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Preface

The tenth Nordic conference on applied parallel computing, Para 2010: State
of the Art in Scientific and Parallel Computing, was held in Reykjavik, Iceland
during June 6-9, 2010. The topics of the conference were announced to include
software, hardware, algorithms, tools, environments, as well as applications of
scientific and high-performance computing. The conference was hosted by the
School of Engineering and Natural Sciences of the University of Iceland, and
the conference venue was in the School of Education of the University of Ice-
land. Three companies in Reykjavik supported the conference financially: the
video game developer CCP, Microsoft Islandi, and Opin kerfi (Hewlett Packard
distributor for Iceland).

The series of Para meetings began in 1994. The Danish Computing Centre
for Research and Education (UNI-C) and the Department of Informatics and
Mathematical Modelling of the Technical University of Denmark (IMM/DTU)
in Lyngby, Denmark, organized a series of workshops on Applied Parallel Com-
puting, named Para94, Para95 and Para96. Jerzy Wasniewski, senior researcher
at DTU, initiated these workshops and Jack Dongarra, professor at the Uni-
versity of Tennessee, became involved during an extended visit to Lyngby. He
played a key part in promoting the meetings internationally. Since 1998, the
workshops have become a Nordic effort, but both Jerzy and Jack have continued
to be an integral part of the meetings. In fact Jerzy has been a keen advocate
of holding a Para conference in Iceland. The themes and locations of the Para
meetings have been:

PARAY94 Parallel Scientific Computing, Lyngby, Denmark

PARA95 Physics, Chemistry and Engineering Science, Lyngby, Denmark

PARA96 Industrial Problems and Optimization, Lyngby, Denmark

PARA 1998 Large Scale Scientific and Industrial Problems, Umeé, Sweden

PARA 2000 New Paradigms for HPC in Industry and Academia, Bergen, Norway
PARA 2002 Advanced Scientific Computing, Helsinki, Finland

PARA 2004 State of the Art in Scientific Computing, Copenhagen, Denmark

PARA 2006 State of the Art in Scientific and Parallel Computing, Umeé, Sweden
PARA 2008 State of the Art in Scientific and Parallel Computing, Trondheim, Norway
PARA 2010 State of the Art in Scientific and Parallel Computing, Reykjavik, Iceland

The Para 2010 conference included five keynote lectures, one tutorial, 11 mini-
symposia consisting of a total of 90 presentations, 39 other contributed pre-
sentations organized under 10 separate topics, four poster presentations, and
eight presentations from industry. Except for the keynote lectures, that were 45
minutes long each, the presentations were organized in five tracks or parallel
streams, with 25-minute slots for each presentation, including discussion. The
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total number of presentations was thus 147. There were altogether 187 partici-
pants from 20 countries:

Denmark 9 Canada 1 Poland 16
Finland 4 Czech Republic 3 Russia 2
Iceland 38 France 12 Spain 7
Norway 13 Germany 32 Switzerland 1
Sweden 17 Italy 1 Turkey 1
Australia 2 Japan 4 USA 20
Austria 2 Netherlands 2

There were volcanic eruptions in Eyjafjallajokull in southern Iceland from March
until June 2010 disrupting international flights, and these may have had an
adverse effect on participation.

Extended abstracts (in most cases four pages long) of all the minisymposium
and contributed presentations were made available on the conference website,
http://vefir.hi.is/paral0, and in addition a book of short abstracts (also available
on the website) was handed out at the conference.

After the conference the presentation authors were invited to submit manu-
scripts for publication in these peer-reviewed conference proceedings. The re-
viewing process for the articles appearing here was therefore performed in two
stages. In the first stage the extended abstracts were reviewed to select contribu-
tions to be presented at the conference, and in the second stage the full papers
submitted after the conference were reviewed. As a general rule three referee
reports per paper were aimed for, and in most cases these were successfully ob-
tained. However, in cases where it proved difficult to find three willing referees,
acquiring only two reports was deemed acceptable.

Fred G. Gustavson, emeritus scientist at IBM Research, New York, and pro-
fessor at Umea University, and Jerzy Wasniewski gave a tutorial on matrix algo-
rithms in the new many core era. Fred celebrated his 75th birthday on May 29,
2010, and the Linear Algebra Minisymposium was held in his honor. The mate-
rial of the tutorial is covered in Fred Gustavson’s article in these proceedings.

A conference of this size requires considerable organization and many helping
hands. The role of the minisymposium organizers was very important. They re-
viewed and /or organized reviewing of contributions to their respective minisym-
posia, both the original extended abstracts and the articles for these proceedings,
and in addition they managed the minisymposium sessions at the conference.
Several members of the local Organizing Committee helped with the reviewing
of other contributed extended abstracts: Elinborg 1. Olafsdéttir, Hjalmtyr Haf-
steinsson, Klaus Marius Hansen, Olafur Rognvaldsson, Snorri Agnarsson and
Sven P. Sigurdsson. Other colleagues who helped with this task were Halldor
Bjornsson, Kristin Vogfjord and Vidar Gudmundsson.

The editor of these proceedings organized the reviewing of manuscripts
falling outside minisymposia, as well as manuscripts authored by the minisym-
posium organizers themselves. There were 56 such submissions. The following
people played a key role in helping him with this task: Sven P. Sigurdsson, Julien
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Langou, Bo Kagstrom, Sverker Holmgren, Michael Bader, Jerzy Wasniewski,
Klaus Marius Hansen, Kimmo Koski and Halldér Bjérnsson. Many thanks are
also due to all the anonymous referees, whose extremely valueable work must
not be forgotten.

The conference bureau Your Host in Iceland managed by Inga Soélnes did an
excellent job of organizing and helping with many tasks, including conference
registration, hotel bookings, social program, financial management, and main-
taining the conference website. Apart from Inga, Kristjana Magnusdottir of Your
Host was a key person and Einar Samtielsson oversaw the website design. Olafia
Larusdottir took photographs for the conference website. The baroque group
Custos and the Tibia Trio, both led by recorder player Helga A. Jonsdottir,
and Helgi Kristjansson (piano) provided music for the social program. Olafur
Rognvaldsson helped to secure financial support from industry. Jén Bléndal and
Stefan Ingi Valdimarsson provided valuable TeX help for the editing of the pro-
ceedings.

Finally, I wish to devote a separate paragraph to acknowledge the help of
my colleague Sven P. Sigurdsson, who played a key role in helping with the
conference organization and editing of the proceedings through all stages.

October 2011 Kristjan Jénasson
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systems

Cai, Xiao-Chuan: A parallel domain decomposition algorithm for an inverse
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Cai, Xing: Detailed numerical analyses of the Aliev-Panfilov model on GPGPU

Cambruzzi, Sandro: The new features of Windows HPC Server 2008 V3 and
Microsoft’s HPC strategy

Cankur, Reydan: Parallel experiments on PostgreSQL (poster)

Casas, Marc: Multiplexing hardware counters by spectral analysis
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Kamola, Mariusz: Software environment for market balancing mechanisms de-
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Karlsson, Lars: Fast reduction to Hessenberg form on multicore architectures

Khan, Malek Olof: Molecular simulations on distributed heterogeneous comput-
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Kraemer, Walter: High-performance verified computing using C-XSC
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Krog, Qystein E.: Fast GPU-based fluid simulations using SPH
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matrices
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framework for stencil computations

Lacoursiere, Claude: Direct sparse factorization of blocked saddle point matrices

Langlois, Philippe: Performance evaluation of core numerical algorithms: A tool
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Abstract. The QR algorithm computes the Schur form of a matrix
and is by far the most popular approach for solving dense nonsymmet-
ric eigenvalue problems. Multishift and aggressive early deflation (AED)
techniques have led to significantly more efficient sequential implemen-
tations of the QR algorithm during the last decade. More recently, these
techniques have been incorporated in a novel parallel QR algorithm on
hybrid distributed memory HPC systems. While leading to significant
performance improvements, it has turned out that AED may become
a computational bottleneck as the number of processors increases. In
this paper, we discuss a two-level approach for performing AED in a
parallel environment, where the lower level consists of a novel combi-
nation of AED with the pipelined QR algorithm implemented in the
ScaLAPACK routine PDLAHQR. Numerical experiments demonstrate that
this new implementation further improves the performance of the parallel
QR algorithm.

1 Introduction

The solution of matrix eigenvalue problems is a classical topic in numerical
linear algebra, with applications in various areas of science and engineering. The
QR algorithm developed by Francis and Kublanovskaya, see [9/19] for recent
historic accounts, has become the de facto standard for solving nonsymmetric
and dense eigenvalue problems. Parallelizing the QR algorithm has turned out to
be highly nontrivial matter [13]. To our knowledge, the ScaLAPACK [5] routine
PDLAHQR implemented nearly 10 years ago based on work by Henry, Watkins,
and Dongarra [I4], is the only publicly available parallel implementation of the
QR algorithm. Recently, a novel parallel QR algorithm [I0] has been developed,
which turns out to be more than a magnitude faster compared to PDLAHQR for
sufficiently large problems. These improvements are attained by parallelizing
the multishift and aggressive early deflation (AED) techniques developed by
Braman, Byers, and Mathias [6/7] for the sequential QR algorithm.

Performed after each QR iteration, AED requires the computation of the
Schur form for a trailing principle submatrix (the so called AED window) that is

K. Jénasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 1-0, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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relatively small compared to the size of the whole matrix. In [I0], a slightly mod-
ified version of the ScaLAPACK routine PDLAHQR is used for this purpose. Due
to the small size of the AED window, the execution time spent on AED remains
negligible for one or only a few processors but quickly becomes a dominating
factor as the number of processors increases. In fact, for a 100 000 x 100 000 ma-
trix and 1024 processor cores, it was observed in [10] that 80% of the execution
time of the QR algorithm was spent on AED. This provides a strong motivation
to reconsider the way AED is performed in parallel. In this work, we propose to
perform AED by a modification of the ScaLAPACK routine PDLAHQR, which also
incorporates AED at this lower level, resulting in a two-level recursive approach
for performing AED. The numerical experiments in Section [ reveal that our
new approach reduces the overall execution time of the parallel QR algorithm
from [10] by up to 40%.

2 Overview of the QR Algorithm with AED

In the following, we assume some familiarity with modern variants of the QR
algorithm and refer to [IB/I8] for introductions. It is assumed that the matrix
under consideration has already been reduced to (upper) Hessenberg form by,
e.g., calling the ScaLAPACK routine PDGEHRD. Algorithm [ provides a high-level
description of the sequential and parallel QR algorithm for Hessenberg matrices,
using multiple shifts and AED. Since this paper is mainly concerned with AED,
we will only mention that the way the shifts are incorporated in the multishift QR
sweep (Step 4) plays a crucial role in attaining good performance, see [GJI0J17]
for details.

Algorithm 1. Multishift Hessenberg QR Algorithm with AED

WHILE not converged
1. Perform AED on the nyin X nwin trailing principle submatrix.
Apply the accumulated orthogonal transformation to the
corresponding off-diagonal blocks.
3. IF enough eigenvalues have been deflated in Step 1
GOTO Step 1.
END IF
4. Perform a multishift QR sweep with undeflatable
eigenvalues from Step 1 as shifts.
5. Check for negligible subdiagonal elements.
END WHILE

In the following, we summarize the AED technique proposed by Braman,
Byers, and Mathias [7]. Given an n x n upper Hessenberg matrix H, we partition

N—"Nyin—1 1 TNwin
n—nwin—1 Hyy Hy; His
H = 1 Ho, Hiy Has |,

Toin 0 H3zy Hss
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where nwin denotes the size of the AED window. Then a (real) Schur decom-
position Hzz = VTV is performed, where V is orthogonal and T in upper
quasi-triangular form. Setting

we obtain
Hyy Hig Hi3V
UTHU = | Hyy Hyp Ho3V |,
0 s T

where s € R™ is the so called spike, created from the subdiagonal entry con-
tained in Hss. The eigenvalues of T' are checked subsequently for convergence
and possibly deflated. The eigenvalue (or 2 x 2 block) in the bottom right corner
of T can be deflated if the magnitude of the last component (or the last two
components) of the spike is negligibly small. Undeflatable eigenvalues are moved
to the top left corner of T' by a swapping algorithm [4JTT]. After this transforma-
tion is completed, the next eigenvalue in the bottom right corner of T is treated
in the same way. The orthogonal transformations for swapping eigenvalues are
accumulated in an orthogonal matrix V € R™n*™in  After all eigenvalues of T'
have been processed, the entire matrix is reduced back to Hessenberg form and
the off-diagonal blocks Hy3 and Hsz are multiplied with the product of all in-
volved orthogonal transformations. It is recommended to choose nyi, somewhat
larger, e.g., by 50%, than the number of shifts in the multishift QR iterations [6].

Dramatic performance gains from AED have been observed both for sequential
and parallel variants of the QR algorithm. These gains can be achieved essentially
no matter how the rest of the QR algorithm is implemented, in particular how
many shifts are used in the multishift QR sweep [7]. In effect, any implementation
of the QR algorithm may benefit from AED; a fact that we will use below to
improve the ScaLAPACK routine PDLAHQR. A convergence analysis, partially
explaining the success of AED, can be found in [I6].

3 Parallel Implementation of AED

Since the main aim of this paper is to improve the parallel QR algorithm and
implementation described in [I0], we first recall the structure of the main rou-
tines from this implementation, see Figure [l The entry routine is PDHSEQR,
which branches into PDLAQR1 for small to medium-sized matrices and PDLAQRO
for larger ones. The cut-off point for what is considered medium-sized will be
explained in the numerical experiments, see Section @l The main purpose of
PDLAQRO is to call PDLAQR3 for performing AED and PDLAQR5 for performing
multishift QR iterations. The former routine invokes PDLAQR1 for performing
the Schur decomposition of the AED window. In [I0], PDLAQR1 amounts to the
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Entry routine for new parallel QR algorithm

PDHSEQR J

,,,,,,,,,,,,,,,,,,,,,,,

' PDLAQR1

| Modified version of ScaLAPACK’s
| current implementation of the
parallel QR algorithm.

PDLAQRO
New parallel QR algorithm.

/ N

”””””””””””” PDLAQR3 PDLAQRS5
Aggressive early deflation and Multishift QR iteration based on
shift computation. chains of tightly coupled bulges.

Fig. 1. Partial software structure for the parallel QR algorithm from [10]

ScalLAPACK routine PDLAHQR with minor modifications concerning the process-
ing of 2 x 2 blocks in the real Schur form and the multithreaded application of
small Householder reflectors. In the following, we will reconsider this choice for
PDLAQR1.

3.1 Choice of Algorithm for Performing AED

A number of alternative choices are available for performing the Schur decom-
position of the relatively small AED window:

— A recursive call to PDHSEQR or PDLAQRO, implementing the parallel QR algo-
rithm with multishifts and AED.

— A call to PDLAQR1, a minor modification of ScaLAPACK’s PDLAHQR.

— Assembling the AED window in local memory and a call to the sequential
LAPACK [2] routine DLAHQR (or DLAQR4).

According to the numerical experiments in [10], a recursive call of PDLAQRO may
not be the optimal choice, mainly because of the fact that the way multishift QR
iterations are implemented in PDLAQRO suffers from poor scalability for relatively
small matrices. ScaLAPACK’s PDLAHQR achieves better scalability but does not
incorporate modern developments, such as AED, and therefore suffers from poor
performance. The third alternative, calling a sequential algorithm, should be
used for submatrices that are too small to justify the overhead incurred by
parallelization. In our experimental setup this was the case for submatrices of
size 384 or smaller.

In this work, we propose to modify PDLAQR1 further and add AED to the
parallel pipelined QR algorithm implemented in ScaLAPACK’s PDLAHQR. Since
the main purpose of PDLAQR1 is to handle small to medium-sized submatrices, a
parallel implementation of AED, as in [10], will not be efficient on this level, since
the size of the AED window is even smaller and does not allow for reasonable
parallel performance in the Schur decomposition or the swapping of diagonal
blocks. We have therefore chosen the third alternative for performing AED on
the lowest level and invoke the sequential LAPACK routine DLAQR3 [§]. The
accumulated orthogonal transformations returned by DLAQR3 are applied to the
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off-diagonal blocks in parallel. Therefore, O(,/p) processors are used for updating
the off-diagonal blocks. A high-level description of the resulting procedure is
given in Algorithm

Algorithm 2. Parallel pipelined QR algorithm with AED (new PDLAQR1)

1.

WHILE not converged
Copy the (nwin + 1) X (ngin + 1) trailing submatrix to local memory
and perform sequential AED on an nyi, X nwin window.
Apply the accumulated orthogonal transformations to the
corresponding off-diagonal blocks in parallel.
IF enough eigenvalues have been deflated in Step 1

GOTO Step 1.

END IF
Compute the eigenvalues of a trailing submatrix.
Perform a pipelined QR sweep with the eigenvalues computed
in Step 4 as shifts.

. Check for negligible subdiagonal elements.

END WHILE

3.2 Implementation Details

In the following we discuss some implementation issues of Algorithm [Pl The basis

for

our modification is PDLAQR1 from [I0], referred to as the old PDLAQR1 in the

following discussion. Following the notation established in the (Sca)LAPACK
implementations of the QR algorithm, we let NH=IHI-ILO+1 denote the dimen-
sion of the active NH x NH diagonal block and NS the number of shifts in the
multishift QR sweep.

In the special case when the active diagonal block is small enough, say NH <
384, we copy this block to local memory and call DLAHQR/DLAQR4 directly.
The off-diagonal blocks are updated in parallel. This reduces communication
while the required extra memory is negligible. We have observed that this
modification reduces the total execution time by a non-negligible amount,
especially during the final stages of the QR algorithm.

The size of the deflation window, ny,, is determined by the return value of
the LAPACK routine IPARMQ, see [§] for more details. In PDLAHQR/PDLAQR1,
NS is mainly determined by the process grid and does not exceed 32. This is
usually smaller than the number of shifts suggested by IPARMQ. Also, typical
values of n;, returned by IPARMQ are 96, 192 and 384, which is much larger
than if we chose NS*3/2. Based on the observation that the optimal AED
window size does not depend strongly on the number of shifts used in the
QR sweeps, we prefer to stick to large nyi, rather than using NS*3/2. This
increases the time spent on AED, but the overhead is compensated by fewer
pipelined QR sweeps.

The criterion for restarting another AED process rightaway, without an in-
termediate QR iteration, is the same as in LAPACK [§]:
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1. The number of undeflatable eigenvalues is smaller than NS; or
2. the number of deflated eigenvalues is larger than nyi, x 14%.
Note that we choose the criterion in accordance with the window size sug-

gested by IPARMQ.

— In contrast to Algorithm [Il undeflatable eigenvalues are not used as shifts in
subsequent multishift QR sweep. This choice is based on numerical experi-

ments with the following three shift strategies:

1. Use undeflatable eigenvalues obtained from AED as shifts.
2. Compute and use the eigenvalues of the NS x NS trailing submatrix after
AED as shifts (by calling DLAHQR/DLAQR4).

3. Compute and use some of the eigenvalues of the (nyin + 1) X (nwin + 1)
trailing submatrix after AED as shifts (by calling DLAHQR/DLAQR4).

An illustration of these strategies is given in Figure 2l Based on the exper-
iments, we prefer the third strategy despite the fact that it is the compu-
tationally most expensive one. However, it provides shifts of better quality,
mainly because of the larger window size, which was found to reduce the
number of pipelined QR sweeps and to outweigh the increased cost for shift

computation.
XX XXX XXX XXXX
X X X X X X X X X X X X
X X X X X X X X XXX
X X X X X X X X X X
X X X X X X X X X
X X X X X X X X
X X X X X X X
X X X X X X
X § X X X
X 5§ X X
X s X
X S

X

0

»m X X X X X X X X X X X X
X X X X X X X X X X X X X X

(1) Using undeflatable eigenvalues

X X X X
X X X X

X X X X X X
X
X X X X
X
X
X

X X X X X

X X X X X

X X X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X X X X X
X s s
S5 S

X X X X X X X
X X X X X X X X

Y

(2) Using eigenvalues of
an NS x NS window

w »w mw oxm X X X X X X X X X

X X X X X X X X X X X X X X

XXX XXX XXXXXXX
X XX XXX XXXXXXX
X X X X X X X X X XXX
XX X XXX XX XXX

X X X X X X X X X X

X X X X X X X X X

X § S§ S8 S s S S

s 8§ S8 s s s s

s 5§ S8 8§ s S8

s 8 8 8 8

s S S S

5 S5 S

S S

(3) Using eigenvalues of an
(nwin + 1) X (Nwin + 1) window

Fig. 2. Three shift strategies (nwin = 6, NS=4)

— When performing AED within the new PDLAQR1, each processor receives a
local copy of the trailing submatrix and calls DLAQR3 to execute the same
computations concurrently. This implies redundant work performed in paral-
lel but it reduces communication since the orthogonal transformation matrix,
to be applied in parallel in subsequent updates, is readily available on each
processor. A similar approach is suggested in the parallel QZ algorithm by
Adlerborn et al. [I]. If the trailing submatrix is not laid out across a border
of the processor mesh, we call DGEMM to perform the updates. If the trailing
submatrix is located on a 2 x 2 processor mesh, we organize the computation
and communication manually for the update. Otherwise, PDGEMM is used for
updating the off-diagonal blocks.
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4 Numerical Experiments

All the experiments in this section were run on the 64-bit low power Intel
Xeon Linux cluster Akka hosted by the High Performance Computing Cen-
ter North (HPC2N). Akka consists of 672 dual socket quadcore L5420 2.5GHz
nodes, with 16GB RAM per node, connected in a Cisco Infiniband network.
The code is compiled by the PathScale compiler version 3.2 with the flags -02
-fPIC -TENV:frame pointer=0N -0PT:01imit=0.The software libraries Open-
MPI 1.4.2, BLACS 1.1 patch3, ScaLAPACK/PBLAS 1.8.0, LAPACK 3.2.1 and
GOTOBLAS2 1.13 [12] are linked with the code. No multithreaded features, in
particular no mixture of OpenMP and MPI, were used. We chose NB = 50 as the
block size in the block cyclic distribution of ScaLAPACK. The test matrices are
dense square matrices with entries randomly generated from a uniform distribu-
tion in [0,1]. The ScaLAPACK routine PDGEHRD is used to reduce these matrices
initially to Hessenberg form. We only measure the time for the Hessenberg QR
algorithm, i.e., the reduction from Hessenberg to real Schur form.

4.1 Improvement for PDLAQR1

We first consider the isolated performance of the new PDLAQR1 compared to
the old PDLAQR1 from [I0]. The sizes of the test matrices were chosen to fit
the typical sizes of the AED windows suggested in [I0]. Table [ displays the
measured execution time on various processor meshes.

For the sequential case (1 x 1 mesh), PDLAQR1 calls the LAPACK routine
DLAQR4 directly for small matrices (see the first remark in Section [3.2]). PDLAQRO
also implements a blocked QR algorithm almost identical to the new LAPACK
algorithm [8], but some algorithmic parameters (e.g., number of shifts) can be
different. Since the parameters in PDLAQRO largely depend on the block size in
the block cyclic matrix data distribution of ScalLAPACK, PDLAQRO can be a bit
slower than LAPACK.

For determining the cross-over point for switching from PDLAQRO to PDLAQR1
in the main routine PDHSEQR, we also measured the execution time of PDLAQRO.

The new implementation of PDLAQR1 turns out to require much less execu-
tion time than the old one, with a few, practically nearly irrelevant exceptions.
Also, the new PDLAQR1 scales slightly better than PDLAQRO, especially when the
size of matrix is not large. It is worth emphasizing that the scaling of all imple-
mentations eventually deteriorates as the number of processor increases, simply
because the involved matrices are not sufficiently large to create enough potential
for parallelization.

Quite naturally, PDLAQRO becomes faster than the new PDLAQR1 as the matrix
size increases. The dashed line in Table [l indicates the crossover point between
both implementations. A rough model of this crossover point result is given by
n = 220,/p, which fits the observations reasonably well and has been incorpo-
rated in our implementation.
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Table 1. Execution time in seconds for old PDLAQR1 (1st line for each n), new PDLAQR1
(2nd line) and PDLAQRO (3rd line). The dashed line is the crossover point between the
new PDLAQR1 and PDLAQRO.

Matrix size Processor mesh
(n) 1x1 2x2 3x3 4x4 6x6 8x8 10x10
96 0.01 0.05 0.11 0.18 0.15 0.25 0.27
0.08 0.08 0.02 0.05 0.03 0.08 0.07
0.14 0.40 0.96 1.11 2.52 3.16 2.95
192 0.09 0.17 0.18 0.22 0.32 0.47 0.64
0.09 0.07 0.07 0.13 0.16 0.12 0.26
0.15 0.30 0.61 1.05 3.73 4.34 3.64
384 0.60 0.73 0.61 0.63 0.78 1.09 1.24
0.27 0.29 0.28 0.36 0.40 0.48 0.48
0.47 0.55 0.72 089 208 3.23 3.76
768 7.38 3.53 253 235 261 280 3.52
3.77 2.24 1.73 1.57 1.73 2.17 2.25

1.83 1.51 161 1.68 270 3.03 3.31

1536 133.31  20.68 13.23 11.12 9.79 10.48 13.05
35.94 9.27 6.54 552 511 531 6.33

12.34 6.61 563 486 6.26 6.76 6.84

3072 2313.61 139.05 96.73 66.06 50.64 41.82 63.22
522.81 45.72 33.13 22.60 19.08 18.12 22.23

80.71 30.67 21.34 15.82 15.56 15.09 14.98

6144 1049.56 623.63 351.44 231.70 199.75  227.45
144.96 167.71 103.15 78.75 66.90 70.48

198.54 129.58 87.07 55.40 47.61 44.07

4.2 Overall Improvement

As the main motivation for the development of the new PDLAQR1 is its application
to AED within the parallel QR algorithm, we have also measured the resulting
reduction of the overall execution time of PDHSEQR. From the results presented
in Table[2] it is clear that PDHSEQR with the new PDLAQR1 is almost always better
than the old implementation. The improvement varies between 5% and 40%. We
remark that the measured execution time for the 4000 x 4000 problem using 64
processors is less than running the same problem on 100 processors. However,
situations may occur when we prefer to solve a 4000 x 4000 problem using 100
processors. For example, if this is a subproblem in a large-scale computation, it
would be too costly to redistribute the matrix and use only 64 of the available
processors. Among the measured configurations, there is one notable exception:
n = 32000 on a 6 x 6 processor grid. This is actually the only case for which
PDLAQRO is called within the AED phase, which seems to indicate that the choice
of the crossover point requires some additional fine tuning.

Note that the largest AED window in all these experiments is of size 1536.
According to Table [I, we expect even more significant improvements for larger
matrices, which have larger AED windows.
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Table 2. Execution time in seconds for old PDHSEQR (1st line for each n), new PDHSEQR
(2nd line). The third lines show the relative improvement.

Processor mesh Matrix size (n)
4000 8000 16000 32000
162.43
1x1 161.28
0.71%
71.34  501.83
2x2 68.02  452.70

4.65%  9.79%

39.18 170.75  1232.40

4 x4 30.68 158.66 1037.93

22.69%  7.08%  15.78%
35.96 123.46 617.97  3442.08
6 x6 24.62 96.23 509.38  3584.74
31.54% 22.06%  17.57%  -4.14%
33.09 97.20 435.52  2639.32
8x 8 20.59 67.42 366.31  2016.93
37.78% 31.64%  15.89%  24.58%
36.05 101.75 355.38  2053.16
10 x 10 21.39 62.29 291.06  1646.30
41.67% 39.58%  18.10%  19.82%

5 Summary

We have reconsidered the way AED is performed in the parallel QR algo-
rithm [I0]. A recursive approach is suggested, in which the ScaLAPACK routine
PDLAHQR is combined with AED to address medium-sized problems. The focus of
this work has been on minimizing the total execution time instead of how to use
all the processors or how well the algorithm scales. Computational experiments
demonstrate the efficiency of our approach, but also reveal potential for further
improvements by a more careful fine tuning of the crossover point for switching
between different implementations of the parallel QR algorithm.
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Abstract. For non-linear inverse problems, the mathematical structure
of the mapping from model parameters to data is usually unknown or
partly unknown. Absence of information about the mathematical struc-
ture of this function prevents us from presenting an analytical solution,
so our solution depends on our ability to produce efficient search algo-
rithms. Such algorithms may be completely problem-independent (which
is the case for the so-called 'meta-heuristics’ or ’blind-search’ algorithms),
or they may be designed with the structure of the concrete problem in
mind.

We show that pure meta-heuristics are inefficient for large-scale, non-
linear inverse problems, and that the 'no-free-lunch’ theorem holds. We
discuss typical objections to the relevance of this theorem.

A consequence of the no-free-lunch theorem is that algorithms adapted
to the mathematical structure of the problem perform more efficiently
than pure meta-heuristics. We study problem-adapted inversion algo-
rithms that exploit the knowledge of the smoothness of the misfit func-
tion of the problem. Optimal sampling strategies exist for such problems,
but many of these problems remain hard.

1 Introduction

Nonlinear inverse problems occur frequently in analysis of physical data, and a
variety of algorithms are used to produce acceptable solutions and to analyze
their properties. Some problems are only weakly nonlinear and can be locally
approximated by linear problems, but others are strongly nonlinear and require
special treatment. Modern digital computers have greatly improved our ability to
perform nonlinear data inversion, but still the limitations of current techniques
are strongly felt.

In this paper we intend to review and analyze some fundamental compu-
tational limitations to the solution of nonlinear inverse problems. We will put
special emphasis on the interplay between the solution algorithm and the struc-
ture of the problem to be solved. Our exposition will, in principle, be relevant
for the solution of inverse problems in general, but given the fact that nonlinear
inverse theory relies much more on the theory of search- and sampling algo-
rithms than linear theory does, our considerations will be most relevant for the
nonlinear case.

K. Jénasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 11-E1, 2012.
© Springer-Verlag Berlin Heidelberg 2012


http://www.imm.dtu.dk/~kmos

12 K. Mosegaard

2 The Blind Inversion Problem

It is often reported in the literature that solutions to nonlinear inverse problems
were obtained by problem-independent algorithms, the so-called meta-heuristics.
This type of algorithms is claimed to work efficiently because of some general,
external (problem independent) principle. For example, simulated annealing [5]
inherits its efficiency from thermodynamic principles, genetic algorithms [6/7]
exploit evolutionary principles, and taboo-search [8] uses some ’common sense’
strategy. In the following, we will call these algorithms blind inversion algorithms,
and we will investigate their efficiency in some detail.

Blind inversion schemes may be very different in character. They include
deterministic as well as Monte Carlo algorithms, and they all share the basic
property that they operate in a way that is independent of the particular inverse
problem. A blind inversion scheme operates - sequentially or in parallel - by
evaluating a misfit function (or fit function) in points in the parameter space,
and a particular scheme is solely characterized by the strategy by which it se-
lects new evaluation points from earlier selected points and their misfits. Some
algorithms estimate gradients of the misfit (e.g., steepest descent), some use a
proposal distribution combined with an acceptance probability (e.g., simulated
annealing), others compare misfits at several points and use a selection strategy
(genetic algorithms and the neighborhood algorithm [419JT0].

In the following we shall analyze the performance of blind algorithms, but
first we will briefly review some general topological properties of general inverse
problems that impede algorithm efficiency when searching high-dimensional pa-
rameter spaces.

3 Basic Limitations in Blind Inversion Arising from the
Structure of the Problem

Consider a discrete, nonlinear inverse problem
d = g(m) (1)

where d is a vector with V 4+ P components, the first N equations relate data
(di,...,dn) to M model parameters m, and the remaining P equations express
our prior information through P < M — N equality constraints. If we assume
that g is a C!'-function, and that we have a solution m to equation () for which

/() = | L: 2)

8mj

m

has full row rank, the implicit function theorem [I1] implies that eq. (Il) defines a
solution-submanifold of dimension M — (N + P) in the neighborhood around m in
the parameter space. If data uncertainties and ’softness’ of the prior constraints
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are described by a neighborhood around d, acceptable solutions in the pa-
rameter space can be found in a neighborhood around the solution manifold
intersecting m.

In inversion aimed at locating only one acceptable solution, one will generally
try to supply a sufficient number of tight a priori constraints to ensure that
M = N + P. In this case, the solution space consists of neighborhoods around
isolated points in the parameter space.

Of course, the above description is based on a number of simplifications. For
instance: (1) We assumed that the matrix in equation () has full row rank. If this
is not the case, the mapping ¢ is not surjective, meaning that the dimension of
the solution space is larger than in the full-rank case. (2) We have only considered
prior information defined as (possibly softened) equality constraints. Introducing
constraints that allow the solution to exist only inside a bounded, possibly non-
convex, region may render the inverse problem even harder. (3) Strictly speaking,
in our theory M should not be the number of model parameters, but the number
of degrees of freedom in the model space. The arguments above can easily be
modified to take this into account.

4 Basic Algorithmic Limitations in Blind Inversion

4.1 The Performance of Blind Inversion Algorithms

We now turn to the question of assessing the relative merits of blind inversion
algorithms. The usual two ways of evaluating relative performances have been
(1) to argue for or against algorithms using common-sense, physical or other
arguments to discuss their ability to, e.g., locate acceptable misfit regions, or (2)
to select suitable test problems and arrange numerical contests between selected
algorithms. The first approach does not provide quantitative measures of relative
performance, and the latter method is so sensitive to the selected problems and
the ’tuning’ of each of the considered algorithms that general conclusions are
tentative.

Here, we will follow a different path leading to a quantitative comparison. Our
reasoning will be similar to the one behind the so-called No-Free-Lunch Theorem
[14]. It is based on a discretization where a finite number of parameters and
data are only allowed to attain a finite set of values. This double discretization
is actively used in genetic algorithms where parameters are often assumed to
be binary numbers with only a few bits. All other numerical methods are, of
course, also doubly discretized, because they run on digital computers with a
finite precision.

The doubly discretized inverse problem and the information collected by an
arbitrary, blind inversion algorithm will be described through the following no-
tation. We consider:

— A finite set M of models. This set consists of all combinations of a finite
number of values attained by a finite set of parameters.

— A finite set set S of real numbers. These numbers are the possible fit or
misfit values that can be generated by models in M.
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— The set Faq of all fit functions f: M — S.
— A sample of size m < | M| generated by an algorithm having sampled f € F
in m distinct points:

{(m1751)7-~-7(mm73m)}- (3)

Note, that points resampled by an algorithm will only count once. On the
other hand, auxiliary sample points used by the algorithm, e.g. points sam-
pled with the sole purpose of calculating an approximate 'gradient’, count
on equal footing with other sample points.

— The (time) ordered set of sample points (arguments indicate time-ordering):

C={my,...,mp}. (4)
— The (time) ordered set of corresponding values of f:
S1y-+-5Sm- (5)

— The set Faq o of all fit functions/probability distributions defined on M,
but with fixed values in C.

Consider a blind inversion problem where we have no knowledge of the actual
fit function, and we search for at least one acceptable solution to the problem.
From the outset, the total number of possible fit functions is equal to

|Fpa| = |S]MI (6)

We can now ask: What is the probability that an algorithm, when sampling M
in m distinct points, sees the function values si,...,8,? To compute this we
observe that, when fixing the function values at the m points of subset C (see
Figure 1), the number of remaining, possible fit functions is narrowed in and is
equal to

_ M|—m
\Frqcl = |S|MI=m, (7)
Y f:X—>Y

(o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o] .\O_:
(o] (o] (o] (o] (o] (o] (o] (o]
(o] (o] (o] (o] (o] (o] (o] (o] (o] (o] X

>

Fig. 1. Knowledge of an unknown fit function f after evaluation of the function in 5
points
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This means that the probability that an algorithm in m function evaluations
sees the particular fit function values s1, ..., Sy, is

P(s1,...,smla,m) = [FaqellFml "t =1SI7™ (8)

This number is independent of the location of the sample points and hence the
algorithm used. Any algorithm a performing m iterations where it visits (algo-
rithm dependent) points mﬁ“), e m%) can obtain functional values s1, ..., Sny
with exactly |Faqc| different fit functions f € Faq, and |Faq | is independent

of a, so for any pair of algorithms a; and as we have
P(s1,...,8m|m,a1) = P(s1,...,8m|m,a2) (9)

where P(-|-) denotes conditional probability.
Any performance measure for inversion algorithms searching for near-optimal
data fits is of the form @ : ™ — R, for instance:

D(S1,. -y 8m) = max{s1,...,Sm}, (10)

which must be large for good performance. Even Monte Carlo algorithms, aimed
at importance-sampling of probability distributions over the parameter space,
operate as near-optimization algorithms in the computer-intensitive, initial phase
(the burn-in phase) where the first acceptable solution is sought.

The probability distribution of &(s1,...,s,,) depends only on
P(s1,...,8m|m,a), and as a consequence of equation (@) it is therefore
independent of the algorithm a. We have now shown

Theorem 1. (Similar to the No-Free-Lunch Theorem by Wolpert and Mac-
ready [TJ)]). The distribution of any performance measure for inversion, when
all fit functions are equally probable (blind inversion), is exactly the same for all
inversion algorithms.

4.2 Critique of the No-Free-Lunch Theorem

One obvious critique of the usefulness of the No-Free-Lunch Theorem is that,
in typical fields of application, the fit functions belong to a narrow subfamily
of functions (e.g., smooth functions), and some algorithms work better than
others on such families. This objection is based on the observation that for each
function sub-family Gy C Faq, the total number of ways a particular set of fit
values s1, ..., Sy, can be obtained in a set of m sample points my, ..., m,, from
fit functions f € Gaq will in general depend on my, ..., m,, (and hence on the
algorithm a that is choosing the sample points). However, this objection is, as
we shall see now, invalid in the blind inversion case.

Consider all subfamilies G of functions in F 4. Functions in subfamily G4
with fixed values on the subset C' form the set G N Frq - The average number
of functions in such a subfamily is proportional to

> 1GmN Famel= D 19amcl (11)

VGMCEFm YGrm\c
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The right-hand side of ([[l) depends only on | M| — |C| and hence only on the
number m. Hence, the actual elements of C, which are chosen as a result of
a’s search strategy, does not influence the average number of functions in Gaq N
Famc- We have demonstrated

Theorem 2. The efficiency of blind inversion algorithms, averaged over all sub-
families of fit functions, is the same for all inversion algorithms.

We have found that the efficiency of all blind inversion schemes, e.g., Steep-
est ascent/descent, Simulated Annealing, Markov-Chain Monte Carlo, Random
Search, Genetic Algorithm, Neighborhood Algorithm, Taboo Search, Line Search
and Exhaustive Search are exactly the same, when averaged over alle possible
inverse problems or subsets of problems.

How can we accept this surprising result when all experience shows that,
for instance, Random Search is much less efficient than Genetic Algorithms?
The only explanation for the apparent paradox is that the above mentioned
blind algorithms are, in practice, supplemented with procedures that inform the
algorithm about the structure of the problem. As we shall discuss in the next
section, this is indeed the case.

5 The Informed Inversion Problem

5.1 The Necessity of Algorithm Tuning

We have demonstrated above that the performance of all blind inversion schemes
are exactly the same, when averaged over all conceivable fit functions, or subsets
hereof. This means that if, for example, a genetic algorithm performs better
than a crude random search on certain problems, it will perform worse on other
problems. Apparently, this result is contradicted by the experience of a vast
number of researchers who have seen popular algorithms outperforming crude
random search by several orders of magnitude.

The only way we can resolve this paradox is to point at the tuning of inversion
algorithms. Most expositions explaining the functioning of inversion algorithms
emphasize the external ideas behind their design, and attribute the algorithm’s
efficiency to these ideas. Simulated Annealing is, for example, relying on an idea
taken from natural minimization of the internal energy seen in thermodynamical
systems under slow cooling, Genetic algorithms use ideas from natural biological
selection to generate near-optimal solutions, etc. The consequence of Theorem
[ above is, however, that none of these external design ideas can provide any
degree of success. Instead, we must turn to the tuning of algorithms to obtain
the desired efficiency.

Unfortunately, there is a vast number of very different ways of tuning inversion
algorithms. For this reason we shall only discuss one of the most important ideas,
namely tuning to a known smoothness of the fit function through the choice of
distance between sample points, for some algorithms termed the ’step length’.
An algorithm that is tuned to the problem is no longer a blind algorithm (a meta-
heuristic). It has become a so-called heuristic — an informed inversion algorithm.
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5.2 A Lower Bound on the Required Number of Iterations by a
Smoothness-Tuned Algorithm

Assume that the parameter space M € RM is an M-dimensional cube of edge
length L, and consider a class F of fit functions defined over M. Assume that
fit functions f € F can be approximated to any precision by

J
f(m) =~ Y u; ¢;(m) (12)
j=1
where ¢1, ¢o,...,¢ s is a set of linearly independent basis functions, and where

J will depend on the required precision. For instance, according to a theorem
by Brown [I5], any continuous fit function f € F can be approximated to any
precision by [I2)) if ¢1, ¢2,...,d s are radial basis functions of the form

¢;(m) = g(|m —m;|?), m; €Q (13)

where g is a non-constant, completely monotond] function defined on [0, oo, and
Q is a compact subset of RM containing more than one point. The radial basis
functions ¢ (m) have ’spherical symmetry’, and they are translates of each other
(have different m;). The class of radial basis functions is very wide, containing
members as, for instance, exp(—||m —m;||?), ||m —m;|| and ||m —m;]||? In(||m —
m, ).

Assume first that the only information we have about a fit function f is
that it is ’band limited’ in the sense that it is given exactly by the finite linear
combination

J
f(m) = Zuj ¢j(m), (14)

and that we search for acceptable solutions to the inverse problem. Given that
an algorithm has sampled f in k distinct points my,..., mg and recorded the
corresponding function values si,...,sx, what is the chance that we have lo-
cated the neighborhood of the global maximum/minimum for f? To answer this
question, let us express our knowledge after K iterations through the equations:

J
o= 3wy g, —my|2) k=1, K (15)
j=1
If we define the vectors s = (s1,...,sx)%, u = (u1,...,us)T, and the matrix

{G}i; = g(|lmy — m;||?), equation (I5) can be written
s=Gu. (16)

! A function g defined on [0, co[ is completely monotone if g is continuous on [0, oo[,
infinitely often differentiable on ]0, 00[), and (—1)kg®)(¢t) > 0 for t > 0 and k =
1,2,3,....
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If the solution u to this equation is non-unique, at least one of its components
U1, - ..,uy is unbounded (that is, can take any value without violating equation
([@6). If u; is such an unbounded component, f is (at best) only known modulo
an unbounded additional term u; g([m — my||?). It is clear that the unknown
w; renders f’s value in m;, and hence f’s global maximum /minimum, undeter-
mined. In other words, unless we can uniquely determine u, we will be unable
to locate the global maximum for f. u is uniquely determined only if GG is
non-singular, and a necessary condition for this to be satisfied is that K > J.
We have shown

Theorem 3. An inverse problem, whose fit function is known to be a linear
combination of a linear independent set of J basis functions, cannot be solved
through less than J distinct function evaluations.

In the general case, we cannot expect to express f exactly with a finite number
of basis functions. Then f is only expressed with a certain accuracy € > 0, in
the sense that the discrepancy

J
n(m) = f(m) =) " u; ¢;(m) (17)
j=1
is constrained by
mazm n(m)| <e . (18)

In this case the problem is that equation (1G] does not reliably determine the
coefficient vector u when GT'G is ill-conditioned. The discrepancy propagates
into the coefficient vector, creating large errors, and the location of the global
maximum of f remains unknown.

The above considerations set a fundamental, unavoidable lower limit to the
number of iterations required by any inversion algorithm working with a "band-
limited’ fit function. We have not described how an ideal (maximum efficiency)
algorithm should work, but it is clear from the discussion that, contrary to the
"blind inversion’ case, not all algorithms are equally good.

To see this, consider again equation (I@). An algorithm choosing its first J
distinct sampling points such that GT G is non-singular and well-conditioned has
collected sufficient information to locate the global maximum for f (although
we have not shown how to do this). On the other hand, an algorithm choosing
its first J distinct sampling points such that GT G is singular or ill-conditioned
is still missing information about the location of the global maximum of f. For
instance, a sub-optimal algorithm may, after J distinct function evaluations, have
failed to sample all J basis functions in points sufficiently near their maxima.
Such an algorithm will need more than J distinct function evaluations to render
equation (@) solvable.
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6 The Complexity of an Inverse Problem with Known
Smoothness

Consider an inverse problem with a fit function f defined in an interval M of
edge length L in R™ (an M-dimensional 'box’). Assume that f is smooth in the
sense that it can be expanded in a linear independent, finite set of radial basis
functions, centered in a regular grid in M with grid spacing . The required,
total number of basis functions is then (L/I 4+ 1), and according to Theorem
@) this is the smallest number of distinct function evaluations needed to solve
the inverse problem. To reach this minimum number of evaluations, the safest
strategy for an algorithm is to sample close to the maxima of the basis functions,
and this calls for a sampling distance close to a multiple of [.

It should be noted, however, that in this important case the smallest number
of distinct function evaluations needed by any algorithm to solve the inverse
problem grows at least exponentially in M. This growth is severe, and shows
that the inverse problem is hard in the sense that the solution time grows faster
than any polynomial function [I6]. In practice, this means that even significant
improvements in computer speed will only allow the inverse problem to be solved
with a few more model parameters. Let us summarize this important observation
in the following:

Theorem 4. Consider an inverse problem for which our only knowledge is that
its fit function can be erpanded in a set of linearly independent, radial basis
functions, and assume that the basis functions are centered in a regular grid
covering the model space. Then the computation time for any algorithm aimed
at solving the inverse problem will grow at least exponentially with the number
of unknown model parameters.

7 Discussion and Conclusion

Wolpert and Macready [14] showed that, contrary to the belief of many prac-
ticians, there is no difference between the performance of the many existing,
and popular, meta-heuristics, unless they are tuned to the problem at hand
(and therefore no longer problem-independent). This means that all attempts to
improve on inversion algorithms must focus on the tuning. One of the most com-
mon tuning parameters is the ’step length’ (as in, e.g., simulated annealing) or
'sampling density’ (as in, e.g., the neighborhood algorithm). This kind of tuning
applies to cases where smoothness is the only known property of the fit function.

Usually, the smoothness is determined empirically through experimentation
with a range of sampling densities. An example is steepest descent algorithms
where step lengths are adjusted in order to avoid ’instability’ of the algorithm.
Another example is the adjustment of the step length in Markov-chain Monte
Carlo methods, until the rate of accepted moves is reasonable [I7]. A third
example is the neighborhood algorithm where the density of resampling can be
adjusted.
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In many inverse problems arising in physical sciences, the data, and hence
the fit (or misfit) functions are smooth. An example is seismic waveform inver-
sion, where the band-limitation of the seismic source function is inherited by
the fit function. If one attempts to solve this problem with an algorithm that
is only informed about the smoothness of the fit function (through numerical
experimentation or through some spectral information), the solution time will
grow exponentially with the number of unknown parameters. This means that
large-scale, seismic waveform inversion problems are essentially unsolvable in
this way. On the other hand, it is well known that solution of such problems
may be feasible with 'well-informed’ algorithms, based on the theory of seismic
wave propagation.

We should mention a couple of objections that could be raised against our
exposition. First, does the above theory account for the situation that an algo-
rithm may sometimes, by accident, start its search/sampling close to a solution?
The answer to this question is that in large-scale inverse problems with many
unknown parameters, there is a negligible probability that an algorithm, only
informed about the smoothness of f, would start near an acceptable solution.
We have therefore ignored this situation.

A second objection concerns the fact that we have treated deterministic meth-
ods (searching only for one feasible solution), and Monte Carlo sampling methods
(aiming at finding many feasible solutions) in a unified theory. Clearly, sampling
methods start with a ’burn-in phase’ which is comparable to deterministic meth-
ods in its aim at locating one acceptable model, but this phase is followed by a
‘sampling phase’ which is apparently the real production phase of the sampling
algorithm. To what extent is the sampling phase considered in our theory? The
answer is, that our theory only considers the burn-in phase of a Monte Carlo
sampling. In this connection it should be remembered that the burn-in process
not only concerns the initial search for acceptable solutions. If the fit function
for the problem has many isolated islands of acceptable solutions, the burn-in
time is also a measure of the time it takes for the algorithm to move from one
solution island to the next.

As a final remark we should note that, although we have demonstrated that
all blind inversion schemes are equally (in)efficient, and that efficient algorithms
can only be obtained through problem-dependent tuning, it is certainly possible
that some algorithm designs are more easily tuned than others. This may be
responsible for some of the differences that practitioners observe between popular
algorithms.
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Abstract. Over the past five years almost all computer manufactur-
ers have dramatically changed their computer architectures to Multicore
(MC) processors. We briefly describe Cache Blocking as it relates to com-
puter architectures since about 1985 by covering the where, when, how
and why of Cache Blocking as it relates to dense linear algebra. It will
be seen that the arrangement in memory of the submatrices A;; of A
that are being processed is very important.

1 Introduction

PARA 2010 coincided with my 75" birthday. I want to thank the organizers
for allowing me to address the attendees about the subject of Cache Blocking. I
devoted a lot of time during my last 25 years at IBM research on library devel-
opment; this library was called ESSL for IBM Engineering Scientific Subroutine
Library. In 2011, ESSL celebrated its 25" birthday. In the area of Dense Linear
Algebra, DLA, ESSL is compatible with LAPACK; ESSL has a parallel library
called PESSL and it is compatible with ScaLAPACK. DLA is a subject that
benefits greatly from the use of cache blocking, and DLA researchers have con-
tributed heavily to the development and understanding of cache blocking. This
paper describes cache blocking as it relates to DLA.

We cover the where, when, how and why of cache blocking. The where is
everywhere. By this we mean that almost all processors use a design that incor-
porates cache blocking; i.e., their memory hierarchies are designed in a tiered
fashion called caches. Processing of data only occurs in the lowest level caches;
today these data processing areas are called cores.

The when occurred in the mid 1980’s when caches were first introduced. Cache
blocking was first invented by my group at IBM in 1984 [21] and the Cedar
project at the University of Illinois [12]. As processor speeds increased, the law
of physics that governed the speed of light started to affect all processor design.
Previously, processors had a uniform or single memory hierarchy and thus all
data could be ready for processing in a single CPU operation. Uniform memory
processors of the 1980’s were the Cray 1 machines. However, later on, the Cray
2 machines became cache based machines. DLA researchers then introduced the
Level-3 BLAS [I0] for improving new DLA libraries that were later introduced.
Two examples were the LAPACK and ScaLAPACK libraries. This was a time
period when “Moore’s law” started to come into play; this law accurately pre-
dicted processor speed increases for the next twenty years. Those speed increases
ended around 2005 with the introduction of multi-core, MC.

K. Jénasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 22-B3, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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The how or what can be described as an application of the Algorithms and
Architecture Approach [I5]. Linear Algebra has a “fundamental principle” called
the “Principle of Linear Superposition”. Using it, one can describe the factor-
ization algorithms of DLA of a matrix A in terms of its sub matrices A;; instead
of its elements a;;. This leads to automatic cache blocking! The LAPACK and
ScalLAPACK libraries are based on this fundamental principle.

Now we describe the why of Cache Blocking. Simply put “why” has to do with
the speed of data processing. For peak performance of DLA factorization, all
matrix operands must be used multiple times when they enter an L1 cache. This
ensures that the initial cost of bringing an operand into cache is amortized by the
ratio of O(n?) arithmetic to O(n?) elements. Multiple reuse of all operands can
only occur if all matrix operands map well into the L1 cache. For MC processors,
an L1 cache holds data for the cores. For MC it is critical to get the matrix to
the cores as fast as possible. The standard programming interface, called API,
of matrices for the BLAS and DLA libraries is the 2-D array of the Fortran and
C programming languages. For this API, submatrices A;; are held in 2-D arrays
of Fortran and C. They cannot be moved to and from the memory hierarchy to
various cores in a fast or optimal manner! Using New Data Structures, acronym
NDS, to hold these submatrices A;; corrects this problem. We shall “prove” why
this is true using dimension theory [2§].

Multicore/Manycore (MC) is considered a revolution in Computing. Actually,
MC is a radical change in Architectures. We have talked about the fundamental
triangle of Algorithms, Architectures and Compilers in [B[I5/TI]. The funda-
mental triangle concept says that all three areas are inter-related. This means
Compilers and Algorithms must change in significant ways. Over the last five
years the LAPACK library has been carefully examined and it is now directed
toward basic structural changes to gain better performance on MC. One major
change has been to adopt NDS.

For nearly 15 years, Bo Kagstrom’s Group at Umea, Sweden, J. Wasniewski’s
Team at Danish Technical University in Lyngby, Denmark, and I at IBM Re-
search in Yorktown Heights have been applying recursion and NDS to increase
the performance of DLA factorization algorithms, DLAFA. Our results apply
equally well to MC processors; e.g., the introduction of NDS [T4IT5/TTI5T6]. In
this paper NDS will mean matrix data structures that can be used directly by
BLAS-3 kernel routines [I5JI6]. The essence of MC is many cores on a single
chip. The Cell BE (Broadband Engine) is an example. Cell is a heterogeneous
chip consisting of a single traditional PPE (Power Processing Element) and 8
SPEs (Synergistic Processing Element) and a novel memory system intercon-
nect. Each SPE core can be thought of as a processor and a “cache memory”.
Because of this, “cache blocking” is still very important.

For MC the disproportion between multiple CPU processing and memory
speed is much higher. However, the API for BLAS-3 hurts performance as it
requires repeated matrix data reformatting from its API to NDS. A new “BLAS-
3” concept is to use NDS in concert with “BLAS-3” kernels [I52524§]. For MC,
the broad idea of “cache blocking” is mandatory as matrix elements must be fed
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to the SPE’s as fast as possible. The arrangement in memory of the submatrices
A;; of A that are being processed is equally important. So, this is what we will
call “cache blocking” for MC.

We describe algorithms presented at PARAOS, called VIPX and BIPX, that
require little or no extra storage to transpose a M by N rectangular (non-square)
matrix A in-place. They are much faster versions of the scalar in-place transpose
algorithms presented at PARAO6 in [I7]. Also of interest and very relevant is
my paper with Lars Karlsson and Bo Kagstrom [20] and Lars’ paper [22]. These
PARAOS algorithms and those of [22/20] are quite illuminating as they show in a
fundamental way why NDS are superior to the current standard matrix formats
of DLA. They demonstrate a novel form of cache blocking! It is only when one
uses NDS in concert with these algorithms that it is possible to achieve cache
blocking. We only use two matrix layouts in this paper. First, we assume that the
matrices are stored in Rectangular Block (RB) format. RB format stores a M by
N matrix A as contiguous rectangular submatrices A;; of size MB by NB. Square
Block (SB) format is a special case of RB format when the rectangle is a square.
It was first introduced in 1997, see [I4], and has been described in five recent
mini-symposiums at PARA06, PPAMO07, PARAO0S, PPAMO09, and PARA10. It
turns out that our results on NDS [IAI5TTI5II6] are very relevant to MC: Of
all 2-D data layouts for common matrix operations SB format minimizes L1 and
L2 cache misses as well as TLB misses. The essential reason for this is that a SB
of order NB is also a contiguous 1-D array of size NB? and for almost all cache
designs a contiguous array whose size is less than the cache size is mapped from
its place in memory into the cache by the identity mapping. SB format is the
same as block data layout. Block data layout is described in [27] and the authors
show that this format leads to minimal L1, L2, TLB misses for matrix operations
that treat rows and columns equally.

RB format has a number of other advantages. A major one is that it naturally
partitions a matrix to be a matrix of sub-matrices. This allows one to view matrix
transposition of a M by N matrix A where M = mMB and N = nNB as a block
transposition of a much smaller m by n block matrix A. However, usually M
and N are not multiples of MB and NB. So, RB format as we define it here, would
pad the rows and columns of A so that M and N become multiples of some
blocking factors MB and NB. We add that padding appears to be an essential
condition for this type of “cache blocking”. The second format for storing
matrices is the standard 2-D array format of the Fortran and C programming
languages. For the in-place algorithms we consider it appears that by only using
these standard formats it then becomes impossible to achieve highly performing
algorithms. In other words, “cache blocking” for DLAFA is not possible when
one uses the standard API of 2-D arrays to hold a global matrix A.

Cache blocking using NDS will be described in Section 2. We show how it
can be automatically incorporated into DLAFA by using NDS and “BLAS-3”
kernel routines instead of using the current Level 3 BLAS. Section 2 closes with
a discussion of Dimension Theory. It shows why Fortran and C arrays cannot
be truly multi-dimensional. In Section 3, we describe the features of In-Place



Cache Blocking 25

Transformations between standard full layouts of matrices and the new rectan-
gular block (RB) or square block (SB) formats of NDS. These algorithms demon-
strate a novel form of cache blocking which is made possible by transforming to
and then using the NDS. Serial performance results for the algorithms of Section
3 are given in [19]. Some early history of my involvement with Cache Blocking
is given in Section 4. A short Summary and Conclusion is given in Section 5.

2 Cache Blocking

We address “cache blocking” as it relates to DLAFA; see [I5]. We will sketch a
proof that DLAFA can be viewed as just doing matrix multiplication (MM) by
adopting the linear transformation approach of applying equivalence transfor-
mations to a set of linear equations Az = b to produce an equivalent (simpler)
form of these equations C'x = d. Examples of the simpler form are LU = PA, for
Gaussian elimination, LLT = A, for Cholesky Factorization, and QR = A, for
Householder’s factorization. We adopt this view to show a general way to pro-
duce a whole collection of DLAFA as opposed to the commonly accepted way of
describing the same collection as a set of distinct algorithms [I3]. A second rea-
son is to indicate that for each linear transformation we perform we are invoking
the definition of MM. Here is the gist of the proof as it applies to LU = PA.

1. Perform n = [N/NB] rank NB linear transformations on A to get U.
2. Each of these n composed NB linear transformations is MM by definition.
3. By the principle of equivalence we have Az = b if and only if Uz = L~'Pb.

MM clearly involves “cache blocking”. Around the mid 1990’s we noticed (see
page 739 of [14]) that the API for Level 3 BLAS GEMM could hurt performance. In
fact, this 1-D APT is also the API for 2-D arrays in Fortran and C. An explanation
of dimension is given in Section 2.1. One can prove that it is impossible to lay
out a matrix in 1-D fashion and maintain closeness of its elements. LAPACK
and ScaLAPACK also use this API for full arrays. On the other hand, high
performance implementations of GEMM do not use this API as doing so leads to
sub-optimal performance. In fact, some amount of data copy is usually done by
most high performance GEMM implementations. Now, Level 3 BLAS are called
multiple times by DLAFA. This means that multiple data copies will usually
occur in DLAFA that use standard Level 3 BLAS. The NDS for full matrices are
good for GEMM. DLAFA algorithms can be expressed in terms of scalar elements
a;; which are one by one block matrices. Alternatively, they can be expressed
in terms of partitioned submatrices, A(I : I +NB—1,J : J+NB— 1) of order NB.
See [13] for a definition of colon notation. The algorithms are almost identical.
However, the latter description automatically incorporates cache blocking into a
DLAFA. Take the scalar statement ¢; ; = ¢; j—a; 1by, j representing scalar MM as
a fused multiply-add. The corresponding statement for partitioned submatrices
becomes a kernel routine for Level 3 BLAS GEMM. However, it is imperative to
store the order NB SB’s as contiguous blocks of matrix data, as this is what many
Level 3 BLAS GEMM implementations do internally. This is not possible using the
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standard Fortran and C API. This fact emphasizes the importance of storing the
submatrices of DLAFA as contiguous blocks of storage. An essence of NDS for
full matrices is to store their submatrices as contiguous blocks of storage. The
simple format of full NDS has each RB or SB stored in standard Column Major
(CM) or standard Row Major (RM) format; see [15] for details.

Early results of the PLASMA project as it related to the Linpack benchmark
LU = PA when running on the Cell processor emphasize their use of SB for-
mat [25]. According to Dongarra’s Team it was crucial that NDS be used as
their matrix format. In particular, using the standard APT of Fortran and C did
not yield them good performance results. Also, earlier results obtained by con-
sidering the IBM new Blue Gene/L computers [9] emphasized the same thing.
However, the simple format of full NDS needs to be rearranged internally to
take into account “cache blocking” for the LO cache. The L0 cache is a new term
defined in [I6] and it refers to the register file of the FPU or core that is attached
to the L1 cache. Some ideas about this are given in [16].

2.1 Dimension Theory and Its Relation to Standard CM and RM
Arrays of Fortran and C

All multi-dimensional arrays in Fortran and C are actually 1-D layouts. This
means that the API for 2-D “arrays in Fortran and C” is really one dimensional.
A finite version of the Fundamental Theorem of Dimension Theory implies that
it is impossible to preserve a meighborhood principle of closeness of all points p
of a D dimensional object when one uses a d dimensional coordinate system to
describe the object when D > d; see pages 106 to 120 of [28]. We use the phrase
“preserve data locality” and we note that when data is contiguous in computer
memory then its mapping into cache is the identity mapping; clearly, this is the
fastest way to move data and also to preserve it in cache. This result says that
it is impossible to lay out a matrix in 1-D fashion and maintain closeness of all
of its elements.

3 In-place Transposition between Standard Full Layouts
and RB Format

The in-place transpose algorithms in [I7], although fast, or very fast compared
to the existing algorithms for the same problem, are necessarily very slow on
today’s processors. We explain why: Suppose that we have an M x N matrix
A stored in CM format. The element a;; is stored at offset & = ¢ + jM or
Alk]. These algorithms implement an in-place permutation P of the entries of A
so that a;; = A[k] ends up at offset k = iN + j or A[k]. Thus, the algorithms
overwrite A stored in CM format with its transpose AT also stored in CM format.
This mapping, k¥ = P(k) = kN mod q where ¢ = M N — 1, is a permutation of
the integers 0 : M N — 1. The mapping P, with different parameters N and
q, also defines different pseudo-random number generators |23 Section 3.2.1.3].
Therefore, an algorithm that transposes a matrix in-place using P directly must
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exhibit a random memory access pattern and thus have very poor performance:
Each memory access will likely miss in each level of the cache hierarchy. A cache
miss penalty is huge, in the hundreds of cycles, for multi-core processors.

Today’s processors lay out memories in chunks of size LS called lines and when
an element is accessed the entire line containing the element is brought into the
L1 cache. To obtain high performance it is therefore imperative to utilize or
process all elements in a line once the element enters the L1 and LO caches.
We speculate that the reason in-place transposition has not been used for DLA
algorithms is because one can prove that in-place transposition is impossible for
sub-matrices of a matrix A stored in standard format. Also, these algorithms
are very slow relative to out-of-place transposition algorithms which are almost
universally used instead.

Here we use the RB format, which is a generalization of the more commonly
used SB format. It will be evident that our results also hold for SB format.
In the RB format version of our new Block In-Place Xpose@ (BIPX) algorithm
our M by N matrix A, usually padded, can be considered a m by n block
matrix where each submatrix has MB rows and NB columns. Padding should
occur when either M < mMB or N < nNB. Now the governing permutation
P has length ¢ = mn — 1. So, each “element” moved is a RB of size MB by NB
whose elements are contiguous and hence consist of [MB - NB/LS| contiguous lines.
Hence, the performance problems of the two previous paragraphs disappear and
our BIPX algorithm will perform at about the same speed as current out-of-place
algorithms; see [I9] for performance results. In this Case 1, the BIPX algorithm
has one stage and hence is more efficient than the other two cases which we now
describe for transposing in-place matrices A stored in standard Fortran and C
2-D arrays. The second case has three stages and the third case has five stages.

3.1 The Three Stage Case 2 Algorithm

The main idea here is to use the BIPX algorithm and hence we need to transform
A, in a standard CM or RM format, to be in RB format. This is done by using
a vector version of the IPT or MIPT algorithms of [I7]; it is called the VIPX
algorithm and it has similar features to our BIPX algorithm. The VIPX algorithm
maps in-place a M = mMB by NB submatrix of A, in standard CM format with
LDA = mMB, to become m size MB by NB RB concatenated together. We call this
submatrix of A a column swath of A. Repeating algorithm VIPX n times on the
n concatenated column swaths that make up CM A converts CM A to become
A in RB format.

Now we can describe the Case 2 algorithm: It assumes CM A has a certain
layout space in terms of standard 2-D layout terminology: CM A and RB format
A will occupy M < mMB by N < nNB arrays with LDA = mMB where m =
[M/MB]. So, the array A holding CM A and RB format A will have space for
mMBnNB elements where n = [N/NB]|. Now we give the three stage algorithm.
First algorithm VIPX, applied n times on the n column swaths of A produces

! Xpose stands for Transpose.
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RB A. Second algorithm BIPX computes RB A”. Third the inverse of the VIPX
algorithm, applied m times on the m column swaths of AT, computes CM AT
Hence, it will be less efficient than the Case 1 algorithm by approximately a factor
of three. However, it will be very efficient compared to a one stage algorithm
MIPT or IPT of [17] applied directly to A stored a standard CM or RM format;
see the start of Section 3 where the reason why was given.

3.2 The Five Stage Case 3 Algorithm

Clearly, matrix A rarely has its M a multiple of MB and its N a multiple of NB
or that A is contained in an array A with size |A| > mMBnNB elements. Case 3
is where A is in standard CM format, A has size M by N with LDA > M, and
the conditions for Case 2 do not hold. In Case 3, we set m; = |M/MB] and
ny = | N/NB| to define the space for a My = m;MB by N; = niNB smaller A,
submatrix of A inside the original array space of A. This requires that we save
the leftover M — M, rows and N — N7 columns of A in a buffer. We fill this buffer
using out-of-place transpose operations on these leftover rows and columns of
A. Then we move the M; by N7 matrix A; to be in standard CM order. A; is
now declared in Fortran as A(0 : My — 1,0 : Ny — 1) in the array space A. This is
easy to do as a series of DCOPY type calls of length M;. Note that matrix A; has
its LDA = M; and it is now a Case 2 matrix. We apply the Case 2 algorithm to
CM A; to get CM AT Next, we expand AT in the array space of A using DCOPY
type calls of length N; thereby making “holes” in array A for the submatrices of
A in the buffer. Finally, we transfer the buffer with the saved rows and columns
to the “holes” in A using standard out-of-place transpose and copy algorithms
to get the final CM AT matrix. The Case 3 algorithm contains four additional
steps of save A— Aj, contract A;, expand A; and restore A — A; over the Case 2
algorithm and hence is the least efficient of the three algorithms. Since it passes
over A about five times it will perform about five times slower than the Case 1
algorithm when A is large; see [1§].

We can only describe the BIPX, VIPX and Case 2 algorithms due to space
considerations. There is some literature on this subject in the form of a patent
disclosure [26] which we discovered after we finished this work. This disclosure
is incomplete, and furthermore its algorithms are not really in-place.

3.3 The VIPX(MB,m,NB,A) Column Swath Algorithm

We briefly describe how one gets from standard CM format to RB format. Let
Al have M = mMB rows and N = nNB columns with its LDA = M. Thus, Al
consists of n column swaths that are concatenated together. Denote any such
swath as a submatrix A3 of Al and note that A3 consists of NB contiguous
columns of CM matrix Al. So, A3 has M rows and s = NB columns. Think of
A3 as an m by s matrix whose elements are column vectors of length r = MB.
Now apply algorithm MIPT or IPT of [I7] to this m by s matrix A3 of vectors of
length 7. Now A3 has been replaced (over-written) by A37 which is a size s by
m matrix of vectors of length r. It turns out, as a little reflection will indicate,
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that A37 can also be viewed as consisting of m RB matrices of size r by s that
are concatenated together. For matrix A1 we do n parallel A3 — A3” operations
for each of the n = N/s concatenated submatrices A3 that make up matrix Al.
After completion of these n parallel computation steps we have transformed CM
Al in-place to become matrix A2. A2 is a RB matrix consisting of m block rows
by n block columns stored in standard CM block order. Of course, A1 and A2 are
different representations of the same matrix. However, we have “cache blocked”
matrix A2! The VIPX algorithm just described is algorithm MIPT or IPT of [17]
modified to move contiguous vectors of length r instead of scalars of length one.

3.4 The BIPX(MB,NB,m,n,A) Block Transpose Algorithm

We briefly describe how one gets from RB format to the transpose of RB format
in-place. Let A2 have m block rows and n block columns where each block
element of A2 is a standard CM matrix having MB rows and NB columns with
LDA=MB. These m by n block matrices are laid out in standard CM block order;
see Section 3.3. Now apply algorithm MIPT or IPT of [I7] to this m by n matrix A2
of RB matrices. A2 will be replaced (over-written) by A27. Each block element
of A2 is a CM matrix having NB rows and MB columns with LDA=NB; ie, each new
RB matrix is the transpose of an old RB matrix. The BIPX algorithm uses either
algorithm MIPT or IPT of [I7] modified to transpose out-of-place RB matrices
of size MB by NB according to a permutation cycle of the MIPT or IPT algorithm
applied to the m by n RB matrix A2. Note that any permutation of disjoint
block cycles is easy to parallelize. One can clearly see how using A2 produces a
parallel form of cache blocking!

3.5 The Case 2 In-place Transpose Algorithm

The Case 2 Algorithm was described in the previous Sections 3.1, 3.3, and 3.4.
When M = N one calls a standard in-place transpose algorithm. We now present
the M # N case where MB = NB:

ml=m/nb ! A is a Fortran m by n matrix declared as A(0:m-1,0:n-1)
nl=n/nb ! A will become a SB matrix of size ml by nil
nb2=nb*nb ! each SB holds nb~2 matrix elements
if(ml.gt.1)then ! Stage 1 of CM to SB
call VIPX1(nb,ml,nb,A,temp,L,nL)
do k=1,n1-1
call VIPX2(nb,ml,nb,A(k*m*nb) ,temp,L,nL)
enddo
endif
if(ml.eq.l.0or.nl.eq.1)then ! A is a block vector matrix
! A is a m1 by 1 block vector or a 1 by nl block vector
do i=0,max(ml,n1)-1 ! max(mi,n1,1) is either ml or ni
call DGETMI(A(i*nb2),nb,nb) ! transpose ml or nl blocks
enddo
else ! A is a SB matrix of size ml by nl; min(ml,n1) > 1
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call BIPX(m,n,A,m,nb,temp) ! Stage 2 of SB to SB°T
endif
if(nl.gt.1)then ! Stage 3 of SB"T to CM

call VIPX1(nb,nb,nl1,A,temp,L,nL)

do k=1,mi-1

call VIPX2(nb,nb,n1,A(k*n*nb),temp,L,nL)

enddo

endif

We have broken stages one and three into an initial call to VIPX1 and their
remaining calls to VIPX2. VIPX1 is VIPX of Section 3.1 where we save the lead-
ers [I7] of VIPX in vector L of length NL. Hence, further calls to VIPX can be
handled by the more efficient VIPX2 which receives its leaders in L as input.
Routine DGETMI is the ESSL in-place transpose routine [21]. Array temp will
hold a vector of length NB or NBZ.

4 Some Early IBM History on Cache Blocking

In the early 1980’s I became manager of a small research group and project
called Algorithms and Architectures. IBM was to introduce a Vector Processor
into its new cache based 3080 series mainframe line. My group initially had
researchers Ramesh Argawal, James Cooley and Bryant Tuckerman. We first
produced novel scalar and vector elementary functions that were nearly perfectly
rounded and very fast. This work became state-of-the-art [I]; today this design
still is. Next came the formation of the IBM product ESSL. This latter work
was a joint venture with IBM Development in Poughkeepsie and Kingston, NY
headed by Stanley Schmidt and Joan McComb. ESSL was conceived during
1982. For linear algebra, we decide to make ESSL subroutines compatible with
Linpack. In May to June of 1984 we produced a successful design of matrix
multiply, GEFA and POFA. Our internal report said “a conceptual design has
been identified in which data is brought (and completely used) into cache only
once. This approach allows full use of the multipy add instruction”. Thus, this
is when “cache blocking” was born in my group. ESSL was initially released
in February 1986 [21]; it will celebrate its 25" anniversary in 2011. In 1988,
my group showed how “algorithmic lookahead” could be used to obtain perfect
parallel speed-up for Linpack benchmark [2]. This key idea is used to get high
performance on multi-core processors.

In the late 1980’s ESSL and my group was presented a new challenge as
IBM decided to introduce RISC computers called the POWER (RS6000) line of
workstations. ESSL had grown substantially and had put out four mainframe
releases. A huge programming effort began and 497000 lines of Fortran code was
produced by my small group of four regular people. We called our effort EFL
standing for ESSL Fortran Library; the whole library was written in Fortran!
Sometime later Jim Demmel and his graduate students at UC Berkeley started a
project with a grant from IBM to try to automatically produce code to get better
performance than EFL code. They produced PHIPAC; later Jack Dongarra’s



Cache Blocking 31

group followed with ATLAS. After POWER], came a remarkable machine called
POWER?2 [3]. It possessed very high bandwidth. In 1992 my group published a
report [4] on how to use overlapped communication to produce peak performing
matrix multiplication on distributed memory computers. Today, this algorithm
is still the algorithm of choice.

5 Conclusions and Summary

We indicated that DLAFA are mainly MM algorithms. The standard API for
matrices use arrays. All array layouts are one dimensional. It is impossible to
maintain locality of reference in a matrix or any higher than 1-D object using a
1-D layout; see [28]. MM requires row and column operations and thus requires
matrix transposition (MT). Our results on in-place MT show that performance
suffers greatly if one uses a 1-D layout. Using NDS for matrices “approximates”
a 2-D layout; thus, one can dramatically improve in-place MT performance. Our
message is that DLAFA are mostly MM. MM requires MT and both require
NDS. Thus, DLAFA can and do perform well on multicore if one uses NDS.
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Abstract. Until now, several heuristics for scheduling parameter sweep
applications in environments such as cluster and grid have been intro-
duced. Cloud computing has revolutionized the way applications are ex-
ecuted in distributed environments, as now it is the infrastructure which
is adapted to the application and not vice versa. In the present contri-
bution an astronomy application from the next mission to Planet Mars
with Finnish-Russian-Spanish flag is ported on to a cloud environment,
resulting in a parameter sweep profile. The number of needed execu-
tions and the deadline provided required a big quantity of computing
resources in a short term and punctual situations. For this reason, we in-
troduce and validate a model for an optimal execution on a public cloud
infrastructure by means of time, cost and a metric involving both.

1 Introduction

Cloud computing allows access to an on-demand and flexible computing in-
frastructure. As soon as production infrastructures have been available to the
scientific community, the first applications have started to run on the cloud [T2].
In many Research areas, the leap from cluster and grid computing to this new
paradigm has been mandatory, as the needed applications evolve in their com-
putational needs [3].

In cloud computing a research institution does not need to care about its own
cluster machines, neither the availability of remote computing resources nor the
software installed on them. When needed, an user may start a virtual machine
(VM), or even a group of identical VMs booted from the same image. Another
remarkable fact is that in cloud computing is the application which defines its
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level of parallelism and not the hardware, unlike in cluster or grid computing. A
cloud user may choose from two main infrastructure types: public or private. In a
private cloud (also named internal or corporate cloud) the bare-metal machines,
those hosting the running VM’s, are maintained by his own Institution. These
private clouds can be built with virtualization technologies such as Nimbus [4],
OpenNebula [B] or Eucalyptus [6]. On the other hand, users may choose to
externalize the cloud service and pay per deployed VM and unit of time, like in
ElasticHostd] and Amazon’s Elastic Compute Cloud?.

In the present contribution, an astronomy application used in the context
of the Finnish-Russian-Spanish Mission to Mars that will be launched in 2011
(Section[2)) is studied for its optimal execution on Amazon’s cloud infrastructure
(Sections Bl and H]). The reasons for choosing a public cloud infrastructure are
that executions are meant to be sporadic, intensive and the existing comput-
ing infrastructure is very limited. Upgrading this computing infrastructure was
discarded, so the pay-as-you-go philosophy suits perfectly the application. With
this in mind, the objective then was a valid model that allows to choose the
best setup by means of total execution time, cost and a metric involving both
(Section [{) and validate it through experimental results given an infrastructure
setup (Section [@). This model provided in this contribution is ready to be used
not only in this mission to Planet Mars but in the next ones.

2 Phobos Eclipses on Mars for the MetNet Precursor
Lander localization

The MetNet Mars Precursor Mission (MMPM) is a new type of atmospheric
science mission to Mars. The project is being fulfilled in collaboration between
the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Associa-
tion (LA), the Russian Space Research Institute (IKI) and the Spanish National
Institute for Aerospace Technology (INTA). The purpose of the MMPM is to
confirm the concept of deployment of mini-meteorological stations onto the Mar-
tian surface to get atmospheric data during the descent phase and at the landing
site with a life time design goal of several martian years. The probe is planned
to be launched in 2011 as a secondary part of the Russian mission PhobosGrunt.

The determination of the landing site coordinates is fundamental to provide
useful information for both scientific and mission engineering goals. The detec-
tion of the shadowing effect of Phobos on Mars is proposed to solve the localiza-
tion problem as an alternative and to complement the use of radiometric signals.
In order to implement an observational strategy to observe Phobos eclipses, an
algorithm has been developed and coded to determine the eclipse conditions as
well as the determination of the shadow motion in latitude and longitude. The
implementation of the observational strategy is limited due to the ambiguity
in the EDLS (Entry, Descent and Landing Site) concept. Thus, the cyclogram

! http://www.elastichosts.com/
2 http://aws.amazon.com/ec2/
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must be activated at the moment when EDSL conditions are known. Cloud will
enable us to face with this punctual huge volume of computations in a fast and
efficient way.

3 Phobos Eclipses on the Cloud

The original application, coded in Fortran 77, was not implemented with par-
allelization in mind so it needed an upper layer for distributing it. It’s exe-
cutable filesize is 754KB and it processes a single 4KB file where the tracing
interval dates and times are read. The size of the resulting output file, con-
taining Phobos’ trajectories, varies depending the tracing interval and precision.
The resulting parallelized application pertains to the parameter sweep profile,
where independent tasks are executed having the executable in common but
not the input [7I8[9]. This is the simplest distributed application profile and it
is not new, as it has been used since the early stages of cluster [I0] and grid
computing [ITIT2].

Related work on parameter sweep applications on distributed environments
was always based in finding the best scheduling heuristic. On a cloud environ-
ment scheduling is changed to provisioning, as resources can be adapted to the
application and can be considered almost infinite. The present contribution does
not aim a scheduling heuristic but a provisioning model for parameter sweep
applications like the studied one, where homogeneous tasks are executed on a
public cloud infrastructure.

Cost analysis for scientific applications on the cloud has already already been
done. For instance, [13] shows a performance comparison on three different sci-
entific workflows and analyses different aspects such as I/O, Memory and CPU
usage. On the other hand, [I4] focuses on one of these data intensive workflows
and studies through a grid computing simulator [I5] the cost performance trade-
offs for different executions and provision strategies. In both works, the use of
cloud storage is highly recommended due to task data dependencies. The present
contribution provides a valid model for an execution intensive application with
few and little data transfers. For this reason, it has been studied more from a
CPU usage point of view even if some assumptions regarding transfer are made,
and data storage on the cloud was not considered as a solution. The application
was brought to a basic level as it will be explained in the next Section, in order
to avoid middleware overheads inherent to grid or cluster computing.

Before the landing of the Mars probe, tracing must be done for different pos-
sible locations, and each tracing with a time lapse of 1”. Summing up all the
tracing intervals for all candidate landing coordinates given a possible area, the
result is approximately 800 years. The EDSL conditions will be only known 1230’
before the beginning of the landing procedure, becoming this a deadline for the
computations. The obtained cyclogram is then sent to the probe for instrumental
actualization and no more executions would be needed for the rest of the mission.
As stated before, the Cloud Computing approach on a public infrastructure suits
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Table 1. Characteristics of the different machine types offered by Amazon EC2 in
the USA-East infrastructure. C.U. corresponds to EC2 compute units per core, the
equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Machine Type Cores C.U. Memory Platform Price/hour
Small (Default) 1 1 1.7GB 32bit $0.085
Large 2 2 T7.5GB 64bit $0.34
Extra Large 4 2 15GB 64bit $0.68
High CPU Medium 2 25 1.7GB 32bit $0.17
High CPU Extra Large 8 25 7GB 64bit $0.68

perfectly this punctual need of HPC power. Experiments done for this work are
performed in a fixed location but starting in the year 1609, when astronomer
Galileo Galilei crafted his first telescope. This way, results from 400 years ago
can be compared with historical data, and new data can be gathered for the
next 400 years.

4 Cloud Infrastructure

The Amazon EC2 cloud, based in two USA locations and in one European,
provides its users a wide range of machine images that can be instantiated in
several modalities. These modalities or instance types depend on the memory
and number of cores per virtual machine as detailed in Table[Il The user is given
a single or a set of virtual machines with the requested specifications and the
exclusivity of operation at all levels. When there is no need of the computing
resources anymore, the user only has to terminate them. However, accessing to
an almost infinite computing infrastructure is not free. Having chosen the cloud
services provided by Amazon has its price, as can be seen in Table[]], this depends
on the type of VM instantiated per hour.

The system implemented for tracing Phobos’ trajectories consisted in a phys-
ical machine located at Universidad Complutense of Madrid (Spain), that co-
ordinates the distributed execution of the application at the virtual machines
through a Perl script. These VM’s were instantiated from images provided by
Alestic.com with Ubuntu 9.10 Karmic Koala Server installed, following a col-
lection of best practices collected from the EC2 and Ubuntu communities. The
duration of the tracing interval processed by each task was presumed to be the
same, as performance does not vary with different tracing dates but with dif-
ferent tracing intervals in small local tests. However, in order to anticipate to
irregular times in large scale executions, the system performs dynamic schedul-
ing where a continuous polling of free cores guarantees a constant resource
harnessing.
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5 Execution Model

The process for the execution model formulation is divided in three stages.
Firstly, the application tracing Phobos is executed for a reduced number of
years in three different Amazon EC2 instances. After that, individual task be-
haviour is extrapolated to the rest of instance types with different tracing in-
tervals. Finally the best cases are identified so the complete execution model is
formulated.

5.1 Individual Task Characterization

Both the application and input filesize are constant, but this is not the case
of the output file when the tracing interval varies. Resulting filesizes from the
single experiments conducted are shown with their linear regression in Figure[Tal
Moving to execution times, these clearly depend on the selected instance and
in particular, its EC2 Compute Units. As explained in Table [Il this metric
applied to instance cores is a way to establish a speed relationship between them.
Because of instances with the same EC2 Compute Units value, experiments
were conducted only with the Small, Large and HighCPU-Medium types, as the
difference with the rest reside in the number of cores. Only one core was used
on each instance by experiment as shared memory latency is not considerable in
this particular execution profile.

The results of these initial experiments are represented along with a linear
regression for each instance in Figure The differences between slopes match
clearly each instance type core speed: 1 for the Small, 2 for the Large and 2.5
for the HighCPU-Medium type. Even if there is a big difference between Large
and Small instance times, this is not the case of HighCPU-Medium and Large.
This difference would surely turn more evident if increasing the tracing intervals
range. Additionally, data transfers were not taken into account during these
experiments because they take place during the following task execution, as it
will be explained in Section 5.3l
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Fig. 1. Output filesizes corresponding to different tracing intervals (a) and execution
times corresponding to different tracing intervals and Amazon EC2 instances (b)
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5.2 Full Experiment Characterization

Having the formulas for execution times of individual tasks as a starting point,
it is possible to provide the expressions for every desired experiment. This way,
the total execution time can be obtained with the following formula:

— TeaceI

T 1
iNym (1)

where task execution time (Texe) is calculated using the linear regression ob-
tained in the previous Section, depending on the selected instance. Because
of equal CPU characteristics, task execution time for Extra-Large instances
is calculated with the Large Formula, and the same happens with HighCPU-
ExtralLarge and HighCPU-Medium instances. The values of I and ¢ correspond
to the whole tracing interval and the tracing interval per task. Finally, Ny, is
the number of Virtual Machines instantiated in the experiment.

But as explained before, time is not the only aspect to be considered when ex-
ecuting an application on a public Cloud infrastructure. Cost must be considered
and it can be calculated with:

€= T @

where C}, is the machine’s usage price per hour as shown in Table [T, and T is
obtained from the previous formula and obviously expressed in hours. Variable
T is rounded here because prices correspond to each usage hour of the requested
instance. Existing instances with more than a core (Table [Il) are considered by
using the N, variable. Nevertheless, there is a need of finding a compromise
between execution time and cost in order to evaluate the best setup. This is
accomplished by the Cost/Performance (C/P) metric, which establishes rela-
tionship between both of them and can be obtained by multiplying Cost (C) by
Time (T'), being the best setup that with the lowest metric value.

5.3 Model Formulation

Focusing in a general model that would establish the best conditions for execut-
ing this application on a public cloud infrastructure given an instance type, the
following expression can be formulated:

ChTezeI
iN2

TSCEEI

C/Pyest = min(C/P) = min(CT) = min( NN

[ D G

where the used variables correspond to those used in Formulas [0l and 2 and
their values depend on the selected instance type. At this point, a procedure for
using the proposed model can be established: (i) obtain the best C'/P values
for each instance type, (i) evaluate which is the best instance type by means of
walltime or cost, and (44) obtain the number of needed virtual machines from
the expression. These steps were applied for each instance shown in Table[Il In
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Fig.2. Comparison of the C/P Metric values for all the considered Amazon EC2
instances with a tracing interval of 0.5 years (a), and execution time (Texze), number
of virtual machines and cost associated to the best values for the C/P Metric (b)

every estimation, 800 years of Phobos’ orbit tracing were considered varying the
interval per task from 6 months to 12 years, and the number of virtual machines
instantiated.

The lowest values for the C'/ P metric in all the estimated experiments corre-
spond to the 0.5 years tracing interval. As seen on Figure[2al the minimum value
is reached with a different number of virtual machines depending the considered
instance type. Figure 2Dl identifies these values for each case and its associated
cost and execution time. Analysing the Large and XLarge cases, equal C/P val-
ues and cost are obtained but the number of virtual machines varies in a 2x
factor. This relationship is the same for the number of cores in the chosen in-
stance types as shown in Table[Il This behaviour is not strictly repeated in the
HighCPU instances. The HighCPU-Medium case uses 37 instances which is near
to 4 times the number of instances used by the HighCPU-XLarge case, as the
number of cores of this instance type is 4 times those from the first one (Table[]).
The reason of this difference even with the same C/P values, is that the execu-
tion time for HighCPU-Medium’s best case is 0.98 and that of HighCPU-XLarge
is 0.91. Additionally, this difference in needed virtual machines results in a drop
of the total cost.

Choosing the instance type is translated to choosing to pay more for the
infrastructure or decrease the level of parallelism. Returning to Figure 2al the
Small instances approach is the most expensive solution but with the highest
level of parallelism (169 simultaneous cores). The rest of instance types provide
around 80 simultaneous cores for a lower price finding a great difference when
moving from Large and XLarge to HighCPU instances, but not from Small to
Large and XLarge. Nevertheless, having considered only execution times at the
simulations, an overhead in the walltime must be assumed. These overheads are
due to data transfers between the execution nodes and the local machine. At the
very beginning of the experiment, the executable must be copied to each machine
and then, before each single execution, the corresponding input file has to be
placed in the working directory. This preprocess results in copying 758 KB the
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Fig. 3. Parallel time (that computed with task mean execution times) and overhead
for the three most representative experiments. All of them are compared with the value
expected by the model.

first time and 4 KB the rest of times. However, with the 0.5 years tracing interval,
a 37 MB output file is generated by task. Data transfers can be done during the
execution of following tasks, but after the last one, there will be as many transfers
as parallel cores in the infrastructure. Considering these overheads, it’s necesary
to count on a setup that does not execute everything in strictly 1 hour, as any
delay will result in paying the price for another hour. For this reason, both the
HighCPU instance types are interesting, as they offer a margin of 1’02 in the
HighCPU-Medium case and 5'04” in the HighCPU-XLarge case.

6 Experimental Results

In order to validate the proposed model, the HighCPU-XLarge case was cho-
sen where 10 virtual machines are instantiated. The reason for choosing this
instance type and not the HighCPU-Medium was that despite the slight cost
increase (Figure Rh)), the time margin for the last data transfers and overheads
is bigger, as it was explained in the previous Section. Measurements did not
consider the creation of local directories with the input files, initial executable
upload (one for each instance) and the output files retrieval. On the other hand,
input file transfer was considered, as this was done each time a task was assigned
to a free core. From the different experiments performed, the results from the
3 most representative ones are shown in Figure Bl These results correspond to
the longest, an average valued and the shortest experiment. In the Figure, the
bars represent the walltime for each experiment and the dotted line, the esti-
mated value. The walltime is decomposed in two values: the parallel time and
the overhead. The parallel time is that considering that all tasks are executed in
the same time, which is the mean. Consequently, the parallel time is the result
of multiplying the task mean time by 20, which is the number of executions har-
nessing all the available cores, for processing the 1600 tasks from the experiment.
The overhead is then the difference between the walltime and the parallel time.

From Figure 3l it can be deduced that the parallel time value is nearer to the
expected value than the walltime. This difference can be understood if analysing
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Table 2. Mean times for each experiment with their standard deviation and the number
of outliers (tasks with Teze > 5')

Experiment Mean Std. Deviation Outliers

1 (long) 2 49.37 3.417 5
2 (avg) 2’ 49.65” 3.89” 8
3 (short) 2’ 45.44” 6.91” 5

the task times, which mean values and standard deviation are shown in Table 2l
There were some tasks with an execution time over 5 minutes which is almost
the double of the expected and the mean time, but no 4’ values were obtained.
In fact, values leap from about 3’30” to nearly 5’50”. This behaviour is sporadic,
not subject to a specific task and has its origin in Amazon EC2 itself. Related
work on Amazon EC2 benchmarking claim that it is not always providing what
it is paid for in terms of available CPU [16]. The effect of these outliers, which
represent the 0.5% of the tasks, can be seen more in detail in the first two
experiments. Being the first one the longest, its task mean execution time is less
than that from the second, but the number of outliers is greater as also shown
in Table 2

7 Conclusions

Cloud computing is a paradigm that aids scientific areas with a high demand of
flexible computational resources. The computational challenge has been moved
from task scheduling to resource provisioning, as this time the distributed ap-
plication does not adapt itself to the infrastructure but vice versa. Additionally,
using a public cloud infrastructure results in a price to be paid. In the present
contribution, a parameter sweep application pertaining to the astronomy domain
is studied for its execution on Amazon’s public cloud. A Model for obtaining the
best infrastructure setup by means of walltime, cost and a metric involving both
has been introduced and validated. Even if there was a small percentage of exe-
cution times with outlier values due to Amazon’s service, the outcome was that
expected, reaching the deadline requirements.

This has been the first use of a public cloud infrastructure made by applica-
tions pertaining to a Space mission (NASA started to use Amazon EC2 services
on November 2010). Due to the great results, more MetNet Project applications
are being considered for their porting to a cloud infrastructure (public and pri-
vate) as more missions are expected. Additionally, the Cluster instances offered
since July and November are to be considered for this and future applications.
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Abstract. We study the impact of asynchronism on parallel iterative
algorithms in the particular context of local clusters of workstations
including GPUs. The application test is a classical PDE problem of
advection-diffusion-reaction in 3D. We propose an asynchronous version
of a previously developed PDE solver using GPUs for the inner computa-
tions. The algorithm is tested with two kinds of clusters, a homogeneous
one and a heterogeneous one (with different CPUs and GPUs).

Keywords: Parallelism, GPGPU, Asynchronism, Scientific computing.

1 Introduction

Scientific computing generally involves a huge amount of computations to obtain
accurate results on representative data sets in reasonable time. This is why it is
important to take as much advantage as possible of any new device which can be
used in the parallel systems and bring a significant gain in performances. In that
context, one of our previous works was focused on the use of clusters of GPUs
for solving PDEs [19]. The underlying scheme is a two-stage iterative algorithm
in which the inner linear computations are performed on the GPUs [I8]. Impor-
tant gains were obtained both in performance and energy consumption. Since
the beginning of parallelism, several works related to asynchronism in parallel
iterative algorithms (see for example [7IT0J2]) have shown that this algorithmic
scheme could be a very interesting alternative to classical synchronous schemes
in some parallel contexts. Although a bit more restrictive conditions apply on
asynchronous parallel algorithms [5], a wide family of scientific problems sup-
port them. Moreover, contexts in which this algorithmic scheme is advantageous
compared to the synchronous one have also been identified. As asynchronism
allows an efficient and implicit overlapping of communications by computations,
it is especially well suited to contexts where there is a significant ratio of commu-
nication time relatively to the computation time. This is for example the case
in large local clusters or grids where communications through the system are
expensive compared to local accesses.

K. Jénasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 43-p3, 2012.
© Springer-Verlag Berlin Heidelberg 2012
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Our motivation for conducting the study presented in this paper comes from
the fact that a local cluster of GPUs represents a similar context of costly commu-
nications according to computations. Indeed, the cost of data transfers between
the GPU memory and the CPU memory inside each machine is added to the
classical cost of local communications between the machines. So, we propose in
this work to study the interest of using asynchronism in our PDE solver in that
specific context.

In fact, our long term objective is to develop auto-adaptive multi-algorithms
and multi-kernels applications in order to achieve optimal executions according
to a user defined criterion such as the execution time, the energy consumption,
or the energy-delay product [15]. We aim at being able to dynamically choose
between CPU or GPU kernels and between synchronous or asynchronous dis-
tributed algorithms, according to the nodes used in a cluster with heterogeneous
CPUs and GPUs.

The test application used for our experiments in this study is the classical
advection-diffusion-reaction problem in a 3D environment and with two chemi-
cal species (see for example [17]). Two series of experiments have been performed,
one with a homogeneous cluster and another one with a heterogeneous cluster
with two couples of CPU-GPU. Both computing performances and energy con-
sumption have been measured and analyzed in function of the cluster size and
the cluster heterogeneity.

The following section presents the algorithmic scheme of our iterative PDE
solver together with the implementation sketch of the asynchronous version.
Then, the experiments are presented and the results are discussed in Section [3l

2 Asynchronous PDE Solver

It is quite obvious that over the last few years, the classical algorithmic schemes
used to exploit parallel systems have shown their limit. As the most recent sys-
tems are more and more complex and often include multiple levels of parallelism
with very heterogeneous communication links between those levels, one of the
major drawbacks of the previous schemes has become their synchronous nature.
Indeed, synchronizations may noticeably degrade performances in large or hi-
erarchical systems, even for local systems (i.e. physically close nodes connected
through a fast local network).

Since the very first works on asynchronous iterations [9J20/4], the interest of
those schemes has increased in the last few decades [BISITIT3IT4]. Although they
cannot be used for all problems, they are efficiently usable for a large part of
them. In scientific computing, asynchronism can be expressed only in iterative
algorithms. We recall that iterative methods perform successive approximations
toward the solution of a problem (notion of convergence) whereas direct methods
give the exact solution within a fixed number of operations. Although iterative
methods are generally slower than direct ones, they are often the only known
way to solve some problems. Moreover, they generally present the advantage of
being less memory consuming.
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The asynchronous feature consists in suppressing any idle time induced by the
waiting for the dependency data to be exchanged between the computing units
of the parallel system. Hence, each unit performs the successive iterations on its
local data with the dependency data versions it owns at the current time. The
main advantage of this scheme is to allow an efficient and implicit overlapping
of communications by computations. On the other hand, the major drawbacks
of asynchronous iterations are: a more complex behavior which requires a spe-
cific convergence study, and a larger number of iterations to reach convergence.
However, the convergence conditions in asynchronous iterations are verified for
numerous problems and, in many computing contexts, the time overhead in-
duced by the additional iterations is largely compensated by the gain in the
communications [2]. In fact, as partly mentioned in the introduction, as soon as
the frequency of communications relatively to computations is high enough and
the communication costs are larger than local accesses, an asynchronous version
may provide better performances than a synchronous version.

2.1 Multisplitting-Newton Algorithm

There are several methods to solve PDE problems, each of them including differ-
ent degrees of synchronism/asynchronism. The method used in this study is the
multisplitting-Newton [12] which allows for a rather important level of asynchro-
nism [21]. In that context, we use a finite difference method to solve the PDE
system. Hence, the system is linearized, a regular discretization of the spatial
domain is used and the Jacobian matrix of the system is computed at the begin-
ning of each simulation time step. The Euler equations are used to approximate
the derivatives. Since the size of the simulation domain can be huge, the domain
is split and homogeneously distributed among several nodes of a cluster. Each
node solves a part of the resulting linear system and sends the relevant updated
data to the nodes that need them. The algorithmic scheme of the method is as
follows:

— Initialization:
e Rewriting of the problem under a fixed point problem formulation:
x=T(z),z € R" where T'(z) = z — F'(z) "' F(z) and F’ is the Jacobian
e We get F' x Az = —F with F’ a sparse matrix (in most cases)
e F' and F are homogeneously distributed over the computing units
— Iterative process, repeated for each time step of the simulation:
e Each unit computes a different part of Az using the quasi-Newton algo-
rithm over its sub-domain as can be seen in Fig. [I]
e The local elements of = are directly updated with the local part of Ax
e The non-local elements of z come from the other units using messages
exchanges
e [ is updated by using the entire vector x
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Fig. 1. Local computations associated with the sub-domain of one unit

2.2 Inner Linear Solver

The method described above is a two-stage algorithm in which a linear solver
is needed in the inner stage. In fact, most of the time of the algorithm is spent
in that linear solver. This is why we chose to use the most powerful elements
of the parallel system on that part. Thus, the linear computations have been
placed on the GPUs. Due to their regularity, those treatments are very well
suited to the SIMD architecture of the GPU. Hence, on each computing unit,
the linear computations required to solve the partial system are performed on
the local GPU while all the algorithmic control, non-linear computations and
data exchanges between the units are done on the CPU.

The linear solver has been implemented both on CPU and GPU, using the
biconjugate gradient algorithm [11]. This linear solver was chosen because it per-
forms well on non-symmetric matrices (on both convergence time and numerical
accuracy), it has a low memory footprint, and it is relatively easy to imple-
ment. At very early stages of development, we also tried to use the Bi-CGSTAB
algorithm [22] and local preconditioners (Jacobi and SSOR), but this provided
very little or no gain in terms of computing time and numerical accuracy, so we
decided to keep the first, simpler solution.

GPU Implementation. Several aspects are critical in a GPU: the regularity of
the computations, the memory which is of limited amount and the way the data
are accessed. In order to reduce the memory consumption of our sparse matrix,
we have used a compact representation, depicted in Fig. 2 similar to the DIA
(diagonal) format [16] in BLAS [6], but with several additional advantages. The
first one is the regularity of the structure which allows us to do coalesced memory
accesses most of the time. The second one is that it provides an efficient access
to the transpose of the matrix as well as the matrix itself since the transpose is
just a re-ordering of the diagonals. That last feature is essential as it is required
in the biconjugate gradient method.

In order to be as efficient as possible, the shared memory has been used as
a cache memory whenever it was possible in order to avoid the slower accesses
to the global memory of the GPU. The different kernels used in the solver are
divided to reuse as much data as possible at each call, hence minimizing transfers
between the global memory and the registers. To get full details on those kernels,
the reader should refer to [18].
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Fig. 2. Compact and regular sparse matrix representation

2.3 Asynchronous Aspects

In the asynchronous version, computing the state of the system (i.e. the concen-
tration of the two chemical species across the space) at a given time of evolution
(the EDP is time-dependent) is performed asynchronously. This typically in-
volves solving several linear systems on each node, with some communications
between each of these inner iterations. However, once this has been done, one
synchronization is still required before beginning the next simulation time step,
as illustrated in Fig.

Simulation Simulation
Time step Time step

Processor 1

Processor 2

Time >

Fig. 3. Asynchronous iterations inside each time step of the computation

In practice, the main differences with the synchronous version lie in the sup-
pression of some barriers and in the way the communications between the units
are managed. Concerning the first aspect, all the barriers between the inner iter-
ations inside each time step of the simulation are suppressed. The only remaining
synchronization is the one between each time step as pointed out above.

The communications management is a bit more complex than in the synchronous
version as it must enable sending and receiving operations at any time during the
algorithm. Although the use of non-blocking communications seems appropriate,
it is not sufficient, especially concerning receives. This is why a multi-threaded pro-
gramming is required. The principle is to use separated threads to perform the
communications, while the computations are continuously done in the main thread
without any interruption, until convergence detection. In our version, we used non-
blocking sends in the main thread and an additional thread to manage the receives.
It must be noted that in order to be as reactive as possible, some communications
related to the control of the algorithm (the global convergence detection) may be
initiated directly by the receiving thread (for example to send back the local state
of the unit) without requiring any process or response from the main thread.
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Subsequently to the multi-threading, the use of mutex is necessary to pro-
tect the accesses to data and some variables in order to avoid concurrency and
potentially incoherent modifications.

Another difficulty brought by the asynchronism comes from the convergence
detection. To ensure the validity of the convergence detection, the simple global
reduction of local states of the units must be replaced by some specific mecha-
nisms. We have proposed a decentralized version of such a detection in [3]. The
most general scheme may be too expensive in some simple contexts such as local
clusters. So, when some information about the system are available (for example
bounded communication delay), it is often more pertinent to use a simplified
mechanism whose efficiency is better and whose validity is still ensured in that
context. Although both general and simplified schemes of convergence detection
have been developed for this study, the performances presented in the following
section are related to the simplified scheme which gave the best performances.

3 Experimental Results

The platform used to conduct our experiments is a set of two clusters hosted by
SUPELEC in Metz. The first one is composed of 15 machines with Intel Core2
Duo CPUs running at 2.66GHz, 4GB of RAM and one Nvidia GeForce 8800GT
GPU with 512MB per machine. The operating system is Linux Fedora with
CUDA 2.3. The second cluster is composed of 17 machines with Intel Nehalem
CPUs (4 cores + hyperthreading) running at 2.67GHz, 6GB RAM and one
Nvidia GeForce GTX 285 with 1GB per machine. The OS is the same as the
previous cluster. In all the experiments, our program has been compiled with
the sm 11 flag to be compatible with both kinds of GPUs, and using OpenMP1I
1.4.2 for message passing. Concerning the interconnection network, both clusters
use a Gigabit Ethernet network. Moreover, they are connected to each other and
can be used as a single heterogeneous cluster via the OAR management system.

In that hardware context, two initial series of experiments seemed particularly
interesting to us. The first one consists in running our application for several
problem sizes on one of the homogeneous clusters. We chose the most recent one,
with the Nehalem CPUs and GTX 285 GPUs. The second series of experiments
is similar to the first one except that instead of using only one cluster, we used
the two clusters to obtain a heterogeneous system with 32 nodes.

The results are presented in Table[Iland Table[3l The problem size indicated in
the left column corresponds to the number of spatial elements in the 3D domain.
As we have two chemical species, for a volume of 503 elements, the global linear
system is a square matrix with 2 x 503 lines and columns. Fortunately, the local
nature of dependencies in the advection-diffusion-reaction problem implies that
only 9 diagonals in that matrix are non-zero.

The results obtained in that context are interesting but not as good as could
be expected. The decrease of the gain (last column in the tables) when the prob-
lem size increases is quite natural as the ratio of communications relatively to the
computations decreases and the impact of synchronizations becomes less prepon-
derant over the overall performances. However, the rather limited maximal gain is
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Table 1. Execution times (in seconds) with the homogeneous cluster (17 machines)

Pb size Sync  Async Assgregjsl;};c Gain (%)
50x50x50 16.52  14.85 1.11 10.10
100x100x100 144.52 106.09 1.36 26.59
150x150x150 392.79 347.40 1.13 11.55
200%x200x200 901.18 866.31 1.04 3.87
250x250x250 1732.60 1674.30 1.03 3.36

a bit deceiving. In fact, it can be explained, at least partially, by the relatively fast
network used in the cluster, the rather small amount of data exchanged between
the nodes and the homogeneity of the nodes and loads. In such a context, it is clear
that the synchronous communications through the Gigabit Ethernet network are
not so expensive compared to the extra iterations required by the asynchronous
version. Also, it can be deduced that although the GPU > CPU data transfers
play a role in the overall performances, their impact on our PDE solver is less im-
portant than one could have thought at first glance.

Two additional experiments have been done with the same cluster but with
less processors in order to observe the behavior of our PDE solver when the
number of processors varies. The results are provided in Table 21

Table 2. Execution times (in seconds) with 9 and 14 homogeneous machines

9 Machines of the newer cluster

. . Speed up .
Pb size Sync  Async Asyne/Sync Gain (%)
50x50x50 39.68 25.81 1.54 34.95
100x100x100 249.63 200.25 1.25 19.78
150x150x150 714.85 635.78 1.12 11.06
200x200x200 1599.01 1617.28 0.99 -1.14

14 Machines of the newer cluster

. . Speed up .
Pb size Sync  Async Asyne/Sync Gain (%)
50x50x50 2095 17.83 1.17 14.89
100x100x100 182.85 132.35 1.38 27.62
150x150x 150 486.69 442.16 1.10 9.15
200x200x200 1101.29 1029.61 1.07 6.51

Those results confirm the general trend of gain decrease when the problem
size increases. It can also be observed that for smaller clusters, the limit of gain
brought by asynchronism is reached sooner, which is not surprising according to
the previous considerations.

Concerning the second context of use, the heterogeneous cluster, the results
presented in Table Bl are quite unexpected.
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Table 3. Execution times (in seconds) with the heterogeneous cluster (15 + 17 ma-
chines)

y . Speed up .
Pb size Sync Async Asyne/Sync Gain (%)
100x100x100 53.21 52.01 1.02 2.25
150x150x 150 155.13 164.05 0.94 -5.75
200x200x200 322.11 395.11 0.81 -22.66

In fact, the heterogeneity of the machines should imply different computation
speeds and the synchronizations should induce a global slow down imposed by
the slowest machine. Nevertheless, the results tend to show that the difference
in the powers of the machines is not large enough to induce a sufficiently per-
ceptible unbalance between them. Moreover, it seems that the overhead of the
asynchronism, due to the additional iterations, is rapidly more important than
the gain in the communications, leading to a loss in performances.

Also, another point that may explain the degraded performances of the asyn-
chronous version in the heterogeneous cluster is that the GPU cards used in the
older cluster do not fully support double precision real numbers. Thus, as previ-
ously mentioned, the program is compiled to use only single precision numbers,
which divides the data size by a factor two and then also the communications
volumes, reducing even more the impact of the communications on the overall
execution times.

As can be seen in the first two series of experiments, there are some fluctua-
tions in the gains with the homogeneous cluster and rather deceiving results with
the heterogeneous cluster, which denote a complex behavior of this kind of algo-
rithm according to the context of use. Those observations imply additional ex-
periments to identify the frontier of gain between synchronism and asynchronism
in function of the number of processors and the problem size. Such experiments
are presented below.

The first aspect addressed in our additional experiments is the evolution of
the execution times according to the number of machines taken from the two
available GPU clusters for a fixed problem size. As can be seen in Fig. @ both
surfaces are quite similar at first sight. However, there are some differences which
are emphasized by the speedup distribution according to the sequential version,
presented in Fig.[Bl There clearly appears that the asynchronous version provides
a more regular evolution of the speedup than the synchronous one. This comes
from the fact that the asynchronous algorithm is more robust to the degradations
of the communications performances. Such degradations appear when the num-
ber of processors increases, implying a larger number of messages transiting over
the interconnection network and then a more important congestion. Thus, the
asynchronism puts back the performance decrease due to slower communications
in the context of a heterogeneous GPU cluster.

In order to precisely identify the contexts of use in which the asynchronism
brings that robustness, we have plotted in Fig.[fl the speedup of the asynchronous
GPU algorithm according to its synchronous counterpart.
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Fig. 4. Execution time of our PDE solver on a 100 x 100 x 100 problem, with the
heterogeneous GPU cluster, with synchronous (left) and asynchronous (right) schemes
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Fig. 5. Speedup of our PDE solver on a 100 x 100 x 100 problem, with the heterogeneous
GPU cluster, with synchronous (left) and asynchronous (right) schemes, compared to
the sequential version

First of all, we have the confirmation that asynchronism does not always bring
a gain. As already mentioned, this comes from that fact that when the ratio of
communications time over computations time is negligible, the impact of com-
munications over the overall performances is small. So, on one hand the implicit
overlapping of communications by computations performed in the asynchronous
version provides a very small gain. On the other hand, the asynchronous ver-
sion generally requires more iterations, and thus more computations, to reach
the convergence of the system. Hence, in some contexts the computation time
of the extra iterations done in the asynchronous version is larger than the gain
obtained on the communications side. Such contexts are clearly visible on the
left part of the speedup surface, corresponding to a large pool of slow processors
and just a few fast processors.
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As soon as the communication-times to #0510 W1,0-,1 w1112
computation-times ratio becomes significant, E- _-
which is the case either when adding proces-
sors or taking faster ones, the gain provided
by the asynchronism over the communications
becomes more important than the iterations
overhead, and the asynchronous version be-
comes faster. In those cases, the gains ob-
tained are quite significant as they can exceed !
20% of the total execution time (see Tables 13 s 7 31 13 15 1
[ and Bl). Unfortunately, it can be observed Humper of fast nodes
in the example of Fig. [0 that the separation
between those two contexts is not strictly reg-
ular and studying the relative speedup map
will be necessary in order to achieve an automatic selection of the most efficient
operating mode of this kind of PDE solver in every context of use.
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Fig. 6. Speedup of async. vs sync.
version with the heterogeneous
GPU cluster on a 100% problem.

4 Conclusion and Perspectives

Two versions of a PDE solver algorithm have been implemented and tested
on two clusters of GPUs. The conclusion that can be drawn concerning the
interest of asynchronism in such a context of parallel system for that kind of
application is that gains are not systematic. Some interesting gains (> 20%)
can be observed in some contexts and our experiments have pointed out that
asynchronism tends to bring a better scalability in such heterogeneous contexts
of multi-level parallel systems. However, the frontier between the two algorithmic
schemes is not simple, implying that the optimal choice of algorithmic scheme
and hardware to use in combination requires a finer model of performance.

As far as we know, that study is among the very firsts of its kind and it
shows that this subject requires further works. The obtained results are quite
encouraging and motivate us to design a performance model of parallel iterative
algorithms on GPU clusters. That model should be based on the different activ-
ities (CPU and/or GPU computing, communications,...) during the application
execution. An obvious perspective is the auto-tuning by the precise identification
of the areas in which one of the operating modes (synchronous or asynchronous)
is better suited than the other one to a given context of number of processors
and problem size. In addition, using load-balancing in that context should also
improve performances of both versions.

Acknowledgments. Authors wish to thank Région Lorraine for its support,
and Patrick Mercier for his continuous technical management of the GPU
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Abstract. In order to simulate the interaction of seismic waves with
cavernous/fractured reservoirs, a finite-difference technique based on lo-
cally refined time-and-space grids is used. The need to use these grids
is due primarily to the differing scale of heterogeneities in the reference
medium and the reservoir. Domain Decomposition methods allow for the
separation of the target area into subdomains containing the reference
medium (coarse grid) and reservoir (fine grid). Computations for each
subdomain can be carried out in parallel. The data exchange between
each subdomain within a group is done using MPI through nonblocking
iSend/iReceive commands. The data exchange between the two groups
is done simultaneously by coupling the coarse and fine grids.

The results of a numerical simulation of a carbonate reservoir are
presented and discussed.

Keywords: Finite-difference schemes, local grid refinement, domain
decomposition, MPI, group of Processor Units, Master Processor Unit.

1 Introduction and Motivation

One of the key challenges in modern seismic processing is to use the surface
and/or borehole data to restore the microstructure of the hydrocarbon reservoir.
This microstructure can have a significant impact on oil and gas production. In
particular, in many cases the carbonate reservoir’s matrix porosity contains the
oil but the permeability is mainly through the fracture corridors. In some carbon-
ate reservoirs the in-place oil is contained in karstic caves. Because of this, the
ability to locate these microstructures precisely and to characterize their prop-
erties is of a great importance. Recently various techniques have been developed
to perform this analysis with the help of scattered seismic waves. Among them,
the scattering index presented by Willis et al. ([9]) or a variety of the imaging
techniques recently developed under the generic name of interferometry (see e.g.
book of G.Schuster [7]).

The first step in the development of any inversion/imaging procedure is to
simulate accurately the wave field scattered by fractures and caves. The numeri-
cal and computer constraints even on very large clusters place limitations on the
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resolution of the model described. Really, a reservoir beds typically at a depth
of 2000 + 4000 meters, which is about 50+70 dominant wavelength. The cur-
rent practice for the finite-difference simulation of seismic waves propagation at
such distances is to use grid cells of 0.05 - 0.1 of a dominant wavelength, usually
between 5 - 10 meters. So, one needs to upscale heterogeneities associated with
fracturing on a smaller scale (0.01 - 1 meter) and to transform them to an equiv-
alent/effective medium. This effective medium will help reproduce variations in
the travel-times and an average change of reflection coefficients but absolutely
cancels the scattered waves that are a subject of the above mentioned methods
for characterizing fracture distributions.

Thus, the main challenge with a full scale simulation of cavernous/fractured
(carbonate) reservoirs in a realistic environment is that one should take into
account both the macro- and microstructures. A straightforward implementation
of finite difference techniques provides a highly detailed reference model. From
the computational point of view, this means a huge amount of memory required
for the simulation and, therefore, extremely high computer cost. In particular,
a simulated model of dimension 10km x 10km x 10 km, which is common for
seismic explorations, with a cell size of 0.5m claims 8 x 102 cells and needs in
~ 3507'b of RAM.

The popular approach to overcome these troubles is to refine a grid in space
only and there are many publications dealing with its implementation (see [6]
for a detailed review), but it has at least two drawbacks:

— To ensure stability of the finite-difference scheme the time step must be very
small everywhere in the computational domain;

— Unreasonably small Courant ratio in the area with a coarse spatial grid leads
to a noticeable increase in numerical dispersion.

Our solution to this issue is to use a mutually agreed local grid refinement in
time and space: spatial and time steps are refined by the same factor.

2 Numerical and Parallel Implementation

In our considerations propagation of seismic waves is simulated with help of an
explicit finite-difference scheme (FDS) on staggered grids approximating elastic
wave equations (velocity-stress formulation):

ou Jo do do
Cor ~ Ao ~Poy ~Co, =0
Jo r0u rou rou
Dat A Ox B Oy ¢ 0z =f

written for vectors of the velocity u = (uy, uy,u.)” and the stress o = (044, 0y,

Uzz7azz7ay27azy)~
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Staggered grid finite difference scheme updates values of unknown vectors in
two steps:

1. from velocities at ¢ to stresses at ¢t + At/2;
2. 