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Abbreviations

ADMET Absorption, distribution, metabolism, excretion and toxicity

AiBST African Institute of Biomedical Science and Technology

AUC Area under the curve

CL Clearance

Cmax Maximum plasma concentration

DME Drug-metabolising enzymes

DMPK Drug metabolism and pharmacokinetics

Fa Fraction absorbed

fu Fraction unbound

HPGL Hepatocytes per gram of liver

HTS High-throughput screening

IVIVE In Vitro to in vivo extrapolation

Kel Elimination rate constant

LD Lead discovery

LO Lead optimisation
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MPPG Microsomal protein per gram

NCEs New chemical entities

PD Pharmacodynamics

PK Pharmacokinetics

PSA Polar surface area

QSAR Quantitative structure activity relationship

SAR Structure activity relationship

t1/2 Half-life

TDI Time-dependent inhibition

Tmax Time to reach maximum plasma concentration

Vd Volume of distribution

7.1 Background

Prior to the 1990s, studies in pharmacokinetics (PK) were completed late in drug

discovery and during drug development. The preclinical studies were mainly

animal in vivo studies used for safety evaluation and human dose predictions by

allometric scaling. A landmark paper by Prentis [1] reviewed the factors responsi-

ble for the failure of new chemical entities (NCEs) in British pharmaceutical

companies and found that between 1964 and 1985, inadequate PK was the leading

cause of failure in 39% of new chemical entities (NCEs) followed by lack of

efficacy and by toxicity. PK has an intricate impact on efficacy and toxicity,

emphasising the role of PK in the failure of NCEs. Further reviews corroborated

Prentis’s findings [2]. Drugs for the treatment of infectious diseases failed more due

to poor PK than those for non-communicable diseases, strongly suggesting the

necessity for the incorporation of PK into drug discovery programmes.

During the 1990s, industry responded by setting up many assays that enabled

projects to characterise the process that determined the PK of compounds. These

included in vitro methods for compound permeability, metabolism and excretion.

Application of these assays was frontloaded to early phases of the drug discovery

process from hit identification, lead discovery and lead optimisation through to

candidate drug selection [3]. By 2000, the pharmaceutical industry had reduced the

failure rate of NCEs due to PK issues from 40% to less than 10% [2]. Figure 7.1

shows the relative contribution of various factors in the attrition rates of new

chemical entities [4]. It is important to note the rapid increase in the cost of

goods as a cause of drug discovery and development failure followed by poor

efficacy and clinical safety. Most drug discovery projects in Africa do not have

access to the PK platforms which major pharmaceutical industries are using to

reduce attrition rates. It is therefore likely that the failure or slow progress of some

of the discovery projects in Africa could be due to lack of PK support.

152 C. Masimirembwa and R. Thelingwani



7.2 Pharmacokinetic Challenges in Drug Discovery

The overall objective of drug discovery is to “find a potent and selective com-
pound, reaching to the site of action at sufficient concentration for a sufficiently
long time to elicit the desired effect with a reasonable dose that can be

administered orally to humans in an acceptable form once or twice a day” (Ulf

Bredberg, personal communication). In addition to this, the compound must also

be safe for human use. It is in the context of achieving these objectives that

pharmacokinetics can play an important role. Poor drug systemic exposure could

be due to low absorption from the intestine caused by low compound permeability

or low solubility. Low bioavailability can also be due to high clearance and

short half-life caused by extensive liver metabolism and excretion. Absorption

and metabolism therefore play a key role in determining drug exposure levels.

Figure 7.2 depicts how these factors determine drug exposure levels as a measure

of bioavailability.

With respect to safety, pharmacokinetic factors can contribute through risk for

drug–drug interactions due to enzyme and/or transporter inhibition or induction.

Inhibition of the metabolism of one drug (victim drug) by another (perpetrator drug)

could result in overexposure of the victim drug, resulting in either exaggerated

pharmacologic effects or unselective effects on other receptors. Induction, on the

other hand, could result in underexposure of the victim drug associated with sub-

therapeutic effects. Toxicity or idiosyncratic reactions could also arise from

increased production of reactive and toxic metabolites of the new chemical entity.

Toxicity can be mediated through formation of protein adducts (cytotoxicity) or

nucleic acid adducts (genotoxicity).
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Fig. 7.1 Evolution of the principal reasons for drug development failure between 1991 and 2005.

Adapted from [4]
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7.3 Overview of Pharmacokinetics

Pharmacokinetics can be defined as “the study of the time course of drug and
metabolite levels in different fluids, tissues, and excreta of the body, and of the
mathematical relationships required to develop models to interpret such data”
[5]. The key PK parameters that enable one to determine how much and how

often a drug should be administered to achieve a desired therapeutic effect in a

safe, efficacious and convenient manner are absorption (Fa), volume of distribu-

tion (Vd), clearance (CL), half-life (t1/2) and bioavailability (F). Figure 7.3

illustrates the pharmacokinetic profiles of a drug after an intravenous (i.v) and

oral (p.o) dose. The figure also shows the importance of drug concentrations with

respect to effective concentration ranges and toxic ranges, parameters relevant in

the safe and efficacious use of medicines. Table 7.2 shows the equations used to

calculate the important pharmacokinetic parameters used in dose regimen

determinations.

These PK parameters (Table 7.1) can all be determined from in vivo studies in

preclinical animals and in humans when the drug is administered enterally (oral,

buccal or rectal) and/or parenterally (intravenous, intramuscular, peritoneal and

subcutaneous). Most studies in discovery use oral and intravenous drug administra-

tion to determine the PK parameters indicated in Table 7.1.
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Fig. 7.2 Pharmacokinetic processes that affect drug bioavailability
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7.4 The Drug Absorption, Distribution, Metabolism

and Excretion Process

Traditionally, pharmacokinetic studies had been done either as a documentation

process or as part of toxicokinetic studies in drug discovery and development. As

understanding of the potential role of PK in selecting compounds with favourable

PK and pharmacodynamics (PD) increased, the preclinical animal studies where

used to predict human pharmacokinetics using allometric scaling. This method is

based on the hypothesis that physiological parameters are proportional to body size

and weight. Allometric scaling has been used to predict various PK parameters

indicated in Table 7.1 with mixed success.

Important biomedical breakthroughs in the 1990s allowed scientists to develop

in vitro systems to study the individual processes that constituted the PK of a

compound (Table 7.2). For absorption, systems to study drug permeability and

transport (e.g. Caco2, intestinal segments and transfected cell lines) enabled the

prediction of the fraction of drug absorbed, Fa. For metabolism, liver microsomes,

hepatocytes, recombinant enzymes and cell lines enabled the humanisation of

in vitro drug metabolism towards the prediction of drug clearance (CL) and

drug–drug interactions [6]. These revolutions in biological systems were also

accompanied by technological advancements such as LC-MS/MS and automated

assays for high-throughput screening (HTS).

The deconvolution of PK to discrete processes of drug absorption, distribution,

metabolism and excretion (ADME) allowed for mechanistic insights that were not

Fig. 7.3 Schematic representation of a plot of the natural logarithm of drug plasma concentration

(In[D]) with time (hours) after intravenous (i.v) and oral (p.o.) administration of a drug. Co—

extrapolated initial dose, Cmax—maximum drug concentration achieved, Tmax—time to reach

Cmax, Kel—elimination rate constant, AUC—total area under the curve, a measure of drug

exposure. MEC minimum effective (therapeutic) concentration, MTC minimum toxic

concentration
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possible from the holistic in vivo PK studies. They also facilitated the evolution of

computational methods towards the derivation of qualitative and quantitative

structure–activity relationships (SAR and QSAR) for the prediction of ADME

properties. Such SAR and QSAR have resulted in very fruitful collaborations

between medicinal chemists and pharmacokinetic scientists which are enabling

the rapid optimisation of compounds with respect to PK and PD properties.

Table 7.3 summarises the physicochemical and in vitro ADME that can now be

determined and used to effect chemical modification or predict in vivo PK, thus in-

calculate rational design in the drug discovery process.

There are pros and cons of using in vitro or in vivo preclinical models. The

advantages of in vivo models are that you get integrated information on permeabil-

ity, metabolism, secretion and transport. One can sometimes make in vitro to

in vivo correlations for the animal model to support human in vitro to in vivo

predictions, which can lead to the observation of the effect of unknown PK

mechanisms. The major disadvantage of preclinical animal studies is that there

can be great inter-species difference between the model animal and humans. This is

particularly so with respect to metabolic processes. The advantages of using in vitro

systems are that one can use both human and animal tissue, study the individual

components of PK, derive insights into the mechanism of drug disposition and test

for specific properties such as enzyme inhibition and amenability to high-

throughput screening (HTS). The disadvantages of the in vitro systems are that

one needs to know all mechanisms involved in a drug’s PK in order to study them

individually, assays for some mechanism might not be there or are too complex to

study. A major disadvantage of in vitro system is the many physiological

assumptions one has to make from recombinant, sub-cellular, cellular and organ

to whole animal/human systems. In general, as one progresses from simple recom-

binant enzymes, microsomes, to complex hepatocyte systems, success in the pre-

diction of in vivo metabolic clearance increases, but the costs of doing the studies

also increase.

Table 7.2 ADMET parameters and systems used to study them

Parameter System

CLint (intrinsic metabolic stability) Microsomes, hepatocytes, recombinant enzymes

Enzyme inhibition Recombinant enzymes, microsomes

Enzyme induction HepaRG cell line, hepatocytes, reporter gene assay

Enzymes involved (reaction phenotyping) Liver microsomes, recombinant enzymes,

hepatocytes

Metabolite identification Hepatocytes, microsomes, recombinant enzymes

Permeability/absorption Caco2 cell line, intestinal segments

Transporters MDCK cells (Pgp), transfected cell lines (different

human transporters), Caco2 cell lines
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7.5 In Silico ADMET

Before the development of the elaborate in vitro ADMET toolkit, efforts to predict

physicochemical and pharmacokinetic parameters were solely based on the physi-

cochemical properties of new chemical entities. The methods used properties such

as lipophilicity (Log P and Log D), pKa, Mwt, melting points, binding energy,

number of atoms, etc.) to predict physicochemical properties such as solubility and

metabolic properties such as Michaelis–Menten constant (Km), clearance and

toxicity. As the in vitro ADME assays on HTS platforms started churning out

large amounts of data which were initially meant for in vitro–in vivo correlation

studies, the data provided an opportunity for SAR and QSAR studies. Metabolic

stability, enzyme and metabolite identification, and cytochrome P450 inhibition

data using recombinant enzymes produced mechanistically clean data that were

used to develop SAR and QSAR models. In addition to the in vitro data, starting

with the publication of the soluble bacterial CYP crystal structures in the 1980s,

homology models of CYPs were developed and docking studies used to infer

ligand–enzyme active site interaction studies. This work led to the derivation of

pharmacophore models for substrates and inhibitors of the major drug-metabolising

enzymes, CYP1A2, 2C9 and CYP2D6. Advances in molecular biology assisted this

effort by providing site-directed mutagenesis functional studies towards mapping

the geometry and chemistry of proposed active sites of CYPs. After years of failed

efforts to crystallise membrane-bound CYPs, success was achieved in 2000 with

the crystallisation of the rabbit CYP2C5 enzyme. This work was followed by

successful crystallisation of several human CYPs including CYP21A2, 2C8, 2C9,

2D6 and 3A4. Some of the enzymes were co-crystallised with substrates and/or

inhibitors to give the first direct information on enzyme–ligand interactions.

Advances in computational tools in quantum mechanical calculations, molecular

dynamic simulations, GRID-based calculation of physicochemical properties of

substrates/inhibitors and enzyme active site, and docking and scoring functions to

understand orientation and affinity of enzyme–ligand interactions were successfully

applied to ADMET computational modelling. This strengthened the link between

Medicinal Chemistry and DMPK scientists in addressing ADMET issues at molec-

ular level. Software such as Flex X, GOLD, GLIDE and AutoDock are being used

for docking substrates/inhibitors into active sites of drug-metabolising enzymes

towards studies to identify involved enzymes and predict sites of metabolism. The

Volsurf software (http://www.moldiscovery.com) is being used to predict perme-

ability, solubility and metabolic stability. Metasite (http://www.moldiscovery.com)

is being used for the identification of site metabolism and when linked to mass

spectrometry in metabolite identification studies. There are now many software

programmes on the market, some free and others commercial. The choice of

software to use is very important; they are based on different modelling techniques

and different data quality and might require secondary processing for meaningful

interpretation of the results. Interpretation of most of the results requires a good

understanding of the biology of the ADME properties being predicted.
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The initial purpose of the in vitro data of making in vitro–in vivo correlations

also experienced significant advances. Notable products on the market being

Simcyp (http://www.simcyp.com), Gastroplus (http://www.simulations-plus.com),

WinNONlin (http://www.pharsight.com/products/prod_winnonlin_home.php) and

Aureus (http://www.aureus-pharma.com), which, through various ways, try to

address some of the challenges of in vitro to in vivo extrapolation (IVIVE) of

ADME properties such as (a) inter-individual variability in metabolic processes,

(b) interplay of drug-metabolising enzymes and drug transporters, (c) interethnic

differences in PK properties and (d) estimation of concentration of test drug

reaching the enzyme active site. These developments have given birth to the field

of pharmacometrics where PK simulations and physiologically based pharmacoki-

netic modelling (PBPK) are being used to predict the likely pharmacokinetics of a

candidate drug when given to humans. This is contributing to the efficient design of

clinical studies and the projection of data from few patients to whole populations,

something which could result in reduced costs of clinical trials which are currently

the most expensive phase of the whole drug discovery and development process.

7.6 ADMET and PK Preclinical Models in Drug Discovery

Various in silico, in vitro and in vivo models are being applied in the design,

characterisation and selection of new chemical entities with ADMET and PK

properties predicted to result in a safe and efficacious product for clinical use in

humans. Over the past 20 years, the pharmaceutical industry has developed an

elaborate generic “ADMET/PK toolkit” that is used across most disease areas and is

amenable to modification to address some project-specific questions. The models

provide different pieces of information of varying complexity throughout the hit

evaluation, lead discovery, lead optimisation and candidate drug nomination value

chain (Fig. 7.4).

Given the background of drug discovery activities by African research groups

being driven by medicinal chemistry (mainly herbal extracts, purified natural

products from herbs with reported medicinal properties and to a lesser extent

conventional organic synthesis) and pharmacology (mainly screens against

in vitro parasite cultures, animal disease model and to a lesser extent recombinantly

expressed molecular targets), integration of DMPK was virtually absent. Before the

establishment of drug discovery DMPK expertise at the African Institute of Bio-

medical Science and Technology (AiBST), the only PK studies done by some

institutions were in vivo animal and human PK on drugs already on the market

with either the aim of evaluating them for general toxicity, PK variability in African

populations or PK/PD relationships in patients. The DMPK/PD-Tox Department at

AiBST was therefore established with the aim of setting up an industrial DMPK

platform benchmarked against the in silico, in vitro and in vivo models being used

by leading pharmaceutical industry. The in silico, in vitro and in vivo models for
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drug discovery will therefore be described in the context of those set up at AiBST

and being applied in the characterisation of anti-parasitic drugs in use and new

chemical entities from various drug discovery research groups in Africa. To make

the concepts relevant for the African case, drugs indicated in Fig. 7.5 will be used to

demonstrate the potential benefits of integrating such tools in the discovery and

development of safe and efficacious drugs in the fight against infectious diseases

endemic to Africa.

7.7 Compound Library Characterisation and Hit Identification

and Evaluation

During the early phases of target identification and validation, the approach could

involve the use of tool compounds (e.g. inhibitory analogues of the target substrate)

and screening large compound libraries against a high-throughput in vitro assay for

the molecular target. The compound libraries to be screened can be in-house

resources or can be purchased from external sources. Before purchase of

compounds and during the in vitro pharmacological screens, the compound

libraries should be screened for general druggable properties. A number of such

general properties have been proposed and the most widely used being the Lipinski

rule of 5 for compound solubility and permeability, the major determinants of

Fig. 7.4 Schematic representation of how in silico, in vitro and in vivo preclinical platforms for

ADMET characterisation are being frontloaded in the drug discovery value chain
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compound absorption [17]. It is important that the application of such in silico

filters be done with caution since they are only guidelines which if used dogmati-

cally, could result in the loss of novel compounds that could have unique PK and

PD properties, with the possibility of intellectual property (IP) and market compet-

itive advantages for a company. During this phase, the tractability of the biological

target is evaluated with respect to PK and PD issues. PD issues involve the

identification of compounds with reproducible biologic effect for the desired type

of activity (e.g. agonist, antagonist or enzyme inhibition). PK issues could relate to

the accessibility of the target (e.g. central nervous system), knowledge of compet-

ing endogenous ligands and intended dose formulation (e.g. i.v, p.o. or inhalation).

If oral administration is the intended formulation, the following PK parameters

should be predicted at this stage and be used to judge the quality of the compound

library to be purchased or the hits obtained from in vitro and in silico screens:
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(a) Lipinski rule of 5 (Mwt, Log P, HBD, HBA), (b) PSA, (c) permeability, pKa and

(d) solubility. Table 7.4 shows these predictions for some anti-parasitic drugs done

using various softwares (Volsurf, MOKA, Marvin Sketch, etc.).

Given that a Lipinski score is predictive of oral absorption and that this PK

parameter is a function of solubility and permeability, the predictions of permeabil-

ity using Volsurf (Fig. 7.6) are supportive of the role of the physicochemical

properties predicted in Table 7.4. The prediction tool in Volsurf was developed

using Caco2 permeability data. Representative compounds from the various

clusters for the predicted parameters are then experimentally determined for (a)

water solubility, (b) lipophilicity, (c) pKa, (d) protein binding, (e) metabolic

stability in human liver microsomes and microsomes from PK or PD animal

model, (f) glutathione trapping of reactive metabolites in human liver microsomes,

(g) inhibition of major CYPs (reversible and irreversible), (h) stability in human

and PK or PD animal model plasma for drugs with moieties that could undergo

hydrolysis and (i) permeability in Caco2 cells. This is done to check the predictive

success of the computational tools and to generate real experimental values. The

latter can be used to derive structure–activity relationship (SAR) models for the

various parameters for the specific chemical series under study. At this stage, HTS

approaches are used, and a ranking system is employed to make decisions on which

series or cluster of compounds to proceed with and what potential ADMET and PK

liabilities one needs to explore further at lead discovery stage.

Table 7.4 shows that none of the anti-parasitic drugs violates Lipinski’s rule of 5;

Mwt � 500, Log P � 5, HBD � 5, HBA � 10 and PSA � 100 Å2. The

compounds are therefore predicted to be permeable. The predicted solubility is,

however, low, a reason why most of these drugs were made salts to enhance

solubility. Due to the importance of solubility and permeability for absorption, a

Fig. 7.6 Predictive

projection of Caco2

permeability of novel

4-aminoquinolines in a

permeability model in

Volsurf
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biopharmaceutical classification system, BCS, based on permeability and solubil-

ity, has been developed which classifies compounds into four major categories:

Class 1—high permeability and high solubility, Class 2—high permeability and

low solubility, Class 3—low permeability and high solubility and Class 4—low

permeability and low solubility.

The compounds are predicted not to be highly protein bound except for chloro-

quine and amodiaquine. The prediction success can vary, e.g. artemisinin is

predicted to be 50% bound and the measured value is 40%, compared to less

successful, e.g. thiabendazole, predicted to be 67% bound and the measured value

is 89%.

Predictions and measurements of some physicochemical and ADME properties

were also researched for a novel series of 4-aminoquinolines synthesised in Prof.

Kelly Chibale’s laboratory (University of Cape Town, South Africa) (Table 7.5).

None of the compounds violate more than 2 of Lipinski’s rule and are therefore

predicted to have good permeability. This is also supported by predictions using the

software Volsurf (Fig. 7.6). In Table 7.4, it is evident that measured and predicted

properties are not always in agreement which serves as a cautionary note not to be

over-dependent on in silico methods in deciding the fate of NCEs. It is to be always

kept in mind that predictions are only as good as the assumptions, and data quality

and quantity that are used to make the predictive tools. Poor correlations on the

other hand might simply mean that some unique aspects of the series one is working

on are not well captured in the computational method one is using. Whether one

gets good or bad predictions, the exercise demands that the drug discovery teams

seek to understand the chemical basis of the ADME behaviour of new chemical

entities.

7.7.1 Determination of Compound Lipophilicity

At this stage of drug discovery, Log D7.4 is determined using a reverse phase

chromatography HPLC method with the mobile phase at pH 7.4. In this method,

a number of standard compounds of previously determined lipophilicity (using the

shake flask, water–octanol partitioning method) are run on the reverse phase

column, and their retention times are noted (k0). These are then plotted against

their known Log D7.4 values to make a standard curve. The standard compounds

covering a wide span of Log D7.4 values are used: metoprolol (0.02), propranolol

(1.15), testosterone (3.19) and felodipine (5.20). The unknown compounds are then

run on the same column, and their retention times are noted. These are used to read

off the Log D7.4 values of the test compounds from the standard curve. Table 7.5

shows the predicted and measured Log D7.4 values of a series of 4-aminoquinolines

with demonstrated antimalarial activity (Thelingwani et al. unpublished). Figure 7.7

shows the retention times of standard compounds and the standard curve (plot of
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literature Log D7.4 against measured capacity factor of standard compounds) from

which the capacity factors of unknown compounds are used to read off their

predicted Log D7.4.

Fig. 7.7 Typical results outputs/presentation of various physicochemical and ADME

determinations available at AiBST
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7.7.2 Determination of Compound Solubility

Solubility in water is determined using a turbidimetric assay. In this assay, test

compounds dissolved in DMSO are diluted in water, and the different solutions are

evaluated for precipitation spectrophotometrically at a wavelength of 595 nm. In

this method, a highly water-soluble compound, paracetamol, and a poorly soluble

compound, niclosamide, are used as controls. In the absence of a precipitate, the

absorbance remains below 0.05 units and will increase as precipitate is formed.

Compounds are then classified as soluble (>100 mM), intermediate (<50 mM),

partial (<20 mM) and insoluble (<10 mM). Solubility is very important in the

design of in vitro experiments as it informs one on the maximum concentrations

one can reliably work with in aqueous solutions. Figure 7.7 shows typical solubil-

ity/precipitation results of paracetamol, niclosamide and a test 4-aminoquinoline.

7.7.3 Determination of Compound Permeability

The Caco2 cell line derived from the human colon carcinoma has proved a very

good predictive model for the fraction of drug absorbed, Fa. This is because it has

many of the morphological and physiological attributes of the small intestine, such

as microvilli, and various mechanisms of permeability (transcellular, paracellular

and active transport based). The cells are plated in a cell culture inset device in

which the cells grow to confluence on a porous filter. Compounds are loaded on the

apical side of the cell culture insert device, and samples are collected over time on

the basolateral side. These data are then used to calculate the apparent permeability,

Papp, as cm/s. Compounds with Papp < 1 � 10�6 cm/s being classified as low

permeability, <20 � 10�6 cm/s—moderate permeability and >20 � 10�6 cm/

s—high permeability. To investigate the potential role of efflux transport, the test

compound can also be put in the basolateral side, and samples can be collected and

measured on the apical side. If the ratio of A to B/B to A is greater than 2, this points

to the possible existence of active transport of the compound.

7.7.4 Determination of Compound Metabolic Stability

Metabolic stability, a measure of a compound’s extent of biotransformation, is

determined in liver microsomes (for oxidative metabolism) and plasma (for

compounds likely to undergo hydrolysis). Microsomes are the most commonly

used in vitro system due to the fact that most drugs are mainly metabolised by

cytochrome P450s which have the highest concentration in liver microsomes. The

study involves incubating 1.0 mM of test compound in 0.5 mg/ml liver microsomes

for 0, 5, 10, 15, 20 and 30 min. The elimination rate constant, Kel, is estimated from
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the plot of the natural logarithm of remaining drug concentration versus incubation

time. The Kel is then used to calculate the elimination half-life, which in turn, is

used to calculate the intrinsic metabolic clearance (ml/min), CLint ¼ (0.693 � vol-

ume)/t1/2. Figure 7.7 shows a typical metabolic stability result for low, high and

intermediate clearance compounds. Such studies are done with liver microsomes

and cytosols from preclinical animal models and humans. To control the assays, a

set of standard compounds is run with each batch of test compounds. Table 7.5

shows the metabolic stability of a novel series of 4-aminoquinolines with

demonstrated antimalarial activity.

7.7.5 Determination of Cytochrome P450 Inhibition

The modern clinical setup is characterised by the practice of poly-pharmacy where

patients are taking many drugs at the same time, either to treat multiple co-ailments

or due to the need of combination therapy for increased efficacy. The latter is very

common in the treatment of infectious disease in order to reduce the risk for drug

resistance. At hit identification and characterisation, the test compounds are

evaluated for inhibitory effects on recombinant CYPs, 1A2, 2C9, 2C19, 2D6 and

3A4. These are among the most important CYPs responsible for the metabolism of

most drugs on the market and are associated with a risk for drug–drug interactions if

inhibited. High-throughput assays using substrates which are metabolised to fluo-

rescent metabolites can be used. In the assay, each test compound is tested for

inhibitory effects on each rCYP at different concentrations. The inhibitor concen-

tration resulting in 50% reduction in enzyme activity (IC50) is determined by

plotting the remaining enzyme activity as a measure of fluorescence against the

varying concentrations of the test compound. For each rCYP, a positive control

inhibitor is used, napthaflavone for CYP1A2, sulfaphenazole for CYP2C9,

ticlopidine for CYP2C19, quinidine for CYP2D6 and ketoconazole for CYP3A4.

Figure 7.7 shows typical inhibitory effects of some 4-aminoquinolines on CYP1A2.

Table 7.5 shows the inhibitory effects of 4-aminoquinolines on the major drug-

metabolising enzyme, CYP3A4.

While most inhibitory effects of compounds are of a reversible mode (competi-

tive or non-competitive), some compounds demonstrate time-dependent inhibition

(TDI). TDI is usually associated with the bioactivation of a test compound to a

reactive metabolite which in turn forms a covalent bond with the CYP, resulting in

irreversible (referred to as mechanism-based inhibition—MBI) or quasi-

irreversible (referred to as metabolite intermediate complex inhibition—MIC)

inhibition. Mechanism-based inhibition can, in addition, result in idiosyncratic

reactions due to immunogenic reactions caused by proteins covalently modified

by the reactive metabolites. The assay for the determination of TDI involves pre-

incubation of the test compound with the enzyme (that would result in the inactiva-

tion of enzyme molecules) followed by a second incubation in which the enzyme

substrate is added (to measure the remaining enzyme activity). Control reactions
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with pre-incubation without the test compounds or without NADPH, the cofactor

required for CYP activity, are also run in parallel. The final result is given as a ratio,

which if below 0.7 is indicative of TDI effects and if >0.9 is indicative of no TDI

effects. Control TDI compounds for each of the enzymes are used, furafylline for

CYP1A2, tielinic acid for CYP2C9, ticlopidine for CYP2C19, paroxetine for

CYP2D6 and troleandomycin for CYP3A4.

The in silico and in vitro studies at this compound library and hit identification

and characterisation stage help projects in identifying potentially important trends

that can affect the feasibility of pursuing certain compound classes to the lead

discovery phase. For example, in the presence of alternatives, strong correlations

between Log P, potency, metabolic stability and CYP inhibition could be a “show

stopper” as they point to a very difficult chemical space to separate and optimise for

these important PK/PD/safety variables. A series exhibiting very strong TDI can

also be a serious liability as the possibility of idiosyncratic reactions that could be

caused by such compounds is difficult to predict clinically. High Log P values at hit

identification stage are also not favourable since medicinal chemists generally

increase lipophilicity to increase potency during lead optimisation. It is therefore

important to invest in highly competent teams to exploit the large amounts of data

generated in a manner that extracts information and translates it to innovative

project strategies for successful hit identification.

7.8 Lead Discovery

During lead discovery (LD), clusters identified in hit identification stage are worked

on to select two to three series which meet the lead compound criteria set for the

project. The main purpose of this phase is to identify key liabilities associated with

the selected series and to suggest ways they could be addressed during the

subsequent lead optimisation (LO) stage. Series carrying severe DMPK problems

associated with the pharmacophore, e.g. an overlap of the pharmacophore for

pharmacologic effects and that of a DMPK liability such as metabolic instability

or CYP inhibition, are usually discontinued. The LD phase is a learning phase

where the selected scaffolds from LI are expanded to identify any structure activity

relationship in physicochemical and ADMET properties. Assays performed during

LI continue to be performed to keep track of any changes in physicochemical and

ADME properties as the exploration of the chemical space of the selected series is

conducted.

Additional assays are also conducted at this stage. These include metabolite

identification (to understand the possible basis of metabolic instability and/or

mechanism of reactivity), enzyme identification and in vivo PK in preclinical PK

and PD animal models. These data are used to understand the relationship between

structural and DMPK properties (QSPR—quantitative structure property relation-

ship). At this stage, one also investigates in vitro–in vivo correlation for DMPK

properties such as absorption and clearance. In vitro and in vivo DMPK and PD data
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are also modelled at this stage to derive PK/PD models. Such models at this early

stage are important as they can rescue a chemical series with seemingly poor

DMPK or PD properties. There are many successful drugs on the market which

would not have made it based on their DMPK or their PD properties alone.

Addressing each of these properties separately is therefore risky in drug discovery

and development. The ideal situation in the selection of lead series is where one can

optimise the DMPK issues without compromising pharmacological properties. The

difficult situation and usually a show stopper is when these key properties covariate

and cannot be optimised independently.

7.8.1 Metabolite Identification

The major determinant of drug clearance is metabolism. To understand and possi-

bly address metabolic instability or chemical reactivity, identification of

metabolites formed is important. There are many software programmes which

have been developed for the prediction of metabolites. In our laboratory, we use

the software called Metasite (Molecular Discovery Ltd) and various docking

software (Auto Dock, Flex X, or GOLD). Metasite works by using GRID (Molecu-

lar Discovery Ltd) derived chemical interaction energy maps of the test compound

and that of the CYP’s active site. The maps of the compounds are overlayed on the

maps of the CYP’s active sites, and a similarity index is used to identify compound-

CYP matches. To suggest the site of metabolism, the distance of the nearest

hydrogen to the CYP reactive centre is measured and used to rank all hydrogen in

the compound. Distances (3–5 Å) associated with the possibility of hydrogen

abstraction (the major mechanism of compound oxidation by CYPs) are used to

identify and rank metabolic hot spots. The prediction engine can also take into

account reactivity factors (i.e. in addition to the optimal distance, it will also

identify functional groups associated with increased easy of oxidation). The result

is therefore a ranking of sites for possible metabolism and hence the likely

metabolites formed. Figure 7.8 shows the successful use of Metasite in the predic-

tion of sites of metabolism of thiabendazole. We also use various docking

algorithms to deduce possible metabolites. Figure 7.8 also shows the application

of the docking programme, GOLD, in the prediction of the enzyme and site of

metabolism in the biotransformation of amodiaquine.

In vitro, metabolite identification is done from incubations of test compound

with human and preclinical PK and PD animal model liver microsomes or

hepatocytes or human recombinant enzymes. Metabolite identification is then

done by LC-MSMS. The MSMS product ion is interpreted by biotransformation

scientists. It can also be done through assistance by software such as MetaboLynx

(http://www.waters.com/waters), LighSight (http://info.appliedbiosystems.com/

metaboliteID) and Mass-Metasite (http://www.moldiscovery.com). Most CYP-

mediated reactions are aromatic hydroxylations, aliphatic hydroxylations,

N-dealkylation and O-dealkylation and epoxidations. Metabolite structure can be
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interpreted in terms of these common reactions such as þ16 for hydroxylation or

N-oxidation, þ32 for dihydroxylation and �14 for demethylation. Some

metabolites cannot be easily elucidated by MSMS and might require NMR. In

this case, the microsomal incubation is scaled up in order to generate 10–50 mg of

metabolite. The 1H-NMR spectrum of the metabolite is obtained, and the changes

of resonance are used to determine the site of metabolism, hence the structure of the

metabolite.

Knowledge of the metabolite can be used for several purposes in drug discovery.

These include guidance in blocking of metabolic hot spots to stabilise the

compounds and synthesising the metabolites and testing them for pharmacological

and toxicological effects. Figures 7.9 and 7.10 show the metabolite identification in

the metabolism of amodiaquine.

7.8.2 Trapping of Reactive Metabolites

Some metabolites are very reactive and difficult to isolate and conduct structural

studies on since they react with biological components in the incubation. Studies on

reactive metabolites are done in two stages: the first is to screen compounds for the

generation of reactive metabolites. This is done by screening for the formation of
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glutathione conjugates in human liver microsomes. If iminium ions are likely to be

formed, trapping experiments are done using cyanide. Other reactive metabolites

are better trapped with methyloxamine or cysteine. For series containing carboxylic
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Fig. 7.9 Metabolite identification in the metabolism of (a) amodiaquine 1 and its metabolites

formed after incubations for 30 min with rCYP1A1. Extracted ion chromatograms of m/z 356 (1),
m/z 328 (2), m/z 317 (10), m/z 315 (9), m/z 301 (8) and m/z 299 (3) and (b) MS/MS spectra of 3 [9]
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acid functions, the stability of acyl glucuronides should also be assessed. The

isolation and subsequent structural elucidation of such reactive metabolites is a

challenge since they usually covalently react with the biological matrix. To over-

come this, non-biological systems can be used. The use of electrochemical oxida-

tion is being successfully used to generate most CYP medicated metabolites.

Figures 7.10 and 7.11 show how this approach has been used to characterise

reactive metabolites of amodiaquine. Both electrochemical oxidation and micro-

somal incubations where used to characterise the bioactivation of amodiaquine to

amodiaquine quinoneimine and the aldehyde metabolite. Trapping experiments

with cysteine resulted in four cysteinyl conjugates, and those with glutathione

gave four glutathionyl conjugates. MSMS and 1NMR were used to characterise

the structures of these metabolites [10]. The generation of the aldehyde metabolite

was done by electrochemical oxidation and structural studies done by MSMS and
1NMR. Trapping of the aldehyde metabolite was done with methoxylamine.

Trapping experiments with N-acetyl cysteine revealed that the aldehyde was further
oxidised to an aldehyde quinoneimine species, both in the rCYP incubations and in

the electrochemical system (Fig. 7.11).
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aldehyde quinoniemine metabolite
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7.8.3 Enzyme Identification

Towards understanding the basis of metabolic stability and/or bioactivation of new

chemical entities, there is a need to identify the enzymes involved in the generation

of identified metabolites. This knowledge will be helpful in molecular design

towards disrupting the physicochemical determinates of the compound’s specific

interactions with the enzyme involved. For example, if one shows that a compound

is metabolised by CYP2D6, there are well-known qualitative and quantitative

structure activity relationships (SAR) associated with substrates of this enzyme

that can enable medicinal chemists to reduce metabolic rates by either blocking

metabolic hot spots or disrupting the CYP2D6 substrate pharmacophore. This

strategy can be used to either solve instability issues or block the generation of
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reactive metabolites. Enzyme identification is also important towards understand-

ing inter-individual variability in the pharmacokinetics of a drug. If one finds that a

drug is solely metabolised by say CYP2D6, then the known genetic and environ-

mental variation of this enzyme in human populations will be expected to reflect the

pharmacokinetic variation of the new chemical entity.

Enzyme identification is also used towards predicting likely drug–drug

interactions in situations where the test compound is co-administered with a drug

that inhibits or induces the enzyme that is mainly responsible for the elimination of

the test compound. There are several commonly used methods for enzyme identifi-

cation (Fig. 7.12a, b, c). It is generally encouraged to use at least two of these

methods to arrive at a relatively accurate conclusion on the qualitative and quanti-

tative contributions of various enzymes in the metabolism of a test compound. First,

the compound is incubated with sub-cellular fractions known to be involved in the

metabolism of drugs. Since most drugs undergo oxidative metabolism by CYPs,

identification for these enzymes will be discussed in detail. Data from work on the

metabolism of amodiaquine will be used to illustrate the methodology (Fig. 7.12).

Data on the identification of CYPs responsible for the metabolism of anti-parasitic

drugs will be used to demonstrate the likely general and specific implications of

such information in the safe and efficacious use of these drugs in African

populations.

(a) Screening of Compound Metabolism Across a Panel of Recombinant Enzymes

In this experimental setup, the compound is incubated with each of a panel of

recombinant CYPs such as CYP1A1, 1B1, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6 and

3A4. The incubation in which the test compound is depleted by over 20% is

highlighted as a possible contributor to the compound’s metabolism. The relative

contribution of the highlighted enzymes in the metabolism of the test compound is

then determined using the relative activity factor. This involves determining the

metabolic clearance of enzyme-specific substrate (e.g. midazolam for CYP3A) in

human liver microsomes and also with the recombinant enzyme. The ratio of

activity in human liver microsomes/activity in recombinant enzyme would be an

expression of nanomoles of recombinant enzyme/mg of liver microsomes. This is

referred to as the relative activity factor (RAF) as it estimates the relative amount of

CYP3A in the liver microsomes in activity terms. The clearance of the test

compound is then determined with recombinant enzyme, the value which will be

multiplied by the RAF to give the metabolic activity in the clearance of the test

compound due to the specific enzyme. To estimate the relative contribution of

various CYPs, the test compound is then incubated with the liver microsomes,

which gives the total clearance from the contribution of many other CYPs in the

microsomes. For the relative contribution of the specific enzyme(s), the activity

obtained from multiplying the RAF with the activity of the specific rCYP is then

divided by the compound clearance in the liver microsomes. The fraction of the

compound metabolised (fm) by the specific CYP will then be expressed as a

percentage. Table 7.6 shows the application of the above approach in the metabo-

lism of anti-parasitic drugs by CYPs. This knowledge of which CYPs are
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responsible for the metabolism of these anti-parasitic drugs enables one to infer

pharmacokinetic variability and risk for drug–drug interactions in the clinical use of

these drugs.

(b) Correlation Analysis

In this approach, a set of individual human liver microsomes, n ¼ 5–7, is chosen

which shows a wide spectrum of activities of each of the major human CYPs. This

is done using CYP-specific marker substrate reactions such as CYP1A2 (phenacetin

to paracetamol), CYP2A6 (coumarin to 7-OH coumarin), CYP2B6 (efavirenz to 8-

OH efavirenz), CYP2C9 (diclofenac to 4-OH diclofenac), CYP2C19 (S-

mephenytoin to 4-OH mephenytoin), CYP2D6 (bufuralol to 1-OH bufuralol) and

CYP3A4 (midazolam to 1-OH midazolam). In addition to the wide range of

activity, the activities of each of the CYPs for the various CYPs should not cross-

correlate as this will make it difficult to differentiate the roles of such CYPs. The

test compound is then incubated with each of these liver microsomes, and the

activities are cross-correlated with the activities of the various CYPs. Cross-

correlations of >0.7 are indicative of a significant contribution of that enzyme.

Figure 7.12 shows such cross-correlations in the identification of the enzymes

responsible for the metabolism of amodiaquine.

(c) Use of Potent and Selective Diagnostic Chemical Inhibitors

This approach exploits the knowledge that there are some compounds which

demonstrate potent and selective inhibition of some human CYPs. The test com-

pound is therefore incubated with human liver microsomes in the presence and

absence of such inhibitors. The extent of inhibition of the test compound’s clear-

ance is therefore an estimate of the relative contribution of the inhibited enzyme.

The most commonly used potent and relatively selective inhibitors are furafylline

and a-naphthoflavone (CYP1A2), sulfaphenazole (CYP2C9), ticlopidine

(CYP2C19), quinidine (CYP2D6), quercetin (CYP2C8) and ketoconazole

(CYP3A). Figure 7.12 shows how this has been used in estimating the relative

contribution of CYPs in the metabolism of amodiaquine. These data conclusively

identify CYP2C8 as the major enzyme responsible for the metabolism of

amodiaquine to its major metabolite, desethylamodiaquine.

7.8.4 In Vivo Pharmacokinetics

Whereas the in silico and in vitro ADMET studies mainly offer mechanistic

understanding of pharmacokinetics which is useful in the design of molecules

with predicted good PK, in vivo pharmacokinetics are needed to provide a whole

system profile of the test compounds. At preclinical stage, various animal models

including mice, rat, guinea pig, rabbit, dog and monkey are used to provide

pharmacokinetic data on bioavailability, absorption, volume of distribution, half-

life and clearance. While these animal models give an integrated outcome of all the
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PK processes of absorption, distribution and elimination, their major limitation is

that of species differences in such processes between them and humans. This is

particularly so for metabolic processes where, for most drugs, there are major inter-

species differences. This poses a challenge in making allometric scaling predictions

of animal PK to human PK. Other parameters such as volume of distributions and

protein binding, however, tend to scale relatively well between species. For drugs

which undergo rapid metabolism hence have their clearance limited by blood flow

instead of metabolism, they also tend to scale better between species.

Against these limitations, the in vivo preclinical PK is, however, still useful in

establishing in vitro–in vivo correlations. This is done against the debateable logic

that, if in vitro ADME parameters using sub-cellular fractions from a preclinical

animal model can be successfully scaled to the in vivo PK data in that animal, then

in vitro ADME parameters derived from human sub-cellular fractions will also be

predictive of human PK. A lack of correlation would also be interpreted in a similar

way. Most importantly, in vivo PK studies are used to establish plasma concentra-

tion–effects relationships in disease animal models. This preclinical proof-of-con-

cept data give projects confidence to take compounds through to human studies.

In routine in vivo PK profiling of compounds the test compound is given to 3

animals i.v and another three animals p.o. Samples are collected over a 24-h period,

and PK parameters (Table 7.1) are calculated from the plot of drug concentration

versus time using PK software such as Winnonlin (http://www.pharsight.com/

products/prod_winnonlin_home.php). If in vitro data show that a test compound

inhibits a human CYP whose orthologue can be found in preclinical animal models

such as CYP1A2, one can conduct preclinical in vivo drug–drug interaction studies.

Figure 7.13 demonstrates such an application of in vivo PK studies in the evaluation

of the inhibitory effects of medicinal plant extracts that had been shown to be potent

inhibitors of human CYP1A2 in vitro. Using caffeine as a marker for CYP1A2

activity, the effects of each herbal extract were evaluated on its pharmacokinetics in

rats. Data from such studies could be used to support recommendations of product

label revisions with respect to risk for drug–herb interactions.

7.8.5 In Vitro to In Vivo Correlation

Most preclinical in silico and in vitro data give information that is generally used in

a qualitative manner for SAR and sometimes quantitative manner in QSAR

modelling to guide the design of molecules. To gain confidence in the lead

compounds selected, efforts are then made to make quantitative in vitro ADME

to in vivo PK correlations. This is probably the most difficult part in drug discovery

pharmacokinetics since many of the in silico and in vitro animal model systems are

fraught with many mechanistic and physiological limitations. The ambitious effort

of putting together many pieces of ADME information to predict the in vivo

outcome has received enormous attention since its success is the key measure of

the usefulness of preclinical DMPK.
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7.8.5.1 Absorption (Fa)

The absorption rate constant, Ka, is determined from in vivo animal PK studies by

the method of residuals. It is a difficult parameter to predict since it depends on the

formulation used. The average Ka from several preclinical animal models is used

for humans. Ka has a maximum value of 0.1 min�1. Ka is useful in the estimation of

Cmax, a value important in the predictions of drug–drug interactions and design of

toxicological studies. The software, Gastroplus, which takes into account dissolu-

tion properties, can be used to give some estimates of this value.

The fraction absorbed, Fa, can be predicted from allometric scaling where rat to

human correlations are better than dog to human, with the latter usually over-

predicting Fa. For many drugs, the in vitro Caco2 permeability measures, Papp,

show a positive correlation with Fa. This is particularly so for drugs whose main

mechanism of permeability is passive transcellular. The plot of Papp versus Fa is,

however, very steep in the Papp value range of 0.2 and 0.8 � 10�6. This is why the

predictions are generally simplified to Papp > 1.0 � 10�6 being associated with Fa

of over 80%. Compounds which undergo active transport or are extensively

metabolised in the gut are more difficult to predict from permeability studies
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Fig. 7.13 The pharmacokinetics of caffeine, a marker substrate for CYP1A2, in rats, by itself and

after co-administration with various plant extracts with reported in vivo antimalarial effects that

had been found to inhibit human CYP1A2 in vitro (Moyo et al. unpublished)
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using Caco2 cells. Better predictions can be made using pieces of intestinal tissues

in an Ussing chamber permeability/absorption system.

The software, Gastroplus, can be used to predict Fa where solubility and

dissolution rates versus GI transit time are also taken into account. Using this

software, more complex modelling that takes into account compound stability in

gastrointestinal juice, chemical stability at low pH, efflux, uptake and metabolism

in the gut wall can be considered.

The equation used in the prediction of the concentration of drug absorbed is

Cabs ¼ Cmax þ ka � Fa � Dose
QH

; (7.1)

where Cabs—concentration of drug absorbed, Cmax—maximal plasma concentra-

tion, Ka—absorption constant, Fa—fraction absorbed and QH—liver blood flow.

7.8.5.2 Volume of Distribution (Vd)

Volume of distribution (Vd) can be estimated using the simplified Oie–Tozer

equation:

V ¼ Vp þ fu � Vt

fu;t
; (7.2)

where V is volume of distribution, Vp is plasma volume, fu is unbound fraction in

plasma, Vt is volume of tissue and fu,t is the unbound fraction in tissue.

The fu,t, Vp and Vt for each species can be obtained from the standard data tables

found in the literature. The average fu,t in animals is assumed to be equal to fu,t in
humans and is used in Eq. (7.2). The plasma protein binding, fu, is measured in vitro

using human plasma.

Allometric scaling can then be used to predict Vd in humans from animal Vd by

plotting the total volume in preclinical species (in units of litres per animal) versus

animal body weight (kg) on a log–log scale:

Log10V ¼ a Log10 Bwð Þ þ b: (7.3)

The free volume of distribution, Vu, can be normalised by taking into account

differences in protein binding between species. This normalised value can then be

used in the allometric scaling discussed above. Such normalised values tend to give

better predictions of Vd in humans with a twofold order of magnitude of the real

value:

Vanimal;normalized ¼ fu;human � Vanimal

fu;animal

: (7.4)
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7.8.5.3 Hepatic Clearance (CLH)

Clearance is one of the most important PK parameters because it affects both how

much and how often a drug should be administered. When combined with volume

of distribution, it gives the half-life, t1/2 ¼ 0.693 Vd/CL, and when combined with

fraction absorbed, Fa, it gives the bioavailability (F). The relationship with bio-

availability is based on the following relationships: CL ¼ Dose i.v/AUC i.v, and

F ¼ (AUC p.o/Dose p.o)/(AUC i.v/Dose i.v). Substitutions with CL will then give

F ¼ (AUC p.o/Dose p.o) � CL. Successful prediction of drug clearance from

preclinical data is therefore of high priority in drug discovery [11].

Against a background where allometric scaling of animal clearance to humans

has not been successful, the development of in vitro metabolism models based on

human tissues, microsomes and hepatocytes has resulted in improved

in vitro–in vivo correlations. The in vitro–in vivo correlation starts by scaling up

the intrinsic in vitro clearance, CLint (ml/min/mg liver microsomes or ml/min/

million hepatocytes), from the test tube experiment to hepatic clearance per kg

(ml/kg) animal model or human body weight. This is done using scaling factors for

the various species used in drug discovery (Table 7.7).

The scaling equation for in vivo clearance ( ml/min/kg body weight) is

In Vivo CLint ¼ In Vitro CLint �MPPG or HPGLð Þ � liver weight
1,000 � body weight

: (7.5)

To estimate hepatic clearance from this intrinsic metabolic clearance, physio-

logical scaling factors such as liver blood flow (QH), plasma protein binding (PPB)

and blood plasma partitioning (B/P) are required. These factors are then input into

one of several models for the prediction of hepatic clearance (CLH), the well-stirred

model, the dispersion model or the parallel tube model.

In the “well-stirred” or the “venous equilibrium” model, the liver is assumed to

be a single “well-stirred” compartment, and the unbound concentration in the

venous blood leaving the organ is in equilibrium with and equal to the intracellular

unbound concentration in the hepatocytes.

Table 7.7 Scaling factors used in the predictions of in vivo clearance from in vitro data

Species Body

weight (kg)

Liver

weight (g)

QH

(ml/min/kg)

MPPGL

(microsomes

mg prot/g liver)

HPGL

(hepatocytes 106

cells/g liver)

Mouse 0.025 1.5 152 45 130

Hamster 0.12 6 43 45 120

Rat 0.25 11 80 45 125

Cynomolgus 3 125 44 45 120

Dog 12 384 33 43 120

Human 70 1,680 21 39.8 117.5
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The hepatic clearance, CLH, is expressed as

CLH ¼ QH � fuB � CLint

QH þ fuB � CLint

; (7.6)

where CLint is the intrinsic clearance [from Eq. (7.5)], reflecting the actual meta-

bolic capacity of the enzyme system when there is free access to substrate, fuB is the

free fraction in whole blood and QH is the total liver blood flow.

In the parallel tube model, the liver is assumed to be composed of a number of

parallel tubes, with enzymes uniformly distributed along the tubes. The unbound

blood concentration at any point along the tube is assumed to be in equilibrium with

the intracellular unbound concentration:

CLH ¼ QH 1� e
fuB �CLint

QH

� �
: (7.7)

The dispersion model is even more physiologically “correct” than the other two

models in that it also incorporates axial dispersion of blood caused by the branching

and connections of the sinusoids. The degree of dispersion is expressed by the

dispersion number, Dn. The model assumes that the diffusion of drug along the

sinusoids is much more rapid than the blood transit through the liver. At its two

extremes, the dispersion model collapses to either the parallel tube model (Dn ! 0)

or the well-stirred model (Dn ! 1). The elimination capacity is expressed by the

efficiency number Rn:

Rn ¼ fuB � CLint

QH

: (7.8)

The mathematical expression is more complex than for the other two models:

CLH ¼ QH 1� 4a

ð1þ aÞ22eða�1Þ=2DnÞ � ð1� aÞ22eða�1Þ=2DnÞ

" #
; (7.9)

where a ¼ (1 þ 4RnDn)1/2.

The difference between these three liver models is in their description of the

concentration profile across the liver. This has most effect for high clearance

compounds, which results in the highest difference in concentration across the

liver. A comparison of the predictive value of the three models was studied for

28 compounds, and none of the models gave consistently better results than the

other models. Since the well-stirred model is the simplest in nature, it has become

the one most commonly used.

In general practice in pharmacokinetic studies, we measure plasma clearance

and make the assumption that the B/P is 1.0. This might not be true for some drugs

such as chloroquine and some 4-aminoquinolines which tend to partition into red
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blood cells. For these drugs, plasma clearance is not equal to blood clearance. In

general, we also assume that binding to microsomes or cellular components is not

important, but for some drugs, clearance predictions are improved by taking into

account binding to in vitro biological components. Correction of microsomal

binding significantly improves the prediction of clearance of acidic compounds.

The ideal equation for the prediction of clearance is therefore

CLb ¼
QH � CLint � fublood

fumic

� �

QH þ CLint � fublood

fumic

� � : (7.10)

Using this equation, it is clear that the clearance of a drug cannot be greater than

the blood flow through that organ. For compounds with very high intrinsic clear-

ance, the equation reduces to CLb ¼ QH, and for low instrinsic clerance drugs, the

equation reduces to CLb ¼ CLint. Compounds are then ranked as low clearance

(<25% QH) or high clearance (>75% QH).

7.8.5.4 Bioavailability (F)

Bioavailability is determined by both absorption and hepatic clearance:

F ¼ Fa þ fg þ 1� CLh

QH

� �
; (7.11)

where CLH/QH ¼ extraction ratio.

In a scenario where there is complete absorption and no gut metabolism, bioavail-

ability will be equal to 1�extraction ratio (E). For cases where this is not so, one

needs to calculate the concentration of the drug that is absorbed, Cabs, using Eq. (7.1):

Cabs ¼ Cmax þ ka � Fa � Dose
QH

:

At the preclinical stages, Ka can be calculated from animal model PK studies and

assumed to be the same in humans; Fa, fraction absorbed, can be estimated from

Caco2 permeability studies. Estimation of human bioavailability from preclinical

animal by allometric scaling is generally not good but is reasonable with data from

monkey studies.

7.8.5.5 Half-Life (t1/2)

The half-life along with the therapeutic index and the PK–PD relationship dictates

the dosing frequency. It is also used in attempts to estimate human Cmax, hence

important for safety and CYP inhibition studies. Combining CL and Vd at steady
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state (Vss) gives the effective half-life: t1/2 ¼ 0.693 Vd/CL. Allometric prediction of

half-life from preclinical animals generally under-predict this parameter, with

human half-lives being >5-fold higher than those in rats and threefold higher

than in dogs and monkeys. Use of in vitro data for CL from human cellular and

sub-cellular systems and in vivo Vss from preclinical animal models gives improved

results for half-life in humans.

7.9 Drug–Drug Interactions

Metabolism-based drug–drug interaction (DDI) is responsible for clinically impor-

tant safety and efficacy issues in the use of medicines. Inhibition is generally

associated with increased plasma concentration of the victim drug which might

result in increased incidences and severities of adverse drug reactions (ADRs). On

the other hand, induction generally results in reduced plasma levels of the victim

drugs which might result in sub-therapeutic concentration which can promote the

emergence of drug resistance in the treatment of infectious diseases. Prediction of

the effects of induction is still qualitative while that for inhibition can now be done

quantitatively. In this chapter, we will present the approaches used in the prediction

of inhibition based drug–drug interactions.

With the data generated from in vitro experiments on the IC50, inhibition

constant (Ki), mechanism of inhibition and estimated pharmacologically effective

concentration, EC50, one can make predictions of the likelihood of enzyme inhibi-

tion based drug–drug interactions in the early phases of drug discovery. The Food

and Drug Administration, FDA, has already come up with comprehensive

guidelines on the determination of the risk for DDIs (http://www.fda.gov/cder/

guidance/index.htm). For general evaluations of DDIs, one can use the assumption

that effective plasma concentrations will be around 1.0 mM for the selective and

potent new chemical entities. This assumption should be used with caution and re-

evaluate compounds for DDI risk as PK/PD studies generate a more accurate

estimation of likely plasma concentrations.

The simple prediction equation is therefore [I]/Ki, where [I] is the concentration
of inhibitory test compound. The value to use for this concentration is a highly

debated point as it can be total Cmax, Css, unbound Cmax, Css, total or unbound Imax

(the concentration entering the liver from the portal vein). FDA guidelines are

based on total plasma concentrations, Cmax, but most researchers are increasingly

using the unbound concentration entering the liver. FDA has ranked the risk for

inhibition based on the above assumption as follows:

Ki I/Ki In vivo interaction

Reversible mechanism

<1 mM >1 Highly likely

1–50 mM 0.1–1 Possible

>50 mM <0.1 Remote
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A more accurate way of quantifying DDI is to determine the extent of inhibition

as the reduction in clearance or increase in AUC. This can be achieved using the

following equations:

Fraction of remaining activity vi/vo ¼ VmaxS=Km 1þ I=Kið Þð Þ= VmaxS= Km þ Sð Þð Þ

¼ ðKm � SÞ
Km 1þ I=Ki þ Sð Þ

Fraction of inhibition ðiÞ ¼ 1� vi/voð Þ ¼ 1��ððKm� SÞÞ
Km 1þ I½ �=Kiþ Sð Þ ¼

I½ �
I½ � þKi 1þ S=Kmð Þ :

With the assumption that in vivo, drug concentrations (S) will be much lower

than Km, the fractional inhibition reduces to [I]/([I] þ Ki). The decrease in clear-

ance or increase in AUC can then be estimated by the equation:

CLwith inhibitor/CLwithout inhibitor ¼ AUCwith inhibitor/AUCwithout inhibitor

¼ 1= 1� I½ �= I½ � þ Kið Þ

¼ 1þ I½ �=Ki:

Since most drugs are eliminated by many routes, the equation needs to take into

account the fraction of the drug’s clearance, fm, which is by the inhibited enzymes.

The fraction of the metabolic route (fm) inhibited is very important in estimating the

risk for DDI. fm > 0.8 is associated with high risk for DDI since the metabolism of

the affected drug significantly depends on the affected enzyme. AUC increases of

>2-fold are associated with high risk for DDI.

In the early phases of drug discovery, when IC50 only are determined, one can

estimate the Ki for competitive inhibition as the worst case scenarios where Ki ¼
IC50/2. For non-competitive inhibition, Ki ¼ IC50.

For the estimation of inlet concentration, the following equation is used:

I½ �inlet;u;max ¼ I½ �max þ
ka � Fa � D

QH

� �
� fu:

Assuming Cmax to be the effective concentration interacting with the drug-

metabolising enzymes, we have estimated the likelihood of DDI in the use of

anti-parasitic drugs. Using the simple model of Cmax, we have estimated the

likelihood of DDI in the use of anti-parasitic drugs (Table 7.8). In vivo studies on

the inhibitory effects of thiabendazole and artemisinin on CYP1A2-mediated

metabolism confirmed these in vitro data. Thiabendazole and artemisinin inhibited

the formation of paraxanthine from caffeine by 92% and 66%, respectively [12].

7 Application of In Silico, In Vitro and In Vivo ADMET/PK Platforms 187



7.10 Lead Optimisation

The lead optimisation stage utilises all in silico, in vitro and in vivo tools to build

knowledge that can guide the medicinal chemists in addressing ADME issues in the

selected series and enable PK scientists to make first dose in man predictions of new

chemical entities. Before the onset of lead optimisation (LO), the candidate drug

target profile (CDTP) must be formulated with respect to oral bioavailability,

clearance, effective half-life, therapeutic dose, drug–drug interactions caused

by the CD and risk for the generation of reactive metabolites. These can differ

significantly depending on the intended use of the drug, e.g. if the drug is aimed at

long duration of action, then the design must aim for a drug with a larger half-life

(t1/2) and a smaller elimination rate constant (Kel). If on the other hand a drug is too

toxic or is required for a short duration of action, the design should aim for a smaller

half-life and larger elimination rate constant. For a typical once-daily oral drug, the

CDTP has generally a bioavailability of>25% to reduce the risk of large variability

and a dose size of <300 mg to ensure that it fits in average-size tablet. Other CDTP

goals are a low risk for reactive metabolites, minimal or reduced enzyme or

transporter inhibition or induction to avoid drug–drug interactions.

During lead optimisation, iterations of DMPK and pharmacological evaluations,

design of molecules and synthesis of molecules define a high point in the creative

process of drug discovery (Fig. 7.14). The depicted movement of compounds and

information shows an integrated paradigm that has come to characterise most drug

discovery approaches used by leading pharmaceutical companies. This approach

requires multidisciplinary teams that are tightly coupled to each other for rapid data

turn-around times, design and implementation strategies.

Table 7.8 Inhibitory effects of some anti-parasitic drugs on drug-metabolising CYPs [13]

CYP/compound Ki (mM) Type of

inhibition

Plasma

Cmax (mM)

Inhibitory

potency ([I]/Ki)

Predicted %

inhibition

[([I]/([I] + Ki))

� 100]

CYP1A2

Artemisinin 0.43 Competitive 1.38 3.20 76

Niclosamide 2.70 Mixed Negligible – Negligible

Thiabendazole 1.54 Mixed 89 57.80 98

Primaquine 0.22 Competitive 0.44 2.0 67

Dihydroartemisinin 3.67 Competitive 2.50 0.68 41

CYP2D6

Quinine 15.51 Competitive 15.41 0.99 50

Chloroquine 12.68 Competitive 0.39 0.031 3

Amodiaquine 2.1 Competitive 0.74 0.35 26

Desethylamodiaquine 4.13 Mixed 444 107.51 99

Proguanil 6.76 Mixed 0.76 0.11 10

Cycloguanil 5.97 Competitive 0.21 0.04 3
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The variables described in this chapter clearly indicate that the ADME process is

dependent on a host of chemical properties. It is also evident that lipophilicity (the

tendency of a compound to partition into a non-polar lipid matrix versus an aqueous

matrix) has a major impact on all the ADME processes, making it one of the most

important parameters determining both drug pharmacokinetics and pharmacody-

namics. It has been shown to correlate with compound solubility, permeability,

metabolism, protein binding, distribution and pharmacologic potency. This prop-

erty has resulted in the so-called physicochemical dilemma where it positively

correlates with parameters which require opposite optimisation directions. For

example, high lipophilicity is predictive of poor solubility but predictive of good

permeability, yet one needs both good solubility and permeability for good oral

absorption. High lipophilicity positively correlates with metabolic instability, high

enzyme inhibitory effects and high drug target potency, making it difficult to

independently optimise for these parameters. These are some of challenges lead

optimisation scientists will have to solve towards the nomination of a candidate

drug with predicted good PK/PD properties for the first time in human studies. The

preclinical ADME and PK parameters culminate in dose in man estimation

(Fig. 7.15).

Fig. 7.14 The integrated drug discovery paradigm that is driven by a tight interplay of DMPK,

medicinal chemistry and pharmacology [14]

Fig. 7.15 Equation for dose estimation showing the importance of clearance and bioavailability

7 Application of In Silico, In Vitro and In Vivo ADMET/PK Platforms 189



7.11 Conclusions

The ADME and PK studies discussed in this chapter are now an integral part of the

drug discovery efforts in Africa where they guide medicinal chemistry and phar-

macology in the design and eventual selection of candidate drugs predicted to be

safe and efficacious in humans. Figure 7.14 shows the new paradigm of drug

discovery where ADME and PK have evolved from descriptive sciences to predic-

tive sciences that are contributing to the reduction of attrition rates of new chemical

entities. For the pharmaceutical industry, integration of DMPK in drug discovery

and development has successfully addressed this parameter as a hurdle in this

complex and expensive process. It has left issues of therapeutic efficacy and

toxicity as outstanding causes of high attrition rates of new chemical entities.

Continued ADMET/PK research is needed to tease out its contribution to the

continuing challenge of poor efficacy and idiosyncratic reactions associated with

some new chemical entities.

For Africa, there is need to have more laboratories and institutions with

knowledge and technical capacity to provide ADME/PK support to drug discov-

ery projects. The successful effort at AiBST can be used as a template for the

promotion of ADMET/PK on the continent. Drug discovery activities in Africa

are projected to increase in the framework of the African Network for Drug and

Diagnostic Innovation (ANDI) which was recently initiated (http://www.andi-

africa.org). AiBST will contribute to ANDI projects through support of medicinal

chemistry- and pharmacology-driven projects with ADME/PK input and services.

New applications of ADME/PK towards the safe and efficacious use of herbal

medicines are also under development at AiBST. Preliminary studies have

resulted in the setup of in vitro and in vivo platforms for the evaluation of herbal

medicines for drug–herb metabolic interactions [15]. In yet another innovative

approach, we have initiated collaborations with medicinal chemists in

implementing ADMET-guided drug discovery from natural products and through

rescuing of old drugs by addressing their ADMET liabilities [16]. Our work on

amodiaquine aims at addressing the toxicity issues associated with the antimalar-

ial whilst our work on praziquantel aims at addressing the issue of low oral

bioavailability associated with this antischistosomicide. With respect to

pharmacogenetics of drug metabolism, our work is showing that for some drugs

such as efavirenz, the genetic polymorphism of CYP2B6, the enzyme responsible

for the drug’s metabolism and elimination, could be a clinically relevant bio-

marker in personalising the treatment of HIV/AIDS patients. These developments

are further expanding the utility of ADMET/PK in drug discovery, development

and rational clinical use of medicines.
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