

)∑

u∈E
RI+R
v

pu

≥ 2−ω ·
(
1

4

)3·21−ω·χ(RI+R,0.5R)
(4)

The last inequality is by Lemma 1 and Lemma 3. Then the probability Pno that
v fails to transmit the message StartColoring to all nodes in Tv is at most

Pno ≤
(
1− (1− 1/ρ)2−ω ·

(
1

4

)3·21−ω·χ(RI+R,0.5R)
)μ logn

≤ e−(1−1/ρ)2−ωμ logn·( 1
4 )

3·21−ω ·χ(RI+R,0.5R)

∈ n−4.

(5)

Lemma 7. Assume that Property 1 and Property 2 hold. Then with probability
at least 1 − 1

n4 , a node v in state G will not quit the algorithm until all its
neighbors have been colored.
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Proof. Assume that v quits the algorithm in timeslot t when there are d > 0
neighbors staying in state C1. Denote the set of these d nodes as T . We fur-
ther assume that v forces dv neighbors joining state C1 after transmitting the
StartColoringv message. Thus before time t, v has transmitted (dv − d) Grant
messages. Then by Algorithm 1, v has not receive an AskColor message since
the timeslot t− ((dv − d) · 5μ log n+3μ log2 n+μ logn). Next we show that dur-
ing the interval [t− ((dv − d) · 5μ logn+ 3μ log2 n+ μ logn), t), there is at least
one node that can successfully transmit an AskColor message to v with high
probability. Then v will not quit the algorithm in timeslot t. This contradiction
completes the proof.

By Algorithm 1, the initial transmission probability of each node in T is

assigned as 2−ω−1

n , and each node in T will either doubles its transmission prob-
ability every 3μ logn timeslots, or received a Grant message from v and halves
the transmission probability. Because v received the last AskColor message be-
fore the timeslot t − ((dv − d) · 5μ logn + 3μ log2 n + μ logn) and v transmits
each Grant message for 2μ logn timeslots, v have completed the transmission of
(dv−d)Grantmessages by the timeslot t−((dv−d)·5μ logn+3μ log2 n+μ logn)+
2(dv−d)μ logn−1. So in timeslot t∗ = t−((dv−d)·3μ logn+3μ log2 n+μ logn),

each node in T has transmission probability at least 2−ω−1−dv+d

n . From t∗, each
node in T doubles its transmission probability every 3μ logn timeslots. In times-
lot t−μ logn, each node in T has a constant transmission probability of 2−ω−1.
Then using a similar argument as in the proof of Lemma 6, we can get that with
probability at least 1−n−4, there is at least one node in T that can successfully
transmit an AskColor message to v by the timeslot t− 1. 
�

Lemma 8. Assume Property 1 and Property 2 hold. A node v will correctly
get a color after waking up for O(Δ log n + log2 n) timeslots with probability
1−O(n−2).

Proof. After waking up for at most 2μ logn timeslots, v enters state S or starts
executing the MIS algorithm. If v takes part in the MIS algorithm, by Lemma 2,
with probability 1 − O(n−3), it will correctly enter state S or state G after
O(log2 n) timeslots. Next we bound the time v stays in state C1, C2 and G.

We first bound the time that node v would stay in state C1. Assume that
u is the leader of v. By Algorithm 1, during every 3μ logn timeslots, either v
receives at least one new Grant messages from u, or it doubles its transmission
probability. If the received Grant message is not for v, it means that a node in
N(u) will join state C2. By Lemma 2, with probability 1−O(n−3), when u stays
in state M, there is not another node in E3R

u staying in state M. By the MIS
algorithm and the analysis for the MIS algorithm in the full version [16], with
probability 1 − O(n−4), u can force all other nodes in E3R

u to join state S and
not to restart competing for joining state M until receiving a StartT ransmitu
message from u. Thus, with probability 1−O(n−3), there are no other nodes in
E3R

u joining state G when u stays in state G. Additionally, only nodes in N(u)
and E3R

u \E2R
u may join state C1 by receiving a StartColoring message before u

quits. Thus all nodes in E2R
u \N(u) will stay in state S while u stays in state G.
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Then after at most (Δ− 1 + logn)3μ logn timeslots, either v receives a Grantv
message and joins state C2, or v has transmission probability of 2−1−ω, since v
can receive at most Δ − 1 Grant messages not for v and each of which would
halve v’s transmission probability. Then by a similar argument as in Lemma 6,
v will successfully transmit an AskColor message to u in 2μ logn timeslots with
probability 1 − n−4. Furthermore, by Lemma 7, with probability 1 − n−4, u
did not quit the algorithm before receiving the AskColor message from v. After
successfully transmitting message AskColorv to u, by Algorithm 1 and Lemma 6
(ii), with probability 1−n−4, v will receive a Grantv message from u in at most
2μΔ logn timeslots. So each node will stay in state C1 for at most 5μΔ logn +
3μ log2 n timeslots with probability at least 1 − O(n−3). By Algorithm 1, it is
easy to see that each node stays in state C2 for μ logn timeslots.

Next we bound the time that a node v stays in state G. By Lemma 6 (i), after
entering state G for μ logn timeslots, v will successfully send a StartColoring
message to all its neighbors with probability 1 − n−4. Then all nodes in N(v)
without choosing their colors will enter state C1. As shown above, with probabil-
ity at least (1−O(n−3))Δ ∈ 1−O(n−2), each node in N(v) will join state C2 after
joining state C1 for at most O(Δ log n+log2 n) timeslots. Then by the algorithm,
v will quit from the algorithm after waiting for additional O(Δ log n + log2 n)
timeslots by noticing that bv is at mostΔ. So with probability at least 1−O(n−2),
the total time that v stays in state G is at most O(Δ log n+ log2 n).

Next we bound the time from v waking up to it next entering state C1 or G.
By the algorithm, after waking up for at most 2μ logn timeslots, either v starts
executing the MIS algorithm or there comes a node in E3R

v joining state G. If
v starts executing the MIS algorithm, by Lemma 2, with probability at least
1 − O(n−3), there will be a node in E3R

v joining state G. So after waking up
for at most O(log2 n) timeslots, a node in E3R

v will join state G. From then on,
by Algorithm 1 and the analysis above, with probability at least 1 − O(n−2),
after every O(Δ log n + log2 n) timeslots, there will be at least one node u in
E3R

v joining state G and all nodes in N [u] quit from the algorithm. We can see
that all nodes joining state G are independent in terms of R. So there are only a
constant number of nodes in E3R

v being able to join state G, denoted by c
′
. Then

after at most c
′
O(Δ log n+log2 n) timeslots, there will be a node in N [v] joining

state G. Thus, with probability at least 1−O(n−2), the total time that v spends
before entering state C1 or G after waking up is at most O(Δ log n+ log2 n).

Combining all the above, with probability 1−O(n−2), every node stays in the
algorithm for at most O(Δ log n+ log2 n) timeslots. Finally, we prove that each
node can correctly get a color with probability at least 1 − O(n−2). As shown
before, with probability 1 − O(n−3), when a node v is in state G, there is not
another node in E3R

v staying in state G as well. By Lemma 7, with probability
1−O(n−4), v will not leave state G until all its neighbors get colored. Thus, with
probability 1 − O(n−2), all nodes with color 0, i.e., all nodes used to join state
G, are independent in terms of R. If v chooses another color, by the algorithm, it
will choose an available color and broadcast the chosen color to its neighbors as
soon as it receives the Grant message from its leader. By Property 2 (i), there
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is not a node in N(v) staying in state C2 when v is in state C2. By Lemma 6
(iv), when staying in state C2, v can successfully send its color to its neighbors
with probability 1 − n−4. Note also that in Algorithm 1, v has been woken up
before the first node in its neighborhood starts choosing a color with probability
1 − n−4. Thus when v chooses a color in state C2, with probability 1 − n−3, v
has received all the colors chosen by its neighbors and there are no other nodes
in N(v) choosing a color at the same time. So v will correctly select a color with
probability 1−O(n−2). 
�

Lemma 9. Property 2 holds with probability 1−O(n−1).

Proof (Sketch proof). We prove Property 2 by showing that with high probabil-
ity, none of (i) (ii) and (iii) is the first property to be violated.

Claim. With probability at least 1 − O(n−1), Property 2 (i) is not the first
property to be violated.

Proof. Otherwise, assume that Di is the disk violating Property 2 (i) in timeslot
t. We further assume that node v ∈ Di joins state C2 in timeslot t and another
node u also stays in state C2 in timeslot t. Assume that w is u’s leader.We can still
assume that all properties are correct before t. Then it can be shown that w must
also be v’s leader with probability 1−O(n−4). Furthermore, w must have started
transmitting Grantv before the timeslot t. Hence, by Algorithm 1, w must have
started transmit Grantu by the timeslot t− 2μ logn. Then by Lemma 6 (ii), u
have received Grantu from w by t−μ logn− 1 with probability 1−n−4. Noting
that u stays in state C2 for μ logn timeslots, u have quit from the algorithm
before t with probability 1 − n−4. This contradiction shows that Property 2
(i) is not the first violated property when u stays in state C2 with probability
1 − O(n−3). Then for Di, the Claim is true with probability 1 − O(n−2). And
the Claim is correct for every disk with probability 1−O(n−1). 
�

Claim. With probability at least 1−n−1, Property 2 (ii) is not the first property
to be violated.

Proof. Otherwise, assume that Di is the first disk violating Property 2 (ii) in
timeslot t∗. Before timeslot t∗, we can still assume that all properties hold. As-
sume that v is the leader of some nodes of Di that stays in C1. Denote Cv1(t) as
the set of node in N(v) that are in state C1 in timeslot t. Then it can be shown
that in timeslot t∗, with probability at least 1−O(n−4), all nodes in Di that are
in state C1 have the same leader v. Next we prove a little stronger result: with
probability at least 1−O(n−2), in any timeslot t, the sum of transmission prob-
ability of all nodes in Cv1(t) is at most 2−ω. Otherwise, assume that in timeslot
t,
∑

u∈Cv1(t)
pu > 2−ω. Denote I = [t− 3μ logn, t). By Algorithm 1, every node

in Cv1 doubles its transmission probability at most once during the interval.
Furthermore, the sum of transmission probabilities of newly joined nodes is at

most 2−ω−1

n ·n = 2−ω−1. Hence, it holds that in timeslot t− 3μ logn, the sum of
transmission probabilities is at least 2−2−ω. Consequently, during the interval I,
2−2−ω ≤

∑
u∈Cv1

pu < 2−ω. Furthermore, during the interval I, for any disk Dj ,
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j �= i,
∑

v∈Dj
pv ≤ 3 · 21−ω. Then using these transmission probability bounds,

it can be shown that at least one node in Cv1 can send a message AskColor to
v during the interval I1 = [t− 3μ logn, t− 2μ logn− 1] with probability 1−n−4.
Then in the interval (t − 3μ logn, t − 1], with probability 1 − n−4, all nodes in
Cv1 receives a new Grantw message and halve their transmission probability
except w which enters state C2. Thus with probability 1 − O(n−4), Di will not
violate Property 2 (ii) in timeslot t. By Lemma 8, v stays in state G for at most
O(Δ log n + log2 n) timeslots with probability 1 − O(n−2). Thus when v stays
in state G, there is not a violation timeslot for Di with probability 1− O(n−2).
Additionally, when there are nodes in Di which are in state C1, it means that

there is a node staying in state G in E
3R
4

i . From Algorithm 1, we know that
all nodes that joined state G during executing the algorithm are independent

in terms of R. Hence, there are at most constant nodes in E
3R
4

i which can join
state G. Thus Di is not the first disk violating Property 2 (ii) with probability
1−O(n−2). Then the Claim is true for all disks with probability 1−O(n−1). 
�

Claim. With probability at least 1 − O(n−2), Property 2 (iii) is not the first
property to be violated.

Proof. Otherwise, assume that Di violates it in timeslot t for the first time. Then
there is a new node u in Di joining state G in timeslot t, while there has been
another node v in Di staying in state G in timeslot t. Before t, we can still assume
that all properties are correct. By Algorithm 1, each node in E3R

v will not try
to join state G until it receives the StartT ransmitv from v. By Algorithm 1, v
has not started transmitting StartT ransmitv by the timeslot t − μ logn, since
v still stays in state G in timeslot t. Also noticing that each node need Ω(log2 n)
timeslots to join state G by executing the MIS algorithm. So there will not
come up another node in E3R

v joining state G by the timeslot t+Ω(log2 n) with
probability 1 − O(n−4). This contradicts with the fact that u joins state G in
timeslot t. Thus when v stays in state G, there is not such a violation timeslot t
with probability 1 − O(n−4). Then with probability 1 − O(n−3), there is not a
timeslot such that Property 2 (iii) is first violated in Di. This is true for every
disk with probability 1−O(n−2). 
�

Theorem 1. After waking up for O(Δ log n + log2 n) timeslots, every node v
will correctly get a color from {0, 1, . . . , Δv} with probability at least 1−O(n−1).

Proof. Since Properties 1 and 2 have been shown to be correct with probability
1 − O(n−1), by Lemma 8, with probability at least 1 − O(n−1), every node v
will correctly choose a color after executing Algorithm 1 for at most O(Δ log n+
log2 n) timeslots. Furthermore, when v chooses a color, either v chooses color 0,
or it chooses the first available color in its color list by Algorithm 1. Because
v receives at most Δv − 1 colors from its neighbors (one of its neighbors is a
leader), v can still choose a color from {0, 1, . . . , Δv}. 
�
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4 Distributed (Δ + 1)-Coloring for Uniform Power
Assignment

In some multi-hop radio networks, nodes may not be able to adjust their trans-
mission powers. In such a case, assuming that nodes adopt uniform power as-
signment, i.e., all nodes transmit with the same power level, we can obtain a
distributed (Δ+1)-coloring algorithm by iteratively carrying out the MIS algo-
rithm. We only need to change the operations in the last state M in the MIS
algorithm. Each node in state M first chooses an available color that has not
been chosen by its neighbors, and then transmits a message mC containing its
choice to its neighbors for μ logn timeslots with constant probability after wak-
ing up all its neighbors. Then all the nodes having received the message mC

delete the received color from their color list and restart executing the algo-
rithm. By Lemma 2, we know that with high probability, in any timeslot, all
nodes in stateM form an independent set. Furthermore, similar to the proof of
Lemma 6, we can show that with high probability, each node can successfully
transmit its choice to its neighbors before any neighbor starts choosing a color.
These two points ensure the correctness of the computed coloring. We assume
that all nodes transmit with power P = cNβRα. Then we can get the following
lemma, based on which the theorem on the correctness and the time complexity
of the proposed coloring algorithm can be proved.

Lemma 10. With probability at least 1 − O(n−2), a node v will correctly get
a color in O(Δ2R

v log2 n) timeslots after starting executing the algorithm, where
Δ2R

v is the number of nodes in E2R
v . Furthermore, v will choose a color from

{0, 1, · · · , Δv}.

Proof. Using a similar argument as in the analysis of the MIS algorithm (in the
full version[16]), we can get that after a node v starts or restarts the algorithm for
O(log2 n) timeslots, there will be a node in E2R

v joining stateM with probability
1−O(n−3). Thus after at most O(Δ2R

v log2 n) timeslots, v will join stateM with
probability at least 1−O(n−2). Furthermore, using a similar manner for proving
Lemma 6, we can show that all neighbors of v which have chosen colors before
v have informed v their choices with probability 1−O(n−3). And by Lemma 2,
when v is in state M, with probability 1 − O(n−3), none of v’s neighbors stay
in state M simultaneously. Thus v will correctly choose a color different from
all its neighbors with probability at least 1 − O(n−3). Putting all together, we
know that with probability at least 1 − O(n−2), v will correctly get a color
in O(Δ2R

v log2 n) timeslots after starting executing the algorithm. Finally, since
there are Δv nodes in v’s neighborhood, v have deleted at most Δv different
colors from its color list when v chooses a color. Thus v can choose a color from
{0, 1, · · · , Δv}. 
�

Theorem 2. If the nodes adopt the uniform power assignment, there exists a
distributed algorithm such that with probability at least 1 − O(n−1), each node
will correctly get a color after executing the algorithm for O(Δ log2 n) timeslots.
Furthermore, the total number of colors used is at most Δ+ 1.
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Proof. By Lemma 10, for a node v, with probability at least 1 − O(n−2), it
will correctly get a color in O(Δ2R

v log2 n) timeslots after starting executing
the algorithm, where Δ2R

v is the number of nodes in E2R
v . Furthermore, v will

choose a color from {0, 1, · · · , Δv}. Thus the theorem is correct for all nodes
with probability 1− O(n−1) by noting that Δ2R

v ≤ χ(2R,R)Δ ∈ O(Δ).

5 Conclusion

In this paper, we study the distributed Δ + 1-coloring problem in unstruc-
tured multi-hop radio networks under the SINR interference model. Without any
knowledge of the neighborhood, our proposed new distributed (Δ+ 1)-coloring
algorithm has time complexity O(Δ log n+ log2 n). Our result even matches the
O(Δ)-coloring algorithm in [3] for large Δ; their algorithm needs a prior esti-
mate of Δ. For networks in which the nodes can not adjust their transmission
powers, we give a (Δ+1)-coloring algorithm with time complexity O(Δ log2 n).
Furthermore, by carefully tuning the parameters, we show that the maximal in-
dependent set algorithm in [12] still works under the SINR constraint, which is
of independent interest.
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Abstract. In this work we consider the problem of continuously moni-
toring a collection of data sets produced by sensors placed on mobile or
static targets. Our computational model, the dynamic sensor field model,
is an extension of the static sensor field model [3] allowing computation
in the presence of mobility. The dynamicity comes from both the mobile
communication devices and the data sensors. The mobility of devices is
modeled by a dynamic communication graph depending on the position
of the devices. Data mobility is due to measurements performed by sens-
ing units that are not placed on fixed positions but attached to mobile
agents or targets. Accordingly, we introduce two additional performance
measures: the total traveled distance in a computational step and the
gathering period.

We study the Continuous Monitoring problem providing bounds on
performance for several protocols that differ in the use of mobility and
the placement of the devices. Our objective is to analyze formally the
computational resources needed to solve the Continuous Monitoring in
a dynamic context. For doing so, we consider a particular scenario in
which communication devices and data sensors move on top of a squared
terrain discretized by a mobility grid. We also consider two scenarios,
the static data setting in which sensors are placed at fixed but unknown
positions and the dynamic data setting in which sensors are placed on
dynamic targets and follow a passive mobility pattern.

Keywords: Tiny artifacts, sensor networks, continuous monitoring
problem, sensor field model, computational complexity.

1 Introduction

The use of networks of heterogeneous tiny artifacts is becoming a key ingredient
in the technological development of our society. The study of such systems in-
volves several and very different areas of computing. The computational system
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arising from the ad-hoc computation network point of view has been modeled by
combining the notion of distributed data streams [8] with classic distributed ap-
proaches to solve problems on particular topologies [10] such as the sensor field
model (SSSF) [3]. The sensor field model captures some characteristic differences
of networks with sensors: it is composed by actuator devices, which communicate
among them, measure and signal the environment. The SSSFmodel assumes that
those devices synchronize at barriers, marking rounds, in a similar way to the
BSP model [12]. During a computational round, a device accesses the received
messages and the data provided by the environment, performs some computa-
tion, and finally sends messages to its neighbors and to the environment. The
data measured from the environment is modeled by a data stream.

In this paper we continue the study of computational issues for networks
of tiny artifacts in the presence of mobility. We analyze two potential sources
of mobility: The passive mobility of the targeted data and the active mobility of
the network devices. For the first source of mobility we assume that the set of
sensors is attached to mobile agents, so the data in an input data stream is
not originated in a fixed location. For the second source we assume that the
devices are able to move in order to obtain readings from far away sensors or
signal the environment at different positions. The present work introduces an
extension of the SSSF model, the Dynamic Sensor Field model (DSSF), with
the following fundamental features: Devices are able to receive readings from
any sensor in the sensing range of the device. Moreover, devices can move at the
same time that they perform local computations. These features mainly, among
others, distinguish this model from the ad-hoc mobility models surveyed in [4].
Besides considering the worst case performance on parameters such as latency,
message number, or message length, (the ones considered for the analysis of
the SSSF model in [3]), this work also introduces and examines two additional
parameters that have relevance due to mobility. The traveled distance per step,
which measures the maximum distance traveled by a device in a computational
step, and the gathering period, which measures the number of computational
steps needed to obtain a reading from each sensor (data stream).

We analyze the Continuous Monitoring problem in which in every period
there should be a report on the aggregate measure obtained of the reading from
each sensor. In fact, this problem is a reformulation of the Average Monitoring
problem in which a set of sensors were located at fixed and known positions [3],
to the dynamic scenario in which sensors and devices might move.

We propose several protocols in the dynamic sensor field model for solving the
continuous monitoring problem on different scenarios, according to the mobility
patterns of the data and the devices. In particular, we consider two scenarios: The
case in which the data is static but originated at unknown position, the static data
setting, and the case in which the data is mobile and follows a passive mobility
model, the dynamic data setting. Moreover, the devices in the network are either
static or perform some random walk in the monitored terrain. Our mobility
model is similar to the walkers model introduced in [5], however they differ on
the random walk performed in the grid and the hypothesis on communication.



Continuous Monitoring in the Dynamic Sensor Field Model 163

Our objective is to perform a theoretical analysis of the complexity measures as
it was done in the SSSF model for data originated at a known position. In this
initial work we restrict ourselves to analyze the case in which data and devices
are restricted to move on top of a grid.

The paper is organized as follows. In Section 2 we introduce the model an
the main hypothesis on mobility. In Section 3 we propose and analyze protocols
for the static data setting. Sections 4 and 5 are devoted to the dynamic data
setting. In Section 4 the devices in the sensor field do not move but the ones
in Section 5 move. We conclude with some open questions in Section 6. Due to
lack of space the proofs are not given. We refer the interested reader to the long
version of the paper.

2 The Dynamic Sensor Field Model

In the following, the notation is taken from [3] (see also [2]). A data stream d is
a possible infinite sequence of data items d = d1d2 . . . di . . .. For any i ≥ 1, d[i]
denotes the i-th element of d. For any n ≥ 1, an n-data stream d is an n-tuple of
data streams; d = (d1, . . . , dn). For any i ≥ 1, d[i] denotes the n-tuple composed
by all the i-th elements of each data stream, let d[i] = (d1[i], . . . , dn[i]). Each
data stream is associated to a sensor with one reading per time step. In a SSSF
the data items in a data stream were assumed to be produced by a sensor placed
in a fixed location and attached to a communication device in the same position.
In the Dynamic Sensor Fieldmodel we consider a setW of g data streams obtained
by the sensors. The sensors either do not move or each of them moves following
an independent random walk. Therefore the data items in a data stream can be
obtained at different locations at different time steps. The sensors interact with
a collection of N mobile devices that can access the measurements of nearby
sensors. This fact can be modeled with the data stream accessibility relation at
time step t, Dt ⊆ N ×W . We denote by (k, α) ∈ Dt the event that sensor α can
be detected by device k at time step t. Observe that, additional information, like
location of the target at the moment of the reading, could be attached to the
data items, however we will not use this feature in our results.

A communication graph is a directed graph G = (N,E), where each node
k ∈ N is associated to a device and each edge (i, j) ∈ E specifies that device
i can send messages to device j. In a Dynamic Sensor Field the communication
graph might also change during the computation due to device mobility. Hence,
we consider a sequence of graphs {Gt}t≥0, where Gt = (N,Et) denotes the
communication graph at computational step t. In the SSSF it is assumed that
the communication graph is the same at all time steps.

We assume that at each step t, all devices might receive data from their neigh-
bors (according to the graph Gt) and from the environment (nearby sensors),
apply their own process changing in this way their actual configuration, possibly
make a move, and send data to their neighbors (according to the graph Gt+1)
and to the environment (output data stream). We assume that the devices can
move only while they perform their local computation. Synchronization takes
place after the local computation and the movement are performed.
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The stream behavior of a computation on a Dynamic Sensor Field is defined in
terms of the tuple of output data streams obtained by processing the tuple of
input data streams, as defined in [3] for the static case. We also use the term the
sensor field F computes the tuple of output data streams v = (vk)k∈N , given the
tuple of input data streams u = (uk)k∈N , meaning that v[1, t] is determined by
u[1, t] for any t ≥ 1. Note that u and v have in general infinite length, but the
behavior of a DSSF is defined in terms of all the finite prefixes of the stream.

We consider the following worst case complexity measures on the computation
of a DSSF: Size (N): the number of devices that take part in the computation.
Time (T (n)): the maximum number of operations. Space (S(N)): the maximum
memory space used by any device. MessageLength (L(n)): the maximum number
of data items sent in a message. MessageNumber (M(n)): the maximum number
of sent messages. Distance (D(n)): the maximum distance traversed by a device.
Here the maximum is taken over all devices and steps.

An important difference between the study of computational sensing problems
in the DSSF model with respect to the SSSF model of [3] is the following: In
the dynamic setting, the data is originated in mobile targets or the devices that
have to collect the data can also move. In those situations, the precondition that
the network has access to all the sensors (input data) at any time step might
not be possible. Therefore, to monitor continuously a wide area where the g
targets move, we require only to get a reading from any sensor inside a reporting
period. For instance, the equivalent to the Average monitoring in [3], is defined
as follows:

Continuous Monitoring: Given a set of g mobile data streams (uα)1≤α≤g for
some g ≥ 1, compute m data streams (vk)1≤k≤m such that, for some period
p > 0, any 1 ≤ k ≤ m, and t > 0, vk[tp] = (u1[t1] + · · · + ug[tg])/g for some
(t− 1)p ≤ t1, . . . , tg < tp. We call parameter p the gathering period.

In this paper, we analyze the complexity of several protocols to solve the
continuous monitoring problem, when devices and sensors act according to the
following scenario: We assume that the data of interest is accessible in a predeter-
mined square shaped area discretized as a grid. The devices have two associated
ranges, a sensing range s and a communication range r. A device can read data
from any sensor within grid distance s and can communicate (in a bidirectional
way) to any device within grid distance r. In order to simplify the analysis, we
assume that three squared grids (mobility, sensing and communicating) are em-
bedded in the terrain. The mobility grid Λm is formed by m×m nodes that serve
as reference positions for the movement of the targets with attached sensors and
for the movement of the computing devices.

We assume that sensors and devices stop at grid nodes labeled by coordinates
(i, j), 1 ≤ i, j ≤ m, and they move following paths on the grid. That is, at the
beginning/end of a step all devices and sensors are at a grid point. We assume
the distance among two neighboring nodes in Λm is of unit length. As a subgrid
of Λm, we have the sensing grid Δσ of size σ × σ, where 2s is the distance
between nodes in Δσ. Observe that by placing devices in all the nodes in Δσ,
any sensor signal originated in a node in Λm will be detected by at least one
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device. As a subgrid of Δσ we have the communicating grid Γn, with n×n nodes,
where r is the distance among nodes in Γn. The subgrid Γn is selected in order
to guarantee that two devices in neighboring positions can communicate, that is
to guarentee that neighboring vertices are at distance at most r. Note that σ is
obtained as a function of m and s and n as function of m and r. For simplicity
we also assume that r is a multiple of 2s. In the case that r ≤ 2s we have that
Γn is also a sensing grid. In this case we take σ = n. Therefore, we can assume
that n ≤ σ ≤ m. We use T (n, σ,m) to denote the terrain in such scenario.

ΓnΛm Δσ

Fig. 1. The three fundamental grids for mobility, sensing and communicating, embed-
ded in a terrain T with m = 25, σ = 13 and n = 3.

By placing σ2 devices, one at each node of Δσ, we can detect in one step
any signal originated in a sensor placed at any position of Λm. Therefore, the
continuous monitoring problem can be solved in gathering period 1, using an
algorithm for the average monitoring for the bidirectional grid from [3].

Lemma 1. There is a sensor field that solves the continuous monitoring problem
on terrain T (n, σ,m) and g sensors with N = σ2 devices , latency σ, gathering
period 1, T (N) = L(N) = S(N) = O(g), M(N) = 2 and, D(N) = 0.

In the following sections, we analyze formally several protocols solving the Con-
tinuous Monitoring problem in the DSSF model. All these proposals contain two
distinguished algorithmic parts: The gathering part that solves the problem of
obtaining a reading from any sensors and will determine the gathering period.
And the averaging part that computes the average of the measures taken during
a gathering period. As we will see, the gathering part requires in general more
steps than the averaging part. Therefore the devices, just after the first gathering
period finishes, run in parallel both algorithms. When both algorithms finalize,
the process is repeated with the new gathered data. The computing devices are
arranged either as a line or as a grid.

In the static data setting we assume that input data streams are originated
at some positions in the grid Λm, and that devices move on top of Γn. In the
dynamic data setting we consider a set of g walkers W moving on the mobility
grid Λm, under the following random mobility model.

Initially g walkers, w1, . . . , wg, are sprinkled uniformly at random on the m2

vertices of the grid. At each step, every wi, not on the boundary, chooses with
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probability 1
4 one of the four possible directions and makes a step in the cho-

sen direction. If wi is in the corner, it chooses with probability 1
2 any of the

two possible directions, and if it is touching the boundary in one dimension
only, wi chooses with probability 1

2 the only available direction in the dimension
touching the boundary, and with probability 1

4 the other two directions in the
perpendicular dimension.

Finally, we assume that the devices have sense of direction (up-down, left-
right) and are able to detect whether they are positioned on a border/corner of
the grid. They know the number g of sensors but do not know the number of
devices nor the size of the mobility grid.

3 Continuous Monitoring of Static Data

Our first protocol for the static data setting is designed to solve the particular
case n = σ. The protocol is Line sweeping.

Line sweeping for a terrain T (n, n,m) and g sensors at unknown but fixed
locations.
• Initially, we place n devices in the bottom row of Γn. This guarantees
that any sensor placed in the m/n bottom rows of Λm can be detected.
We assume that the devices are able to detect when they are positioned
on a border or on a corner of the grid. Furthermore, they have sense of
direction, so that they can change the direction of their movement when
arriving to a border. Devices know that they are initially positioned on
the bottom line of the grid. They also are aware of the number of sensors
g but not of the number of devices n.

• Gathering phase. Devices move from one border of the mesh to the other
border. During the sweep they collect all the obtained readings in a table
of size g.

• Averaging phase. Devices positioned in the corners initiate a sending to
the center protocol with the data gathered in the previous sweep. Each
device, after receiving a message, merges the received data with its own
table. The merged table is sent to the other neighbor. The central node is
the device that receives messages from both neighbors. Notice that there
might be two central nodes when n is even. The central node computes
the average (or the aggregate measure) and broadcasts it to the corners.

Observe that in the Line sweeping sensor field we only require that the devices
have some knowledge of their position (inside/border/corner) and have sense
of direction (up/down). In particular, the number of devices in the network is
not assumed to be known by themselves (although they could perform a count
at the expense of increasing the memory usage up to O(logn)). Furthermore,
every time that the sweeping line of sensors reaches the top or the bottom row
of Γn the network has collected at least one reading from each sensor. Thus we
have that the gathering period p = n. The averaging phase requires also n steps,
each device sends at most two messages with g data. Both phases can be run
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together after the first gathering period finishes. Putting all together we have
the following:

Theorem 1. The sensor field Line sweeping solves the continuous monitoring
problem on a terrain T (n, n,m) and g static sensors, with n devices, latency n,
gathering period n, T (n) = L(n) = S(n) = O(g), M(n) = 2 and D(n) = r.

For the case in which n < σ, devices have to move closer to the sensors to
obtain readings. We use the sensing grid Γn as a mobility grid for the devices.
Finally, we assign to a node in Γn a part of the sensing grid surrounding it,
its surveillance area. This assignment is done in such a way that pieces have
the same size and with the property that if we place the devices in the bottom
left corner of their surveillance area they form a communicating grid. For the
gathering phase the devices follow a snake walk, following the rows, covering all
the nodes in the assigned subgrid synchronously.

Our second algorithm, the Surveillance strip, is similar to the Line sweeping. The
Surveillance strip sensor field arranges the devices in the form of a sensing line,
initially in the bottom-left corners of the surveillance strip. Each device receives
as surveillance area a vertical strip of the sensing grid formed by r/2s columns.
Each device follows the same snake-like walk covering the assigned strip. Once
the devices reach the final point in the walk they walk backwards towards the
initial position. The averaging part is the same as in the Line sweeping. Observe
that the devices have to know at least the dimensions of the surveillance area in
addition to the requirements for the Line sweeping protocol.

Theorem 2. The sensor field Surveillance strip solves the continuous monitoring
problem on a terrain T (n, σ,m) and g static sensors, with n devices, latency n,
gathering period nr/2s, T (n) = L(n) = S(n) = O(g),M(n) = 2 and D(n) = 2s.

Our third algorithm, the Surveillance grid, reduces the gathering phase and uses
a higher number of devices. The Surveillance grid sensor field places n2 devices
initially in the bottom-left corners of the surveillance area, now a squared por-
tion of the sensing grid with dimensions r/2s × r/2s. For the gathering phase
the devices follow again a snake walk. The averaging part is an extension of
the averaging for the Line sweeping sensor field. Data is collected by the central
node in each row and in a second phase the central node in the central column
gathers all the data and computes the average. Finally the average is broad-
casted to the devices. In the case that (r/2s)2 < n the second gathering phase
finalizes before the first averaging phase. However, the data flow of the protocol
allows the pipelining of the averaging phases without conflicts. In such a case
the devices have to increase its memory size in order to keep the data required
for the following averaging phases. The required memory additional memory is
O(2n(2s/r)2g).

The following proposition presents the results obtained for the algorithm in
the previous discussion.
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Theorem 3. The sensor field Surveillance grid solves the continuous monitoring
problem on a terrain T (n, σ,m) and g static sensors, with n2 devices, latency
2n, gathering period (r/2s)2, T (n) = L(n) = O(g), S(n) = O(2n(2s/r)2g),
M(n) = 2 and D(n) = 2s.

4 Continuous Monitoring of Dynamic Data Using Static
Devices

We propose three different sensor fields for solving the continuous monitoring
problem when the input data streams follow the walker mobility model presented
before.

For the case in which n = σ, we consider the Central line sensor field in which
n devices are placed onto the central line of Γn (the m/2-th row) and remain
there. Devices collect data until the gathering period finalizes and combine this
protocol with an averaging protocol identical as the one for the Line sweeping
sensor field. The crucial part of the analysis requires an analysis of the number
of steps needed to finalize the gathering period. For doing so we consider the
weakest detection model; the case when a sensor is detected by a device if it
passes through the position (i, m2 ), for some i.

For a fixed w ∈ W , let Tw be the random variable counting the number of
steps it takes to detect walker w and denote by T the random variable counting
the number of steps to detect all walkers. We prove an upper bound on E [T ],
E [T ] ≤ g(m2/2 − 2m + 2). The proof is done by analyzing a coupling of the
random walk with a walk on the line. Taking into account that the bound for
the gathering period is bigger than the duration of the averaging phase, we get
the following result.

Theorem 4. The sensor field Central line solves the continuous monitoring prob-
lem on a terrain T (n, n,m) and g mobile sensors, with n devices, latency n, ex-
pected gathering period at most gm2/2, T (n) = L(n) = S(n) = O(g), M(n) = 2
and D(n) = 0.

Next, we analyze a Central line with holes sensor field in which n fixed devices
are placed onto the central line of Γn such that the distance between any two
consecutive devices is exactly r, and the distance between the leftmost device
and the boundary of Γn as well as the distance between the rightmost device and
the boundary of Γn is exactly r

2 (we assume w.l.o.g. that n and m are chosen in
such a way that such a splitting is possible, and all numbers are integer. Assume
furthermore that m/2 is an integer multiple of r/2). Defining as before T to
be the random variable counting the number of steps to detect all w ∈ W , by
applying directly Threorem 1 [7], we get E [T ] ≤ gm6, and therefore we have:

Theorem 5. The sensor field Central line with holes solves the continuous mon-
itoring problem on a terrain T (n, σ,m) and g mobile sensors, with n devices,
latency n, expected gathering period at most gm6, T (n) = L(n) = S(n) = O(g),
M(n) = 2 and D(n) = 0.
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For the general case n < σ we first consider the Communicating grid sensor field
that places a device at any node of Γn. Again devices gather data until the
gathering period finalizes and combine this protocol with the averaging protocol
used in the Surveillance grid protocol. Assuming w.l.o.g. that 2n divides m− 1,
the sensors are placed on positions (m−1

2n + 1 + im−1
n , m−1

2n + 1 + jm−1
n ), for

0 ≤ i ≤ n−1, 0 ≤ j ≤ n−1. Denote by M := m−1
n the maximum (grid) distance

between a sensor and its closest device S. Again we assume the weakest detection
model: a sensor w is detected by a device, if w passes through the position of that
device. Define Tw as the random variable variable counting the number of steps
until w is detected and denote by T the random variable counting the number
of steps until all w ∈ W are detected. We provide upper and lower bounds on
E [T ], which are polynomial in M . First we show that the random walk takes
in expectation at most a time polynomial in M , 2gM20 (without caring about
optimality of the exponent). Note that the simple approach applied in the case
of all sensors on the central line gives an exponential upper bound, since on all
the points, which are on the same horizontal or vertical line as its closest sensor
and at distance at most M/2 of this sensor, the probability that the distance
decreases is only 1

4 . The proof uses again a coupling argument. The difference
is that now the movements of the walker are coupled with two random walks
on a line, corresponding to the horizontal and vertical movements. Using similar
ideas as in the case of the Central line sensor field, we give an easy lower bound
which is quadratic in M for the expected gathering period of the Communicating
grid sensor field.

By Theorem 1 of [7], for any connected graph on n vertices, the cover time is at
mostO(n3). Thus, applying a union bound, we obtainE [T ] ≤ min{2gM20, gm6}.

Theorem 6. The sensor field Communicating grid solves the continuous moni-
toring problem for g mobile sensors on a terrain T (n, σ,m), with N = n2 de-

vices, latency 2n, expected gathering period at most min{2g
(
m− 1

n

)20

, gm6},

T (N) = L(N) = S(N) = O(g), M(n) = 2 and D(n) = 0.

5 Continuous Monitoring of Dynamic Data Using
Dynamic Devices

Our first protocol is a variation of the Line sweeping sensor field in which the
per step traveled distance is halved, called Slow line sweeping. In our model we
assume that a device is unable to get readings from a sensor while moving.
Therefore, by advancing r positions, some of the sensors can cross the sweeping
line without being detected. However if we reduce the distance traveled to r/2
all the sensors are detected in a sweep of the terrain.

Theorem 7. The sensor field Slow line sweeping solves the continuous moni-
toring problem with g mobile sensors on a terrain T (n, n,m) with n devices,
latency 2n, gathering period 4n, T (n) = L(n) = S(n) = O(g), M(n) = 2 and
D(n) = r/2.
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Now we consider protocols in which the network is reduced to a single device
placed initially at any node of Γn. This device is allowed to move, and we consider
two protocols: the Random device sensor field, in which the device follows a
random walk, and the Snake sweep sensor field, in which the device follows a
snake path covering Λm.

In the Random device protocol the device performs a random walk on the same
grid as the sensors, independent of all sensors, but having the same transition
probabilities at any point. We suppose also that the device performs jumps to
one neighbor at discrete time steps which are 1 unit apart from each other, but
which do not coincide with the sensors’ moves (who also perform their jumps at
different time instants). As before, the device collects data until the gathering
period finalizes, and the analysis requires an upper bound on the number of
steps to finalize the gathering period. Also, we assume that a sensor is detected
by a device if there exists some time t where the position of the sensor is exactly
equal to the position of the device.

Theorem 8. The sensor field Random device solves the continuous monitoring
problem with g mobile sensors on a terrain T (n, σ,m) with 1 device, latency 1,
gathering period gm20, T (n) = L(n) = S(n) = O(g), M(n) = 0 and D(n) = 1.

In the Snake sweep protocol the device performs a snake walk on Λm. Once
arrived at the last point of the grid, the device performs the same sweep back-
wards, and so on. As in the random case, the device performs jumps (at time
instants which do not coincide with any of the sensors’ jumping times and are
at time distance 1 apart), and whenever at some point a sensor and the device
are at the same position, the sensor is detected by the device.

Theorem 9. The sensor field Snake sweep solves the continuous monitoring
problem with g mobile sensors on a terrain T (n, σ,m) with 1 device, latency
1, gathering period O(gm5), T (n) = L(n) = S(n) = O(g), M(n) = 0 and
D(n) = 1.

6 Conclusion and Open Problems

We have introduced the dynamic sensor field model and we have shown that the
model allows a theoretical analysis of the complexity of different protocols for the
continuous monitoring problem. An overview of the bounds of the fundamental
complexity measures for the protocols analyzed in this paper is given in Table 1.

The gathering period is an important parameter in the analysis of protocols
that solve the continuous monitoring problem and the key difficulty in our analy-
sis. In the protocols that use a randomized mobility pattern we analyze another
relevant parameter: the number of steps for a device to detect a target. This
parameter is relevant for obtaining upper bounds on the gathering period. Al-
though bounds for the covering time of networks could be used to obtain bounds
for hitting times of mobile agents to fixed positions in a graph [1,11], in some
cases the proofs in the present work, that use a coupling argument of random
walks on the truncated integer line, yield better bounds for our specific problems.
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Table 1. A summary of our results for the continuous monitoring of g sensors in
a terrain T (n, σ,m). In all the cases T (n) = L(n) = S(n) = O(g) except for the
Communicating grid sensor field for which S(n) = O(n(s/r)2g).

Algorithm N latency gathering period M(N) D(N)

static data setting

Line sweeping (n = σ) n n n 2 r

Surveillance strip n n nr/2s 2 2s

Surveillance grid n2 n (r/2s)2 2 2s

dynamic data setting with static devices

Central line (n = σ) n n gm2/2 2 0

Central line with holes n n gm6 2 0

Communicating grid n2 2n min{2g(m−1
n

)20, gm6} 2 0

dynamic data setting with dynamic devices

Slow line sweeping (n = σ) n 2n 4n 2 r/2

Random device 1 1 gm2 0 1

Snake sweep 1 1 gm5 0 1

Nevertheless, in some cases, there is a huge gap between the lower and upper
bounds, and closing this gap would be interesting. In particular, we believe that
the exponent 20 in the bound for the gathering period of the Communicating grid
sensor field is far from being optimal.

There remain a bunch of open questions on the performance of protocols for
the continuous monitoring problem. Our results hold only for mobility graphs
with a highly regular pattern. It would be interesting to analyze protocols for
general mobility graphs, even for the particular case in which the mobility graph
is a grid with holes.

The protocols proposed in this paper have been inspired by classical algo-
rithms for synchronous network topologies [10]. It would be nice to show whether
other algorithmic approaches can also be adapted and analyzed theoretically in
the dynamic sensor field model. In particular, we would like to consider proto-
cols in which there are no additional devices and the meetings among targets are
used to exchange the collected data and compute the average measures. This ap-
proach has been used in the ZebraNet project1 [9], but no theoretical complexity
analysis is provided in the paper.

Another line of research is to determine whether the Sensor Field model can
be extended to a limited asynchronous setting. One idea would be to follow the
assumptions of the model considered in [6] or a similar model with some other
limited level of asynchronicity that still would allow a complexity analysis.

1 http://www.princeton.edu/~mrm/zebranet.html
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Abstract. In traditional multihop network broadcast problems, in which
a message beginning at one node is efficiently relayed to all others, cost
models typically used involve a charge for each unicast or each broad-
cast. These settings lead to a minimum spanning tree (MST) problem or
the Connected Dominating Set (CDS) problem, respectively. Neglected,
however, is the study of intermediate models in which a node can choose
to transmit to an arbitrary subset of its neighbors, at a cost based on the
number of recipients (due e.g. to acknowledgements or repeat transmis-
sions). We focus in this paper on a transmission cost model of the form
1 + Akb, where k is the number of recipients, b ≥ 0, and A ≥ 0, which
subsumes MST, CDS, and other problems.

We give a systematic analysis of this problem as parameterized by b
(relative to A), including positive and negative results. In particular, we
show the problem is approximable with a factor varying from 2 + 2HΔ

down to 2 as b varies from 0 to 1 (via a modified CDS algorithm), and
thence with a factor varying from 2 to 1 (i.e., optimal) as b varies from
1 to log2(

1
A
+ 2), and optimal thereafter (both via spanning tree).

For arbitrary cost functions of the form 1 + Af(k), these algorithms
provide a 2 + 2HΔ-approximation whenever f(k) is sublinear and a
(1 +A)/A-approximation whenever f(k) is superlinear, respectively. We
also show that the problem is optimally solvable for any b when the
network is a clique or a tree.

1 Introduction

A key problem in multihop wireless networks and in networking more gener-
ally is that of network-wide broadcast, in which a message sourced at one node
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(the root) must be disseminated to all nodes efficiently. Network-wide broadcast
is applicable to dissemination of routing control messages such as link-state up-
dates and route requests, as well as global awareness data (e.g. situation reports).
Central to the problem is the notion of cost incurred at each hop in the dissemi-
nation process. Cost models have typically been based on charges for one of two
sorts of transmissions: unicast, in which a node sends a message to one of its
neighbors, or broadcast, in which a node sends a message to all its neighbors, for
a fixed cost, regardless of the number of neighbors receiving. The first method
means finding a spanning tree; the second means solving a Connected Domi-
nating Set (CDS) problem. Since individual unicasts are prohibitively expensive
for all but very sparse networks, the de facto approach for the network-wide
broadcast problem today is to use variants of CDS.

Most work to date has focused on the reliable version of CDS (each broad-
cast transmission is assumed to perfectly reach all its recipients). In real-world
networks, however, this is seldom guaranteed; when the network-wide broad-
cast is of control packets, the effects of unreliability can be particularly onerous.
In this paper, we consider the network-wide broadcast problem with reliable
multicasting at the link layer, which leads to a non-trivial cost model for each
transmission. That is, unlike the CDS problem where the cost of each broadcast
is the same, the cost in a reliable multicast model depends on the number of
receivers due to the need for acknowledgements and retransmissions.

More generally, the sender at each hop must ensure that all intended recip-
ients, namely the downstream nodes in the constructed broadcast tree, receive
the packet. This typically involves sending the packet, waiting for feedback from
the intended receivers, and resending to those who did not receive, iterating un-
til obtaining confirmation that all receivers have the packet. This motivates a
cost model with a constant term for the transmission itself plus a cost that is a
function of the number of recipients k (i.e., 1 + f(k)).

To find candidates for the function f(k), we consider a range of protocols from
the reliable multicast literature, e.g. [13,9,6,14]. These various solutions incur
varying costs in the overhead and delay at each hop, ranging from sublinear to
linear to superlinear in the number of receivers, as we now outline.

In [13,9], the feedback takes the form of a busy tone, which is a narrow-band
signal transmitted in a channel orthogonal to the one used for packets. Since
tones are impervious to collisions (if two nodes place a busy tone on a channel, a
busy tone is received), the feedback cost is independent of number of receivers,
and so depends only on the expected number of retransmissions. As shown in
an appendix omitted due to lack of space, the expected number of repetitive
transmissions to deliver reliably (without any feedback) to k receivers, via a
channel with packet error probability p, is concave in k, and hence the cost
function is sublinear in k.

Although busy tones reduce the cost of feedback, they require special hard-
ware. A simpler approach is to use acknowledgment (ACK) packets from each
receiver. Several techniques may be employed to prevent ACK collisions. In [6],
the ACKs are sent sequentially from the receivers and are subject to loss and
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collisions (in presence of hidden terminals and in very dense scenarios). Under
this approach data packets retransmission is caused not just by the loss of data
packets but also by the loss of ACKs, which can occur repeatedly, yielding a
cost superlinear in k. This is also likely when receivers contend for access us-
ing ALOHA or CSMA/CA. On the other hand, if TDMA is employed giving
“perfect” access to the ACKs, the cost is clearly linear in number of receivers.
Roughly linear cost in k models the protocol in [14] as well. In that, a Request
ACK (RAK) and ACK handshake is performed for each receiver that protects
ACKs from colliding with hidden terminals and therefore avoids superlinearity
while increasing (perhaps significantly) the linear coefficient.

These are but a few reliable MAC protocols. Since a network-wide broad-
cast application may be serviced by any of these or others, depending on the
system, we are interested in a general cost framework that approximately cap-
tures a wide range of protocols. In this paper we focus on a stylized family of
k-neighborcast cost functions of the form 1+Akb, where A > 0 and 0 ≤ b <∞,
which varies from sublinear to linear to superlinear, depending on the value of b,
and subsumes the broadcast and unicast models mentioned above. We find that
parameter A in isolation is of relatively little consequence, but the character of
the problem depends dramatically on the value of b (relative to A). This leads
to approximation guarantees that are parameterized by the value A but, more
significantly, to different algorithms for different ranges of b values.

Contributions. Modeling the cost of transmitting to k neighbors as 1 + Akb,
we give a systematic analysis of the problem of minimizing the total cost of
network-wide broadcast. We give positive and negative results for our problem
in a variety of special cases parameterized by b, summarized (for the special case
of A = 1) in Table 1. In particular, we show the problem is approximable with
a factor smoothly varying from 2 + 2HΔ

1 down to 2 as b varies from 0 to 1
(via a modified CDS algorithm; see Fig. 1), and thence with a factor smoothly
varying from 2 to 1 (i.e., optimal) as b varies from 1 to log2(

1
A +2), and optimal

thereafter (both via any spanning tree; see Fig. 2).
For arbitrary cost functions of the form 1 + Af(k), these algorithms pro-

vide a 2 + 2HΔ-approximation whenever f(k) is sublinear and a (1 + A)/A-
approximation whenever f(k) is superlinear, respectively. We also show that the
problem is optimally solvable for any b when the network is a clique or a tree.

Our algorithms assume for simplicity that there is a specified root v0; the
algorithms and guarantees extend straightforwardly to the setting in which any
node can be chosen as root.

Related Work. Dominating Set is a classical optimization problem equivalent
to Set Cover approximable with factorHΔ+1 which is essentially the best possible
[15]. Connected Dominating Set was studied by [7], which gave an approximation
algorithms with factors 2HΔ +2 and HΔ +2 for the unweighted setting, as well
as results for the weighted setting which were later improved by [8], using the
techniques of [10]. Dominating Set has long been known to be APX-hard for

1 Δ is the maximum degree, and Hn is the nth harmonic number
∑n

i=1 1/i.
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Table 1. Special cases of the problem when A = 1, parameterized by cost exponent b

b value b = 0 0 < b < 1 b = 1 1 < b < log2 3 log2 3 ≤ b

solution CDS Algorithm 1 pruned CDS; ST ST ST

approx HΔ + 2 21−b+(2HΔ)1−b+o(1) 2
1+1/(HΔ+2)

; 2 c(b) 1

approx LB (1− ε) lnn (1−ε) lnn+nb

1+nb
2

1+1/((1−ε) lnn)
NP-hard 1

bounded-degree and cubic graphs [12,1], but hardness results for cubic CDS
were given more recently [2,11]. The network-wide broadcasting problem—an
application of CDS—has received much attention in the networking community
[17]. In [4,3], a PTAS for the CDS problem is give when the input is restricted
to unit disk graphs. Power considerations are taken into account in [18]. In [5],
the minimum latency broadcast problem is studied. Distributed algorithms for
connected dominating set are given in [16,5].

Organization. The rest of the paper is organized as follows. In Section 2 we
formally define the problem, present an IP formulation, discuss some special
graph topologies that are optimally solvable, and in an omitted appendix we
discuss a sublinear setting modeling the cost of acknowledgements. In Section 3,
we analyze a number of special cases of the problem parameterized by the value
b. Section 4 concludes the paper.

2 Preliminaries

Given is an undirected graph G on n nodes and with maximum degree Δ in
which the presence of an edge (u, v) indicates the possibility of directional com-
munication between u and v. A message originating at the root must be relayed
to all other nodes. The goal is to minimize the total cost of the transmissions. A
node can send the message targeted to a specific subset of neighbors, an action
we sometimes call neighborcasting. While the message may be heard by other
nodes in the vicinity, the chosen receivers are guaranteed to receive the mes-
sage, at a cost which depends on their number. We do not address the problem
of scheduling of broadcasts, ACKs, downstream rebroadcasts etc. in a collision-
free manner. We concentrate purely on the total cost incurred during broadcast
obeying the idealized cost model defined as follows. The cost of multicasting a
message from a node to k neighbors (which we call a k-cast) is:

m(k) = 1 +Akb

for some constants A > 0 and b ≥ 0. (We use a = 1/A rather than A when con-
venient; when A = 0, the problem becomes equivalent to Connected Dominating
Set.) The problem solution is specified by the neighborcast(s) performed by each
node. We emphasize that a node can perform multiple neighborcasts, which can
be preferable when b > 1. The optimal cost of a send node with d ≤ Δ receivers
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is the total cost M(d) of the best partition of d into p neighborcast sets (with p
possibly 1) of sizes k1+k2+ · · ·+kp = d. In discussing a particular multicast so-
lution, we refer to non-leaf nodes, i.e. nodes performing transmissions (of which
there are some number s), as send nodes or senders; we refer to all nodes other
than the root as receivers (of which there are m = n − 1). We use multicast,
neighborcast, and transmission interchangeably.

Assuming M(d) is precomputed for each 1 ≤ d ≤ Δ (see below), the problem
can be defined by integer programming formulation (1-7), which requires that all
the transmissions of node v be “paid for” by a single yvi, which is then done with
the optimal cost Mi = M(i) for one node transmitting (possibly using multiple
transmissions) to i neighbors.

min
∑

v,i

Miyvi (1)

s.t.
∑

v

xvu = 1 ∀u �= v0 (2)

i · yvi ≥
∑

u∈N(v)

xvu − n · (1− yvi) ∀v, i (3)

∑

i

yvi = 1 ∀v (4)

zuv ≥ xuv ∀u �= v (5)

zuv + zvu ≤ 1 ∀u �= v (6)

zuw ≥ zuv + zvw − 1 ∀ distinct u, v, w (7)

xvu, yvi, zuv ∈ {0, 1}

Constraint set 2 ensures that every non-root node receives a transmission from
some other node. Constraint set 3 ensures that if yvi = 1 (in which case 1−yvi =
0) then v transmits to at most i other nodes (where N(v) is the set of v’s
neighbors); if yvi = 0 then the constraint is satisfied trivially. Constraint set
4 ensures that every node vhas recorded some number, possibly 0, of children.
Finally, constraint sets 5,6,7 define a partial order on nodes corresponding to
children receiving from parents, which prevents cycles in message-passing.

A straightforward way to compute the M(d) values in quadratic total time is
by dynamic programming as follows: M(0) = 0 and for any 1 ≤ e ≤ d,

M(e) = min
1≤h≤e

{m(h) +M(e− h)} (8)

In fact, though, we can compute it more quickly.

Proposition 1. Each M(d) can be computed in constant time.

Proof. When b ≤ 1 a single transmission to all neighbors will be optimal, so
consider b > 1. Ideally all nodes that transmit will have the same number k of
receivers, yielding total cost

n− 1

k
(1 +Akb)
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Allowing k to be fractional, this value is minimized when

d

dk

(n− 1

k
(1 +Akb)

)
= 0

which occurs when A(b− 1)kb = 1 or

k =
(
A(b − 1)

)−1/b

This value k in general will be fractional, but numbers of recipients must be in-
tegral. Since kb is convex when b > 1, the optimal set of receiver set cardinalities
will be �k� and !k", so that x · �k�+ y · !k" = m for some integers x, y. If

m(�k�)
�k� <

m(!k")
!k"

then the optimal solution will perform �k�-casts as aggressively as possible. Then
m = x · �k� + y · !k" = (x + y) · �k� + y implies x + y = (m ÷ �k�), and thus
there will be y = (m % �k�) !k"-casts and x = (m ÷ �k� − y) �k�-casts (where
÷ indicates integer division and % remainder). Otherwise, performing !k"-casts
as aggressively as possible will be optimal. In this case, m = x · �k�+ y · !k" =
(x+y)·!k"−x implies x+y = !m/ !k"", and thus there will be y = (!m/ !k""−x)

!k"-casts and x = −(m %̃ !k") �k�-casts (where negative remainder r = Z %̃ d is
the unique integer r satisfying −d < r ≤ 0 and Z = qd+ r for some nonnegative
integer q). 
�

From this and the fact that the transmission tree in a clique will be a star graph,
we have the following:

Corollary 1. The optimal multicast strategy can be computed in constant time
in a clique and in linear time in a (rooted) tree.

3 Problem Settings Parameterized by b

We now turn to general graphs, analyzing the problem for different values of b.

3.1 b = 0 and b = 1

When b = 0, any transmission costs 1 + Ak0 = 1 + A, and so the problem is
equivalent to Connected Dominating Set and thus admits the following:

Proposition 2. When b = 0 the problem is approximable with factor HΔ + 2
[7] but is not approximable with factor (1 − ε) lnn for any ε > 0 (unless NP ⊆
DTIME(nO(log logn))) [15].

When b = 1, the receiving costs sum to exactly A(n − 1), and so the objective
is simply to minimize the number of senders (and hence maximize the number
of leaves.
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Proposition 3. When b = 1 the problem is approximable with factor
A+1

A+1/(HΔ+2)) but not approximable with factor A+1
A+1/((1−ε) lnn) (unless NP ⊆

DTIME(nO(log logn))).

Proof. When b = 1, each transmission to k recipients has cost exactly 1+Ak. In
a solution with exactly t transmitters that transmit exactly once to each node
other than the root, the sum of the transmission costs will be t + A(n − 1).
That is, the total cost of receiving is invariant (assuming that we take care never
to transmit to a node that has already received), and so the objective again
becomes minimizing the number of transmitters.

The cost of transmissions can be approximated within factor f = HΔ + 2
using the unweighted CDS algorithm of [7], which we then prune, i.e. remove
redundant edges from the implied multicasts. For the overall approximation ratio
we then have:

ALGCDS +A · (n− 1)

OPTCDS +A · (n− 1)
≤ f · OPTCDS +A · (n− 1)

OPTCDS +A · (n− 1)

≤ f · (n− 1)/f +A · (n− 1)

(n− 1)/f +A · (n− 1)

≤ 1 +A

1/f +A

The second inequality follows because the preceding expression is maximized
when OPTCDS is as large as possible.

For hardness of approximation, an approximation of factor A+1
A+1/((1−ε) lnn)

would yield an approximation of factor (1− ε) lnn for CDS. 
�

As n goes to infinity, the approximation guarantee of the subroutine also goes to
infinity, and so becomes weaker and weaker, converging to 2. In fact, this factor
can be obtained more easily.

Corollary 2. Using any algorithm to compute a CDS or ST as a subroutine
would yield an approximation with factor (1 +A)/A (or 2 in the case of A = 1)
when b = 1.

Moreover, for similar reasons, we have:

Corollary 3. Using any algorithm to compute a CDS or ST as a subroutine
would yield an approximation with factor (1 +A)/A (or 2 in the case of A = 1)
when the cost function is of the form 1 +m(k) for superlinear m(k).

3.2 b ≥ log2 3

We find a threshold for b for which unicasting performs within a factor c ≥ 1 of
any multicasting solution:
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cm(k) ≥ km(1) iff

1 +Akb ≥ k/c+ kA/c iff

b ≥
log
(

k/c−1
A + k/c

)
log k

= logk ((a+ 1) k/c− a) (9)

The meaning of the Ineq. 9 is that whenever it holds then for these choices of
k, a, b unicasting necessarily performs within a factor c of multicasting. We first
consider c = 1.

Lemma 1. f(k, a) = logk ((a+ 1)k − a) is a decreasing function in k, ∀a > 0.

Proof. Differentiating f(k, a) with respect to k, we get:

f ′(k, a) =
(a+ 1) k log k − ((a+ 1)k − a) log ((a+ 1)k − a)

k ((a+ 1)k − a) log2 k
(10)

We can prove the lemma by showing that f ′(k, a) < 0, for k > 1, a > 0. Let us
denote the numerator of Eq. 10 by:

h(k, a) = (a+ 1) k log k − ((a+ 1)k − a) log ((a+ 1)k − a)

It is easy to verify that h(1, a) = 0. Differentiating h(k, a) with respect to k, we get:

h′(k, a) = (a+ 1)k
1

k
+ (a+ 1) log k − ((a+ 1)k − a) ·

a+ 1

(a+ 1)k − a
− (a+ 1) log ((a+ 1)k − a)

= (a+ 1) log
k

(a+ 1)k − a

< 0 (since (a+ 1)k − a > k for a > 0, k > 1) (11)

From Ineq. 11 and the fact that h(1, a) = 0, we conclude that h(k, a) < 0 for
k > 1, a > 0; since the denominator of Eq. 10 is positive, it immediately follows
that f ′(k, a) < 0 for k > 1, a > 0, and therefore f(k, a) is a decreasing function
in k for a > 0. 
�

Proposition 4. Let b ≥ log2(a+2). Then unicasting always (i.e., by any span-
ning tree (ST)) performs at least as well as any multicasting solution.

Proof. From Lemma 1, f(k, a) is a decreasing function in k for a = 1/A > 0.
Therefore its maximum for an integer k > 1 is obtained for k = 2. Hence, by
Ineq. 9 the condition that

b ≥ log2 (a+ 2)

suffices for unicasting to performs at least as well as multicasting for any value
of k. 
�

Remark 1. Of course kb is superlinear for any b > 1. What this shows is that for
b > log2(a+2), k receivers should never be divided into multiple transmissions.
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Fig. 1. Approximation factor provided by a spanning tree for each value b (with A = 1)

3.3 1 ≤ b ≤ log2 3

Now we consider the intermediate setting of 1 ≤ b ≤ log2(a+ 2). We know that
at the extremes of 1 and log2(a+ 2), the approximation ratios provided by any
spanning tree (ST) are 2 and 1, respectively. Let ba,c(k) = logk((a+ 1)k/c− a),
and let ba(c) = max∞k=2 ba,c(k), which by Ineq. 9 is the minimum value of b for
which any spanning tree provides a c-approximation. We now invert this function
to find the approximation factor c as a function of b.

Theorem 1. Any spanning tree will provide approximation factor
ca(b) = maxΔk=2 2k/(a+ kb).

Proof. The value of ba(c) for each input c will be equal to ba,c(k) for some input
k. Fix k, and consider the function (of c) ba,k(c) = ba,c(k) and its inverted
form ca,k(b) = 2k/(a+ kb). For each value k, unicasting to k receivers will have
cost at most ca,k(b) times the cost of multicasting to k receivers. The value k
can vary from 2 to Δ. Therefore the approximation factor based on b will be
ca(b) = maxΔk=2 ca,b(k). That is, the function ca(b) will be composed piecewise
of segments of the functions ca,k(b) (see Fig. 1), with knees (or breakpoints) at

the values b for which k
k+1 = kb+a

(k+1)b+a
. 
�

We now give a simpler though more conservative approximation guarantee.

Proposition 5. The approximation factor of spanning tree is upper-bounded as

a function of b by the function ĉa(b) =
2(b−1)
a+b−1 (

a
b−1 )

1/b (or ĉa(b) =
2
b (b− 1)1−1/b

when a = 1).

Proof. Since the goal is to find an envelope of the function ca(b), we attempt to
find the maximum of the function ca,b(k). Differentiating with respect to k and
equating the result to 0, we get:

c′a,b(k) =
2a− 2(b− 1)kb

(a+ kb)2
= 0
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Solving for the optimal k we get k = ( a
b−1 )

1/b; and plugging this into ca,b(k) we
have:

ca,b(k) ≤ ca,b

((
a

b− 1

)1/b
)

=
2(b− 1)

a+ b− 1

(
a

b− 1

)1/b

which simplifies to 2
b (b− 1)1−1/b when a = 1. 
�

3.4 0 < b < 1

We now give an algorithm for the 0 < b < 1 setting which is an adaptation of
the Algorithm I of [7]. The algorithm takes the root node v0 as a parameter; if
any root can be chosen, the algorithm can be run using every possible starting
node.

Algorithm 1. 0 < b < 1 Greedy (given root v0)

1: color v0 gray and color all other nodes white
2: while there remain nonblack nodes do
3: make a most cost-effective move, using a gray node v1 and possibly a nonblack

neighbor v2 of v1
4: color v1 (and v2 if used) black and color all white neighbors of v1 (and v2) gray
5: end while

The algorithm grows a multicast tree by repeatedly making one of two kinds
of moves: 1) a one-node move, choosing a leaf of the current tree to transmit
to all its nontree neighbors (i.e., those not yet in the tree); or 2) or a two-node
move, choosing a leaf v1 plus a nontree neighbor v2 of v1 and transmitting to all
nontree neighbors of v1 and v2.

The cost-effectiveness of a move is the ratio of its total cost to the number of
new nodes added to the tree. Because the cost of each transmission is sublinear
in number of receivers, the best move will transmit to all the neighbors of the
move’s one or two transmitting nodes; the best two-node move will have one of
the nodes transmit to all its nontree neighbors and then the other transmit to all
its remaining nontree neighbors. Therefore at each step there are only a linear
number of moves to consider.

We now prove the approximation guarantee, adapting the arguments of [7].

Theorem 2. For 0 < b < 1, Algorithm 1 provides an approximation of factor
21−b + (2HΔ)1−b + o(1) for any A > 0.

Proof. Let OPT be the set of transmissions defining some minimum-cost multi-
cast tree. Let Si be the set of nodes that are children of some transmitting node
vi in OPT . Since the cost function is sublinear, all the nodes of Si will receive
from a single transmission of vi. The sets Si are disjoint. In each move, we add
one or two senders to the multicast tree; the cost the move will be charged (di-
vided equally) to the new nodes added to the tree. In the optimal solution, the
total cost of transmitting to Si is exactly a+ |Si|b. We now bound the total cost
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Fig. 2. Approximation factor provided (see the LHS of Ineq. 13) by Algorithm 1 for
each value b and several values n (with A = 1)

charged to the members of Si. Let uj be the number of nodes in Si remaining
uncovered just after move j so that u = u0 = |Si| and uk = 0 after some move
k. (We restrict our attention to those moves covering nodes in Si.)

In the first move exactly u − u1 nodes are marked, at a total cost of at most
max{a+ (u − u1)

b, 2a+ 2((u− u1)/2)
b} ≤ 2a+ 21−b(u − u1)

b ≤ 2a+ 21−bub.
After the first move (after at least one node in Si is added to the tree) it

becomes possible to choose node vi in a two-node move. Therefore in any sub-
sequent move j > 1, we could cover all uj remaining nodes of Si with cost
2a+21−bub

j, and so the cost-effectiveness of move j is at worst (2a+21−bub
j)/uj .

These costs sum to:

2a+21−bub +

k−1∑
j=1

2a+ 21−bub
j

uj
(uj − uj+1)

= (2a+ 21−bub) + 2a

k−1∑
j=1

uj − uj+1

uj
+ 21−b

k−1∑
j=1

ub
j(uj − uj+1)

uj

≤ (2a+ 21−bub) + 2a
k−1∑
j=1

uj − uj+1

uj
+ 21−b

k−1∑
j=1

uj − uj+1

u1−b
j

(12)

≤ (2a+ 21−bub) + 2aHu + 21−bH(1−b)
u

Here H
(x)
n indicates the generalized harmonic number

∑n
i=1 1/i

x. The last in-
equality follows from the observation that for monotonically decreasing integers

uj, uk = 0, and 0 ≤ b ≤ 1, we have
∑k−1

j=1
uj−uj+1

u1−b
j

≤ H
(1−b)
u . That is, the sum

is maximized when uj+1 − uj = 1 for each j. Otherwise, if there were some uj

such that uj − uj+1 = d > 1, then the sum could be increased by replacing d/uj

with
∑d−1

�=0 1/(uj − �).
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When b = 0, an approximation guarantee of 2HΔ + 2 obtains, since the
algorithm’s behavior collapses to that of [7]. Now let b > 0. The cost of sending
to Si in OPT is exactly a+ ub, which yields the following approximation factor:

(2a+ 21−bub) + 2aHu + 21−bH
(1−b)
u

a+ ub
≤ 21−b + o(1) +

21−bH
(1−b)
u

ub
(13)

≤ 21−b + o(1) + (2HΔ)1−b

The last inequality follows by application of the “counting measure” special case
of Hölder’s inequality, substituting ai = 1, ci = 1/i1−b, p = 1/b, q = 1/(1 − b)
(note that 1/p+ 1/q = 1 as required):

u∑
i=1

aici ≤
( u∑

i=1

api

)1/p
·
( u∑

i=1

cqi

)1/q

H(1−b)
u =

u∑
i=1

1/i1−b ≤
( u∑

i=1

1
)b
·
( u∑

i=1

(1/i1−b)1/(1−b)
)1−b

= ub(Hu)
1−b


�

More generally, we have:

Corollary 4. For m(k) = a+ f(k) where f(k) is an arbitrary sublinear mono-
tonic increasing cost function, Algorithm 1 provides a 2 + 2HΔ approximation.

Proof. We upper-bound the cost of the first move by 2a+2f(u) and the second
sum in Ineq. 12 by 2f(u)Hu rather than 21−bH1−b

u . Substituting this into the
LHS of Ineq. 13 yields:

(2a+ 2f(u)) + 2aHu + 2f(u)Hu

a+ f(u)
≤ 2 + 2HΔ


�

In an omitted appendix we observe that Corollary 4 applies to the repeated
broadcast transmission model. In Appendix A we prove a two-part NP-hardness
result for each particular value of b ∈ [0, log2(3)), combining the ranges b <
1.395... and b ≥ 1.395..., the value of b at which m(3) = m(1) + m(2) (when
A = 1), i.e. 3b = 2 + 2b. We also show a hardness of approximation result for
b ∈ (0, 1).

4 Conclusion

In this paper we presented positive and negative results for a multicast problem
with cost function 1+Akb and for 1+m(k) with m(k) sublinear or superlinear.
As stated in the introduction, part of our motivation is that such cost functions
can (approximately) model the cost of a transmission to k neighbors in various
sorts of realistic systems. In ongoing experimental research, we are pursuing two
directions:
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– learning the parameters b and A that are (approximately) satisfied by certain
network models and systems

– evaluating our algorithms performance based on not just the idealized cost
model 1 +Akb but also on the systems’ actual transmission costs
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A Hardness Results

When b ≈ 1.395, we have m(3) = m(1) + m(2) (when A = 1), because this
b is the root of 3b = 2 + 2b. This is the point at which a 3-transmission goes
cheaper than a 1-transmission plus a 2-transmission to more expensive. We prove
hardness for 0 ≤ b ≤ log2 3 by considering values of b both less than and greater
than 1.395.

Lemma 2. For each particular b ∈ [0, 1.395...) the problem (with A = 1) is
NP-hard, even on cubic graphs.

Proof. We reduce from Connected Dominating Set restricted to cubic graphs
(i.e., every vertex of degree 3), which is known to be APX-hard [2].

Given the CDS instance ICDS , the multicast problem instance I consists of
the same graph, combined with the specified b value and A = 1. Now, consider
an optimal solution OPT to I with s send nodes. Since the graph is cubic, there
can be at most one node that performs a transmission to three receivers—the
root. Since for b < 1.395... we have these inequalities:

m(3) < m(1) +m(2) (14)

m(2) < m(1) +m(1) (15)

Then in any optimal solution the root transmits to three receivers (due to Ineq.
14) and no send node will perform two separate transmissions (due to Ineqs.
14 and 15). Therefore s1 + s2 = s − 1, where si is the number of send nodes
transmitting to exactly i receivers.

Now suppose there were a solution to ICDS with s′ < s (set j = s− s′) send
nodes. We will show this implies the existence of a multicast solution of cost less
than OPT . Let s′i be the number of nodes transmitting to exactly i receivers in
a minimum-cost assignment of receivers to the s′ nodes in the ICDS solution.
Note that we may assume that also in this solution the root transmits to three
receivers (with one transmission); if not, we can reverse the edges between it and
any of its neighbors it does not send to, which again by Ineq. 14 will only lower
the cost (and perhaps shrink s′). Thus we have s′1 + s′2 = s′ − 1 = s1 − j + s2.
Observe that we then have s′1 = s1 − 2j and s′2 = s2 + j, and so the net change
in the receiver cost is the removal of 2j nodes transmitting to 1 receiver each
and the addition of j nodes transmitting to two nodes. The net effect of these
changes on cost is j · (1 + 2b − 2 · (1 + 1b)), which is negative for any b ≤ 1.
Thus we obtain a contradiction, and so the s senders constitute an optimal CDS
solution. 
�

Lemma 3. For each particular b ∈ [1.395..., log2(3)) the problem (with A = 1)
is NP-hard, even on cubic graphs.

Proof. For b in the specified range, Ineq. 14 no longer holds, and so an optimal
solution will never send to 3 receivers in a single transmission, but only to groups
of 1 or 2. Since Ineq. 15 continues to hold, an optimal solution will try to perform
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as many 2-casts as possible. A node performing only 2-casts will have an even
number of children and, unless it is the root, therefore have odd degree in the
tree induced by the transmissions. In the case of a graph with n even, therefore,
the ideal situation will be for every node but one (the root) to have an even
number of children and hence for every node in the induced tree to have odd
degree. Determining whether a cubic graph with even n admits a spanning tree
with all node degrees odd, however, is known to be NP-hard [11].

Combining Lemmas 2 and 3 we obtain:

Theorem 3. For each particular b ∈ [0, log2(3)) (with A = 1) the problem is
NP-hard, even on cubic graphs.

We now give a hardness of approximation result for 0 < b < 1 (which, note, does
not cover the same range as Lemma 2).

Theorem 4. For each particular b ∈ (0, 1), the problem not approximable with

factor (1−ε) lnn+nb

1+nb for any ε > 0 (unless NP ⊆ DTIME(nO(log logn))).

Proof. Let OPT be the optimal solution value. Let OPT ′ = OPT ′
s + OPT ′

r be
the best possible solution value for a solution whose set of senders constitutes
an optimal solution to the corresponding unweighted CDS problem. Note that
OPT ≤ OPT ′. Let ALG = ALGs +ALGr be the cost of a solution returned by
some algorithm. (In the sublinear setting we can assume each sender transmits
only once.) Let m = n − 1 be the number of receivers, and let f upper-bound
the ratio ALGs/OPTs, which cannot be as good as (1 − ε) lnn for any ε > 0
(absent the hardness assumption invoked the theorem statement). Then the
most optimistic case for the approximation ratio of ALG compared to OPT ′

is for ALG to do ALGs − 1 unicasts and for OPT ′ to do OPT ′
s equal-sized

transmissions, i.e.:

ALGs +ALGr

OPT ′
s +OPT ′

r

=
fOPT ′

s + fOPT ′
s + (m− fOPT ′

s)
b

OPT ′
s +OPT ′

s(n/OPTs)b

≥ fOPT ′
s +mb

OPT ′
s + (OPT ′

s)
1−bmb

≥ (1− ε) lnn · OPT ′
s +mb

OPT ′
s + (OPT ′

s)
1−bmb

≥ (1− ε) lnn · OPT ′
s + nb

OPT ′
s(1 + nb)

≥ (1− ε) lnn+ nb

1 + nb
(for n large enough)

Therefore since ALG cannot approximate OPT ′ within the stated factor, neither
can it do so for the only smaller OPT . 
�
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Abstract. We deal with the problem of streaming multiple video streams be-
tween pairs of nodes in a multi-hop wireless ad hoc network. The nodes are static,
know their locations, and are synchronized (via GPS). We introduce a new inter-
ference model that uses variable interference radiuses. We present an algorithm
for computing a frequency assignment and a schedule whose goal is to maxi-
mize throughput over all the video streams. In addition, we developed a localized
flow-control mechanism to stabilize the queue lengths.

We simulated traffic scheduled by the algorithm using OMNET++/MixiM
(i.e., physical SINR interference model with 802.11g) to test whether the com-
puted throughput is achieved. The results of the simulation show that the com-
puted solution is SINR-feasible and achieves predictable stable throughputs.

1 Introduction

We address the problem of routing real-time video streams (VS’s) in static ad hoc wire-
less networks. Our goal is to develop and implement an efficient algorithm and test it in
a realistic physical model. Many works have been published on the topic of multi-hop
routing in wireless networks including real-time video streaming (see [19,13,20,21]). In
these works it is acknowledged that cross layer algorithms are required to utilize the ca-
pacity of the network. These papers evaluate specific algorithms and scenarios using ap-
proximate models for wireless network, and thus the question of developing integrated
realistic solutions remains open. In particular, a solution must address a combination
of specifications including: maximize throughput, fairness, minimize delay, stability of
throughput, stability of queue lengths in intermediate nodes, bounded number of lost
packets, and predictability.

One of the main issues in wireless networks is how to model interferences. In the
communication community, one uses the signal-to-interference-plus-noise ratio (SINR)
to determine if a received signal is decoded without an error [9]. On the other hand, the
algorithms community has used the graph model (or protocol model) to model feasible
communication patterns [12,1]. For the graph model, multi-hop routing algorithms with
a constant approximation ratio have been developed [15,1,4,22]. In fact, Wan [22] even
presents a (theoretical) PTAS for the problem. On the other hand, to date approxima-
tion algorithms for throughput maximization in the SINR model do not have a constant
approximation ratio. For example, in [5], the approximation ratio is logarithmic in the

� The full version of this paper can be found in http://arxiv.org/abs/1104.0779.

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 188–201, 2012.
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ratio between the longest link and the shortest link (for uniform transmission powers),
and in [8] the approximation ratio is logarithmic in the number of nodes (for the linear
power model).

The study of wireless algorithms in the SINR model has been motivated by its real-
istic appeal. In fact, it has been argued that the performance of graph based algorithms
is inferior to algorithms in the SINR model [10]. In [17,18] a logarithmic ratio between
the throughput in the SINR model and the throughput in the graph model is presented.
A closer look at studies that compare the interference models and algorithms for these
models shows only a constant gap if the ratios of the max-to-min power and max-to-
min distance are constant. In [11] the same asymptotic throughput is obtained in both
models with respect to random instances. In [17], the example only gives a constant
ratio if the the power ratio and the distance ratio are constant. In [5], an example with a
constant gap is presented for constant uniform power. In [3], the theorems do not utilize
the ability to increase the interference radius or to apply collision avoidance methods
used in the 802.11 MAC.

The questions we study in this paper are as follows. (i) How much of the traffic com-
puted by a graph model based routing algorithm can be routed in realistic scenarios with
constant max-to-min powers and constant max-to-min distances? Namely, does the ap-
proximate nature of the graph model lead to useful solutions? (ii) How to integrate a
graph-model based routing-algorithm in a system that supports real-time video stream-
ing? Such a system must combine goals such as: fairness, predictable throughput, few
lost packets, bounded intermediate queues, reasonable and steady end-to-end delay.

Previous Work. The necessity of cross layer designs has been recognized for sat-
isfying the special characteristics of real-time video streaming over wireless net-
works [20,19,13]. We continue this line of work.

The multi-hop routing problem for ad hoc networks was investigated thoroughly.
One of the commonly used heuristics for routing is based on finding paths with maxi-
mum bottlenecks, namely, paths for which the edge with the lowest capacity is maxi-
mum [7]. We used this algorithm in our benchmarks (we call it SHORTP). A different
approach for the routing problem is based on solving a linear program. In [15,12,1],
routing algorithms in the graph model are designed, analyzed, and simulated. One draw-
back in [15,12,1] is that the simulations were run also in the graph model and not in the
physical model. Wan [22] pointed out various errors in previous algorithms and pre-
sented a new linear program that corrects the problem. He proved that: (i) there is a
23-approximation algorithm based on the linear program, and (ii) there is a polynomial
time scheme (PTAS) for the problem. However, this PTAS is not practical. Namely, the
PTAS requires solving a linear program that might not be solved by LP-solvers even for
moderate sized networks.

Chafekar et al. [5,6] considered routing algorithms in the SINR model. The approx-
imation ratio of their algorithm with uniform power assignments is logarithmic in the
ratio between the longest link and the shortest link. Their communication model does
not include ACK packets. Hence, interference is caused only by the sender and not by the
receiver. In [6], simulations are described in the physical model, but these simulations
do not use the 802.11 MAC (i.e., no RTS, CTS, ACK packets are used). A discussion on
the scenarios that are simulated in [6] can be found in the full version.
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Due to space limitations, some of the formulations, algorithms’ listings, and
experimental results were omitted and can be found in the full version.

Our Contributions. (I) We do not modify the 802.11g MAC. This approach has two ad-
vantages. First, we do not bypass the wireless NIC and its collision avoidance features.
Hence, even if the algorithm suggests a schedule with interferences, these interferences
are resolved by the MAC. Second, the network can support limited additional traffic
that is not routed or scheduled by the algorithm (i.e. messages for controlling the net-
work). We choose the 802.11g because of its popularity in laptops and mobile devices.
(II) Simulation in the physical model. The simulation is in a standard 802.11g setting
using OMNET++/MixiM (see the full version for more details). In this setting, all WiFi
frames are transmitted (i.e., RTS,CTS, packet, ACK), and interferences between frames
are analyzed using the SINR-model, and taking into account the Modulation Coding
Schemes (MCS). (III) We introduce new interference constraints that constitute an inter-
mediate model between the physical SINR-model and the graph based protocol model
(see Sec. 3.1). The interference set of a link is a function of the signal-to-noise ratio of
the link and the MCS of the link. As the signal-to-noise ratio (without interferences) of a
link is closer to the SINR-threshold, the interference set grows, so that SINR is not in the
“waterfall” region of the PER function.1 One advantage of this new interference model
is that it is easy to formulate interference constraints in the linear program formulation
(see the full version). (IV) We formulate the problem of minimizing end-to-end delay
incurred by a schedule that supports a given multi-flow. We developed and implemented
a scheduling algorithm that addresses this problem of reducing end-to-end delays while
supporting a similar throughput (see Sec 4.3). In [15,1,4] the effect of the schedule on
the delay is not mentioned. (V) We developed and implemented a flow control algo-
rithm that stabilizes the queue lengths and controls the data-rate along the links. This
flow control algorithm is executed locally by the nodes. (VI) We evaluated the per-
formance of the proposed algorithm with respect to video streaming. In particular, we
measured the throughput, end-to-end delay, fraction of dropped packets, queue lengths,
and the stability of these parameters.

Techniques. Following [15,1,4,5,8], we formulate an LP, and apply greedy coloring
to obtain a schedule. Interestingly, the greedy coloring incurs high end-to-end-delays,
so we developed a path-peeling scheduler that trades delay for throughput. Stability
is maintained by a flow control algorithm that monitors flow through incoming and
outgoing links, and continuously balances the two. This method utilizes the ability of
video encoders to adjust the compressed bit-rate.

2 Problem Definition

Setting. We consider a WiFi 802.11g static ad hoc network with 3 non-interfering ra-
dio channels with the assumptions: (i) Single radio: each node has a single wireless
network interface controller (WNIC). (ii) Each node is equipped with a GPS so that

1 The packet-error-rate (PER) is a function of the SINR. This function increases very steeply in
the neighborhood of the critical threshold β. This phenomenon is referred to as the “waterfall”
region of the PER function.
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it knows its location and the nodes are synchronized. (iii) The WNICs support quick
synchronized hops between frequency channels. (iv) Isotropic antennas. (v) We also
assume that the nodes have already joined the network and that there is at least one
node (i.e., center node) that holds full information about the network (i.e., nodes and
locations). Accumulating this information can be done in a distributed low-bandwidth
fashion after building a spanning tree [2].

Problem Definition. The input to the algorithm consists of: (I) A set V of n nodes in
the plane. A transceiver is located in each node. (II) A set of k VS requests {ri}ki=1.
Each stream request is a triple ri � (ai, bi, d

∗
i ), where ai is the source (e.g., camera) of

the stream, bi is the destination, and d∗i is the required data-rate. Ideally, we would like
to satisfy all the requests, namely, for each VS ri, route packets using multi-hops from
ai to bi. We assume that there is a path in the network between each source-destination
pair (otherwise, the request is rejected).

Let di denote the data-rate achieved for the ith stream. The service ratio ρi of the ith
demand is defined by ρi � di/d

∗
i . Our goal is to maximize the minimum service ratio,

namely, maxmini ρi.
Additional performance measures are: (i) End-to-end delay - this is the time it takes

a packet to reach its destination. We are interested in reducing the maximum delay
(among the packets that are delivered) since the video is real-time. In addition, the
maximum delay determines the size of the jitter buffer in the receiving side. (ii) Num-
ber of dropped packets. Queue management may drop packets. A dropped packet never
reaches its destination. (iii) Queue lengths in intermediate nodes tell us how much mem-
ory should be allocated and also give an indication of the delay per hop.

3 Preliminaries

3.1 Interference Models

Bidirectional Interference. The delivery of a message in the WiFi MAC requires trans-
mission of frames by both sides (e.g., RTS and packet are transmitted by the sender,
CTS and ACK are transmitted by the receiver). Hence, interferences can be caused also
by frames transmitted by a the receiving side.

The SINR Model. The SINR model, also called the physical interference model, de-
fines successful communication as follows. Let du,v denote the distance between nodes
u and v. Suppose a subset St ⊆ V of the nodes are transmitting simultaneously in the
same frequency channel as u. The signal-to-interference-plus-noise ratio (SINR) for
the reception by v ∈ V \ St of the signal transmitted by u ∈ St in the presence of the

transmitters St is defined by SINR(u, v, St) � P/dα
u,v

N+
∑

x∈St\{u} P/dα
x,v

. Each transmitter

can use one of several modulation coding schemes (MCS). The message transmitted by
u in an MCS m is successfully received by v if SINR(u, v, St) ≥ βm, where βm is the
minimum SINR-threshold for the MCS m.

Protocol Model. The protocol model, also called the graph model, is specified by two
radii: (i) A communication distance r. (ii) An interference distance R. The rule for
successful communication between two nodes u and v is that v receives the message
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from u if du,v < r and every other node x that transmits at the same time satisfies
dx,v > R. In this model, a communication graph is defined over the nodes. Two nodes
are linked by an edge if their distance is less than the communication distance r.

Since the WiFi MAC requires transmission by both sides, an interference is defined
between two links (u, v) and (u′, v′) if min{du,u′ , du,v′ , dv,u′ , dv,v′} < R. We say
that a subset L of links is non-interfering if no two links in L interfere. In the protocol
model, a schedule is a sequence {Li}i of subsets of non-interfering links.

Our New Model. The new model is an intermediate model between the SINR model
and the protocol model. The idea is that, as the SNR of a link grows, the link can tolerate
more interference. Hence, the interference distance is not fixed.

Consider a pair (u, v) of nodes and an MCS m. The triple (u, v,m) is a link in the
new model if SINR(u, v, ∅) ≥ βm.

Since both sides of a link transmit and receive, the interference set of a link must
take into account interferences caused by other transmissions both in the receiver and
the sender. However, the frames sent by the receiving side are in MCS 0, therefore,
reception of these frames depends on the SINR-threshold β0.

The interference set Vu,v,m of the link e = (u, v,m) is defined by Vu,v,m �
{x ∈ V \ {u} |SINR(u, v, {x}) < μ · βm or SINR(v, u, {x}) < μ · β0}.

Geometrically, the set Vu,v,m consists of the set of nodes that belong to the union of
two disks. One disk is centered at u and its radius is a function of SINR(u, v, ∅) and βm.
The second is centered at v and its radius is a function of SINR(v, u, ∅) and β0. Unlike
the standard graph, the radiuses of these disks vary from link to link.

The motivation for this definition is that transmissions of nodes in Vu,v,m interfere
with the reception of v by u, or vice versa. The choice of μ = 1.585 gives us a margin
of 2dB above the SINR-threshold. This margin keeps the SINR above the threshold due
to interferences caused by transmitters not in Su,v,m.

We also define the interfering set of edges with respect to the link e = (u, v,m),
Iu,v,m � {e′ = (u′, v′,m′) | {u′, v′} ∩ (Vu,v,m ∪ Vv,u,m) �= ∅} \ {(u, v,m)}. The
interference set Iu,v,m contains a link e′ if either endpoint of e′ interferes with reception
at the endpoints u or v.

Notation. Let u and v denote nodes and m denote an MCS. A link is a triple (u, v,m)
such that SINR(u, v, ∅) ≥ βm. This definition implies that there can be multiple parallel
links between u and v, each with a different MCS. We denote the set of links by E. The
set Eout(v) (resp. Ein(v)) denotes the set of links that emanate from (resp. enter) v. Let
E(v) denote the set of links Ein(v)∪Eout(v). For a link e = (u, v,m), let MCS(e) = m,
i.e., the MCS m of the link e.

4 Algorithm MF-I-S

4.1 Networks Governed by Time-Slotted Frequency Tables

Two tables govern the communication in the network. The first table A is a time-slotted
frequency table. The dimensions of A are F × T , where F denotes the number of
frequency channels and T denotes the number of time slots. There is one row for each
frequency channel and one column for each time slot. (In our implementation we used
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F = 3 and T = 200). The table A determines a periodic schedule. The second table is a
multi-flow table mf . The dimensions of mf are |E| × k (recall that k equals the number
of VS’s). The entry mf (e, s) specifies the number of packets-per-period that should be
delivered along link e for stream s.

Each table entry A[j, t] is a subset of links, i.e., A[j, t] ⊆ E. The table governs
communication in the sense that, in slot t′, the links in A[j, t′ (mod T )] try to deliver
packets using frequency channel j.

We use A[·, t] to denote the set of links ∪j∈FA[j, t]. Since we assume that each node
is equipped with a single radio, it follows that two links that share an endpoint cannot
be active in the same time slot. Hence, for every node v, E(v) ∩ A[·, t] may contain at
most one link.

A time-slotted frequency table schedules active links (see Algorithm TX-RX in the
full version). Each node v executes Algorithm TX-RX(v) locally. Since E(v) ∩ A[·, t]
may contain at most one link, a node v is either a receiver, a sender, or inactive in each
time slot.

4.2 Algorithm Specification

The input to the routing algorithm is specified in Sec. 2. The output consists of two
parts: (i) a time-slotted frequency table A, and (ii) a multi-flow mf (e, s), for every link
e and stream 1 ≤ s ≤ k. We note that the units of flow are packets-per-period. The
period equals T · σ, where σ is the duration of a time slot, and T equals the number of
time-slots in a period.

The multi-flow mf (e, s) determines the routing and the throughout of each stream.
The role of the frequency/time-slot table A and the multi-flow tables is to specify a pe-
riodic schedule that determines which links are active in which time slots (see Sec. 4.1).

Although we use fixed length packets (e.g., 2KB), the MCS of a link determines
the amount of time required for completing the delivery of a packet. This means, that
within one time slot, multiple packets may be delivered along a single link. Let pps(e)
denote the number of packets-per-slot that can be delivered along e. Namely, node u
can transmit at most pps(e) packets to node v along link e = (u, v,m) in one time-slot.
Note that the value of pps(e) is a function of the MCS of the link e.
We say that table A supports the flow mf if the following properties hold:

1. Every entry A[j, t] in the table is a set of non-interfering links. Thus, the links in
A[j, t] may be active simultaneously.

2. The data-rates mf (e, s) are supported by the table. Namely,

k∑
s=1

mf (e, s) ≤ |{A[j, t] : e ∈ A[j, t]}| · pps(e) . (1)

4.3 Algorithm Description

Algorithm MF-I-S consists of two parts: (i) computation of a multi-commodity flow
with conflict constraints, and (ii) scheduling of the multi-commodity flow in a time-
slotted frequency table. We elaborate on each of these parts.
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Multi-commodity Flow with Conflict Constraints. We formulate the problem of rout-
ing and scheduling the VS’s by a linear program (LP). A similar LP is used in [15,1,4]
with respect to the graph model. We use our new interference model for the interference
constraints.

The variables f j
i (e) of the LP signify the amount of flow along link e in frequency

channel j for stream i. The full LP appears in the full version. Let f j(e) �
∑k

i=1 f
j
i (e),

namely, f j(e) is the flow in frequency j along link e. Let c(e) � T · pps(e) denote the
number of packets-per-period that can be delivered along the link e.
We elaborate on two main features of the LP:

1. The conflict constraints. The ratio f j(e)/c(e) equals the fraction of the time that
the link e is active in transmission in frequency j. Since each node is equipped with
a single WNIC, transmissions emanating or entering the same node may not occur
simultaneously (in any frequency). In addition, the links in Ie may not transmit in
frequency j whenever e is transmitting in frequency j. Thus, the conflict constraint
is formulated as follows. For every link e = (u, v,m) ∈ E, and for each frequency
j ∈ [1..3]:

f j(e)

c(e)
+
∑
j′ �=j

∑
e′∈E(u)∪E(v)

f j′(e′)
c(e′)

+
∑
e′∈Ie

f j(e′)
c(e′)

≤ 1 . (2)

2. Max-Min throughput. For each requested stream ri, we define the supply ratio ρi
to be the ratio between the flow allocated to the i’th stream and the demand d∗i of
the stream. The objective of the LP is to maximize mini ρi. A secondary objective
is to maximize the total throughput.

Scheduling of the Multi-commodity Flow in a Time-Slotted Frequency Table. In the
scheduling step we are given the multi-commodity flows f j

i (e). The task is to allocate
entries in a time-slotted frequency table A that supports these flows.

We first determine how many time-slots should be allocated for f j(e), for each link e
and each frequency channel j. Similarly to Eq. 1, |{t ∈ [1..T ] : e ∈ A[j, t]}| · pps(e) ≥
f j(e). Hence,

|{t ∈ [1..T ] : e ∈ A[j, t]}| ≥
⌈
f j(e)

pps(e)

⌉
. (3)

The Greedy Scheduler. The simplest way to assign flows to the table A is by applying a
greedy algorithm (similar to greedy coloring). The greedy algorithm scans the links and
frequency channels, one by one, and assigns �(e, j) slots to each link e and frequency
channel j. Based on [1,14,4], the interference constraints in Eq. 2 imply that the greedy
algorithm succeeds in this assignment provided that

�(e, j) =

⌊
f j(e)

pps(e)

⌋
. (4)

The issue of dealing with this rounding problem (i.e., the difference between the round-
down and the round-up in Eqs. 3 and 4) is discussed in [22], where it is pointed out that
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routing all the flow requires a super exponential period T . Such a period is obviously
not practical; the computation of the table takes too long, the table is too long to be
broadcast to all nodes, and the schedule will incur huge delays.

We show that the rounding problem is not an important issue both theoretically and in
practice. We define fi(e) to be the combined flow along e for stream i over all frequency
channels. Since each flow fi can be decomposed into at most |E| flow paths, it follows
that the values of {f j

i (e)}e∈E,j∈F can be “rounded” so that at most |E| ·maxe{pps(e)}
packets are lost per period. Note that this lost flow can be made negligible by increasing
the period T . As T increases, the amount of flow per period tends to infinity, and hence,
the lost flow is negligible. In our experiments, we used a period of T = 200 time slots,
with a duration of 5ms per slot. The greedy scheduler was able to schedule almost all
the flow in all the instances we considered. The multi-flow table is set so that mf (e, s)
equals the amount of flow from fs(e) that the scheduler successfully assigned.

The greedy scheduler incurred a delay roughly of one period per hop. The reason is
that it schedules all the receptions to a node before the transmissions from the node. To
avoid this delay, we designed a new scheduler, described below.

The Path-Peeling Scheduler. The path peeling scheduler tries to reduce the time that an
incoming packet waits till it is forwarded to the next node. This is achieved as follows.

1. Decomposes each flow fi into flow paths such that the flow along each path equals
the bottleneck, i.e., the minimum pps(e) along the path. Let {fi(p)}p∈P(i) denote
this decomposition.

2. While not all the flow is scheduled,
(a) For i = 1 to k do:
(b) If P(i) �= ∅, then schedule a path p ∈ P(i) and remove p from P(i).

The scheduling of a flow path p ∈ P(i) tries to schedule the links in p one after the
other (cyclically) to reduce the time a packet needs to wait in each node along p. The
scheduling simply scans the links in p in the order along p, and finds the first feasible
time slot (in cyclic order) for each link e ∈ p.

We point out that in Line 2a, we schedule one path from each stream to maintain
fairness in allocation and delays. On the average, each stream suffers from the same
“fragmentation” problems in the table A.

In our experiments, the path-peeling scheduler succeeded in scheduling 70% of the
flow. The advantage, compare to the greedy scheduler, is that delays are significantly
reduced.

5 Flow Control

The multi-flow table computed by the algorithm determines the number of packets
mf (e, s) that should be sent along each link e for stream s during each period. Each
node v monitors the following information for each link e ∈ Eout(v). (1) P (e, s, t) -
the number of packets belonging to stream s sent along the link e during the period
t. (2) P+(e, s, t) - the maximum number of packets belonging to stream s that can
be sent along the link e during the period t. Note that P+(e, s, t) ≥ P (e, s, t); in-
equality may happen if the queue Q(e, s) is empty when a packet is scheduled to be
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transmitted along the link e. Note that if e is not planned to deliver packets of stream
s, then P+(e, s, t) = 0. We remark that a node v can also monitor P (e, s, t) for a link
e ∈ Ein(v). However, the value P+(e, s, t) for a link e ∈ Ein(v) must be sent to v (e.g.,
by appending it to one of the delivered packets).

The Flow-Control algorithm is executed locally by all the nodes in the network. Let
e = (u, v,m) denote a link from u to v, and let s denote a stream. Each node executes
a separate instance per stream. In the end of each period t, each node u “forwards” the
value of P+(e, s, t) to node v. In addition, in the end of each period t, node v sends
“backwards” the value R(e, s) to u. The value R(e, s) specifies the number of packets
from stream s that v is willing to receive along the link e in the next period t+ 1.

Algorithm 1. Flow-Control(v, s) - a local algorithm for managing the local queue and
requested incoming rate at node v for stream s.

1. Initialize: for all e ∈ Ein(v), R(e, s) ← mf (e, s).
2. For t = 1 to ∞ do

(a) Measure P (e, s, t) for every e ∈ E(v), and P+(e, s, t) for every e ∈ Eout(v).
(b) Receive P+(e, s, t) for every e ∈ Ein(v), and R(e, s) for every e ∈ Eout(v).
(c) Rin ← min{∑e∈Eout(v)

R(e, s),
∑

e∈Eout(v)
P+(e, s, t),

∑
e∈Ein(v)

P+(e, s, t), }.

(d) For every e ∈ Ein(v): R(e, s) ← Rin · P+(e,s,t)∑

e′∈Ein(v)P
+(e′,s,t)

.

(e) Drop oldest packets from Q(v, s), if needed, so that |Q(v, s)| ≤ Rin .

The Flow-Control algorithm is listed as Algorithm 1. It equalizes the incoming
and outgoing packet-rates in intermediate nodes as follows. The requested packet-
rate R(e, s) is initialized to be the value mf (e, s) derived from the table. The Flow-
Control algorithm is activated in the end of each period. It uses the values P (e, s, t) and
P+(e, s, t) for every link e incident to v. Some of these values are computed locally and
some sent by the neighbors. The incoming packet-rate Rin is computed in line 2c, and
is divided among the incoming links in line 2d. Excess packets in the queue Q(v, s) are
dropped so that the number of packets in Q(v, s) is at most Rin. The rational is that, in
the next period, at most Rin packets will be delivered, and hence, excess packets might
as well be dropped.

We now elaborate on the boundary cases of the flow-control for a source as and a
destination bs of stream s. The destination bs simply sends a fixed request for each
incoming link e ∈ Ein(bs), i.e., R(e, s) ← mf (e, s). The source as, does not execute
line 2d; instead, it sets the packet-rate of the video encoder to Rin.

6 Experimental Results

In this section we summarize the main experimental results. An elaborated discussion
of the experimental results appears in the full version.
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6.1 Scenarios

We ran the experiments on two main types of arrangements of the nodes in the plane, a
circle and a grid: (1) In the grid arrangement, we positioned 49 nodes in a 1km× 1km
square. The nodes are positioned in a 7×7 lattice, so that the horizontal and vertical dis-
tance between adjacent nodes is 1000/7 = 142 meters. The source and destination of
the streams in the grid arrangement are chosen randomly. (2) In the circle arrangement,
we positioned 24 nodes on a circle of radius 500 meters. The nodes were positioned ev-
ery 360/24 degrees. The source and destination of the streams in the circle arrangement
are chosen deterministically as follows: a1 = !24/k", bi = (ai + �24/k�) mod 24,
ai+1 = bi, where k denotes the number of streams.

We point out that random locations of 50 nodes in a square kilometer induces a
communication graph with a high degree and a diameter of 2 or 3 [16]. In addition, the
interference set of each link contains almost all the other links. Hence, this setting has
a low capacity and is not an interesting setting for the problem we study.

The requests demand d∗i is set to 10Mbps. Such a demand with k ≥ 6 streams
is above the capacity of the network. This enables us to study the performance in a
congested setting.

6.2 Benchmarks

We ran the experiments using six algorithms. (1) MF-I-S. In the MF-I-S benchmark
all three parts of our algorithm are used: computation of a multicommodity flow with
interference constraints, the path-peeling scheduler, and the Flow-Control algorithm.

(2) SHORTP-S. A shortest path maximum bottleneck routing algorithm with the
path-peeling scheduler. Let pps(e) denote the number of packets-per-slot in the MCS

used by the link e. Let hops(p) denote the number of hops along a path p. We define a
(lexicographic) order over paths from as to bs as follows: p ≤ q if (1) mine∈p pps(e) ≥
mine∈q pps(e) or (2) mine∈p pps(e) = mine∈q pps(e) and hops(p) ≤ hops(q). For-
mally, in SHORTP-S, the stream s is routed along a path p that is minimal in the lexico-
graphic order.

In SHORTP-S, the paths are computed in an oblivious manner, namely, congestion
does not play a role. This means that we must execute a flow control algorithm to adjust
the data-rate.

Each stream in the SHORTP-S benchmark is assigned a random frequency channel.
(3) The remaining algorithms are MF (only multi-commodity flow without interference
constraints without a scheduler), MF-I (only multicommodity flow with interference
constraints without a scheduler), MF-S (multi-commodity flow without interference
constraints with a scheduler), SHORTP (shortest paths but without a scheduler). A de-
tailed description appears in the full version. We point out that whenever the scheduler
is not invoked, each node must have 3 WNICS. The reason is that a node does not know
the frequencies of incoming packets.

We made the following change in the WiFi WNICs when there is a scheduler. The
noise threshold for allowing a transmission of an RTS frame is reduced to match the in-
terference distance. The reduced threshold relaxes the conservative collision avoidance
to allow for simultaneous transmissions by links approved by the scheduler.
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6.3 Results

Comparison between MF-I-S and SHORTP-S. We focus on two properties: min-
throughput (i.e., the lowest throughput over all the streams) and the end-to-end delay.

Table 1. Comparison of steady state min-throughput between MF-I-S and SHORTP-S in the grid
scenario. The number of requests is denoted by k.

k MF-I-S’s SHORTP-S’s Ratio
min Throughput min Throughput

Mbps Mbps

8 0.576 0.45 1.28
12 0.448 0.325 1.3785
16 0.368 0.22 1.6727

Table 1 lists the effect of the number of requests k on the minimum throughputs
of MF-I-S and SHORTP-S in the grid scenario. MF-I-S outperforms SHORTP-S by
28-67%.

Comparison with Greedy Scheduler. In Figure 1 we compare MF-I-S with the greedy
scheduler and the path-peeling scheduler. The path peeling scheduler significantly re-
duces the end-to-end delay while slightly reducing the throughput. Note that the min-
throughput is bigger with the path peeling scheduler (i.e., stream #8), hence, fairness is
improved.
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Fig. 1. Comparison of MF-I-S with the greedy scheduler and the path-peeling scheduler in the
grid arrangement with k = 12 and d∗i = 10Mbps. The experiment’s duration is 25 seconds.
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7 Conclusions

The algorithm consists of two parts: a multi-commodity flow computation and a sched-
uler. Our simulations demonstrate the robustness of the scheduler. Namely, the flows
mf that are supported by the time-slotted frequency table A are successfully routed
in the SINR-model. Thus, in our simulations the modified graph model results with
SINR-feasible schedules.

The role of the multi-commodity flow computation with interference constraints is to
maximize the minimum throughput. Indeed, in the grid scenario, routing along shortest
paths resulted with smaller throughputs.

The flow control algorithm succeeds in stabilizing the queue lengths for all bench-
marks that used the scheduler. Without the scheduler, stability was not obtained, and
many packets were dropped.

Our results show that one can compute a routing and scheduling that succeeds in
the SINR-model while using a simpler interference model. In addition, we successfully
combined the various goals required to support video streaming.

8 Discussion

We propose a centralized algorithm for computing a routing, scheduling, and frequency
assignment for real-time VS’s in static ad-hoc wireless networks. The algorithm con-
sists of two parts: a linear program and a scheduler. In addition, each node locally runs
a flow-control algorithm to control the queues and stabilize data-rate along the links.
Although the algorithm is centralized, it can be executed by multiple nodes in the net-
work provided that they hold full information of the network (i.e., locations, requests).
The output of the algorithm consists two tables that can be easily broadcast to all the
nodes.

We implemented the algorithm and experimented using a setting that uses the phys-
ical model (with a 802.11g MAC) to verify the validity of the algorithm. Our ex-
periments show that the traffic routed and scheduled by the algorithm is successfully
delivered in two congested scenarios in the SINR-model.

We propose a scheduling algorithm, called the path peeling scheduler, that is de-
signed to reduce the end-to-end delay incurred by the greedy scheduler. The path peel-
ing scheduler succeeded in reducing the delay in streams with many hops. Even in a
congested scenario, the path peeling scheduler successfully scheduled at least 70% of
the flow.
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discussions. This work was supported in part by the Israeli Ministry of Industry and
Trade under project MAGNET by the RESCUE Consortium.
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Abstract. We present an algorithm for multi-hop routing and scheduling of re-
quests in wireless networks in the SINR model. The goal of our algorithm is to
maximize the throughput or maximize the minimum ratio between the flow and
the demand.

Our algorithm partitions the links into buckets. Every bucket consists of a
set of links that have nearly equivalent reception powers. We denote the num-
ber of nonempty buckets by σ. Our algorithm obtains an approximation ratio of
O(σ · log n), where n denotes the number of nodes. For the case of linear powers
σ = 1, hence the approximation ratio of the algorithm is O(log n). This is the
first practical approximation algorithm for linear powers with an approximation
ratio that depends only on n (and not on the max-to-min distance ratio).

If the transmission power of each link is part of the input (and arbitrary), then
σ ≤ log Γ + logΔ, where Γ denotes the ratio of the max-to-min power, and Δ
denotes the ratio of the max-to-min distance. Hence, the approximation ratio is
O(log n · (log Γ + logΔ)).

Finally, we consider the case that the algorithm needs to assign powers to each
link in a range [Pmin, Pmax]. An extension of the algorithm to this case achieves
an approximation ratio of O[(log n+ log log Γ ) · (log Γ + logΔ)].

1 Introduction

In this paper we deal with the problem of maximizing throughput in a wireless net-
work. Throughput is a major performance criterion in many applications, including:
file transfer and video streaming. It has been acknowledged that efficient utilization of
network resources require so called cross layered algorithms [LSS06]. This means that
the algorithm deals with tasks that customarily belong to different layers of the net-
work. These tasks include: routing, scheduling, management of queues in the nodes,
congestion control, and flow control.

The problem we consider is formulated as follows. We are given a set V of n nodes
in the plane. A link e is a pair (se, re) of nodes with a power assignment Pe. The node
se is the transmitter and the node re is the receiver. In the SINR model, re receives
a signal from se with power Se = Pe/d

α
e , where de is the distance between se, and

re and α is the path loss exponent. The network is given a set of requests {Ri}ki=1.
Each request is a 3-tuple Ri = (ŝi, t̂i, bi), where ŝi ∈ V is the source, t̂i ∈ V is

� The full version of this paper can be found in http://arxiv.org/abs/1104.1330

T. Erlebach et al. (Eds.): ALGOSENSORS 2011, LNCS 7111, pp. 202–214, 2012.
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the destination, and bi is the requested packet rate. The output is a multi-commodity
flow f = (f1, . . . , fk) and an SINR-schedule S = {Lt}T−1

t=0 that supports f . Each
Lt is a subset of links that can transmit simultaneously (SINR-feasible). The goal is to
maximize the total flow |f | =

∑k
i=1 |fi|. We also consider a version that maximizes

minki=1 |fi|/bi. Let Δ � dmax/dmin is the ratio between the maximum and minimum
length of a link, and Γ � Pmax/Pmin the ratio between the maximum and minimum
transmission power. For the case in which maxe�=e′

Se

Se′
= O(1), the approximation

ratio achieved by the algorithm is O(log n). For arbitrary powers and link lengths, the
approximation ratio achieved by the algorithm is O(log n · (logΓ + logΔ)).

Previous Work. Gupta and Kumar [GK00] studied the capacity of wireless networks in
the SINR-model and the graph model for random instances in a square. The SINR-model
for wireless networks was popularized in the algorithmic community by Moscibroda
and Wattenhofer [MW06]. NP-Completeness for scheduling a set of links was proven
by Goussevskaia [GOW07].

Algorithms for routing and scheduling in the SINR-model can be categorized by four
main criteria: maximum capacity with one round vs. scheduling, multi-hop vs. single-
hop, throughput maximization vs. latency minimization, and the choice of transmitter
powers. In the single-hop setting, routing is not an issue, and the focus is on scheduling.
If the objective is latency minimization, then each request is treated as a task, and the
goal is to minimize the makespan.

The following problems are considered. (1) CAP-1SLOT: find a subset of maxi-
mum cardinality that is SINR-feasible. (2) LAT-1HOP: find a shortest SINR-schedule
for a set of links. (3) LAT-PATHS: find a shortest SINR-schedule for a set of paths.
(4) LAT-ROUTE: find a routing and a shortest SINR-schedule for a set of multi-hop
requests. (5) THROUGHPUT-ROUTE: find a routing and maximum throughput SINR-
schedule for a set of multi-hop requests. We briefly review some of the algorithmic
results in this area published in the last three years.

Chafekar et al. [CKM+07] present an approximation algorithm for LAT-ROUTE. The
approximation ratio is O(log n · logΔ · log2 Γ ). Fanghänel et al. [FKV10] improved
this result to O(logΔ · log2 n). Goussevskaia et al. [GWHW09] pointed out that logΔ
can be Ω(n), and presented the first approximation algorithm whose approximation
ratio is always nontrivial. In fact, the approximation ratio obtained by Goussevskaia et
al. [GWHW09] is O(log n) for the case LAT-1HOP with uniform power transmissions.

Halldorsson [Hal09] presented algorithms for LAT-1HOP with mean power assign-
ments. He presented an O(log n log logΔ)-approximation and an O(logΔ)-online al-
gorithm that uses mean power assignments with respect to OPT that can choose
arbitrary power assignments (see also [Ton10]).

Halldorsson and Mitra [HM11a] presented an constant approximation algorithm for
CAP-1SLOT problem with uniform, linear and mean power assignments. In addition,
by using the mean power assignment, the algorithm obtains a O(log n + log logΔ)-
approximation with respect to arbitrary power assignments

Kesselheim and Vöcking [KV10] give a distributed randomized algorithm
for LAT-1HOP that obtains an O(log2 n)-approximation using uniform and lin-
ear powers. Halldorson and Mitra [HM11b] improve the analysis to achieve an
O(log n)-approximation.
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Kesselheim [Kes11] presents approximation results in the SINR-model: an
O(1)-approximation for CAP-1SLOT, an O(log n)-approximation for LAT-1HOP, an
O(log2 n)-approximation for LAT-PATHS and LAT-ROUTE. In [Kes11] there is no limi-
tation on power assignment imposed neither on the solution nor on the optimal solution.
In practice, power assignments are limited, especially for mobile users with limited
power supply.

The most relevant work to our result is by Chafekar et al. [CKM+08] who pre-
sented approximation algorithms for THROUGHPUT-ROUTE. They present the follow-
ing results, an O(logΔ)-approximation for uniform power assignment and linear power
assignment, and an O(log Γ · logΔ) for arbitrary power assignments.

For linear powers, Wan et al. [WFJ+11] obtain a O(log n)-approximation for
THROUGHPUT-ROUTE. The algorithm is based on a reduction to the single-slot prob-
lem using the ellipsoid method. In [Wan09], Wan writes that “this algorithm is of the-
oretical interest only, but practically quite infeasible.” For the case that the algorithm
assigns powers from a limited range, Wan et al. [WFJ+11] achieve an O(log n · logΓ )-
approximation ratio.

Our Result. We present an algorithm for THROUGHPUT-ROUTE. Our algorithm parti-
tions the links into buckets. Every bucket consists of a set of links that have nearly
equivalent reception powers. We denote the number of nonempty buckets (also called
the signal diversity of the links) by σ. Our algorithm obtains an approximation ratio of
O(σ · logn), where n denotes the number of nodes.

For the case of linear power assignment the signal diversity is σ = 1, hence the
approximation ratio of the algorithm is O(log n). This is the first practical approxi-
mation algorithm for linear powers that obtains an approximation ratio that depends
only on n (and not on ratio of the max-to-min distance). This improves the O(logΔ)-
approximation of Chafekar et al. [CKM+08] for linear power assignment. As pointed
out in [GWHW09], logΔ can be Ω(n). The linear power assignment model makes a
lot of sense since it implies that, in absence of interferences, transmission powers are
adjusted so that the reception powers are uniform.

In the case of arbitrary given powers, the signal diversity is σ ≤ logΓ + logΔ.
Hence, the approximation ratio is O(log n · (logΓ + logΔ)). For arbitrary power as-
signments Chafekar et al. [CKM+08] presented approximation algorithm that achieves
approximation ratio of O(log Γ · logΔ). In this case, the approximation ratio of our al-
gorithm is not comparable with the algorithm presented by Chafekar et al. [CKM+08]
(i.e., in some cases it is smaller, in other cases it is larger).

For the case of limited powers where the algorithm needs to assign powers between
Pmin and Pmax, we give a O[(log n+ log logΓ ) · (logΓ + logΔ)]-approximation al-
gorithm.

Our results apply both for maximizing the total throughput and for maximizing the
minimum fraction of supplied demand. Other fairness criteria apply as well (see also
[Cha09]).

Techniques. Similarly to [CKM+08] our algorithm is based on linear programming re-
laxation and greedy coloring. The linear programming relaxation determines the routing
and the flow along each route. Greedy coloring induces a schedule in which, in every
slot, every link is SINR-feasible with respect to longer links in the same slot.
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We propose a new method of classifying the links. In [CKM+08, Hal09] the links
are classified by lengths and by transmitted powers. On the other hand, we classify the
links by their received power.

We present a new linear programming formulation for throughput maximization in
the SINR-model. This formulation uses novel symmetric interference constraints, for
every link e, that bound the interference incurred by other links in the same bucket as
well as the interference that e incurs to other links. We show that this formulation is a
relaxation due to our link classification method.

We then apply a greedy coloring procedure for rounding the LP solution. This
method follows [ABL05, CKM+08, Wan09] and others (the greedy coloring is
described in Section 6.3).

The schedule induced by the greedy coloring is not SINR-feasible. Hence, we pro-
pose a refinement technique that produces an SINR-feasible schedule. We refine each
color class using a bin packing procedure that is based on the symmetry of the interfer-
ence coefficients in the LP. We believe this method is of independent interest since it
mitigates the problem of bounding the interference created by shorter links.

Organization. In Sec. 2 we present the definitions and notation. The throughput max-
imization problem is defined in Sec. 3. In Sec. 4, we present necessary conditions for
SINR-feasibility for links that are in the same bucket. The results in Sec. 4 are used
for proving that the linear programming formulation presented in Sec. 5 is indeed a
relaxation of the throughput maximization problem. The algorithm for linear powers is
presented in Sec. 6 and analyzed in Sec. 7. In Sections 8-9 we extend the algorithm so
that it handles arbitrary powers.

2 Preliminaries

We briefly review definitions used in the literature for algorithms in the SINR model
(see [HW09, CKM+08]).

We consider a wireless network that consists of a set V of n nodes in the plane. Each
node is equipped with a transmitter and a receiver. We denote the distance between
nodes u and v by duv .

A link is a 3-tuple e = (se, re, Pe), where se ∈ V is the transmitter, re ∈ V is the
receiver, and Pe is the transmission power. In the general setting we allow parallel links
with different powers. The set of links is denoted by L and m � |L|. We abbreviate and
denote the distance dsere by de. Similarly, we denote the distance dser′e by dee′ . Note
that according to this notation, dee′ �= de′e.

We use the following radio propagation model. A transmission from point s with
power P is received at point r with power P/dαsr. The exponentα is called the path loss
exponent and is a constant. In most practical situations, 2 ≤ α ≤ 6; our algorithm works
for any constant α ≥ 0. For links e, e′, we use the following notation: Se � Pe/d

α
e and

Se′e � Pe′/d
α
e′e.

A subset of links L ⊆ L is SINR-feasible if Se/(N +
∑

e′∈L−{e} Se′e) ≥ β, for
every e ∈ L. This ratio is called the signal-to-noise-interference ratio (SINR), where
the constant N is positive and models the noise in the system. The threshold β is a
positive constant. The ratio Se/N is called the signal-to-noise ratio (SNR).
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A link e can tolerate an accumulated interference
∑

e′ Se′e that is at most (Se −
βN)/β. This amount can be considered to be the “interference budget” of e. Let γe �
(βSe)/(Se − βN). We define three measures of how much of the interference bud-
get is “consumed” by a link e′. âe′(e) � Se′e

Se
, ae′(e) � γe · âe′(e), and āe′(e) �

min{1, ae′(e)}. The value of ae′(e) is called the affectance [HW09] of the link e′ on the
link e. The affectance is additive, so for a set L ⊆ L, let aL(e) �

∑
{e′∈L:e′ �=e} ae′(e).

Proposition 1 ([HW09]). A set L ⊆ L is SINR-feasible iff aL(e) ≤ 1, for every e ∈ L.

Following [HW09], we define a set L ⊆ L to be a p-signal, if aL(e) ≤ 1/p, for every
e ∈ L. Note that L is SINR-feasible iff L is a 1-signal. We also define a set L ⊆ L to
be a p̄-signal, if āL(e) ≤ 1/p, for every e ∈ L. Note that L is SINR-feasible iff L is a
(1 + ε)-signal for some ε > 0.

By Shannon’s theorem on the capacity of a link in an additive white Gaussian noise
channel [Gal68], it follows that the capacity is a function of the SINR. Since we use the
same threshold β for all the links, it follows that the Shannon capacity of a link is either
zero (if the SINR is less than β) or a value determined by β (if the SINR is at least β).
We set the length of a time slot and a packet length so that, if interferences are not too
large, each link can deliver one packet in one time slot. By setting a unit of flow to equal
a packet-per-time-slot, all links have unit capacities. We do not assume that β ≥ 1; in
fact, in communications systems β may be smaller than one.

Multi-Commodity Flows. Recall that a function g : L → R
≥0 is a flow from s to

t, where s, t ∈ V , if it satisfies capacity constraints (i.e., g(e) ≤ 1, for every e ∈
L) and flow conservation constraints in every vertex v ∈ V \ {s, t} (i.e.,

∑
e∈in(v)

f(e) =
∑

e∈out(v) f(e)).
We use multi-commodity flows to model multi-hop traffic in a network. The network

consists of the nodes V and the arcs L, where each arc has a unit capacity. There are
k commodities Ri = (ŝi, t̂i, bi), where ŝi and t̂i are the source and sink, and bi is the
demand of the ith commodity. Consider a vector f = (f1, . . . , fk), where each fi is
a flow from ŝi to t̂i. We use the following notation: (i) fi(e) denotes the flow of the
ith flow along e, (ii) |fi| equals the amount of flow shipped from ŝi to t̂i, (iii) f(e) �∑k

i=1 fi(e), (iv) |f | �
∑k

i=1 |fi|. A vector f = (f1, . . . , fk) is a multi-commodity
flow if f(e) ≤ 1, for every e ∈ L.

We denote by F the polytope of all multi-commodity flows f = (f1, . . . , fk) such
that |fi| ≤ bi, for every i. For a ρ > 0, we denote by Fρ ⊆ F the polytope of all
multi-commodity flows such that |fi|/bi ≥ ρ.

Schedules and Multi-Commodity Flows. We use periodic schedules to support a multi-
commodity flow using packet routing as follows. We refer to a sequence {Lt}T−1

t=0 ,
where Lt ⊆ L for each i, as a schedule. A schedule is used periodically to determine
which links are active in each time slot. Namely, time is partitioned into disjoint equal
time slots. In time slot t′, the links in Lt, for t = t′ (mod T ) are active, namely, they
transmit. Each active link transmits one packet of fixed length in a time slot (recall that
all links have the same unit capacity). The number of time slots T is called the period
of the schedule. We sometimes represent a schedule S = {Lt}T−1

t=0 by a multi-coloring
π : L → 2{0,...,T−1}. The set Lt simply equals the preimage of t, namely,Lt = π−1(t),
where π−1(t) � {e : t ∈ π(e)}.
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An SINR-schedule is a sequence {Lt}T−1
t=0 such that Lt is SINR-feasible for ev-

ery t. Consider a multi-commodity flow f = (f1, . . . , fk) and a schedule S =
{Lt}T−1

t=0 . We say that the schedule S supports f if ∀e ∈ L : T · f(e) ≤
|{t ∈ {0, . . . , T − 1} : e ∈ Lt}|.

The motivation for this definition is as follows. Consider a store-and-forward packet
routing network that schedules links according to the schedule S. This network can
deliver packets along each link e at an average rate of f(e) packets-per-time-slot.

Buckets and Signal Diversity. We partition the links into buckets by their received power
Se . Let Smin � mine∈L Se. The ith bucket Bi is defined by

Bi �
{
e ∈ L | 2i · Smin ≤ Se < 2i+1 · Smin

}
. For a link e ∈ L, define i(e) �

�log2(Se/Smin)�. Then, e ∈ Bi(e). The signal diversity σ of L is the number of
nonempty buckets.

Lemma 1. σ ≤ log2 Δ+ log2 Γ .

Power Assignments. In the uniform power assignment, all links transmit with the same
power, namely, Pe = Pe′ for every two links e and e′. In the linear power assignment,
all links receive with the same power, namely, Se = Se′ for every two links e and e′.

Assumption on SNR. Our analysis requires that, for every link e, Se/N ≥ (1 + ε) ·
β, for a constant ε > 0. Note that if Se/N = β, then the link cannot tolerate any
interference at all, and γe = ∞. Our assumption implies that γe ≤ (1 + ε) · β/ε. This
assumption can be obtained by increasing the transmission power of links whose SNR

almost equals β. Namely, if Se/N ≈ β, then Pe ← (1 + ε) · Pe. A similar assumption
is used in [CKM+08], where it is stated in terms of a bi-criteria algorithm. Namely, the
algorithm uses transmission powers that are greater by a factor of (1 + ε) compared to
the transmission power of the optimal solution.

Assumption 1. For every link e ∈ L, Se/N ≥ (1 + ε) · β.

Proposition 2. Under Assumption 1, β < γe ≤ (1 + ε) · β/ε.

3 Problem Definition

The problem MAX THROUGHPUT is formulated as follows. The input consists of: (i) A
set of nodes V in R

2 (ii) A set of links L. The capacity of each link equals one packet
per time-slot. (iii) A set of requests {Ri}ki=1. Each request is a 3-tuple Ri = (ŝi, t̂i, bi),
where ŝi ∈ V is the source, t̂i ∈ V is the destination, and bi is the requested packet
rate. We assume that every request can be routed, namely, there is a path from ŝi to t̂i,
for every i ∈ [1..k]. Since the links have unit capacities, we assume that the requested
packet rate satisfies bi ≤ n. The output is a multi-commodity flow f = (f1, . . . , fk) ∈
F and an SINR-schedule S = {Lt}T−1

t=0 that supports f . The goal is to maximize the
total flow |f |.

The MAX-MIN THROUGHPUT problem has the same input and output. The goal,
however, is to maximize ρ, such that f ∈ Fρ. Namely, maximize
mini=1...k |fi|/bi.
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4 Necessary Conditions: SINR-Feasibility for Links in the Same
Bucket

In this section we formalize necessary conditions so that a set of links in the same bucket
is SINR-feasible. In Section 5 we use these conditions to build a LP-relaxation for the
problem.

We begin by expressing âe1(e2) in terms of the distances de1 , de2 , de1e2 . Note that
âe1(e2), with respect to links that are in the same bucket, depends solely on de1 and
de1e2 . On the other hand, âe1(e2), with respect to the uniform power model, depends
solely on de2 and de1e2 .

Proposition 3.

∀i ∀ e1, e2 ∈ Bi :
1

2
·
(

de1
de1e2

)α

< âe1(e2) < 2 ·
(

de1
de1e2

)α

,

∀ e1, e2 ∈ L : âe1(e2) =

(
de2
de1e2

)α

in the uniform power model.

Throughout this section we assume the following. Let L ⊆ L denote an SINR-feasible
set of links such that all the links in L belong to same bucket Bi. Let e ∈ Bi denote an
arbitrary link (not necessarily in L).

Notation. Define: L� � {e′ ∈ L : de′ ≤ de′e}, and Lg � {e′ ∈ L : de′ > de′e}.

4.1 A Geometric Lemma

The following lemma claims that for every e ∈ Bi (not necessarily in L), there exits a
set of at most six “guards” that “protect” e from interferences by transmitters in L�.

Lemma 2. There exists a set G of at most six receivers of links in L� such that

∀e′ ∈ L� ∃g ∈ G : de′g ≤ 2 · de′e.

4.2 Necessary Conditions

Recall that Let L ⊆ L is an SINR-feasible set of links that belong to same bucket Bi.
Let e ∈ Bi denote an arbitrary link (not necessarily in L).

Lemma 3.
∑

e′∈L	 āe′(e) = O(1).

Lemma 4.
∑

e′∈Lg āe′(e) = O(1).

Lemmas 3 and 4 imply the following theorem.

Theorem 1. Let L denote an SINR-feasible set of links. If L ⊆ Bi, then ∀e ∈
Bi :

∑
{e′∈L:de′≥de} āe′(e) ≤ āL(e) + āe(e) = O(1).

The following theorem follows from [Kes11, Thm 1].

Theorem 2. Let L denote an SINR-feasible set of links. If L ⊆ Bi, then ∀e ∈
Bi :

∑
{e′∈L:de′≥de} āe(e

′) = O(1).
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5 LP Relaxation

In this section we formulate the linear program for the MAX THROUGHPUT and
MAX-MIN THROUGHPUT problems with arbitrary power assignments. The linear pro-
gram formulation that we use for computing the multi-commodity flow f is as follows.

MAXTHLP : F ∗ =maximize |f | subject to

f ∈ F (1)

∀i ∀e ∈ Bi f(e) +
∑

{e′∈Bi:de′≥de}
(āe′(e) + āe(e

′)) · f(e′) ≤ 1 (2)

MAXMINTHLP :R∗ = maximize ρ subject to

f ∈ Fρ (3)

∀i ∀e ∈ Bi f(e) +
∑

{e′∈Bi:de′≥de}
(āe′ (e) + āe(e

′)) · f(e′) ≤ 1 (4)

Recall thatF denotes the polytope of all multi-commodity flows f = (f1, . . . , fk) such
that |fi| ≤ bi, for every i. Also recall that Fρ ⊆ F for ρ > 0 denotes the polytope of
all multi-commodity flows such that |fi|/bi ≥ ρ. Constraints 1, 3 in MAXTHLP and
MAXMINTHLP respectively require that the f is a feasible multi-commodity flow with
respect to F and Fρ.

Constraints 2, 4 in MAXTHLP and MAXMINTHLP respectively require that for
every bucket Bi and for every link e ∈ Bi the amount of flow f(e) plus the amount
of the weighted symmetric interferences is bounded by one. Note that this symmetric
interference constraint is with respect to links that are longer than e.

The objective function of MAXTHLP is to maximize the total flow |f |. The objective
function of MAXMINTHLP is to maximize ρ, such that f ∈ Fρ. Namely, maximize
mini=1...k |fi|/bi.

We prove on Section 7 that the linear programs MAXTHLP and MAXMINTHLP are
relaxations of the MAX THROUGHPUT and MAX-MIN THROUGHPUT problems.

6 Algorithm

6.1 Algorithm Description

For simplicity, we assume in this section that all the links are in the same bucket, that is
L ⊆ Bi for some i. In Section 8 we show how to handle arbitrary power assignment.

Algorithm Overview. We overview the algorithm for the MAX THROUGHPUT problem.
Assume for simplicity that, L ⊆ Bi for some i. First, the optimal flow f∗ is obtained
by solving the linear program MAXTHLP . We need to find an SINR-feasible schedule
that supports a fraction of f∗. Second, we color the links using greedy multi-coloring.
This coloring induces a preliminary schedule, in which every color class is “almost”



210 G. Even, Y. Matsri, and M. Medina

SINR-feasible. This preliminary schedule is almost SINR-feasible since in every color
class and every link e, the affectance of links that are longer than e on e is at most
1. However, the affectance of shorter links on e may be still unbounded. Finally, we
refine this schedule in order to obtain an SINR-feasible schedule. Note that the returned
SINR-feasible schedule supports a fraction of the flow f∗. We show in Section 7 that
this fraction is at least Ω(1/ logn).

Algorithm Description. The algorithm for the MAX THROUGHPUT problem proceeds
as follows.

1. Solve the linear program MAXTHLP . Let f∗ denote the optimal solution.
2. Remove flow paths that traverse edges with f∗(e) < 1/(2nm). Let f̂ denote the

remaining flow.
3. Set T = 2nm. Apply the greedy multi-coloring algorithm greedy-coloring (see

Section 6.3) on the input ((L,L2), f̂ , d, w, T ), where the pair (L,L2) is a complete
graph whose set of vertices is L, for every link in e ∈ L, d(e) = de, and w(e, e′) �
āe(e

′)+ āe′(e) is a weight function over pair of links in L. Let π : L → 2{0,...T−1}

denote the computed multi-coloring.
4. Apply procedure disperse to each color class (π−1(t)), where t ∈ {0, . . . T − 1}.

Let {Lt,i}�(t)i=1 denote the dispersed subsets.
5. Return the schedule {Lt,i}t=0..T−1,i=1..�(t) and the flow f = (f1, . . . , fk), where

f = f∗/(2 · �(t)).

Clearly steps 1 and 5 are polynomial. In Section 6.3 we show that step 3 is polynomial.
In Section 6.4 we show that disperse is polynomial. Therefore, the running time of the
algorithm is polynomial.

Remark 1. The following changes are needed in order to obtain an algorithm
for the MAX-MIN THROUGHPUT problem: (i) In Item 1 solve the linear program
MAXMINTHLP , (ii) In Item 3 set T = 2n2km.

6.2 Removing Minuscule Flow Paths

The greedy multi-coloring algorithm cannot support flows f∗(e) < 1/(2nm). We mit-
igate this problem simply by peeling off flow paths that traverse edges with a flow
smaller than 1/(2nm). The formal description of this procedure is as follows. (1) Ini-
tialize f̂ ← f . (2) While there exists an edge e with f̂(e) < 1/(2nm), remove flow
from f̂ until f̂(e) = 0. This is done by computing flow paths for the flow that traverses
e, and zeroing the flow along these paths.

6.3 Greedy Multi-coloring

Let G = (V,E) denote an undirected graph with edge weights w : E → [0, 1] and
node demands x : V → [0, 1]. Assume an ordering of the nodes induced by distinct
node lengths d(v). For a set V ′ ⊂ V , let w(V ′, u) �

∑
v∈V ′ w(v, u). Assume that

∀u ∈ V : x(u) +
∑

{v∈V :d(v)>d(u)}
w(v, u) · x(v) ≤ 1 . (5)
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Indeed, Constraints 2, 4 in MAXTHLP and MAXMINTHLP , respectively, imply that
the input to the greedy coloring algorithm satisfies the assumption in Equation 5.

Lemma 5 (Greedy Coloring Lemma). For every integer T , there is multi-coloring
π : V → 2{0,...,T−1}, such that

1. ∀c ∈ {0, . . . , T − 1}∀u ∈ π−1(c) :
∑

{v∈V :d(v)>d(u)}w(v, u) ≤ 1,
2. ∀u ∈ V : |π(u)| ≥ �x(u) · T �.

The required multi-coloring is found by applying a “first-fit” greedy multi-coloring
described in the full version.

6.4 The Dispersion Procedure disperse

The input to the dispersion procedure disperse consists of a set L ⊆ L of links that are
assigned the same color by the multi-coloring procedure (see Section 6.3). This implies
that

∀e ∈ L :
∑

{e′∈L\{e}:de′≥de}
(āe(e

′) + āe′(e)) ≤ 1. (6)

The dispersion procedure works in two phases. In the first phase, called Algorithm 1
3 -

disperse(L) (described in the full version), L is partitioned into 1/3-signal sets {Li}i.
Algorithm 1

3 -disperse(L) disperses L into at most log2 |L| subsets. In the second phase,

each subset Li is further partitioned into 7/6-signal sets {Li}�(t)i=1. Recall that a set of
links Li is SINR-feasible iff Li is a (1 + ε)-signal for some ε > 0. Since every set in

{Li}�(t)i=1 is (7/6)-signal, it follows that every set in {Li}�(t)i=1 is SINR-feasible.
The second phase follows [HW09, Thm 1]. This phase is implemented by two first-

fit bin packing procedures. In the first procedure, open 7 bins, scan the links in some
order and assign each link to the first bin in which its affectance is at most 3/7. In the
second procedure, partition each bin into 7 sub-bins. Scan the links in the reverse order,
and again, assign each link to the first bin in which its affectance is at most 3/7.

7 Algorithm Analysis

In this section we analyze the algorithm presented in Section 6. Recall that it is assumed
that all the links are in the same bucket, that is L ⊆ Bi for some i. First, we prove
that the LP is a fractional relaxation of problem. We then show that the greedy coloring
computes a schedule that supports the flow given by the LP. Unfortunately, this schedule
is not a SINR-feasible schedule. We then prove that the refinement procedure (Step 3
of the algorithm) generates an SINR-feasible schedule with an O(log n) increase in the
approximation ratio.

Let f∗ denote an optimal solution of the linear program MAXTHLP , i.e., F ∗ = |f∗|.
The following lemma shows that the linear program MAXTHLP is a relaxation of the
MAX THROUGHPUT problem.
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Lemma 6. There exists a constantλ ≥ 1 such that, if S = {Lt}T−1
t=0 is an SINR-feasible

schedule that supports a multi-commodity flow f , then f/λ is a feasible solution of the
linear program MAXTHLP . Hence, F ∗ ≥ |f |/λ.

Analogously, one could prove also that the linear program MAXMINTHLP is a
relaxation of the MAX-MIN THROUGHPUT problem.

Lemma 7. Suppose S = {Lt}T−1
t=0 is an SINR-feasible schedule that supports a multi-

commodity flow f . If ρ � mini |fi|, R∗ ≥ ρ/λ, for the same constant λ ≥ 1 in
Lemma 6.

The following proposition gives a lower bound on the optimal throughput.

Proposition 4. F ∗ ≥ 1
n and R∗ ≥ 1

n2k .

Proposition 5. |f̂ | ≥ |f∗/2|

Proposition 6. If T ≥ 2nm, then the greedy multi-coloring algorithm computes a
multi-coloring π that induces a schedule that supports f̂/2.

For the case of MAXMINTHLP , one can show the same result if T ≥ 2n2km.

Lemma 8. If L ⊆ L satisfies Eq. 6, then there exists a subset J ⊆ L such that: (i) J is
a 1/3-signal, and (ii) |J | ≥ |L|/2.

Proposition 7. The dispersion procedure partitions every color class π−1(t) into
O(logm) SINR-feasible sets.

Theorem 3. If Assumption 1 holds, and all the links are in the same bucket, then
there exists an O(log n)-approximation algorithm for the MAX THROUGHPUT and the
MAX-MIN THROUGHPUT problems.

Since in the linear power assignment all links receive with same power, all the links
are in the same bucket. We conclude with the following result for the linear power
assignment.

Corollary 4. If Assumption 1 holds, then there exists an O(log n)-approximation algo-
rithm for the MAX THROUGHPUT and the MAX-MIN THROUGHPUT problems in the
linear power assignment.

8 Given Arbitrary Transmission Powers

In this section we show how to apply the algorithm presented in Section 6 to the case
in which transmission power Pe of each link e is part of the input. Note that Pe may be
arbitrary.

Theorem 5. If Assumption 1 holds, then there exists an O(log n · (logΔ + logΓ ))-
approximation algorithm for the MAX THROUGHPUT and the MAX-MIN THROUGHPUT

problems when the link transmission powers are part of the input.
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9 Limited Powers

In this section we consider the case in which the algorithm needs to assign a power Pe

to each link. The assigned powers must satisfy Pmin ≤ Pe ≤ Pmax. To simplify the
description, assume that log2(Pmax/Pmin) is an integer, denoted by k.

We reduce this problem to the case of given arbitrary powers as follows. For each
pair of nodes (u, v), define k+1 parallel links, where the transmission power of the ith
copy equals 2i · Pmin.

Theorem 6. Assume that, for every link e, (Pmax/d
α
e )/N ≥ (1 + ε) · β. Then, there

exists an O((log n + log logΓ ) · (logΔ + logΓ ))-approximation algorithm for the
MAX THROUGHPUT and the MAX-MIN THROUGHPUT problems when the link
transmission powers are in the range [Pmin, Pmax].
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[Hal09] Halldórsson, M.: Wireless Scheduling with Power Control. In: Fiat, A., Sanders,
P. (eds.) ESA 2009. LNCS, vol. 5757, pp. 361–372. Springer, Heidelberg (2009)
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Abstract. Given a set of wireless links, a fundamental problem is to
find the largest subset that can transmit simultaneously, within the SINR
model of interference. Significant progress on this problem has been made
in recent years. In this note, we study the problem in the setting where
we are given a fixed set of arbitrary powers each sender must use, and
an arbitrary gain matrix defining how signals fade. This variation of
the problem appears immune to most algorithmic approaches studied
in the literature. Indeed it is very hard to approximate since it gen-
eralizes the max independent set problem. Here, we propose a simple
semi-definite programming approach to the problem that yields constant
factor approximation, if the optimal solution is strictly larger than half
of the input size.

Keywords: Wireless Networks, Capacity, SINR Model, Semidefinite
programming.

1 Introduction

We consider the fundamental problem of wireless network capacity. Given is a
set L = {�1, �2, . . . , �n} of links, where each link �v represents a communication
request from a sender sv to a receiver rv. We are also given, for every �v ∈ L,
a transmission power Pv > 0. The powers received from senders to receivers are
defined by an n×n dimensional gain matrix G with positive entries. Specifically,
the signal received from sv at rw is Gwv · Pv. Thus an instance in this model
can be described by the tuple (L, P,G) where P is the vector of the power
assignments Pv for all �v.

Simultaneously communicating links interfere with each other, following the
physical model or “SINR model” of interference. Due to its higher fidelity to real-
ity [10,22,26], this model of interference has recently gained substantial attention
in the analysis of wireless networks. In this model, a receiver rv successfully re-
ceives a message from a sender sv if and only if the following condition holds:

Gvv · Pv∑
�w∈S\{�v} Gvw · Pw +N

≥ β, (1)

where N is a universal constant denoting the ambient noise, β ≥ 1 denotes the
minimum SINR (signal-to-interference-noise-ratio) required for a message to be
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successfully received, and S is the set of concurrently scheduled links in the same
slot. We say that a link �v is feasible in S if Eqn. 1 is satisfied for �v. A set S is
feasible if each of its link is feasible.

Note that what we described above is the abstract SINR model. In the more
commonly studied geometric SINR model, Gvw is a polynomial function of
d(sw, rv), where d(x, y) is the distance between two points x and y. Our re-
sults naturally apply to that model as well. Given that the geometric SINR
model does not capture obstacles, reflections and other real life distortions, it is
interesting to see what can be proven in the abstract model.

Our setting where the powers are given as part of the input is often called
the fixed power case, as opposed to the power control case where the algorithm
can choose the power assignment. So far, research on fixed power has focused
on oblivious power assignments, where the power of a link is a (usually simple)
function of the length of the link [13,5,20,12]. Recently, a constant factor ap-
proximation algorithm to find the capacity in the power control case has also
been achieved [19]. Unfortunately, none of these techniques appear to extend to
the case of arbitrary fixed powers (for either arbitrary or geometric gain ma-
trices). Yet, the problem of arbitrary fixed powers is not only natural, but has
practical relevance, as commercial hardware often do not have the capacity of
choosing precise powers to implement either an arbitrary assignment à la [19],
or to implement many of the oblivious power assignments found in literature.

In this paper, we prove the following theorem.

Theorem 1. Assume (L, P,G) is an instance of the capacity problem in the
abstract SINR model, such that |OPT | > 1

2 (1 + ε)|L| for some ε > 0, where
OPT is the maximum feasible subset of L using P . Then there is a polynomial
time randomized algorithm to find a feasible set of size Ω(ε|L|), with probability
1− o(1).

We do this by means of a semi-definite programming relaxation, which we show
how to successfully round if the condition |OPT | > 1

2 (1+ε)|L| holds. In addition,
we discuss numerical experiments we have performed. These experiments show
that the algorithm appears to work quite well on random instances, even better
than the guarantees of Thm. 1.

Semi-definite programming has been a staple in designing approximation al-
gorithms for NP-hard problems ever since the seminal work of Goemans and
Williams on the Max-CUT problem [7]. It is interesting to note that the dis-
crete “classical” problems closest to wireless capacity, namely the independent
set problem and the graph coloring problem, have been fruitfully studied us-
ing semi-definite programming [15,18]. The vertex cover problem, also relevant
via its connection to the independent set problem, also has SDP-based approxi-
mation algorithms [14,17]. Given this background, one may expect some of the
techniques to easily carry over to the capacity problem. Yet that does not appear
to be the case, at least not in a straightforward manner. A study of the afore-
mentioned papers reveal that the discreteness of the problem plays an important
role in the bounds. For example, in [18], the analysis proceeds by bounding the
probability of vectors representing edges not being cut by a random hyperplane.
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Given the additive nature of the SINR model, it is not obvious how to extend
that analysis to this case. There have also been a number of results for these
problems on hypergraphs [21,2,3]. Though hypergraphs appear to be closer in
spirit to the additive wireless model, they are still different, because the effect
of each node on any other node doesn’t change in the SINR model (as opposed
to in a hypergraph, where it can be different based on which edge they are in).
Thus, the (sophisticated) methods on hypergraphs do not appear to translate
immediately to the SINR model either. Our SDP relaxation and rounding algo-
rithms are quite simple in contrast to some of the previously mentioned work.
Whether or not advanced techniques can be extended to the SINR model remains
to be seen.

1.1 Related Work

Moscibroda and Wattenhofer [24] were the first to study of the scheduling com-
plexity of arbitrary set of wireless links. Early work on approximation algorithms
produced approximation factors that grew with structural properties of the net-
work [27,25,1].

The first constant factor approximation algorithm was obtained for capacity
problem for uniform power in [8] (see also [13]) in R2 with α > 2. Fanghänel,
Kesselheim and Vöcking [6] gave an algorithm that uses at most O(OPT+log2 n)
slots for the scheduling problem with linear power assignment Pv = d(sv, rv)

α,
that holds in general distance metrics.

Kesselheim obtained a O(1)-approximation algorithm for the capacity prob-
lem with power control for doubling metrics [19]. Around the same time, the first
constant factor algorithm for all sub-linear, length monotone power assignments
was achieved on general metrics [12]. Other recent studies in the SINR model
include work on topological maps [16], distributed algorithms for scheduling [11],
distributed power control [4] and auction based spectrum allocation [23].

2 SDP-Based Algorithm

First, some notation. Vectors are denoted by x, sw etc. The standard 2-norm of
the vector x is ‖x‖. The ith entry of x is x(i). The inner product of vectors x
and y is denoted (x ·y). Define gvv = PvGvv−βN and gvw = PwGvw for v �= w.
Note that we can assume without loss of generality that gvv ≥ 0, ∀v. Let OPT
be a feasible subset of L of maximum size. Note that n = |L|.

Consider the following program.

max
∑
v

(sv · s), subject to

(sv · s)gvv ≥ β

⎛
⎝∑

w �=v

(sv · sw)gvw

⎞
⎠ , ∀v

(sv · s) ≥ 0, ∀v
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(sv · sw) ≥ 0, ∀v, w
(sv · sw) ≥ (sv · s) + (sw · s)− 1, ∀v, w
‖sv‖2 = 1, ∀v and ‖s‖2 = 1 .

where sv, s ∈ R
n+1. Each link �v has a vector variable sv associated with it.

The dot product of sv with a vector s denotes the (fractional) extent to which
�v is selected in the solution.

Since the objective function and constraints are all linear functions of vector
inner products, this problem is a SDP. Thus the program can be solved up to an
additive error of ε > 0 in time that is polynomial in n and log ε [28]. Since ε can
be made small enough to not matter, we will simply assume that the problem
can be solved exactly.

We can rotate the vectors to fix s = {1, 0 . . .0}, thus the above program is
equivalent to:

max
∑
v

sv(1), s.t.

sv(1)gvv ≥ β

⎛
⎝∑

w �=v

(sv · sw)gvw

⎞
⎠ , ∀v (2)

sv(1) ≥ 0, ∀v (3)

(sv · sw) ≥ 0, ∀v, w (4)

(sv · sw) ≥ sv(1) + sw(1)− 1, ∀v, w (5)

‖sv‖2 = 1, ∀v . (6)

Let us verify that this program is a relaxation of the maximum capacity problem.

Lemma 1. The SDP is a relaxation of the original problem.

Proof. Consider any optimal solution OPT to the capacity problem. For all
�v ∈ OPT , set sv = s = {1, 0, 0, 0 . . .0}. If �v ∈ L \OPT set

sv(i) =

{
1 if i = v + 1
0 otherwise

In other words, we make sure that each unselected link chooses a different
position for the single 1 in the vector.

Given these assignments, Equations 3, 4 and 6 can easily seen to hold.
To show that Eqn. 2 is satisfied, first assume �v ∈ OPT . The following

observation is immediate:

Claim. If �v, �w ∈ OPT then sv(1) = sw(1) = (sv · sw) = 1. If �v ∈ L \ OPT
then sv(1) = 0 and (sv · sw) = 0 for any �w �= �v.

Since �v ∈ OPT ,
sv(1)gvv = gvv
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And,

β

⎛
⎝∑

w �=v

(sv · sw)gvw

⎞
⎠

= β

⎛
⎝ ∑

w∈OPT\{v}
(sv · sw)gvw

⎞
⎠+ β

⎛
⎝ ∑

w∈L\(OPT∪{v})
(sv · sw)gvw

⎞
⎠

= β

⎛
⎝ ∑

w∈OPT\{v}
gvw

⎞
⎠

where the second equality follows from the claim above.

Now, since �v ∈ OPT , gvv ≥ β
(∑

w∈OPT\{v} gvw
)

(by Eqn 1). Thus, the

above two equations show that Eqn. 2 is satisfied when �v ∈ OPT . The case
where �v �∈ OPT is similar.

For Eqn. 5, the following observations suffice:

– If �v, �w ∈ OPT , (sv · sw) = 1 = sv(1) + sw(1)− 1
– If �v, �w �∈ OPT , they have 1s in different positions and (sv · sw) = 0 ≥

0 + 0− 1
– If �v ∈ OPT, �w �∈ OPT , they have 1s in different positions and (sv · sw) =

0 = 1 + 0− 1

�

Now we present our algorithm and the proof of Thm. 1. We need two related
definitions. Let δv = max{sv(1) − 1

2 , 0} for all �v ∈ L. Further, define L+ =
{�v ∈ L : δv > 0}. The algorithm is as follows.

Algorithm 1. Capacity1

1: Solve the SDP
2: Select each link 	v ∈ L+ with probability δv

2
in to a set R

3: Output {	v ∈ R : 	v is feasible in R}

Lemma 2. If |OPT | ≥ (1 + ε)n/2, then
∑

�v∈L+ δv ≥ nε
2 .

Proof. Since |OPT | ≥ (1+ε)n/2, it follows that
∑

v sv(1) ≥ (1+ε)n/2 (since the
SDP is a relaxation of the original problem). Now by definition of δv, δv +

1
2 ≥

sv(1). Thus, ∑
�v∈L

(
1

2
+ δv

)
≥ (1 + ε)n/2

⇒
∑
�v∈L

δv ≥ (1 + ε)n/2− |L|/2 = (1 + ε)n/2− n/2 =
εn

2

Observing that δv = 0 for �v �∈ L+ completes the proof. 
�
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We can now prove the main Theorem.

Proof. of Thm. 1
Assume that the random binary variableXv describes whether or not �v ∈ L+

is chosen into R. We observe that E(Xv) =
δv
2 , according to the algorithm.

Then for any �v,

E

⎛
⎝β
⎛
⎝ ∑

w∈R\{v}
gvw

⎞
⎠
⎞
⎠ = E

⎛
⎝β
⎛
⎝ ∑

w∈L+\{v}
gvwXw

⎞
⎠
⎞
⎠

= β

⎛
⎝ ∑

w∈L+\{v}
gvwE(Xw)

⎞
⎠ = β

⎛
⎝ ∑

w∈L+\{v}
gvw

δw
2

⎞
⎠

⇒ E

⎛
⎝β
⎛
⎝ ∑

w∈R\{v}
gvw

⎞
⎠
⎞
⎠ =

1

2
β

⎛
⎝ ∑

w∈L+\{v}
gvwδw

⎞
⎠ (7)

Now, by Eqn. 2,

sv(1)gvv ≥ β

⎛
⎝∑

w �=v

(sv · sw)gvw

⎞
⎠ , ∀v ∈ L+

Since sv(1) ≥ 1
2 for v ∈ L+ and (sv · sw)gvw is always non-negative, we get for

�v ∈ L+,

gvv ≥ β

⎛
⎝ ∑

w∈L+\{v}
(sv · sw)gvw

⎞
⎠

≥ β

⎛
⎝ ∑

w∈L+\{v}
(sv(1) + sw(1)− 1)gvw

⎞
⎠ = β

⎛
⎝ ∑

w∈L+\{v}
(δv + δw)gvw

⎞
⎠

≥ β

⎛
⎝ ∑

w∈L+\{v}
δwgvw

⎞
⎠ (8)

where the second inequality follows from Eqn. 5, and the first equality follows
from observing that δv = sv(1)− 1

2 for �v ∈ L+.
Then, for �v ∈ L+,

P(�v is infeasible in R) = P

⎛
⎝β
⎛
⎝ ∑

w∈R\{v}
gvw

⎞
⎠ > gvv

⎞
⎠

≤
E(β(
∑

w∈R\{v} gvw))

gvv
≤ 1

2
(9)

The first equality is the definition of infeasiblity. The first inequality is Markov’s
inequality. The last inequality follows from Equations 7 and 8.
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Now the expected size of the output is

E (|{�v ∈ R : �v is feasible in R}|) =
∑

�v∈L+

P(�v ∈ R and �v is feasible in R)

=
∑

�v∈L+

P(�v is feasible in R)P(�v ∈ R)

≥
∑

�v∈L+

1

2

δv
2

=
1

4

∑
�v∈L+

δv ≥
nε

8

The second equality follows from the independence of the events concerned. The
first inequality follows from Eqn. 10. The last inequality follows from Lemma
2. Thus the expected size of the feasible output is Ω(εn). It is not difficult to
boost the probability of getting a Ω(εn) size subset to complete the proof of the
theorem. 
�

3 Numerical Experiments

We ran simulations to test how well the algorithm does in practice. We used
CVX, a package for specifying and solving convex programs using MATLAB [9].
We ran it on version 7.8 of MATLAB running on a Macbook with a 2 GHz Intel
Core 2 Duo Processor and 2 GB of RAM.

We generated a number of problem instances where n = 61 and |OPT | =
21, 26, 31, 36 and 41. The instances were generated as follows. To generate the
feasible subset a large random instanceM of links on the 2d plane was generated.
Each sender sv = (sv(x), sv(y)) is a random point in a 450×450 box. The receiver
rv is defined by (sv(x) + randomv(x), sv(y) + randomv(y)) where randomv(x)
and randomv(y) are sampled uniformly at random from [−20, 20]. We generated
corresponding gain matrices using the geometric SINR model setting α = 2.5
(thus Gvw = 1

‖sw−rv‖α ). We used both uniform (Pv is a constant) and mean

power assignments (Pv = ‖sv − rv‖α/2) to generate the gain matrix. We set the
noise N = 0 throughout the experiments.

To generate the input instance G (which is a n × n matrix), we combined a
subset of M with random entries. More specifically, first we retrieved a random
feasible subset R of M (found greedily). This defined a R × R submatrix of G.
The remaining entries were chosen iid randomly from [0, κ], where κ was chosen
large enough so that the remaining n−|R| links would not contain a large feasible
subset, thus R would be OPT for the instance.

Though computationally slow (for n = 60 the SDP took a few minutes to
be solved), the algorithm performed extremely well. Indeed, it took some time
to come up with instances where the algorithm didn’t have a perfectly integral
solution. If the random entries of G corresponding to L \ OPT were too large
(corresponding to a large κ, meaning that L \ OPT contained only very small
subsets that were feasible) or if OPT was too loosely feasible (ie, Eqn. 2 was far
from being tight for most of the links), the algorithm did exceedingly well.
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Fig. 1. OPT vs the average size of the set found by the SDP algorithm. In each case
n = 61.
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Fig. 2. OPT vs the average size of the set found by the SDP algorithm. In each case
n = 61 and the links in OPT were generated using mean power. The labels in the
x-axis describe the configuration of the instances. Thus, in the first case, the instance
is an union of 3 feasible sets of size 21, 20 and 20, respectively, where the latter two
are copies of subsets of the first one.
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Even after trying to make the problem more difficult, the algorithm did quite
well, only degrading when OPT < n/2, for which we claim no theoretical guar-
antee anyway, though even in these cases the output was not unsatisfactory.
Indeed, in all these cases, using the simple filtering (sv · s) > 0.51 identified
OPT almost exactly. Our sampling algorithm, by design cannot achieve better
than a factor 2 approximation in general, and that is almost what we achieved
in all cases, as illustrated in Figure 1 for uniform power (the results for mean
power were essentially identical).

As we have mentioned, in the above experiments, the algorithm sharply iden-
tified OPT . To create more ambiguous instances, we also tried the following.
In this setting, we took a feasible set, and added copies of subsets of it. Thus
the instance would be of the form L1 ∪ L2 or L1 ∪ L2 ∪ L3 where L1 is feasible,
and L2, L3 are copies of subsets of L1. One expects the solution to be more
“spread out” in this case, and that is exactly what we found. The algorithm still
performed rather well, even below theoretically guaranteed levels, though the
behavior is somewhat different. Figure 2 demonstrates the case for mean power.

4 Conclusion

We have shown how to use semi-definite programming to approximate the wire-
less capacity problem in cases where the capacity is known to be large. It is
an interesting question whether or not these results can be further improved,
potentially using the power of geometric SINR model. Questions about the in-
tegrality gap and hardness of the problem (apart from what is known via the
fact that the problem generalizes max independent set) also deserve attention.
Though we have performed some preliminary numerical experiments, the effi-
cacy of this method both in terms of accuracy and computational efficiency also
is an interesting avenue of further investigation.
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13. Halldórsson, M.M., Wattenhofer, R.: Wireless Communication Is in APX. In: Al-
bers, S., Marchetti-Spaccamela, A., Matias, Y., Nikoletseas, S., Thomas, W. (eds.)
ICALP 2009. LNCS, vol. 5555, pp. 525–536. Springer, Heidelberg (2009)

14. Halperin, E.: Improved approximation algorithms for the vertex cover problem in
graphs and hypergraphs. In: SODA, pp. 329–337 (2000)

15. Halperin, E., Nathaniel, R., Zwick, U.: Coloring k-colorable graphs using relatively
small palettes. J. Algorithms 45, 72–90 (2002)

16. Kantor, E., Lotker, Z., Parter, M., Peleg, D.: The Topology of Wireless Commu-
nication. In: STOC (2011)

17. Karakostas, G.: A better approximation ratio for the vertex cover problem. ACM
Trans. Algorithms 5, 41:1–41:8 (2009)

18. Karger, D., Motwani, R., Sudan, M.: Approximate graph coloring by semidefinite
programming. J. ACM 45, 246–265 (1998)

19. Kesselheim, T.: A Constant-Factor Approximation for Wireless Capacity Maxi-
mization with Power Control in the SINR Model. In: SODA (2011)

20. Kesselheim, T., Vöcking, B.: Distributed Contention Resolution in Wireless Net-
works. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp.
163–178. Springer, Heidelberg (2010)

21. Krivelevich, M., Nathaniel, R., Sudakov, B.: Approximating coloring and maximum
independent sets in 3-uniform hypergraphs. In: SODA, pp. 327–328 (2001)

22. Maheshwari, R., Jain, S., Das, S.R.: A measurement study of interference modeling
and scheduling in low-power wireless networks. In: SenSys, pp. 141–154 (2008)

23. Hoefer, M., Thomas Kesselheim, B.V.: Approximation Algorithms for Secondary
Spectrum Auctions. In: SPAA (2011)

24. Moscibroda, T., Wattenhofer, R.: The Complexity of Connectivity in Wireless Net-
works. In: INFOCOM (2006)

25. Moscibroda, T., Oswald, Y.A., Wattenhofer, R.: How optimal are wireless schedul-
ing protocols? In: INFOCOM, pp. 1433–1441 (2007)

26. Moscibroda, T., Wattenhofer, R., Weber, Y.: Protocol Design Beyond Graph-Based
Models. In: Hotnets (November 2006)

27. Moscibroda, T., Wattenhofer, R., Zollinger, A.: Topology Control meets SINR: The
Scheduling Complexity of Arbitrary Topologies. In: MOBIHOC, pp. 310–321 (2006)

28. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Review 38, 49–95
(1994)

http://cvxr.com/cvx


On the Capacity of Oblivious Powers

Tigran Tonoyan

TCS Sensor Lab, Centre Universitaire d’Informatique
Route de Drize 7, 1227 Carouge, Geneva, Switzerland

tigran.tonoyan@unige.ch

Abstract. We consider the problem of capacity in wireless networks in
the physical model. The goal of this paper is to compare different power
assignments and models from the perspective of this problem. We show
a family of power assignments, including the mean power assignment,
which yield larger capacity than uniform and linear power assignments,
for each network instance. On the other hand, uniform and linear power
assignments are not worse (in the same sense) than any power assign-
ment, which is decreasing as a function of link-length, or increasing faster
than linear power assignment. We also compare the directed and bidi-
rectional communication models, and show upper and lower bounds on
the gap between optimal capacities using any power assignment in these
communication models.

1 Introduction

The capacity problem in wireless networks is the following. Given is a network of
wireless nodes, with a set of links, each a pair of nodes, a sender and a receiver.
The nodes are assigned power levels. The aim is to find a maximal (by the num-
ber of links) subset of links, such that all the communications corresponding to
these links could be done simultaneously. The physical model of signal propaga-
tion is adopted, and for the signal interference the SINR model is considered, i.e.
the number of links in the mentioned subset should be maximized subject to the
SINR-constraint. This problem is considered in two theoretical communication
models: in the directed model only one node in each link is transmitting (the
sender node) and the other one should receive, and in the bidirectional model
both nodes in a link may be transmitting with the same power (e.g. performing a
handshake protocol), which implies stronger constraints in SINR formula. By def-
inition the directed model should yield a better (at least not worse) performance
in the sense of the problems considered here, but apparently the bidirectional
model describes the current notion of ad-hoc networks more realistically.

The solution of the capacity problem depends also on the powers assigned to
the nodes, as with one power assignment one could get larger SINR-feasible sets
than with another assignment. The present work deals with a non-algorithmic,
comparative analysis of different power assignments, keeping the focus on the
power assignments which are local, i.e. they don’t depend on the global network
structure. Such power assignments are called oblivious, and represent a special
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c© Springer-Verlag Berlin Heidelberg 2012
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interest due to the distributed nature of wireless networks. Examples of oblivious
power assignments include uniform, linear, square-root or mean power assign-
ments, which are the most popular in the literature. Let us note that each of
those power assignments optimizes a different parameter of a wireless network.
For using the uniform power assignment one doesn’t need the capability of power
control, hence making the wireless nodes simpler (hence possibly cheaper). Al-
though the linear power assignment requires a capability of power control, it has
the valuable property that it spends the minimum energy for a transmission. The
mean power assignment, as we will see below, performs better from the point of
view of capacity. This all emphasizes the importance of comparing these power
assignments from the point of view of capacity, since in a wireless network one
usually has to find a good tradeoff between different parameters, such as the
energy dissipation and quality of service in terms of the throughput, depending
on the capabilities of the nodes and the purposes of the network.

We consider general families of power assignments, which includes the exam-
ples above, and try to explore connections between the optimal capacities when
using different power assignments, as well as evaluate the difference between the
performance of different communication models.

In particular, we show that for any network instance, the optimal capacity
w.r.t. uniform power assignment can differ from the capacity w.r.t. linear power
assignment by at most a constant factor. Using this relation we are able to prove
the main result of this work: there is a family of sublinear power assignments,
including mean power assignment, which dominate uniform and linear power
assignments with respect to capacity problem, in the sense that for any network
instance the optimal capacity when using such a power assignment is worse than
the optimal capacity when using uniform (linear) power assignment by at most a
constant factor, but can be arbitrarily greater than the latter. On the other hand,
uniform and linear power assignments dominate any power assignment, which
is a non-increasing function of link-length, or grows faster than the linear power
assignment. We also try to find connections between two different communica-
tion models (the directed model and the bidirectional model) which have been
considered in the related work. We show that for any given network instance,
the best capacity (using any power assignment) calculated in the bidirectional
model can be worse than the best capacity calculated in the directed model by
no more than a factor of O(log logΔ+ log n), where Δ is the ratio between the
lengths of the longest and the shortest links, and n is the number of links.

Related Work. The problem of capacity is often considered in conjunction with
the scheduling problem, where the goal is to split a set of links into the minimum
number of SINR-feasible subsets. The study on capacity and scheduling prob-
lems in physical model got increased attention, when it was shown that in the
SINR model one could do better spatial reuse than in traditional graph-based
models, thus getting more links to transmit simultaneously without interfering
(see [10] and [21] for example). The problem of scheduling for networks arbitrar-
ily located on the Euclidean plane, as opposed to the network instances with
nodes uniformly scattered on some area of plane is considered in [22], [19]. They
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design centralized algorithms for assigning power of the nodes and scheduling
a given set of links, but no approximation guarantees are proven. There is a
series of papers considering scheduling and capacity problems for given pow-
ers. The case of uniform power assignment is considered in [23], [9], [8], [1],
whith a constant factor approximation algorithm (centralized) designed in [15].
In [4], [7] and [24] scheduling with linear power assignment is considered, ob-
taining a constant factor centralized algorithm and a distributed algorithm with
a good approximation guarantee. In [18] O(log2 n)-approximation randomized
distributed algorithms are designed dealing with the scheduling problem for
the family of sub-linear power assignments, while in [13] it is shown that a
stronger, O(log n) approximation guarantee holds. In [14] constant factor ap-
proximation algorithms (centralized) are designed for the capacity problem for
the same class of power assignments. There is also a considerable effort towards
finding power assignments, which would yield better results for scheduling and
capacity problems (the problem of PC-scheduling). In [6] the bidirectional ver-
sion of PC-scheduling problem is considered, and it is shown that the mean
power assignments yields a poly-logarithmic (in the number of links n) approx-
imation factor. In [11], [25], [12] it is shown that when using the mean power
assignment, one can get a O(log n)-approximation for PC-scheduling in the bidi-
rectional model, and a O(log n log logΛ)-approximation in the directed model,
where Λ is the ratio between the longest and the shortest link-lengths. In [17]
a constant factor approximation algorithm is given for capacity maximization
problem (with power control), which uses non-local power assignments. In fact
it is shown [6], that in the directed model for each oblivious power assignment P
there is a network instance, which is SINR-feasible with some power assignment,
but yields an unefficient schedule using P . An interesting variation of scheduling
problem, modeling also multicast transmissions, is considered in [5].

2 Problem Formulation

Given is a set T = {1, 2, . . . , n} of links, where each link v represents a commu-
nication request between a sender node sv and a receiver node rv. The nodes
are located in a metric space with distance function d. The asymmetric dis-
tance dvw from a link v to a link w is defined in two ways, depending on which
communication model is used:

dvw =

{
d(sv, rw) directed model
min{d(sv, rw), d(sv, sw), d(rv, rw), d(rv , sw)} bidirectional model

Note that in the latter case dvw = dwv (i.e. the distance is actually symmetrical),
but in the former case for some pairs v,w it can be dvw �= dwv.

The length of a link v is lv = d(sv, rv). There is a power assignment P : L→
R+, which assignes a positive number P (v) to each link v. This value determines
the power of transmission of a transmitting node of v. In the directed model only
the sender node is transmitting, so the power assignment means assigning powers
to the sender nodes. In the bidirectional model the communication is bilateral,
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so both sender and receiver nodes of a link are assigned the same power. We
adopt the path loss radio propagation model for the reception of signals, where
the signal received from a node x of the link v at some node y is P (v)/d(x, y)α,
where α > 2 denotes the path loss exponent. We adopt the physical interference
model, where a communication v is done successfully if and only if the following
condition holds:

SINRP (S, v) =
P (v)/lαv∑

w∈S\v P (w)/dαwv +N
≥ β, (1)

where N is the ambient noise, S is the set of concurrently scheduled links in the
same slot, and β ≥ 1 denotes the minimum SINR (signal-to-interference-plus-
noise-ratio) required for the transmission to be successfully done. We say that S
is SINR-feasible if SINRP (S, v) ≥ β for each link v ∈ S.

In the problem of capacity, given the set T of links and a power assignment P ,
one needs to find a maximal (in the number of elements) SINR-feasible subset
of T . The number of links in such a set is called the capacity of T with respect
to P . A related problem is the problem of scheduling, where given a set T of
links and a power assignment P , one needs to partition T into a minimal number
of SINR-feasible subsets. Such a partition is called a schedule, the subsets are
called slots, and the number of slots is called the length of the schedule.

These problems are usually stated for directed and bidirectional models, but
some of the results we obtain hold in a more abstract setting. Each link v is just
a couple of symbols (sv, rv), and L is the set of these links. The lengths of links
are given by an arbitrary positive function l : L → R+, and the asymmetric
distances are given by a function d : L × L→ R+. The only constraint we need
is that for each couple of links v, w, the following holds:

dvw ≤ dwv + lv + lw. (2)

It is not hard to check that both models above are special cases of this abstract
model, but other special cases could also make sense in a real network setting.

We use the notation OPTD
P (S) for the optimum capacity of a link set S ⊆ L

with respect to the power assignment P in the directed model, and OPTB
P (S)

for the capacity in the bidirectional model. When using notation OPTP (S), we
assume that any communication model from the general family above is used. In
some cases we will not mention the set S, by assuming that the statement holds
for any set, e.g. OPTP1 = O(OPTP2 ) would mean that there is a constant c > 0,
such that OPTP1(S) ≤ c · OPTP2(S) holds for each set S, where two capacities
are calculated in the same communication model.

For simplicity of the argument at first we assume that there is no ambient
noise, i.e. N = 0. In this case the SINR formula becomes simpler to deal with.
With this assumption, we consider the inverse of the left side of SINR condition:

AP (S, v) =
1

SINRP (S, v)
=
∑

w∈S\v

P (w)/dαwv

P (v)/lαv
,
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which is called affectance of link v by set S [15]. With this definition the SINR
condition becomes

AP (S, v) ≤ 1/β.

Note that AP is additive, i.e. if there are two disjoint sets S1 and S2, then
AP (S1 ∪ S2, v) = AP (S1, v) +AP (S2, v).

If for each link v of a set S AP (S, v) ≤ 1/p, then S is called a p-signal set.
Note that a set is SINR-feasible if and only if it is a β-signal set.

The following theorem is a useful tool in dealing with the SINR condition.
We assume the power assignment of the nodes is given. The theorem holds for
the general model of communication.

Theorem 1. [15] There is a polynomial-time algorithm that takes a p-signal
schedule and refines into a p′-signal schedule, for p′ > p, increasing the number
of subsets by a factor of at most !2p′/p"2.
Among others, we will consider power assignments Lt, for t ∈ R, where the
power of each link v is Lt(v) = cltαv , with c > 0 a constant. L0 is called uniform
power assignment, L1 is called linear power assignment, and L1/2 is called mean
power assignment, or square-root power assignment.

3 Conjugate Power Assignments

For a set of links T we say that link distances are almost symmetric, if there
is a constant c > 0, depending only on α and β, such that dvw ≤ cdwv for all
(ordered) pairs of links w, v ∈ T .

Consider a power assignment P . We denote by P ∗ the conjugate of P , which
is given by the formula P ∗(v) = lαv /P (v). Obviously, P ∗∗ = P holds. Some in-
stances of conjugate pairs of power assignments are the pairs {Lt, L1−t}: it is
trivial to check that L∗

t = L1−t. In particular, the conjugate of linear power
assignment is uniform power assignment (L∗

0 = L1), and the conjugate of mean
power assignment is itself (L∗

1/2 = L1/2). The following results exhibit a connec-
tion between conjugate power assignments.

Lemma 1. Suppose that for a set T ⊆ L the link distances are almost symmetric
with a constant c > 0. Then for each power assignment P ,

OPTP∗(T ) = Θ(OPTP (T )).

Proof. Let S ⊆ T be a maximum SINR-feasible subset of T with respect to P .
Then for each v ∈ S we have

AP (S, v) =
∑

w∈S\v

lαvP (w)

dαwvP (v)
≤ 1/β. (3)

It is not hard to check that AP∗ for the pair S, v has the following form:

AP∗(S, v) =
∑

w∈S\v

lαwP (v)

dαwvP (w)
≤ cα

∑
w∈S\v

lαwP (v)

dαvwP (w)
,
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where the equality follows from the definition of P ∗, and the inequality holds
because the distances are almost symmetric. Since (3) holds for all v ∈ S, we
can write

β|S| ≥
∑
v∈S

AP (S, v) =
∑
v∈S

∑
w∈S\v

lαvP (w)

dαwvP (v)
=

=
∑
w∈S

∑
v∈S\w

lαvP (w)

dαwvP (v)
≥ c−α

∑
w∈S

AP∗(S,w),

Thus we have
∑

v∈S AP∗(S, v) ≤ cαβ|S|, which implies that at least the half of
the numbers {AP∗(S, v)|v ∈ S} are not greater than 2βcα, i.e. the subset S′ =
{v ∈ S|AP∗(S, v) ≤ 2βcα} of S is a 1/(2βcα)-signal set with respect to P ∗, and
|S′| ≥ |S|/2. According to Theorem 1, S′ can be split into k = !4β2cα"2 subsets
S′
1, S

′
2, ..., S

′
k, each a β-signal set. Obviously, there is an i ∈ {1, 2, ..., k}, such that

|S′
i| ≥ |S′|/k ≥ |S|/2k. This completes the proof, as we have OPTP∗(S) ≥ |S′

i| ≥
|S|/(2!4β2cα"2). The theorem is proven, since c is assumed to be a constant. 
�

An immediate application of Lemma 1 is the following theorem.

Theorem 2. For each power assignment P , OPTB
P∗ = Θ(OPTB

P ). In particu-
lar, OPTB

Lt
= Θ(OPTB

L1−t
) for each t ∈ R.

3.1 Non-increasing and Super-Linearly Increasing Power
Assignments

We call a power assignment P non-increasing, if it is a monotonically non-
increasing function of the link-length, i.e. for any two links v, w, such that lv ≥ lw,
P (v) ≤ P (w).

We say a power assignment P is super-linearly increasing, if P is a monoton-
ically increasing function of the link-length, and for each two links v, w, such
that lv ≥ lw, P (v) ≥ P (w)lαv /l

α
w.

Remark. Note that for each t ≤ 0, Lt is a non-increasing power assignment,
and for each t ≥ 1, Lt is super-linearly increasing. It is also easy to check
that if a power assignment is non-increasing, then its conjugate is super-linearly
increasing (and vice versa).

The following lemma is proven in the full version of this paper.

Lemma 2. If a set of links S is a 3α-signal set with a power assignment P ,
which is non-increasing or is super-linearly increasing, then the distances in S
are almost symmetric with the constant c = 3.

From Lemma 2 and Lemma 1 we immediately get the following theorem.

Theorem 3. If a power assignment P is non-increasing or is super-linearly
increasing, then OPTP = Θ(OPTP∗).
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Remark. In particular, for numbers t /∈ (0, 1), OPTLt = Θ(OPTL1−t). This
means that the linear and uniform power assignments, which are much considered
in the literature, yield similar capacities for each network instance. It follows
that the optimal schedule lengths for these power assignments differ only by a
O(log n) factor, which can be used to find an approximate expression for the
optimal schedule length for uniform power assignment, using the approximation
for the linear power assignment, e.g. [7] [24].

4 The Capacity of L0

Here we compare L0 with the class of power assignments considered before in
this work. In particular, each non-increasing power assignment and each super-
linearly increasing power assignment perform not better than L0. On the other
hand, we show that any Lt with t ∈ (0, 1) (i.e. sub-linear power assignments Lt)
performs not worse than L0.

Theorem 4. If a power assignment P is non-increasing or is super-linearly
increasing, then OPTL0 = Ω(OPTP ).

Proof. Since we have Theorem 3, it suffices to prove this theorem only for non-
increasing P . Suppose that S is a set of links which is SINR-feasible with respect
to P . Then, according to Lemma 2 and Theorem 1, there is a subset T ⊆ S,
such that T is a constant fraction of S, and T is a 3α-signal set with respect to
P , and the distances in T are almost symmetric with constant c = 3. Consider
two links v, w ∈ T , and suppose that lv ≥ lw. Then we have

AP ({w}, v) =
lαvP (w)

dαwvP (v)
≥ lαv

dαwv

= AL0({w}, v), (4)

since P is non-increasing. Since the distances are almost symmetric, and lw ≤ lv,
then using (4), we have

AL0({v}, w) =
lαw
dαvw

≤ 3α
lαw
dαwv

≤ 3αAP ({w}, v). (5)

Consider the sum of affectances with respect to L0:∑
v∈T

AL0(T, v) =
∑
{v,w}

AL0({w}, v) +AL0({v}, w) ≤

≤ (3α + 1)
∑
{v,w}

AP (min{w, v},max{w, v}) ≤

≤ (3α + 1)
∑
v∈T

AP (T, v) ≤ (3−α + 1)|T |,

where we denote by max{v, w} the link with the greater length and by min{v, w}
the other one. The second and third summations are over all non-ordered pairs of
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links. The first inequality above follows from (4) and (5), and the third inequality
follows from the 3α-signal property of T with respect to P .

Having this, we can conclude, that there is a subset T ′ ⊆ T , such that |T ′| ≥
|T |/2, and for each link v ∈ T ′,

AL0(T
′, v) ≤ 2(3−α + 1),

and applying Theorem 1 to the set T ′, we get the claim of the theorem. 
�

We will use the following form of Hölder’s inequality, which can be found proven,
for example, in [16].

Lemma 3. Suppose that k and k′ are real numbers, such that k > 1 and 1/k+
1/k′ = 1. Then for positive real numbers a1, a2, . . . , am and b1, b2, . . . , bm the
following inequality holds:

m∑
i=1

aibi ≤
(

m∑
i=1

aki

)1/k ( m∑
i=1

bk
′

i

)1/k′

. (6)

Theorem 5. For each t ∈ (0, 1), OPTLt = Ω(OPTL0).

Proof. Let S be a set of links. Suppose t ∈ (0, 1). Let us consider the following

notation: k = 1/t, aw = ltαw /dtαwv and bw = l
(1−t)α
v /d

(1−t)α
wv , for w ∈ S \ {v}. Then

(6) holds, as k = 1/t > 1:

∑
w∈S\v

ltαw
dtαwv

· l
(1−t)α
v

d
(1−t)α
wv

≤

⎛
⎝ ∑

w∈S\v

(
ltαw
dtαwv

)1/t
⎞
⎠

t⎛
⎝ ∑

w∈S\v

(
l
(1−t)α
v

d
(1−t)α
wv

)1/(1−t)
⎞
⎠

1−t

because we have k′ = 1/(1 − 1/k) = 1/(1 − t). Note that the left-hand side of
this inequality is exactly ALt(S, v), and the first factor of the right-hand side is
AL1(S, v)

t and the second one is AL0(S, v)
1−t, so we have

ALt(S, v) ≤ AL1(S, v)
tAL0(S, v)

1−t. (7)

Let T ⊆ S be a maximum subset of links which is SINR-feasible with respect to
L0. Then from Theorem 3 we have that there is a constant c > 0 and a subset
T ′ ⊆ T , such that |T ′| ≥ |T |/c, and T ′ is SINR-feasible with respect to L1 too.
We show that T ′ is SINR-feasible with Lt as well. According to (7) we have that
for each link v ∈ T ′,

ALt(T
′, v) ≤ AL1(T

′, v)tAL0(T
′, v)1−t,

and since for T ′ we have that AL0(T
′, v) ≤ 1/β and AL1(T

′, v) ≤ 1/β, then we
have

ALt(T
′, v) ≤ (1/β)t (1/β)1−t = 1/β,

which means that T ′ is SINR-feasible with respect to Lt. 
�
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Remark. In relation to Theorem 5 it is worth to mention that in [11] it is shown
that when the link-lengths don’t differ much, then uniform power assignment and
Lt for any t yield almost the same optimal schedules and capacities (with only
difference in a constant factor). On the other hand, it is known [11] [12] [20],
that there are network instances, for which L1/2 yields poly-logarithmic schedule,
while for L0 the optimal schedule length is Θ(n).

5 Comparing the Two Communication Models

An interesting consequence of Lemma 2 is that each non-increasing or super-
linearly increasing power assignment yields similar results in the directed and
bidirectional communication models. To show this we first prove the following
lemma. Let dvw denote the distance between v and w in the directed model, and
d′vw denote the distance between those links in the bidirectional model.

Lemma 4. Suppose that in a set of links S, for each pair of links v, w it holds
that max{dvw, dwv} ≥ 3max{lv, lw}. Then for each power assignment P , the
following holds:

OPTB
P (S) = Θ(OPTD

P (S)) and OPTSB
P (S) = Θ(OPTSD

P (S)),

where the constants depend only on α, β.

Proof. It is obvious that for each pair of links w, v, dvw ≥ d′vw and dwv ≥ d′vw
hold, hence OPTB

P (S) ≤ OPTD
P (S) and OPTSB

P (S) ≥ OPTSD
P , so what we

need to show is OPTB
P (S) = Ω(OPTD

P (S)) and OPTSB
P (S) = O(OPTSD

P (S)).
Let S′ be any subset of S, which is SINR-feasible with respect to P in the directed
model. Consider any pair of links v, w ∈ S′. Suppose that dvw ≥ dwv and lv ≥ lw.
Then according to the condition of the lemma we have dvw ≥ 3lv. Using the
triangle inequality, we have d(sv, sw) ≥ dvw − lw ≥ 2dvw/3, d(rv , rw) ≥ 2dvw/3
and dwv ≥ d(rv, rw)− lw ≥ dvw/3. This implies that d′vw ≥ max{dvw/3, dwv/3},
which in turn implies that S′ is a 3αβ-signal set with respect to P , in the
bidirectional model. According to Theorem 1, S′ can be split into a constant
number of subsets, which are SINR feasible in the bidirectional model. This
completes the proof. 
�
Theorem 6. If P is a non-increasing or super-linearly increasing power
assignment, then OPTB

P = Θ(OPTD
P ) and OPTSB

P = Θ(OPTSD
P ).

Proof. Suppose P is a non-increasing power assignment, and S is a 3α-signal set
with respect to P in the directed model (we use Theorem 1). Then for each pair
of links v, w ∈ S, such that lv ≥ lw, we have

P (v)/lαv ≥ 3αP (w)/dαwv,

so dwv ≥ 3lv
α
√
P (w)/P (v) ≥ 3lv, and the condition of Lemma 4 holds for the

set S. This implies the theorem, as the constants involved in the formula of
Lemma 4 depend only on α and β.

The proof for the case when P is a super-linearly increasing power assignment
can be done by a similar argument. 
�
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It turns out that the property described in Theorem 6 partially holds also for
the power assignment L1/2.

Theorem 7. OPTB
L1/2

= Θ(OPTD
L1/2

).

Proof. As in the previous lemma, we need to show only the following

OPTB
L1/2

= Ω(OPTD
L1/2

).

Suppose that a set of links S is a 2α-signal set with respect to L1/2 in the directed
model. Then for each two links v, w we have

lα/2v /lαv ≥ 2αlα/2w /dαwv and lα/2w /lαw ≥ 2αlα/2v /dαvw,

so dwv ≥ 2
√
lvlw and dvw ≥ 2

√
lvlw. Let v be shorter than w, i.e. lv ≤ lw. Then

we have that
dwv ≥ 2lv and dvw ≥ 2lv. (8)

From the triangle inequality we have d(sv, sw) ≥ dwv−lv and d(rv , rw) ≥ dvw−lv,
which combined with (8) yields

d(sv, sw) ≥ dwv/2 and d(rv , rw) ≥ dvw/2,

so we have d′vw ≥ 1/2min{dvw, dwv}. The latter implies that

A′
L1/2

({v}, w) = A′
L1/2

({w}, v) ≤ 2αmax
{
AL1/2

({w}, v), AL1/2
({v}, w)

}
,

which can be used to estimate the total affectance of the set S in the bidirectional
model: ∑

v∈S

A′
L1/2

(S, v) =
∑
{v,w}

2A′
L1/2

({w}, v) ≤

≤ 2α+1
∑
{v,w}

max
{
AL1/2

({w}, v), AL1/2
({v}, w)

}
≤

≤ 2α+1
∑
v∈S

AL1/2
(S, v) ≤ 2|S|,

so there is a subset S′ ⊆ S, such that |S′| ≥ |S|/2, and A′(S, v) ≤ 4 for each
v ∈ S′. Applying Theorem 1, we complete the proof. 
�

The results obtained so far can be used to bound the gap between the optimal
schedule lengths and capacities of directed and bidirectional models.

The following result has been proven in [14].

Theorem 8. [14]

OPTB
L1/2

= Θ(OPTB) and OPTD
L1/2

= Ω(OPTD/(log logΔ+ log n)).

Using Theorem 7 we get the following corollary, which bounds the gap between
the two models.
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Theorem 9. OPTB = Ω(OPTD/(log logΔ+ logn)).

In [11] and [12] a family of networks and sets of links T is presented, for which
OPTD

L1/2
(T ) = O(OPTD

LOG∗(T )/ log logΔ), where LOG∗ is the power assign-

ment, which is given by LOG∗(v) = lαv / log lv. This implies the following corol-
lary, which shows that the gap between the two models can actually be at least
log logΔ for some network instances.

Theorem 10. There is a network instance and a set of links T , such that

OPTB(T ) = O(OPTD(T )/ log logΔ).

6 Noise Factor

Here we show how to extend our results for the case of a non-zero noise. First
let us notice that if there is a noise N , then if v is a link contained in a set
S, which is SINR-feasible with respect to power assignment P , and contains at
least two links, then it follows that P (v)/lαv ≥ βN , for each link v. We put a
slightly stronger assumption on the power level: P (v)/lαv ≥ 2βN . Then, if a set
S is SINR-feasible with respect to P without noise factor and with β′ = 2β, we
have P (v)/lαv ≥ β′∑

w∈S\v P (w)/dαwv, so

P (v)/lαv ≥ β
∑

w∈S\v
P (w)/dαwv + P (v)/2lαv ≥ β

∑
w∈S\v

P (w)/dαwv + βN,

which is the SINR-condition including the noise factor. This shows that if our as-
sumption on coefficients holds (P (v)/lαv ≥ 2βN), then we can consider the prob-
lem of scheduling (or capacity) without noise, transform the resulting schedule
into a schedule with β′ = 2β, then the result will be SINR-feasible schedule even
with the noise factor N , and will contain at most a constant times more slots,
according to Theorem 1, so all our results hold with a non-zero noise factor: the
only change is in constant factors.

7 Future Work

As it is noted in the introduction, one often has to find a tradeoff between dif-
ferent parameters in wireless networks. Two of these parameters are the energy
dissipation and throughput. As it has been shown, there are sub-linear power as-
signments, such as the mean power, which seem to provide a better throughput
on all networks, than the uniform or the linear power assignments. We con-
sider it an interesting problem to find sub-linear power assignments (preferably
oblivious), which perform good (e.g. as good as the mean power) from the capac-
ity point of view, and are more energy efficient than the mean power assignment.
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12. Halldórsson, M.M.: Wireless Scheduling with Power Control,
http://arxiv.org/abs/1010.3427
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