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Abstract. In this paper we investigate the parallelization of the
ILUPACK library for the solution of sparse linear systems on distributed-
memory multiprocessors. The parallelization approach employs multi-
level graph partitioning algorithms in order to identify a set of concurrent
tasks and their dependencies, which are then statically mapped to pro-
cessors. Experimental results on a cluster of Intel QuadCore processors
report remarkable speed-ups.
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1 Introduction

The solution of sparse linear systems is a computational bottleneck in many
scientific computing application problems. While sparse direct methods have
proven to be extremely efficient for a wide range of applications, the increasing
size of the problems arising from 3D PDEs applications asks for fast and effi-
cient iterative solution techniques. This in turn requires alternative techniques
like approximate factorizations combined with Krylov subspace methods, be-
cause of their moderate computational and memory requirements [10]. Among
these, ILUPACK1 (Incomplete LU decomposition PACKage) is a software pack-
age mainly based on ILU factorizations with improved robustness in conjunction
with Krylov subspace methods.

Although the application of a preconditioner has the potential of accelerating
the convergence rate of iterative solvers, the computational cost per iteration
increases. Moreover, the time of computing the preconditioner also needs to be
taken into account. To compensate for this, high-performance computing tech-
niques can be applied to speed-up the computation of both the preconditioner
and the iterative procedure. The parallelization of ILUPACK-based precondi-
tioners on shared-memory multiprocessors, and scaling studies with up to 16
cores, are discussed in previous work [1,2,3]. As in sparse direct methods [7], this
parallelization is inspired by a nested-dissection hierarchy of the initial system

1 http://ilupack.tu-bs.de
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which allows to map independent tasks concurrently to cores within each level.
This paper demonstrates that the same parallelization carries over to distributed-
memory multiprocessors, reporting remarkable performance on up to 32 cores.

The paper is structured as follows. ILUPACK is briefly reviewed in Sect. 2.
Details on the parallelization of this package on distributed-memory multiproces-
sors are given in Sect. 3. Finally, Sect. 4 contains experimental results collected
from the parallel algorithm and offers a few concluding remarks.

2 Computation of Preconditioners in ILUPACK

Preconditioning in ILUPACK relies on the so-called inverse-based approach, which
improves the robustness of classical ILU factorizations bounding the growth of the
entries in the inverses of the triangular factors. To justify this, consider the ILU
factorization

A = L̃D̃Ũ +R , (1)

where L̃, ŨT are unit lower triangular matrices, D̃ is diagonal, and R is the error
matrix which collects those entries that were dropped during the factorization.
Applying the preconditioner M = L̃D̃Ũ , we obtain the preconditioned matrix

L̃−1AŨ−1 = D̃ + L̃−1RŨ−1 . (2)

Although dropping typically results in some “relatively small” error matrix R,
both L̃−1 and Ũ−1 may exhibit very large norms, so that application of the
preconditioning can significantly amplify the size of the entries in R. This may
directly impact the convergence rate of the preconditioned iterative solver.

The inverse-based preconditioning approach relies on approximate factoriza-
tions with “bounded” inverse triangular factors; i.e., factorizations with

∥
∥L−1

∥
∥ ≤

κ and
∥
∥U−1

∥
∥ ≤ κ, for some prescribed small threshold κ > 1. In practical ap-

plications, an ILU factorization of the system at hand does not typically satisfy
this requirement, so that pivoting is necessary to bound the inverse triangular
factors during the computation. Pivoting is accommodated in a multilevel frame-
work in order to construct a hierarchy of partial inverse-based approximations,
as sketched in the following multilevel algorithm:

1. Preprocessing step. Matrix A is scaled by diagonal matrices Dl and Dr

and reordered by permutation matrices Pl and Pr,

Â = PT
l DlADrPr .

2. Factorization step. At each step of the Crout variant of the ILU factoriza-
tion, the method is interlaced with a pivoting strategy which yields a nonex-
pensive estimation of the norm of a new row/column of the inverse factors. If
the estimation exceeds the threshold κ, the current pivot is rejected and the
corresponding row/column are moved to the bottom/right-end of the ma-
trix. Otherwise, the pivot is accepted and dropping is applied to the current
row/column before they are incorporated to the factors. This is illustrated
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in Fig. 1. Collecting the permutations due to inverse-based pivoting on P ,
we obtain the following partial ILU factorization of a permuted matrix:

PT ÂP =

[

L̃B 0

L̃E I

] [

D̃B 0

0 S̃C

] [

ŨB ŨF

0 I

]

+

[

RB RF

RE 0

]

.

The method applies additional dropping to the approximate Schur comple-
ment S̃C , so that we actually compute

ŜC = S̃C +RC = C −
(

L̃ED̃BŨF

)

+RC .

3. Restarting step. Steps 1 and 2 are repeatedly applied to A = ŜC until
SC is void or “sufficiently dense” to be efficiently factorized by a level 3
BLAS-based direct factorization kernel.

For a more detailed description of the numerical approach which lays the foun-
dation of ILUPACK and its theoretical properties see [4,5].
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factorized pending

current rejected

approximate

factorization

accept

reject

continue
factorization

rejected
pivots

compute
SC

‖eTk L−1‖, ‖U−1ek‖ ≤ κ

‖eTk L−1‖, ‖U−1ek‖ > κ

current factorization step finalize level

Fig. 1. ILUPACK pivoting strategy

3 Parallelization of ILUPACK

To design a parallel version of ILUPACK, we decompose the computation of
the preconditioner into tasks, identify the dependencies among them, and apply
static mapping to these operations.

For sparse linear systems, it is possible to apply graph-based symmetric re-
orderings to find a permutation Π such that

ΠTAΠ =

⎡

⎣

A11 0 A13

0 A22 A23

A31 A32 A33

⎤

⎦ . (3)

Computing the ILU decomposition of the leading blocks A11 and A22, we obtain
the following partial approximation
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⎡

⎢
⎣

L̃11 0 0

0 L̃22 0

L̃31 L̃32 I

⎤

⎥
⎦

⎡

⎢
⎣

D̃11 0 0

0 D̃22 0

0 0 S̃33

⎤

⎥
⎦

⎡

⎢
⎣

Ũ11 0 Ũ13

0 Ũ22 Ũ23

0 0 I

⎤

⎥
⎦+

⎡

⎢
⎣

R11 0 R13

0 R22 R23

R31 R32 0

⎤

⎥
⎦ ,

where the approximate Schur complement is given by

Ŝ33 = A33 −
(

L̃31D̃11Ũ13

)

−
(

L̃32D̃22Ũ23

)

+R33 ; (4)

proceeding with the ILU factorization of Ŝ33, the ILU decomposition ofΠTAΠ is
completed. The structure of ΠTAΠ allows the explotation of parallelism during
this computation. In particular, we can disassembleΠTAΠ into two submatrices

[

A11 A13

A31 A1
33

]

,

[

A22 A23

A32 A2
33

]

, A1
33 +A2

33 = A33 , (5)

so that the ILU decomposition of the leading block of both submatrices can be
concurrently obtained,

[

A11 A13

A31 A1
33

]

=

[

L̃11 0

L̃31 I

][

D̃11 0

0 S̃1
33

] [

Ũ11 Ũ13

0 I

]

+

[
R11 R13

R31 0

]

[

A22 A23

A32 A2
33

]

=

[

L̃22 0

L̃32 I

][

D̃22 0

0 S̃2
33

] [

Ũ22 Ũ23

0 I

]

+

[
R22 R23

R32 0

]

.

Then, we can also compute in parallel the Schur complements corresponding to
both partial approximations

Ŝ1
33 = A1

33 −
(

L̃31D̃11Ũ13

)

+R1
33 , Ŝ2

33 = A2
33 −

(

L̃32D̃22Ũ23

)

+R2
33 .

However, the construction of (4) requires communication before the addition of
these two blocks can be computed

R33 ≈ R1
33 +R2

33 → Ŝ33 ≈ Ŝ1
33 + Ŝ2

33 . (6)

Finally, the sequential ILU factorization of Ŝ33 completes the parallel approxi-
mate factorization of ΠTAΠ .

To expose a higher degree of parallelism, we need to identify a larger number of
independent diagonal blocks. We can do this by applying a permutation similar
to Π on the two leading blocks, and then reordering and renaming the blocks,

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

Â11 0 Â13 0 0 0 ∗
0 Â22 Â23 0 0 0 ∗

Â31 Â32 Â33 0 0 0 ∗
0 0 0 Ā11 0 Ā13 ∗
0 0 0 0 Ā22 Ā23 ∗
0 0 0 Ā31 Ā32 Ā33 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

→

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

A11 0 0 0 A15 0 A17

0 A22 0 0 A25 0 A27

0 0 A33 0 0 A36 A37

0 0 0 A44 0 A46 A47

A51 A52 0 0 A55 0 A57

0 0 A63 A64 0 A66 A67

A71 A72 A73 A74 A75 A76 A77

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (7)
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Figure 2 illustrates the dependency tree for the factorization of the diagonal
blocks in the right-hand side of (7); there, the nodes which lie at the same height
can be factored in parallel and the edges of the graph define the dependencies
between the diagonal blocks, other words, the order in which the blocks of the
matrix have to be processed. We identify three classes of nodes in the figure:

1. The Leaf nodes, which are responsible for the factorization of the four
leading diagonal blocks in parallel.

2. The Intermediate nodes, which factorize in parallel the next two interme-
diate diagonal blocks, A55 and A66. These blocks cannot be factorized unless
the leading diagonal blocks corresponding to its children have been already
factorized, i.e., A11 - A22 and A33 - A44 respectively.

3. The Root node, which sequentially factorizes the last diagonal block, A77.
This approximation can be only computed when all the preceding diagonal
blocks have been processed.

A11 A22 A33 A44

A66A55

A77
P3

P2

P3

P3P1

P1

P0

Fig. 2. Dependency tree of the diagonal blocks

The parallel computation of the preconditioner also commences by disassembling
A, with one submatrix for each leaf node,

⎡

⎢
⎣

A11 A15 A17

A51

A71

A1
55 A1

57

A1
75 A1

77

⎤

⎥
⎦ ,

⎡

⎢
⎣

A22 A25 A27

A52

A72

A2
55 A2

57

A2
75 A2

77

⎤

⎥
⎦ ,

⎡

⎢
⎣

A33 A36 A37

A63

A73

A3
66 A3

67

A3
76 A3

77

⎤

⎥
⎦ ,

⎡

⎢
⎣

A44 A46 A47

A64

A74

A4
66 A4

67

A4
76 A4

77

⎤

⎥
⎦ ,

A55 = A1
55 +A2

55 , A66 = A3
66 +A4

66 , A77 = A1
77 +A2

77 +A3
77 + A4

77 .

Thus, the partial factorization of these submatrices can be computed concur-
rently. For example, computing the ILU of A11, we obtain the following partial
approximation

⎡

⎢
⎣

L̃11 0 0

L̃51

L̃71

I 0

0 I

⎤

⎥
⎦

⎡

⎢
⎣

D̃11 0 0

0

0

S̃1
55 S̃1

57

S̃1
75 S̃1

77

⎤

⎥
⎦

⎡

⎢
⎣

Ũ11 Ũ15 Ũ17

0

0

I 0

0 I

⎤

⎥
⎦+

⎡

⎢
⎣

R11 R15 R17

R51

R71

0 0

0 0

⎤

⎥
⎦ .

When the partial factorizations of all the leaf nodes are completed, the processes
in charge of these tasks send the local Schur complement to the corresponding
intermediate node, which then accumulates them to continue the process,
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[

Ŝ1
55 Ŝ1

57

Ŝ1
75 Ŝ1

77

]

+

[

Ŝ2
55 Ŝ2

57

Ŝ2
75 Ŝ2

77

]

=

[

Ŝ55 Ŝ57

Ŝ75 Ŝ12
77

]

,

[

Ŝ3
66 Ŝ3

67

Ŝ3
76 Ŝ3

77

]

+

[

Ŝ4
66 Ŝ4

67

Ŝ4
76 Ŝ4

77

]

=

[

Ŝ66 Ŝ67

Ŝ76 Ŝ34
77

]

.

The matrix resulting from assembling these two submatrices presents the same
structure as that defined in (3)

[

Ŝ55 Ŝ57

Ŝ75 Ŝ12
77

]

⊕
[

Ŝ66 Ŝ67

Ŝ76 Ŝ34
77

]

=

⎡

⎢
⎣

S55 0 S57

0 S66 S67

S75 S76 S77

⎤

⎥
⎦ , S77 = S12

77 + S34
77 , (8)

and the process continues as described above.
This procedure can be generalized to obtain the same number of leaf nodes

as process/processors, so that the ILU factorization of each leaf node can be
mapped to a specific process. The performance of the parallel computation of
the preconditioner will be improved if the load is balanced among the leaf nodes is
optimum and the communication time is reduced. Mapping nodes to processors
as in Fig. 2, yields a high degree of parallelism if the computational cost is
concentrated on the leaf nodes of the dependency tree, and the cost is evenly
distributed among the leaf nodes. In practice, it is not possible to know the cost
of the multilevel ILU factorization a priori, but we can estimate this cost from
the number of rows/columns and nonzeros per node. Therefore, we must find a
permutation of A that minimizes the number of rows/columns of non-leaf nodes,
while simultaneously balancing those of the leaf nodes.

The MLND (Multilevel Nested Dissection) algorithm [8] is a recursive proce-
dure that, at each step, splits a graph into two disjoint subgraphs connected by
the nodes included in the separator. Some conditions hold for the result of this
computation; e.g., the size of the separator may feature some minimum criteria
and/or the size of the subgraphs can be made equal up to a certain degree. The
recursion can be continued on the subgraphs until their size is relatively small.
By viewing a sparse matrix as a graph, this procedure generates a reordered
matrix similar to that shown in left-hand side of (7).

There exist several implementations of MLND (e.g., in METIS2, SCOTCH3),
which usually lead to balanced elimination trees that exhibit a higher degree of
concurrency. There also exist parallel versions of these packages (ParMETIS [9]
and PT-SCOTCH [6]) that exploit several types of parallelism during the com-
putation of the permutation. To illustrate the quality of current partitioning
packages, we applied ParMETIS to a benchmark matrix of dimension 106 (see
Sect. 4 for details), in order to generate a tree with the structure shown in Fig. 2;
the result is shown in Fig. 3.

2 http://glaros.dtc.umn.edu/gkhome/views/metis
3 http://www.labri.fr/perso/pelegrin/scotch

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.labri.fr/perso/pelegrin/scotch
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246269 245060 244932 243704

50234976

10036 P3

P2

P3

P3P1

P1

P0

Fig. 3. Number of rows/columns of the dependency tree corresponding to a matrix of
size 106 arising from the finite-difference discretization of the Laplace 3D PDE

The described parallel algorithm forces a certain order of elimination to ex-
pose a high degree of concurrence during the approximate factorization of the
reordered matrix. In particular, the leaf nodes first factorize the leading diagonal
blocks, and then the corresponding Schur complements are received and accumu-
lated by the corresponding intermediate nodes. This idea is recursively applied
till the root node is reached. However, this parallel process does not control the
growth of the norms of the inverse triangular factors during the computation of
the preconditioner. In order to accommodate the inverse-based preconditioning
approach, we first restrict the preprocessing and factorization steps to the
leading block of each submatrix, so that only the rows/columns of this block are
preprocessed, and rejected rows/columns are moved to the bottom/right-end of
the leading block. Thus, e.g., the factorization step applied to the left-most
submatrix in (5) results in the following partial approximation,

[

P11 0

0 I

]T [

A11 A13

A31 A1
33

][

P11 0

0 I

]

=

⎡

⎢
⎣

B11 F11

E11 C11

F13

C13

E31 C31 A1
33

⎤

⎥
⎦ =

⎡

⎢
⎣

L̃B,11 0 0

L̃E,11 I 0

L̃E,31 0 I

⎤

⎥
⎦

⎡

⎢
⎣

D̃B,11 0 0

0 S̃C,11 S̃C,13

0 S̃C,31 S̃1
C,33

⎤

⎥
⎦

⎡

⎢
⎣

ŨB,11 ŨF,11 ŨF,13

0 I 0

0 0 I

⎤

⎥
⎦+

⎡

⎢
⎣

RB,11 RF,11 RF,13

RE,11 0 0

RE,31 0 0

⎤

⎥
⎦ ,

and then the multilevel process is recursively applied on the matrix
[

ŜC,11 ŜC,13

ŜC,31 Ŝ1
C,33

]

=

[
S̃C,11 S̃C,13

S̃C,31 S̃1
C,33

]

+

[
RC,11 RC,13

RC,31 R1
C,33

]

. (9)

Figure 4 illustrates the computation of the partial ILU factorization of A22 in (7),
computed by a single leaf node of the dependency tree. The restarting step
is also adapted, because it recursively applies the restricted steps until ŜC,11

in (9) is void or “sufficiently small”. Finally, the intermediate node assembles
the approximate Schur complement computed by its children as:

⎡

⎣

ŜC,11 0 ŜC,13

0 ŜC,22 ŜC,23

ŜC,31 ŜC,32 ŜC,33

⎤

⎦ =

[

ŜC,11 ŜC,13

ŜC,31 Ŝ1
C,33

]

⊕
[

ŜC,22 ŜC,23

ŜC,32 Ŝ1
C,33

]

.



Parallelization of Multilevel ILU Preconditioners 169

���
���
���

���
���
���

����
����
����

����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���

���
���
���

��
��
��

��
��
��

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

���
���
���
���

���
���
���
���

��
��
��
��

��
��
��
��

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

�
�
�
�
�

�
�
�
�
�
�����
�����
�����

�����
�����
�����

�
�
�

�
�
�

����
����
����

����
����
����

����
����
����
����

����
����
����
���� ����������������

�
�
�

�
�
�

������

�
�
�

�
�
�

�
�
�
�

����
����
����
����
����
����
����

����
����
����

����
����
����
����
����

����
����
����
����
����

��
��
��
��

��
��
��
��

����
����
����
����

��������

���
���
���

���
���
���

����
����
����

����
����
����

��
��
��

��
��
��

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���

���
���
���
���

���
���
���
���

����������������������

�������������������������������������������������������������� ��������������������������������������������������

���
���
���
���

���
���
���
���
���

���
���
���
���
���

���
���
���

���
���
���

������

����
����
����
����

����
����
����
����

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

�����
�����
�����
�����

�����
�����
�����
�����

�����
�����
�����
�����
�����

�����
�����
�����
�����
����������

�����
�����
�����

�����
�����
�����
�����

�����
�����
�����

�����
�����
�����

�����
�����
�����
�����

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

��
��
��

��
��
��

�
�
�
�
�
�
�

�
�
��
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��
�
�

�
�
�

��������������������������

���
���
���
���

����
����
����
����
����
����
����

����
����
��������
����
����
����
����

����
����
����
����
����

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��

��
��
��

��
��
��
��
��
��
��

��
��
��

��
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A1,1 A2,2 A3,3 A4,4

A5,5 A5,6

A7,7factorized pending

current rejected

approx.

factor.
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Fig. 4. Local incomplete factorization computed by a single node of the task tree

Unlike (6), the parent node must now consider the pivots rejected by its children,
which are incorporated into the submatrix constructed by the former. This is
illustrated in Tab. 1, which reports the structure of the parallel ILU factorization
corresponding to the problem/tree in Fig. 3. We can observe that the leaves and
the root have to build several partial inverse-based ILUs. Moreover, the number
of levels and the number of rejected pivots in each leaf can be different.

Table 1. Number of accepted pivots by inverse-based pivoting in each level, and num-
ber of rejected pivots which are pushed upwards for the tree in Fig. 3

Leaves Intermediates Root

Proc level1 level2 level3 level4 level5 rejected level1 rejected level1 level2

P0 184977 33739 19065 8462 26
P1 184073 33529 17952 9291 215 0 5001 1
P2 183783 33123 18925 9070 31
P3 182922 33071 18608 9074 29 5083 0 9905 132

735755 133462 74550 35897 215 86 10084 1 9905 132

979879 86 10084 1 10037

4 Experimental Results and Conclusions

All experiments in this section were obtained using IEEE double-precision arith-
metic, on a cluster interconnected by an InfiniBand network with 4 nodes. Each
node contains two Intel QuadCore Nehalem processors (8 cores), at 2.27 GHz
and with 24 Gbytes of RAM. We used the OpenMPI message-passing library
tuned for the InfiniBand network. The dependency tree was computed using
ParMETIS (routine ParMETIS V3 NodeND with defaults parameters).

We consider a standard benchmark problem for the solution of PDEs: the
Laplacian equation −Δu = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet
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boundary conditions u = g on ∂Ω. Although this regular problem is known
to be best-suited for multigrid methods, we have selected it due to its large
dimension and applicability. The problem is discretized using a uniform mesh
of size h = 1

N+1 . The computational domain Ω is replaced by a grid Ωh =
{(xi, yj, zk) = (ih, jh, kh)| i, j, k = 1, . . . , N}, and the differential operator is
replaced by finite differences

Δu (xi, yj, zk) ≈ 1
h2 (− ui−1,j,k − ui,j−1,k − ui,j,k−1+

6ui,j,k − ui+1,j,k − ui,j+1,k − ui,j,k+1) ,

where uijk ≈ u(xi, yj, zk). Because of the Dirichlet boundary conditions, any
unknown uijk such that i, j, k ∈ {0, N + 1} is explicitly available and becomes
part of the right-hand side vector. The resulting linear system Au = b presents a
sparse symmetric positive definite (SPD) coefficient matrix with seven nonzero
elements per row, and n = N3 unknowns. We set N=100, 126, 159, 200, and 252
in our experiments, which results in five SPD linear systems with roughly n =1,
2, 4, 8, and 16 millions of unknowns. We also consider four large-scale SPD
benchmark matrices (bmwcra 1, af shell3, ldoor and G3 circuit) from the UF
sparse matrix collection4. We have selected these to evaluate the performance of
our parallelization approach with irregularly structured problems.

Figure 5 shows the speed-up of the parallel ILU preconditioner for the differ-
ent matrices, number of nodes, and number of cores per node. The total number
of cores equals the product of the number of nodes and cores per node. The
dependency tree is generated so that its number of leaves equals the number
of cores. Thus, those combinations of “number of nodes-cores per node” which
result in the same number of cores, utilize the same dependency tree to exploit
parallelism, but a different mapping of MPI processes to cores. From this figure
we can conclude that the parallel ILUPACK implementation exhibits reasonable
strong scaling, as the parallel efficiency drops moderately as the number of cores
grows. Moreover, the performance almost remains constant when the same num-
ber of cores are involved in the parallel computation, revealing a mild influence
of the distribution of the cores among the nodes; only for the largest matrices,
a small performance reduction is observed when using eight cores per node (see,
e.g., for N = 2523, drop from 4-4 to 2-8). We believe that this is due, to some
extent, to contention caused by the fully utilization of the resources in a node.

At first glance, it might appear that the factor that contributes more to the
drop in efficiency observed in Fig. 5 is the lack of parallelism in the higher levels of
the dependency tree. Although this factor can (asymptotically) limit the strong
scalability of our approach, in practice, we observed a moderate reduction of the
computational cost concentrated on the leaves of the tree as the number of cores
increases, so that even a single type of parallelism (e.g., tree parallelism) can
provide a reasonable degree of parallelism for a multilevel ILU preconditioner.
Table 2 reports the percentage of the aggregated computational cost which is
concentrated on the leaves and the non-leaf nodes of the tree vs. the number of
cores. This cost is defined as the aggregation of the computational cost of all

4 http://www.cise.ufl.edu/research/sparse/matrices
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Fig. 5. Speed-up of the parallel multilevel ILU algorithm for the five Laplace 3D PDE
matrices (left) and the four matrices from the UF sparse matrix collection (right)

tasks in the tree, so that overheads associated with parallelism (e.g., communi-
cation or idling) were not accounted in Tab. 2. The experiment clearly reveals a
moderate reduction of the computational cost concentrated on the leaves with
the number of cores for all matrices except bmwcra 1 (the smallest test ma-
trix). For bmwcra 1, this reduction does not solely justify the performance drop
observed in Fig. 5.

Table 2. Percentage of the aggregated computational cost which is concentrated on
the leaves (left) and non-leaf nodes (right) of the dependency tree

matrix 1 core 2 cores 4 cores 8 cores 16 cores 32 cores

n = 1003 (100.0,0.0) (99.76,0.24) (99.35,0.65) (98.36,1.64) (96.75,3.25) (93.87,6.13)
n = 1263 (100.0,0.0) (99.84,0.16) (99.46,0.54) (98.71,1.29) (97.25,2.75) (95.20,4.80)
n = 1593 (100.0,0.0) (99.81,0.19) (99.58,0.42) (98.95,1.05) (97.88,2.12) (96.11,3.89)
n = 2003 (100.0,0.0) (99.90,0.10) (99.63,0.37) (99.15,0.85) (98.24,1.76) (96.93,3.07)
n = 2523 (100.0,0.0) (99.89,0.11) (99.71,0.29) (99.32,0.68) (98.61,1.39) (97.52,2.48)

bmwcra 1 (100.0,0.0) (99.99,0.01) (99.46,0.54) (97.83,2.17) (94.69,5.31) (90.51,9.49)
af shell3 (100.0,0.0) (99.87,0.13) (99.86,0.14) (99.66,0.34) (99.18,0.82) (97.97,2.03)
ldoor (100.0,0.0) (99.96,0.04) (99.74,0.26) (99.27,0.73) (98.76,1.24) (97.58,2.42)

G3 circuit (100.0,0.0) (99.99,0.01) (99.75,0.25) (99.63,0.37) (99.12,0.88) (98.06,1.94)

We believe that the main key factor for the performance drop observed in
Fig. 5 is the parallel overhead due to idle MPI processes, which in turn is caused
by an unbalanced distribution of the computational work associated with the
leaf nodes in the tree. Table 3 reports, for a parallel execution with 32 cores,
how much computational time is concentrated on the most and least expensive
computational leaves; this is expressed as a percentage relative to the paral-
lel execution time in the rows labeled as leafmax and leafmin. This table also
reports the aggregated parallel overhead relative to the aggregated parallel ex-
ecution time, with the latter defined as the product of the parallel execution
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time and the number of cores. The aggregated parallel overhead was estimated
by substracting the aggregated parallel execution time and the aggregation of
the computational costs of all tasks in the tree (i.e., the useful computation).
The table clearly correlates load unbalance in the computation of the leaves
and parallel overhead; see e.g., values for bmwcra 1. Future developments will
require additional techniques to improve load balancing in the computation of
the leaves.

Table 3. Amount of computational time concentrated on the most and least compu-
tationally expensive leaves, and relative aggregated parallel overhead

1003 1263 1593 2003 2523 bmwcra 1 af shell3 ldoor G3 circuit

leafmax 65.28 68.61 73.28 77.75 80.80 60.27 87.67 82.50 84.38
leafmin 50.00 53.28 58.40 64.03 68.98 27.40 53.42 62.50 71.88
overhead 39.15 35.83 32.18 26.47 23.01 54.88 36.77 26.80 19.63
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