
Typed Assembler for a RISC Crypto-Processor

Peter T. Breuer1,� and Jonathan P. Bowen2,��

1 Department of Computer Science, University of Birmingham, UK
ptb@cs.bham.ac.uk

2 Faculty of Business, London South Bank University, UK / Museophile Limited, UK
jonathan.bowen@lsbu.ac.uk
http://www.jpbowen.com

Abstract. Our general purpose crypto-processor runs RISC machine code in
an encrypted environment, reading encrypted inputs and generating encrypted
outputs while maintaining data encrypted in memory. Its intended use is secure
remote processing. However, program addresses are processed unencrypted, re-
sulting in a mix of encrypted and unencrypted data in memory and registers at
any time. An aspect of compiling for it is typing the assembler code to make sure
that those instructions that expect encrypted data always get encrypted data at
execution time, and those that expect unencrypted data get unencrypted data. A
type inference system is specified here and transformed into an executable typing
algorithm, such that a type-checked asembler program is guaranteed type-safe.

1 Introduction

The term ‘crypto-processor’ has been used to label several hardware-based solutions
aimed at helping system security [2,5,7]. Our crypto-processor [1] is a general purpose
unit that performs computations on mixed unencrypted and encrypted data held at en-
crypted addresses in memory. Its instruction set is standard RISC [6] but interpreted on
encrypted data. In other words, when the processor computes 43+43=1234789 via an
‘addiu’ machine instruction, it may well be computing an encrypted version of 1+1=2
but the latter ‘translation’ should be unknown to all but the remote owner. The processor
characteristics are summarised in Box 1.

Box 1. A crypto-processor . . .

. . . for the purposes of this article is a RISC CPU that
manipulates mixed encrypted and unencrypted data in
general purpose registers and memory. It runs on:

– encrypted data values and addresses, giving en-
crypted results where appropriate;

– unencrypted program addresses; while

– data and function codes embedded in the machine
code are encrypted, register indices unencrypted.

The intention is to be able to hide
data and process from prying eyes in
a remote computing environment – a
cloud, for example. The hardware de-
sign is intended to make that feasible
and secure even in simulation. The
detail of the design is such that: (i)
arithmetic and logical machine code
instructions act on encrypted data and
encrypted data addresses and produce

� This paper was initiated through an academic visit by the first author to London South Bank
University as a Visiting Research Fellow during 2011–12.

�� Jonathan Bowen is grateful for financial support from Museophile Limited.

G. Barthe, B. Livshits, and R. Scandariato (Eds.): ESSoS 2012, LNCS 7159, pp. 22–29, 2012.
© Springer-Verlag Berlin Heidelberg 2012

http://www.jpbowen.com

Typed Assembler for a RISC Crypto-Processor 23

encrypted data; (ii) control instructions (branches, jumps, etc) act on unencrypted
program addresses; (iii) data embedded in machine code instructions and instruction
function codes are encrypted; (iv) data or data addresses in memory and registers are en-
crypted; (v) program addresses in memory and registers are unencrypted; (vi) memory
is divided into heap, which contains encrypted data, and stack, which contains mixed
encrypted and unencrypted data.

As a consequence of the program addresses remaining unencrypted, programs are
generally arranged in contiguous areas of memory. While that is certainly an advantage
for cacheing, there is a different physical reason behind it: the circuit that updates the
program counter is physically distinct from the circuitry that does the general arithmetic
in the CPU. There is also a cryptographic reason: since the usual change in the program
counter from cycle to cycle is a straightforward increment, plenty of information on the
encryption could be gathered were the program counter to be observed (nevertheless,
there is no fundamental design impediment to encrypting program addresses too).

That is a brief overview of how our crypto-processor works, but where is the neces-
sity for type-checking assembler code? The answer is that at least one standard RISC
machine instruction, the ‘jump register’ (jr) instruction, expects to read an unencrypted
program address value from a register. And it is not the only instruction to expect un-
encrypted data – or to generate it. Thus, at any given moment, memory and registers in
our crypto-processor contain a mix of encrypted and unencrypted data. That raises the
question of whether a program for the crypto-processor is properly type-safe:

Definition 1. A program is type-safe for a crypto-processor if those machine instruc-
tions in the program that work on encrypted data always get encrypted data on which
to work during execution of the program, while those instructions that work on unen-
crypted data always get unencrypted data on which they can work.

This paper sets out a type-checking algorithm for assembler programs written for the
crypto-processor, such that when a program type-checks, then it is type-safe.

The organisation of this paper is as follows: Section 2 introduces type-checking. Sec-
tion 3 details the RISC+CRYPT assembler language (in an unencrypted representation)
for our crypto-processor, and gives the inference rules of a type-system. Section 4 turns
the inference system into an algorithm which deduces types. Section 5 elaborates the
type-system (and associated type-checking algorithm) so that a RISC+CRYPT program
which type-checks successfully is guaranteed type-safe.

2 Type-Checking

Successfully type-checking a program guarantees that:

(a) the distribution of encrypted and unencrypted data in the registers at every pass
through the encrypted machine code always satisfies the same pattern at the same
point in the code;

(b) the distribution of encrypted and unencrypted data in the registers is compatible
with the instruction operating on them at every point.

24 P.T. Breuer and J. Bowen

Box 2. A simple system of types . . .

. . . describes register contents each processor cycle:

c // encrypted data
u // unencrypted data
x // type variables match all data

The first claim says that the pat-
tern of encrypted and unencrypted
data in registers is stable as loops are
repeated, subroutines are called, etc.
The simple system of encrypted ‘c’
and unencrypted ‘u’ data types used
by the analysis is shown in Box 2.

For example, a pattern of types in
registers 0 to 31 before and after the move t2 t3 (i.e., ‘t2 ← t3’ for registers t2, t3)
instruction, is shown in Box 3. After the instruction, the type of the data in register t2
may be either encrypted or unencrypted, but it is constrained to be the same as the type
of the data in register t3. The type signature is expressed as follows:

move t2 t3 :: [t3 : x]→ [t2 : x, t3 : x]

Variable x matches any data type and every register not explicitly mentioned remains
unchanged in type. The notation will be used throughout this article.

Box 3. A register type pattern . . .

. . . around the move t2 t3 instruction (i.e., t2← t3):

reg. 0 1 2 3 . . . 10 11 . . .

before x0 c x2 u . . . c x11 . . .
after x0 c x2 u . . . x11 x11 . . .

Registers t2, t3 are registers 10, 11 respectively.

What of the second guarantee af-
forded by the typing algorithm? The
claim is that the before-after patterns
of register occupation around each in-
struction conform to the semantics
of the instruction. In the case of the
move t2 t3 instruction, that means
that whatever kind of data was in reg-
ister 11 (t3) at the beginning, is also the kind of data found in register 10 (t2) afterwards,
and nothing else has changed, just as in Box 3.

Box 4. The assembly language . . .

. . . for the crypto-processor includes ‘CRYPT’ pseudo-
instructions in addition to RISC assembler:

– pushn, popn – in-/decrease stack by n words;

– pushu r, pushc r – append to stack one new
word copied from plaintext/encrypted register r;

– popu r, popc r – displace last word of plain-
text/encrypted stack content to register r;

– putu r n, putc r n – copy plaintext/encrypted
contents of register r to n’th stack word;

– getu r n, getc r n – copy the plaintext/encrypted
n’th stack word to register r.

The crypto-processor assembler
contains ‘CRYPT’ pseudo-instructions
that the compiler translates to plain
RISC machine code, but which are
there to allow assembler typing to
proceed with accuracy. Box 4 lists
these succinctly. They deal with data
transfers to and from the stack area,
which are implemented using RISC
add, load and store machine instruc-
tions. However, the machine code
may access anywhere in memory,
both stack and heap, and those two ar-
eas are treated very differently by our
analysis: heap may only contain encrypted data in our design, while stack may con-
tain both encrypted and unencrypted data (a polyvalent stack is necessary to the design
because some RISC machine instructions – jumps and branches – require unencrypted
program addresses in registers, which data needs to be saved on the stack during sub-
routine calls). The extra CRYPT pseudo-instructions allow the type analysis of the as-
sembler to adequately distinguish the two areas of memory.

Typed Assembler for a RISC Crypto-Processor 25

Box 5. RISC assembly language.

lui r n // Set reg. content.
sb r1 n(r2) // Store byte to mem.
lb r1 n(r2) // Load byte from mem.
sw r1 n(r2) // Store word to mem.
lw r1 n(r2) // Load word from mem.
jr r // Jump to addr. in reg.
j a // Jump to addr.
jal a // Jump and link.
bnez r a // Branch if reg. �= 0.
nop // No-op, do nothing.
move r1 r2 // Copy from reg. to reg.
ori r1 r2 n // Arithmetic bitwise or.
addiu r1 r2 n // Arithmetic add op.
. . . // . . .

Embedded data n is encrypted, embedded program ad-

dresses a and register indices r are unencrypted.

The RISC part of the assembler in-
struction set is listed in Box 5. It is en-
tirely standard and translates directly
to machine code instructions.

3 Assembler Typing

This section will set out a type system
based on the c, u types for the crypto-
processor assembler code.

Most machine instructions do not
perturb the ordinary linear flow of
control through a program. These lin-
ear instructions comprise all instruc-
tions apart from jumps and branches.
When a linear instruction ia at ad-
dress a executes, control inevitably
passes afterward to the next program instruction after it in positional sequence in mem-
ory. In a RISC 32-bit MIPS [4] machine, the next instruction is at address a+4 (4 bytes
further on). To avoid prejudice we set:

Definition 2. a′ is the address of the successor instruction sited immediately beyond
the instruction ia at address a in the program code.

We will use a′ throughout this paper in place of any particular increment a+ length(ia).
Type signatures for linear assembler instructions can be expressed in the notation of

Sect. 2, as shown in Box 6. For example, the lui r n instruction sets the the content of
a register r to the encrypted value 216n (n is supplied as an encrypted value embedded
in the instruction itself), and thus its type signature is given as []→ [r : c] in Box 6.

Box 6. Linear RISC+CRYPT signatures.

lui r n :: []→ [r : c]
sb r1 n(r2) :: [r1, r2 : c]→ [r1, r2 : c]
lb r1 n(r2) :: [r2 : c]→ [r1, r2 : c]
sw r1 n(r2) :: [r1, r2 : c]→ [r1, r2 : c]
lw r1 n(r2) :: [r2 : c]→ [r1, r2 : c]
nop :: []→ []
move r1 r2 :: [r2 : x]→ [r1, r2 : x]
ori r1 r2 n :: [r2 : c]→ [r1, r2 : c]
addi r1 r2 n :: [r2 : c]→ [r1, r2 : c]
. . .
putc r n :: [r, sp : c]→ [r, sp : c]
putu r n :: [r : u, sp : c]→ [r : u, sp : c]
getc r n :: [sp : c]→ [r, sp : c]
getu r n :: [sp : c]→ [r : u, sp : c]
push n :: [sp : c]→ [sp : c]
pop n :: [sp : c]→ [sp : c]

Placing two instructions of signa-
tures t1 → t2 and t3 → t4 in se-
quence is only possible if the types
t2 and t3 can be reconciled. If type t2
says the type of register 1 is c and type
t3 says it is u, then it is not possible.
But reconciliation, if possible, yields:

Definition 3. Sequential composition:

t1 → t2 ; t3 → t4
�
=

unify(t2, t3)(t1 → t4)

where ‘unify’ delivers the variable
bindings required to reconcile pattern
t2 with t3, and applies them to the
type t1 → t4, giving the type of the
sequential composition.

26 P.T. Breuer and J. Bowen

Box 7. Simple RISC+CRYPT typing rules . . .

. . . in terms of the instruction [ia] at address a and the type at
the next instruction address a′ after a by position:

T � a′ :: t1 → t2
T � a :: []→ [r:c] ; t1 → t2

[lui r n]

T � a′ :: t1 → t2
T � a :: [r1, r2:c]→ [r1, r2:c] ; t1 → t2

[sb r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[lb r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r1, r2:c]→ [r1, r2:c] ; t1 → t2

[sw r1 n(r2)]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[lw r1 n(r2)]

T � a :: [r:u]→ [r:u]
[jr r]

T � b :: t1 → t2
T � a :: t1 → t2

[j b]

T � b :: t1 → t2 T � a′ :: t3 → t4
T � a :: []→ [ra:u] ; t1 → t2 ; t3 → t4

[jal b]

T � b[r : c] :: t1 → t2 T � a′[r : c] :: t1 → t2
T � a :: [r : c]→ [r : c] ; t1 → t2

[bnez r b]

T � a′ :: t1 → t2
T � a :: t1 → t2

[nop]

T � a′ :: t1 → t2
T � a :: [r2:x]→ [r1, r2:x] ; t1 → t2

[move r1 r2]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[ori r1 r2 n]

T � a′ :: t1 → t2
T � a :: [r2:c]→ [r1, r2:c] ; t1 → t2

[addiu r1 r2 n]

. . .

T � a′ :: t1 → t2
T � a :: [r, sp:c]→ [r, sp:c] ; t1 → t2

[putc r n]

T � a′ :: t1 → t2
T � a :: [r:u, sp:c]→ [r:u, sp:c] ; t1 → t2

[putu r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [r, sp:c] ; t1 → t2

[getc r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [r:u, sp:c] ; t1 → t2

[getu r n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [sp:c] ; t1 → t2

[push n]

T � a′ :: t1 → t2
T � a :: [sp:c]→ [sp:c] ; t1 → t2

[pop n]

Other program type calcu-
lations are more complicated.
In general two type patterns t1,
t2 (written ‘t1 → t2’) have to
be developed for every instruc-
tion address a in a program:
t1 is the most general register
type pattern that the instruction
may validly encounter when it
starts; t2 is that which subse-
quently obtains at program ter-
mination (after the instruction
at some address b). For a sub-
routine, exit is just after the jr
that returns control to caller.

Definition 4. A collection of
types t1 → t2 indexed by entry
addresses a is called a theory.
We write

T � a :: t1 → t2

for ‘theory T lists the type
t1 → t2 against address a’.

In an actual program run, the
register type pattern encoun-
tered by any particular instruc-
tion ia at address a may be
strictly less general than the
type t1 recorded in theory T .
It will be the result σ(t1) of
a substitution σ for type vari-
ables in t1. The register type
pattern at the end of the run
will then match σ(t2).

The deduction rules of a
type theory T for our crypto-
processor are given in Box 7.
Each rule is associated with a
single program address a, and the instruction ia located at that address. For the branch
rule, both possible continuations after the branch test must give rise to the same register
type pattern at program exit. The branch test requires an encrypted datum in register r
and the following notation helps express the rule succinctly:

Definition 5. T � b[r : t] :: t1 → t2
�
= T � b :: t3 → t4

where t3 → t4 is such that [r : t]→ [r : t] ; t1 → t2 = [r : t]→ [r : t] ; t3 → t4.

(two branch types become equal after substituting t for the type of r on entry to both).

Typed Assembler for a RISC Crypto-Processor 27

4 The Basic Algorithm

Box 8. Altered rules . . .

. . . for calculating the fixpoint type theory Tn = Tn−1 of a program, in
terms of the instruction [ia] at address a and the following instruction ad-
dress a′. All other rules from Box 7 have Tn substituted for T throughout.

T0 � a :: [0:xa0, 1:xa1, . . .]→ [0:ya0, 1:ya1, . . .]
[∗]

Tn−1 � b :: t1 → t2
Tn � a :: t1 → t2

[j b, b ≤ a]

Tn−1 � b[r : c] :: t1 → t2 Tn � a′[r:c] :: t1 → t2
Tn � a :: [r:c]→ [r:c] ; t1 → t2

[bnez r b, b ≤ a]

Tn−1 � b :: t1 → t2 Tn � a′ :: t3 → t4
Tn � a :: []→ [ra : u] ; t1 → t2 ; t3 → t4

[jal b]

Calculating the the-
ory T that provides
the type patterns at
every point in a piece
of code is not straight-
forward. Loops set up
equations that cannot
be solved by substitu-
tion and a fixpoint ap-
proach is needed.

To that end, define
Tn as the n’th itera-
tion of a series lead-
ing to the final theory T that is a fixpoint of the iteration. Initially, the theory assigns to
address a the ‘any’ pattern, in which all registers are bound to different type variables
and inputs are not related to outputs (rule [*] in Box 8). A theory Tn−1 in the sequence
is used to help construct the next theory Tn, n > 0. by substitution for free variables in
the types at each address a, as shown in Box 8. In all other cases, the rules are just as
given in Box 7 but with T replaced with Tn throughout.

When no improvement is obtained from Tn−1 to Tn at any address a, then the fix-
point theory T has been reached. Substituting T for Tn and Tn−1 in Box 8 shows that
the fixpoint T satisfies the rules of Box 7. There are only a finite number of proper sub-
stitutions possible as steps of the algorithm, so the iteration does terminate. In practice
the number of iterations required is approximately the number of backward jumps and
branches plus subroutine calls in the code.

5 Taking Account of the Stack

Although we have supplied a type system, it is not the case that, as is, the system con-
strains a type-checked program to be type-safe. The problem is evident in the fragment:

putu t1 0; getc t1 0

which writes an unencrypted value to the stack and then recovers the same datum as
an encrypted value. The type of register t1 changes from u to c yet the content of the
register does not change. The getc instruction encounters an unencrypted value on the
stack where it expects an encrypted value, yet the fragment type-checks. ‘Typeable’ via
the system given so far means that code is type-safe for the crypto-processor only under
the hypothesis that the stack operations in the code are independently type-safe.

To remove that additional assumption, the types of the values in different stack slots
have to be tracked. The size of the stack will from now on be denoted by an annotation
on the right side of a list of register types [r1 : t1, r2 : t2, . . .]

d
k. The subscript k indicates

the list is k ≥ 32 long, and the last k− 32 list entries represent the stack slots, while the
first 32 represent the registers proper. The size d ≤ k − 32 of the current stack frame

28 P.T. Breuer and J. Bowen

is indicated by the superscript on the list. Writing to the n’th from the bottom word on
the stack in the current frame with putu r n accesses the n’th of the last d list entries,
which is entry number k − d+ n in the list.

Box 9. Extended type rules . . .

. . . which track types through the stack. The other rules of Box 7 uniformly
have �dk added to the type assignment lists, indicating that the list is of
length k and the last d entries represent the current stack frame (the first
32 of k are the registers), and is unchanged through the rule. The rules
are for instruction [ia] at address a in terms of the type at the following
program address a′.

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[r:u]dk→[r:u, k−d+n:u]dk ; t1�dk→t2�d
′

k′
[putu r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[r:c]dk→[r:c, k−d+n:c]dk ; t1�dk→t2�d
′

k′
[putc r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[k−d+n:u]dk→[r:u, k−d+n:u]dk ; t1�dk→t2�d
′

k′
[getu r n]

T�a′ ::t1�dk→t2�d
′

k′

T�a ::[k−d+n:c]dk→[r:c, k−d+n:c]dk ; t1�dk→t2�d
′

k′
[getc r n]

T�a′ ::t1�d+n
k+n→t2�d

′
k′

T�a ::[]dk→[k:xk . . . k+n−1:xk+n−1]
d+n
k+n ; t1�d+n

k+n→t2�d
′

k′
[pushn]

T�a′ ::t1�d−n
k−n→t2�d

′
k′

T�a ::[k−n:xk−n . . . k−1:xk−1]
d
k→[]d−n

k−n ; t1�d−n
k−n→t2�d

′
k′

[popn]

T�b ::t1�d32,d→t2�d32,d T�a′ ::t3�dk→t4�d
′

k′

T�a ::[]dk→[ra:u]dk ; t1�dk→t2�dk ; t3�dk→t4�d
′

k′
[jal b]

The type rules of
Box 7 are altered
as shown in Box 9.
In particular, the evi-
dently too-loose typ-
ing given for putu,
getu in Box 7 is
mended here so that
getu requires to act on
a stack slot of type
u, and putu creates a
stack slot of type u.

All other rules of
Box 7 uniformly have
�dk added to the type
lists, indicating that
the type list is of
length k and the last
d entries represent the
current stack frame
(the first 32 of k are
the registers) and the
list length/stack size
is unchanged by the rule. The ‘subroutine return’ instruction jr in particular does not
modify the stack – it is the jal ‘subroutine call’ rule that does the job. It drops consider-
ation of all callee frames for the parent.

Proposition 1. In the type system of Box 9 for the crypto-processor of Sect. 1, type-
checked implies type-safe for RISC+CRYPT assembler programs.

Proof. (Sketch) ‘Notice’ that the type rules and the algorithm that computes types from
them together define an abstract interpretation [3] of the program: the values obtained
in a program run match the type patterns computed, if the typing algorithm succeeds.
Then the values obtained match the typing rule corresponding to each instruction in
the program, since the algorithm works by refining each rule at each site where it is
applicable and only one rule is applicable at each program address, that corresponding
to the instruction located there. If a set of values obtained during execution does not
match the instruction’s input expectations, then – since it does match the input of the
corresponding typing rule – the typing rule concerned permits inputs that do not match
the instruction’s expectations. But each typing rule can be seen by inspection not to
allow inputs that are outside the corresponding instruction’s expected range. That proves
the result by contradiction. ��

Typed Assembler for a RISC Crypto-Processor 29

Where this argument falls down for the case of the basic type system of Sect. 3 and
Box 7 is that its rules for getc, getu do permit inputs on the stack that do not match the
expected range – an encrypted value is expected in the referenced stack slot for getc,
but an unencrypted value is allowed by that type system, for example. The system of
Box 9 mends that defect by tracking types through the stack.

6 Conclusion

We have introduced a RISC ‘crypto-processor’ that processes data kept in encrypted
form in memory and registers, along with a type-checking algorithm for its assembly
language. A type-checked program is type-safe: at run-time, encrypted data is always
encountered by every instruction that expects encrypted data, and unencrypted data is
always encountered by every instruction that expects unencrypted data.

7 Future Work

It turns out that it is possible to type-check RISC machine code directly by adapting the
type system here from assembler to machine code. That enables a pre-existing machine
code program to be type-checked, encrypted instruction by instruction, and run safely
on our crypto-processor in a potentially hostile environment, the encrypted results of the
computation being returned securely to the remote owner. The patent [1] contends that
the processor design is secure even in simulation, making its (virtual) export feasible.

References

1. Breuer, P.T.: Encrypted data processing, patent pending, UK Patent Office GB1120531.7
(November 2011)

2. Buchty, R., Heintze, N., Oliva, D.: Cryptonite – A Programmable Crypto Processor Architec-
ture for High-bandwidth Applications. In: Müller-Schloer, C., Ungerer, T., Bauer, B. (eds.)
ARCS 2004. LNCS, vol. 2981, pp. 184–198. Springer, Heidelberg (2004)

3. Cousot, P., Cousot, R.: Abstract interpretation: A unified lattice model for static analysis of
programs by construction or approximation of fixpoints. In: Proc. 4th ACM Symposium on
the Principles of Programming Languages, pp. 238–252. ACM (1977)

4. Hennessy, J.L.: VLSI processor architecture. IEEE Trans. on Computers 33(C), 1221–1246
(1984)

5. Oliva, D., Buchty, R., Heintze, N.: AES and the cryptonite crypto processor. In: Proc. CASES
2003: International Conference on Compilers, Architecture and Synthesis for Embedded Sys-
tems. ACM (2003)

6. Patterson, D.A.: Reduced instruction set computers. Communications of the ACM 28(1), 8–21
(1985)

7. Sun, M.C., Su, C.P., Huang, C.T., Wu, C.W.: Design of a scalable RSA and ECC crypto-
processor. In: Proc. ASP-DAC 2003: Asia and South Pacific Design Automation Conference.
ACM (2003)

	Typed Assembler for a RISC Crypto-Processor
	Introduction
	Type-Checking
	Assembler Typing
	The Basic Algorithm
	Taking Account of the Stack
	Conclusion
	Future Work
	References

