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Preface

The tenth Nordic conference on applied parallel computing, Para 2010: State
of the Art in Scientific and Parallel Computing, was held in Reykjavík, Iceland
during June 6–9, 2010. The topics of the conference were announced to include
software, hardware, algorithms, tools, environments, as well as applications of
scientific and high-performance computing. The conference was hosted by the
School of Engineering and Natural Sciences of the University of Iceland, and
the conference venue was in the School of Education of the University of Ice-
land. Three companies in Reykjavík supported the conference financially: the
video game developer CCP, Microsoft Íslandi, and Opin kerfi (Hewlett Packard
distributor for Iceland).

The series of Para meetings began in 1994. The Danish Computing Centre
for Research and Education (UNI-C) and the Department of Informatics and
Mathematical Modelling of the Technical University of Denmark (IMM/DTU)
in Lyngby, Denmark, organized a series of workshops on Applied Parallel Com-
puting, named Para94, Para95 and Para96. Jerzy Waśniewski, senior researcher
at DTU, initiated these workshops and Jack Dongarra, professor at the Uni-
versity of Tennessee, became involved during an extended visit to Lyngby. He
played a key part in promoting the meetings internationally. Since 1998, the
workshops have become a Nordic effort, but both Jerzy and Jack have continued
to be an integral part of the meetings. In fact Jerzy has been a keen advocate
of holding a Para conference in Iceland. The themes and locations of the Para
meetings have been:

PARA94 Parallel Scientific Computing, Lyngby, Denmark
PARA95 Physics, Chemistry and Engineering Science, Lyngby, Denmark
PARA96 Industrial Problems and Optimization, Lyngby, Denmark
PARA 1998 Large Scale Scientific and Industrial Problems, Umeå, Sweden
PARA 2000 New Paradigms for HPC in Industry and Academia, Bergen, Norway
PARA 2002 Advanced Scientific Computing, Helsinki, Finland
PARA 2004 State of the Art in Scientific Computing, Copenhagen, Denmark
PARA 2006 State of the Art in Scientific and Parallel Computing, Umeå, Sweden
PARA 2008 State of the Art in Scientific and Parallel Computing, Trondheim, Norway
PARA 2010 State of the Art in Scientific and Parallel Computing, Reykjavík, Iceland

The Para 2010 conference included five keynote lectures, one tutorial, 11 mini-
symposia consisting of a total of 90 presentations, 39 other contributed pre-
sentations organized under 10 separate topics, four poster presentations, and
eight presentations from industry. Except for the keynote lectures, that were 45
minutes long each, the presentations were organized in five tracks or parallel
streams, with 25-minute slots for each presentation, including discussion. The
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total number of presentations was thus 147. There were altogether 187 partici-
pants from 20 countries:

Denmark 9
Finland 4
Iceland 38
Norway 13
Sweden 17
Australia 2
Austria 2

Canada 1
Czech Republic 3
France 12
Germany 32
Italy 1
Japan 4
Netherlands 2

Poland 16
Russia 2
Spain 7
Switzerland 1
Turkey 1
USA 20

There were volcanic eruptions in Eyjafjallajökull in southern Iceland from March
until June 2010 disrupting international flights, and these may have had an
adverse effect on participation.

Extended abstracts (in most cases four pages long) of all the minisymposium
and contributed presentations were made available on the conference website,
http://vefir.hi.is/para10, and in addition a book of short abstracts (also available
on the website) was handed out at the conference.

After the conference the presentation authors were invited to submit manu-
scripts for publication in these peer-reviewed conference proceedings. The re-
viewing process for the articles appearing here was therefore performed in two
stages. In the first stage the extended abstracts were reviewed to select contribu-
tions to be presented at the conference, and in the second stage the full papers
submitted after the conference were reviewed. As a general rule three referee
reports per paper were aimed for, and in most cases these were successfully ob-
tained. However, in cases where it proved difficult to find three willing referees,
acquiring only two reports was deemed acceptable.

Fred G. Gustavson, emeritus scientist at IBM Research, New York, and pro-
fessor at Umeå University, and Jerzy Waśniewski gave a tutorial on matrix algo-
rithms in the new many core era. Fred celebrated his 75th birthday on May 29,
2010, and the Linear Algebra Minisymposium was held in his honor. The mate-
rial of the tutorial is covered in Fred Gustavson’s article in these proceedings.

A conference of this size requires considerable organization and many helping
hands. The role of the minisymposium organizers was very important. They re-
viewed and/or organized reviewing of contributions to their respective minisym-
posia, both the original extended abstracts and the articles for these proceedings,
and in addition they managed the minisymposium sessions at the conference.
Several members of the local Organizing Committee helped with the reviewing
of other contributed extended abstracts: Elínborg I. Ólafsdóttir, Hjálmtýr Haf-
steinsson, Klaus Marius Hansen, Ólafur Rögnvaldsson, Snorri Agnarsson and
Sven Þ. Sigurðsson. Other colleagues who helped with this task were Halldór
Björnsson, Kristín Vogfjörð and Viðar Guðmundsson.

The editor of these proceedings organized the reviewing of manuscripts
falling outside minisymposia, as well as manuscripts authored by the minisym-
posium organizers themselves. There were 56 such submissions. The following
people played a key role in helping him with this task: Sven Þ. Sigurðsson, Julien
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Langou, Bo Kågström, Sverker Holmgren, Michael Bader, Jerzy Waśniewski,
Klaus Marius Hansen, Kimmo Koski and Halldór Björnsson. Many thanks are
also due to all the anonymous referees, whose extremely valueable work must
not be forgotten.

The conference bureau Your Host in Iceland managed by Inga Sólnes did an
excellent job of organizing and helping with many tasks, including conference
registration, hotel bookings, social program, financial management, and main-
taining the conference website. Apart from Inga, Kristjana Magnúsdóttir of Your
Host was a key person and Einar Samúelsson oversaw the website design. Ólafía
Lárusdóttir took photographs for the conference website. The baroque group
Custos and the Tibia Trio, both led by recorder player Helga A. Jónsdóttir,
and Helgi Kristjánsson (piano) provided music for the social program. Ólafur
Rögnvaldsson helped to secure financial support from industry. Jón Blöndal and
Stefán Ingi Valdimarsson provided valuable TeX help for the editing of the pro-
ceedings.

Finally, I wish to devote a separate paragraph to acknowledge the help of
my colleague Sven Þ. Sigurðsson, who played a key role in helping with the
conference organization and editing of the proceedings through all stages.

October 2011 Kristján Jónasson
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Abstract. The QR algorithm computes the Schur form of a matrix
and is by far the most popular approach for solving dense nonsymmet-
ric eigenvalue problems. Multishift and aggressive early deflation (AED)
techniques have led to significantly more efficient sequential implemen-
tations of the QR algorithm during the last decade. More recently, these
techniques have been incorporated in a novel parallel QR algorithm on
hybrid distributed memory HPC systems. While leading to significant
performance improvements, it has turned out that AED may become
a computational bottleneck as the number of processors increases. In
this paper, we discuss a two-level approach for performing AED in a
parallel environment, where the lower level consists of a novel combi-
nation of AED with the pipelined QR algorithm implemented in the
ScaLAPACK routine PDLAHQR. Numerical experiments demonstrate that
this new implementation further improves the performance of the parallel
QR algorithm.

1 Introduction

The solution of matrix eigenvalue problems is a classical topic in numerical
linear algebra, with applications in various areas of science and engineering. The
QR algorithm developed by Francis and Kublanovskaya, see [9,19] for recent
historic accounts, has become the de facto standard for solving nonsymmetric
and dense eigenvalue problems. Parallelizing the QR algorithm has turned out to
be highly nontrivial matter [13]. To our knowledge, the ScaLAPACK [5] routine
PDLAHQR implemented nearly 10 years ago based on work by Henry, Watkins,
and Dongarra [14], is the only publicly available parallel implementation of the
QR algorithm. Recently, a novel parallel QR algorithm [10] has been developed,
which turns out to be more than a magnitude faster compared to PDLAHQR for
sufficiently large problems. These improvements are attained by parallelizing
the multishift and aggressive early deflation (AED) techniques developed by
Braman, Byers, and Mathias [6,7] for the sequential QR algorithm.

Performed after each QR iteration, AED requires the computation of the
Schur form for a trailing principle submatrix (the so called AED window) that is

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 1–10, 2012.
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relatively small compared to the size of the whole matrix. In [10], a slightly mod-
ified version of the ScaLAPACK routine PDLAHQR is used for this purpose. Due
to the small size of the AED window, the execution time spent on AED remains
negligible for one or only a few processors but quickly becomes a dominating
factor as the number of processors increases. In fact, for a 100 000× 100 000 ma-
trix and 1024 processor cores, it was observed in [10] that 80% of the execution
time of the QR algorithm was spent on AED. This provides a strong motivation
to reconsider the way AED is performed in parallel. In this work, we propose to
perform AED by a modification of the ScaLAPACK routine PDLAHQR, which also
incorporates AED at this lower level, resulting in a two-level recursive approach
for performing AED. The numerical experiments in Section 4 reveal that our
new approach reduces the overall execution time of the parallel QR algorithm
from [10] by up to 40%.

2 Overview of the QR Algorithm with AED

In the following, we assume some familiarity with modern variants of the QR
algorithm and refer to [15,18] for introductions. It is assumed that the matrix
under consideration has already been reduced to (upper) Hessenberg form by,
e.g., calling the ScaLAPACK routine PDGEHRD. Algorithm 1 provides a high-level
description of the sequential and parallel QR algorithm for Hessenberg matrices,
using multiple shifts and AED. Since this paper is mainly concerned with AED,
we will only mention that the way the shifts are incorporated in the multishift QR
sweep (Step 4) plays a crucial role in attaining good performance, see [6,10,17]
for details.

Algorithm 1 . Multishift Hessenberg QR Algorithm with AED

WHILE not converged
1. Perform AED on the nwin × nwin trailing principle submatrix.
2. Apply the accumulated orthogonal transformation to the

corresponding off-diagonal blocks.
3. IF enough eigenvalues have been deflated in Step 1

GOTO Step 1.
END IF

4. Perform a multishift QR sweep with undeflatable
eigenvalues from Step 1 as shifts.

5. Check for negligible subdiagonal elements.
END WHILE

In the following, we summarize the AED technique proposed by Braman,
Byers, and Mathias [7]. Given an n×n upper Hessenberg matrix H , we partition

H =

⎛⎝
n−nwin−1 1 nwin

n−nwin−1 H11 H12 H13

1 H21 H22 H23

nwin 0 H32 H33

⎞⎠,
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where nwin denotes the size of the AED window. Then a (real) Schur decom-
position H33 = V TV T is performed, where V is orthogonal and T in upper
quasi-triangular form. Setting

U =

⎛⎝
n−nwin−1 1 nwin

n−nwin−1 I
1 1

nwin V

⎞⎠,
we obtain

UTHU =

⎛⎝H11 H12 H13V
H21 H22 H23V
0 s T

⎞⎠ ,

where s ∈ R
nwin is the so called spike, created from the subdiagonal entry con-

tained in H32. The eigenvalues of T are checked subsequently for convergence
and possibly deflated. The eigenvalue (or 2×2 block) in the bottom right corner
of T can be deflated if the magnitude of the last component (or the last two
components) of the spike is negligibly small. Undeflatable eigenvalues are moved
to the top left corner of T by a swapping algorithm [4,11]. After this transforma-
tion is completed, the next eigenvalue in the bottom right corner of T is treated
in the same way. The orthogonal transformations for swapping eigenvalues are
accumulated in an orthogonal matrix Ṽ ∈ R

nwin×nwin . After all eigenvalues of T
have been processed, the entire matrix is reduced back to Hessenberg form and
the off-diagonal blocks H13 and H23 are multiplied with the product of all in-
volved orthogonal transformations. It is recommended to choose nwin somewhat
larger, e.g., by 50%, than the number of shifts in the multishift QR iterations [6].

Dramatic performance gains from AED have been observed both for sequential
and parallel variants of the QR algorithm. These gains can be achieved essentially
no matter how the rest of the QR algorithm is implemented, in particular how
many shifts are used in the multishift QR sweep [7]. In effect, any implementation
of the QR algorithm may benefit from AED; a fact that we will use below to
improve the ScaLAPACK routine PDLAHQR. A convergence analysis, partially
explaining the success of AED, can be found in [16].

3 Parallel Implementation of AED

Since the main aim of this paper is to improve the parallel QR algorithm and
implementation described in [10], we first recall the structure of the main rou-
tines from this implementation, see Figure 1. The entry routine is PDHSEQR,
which branches into PDLAQR1 for small to medium-sized matrices and PDLAQR0

for larger ones. The cut-off point for what is considered medium-sized will be
explained in the numerical experiments, see Section 4. The main purpose of
PDLAQR0 is to call PDLAQR3 for performing AED and PDLAQR5 for performing
multishift QR iterations. The former routine invokes PDLAQR1 for performing
the Schur decomposition of the AED window. In [10], PDLAQR1 amounts to the
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Entry routine for new parallel QR algorithm.
PDHSEQR

PDLAQR1
Modified version of ScaLAPACK’s
current implementation of the
parallel QR algorithm.

PDLAQR3 PDLAQR5
Aggressive early deflation and
shift computation.

Multishift QR iteration based on
chains of tightly coupled bulges. 

PDLAQR0
New parallel QR algorithm.

Fig. 1. Partial software structure for the parallel QR algorithm from [10]

ScaLAPACK routine PDLAHQR with minor modifications concerning the process-
ing of 2 × 2 blocks in the real Schur form and the multithreaded application of
small Householder reflectors. In the following, we will reconsider this choice for
PDLAQR1.

3.1 Choice of Algorithm for Performing AED

A number of alternative choices are available for performing the Schur decom-
position of the relatively small AED window:

– A recursive call to PDHSEQR or PDLAQR0, implementing the parallel QR algo-
rithm with multishifts and AED.

– A call to PDLAQR1, a minor modification of ScaLAPACK’s PDLAHQR.
– Assembling the AED window in local memory and a call to the sequential

LAPACK [2] routine DLAHQR (or DLAQR4).

According to the numerical experiments in [10], a recursive call of PDLAQR0 may
not be the optimal choice, mainly because of the fact that the way multishift QR
iterations are implemented in PDLAQR0 suffers from poor scalability for relatively
small matrices. ScaLAPACK’s PDLAHQR achieves better scalability but does not
incorporate modern developments, such as AED, and therefore suffers from poor
performance. The third alternative, calling a sequential algorithm, should be
used for submatrices that are too small to justify the overhead incurred by
parallelization. In our experimental setup this was the case for submatrices of
size 384 or smaller.

In this work, we propose to modify PDLAQR1 further and add AED to the
parallel pipelined QR algorithm implemented in ScaLAPACK’s PDLAHQR. Since
the main purpose of PDLAQR1 is to handle small to medium-sized submatrices, a
parallel implementation of AED, as in [10], will not be efficient on this level, since
the size of the AED window is even smaller and does not allow for reasonable
parallel performance in the Schur decomposition or the swapping of diagonal
blocks. We have therefore chosen the third alternative for performing AED on
the lowest level and invoke the sequential LAPACK routine DLAQR3 [8]. The
accumulated orthogonal transformations returned by DLAQR3 are applied to the



On Aggressive Early Deflation in Parallel Variants of the QR Algorithm 5

off-diagonal blocks in parallel. Therefore,O(
√
p) processors are used for updating

the off-diagonal blocks. A high-level description of the resulting procedure is
given in Algorithm 2.

Algorithm 2 . Parallel pipelined QR algorithm with AED (new PDLAQR1)

WHILE not converged
1. Copy the (nwin + 1)× (nwin + 1) trailing submatrix to local memory

and perform sequential AED on an nwin × nwin window.
2. Apply the accumulated orthogonal transformations to the

corresponding off-diagonal blocks in parallel.
3. IF enough eigenvalues have been deflated in Step 1

GOTO Step 1.
END IF

4. Compute the eigenvalues of a trailing submatrix.
5. Perform a pipelined QR sweep with the eigenvalues computed

in Step 4 as shifts.
6. Check for negligible subdiagonal elements.

END WHILE

3.2 Implementation Details

In the following we discuss some implementation issues of Algorithm 2. The basis
for our modification is PDLAQR1 from [10], referred to as the old PDLAQR1 in the
following discussion. Following the notation established in the (Sca)LAPACK
implementations of the QR algorithm, we let NH=IHI-ILO+1 denote the dimen-
sion of the active NH × NH diagonal block and NS the number of shifts in the
multishift QR sweep.

– In the special case when the active diagonal block is small enough, say NH ≤
384, we copy this block to local memory and call DLAHQR/DLAQR4 directly.
The off-diagonal blocks are updated in parallel. This reduces communication
while the required extra memory is negligible. We have observed that this
modification reduces the total execution time by a non-negligible amount,
especially during the final stages of the QR algorithm.

– The size of the deflation window, nwin, is determined by the return value of
the LAPACK routine IPARMQ, see [8] for more details. In PDLAHQR/PDLAQR1,
NS is mainly determined by the process grid and does not exceed 32. This is
usually smaller than the number of shifts suggested by IPARMQ. Also, typical
values of nwin returned by IPARMQ are 96, 192 and 384, which is much larger
than if we chose NS*3/2. Based on the observation that the optimal AED
window size does not depend strongly on the number of shifts used in the
QR sweeps, we prefer to stick to large nwin rather than using NS*3/2. This
increases the time spent on AED, but the overhead is compensated by fewer
pipelined QR sweeps.

– The criterion for restarting another AED process rightaway, without an in-
termediate QR iteration, is the same as in LAPACK [8]:
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1. The number of undeflatable eigenvalues is smaller than NS; or
2. the number of deflated eigenvalues is larger than nwin × 14%.
Note that we choose the criterion in accordance with the window size sug-
gested by IPARMQ.

– In contrast to Algorithm 1, undeflatable eigenvalues are not used as shifts in
subsequent multishift QR sweep. This choice is based on numerical experi-
ments with the following three shift strategies:

1. Use undeflatable eigenvalues obtained from AED as shifts.
2. Compute and use the eigenvalues of the NS× NS trailing submatrix after

AED as shifts (by calling DLAHQR/DLAQR4).
3. Compute and use some of the eigenvalues of the (nwin + 1)× (nwin + 1)

trailing submatrix after AED as shifts (by calling DLAHQR/DLAQR4).
An illustration of these strategies is given in Figure 2. Based on the exper-
iments, we prefer the third strategy despite the fact that it is the compu-
tationally most expensive one. However, it provides shifts of better quality,
mainly because of the larger window size, which was found to reduce the
number of pipelined QR sweeps and to outweigh the increased cost for shift
computation.

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× × × × × × × × ×
× × × × × × × ×

× s × × × × ×
× s × × × ×
× s × × ×
× s × ×
× s ×
0 ×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× × × × × × × × ×
× × × × × × × ×

× × × × × × ×
× s s s s ×

s s s s ×
s s s ×

s s ×
×

× × × × × × × × × × × × × ×
× × × × × × × × × × × × × ×

× × × × × × × × × × × × ×
× × × × × × × × × × × ×

× × × × × × × × × × ×
× × × × × × × × × ×

× s s s s s s s ×
s s s s s s s ×

s s s s s s ×
s s s s s ×

s s s s ×
s s s ×

s s ×
×

(1) Using undeflatable eigenvalues (2) Using eigenvalues of (3) Using eigenvalues of an
an NS× NS window (nwin + 1)× (nwin + 1) window

Fig. 2. Three shift strategies (nwin = 6, NS=4)

– When performing AED within the new PDLAQR1, each processor receives a
local copy of the trailing submatrix and calls DLAQR3 to execute the same
computations concurrently. This implies redundant work performed in paral-
lel but it reduces communication since the orthogonal transformation matrix,
to be applied in parallel in subsequent updates, is readily available on each
processor. A similar approach is suggested in the parallel QZ algorithm by
Adlerborn et al. [1]. If the trailing submatrix is not laid out across a border
of the processor mesh, we call DGEMM to perform the updates. If the trailing
submatrix is located on a 2×2 processor mesh, we organize the computation
and communication manually for the update. Otherwise, PDGEMM is used for
updating the off-diagonal blocks.
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4 Numerical Experiments

All the experiments in this section were run on the 64-bit low power Intel
Xeon Linux cluster Akka hosted by the High Performance Computing Cen-
ter North (HPC2N). Akka consists of 672 dual socket quadcore L5420 2.5GHz
nodes, with 16GB RAM per node, connected in a Cisco Infiniband network.
The code is compiled by the PathScale compiler version 3.2 with the flags -O2
-fPIC -TENV:frame pointer=ON -OPT:Olimit=0. The software libraries Open-
MPI 1.4.2, BLACS 1.1 patch3, ScaLAPACK/PBLAS 1.8.0, LAPACK 3.2.1 and
GOTOBLAS2 1.13 [12] are linked with the code. No multithreaded features, in
particular no mixture of OpenMP and MPI, were used. We chose NB = 50 as the
block size in the block cyclic distribution of ScaLAPACK. The test matrices are
dense square matrices with entries randomly generated from a uniform distribu-
tion in [0,1]. The ScaLAPACK routine PDGEHRD is used to reduce these matrices
initially to Hessenberg form. We only measure the time for the Hessenberg QR
algorithm, i.e., the reduction from Hessenberg to real Schur form.

4.1 Improvement for PDLAQR1

We first consider the isolated performance of the new PDLAQR1 compared to
the old PDLAQR1 from [10]. The sizes of the test matrices were chosen to fit
the typical sizes of the AED windows suggested in [10]. Table 1 displays the
measured execution time on various processor meshes.

For the sequential case (1 × 1 mesh), PDLAQR1 calls the LAPACK routine
DLAQR4 directly for small matrices (see the first remark in Section 3.2). PDLAQR0
also implements a blocked QR algorithm almost identical to the new LAPACK
algorithm [8], but some algorithmic parameters (e.g., number of shifts) can be
different. Since the parameters in PDLAQR0 largely depend on the block size in
the block cyclic matrix data distribution of ScaLAPACK, PDLAQR0 can be a bit
slower than LAPACK.

For determining the cross-over point for switching from PDLAQR0 to PDLAQR1

in the main routine PDHSEQR, we also measured the execution time of PDLAQR0.
The new implementation of PDLAQR1 turns out to require much less execu-

tion time than the old one, with a few, practically nearly irrelevant exceptions.
Also, the new PDLAQR1 scales slightly better than PDLAQR0, especially when the
size of matrix is not large. It is worth emphasizing that the scaling of all imple-
mentations eventually deteriorates as the number of processor increases, simply
because the involved matrices are not sufficiently large to create enough potential
for parallelization.

Quite naturally, PDLAQR0 becomes faster than the new PDLAQR1 as the matrix
size increases. The dashed line in Table 1 indicates the crossover point between
both implementations. A rough model of this crossover point result is given by
n = 220

√
p, which fits the observations reasonably well and has been incorpo-

rated in our implementation.
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Table 1. Execution time in seconds for old PDLAQR1 (1st line for each n), new PDLAQR1

(2nd line) and PDLAQR0 (3rd line). The dashed line is the crossover point between the
new PDLAQR1 and PDLAQR0.

Matrix size Processor mesh
(n) 1× 1 2× 2 3× 3 4× 4 6× 6 8× 8 10× 10

96 0.01 0.05 0.11 0.18 0.15 0.25 0.27
0.08 0.08 0.02 0.05 0.03 0.08 0.07
0.14 0.40 0.96 1.11 2.52 3.16 2.95

192 0.09 0.17 0.18 0.22 0.32 0.47 0.64
0.09 0.07 0.07 0.13 0.16 0.12 0.26
0.15 0.30 0.61 1.05 3.73 4.34 3.64

384 0.60 0.73 0.61 0.63 0.78 1.09 1.24
0.27 0.29 0.28 0.36 0.40 0.48 0.48
0.47 0.55 0.72 0.89 2.08 3.23 3.76

768 7.38 3.53 2.53 2.35 2.61 2.80 3.52
3.77 2.24 1.73 1.57 1.73 2.17 2.25
1.83 1.51 1.61 1.68 2.70 3.03 3.31

1536 133.31 20.68 13.23 11.12 9.79 10.48 13.05
35.94 9.27 6.54 5.52 5.11 5.31 6.33
12.34 6.61 5.63 4.86 6.26 6.76 6.84

3072 2313.61 139.05 96.73 66.06 50.64 41.82 63.22
522.81 45.72 33.13 22.60 19.08 18.12 22.23
80.71 30.67 21.34 15.82 15.56 15.09 14.98

6144 1049.56 623.63 351.44 231.70 199.75 227.45
144.96 167.71 103.15 78.75 66.90 70.48
198.54 129.58 87.07 55.40 47.61 44.07

4.2 Overall Improvement

As the main motivation for the development of the new PDLAQR1 is its application
to AED within the parallel QR algorithm, we have also measured the resulting
reduction of the overall execution time of PDHSEQR. From the results presented
in Table 2, it is clear that PDHSEQR with the new PDLAQR1 is almost always better
than the old implementation. The improvement varies between 5% and 40%. We
remark that the measured execution time for the 4000× 4000 problem using 64
processors is less than running the same problem on 100 processors. However,
situations may occur when we prefer to solve a 4000× 4000 problem using 100
processors. For example, if this is a subproblem in a large-scale computation, it
would be too costly to redistribute the matrix and use only 64 of the available
processors. Among the measured configurations, there is one notable exception:
n = 32000 on a 6 × 6 processor grid. This is actually the only case for which
PDLAQR0 is called within the AED phase, which seems to indicate that the choice
of the crossover point requires some additional fine tuning.

Note that the largest AED window in all these experiments is of size 1536.
According to Table 1, we expect even more significant improvements for larger
matrices, which have larger AED windows.
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Table 2. Execution time in seconds for old PDHSEQR (1st line for each n), new PDHSEQR

(2nd line). The third lines show the relative improvement.

Processor mesh Matrix size (n)
4000 8000 16000 32000

162.43
1× 1 161.28

0.71%

71.34 501.83
2× 2 68.02 452.70

4.65% 9.79%

39.18 170.75 1232.40
4× 4 30.68 158.66 1037.93

22.69% 7.08% 15.78%

35.96 123.46 617.97 3442.08
6× 6 24.62 96.23 509.38 3584.74

31.54% 22.06% 17.57% -4.14%

33.09 97.20 435.52 2639.32
8× 8 20.59 67.42 366.31 2016.93

37.78% 31.64% 15.89% 24.58%

36.05 101.75 355.38 2053.16
10× 10 21.39 62.29 291.06 1646.30

41.67% 39.58% 18.10% 19.82%

5 Summary

We have reconsidered the way AED is performed in the parallel QR algo-
rithm [10]. A recursive approach is suggested, in which the ScaLAPACK routine
PDLAHQR is combined with AED to address medium-sized problems. The focus of
this work has been on minimizing the total execution time instead of how to use
all the processors or how well the algorithm scales. Computational experiments
demonstrate the efficiency of our approach, but also reveal potential for further
improvements by a more careful fine tuning of the crossover point for switching
between different implementations of the parallel QR algorithm.

Acknowledgments. We would like to thank Robert Granat, Lars Karlsson,
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Dongarra, J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 117–126.
Springer, Heidelberg (2007)

2. Anderson, E., Bai, Z., Bischof, C.H., Blackford, S., Demmel, J.W., Dongarra, J.J.,
Du Croz, J., Greenbaum, A., Hammarling, S., McKenney, A., Sorensen, D.C.:
LAPACK User’s Guide, 3rd edn. SIAM, Philadelphia (1999)

3. Bai, Z., Demmel, J.W.: On a Block Implementation of Hessenberg Multishift QR
Iteration. Intl. J. of High Speed Comput. 1, 97–112 (1989)

4. Bai, Z., Demmel, J.W.: On Swapping Diagonal Blocks in Real Schur Form. Linear
Algebra Appl. 186, 73–95 (1993)

5. Blackford, L.S., Choi, J., Cleary, A., D’Azevedo, E., Demmel, J.W., Dhillon, I.,
Dongarra, J.J., Hammarling, S., Henry, G., Petitet, A., Stanley, K., Walker, D.,
Whaley, R.C.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)

6. Braman, K., Byers, R., Mathias, R.: The Multishift QR Algorithm. Part I: Main-
taining Well-focused Shifts and Level 3 Performance. SIAM J. Matrix Anal.
Appl. 23(4), 929–947 (2002)

7. Braman, K., Byers, R., Mathias, R.: The Multishift QR Algorithm. Part II: Ag-
gressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4), 948–973 (2002)

8. Byers, R.: LAPACK 3.1 xHSEQR: Tuning and Implementation Notes on the Small
Bulge Multi-shift QR Algorithm with Aggressive Early Deflation. LAPACK Work-
ing Note 187 (2007)

9. Golub, G., Uhlig, F.: The QR Algorithm: 50 Years Later Its Genesis by John
Francis and Vera Kublanovskaya and Subsequent Developments. IMA J. Numer.
Anal. 29(3), 467–485 (2009)

10. Granat, R., K̊agström, B., Kressner, D.: A Novel Parallel QR Algorithm for Hybrid
Distributed Memory HPC Systems. SIAM J. Sci. Comput. 32(4), 2345–2378 (2010)
(An earlier version appeared as LAPACK Working Note 216)

11. Granat, R., K̊agström, B., Kressner, D.: Parallel Eigenvalue Reordering in Real
Schur Forms. Concurrency and Computat.: Pract. Exper. 21(9), 1225–1250 (2009)

12. GOTO-BLAS – High-performance BLAS by Kazushige Goto,
http://www.tacc.utexas.edu/tacc-projects/#blas

13. Henry, G., van de Geijn, R.: Parallelizing the QR Algorithm for the Nonsymmetric
Algebraic Eigenvalue Problem: Myths and Reality. SIAM J. Sci. Comput. 17, 870–
883 (1997)

14. Henry, G., Watkins, D.S., Dongarra, J.J.: A Parallel Implementation of the Non-
symmetric QR Algorithm for Distributed Memory Architectures. SIAM J. Sci.
Comput. 24(1), 284–311 (2002)

15. Kressner, D.: Numerical Methods for General and Structured Eigenvalue Problems.
LNCSE, vol. 46. Springer, Heidelberg (2005)

16. Kressner, D.: The Effect of Aggressive Early Deflation on the Convergence of the
QR Algorithm. SIAM J. Matrix Anal. Appl. 30(2), 805–821 (2008)

17. Lang, B.: Effiziente Orthogonaltransformationen bei der Eigen- und Sin-
gulärwertzerlegung. Habilitationsschrift (1997)

18. Watkins, D.S.: The Matrix Eigenvalue Problem: GR and Krylov Subspace Meth-
ods. SIAM, Philadelphia (2007)

19. Watkins, D.S.: Francis’s Algorithm. Amer. Math. Monthly (2010) (to appear)

http://www.tacc.utexas.edu/tacc-projects/#blas


Limits to Nonlinear Inversion

Klaus Mosegaard

Department of Informatics and Mathematical Modeling
and Center for Energy Resources Engineering

Technical University of Denmark
Richard Petersens Plads, 2800 Lyngby, Denmark

http://www.imm.dtu.dk/~kmos

Abstract. For non-linear inverse problems, the mathematical structure
of the mapping from model parameters to data is usually unknown or
partly unknown. Absence of information about the mathematical struc-
ture of this function prevents us from presenting an analytical solution,
so our solution depends on our ability to produce efficient search algo-
rithms. Such algorithms may be completely problem-independent (which
is the case for the so-called ’meta-heuristics’ or ’blind-search’ algorithms),
or they may be designed with the structure of the concrete problem in
mind.

We show that pure meta-heuristics are inefficient for large-scale, non-
linear inverse problems, and that the ’no-free-lunch’ theorem holds. We
discuss typical objections to the relevance of this theorem.

A consequence of the no-free-lunch theorem is that algorithms adapted
to the mathematical structure of the problem perform more efficiently
than pure meta-heuristics. We study problem-adapted inversion algo-
rithms that exploit the knowledge of the smoothness of the misfit func-
tion of the problem. Optimal sampling strategies exist for such problems,
but many of these problems remain hard.

1 Introduction

Nonlinear inverse problems occur frequently in analysis of physical data, and a
variety of algorithms are used to produce acceptable solutions and to analyze
their properties. Some problems are only weakly nonlinear and can be locally
approximated by linear problems, but others are strongly nonlinear and require
special treatment. Modern digital computers have greatly improved our ability to
perform nonlinear data inversion, but still the limitations of current techniques
are strongly felt.

In this paper we intend to review and analyze some fundamental compu-
tational limitations to the solution of nonlinear inverse problems. We will put
special emphasis on the interplay between the solution algorithm and the struc-
ture of the problem to be solved. Our exposition will, in principle, be relevant
for the solution of inverse problems in general, but given the fact that nonlinear
inverse theory relies much more on the theory of search- and sampling algo-
rithms than linear theory does, our considerations will be most relevant for the
nonlinear case.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 11–21, 2012.
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2 The Blind Inversion Problem

It is often reported in the literature that solutions to nonlinear inverse problems
were obtained by problem-independent algorithms, the so-calledmeta-heuristics.
This type of algorithms is claimed to work efficiently because of some general,
external (problem independent) principle. For example, simulated annealing [5]
inherits its efficiency from thermodynamic principles, genetic algorithms [6,7]
exploit evolutionary principles, and taboo-search [8] uses some ’common sense’
strategy. In the following, we will call these algorithms blind inversion algorithms,
and we will investigate their efficiency in some detail.

Blind inversion schemes may be very different in character. They include
deterministic as well as Monte Carlo algorithms, and they all share the basic
property that they operate in a way that is independent of the particular inverse
problem. A blind inversion scheme operates - sequentially or in parallel - by
evaluating a misfit function (or fit function) in points in the parameter space,
and a particular scheme is solely characterized by the strategy by which it se-
lects new evaluation points from earlier selected points and their misfits. Some
algorithms estimate gradients of the misfit (e.g., steepest descent), some use a
proposal distribution combined with an acceptance probability (e.g., simulated
annealing), others compare misfits at several points and use a selection strategy
(genetic algorithms and the neighborhood algorithm [4,9,10].

In the following we shall analyze the performance of blind algorithms, but
first we will briefly review some general topological properties of general inverse
problems that impede algorithm efficiency when searching high-dimensional pa-
rameter spaces.

3 Basic Limitations in Blind Inversion Arising from the
Structure of the Problem

Consider a discrete, nonlinear inverse problem

d = g(m) (1)

where d is a vector with N + P components, the first N equations relate data
(d1, . . . , dN ) to M model parameters m, and the remaining P equations express
our prior information through P ≤ M − N equality constraints. If we assume
that g is a C1-function, and that we have a solution m̂ to equation (1) for which

g′(m̂) =

[
∂gi
∂mj

]
m=m̂

(2)

has full row rank, the implicit function theorem [11] implies that eq. (1) defines a
solution-submanifold of dimensionM−(N+P ) in the neighborhood around m̂ in
the parameter space. If data uncertainties and ’softness’ of the prior constraints
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are described by a neighborhood around d, acceptable solutions in the pa-
rameter space can be found in a neighborhood around the solution manifold
intersecting m̂.

In inversion aimed at locating only one acceptable solution, one will generally
try to supply a sufficient number of tight a priori constraints to ensure that
M = N + P . In this case, the solution space consists of neighborhoods around
isolated points in the parameter space.

Of course, the above description is based on a number of simplifications. For
instance: (1) We assumed that the matrix in equation (2) has full row rank. If this
is not the case, the mapping g is not surjective, meaning that the dimension of
the solution space is larger than in the full-rank case. (2) We have only considered
prior information defined as (possibly softened) equality constraints. Introducing
constraints that allow the solution to exist only inside a bounded, possibly non-
convex, region may render the inverse problem even harder. (3) Strictly speaking,
in our theoryM should not be the number of model parameters, but the number
of degrees of freedom in the model space. The arguments above can easily be
modified to take this into account.

4 Basic Algorithmic Limitations in Blind Inversion

4.1 The Performance of Blind Inversion Algorithms

We now turn to the question of assessing the relative merits of blind inversion
algorithms. The usual two ways of evaluating relative performances have been
(1) to argue for or against algorithms using common-sense, physical or other
arguments to discuss their ability to, e.g., locate acceptable misfit regions, or (2)
to select suitable test problems and arrange numerical contests between selected
algorithms. The first approach does not provide quantitative measures of relative
performance, and the latter method is so sensitive to the selected problems and
the ’tuning’ of each of the considered algorithms that general conclusions are
tentative.

Here, we will follow a different path leading to a quantitative comparison. Our
reasoning will be similar to the one behind the so-called No-Free-Lunch Theorem
[14]. It is based on a discretization where a finite number of parameters and
data are only allowed to attain a finite set of values. This double discretization
is actively used in genetic algorithms where parameters are often assumed to
be binary numbers with only a few bits. All other numerical methods are, of
course, also doubly discretized, because they run on digital computers with a
finite precision.

The doubly discretized inverse problem and the information collected by an
arbitrary, blind inversion algorithm will be described through the following no-
tation. We consider:

– A finite set M of models. This set consists of all combinations of a finite
number of values attained by a finite set of parameters.

– A finite set set S of real numbers. These numbers are the possible fit or
misfit values that can be generated by models inM.
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– The set FM of all fit functions f :M→ S.
– A sample of size m < |M| generated by an algorithm having sampled f ∈ F

in m distinct points:

{(m1, s1), . . . , (mm, sm)}. (3)

Note, that points resampled by an algorithm will only count once. On the
other hand, auxiliary sample points used by the algorithm, e.g. points sam-
pled with the sole purpose of calculating an approximate ’gradient’, count
on equal footing with other sample points.

– The (time) ordered set of sample points (arguments indicate time-ordering):

C = {m1, . . . ,mm}. (4)

– The (time) ordered set of corresponding values of f :

s1, . . . , sm. (5)

– The set FM|C of all fit functions/probability distributions defined on M,
but with fixed values in C.

Consider a blind inversion problem where we have no knowledge of the actual
fit function, and we search for at least one acceptable solution to the problem.
From the outset, the total number of possible fit functions is equal to

|FM| = |S||M|. (6)

We can now ask: What is the probability that an algorithm, when samplingM
in m distinct points, sees the function values s1, . . . , sm? To compute this we
observe that, when fixing the function values at the m points of subset C (see
Figure 1), the number of remaining, possible fit functions is narrowed in and is
equal to

|FM|C | = |S||M|−m. (7)

Fig. 1. Knowledge of an unknown fit function f after evaluation of the function in 5
points
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This means that the probability that an algorithm in m function evaluations
sees the particular fit function values s1, . . . , sm is

P (s1, . . . , sm|a,m) = |FM|C ||FM|−1
= |S|−m (8)

This number is independent of the location of the sample points and hence the
algorithm used. Any algorithm a performing m iterations where it visits (algo-

rithm dependent) points m
(a)
1 , . . . ,m

(a)
m can obtain functional values s1, . . . , sm

with exactly |FM|C | different fit functions f ∈ FM, and |FM|C | is independent
of a, so for any pair of algorithms a1 and a2 we have

P (s1, . . . , sm|m, a1) = P (s1, . . . , sm|m, a2) (9)

where P ( · | · ) denotes conditional probability.
Any performance measure for inversion algorithms searching for near-optimal

data fits is of the form Φ : Sm → R, for instance:

Φ(s1, . . . , sm) = max{s1, . . . , sm}, (10)

which must be large for good performance. Even Monte Carlo algorithms, aimed
at importance-sampling of probability distributions over the parameter space,
operate as near-optimization algorithms in the computer-intensitive, initial phase
(the burn-in phase) where the first acceptable solution is sought.

The probability distribution of Φ(s1, . . . , sm) depends only on
P (s1, . . . , sm|m, a), and as a consequence of equation (9) it is therefore
independent of the algorithm a. We have now shown

Theorem 1. (Similar to the No-Free-Lunch Theorem by Wolpert and Mac-
ready [14]). The distribution of any performance measure for inversion, when
all fit functions are equally probable (blind inversion), is exactly the same for all
inversion algorithms.

4.2 Critique of the No-Free-Lunch Theorem

One obvious critique of the usefulness of the No-Free-Lunch Theorem is that,
in typical fields of application, the fit functions belong to a narrow subfamily
of functions (e.g., smooth functions), and some algorithms work better than
others on such families. This objection is based on the observation that for each
function sub-family GM ⊆ FM, the total number of ways a particular set of fit
values s1, . . . , sm can be obtained in a set of m sample points m1, . . . ,mm from
fit functions f ∈ GM will in general depend on m1, . . . ,mm (and hence on the
algorithm a that is choosing the sample points). However, this objection is, as
we shall see now, invalid in the blind inversion case.

Consider all subfamilies GM of functions in FM. Functions in subfamily GM
with fixed values on the subset C form the set GM∩FM|C . The average number
of functions in such a subfamily is proportional to∑

∀GM⊆FM

|GM ∩ FM|C | =
∑

∀GM\C

|GM\C | (11)
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The right-hand side of (11) depends only on |M| − |C| and hence only on the
number m. Hence, the actual elements of C, which are chosen as a result of
a’s search strategy, does not influence the average number of functions in GM ∩
FM|C . We have demonstrated

Theorem 2. The efficiency of blind inversion algorithms, averaged over all sub-
families of fit functions, is the same for all inversion algorithms.

We have found that the efficiency of all blind inversion schemes, e.g., Steep-
est ascent/descent, Simulated Annealing, Markov-Chain Monte Carlo, Random
Search, Genetic Algorithm, Neighborhood Algorithm, Taboo Search, Line Search
and Exhaustive Search are exactly the same, when averaged over alle possible
inverse problems or subsets of problems.

How can we accept this surprising result when all experience shows that,
for instance, Random Search is much less efficient than Genetic Algorithms?
The only explanation for the apparent paradox is that the above mentioned
blind algorithms are, in practice, supplemented with procedures that inform the
algorithm about the structure of the problem. As we shall discuss in the next
section, this is indeed the case.

5 The Informed Inversion Problem

5.1 The Necessity of Algorithm Tuning

We have demonstrated above that the performance of all blind inversion schemes
are exactly the same, when averaged over all conceivable fit functions, or subsets
hereof. This means that if, for example, a genetic algorithm performs better
than a crude random search on certain problems, it will perform worse on other
problems. Apparently, this result is contradicted by the experience of a vast
number of researchers who have seen popular algorithms outperforming crude
random search by several orders of magnitude.

The only way we can resolve this paradox is to point at the tuning of inversion
algorithms. Most expositions explaining the functioning of inversion algorithms
emphasize the external ideas behind their design, and attribute the algorithm’s
efficiency to these ideas. Simulated Annealing is, for example, relying on an idea
taken from natural minimization of the internal energy seen in thermodynamical
systems under slow cooling, Genetic algorithms use ideas from natural biological
selection to generate near-optimal solutions, etc. The consequence of Theorem
1 above is, however, that none of these external design ideas can provide any
degree of success. Instead, we must turn to the tuning of algorithms to obtain
the desired efficiency.

Unfortunately, there is a vast number of very different ways of tuning inversion
algorithms. For this reason we shall only discuss one of the most important ideas,
namely tuning to a known smoothness of the fit function through the choice of
distance between sample points, for some algorithms termed the ’step length’.
An algorithm that is tuned to the problem is no longer a blind algorithm (a meta-
heuristic). It has become a so-called heuristic – an informed inversion algorithm.
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5.2 A Lower Bound on the Required Number of Iterations by a
Smoothness-Tuned Algorithm

Assume that the parameter spaceM ∈ RM is an M -dimensional cube of edge
length L, and consider a class F of fit functions defined overM. Assume that
fit functions f ∈ F can be approximated to any precision by

f(m) ≈
J∑

j=1

uj φj(m) (12)

where φ1, φ2, . . . , φJ is a set of linearly independent basis functions, and where
J will depend on the required precision. For instance, according to a theorem
by Brown [15], any continuous fit function f ∈ F can be approximated to any
precision by (12) if φ1, φ2, . . . , φJ are radial basis functions of the form

φj(m) = g(‖m−mj‖2), mj ∈ Q (13)

where g is a non-constant, completely monotone1 function defined on [0,∞[, and
Q is a compact subset of RM containing more than one point. The radial basis
functions φk(m) have ’spherical symmetry’, and they are translates of each other
(have different mj). The class of radial basis functions is very wide, containing
members as, for instance, exp(−‖m−mj‖2), ‖m−mj‖ and ‖m−mj‖2 ln(‖m−
mj‖).

Assume first that the only information we have about a fit function f is
that it is ’band limited’ in the sense that it is given exactly by the finite linear
combination

f(m) =

J∑
j=1

uj φj(m), (14)

and that we search for acceptable solutions to the inverse problem. Given that
an algorithm has sampled f in k distinct points m1, . . . ,mK and recorded the
corresponding function values s1, . . . , sK , what is the chance that we have lo-
cated the neighborhood of the global maximum/minimum for f? To answer this
question, let us express our knowledge after K iterations through the equations:

sk =
J∑

j=1

uj g(‖mk −mj‖2) k = 1, . . . ,K (15)

If we define the vectors s = (s1, . . . , sK)T , u = (u1, . . . , uJ)
T , and the matrix

{G}kj = g(‖mk −mj‖2), equation (15) can be written

s = Gu . (16)

1 A function g defined on [0,∞[ is completely monotone if g is continuous on [0,∞[,
infinitely often differentiable on ]0,∞[), and (−1)kg(k)(t) ≥ 0 for t > 0 and k =
1, 2, 3, . . ..
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If the solution u to this equation is non-unique, at least one of its components
u1, . . . , uJ is unbounded (that is, can take any value without violating equation
(16)). If ul is such an unbounded component, f is (at best) only known modulo
an unbounded additional term ul g(‖m −ml‖2). It is clear that the unknown
ul renders f ’s value in ml, and hence f ’s global maximum/minimum, undeter-
mined. In other words, unless we can uniquely determine u, we will be unable
to locate the global maximum for f . u is uniquely determined only if GTG is
non-singular, and a necessary condition for this to be satisfied is that K ≥ J .
We have shown

Theorem 3. An inverse problem, whose fit function is known to be a linear
combination of a linear independent set of J basis functions, cannot be solved
through less than J distinct function evaluations.

In the general case, we cannot expect to express f exactly with a finite number
of basis functions. Then f is only expressed with a certain accuracy ε > 0, in
the sense that the discrepancy

n(m) = f(m)−
J∑

j=1

uj φj(m) (17)

is constrained by
maxm |n(m)| ≤ ε . (18)

In this case the problem is that equation (16) does not reliably determine the
coefficient vector u when GTG is ill-conditioned. The discrepancy propagates
into the coefficient vector, creating large errors, and the location of the global
maximum of f remains unknown.

The above considerations set a fundamental, unavoidable lower limit to the
number of iterations required by any inversion algorithm working with a ’band-
limited’ fit function. We have not described how an ideal (maximum efficiency)
algorithm should work, but it is clear from the discussion that, contrary to the
’blind inversion’ case, not all algorithms are equally good.

To see this, consider again equation (16). An algorithm choosing its first J
distinct sampling points such thatGTG is non-singular and well-conditioned has
collected sufficient information to locate the global maximum for f (although
we have not shown how to do this). On the other hand, an algorithm choosing
its first J distinct sampling points such that GTG is singular or ill-conditioned
is still missing information about the location of the global maximum of f . For
instance, a sub-optimal algorithmmay, after J distinct function evaluations, have
failed to sample all J basis functions in points sufficiently near their maxima.
Such an algorithm will need more than J distinct function evaluations to render
equation (16) solvable.
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6 The Complexity of an Inverse Problem with Known
Smoothness

Consider an inverse problem with a fit function f defined in an interval M of
edge length L in RM (an M -dimensional ’box’). Assume that f is smooth in the
sense that it can be expanded in a linear independent, finite set of radial basis
functions, centered in a regular grid in M with grid spacing l. The required,
total number of basis functions is then (L/l + 1)M , and according to Theorem
(3) this is the smallest number of distinct function evaluations needed to solve
the inverse problem. To reach this minimum number of evaluations, the safest
strategy for an algorithm is to sample close to the maxima of the basis functions,
and this calls for a sampling distance close to a multiple of l.

It should be noted, however, that in this important case the smallest number
of distinct function evaluations needed by any algorithm to solve the inverse
problem grows at least exponentially in M . This growth is severe, and shows
that the inverse problem is hard in the sense that the solution time grows faster
than any polynomial function [16]. In practice, this means that even significant
improvements in computer speed will only allow the inverse problem to be solved
with a few more model parameters. Let us summarize this important observation
in the following:

Theorem 4. Consider an inverse problem for which our only knowledge is that
its fit function can be expanded in a set of linearly independent, radial basis
functions, and assume that the basis functions are centered in a regular grid
covering the model space. Then the computation time for any algorithm aimed
at solving the inverse problem will grow at least exponentially with the number
of unknown model parameters.

7 Discussion and Conclusion

Wolpert and Macready [14] showed that, contrary to the belief of many prac-
ticians, there is no difference between the performance of the many existing,
and popular, meta-heuristics, unless they are tuned to the problem at hand
(and therefore no longer problem-independent). This means that all attempts to
improve on inversion algorithms must focus on the tuning. One of the most com-
mon tuning parameters is the ’step length’ (as in, e.g., simulated annealing) or
’sampling density’ (as in, e.g., the neighborhood algorithm). This kind of tuning
applies to cases where smoothness is the only known property of the fit function.

Usually, the smoothness is determined empirically through experimentation
with a range of sampling densities. An example is steepest descent algorithms
where step lengths are adjusted in order to avoid ’instability’ of the algorithm.
Another example is the adjustment of the step length in Markov-chain Monte
Carlo methods, until the rate of accepted moves is reasonable [17]. A third
example is the neighborhood algorithm where the density of resampling can be
adjusted.
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In many inverse problems arising in physical sciences, the data, and hence
the fit (or misfit) functions are smooth. An example is seismic waveform inver-
sion, where the band-limitation of the seismic source function is inherited by
the fit function. If one attempts to solve this problem with an algorithm that
is only informed about the smoothness of the fit function (through numerical
experimentation or through some spectral information), the solution time will
grow exponentially with the number of unknown parameters. This means that
large-scale, seismic waveform inversion problems are essentially unsolvable in
this way. On the other hand, it is well known that solution of such problems
may be feasible with ’well-informed’ algorithms, based on the theory of seismic
wave propagation.

We should mention a couple of objections that could be raised against our
exposition. First, does the above theory account for the situation that an algo-
rithm may sometimes, by accident, start its search/sampling close to a solution?
The answer to this question is that in large-scale inverse problems with many
unknown parameters, there is a negligible probability that an algorithm, only
informed about the smoothness of f , would start near an acceptable solution.
We have therefore ignored this situation.

A second objection concerns the fact that we have treated deterministic meth-
ods (searching only for one feasible solution), and Monte Carlo sampling methods
(aiming at finding many feasible solutions) in a unified theory. Clearly, sampling
methods start with a ’burn-in phase’ which is comparable to deterministic meth-
ods in its aim at locating one acceptable model, but this phase is followed by a
’sampling phase’ which is apparently the real production phase of the sampling
algorithm. To what extent is the sampling phase considered in our theory? The
answer is, that our theory only considers the burn-in phase of a Monte Carlo
sampling. In this connection it should be remembered that the burn-in process
not only concerns the initial search for acceptable solutions. If the fit function
for the problem has many isolated islands of acceptable solutions, the burn-in
time is also a measure of the time it takes for the algorithm to move from one
solution island to the next.

As a final remark we should note that, although we have demonstrated that
all blind inversion schemes are equally (in)efficient, and that efficient algorithms
can only be obtained through problem-dependent tuning, it is certainly possible
that some algorithm designs are more easily tuned than others. This may be
responsible for some of the differences that practitioners observe between popular
algorithms.
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Abstract. Over the past five years almost all computer manufactur-
ers have dramatically changed their computer architectures to Multicore
(MC) processors. We briefly describe Cache Blocking as it relates to com-
puter architectures since about 1985 by covering the where, when, how
and why of Cache Blocking as it relates to dense linear algebra. It will
be seen that the arrangement in memory of the submatrices Aij of A
that are being processed is very important.

1 Introduction

PARA 2010 coincided with my 75th birthday. I want to thank the organizers
for allowing me to address the attendees about the subject of Cache Blocking. I
devoted a lot of time during my last 25 years at IBM research on library devel-
opment; this library was called ESSL for IBM Engineering Scientific Subroutine
Library. In 2011, ESSL celebrated its 25th birthday. In the area of Dense Linear
Algebra, DLA, ESSL is compatible with LAPACK; ESSL has a parallel library
called PESSL and it is compatible with ScaLAPACK. DLA is a subject that
benefits greatly from the use of cache blocking, and DLA researchers have con-
tributed heavily to the development and understanding of cache blocking. This
paper describes cache blocking as it relates to DLA.

We cover the where, when, how and why of cache blocking. The where is
everywhere. By this we mean that almost all processors use a design that incor-
porates cache blocking; i.e., their memory hierarchies are designed in a tiered
fashion called caches. Processing of data only occurs in the lowest level caches;
today these data processing areas are called cores.

The when occurred in the mid 1980’s when caches were first introduced. Cache
blocking was first invented by my group at IBM in 1984 [21] and the Cedar
project at the University of Illinois [12]. As processor speeds increased, the law
of physics that governed the speed of light started to affect all processor design.
Previously, processors had a uniform or single memory hierarchy and thus all
data could be ready for processing in a single CPU operation. Uniform memory
processors of the 1980’s were the Cray 1 machines. However, later on, the Cray
2 machines became cache based machines. DLA researchers then introduced the
Level-3 BLAS [10] for improving new DLA libraries that were later introduced.
Two examples were the LAPACK and ScaLAPACK libraries. This was a time
period when “Moore’s law” started to come into play; this law accurately pre-
dicted processor speed increases for the next twenty years. Those speed increases
ended around 2005 with the introduction of multi-core, MC.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 22–32, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The how or what can be described as an application of the Algorithms and
Architecture Approach [15]. Linear Algebra has a “fundamental principle” called
the “Principle of Linear Superposition”. Using it, one can describe the factor-
ization algorithms of DLA of a matrix A in terms of its sub matrices Aij instead
of its elements aij . This leads to automatic cache blocking! The LAPACK and
ScaLAPACK libraries are based on this fundamental principle.

Now we describe the why of Cache Blocking. Simply put “why” has to do with
the speed of data processing. For peak performance of DLA factorization, all
matrix operands must be used multiple times when they enter an L1 cache. This
ensures that the initial cost of bringing an operand into cache is amortized by the
ratio of O(n3) arithmetic to O(n2) elements. Multiple reuse of all operands can
only occur if all matrix operands map well into the L1 cache. For MC processors,
an L1 cache holds data for the cores. For MC it is critical to get the matrix to
the cores as fast as possible. The standard programming interface, called API,
of matrices for the BLAS and DLA libraries is the 2-D array of the Fortran and
C programming languages. For this API, submatrices Aij are held in 2-D arrays
of Fortran and C. They cannot be moved to and from the memory hierarchy to
various cores in a fast or optimal manner! Using New Data Structures, acronym
NDS, to hold these submatrices Aij corrects this problem. We shall “prove” why
this is true using dimension theory [28].

Multicore/Manycore (MC) is considered a revolution in Computing. Actually,
MC is a radical change in Architectures. We have talked about the fundamental
triangle of Algorithms, Architectures and Compilers in [3,15,11]. The funda-
mental triangle concept says that all three areas are inter-related. This means
Compilers and Algorithms must change in significant ways. Over the last five
years the LAPACK library has been carefully examined and it is now directed
toward basic structural changes to gain better performance on MC. One major
change has been to adopt NDS.

For nearly 15 years, Bo Kågström’s Group at Ume̊a, Sweden, J. Waśniewski’s
Team at Danish Technical University in Lyngby, Denmark, and I at IBM Re-
search in Yorktown Heights have been applying recursion and NDS to increase
the performance of DLA factorization algorithms, DLAFA. Our results apply
equally well to MC processors; e.g., the introduction of NDS [14,15,11,5,16]. In
this paper NDS will mean matrix data structures that can be used directly by
BLAS-3 kernel routines [15,16]. The essence of MC is many cores on a single
chip. The Cell BE (Broadband Engine) is an example. Cell is a heterogeneous
chip consisting of a single traditional PPE (Power Processing Element) and 8
SPEs (Synergistic Processing Element) and a novel memory system intercon-
nect. Each SPE core can be thought of as a processor and a “cache memory”.
Because of this, “cache blocking” is still very important.

For MC the disproportion between multiple CPU processing and memory
speed is much higher. However, the API for BLAS-3 hurts performance as it
requires repeated matrix data reformatting from its API to NDS. A new “BLAS-
3” concept is to use NDS in concert with “BLAS-3” kernels [15,25,24,8]. For MC,
the broad idea of “cache blocking” is mandatory as matrix elements must be fed
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to the SPE’s as fast as possible. The arrangement in memory of the submatrices
Aij of A that are being processed is equally important. So, this is what we will
call “cache blocking” for MC.

We describe algorithms presented at PARA08, called VIPX and BIPX, that
require little or no extra storage to transpose aM by N rectangular (non-square)
matrix A in-place. They are much faster versions of the scalar in-place transpose
algorithms presented at PARA06 in [17]. Also of interest and very relevant is
my paper with Lars Karlsson and Bo Kågström [20] and Lars’ paper [22]. These
PARA08 algorithms and those of [22,20] are quite illuminating as they show in a
fundamental way why NDS are superior to the current standard matrix formats
of DLA. They demonstrate a novel form of cache blocking! It is only when one
uses NDS in concert with these algorithms that it is possible to achieve cache
blocking. We only use two matrix layouts in this paper. First, we assume that the
matrices are stored in Rectangular Block (RB) format. RB format stores aM by
N matrix A as contiguous rectangular submatrices Aij of size MB by NB. Square
Block (SB) format is a special case of RB format when the rectangle is a square.
It was first introduced in 1997, see [14], and has been described in five recent
mini-symposiums at PARA06, PPAM07, PARA08, PPAM09, and PARA10. It
turns out that our results on NDS [14,15,11,5,16] are very relevant to MC: Of
all 2-D data layouts for common matrix operations SB format minimizes L1 and
L2 cache misses as well as TLB misses. The essential reason for this is that a SB
of order NB is also a contiguous 1-D array of size NB2 and for almost all cache
designs a contiguous array whose size is less than the cache size is mapped from
its place in memory into the cache by the identity mapping. SB format is the
same as block data layout. Block data layout is described in [27] and the authors
show that this format leads to minimal L1, L2, TLB misses for matrix operations
that treat rows and columns equally.

RB format has a number of other advantages. A major one is that it naturally
partitions a matrix to be a matrix of sub-matrices. This allows one to view matrix
transposition of a M by N matrix A where M = mMB and N = nNB as a block
transposition of a much smaller m by n block matrix A. However, usually M
and N are not multiples of MB and NB. So, RB format as we define it here, would
pad the rows and columns of A so that M and N become multiples of some
blocking factors MB and NB. We add that padding appears to be an essential
condition for this type of “cache blocking”. The second format for storing
matrices is the standard 2-D array format of the Fortran and C programming
languages. For the in-place algorithms we consider it appears that by only using
these standard formats it then becomes impossible to achieve highly performing
algorithms. In other words, “cache blocking” for DLAFA is not possible when
one uses the standard API of 2-D arrays to hold a global matrix A.

Cache blocking using NDS will be described in Section 2. We show how it
can be automatically incorporated into DLAFA by using NDS and “BLAS-3”
kernel routines instead of using the current Level 3 BLAS. Section 2 closes with
a discussion of Dimension Theory. It shows why Fortran and C arrays cannot
be truly multi-dimensional. In Section 3, we describe the features of In-Place
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Transformations between standard full layouts of matrices and the new rectan-
gular block (RB) or square block (SB) formats of NDS. These algorithms demon-
strate a novel form of cache blocking which is made possible by transforming to
and then using the NDS. Serial performance results for the algorithms of Section
3 are given in [19]. Some early history of my involvement with Cache Blocking
is given in Section 4. A short Summary and Conclusion is given in Section 5.

2 Cache Blocking

We address “cache blocking” as it relates to DLAFA; see [15]. We will sketch a
proof that DLAFA can be viewed as just doing matrix multiplication (MM) by
adopting the linear transformation approach of applying equivalence transfor-
mations to a set of linear equations Ax = b to produce an equivalent (simpler)
form of these equations Cx = d. Examples of the simpler form are LU = PA, for
Gaussian elimination, LLT = A, for Cholesky Factorization, and QR = A, for
Householder’s factorization. We adopt this view to show a general way to pro-
duce a whole collection of DLAFA as opposed to the commonly accepted way of
describing the same collection as a set of distinct algorithms [13]. A second rea-
son is to indicate that for each linear transformation we perform we are invoking
the definition of MM. Here is the gist of the proof as it applies to LU = PA.

1. Perform n = �N/NB rank NB linear transformations on A to get U .
2. Each of these n composed NB linear transformations is MM by definition.
3. By the principle of equivalence we have Ax = b if and only if Ux = L−1Pb.

MM clearly involves “cache blocking”. Around the mid 1990’s we noticed (see
page 739 of [14]) that the API for Level 3 BLAS GEMM could hurt performance. In
fact, this 1-D API is also the API for 2-D arrays in Fortran and C. An explanation
of dimension is given in Section 2.1. One can prove that it is impossible to lay
out a matrix in 1-D fashion and maintain closeness of its elements. LAPACK
and ScaLAPACK also use this API for full arrays. On the other hand, high
performance implementations of GEMM do not use this API as doing so leads to
sub-optimal performance. In fact, some amount of data copy is usually done by
most high performance GEMM implementations. Now, Level 3 BLAS are called
multiple times by DLAFA. This means that multiple data copies will usually
occur in DLAFA that use standard Level 3 BLAS. The NDS for full matrices are
good for GEMM. DLAFA algorithms can be expressed in terms of scalar elements
ai,j which are one by one block matrices. Alternatively, they can be expressed
in terms of partitioned submatrices, A(I : I + NB− 1, J : J + NB− 1) of order NB.
See [13] for a definition of colon notation. The algorithms are almost identical.
However, the latter description automatically incorporates cache blocking into a
DLAFA. Take the scalar statement ci,j = ci,j−ai,kbk,j representing scalar MM as
a fused multiply-add. The corresponding statement for partitioned submatrices
becomes a kernel routine for Level 3 BLAS GEMM. However, it is imperative to
store the order NB SB’s as contiguous blocks of matrix data, as this is what many
Level 3 BLAS GEMM implementations do internally. This is not possible using the
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standard Fortran and C API. This fact emphasizes the importance of storing the
submatrices of DLAFA as contiguous blocks of storage. An essence of NDS for
full matrices is to store their submatrices as contiguous blocks of storage. The
simple format of full NDS has each RB or SB stored in standard Column Major
(CM) or standard Row Major (RM) format; see [15] for details.

Early results of the PLASMA project as it related to the Linpack benchmark
LU = PA when running on the Cell processor emphasize their use of SB for-
mat [25]. According to Dongarra’s Team it was crucial that NDS be used as
their matrix format. In particular, using the standard API of Fortran and C did
not yield them good performance results. Also, earlier results obtained by con-
sidering the IBM new Blue Gene/L computers [9] emphasized the same thing.
However, the simple format of full NDS needs to be rearranged internally to
take into account “cache blocking” for the L0 cache. The L0 cache is a new term
defined in [16] and it refers to the register file of the FPU or core that is attached
to the L1 cache. Some ideas about this are given in [16].

2.1 Dimension Theory and Its Relation to Standard CM and RM
Arrays of Fortran and C

All multi-dimensional arrays in Fortran and C are actually 1-D layouts. This
means that the API for 2-D “arrays in Fortran and C” is really one dimensional.
A finite version of the Fundamental Theorem of Dimension Theory implies that
it is impossible to preserve a neighborhood principle of closeness of all points p
of a D dimensional object when one uses a d dimensional coordinate system to
describe the object when D > d; see pages 106 to 120 of [28]. We use the phrase
“preserve data locality” and we note that when data is contiguous in computer
memory then its mapping into cache is the identity mapping; clearly, this is the
fastest way to move data and also to preserve it in cache. This result says that
it is impossible to lay out a matrix in 1-D fashion and maintain closeness of all
of its elements.

3 In-place Transposition between Standard Full Layouts
and RB Format

The in-place transpose algorithms in [17], although fast, or very fast compared
to the existing algorithms for the same problem, are necessarily very slow on
today’s processors. We explain why: Suppose that we have an M × N matrix
A stored in CM format. The element aij is stored at offset k = i + jM or
A[k]. These algorithms implement an in-place permutation P of the entries of A
so that aij = A[k] ends up at offset k̄ = iN + j or A[k̄]. Thus, the algorithms
overwriteA stored in CM format with its transpose AT also stored in CM format.
This mapping, k̄ = P (k) = kN mod q where q = MN − 1, is a permutation of
the integers 0 : MN − 1. The mapping P , with different parameters N and
q, also defines different pseudo-random number generators [23, Section 3.2.1.3].
Therefore, an algorithm that transposes a matrix in-place using P directly must
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exhibit a random memory access pattern and thus have very poor performance:
Each memory access will likely miss in each level of the cache hierarchy. A cache
miss penalty is huge, in the hundreds of cycles, for multi-core processors.

Today’s processors lay out memories in chunks of size LS called lines and when
an element is accessed the entire line containing the element is brought into the
L1 cache. To obtain high performance it is therefore imperative to utilize or
process all elements in a line once the element enters the L1 and L0 caches.
We speculate that the reason in-place transposition has not been used for DLA
algorithms is because one can prove that in-place transposition is impossible for
sub-matrices of a matrix A stored in standard format. Also, these algorithms
are very slow relative to out-of-place transposition algorithms which are almost
universally used instead.

Here we use the RB format, which is a generalization of the more commonly
used SB format. It will be evident that our results also hold for SB format.
In the RB format version of our new Block In-Place Xpose1 (BIPX) algorithm
our M by N matrix A, usually padded, can be considered a m by n block
matrix where each submatrix has MB rows and NB columns. Padding should
occur when either M < mMB or N < nNB. Now the governing permutation
P has length q = mn − 1. So, each “element” moved is a RB of size MB by NB

whose elements are contiguous and hence consist of �MB · NB/LS contiguous lines.
Hence, the performance problems of the two previous paragraphs disappear and
our BIPX algorithm will perform at about the same speed as current out-of-place
algorithms; see [19] for performance results. In this Case 1, the BIPX algorithm
has one stage and hence is more efficient than the other two cases which we now
describe for transposing in-place matrices A stored in standard Fortran and C
2-D arrays. The second case has three stages and the third case has five stages.

3.1 The Three Stage Case 2 Algorithm

The main idea here is to use the BIPX algorithm and hence we need to transform
A, in a standard CM or RM format, to be in RB format. This is done by using
a vector version of the IPT or MIPT algorithms of [17]; it is called the VIPX

algorithm and it has similar features to our BIPX algorithm. The VIPX algorithm
maps in-place a M = mMB by NB submatrix of A, in standard CM format with
LDA = mMB, to become m size MB by NB RB concatenated together. We call this
submatrix of A a column swath of A. Repeating algorithm VIPX n times on the
n concatenated column swaths that make up CM A converts CM A to become
A in RB format.

Now we can describe the Case 2 algorithm: It assumes CM A has a certain
layout space in terms of standard 2-D layout terminology: CM A and RB format
A will occupy M ≤ mMB by N ≤ nNB arrays with LDA = mMB where m =
�M/MB. So, the array A holding CM A and RB format A will have space for
mMBnNB elements where n = �N/NB. Now we give the three stage algorithm.
First algorithm VIPX, applied n times on the n column swaths of A produces

1 Xpose stands for Transpose.



28 F.G. Gustavson

RB A. Second algorithm BIPX computes RB AT . Third the inverse of the VIPX
algorithm, applied m times on the m column swaths of AT , computes CM AT .
Hence, it will be less efficient than the Case 1 algorithm by approximately a factor
of three. However, it will be very efficient compared to a one stage algorithm
MIPT or IPT of [17] applied directly to A stored a standard CM or RM format;
see the start of Section 3 where the reason why was given.

3.2 The Five Stage Case 3 Algorithm

Clearly, matrix A rarely has its M a multiple of MB and its N a multiple of NB
or that A is contained in an array A with size |A| ≥ mMBnNB elements. Case 3
is where A is in standard CM format, A has size M by N with LDA ≥ M , and
the conditions for Case 2 do not hold. In Case 3, we set m1 = �M/MB� and
n1 = �N/NB� to define the space for a M1 = m1MB by N1 = n1NB smaller A1

submatrix of A inside the original array space of A. This requires that we save
the leftoverM−M1 rows and N−N1 columns of A in a buffer. We fill this buffer
using out-of-place transpose operations on these leftover rows and columns of
A. Then we move the M1 by N1 matrix A1 to be in standard CM order. A1 is
now declared in Fortran as A(0 : M1 − 1, 0 : N1 − 1) in the array space A. This is
easy to do as a series of DCOPY type calls of length M1. Note that matrix A1 has
its LDA = M1 and it is now a Case 2 matrix. We apply the Case 2 algorithm to
CM A1 to get CM AT

1 . Next, we expand A
T
1 in the array space of A using DCOPY

type calls of length N1 thereby making “holes” in array A for the submatrices of
A in the buffer. Finally, we transfer the buffer with the saved rows and columns
to the “holes” in A using standard out-of-place transpose and copy algorithms
to get the final CM AT matrix. The Case 3 algorithm contains four additional
steps of save A−A1, contract A1, expand A1 and restore A−A1 over the Case 2
algorithm and hence is the least efficient of the three algorithms. Since it passes
over A about five times it will perform about five times slower than the Case 1
algorithm when A is large; see [18].

We can only describe the BIPX, VIPX and Case 2 algorithms due to space
considerations. There is some literature on this subject in the form of a patent
disclosure [26] which we discovered after we finished this work. This disclosure
is incomplete, and furthermore its algorithms are not really in-place.

3.3 The VIPX(MB,m,NB,A) Column Swath Algorithm

We briefly describe how one gets from standard CM format to RB format. Let
A1 have M = mMB rows and N = nNB columns with its LDA = M . Thus, A1
consists of n column swaths that are concatenated together. Denote any such
swath as a submatrix A3 of A1 and note that A3 consists of NB contiguous
columns of CM matrix A1. So, A3 has M rows and s = NB columns. Think of
A3 as an m by s matrix whose elements are column vectors of length r = MB.
Now apply algorithm MIPT or IPT of [17] to this m by s matrix A3 of vectors of
length r. Now A3 has been replaced (over-written) by A3T which is a size s by
m matrix of vectors of length r. It turns out, as a little reflection will indicate,
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that A3T can also be viewed as consisting of m RB matrices of size r by s that
are concatenated together. For matrix A1 we do n parallel A3→ A3T operations
for each of the n = N/s concatenated submatrices A3 that make up matrix A1.
After completion of these n parallel computation steps we have transformed CM
A1 in-place to become matrix A2. A2 is a RB matrix consisting of m block rows
by n block columns stored in standard CM block order. Of course, A1 and A2 are
different representations of the same matrix. However, we have “cache blocked”
matrix A2! The VIPX algorithm just described is algorithm MIPT or IPT of [17]
modified to move contiguous vectors of length r instead of scalars of length one.

3.4 The BIPX(MB,NB,m,n,A) Block Transpose Algorithm

We briefly describe how one gets from RB format to the transpose of RB format
in-place. Let A2 have m block rows and n block columns where each block
element of A2 is a standard CM matrix having MB rows and NB columns with
LDA=MB. These m by n block matrices are laid out in standard CM block order;
see Section 3.3. Now apply algorithm MIPT or IPT of [17] to thism by nmatrix A2
of RB matrices. A2 will be replaced (over-written) by A2T . Each block element
of A2T is a CM matrix having NB rows and MB columns with LDA=NB; ie, each new
RB matrix is the transpose of an old RB matrix. The BIPX algorithm uses either
algorithm MIPT or IPT of [17] modified to transpose out-of-place RB matrices
of size MB by NB according to a permutation cycle of the MIPT or IPT algorithm
applied to the m by n RB matrix A2. Note that any permutation of disjoint
block cycles is easy to parallelize. One can clearly see how using A2 produces a
parallel form of cache blocking!

3.5 The Case 2 In-place Transpose Algorithm

The Case 2 Algorithm was described in the previous Sections 3.1, 3.3, and 3.4.
WhenM = N one calls a standard in-place transpose algorithm. We now present
the M �= N case where MB = NB:

m1=m/nb ! A is a Fortran m by n matrix declared as A(0:m-1,0:n-1)

n1=n/nb ! A will become a SB matrix of size m1 by n1

nb2=nb*nb ! each SB holds nb^2 matrix elements

if(m1.gt.1)then ! Stage 1 of CM to SB

call VIPX1(nb,m1,nb,A,temp,L,nL)

do k=1,n1-1

call VIPX2(nb,m1,nb,A(k*m*nb),temp,L,nL)

enddo

endif

if(m1.eq.1.or.n1.eq.1)then ! A is a block vector matrix

! A is a m1 by 1 block vector or a 1 by n1 block vector

do i=0,max(m1,n1)-1 ! max(m1,n1,1) is either m1 or n1

call DGETMI(A(i*nb2),nb,nb) ! transpose m1 or n1 blocks

enddo

else ! A is a SB matrix of size m1 by n1; min(m1,n1) > 1
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call BIPX(m,n,A,m,nb,temp) ! Stage 2 of SB to SB^T

endif

if(n1.gt.1)then ! Stage 3 of SB^T to CM

call VIPX1(nb,nb,n1,A,temp,L,nL)

do k=1,m1-1

call VIPX2(nb,nb,n1,A(k*n*nb),temp,L,nL)

enddo

endif

We have broken stages one and three into an initial call to VIPX1 and their
remaining calls to VIPX2. VIPX1 is VIPX of Section 3.1 where we save the lead-
ers [17] of VIPX in vector L of length NL. Hence, further calls to VIPX can be
handled by the more efficient VIPX2 which receives its leaders in L as input.
Routine DGETMI is the ESSL in-place transpose routine [21]. Array temp will
hold a vector of length NB or NB2.

4 Some Early IBM History on Cache Blocking

In the early 1980’s I became manager of a small research group and project
called Algorithms and Architectures. IBM was to introduce a Vector Processor
into its new cache based 3080 series mainframe line. My group initially had
researchers Ramesh Argawal, James Cooley and Bryant Tuckerman. We first
produced novel scalar and vector elementary functions that were nearly perfectly
rounded and very fast. This work became state-of-the-art [1]; today this design
still is. Next came the formation of the IBM product ESSL. This latter work
was a joint venture with IBM Development in Poughkeepsie and Kingston, NY
headed by Stanley Schmidt and Joan McComb. ESSL was conceived during
1982. For linear algebra, we decide to make ESSL subroutines compatible with
Linpack. In May to June of 1984 we produced a successful design of matrix
multiply, GEFA and POFA. Our internal report said “a conceptual design has
been identified in which data is brought (and completely used) into cache only
once. This approach allows full use of the multipy add instruction”. Thus, this
is when “cache blocking” was born in my group. ESSL was initially released
in February 1986 [21]; it will celebrate its 25th anniversary in 2011. In 1988,
my group showed how “algorithmic lookahead” could be used to obtain perfect
parallel speed-up for Linpack benchmark [2]. This key idea is used to get high
performance on multi-core processors.

In the late 1980’s ESSL and my group was presented a new challenge as
IBM decided to introduce RISC computers called the POWER (RS6000) line of
workstations. ESSL had grown substantially and had put out four mainframe
releases. A huge programming effort began and 497000 lines of Fortran code was
produced by my small group of four regular people. We called our effort EFL
standing for ESSL Fortran Library; the whole library was written in Fortran!
Sometime later Jim Demmel and his graduate students at UC Berkeley started a
project with a grant from IBM to try to automatically produce code to get better
performance than EFL code. They produced PHIPAC; later Jack Dongarra’s
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group followed with ATLAS. After POWER1, came a remarkable machine called
POWER2 [3]. It possessed very high bandwidth. In 1992 my group published a
report [4] on how to use overlapped communication to produce peak performing
matrix multiplication on distributed memory computers. Today, this algorithm
is still the algorithm of choice.

5 Conclusions and Summary

We indicated that DLAFA are mainly MM algorithms. The standard API for
matrices use arrays. All array layouts are one dimensional. It is impossible to
maintain locality of reference in a matrix or any higher than 1-D object using a
1-D layout; see [28]. MM requires row and column operations and thus requires
matrix transposition (MT). Our results on in-place MT show that performance
suffers greatly if one uses a 1-D layout. Using NDS for matrices “approximates”
a 2-D layout; thus, one can dramatically improve in-place MT performance. Our
message is that DLAFA are mostly MM. MM requires MT and both require
NDS. Thus, DLAFA can and do perform well on multicore if one uses NDS.
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Fully Portable High Performance Minimal Storage Hybrid Cholesky Algorithm.
ACM TOMS 31(2), 201–227 (2005)

6. Anderson, E., et al.: LAPACK Users’ Guide Release 3.0. SIAM, Philadelphia (1999)

7. Blackford, L.S., et al.: ScaLAPACK Users’ Guide. SIAM, Philadelphia (1997)
8. Buttari, A., Langou, J., Kurzak, J., Dongarra, J.: A class of parallel tiled linear

algorithms for multicore architectures. Parallel Comput. 35(1), 38–53 (2009)

9. Chatterjee, S., et al.: Design and Exploitation of a High-performance SIMD
Floating-point Unit for Blue Gene/L. IBM Journal of Research and Develop-
ment 49(2-3), 377–391 (2005)

10. Dongarra, J.J., Du Croz, J., Hammarling, S., Duff, I.: A Set of Level 3 Basic Linear
Algebra Subprograms. TOMS 16(1), 1–17 (1990)



32 F.G. Gustavson

11. Elmroth, E., Gustavson, F.G., Jonsson, I., K̊agström, B.: Recursive Blocked Al-
gorithms and Hybrid Data Structures for Dense Matrix Library Software. SIAM
Review 46(1), 3–45 (2004)

12. Gallivan, K., Jalby, W., Meier, U., Sameh, A.: The Impact of Hierarchical Memory
Systems on Linear Algebra Algorithm Design. International Journal of Supercom-
puter Applications 2(1), 12–48 (1988)

13. Golub, G., VanLoan, C.: Matrix Computations, 3rd edn. John Hopkins Press,
Baltimore (1996)

14. Gustavson, F.G.: Recursion Leads to Automatic Variable Blocking for Dense
Linear-Algebra Algorithms. IBM Journal of Research and Development 41(6), 737–
755 (1997)

15. Gustavson, F.G.: High Performance Linear Algebra Algorithms using New Gen-
eralized Data Structures for Matrices. IBM Journal of Research and Develop-
ment 47(1), 31–55 (2003)

16. Gustavson, F.G., Gunnels, J.A., Sexton, J.C.: Minimal Data Copy for Dense Linear
Algebra Factorization. In: K̊agström, B., Elmroth, E., Dongarra, J., Waśniewski,
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Abstract. Until now, several heuristics for scheduling parameter sweep
applications in environments such as cluster and grid have been intro-
duced. Cloud computing has revolutionized the way applications are ex-
ecuted in distributed environments, as now it is the infrastructure which
is adapted to the application and not vice versa. In the present contri-
bution an astronomy application from the next mission to Planet Mars
with Finnish-Russian-Spanish flag is ported on to a cloud environment,
resulting in a parameter sweep profile. The number of needed execu-
tions and the deadline provided required a big quantity of computing
resources in a short term and punctual situations. For this reason, we in-
troduce and validate a model for an optimal execution on a public cloud
infrastructure by means of time, cost and a metric involving both.

1 Introduction

Cloud computing allows access to an on-demand and flexible computing in-
frastructure. As soon as production infrastructures have been available to the
scientific community, the first applications have started to run on the cloud [1,2].
In many Research areas, the leap from cluster and grid computing to this new
paradigm has been mandatory, as the needed applications evolve in their com-
putational needs [3].

In cloud computing a research institution does not need to care about its own
cluster machines, neither the availability of remote computing resources nor the
software installed on them. When needed, an user may start a virtual machine
(VM), or even a group of identical VMs booted from the same image. Another
remarkable fact is that in cloud computing is the application which defines its
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level of parallelism and not the hardware, unlike in cluster or grid computing. A
cloud user may choose from two main infrastructure types: public or private. In a
private cloud (also named internal or corporate cloud) the bare-metal machines,
those hosting the running VM’s, are maintained by his own Institution. These
private clouds can be built with virtualization technologies such as Nimbus [4],
OpenNebula [5] or Eucalyptus [6]. On the other hand, users may choose to
externalize the cloud service and pay per deployed VM and unit of time, like in
ElasticHosts1 and Amazon’s Elastic Compute Cloud2.

In the present contribution, an astronomy application used in the context
of the Finnish-Russian-Spanish Mission to Mars that will be launched in 2011
(Section 2) is studied for its optimal execution on Amazon’s cloud infrastructure
(Sections 3 and 4). The reasons for choosing a public cloud infrastructure are
that executions are meant to be sporadic, intensive and the existing comput-
ing infrastructure is very limited. Upgrading this computing infrastructure was
discarded, so the pay-as-you-go philosophy suits perfectly the application. With
this in mind, the objective then was a valid model that allows to choose the
best setup by means of total execution time, cost and a metric involving both
(Section 5) and validate it through experimental results given an infrastructure
setup (Section 6). This model provided in this contribution is ready to be used
not only in this mission to Planet Mars but in the next ones.

2 Phobos Eclipses on Mars for the MetNet Precursor
Lander localization

The MetNet Mars Precursor Mission (MMPM) is a new type of atmospheric
science mission to Mars. The project is being fulfilled in collaboration between
the Finnish Meteorological Institute (FMI), the Russian Lavoschkin Associa-
tion (LA), the Russian Space Research Institute (IKI) and the Spanish National
Institute for Aerospace Technology (INTA). The purpose of the MMPM is to
confirm the concept of deployment of mini-meteorological stations onto the Mar-
tian surface to get atmospheric data during the descent phase and at the landing
site with a life time design goal of several martian years. The probe is planned
to be launched in 2011 as a secondary part of the Russian mission PhobosGrunt.

The determination of the landing site coordinates is fundamental to provide
useful information for both scientific and mission engineering goals. The detec-
tion of the shadowing effect of Phobos on Mars is proposed to solve the localiza-
tion problem as an alternative and to complement the use of radiometric signals.
In order to implement an observational strategy to observe Phobos eclipses, an
algorithm has been developed and coded to determine the eclipse conditions as
well as the determination of the shadow motion in latitude and longitude. The
implementation of the observational strategy is limited due to the ambiguity
in the EDLS (Entry, Descent and Landing Site) concept. Thus, the cyclogram

1 http://www.elastichosts.com/
2 http://aws.amazon.com/ec2/
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must be activated at the moment when EDSL conditions are known. Cloud will
enable us to face with this punctual huge volume of computations in a fast and
efficient way.

3 Phobos Eclipses on the Cloud

The original application, coded in Fortran 77, was not implemented with par-
allelization in mind so it needed an upper layer for distributing it. It’s exe-
cutable filesize is 754KB and it processes a single 4KB file where the tracing
interval dates and times are read. The size of the resulting output file, con-
taining Phobos’ trajectories, varies depending the tracing interval and precision.
The resulting parallelized application pertains to the parameter sweep profile,
where independent tasks are executed having the executable in common but
not the input [7,8,9]. This is the simplest distributed application profile and it
is not new, as it has been used since the early stages of cluster [10] and grid
computing [11,12].

Related work on parameter sweep applications on distributed environments
was always based in finding the best scheduling heuristic. On a cloud environ-
ment scheduling is changed to provisioning, as resources can be adapted to the
application and can be considered almost infinite. The present contribution does
not aim a scheduling heuristic but a provisioning model for parameter sweep
applications like the studied one, where homogeneous tasks are executed on a
public cloud infrastructure.

Cost analysis for scientific applications on the cloud has already already been
done. For instance, [13] shows a performance comparison on three different sci-
entific workflows and analyses different aspects such as I/O, Memory and CPU
usage. On the other hand, [14] focuses on one of these data intensive workflows
and studies through a grid computing simulator [15] the cost performance trade-
offs for different executions and provision strategies. In both works, the use of
cloud storage is highly recommended due to task data dependencies. The present
contribution provides a valid model for an execution intensive application with
few and little data transfers. For this reason, it has been studied more from a
CPU usage point of view even if some assumptions regarding transfer are made,
and data storage on the cloud was not considered as a solution. The application
was brought to a basic level as it will be explained in the next Section, in order
to avoid middleware overheads inherent to grid or cluster computing.

Before the landing of the Mars probe, tracing must be done for different pos-
sible locations, and each tracing with a time lapse of 1′′. Summing up all the
tracing intervals for all candidate landing coordinates given a possible area, the
result is approximately 800 years. The EDSL conditions will be only known 1h30′

before the beginning of the landing procedure, becoming this a deadline for the
computations. The obtained cyclogram is then sent to the probe for instrumental
actualization and no more executions would be needed for the rest of the mission.
As stated before, the Cloud Computing approach on a public infrastructure suits
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Table 1. Characteristics of the different machine types offered by Amazon EC2 in
the USA-East infrastructure. C.U. corresponds to EC2 compute units per core, the
equivalent to a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor.

Machine Type Cores C.U. Memory Platform Price/hour

Small (Default) 1 1 1.7GB 32bit $0.085

Large 2 2 7.5GB 64bit $0.34

Extra Large 4 2 15GB 64bit $0.68

High CPU Medium 2 2.5 1.7GB 32bit $0.17

High CPU Extra Large 8 2.5 7GB 64bit $0.68

perfectly this punctual need of HPC power. Experiments done for this work are
performed in a fixed location but starting in the year 1609, when astronomer
Galileo Galilei crafted his first telescope. This way, results from 400 years ago
can be compared with historical data, and new data can be gathered for the
next 400 years.

4 Cloud Infrastructure

The Amazon EC2 cloud, based in two USA locations and in one European,
provides its users a wide range of machine images that can be instantiated in
several modalities. These modalities or instance types depend on the memory
and number of cores per virtual machine as detailed in Table 1. The user is given
a single or a set of virtual machines with the requested specifications and the
exclusivity of operation at all levels. When there is no need of the computing
resources anymore, the user only has to terminate them. However, accessing to
an almost infinite computing infrastructure is not free. Having chosen the cloud
services provided by Amazon has its price, as can be seen in Table 1, this depends
on the type of VM instantiated per hour.

The system implemented for tracing Phobos’ trajectories consisted in a phys-
ical machine located at Universidad Complutense of Madrid (Spain), that co-
ordinates the distributed execution of the application at the virtual machines
through a Perl script. These VM’s were instantiated from images provided by
Alestic.com with Ubuntu 9.10 Karmic Koala Server installed, following a col-
lection of best practices collected from the EC2 and Ubuntu communities. The
duration of the tracing interval processed by each task was presumed to be the
same, as performance does not vary with different tracing dates but with dif-
ferent tracing intervals in small local tests. However, in order to anticipate to
irregular times in large scale executions, the system performs dynamic schedul-
ing where a continuous polling of free cores guarantees a constant resource
harnessing.
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5 Execution Model

The process for the execution model formulation is divided in three stages.
Firstly, the application tracing Phobos is executed for a reduced number of
years in three different Amazon EC2 instances. After that, individual task be-
haviour is extrapolated to the rest of instance types with different tracing in-
tervals. Finally the best cases are identified so the complete execution model is
formulated.

5.1 Individual Task Characterization

Both the application and input filesize are constant, but this is not the case
of the output file when the tracing interval varies. Resulting filesizes from the
single experiments conducted are shown with their linear regression in Figure 1a.
Moving to execution times, these clearly depend on the selected instance and
in particular, its EC2 Compute Units. As explained in Table 1, this metric
applied to instance cores is a way to establish a speed relationship between them.
Because of instances with the same EC2 Compute Units value, experiments
were conducted only with the Small, Large and HighCPU-Medium types, as the
difference with the rest reside in the number of cores. Only one core was used
on each instance by experiment as shared memory latency is not considerable in
this particular execution profile.

The results of these initial experiments are represented along with a linear
regression for each instance in Figure 1b. The differences between slopes match
clearly each instance type core speed: 1 for the Small, 2 for the Large and 2.5
for the HighCPU-Medium type. Even if there is a big difference between Large
and Small instance times, this is not the case of HighCPU-Medium and Large.
This difference would surely turn more evident if increasing the tracing intervals
range. Additionally, data transfers were not taken into account during these
experiments because they take place during the following task execution, as it
will be explained in Section 5.3.

Tracing Interval (years)

 0

1000

1500

2000

2500

3000

3500

 0  5  10  15  20

Output Filesize (MB)
Linear Regression

 500

(a)

T
im

e 
(m

in
ut

es
)

Tracing Interval (years)

 0

 300

 400

 500

 0  5  10  15  20

Small
Large

HCPU−Medium
Linear Regression

 100

 200

(b)

Fig. 1. Output filesizes corresponding to different tracing intervals (a) and execution
times corresponding to different tracing intervals and Amazon EC2 instances (b)
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5.2 Full Experiment Characterization

Having the formulas for execution times of individual tasks as a starting point,
it is possible to provide the expressions for every desired experiment. This way,
the total execution time can be obtained with the following formula:

T =
TexeI

iNvm
, (1)

where task execution time (Texe) is calculated using the linear regression ob-
tained in the previous Section, depending on the selected instance. Because
of equal CPU characteristics, task execution time for Extra-Large instances
is calculated with the Large Formula, and the same happens with HighCPU-
ExtraLarge and HighCPU-Medium instances. The values of I and i correspond
to the whole tracing interval and the tracing interval per task. Finally, Nvm is
the number of Virtual Machines instantiated in the experiment.

But as explained before, time is not the only aspect to be considered when ex-
ecuting an application on a public Cloud infrastructure. Cost must be considered
and it can be calculated with:

C =
ChNvm

Nc
�T  (2)

where Ch is the machine’s usage price per hour as shown in Table 1, and T is
obtained from the previous formula and obviously expressed in hours. Variable
T is rounded here because prices correspond to each usage hour of the requested
instance. Existing instances with more than a core (Table 1) are considered by
using the Nc variable. Nevertheless, there is a need of finding a compromise
between execution time and cost in order to evaluate the best setup. This is
accomplished by the Cost/Performance (C/P ) metric, which establishes rela-
tionship between both of them and can be obtained by multiplying Cost (C) by
Time (T ), being the best setup that with the lowest metric value.

5.3 Model Formulation

Focusing in a general model that would establish the best conditions for execut-
ing this application on a public cloud infrastructure given an instance type, the
following expression can be formulated:

C/Pbest = min(C/P ) = min(CT ) = min(
ChTexeI

iN2
c

� TexeI

iNvmNc
) (3)

where the used variables correspond to those used in Formulas 1 and 2 and
their values depend on the selected instance type. At this point, a procedure for
using the proposed model can be established: (i) obtain the best C/P values
for each instance type, (ii) evaluate which is the best instance type by means of
walltime or cost, and (iii) obtain the number of needed virtual machines from
the expression. These steps were applied for each instance shown in Table 1. In
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Fig. 2. Comparison of the C/P Metric values for all the considered Amazon EC2
instances with a tracing interval of 0.5 years (a), and execution time (Texe), number
of virtual machines and cost associated to the best values for the C/P Metric (b)

every estimation, 800 years of Phobos’ orbit tracing were considered varying the
interval per task from 6 months to 12 years, and the number of virtual machines
instantiated.

The lowest values for the C/P metric in all the estimated experiments corre-
spond to the 0.5 years tracing interval. As seen on Figure 2a, the minimum value
is reached with a different number of virtual machines depending the considered
instance type. Figure 2b identifies these values for each case and its associated
cost and execution time. Analysing the Large and XLarge cases, equal C/P val-
ues and cost are obtained but the number of virtual machines varies in a 2x
factor. This relationship is the same for the number of cores in the chosen in-
stance types as shown in Table 1. This behaviour is not strictly repeated in the
HighCPU instances. The HighCPU-Medium case uses 37 instances which is near
to 4 times the number of instances used by the HighCPU-XLarge case, as the
number of cores of this instance type is 4 times those from the first one (Table 1).
The reason of this difference even with the same C/P values, is that the execu-
tion time for HighCPU-Medium’s best case is 0.98 and that of HighCPU-XLarge
is 0.91. Additionally, this difference in needed virtual machines results in a drop
of the total cost.

Choosing the instance type is translated to choosing to pay more for the
infrastructure or decrease the level of parallelism. Returning to Figure 2a, the
Small instances approach is the most expensive solution but with the highest
level of parallelism (169 simultaneous cores). The rest of instance types provide
around 80 simultaneous cores for a lower price finding a great difference when
moving from Large and XLarge to HighCPU instances, but not from Small to
Large and XLarge. Nevertheless, having considered only execution times at the
simulations, an overhead in the walltime must be assumed. These overheads are
due to data transfers between the execution nodes and the local machine. At the
very beginning of the experiment, the executable must be copied to each machine
and then, before each single execution, the corresponding input file has to be
placed in the working directory. This preprocess results in copying 758 KB the
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Fig. 3. Parallel time (that computed with task mean execution times) and overhead
for the three most representative experiments. All of them are compared with the value
expected by the model.

first time and 4 KB the rest of times. However, with the 0.5 years tracing interval,
a 37 MB output file is generated by task. Data transfers can be done during the
execution of following tasks, but after the last one, there will be as many transfers
as parallel cores in the infrastructure. Considering these overheads, it’s necesary
to count on a setup that does not execute everything in strictly 1 hour, as any
delay will result in paying the price for another hour. For this reason, both the
HighCPU instance types are interesting, as they offer a margin of 1′02′′ in the
HighCPU-Medium case and 5′04′′ in the HighCPU-XLarge case.

6 Experimental Results

In order to validate the proposed model, the HighCPU-XLarge case was cho-
sen where 10 virtual machines are instantiated. The reason for choosing this
instance type and not the HighCPU-Medium was that despite the slight cost
increase (Figure 2b), the time margin for the last data transfers and overheads
is bigger, as it was explained in the previous Section. Measurements did not
consider the creation of local directories with the input files, initial executable
upload (one for each instance) and the output files retrieval. On the other hand,
input file transfer was considered, as this was done each time a task was assigned
to a free core. From the different experiments performed, the results from the
3 most representative ones are shown in Figure 3. These results correspond to
the longest, an average valued and the shortest experiment. In the Figure, the
bars represent the walltime for each experiment and the dotted line, the esti-
mated value. The walltime is decomposed in two values: the parallel time and
the overhead. The parallel time is that considering that all tasks are executed in
the same time, which is the mean. Consequently, the parallel time is the result
of multiplying the task mean time by 20, which is the number of executions har-
nessing all the available cores, for processing the 1600 tasks from the experiment.
The overhead is then the difference between the walltime and the parallel time.

From Figure 3 it can be deduced that the parallel time value is nearer to the
expected value than the walltime. This difference can be understood if analysing
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Table 2. Mean times for each experiment with their standard deviation and the number
of outliers (tasks with Texe > 5′)

Experiment Mean Std. Deviation Outliers

1 (long) 2’ 49.37” 3.41” 5

2 (avg.) 2’ 49.65” 3.89” 8

3 (short) 2’ 45.44” 6.91” 5

the task times, which mean values and standard deviation are shown in Table 2.
There were some tasks with an execution time over 5 minutes which is almost
the double of the expected and the mean time, but no 4′ values were obtained.
In fact, values leap from about 3′30′′ to nearly 5′50′′. This behaviour is sporadic,
not subject to a specific task and has its origin in Amazon EC2 itself. Related
work on Amazon EC2 benchmarking claim that it is not always providing what
it is paid for in terms of available CPU [16]. The effect of these outliers, which
represent the 0.5% of the tasks, can be seen more in detail in the first two
experiments. Being the first one the longest, its task mean execution time is less
than that from the second, but the number of outliers is greater as also shown
in Table 2.

7 Conclusions

Cloud computing is a paradigm that aids scientific areas with a high demand of
flexible computational resources. The computational challenge has been moved
from task scheduling to resource provisioning, as this time the distributed ap-
plication does not adapt itself to the infrastructure but vice versa. Additionally,
using a public cloud infrastructure results in a price to be paid. In the present
contribution, a parameter sweep application pertaining to the astronomy domain
is studied for its execution on Amazon’s public cloud. A Model for obtaining the
best infrastructure setup by means of walltime, cost and a metric involving both
has been introduced and validated. Even if there was a small percentage of exe-
cution times with outlier values due to Amazon’s service, the outcome was that
expected, reaching the deadline requirements.

This has been the first use of a public cloud infrastructure made by applica-
tions pertaining to a Space mission (NASA started to use Amazon EC2 services
on November 2010). Due to the great results, more MetNet Project applications
are being considered for their porting to a cloud infrastructure (public and pri-
vate) as more missions are expected. Additionally, the Cluster instances offered
since July and November are to be considered for this and future applications.

References

1. Sterling, T., Stark, D.: A High-Performance Computing Forecast: Partly Cloudy.
Computing in Science and Engineering 11, 42–49 (2009)



42 J.L. Vázquez-Poletti et al.

2. Vouk, M.A.: Cloud computing – Issues, research and implementations. In: Proc.
30th International Conference on Information Technology Interfaces, pp. 31–40.
IEEE Press (2008)

3. Foster, I., Zhao, Y., Raicu, I., Lu, S.: Cloud Computing and Grid Computing 360-
Degree Compared. In: Proc. Grid Computing Environments Workshop, pp. 1–10.
IEEE Computer Society (2008)

4. Foster, I., Freeman, T., Keahey, K., Scheftner, D., Sotomayor, B., Zhang, X.: Vir-
tual Clusters for Grid Communities. In: Proc. 6th IEEE Int. Symp. on Cluster
Computing and the Grid (CCGrid 2006), pp. 513–520. IEEE Computer Society
(2006)

5. Moreno, R., Montero, R.S., Llorente, I.M.: Elastic Management of Cluster-based
Services in the Cloud. In: Proc. 1st Workshop on Automated Control for Datacen-
ters and Clouds (ACDC 2009) on the 6th International Conference on Autonomic
Computing and Communications, pp. 19–24. ACM Digital Library (2009)

6. Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L.,
Zagorodnov, D.: The Eucalyptus Open-Source Cloud-Computing System. In: Proc.
9th IEEE Int. Symp. on Cluster Computing and the Grid (CCGrid 2009), pp. 124–
131. IEEE Computer Society (2009)

7. Pinedo, M.: Scheduling: Theory, Algorithms, and Systems, 2nd edn. Prentice Hall
(2002)

8. Chrétienne, P., Coffman Jr., E.G., Lenstra, J.K., Liu, Z. (eds.): Scheduling Theory
and its Applications. John Wiley and Sons (1995)

9. El-Rewini, H., Ali, H.H., Lewis, T.G.: Task Scheduling in Multiprocessing Systems.
Computer 28, 27–37 (1995)

10. Hsu, T.S., Lee, J.C., Lopez, D.R., Royce, W.A.: Task Allocation on a Network of
Processors. IEEE Trans. Computers 49(12), 1339–1353 (2000)

11. Casanova, H., Legrand, A., Zagorodnov, D., Berman, F.: Heuristics for Scheduling
Parameter Sweep Applications in Grid Environments. In: Ninth Heterogeneous
Computing Workshop, pp. 349–363. IEEE Computer Society Press (2000)

12. Vázquez-Poletti, J.L., Huedo, E., Montero, R.S., Llorente, I.M.: A Comparison
Between two Grid Scheduling Philosophies: EGEE WMS and GridWay. Multiagent
and Grid Systems 3, 1339–1353 (2007)

13. Deelman, E., Singh, G., Livny, M., Berriman, B., Good, J.: The cost of doing
science on the cloud: the Montage example. In: Procs. 2008 ACM/IEEE Conference
on Supercomputing, SC 2008. IEEE Press (2008)

14. Juve, G., Deelman, E., Vahi, K., Mehta, G., Berriman, B., Berman, B.P., Maech-
ling, P.: Scientific workflow applications on Amazon EC2. In: Proc. 5th IEEE Inter-
national Conference on E-Science (Workshops), pp. 14–18. IEEE Computer Society
Press (2009)

15. Buyya, R., Murshed, M.: GridSim: A Toolkit for the Modeling and Simulation of
Distributed Resource Management and Scheduling for Grid Computing. Concur-
rency and Computation: Practice and Experience 14, 1175–1220 (2002)

16. Walker, E.: Benchmarking Amazon EC2 for HP Scientific Computing. Login 33,
18–23 (2008)



Impact of Asynchronism on GPU Accelerated

Parallel Iterative Computations

Sylvain Contassot-Vivier1,2, Thomas Jost2, and Stéphane Vialle2,3
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Abstract. We study the impact of asynchronism on parallel iterative
algorithms in the particular context of local clusters of workstations
including GPUs. The application test is a classical PDE problem of
advection-diffusion-reaction in 3D. We propose an asynchronous version
of a previously developed PDE solver using GPUs for the inner computa-
tions. The algorithm is tested with two kinds of clusters, a homogeneous
one and a heterogeneous one (with different CPUs and GPUs).

Keywords: Parallelism, GPGPU, Asynchronism, Scientific computing.

1 Introduction

Scientific computing generally involves a huge amount of computations to obtain
accurate results on representative data sets in reasonable time. This is why it is
important to take as much advantage as possible of any new device which can be
used in the parallel systems and bring a significant gain in performances. In that
context, one of our previous works was focused on the use of clusters of GPUs
for solving PDEs [19]. The underlying scheme is a two-stage iterative algorithm
in which the inner linear computations are performed on the GPUs [18]. Impor-
tant gains were obtained both in performance and energy consumption. Since
the beginning of parallelism, several works related to asynchronism in parallel
iterative algorithms (see for example [7,10,2]) have shown that this algorithmic
scheme could be a very interesting alternative to classical synchronous schemes
in some parallel contexts. Although a bit more restrictive conditions apply on
asynchronous parallel algorithms [5], a wide family of scientific problems sup-
port them. Moreover, contexts in which this algorithmic scheme is advantageous
compared to the synchronous one have also been identified. As asynchronism
allows an efficient and implicit overlapping of communications by computations,
it is especially well suited to contexts where there is a significant ratio of commu-
nication time relatively to the computation time. This is for example the case
in large local clusters or grids where communications through the system are
expensive compared to local accesses.
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Our motivation for conducting the study presented in this paper comes from
the fact that a local cluster of GPUs represents a similar context of costly commu-
nications according to computations. Indeed, the cost of data transfers between
the GPU memory and the CPU memory inside each machine is added to the
classical cost of local communications between the machines. So, we propose in
this work to study the interest of using asynchronism in our PDE solver in that
specific context.

In fact, our long term objective is to develop auto-adaptive multi-algorithms
and multi-kernels applications in order to achieve optimal executions according
to a user defined criterion such as the execution time, the energy consumption,
or the energy-delay product [15]. We aim at being able to dynamically choose
between CPU or GPU kernels and between synchronous or asynchronous dis-
tributed algorithms, according to the nodes used in a cluster with heterogeneous
CPUs and GPUs.

The test application used for our experiments in this study is the classical
advection-diffusion-reaction problem in a 3D environment and with two chemi-
cal species (see for example [17]). Two series of experiments have been performed,
one with a homogeneous cluster and another one with a heterogeneous cluster
with two couples of CPU-GPU. Both computing performances and energy con-
sumption have been measured and analyzed in function of the cluster size and
the cluster heterogeneity.

The following section presents the algorithmic scheme of our iterative PDE
solver together with the implementation sketch of the asynchronous version.
Then, the experiments are presented and the results are discussed in Section 3.

2 Asynchronous PDE Solver

It is quite obvious that over the last few years, the classical algorithmic schemes
used to exploit parallel systems have shown their limit. As the most recent sys-
tems are more and more complex and often include multiple levels of parallelism
with very heterogeneous communication links between those levels, one of the
major drawbacks of the previous schemes has become their synchronous nature.
Indeed, synchronizations may noticeably degrade performances in large or hi-
erarchical systems, even for local systems (i.e. physically close nodes connected
through a fast local network).

Since the very first works on asynchronous iterations [9,20,4], the interest of
those schemes has increased in the last few decades [5,8,1,13,14]. Although they
cannot be used for all problems, they are efficiently usable for a large part of
them. In scientific computing, asynchronism can be expressed only in iterative
algorithms. We recall that iterative methods perform successive approximations
toward the solution of a problem (notion of convergence) whereas direct methods
give the exact solution within a fixed number of operations. Although iterative
methods are generally slower than direct ones, they are often the only known
way to solve some problems. Moreover, they generally present the advantage of
being less memory consuming.
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The asynchronous feature consists in suppressing any idle time induced by the
waiting for the dependency data to be exchanged between the computing units
of the parallel system. Hence, each unit performs the successive iterations on its
local data with the dependency data versions it owns at the current time. The
main advantage of this scheme is to allow an efficient and implicit overlapping
of communications by computations. On the other hand, the major drawbacks
of asynchronous iterations are: a more complex behavior which requires a spe-
cific convergence study, and a larger number of iterations to reach convergence.
However, the convergence conditions in asynchronous iterations are verified for
numerous problems and, in many computing contexts, the time overhead in-
duced by the additional iterations is largely compensated by the gain in the
communications [2]. In fact, as partly mentioned in the introduction, as soon as
the frequency of communications relatively to computations is high enough and
the communication costs are larger than local accesses, an asynchronous version
may provide better performances than a synchronous version.

2.1 Multisplitting-Newton Algorithm

There are several methods to solve PDE problems, each of them including differ-
ent degrees of synchronism/asynchronism. The method used in this study is the
multisplitting-Newton [12] which allows for a rather important level of asynchro-
nism [21]. In that context, we use a finite difference method to solve the PDE
system. Hence, the system is linearized, a regular discretization of the spatial
domain is used and the Jacobian matrix of the system is computed at the begin-
ning of each simulation time step. The Euler equations are used to approximate
the derivatives. Since the size of the simulation domain can be huge, the domain
is split and homogeneously distributed among several nodes of a cluster. Each
node solves a part of the resulting linear system and sends the relevant updated
data to the nodes that need them. The algorithmic scheme of the method is as
follows:

– Initialization:

• Rewriting of the problem under a fixed point problem formulation:
x = T (x), x ∈ R

n where T (x) = x−F ′(x)−1F (x) and F ′ is the Jacobian
• We get F ′ ×Δx = −F with F ′ a sparse matrix (in most cases)

• F ′ and F are homogeneously distributed over the computing units

– Iterative process, repeated for each time step of the simulation:

• Each unit computes a different part of Δx using the quasi-Newton algo-
rithm over its sub-domain as can be seen in Fig. 1

• The local elements of x are directly updated with the local part of Δx

• The non-local elements of x come from the other units using messages
exchanges

• F is updated by using the entire vector x
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Fig. 1. Local computations associated with the sub-domain of one unit

2.2 Inner Linear Solver

The method described above is a two-stage algorithm in which a linear solver
is needed in the inner stage. In fact, most of the time of the algorithm is spent
in that linear solver. This is why we chose to use the most powerful elements
of the parallel system on that part. Thus, the linear computations have been
placed on the GPUs. Due to their regularity, those treatments are very well
suited to the SIMD architecture of the GPU. Hence, on each computing unit,
the linear computations required to solve the partial system are performed on
the local GPU while all the algorithmic control, non-linear computations and
data exchanges between the units are done on the CPU.

The linear solver has been implemented both on CPU and GPU, using the
biconjugate gradient algorithm [11]. This linear solver was chosen because it per-
forms well on non-symmetric matrices (on both convergence time and numerical
accuracy), it has a low memory footprint, and it is relatively easy to imple-
ment. At very early stages of development, we also tried to use the Bi-CGSTAB
algorithm [22] and local preconditioners (Jacobi and SSOR), but this provided
very little or no gain in terms of computing time and numerical accuracy, so we
decided to keep the first, simpler solution.

GPU Implementation. Several aspects are critical in a GPU: the regularity of
the computations, the memory which is of limited amount and the way the data
are accessed. In order to reduce the memory consumption of our sparse matrix,
we have used a compact representation, depicted in Fig. 2, similar to the DIA
(diagonal) format [16] in BLAS [6], but with several additional advantages. The
first one is the regularity of the structure which allows us to do coalesced memory
accesses most of the time. The second one is that it provides an efficient access
to the transpose of the matrix as well as the matrix itself since the transpose is
just a re-ordering of the diagonals. That last feature is essential as it is required
in the biconjugate gradient method.

In order to be as efficient as possible, the shared memory has been used as
a cache memory whenever it was possible in order to avoid the slower accesses
to the global memory of the GPU. The different kernels used in the solver are
divided to reuse as much data as possible at each call, hence minimizing transfers
between the global memory and the registers. To get full details on those kernels,
the reader should refer to [18].
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Fig. 2. Compact and regular sparse matrix representation

2.3 Asynchronous Aspects

In the asynchronous version, computing the state of the system (i.e. the concen-
tration of the two chemical species across the space) at a given time of evolution
(the EDP is time-dependent) is performed asynchronously. This typically in-
volves solving several linear systems on each node, with some communications
between each of these inner iterations. However, once this has been done, one
synchronization is still required before beginning the next simulation time step,
as illustrated in Fig. 3.

Time

Processor 1

Processor 2

Time step Time step
SimulationSimulation

Fig. 3. Asynchronous iterations inside each time step of the computation

In practice, the main differences with the synchronous version lie in the sup-
pression of some barriers and in the way the communications between the units
are managed. Concerning the first aspect, all the barriers between the inner iter-
ations inside each time step of the simulation are suppressed. The only remaining
synchronization is the one between each time step as pointed out above.

The communicationsmanagement is a bitmore complex than in the synchronous
version as it must enable sending and receiving operations at any time during the
algorithm. Although the use of non-blocking communications seems appropriate,
it is not sufficient, especially concerning receives. This is why amulti-threaded pro-
gramming is required. The principle is to use separated threads to perform the
communications,while the computations are continuously done in themain thread
without any interruption, until convergence detection. In our version, we used non-
blocking sends in themain thread and an additional thread tomanage the receives.
It must be noted that in order to be as reactive as possible, some communications
related to the control of the algorithm (the global convergence detection) may be
initiated directly by the receiving thread (for example to send back the local state
of the unit) without requiring any process or response from the main thread.
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Subsequently to the multi-threading, the use of mutex is necessary to pro-
tect the accesses to data and some variables in order to avoid concurrency and
potentially incoherent modifications.

Another difficulty brought by the asynchronism comes from the convergence
detection. To ensure the validity of the convergence detection, the simple global
reduction of local states of the units must be replaced by some specific mecha-
nisms. We have proposed a decentralized version of such a detection in [3]. The
most general scheme may be too expensive in some simple contexts such as local
clusters. So, when some information about the system are available (for example
bounded communication delay), it is often more pertinent to use a simplified
mechanism whose efficiency is better and whose validity is still ensured in that
context. Although both general and simplified schemes of convergence detection
have been developed for this study, the performances presented in the following
section are related to the simplified scheme which gave the best performances.

3 Experimental Results

The platform used to conduct our experiments is a set of two clusters hosted by
SUPELEC in Metz. The first one is composed of 15 machines with Intel Core2
Duo CPUs running at 2.66GHz, 4GB of RAM and one Nvidia GeForce 8800GT
GPU with 512MB per machine. The operating system is Linux Fedora with
CUDA 2.3. The second cluster is composed of 17 machines with Intel Nehalem
CPUs (4 cores + hyperthreading) running at 2.67GHz, 6GB RAM and one
Nvidia GeForce GTX 285 with 1GB per machine. The OS is the same as the
previous cluster. In all the experiments, our program has been compiled with
the sm 11 flag to be compatible with both kinds of GPUs, and using OpenMPI
1.4.2 for message passing. Concerning the interconnection network, both clusters
use a Gigabit Ethernet network. Moreover, they are connected to each other and
can be used as a single heterogeneous cluster via the OAR management system.

In that hardware context, two initial series of experiments seemed particularly
interesting to us. The first one consists in running our application for several
problem sizes on one of the homogeneous clusters. We chose the most recent one,
with the Nehalem CPUs and GTX 285 GPUs. The second series of experiments
is similar to the first one except that instead of using only one cluster, we used
the two clusters to obtain a heterogeneous system with 32 nodes.

The results are presented in Table 1 and Table 3. The problem size indicated in
the left column corresponds to the number of spatial elements in the 3D domain.
As we have two chemical species, for a volume of 503 elements, the global linear
system is a square matrix with 2× 503 lines and columns. Fortunately, the local
nature of dependencies in the advection-diffusion-reaction problem implies that
only 9 diagonals in that matrix are non-zero.

The results obtained in that context are interesting but not as good as could
be expected. The decrease of the gain (last column in the tables) when the prob-
lem size increases is quite natural as the ratio of communications relatively to the
computations decreases and the impact of synchronizations becomes less prepon-
derant over the overall performances. However, the rather limited maximal gain is
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Table 1. Execution times (in seconds) with the homogeneous cluster (17 machines)

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 16.52 14.85 1.11 10.10
100×100×100 144.52 106.09 1.36 26.59
150×150×150 392.79 347.40 1.13 11.55
200×200×200 901.18 866.31 1.04 3.87
250×250×250 1732.60 1674.30 1.03 3.36

a bit deceiving. In fact, it can be explained, at least partially, by the relatively fast
network used in the cluster, the rather small amount of data exchanged between
the nodes and the homogeneity of the nodes and loads. In such a context, it is clear
that the synchronous communications through the Gigabit Ethernet network are
not so expensive compared to the extra iterations required by the asynchronous
version. Also, it can be deduced that although the GPU ↔ CPU data transfers
play a role in the overall performances, their impact on our PDE solver is less im-
portant than one could have thought at first glance.

Two additional experiments have been done with the same cluster but with
less processors in order to observe the behavior of our PDE solver when the
number of processors varies. The results are provided in Table 2.

Table 2. Execution times (in seconds) with 9 and 14 homogeneous machines

9 Machines of the newer cluster

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 39.68 25.81 1.54 34.95
100×100×100 249.63 200.25 1.25 19.78
150×150×150 714.85 635.78 1.12 11.06
200×200×200 1599.01 1617.28 0.99 -1.14

14 Machines of the newer cluster

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

50×50×50 20.95 17.83 1.17 14.89
100×100×100 182.85 132.35 1.38 27.62
150×150×150 486.69 442.16 1.10 9.15
200×200×200 1101.29 1029.61 1.07 6.51

Those results confirm the general trend of gain decrease when the problem
size increases. It can also be observed that for smaller clusters, the limit of gain
brought by asynchronism is reached sooner, which is not surprising according to
the previous considerations.

Concerning the second context of use, the heterogeneous cluster, the results
presented in Table 3 are quite unexpected.
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Table 3. Execution times (in seconds) with the heterogeneous cluster (15 + 17 ma-
chines)

Speed up
Pb size Sync Async

Async/Sync
Gain (%)

100×100×100 53.21 52.01 1.02 2.25
150×150×150 155.13 164.05 0.94 -5.75
200×200×200 322.11 395.11 0.81 -22.66

In fact, the heterogeneity of the machines should imply different computation
speeds and the synchronizations should induce a global slow down imposed by
the slowest machine. Nevertheless, the results tend to show that the difference
in the powers of the machines is not large enough to induce a sufficiently per-
ceptible unbalance between them. Moreover, it seems that the overhead of the
asynchronism, due to the additional iterations, is rapidly more important than
the gain in the communications, leading to a loss in performances.

Also, another point that may explain the degraded performances of the asyn-
chronous version in the heterogeneous cluster is that the GPU cards used in the
older cluster do not fully support double precision real numbers. Thus, as previ-
ously mentioned, the program is compiled to use only single precision numbers,
which divides the data size by a factor two and then also the communications
volumes, reducing even more the impact of the communications on the overall
execution times.

As can be seen in the first two series of experiments, there are some fluctua-
tions in the gains with the homogeneous cluster and rather deceiving results with
the heterogeneous cluster, which denote a complex behavior of this kind of algo-
rithm according to the context of use. Those observations imply additional ex-
periments to identify the frontier of gain between synchronism and asynchronism
in function of the number of processors and the problem size. Such experiments
are presented below.

The first aspect addressed in our additional experiments is the evolution of
the execution times according to the number of machines taken from the two
available GPU clusters for a fixed problem size. As can be seen in Fig. 4, both
surfaces are quite similar at first sight. However, there are some differences which
are emphasized by the speedup distribution according to the sequential version,
presented in Fig. 5. There clearly appears that the asynchronous version provides
a more regular evolution of the speedup than the synchronous one. This comes
from the fact that the asynchronous algorithm is more robust to the degradations
of the communications performances. Such degradations appear when the num-
ber of processors increases, implying a larger number of messages transiting over
the interconnection network and then a more important congestion. Thus, the
asynchronism puts back the performance decrease due to slower communications
in the context of a heterogeneous GPU cluster.

In order to precisely identify the contexts of use in which the asynchronism
brings that robustness, we have plotted in Fig. 6 the speedup of the asynchronous
GPU algorithm according to its synchronous counterpart.
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Fig. 4. Execution time of our PDE solver on a 100 × 100 × 100 problem, with the
heterogeneous GPU cluster, with synchronous (left) and asynchronous (right) schemes

Fig. 5. Speedup of our PDE solver on a 100×100×100 problem, with the heterogeneous
GPU cluster, with synchronous (left) and asynchronous (right) schemes, compared to
the sequential version

First of all, we have the confirmation that asynchronism does not always bring
a gain. As already mentioned, this comes from that fact that when the ratio of
communications time over computations time is negligible, the impact of com-
munications over the overall performances is small. So, on one hand the implicit
overlapping of communications by computations performed in the asynchronous
version provides a very small gain. On the other hand, the asynchronous ver-
sion generally requires more iterations, and thus more computations, to reach
the convergence of the system. Hence, in some contexts the computation time
of the extra iterations done in the asynchronous version is larger than the gain
obtained on the communications side. Such contexts are clearly visible on the
left part of the speedup surface, corresponding to a large pool of slow processors
and just a few fast processors.
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Fig. 6. Speedup of async. vs sync.
version with the heterogeneous
GPU cluster on a 1003 problem.

As soon as the communication-times to
computation-times ratio becomes significant,
which is the case either when adding proces-
sors or taking faster ones, the gain provided
by the asynchronism over the communications
becomes more important than the iterations
overhead, and the asynchronous version be-
comes faster. In those cases, the gains ob-
tained are quite significant as they can exceed
20% of the total execution time (see Tables
1 and 2). Unfortunately, it can be observed
in the example of Fig. 6 that the separation
between those two contexts is not strictly reg-
ular and studying the relative speedup map
will be necessary in order to achieve an automatic selection of the most efficient
operating mode of this kind of PDE solver in every context of use.

4 Conclusion and Perspectives

Two versions of a PDE solver algorithm have been implemented and tested
on two clusters of GPUs. The conclusion that can be drawn concerning the
interest of asynchronism in such a context of parallel system for that kind of
application is that gains are not systematic. Some interesting gains (≥ 20%)
can be observed in some contexts and our experiments have pointed out that
asynchronism tends to bring a better scalability in such heterogeneous contexts
of multi-level parallel systems. However, the frontier between the two algorithmic
schemes is not simple, implying that the optimal choice of algorithmic scheme
and hardware to use in combination requires a finer model of performance.

As far as we know, that study is among the very firsts of its kind and it
shows that this subject requires further works. The obtained results are quite
encouraging and motivate us to design a performance model of parallel iterative
algorithms on GPU clusters. That model should be based on the different activ-
ities (CPU and/or GPU computing, communications,...) during the application
execution. An obvious perspective is the auto-tuning by the precise identification
of the areas in which one of the operating modes (synchronous or asynchronous)
is better suited than the other one to a given context of number of processors
and problem size. In addition, using load-balancing in that context should also
improve performances of both versions.

Acknowledgments. Authors wish to thank Région Lorraine for its support,
and Patrick Mercier for his continuous technical management of the GPU
clusters.
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Abstract. In order to simulate the interaction of seismic waves with
cavernous/fractured reservoirs, a finite-difference technique based on lo-
cally refined time-and-space grids is used. The need to use these grids
is due primarily to the differing scale of heterogeneities in the reference
medium and the reservoir. Domain Decomposition methods allow for the
separation of the target area into subdomains containing the reference
medium (coarse grid) and reservoir (fine grid). Computations for each
subdomain can be carried out in parallel. The data exchange between
each subdomain within a group is done using MPI through nonblocking
iSend/iReceive commands. The data exchange between the two groups
is done simultaneously by coupling the coarse and fine grids.

The results of a numerical simulation of a carbonate reservoir are
presented and discussed.

Keywords: Finite-difference schemes, local grid refinement, domain
decomposition, MPI, group of Processor Units, Master Processor Unit.

1 Introduction and Motivation

One of the key challenges in modern seismic processing is to use the surface
and/or borehole data to restore the microstructure of the hydrocarbon reservoir.
This microstructure can have a significant impact on oil and gas production. In
particular, in many cases the carbonate reservoir’s matrix porosity contains the
oil but the permeability is mainly through the fracture corridors. In some carbon-
ate reservoirs the in-place oil is contained in karstic caves. Because of this, the
ability to locate these microstructures precisely and to characterize their prop-
erties is of a great importance. Recently various techniques have been developed
to perform this analysis with the help of scattered seismic waves. Among them,
the scattering index presented by Willis et al. ([9]) or a variety of the imaging
techniques recently developed under the generic name of interferometry (see e.g.
book of G.Schuster [7]).

The first step in the development of any inversion/imaging procedure is to
simulate accurately the wave field scattered by fractures and caves. The numeri-
cal and computer constraints even on very large clusters place limitations on the
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resolution of the model described. Really, a reservoir beds typically at a depth
of 2000 ÷ 4000 meters, which is about 50÷70 dominant wavelength. The cur-
rent practice for the finite-difference simulation of seismic waves propagation at
such distances is to use grid cells of 0.05 - 0.1 of a dominant wavelength, usually
between 5 - 10 meters. So, one needs to upscale heterogeneities associated with
fracturing on a smaller scale (0.01 - 1 meter) and to transform them to an equiv-
alent/effective medium. This effective medium will help reproduce variations in
the travel-times and an average change of reflection coefficients but absolutely
cancels the scattered waves that are a subject of the above mentioned methods
for characterizing fracture distributions.

Thus, the main challenge with a full scale simulation of cavernous/fractured
(carbonate) reservoirs in a realistic environment is that one should take into
account both the macro- and microstructures. A straightforward implementation
of finite difference techniques provides a highly detailed reference model. From
the computational point of view, this means a huge amount of memory required
for the simulation and, therefore, extremely high computer cost. In particular,
a simulated model of dimension 10km × 10km × 10 km, which is common for
seismic explorations, with a cell size of 0.5m claims 8 × 1012 cells and needs in
≈ 350Tb of RAM.

The popular approach to overcome these troubles is to refine a grid in space
only and there are many publications dealing with its implementation (see [6]
for a detailed review), but it has at least two drawbacks:

– To ensure stability of the finite-difference scheme the time step must be very
small everywhere in the computational domain;

– Unreasonably small Courant ratio in the area with a coarse spatial grid leads
to a noticeable increase in numerical dispersion.

Our solution to this issue is to use a mutually agreed local grid refinement in
time and space: spatial and time steps are refined by the same factor.

2 Numerical and Parallel Implementation

In our considerations propagation of seismic waves is simulated with help of an
explicit finite-difference scheme (FDS) on staggered grids approximating elastic
wave equations (velocity-stress formulation):

�
∂u

∂t
−A∂σ

∂x
−B∂σ

∂y
− C ∂σ

∂z
= 0;

D
∂σ

∂t
−AT ∂u

∂x
−BT ∂u

∂y
− CT ∂u

∂z
= f ;

written for vectors of the velocity u = (ux, uy, uz)
T and the stress σ = (σxx, σyy,

σzz , σxz, σyz, σxy).
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Staggered grid finite difference scheme updates values of unknown vectors in
two steps:

1. from velocities at t to stresses at t+Δt/2;
2. from stresses at t+Δt/2 to velocities at t+Δt.

In view of the local spatial distribution of the stencil used in this finite difference
scheme to update the vector at some point M and time (t+Δt/2), the previous
time level (t) corresponding values should be known in a neighborhood of this
point.

Parallel implementation of this FDS is based on the decomposition of the
computational domain to elementary subdomains, being assigned to its individ-
ual Processor Unit (PU) (Fig.1). Update unknown vectors while moving from
a time layer to the next one requires two adjacent PU to exchange unknown
vectors values in the grid nodes along the interface. Necessity of this exchange
negatively impacts scalability of the method. However, the impact is less vivsble
on 3D Domain Decomposition (DD) than in one- and two-dimensional ones (see
theoretical estimates of acceleration for different versions of DD in Fig.2)). In
our implementation we choose 3D Domain Decomposition, moreover, in order
to reduce the idle time, the asynchronous computations based on nonblocking
MPI procedures iSend/iReceive are used.

Fig. 1. Domain decomposition. From top to bottom: 1D, 2D, 3D.

In order to carry out the numerical simulation of seismic waves propagation
through a multiscale medium we represent it as a superposition of the reference
medium given on a coarse grid and the reservoir on a fine grid (see Fig.3). Each
of these grids is again decomposed to elementary subdomains being assigned to
individual PU. Now these PU are combined into two groups for coarse and fine
grids, and special efforts should be applied in order to couple these groups.
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Fig. 2. Theoretical estimation of acceleration for different implementations of Domain
Decomposition (top down): 3D, 2D and 1D (see Fig.1)

Fig. 3. Two groups of Processor Units

2.1 Coupling of Coarse and Fine Grids

First of all, let us explain how a coarse and a fine grids are coupled to each other.
The necessary properties of the finite difference method based on a local grid
refinement should be its stability and an acceptable level of artificial reflections.
Scattered waves we are interested in have an amplitude of about 1% of the
incident wave. Artifacts should be at least 10 times less, that is about 0.1% of
the incident wave. If we refine the grid at once in time and space stability of the
FDS on this way (see [1], [2] and [3]) can be provided via coupling coarse and fine
grids on the base of energy conservation, which leads to an unacceptable level
(more than 1%) of artificial reflections (see [4]). We modify the approach so that
the grid is refined by turn in time and space on two different surfaces surrounding
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the target area with microstructure. This allows decoupling temporal and spatial
grid refinement and to implement them independently and to provide the desired
level of artifacts.

Refinement in Time. Refinement in time with a fixed 1D spatial discretization
is clearly seen in Fig.4 and does not need any explanations. Its modification for
2D and 3D media is straightforward (see [4] for more detail).

Refinement in Space. In order to change spatial grids, the Fast Fourier Trans-
form (FFT) based interpolation is used. Let us explain this procedure for a 2D
problem. The mutual disposition of a coarse and a fine spatial grids is presented in
Fig.4b, which corresponds to updating the stresses by velocities (updating stresses
by velocities is implemented in the same manner). As can be seen, to update the
stresses on a fine grid it is necessary to know the displacement at the pointsmarked
with small (red) triangles, which do not exist on the given coarse grid. Using the
fact that all of them are on the same line (on the same plane for 3D statement), we
seek the values of missing nodes by FFT based interpolation. Its main advantages
are an extremely high performance and exponential accuracy. It is this accuracy
allows us to provide the required low level of artifacts (about 0.001 with respect to
the incident wave) generated on the interface of these two grids. For 3D statement
we again perform the FFT based interpolation but this time 2D.

a)

j=0 j=1j=-1

n

n+1/2

n+1

j=0 j=1j=-1

b)

Fig. 4. From a coarse to a fine grid: a) refinement in time (left - displacement, right -
stresses) b) refinement in space

2.2 Implementation of Parallel Computations

Our objective is to analyze the impact of cavernous-fractured reservoirs in the
seismic waves for realistic 3D heterogeneous media. Therefore, parallel compu-
tations are necessary both in the reference medium, described by a coarse mesh,
and in the reservoir itself, determined on a fine grid. The simultaneous use of
a coarse and a fine grids and the need for interaction between them makes it
difficult to ensure a uniform load of Processor Units under parallelization of com-
putations based on Domain Decomposition. Besides, the user should be allowed
to locate the reservoir anywhere in the background.
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This problem is resolved through the implementation of parallel computations
on two groups of Processor Units. One of them is fully placed 3D heterogeneous
referent environment on a coarse grid, while the fine mesh describing the reservoir
is distributed among the PU in the second group (Fig.3). Thus, there is a need for
both exchanges between processors within each group and between the groups
as well. The data exchange within a group is done via faces of the adjacent
Processor Units by non-blocking iSend/iReceive MPI procedures. Interaction
between the groups is much more complicated. It is carried out not so much for
data sending/receiving only, but for coupling a coarse and a fine grids as well.
Let us consider the data exchange from the first group (a coarse grid) of PU to
the second (a fine grid) and backwards.

From Coarse to Fine. First are found Processor Units in the first group which
cover the target area, and are grouped along each of the faces being in contact
with the fine grid. At each of the faces there is allocated the Master Processor
(MP), which gathers the computed current values of stresses/displacements and
sends them to the relevant MP on a fine grid (see Fig.5). All the subsequent
data processing providing the coupling of a coarse and a fine grids by the FFT
based interpolation is performed by the relevant Master Processor in the second
group (a fine grid). Later this MP sends interpolated data to each processor in
its subgroup.

Interpolation performed by the MP of the second group essentially decreases
the amount of sent/received data and, hence, the idle time of PU.

From Fine to Coarse. As in the previous case, primarily there are identified
PU from the second group which perform computations on the faces covering the
target area. Next, again for each face Master Processor is identified. This MP as
its partner from the coarse grid collects data from the relevant face and performs
their preprocessing before sending to the first group of PU (a coarse grid). Now

Fig. 5. Processor Units for a coarse (left) and a fine (right) grids. Relevant MP from
different groups have the same color.
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we do not need all data in order to move to the next time, but only those of
them which fit the coarse grid. Formally, these data could be thinned out, but
our experiments have proved that this way generates significant artifacts due to
the loss of smoothness. Therefore for this direction (from fine to coarse) we also
use the FFT based interpolation implemented by the relevant MP of the second
group (a fine grid). The data obtained are sent to the first group.

3 Reservoir Simulation

3.1 2D Statement: Karstic Layer

In order to estimate the accuracy of the method, we first consider a 2D statement
for a thin layered reservoir with karst intrusions presented in Fig.6a). In order
to describe the microstructure of karstic intrusions we should use a grid with
hx = hz = 0.5m, while for the reference medium the dispersion analysis gives
hx = hz = 2.5m. In Fig.6a one can see an area with the fivefold grid refinement
in time and space.

a) b)

Fig. 6. a) Karstic layer b) Surface seismogram (horizontal component). 1 - direct P-
wave, 2 - direct S-wave coupled with surface Rayleigh wave, 3 and 4 - reflected PP-
and PS-waves, 5 - scattered PP- and PS-waves, 6 - reflected SP-wave.

Let us compare now the results of simulation for a uniform fine grid and a
grid with the local refinement in time and space. In Fig.6b, one can see a free
surface seismogram (horizontal displacement) generated by the vertical point
force with a Ricker pulse of a dominant frequency 25 Hz and simulated on the
uniform fine grid. Fig.7 represents a comparison of synthetic traces computed
on a uniform fine grid and a grid with local refinement in time and space. As
can be seen, there is an excellent coincidence of scattered PP-waves and rather
good agreement of PS ones.
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a) b)

Fig. 7. Traces computed on a uniform fine grid (a) and on a grid with local refinement
in time and space (b)

3.2 3D Statement: Fracture Corridors

Now we present the results of numerical simulation for some realistic model of
a carbonate reservoir with fracture corridors. The reservoir is embedded into a
homogeneous background with elastic properties equivalent to an average car-
bonate rock:

Vp = 4500m/s, Vs = 2500m/s, density � = 2500kg/m3

The reservoir is treated as a horizontal layer 200m thick and corresponds to a
slightly softer rock with the elastic waves propagation velocities Vp = 4400m/s ,
Vs = 2400m/s and the density � = 2200kg/m3 and contains two fractured layers
30m thick each. The fracturation is of a corridor type, that is, we have included
into each layer a set of randomly distributed parallel fracture corridors. The
fracture density varies from 0 in the non-fractured facies to 0.3 as a maximum.
Finally, the fracture density was transformed to elastic parameters using the
second order Hudson theory following [5]. Since fractures were filled with gas, the
velocity diminishes down to 3600m/s the lowermost as compared to 4400m/s in
the matrix. The fracture corridors were then randomly distributed into fractured
layers until the desired fracture density was obtained. The final distribution of
fracture corridors can be seen in Fig.8 (two side views).

3.3 Synthetic Seismograms

The developed parallel software was used for simulation of scattered waves for
the reservoir model introduced in the previous section. The acquisition system
can be seen in Fig.9. Three-component seismograms are presented in Fig.10.
There is a visible difference between the seismograms along the parallel and the
perpendicular lines with respect to fracture corridors.
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Fig. 8. Side view of fracture corridors within reservoir: orthogonal (top) and parallel
(bottom) to the corridor direction

Fig. 9. Acquisition system. The source is at the intersection of Line 1 and Line 2.
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Fig. 10. 3C seismograms along Line 2 (top) and Line 1 (bottom). From left to right:
X, Y and Z-displacements.

4 Conclusion

A finite difference method based on the use of grids with local space-time re-
finement is proposed, developed and verified. Implementing its parallel soft-
ware opens up a fundamentally new opportunity to study the processes of
formation and propagation of waves scattered by a microstructure of the cav-
ernous/fractured reservoir for a realistic geological environment. The very first
simulations carried out using this software, allow the following conclusions:

– Modeling techniques make possible to simulate the impact of fine-scale het-
erogeneities within a realistic 3D environment in an accurate manner;

– Scattered waves have a significant energy and can be acquired by the field
observations, hence there should be a possibility not only to reveal cavities
and fractures in the reservoir but to predict their orientation as well.

Acknowledgements. The Research is partially supported by Russian Foun-
dation of Basic Research (grants 10-05-00233, 11-05-00947, 11-05-12022, 12-05-
00943), grant no. MK-47.2011.5 of Russian Government and by Total SA under
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Simulations were carried out on clusters of the Siberian Supercomputer Cen-
ter of the Siberian Branch of RAS (Novosibirsk) and the Joint Supercomputer
Center of the Russian Academy of Sciences (Moscow).
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Abstract. We discuss the scalable parallel solution of the Poisson equa-
tion on irregularly shaped domains discretized by finite differences. The
symmetric positive definite system is solved by the preconditioned con-
jugate gradient algorithm with smoothed aggregation (SA) based alge-
braic multigrid (AMG) preconditioning. We investigate variants of the
implementation of SA-AMG that lead to considerable improvements in
the execution times. The improvements are due to a better data parti-
tioning and the iterative solution of the coarsest level system in AMG.
We demonstrate good scalability of the solver on a distributed memory
parallel computer with up to 2048 processors.

Keywords: Poisson equation, finite differences, preconditioned conju-
gate gradient algorithm, algebraic multigrid, data partitioning.

1 Introduction

The solver described in this paper is part of the general accelerator modeling
tool Object Oriented Parallel Accelerator Library (OPAL) [3]. OPAL enables
the solution of the most challenging problems in the field of high precision par-
ticle accelerator modeling. These include the simulation of high power hadron
accelerators and of next generation light sources.

In these simulations the evolution of the charged particles is determined by the
collisionlessVlasov equation. The most compute intense portion of the simulation
is the determination of the electrostatic potential φ from the Poisson equation

−ε0Δφ(x) = ρ(x), (1)

in a coordinate system moving with the particles. Here, ρ denotes the spatial
charge density and ε0 is the dielectric constant. The electric field is obtained
from

E = −∇φ. (2)

An appropriate Lorentz transformation yields the electromagnetic fields in the
static reference frame that are needed to move the particles. For details see [2].
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The Poisson problem (1) discretized by finite differences can efficiently be
solved on a rectangular grid by a Particle-In-Cell (PIC) approach [17]. The
right hand side in (1) is discretized by sampling the particles at the grid points.
In (2), φ is interpolated at the particle positions from its values at the grid
points. We also note that the common FFT-based Poisson solvers and similar
approaches [16, 17] are restricted to box-shaped or open domains.

In section 2 we present our finite difference approach and how we treat the
boundary at curved surfaces. In section 3 we review the iterative system solver.
In section 4 we discuss numerical experiments on 512–2048 processors of a Cray
XT-5. In particular, we are interested in the partitioning of the computational
domain and in the coarse level solver of the multilevel preconditioner. Section 5
concludes the paper.

2 The Discretization

In this section we discuss the solution of the Poisson equation in a domain
Ω ⊂ R

3 as indicated in Fig. 1. The boundary of the domain is composed of
two parts, a curved, smooth surface Γ1 and two planar portions at z = −d and
z = +d that form together Γ2. In physical terms Γ1 forms the casing of the
pipe, while Γ2 is the open boundary at the inlet and outlet of the beam pipe,
respectively. The centroid of the particle bunch is at the origin of the coordinate
system. In practice the shape of Γ1 can be quite complicated. Our code assumes
that a ray that emanates perpendicularly from the z-axis crosses Γ1 at most
once.

The Poisson problem that we are going to solve is given by

−ε0Δφ = ρ in Ω,

φ = g ≡ 0 on Γ1, ∂nφ+ (1/d)φ = 0 on Γ2.
(3)

The parameter d in the Robin boundary condition is half the extent of Ω in
z-direction [15].

x3 = z

x1

x2

Γ2

Γ1

Γ2

Fig. 1. Sketch of a typical domain
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We discretize (3) by a standard second order finite difference scheme defined
on a rectangular grid with grid spacing hi in the i-th coordinate direction. It is
natural to arrange the grid such that the two portions of Γ2 lie in grid planes.

A lattice point is called an interior point if all its direct neighbors are in Ω.
All other grid points are called near-boundary points. At interior points x we
approximate Δu(x) by the well-known 7-point difference star

−Δhu(x) =

3∑
i=1

−u(x−hiei) + 2u(x)− u(x+hiei)
h2i

. (4)

At grid points near the boundary we have to take the boundary conditions in (3)
into account by constant, linear, or quadratic extrapolation [2, 7, 14].

The finite difference discretization just described leads to a system of equa-
tions

Ax = b, (5)

where x is the vector of unknown values of the potential and b is the vector
of the charge density interpolated at the grid points. The Poisson matrix A
is an M -matrix irrespective of the boundary treatment [11]. Constant and lin-
ear extrapolation lead to a symmetric positive definite (spd) A while quadratic
extrapolation yields a nonsymmetric but still positive definite Poisson matrix.

The boundary extrapolation can introduce large diagonal elements in A. In
order to avoid numerical difficulties it is advisable to apply a symmetric scaling
to the system (5).

3 The Solution Method

If A is spd the conjugate gradient (CG) algorithm [11, 13] solves (5) in a fast
and memory efficient way. In the case of quadratic boundary extrapolation A is
nonsymmetric, however only ‘mildly’. There are some deviations from symmetry
only at some of the boundary points. In this situation the CG algorithm is still
applicable, i.e., it does not break down. However, it loses the finite termination
property and may behave more like steepest descent [10]. In our experiments
we observed a convergence behavior that did not deviate from the one for spd
matrices.

To improve the convergence behavior of the CG methods we precondition (5)
by smoothed aggregation-based algebraic multigrid (SA-AMG) precondition-
ers [8, 19]. Aggregation-based AMG methods cluster the fine grid unknowns to
aggregates as representation for the unknowns on the next coarser grid.

The multigrid preconditioner and iterative solver are implemented with the
help of the Trilinos framework [12, 18]. Trilinos provides state-of-the-art tools
for numerical computation in various packages. The AztecOO package, e.g., pro-
vides iterative solvers and ML [8] provides multilevel preconditioners. By means
of ML, we created our smoothed aggregation-based AMG preconditioner. We use
ML’s “decoupled” aggregation strategy [19] which constructs aggregates consist-
ing of cubes of 3×3×3 vertices. This strategy may entail non-optimal aggregates
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at the subdomain interfaces. The subdomains represent the portion of the prob-
lem dealt with by a processor or core. The partitioning in subdomains is done
manually based on the encasing cubic grid.

As suggested in [1] we choose a Chebyshev polynomial smoother. The em-
ployed coarse level solver (Amesos-KLU) ships the coarse level problem to node 0
and solves it there by means of an LU factorization. An alternative is to apply a
few steps of an iterative solver (e.g. Gauss–Seidel) at the coarsest level. A small
number of iteration steps decreases the quality of the preconditioner and thus
increases the PCG iteration count. A large number of iteration steps increases
the time for applying the AMG preconditioner. In [2] we found three Gauss–
Seidel iteration steps to be a good choice for our application. In this paper, we
use Chebyshev iteration.

4 Numerical Experiments

In the recent paper [2] we conducted numerical experiments on the Cray XT-4 at
the Swiss National Supercomputing Centre (CSCS) in order to assess the perfor-
mance and scalability of our solver. In particular, we compared our solver with
an FFT-based one. This is in fact not completely trivial, since the computational
domains of the two solvers differ. The FFT-based solver requires a rectangular
computational domain. Usually Neumann (free) boundary conditions are ap-
plied. Our finite difference solver approximates well the geometry of the device
and uses homogeneous Dirichlet boundary conditions. In situations where the
boundary is far away from the particle bunch the solutions of the two problems
match quite well. However, in problems where the spatial extent of the beam is
comparable with that of the beam pipe it is important to have an accurate rep-
resentation of the field near the boundary. Then, the results of the computations
can differ significantly, and the results of the FFT-based solver are questionable.
Nevertheless, the FFT-based solver can be faster than our iterative solver by up
to about a factor 5.

In this paper we discuss the issue of load balancing and communication
overhead. We conduct the numerical experiments on the newest Cray XT-5 at
CSCS [5]. This machine consists of 3688 AMD hexa-core Opteron processors
clocked at 2.4GHz. The system has 28.8TB of DDR2 RAM, 290TB disk space,
and a high-speed interconnect with a bandwidth of 9.6GB/s and a latency of
5μs1.

Our computational domains are embedded in a 3D rectangular domain, as
illustrated in Fig. 1. The rectangular computational grid is generated inside the
rectangular domain. Only grid points of the rectangular grid that are included in
the computational domain Ω are used in the computation. In the computations
in [2] the partitioning of the computational domain was based on the partitioning
of the whole rectangular domain. (This underlying rectangular grid is induced
by the particle code OPAL [3] that participates at the overall computation.)

1 http://www.cscs.ch/455.0.html retrieved on July 13, 2010.

http://www.cscs.ch/455.0.html
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Therefore, some subdomains contained far fewer grid points than others, caus-
ing severe load imbalance. In fact, in many cases there were subdomains that
contained no grid points at all. In our new approach we partition the computa-
tional domain to enhance load balancing. In this paper we compare old and new
approach.

Table 1. Times in seconds and relative parallel efficiencies. The original data distri-
bution is used, and the coarsest AMG level is solved with KLU.

cores solution construction application total ML iterations

512 62.22 [1.00] 35.12 [1.00] 51.68 [1.00] 86.79 [1.00] 20
1024 32.95 [0.94] 19.95 [0.88] 27.47 [0.94] 47.41 [0.92] 20
2048 17.68 [0.87] 12.37 [0.71] 14.85 [0.87] 27.22 [0.80] 20

The computational domain we are dealing with in this paper is a circular
cylinder embedded in a 1024× 1024× 1024 grid. In this setup the problem size
is still reasonably large when employing 2048 cores, i.e., a subcube contains (up
to) 524′288 grid points. We use linear extrapolation at the Dirichlet boundary
Γ1. The solver is the AMG-preconditioned conjugate gradient algorithm as im-
plemented in Trilinos and discussed in section 3. Timings for three phases of the
computation are given in Table 1. For this large problem with 840 million degrees
of freedom we observe quite good efficiencies. The solver runs at 87% efficiency
with 2048 cores relative to the 512-cores performance. Note that the solution
phase contains the application of the preconditioner. Therefore, the difference
of the two columns indicated by ‘solution’ and ‘application’ essentially gives the
time for matrix-vector and inner products in the conjugate gradient algorithm.
The column ‘total ML’ comprises the sum of columns ‘construction’ and ‘ap-
plication’. The construction phase is performing the worst with an efficiency of
71%. We found that much of the time in the construction of the preconditioner
goes into the factorization of the coarsest level matrix. We therefore decided to
replace the direct solver KLU by an iterative procedure. We apply one step of
the Chebyshev semi-iterative method [9] with polynomial degree 10. The tim-
ings for this approach are given in Table 2. The times for the construction of the
preconditioner have been reduced considerably, at the expense of a slightly more
expensive solution phase. Now the construction phase scales perfectly. Notice
that the iteration counts change only marginally.

Table 2. Times in seconds and relative parallel efficiencies. The original data distri-
bution is used, and the coarsest AMG level is solved iteratively.

cores solution construction application total ML iterations

512 63.12 [1.00] 32.09 [1.00] 52.73 [1.00] 84.80 [1.00] 20
1024 33.54 [0.94] 16.31 [0.98] 28.04 [0.94] 44.35 [0.96] 20
2048 18.56 [0.85] 8.10 [0.99] 15.66 [0.84] 23.76 [0.89] 21
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Fig. 2. (Left) Cross section of data distribution on 512 cores on a 8×8×8 processor
grid (colors indicate data owned by a processor) and (Right) the same data redis-
tributed with recursive coordinate bisection (RCB)

In Fig. 2 on the left a cross section is shown of the case where the compu-
tational domain is embedded in a cube that has been subdivided in 8×8×8
subcubes. It is easily seen that the four subcubes in the corners do not contain
any points of the computational grid, while other subcubes contain at least a
few grid points. In general, a fraction of only about π/4 ≈ 0.8 of the grid points
of the cube will be included in the computational domain. This number corre-
sponds to the ratio of the volumes of the circular cylinder and its encasing cube.
That is, about 20% of the nodes in the cube are not involved in the computation
and, hence about 20% of the subcubes contain a reduced number of nodes. Since
subcubes correspond to cores, empty or almost empty subcubes correspond to
idle or underloaded cores.

Evidently, this partitioning entails a severe load imbalance. Nevertheless, the
speedups shown in Table 1 look good! These good speedups are comprehensible
if one considers the most loaded processes that correspond to the innermost
cubes, i.e., those close to the z-axis. These subcubes contain 10243/p nodes. An
increase of the processor number p leads to an optimal speedup, at least as long
as the floating point operations dominate the work load. This is the case here, as
even in the 2048 processor computation a core handles more than half a million
nodes.

Although speedups are good with this crude distribution of work, a better
balanced work will lead to improved execution times. After all, there are only
about 80% of the 1.1 billion nodes inside the computational domain.

To better balance the load we partition data using the recursive coordinate
bisection (RCB) algorithm as it is implemented in the Zoltan toolkit [6, 4]. The
Trilinos package Isorropia2 provides a matrix-based interface to Zoltan. The
recursive coordinate bisection (RCB) algorithm partitions the graph according

2 See http://trilinos.sandia.gov/packages/isorropia/

http://trilinos.sandia.gov/packages/isorropia/
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to the coordinates of its vertices. The computational domain is first divided into
two subdomains by a cutting plane orthogonal to one of the coordinate axes so
that half the work load is in each of the subdomains. (Notice that other fractions
than 50-50 are possible and in fact needed if the number of processors is not a
power of 2.) That coordinate axis is chosen which is associated with the longest
elongation of the domain. Clearly, this procedure can be applied recursively.
RCB leads to nicely balanced data distributions. In rectangular grids, RCB is a
particularly fast partitioner since the coordinates of the grid vertices are easily
determined from their indices. In Fig. 2 on the right the cross section of the
circular cylinder is shown with the partitioning into 64 subdomains. Now, all
subdomains contain an almost equal number of nodes which leads to almost equal
loads per processor. This subdivision evidently is more complicated than the one
on the left of this figure. Except for subdomains in the center, i.e. close to the z
axis, there are more than just six neighbors (in 3D). With the increased number
of neighbors the number of messages that are to be sent in the communication
steps increases. The communication volume does not change much. (Notice that
Trilinos constructs the communication pattern transparent to the user.)

Table 3. Times in seconds and relative parallel efficiencies. Data is distributed by
RCB. The coarsest AMG level is solved with KLU.

cores solution construction application total ML iterations

512 50.32 [1.00] 27.37 [1.00] 44.00 [1.00] 71.37 [1.00] 20
1024 28.14 [0.89] 16.82 [0.81] 24.82 [0.89] 41.58 [0.86] 20
2048 15.26 [0.82] 15.81 [0.43] 13.47 [0.82] 29.28 [0.61] 19

Table 4. Times in seconds and relative parallel efficiencies. Data is distributed by
RCB. The coarsest AMG level is solved iteratively.

cores solution construction application total ML iterations

512 51.08 [1.00] 25.65 [1.00] 44.89 [1.00] 70.55 [1.00] 20
1024 27.38 [0.93] 12.96 [0.99] 24.51 [0.92] 37.07 [0.95] 20
2048 14.76 [0.87] 6.69 [0.96] 13.10 [0.86] 19.79 [0.89] 19

In Tables 3 and 4 the execution times of our code is given with the data
redistributed by RCB. These numbers are to be compared with those in Tables 1
and 2, respectively, where the original data distribution was used. For 512 cores
the execution times are significantly smaller with the RCB distribution, about
20%, as the previous discussion suggests. Tables 5 and 6 give more details. There,
in brackets, the efficiencies of the runs with the original rectangular distribution
are listed relative to the 512 processor run with the RCB distribution.

When using the iterative solver on the coarsest level, speedups and thus efficien-
cies are quite close, cf. Tables 2 and 4. However, there are significant differences
when the coarsest level system is solved directly. In this case the efficiencies deteri-
orate more quickly with the RCB distribution than with the original distribution.
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Table 5. Parallel efficiencies of the RCB partitioned runs and relative parallel efficien-
cies of the runs with original data distribution. The coarsest AMG level is solved with
KLU.

cores solution construction application total ML

512 1.00 [0.81] 1.00 [0.78] 1.00 [0.85] 1.00 [0.82]
1024 0.89 [0.76] 0.81 [0.69] 0.89 [0.80] 0.86 [0.75]
2048 0.82 [0.71] 0.43 [0.55] 0.82 [0.74] 0.61 [0.66]

Table 6. Parallel efficiencies of the RCB partitioned runs and relative parallel effi-
ciencies of the runs with original data distribution. The coarsest AMG level is solved
iteratively.

cores solution construction application total ML

512 1.00 [0.81] 1.00 [0.80] 1.00 [0.85] 1.00 [0.83]
1024 0.93 [0.76] 0.99 [0.79] 0.92 [0.80] 0.95 [0.80]
2048 0.87 [0.69] 0.96 [0.79] 0.86 [0.72] 0.89 [0.74]

A more detailed analysis (not reproduced here) reveals that the significant differ-
ence between original and RCB partitioning is caused by the LU factorization of
the matrix of the coarsest level. In fact, the factorization takes 3.64 sec on 1024
cores and 7.86 sec on 2048. We do not see a reason for this drastic increase of fac-
torization time since the problem sizes are quite close (2048 vs. 1865). The fact
that the partitions with RCB have more neighbors does not seem to be a strong
enough reason. In any case, larger differences would have to be visible in Tables 2
and 4.

In this paper we restricted ourselves to problems posed on grids of size 1024×
1024×1024. In [2], investigating the original solver, we als included 512×512×512
and 256× 256× 256 grids. On the former grid the solver scaled similarly as on
the 10243 grid. On the latter grid scalability was somewhat poorer. By replacing
the direct coarse level solver by an iterative coarse level solver we expect similar
improvements in the parallel performance of our solver also for these smaller
problem sizes. As in the computations of this note, scalability will not be affected
much by an improved partitioning, however load balance and execution time.

5 Conclusions

We have presented and discussed improvements of a scalable Poisson solver suit-
able to handle domains with irregular boundaries as they arise, for example,
in beam dynamics simulations. The solver employs the conjugate gradient al-
gorithm preconditioned by smoothed aggregation-based AMG. The code ex-
hibits excellent scalability up to 2048 processors with cylindrical pipes embed-
ded in meshes with up to 10243 grid points. We have reduced the execution time
by about 20% by redistributing the data using the recursive coordinate bisec-
tion (RCB) algorithm. This removes the severe load imbalance of the original
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approach in [2]. Scalability was further improved by iteratively solving the linear
system of equations on the coarsest level of the AMG preconditioner.
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Abstract. An application of extremal optimization algorithm for map-
ping Java program components on clusters of Java Virtual Machines
(JVMs) is presented. Java programs are represented as Directed Acyclic
Graphs in which tasks correspond to methods of distributed active Java
objects that communicate using the RMI mechanism. The presented
probabilistic extremal optimization approach is based on the local fitness
function composed of two sub-functions in which elimination of delays
of task execution after reception of required data and the imbalance of
tasks execution in processors are used as heuristics for improvements of
extremal optimization solutions. The evolution of an extremal optimiza-
tion solution is governed by task clustering supported by identification of
the dominant path in the graph. The applied task mapping is based on
dynamic measurements of current loads of JVMs and inter-JVM commu-
nication link bandwidth. The JVM loads are approximated by observa-
tion of the average idle time that threads report to the OS. The current
link bandwidth is determined by observation of the performed average
number of RMI calls per second.

Keywords: distributed systems, scheduling, evolutionary algorithms.

1 Introduction

Optimization of the execution time of Java programs on clusters of Java Virtual
Machines (JVM) is a challenging task due to specific execution paradigm of ob-
ject programs and particular architectural features of the JVM. This problem
has attracted researchers attention in several papers on dynamic load balancing
and scheduling of Java programs for clusters and Grids [8,17]. The proposed so-
lutions assume that the optimization is done at program runtime with the use of
centralized or distributed load monitoring agents. Java program task scheduling
on Grids is reported in [5]. It requires adequate computational and communica-
tion load metrics covered in [16,13].
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Load balancing algorithms for Java program should take into account improve-
ments of initial mapping of Java distributed application. This problem has not
been sufficiently covered in current literature, although some papers propose an
initial optimization including Java objects static clustering [6,11] or distributed
byte-code clustering [12] in a set of JVMs.

This paper is presents a new approach to finding optimal initial mappings
of Java applications to resources in heterogeneous multiprocessor systems. It is
based on an adaptation of Extremal Optimization (EO), which is a very fast
co-evolutionary algorithm proposed by Boettcher and Percus [14]. EO works is
based on developing a single solution comprising a number of components si,
each of which is a variable of the problem. Two kinds of fitness function are used
to evaluate the components and the global solution quality. In EO the worst
component is randomly updated, so that the solution is transformed into a new
acceptable solution. A probabilistic version of EO /τ–EO/ has been designed [4]
which aims in avoiding the local minimum phenomenon.

The initial Java program placement algorithm proposed in this paper is based
on the probabilistic EO approach. Environment monitoring (system observation)
predicts CPU and network services availability based on current CPU load and
network utilization (maximal number of RMI calls per second). Object behavior
monitoring determines the intensity of communication between active objects. Its
principle is based on measuring the number of method calls between ProActive
active (global) objects and the volume of serialized data.

The proposed framework is intended for execution optimization of distributed
Java applications, run in clusters of multicore computing nodes. Although it uses
macro–dataflow graphs (DAGs) as an application program representation, it
works at a higher level of granularity than modern multicore–optimized parallel
libraries, like PLASMA [1]. The proposed EO-based optimization algorithms are
enough general to be comparable to classic task graph scheduling methods (as
presented in [15,10]) and scheduling algorithms for Grid computing [5].

In our experiments, we have used the ProActive Java framework for cluster
and Grid computing [2] as distributed programs execution management support.
It provides a Java API and a set of tools for program management in different
environments such as desktop, SMP, LAN, clusters and Grid. The application
model is based on mobile Active Objects, asynchronous execution with synchro-
nization (Futures mechanism) and Web Services and Grid support.

The paper is composed of three parts. First part presents the program rep-
resentation and the executive system features. Next, the extremal optimization
foundations are outlined. Then, the extremal optimization for Java program
scheduling is described. Finally, experiment results with programs executed on
cluster of JVMs based on multicore workstations are presented.

2 Executive Environment

Distributed Java applications are usually run in cluster and Grid environments
using an execution management support middleware. In the presented work,
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execution of distributed Java programs is done employing the ProActive frame-
work for cluster and Grid computing [2].

2.1 ProActive Framework Overview

ProActive is a Java middleware library (available under GPL open source license)
providing an API for parallel, distributed, and multi-threaded computing, also
with support for mobility and security. It is based on the Active Objects design
pattern and allows for simplified and uniform programming of Java applications
distributed on Local Area Networks (LANs), Clusters, Internet Grids and Peer-
to-Peer Intranets. Important ProActive features include: active objects mobility
in the form of Remote Mobile Objects, Group Communication, OO SPMD paral-
lel programming model, Web Services and Grid support, various communication
and integration protocols: RMI, SSH, LSF, Globus, PBS.

A distributed ProActive application is composed of a set of active objects. An
Active Object is implemented as a standard Java object with an attached thread
of control. Incoming method calls are stored in a queue of pending requests in
each active object, which decides in which order to serve them. Thus, method
calls sent to active objects are asynchronous with transparent future objects and
the synchronization handled by a wait-by-necessity mechanism.

The deployment of Active Objects on nodes of a parallel system is specified
by external XML description and/or API calls. Invoking methods of remote
objects does not require from the developer to use explicitly any communication
or remote access mechanism – the placement of active objects is transparent to
their clients.

The communication between active objects in ProActive is implemented us-
ing a Remote Method Invocation mechanism (Java RMI). The data to be com-
municated (Java objects) are serialized and passed as network messages. The
communication semantics depends upon the signature of the method, with three
possible cases: synchronous invocation, one-way asynchronous invocation, and
asynchronous invocation with future result.

2.2 Program and System Representation

In the paper, we are interested in initial deployment optimization of distributed
Java programs, which can be represented as directed acyclic graphs (DAGs).
Thus, an application is described by a weighted directed acyclic graph Gdag =
{P,E}, where P is a set of communicating tasks, and E is a set of data
transfers between tasks. Each task pk, k ∈ {1 . . . |P |} has a weight γk which
represents the number of instructions to be executed. These weights are deter-
mined either during the sample execution of the program for some representative
data or provided by application developer. An edge weight ψkm represents the
amount of data to be sent from task k to another m-th task. Similarly, these
weights can be sampled or provided explicitly by a developer. A program is exe-
cuted according to the macro data-flow model. Tasks start their execution when
all needed data arrived through task incoming edges. When task is finished, it
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sends produced data to the succeeding tasks. The graphs are static and deter-
ministic. We assume that, to preserve the DAG constraints, all loops are unrolled
or encircled inside the body of a single task.

The target executive system consists of N computing resources (nodes). Each
node, identified by an integer value in the range [0, N − 1], is equipped with
multicore processors. We assume that all cores in a single node i, which number
is denoted as κi, are homogeneous. The current status of system resources is given
by the node power αi which is the number of instructions computed per time
unit in a core of the node i and average load of each core lki (Δt) in a particular
time spanΔt: lki (Δt) ranges in [0.0, 1.0], where 0.0 means a core with no load and
1.0 a core loaded at 100%. Thus (1− lki (Δt))αi represents the power of the core k
of the node i available for the execution of the tasks scheduled by our algorithm.
The communication bandwidth between any pair of nodes i and j is denoted
as βij . The current status of the system is supposed to be contained in tables
based either on statistical estimations in a particular time span or gathered by
tracking periodically and by forecasting dynamically resource conditions.

The program representation corresponds to ProActive distributed application
in which a task is a thread of an Active Object and an edge is a method call
in another Active Object. The execution of an Active Object method, which
constitutes the task, can start when this object collected all necessary data.
During execution, an Active Object communicates only with local objects. At
the end of execution, the method sends data to the successors.

3 Extremal Optimization Algorithm

In nature, highly specialized, complex structures often emerge when their most
inefficient elements are selectively driven to extinction. Such a view is based on
the principle that evolution progresses by selecting against the few most poorly
adapted species, rather than by expressly breeding those species well adapted to
the environment. This idea has been applied successfully in the Bak–Sneppen
model [14] which shows the emergence of Self-Organized Criticality (SOC) in
ecosystems. According to that model, each component of an ecosystem corre-
sponds to a species, which is characterized by a fitness value. The evolution is
driven by a process where the least fit species together with its closest dependent
species are selected for adaptive changes. As the fitness of one species changes,
those of its neighbours are affected. Thus, species coevolve and the resulting
dynamics of this extremal process exhibits the characteristics of SOC, such as
punctuated equilibrium [14].

3.1 Extremal Optimization Principle

Extremal Optimization was proposed by Boettcher and Percus [3] and draws
upon the Bak–Sneppen mechanism, yielding a dynamic optimization procedure
free of selection parameters. It represents a successful method for the study of
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Algorithm 1. General EO algorithm

initialize configuration S at will
Sbest ← S
while maximum number of iterations Niter not reached do

evaluate φi for each variable si of the current solution S
rank the variables si based on their fitness φi

choose the rank k according to k−τ so that the variable sj with j = π(k) is selected

choose S′ ∈ Neigh(S) such that sj must change
accept S ← S′ unconditionally
if Φ(S) < Φ(Sbest) then

Sbest ← S
end if

end while
return Sbest and Φ(Sbest)

NP–hard combinatorial and physical optimization problems [4,3] and a compet-
itive alternative to other nature–inspired paradigms such as Simulated Anneal-
ing, Evolutionary Algorithms, Swarm Intelligence and so on, typically used for
finding high–quality solutions to such NP–hard problems. Differently from the
well–known paradigm of Evolutionary Computation (EC), which assigns a given
fitness value to the whole set of the components of a solution based upon their
collective evaluation against a cost function and operates with a population of
candidate solutions, EO works with one single solution S made of a given num-
ber of components si, each of which is a variable of the problem and is thought
to be a species of the ecosystem. Once a suitable representation is chosen, by
assuming a predetermined interaction among these variables, a fitness value φi
is assigned to each of them. Then, at each time step the overall fitness Φ of S
is computed and this latter is evolved, by randomly updating only the worst
variable, to a solution S′ belonging to its neighbourhood Neigh(S).

This last is the set of all the solutions that can be generated by randomly
changing only one variable of S by means of a uniform mutation. However, EO is
competitive with respect to other EC techniques if it can randomly choose among
many S′ ∈ Neigh(S). When this is not the case, EO leads to a deterministic
process, i.e., gets stuck in a local optimum. To avoid this behaviour, Boettcher
and Percus introduced a probabilistic version of EO based on a parameter τ , i.e.,
τ–EO. According to it, for a minimization problem, the species are firstly ranked
in increasing order of fitness values, i.e., a permutation π of the variable labels i
is found such that: φπ(1) ≤ φπ(2) ≤ . . . φπ(n), where n is the number of species.
The worst species sj is of rank 1, i.e., j = π(1), while the best one is of rank n.
Then, a distribution probability over the ranks k is considered as follows: pk/k

−τ ,
1 ≤ k ≤ n for a given value of the parameter τ . Finally, at each update a generic
rank k is selected according to pk so that the species si with i = π(k) randomly
changes its state and the solution moves to a neighbouring one S′ ∈ Neigh(S)
unconditionally. The only parameters are the maximum number of iterations
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Niter and the probabilistic selection value τ . For minimization problems τ–EO
proceeds as in the Algorithm 1.

3.2 Extremal Optimization Applied to Program Optimization

Using the provided system and program representation, the optimization of
initial distribution of components of an application translates to the problem
of mapping the application divided into P tasks on N nodes. Since tasks ad-
dress non-dedicated resources, their own local computational and communica-
tion loads must be considered to evaluate the computation time of the tasks of
the program to be scheduled. There exist several prediction methods to face the
challenge of non–dedicated resources.

Solution Encoding. A scheduling solution S is represented by a vector μ =
(μ1, . . . , μP ) of P integers ranging in the interval [0, N − 1], where the value
μi = j means that the solution S under consideration maps the i–th task pi
of the application onto processor node j. The number of processor cores is not
represented inside the solution encoding, however, it is taken into account when
estimating the global and local fitness functions while solving the scheduling
problem. This will be explained below.

Global Fitness Function. The global fitness accounts for the time of exe-
cution of a scheduled program. The execution time of the scheduled program
is provided by a program graph execution simulator (Algorithm 2). The simu-
lator assigns time annotations to program graph nodes based on the processor
computing power availability and communication link throughput available for
a given program execution. Algorithm 2 determines also the data ready time
DRT for each task.

Local Fitness Functions. We have designed and used three variants of local
fitness function. All parameters necessary for computing the value of two variants
of local fitness functions (a, c) are obtained during the execution of program
graph simulation procedure (see Algorithm 2 and Fig. 1).

Local fitness function a. For the system of heterogeneous processors inter-
connected by a heterogeneous network in which our program is executed with
sharing resources with other system load, the local fitness function a (LFFa) of
a task is the delay of the execution start of a task comparing the data ready
time DRT of a task. We call this delay the initial execution delay.

LFFa(t) = Availability time(t)− Ready time(t)

Local fitness function b. The second local fitness function (LFFb) is the
extension of the LFFa function. The LFFb moves the tasks belonging to dynamic
critical path of the graph and that are improperly placed on nodes, to other
nodes. The dynamic critical path is the longest path in the scheduled graph. We
determine the dynamic critical path by traversing the graph from the sink task
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Algorithm 2. Program graph execution simulation procedure

Mark entry task of the graph as ready at the time 0
for each core c of all processors: Availability time(c) ← 0
while not all tasks are visited do

t ← the ready task with the earliest starting time
n ← μt {the node of task t}
c ← the core of n which has the earliestAvailability time
Place task t on core c of node n
Starting time(t) ← max(Availability time(c),Ready time(t))
TaskCompletion time(t) ← Starting time(t) + Execution time(t)
Availability time(c) ← TaskCompletion time(t)
Mark t as visited
for all succesor task sti of task t do

DRT ← TaskCompletion time(t) + Communication time(t, sti)
if DRT > Ready time(sti) then

Ready time(sti) ← DRT
end if
if TaskCompletion time(t) > LastParent time(sti) then

LastParent time(sti) ← TaskCompletion time(t)
end if
if all data of sti arrived then

mark sti as ready
end if

end for
end while
return max(Availability time)

to the entry task. Then we look for the tasks on critical path, whose parent task
from the critical path is placed on different node than the task’s node. We assign
to all those tasks whose parents are assigned to different node, the maximal delay
value found during the calculation of fitness function a (LFFa) or a arbitrary
constant value, thus increasing the probability they would get selected during
the ranking process.

LFFb(t) =

⎧⎨⎩
LFFa(t) when t does not belong to DCP,

Const
when t belong to DCP and its parent
on DCP is not on the same node.

where Const = max(LFFa(t)) if there exists t for which LFFa(t) �= 0 otherwise
Const = arbitrary value > 0.

Local fitness function c. The local fitness function c (LFFc) of a task is the
complete delay of task execution comparing the execution under optimal condi-
tions, i.e. there is no communication overhead nor resource contention between
tasks and the task is executed on the fastest processor. We call this delay the
total execution delay.

LFFc(t) = TaskCompletion time(t)− LastParent time(t)− FastestExecution(t)

where FastestExecution(t) – the execution time of task t on the fastest processor.
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Fig. 1. Computation of delay and total delay values for given task t

4 Experimental Results

During experiments we have used two sets of synthetic graphs and the graph
of a medical application – ART algorithm (reconstruction of tomographic scans
[9]). The first set of synthetic graphs consists of seven randomly generated graphs
(gen-1...3, gen-3a...d), with layered structure, Fig. 2(a). Each task (node) of this
graph represents a mixed float- and integer-based generic computation (random
generation of matrix of doubles, then floating-point matrix-by-vector multipli-
cation, then rounding to integers and integer sort) with execution time defined
by node weight (the weight controls the number of iterations of the generic com-
putation). The second set of synthetic graphs consists of two hand-made graphs
with known optimal mappings (gen-m1, gen-m2 ), with a general structure sim-
ilar to the structure of randomly generated graphs, Fig. 2(b).

The following extremal optimization algorithm variants have been used dur-
ing the experiments: eo-a, eo-b, eo-c, based on described in the paper local
fitness functions (local fitness function LFFa, LFFb and LFFc respectively). For
the comparative experiments we used a list scheduling algorithm with the ETF
(Earliest Task First) heuristics. The ETF implementation is based on the de-
scription from [7]. We used a cluster of 7 homogeneous dual core processor nodes
for program graph scheduling and program execution under ProActive.

Comparison of real execution times of an exemplary application, scheduled by
different methods is presented in Fig. 3(a) and Fig. 3(b). The different variants
of EO method obtained similar quality of initial mappings of applications. For
synthetic graphs, the best results are obtained by eo-b algorithm, however the
eo-c method is only marginally worse. For ART application graph, the eo-c
method is the best one among the different EO variants. The typical execu-
tion time increase, comparing the EO and ETF algorithm, is below 10% (the
only exception is gen-m1 graph, for which ETF was able to find the optimal
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Fig. 2. The structure of a synthetic exemplary application graphs

solution). The experimental results show that EO technique is able, in general,
to draw the same level of the quality of results as classical scheduling and map-
ping approaches like ETF algorithms. In our opinion, it is a quite good result,
taking into account the simplicity of the basic principle of extremal optimization
method.

In another experiment we empirically extrapolated the actual time complexity
of presented optimization algorithms. For this purpose we used a set of large,
randomly generated graphs (the number of nodes from 350 to 7000), which were
scheduled by EO and ETF algorithms. The actual running times of the opti-
mization algorithms confirmed theoretical complexity of EO and ETF methods,
which is approximately C(n2) for EO (it is determined by the time complexity
of the graph execution simulation, see Algorithm 2) and C(n3N) for ETF (see
[7] for details), where n is the size of the graph, and N is the number of com-
puting nodes. Although time complexity of EO method is lower than that of
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(a) synthetic graphs (b) ART graph

Fig. 3. The real execution times of the scheduled program graphs for different schedul-
ing algorithms

ETF, the actual running times of different kinds of the EO algorithm for small
graphs were much longer than the running times of ETF algorithm. It can be
considered the main drawback of EO method. However, for large task graphs
(tens of thousands of tasks in our experiment), EO-based methods are faster
than ETF algorithm. Among investigated EO variants, eo-a and eo-c are the
fastest, since eo-b method introduces additional run-time overhead due to the
dominant sequence tracking. Another advantage of EO methods are very small
memory requirements.

Experimental results indicate that extremal optimization technique can be
useful for large mapping and scheduling problems when we will pay special at-
tention to run-time optimization of EO algorithm. It is due to the low time
complexity and memory consumption of EO methods. For small sizes of ap-
plication graphs, it is advised to use classic scheduling methods, as ETF list
scheduling.

5 Conclusions

The paper has shown how to optimize a distributed program schedule by using
the extremal optimization technique. For homogeneous systems the extremal
optimization algorithm has delivered results comparable to the ETF algorithms.
The execution times of the scheduled programs determined by simulation were
close to the real execution time of the synthetic programs corresponding to the
scheduled graphs.
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Abstract. The paper is concerned with parallel global optimization
techniques that can be applied to solve complex optimization problems,
and are widely used in applied science and in engineering. We describe
an integrated software platform EPOCS (Environment for Parallel Opti-
mization of Complex Systems) that provides the framework and tools
which allow to solve complex optimization problems on parallel and
multi-core computers. The composition, design and usage of EPOCS is
discussed. Next, we evaluate the performance of methods implemented in
the EPOCS library based on numerical results for a commonly used set
of functions from the literature. The case study – calculating the optimal
prices of products that are sold in the market is presented to illustrate
the application of our tool to a given real-life problem.
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parallel optimization, price management.

1 Introduction

Many issues related to applied science and engineering require the solution of
optimization problems. Traditionally, these problems are solved using linear and
nonlinear solvers, which normally assume that the performance function and a
set of admissible solutions are convex and known in analytical form. In prac-
tice, however there are many problems that cannot be described analytically
and are nonconvex, often with many extrema. During last decades, however,
many theoretical and computational contributions helped to solve such type
of problems arising from real-world application [1–3, 7, 10, 12]. Most of these
techniques are based on global exploration of the domain. They are generally
complex and usually involve cumbersome calculations, especially when consider
simulation-optimization case when we have to perform simulation experiment in
every iteration of the algorithm to estimate the value of a performance function
[9]. The restrictions are caused by demands on computer resources – CPU and
memory. On the other hand most of global techniques are easily adaptable to a
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parallel environment. Hence, the direction, which should bring benefits is parallel
computing where the whole task is partitioned between several cores, processors
or computers. Parallel implementation allows to reduce the computation time,
improve the accuracy of the solution, and to execute large program which cannot
be put on a single processor.

Recently a number of software packages with numerical solvers for global
optimization have been developed, and can be found in the Internet. They
support sequential and parallel programming. Publicly available implementa-
tions of interval analysis and branch-and-bound schemes, various types of tech-
niques for global optimization (deterministic and stochastic) are provided in
http://www.solver.com/technology5.htm. The goal of theCOCONUTproject
(http://www.mat.univie.ac.at/neum/glopt/coconut) was to integrate the
currently available techniques from mathematical programming, constraint pro-
gramming, and interval analysis into a single discipline, to get algorithms for
global constrained optimization. The authors of [4] report the results of testing
a number of existing state of the art solvers using COCONUT routines on a
set of over 1000 test problems collected from the literature. The Global World
(http://www.gamsworld.org/global/index.htm) is a forum for discussion and
dissemination of all aspects of global optimization problems. It provides links to
libraries of solvers and a library of academic and practical test problems.

In this paper we describe our software package EPOCS. The contribution is
organized as follows. First the composition, implementation and usage of our
software is described. Next, the numerical algorithms supplied in EPOCS are
presented. Finally, the results of numerical tests with solvers from EPOCS are
discussed.

2 Description of EPOCS System

EPOCS (Environment for Parallel Optimization of Complex Systems) is an open
source software framework that provides tools for solving complex optimization
problems. EPOCS supplies the library of solvers for local and global optimiza-
tion. It provides tools for research and education, and can be used to solve the
optimization problems on parallel and multi-core machines. EPOCS implements
two approaches to user-system interactions, i.e. EPOCS/CON and EPOCS/GUI.
In the EPOCS/CON version batch processing is assumed. This type of user-
system operation is dedicated to the complex tasks, where values of the objective
function are calculated based on simulation (simulation-optimization scheme).
EPOCS/GUI is dedicated mainly to education and research concerned with test-
ing various algorithms and tuning their parameters. It supplies the graphical
environment for optimization problem definition and results presentation. The
graphical editor, symbolic expression analyzer and tools for dynamic, on-line
monitoring of the calculation results are provided. The following presentation
techniques are available: leaves of the function values (graphical) and a table of
numbers. The results presentation is fitted to the optimization method (points,
lines, grids). The visualization of a multidimensional problem is achieved by

http://www.solver.com/technology5.htm
http://www.mat.univie.ac.at/neum/ glopt/coconut
http://www.gamsworld.org/global/index.htm
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Fig. 1. Components of the EPOCS system

displaying in the separate windows the leaves for each pair of variables, under
the assumption that all other variables are fixed.

The EPOCS system is composed of three main components: system kernel,
user interfaces and library of numerical methods (see Fig. 1). The system kernel
provides support for symbolic expressions and is responsible for computation
threads management and tasks management. The kernel provides also runtime
infrastructure and manages communication between calculation processes and
user interfaces. The user interfaces provide a set of tools mainly to support the
interaction with the user and the runtime monitoring. It is obvious that the level
of interaction and monitoring depends on the selected interface and is much more
sophisticated for Graphical User Interface (GUI). The last, and core component
of EPOCS – the library of numerical methods – provides a set of numerical
algorithms divided into two components: the library of optimization solvers in
sequential and parallel versions and the library of random generators.

EPOCS is based on C++ language and uses Qt – cross-platform application
and UI framework. All numerical methods are implemented in uniform form as
C++ classes. The optimization algorithms that are built upon EPOCS classes
have hierarchical structure. The hierarchy of classes is well defined. Three funda-
mental classes: task, defining the considered optimization problem to be solved,
algorithm, the basic class of all optimization methods and generator, for random
numbers generation are supplied. New algorithms can be implemented applying
classes defined in EPOCS. The open design of the system architecture, and its
extensibility to include other open source modules, was chosen in the hope that
the system will be a useful platform for researchers and students. The code is
currently available for MS-Windows and Linux operating systems.
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3 Numerical Methods Library

3.1 Library Overview

The numerical library consists of two components containing, respectively a col-
lection of local and global optimization solvers and random numbers generators.
The following algorithms for random numbers generation have already been im-
plemented: uniform, normal (Gaussian), Beta, Cauchy and three quasi-random
sequences: Halton, Sobol, Fauer [6]. Several techniques for one and multidimen-
sional local and global search are provided. The current version of the system
offers global optimization solvers from two groups [1–3, 7, 10] – deterministic:
chaotic movement, branch-and-bound and clustering techniques, and stochastic:
random search (pure and population set based direct search methods), simu-
lated annealing (SA), genetic algorithms (GA), evolutionary strategies (ES),
and hybrid techniques combining SA, GA and methods for solving local mini-
mum [5, 11]. All listed algorithms are implemented in a few versions. Controlled
random search algorithms (CRS2, CRS3, CRS4, CRSI, CRS6 [1]), simulated
annealing and genetic algorithms in both simple and hybrid versions can be
executed in parallel. The algorithms from the EPOCS library can be used to
solve unconstrained and constrained optimization problems. The inequality con-
straints are accounted for in the minimized performance function using simple
penalty terms for constraints violation.

3.2 Parallel Implementation

The implementation of parallel versions of optimization algorithms from the
EPOCS library is based both on native system threads and the OpenMP tool.
The OpenMP (Open Multi-Processing, http://www.openmp.org/) is an applica-
tion programming interface (API) that supports multi-platform shared memory
multiprocessing programming in Fortran, C/C++ and Java on many architec-
tures. It consists of a set of compiler directives, library routines, and environment
variables that influence runtime behavior. An application can run on multipro-
cessor and multi-core machines. The objective of parallel implementations of the
EPOCS system was to speed up the calculations and improve the accuracy of the
solution. Several ways of methods parallelism were considered, which resulted
several more and less complicated, and at the same time more and less effective
variants of each algorithm. In general we propose to incorporate parallelism on
two levels – parallel implementation of the EPOCS platform and parallel imple-
mentations of the numerical solvers from the EPOCS library. Thanks to parallel
implementation of the EPOCS platform it is possible to execute different tasks
and different solvers simultaneously. In general, the EPOCS system is designed
as an application with master-slave communication model (see Fig. 2). We dis-
tinguished the master and the group of slave threads. The goal of a master (the
main thread) which is initiated by the EPOCS systems, is to read all parameters
from GUI, start the calculations and create slave threads. The new slave thread
is created after selection the ”run” command. The goal of the slave thread is to
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Fig. 2. Parallel implementation of the EPOCS system

perform the selected numerical algorithm on a selected task. Each thread con-
sists of three components: the task, the algorithm and the algorithm parameters.
Hence, it is possible to run multiple experiments using the same algorithm and
the same task, but different algorithm parameters or input data. This is very
useful feature of EPOCS system especially from educational point of view. In the
same way the user can solve simultaneously different tasks using a given solver
or use different solvers to solve a given task. Each thread (master or slave) can
be executed on a separate processor.

In addition, EPOCS supplies parallel implementations of solvers. The sys-
tem threads and the OpenMP programming interface were used to implement
the parallel versions of optimization algorithms. For different algorithms different
attempts to parallelization were considered but with focus on coarse-grained par-
allelism. Below we describe the parallel implementation of selected algorithms.

CRS Algorithms Parallel Implementation. CRS methods are population set based
random search algorithms. The basic random search consists of three main steps:
1) generate the initial set of points P from the domain, 2) transform the popula-
tion P , 3) check the assumed stopping condition. In principle, CRS methods were
designed as a combination of local optimization algorithms with a global search
procedure. In case of parallel implementation of all CRS methods supplied in
EPOCS it is assumed that several independent computational threads transform
the same, globally available population of points P . The current best point xL
is global for all computational threads, while the worst points xH are local – one
for each thread. Computational threads are initialized by the slave thread, which
provides access to Task object and manages population of P points. The sys-
tem threads are used (QThread) to calculation parallelization. The computation
scheme for CRS is presented in Figure 3.

Genetic Algorithm and Simulated Annealing Parallel Implementation. Three
versions of genetic algorithms were implemented: simple GA described in [7]
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Fig. 3. The CRS6 algorithm – parallel implementation

and two hybrid techniques: genetic algorithm with the local tuning (GOD) and
the combination of GA and SA called SA/SOS (Synchronous Approach with
Occasional Solution Exchanges). The GODmethod [11] integrates the simple GA
with the well known downhill method (NM), developed by Nelder and Mead, and
implemented in [6]. GOD operates as follows. In each step a new population is
generated by genetic operations, and a subset by NM method. In order to speed
up the convergence, the proportion of points generated by both methods varies
as the global optimum is approached. The more iterations have been executed,
the more points are created using the NM method.

The method called SA/SOS [5] combines two algorithms: SA and GA. SA/SOS
operates as follows. Computation is performed on the initial set of points. SA is
used to transform the population. After assumed number of steps, a crossover
operator as implemented in GA is applied to the selected points. The randomly
selected coordinates of chosen points are modified. The overall solution quality is
measured as a sum of fitness of all points in the population. The control param-
eter T (temperature) in SA does not change in case when the overall solution is
improved. Otherwise, it is changed according to a chosen cooling scheme.
In case of parallel versions of GA, GOD, SA and SA/SOS several independent in-
stances of a given algorithm are executed, each on a separate processor with own
set of input data. The slave thread is responsible for calculation processes ini-
tialization and communication with computational threads. After each assumed
number of iterations the migration of the best individuals is coordinated by the
slave thread. The OpenMP interface was used to implement parallel versions of
all these methods. The comparison of given algorithms execution for described
above two attempts to algorithms parallelization is presented in Figure 4.

4 Numerical Results

To verify and test the efficiency of solvers supplied in the EPOCS system we
performed numerical experiments for commonly used test functions collected
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Fig. 4. Comparison of parallel CRS and GA execution (calculation schemes)

from literature. Next, we used EPOCS to solve several real-life optimization
problems in economy and environmental systems. In this paper we present the
case study concerned with a price management, and discuss the results achieved
for stochastic search methods and heuristic techniques. All tests, which results
are reported here were curried out on the Sun Fire V440 computer equipped
with four processors.

4.1 Comparison of EPOCS Solvers

The goal of the first series of tests was to compare the performance of selected
solvers supplied in the EPOCS library. We present the comparison of the simple
Genetic Algorithm (GA) and Simulated Annealing (SA) with two hybrid tech-
niques GOD and SA/SOS described in the section 3.2. All methods were tested
on a set of commonly used test functions: Ackley (AC), Levy (LE), Rastrigin (RA)
and Griewank (GR) described in [1], all with the global minimum equal 0. The se-
quential and parallel versions of selected solvers were considered. The focus was
on benefits of parallel implementation. Three main criteria that determined the
performance of the compared algorithms – the quality of the final result, running
time and number of function evaluation – were taken into consideration.

Sequential computation. Two series of tests were performed. The GOD algo-
rithm was compared with the genetic algorithm (GA), and the SA/SOS method
was compared with the simulated annealing (SA). The calculations were termi-
nated when the difference of performance values for a few trial points was less
than 0.1. Table 1 shows the average results over series of 5 trials for four meth-
ods: GA, GOD, SA/SOS and SA. The values collected in the adequate columns
denote: fun – test function, n – problem dimension, f∗ – average value of the
performance function calculated for 5 runs of the algorithm, feval – number of
performance function evaluation needed to find the solution with the assumed ac-
curacy. The numerical results collected in table 1 indicate that the GOD method
is better both in terms of speed of convergence to the solution and calculated
solution’s accuracy than GA. The SA/SOS method achieves much better solu-
tion than SA with the similar computational burden. Hence, we can say that the
proposed modification makes GA and SA far more effective.
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Table 1. Comparison of four solvers: GA, GOD, SA and SA/SOS

GOD GA SA/SOS SA

fun n f∗ feval f∗ feval f∗ feval f∗ feval
AC 5 0.87 256 7.07 1600160 2.96 130481 3.61 120815

10 0.93 1654 13.03 1660080 5.18 384525 5.27 362591
20 3.34 16973 15.86 1700160 6.74 1270940 9.43 1200570

RA 5 0.87 1700 4.31 1400160 2.87 1317 6.69 121641
10 1.51 23260 28.84 3200160 23.61 389842 30.98 362186
20 17.5 655179 106.15 3500160 91.92 1282865 116.16 1201664

Table 2. Comparison of sequential and parallel GA and GOD

Size & GA GOD
threads GR RA GR RA

n nt fbest f∗ fworst fbest f∗ fworst fbest f∗ fworst fbest f∗ fworst

5 1 1.5 1.64 1.87 3.76 4.31 4.8 0.06 0.08 1.01 0.79 0.87 1.01
2 0.95 1.55 1.93 0.58 0.91 1.08 0.05 0.08 0.09 0.65 0.75 0.83
3 0.94 1.25 1.44 0.31 0.71 1.38 0.04 0.07 0.08 0.62 0.71 0.80
4 0.74 1.19 1.48 0.33 0.51 0.74 0.02 0.04 0.07 0.41 0.45 0.52

20 1 26.68 28.26 29.37 101.42 106.15 111,05 0.76 0.98 1.24 16.50 17.53 18.03
2 20.62 24.63 29.33 77.57 83.47 92.62 0.51 0.66 0.75 15.91 16.52 17.99
3 13.07 22.41 30.32 67.49 72.71 77.20 0.41 0.52 0.65 13.93 14.98 16.78
4 12.75 16.98 23.35 62.10 64.90 72.53 0.38 0.44 0.54 13.01 13.99 15.97

Parallel computation. Parallel GA and GOD were tested for various numbers of
threads. Final quality of result and computational effort measured by number of
function evaluations were compared. The goal of parallelization was to calculate
the solution with high level of accuracy in the time equal to sequential solver
execution. The results of numerical experiments are presented in table 2. The
values collected in the table denote: n – problem dimension, nt – number of
threads (each thread was executed on a separate processor), f∗ – average value
of the performance over a serie of 5 trials, fbest and fworst, respectively the
best and worst solution. In general, the improvement of final results for multiple
threads was observed. In most cases the accuracy of the solution increased in
10-20%. However, parallel GA found results even 50% better than its sequential
version.

The goal of the last series of tests was to compare the efficiency of sequen-
tial and parallel SA executed on two processors. The goal was to speed up
the calculations. The calculation times (in seconds) of Levy (LE) test function
(n = 1, . . . , 400) minimization are presented in Fig. 5. The calculation speedup
after code parallelization was from 1.2 to 1.7, and it increased with the problem
dimension.
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Fig. 5. Calculation time – minimization of Levy test function (n = 1 to n = 400)

5 Case Study Results

The EPOCS software was used to calculate the optimal prices for products that
are sold in the market. The goal was to maximize the long-term profit PR equal
to revenue minus cost. Let us consider n products that are sold in the market.
Assume that x = [x1, x2, . . . , xn] denotes a vector of prices of n products; xi is
the price of the i-th product. The relationship between prices and sales is called
price response function S(x) [8]. Several sales models are defined in literature.
In our research we considered the model taking into account the elasticity of
sales of one product with respect to the prices of other products. The expected

sales was described as follows: Si(x) = αi

∏n
j=1 x

βij

j , where xj denotes the price

of product j, αi is the scaling factor for sales of product i, βij is the elasticity of
sales of product i with respect to the price of product j (βii is referred to as the
direct elasticity and βij , i �= j is the cross elasticity). The following constraints
for price, sale and cash of each product are usually considered in optimal prices
calculation: xmin

i ≤ xi ≤ xmax
i , Smin

i ≤ Si(x) ≤ Smax
i , Cmin

i ≤ xiSi(x) ≤ Cmax
i

for i = 1, . . . , n. In addition, constraints for total sale and cash are usually
taken into account: TSmin ≤ ∑n

i=1 Si(x) ≤ TSmax, TCmin ≤ ∑n
i=1 xiSi(x) ≤

TCmax. In these constraints xmin
i and xmax

i denote minimal and maximal prices
of product i, Smin

i , Smax
i minimal and maximal sale, Cmin

i , Cmax
i minimal and

maximal cash, TSmin, TSmax minimal and maximal total sale, TCmin, TCmax

minimal and maximal total cash.
Finally, the optimization problem was formulated. The goal was to calculate

the prices for products that maximize the global profit PR, subject to con-
straints, and price response function listed above:

min
xi,i=1,...,n

[
PR(x) =

n∑
i=1

( xi
1 + vi

− di
)
Si(x)

]
(1)
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where vi and di are given constants corresponding to the market entities of VAT
and cost per product. We solved problem (1) for several sets of real data collected
from IT company, containing various groups of products offered in supermarkets.
All parameters in presented formulas were calculated based on market investiga-
tion. CRS2 and CRS6 algorithms [1] supplied in the EPOCS library were used
to calculate the optimal prices. The efficiency of sequential and parallel versions
of both algorithms were compared. The goal of parallelization was to speed up
calculations. The optimization results of price management problem for various
number of products are presented in tables 3 and 4. The assumed accuracy of
the optimal point calculation was 1E-4. The average solution for the experiments
with 15 products, number of function evaluations and calculation time for 5 runs
of each algorithm are collected in table 3.

Table 3. Calculation results, 15 products, CRS2 and CRS6 methods (1 – 4 processors)

Number of CRS2 CRS6
processors PR Time [s] PR Time [s]

1 1236.74 1.23 1241.27 2.02

2 1236.92 0.64 1241.27 1.07

3 1236.94 0.47 1241.27 0.77

4 1237.13 0.44 1241.27 0.63

The speedup for the 15-dimension price management problem and parallel
CRS2 and CRS6 (versions with four threads, each executed on separate proces-
sor) are as follows:

1 thread timeCRS2

4 threads timeCRS2
=

1.23

0.44
= 2.8,

1 thread timeCRS6

4 threads timeCRS6
=

2.02

0.63
= 3.21

The values of speedup show the effectiveness of parallel implementation of both
solvers. The results of experiments for 15, 31, 53 and 76 products, CRS2 and
CRS6 methods, sequential and parallel implementations are presented in table
4. The solutions provided by both algorithms are compared with the best. In
this table Ts and Tp denote calculation time for sequential and parallel solvers.
The complexity of task (1) increases with the number of products and values of
elasticity of sales of given products that influence the shape of function S(x),

Table 4. Calculation results, 4 threads, different number of products, CRS2 and CRS6

Number of The best CRS2 CRS6
products PR PR Ts [s] Tp [s] Speedup PR Ts [s] Tp [s] Speedup

15 1241.27 1236.74 1.23 0.44 2.80 1241.27 2.02 0.63 3.21

31 830.75 809.21 12.92 3.79 3.41 830.75 25.31 6.54 3.87

53 544.65 526.05 21.82 6.20 3.52 544.65 66.39 16.99 3.91

76 1898.66 1836.11 42.43 11.50 3.69 1898.66 338.48 85.64 3.95
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and finally the performance function. The results of experiments collected in
the table 4 indicate that the calculation speedup increases with the problem
complexity. Based on achieved results, as a conclusion we propose the following
strategy: in cases when accuracy of the solution is the crucial the CRS6 method
is suggested; when it is crucial that the problem is solved quickly the simpler
method, i.e. CRS2 should be used. Both in case of CRS2 and CRS6 the parallel
implementation provides better solutions with respect to sequential realization,
and speeds up the calculations.

6 Conclusions

We presented the EPOCS framework for the complex systems sequential and par-
allel optimization. We can say that our tool can be successfully used for solving
complex global optimization problems. The open design of the system architec-
ture and extensibility to include new numerical methods make EPOCS a useful
tool for researchers and students. EPOCS is continuously supported, maintained,
and improved. Our comparative study of sequential and parallel implementations
of the selected global techniques shows that the parallel calculations can improve
the effectiveness of a given global method but the results strongly depend on their
implementation and assumed attempt to parallelization.

References

1. Ali, M.M., Torn, A.: Population set-based global optimization algorithms: Some
modifications and numerical studies. Computers and Operations Research 31,
1703–1725 (2004)

2. Horst, R., Pardalos, P.: Handbook of Global Optimization. Kluwer (1995)
3. Michalewicz, Z., Fogel, D.B.: How to Solve it: Modern Heuristcs. Springer, Heidel-

berg (2000)
4. Neumaier, A., Shcherbina, O., Huyer, W., Vinko, T.: A comparison of complete

global optimization solvers. Mathematical Programming 103, 335–356 (2005)
5. Onbasoglu, E., Ozdamar, L.: Parallel simulated annealing algorithms in global

optimization. Journal of Global Optimization 19, 27–50 (2001)
6. Press, W.H., Tukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes

in C. The Art of Scientific Computing. Cambridge University Press (1992)
7. Schaefer, R.: Foundations of global genetic optimization. Springer, Heidelberg

(2007)
8. Simon, H.: Price management. North-Holland (1989)
9. Spall, J.: Introduction to Stochastic Search and Optimization. John Wiley & Sons

(2003)
10. Weise, T.: Global Optimization Algorithms: Theory and Application. e-book

(2009), http://www.it-weise.de/projects/book.pdf
11. Yang, R., Douglas, I.: Simple genetic algorithm with local tuning: Efficient global

optimizing technique. Journal of Optimization Theory and Applications 98, 449–
465 (1998)

12. Zhigljavsky, A.A., Zilinskas, A.: Stochastic Global Optimization. Springer Opti-
mization and its Applications, vol. 9. Springer, New York (2008)

http://www.it-weise.de/projects/book.pdf


Parallel Programming in Morpho

Snorri Agnarsson

Faculty of Engineering and Natural Sciences, University of Iceland
snorri@hi.is

Abstract. Morpho is a multi-paradigm programming language devel-
oped at the University of Iceland that supports parallel programming us-
ing both fibers (coroutines) and concurrently executing tasks (threads).
Communication between both tasks and fibers is through channels. Mor-
pho is open source and an alpha version is available1. Morpho can be used
to augment Java with massively scalable multitreading, with orders of
magnitude more concurrent computations than is possible with regular
Java threading. Morpho supports polymorphic modules using a unique
method based on substitutions rather than parametrization.

Keywords: concurrency, process-oriented programming, functional
programming, fibers.

1 Introduction

The main motivation for Morpho is to develop a full-featured language sup-
porting polymorphic modules based on modules as substitutions rather than
on parametrization of modules. However, that aspect is not the main thrust of
this paper. Rather this paper concentrates on the parallel programming aspects
of Morpho and promotes the thesis that effective and scalable parallelism can
conveniently be based on lightweight processes that can best be achieved by lan-
guages that allocate activation records on the heap using garbage collection for
their management.

The Morpho programming language is designed to be a massively scalable
scripting language. It runs on top of Java, can be invoked from Java, and Morpho
programs have direct access to the functionality of Java and vice versa. Morpho
is, however, distinguished from Java in various ways.

– The memory footprint of Morpho tasks is orders of magnitude smaller than
that of Java threads, which have corresponding functionality.

– Morpho has fibers (coroutines) which are even more lightweight than tasks.
The number of fibers and tasks that a Morpho program can run is orders
of magnitude greater than the number of threads that a corresponding Java
program can run.

– Morpho supports functional programming as well as imperative program-
ming and object-oriented programming.

1 http://morpho.cs.hi.is

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 97–107, 2012.
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• Morpho has lexical scoping with nested functions and functions as first
class values that can be assigned, returned as values and passed between
system components.

• Morpho has full tail-recursion removal of function calls and method in-
vocations.

• Morpho supports lazy streams for incremental (and parallel) evaluation
of sequences of arbitrary and infinite length.

– Morpho has a module system that supports polymorphic modules. The mod-
ule system is based on the ideas described in [1]. This corresponds loosely
to Java generics, but is more powerful in some respects.

– Morpho uses run-time typing rather than compile-time typing. Variables in
Morpho have no type, whereas values have types.

– Morpho has channels as a way of communicating and synchronizing.

2 Channels

Strategies for parallelization are intimately related to strategies for sharing infor-
mation and passing information safely between system components. Strategies
using features such as semaphores, locks and monitors are mainly intended for
synchronization between components that share memory. Communication chan-
nels have a more general utility. The main reason channels were selected as the
principal communication and synchronization mechanism in Morpho is to have
the same method for supporting concurrency both within the same computer
and between different computers on a network. Communication channels were
developed by C.A.R. Hoare and others (see [11]) as part of their theory of com-
municating sequential processes (CSP). They were proposed as a programming
language feature to facilitate parallel programming and communication. Pike’s
Newsqueak programming language implements channels [9]. Channels in CSP
and in Newsqueak are synchronized. A receiver and a sender have a rendezvous
to pass a value and we have, therefore, a notion of exact concurrency. In Morpho
channels are not synchronized in this fashion because we want to use them not
only within a single computer but also between computers on a network. Syn-
chronized channels are not practical for network communication because network
latency would make them much too slow. We do, however, have a notion of time-
ordering since a receiver can only receive a value after the sender sends it. The
syntax used in Morpho is similar to the one used in Newsqueak.

3 Advantages of Morpho

Morpho can be compared to other languages with small-grained parallelism fea-
tures such as Scala, Erlang and Stackless Python.
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3.1 Morpho and Scala

Morpho shares with Scala the feature of easy interoperability with Java. There
are major differences, however, leading to some advantages offered by Morpho.

– Scala is compiled to Java bytecodes whereas Morpho is compiled to indirect
threaded code (see [5,6]) that is interpreted by Java. Thus Morpho com-
pletely escapes serious limitations imposed by the architecture of the Java
runtime, in particular the assumption that activation records are stored on
a stack and that each thread has a separate stack.

– Activation records in Morpho are allocated on the heap, and more impor-
tantly in comparison to Scala the whole control chain of a running Morpho
task is on the heap. This allows Morpho to support real lightweight thread-
like tasks instead of simulated ones as in Scala. Scala offers two kinds of
actors (see [7]). Both are comparable to a kind of combination of a Morpho
channel and a Morpho task or fiber. The Scala actors are either thread-based
or event-based.
• The thread-based actors consume a lot of memory and the number of
such actors is limited to some thousands on 32-bit hardware.

• The event-based actors, on the other hand, are lightweight and it is
possible to use hundreds of thousands or even millions of such actors
“concurrently”. But the event-based actors do not run separately but are
rather implemented as closures that are “piggy-backed” on the threads
of those communicating with them. They are therefore of more limited
use than Morpho tasks in off-loading work to separate threads or CPU
cores.

A more minor point is that while Scala does support tail-recursion removal
for single methods it does not support tail-recursion removal for mutually
recursive methods. Morpho does full tail-recursion elimination, which is eas-
ily done due to the fact that activation records are stored on the heap. That
is another consequence that demonstrates the extra power gained in the
language run-time from heap-based activation records.

Compared to Morpho, Scala does not really offer lightweight threads but instead
offers a limited capability to simulate such threads for message handling by
chaining closures. Thus, the event-based actors of Scala do not directly leverage
the additional capability offered by multi-core computers whereas the thread-
based actors do not scale well due to their large memory footprint. A simple
task creation benchmark in Scala (or Java) can generate and run about 5,000
threads on a 32-bit computer using default settings for the stack size in Java. A
similar task generation benchmark in Morpho can generate and run millions of
tasks before running out of memory.

3.2 Morpho and Erlang

Erlang does offer comparable parallel programming capability to that of Morpho,
or even better, since Erlang supports easy parallelization of multiple computers
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on a network (see [4]) whereas the current implementation of Morpho has no
such direct capability yet. Erlangs message passing is currently 3–4 times faster
than that of Morpho as measured using the Erlang ring benchmark, implemented
in Morpho for comparison. However, Morpho has some advantages that can be
significant.

– Morpho interoperates directly with Java and Morpho programs can leverage
functionality available in Java (and vice versa).

– Morpho supports imperative and object-oriented programming styles as well
as functional programming.

– Morpho automatically supports any platform that has Java support.

Supporting streams as well as channels for synchronization in Morpho enables
Morpho to be used in a functional programming style using both the parallel
programming style supported by the strict (non-lazy) functional language Er-
lang (i.e. using channels) and the style promoted for the pure (lazy) functional
language Haskell (i.e. using streams, see [8]).

3.3 Morpho and Stackless Python

Tasklets in Stackless Python correspond to Morpho fibers and offer very good
scalability of parallelism for single processor machines. Stackless Python also
supports channels for communication between tasklets. But Stackless Python
currently does not support anything comparable to Morpho tasks. Thus Stack-
less Python does not leverage the additional computing power offered by recent
multi-core processors.

4 The Implementation of Morpho

Morpho uses an object-oriented variant of indirect threaded code (see [5,6]).
Each operation in the Morpho virtual machine is a Java object which has a
method, execute() that executes the operation. A running Morpho task has a
corresponding Java object that runs operations in an array of operations. The
Morpho interpreter in its simplest form is the single line of code shown below,
where code is the array of operations being executed, pc is the current program
counter, and this is the current task.

for (;;) code[pc ++]. execute(this );

The run-time overhead of interpreting the Morpho operations is comparatively
small because the operations being executed are high-level ones and the dis-
patching of each operation is very simple, as seen above, but Morpho is slowed
down a little by the fact that it is intended to be a high-level scripting language
and therefore uses run-time typing rather than static or compile-time typing.
Nevertheless, the performance of Morpho as measured by counting the number
of messages passed through channels per second, is about the same as that of
compiled Java code. And Morpho supports orders of magnitude more tasks and
fibers than Java supports threads.
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4.1 Morpho Tasks and Fibers

Morpho supports both tasks and fibers. Tasks are comparable in funtionality
to Java threads in that they run concurrently and independently of each other.
Each task contains a set of fibers (also called coroutines). Only one fiber in each
task is running at any one time. This makes synchronization of fibers inside the
same task quite easy. Because activation records in Morpho are stored on the
heap it is trivial to suspend fibers by simply storing a pointer to their current
activation records and related state. The state that needs to be saved is quite
small, on the order of 20 bytes, but of course it mostly consists of pointers to
existing data. Similarly, creating a new fiber or a new task in Morpho is a quite
trivial and fast operation.

A set of tasks in a Morpho machine share a set of Java threads that take
turns in executing the tasks. Typically the number of Morpho tasks is much
larger than the number of Java threads servicing them. A task whose fibers are
all blocked, for example by waiting on a channel (see below), releases its Java
thread until it is ready again. This leads to a natural and efficient load-balancing
between cores in multi-core machines. Tasks also regularly yield their threads
even if not blocked.

One might think that storing activation records on the heap would slow down
the run-time considerably. However, there is good analytical and empirical evi-
dence that this strategy should not significanty reduce performance (see [2,3]).
As memory sizes of computers become larger there is even reason to believe that
this strategy could lead to faster systems than those relying on stack allocation
for activation records.

5 Using Channels

– Channels are buffered and can contain at least one full value, making them
asynchronous since a fiber or a task can write a value to a channel and then
continue processing even if no other fiber or task has yet received the value.

– The expression makeChannel() creates a new channel and returns it.

– The expression closeChannel(c) closes a channel c, after which reads from
the channel will eventually return a channel EOF.

– The expression channelEOF() returns the channel EOF value, which is a
special value in Morpho.

– The expression c<-e writes the value e to the channel c. If the channel
was in a writable state then this operation may succeed immediately and
the executing fiber then immediately continues executing. Otherwise the
executing fiber will wait until the channel becomes writable.

– The expression <-c reads a value from the channel c and returns it. If the
channel is in a readable state (already contains a value) then this may succeed
immediately, otherwise there is a wait, as in the above write operation.
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A Morpho channel can be shared by multiple Morpho fibers and Java threads.
Multiple channels can be monitored using a channel selector object.

The Morpho function in figure 1 reads all the values from a channel and
returns their sum.

1 ;;; Use: s = sumChannel(c);

2 ;;; Pre: c is a channel that generates numbers.

3 ;;; Post: All the numbers have been read from the channel and

4 ;;; s is their sum.

5 sumChannel =

6 fun(c) {

7 val eof = channelEOF ();

8 var sum = 0, x = <-c;

9 while x != eof {

10 sum = sum + x;

11 x = <-c;

12 };

13 return sum;

14 };

Fig. 1. Summing a channel

6 Locking with Channels

Since the channels in Morpho are not as synchronized as channels in CSP and
Newsqueak we need a bit more work to use channels for locking in Morpho. The
code in figure 2 shows a Morpho object definition of a simple lock object. A
system component (normally a task) can acquire the lock and be certain that no
one else has the lock and the same component should then release it once and
only once. Only one component can possess the lock at the same time. Such locks
are rarely (or perhaps never) needed in Morpho since the channels themselves
are easier to use directly in solving concurrency problems.

7 Streaming Channels

Sometimes the imperative programming of channels becomes inconvenient and
even confusing, for example when we need to navigate back and forth in the
communication stream or when we need to use the same stream of values multiple
times or in multiple places in the system. It then often is better to use a functional
programming style to package a channel into a stream. Streams are functional
programming constructs that stand for sequences of values. Streams may be
infinite, if needed, and have the nature that a value in the stream is not evaluated
until it is first used, whereupon it is memoized and not evaluated again upon
further accesses.
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1 ;;; Use: l = makeLock ();

2 ;;; Post: l is a new lock , in the free/unlocked state.

3 makeLock =

4 obj() {

5 var c = makeChannel ();

6 var tok;

7

8 ;;; The channel c receives lock requests. When

9 ;;; locked , tok contains a channel that should

10 ;;; eventually receive the lock release message.

11

12 ;;; initialization:

13 {

14 ;;; Start an independent task as a guard.

15 startTask(

16 fun() {

17 for (;;) {

18 ;;; The lock is free/unlocked

19 tok = <- c; ;;; Wait for request

20 ;;; A lock request tok has been received

21 tok <- null; ;;; Acknowledge request

22 ;;; The lock is locked

23 <- tok; ;;; Wait for release

24 ;;; The lock is free again

25 tok = null;

26 };

27 }

28 );

29 };

30

31 ;;; Use: l.lock ();

32 ;;; Pre: l is a lock.

33 ;;; Post: l has been acquired.

34 msg lock() {

35 val req = makeChannel ();

36 c <- req; ;;; Send lock request

37 <- req; ;;; Wait for acknowledgement

38 };

39

40 ;;; Use: l.unlock ();

41 ;;; Pre: l is an acquired lock.

42 ;;; Post: l has been released.

43 msg unlock () {

44 tok <- null; ;;; Send lock release

45 };

46 };

Fig. 2. Simulating a lock
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– The expression #[] stands for the empty stream.

– The expression #[ head $ tail ] creates a stream whose first value (the
head) is head, and whose tail (the rest of the values in the sequence) is
the result from evaluating tail, which may be any expression. As with lazy
streams in functional languages (see for example the pure functional Haskell
programming language [8]), the tail expression is only evaluated if and when
the tail is needed, so there is nothing to prevent us from creating infinite
streams.

– The expression streamHead(s) returns the head of the stream s.

– The expression streamTail(s) returns the tail of the stream s.

Figure 3 shows how to transform a channel into a stream.

1 ;;; Use: s = streamOfChannel(c);

2 ;;; Pre: c is a channel that generates some finite or

3 ;;; infinite sequence of values.

4 ;;; Post: s is a stream of the values generated by c.

5 streamOfChannel =

6 fun(c) {

7 val head = <-c,

8 eof = channelEOF ();

9 if head == eof { return #[]; }

10 else { return #[head $ streamOfChannel(c)]; };

11 };

Fig. 3. Transforming a channel into a stream

We can re-implement the sumChannel function as shown in figure 4.
We can also transform streams into channels as shown in figure 5.

8 Scalability

Morpho tasks and fibers offer one to three orders of magnitude better parallel
scalability than Java threads. A Morpho program can run well over a million
concurrent tasks and fibers on a 32-bit personal computer, which is likely to
be sufficient for the scalability needs of most current systems. On current 64-
bit hardware this number has been verified to go up to tens of millions. The
major reason for this improved scalability is that separate fibers and tasks in
Morpho do not need separate run-time stacks. Activation records (sometimes
called stack frames) in Morpho are not allocated on stacks but rather on the
heap. This causes the memory footprints of fibers and tasks to be in proportion
to the average length of the control chains instead of being in proportion to
the maximum length of the control chains or worse. Also, because of Morpho’s
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1 ;;; Use: s = sumChannel2(c);

2 ;;; Pre: c is a channel that generates numbers.

3 ;;; Post: All the numbers have been read from the channel

4 ;;; and s is their sum.

5 sumChannel2 =

6 fun(c) {

7 var s = streamOfChannel(c),

8 sum = 0;

9 while s != #[] {

10 sum = sum + streamHead(s);

11 s = streamTail(s);

12 };

13 return sum;

14 };

Fig. 4. Summing a channel again

1 ;;; Use: c = channelOfStream(s);

2 ;;; Pre: s is a stream of values. s need not be finite.

3 ;;; Post: c is a new channel that generates all the values

4 ;;; in s.

5 ;;; Note: s is unchanged.

6 channelOfStream =

7 fun(s) {

8 val c = makeChannel ();

9 startFiber(

10 fun() {

11 while s!=#[] {

12 c <- streamHead(s);

13 s = streamTail(s);

14 };

15 closeChannel(c);

16 }

17 );

18 return c;

19 };

Fig. 5. Transforming a stream into a channel

automatic elimination of tail-recursion, the control chains of running fibers are
likely to stay quite short, further reducing the memory footprint.

Morpho programs interface in a natural fashion, through channels, with the
new event-driven IO features of Java (Java.nio, see [10]), which gives us the
best of both worlds, the scalability of event-driven IO as well as the convenient
imperative and functional programming styles of Morpho channels and streams.



106 S. Agnarsson

Java.nio offers one to two orders of magnitude better scalability than regular
socket programming in Java, with respect to the number of concurrent connec-
tions that can be served.

9 Benchmarks

A well-known benchmark, the ring benchmark, was used to compare the per-
formance of Morpho with Erlang and Stackless Python. The code for Erlang
and Stackless Python was found on the web (see [12]). The benchmark creates
a chain of tasks connected by channels and passes messages through the chain.
Once a chain has been created in Morpho we have two channels, c0 and cN.
Sending a message into c0 will eventually result in the message coming out of cN
having passed through the whole chain of tasks.

The measurements were done on a 32-bit dual-core Pentium running Windows
Vista with 4 gigabytes of RAM. The ring benchmark was set up to use a chain
of 10,000 tasks and to pass 10,000 messages through the chain. The elapsed
time taken in Morpho was 3.7 times the time using Erlang (version V5.7.5) and
3.1 times that using Stackless Python (Python version 3.1.2, Stackless version
3.1b3 060516). The elapsed time durations using Erlang and Stackless Python
were quite similar, in contrast to the measurements reported on the web page
where the code for the Erlang and Stackless Python was found, where Stackless
was reported to have 1

12 the speed of Erlang. The reason for the discrepancy is
unknown.

The Morpho ring benchmark was also run on a dual-core Windows machine
with the added twist that each task was made to perform some CPU-time con-
suming computation on each message. Two different setups were used for this
benchmark, one where both cores were made available and one where only one
core was used. These measurements showed a 65%–75% performance increase by
utilizing both cores. The same tests were run on a lightly loaded 32-core Linux
computer and showed a speedup by a factor of over 13 times, which was the
ratio between best throughput with all 32 cores used and best with one core
used. The versions of Erlang and Stackless Python used for testing did not ben-
efit from access to multiple cores. Stackless Python does not support multi-core
processing but some versions of Erlang do.

The ring benchmark was also used to test how many Morpho tasks, Erlang
processes and Stackless Python tasklets could be used on Windows. Erlang failed
at 100,000 processes. While some Erlang implementations support more than
100,000 processes, other implementations use a 15-bit process identifier, which
puts a hard upper limit on the number of Erlang processes. Morpho easily sup-
ported 1,000,000 tasks and Stackless Python had no problem with 1,000,000
tasklets. Stackless Python failed (barely) at 2,000,000 tasklets whereas Morpho
succeeded (barely) with 2,000,000 tasks. Hence Morpho and Stackless Python
seem very comparable in task/tasklet scalability. These tests were done on a 32-
bit Windows Vista computer with 4 gigabytes of RAM. Furthermore, Morpho
succeeded with a ring of 32,000,000 tasks on a 64-bit 32-core Linux computer
with 128 gigabytes of RAM.
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10 Conclusion

Morpho can be used with Java to improve scalability and programming conve-
nience in massively parallel system development. The improvements are largely
due to a huge reduction in the memory footprint of Morpho tasks and fibers
relative to Java threads.
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Abstract. As the performance gains from traditional processors decline,
alternative processor designs are becoming available. One such processor
is the CELL-BE processor, which theoretically can deliver a sustained
performance close to 205 GFLOPS per processor[10]. Unfortunately, the
high performance comes at the price of a quite complex programming
model. In this paper we present an easy-to-use, CSP-like, communication
method, which enables transfers of shared memory objects. The channel
based communication method can significantly reduce the complexity of
massively parallel programs. By implementing a few scientific computa-
tional cores we show that performance and scalability of the system is
acceptable for most problems.

Keywords: CSP, CELL-BE, DSMCBE, channel communication.

1 Introduction

All current computers are fundamentally based on a Von Neumann architecture,
and all suffer from the “Von Neumann bottleneck”[1] which boils down to the
limited speed of transfers between the memory and the processor. The bottleneck
problem was defined by John Backus in 1977, and so far no solutions have been
provided to totally eliminate it, only approaches to help hide it.

The CELL-BE processor attempts to overcome the “Von Neumann bottle-
neck” using highly specialized processors, controlled by a more conventional
processor core. Conceptually the CELL-BE is not that different from a small
cluster-computer on a chip. Each of the specialized processors run their own
program, has their own small memory and communication among the proces-
sors are explicit. The processor cores exchange information through reading and
writing main memory, but with DMA (direct memory access) operations more
similar to IO than memory access. From the perspective of the specialized cores,
the main memory is more like a shared storage in a cluster than a conventional
main memory. The CELL-BE processor is a heterogeneous multi-core proces-
sor consisting of nine cores. The primary core is an IBM 64 bit power proces-
sor (PPC64) with two hardware threads, which is linking the operating system
and the eight powerful working cores, called the synergistic processing elements

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 108–118, 2012.
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(SPEs). The PPC and the eight SPEs are connected trough a 204.8 GB/s El-
ement Interconnect Bus (EIB)[5]. The computing power of a CELL-BE chip is
well investigated[13,9], and a single CELL blade with two CELL-BE processors
is reported to yield 460 GFLOPS. This is achieved at a rate of one GFLOPS per
second per watt[8].

As the CELL-BE architecture can be viewed as a cluster on a chip with eight
nodes, SPEs, and a PPE front-end, splitting an application into smaller tasks are
done in the same way as it would be done with traditional clusters. However, due
to the limited amount of local storage (LS) on the SPE units available for both
code and data, 256 KB, one has to consider the size of each task. This means
that an application which would be best parallelized by a bag-of-task model in a
cluster setup, might be best parallelized by a pipelined set-up on the CELL-BE.
If it does not fit into the LS, it might be useful to split it up into two, four or
eight pipelined stages depending on the size of the code.

The DSMCBE[11] system helps address this exact problem. With named
memory regions, each SPE can obtain a copy, possibly exclusive, of a given mem-
ory region. An operation that also works as a coordination mechanism. That is,
the process may choose to wait until the region is obtained before it continues.
The technique is simple since the only difference between mutex programming
and DSMCBE is that the locking also migrates the data into the active LS.

The simplicity and flexibility of the DSMCBE model means that it not only
works within a single address space for a CELL-BE system but also allows in-
clusion of SPEs on other CELL-BE processors in a cluster, LAN or even WAN
environment. Making the DSMCBE system an integrated distributed shared
memory system as well as a system for programming CELL-BE processors.

By using DSMCBE, the challenges with the CELL-BE becomes easier to
overcome, but it does not lead to flawless concurrent programs. Developers must
still be very aware of dead-locks, live-locks and race conditions, which most of
the times are very hard to discover at compile time and even at runtime. To
overcome these problems C.A.R. Hoare introduced the CSP (Communicating
Sequential Processes) data model in 1978[7]. This model is using explicit com-
munication through well defined channels and a concept of processes, each with
their own set of private variables. A CSP process can, from a programmers
perspective, be seen as a sequential program. Finally it is possible to mathemat-
ically prove that a program is free of deadlocks and livelocks[6]. CSP has been
implemented on multiple architectures and in many programming languages e.g.,
occam, C++CSP[12], JCSP[14] and PyCSP[3], but not yet on the CELL-BE.
This paper describes how to utilize the functionality of DSMCBE to make CSP
communication channels for the CELL-BE.

2 Work

One essential property of CSP, is the ability to move data to the processes that
require it. As we have previously made a DSM system for the CELL-BE, we
have used that as a base for the CSP channel implementation.
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2.1 DSMCBE

DSMCBE is an usermode library that offers a simple API for working with shared
memory regions. The user explicitly calls the three functions create, acquire
and release. Using these three functions, DSMCBE can implement release con-
sistency, which makes it possible for programs to share memory regions reliably.
The underlying transport of data is completely hidden from the usercode, giving
the programmer the illusion that memory is shared. Performance and scalability
are shown to be quite good for most computational problems[11].

The DSMCBE library consist of several elements. The most central element
is a single processing thread called the request-coordinator. Most of the other
elements of DSMCBE can communicate with the request-coordinator by supply-
ing a target for the answer. Using this single thread approach makes it simple
to execute atomic operations and reduce the total number of locks required.
The request-coordinator cannot determine if a participant is a PPC, SPE or the
network1. The main drawback for this simple single thread design is that the
thread may become a bottleneck.

Figure 1 shows the logical parts of the DSMCBE library.

Fig. 1. DSMCBE internal structure

2.2 Channels

Using a DSM system as the base for a CSP channel implementation makes the
data transfer operations simple, as they can use the DSM system directly. As
CSP channels are blocking, the DSM system must support blocking in some
way. Even though the DSMCBE system supports blocking multiple writers, it

1 The network component is not shown in figure 1.
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does not support resizing or deleting of shared regions. Therefore we have im-
plemented a blocking create option to DSMCBE, so that multiple create calls
are blocked until the shared region can be re-created. To ensure that the create
calls can be executed we have also implemented a delete operation that works
as an acquire call in write mode, but marks the object as deleted. This also
enables the processes to re-create the object with a different size. Using the
blocking create and acquire-delete calls, it is possible to implement a simple
CSP channel. Since it is possible to create a shared region without a pending
acquire, it is essentially a channel with a buffer size of one. This means that it
is not possible for the programmer to define a unbuffered channel.

Figure 2 shows the DSMCBE library extended with the channel wrapper.

Fig. 2. DSMCBE with channel wrapper internal structure

2.3 Implementation

To support a channel based communication, we have modified the create call
for the DSMCBE system to accept a blocking strategy for create call to items
that already exist. To ensure that the get function call is atomic, we have im-
plemented a delete function that removes and returns an existing item. As the
channel model means that the get call is expected to block, the delete call also
blocks until an item is created.

Rather than implement specific control structures for the get and put re-
quests, they are merely implemented as simple wrapper functions that call the
relevant version of the delete or create request respectively. As the create

and delete calls are ordinary DSMCBE calls, they are actually completely
asynchronous, simply forwarding a control structure. To adhere to the expected
behavior of channels, the get and put operations will immediately block until a
response is received, thus appearing to be normal synchronous calls.
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As shown in figure 1 all requests from a SPU is forwarded to a SPU handler
on the PPE, which is done using mailboxes. The SPU handler then forwards this
request to the request-coordinator, which is in charge of maintaining the state
and request queue for each item. When a request can be serviced, the request-
coordinator will send a response back to the SPU handler, which will initiate
DMA requests and ultimately respond to the SPU.

Internally in the DSMCBE model, each request is recorded in a simple FIFO
queue, making most operations run in constant time. This ensures that the
number of pending put requests do not affect the execution time.

3 Results

Using the simple channel communication system, we have implemented a few
experiments, that show how well the system performs and scales. For each ap-
plication there are some peculiarities that stem from the special hardware con-
struction that is found in the CELL-BE. To establish a realistic scenario for the
intended library usage, we have chosen one CSP experiment and two represen-
tative scientific computational cores. The first experiment is the CommsTime
which is widely used to measure the overhead in CSP implementations. The
second experiment (Prototein folding) is used to measure the implementations
capability of scaling. The Prototein folding application is a basic bag-of-tasks so-
lution that can be classified as an embarrassingly parallel application. The final
experiment is the Heat Equation application which has an entirely different type
of communication pattern and is an instance of the successive over-relaxation
solutions. This experiment is used to see how the implementation reacts on
heavy communication. The code for all experiments presented, as well as the
code for the DSMCBE and CSP model can be found on the DSMCBE website
http://code.google.com/p/dsmcbe

3.1 CommsTime

To measure the overhead of using the implemented CSP channels, we have cho-
sen CommsTime which is a well-known method to benchmark CSP systems.
CommsTime is used to compute the cost of a single channel communication op-
eration, and thereby it is possible to compare this implementation against other
CSP implementations.

As the CELL-BE processor has the eight available SPEs, we have executed
CommsTime with two to eight SPEs participating. The first SPE will run the
delta process that forwards the message and outputs the clock signal. The sec-
ond SPE will run the prefix process and inject the value to send around. Any
additional SPEs will run a delta process with one output, and just forward the
message. Each additional SPE will add a communication channel. The PPE
reads the clock signal from a channel and measures the time between each clock
signal. Figure 3 shows the conceptual setup with four participating SPEs.

http://code.google.com/p/dsmcbe
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Fig. 3. CommsTime conceptual diagram with four SPEs

Figure 4 shows how the CommsTime application performs and shows that
the CommsTime improve after two SPEs. This happens because the first SPE
outputs the delta signal, which means that it has two channels, where any addi-
tional process has only one outbound channel. After this initial stage, the times
are fairly constant, with a slight increase in time. This happens because the ac-
tual computation time on each SPE is very limited, and each SPE thus awaits
a PPU service most of the time. As there is only one PPU thread to service the
SPEs, the time between the service calls increase with the number of SPEs. To
remove bottleneck in the PPE from the system requires a change in the DSM-
CBE. To help remove this bottleneck, one could try to use multiple threads in
the DSMCBE SPE handler module. This could improved the performance be-
cause the SPE handler is in a spin-loop the most of the time. However, multiple
threads also requires more synchronization which do not improved performance.
A better solution would be to remove the spin-lock, but this is not possible due
to the hardware structure of the communication between the PPE and SPEs.
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A peculiar effect of the test is that the CommsTime problem runs a little
slower when then number of participating processes are odd. We expect that
this is due to a transfer aliasing effect, and is subject of further investigation.

Table 1 shows the CommsTime measure for several systems, and reveals that
the communication time is quite high compared to other CSP implementations.
This large communication time is mainly caused by the physically separated
memory blocks that require memory transfers. The number of messages passed
internally in the DSM system is also larger than the required minimum. This is
because the DSMCBE system supports multiple readers, which is not used in
the channel communication scenario.

Table 1. Performance of one CSP channel communication using several CSP frame-
works [4]

CSP Framework Time per iterations (microSec)

CSP for CELL-BE (avg.) 273
OCCAM (KRoC 1.3.3) 1.3

C++CSP 5.0
JCSP (JDK 1.4) 230

One important difference between the CELL-BE CSP channel implementa-
tion and the other implementations, is that for the other implementations, the
measured overhead is execution time on the processor that runs both user code
and CSP library code. In the CELL-BE implementation this is not the case, as
the CSP user code runs on the SPE units and the library code runs (mostly)
on the PPU. This means that even though the overhead is large compared to
the other implementations, the overhead runs in parallel with the user code, and
will thus be hidden in many real-life applications.

3.2 Prototein

A prototein is a model of a protein that only contains two amino acids and
only folds in 90 degree multiples. Folding a large prototein is a computationally
intensive task, but is embarrassingly parallel since the subtasks have no inter-
dependencies. We have implemented a single channel to dispense the subtasks,
making it a bag-of-tasks type of implementation, with a single writer and multi-
ple readers. The PPU is responsible for the initial problem division, and writes
partially folded prototeins into the channel. Each participating SPU reads the
partially folded prototeins from the same channel and completes the fold. Each
SPU reports the best possible fold back to the PPE, which then picks the overall
best fold. Figure 5 shows a conceptual setup of the communication pattern in
the prototein folding.

As seen in figure 6, the prototein problem scales close to perfectly. The channel
based implementation is slightly faster than the DSM implementation, because
the bag(-of-tasks) is a shared object in the DSM model, where this is handled by
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Producer
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Collect

PPE
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Fig. 5. Prototein conceptual diagram with three SPEs

blocking the requests in the channel version. This also means that the channel
based model scales marginally better. The PPU service problem is not as present
as in the CommsTime test because the SPEs actually do some computation and
do not require the PPU service as often.
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Fig. 6. Prototein folding has near optimal performance scaling

3.3 Successive over-Relaxation

In the final experiment we have implemented an example of successive over-
relaxation (SOR) where a large block is initialized with a temperature of zero in
the middle and -273.15 on the sides. The temperatures movement in the block
is then simulated by successive over-relaxation in discrete time steps. After 1000
iterations, the simulation is stopped.

Each SPU is responsible for handling a fragment of the total simulated area,
which is managed with double buffered transfers through the DSMCBE system.
The shared boundaries between the fragments are coordinated through a chan-
nel for each SPU pair. The first and the last SPU has a single channel, where
all others have two channels, one for the upper shared boundary, and one for



116 K. Skovhede, M.N. Larsen, and B. Vinter

the lower. Each half iteration consists of applying a SOR for one half of the
points, followed by an exchange of boundaries. A full iteration is performed with
repeating the half-iteration twice, each with a different half of the points. Figure
7 shows the conceptual communication pattern for the SOR sample application,
and illustrates the lock-step setup.

Worker Worker Worker Worker

Fig. 7. HeatEquation conceptual diagram visualizing worker dependence

1

2

3

4

5

6

7

8

 1  2  3  4  5  6  7  8

Sp
ee

du
p 

fa
ct

or

Number of SPEs

Heat Equation

Channel based

Fig. 8. HeatEquation suffers from contention on PPU resources

Figure 8 shows how the CSP model scales with one to eight SPE units, utilizing
two PPU threads. As can be seen the problem does not scale well beyond four
SPEs. The hard time constraints inherent in the problem, means that before
each round can begin, all the processes must synchronize. This results in the
slowest process preventing faster processes from completing.

Since the objects that we simulate are so large that they cannot fully fit
in memory on the SPE units, we use the DSMCBE system to load memory
regions onto the SPE units. This loading uses the same system as the channel
communication, which naturally influences the measured times.

The overall problem with scalability in this example is the amount of service
required from the PPU. Even though the SPE units handle the actual compu-
tation, they rely on the PPU for transferring both shared and private blocks.
When the number of participating SPEs increase, so does the number of requests
to the PPE. As a single slow SPE blocks all other SPEs, any delay in handling
the requests propagate, resulting in the scalability problem seen in figure 8.
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4 Conclusion

The absence of race-conditions in a channel based communication pattern, sig-
nificantly reduces the program complexity. The reduced complexity comes at
the expense of a drop in performance. Even though the overhead in the chan-
nel model is fairly high, the scalability is quite good. The scalability combined
with the massive processing power offered by the SPE units, makes the library
attractive for a number of tasks such as protein folding.

Clearly problems that are computationally intensive but have low memory
requirements scale very well on the CELL-BE. When the problems have large
memory requirements, the data transfers become the bottleneck. As DSMCBE
is capable of performing asynchronous transfers, the transfer times can be hid-
den by performing overlapped execution. Hopefully overlapped execution can be
exploited when buffered channels are implemented. There exists a boundary for
the smallest number of computations done on a single byte, before the bytes
transfer time can be hidden. What this boundary is has not been examined, but
is excepted to be around 20-30 floating point operations per byte.

All work on DSMCBE and the CSP implementation, including the experi-
ments, is released as open source under the LGPL license, and is available from
the website: http://code.google.com/p/dsmcbe

5 Future Work

The underlying DSM system is optimized for multiple readers and multiple writ-
ers, which means that the object is recorded and managed in multiple places.
Since channel objects can only exist in one place, there is a large potential for
optimization. Once the basic channel system is in place, it would be desirable to
implement a full CSP model with alternating channels. To ease the use of the
channels it would be desirable to use a common standard for channels e.g., the
one used in PyCSP, JCSP.

With CSP channels for the CELL-BE the next step is to make CSP processes.
With the DSMCBE functionality to transfer data among the CELL-BEs, it
would make good sense to use DSMCBE to transfer the CSP processes (user
code). Once the code has arrived at the designated execution unit it can be
executed. Some work relating to relocation of processes has already been done,
but making a “real” thread library for the SPEs is not a trivial task. The fact
that the SPEs do not have more then 256KB of LS, means it is possible that
threading is not a feasible solution when we want many (100+) threads. Some
work have however been done in this field[2], but at the time being it only
supports a small number of threads.
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Abstract. The paper discusses implementation issues of a distributed
program design tool based on monitoring of application global states.
It is shown how the experience from the PS-GRADE parallel program
design tool with controlling distributed programs at the process level,
based on the extensive use of signals, can be transferred at the level of
threads. A programming technique is proposed to combine the use of
process level communication libraries like MPI or sockets with the use
of thread level libraries like OpenMP or pthreads. It enables designing a
graphical parallel program development framework which uses signals at
the level of distributed threads executed in multiple cores of processors.
Viable implementation of global state monitoring and involved control
data transmissions at the level of threads are discussed.

Keywords: parallel program design tools, distributed program execu-
tion control, global program states monitoring, multithreading technique.

1 Introduction

The paper is concerned with the implementation of a novel control paradigm
in distributed program design tools. This new control design paradigm and the
underlying program design tool extend current practice and assume construct-
ing program execution control based on evaluation of predicates on application
global states [5,8,9]. Control predicates implement a generalized synchronization
of distributed program elements and are used to generate global control signals
which influence execution of parallel processes and threads in programs.

The idea of global control of processes in parallel and distributed programs
has been considered in literature and has some implementations. A classic ex-
ample is the Linda environment [1] which uses a common global tuple space
and simple primitives to write and read to/from it. Another approach is present
in coordination languages. Manifold and Reo [2] enabled binding software com-
ponents into coordinated structures. Components interacted with neighboring
components using channels, however without a notion of a global state intro-
duced. Global states are used as foundations of the Meta system [3] meant to
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glue together the components of distributed programs. In Meta, the processes
were able to report their states through so called sensors, the states were com-
bined to form consistent global states on which global predicates were analyzed.
A complicated notation based on guards is used to program a desired behavior.
There is a try to simplify this notation in the Lomita language [3]. Lomita has
proved to be inefficient due to very costly ordered broadcasts used to guaran-
tee proper message order delivery. Global control constructs for the OCCAM
language are proposed in [4] based on replication of state variables.

A complete environment for designing program execution control based on
predicates computed on global application states was implemented as the PS-
GRADE framework [10,12]. PS-GRADE offers a graphical user interface taken
from [11] and includes a system infrastructure which enables programmers to
design the global program control based on application states monitoring. The
control is de-coupled from a program computational code and located in spe-
cial processes called synchronizers. PS-GRADE synchronizers collect local state
information from processes, construct global consistent application states and
evaluate on them control predicates. The predicates represented control condi-
tions, which if fulfilled, asynchronously influence process behavior. To achieve
such asynchronous control, specific signals were dispatched from synchronizers to
application processes. Such a methodology improves standard program practice
where the code responsible for synchronization and control is usually scattered
in the program code in a chaotic unstructured way. PS-GRADE was built for
single core processors and no global control means at thread level have been
embedded in this system.

This paper discusses implementation issues of a new program design tool
which aims at the design of distributed programs execution control based on
monitoring of global application states both at the process and thread levels.
It requires new programming techniques to comply with process level commu-
nication libraries like MPI or sockets and thread level libraries like OpenMP or
pthreads in programs executed in manycore processors. The new design frame-
work additionally extends the global control in distributed programs towards
high level control constructs at the level of processes, governed by predicates
evaluated on global application states.

The paper presents an analysis of viable implementation methods of involved
control at the level of processes and threads for global control in parallel pro-
grams. The paper is composed of three parts. In the first part, program global
control principles based on predicates computed on global application states are
explained. The second part deals with the program execution control based on
Unix signals in multithreaded environments. The third part presents an exam-
ple of an application design based on the proposed program execution control
development framework.

2 Global Predicate-Based Program Control

The parallel program control method based on global application state moni-
toring implemented in the PS-GRADE system was meant for execution on a
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distributed system with partially synchronized processor clocks. Special syn-
chronizer processes collect messages about local states of application processes
accompanied by the timestamps measured with a known accuracy of clock syn-
chronization, construct consistent or observed global (or regional) states [6,7] and
evaluate control predicates on them. A synchronizer is connected with, observed
and controlled process by message passing channels, see Fig. 1(left).

 Sync 1 

SR 
  SR

Proc 1

SS
Proc 2 

SS 
  Proc 3

SS

1 
  

standard message passing channels 

local state info transfer channels

signal transfer channels 
  

 

start signal-
sensitive region main 

code 
signal 

activated 
code  

signal 
input port 

send 
state 

end signal-
sensitive region 

Fig. 1. A simple PS-GRADE application (left), a process control flow in PS-GRADE
(right)

Three lower boxes represent application processes, which can be run on a sep-
arate computer. The arrows depict message passing channels (for data exchange
between processes) and communication channels with the synchronizer. A pro-
grammer defines control predicates as required for a particular application. If
a predicate is satisfied, control signals are dispatched by a synchronizer to pro-
cesses, causing activation of the code associated with a given signal, or canceling
current computations and omitting a section of the program code. An example of
a PS-GRADE process control flow diagram is shown in Fig. 1(right). SEQ boxes
contain sequential C code, TF branches represent conditional execution, other
instructions like loops, send, receive are represented by other pictograms. The
control flow is divided between the main branch, which is executed normally,
and a number (one on the example) of branches activated by a signal reception.

Inter-node communication from synchronizers has been implemented through
message passing, using messages containing information about signal type, sig-
nal parameters and the receiver. Dedicated processes called “dispatchers” were
responsible at each node for local signal handling, Fig. 2. Dispatchers translated
messages to Unix-type signals, which were the only available technical means to
implement asynchronous reactions. The use of real–time signals dispatched with
the sigqueue() call let us associate a parameter with a signal. The parameter has
been used as a pointer to a structure containing all parameters required by the
activated code and obtained from a synchronizer. Code execution cancellation
used also UNIX signals.
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Fig. 2. Asynchronous signal transmission is PS-GRADE

Based on the PS-GRADE experience, we are currently building a new pro-
gramming framework in which the program execution control based on global
application states monitoring has been extended to influence the flow of control
at the global level of processes and the internal behavior of threads. We intro-
duce an additional graphical program specification level where we define a global
control flow graph of a program. The control flow graph contains program code
blocks, control flow switch blocks, global synchronization blocks and predicates
blocks that participate in the design of the global control in the program. The
blocks are interconnected by control flow edges to represent graphical simple or
replicated control flow constructs. At this level, an image of block control inter-
actions is specified by means of a list of predicate arguments in terms of graph
blocks and a list of signal targets, separated by a semi-colon. Inter-block edges,
represent the flow of control signals generated by predicate blocks. To simplify
program graphs, transfers of local block states are not represented graphically
at this level.

An exemplary simple control flow graph in the extended program design
framework is shown in Fig. 3 (left). Here we have n program blocks (P1,...,
Pn) embedded in a PARALLEL WHILE DO construct. The flow of control in
the loop is determined by a global predicate GP1. It is evaluated on the basis
of a global state built of local states of B1,..., Bm program blocks (processes or
threads), included in the control flow diagram of the program. GP1 sends control
signals to the switch SW which directs the flow of control in the graph. Actions
of the switch stimulate actions of a hidden Execution Control (EC) system pro-
cess, which co-ordinates execution and manages process creation, activation and
synchronization. In Fig. 3 (left) actions of EC correspond to parallel control con-
structs: parallelize (PAR) and synchronize all blocks completion (JOIN). The in-
ternal behavior of processes P1,..., Pn is asynchronously controlled by the global
predicate GP2 based on a global state composed of local states of P1,..., Pn in
the similar way as in PS-GRADE. Nested control structures are allowed in the
graph. By opening a new graphical window a programmer can insert a high level
control construct into an existing program block. Ports at the block boundaries
are generated to enable graphical design of a consistent flow of control.
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Fig. 3. PARALLEL WHILE DO construct with a control flow predicate GP1 and an
asynchronous control predicate GP2 (left), process P1 internal window (right)

Terminal program blocks, which do not contain nested high level control con-
structs, represent application processes. The processes are next composed of
parallel thread blocks and thread level synchronizers using a lower level graph-
ical window, Fig. 3 (right). The blocks in this window are next specified using
the C/C++ language and the pthreads, OpenMP and MPI libraries in spe-
cial text editing windows. At this level, a programmer can define asynchronous
global thread execution control based on thread level synchronizers. The syn-
chronizers are implemented as special threads which collect state information
from standard application threads, determine control predicates on constructed
global thread states and send signals to threads to stimulate asynchronous reac-
tions. For thread assignment to processor cores inside thread blocks the OpenMP
thread_affinity and pthreads_affinity facilities are used [13].

Global control predicates used in program execution control, can be exten-
sively applied to optimized scientific computations. An important problem in
scientific computations is run-time optimization of the use of computing system
resources. An important kind of such optimization is load balancing of proces-
sors in clusters, which leads to heuristic reduction of the total program execution
time. The infrastructure for the proposed control method – application state re-
porting, global state analysis, control signal dispatching, asynchronous reaction
to signals – suites very well implementation of load balancing in scientific compu-
tations. A user needs to define a processor load measure to be sent as the current
process state, predicates to analyze the load imbalance to take some load control
decisions and finally the code activated by control signals which works for the
elimination of loading imbalance by transferring load to less charged processors
or migrating parts of the application code. Each of the mentioned components
can be easily adapted to specific scientific computing problem needs by pro-
gramming the synchronizer-related fragments of the code. It enables flexible
user-defined load balancing in parallel scientific applications.

Very frequently scientific computations show irregular parallelism features,
where the irregularity is caused by dynamic nature of control and data depen-
dencies between parallel tasks. As an effect, the processes may need to frequently
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exchange values of calculated parameters using an unpredictable and changing
communication pattern. They may need to perform dynamic load balancing to
maintain good efficiency. They may also need to stop and resume often, depend-
ing on the state of other processes. In a classical design, a programmer has to
program all the control code and logic from scratch, and deal with a plethora
of messages, some of them having control meaning, some carrying data. In our
approach, a programmer gets a complete global infrastructure, on top of which
the control strategy suitable for a particular irregular problem can be realized.
By making an application global state available for a programmer we facilitate
the use of such control. Current dynamic dependencies between processes can
be easily analyzed, as they are reflected in process states included in the global
states. Then, control signals and the code activation/cancellation mechanism
enable an easy creation of sophisticated control patterns. The efficiency of the
proposed control method for irregular numerical computations was shown in [12],
by examples of a branch and bound computation for the Travelling Salesman
Problem and an adaptive numerical integration. The obtained parallel speedup
was generally not worse, and mostly, considerably better than that without the
proposed control method.
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Fig. 4. Control communication for global states synchronization

3 Signal-Based Asynchronous Global Thread Execution
Control

Communication involved in distributed program execution control governed by
global application states monitoring includes control data communication at
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process level and at thread level, Fig. 4. A process usually contains a number
of parallel computational thread blocks and some thread synchronizers used to
control process threads. To implement asynchronous global control at the level
of threads we have used shared memory communication and Unix signals mecha-
nism. Thread synchronizers collect state information from computational threads
via shared memory, evaluate control predicates and send signals to threads to
modify their behaviour. Thread synchronizers can also send state information
to - and to receive signals from synchronizers in other processes. For processes
allocated to different processor nodes this control communication is done by
message passing using the MPI library. All inter-processor transfers initiated
by thread synchronizers are delegated to separate shadow proxy synchronizers,
which exchange control data (representing states or signals), taken from the
process shared memory, by MPI message passing. All message transfer requests
generated by thread synchronizers are collected in a queue, which is inspected
and serviced in MPI by a proxy synchronizer. One inconvenience is that all con-
trol information messages are serialized in a proxy synchronizer, however, several
proxy synchronizers can be organized in parallel if network resources allow.
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Fig. 5. Asynchronous signal transmission with presence of threads

Signal transmission from a thread synchronizer to a dedicated thread was
a separate problem to be solved. We wanted to follow the concepts from the
PS-GRADE environment (see Fig. 2). From a number of thread signal types
in Linux, we decided to use real-time signals, because delivery of such a signal
is guaranteed and it can carry a pointer of a data structure with parameters
necessary to interpret the signal. We have examined the system level threads
and pthread libraries, but, even with the use of system level functions, it was
not obvious how to send a UNIX real-time signal to a specific system thread
(pthread_kill() uses standard signals). There are 32 different real-time signals
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allowed in a Linux process. Each thread can block signal reception of all real-
time signals except one. Now, by sending a proper real-time signal (one from 32
available) we can address a specific thread. This limits us to 32 synchronizer-
controlled threads per process, but this limit seems reasonable for current im-
plementation. Fig. 5 illustrates the new transmission method. Messages trans-
mitting signals from synchronizers are addressed directly to processes (notice
no dispatcher process from PS-GRADE) and stored in shared memory read by
thread synchronizers.

OpenMP library is designed for using threads at a higher control level and
it contains no methods whatsoever for handling signals, which we would like
to provide in our framework. However, OpenMP implemented within the GCC
compiler uses the pthread library to create and manage threads. Therefore, it
seemed possible to treat OpenMP abstract threads as pthread threads in an
asynchronous signal delivery code. This idea is illustrated in the skeleton example
below.

1. void signal_handler (int signal_number ) {
2. int id = omp_get_thread_num ();
3. printf (" Interrupted thread no %d.\n", id);
4. }
5.
6. struct sigaction sa , oldsa;
7.
8. int main(int argc , char *argv []) {
9. sigset_t blocku1;
10. sa.sa_handler = signal_handler ;
11. sigaction (SIGUSR1 , &sa , &oldsa);
12. sigemptyset (& blocku1 );
13. sigaddset (&blocku1 , SIGUSR1 );
14. pthread_sigmask (SIG_BLOCK , &blocku1 ,NULL );
15. omp_set_num_threads (4);
16. #pragma omp parallel shared(blocku1)
17. {
18. #pragma omp single
19. {
20. printf (" Program runs on %d threads .\n",
21. omp_get_num_threads ());
22. }
23. if( omp_get_thread_num () == 2)
24. pthread_sigmask (SIG_UNBLOCK , &blocku1 , NULL );
25.
26. do_something (omp_get_thread_num ());
27. }
28. return 0;
29. }

In line 14 we block reception of signal USR1. In line 16 we create parallel
threads using an OpenMP directive. The threads inherit their signal mask from
the main thread. In lines 23 and 24 we select thread number 2 and let it unblock
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reception of the USR1 signal. Each of the 4 created threads executes function
do_something(). The USR1 signal sent to the process containing these threads
during execution of the do_something() function will be handled by the thread
number 2 only. Thus, it is possible to mix an OpenMP code with the pthread-
based signal handling when organizing an asynchronous global control of parallel
execution of threads. We should notice that threads control through signals under
OpenMP can be implemented in a straightforward way only for simple threads
explicitly created by the #pragma omp parallel directive for noniterative com-
putations. Parallel threads created for iterative computations by the directive
#pragma omp parallel for are more cumbersome to be asynchronously controlled
and to specify a signal handling code. Therefore, they are not suggested to be
globally monitored and controlled by signals.

The described program design framework with the control features as above
is under implementation under Linux in a cluster of quadcore Intel processors
interconnected by a dual communication network, including the following fea-
tures. Inter-processor control data communication for state reports and signals
is performed by message passing in a separate Infiniband network. Computa-
tional data communication is performed by a separate Ethernet network. The
C language with the MPI2, OpenMP and pthreads libraries are used for writ-
ing application programs and the framework control code. Processor clocks are
synchronized using the Precision Time Protocol (PTP) [14] based on the use of
the Infiniband network.

4 An Application Example Design in the Proposed
Framework

Fig. 6 shows a parallel application scheme which a user can define in the pro-
posed environment with program execution control based on global application
states monitoring. The example concerns a branch and bound algorithm for the
Travelling Salesman Problem.

The application is parallelized by the use of 3 worker processes which are
assigned to processor nodes in the system. The nodes are multicore, so the pro-
cesses are further parallelized at the level of threads assigned to cores. At the
process level, we organize a loop controlled by the synchronizer GSync based on
the predicate MoreIterations. This predicate takes into account the progression
of the solution search and decides if the computations should proceed further.
The predicate can be connected to other parts of the application (not shown in
the picture) to get requirements from them concerning the quality of the solution.
One of the processes starts computations by creating a number of sub-solutions
to be further analyzed and developed. All processes report to the synchronizer
GSync the number of subsolutions they have to process. The synchronizer de-
cides (predicate LoadImbalance) if and what work (subsolutions) transfer should
be done to have all processes working and no one idle. Using control signals it
requests from processes to migrate pools of subsolutions to balance load in the
system asynchronously to ongoing computations – a process / thread does not
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need to wait or periodically check if load balancing action is pending/is neces-
sary. Additionally, upon finding a new local best solution a process reports it
to GSync which confronts it to the best solutions known to him so far in the
predicate NewBest. If the solution is the best, GSync broadcasts it by signals to
other processes, so they are able to eliminate not perspective subsolutions.

At the thread level each process runs 3 parallel threads globally controlled by a
local synchronizer ThSync. A similar control scheme as described at the process
level is embedded within each process using a local thread level synchronizer.
ThSyncs act as control interfaces between the global synchronizer GSync and
local threads enabling better distribution and parallelization of control actions.
Upon reception of control signals from GSync they direct the appropriate local
signals to threads. When a thread reports a new state to ThSync it checks if
the whole process enters a new global solution state. If this is the case, ThSync
reports a new process state to the global synchronizer GSync.
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Fig. 6. The control flow graph of the application

Each thread runs a branch and bound computation code represented by the
left-hand side of the detailed thread diagram in Fig. 7. In the main computational
loop, subsolutions from a local pool are branched and evaluated (bounded) one
by one. During the computations, local state (workload and found best solutions)
are reported to a thread synchronizer. Whenever a signal is received, its handling
code represented by the right-hand-side is activated. A signal handling can use
parameters delivered with the signal, e.g. which process is under-loaded and



Global Asynchronous Parallel Program Control for Multicore Processors 129

waiting for work. When the signal handling is done, the control returns to the
left hand side code, to the place it was interrupted. Depending on a variable
sent with a signal, the standard computational loop can be broken and a desired
work redistribution can take place.

synchronization 
signal handling  
activation and 
cancelations

start of a program region sensitive 
to synchronization signals

end of a region sensitive to 
synchronization signals

region is sensitive 
to signals 

get next subSolution;
branch/bound

develop and evaluate

send load info
if best solution

send best info

loop control

work redistribution

send/recv
work

break the
loop

accept new
best solution

do_LB break new
best

signal type

signals:
• do_LB
• break
• new_best

redistribute?
F

T

Fig. 7. The flow diagram of a thread

The global synchronizer GSync can break the branch and bound computations
in all processes based on the predicate StopIteration when a good enough solu-
tion has been found, or when the asynchronous load balancing among processes
is not satisfactory. In the latter case, a complete work redistribution should be
performed. When leaving an iteration, the processes start waiting for next acti-
vation (next iteration) and the control decision is taken if another loop iteration
should be done. The decision is exercised into the control flow action performed
by the switch, based on the recently received signal from the MoreIteration pred-
icate contained in GSync. If no breaking the loop signal has arrived, execution
of next iteration is enabled.

5 Conclusions

Distributed programs execution control based on monitoring of global appli-
cation states at the process and thread levels to be included in a new tool
for program design, has been discussed. New ways of implementing the local
state communication based on shared variables and signals have been proposed.
Methods for combining the use of thread level libraries for organizing control in
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threaded programs with process level communication have been shown. The dis-
cussed methods and the underlying program design framework enable extending
the distributed program control based on program global states monitoring the
process level towards implementation in distributed threads executed in multiple
cores of contemporary processors.
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Matthias S. Müller1, and Wolfgang E. Nagel1

1 Center for Information Services and High Performance Computing,
TU Dresden, 01062 Dresden, Germany

matthias.lieber@tu-dresden.de
2 Max Planck Institute for Meteorology, Hamburg, Germany

3 Leibniz Institute for Tropospheric Research, Leipzig, Germany

Abstract. To study the complex interactions between cloud processes
and the atmosphere, several atmospheric models have been coupled with
detailed spectral cloud microphysics schemes. These schemes are com-
putationally expensive, which limits their practical application. Addi-
tionally, our performance analysis of the model system COSMO-SPECS
(atmospheric model of the Consortium for Small-scale Modeling coupled
with SPECtral bin cloud microphysicS) shows a significant load imbal-
ance due to the cloud model. To overcome this issue and enable dynamic
load balancing, we propose the separation of the cloud scheme from the
static partitioning of the atmospheric model. Using the framework FD4
(Four-Dimensional Distributed Dynamic Data structures), we show that
this approach successfully eliminates the load imbalance and improves
the scalability of the model system. We present a scalability analysis of
the dynamic load balancing and coupling for two different supercomput-
ers. The observed overhead is 6% on 1600 cores of an SGI Altix 4700 and
less than 7% on a BlueGene/P system at 64Ki cores.

Keywords: atmospheric modeling, spectral bin cloud microphysics,
scalability, dynamic load balancing, model coupling.

1 Introduction and Related Work

Cloud processes still represent one of the major uncertainties in current weather
forecast, air quality, and climate models [1,3,24]. This, however, contrasts to their
high importance to the atmosphere. It is obvious that future high-resolution at-
mospheric models require a more detailed description of cloud processes in or-
der to achieve more realistic predictions of, e.g., extreme weather events. Most
of today’s atmospheric models describe cloud microphysical processes with a
bulk approach. The so-called one-moment bulk schemes represent the hydro-
meteor classes (e.g. cloud water, graupel, and snow) by their bulk mass only
and assume a prescribed size distribution of the particles. Two-moment [21] and
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multi-moment [16] schemes extend the description of each class by additional
prognostic variables, such as the hydrometeor number density. This allows a
better parameterization of the size distribution function. However, several stud-
ies emphasize the importance of a size-resolving approach [5,13]. Such spectral
microphysics models explicitly characterize the size distribution of the hydro-
meteors by applying a bin discretization. Spectral microphysics schemes have
been introduced in the PSU/NCAR Mesoscale Model (MM5) [13], the Weather
Research and Forecasting Model (WRF) [12], and the COSMO model (Con-
sortium for Small-scale Modeling) [6]. One of the challenges for the application
of spectral bin microphysics schemes in atmospheric models is their enormous
computational complexity. Thus, they have been applied for process studies only,
but not for operational applications and it is very unlikely that such schemes
will be used for numerical weather prediction or climate studies in the near
future. Nevertheless, they are an interesting method for research applications,
such as studies on the aerosol-cloud interaction [18], air quality modeling [7] or
as benchmark for bulk schemes [22]. Because of their huge computational costs,
a high scalability on high-performance computing systems is essential to use
such models for comprehensive studies. However, this is complicated by severe
load imbalances induced by the spectral microphysics: Cloudy areas of the model
domain generate a substantially higher workload than cloudless areas. Such irreg-
ular workload variations require dynamic load balancing techniques [25], which
readjust the partitioning periodically during the run time to maintain an equal
distribution of the computational work. Note, that only a few of the widely-
used atmospheric models support dynamic load balancing: parallel versions of
MM5 [15] (discontinued) and the Regional Atmospheric Modeling System [26]
(experimentally).

We propose a dynamic load balancing scheme for detailed cloud models. The
basic idea is to decouple the partitioning of the cloud model from the atmo-
spheric model’s partitioning. Instead of creating data structures for the hydro-
meteors within the atmospheric model, these data are managed by a highly scal-
able framework, which dynamically balances the workload over the parallel pro-
cesses. For this task we have developed the framework FD4 (Four-Dimensional
Distributed Dynamic Data structures [9,11]). To our knowledge, such dynamic
techniques have not yet been used for detailed cloud models. Due to the sepa-
ration, both models need to be (re)coupled and thus form a system comparable
to climate models in the way the coupled atmosphere and ocean model commu-
nicate regularly with each other.

Several software frameworks and tools have been developed to provide ser-
vices for the parallel implementation of complex simulation codes, such as dis-
tributed data management and dynamic load balancing [4,25], adaptive mesh
refinement [2,27], and model coupling [8,19]. FD4 integrates dynamic data man-
agement, load balancing, and coupling into a single framework to operate on the
same data structures, which allows more performance optimizations compared to
the utilization of separate software for these tasks. However, specialized frame-
works offer more functionality than FD4, like grid interpolation for coupling,
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the selection of various partitioning methods, or adaptive mesh refinement. FD4
has been developed for the parallelization and coupling of detailed cloud models.
For example, to account for the requirements of size-resolved cloud microphysics
models, the framework is optimized for large numbers of values per grid cell.
However, FD4 can also be used for other multiphase or multiphysics applica-
tions. FD4 is written in Fortran 95 and uses MPI-2 [14] for parallelization. It is
available as open source software at http://www.tu-dresden.de/zih/clouds

The rest of the paper is organized as follows: In the next section we intro-
duce the atmospheric modeling system COSMO-SPECS and explain why the
detailed microphysics scheme causes load balance issues. In Sect. 3 we describe
the dynamic load balancing approach applied in the recently developed COSMO-
SPECS+FD4 and briefly introduce the framework FD4. Finally, in Sect. 4, we
show performance results of a benchmark scenario on two different supercom-
puters comparing both versions of the modeling system.

2 The Atmospheric Modeling System COSMO-SPECS

The model system COSMO-SPECS [6] has been developed to study the interac-
tion between aerosols, clouds, and precipitation with a high level of detail. It con-
sists of the COSMO model (http://www.cosmo-model.org), a non-hydrostatic
limited-area atmospheric model, and the spectral microphysics model SPECS
(SPECtral bin cloud microphysicS [23]). From the implementation point of view,
the cloud parameterization scheme of COSMO has been replaced by SPECS,
which introduces 11 new variables to describe three types of hydrometeors (wa-
ter droplets, frozen particles, and insoluble particles). These 11 variables are
discretized into a predefined number of size classes (e.g. 66 for the case pre-
sented in Sect. 4), leading to a high amount of data that have to be allocated
for each cell of the rectangular grid.

Since the cloud microphysical processes operate on much smaller time scales
than the dynamical processes in COSMO, two different step sizes are applied for
the time integration. The COSMO step size is about 10–100 s, whereas the step
size for the microphysics is at most 1 s. This splitting amplifies the computing
time proportion of SPECS and, consequently, the model system’s run time is
dominated by the microphysics computations. Additionally, the computing time
of SPECS per grid cell varies strongly depending on the range of the present
size distribution for the three hydrometeor types. Especially the existence of
frozen particles, which triggers additional computations, leads up to a 10 times
increase of the computational costs compared to clear sky. The relation between
the concentration of cloud particles and the computing time is shown in Fig. 1.
COSMO is MPI-parallelized using a static domain decomposition of the hori-
zontal grid into regular rectangular partitions. Due to the mentioned variability
of the computational costs of SPECS, severe load imbalances occur, which lead
to a significant waste of resources and insufficient scalability.

http://www.tu-dresden.de/zih/clouds
http://www.cosmo-model.org
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Fig. 1. Comparison of cloud particle mixing ratio and computing time of the spectral
bin microphysics model SPECS for a vertical cross section through a simulated cumulus
cloud. The plot on the right shows the computing time of one small time step of SPECS
running on an SGI Altix 4700 (1.6GHz Itanium2 processor).
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Fig. 2. Coupling concepts for cloud microphysics in atmospheric models: (a) Submod-
ule based on data structures of the atmospheric model, (b) Separated data structures
and decomposition using a data management framework

3 Load Balancing and Coupling Using FD4

In the original COSMO-SPECS implementation, the microphysics is incorpo-
rated as a submodule in the COSMO model, see Fig. 2(a). To enable the ap-
plication of dynamic load balancing for the cloud model, we separated the hy-
drometeor data and related computations (microphysics and advection) from
the COSMO model, see Fig. 2(b). These data are managed by the framework
FD4 [9,11], which has been developed for the parallelization of multiphase cloud
models. The program flow of one time step in COSMO-SPECS+FD4 is shown
in Fig. 3. FD4 balances the microphysics computations and transfers coupling
data between the different partitionings. The extensive hydrometeor data exist
in the FD4 data structures only and are not exchanged with COSMO.

FD4 Data Structure. FD4 decomposes the regular grid in the three spatial
dimensions into rectangular blocks, which consist of multiple grid cells. These
blocks represent the smallest unit for load balancing. Consequently, their total
number should be large enough to enable a fine-grained load balancing. FD4
allocates the data fields in the blocks according to a variable table that is specified
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Fig. 3. Program flow of one time step in COSMO-SPECS+FD4 and exemplary illus-
tration of the spatially different partitionings for COSMO and SPECS. The 6 parallel
processes perform computations for COSMO and SPECS alternately. The partitions of
each process for COSMO and SPECS are indicated by numbers 1–6. The SPECS com-
putations are performed using a predefined number of smaller time steps per COSMO
step.

by the user. An iterator is provided to traverse through the list of local blocks
and access the data.

Dynamic Load Balancing. The blocks are distributed across the processes
using space-filling curve (SFC) partitioning [25]. In general, SFCs provide a fast
mapping from n-dimensional to one-dimensional space that preserves spatial
locality. FD4 uses a Hilbert SFC [20] to reduce the three-dimensional partition-
ing problem to the contiguous partitioning of a one-dimensional array of block
weights. For optimal load balance, the maximum load (bottleneck value) among
all partitions has to be minimized. Several heuristics and exact algorithms exist
for this problem [17]. FD4 uses a trivial parallel algorithm: Each process checks
for a different bottleneck value whether a partitioning exists for it. Then, the
minimum of the valid bottleneck values is identified and each process determines
its own partitioning based on this value.

Performing dynamic load balancing involves costs for the calculation of a
balanced partitioning and the redistribution of blocks. It is only beneficial (i.e.
application run time is reduced), when the time-saving of a better balanced
workload compensates these costs. This is addressed explicitly by FD4: The
load balancing routine estimates the time required for load balancing and the
time lost due to imbalance based on the elapsed steps and decides automatically
whether load balancing is beneficial or not.
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Coupling. FD4 facilitates to couple models based on FD4 to external mod-
els that have a different partitioning. It computes the overlaps of the external
model’s partitions with the FD4 block structure and transmits the data directly
between the processes. Data can be exchanged in both directions between FD4
and the external models.

FD4 is based on the sequential scheduling [8] of the coupled models. Con-
sequently, all processes perform computations for both COSMO and SPECS
alternately. We expect this approach to perform better compared to the concur-
rent scheduling strategy, where the available cores are divided into fixed disjoint
groups per coupled model. Since the total workload of SPECS varies strongly
depending on the quantity and the type of clouds in the model domain, the latter
approach would lead to load imbalances between the models [10].

4 Performance Results

We compared the computational performance and scalability of the original
COSMO-SPECS and its load balanced version COSMO-SPECS+FD4 using an
artificial test scenario of a heat bubble over flat terrain [6]: A temperature per-
turbation, which is placed in the center of the horizontal grid, results in the
growth of a precipitating mixed-phase cumulus cloud during the simulation pe-
riod of 30min. Additionally, we introduced a wind shear to the initial conditions.
Figure 1 shows mixing ratios of liquid and frozen cloud particles after 30min of
simulation time. The resolution of the periodic horizontal grid was 1 km. The
domain height of 18 km was discretized using 48 nonuniform height levels. The
time step sizes were 10 s for COSMO and 0.5 s for SPECS, which results in 20
small microphysical steps per dynamical step. The original and the load balanced
version yield identical simulation results except for small numerical deviations.
All performance measurements are presented without model initialization time
and output of simulation results.

4.1 Strong Scaling Benchmark on SGI Altix 4700

For this benchmark a fixed computational grid size of 80×80 cells with 48 height
levels was used. The block size for the FD4 decomposition was 2×2×4, which
results in a total number of 19 200 blocks. Figure 4(a) shows the performance
results for 25 to 1600 cores on an SGI Altix 4700. Note, that the overall run
time (wall clock time × number of cores) is shown, i.e. the total consumed
CPU time. For a strong scaling benchmark, ideal scaling is achieved when the
total consumed CPU time is constant with increasing number of cores. It is
clear to see that the load balanced implementation scales much better. At 1600
cores, the original program took 24:10min whereas the FD4 implementation
required 7:22min only, which is more than three times faster. The component
breakdown of Fig. 4(a) reveals that the spectral microphysics consumes much
more computation time than the COSMO model. However, with rising number
of cores, the run time of the original COSMO-SPECS is increasingly dominated
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by MPI communication and waiting times due to load imbalance. The reason for
the increasing MPI communication costs was found to be an inefficient message
exchange scheme for the ghost cells of the microphysical variables using many
small messages instead of few big ones. At 1600 cores less then 40% of the overall
time is used for computations. The optimized COSMO-SPECS+FD4 has a much
smaller communication overhead which is slightly increasing due to a decreasing
average load balance and increasing costs for the actual message transfer. The
run time percentage of FD4’s data management is relatively low. However, it
increases from 0.1% for dynamic load balancing and 0.1% for coupling at 25
cores to 2.7% and 3.3%, respectively, at 1600 cores.

4.2 Weak Scaling Benchmark on IBM BlueGene/P

The complexity of the dynamic load balancing and coupling algorithms applied
in FD4 depends on the total number of blocks and the number of MPI pro-
cesses. This poses the question, if COSMO-SPECS+FD4 can run on 104 cores
efficiently. Therefore, we performed weak scaling benchmarks on an IBM Blue-
Gene/P system. To scale up the problem size (and workload) exactly in the same
proportion as the number of cores, we use a replication scaling approach [27]. At
model initialization, the horizontal grid is virtually subdivided into tiles of 32×32
cells. Each tile is initialized with identical conditions for the heat bubble test
scenario. The horizontal grid resolution and the number of height levels are kept
constant at 1 km and 48 levels, respectively. We scaled our benchmark from a
32×32 grid containing one cloud at 256 cores up to a 512×512 grid containing
256 clouds at 64Ki cores. With an FD4 block size of 2×2×4 cells, the aver-
age number of blocks per process is constant at 12. Thus, FD4 had to balance
786 432 blocks dynamically on 64Ki cores in the largest run. Note, that nei-
ther COSMO-SPECS nor FD4 take advantage of the replication. Figure 4(b)
shows the measured run times for the original COSMO-SPECS and the tuned
COSMO-SPECS+FD4 divided into components. Since the workload per core
is kept constant, perfect scaling is achieved when the program’s run time does
not increase with rising number of cores. Both versions scale almost perfectly,
but the load balanced version is approximately twice as fast as the original one.
The plot for COSMO-SPECS+FD4 indicates that the slight increase of run time
is due to the load balancing and coupling of FD4 as well as growing costs for
the ghost exchange. The FD4 workload is mainly growing because of the above
mentioned complexity of the algorithms. At 64Ki cores, the percentage of FD4
is less then 7%, which shows that COSMO-SPECS+FD4 can efficiently utilize
more than 104 cores.

4.3 Analysis of Load Balance

In Fig. 5 the measured load balance of both model versions is plotted against the
time steps of the benchmark simulation on 8192 cores. Load balance is defined
here as the average computing time among all processes divided by the maximum
computing time among all processes. The ideal case is a load balance of one and
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Fig. 5. Comparison of the load balance per COSMO time step between the original
COSMO-SPECS and COSMO-SPECS+FD4 with dynamic load balancing. The mea-
surement was performed for the weak-scaling benchmark case at IBM BlueGene/P on
8192 cores.

the worst case is the reciprocal of the number of processes. After 30 time steps,
the load balance in the original COSMO-SPECS starts to drop notably, which
indicates the beginning of the cloud growth. At the end of the simulation run, the
balance is below 0.4. The load balance in COSMO-SPECS+FD4 drops down to
0.85 after 30 steps but stabilizes after 45 steps in the interval between 0.89 and
0.96 for the rest of the run. In the phase during steps 30–45, the load balancing
approach to take the measured workload of the blocks as estimation for the next
time step is not able to sufficiently keep pace with the high dynamics of workload
variation. On average about 64% of the blocks have been migrated between the
processes per COSMO time step during the COSMO-SPECS+FD4 run, which is
very much. However, due to the costly microphysics computations, the relative
communication overhead is very low. Furthermore, the communication pattern
for the block migration is highly local: About 63% of the blocks were exchanged
between direct neighbor MPI ranks in this run. Local communication patterns
typically provide higher bandwidths than arbitrary patterns. The reason for this
high locality is the SFC partitioning algorithm, which only shifts the process
borders in the one-dimensional array of blocks.

5 Conclusion and Outlook

In this paper, we introduce a new way of coupling detailed cloud microphysics
computations to atmospheric models, which allows dynamic load balancing. By
using the framework FD4 to couple the mesoscale atmospheric model COSMO
and the spectral bin microphysics model SPECS, a significant performance in-
crease is achieved. Performance measurements on up to 64Ki cores show that
the approach induces only little overhead for dynamic load balancing and cou-
pling. While we expect the approach to be beneficial for other possibly less
expensive spectral schemes, this most likely does not apply to two-moment or
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multi-moment schemes due to their much smaller number of variables and con-
siderably lower computational costs.

The high scalability of the new system is an important requirement for the
feasibility of practical applications with spectral microphysics in atmospheric
models. Additional improvements could render this possible in the very near
future. As a next step we are aiming to reduce the computational costs of the
microphysics by dynamically deciding for each grid cell whether the fast bulk
parameterization scheme is sufficient (clear sky) or the spectral model is required.
Another important aspect is the proper selection of the time integration step for
the microphysics. The time scales of cloud processes are very heterogeneous in
time and space, and thus, multirate time integration schemes provide a further
approach of saving computational costs.
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Abstract. Numerical Weather Prediction models (NWP) used for op-
erational weather forecasting are typically run at predetermined times
at a predetermined resolution and a fixed geographical region. The pe-
riod between each run is a function of waiting for observational data
and the availability of compute resources. The resolution is a function
of the geographical region, the available processing power and opera-
tional forecasting time constraints. The geographical region is defined by
being a region with known need or interest for forecasts. These charac-
teristics make it hard to interactively produce and visualize on-demand
high-resolution forecasts for a small and arbitrarily located region. This
paper documents a system achieving this, using a high-resolution tiled
22 mega pixel display wall, a 16 node PC cluster and a HP BL 460c
blade server with two quad core processors. We document the perfor-
mance characteristics experimentally. The results show that using 10 km
resolution background data, the system produces a 6 hour forecast for a
117 x 123 km small region with 3 km resolution, in 3 minutes. Visualiz-
ing the forecast takes between 3 - 75 seconds. An informal survey among
operational forecasters indicate that the majority is willing to wait up to
3 minutes for higher resolution forecasts. This paper identifies and docu-
ments some of the bottlenecks and computational challenges created by
combining interactivity and traditional batch oriented computing. The
main bottlenecks in the system are identified as the execution time of
the NWP and the preparation of data for visualization.

Keywords: Interactive Numerical Weather Model, WRF, Tiled Display
Walls, Live Data Sets, On-Demand Computation.

1 Introduction

Numerical Weather Prediction models for use in weather forecasting centers are
often computed for a fixed static region at a fixed resolution. One example is
the very high-resolution turbulence forecasting system called SIMRA [5], in daily
operational use by the Norwegian Meteorological Institute [10]. The SIMRA sys-
tem uses the wind field from a coarser model to estimate the detailed current
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turbulence levels around specific locations. Available compute resources limit
the number of locations this model can make available to the weather forecaster.
This reduces the number of airports where the forecaster can assess the current
level of risk for severe turbulence. Therefore, only places of interest with a previ-
ously known high level of risk have pre-computed models available. At any given
day, this may or may not be the actual trouble spots. Results from NWPs are
interactively visualized on a typical PC display. Standard screen resolution is in
the order of 1200x1024 pixels.

For any given area and selected parameter the visualization software often
has to render the available data using a subset of the original data points. One
example is viewing wind fields. These are often visualized using small arrows at
each data point, which is not possible to do for a large area on a small screen
without either reducing the readability of the plot or displaying only a subset
of the available data plots. Using very large high-resolution displays gives the
user the option of both viewing large areas, and at the same time all available
data points. This has previously been shown to be advantageous using standard
visualization software [6].

This paper presents WallWeather, an interactive system and approach for
visualizing state-of-the-art numerical meteorological models using a wall-sized
high-resolution tiled display [11]. The idea is that the user does not know a
priori where high-resolution forecasts would be most useful, and that the user
based on available coarser models, select the area and desired resolution. Initially
the resolution is a function of the available background meteorological data. The
user can select a region of interest by zooming in on that region and have NWP
done on-demand for the selected area at the desired resolution. The many-core
compute clusters will provide the on-demand weather forecasts for the selected
areas.

The ability to select smaller regions of interest with high-resolution forecasts,
combined with a display wall supported by on-demand computing, enables a
close to interactive experience for the user, at resolutions orders of magnitudes
larger than regular desktop displays.

WallWeather is a platform for further experimenting with various ways to
divide the total workload and also to investigate the many bottlenecks such
complex combined systems present. WallWeather is also a system that both gen-
erates and visualizes datasets on demand, as opposed to existing batch-oriented
systems where datasets are created at pre-defined times.

This work is based on an idealized use case shown in Table 1.

2 The Numerical Weather Prediction model

In this paper the WRF NWP model [2] is used. WRF is currently a very popular
research model for high-resolution weather forecasting systems. WRF is available
in numerous settings and is extensively used in many meteorological research and
operational centers [3].
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A simpler downscaling of the wind field for each time-step, like the SIMRA
system, may reduce the workload but does not provide the forecaster with the
fully integrated set of parameters available from the NWP models.

To simplify the prototype, the resolution of the WRF model is limited to
a to a fixed set of discrete resolutions. This is a necessity given the available
topographical, meteorological and environmental data. NWP models are usually
downscaled by a factor of 3-5, so that when using 50 km background data, 9.9,
3.3 and 1.1 km resolution models would be the natural levels for stepwise increase
of the resolution for the NWP model. Even higher resolution models are possible
with access to high-resolution background data. To ensure numerical stability of
the model with the steep topography in the area of interest, the time step of the
model must be reduced more than recommended.

In the prototype, a static set of background meteorological data from a date
with locally severe weather in the area of interest where chosen. An independent
start analysis using actual observations is not used in the system. For the small
areas in which the NWP model is run, normally only a few actual observations
would be available, and a long time-period is needed to include the necessary
observation error statistics for the analysis. The prototype still incurs most of
the workload that an operational system would require.

Figure 1 shows a possible scenario with several trouble spots. For Areas A,
B and F the requested resolutions are large enough for running WRF directly
using the background meteorological data. Areas D and E are requested with
a higher resolution and require an intermediate step, area C, to be computed.
Once area C is computed, all higher resolution areas that fall within C require no
extra intermediate computations. The effect of these scenarios on the perceived
latency for the user is shown in Figure 2.

3 Experimental Platform

3.1 The Display Wall

The display wall [12] consists of 28 projectors driven by 28 computers arranged
in a 7x4 grid yielding a total resolution of 7168 x 3072 pixels. When using
WallGlobe the user perceives the display wall as one single coherent display.

Table 1. Idealized use case

1 The forecaster browses a coarse resolution model for possible trouble spots.
2 The forecaster zooms in to view details and triggers a new NWP run.
3 The forecaster views the results from a high-resolution model for the specific

area.
4 The forecaster pans the view to include nearby trouble spots, or zooms out

and focuses on a new area.



Interactive Weather Simulation and Visualization on a Display Wall 145

B

A

C
D

E

F

Fig. 1. Cases A, B, D, E and F are the trouble spots in this situation. A background
model is assumed available in the whole area of interest.

Zoom and pan is implemented using a touch-free interface [11]. Figure 3 shows
two persons interacting with the display wall and the WallGlobe visualization
system.

3.2 WallScope

The work presented in this paper is implemented as part of the WallScope [7]
visualization and computation platform. WallScope uses a Live Data Set (LDS)
architecture. Visualization clients run on each computer in the display wall clus-
ter, all synchronized by a separate state server. Each client requests data from
the LDS, which initiates local or remote computations to satisfy the request.
LDS may also return a cached copy if the computation has been performed
earlier. The LDS architecture is shown in Figure 4. The architecture separates
visualization from data management, and data management from the data pro-
ducer. For interactive visualization of weather forecasts the WallScope system
is extended with an on-demand simulation and visualization backend using the
WRF NWP model.

The visualization system used in this paper is WallGlobe, a system for vi-
sualizing the Earth by combining data from different compute resources in the
WallScope system. WallGlobe requests images of size 512x512 pixels from the
LDS, which are used as part of the final rendering. Each tile in the display wall
requests the images it needs to complete the visualization. Until the maximum
zoom level is reached, each tile will at all times use images with a resolution as
high as or higher than the resolution of the local resolution. The tile resolution
is 1024x768 pixels. The worst-case scenario is that a tile has just reached a new
zoom level and that the available images are offset as illustrated in Figure 5. In
this case, 25 images have to be requested and retrieved from the LDS.
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Fig. 2. Three different cases are shown. Case D with no intermediate level available,
Case E, with the C area available, and Case F where the model is first run on a slightly
larger area than requested so that minor Pans does not trigger a full generation of a
new area.

3.3 Compute Clusters

The prototype utilizes two clusters. One is a local 32 node 3.2 GHz Pentium 4
cluster, ”Rocks”; the other is a 704 node 1408 CPU 5632 core ”Stallo” [4] high-
performance cluster. The Rocks cluster is a dedicated cluster and jobs submitted
are immediately executed. Stallo uses a standard batch job queuing system and
is therefore not very well suited for interactive use. An express queue with lim-
itations on the number of cores available for each job can be used for a near
real-time interactive use.

3.4 Network

Every node in the display wall are interconnected using gigabit Ethernet. The
display wall is connected to the compute clusters over a gigabit Ethernet link.
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Fig. 3. Using the display wall and the WallGlobe visualization system

4 Experiments

4.1 Methodology

To evaluate the WallWeather system, two experiments were conducted.
In experiment one, a small informal survey of the operational forecasters at

the Norwegian Meteorological Institute in Tromsø, Norway, was conducted, to
establish a limit on how long a forecaster would be willing to wait for higher res-
olution forecasts for a selected area. 14 out of 18 possible participants responded
to the questionnaire.

In experiment two, the actual total latency of the system was measured, using
both compute clusters. These experiments showed the effect of running the data
producing services on a multi node, multi-core platform. The WRF model is
expected to scale well and perform well on these platforms [8].

The ECMWF ERA-Interim data used in this study have been obtained from
the ECMWF data server [1]. A specific date with severe weather in the area
were used for this study. The data has a spatial resolution of around 50 km. The
model was run for a 6 hour forecast for a small 39x41 grid, 28 vertical levels with
9.9 km resolution using a time step of 30 sec. The timestep were shortened due to
the very steep topography in the model area and to keep the model numerically
stable.

The perceived latency after triggering a NWP model run, depends on the
availability of the background data the model needs at the requested resolution.
Figure 2 illustrate this. As explained in chapter 2, a run of the WRF model may
require several steps with increasing resolution before the requested resolution
is computed, figure 2 illustrates this. In the top part of Figure 2 area C has to
be computed first, and then area D. If the next requested area falls inside the
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Fig. 4. Architecture with the communication paths indicated

already computed area of C, then the request can be answered by running the
model only for the new area E. If the request is only for a small pan within the
areas already computed and visualized, then the request will be satisfied from
the LDS cache, as shown in the lowest part of Figure 2.

4.2 Results

Table 2 shows the results of experiment one. Almost 60% of the forecasters were
willing to wait more than one minute for higher resolution forecasts. Less than
30% would wait more than 5 minutes.

Table 3 show the results of experiment two. For the actual computation, the
times are in separate columns. Transferring the resulting data files and retrieving
one parameter from the forecast visualizer is identical for both, and are therefore
merged into one column.

Table 2. How long a forecaster is willing to wait for higher resolution forecasts

Time Count

5-14 sec 2
15-44 sec 0
45 sec - 1 min 3
1-2 min 2
3 - 5 min 3
5 - 10 min 2
More than 10 min 2

Total N 14
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512 x  512 images

1024 x 768 Display Wall tile

Fig. 5. Illustration of the parts needed for one tile of the display wall. Each image
requested from the LDS is 512x512 pixels. Each display wall tile has a resolution of
1024x768 pixels. The WallGlobe will always use images with higher or equal resolution
to the tile’s resolution.

Table 3. Average run-times Case E using the Stallo cluster using 8 cores on 1 node
and the Rocks cluster using 1 core on 16 nodes. Models domain is 39 x 41, 28 vertical
levels, 9.9 km resolution, 6 hour forecast with 30 sec time steps.

Task Time on ”Stallo” Time on ”Rocks”

Running pre-processing on cluster front-
end

13 sec 13 sec

Running the WRF model 56 sec 174 sec

Transferring result file to visualization host 0.4 sec
Retrieving one parameter for visualization 3 sec

5 Discussion

Table 3 indicates that the largest bottleneck is the execution of the WRF forecast
model. When the numerical forecast model is completed, the next bottleneck is
the generation of visualization data from the model output. The time listed for
visualization in Table 3 is for one single image of size 512x512 pixels.

The system was not intended as a system for delivering high-resolution numer-
ical forecasts each day or at a specific schedule for large areas. For such use the
traditional batch oriented systems would be better. The system was created to
provide additional high-resolution forecasts for smaller user-selected areas, based
on existing coarser resolution NWP model data available to the forecaster.

The WallWeather system provides a practically interactive system even if the
latency times for the user are longer than some operational use will tolerate. The
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system has the ability to display high-resolution visualizations from user defined
areas using on demand numerical weather prediction models. This enables pos-
sible new insight into relevant meteorological problems, as well as better and
more accurate forecasts.

One major bottleneck is the use of one single node for forecast visualization.
When each image used by the LDS would come from a single visualizing node,
all images needed for covering one single tile on the display wall would take up
to 75 sec to retrieve. Since the LDS uses caches, most images that are shared
with other tiles on the display wall would be retrieved much faster.

One observation is that using fixed grid sizes with variable spatial resolution
in the NWP model, the workload on the computational components varies only
with the spatial resolution and time steps needed in the model.

Based on experiment one the latency of the system falls within the acceptable
waiting time for the forecasters.

6 Related Work

The triggered WRF forecasts part of the LEAD project [13], presents a similar
use case to the WallWeather system. Higher resolution WRF model runs were
generated automatically using positions of known severe weather systems from
the NOAA NWS news feed. By changing the workflow brokering on a powerful
computation cluster to increase the scheduling priority of the model run, timely
forecasts were provided. The project identified several problems regarding reli-
ability problems on the compute cluster and the effect on the lack of provided
forecasts. No end-user latencies were reported.

7 Conclusions

This paper has presented a prototype of an interactive numerical weather model
system, used for on-demand high-resolution visualization on a high-resolution
display wall. New numerical weather prediction models are relatively easy to set
up with a large range in resolutions, limited mostly by available environmental
data, and available computing resources. The experiments conducted on the
WallWeather system demonstrates that interactive running of NWPs on high-
resolution display walls is coming closer to a practical solution for operational
weather forecasting.

8 Future Work

Using GPUs in WRF may improve the runtime significantly [9]. Utilizing GPUs
may also improve the visualization performance.

There are various obvious ways to speed up the forecast visualization part
of the system. Implementing a distributed system using a compute cluster with
single forecast visualization node on each compute node is one possible solution.
Depending on the number of nodes, this may reduce the forecast visualization
delay to 3 seconds.
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Abstract. The algorithm of Multiple Relatively Robust Representa-
tions (MRRR or MR3) computes k eigenvalues and eigenvectors of a sym-
metric tridiagonal matrix in O(nk) arithmetic operations. Large prob-
lems can be effectively tackled with existing distributed-memory parallel
implementations of MRRR; small and medium size problems can instead
make use of LAPACK’s routine xSTEMR. However, xSTEMR is optimized
for single-core CPUs, and does not take advantage of today’s multi-core
and future many-core architectures. In this paper we discuss some of the
issues and trade-offs arising in the design of MR3–SMP, an algorithm for
multi-core CPUs and SMP systems. Experiments on application matrices
indicate that MR3–SMP is both faster and obtains better speedups than
all the tridiagonal eigensolvers included in LAPACK and Intel’s Math
Kernel Library (MKL).

Keywords: MRRR algorithm, tridiagonal eigensolver.

1 Introduction

Given a Hermitian matrix A ∈ Cn×n, the eigenproblem is finding solutions to the
equation Av = λv with ‖v‖ = 1, where λ ∈ IR is called an eigenvalue and v ∈ Cn

an associated eigenvector. An eigenvalue together with an associated eigenvector
are said to form an eigenpair. Since A is Hermitian, all the eigenvalues are real
and n mutually orthogonal eigenvectors can be found.

Computing all the eigenpairs is equivalent to finding a matrix factorization
A = V ΛV ∗, where Λ ∈ IRn×n is a diagonal matrix containing the eigenvalues as
elements, and V ∈ Cn×n is a unitary matrix whose columns are the associated
eigenvectors. Any Hermitian matrix can be reduced to symmetric tridiagonal
form by means of similarity transformations. In this paper we thus focus on
the parallel computation of a subset or all the eigenpairs of a real symmetric
tridiagonal matrix.

Several efficient and accurate methods exist for the symmetric tridiagonal
eigenproblem. Among them, Bisection and Inverse Iteration (BI) [1], the QR al-
gorithm (QR) [2,3], Divide & Conquer (DC) [4,5], and the algorithm of Multiple
Relatively Robust Representations (MRRR) [6]. Until the introduction of the lat-
ter, the computation of all the eigenpairs required O(n3) flops in the worst case.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 152–161, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



The MRRR Algorithm for Multi-core Processors 153

With the MRRR algorithm it is instead possible to compute all the eigenpairs in
O(n2) flops. Moreover, similar to the method of Inverse Iterations, MRRR allows
the computation of a subset of the eigenpairs at reduced cost: O(nk) flops for
k eigenpairs. In fact, the MRRR algorithm can be seen as a sophisticated vari-
ant of Inverse Iteration that does not require explicit orthogonalization, hence
the quadratic complexity. An informative and detailed performance analysis of
LAPACK’s [7] implementations of the four algorithms can be found in [8].

As multi-core architectures have replaced uni-processors, our goal is to explore
how MRRR, one of the fastest sequential algorithms, can make efficient use of
today’s multi-core and future many-core CPUs. A representative example is
given in Fig. 1 (left), where the execution time for a matrix of size n = 4,289
from quantum chemistry is shown as a function of the number of threads used.
We present results for four routines: MKL’s DC (DSTEDC), both MKL’s and
LAPACK’s sequential MRRR (DSTEMR), and MR3–SMP, the multi-core variant
of the MRRR algorithm that we present in this paper.1 BI with 487 seconds
and QR with timings between 167 and 61 seconds are much slower and are
not shown in the graph.2 While DC casts most of the work in terms of DGEMM
and can take advantage of parallelism by multi-threaded BLAS [9], MRRR’s
DSTEMR is sequential and therefore does not exploit any of parallelism of multi-
core processors. As a result, DC can become faster than the sequential MRRR
as the amount of available parallelism increases.

Tridiagonal matrices are common in applications, but they play a much bigger
role as part of dense and banded eigensolvers. In these cases, when many of
the eigenpairs are to be computed, the most common approach to solve the
eigenproblem consists of three stages: 1) Reduction of A to a real symmetric
tridiagonal matrix T = U∗AU via a unitary matrix U ∈ Cn×n; 2) Solution of
the symmetric tridiagonal eigenproblem Tz = λz; 3) Back-transformation of the
eigenvectors of T into those of A by v = Uz.

When MRRR is used for the tridiagonal stage, the reduction becomes the
computational bottleneck in this procedure, requiring about 16

3 n
3 floating point

operations (flops), only half of which can be cast in terms of fast BLAS-3 kernel
routines. By contrast, the about 8n3 flops required by the back-transformation
stage can be performed efficiently, since the computation can be casted almost
entirely in terms of BLAS-3 routines.

Although negligible in a sequential execution, the time spent in the tridiago-
nal eigensolver becomes significant when multiple cores are used. Fig. 1 (right)
shows the fraction of the total execution time that is spent on each of the three
stages of the dense symmetric eigenproblem of size n = 4,289 for a varying num-
ber of threads. In the single-threaded execution, the tridiagonal eigensolver is
indeed negligible, while in the multi-threaded executions it can take up to 40%
of the total execution time. By contrast, with 24 threads our multi-core parallel
algorithm MR3–SMP accounts for about 7% of the execution time.

1 More detailed information about the parameter of the experiment can be found in
Section 4.

2 For the timings of BI and QR Intel MKL 10.2 was used.



154 M. Petschow and P. Bientinesi

4 8 12 16 20 24
0

2

4

6

8

10

12

14
T

im
e
 i
n
 s

e
c
o
n
d
s

Number of threads

MR
3
−SMP

MRRR (MKL)

MRRR (LAPACK)

DC (MKL)

Number of threads

F
ra

c
ti
o
n
 o

f 
e
x
e
c
u
ti
o
n
 t
im

e

1 2 4 8 16 24
0

0.2

0.4

0.6

0.8

1

Backtransformation

Sequential MRRR

Reduction

Fig. 1. Left: Timings as function of the number of threads used in the computation.
Qualitatively, the graph is typical for the applications matrices that we tested. The
Divide & Conquer algorithm becomes equally fast or even faster than the sequential
MRRR algorithm. MR3–SMP however is faster and obtains better speedups than DC.
Right: Fraction of time spent in the solution of the corresponding dense symmetric
eigenproblem for the reduction, tridiagonal eigenproblem, and back-transformation.

The paper is organized as follows: Section 2 contains a brief discussion of the
MRRR algorithm. In Section 3 the design of the MRRR algorithm for shared-
memory computer systems, MR3–SMP, is described. In Section 4 the results of
experiments evaluating the performance of MR3–SMP are shown.

2 The MRRR Algorithm

In this section the algorithm of Multiple Relatively Robust Representations is
briefly discussed. A detailed description and justification of the algorithm can
be found in [6] and references therein.

Without loss of generality, the symmetric tridiagonal matrix T ∈ IRn×n is
assumed to be irreducible. That is, no off-diagonal element is smaller in magni-
tude than a certain threshold that warrants setting it to zero. Possible quantities
for such a threshold are discussed in [10]. Otherwise, when T is reducible, each
diagonal block can be treated separately.

The algorithm starts by computing a factorization of T , called a Relatively Ro-
bust Representation (RRR). From this factorization eigenvalue approximations
are computed and finally the associated eigenvectors together with the possibly
refined eigenvalue.

An RRR is a representation of T that has the property that small relative
changes in its non-trivial entries only cause small relative changes in a specific set
of eigenvalues [11]. Such an RRR is given by bidiagonal factorizations T − σI =
LDLT with σ ∈ IR, where L is lower unit bidiagonal and D is diagonal. The
condition for the factorization to be an RRR is given in [11]. However, in the
special case that T − σI = LDLT is definite, the factorization is guaranteed to
be an RRR for all eigenvalues.
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After computing an RRR for all desired eigenvalues λj , it is possible to com-

pute approximations λ̂j to high relative accuracy, that is |λj − λ̂j | = O(ε|λ̂j |),
where ε denotes the machine precision. This can be achieved using O(n) flops
via bisection using a differential quotient-difference transform [12]. In the def-
inite case, all eigenvalues can be computed to high relative accuracy via the
dqds-algorithm in O(n2) arithmetic operations [13].

Once an eigenvalue λ̂j is computed to high relative accuracy, the associated

eigenvector ẑj is computed by solving (LDLT − λ̂jI)ẑj = γrer, where the right
hand side of the system is a multiple of the r-th standard basis vector and γr
the opportunely chosen scalar [12]. One of the features of the MRRR algorithm
is that it is possible to compute an eigenvector ẑj, with ‖ẑj‖2 = 1, such that the
residual norm satisfies

‖(LDLT − λ̂jI)ẑj‖2 = O(nε|λ̂j |) . (1)

By the gap theorem of Davis and Kahan [14] the error angle to the true eigen-
vector zj is bounded by

| sin � (ẑj , zj)| ≤ O(nε)

relgap(λ̂j)
, (2)

where the relative gap of λ̂j is defined as relgap(λ̂j) := mini�=j(|λ̂j − λi|/|λ̂j |) =
gap(λ̂j)/|λ̂j |. This definition and (2) imply that, provided the gap of an eigen-

value λ̂ is of the same order as its magnitude, the computed eigenvector ẑj has
an error angle of O(nε) to the real eigenvector of the RRR. In practice, when

relgap(λ̂j) ≥ tol the eigenvalue is called a singleton and the eigenvector is com-
puted from the RRR.

Eigenvalues that are not singletons form clusters. For each cluster the algorithm
aims at computing a new RRR for the eigenvalues of the cluster via the differential
stationary qds (dstqds) transform [12]: LiDiL

T
i = LDLT − σiI. The parameter

σi ∈ IR is thereby chosen in a way that at least one of the eigenvalues in the cluster
becomes a singleton. The shifted eigenvalues λ̂j − σi must be refined to relative
accuracy with respect to the new RRR. Full accuracy is only needed for the sin-
gletons, so that eigenvectors with small relative residual norm can be computed.
This procedure is than applied recursively until all eigenvectors are computed.

A main feature of the MRRR algorithm is that, although the eigenvectors
might be computed from different RRRs, they are numerically orthogonal and no
Gram-Schmidt procedure for orthogonalization has to be invoked. This property
is discussed in detail in [6], where it is shown that the computed quantities satisfy

‖(T − λ̂jI)ẑj‖ = O(nε ‖T ‖) and |ẑTk ẑj | = O(nε), k �= j . (3)

3 The MRRR Algorithm for Multi-core Processors

In this section we discuss the design of MR3–SMP, a parallel version of the
MRRR algorithm specifically designed for multi-core and shared-memory archi-
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tectures. One of the salient features of such systems is the capability of com-
munication among processors at low costs thanks to shared caches and memory.
As a consequence, both redundancy and costly data exchanges, characteristic to
distributed-memory parallelizations [15,16], now can and should be avoided in
favor of a fine grain parallelism.

MR3–SMP is based on the routine DSTEMR of LAPACK Version 3.2 and makes
use of POSIX threads for parallelization. A detailed description of DSTEMR and
its design criteria can be found in [17].

3.1 Parallelization Strategy

MR3–SMP achieves parallelism by dynamically dividing the computation into
independent tasks. The tasks are placed into a work queue and can be executed
by many threads in parallel. This form of parallelism may produce a bigger
overhead than a static division of the work, but it is flexible and attains good
load balancing among the processors.

After computing the root representation3, the initial eigenvalue approxima-
tions are either computed by the dqds-algorithm or by parallel bisection, de-
pending on the amount of parallelism available and the number of eigenval-
ues to compute. Bisection is used, when the number of cores c is greater than
12 · #eigenvalues/n [15]. The dqds-algorithm computes the eigenvalues to full
accuracy, while bisection only does so when only the eigenvalues are desired.

The computation of the eigenvectors and a gradual refinement of the eigen-
values can be represented in form of a representation tree. The associated work
can be naturally divided into tasks: Each node consists of an index set Γp of
associated eigenpairs and depends on the RRR of its parent node. The com-
putation that has to be executed depends entirely on the size of the index set
|Γp|. In the case of |Γp| = 1 the node is a leaf node and represents a singleton.
Otherwise, in the case |Γp| > 1, the node is considered a cluster. For both cases,
singletons and clusters, we created a task type. A third task type is introduced
to add the ability of splitting the work of refining eigenvalues into tasks. The
three task types will be called S-task, C-task and R-task subsequently. The work
associated to each task is discussed next:

1. S-task: As described in Section 2, the eigenvectors associated to singletons
can be computed immediately. This leads to the following computational
task: For a set of singletons Γs ⊆ Γp, compute the eigenvalues to high relative
accuracy and the associated eigenvectors. This is done via Inverse Iteration
with twisted factorizations and Rayleigh Quotient correction [17].

2. C-task: A task is created for each cluster Γc ⊂ Γp: Compute a new RRR for
the eigenvalues in the cluster and refine the eigenvalues to relative accuracy
with respect to the new RRR until a distinction between singletons and
clusters is possible. At this point the new representation can be used to

3 If the input matrix is reducible, there will be multiple root nodes and representation
trees.
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partition the computation into tasks recursively, that is creating S-tasks and
C-tasks with Γ̃s ⊆ Γc and Γ̃c ⊂ Γc, respectively.

3. R-task: R-tasks are created when it is advantageous to split and parallelize
the refinement of eigenvalues forming a cluster. The R-tasks are therefore
created during the execution of a C-task, after computing the new RRR
of the cluster. The computation involved in an R-task is: Given an RRR,
refine a subset of Γi ⊂ Γc to relative accuracy with respect to the RRR via
bisection.

3.2 The Work Queue

In order to execute the tasks in parallel, a work queue is established and filled
with the three types of tasks. Each of the tasks can then be processed by any of
the computing cores.

The work queue consists of three levels, one for each task type and imple-
mented as a FIFO queue, with different priorities. Many different priority policies
may be chosen. Our objective is to attain high performance while limiting mem-
ory consumption. In our policy R-tasks, S-tasks and C-tasks have high, medium
and low priority, respectively. During the computation of the eigenvectors, each
thread in the thread pool is dequeuing tasks from the work queue, processing
tasks with higher priority first.

The computation is initialized by treating the root node as a special C-task.
In this case there is no need to compute an RRR and refine its eigenvalues.
Since the root representation is not overwritten, no special care has to be taken
to resolve the data dependency of the newly created tasks at depth = 1 in
the representation tree. Therefore the tasks are created fast and fill up the work
queue. To achieve the same for clusters at higher depth, the parent RRR is copied
into the output eigenvector matrix Z for cluster tasks. The task is therefore
created faster than computing the RRR for the cluster first and store it in Z, as
it is done in DSTEMR.

The organization of the work queue is among other things motivated to bound
the amount of memory required during the computation. In the case of a single
thread, the order of computation complies with the DSTEMR routine: at each level
all the singletons are processed before the clusters.

3.3 An Example Matrix

Fig. 2 shows the execution traces of an exemplary eigenvector computation.
The examined matrix of size n = 12,387 comes from a frequency response
analysis of automobile bodies. Computing the eigenvectors took about 49.3 sec-
onds sequentially and about 3.3 seconds with 16 threads. In the time-line graph
green, blue and yellow sections correspond to the processing of S-tasks, C-tasks,
and R-tasks, respectively. Everything considered as parallelization overhead is
colored red.

On average, each thread spends about 66% of the execution time in comput-
ing the eigenvectors of singletons, 19% in computing new RRRs of clusters and
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to refine the associated eigenvalues, and additionally 15% for refining eigenval-
ues. Almost no overhead occurs during the computation, due to dynamic task
scheduling.

The first time that the refinement of eigenvalues is split via R-tasks, a cluster
of size 8,871 is encountered by the bottommost thread. Since the cluster contains
a large part of the eigenvectors that are still to be computed, the refinement
of its eigenvalues is split among all the threads. The number of eigenvalues
to refine within a task is reduced in size when the tasks are created, so that
load balancing among all the threads is achieved. The procedure of splitting the
refinement among all threads is repeated two more times during the computation.
Later during the computation there are also examples where the refinement of
eigenvalues is split, but the computation is not distributed among all threads.

Fig. 2. Execution traces for a matrix of size n = 12,387, arising in a finite-element
model of an automobile body. The colors green, blue, and yellow represent time spent
in the execution of S-tasks, C-tasks, and R-tasks, respectively.

4 Experimental Results

In this section we present timing results for the following routines: MR3–SMP,
MKL’s and LAPACK’s DSTEMR (MRRR), and MKL’s DSTEDC (DC).4 All the
experiments were run on a SMP system comprising four six-core Intel Xeon 7460
Dunnington processors, running at a frequency of 2.66 GHz. For both MR3–SMP
and LAPACK5 routines we used the Intel compilers6 icc and ifort, enabling the
optimization level 3. LAPACK’s DSTEMR was linked to MKL’s BLAS, and MR3–
SMP to the reference BLAS.

In Table 1 we show results for a set of matrices arising in actual applications.
In order make a fair comparison with DC, in all cases the entire eigenspectrum is

4 For the all MKL routines Version 10.2 was used.
5 Version 3.2.1.
6 Version 11.1.
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computed. However, we point out that MR3–SMP allows for subset computation
at reduced cost.

MKL’s and LAPACK’s DSTEMR routines are sequential and attain almost iden-
tical performance, therefore we only report timings for the single-threaded ex-
ecution of LAPACK’s MRRR. For DSTEDC and MR3–SMP we instead report
results for 1, 12, and 24 threads.

With the exception of the last matrix (Auto.d), DC executed with 24 threads
is faster than the sequential MRRR; in all cases, MR3–SMP is faster than DC.

Table 1. Execution times in seconds for a set of matrices arising in applications. The
first four matrices are from quantum chemistry and the last four arise in finite element
models.

Matrix Size DC MRRR MR3–SMP
1 12 24 seq. 1 12 24

SiOSi6 1,687 0.95 0.40 0.40 0.52 0.55 0.14 0.12
ZSM-5 2,053 1.47 0.58 0.56 0.94 0.97 0.23 0.15
Juel.k1b 4,237 11.57 3.69 3.60 4.49 4.72 0.97 0.51
Auto.a 7,923 63.50 19.32 17.72 19.51 20.53 3.69 1.92
Auto.b 12,387 219.56 65.70 33.61 56.43 59.10 11.63 4.84
Auto.c 13,786 233.94 70.94 36.32 54.27 60.31 10.63 5.46
Auto.d 16,023 324.47 98.83 92.02 90.27 97.51 20.56 8.31

Table 2. Speedup of the total execution time of routine DSTEDC and MR3–SMP on a
24-core system. The reference for DSTEDC is its single threaded execution and for MR3–
SMP is the sequential DSTEMR. The last column shows the factor τ by which MR3–SMP
is faster than DC.

Matrix Size DC (MKL) MR3–SMP τ

SiOSi6 1,687 2.4 4.3 3.3
ZSM-5 2,053 2.6 6.3 3.7
Juel.k1b 4,237 3.2 8.8 7.0
Auto.a 7,923 3.6 10.2 9.2
Auto.b 12,387 6.5 11.7 6.9
Auto.c 13,786 6.4 9.9 6.6
Auto.d 16,023 3.5 10.9 11.0

Although the computation was executed on 24 cores, the speedup of MR3–
SMP against the sequential DSTEMR is far from 24. Why the obtained speedup
is nonetheless close to the optimal is discussed through the example of matrix
Auto.b. As it can be seen in Fig. 3 (left), the fast but sequential dqds-algorithm
is used to compute the initial eigenvalue approximations: it requires about 7.3
seconds, and it is used with up to 12 cores. If the dqds-algorithm were always be
used, independently of the number of available cores, according to Amdahl’s law
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the total speedup would be limited to 56.4/7.3 ≈ 7.7. This limit can be observed
in Fig. 3 (right) for the total speedup. Instead, in MR3–SMP bisection is used
for more than 12 cores. The computation time for the eigenvalues decreases, but
the input of the eigenvector computation changes. When in the initial eigenvalue
approximation we force to always use either the dqds-algorithm or bisection,
Fig. 3 (right) shows good scalability of the eigenvector computation. Notice that
the graph of the total speedup in Fig. 3 (right) is not yet at a flat asymptote,
and greater speedups can be expected with more parallelism.
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Fig. 3. Left: Time spent in the computation of the eigenvalues and eigenvectors for
the matrix Auto.b of size 12,387. Right: Speedup for the eigenvalue and eigenvector
computation. The total speedup is naturally limited since for up to 12 cores the initial
eigenvalue approximation is performed by the sequential dqds algorithm.

For the sake of brevity, accuracy results are omitted, but we remark that in all
tests the accuracy of MR3–SMP is comparable to that of LAPACK’s sequential
routine DSTEMR.

5 Conclusion

We presented a design to adapt the algorithm of Multiple Relatively Robust
Representations to shared-memory computer systems. The result, MR3–SMP,
is an algorithm specifically tailored for current multi-core and future many-core
architectures, as well as SMP systems made out of them. We compared MR3–
SMP with all tridiagonal eigensolvers contained in LAPACK and Intel’s MKL
on a set of matrices arising in real applications: in all cases MR3–SMP proved
to be the fastest algorithm and attained the best speedups.
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Abstract. In this paper we investigate the parallelization of the
ILUPACK library for the solution of sparse linear systems on distributed-
memory multiprocessors. The parallelization approach employs multi-
level graph partitioning algorithms in order to identify a set of concurrent
tasks and their dependencies, which are then statically mapped to pro-
cessors. Experimental results on a cluster of Intel QuadCore processors
report remarkable speed-ups.

Keywords: Sparse linear system, iterative solver, preconditioner, ILU
decomposition, MPI, distributed-memory multiprocessor.

1 Introduction

The solution of sparse linear systems is a computational bottleneck in many
scientific computing application problems. While sparse direct methods have
proven to be extremely efficient for a wide range of applications, the increasing
size of the problems arising from 3D PDEs applications asks for fast and effi-
cient iterative solution techniques. This in turn requires alternative techniques
like approximate factorizations combined with Krylov subspace methods, be-
cause of their moderate computational and memory requirements [10]. Among
these, ILUPACK1 (Incomplete LU decomposition PACKage) is a software pack-
age mainly based on ILU factorizations with improved robustness in conjunction
with Krylov subspace methods.

Although the application of a preconditioner has the potential of accelerating
the convergence rate of iterative solvers, the computational cost per iteration
increases. Moreover, the time of computing the preconditioner also needs to be
taken into account. To compensate for this, high-performance computing tech-
niques can be applied to speed-up the computation of both the preconditioner
and the iterative procedure. The parallelization of ILUPACK-based precondi-
tioners on shared-memory multiprocessors, and scaling studies with up to 16
cores, are discussed in previous work [1,2,3]. As in sparse direct methods [7], this
parallelization is inspired by a nested-dissection hierarchy of the initial system

1 http://ilupack.tu-bs.de

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 162–172, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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which allows to map independent tasks concurrently to cores within each level.
This paper demonstrates that the same parallelization carries over to distributed-
memory multiprocessors, reporting remarkable performance on up to 32 cores.

The paper is structured as follows. ILUPACK is briefly reviewed in Sect. 2.
Details on the parallelization of this package on distributed-memory multiproces-
sors are given in Sect. 3. Finally, Sect. 4 contains experimental results collected
from the parallel algorithm and offers a few concluding remarks.

2 Computation of Preconditioners in ILUPACK

Preconditioning in ILUPACK relies on the so-called inverse-based approach, which
improves the robustness of classical ILU factorizations bounding the growth of the
entries in the inverses of the triangular factors. To justify this, consider the ILU
factorization

A = L̃D̃Ũ +R , (1)

where L̃, ŨT are unit lower triangular matrices, D̃ is diagonal, and R is the error
matrix which collects those entries that were dropped during the factorization.
Applying the preconditioner M = L̃D̃Ũ , we obtain the preconditioned matrix

L̃−1AŨ−1 = D̃ + L̃−1RŨ−1 . (2)

Although dropping typically results in some “relatively small” error matrix R,
both L̃−1 and Ũ−1 may exhibit very large norms, so that application of the
preconditioning can significantly amplify the size of the entries in R. This may
directly impact the convergence rate of the preconditioned iterative solver.

The inverse-based preconditioning approach relies on approximate factoriza-
tions with “bounded” inverse triangular factors; i.e., factorizations with

∥∥L−1
∥∥ ≤

κ and
∥∥U−1

∥∥ ≤ κ, for some prescribed small threshold κ > 1. In practical ap-
plications, an ILU factorization of the system at hand does not typically satisfy
this requirement, so that pivoting is necessary to bound the inverse triangular
factors during the computation. Pivoting is accommodated in a multilevel frame-
work in order to construct a hierarchy of partial inverse-based approximations,
as sketched in the following multilevel algorithm:

1. Preprocessing step. Matrix A is scaled by diagonal matrices Dl and Dr

and reordered by permutation matrices Pl and Pr,

Â = PT
l DlADrPr .

2. Factorization step. At each step of the Crout variant of the ILU factoriza-
tion, the method is interlaced with a pivoting strategy which yields a nonex-
pensive estimation of the norm of a new row/column of the inverse factors. If
the estimation exceeds the threshold κ, the current pivot is rejected and the
corresponding row/column are moved to the bottom/right-end of the ma-
trix. Otherwise, the pivot is accepted and dropping is applied to the current
row/column before they are incorporated to the factors. This is illustrated



164 J.I. Aliaga et al.

in Fig. 1. Collecting the permutations due to inverse-based pivoting on P ,
we obtain the following partial ILU factorization of a permuted matrix:

PT ÂP =

[
L̃B 0

L̃E I

] [
D̃B 0

0 S̃C

] [
ŨB ŨF

0 I

]
+

[
RB RF

RE 0

]
.

The method applies additional dropping to the approximate Schur comple-
ment S̃C , so that we actually compute

ŜC = S̃C +RC = C −
(
L̃ED̃BŨF

)
+RC .

3. Restarting step. Steps 1 and 2 are repeatedly applied to A = ŜC until
SC is void or “sufficiently dense” to be efficiently factorized by a level 3
BLAS-based direct factorization kernel.

For a more detailed description of the numerical approach which lays the foun-
dation of ILUPACK and its theoretical properties see [4,5].
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approximate

factorization

accept

reject

continue
factorization

rejected
pivots

compute
SC

‖eTk L−1‖, ‖U−1ek‖ ≤ κ

‖eTk L−1‖, ‖U−1ek‖ > κ

current factorization step finalize level

Fig. 1. ILUPACK pivoting strategy

3 Parallelization of ILUPACK

To design a parallel version of ILUPACK, we decompose the computation of
the preconditioner into tasks, identify the dependencies among them, and apply
static mapping to these operations.

For sparse linear systems, it is possible to apply graph-based symmetric re-
orderings to find a permutation Π such that

ΠTAΠ =

⎡⎣ A11 0 A13

0 A22 A23

A31 A32 A33

⎤⎦ . (3)

Computing the ILU decomposition of the leading blocks A11 and A22, we obtain
the following partial approximation
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0 L̃22 0

L̃31 L̃32 I

⎤⎥⎦
⎡⎢⎣ D̃11 0 0

0 D̃22 0

0 0 S̃33

⎤⎥⎦
⎡⎢⎣ Ũ11 0 Ũ13

0 Ũ22 Ũ23

0 0 I

⎤⎥⎦+

⎡⎢⎣ R11 0 R13

0 R22 R23

R31 R32 0

⎤⎥⎦ ,

where the approximate Schur complement is given by

Ŝ33 = A33 −
(
L̃31D̃11Ũ13

)
−
(
L̃32D̃22Ũ23

)
+R33 ; (4)

proceeding with the ILU factorization of Ŝ33, the ILU decomposition ofΠTAΠ is
completed. The structure of ΠTAΠ allows the explotation of parallelism during
this computation. In particular, we can disassembleΠTAΠ into two submatrices[

A11 A13

A31 A
1
33

]
,

[
A22 A23

A32 A
2
33

]
, A1

33 +A2
33 = A33 , (5)

so that the ILU decomposition of the leading block of both submatrices can be
concurrently obtained,[

A11 A13

A31 A
1
33

]
=

[
L̃11 0

L̃31 I

][
D̃11 0

0 S̃1
33

] [
Ũ11 Ũ13

0 I

]
+

[
R11 R13

R31 0

]
[
A22 A23

A32 A
2
33

]
=

[
L̃22 0

L̃32 I

][
D̃22 0

0 S̃2
33

] [
Ũ22 Ũ23

0 I

]
+

[
R22 R23

R32 0

]
.

Then, we can also compute in parallel the Schur complements corresponding to
both partial approximations

Ŝ1
33 = A1

33 −
(
L̃31D̃11Ũ13

)
+R1

33 , Ŝ
2
33 = A2

33 −
(
L̃32D̃22Ũ23

)
+R2

33 .

However, the construction of (4) requires communication before the addition of
these two blocks can be computed

R33 ≈ R1
33 +R2

33 → Ŝ33 ≈ Ŝ1
33 + Ŝ2

33 . (6)

Finally, the sequential ILU factorization of Ŝ33 completes the parallel approxi-
mate factorization of ΠTAΠ .

To expose a higher degree of parallelism, we need to identify a larger number of
independent diagonal blocks. We can do this by applying a permutation similar
to Π on the two leading blocks, and then reordering and renaming the blocks,⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Â11 0 Â13 0 0 0 ∗
0 Â22 Â23 0 0 0 ∗
Â31 Â32 Â33 0 0 0 ∗
0 0 0 Ā11 0 Ā13 ∗
0 0 0 0 Ā22 Ā23 ∗
0 0 0 Ā31 Ā32 Ā33 ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
→

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

A11 0 0 0 A15 0 A17

0 A22 0 0 A25 0 A27

0 0 A33 0 0 A36 A37

0 0 0 A44 0 A46 A47

A51 A52 0 0 A55 0 A57

0 0 A63 A64 0 A66 A67

A71 A72 A73 A74 A75 A76 A77

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7)
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Figure 2 illustrates the dependency tree for the factorization of the diagonal
blocks in the right-hand side of (7); there, the nodes which lie at the same height
can be factored in parallel and the edges of the graph define the dependencies
between the diagonal blocks, other words, the order in which the blocks of the
matrix have to be processed. We identify three classes of nodes in the figure:

1. The Leaf nodes, which are responsible for the factorization of the four
leading diagonal blocks in parallel.

2. The Intermediate nodes, which factorize in parallel the next two interme-
diate diagonal blocks, A55 and A66. These blocks cannot be factorized unless
the leading diagonal blocks corresponding to its children have been already
factorized, i.e., A11 - A22 and A33 - A44 respectively.

3. The Root node, which sequentially factorizes the last diagonal block, A77.
This approximation can be only computed when all the preceding diagonal
blocks have been processed.

A11 A22 A33 A44

A66A55

A77
P3

P2

P3

P3P1

P1

P0

Fig. 2. Dependency tree of the diagonal blocks

The parallel computation of the preconditioner also commences by disassembling
A, with one submatrix for each leaf node,⎡⎢⎣A11 A15 A17

A51

A71

A1
55 A

1
57

A1
75 A

1
77

⎤⎥⎦ ,
⎡⎢⎣A22 A25 A27

A52

A72

A2
55 A

2
57

A2
75 A

2
77

⎤⎥⎦ ,
⎡⎢⎣A33 A36 A37

A63

A73

A3
66 A

3
67

A3
76 A

3
77

⎤⎥⎦ ,
⎡⎢⎣A44 A46 A47

A64

A74

A4
66 A

4
67

A4
76 A

4
77

⎤⎥⎦ ,

A55 = A1
55 +A2

55 , A66 = A3
66 +A4

66 , A77 = A1
77 +A2

77 +A3
77 + A4

77 .

Thus, the partial factorization of these submatrices can be computed concur-
rently. For example, computing the ILU of A11, we obtain the following partial
approximation⎡⎢⎣ L̃11 0 0

L̃51

L̃71

I 0

0 I

⎤⎥⎦
⎡⎢⎣ D̃11 0 0

0

0

S̃1
55 S̃

1
57

S̃1
75 S̃

1
77

⎤⎥⎦
⎡⎢⎣ Ũ11 Ũ15 Ũ17

0

0

I 0

0 I

⎤⎥⎦+

⎡⎢⎣ R11 R15 R17

R51

R71

0 0

0 0

⎤⎥⎦ .

When the partial factorizations of all the leaf nodes are completed, the processes
in charge of these tasks send the local Schur complement to the corresponding
intermediate node, which then accumulates them to continue the process,
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Ŝ1
55 Ŝ1

57

Ŝ1
75 Ŝ1

77

]
+

[
Ŝ2
55 Ŝ2

57

Ŝ2
75 Ŝ2

77

]
=

[
Ŝ55 Ŝ57

Ŝ75 Ŝ12
77

]
,

[
Ŝ3
66 Ŝ3

67

Ŝ3
76 Ŝ3

77

]
+

[
Ŝ4
66 Ŝ4

67

Ŝ4
76 Ŝ4

77

]
=

[
Ŝ66 Ŝ67

Ŝ76 Ŝ34
77

]
.

The matrix resulting from assembling these two submatrices presents the same
structure as that defined in (3)

[
Ŝ55 Ŝ57

Ŝ75 Ŝ12
77

]
⊕
[
Ŝ66 Ŝ67

Ŝ76 Ŝ34
77

]
=

⎡⎢⎣ S55 0 S57

0 S66 S67

S75 S76 S77

⎤⎥⎦ , S77 = S12
77 + S34

77 , (8)

and the process continues as described above.
This procedure can be generalized to obtain the same number of leaf nodes

as process/processors, so that the ILU factorization of each leaf node can be
mapped to a specific process. The performance of the parallel computation of
the preconditioner will be improved if the load is balanced among the leaf nodes is
optimum and the communication time is reduced. Mapping nodes to processors
as in Fig. 2, yields a high degree of parallelism if the computational cost is
concentrated on the leaf nodes of the dependency tree, and the cost is evenly
distributed among the leaf nodes. In practice, it is not possible to know the cost
of the multilevel ILU factorization a priori, but we can estimate this cost from
the number of rows/columns and nonzeros per node. Therefore, we must find a
permutation of A that minimizes the number of rows/columns of non-leaf nodes,
while simultaneously balancing those of the leaf nodes.

The MLND (Multilevel Nested Dissection) algorithm [8] is a recursive proce-
dure that, at each step, splits a graph into two disjoint subgraphs connected by
the nodes included in the separator. Some conditions hold for the result of this
computation; e.g., the size of the separator may feature some minimum criteria
and/or the size of the subgraphs can be made equal up to a certain degree. The
recursion can be continued on the subgraphs until their size is relatively small.
By viewing a sparse matrix as a graph, this procedure generates a reordered
matrix similar to that shown in left-hand side of (7).

There exist several implementations of MLND (e.g., in METIS2, SCOTCH3),
which usually lead to balanced elimination trees that exhibit a higher degree of
concurrency. There also exist parallel versions of these packages (ParMETIS [9]
and PT-SCOTCH [6]) that exploit several types of parallelism during the com-
putation of the permutation. To illustrate the quality of current partitioning
packages, we applied ParMETIS to a benchmark matrix of dimension 106 (see
Sect. 4 for details), in order to generate a tree with the structure shown in Fig. 2;
the result is shown in Fig. 3.

2 http://glaros.dtc.umn.edu/gkhome/views/metis
3 http://www.labri.fr/perso/pelegrin/scotch

http://glaros.dtc.umn.edu/gkhome/views/metis
http://www.labri.fr/perso/pelegrin/scotch
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246269 245060 244932 243704

50234976

10036 P3

P2

P3

P3P1

P1

P0

Fig. 3. Number of rows/columns of the dependency tree corresponding to a matrix of
size 106 arising from the finite-difference discretization of the Laplace 3D PDE

The described parallel algorithm forces a certain order of elimination to ex-
pose a high degree of concurrence during the approximate factorization of the
reordered matrix. In particular, the leaf nodes first factorize the leading diagonal
blocks, and then the corresponding Schur complements are received and accumu-
lated by the corresponding intermediate nodes. This idea is recursively applied
till the root node is reached. However, this parallel process does not control the
growth of the norms of the inverse triangular factors during the computation of
the preconditioner. In order to accommodate the inverse-based preconditioning
approach, we first restrict the preprocessing and factorization steps to the
leading block of each submatrix, so that only the rows/columns of this block are
preprocessed, and rejected rows/columns are moved to the bottom/right-end of
the leading block. Thus, e.g., the factorization step applied to the left-most
submatrix in (5) results in the following partial approximation,[

P11 0

0 I

]T [
A11 A13

A31 A
1
33

][
P11 0

0 I

]
=

⎡⎢⎣B11 F11

E11 C11

F13

C13

E31 C31 A1
33

⎤⎥⎦ =

⎡⎢⎣ L̃B,11 0 0

L̃E,11 I 0

L̃E,31 0 I

⎤⎥⎦
⎡⎢⎣ D̃B,11 0 0

0 S̃C,11 S̃C,13

0 S̃C,31 S̃
1
C,33

⎤⎥⎦
⎡⎢⎣ ŨB,11 ŨF,11 ŨF,13

0 I 0

0 0 I

⎤⎥⎦+
⎡⎢⎣RB,11 RF,11 RF,13

RE,11 0 0

RE,31 0 0

⎤⎥⎦ ,

and then the multilevel process is recursively applied on the matrix[
ŜC,11 ŜC,13

ŜC,31 Ŝ1
C,33

]
=

[
S̃C,11 S̃C,13

S̃C,31 S̃1
C,33

]
+

[
RC,11 RC,13

RC,31 R1
C,33

]
. (9)

Figure 4 illustrates the computation of the partial ILU factorization of A22 in (7),
computed by a single leaf node of the dependency tree. The restarting step
is also adapted, because it recursively applies the restricted steps until ŜC,11

in (9) is void or “sufficiently small”. Finally, the intermediate node assembles
the approximate Schur complement computed by its children as:⎡⎣ ŜC,11 0 ŜC,13

0 ŜC,22 ŜC,23

ŜC,31 ŜC,32 ŜC,33

⎤⎦ =

[
ŜC,11 ŜC,13

ŜC,31 Ŝ1
C,33

]
⊕
[
ŜC,22 ŜC,23

ŜC,32 Ŝ1
C,33

]
.
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A1,1 A2,2 A3,3 A4,4

A5,5 A5,6

A7,7factorized pending

current rejected

approx.

factor.

accept

reject

continue

factorization

current factorization step finalize local level

compute
SC

‖eTk L−1‖, ‖U−1ek‖ ≤ κ

‖eTk L−1‖, ‖U−1ek‖ > κ

Fig. 4. Local incomplete factorization computed by a single node of the task tree

Unlike (6), the parent node must now consider the pivots rejected by its children,
which are incorporated into the submatrix constructed by the former. This is
illustrated in Tab. 1, which reports the structure of the parallel ILU factorization
corresponding to the problem/tree in Fig. 3. We can observe that the leaves and
the root have to build several partial inverse-based ILUs. Moreover, the number
of levels and the number of rejected pivots in each leaf can be different.

Table 1. Number of accepted pivots by inverse-based pivoting in each level, and num-
ber of rejected pivots which are pushed upwards for the tree in Fig. 3

Leaves Intermediates Root

Proc level1 level2 level3 level4 level5 rejected level1 rejected level1 level2

P0 184977 33739 19065 8462 26
P1 184073 33529 17952 9291 215 0 5001 1
P2 183783 33123 18925 9070 31
P3 182922 33071 18608 9074 29 5083 0 9905 132

735755 133462 74550 35897 215 86 10084 1 9905 132

979879 86 10084 1 10037

4 Experimental Results and Conclusions

All experiments in this section were obtained using IEEE double-precision arith-
metic, on a cluster interconnected by an InfiniBand network with 4 nodes. Each
node contains two Intel QuadCore Nehalem processors (8 cores), at 2.27 GHz
and with 24 Gbytes of RAM. We used the OpenMPI message-passing library
tuned for the InfiniBand network. The dependency tree was computed using
ParMETIS (routine ParMETIS V3 NodeND with defaults parameters).

We consider a standard benchmark problem for the solution of PDEs: the
Laplacian equation −Δu = f in a 3D unit cube Ω = [0, 1]3 with Dirichlet
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boundary conditions u = g on ∂Ω. Although this regular problem is known
to be best-suited for multigrid methods, we have selected it due to its large
dimension and applicability. The problem is discretized using a uniform mesh
of size h = 1

N+1 . The computational domain Ω is replaced by a grid Ωh =
{(xi, yj, zk) = (ih, jh, kh)| i, j, k = 1, . . . , N}, and the differential operator is
replaced by finite differences

Δu (xi, yj, zk) ≈ 1
h2 (− ui−1,j,k − ui,j−1,k − ui,j,k−1+

6ui,j,k − ui+1,j,k − ui,j+1,k − ui,j,k+1) ,

where uijk ≈ u(xi, yj, zk). Because of the Dirichlet boundary conditions, any
unknown uijk such that i, j, k ∈ {0, N + 1} is explicitly available and becomes
part of the right-hand side vector. The resulting linear system Au = b presents a
sparse symmetric positive definite (SPD) coefficient matrix with seven nonzero
elements per row, and n = N3 unknowns. We set N=100, 126, 159, 200, and 252
in our experiments, which results in five SPD linear systems with roughly n =1,
2, 4, 8, and 16 millions of unknowns. We also consider four large-scale SPD
benchmark matrices (bmwcra 1, af shell3, ldoor and G3 circuit) from the UF
sparse matrix collection4. We have selected these to evaluate the performance of
our parallelization approach with irregularly structured problems.

Figure 5 shows the speed-up of the parallel ILU preconditioner for the differ-
ent matrices, number of nodes, and number of cores per node. The total number
of cores equals the product of the number of nodes and cores per node. The
dependency tree is generated so that its number of leaves equals the number
of cores. Thus, those combinations of “number of nodes-cores per node” which
result in the same number of cores, utilize the same dependency tree to exploit
parallelism, but a different mapping of MPI processes to cores. From this figure
we can conclude that the parallel ILUPACK implementation exhibits reasonable
strong scaling, as the parallel efficiency drops moderately as the number of cores
grows. Moreover, the performance almost remains constant when the same num-
ber of cores are involved in the parallel computation, revealing a mild influence
of the distribution of the cores among the nodes; only for the largest matrices,
a small performance reduction is observed when using eight cores per node (see,
e.g., for N = 2523, drop from 4-4 to 2-8). We believe that this is due, to some
extent, to contention caused by the fully utilization of the resources in a node.

At first glance, it might appear that the factor that contributes more to the
drop in efficiency observed in Fig. 5 is the lack of parallelism in the higher levels of
the dependency tree. Although this factor can (asymptotically) limit the strong
scalability of our approach, in practice, we observed a moderate reduction of the
computational cost concentrated on the leaves of the tree as the number of cores
increases, so that even a single type of parallelism (e.g., tree parallelism) can
provide a reasonable degree of parallelism for a multilevel ILU preconditioner.
Table 2 reports the percentage of the aggregated computational cost which is
concentrated on the leaves and the non-leaf nodes of the tree vs. the number of
cores. This cost is defined as the aggregation of the computational cost of all

4 http://www.cise.ufl.edu/research/sparse/matrices
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Fig. 5. Speed-up of the parallel multilevel ILU algorithm for the five Laplace 3D PDE
matrices (left) and the four matrices from the UF sparse matrix collection (right)

tasks in the tree, so that overheads associated with parallelism (e.g., communi-
cation or idling) were not accounted in Tab. 2. The experiment clearly reveals a
moderate reduction of the computational cost concentrated on the leaves with
the number of cores for all matrices except bmwcra 1 (the smallest test ma-
trix). For bmwcra 1, this reduction does not solely justify the performance drop
observed in Fig. 5.

Table 2. Percentage of the aggregated computational cost which is concentrated on
the leaves (left) and non-leaf nodes (right) of the dependency tree

matrix 1 core 2 cores 4 cores 8 cores 16 cores 32 cores

n = 1003 (100.0,0.0) (99.76,0.24) (99.35,0.65) (98.36,1.64) (96.75,3.25) (93.87,6.13)
n = 1263 (100.0,0.0) (99.84,0.16) (99.46,0.54) (98.71,1.29) (97.25,2.75) (95.20,4.80)
n = 1593 (100.0,0.0) (99.81,0.19) (99.58,0.42) (98.95,1.05) (97.88,2.12) (96.11,3.89)
n = 2003 (100.0,0.0) (99.90,0.10) (99.63,0.37) (99.15,0.85) (98.24,1.76) (96.93,3.07)
n = 2523 (100.0,0.0) (99.89,0.11) (99.71,0.29) (99.32,0.68) (98.61,1.39) (97.52,2.48)

bmwcra 1 (100.0,0.0) (99.99,0.01) (99.46,0.54) (97.83,2.17) (94.69,5.31) (90.51,9.49)
af shell3 (100.0,0.0) (99.87,0.13) (99.86,0.14) (99.66,0.34) (99.18,0.82) (97.97,2.03)
ldoor (100.0,0.0) (99.96,0.04) (99.74,0.26) (99.27,0.73) (98.76,1.24) (97.58,2.42)

G3 circuit (100.0,0.0) (99.99,0.01) (99.75,0.25) (99.63,0.37) (99.12,0.88) (98.06,1.94)

We believe that the main key factor for the performance drop observed in
Fig. 5 is the parallel overhead due to idle MPI processes, which in turn is caused
by an unbalanced distribution of the computational work associated with the
leaf nodes in the tree. Table 3 reports, for a parallel execution with 32 cores,
how much computational time is concentrated on the most and least expensive
computational leaves; this is expressed as a percentage relative to the paral-
lel execution time in the rows labeled as leafmax and leafmin. This table also
reports the aggregated parallel overhead relative to the aggregated parallel ex-
ecution time, with the latter defined as the product of the parallel execution
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time and the number of cores. The aggregated parallel overhead was estimated
by substracting the aggregated parallel execution time and the aggregation of
the computational costs of all tasks in the tree (i.e., the useful computation).
The table clearly correlates load unbalance in the computation of the leaves
and parallel overhead; see e.g., values for bmwcra 1. Future developments will
require additional techniques to improve load balancing in the computation of
the leaves.

Table 3. Amount of computational time concentrated on the most and least compu-
tationally expensive leaves, and relative aggregated parallel overhead

1003 1263 1593 2003 2523 bmwcra 1 af shell3 ldoor G3 circuit

leafmax 65.28 68.61 73.28 77.75 80.80 60.27 87.67 82.50 84.38
leafmin 50.00 53.28 58.40 64.03 68.98 27.40 53.42 62.50 71.88
overhead 39.15 35.83 32.18 26.47 23.01 54.88 36.77 26.80 19.63
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project P1-1B2009-31.

References
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4. Bollhöfer, M., Grote, M.J., Schenk, O.: Algebraic multilevel preconditioner for the
helmholtz equation in heterogeneous media. SIAM Journal on Scientific Comput-
ing 31(5), 3781–3805 (2009)
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Abstract. We are witnessing the consolidation of the GPUs streaming
paradigm in parallel computing. This paper explores stencil operations
in CUDA to optimize on GPUs the Jacobi method for solving Laplace’s
differential equation. The code keeps constant the access pattern through
a large number of loop iterations, that way being representative of a wide
set of iterative linear algebra algorithms. Optimizations are focused on
data parallelism, threads deployment and the GPU memory hierarchy,
whose management is explicit by the CUDA programmer. Experimental
results are shown on Nvidia Teslas C870 and C1060 GPUs and compared
to a counterpart version optimized on a quadcore Intel CPU. The speed-
up factor for our set of GPU optimizations reaches 3-4x and the execution
times defeat those of the CPU by a wide margin, also showing great
scalability when moving towards a more sophisticated GPU architecture
and/or more demanding problem sizes.

Keywords: CUDA, GPGPU, Stencil Computation, Parallel Numerical
Algorithms.

1 Introduction

The newest versions of programmable GPUs provide a compelling alternative
to traditional CPUs, delivering extremely high floating point performance for
scientific applications which fit their architectural idiosyncrasies [11]. Whereas
hybrid clusters of SMPs where once the realm only of costly supercomputers,
GPUs now turn nodes with this added complexity into a commodity. This fact
has attracted GPUs to researchers in many fields [7], among which numerical
methods constitute one of the most prolific ones.

A large number of numerical computing techniques use large multidimensional
arrays as its primary data structure, which bring us a good opportunity to benefit
from Single InstructionMultiple Data (SIMD) parallelism. In addition, such algo-
rithms normally have an iterative nature, that is, they tend to converge through a
number of steps towards the final solution until certain condition is fulfilled. Usu-
ally, parallelism is exploited within an iteration, where each processor can work
on a different subsection of the global data to produce an output which is partially
communicated to other processors. Then, data is rearranged to become the input
to the next iteration, which prevents from parallelizing consecutive iterations.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 173–183, 2012.
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In order to exploit SIMDparallelism in general-purpose computing, bothNvidia
andAMDhave released software componentswhich provide simpler access toGPU
computing power than that realized by treating the GPU as a traditional graph-
ics processor. CUDA [3] is Nvidia’s solution as a simple block-based API for SIMD
programming; AMD’s solution is called Stream Computing. We choose CUDA to
program the GPU for being more popular and providingmoremechanisms to opti-
mize general-purpose applications. Nevertheless, bothmodels are expected to con-
verge inOpenCL [8] as a higher level standard shared by a wide set of GPUmodels.
Among them,we have somehigh-end graphics cards aimed specifically at the scien-
tific General Purpose GPU (GPGPU) computing market: the Tesla products [12]
are from NVIDIA, and Firestream [6] is AMD’s product line.

Stencil computations are those in which each computing node in a multi-
dimensional grid is updated with weighted values contributed by neighboring
nodes. These neighbors comprise the stencil, and multiple iterations across the
array are usually required to achieve convergence or to simulate time steps.
Among those stencil codes, our work focuses on the Jacobi method to solve
Laplace’s differential equation, which is a priori not an ideal partner for GPUs
due to its low arithmetic intensity. We overcome this drawback by exploring a
wide set of optimizations paths in CUDA: threads deployment, different uses of
the shared memory, the effect of larger 2D stencils, the floating-point accuracy
for single and double precision, and finally the scalability for our solution versus
a multicore CPU. Our best version reaches a speed-up factor of 3-4x over a non-
optimized GPU version, also showing great scalability when moving towards a
more sophisticated GPU architecture and/or demanding problem sizes.

The rest of the paper is organized as follows. Section 2 explains the Jacobi
method. Section 3 briefly introduces the specifics of the GPU programming with
CUDA. Section 4 outlines our CUDA implementation, exposes the execution
times and analyzes the results. Finally, Section 5 reviews some related work and
Section 6 concludes.

2 The Jacobi Method

Jacobi [9] is a popular algorithm for solving Laplace’s differential equation on a
square domain, regularly discretized [5]. The kernel (see Figure 1) is based on
the following idea: Let us consider a body represented by a 2D array of particles,
each with an initial value of temperature. This body is in contact with a fixed
value of temperature on the four boundaries, and Laplace’s equation is solved
for all internal points to determine their temperature as the average at all of the
five stencil nodes (see Figure 1).

Taking this task as the computational core, a number of iterations are per-
formed over the data to recompute average temperatures repeatedly, and the
values gradually converge to a finer solution until the desired accuracy is reached.
For experimental purposes, we consider a constant number of 4096 iterations.
Note that iterations have to be serialized due to carried-loop dependencies, but
parallelism is enabled within iterations because the computation at each particle
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for (k=0; k<4096; k++) {

for (i=0; i<N; i++)

for (j=0; j<N j++)

T[i][j] = 0.2*(A[i][j]+A[i-1][j]+

A[i+1][j]+A[i][j-1]+A[i][j+1]);

for (i=0; i<N; i++)

for (j=0; j<N j++)

A[i][j] = T[i][j]; }

Fig. 1. Jacobi’s solver pseudocode

Table 1. GPU features for the Tesla cards used during our experimental analysis

Hardware feature Tesla C870 Tesla C1060

Compute Capabilities 1.0 1.3

Number of streaming processor 128 240

Frequency of streaming processors 1.35 GHz 1.30 GHz

Global memory size and type 1.5 Gbytes GDDR3 4 Gbytes GDDR3

Global memory width and speed 384 bits @ 2x800 MHz 512 bits @ 2x800 MHz

Global memory bandwidth 76.8 Gbytes/sc. 102 Gbytes/sc.

is independent. Thus, the workload depends more on the number of iterations,
whereas the amount of parallelism that can be extracted from the code relies
more on the size of the 2D input matrix.

At the end, the Laplace equation, once discretized, leads to our Jacobi kernel.
This kernel consists of three nested loops, with the two innermost being of lengthN
(which is thematrixdimension), and theoutermostbeing of lengthk (thenumber of
iterations) - see Figure 1. The algorithm complexity can be expressed asO(k · N2).

3 CUDA

CUDA (Compute Unified Device Architecture) [3] is a programming interface
and set of supported hardware to enable general purpose computation on Nvidia
GPUs and leverage special hardware features not visible to more traditional
graphics-based GPU programming, such as small cache memories, explicit mas-
sive parallelism and lightweight context switch between threads.

The Tesla C870 and C1060 GPUs are respectively based on the G80 and
GT200 architectures, whose major features are depicted in Table 1.

Each GPU multiprocessor can run a variable number of threads, and the local
resources are shared among them. In any given cycle, each core in a multiproces-
sor executes the same instruction on different data based on its threadId, and
communication between multiprocessors is performed through global memory
(see Figure 2).

In the CUDA programming model, a program is decomposed into blocks,
groups of threads runnning in parallel within a single multiprocessor where they
share registers, memory and other multiprocessor’s resources (see Figure 2.a).
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(a) Hardware interface (b) Programming model

Fig. 2. CUDA highlights for the G80 core used in the Tesla C870 board

Table 2. Major hardware and software limitations with CUDA. Constraints are listed
for the G80 and GT200 GPUs, the ones inside our Teslas C870 and C1060 boards.

G80 GT200

CUDA Compute Capabilities 1.0 and 1.1 1.2 and 1.3
Multiprocessors per GPU 16 30
Processors / Multiprocessor 8 8
32-bit registers / Multiprocessor 8192 16384
Shared Memory / Multiprocessor 16 KB 16 KB.
Threads / Warp 32 32
Thread Blocks / Multiprocessor 8 8
Threads / Block 512 512
Threads / Multiprocessor 768 1024

A kernel is a code function compiled to the instruction set of the device
and executed by all of its threads. Threads run on different processors of the
multiprocessors sharing the same executable and global address space, though
they may not follow exactly the same path of execution. A kernel is organized
into a grid as a set of thread blocks explicitly defined by the application
developer and executed on a single multiprocessor.

Threads placed in different blocks from the same grid cannot communicate. This
tradeoff between parallelism and thread resources must be wisely solved by the
programmer to maximize execution efficiency on a certain architecture given its
limitations. These limitations are listed for the case of our Tesla boards in Table 2.

3.1 Memory Optimizations

During our CUDA implementation, attention must be paid to how threads access
the 16 banks of shared memory, since only when the data resides in different
banks can all of the available ALU bandwidth truly be used. Each bank only
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Fig. 3. Threads deployment for the CUDA parallelization strategy

Table 3. Execution times (in seconds) for our Jacobi baseline implementation

Matrix (threads deployment per block)
size (14x14) (16x16) (18x18) (20x20)

10242 13.50 13.16 13.70 14.13

20482 52.73 50.74 52.57 52.43

40962 206.99 203.35 207.06 211.28

81922 843.55 850.18 899.46 852.26

Matrix (threads deployment per block)
size (14x14) (16x16) (18x18) (20x20)

10242 3.27 2.34 3.24 3.071

20482 12.73 8.72 11.88 11.594

40962 50.36 34.60 46.28 44.402

81922 211.03 144.02 211.16 177.795

(a) Tesla C870 (b) Tesla C1060

supports one memory access at a time; simultaneous memory bank accesses are
serialized, stalling the rest of the multiprocessor’s running threads until their
operands arrive. The use of shared memory is explicit within a thread, which
allows the developer to solve bank conflicts wisely.

Another critical issue related to memory performance is data coalescing. A
coalesced access involves a contiguous region of global memory where the starting
address must be a multiple of region size and the kth thread in a half-warp must
access the kth element in a block being read. This way, the hardware can serve
completely two coalesced accesses per clock cycle, which maximizes memory
bandwidth. It is programmer’s responsability to organize memory accesses in
such a way.

4 Implementation

4.1 Optimal Threads Deployment

Figure 3 shows the threads deployment for the parallelization of the Jacobi
method using CUDA. Blocks and threads are deployed following a 2D layout to
balance the decomposition of the computational domain on each matrix dimen-
sion. Adjacent blocks share data placed on boundaries, and each thread within
a block is responsible for updating a single element on each iteration.

Among all possibilities concerning an input matrix of size NxN and a squared
block of BxB threads, we have selected N = 1024, 2048, 4096, 8192 and B =
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14, 16, 18, 20 for representing good choices after a preliminary survey. Table 3
shows that 16x16 constitutes the optimal number of threads per block, with a
penalty around 5-10% in terms of the execution time for the other three cases.
All remaining squared alternatives for the matrix of threads led to worse results.

4.2 Shared Memory Optimizations

Our CUDA baseline implementation does not use shared memory. All threads
access the device memory to read an element together with its four matrix
neighbors and later update its value with the average. From this departure point,
three optimizations were incrementally developed:

1. Each input element read from device memory is stored into shared memory
by the owner thread prior to the actual computation, and the output result is
written back into device memory. The kernel length increases from 34 to 78
instructions, but this variant notably reduces the pressure on device memory,
just requiring 18 GB/s of memory bandwidth compared to 122 GB/s in our
baseline version.
On the Tesla C870, 99.68% of the memory accesses to device memory are
non-coalesced when running the code using CUDA Compute Capabilities
1.0 (CCC 1.0). On the Tesla C1060, things are very different, because this
device uses coalescing rules based on CCC 1.3, leading to a 100% of coalesced
accesses. Benefits are therefore larger on the Tesla C1060 GPU.

2. Our second optimization uses an internal register as substitute of the shared
memory cell on each thread. This leads to a more homogeneous behavior of
threads, which is exploited to omit certain syncthreads() calls at block level,
and also enables data prefetching as a positive side-effect. Nevertheless, these
enhancements behave similarly on CCC 1.0 and CCC 1.3, and consequently
are translated into minor improvements in the overall execution time.

3. The third optimization reduces the relative amount of shared memory used
by each thread so that a block of threads can work with a greater data
area. In other words, the block uses the same amount of shared memory, say
16x16, but with those data now is capable of managing a tile of 16x32 data
in two iterations. Doing so, we can maximize the parallelism allowed on each
CUDA platform. In CCC 1.0, the maximum number of threads assigned to
a multiprocessor is 768, whereas in CCC 1.3 this number reaches 1024. In
the first case, the amount of shared memory used by each block was reduced
until 4120 bytes, so that we can assign three blocks of 256 threads to each
multiprocessor. In the second case, we reduced this size even more until we
could assign four blocks of 256 threads, which increases parallelism leading
to slightly better results.

Table 4.a shows the execution times for all these versions on a Tesla C870 and
Table 4.b does the same for the Tesla C1060 GPU. An average speed-up factor
of 3.5x is roughly attained.
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Table 4. Execution times (in seconds) for our Jacobi implementation using different
optimizations. Between parenthesis, we show the speed-up factor versus the baseline
implementation on the same platform. Threads deployment is 16x16 for all cases.

Matrix Baseline: Optimiz. 1 Optimizs. 1+2 Optimizs. 1+2+3

10242 13.16 3.77 (3.49x) 3.76 (3.50x) 3.88 (3.39x)

20482 50.74 14.49 (3.50x) 14.45 (3.51x) 14.71 (3.45x)

40962 203.35 55.60 (3.65x) 55.59 (3.65x) 57.45 (3.54x)

81922 850.18 243.00 (3.50x) 241.81 (3.51x) 241.81 (3.51x)

(a) Tesla C870

Matrix Baseline: Optimiz. 1 Optimizs. 1+2 Optimizs. 1+2+3

10242 2.34 0.73 (3.20x) 0.65 (3.60x) 0.63 (3.71x)

20482 8.72 2.79 (3.12x) 2.47 (3.53x) 2.42 (3.60x)

40962 34.60 11.45 (3.02x) 9.93 (3.48x) 9.66 (3.58x)

81922 144.02 45.70 (3.15x) 40.35 (3.57x) 40.29 (3.57x)

(b) Tesla C1060
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Fig. 4. Increasing the stencil size: some redundant operations may be saved

4.3 The Effect of Larger 2D Stencils

Our next alternative kernel tries to evaluate the effect of changing the 2D stencil
size, which imposes a coarser granularity on SIMD parallelism. Instead of a
single element, a 2x2 matrix of elements was assigned to every thread. Using this
new stencil, partial sums on diagonal elements of the matrix can be reused for
computing the output elements on the other diagonal (see Figure 4), saving two
arithmetic operations and four memory accesses on each thread at the expense
of using two registers for storing auxiliary values.

Execution times are shown in Table 5 on a Tesla C1060 GPU for different
threads deployment (depicted on rows). The input matrix size is 40962 and
our kernel uses shared memory without further optimizations. The execution is
slowed down 30-40% on average with respect to the case in which each thread
computes a single element, proving that context switch is free in CUDA: using
a 1x1 stencil we require 341x341 calls with thread blocks, whereas using a 2x2
stencil, we just need 157x157 calls.
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Table 5. Execution times (in seconds) on a Tesla C1060 GPU for different threads
deployment (depicted on rows). The input matrix size is 40962 and the code version
uses shared memory without further optimizations. The stencil size is the number of
elements computed by each thread.

Threads Stencil size Slowdown

deployment 1x1 2x2 factor

14x14 13.91 19.31 38%

16x16 11.45 15.43 34%

18x18 13.27 18.16 36%

20x20 13.83 18.40 33%

Table 6. Execution times (in seconds) and empirical streaming bandwidth (in GB/s.)
for the optimal version of our Jacobi implementation (that is, optimizations 1, 2 and 3
performed), using single and double precision in our Tesla C1060 GPU, where theoret-
ical peak bandwidth is 102 GB/s. We run out of memory for the 81922 case on double
precision. Threads deployment is 16x16 for all cases.

Matrix Single Precision Double Precision Slowdown
size Exec. time Bandwidth Exec. time Bandwidth factor

10242 0.90 104.25 GB/sec 1.70 56.69 GB/sec 89%

20482 3.36 114.49 GB/sec 6.55 14.70 GB/sec 95%

40962 13.41 117.00 GB/sec 26.33 3.66 GB/sec 96%

4.4 Floating-Point Accuracy and Performance

We now evaluate floating-point performance by comparing the GPU power on sin-
gle and double precision versions of our optimal Jacobi implementation. According
toTable 1, peak performance on theTesla C1060 is 933GFLOPS in single precision
and 78 GFLOPS in double precision. However, Table 6 shows that times roughly
double when switching from single to double precision. This basically means that
our application is bandwidth limited and the fact that double precision numbers
occupy 64 bits versus 32 bits for single precision explains the slowdown factor.

Table 6 also includes bandwidth data attained by our implementation. In cer-
tain cases, we reached values exceeding the theoretical peak bandwidth provided
by the global memory (GDDR3 video RAM in our GPU), which can justify the
presence of small cache areas in the underlying architecture, a feature which
is often deliberately undisclosed by hardware vendors. Nevertheless, we believe
these bandwidth numbers reflect a solid validation of outstanding performance
for the kernels developed throughout this work.

4.5 GPU versus CPU Multi-core Performance

In our final experiment, we want to compare the many-core GPU with a multi-
core CPU in terms of scalability, parallel performance and the influence of the
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Table 7. Execution times (in seconds) for different architectures and implementations

Input On a Tesla GPU On an Intel Core 2 Quad Q9450 CPU

matrix C870 C1060 1 core 2 cores 4 cores 4 cores 4 cores

size 1 thread 2 threads 4 threads 8 threads 16 threads

10242 3.88 0.63 12.30 6.04 3.08 3.91 4.26

20482 14.71 2.42 50.05 53.13 61.10 61.17 59.02

40962 57.45 9.66 200.56 220.02 252.92 251.84 251.44

81922 241.81 40.29 807.87 876.00 1003.01 1009.11 1000.43

memory hierarchy. Table 7 presents the execution times that we have obtained
parallelizing the Jacobi method on the GPU using CUDA and the CPU us-
ing pthreads. For the multithreaded CPU version, the best performance was
obtained by assigning entire rows to each CPU core as data partition.

We can see that the Tesla C1060 GPU is unbeatable, and the C870 is also
more effective than the quad-core in most of the cases, overall when working
with large matrices. It can also be seen how the CPU times are poorly scalable
when the working set exceeds the L2 cache size (12 MB in our case), that is,
from the 20482 case on. In other words, the CPU cores have to rely on caches to
become effective, and the Jacobi method becomes even more bandwidth limited
when running on multicore CPUs.

5 Related Work

APIs such as OpenMP are able to tile stencil loops at run-time and execute the
tiles in parallel [10]. Researchers have investigated the best combination of tiling
strategies that optimizes both cache locality and parallelism, and even propose
automatic tuning for tiling stencil computations on multicores [4], GPUs [13]
and the Cell [2]. Those techniques are usually based on the concept of ghost
zones, which enlarge the tile with a perimeter overlapping neighboring tiles by
multiple halo regions to reduce communications by replicating computation.

Stencil kernels on GPUs have recently gained attention by the scientist com-
munity. Listed in order of affinity with our work, we may select the following
four contributions: Datta et al [4] tune a benchmark of 3D stencil kernels on
GPUs and multicores, Christen et al. [2] consider a 7-point stencil kernel to be
implemented on GPUs and the Cell BE, Amorim et al. [1] perform a comparison
of the Jacobi method between a GPU parallelization using OpenGL and CUDA,
and finally, Venkatasubramanian et at. [13] also implement the Jacobi method
on GPUs and hybrid CPU/GPU systems.

Focusing on the work performed specifically on Jacobi method, Amorim et
al. [1] use diagonal matrices and a different access pattern than ours to compare
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results against a CPU implementation on a quad-core AMD Phenom processor,
obtaining a 78x speed-up factor.

On the other hand, the work in [13] was developed in parallel to ours with
a similar methodology. Our implementation sacrifices two idle threads on each
half-warp by replicating data placed at block boundaries, which helps us to
succeed on a more homogeneous access to the device memory. This is rewarded
on conflicts-free accesses to memory banks and particularly on coalesced accesses,
overall in CUDA Compute Capabilities 1.3, where conditions for non-coalesced
accessed were widely relaxed.

In all CUDA implementations, a crucial parameter for attaining the best
performance is the thread block size. In [13], a 1.7x slowdown factor is reported
when moving from a 64x8 to a 16x8 block size on a Tesla C1060 GPU using
a 8x8 thread block. Though we agree on how sensitive the execution time is
to the thread deployment, our best performance is achieved on a 16x16 thread
block, with a clear benefit on lighter threads. This way, our key guidelines to the
optimal Jacobi implementation were to reduce to the minimum (1) the number of
target elements computed by each thread, and (2) the number of tiles computed
by each thread block.

6 Summary and Conclusions

This paper explores CUDA on GPUs to optimize stencil computations using as
benchmark the Jacobi method for solving Laplace’s differential equation. Op-
timization paths are focused on data parallelism, threads deployment and the
GPU memory hierarchy, with a clear influence of the stencil access pattern.

Experimental results show great success for our techniques on Teslas C870
and C1060 GPUs, achieving great scalability and good performance versus a
quad-core Intel CPU. The speed-up factor for our set of GPU optimizations
reaches 3-4x and the execution times defeat those of the CPU by a wide margin,
also showing great scalability when moving towards a more sophisticated GPU
architecture and/or more demanding problem sizes.

Streaming and arithmetic intensive kernels produce higher performance on the
GPU to reach two orders of magnitude gain factors with respect to a multicore
CPU. However, our kernel for Jacobi is bandwidth limited, preventing us from
further optimizations. This behavior is also confirmed when comparing single to
double precision performance, as the peak computational power is theoretically
more than an order of magnitude higher for the single precision case and the
execution time barely gets better by a factor of two.
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Abstract. The Finite Difference Time Domain (FDTD) method enables
computerized simulation of the electromagneticwavepropagation.Wepro-
pose a streaming model for FDTD computations oriented towards a mul-
ticore processor architecture. FDTD computations are characterized by
injection of small portions of data into computational nodes, processing
themand returning the results intomain storage. We can parallelize FDTD
computations by combining the loop tiling approach and a communica-
tion mechanism based on a rotating buffers infrastructure. The described
FDTD algorithm has been implemented using both of these techniques on
a streaming architecture of the Cell/BE processor. The efficiency of FDTD
computations has been estimated for different parameters of the assumed
loop tiling algorithm and the rotating buffers mechanism.

Keywords: FDTD, loop tiling method, Cell/BE, streaming architec-
ture, rotating buffers mechanism.

1 Introduction

Intensive development of system-on-chip and network-on-chip technologies as
well as embedded and multicore systems enforces major changes in parallel pro-
cessing methodology. In multicore systems, total computational performance is
bounded due to limitations of processor clock speed caused by heat dissipation
problems. Simultaneously, in many modern computational systems, DMA or
RDMA communication is used instead of traditional sockets or other message
passing methods. It enables using direct access to remote memory from each pro-
cessing element, and hence, overlapping of computation and communication can
be easily and efficiently applied. In order to obtain sufficient computational per-
formance of parallel solving numerical problems, several supporting mechanisms
can be used:

– loop tiling technique [1, 2]– to find, describe and implement data dependen-
cies in computational expressions;

– rotating buffers communication [3] – to exploit a DMA communication in-
frastructure and create a data stream between all memory modules involved
in a streaming computational process.
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In next two sections, we describe how to combine these mechanisms to increase
efficiency of computations.

2 Loop Tiling Approach

Loop tiling is one of many techniques [4] used by parallel compilers to maximize
parallelism, improve memory hierarchy performance, decrease communication
and synchronization time. Using this technique, only iterative problems can be
solved. The FDTD simulation is an example of a stencil computation problem
[5, 6]. In the FDTD method, the involved electromagnetic wave propagation area
is transformed into its discrete form (a set of Yee cells) and computations are
performed only for discrete points of the area. In the paper a two-dimensional
version of the FDTD problem is considered. Electromagnetic wave propagation
is described by time-dependent Maxwell equations [8]. For the FDTD method
they assume the form presented below (1).

∇× H = γE + ε
∂E

∂t
, ∇× E = −μ

∂H

∂t
(1)

If the FDTD problem is considered in an isotropic environment, the Maxwell
equations can be transformed into their differential forms (2)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Ēn
z (i, j) = CAz(i, j)Ēn−1

z (i, j) + CBz(i, j)·
[H̄n−0.5

y (i + 1, j) − H̄n−0.5
y (i + 1, j)+

+H̄n−0.5
x (i, j − 1) − H̄n−0.5

x (i, j + 1)]
H̄n

x (i, j) = H̄n−1
x (i, j) + RC · [Ēn−0.5

z (i − 1, j) − Ēn−0.5
z (i + 1, j)]

H̄n
y (i, j) = H̄n−1

y (i, j) + RC · [Ēn−0.5
z (i, j − 1) − Ēn−0.5

z (i, j + 1)]

(2)

The whole iteration space of the equations (2) is divided into tiles. A tile rep-
resents an atomic piece of computation, defined by a set of nested loops, which
solve three differential equations (2). Next, a data dependency set is created [1].
It contains a number of dependency vectors (3). They consist of combinations of
distance and direction values, which describe all dependencies for all expressions
for all nested loops. The shape of a tile directly follows from the dependency
set. For a 2D FDTD problem (2), we can consider a space tiling that can be
described by the following dependency set:

Dez = {(0, 0), (−1, 0), (1, 0), (0, 1), (0,−1)}
Dhx = {(0, 0), (−1, 0), (1, 0)}
Dhy = {(0, 0), (0, 1), (0,−1)}

(3)

The shape of a tile determines the volume of total communication between all
processing nodes and all memory modules involved in computations. We have as-
sumed a rectangular shape of a tile. All tile dependencies for the FDTD problem
are expressed by a tile space graph, Fig.1. To reduce the total communication
volume [2], appropriate mapping should be applied. In our case, we have used a
mirror-rotating mapping according to the scheme presented in Fig. 1.
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Fig. 1. Computational mesh of the 2D FDTD problem

3 Rotating Buffers Mechanism

In a streaming computational model, a small amount of data should be trans-
ferred from the main memory of computational system to local memories of pro-
cessing elements. If data are already stored in a local memory, the computations
will be started. When the computations are finished, all results are transferred
back to the main memory. To reduce communication latencies, double or triple
buffering techniques are used. During the computations of tiles already stored
in a local memory, other tiles are transferred between local and main memory
modules. Such overlapping of computations and communication significantly in-
creases total processing efficiency. We have extended this approach onto a rotat-
ing buffers technique. We have assumed a number of tiles that can be transferred
at the same time. Each tile is stored in a single buffer. To reduce control over-
head, we have used a buffer rotation pointer. It points on a currently used buffer
and simultaneously, it defines buffers whose contents is currently transferred to
and from local memory. Such a simple multi-overlapping fully exploits the DMA
facility potential for data transfers. It also enables adjusting the tile size and the
tile shape of the FDTD problem for a given irregular simulation area and for a
given system architecture.

In Fig. 2, the logical structure of the memory used in the rotating buffer
method is presented. This infrastructure is used in Hitachi SR2201 supercom-
puter, but it can be easily transformed to various distributed parallel computa-
tional systems like Cell/BE PS3 for example. Local memory of the computational
node is logically divided into two parts LAM (Locally Accessed Memory) con-
taining data used only for local computations with direct access from application
program level and GAM (Globally Accessed Memory) containing data used for
data exchange. Access to GAM is available only through the rotating buffers
memory infrastructure.
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Fig. 2. Memory structure in rotating-buffers method (for one processing node on the
HITACHI SR2201 supercomputer)

GAM area is divided into N separate sub-area pairs: RDM (Remote Data
Memory) and RCA (Remote Confirmation Area), where N is the number of
remote processors. Each pair is used to perform communication between two
given nodes. The numbers of rotating buffers in the send and receive parts are
fixed and denoted by NSB and NRB, respectively. All buffers which are defined
in a RDM area are used only for data transmission. To avoid possible data
overwriting, an additional control has to be introduced. This control is based on
the RCA areas which are assigned independently to each RDM area. Each RCA
area is intended to send and receive additional control messages which determine
if the buffers from a RDM are ready to receive new data. A RCA consists of
only two sets of one buffer each (by analogy to a RDM where the number of
buffers can change, here the NSB and NRB numbers are always equal to 1).
They are used to exchange synchronized messages between two processors. The
control flow in the rotating buffers method for one processing node is presented
in Fig.3. Data are exchanged between a local node and a remote node K. On both
these nodes, the described above control and communication infrastructure was
created. Additionally, for each processor two pointers K.SPTR and K.RPTR
are created. They are used to indicate a next free buffer in which new data
(to be sent to node K) will be placed (K.SPTR) or new data just received
from K will be written (K.RPTR). These two pointers determine a rotating
access to available buffers and introduce periodical synchronization between two
communicating nodes, which assures that no data which are transferred from
one node to another, will be lost (overwritten).
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Fig. 3. Control flow of the rotating-buffers method for one processing node

4 Experimental Results

All experiments have been done on a Cell/BE PS3 processor equipped in one
main processor (PPE – Power Processing Element) with 256MB of main memory,
six worker units (SPE – Synergistic Processing Elements) with 256KB of local
memory [9, 10, 11, 12, 13, 14, 15]. All processing units: PPE, SPE, main memory
and the IO unit are interconnected by fast multi-ring network (EIB – Element
Interconnected Bus). Communication can be done either by DMA transfers (for
large-sized data) or by mailbox transfers (for very small-sized data). In our ex-
periments, DMA transfers have been done by the rotating buffers infrastructure,
where GAM on SPE processor contains only one pair of RDM and RCA areas
and on PPE processor contains six pairs of RDM and RCA areas. It is because,
the communication between SPE and PPE nodes is considered in this paper.
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Fig. 4. Speedup of computations for different tile sizes

Firstly, the FDTD computations have been tested for a given shape of sim-
ulation area and 8000 rectangular tiles with various sizes expressed in floating
point numbers (FPN). As we can see (Fig. 4), the speedup of computations de-
pends on the number of SPE nodes involved in computations and on the size
of a single tile. For large-size tiles (bigger than 128 FPN) the obtained speedup
is close to the linear one. Unfortunately, for small-sized tiles (especially for 16
FPN) we have not been able to obtain any increase of efficiency. It means that
the streaming model of computations implemented in Cell/BE architecture can-
not be efficiently applied for fine grain computations (in our case, the FDTD
problem cannot be successfully solved for strongly irregular simulation areas,
where very small-sized tiles should be used). To solve this problem, we have
implemented a rotating buffers infrastructure for the FDTD computations, see
Fig. 5. We have tested the same simulation area for various sizes of tiles, various
numbers of rotating buffers and various number of SPE units. In each test, we
have used the same communication volume – the size of a tile multiplied by the
number of tiles are the same in each test. As we can see, efficiency of computa-
tions depends on both the size of a tile and the number of rotating buffers. We
can see again, that configurations with small size tiles work slower in compari-
son to large size configurations (10 times slower for the buffer size of 1 tile). If
the size of the rotating buffers increases, the efficiency will increase as well. For
configurations with 8 and 16 tiles in one buffer, the execution times are almost
the same, respectively.
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Fig. 5. Execution time of the FDTD computation for different configurations with
rotating buffers infrastructure
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Fig. 6. Speedup of the FDTD computation for different configurations with rotating
buffers infrastructure (curve notation as in Fig.5)

When the rotating buffers mechanism is combined with other communication
optimization techniques (e.g. non-blocking mailbox synchronization) we can ob-
tain a linear or even super linear speedup of the FDTD computation for some
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configurations (Fig. 6). It shows that for configurations with small sized tiles
(16/64/128) and for 1 tile in rotating buffer configuration, speedup obtained for
6 SPEs does not exceed ~1.2/~2.7/~4.6 in comparison to execution of these con-
figurations on 1 SPE. For the rest of configurations (tile size 1024/2048/16384)
we have obtained almost linear speedup. As the number of tiles in a rotating
buffers infrastructure increased, the speedup (in comparison to execution of given
configuration on 1 SPE) for small sized tiles configurations also increased and for
configuration with 16 tiles in a buffer we have obtained almost linear speedup for
all configurations. For configuration with 8 tiles and 6 SPEs we have obtained
a slight super linear speedup. It shows that overlapping of the FDTD computa-
tion and simultaneous tiles transferring with the rotating buffers infrastructure
in this case allows to obtain the best increase of the efficiency in comparison to
other configurations.

General performance (for GCC -O3 compiler) obtained in the last experi-
ment for tile size equals 16 vary from ~3.3 GFLOP/s (configuration with 1
SPE) to ~4.0 GFLOP/s (configuration with 6 SPEs). For tile size equals 2048,
general performance vary from ~7.7 GFLOP/s (configuration with 1 SPE) to
~45.5 GFLOP/s (configuration with 6 SPEs). In our implementation we were
oriented towards data communication improvement by the use of the rotating-
buffers technique. It is possible to further improve the speedup of similar stencil
computation by the use of the SIMD option inside a SPE offered by CELL/BE
architecture, as in [asmykkey-16] where ~12.4 GFLOP/s for 1 SPEs and ~99.5
GFLOP/s for 8 SPEs on QS22 blade for Finite Difference application are re-
ported. However, it requires special rearrangement of the computation structure
inside a SPE to comply with the SIMD mode requirements. This will be the
target ot further studies.

5 Conclusions

The combination of the tiling method and the rotating buffer memory infras-
tructure has turned out to be very efficient optimization technique for FDTD
computations on streaming model architecture. The rotating buffer based on
DMA communication has produced in some cases (configuration with 8 tiles
in rotating buffers infrastructure) super linear speedup due to elimination of
stalling of computations by constant providing new computational tiles to SPE
processors. Efficient computations for configurations with small size tiles (fine
grain parallelism) are very important in the case of very irregular computational
shapes since big size tiles cannot be directly applied. Their direct mapping into
computational area produces weak tiles (tiles with many unused computational
cells), so some additional computational overhead will appear. Our optimizations
have led to promising results for fine grain computations by reaching the maxi-
mal possible performance on the Cell/BE processors. The method presented in
the paper can be easily adopted to other numerical problems that can be solved
iteratively. The main problem is that the dependency set for a given iterative
problem must be constant for large number of iterations, otherwise streaming
computations will not be performed efficiently.
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Abstract. We present an implementation of the Normalized Cuts
method for the solution of the image segmentation problem on polygonal
grids. We show that in the presence of rounding errors the eigenvector
corresponding to the k-th smallest eigenvalue of the generalized graph
Laplacian is likely to contain more than k nodal domains. It follows
that the Fiedler vector alone is not always suitable for graph partition-
ing, while the eigenvector subspace, corresponding to just a few of the
lowest eigenvalues, contains sufficient information needed for obtaining
meaningful segmentation. At the same time, the eigenvector correspond-
ing to the trivial solution often carries nontrivial information about the
nodal domains in the image and can be used as an initial guess for the
Krylov subspace eigensolver. We show that proposed algorithm performs
favorably when compared to the Multiscale Normalized Cuts and Seg-
mentation by Weighted Aggregation.

Keywords: image segmentation, spectral graph partitioning, symmet-
ric eigenvalue problem, generalized graph Laplacian.

1 Introduction

Image segmentation methods often rely on the use of the spectral graph par-
titioning techniques [1,2], when an image is represented by a simple weighted
undirected graph. In this setting, graph vertexes represent image primitives,
such as pixels, while its edges describe relationships between the neighboring
image primitives. On the subsequent steps, graph clustering objective, seeking
to partition image graph into a set of disjoint coherent segments, is set up.

Spectral graph partitioning presents a number of numerical challenges. The
most notable problem is the complexity reduction of the underlying eigenvector
computations – the bottle neck of all spectral segmentation methods [3]. This
problem is typically addressed either within an algebraic multigrid or multilevel
graph partitioning framework. This approach has been successfully adapted for
the solution of image segmentation problems in multiscale [4,5,6] and algebraic
multigrid-like frameworks [7]. In the current study, we replace an image with its
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c© Springer-Verlag Berlin Heidelberg 2012



194 A. Matsekh et al.

compressed version on an unstructured polygonal grid, assuming that compres-
sion preserved main properties of the eigenvalue spectrum of the graph Lapla-
cian.

Sometimes, the authors construct spectral segmentation in multidimensional
spaces spanned by a few eigenvectors, corresponding to the smallest eigenvalues
of the graph Laplacians [8], rather than relying on recursive bisection of the
Fiedler vector alone – the theoretical optimal solution to the graph partitioning
problems [1,2]. However, as far as we can tell, there has never been given a clear
explanation why recursive bisection of the Fiedler vector alone may not always
produce satisfactory segmentation. We try to give this explanation by analyzing
the effects of the rounding errors on the finite precision solution to the problem in
the Krylov subspace generated by a variant of the Cullum-Willoughby-Lanczos
method [9,10].

2 Problem Setup

Let J be a pixel image and let P be its approximation on a polygonal grid
obtained using VISTA software [11]. Polygonized image P consists of n primi-
tives pi obtained by the application of the Canny edge detector on the image
J , followed by the application of an algorithm that superimposes Constrained
Delaunay Triangulation (CDT) over the detected edges, assigning average colors
to the triangles by Monte Carlo sampling of the pixels in each triangle [11]. The
triangulated image is then further coarsened by combining neighboring triangles
representing coherent patches, into polygons pi, i = 0, 1, . . . , n − 1 [11]. Each
polygon pi is attributed with color ui which is an aggregate of the colors of the
triangles polygon pi is comprised of. Typically, the number of polygons will be
significantly smaller than the number of the pixels (e.g. see Figure 1). We will
treat approximation P as a compressed image J , replacing J with P on the
consecutive steps.

Our goal is to segment the polygonized image P into coherent visual scenes
using the Normalized Cuts graph partitioning objective function [13] that seeks
to minimizes graph cuts relative to the weighted degrees of its clusters. This
problem formulation provides valuable information about the weighted degrees
of graph nodes that we exploit when solving the underlying sparse symmet-
ric eigenvalue problem. We represent P as a simple weighted undirected graph
G(V, E) with vertex set V = (v0, v1, ..., vn−1) and edge set E = {eij | eij = vi vj}.
Graph vertexes vi describe polygons pi, while its edges eij connect vertexes that
represent neighboring polygons pi and pj . Graph G is then described by the
weighted adjacency, or affinity, matrix W ∈ R

n×n, W = WT with elements
wij representing weights associated with the edges eij .

Let ui = (u0i , u
1
i , u

2
i ) be the aggregate color assigned to the polygon pi in

the CIELAB color space. Let (xki , y
k
i ), k = 0, 1, . . . , ni−1 be the coordinates of

its ni vertexes. We call two polygons pi and pj neighbors if they share at least one
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(a) original image (b) polygonized image

Fig. 1. Geometric image coarsening with VISTA: (a) original 321 × 481 pixel image
from the Berkeley Segmentation Data Set [12]; (b) polygonized image consisting of
4521 primitives

Canny or CDT-detected edge. Let ûij = (ui−uj). We can compute the elements
of the affinity matrix W as follows:

wij
def
=

⎧⎪⎪⎨⎪⎪⎩
e−c ûT

ij Σ−1 ûij

|Σ|1/2 e−f(gij), i �= j ∧ j ∈ P i
nbr

0, i = j ∨ j /∈ P i
nbr

(1)

where i = 0, 1, . . . , n−1, P i
nbr is the list of indexes of the neighbors of vi, Σ is the

color sample variance-covariance matrix, c > 0 is an image-dependent constant
and f(gij) is a function describing geometric affinity of pi and pj.

The Normalized Cuts graph clustering objective [13] is typically considered
in its weak formulation

L zi = λiD zi (2)

with the set of continuous solutions (λi, zi), i = 0, 1, . . ., where L = D−W, L =
LT is the generalized graph Laplacian [2] and D = diag(d0, d1, . . . dn−1) is the
diagonal matrix of weighted degrees dk =

∑
i�=k wki of the graph nodes vk. The

generalized symmetric eigenvalue problem (2) is easily reduced to the spectrally
equivalent symmetric eigenvalue problem

Axi = λi xi, (3)

where A = I −D−1/2W D−1/2 is the normalized affinity matrix, I is the iden-
tity matrix and xi = D1/2 zi. Matrix A is symmetric positive semidefinite and
consequently has nonnegative real spectrum. The smallest nonzero eigenvalue
λ1 of A corresponds to the optimal solution to the relaxed Normalized Cuts
problem (2). Fiedler [1] calls λ1 the algebraic connectivity of graph, as the corre-
sponding eigenvector z1, often called Fiedler vector [2], is the new representation
of the original image, consisting of positive and negative components that cor-
respond to the two nodal domains in graph G. Fiedler vector is typically used
in spectral segmentation methods for recursive graph bipartitioning.
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3 Numerical Findings

Although recursive application of the Fiedler vector gives analytically optimal
solution to the segmentation problem, some authors often use a few additional
vectors to perform spectral graph partitioning. For instance, Malik et al. [8]
use a two-stage segmentation procedure that requires to partition the subspace
consisting of the 11 eigenvectors corresponding to the 11 smallest nonzero eigen-
values in order to construct an oversegmented image followed by the Fiedler-
based segmentation of the graph of the oversegmented image. We would like to
understand whether, in finite precision, it is sufficient to compute high quality
segmentation with the Fiedler vector alone, or whether we do need to generate
multidimentional segmentation of the eigenvector subspace corresponding to the
few of the smallest eigenvalues.

In order to understand how the analytical properties of the graph Lapla-
cians change when their spectral characteristics are computed in the presence of
rounding errors, we will analyze the first two smallest distinct eigenvalues and the
corresponding eigenvectors of the affinity matrix. Our choice of the eigenvalue
solver is the Lanczos Method with Guaranteed Accuracy (LMGA) [10] – an im-
plementation of the Cullum-Willoughby-Lanczos method [9] that uses eigenvalue
intervals computed using Interval Bisection method and the two-sided Sturm se-
quences [14,10,15] to accurately identify and discard spurious and numerically
multiple eigenvalues. LMGA relies on the latest version of the two-sided Sturm
sequence-based implementation of the Inverse Iteration method [10,15] – Inverse
Iteration with Guaranteed Accuracy (IIGA) – to compute the eigenvectors of
the underlining tridiagonal symmetric eigenvalue problem.

Let (λ̃i, z̃i), i = 0, 1, . . . be the finite precision solution to the generalized
eigenvalue problem (2) computed using the solution (λ̃i, x̃i) to the equivalent
standard eigenvalue problem (3). In exact arithmetic, zero eigenvalue λ0 = 0 is
the trivial solution to the problem (2), as the corresponding eigenvector z0 =
c (1, 1, . . . , 1)T , where c �= 0 is a scalar, contains equal components that would
assign all graph vertexes to one nodal domain, or one segment. This is the
property of all generalized graph Laplacians, whose eigenvectors behave very
similarly to the modes of a vibrating string, with the first mode, corresponding
to λ0 = 0, assigning all graph vertexes to one nodal domain, the second mode
splitting graph nodes into two domains, the third – into three domains, and so
forth [16]. Due to the presence of rounding errors, approximate eiegnvector z̃0
has distinct components z̃k0 dependent on the weighted degrees dk of vk:

z̃k0 = x̃k0/
√
dk, k = 0, 1, . . . , n− 1. (4)

We can model z̃0 as the vector z̄0 with the components

z̄k0 = 1.0 + ζ ‖A‖E εmach/
√
dk, (5)

where εmach is the unit round-off error, ‖A‖E is the Euclidean norm of A and
ζ > 1 is a scalar that accounts for the error of the algorithm used to compute
the eigenvectors. We compute the eigenvectors x̃k, k = 0, 1, . . . , n − 1 of the
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underlining tridiagonal problem using Interval Bisection followed by the IIGA
method. The error in the eigenvectors x̃i will be at least as high as the error of
the computed eigenvalues, which is guaranteed not to exceed

√
3 ‖A‖E εmach [10].

In our case, ζ is at least
√
3, which means that z̄0 is likely to contain errors that

slightly exceed the unit round-off. This means that, in general, components z̄k0
are not identical, each inheriting information about the weighted degree

dk =
∑
i�=k

wki (6)

of the corresponding graph node vk through the error term. Weighted degree dk
of the node vk is the sum of the weights of the graph edges that node vk is incident
to. This means that dk accumulates a wealth of information about adjacent
graph nodes and incident edges of the node vk. If we are looking for a nontrivial
initial guess for our Lanczos eigensolver, vector z̄0 with an appropriately chosen
parameter ζ certainly makes a good choice.

It is reasonable to assume that the error term ζ ‖A‖E εmach/
√
dk, ζ > 1 will

be present in the components of all z̃i. We can model all eigenvectors of the
graph Laplacian as

z̄ki = (x̃ki + ζ ‖A‖E εmach)/
√
dk, (7)

where k = 0, 1, . . . , n − 1, i = 0, 1, . . .. It is clear that the error term will con-
tribute additional information about the weighted degrees of the graph nodes
into the floating point solution z̃i. Consequently, we can expect that all z̃i, in-
cluding the Fiedler vector, may contain more than i nodal domains. Although
the presence of the error term is desirable for computing an initial guess for
the Krylov subspace eigensolver, it is likely to contaminate the Fiedler vector
with the information about more than two nodal domains. This is probably the
reason why in floating point arithmetic Fiedler vector alone often fails to deliver
clear-cut results. As far as the use of the multidimensional eigenvector spaces
for graph partitioning, the presence of the error term in the eigenvectors should
not be damaging, as we are no longer looking for just two nodal domains. As
a matter of fact, the information about more than i nodal domains in the i-th
eigenvector in such a subspace may help to identify all nodal domains of interest
without having to include a large number of eigenvectors.

We conducted a number of numerical experiments in order to verify our theory.
We discovered that straightforward use of the formula (5) with ζ = 1.0 produces
extremely noisy results that can be seen in Figure 2(a), where we recursively
bipartitioned vector z̄0 of the polygonized image presented in Figure 1(b). At
the same time, it is clear that z̄0 has nontrivial components in the direction of
the solution and we can take z̄0 as an initial guess for an iterative eigenvalue
solver that can be computed in linear time. This means that we can solve the
problem running LMGA to solve (3) with the initial iterate x̄0 with the following
components

x̄k0 =
√
dk + ζ ‖A‖E εmach, k = 0, 1, , . . . , n− 1 (8)
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(a) initial iterate x̄0 (b) first eigenvector ẑ0 (c) Fiedler vector ẑ1

Fig. 2. (a) Initial iterate x̄0 for LMGA, (b) rescaled eigenvector ẑ0 (λ̃0 = 1.88469e−
16), (c) rescaled Fiedler vector ẑ1 (λ̃1 = 1.53525e − 06)

that, due to the nature of the Normalized Cuts objective, incorporate informa-
tion about the weighted degrees dk of the corresponding graph nodes vk.

Let (λ̃i, z̃i), i = 0, 1, . . . ,m − 1 be a set of m eigenpairs that we man-
aged to compute with the LMGA such that λ̃0 < λ̃1 < · · · < λ̃m−1. We
would like to examine the Fiedler vector z̃1 and to verify our hypothesis that
z̃0 �= c1, c ∈ R may contain nontrivial information about the polygonized im-
age P . In order to visualize our results we rescale components of z̃i as follows:
ẑki = (z̃ki −minj z̃

j
i )/(maxj z̃

j
i −minj z̃

j
i ) where i = 0, . . . ,m−1, k = 0, . . . , n−1,

so that ẑki ∈ [0, 1]. Next, we will apply a recursive bisection procedure to the
rescaled vectors ẑ0 and ẑ1, splitting the vectors in two subvectors relative to the
sample mean of its components. In Figure 2 we present results that we obtained
in double IEEE-754 precision after 12 steps of the bisection procedure used to
split and visualize vectors z̄0, ẑ0 and ẑ1 generated for the polygonized version of
the image from the Berkeley Segmentation Data Set [12] shown in Figure 1. As
expected, due to the presence of rounding errors, both the first (trivial) eigenvec-
tor ẑ0, and the Fiedler vector ẑ1, have more than two nodal domains, however,
neither ẑ0 (Figure 2(b)) nor ẑ1 (Figure 2(c)) produce satisfactory segmentation.
The corresponding eigenvalues are well separated: λ̃0 = 1.88469e−16 represents
numerical zero, while λ̃1 = 1.53525e−06 is the nontrivial eigenvalue correspond-
ing to the Fiedler vector.

Alternatively, we can attempt to construct segmentation using a set of the
few of the lowest eigenvectors of the graph Laplacian. A multidimensional par-
titioning method can be used to split the computed eigenvector subspace into
segments representing coherent visual scenes in an image. The larger the eigen-
value is that the eigenvector corresponds to, the more nodal domains in the
image it will reveal. Note that the use of eigenvectors corresponding to larger
eigenvalues has its downside – it may result in an oversegmentation of an im-
age [8] due to the presence of a large number of nodal domains. Additionally, we
can include the first, trivial, eigenvector into this set.

Depending on the implementation, multidimensional partitioning methods,
such as the K-means and Mean-Shift [17], have computational complexity
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comparable and even higher than that of sparse eigensolvers, including LMGA.
As a low complexity alternative, we developed an implementation of the Mean-
Shift algorithm that we call ‘Spatially Truncated Mean Shift’ (STMS). We define
the STMS iteration as follows. Let Z = (ẑ0, ẑ1, . . . , ẑm−1) denote rescaled eigen-
vectors corresponding the first m smallest eigenvalues of the matrix W (2). Let
Y = ZT = (y0, y1, . . . , yn−1), where yi ∈ R

m. Then Spatially Truncated Mean
Shift iteration takes the following form:

y
(τ+1)
i =

∑
l∈P i

nbr

e−‖y(τ)
i −yl‖2

2/(
√
2π σil)∑

j∈P i
nbr
e−‖y(τ)

i −yj‖2
2/(

√
2 π σij)

yi, (9)

where y
(0)
i

def
= yi, i = 0, 1, . . . , n − 1; τ = 0, 1, . . .; σij is sample variance of the

shifted iterate y
(τ)
i − yj and P i

nbr is the set of indices of the neighbors of the data
point yi representing graph vertex vi. Spatial truncation amounts to computing
weights using only neighboring data points yi instead of all n−1 data points, that
is, we are computing locally a reweighted solution. Since the ẑi are distinct repre-
sentations of the same image and each can be separately treated as a suboptimal
solution to the segmentation problem, we expect that this scheme will suffice for
the identification of distinct nodal domains. The computational complexity of the
Spatially TruncatedMean Shift isO(n pnbr k τ), where pnbr is the size of the largest
set of neighbors P nbr

i , while the computational complexity of the classical Mean
Shift method is O(n2 k τ). Since pnbr � n we should see a significant speedup.

Our segmentation procedure can be summarized as an algorithm that applies
Spatially Truncated Mean Shift (9) to the eigenvector subspace generated with
the Lanczos Method with Guaranteed Accuracy on a VISTA-preprocessed im-
age. We can formalize this algorithm that we call ‘Spectral Segmentation on
Polygonal Grids’, or SSPG, as follows:

Algorithm 1 (Spectral Segmentation on Polygonal Grids (SSPG)).

1. Construct graph affinity matrix W of a VISTA-polygonized image.
2. Apply LMGA to solve the eigenvalue problem (3) with the initial iterate set

to (8) to compute 5 of the smallest distinct eigenvalues and the corresponding
eigenvectors of W .

3. Apply STMS (9) to partition appropriately rescaled eigenvectors, including
the eigenvector corresponding to the trivial solution.

4. If the number of identified segments is smaller than the number of requested
segments, return to the step 2, increasing the number of eigenvectors to be
computed by 5.

5. Visualize the results by assigning the same color to the pixels that belong to
the same cluster identified by STMS.

Note that for the BSDS images Algorithm 1 finds the requested number of
segments in one or two steps, while for more challenging large images, such as
images from remote sensing applications, it typically converges in about three to
five iterations. Iteratively repeating step 8 is relatively inexpensive as the LMGA
does not use reorthogonalization.
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Table 1. Quantitative evaluation of segmentation results

Image SSPG MNC SWA
(ρd, ρq, ρcc, ρg) (ρd, ρq, ρcc, ρg) (ρd, ρq, ρcc, ρg)

1(a) (0.47, 0.72, 0.90, 0.67) (0.53, 0.65, 0.97, 0.69) (0.65, 0.72, 0.62, 0.66)
4(a) (0.33, 0.64, 0.97, 0.59) (0.26, 0.59, 0.69, 0.47) (0.56, 0.68, 0.19, 0.41)
4(b) (0.70, 0.93, 0.19, 0.50) (0.70, 0.95, 0.28, 0.57) (0.50, 0.85, 0.89, 0.72)
4(c) (0.45, 0.51, 0.97, 0.58) (0.55, 0.85, 0.95, 0.76) (0.55. 0.76, 0.37, 0.53)
4(d) (0.41, 0.86, 0.83, 0.66) (0.32, 0.81, 0.92, 0.62) (0.55, 0.88, 0.12, 0.39)

4 Experimental Results

In order to evaluate the performance of the SSPG algorithm we carried out a set
of tests that compares its C/C++ implementation to the Multiscale Normalized
Cuts (MNC) [6] and to the Segmentation by Weighted Aggregation (SWA) [7].
We ran our experiments on a 2.4 GHz two dual-core AMD Opteron 64-bit work-
station with 16 GB of RAM, and we used test images 1(a) and 4(a) – 4(d) from
the Berkeley Segmentation Data Set (BSDS) [12]. We report SSPG and MNC
execution times in the CPU seconds and in the wall-clock seconds for SWA, as it
does not provide a built-in CPU timer. We report the number of clusters found
by SSPG and MNC algorithms and the level at which SWA results had been
produced. In Figure 3, we present segmentation of the 321 × 481 pixel BSDS
image 1(a) produced by the SSPG, MNC and SWA algorithms along with the
execution times of these algorithms in seconds. Likewise, in Figure 4 we present
segmentation results and execution times for for the 481× 321 pixel BSDS im-
ages 4(a) – 4(d).

Additionally, we carried out a quantitative evaluation of the segmentation
results produced by the SSPG, MNC and SWA algorithms using the BSDS
human segmentation (Figures 3(a), 4(e) – 4(h)) as the reference images. Our
test results are summarized in Table 1, where for each test case we computed

(a) reference18 clust (b) SSPG
4 sec; 14 clust

(c) MNC
92 sec; 15 clust

(d) SWA
4 sec; 11th level

Fig. 3. (a) Test reference image (human segmentation from BSDS); (b) SSPG seg-
mentation results; (c) MNC segmentation results; (d) SWA segmentation results
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(a) 481 × 321 pixel
image

(b) 481 × 321 pixel
image

(c) 481 × 321 pixel
image

(d) 481 × 321 pixel
image

(e) reference
17 clust

(f) reference8 clust (g) reference17 clust (h) reference15 clust

(i) SSPG
3 sec; 26 clust

(j) SSPG
3 sec; 26 clust

(k) SSPG
3 sec; 23 clust

(l) SSPG
3 sec; 19 clust

(m) MNC
106 sec; 15 clust

(n) MNC
103 sec; 15 clust

(o) MNC
55 sec; 15 clust

(p) MNC
61 sec; 15 clust

(q) SWA
4 sec; 10th level

(r) SWA
4 sec; 11th level

(s) SWA
4 sec; 10th level

(t) SWA
4 sec; 10th level

Fig. 4. (a) – (d) Original BSDS images; (e) – (h) test reference images (human segmen-
tation from BSDS); (i) – (l) SSPG segmentation results; (m) – (p) MNC segmentation
results; (q) – (t) SWA segmentation results
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the following characteristics, commonly used for segmentation evaluation [18]:
the detection rate ρd = �(S∩R)/�R, the quality rate ρq = |S∩R|/|S∪R|, and the
connectivity coefficient ρcc = 2 min(�S, �R)/(�S + �R), where R is the reference
image, S = ∪Si is a set of computed segments Si such that |Si ∩ R|/|Si| > 0.5,
�(A) is the number of segments in A and |A| is the number of pixels in A.
Additionally, we report geometric mean ρg = (ρd ρq ρcc)

1/3 as a characteristic of
the overall quality of segmentation [18].

Upon the examination of the Figures 3 and 4 it is clear that the SSPG and
SWA algorithms produce segmentation roughly 20-30 times faster than MNC.
SSPG computes meaningful segmentation in time comparable and even superior
to that of SWA. Analyzing Table 1, we can see that the quality of SSPG seg-
mentation is overall comparable to that of MNC and SWA. Low values of ρcc
produced in a few instances by all three algorithms are the consequence of the
fact that some of the identified clusters may consist of a few disjoint segments.

5 Conclusions

We show that on polygonal grids the eigenvector subspace, corresponding to
just a few of the lowest eigenvalues of the graph Laplacian, contains sufficient
information necessary for obtaining meaningful segmentation, while the Fiedler
vector alone is not always suitable for spectral segmentation. We also show that
the eigenvector, corresponding to the trivial solution, often carries nontrivial in-
formation about the nodal domains in the image and can be used as an initial
guess for an iterative eigensolver. Favorable performance of the developed algo-
rithm is achieved through the polygonal coarsening at the preprocessing steps,
the choice of the initial iterate for the LMGA, and the use of the STMS method
on the postprocessing stage.
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Abstract. In this work a new parallel kriging algorithm is presented.
It is aimed at dealing with unevenly spaced data. The algorithm takes
into consideration the spatial distribution of data points. The value in
the interpolation points with similar neighbors’ groups of sampled data
points is calculated only once and then copied from one to another. The
algorithm was tested for Permanent Scatterers Interferometry Synthetic
Aperture Radar (PSInSAR) data. Efficiency results were compared with
the previous version of proposed parallel kriging algorithm for unevenly
spaced data.

Keywords: parallel kriging, unevenly spaced data, PSInSAR.

1 Introduction

The recently developed remote sensing systems provide us with a large amount
of various data. These data carry very precise information about the objects or
phenomena on the Earth surface and in this way they become an irreplaceable
tool in environmental studies. They can be useful for geologists and geophysics
to monitor or predict natural hazards like earthquakes, ground displacements or
floods. The satellite data very often support decision-making process but before
that they have to be thoroughly analyzed. A lot of satellite systems measure
the particular parameters only at specific points on the ground. It may lead to
the problem of interpolating the values of a parameters at locations without
measurements. In case of data that are spatially or temporally correlated one
of the best method of interpolation is kriging. This geostatistical technique pro-
vides a possibility to obtain highly accurate results. The main problem is that
the kriging method is very computationally expensive especially when there is
a need to apply it for a large number of unevenly spaced data points. To over-
come this obstacle parallel computations can be used. In this work a parallel
kriging algorithm is developed. The presented solution takes into considera-
tion strong irregularity of the location of sampled data points. It was tested for
satellite PSInSAR data that derive information about velocity of slow ground
deformations.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 204–212, 2012.
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Fig. 1. Range of autocorrelation

2 Kriging Algorithm

Geostatistics is a branch of applied mathematics which was developed in the
early fifties in the mining industry. Nowadays, the geostatistics is used in a wide
range of scientific and industrial fields where the need to study spatially and/or
temporally correlated data is essential. The geostatistical methods can be used
to interpolate values of a particular parameter at unsampled locations. Interpo-
lation, together with preliminary analysis, constitute a four-step procedure. In
the first step, the statistical distribution of data has to be described. Then, in
the second step, the spatial variability of data is modeled. Based on the obtained
results the interpolation of parameter is performed in the third part of analysis.
In the last step the estimation variance is computed for each interpolation point.
In this work the authors focus on the third step of the described geostatistical
procedure. This step concerns application of the interpolation algorithm.

Kriging is a geostatistical method of interpolation. It gives a possibility to
interpolate values of parameter for regular grid based on both - evenly and
unevenly spaced data. The estimation of a parameter value at location s0 is
based on the values of n neighboring data points si [1]. Number of neighboring
data points (n), that have influence on the parameter value estimated in s0,
depends on the range a of spatial (temporal) autocorrelation of data (Figure 1).

In geostatistics the spatial (temporal) autocorrelation is determined using
semivariogram function. The semivariogram is made as Equation 1

γ̃(h̃j) =
1

2N

N∑
i=1

(z(si)− z(si + h))2, ∀h ∈ h̃j (1)
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Fig. 2. Empirical semivariogram fitted by theoretical model

where:

γ̃ - value of the semivariogram,
h̃j - range of the distance,
N - number of sampled data point pairs that are located within the distance h,
z(si) - values of parameter at location si,
h - distance.

Semivariogram plots the semivariance between two data points as a function
of distance. The empirical values of semivariogram fitted by theoretical model
(spherical model) were presented in the Figure 2. The range of autocorrelation
a can be clearly seen on the semivariogram. The data within the distance larger
than a are not correlated.

One of the most widely used type of kriging is ordinary kriging. The prediction
is made as in Equation 2

ẑ =

n∑
i=1

wi(s0)z(si) (2)

where wi are kriging weights. They are also determined based on the semivari-
ogram function. In order to perform parameter interpolation for each interpola-
tion point s0 the kriging weights have to be determined by solving the equation
system shown in Equation 3

⎡
⎢⎢⎢⎢⎣

w0(s0)

:

wn(s0)

ϕ

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

γ(s1, s1) . . . γ(s1, sn) 1

: : : :

γ(sn, s1) . . . γ(sn, sn) 1

1 1 . . . 0

⎤
⎥⎥⎥⎥⎦

−1 ⎡
⎢⎢⎢⎢⎣

γ(s0, s1)

:

γ(s0, sn)

1

⎤
⎥⎥⎥⎥⎦

(3)

where γ(si, sj) is the semivariance between data points si and sj and ϕ is the
Langrange multiplier.
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In the case of large data sets the solution of the linear system for each interpo-
lation point is a computationally expensive procedure. In the previous research
[2] it has been shown that kriging computational time grows with the number
of interpolation points (linear dependence) and, what is more significant, with
the number of neighboring data points (power dependence). For large data sets
the kriging algorithm is too much time consuming to be run on a single PC, so
that parallel computations have to be used.

3 Parallel Solution

3.1 Existing Parallel Kriging Algorithms

Several parallel kriging algorithms have been proposed in the literature ([4], [5]),
but they are designed to deal with rather equally spaced data (Figure 3). They
use a classic domain decomposition idea, where the whole interpolation area
is divided into equal parts containing similar number of data points and equal
number of interpolation points. Each part of the area is then assigned to a single
CPU which computes the values of a parameter using the kriging algorithm.
At the end, the results from all the CPUs are gathered to create a single map
of the estimated values. In the case of unevenly distributed data this approach
is not effective because in each interpolation subarea a different number of the
data points is located. Since the complexity of the kriging algorithm depends on
the number of data points in the neighborhood of the interpolation point, the
amount of computations on each CPU is different.

3.2 Proposed Solution

In the current work the authors propose an improved parallel kriging algorithm
designed to efficiently work with unevenly spaced data. The first version of this
algorithm was described in [6]. As opposed to the parallel kriging solutions men-
tioned above it did not divide the interpolation area into equal subareas. At the
beginning the algorithm sequentially calculated the number of the data points in
the circular neighborhood of each interpolation point. The radius of the neighbor-
hood awas determined by the semivariogrammodel. After calculating the number
of neighboring data points, the algorithmgrouped the interpolation points into ten
classes, where points with the similar number of neighbors were assigned to the
same class. As a result, points with similar computation times were gathered to-
gether in ten classes (Figure 4). In the next step, each class was scattered over all
CPUs (Figure 5). Each processor got nearly the same number of points to inter-
polate. Since those points were grouped into classes on the base of the neighbors
number, approximately equal amount of computations needed to be executed on
each CPU. The interpolation results were then gathered from all processors and
saved as one area by the master CPU. Application of this algorithm considerably
decreased the interpolation time for unevenly spaced data. Nevertheless, the total
interpolation time can still be quite long for a real data set.
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Fig. 3. Classical decomposition of spatial data

Fig. 4. Points with similar number of neighbors grouped into classes (only two first
classes of ten presented)
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Fig. 5. Distribution of interpolation points’ classes between CPUs

To shorten the calculation time even more, the authors propose a modification
of the described parallel kriging algorithm. Some interpolation points have very
similar set of neighboring data points. In such case, the results of interpolation
obtained in two (or more) interpolation points differ very slightly ([5]). Therefore,
the authors propose to perform the calculation of the searched parameter only
in one of the interpolation points with similar neighborhood. The interpolated
value (e.g. ground deformation velocity) is then copied to the other points. To
perform this operation one condition has to be fulfilled - Sorensen similarity
index describing the similarity of the sets of neighbors should be greater than the
assumed threshold. The Sorensen similarity index is described by the Equation 4

QS =
2 ∗ C
A+B

(4)

where A is a number of neighboring data points for the first interpolation point,
B is a number of neighboring data points for the second interpolation point
and C is the number of neighboring data points common for both interpolation
points. Increase of the threshold decreases the error, but elongates the calculation
time. The authors set the threshold at the value of 0.95, which is a compromise
between accuracy and calculation time.

The proposed modification can slightly change the results of the interpola-
tion in comparison to the previous algorithm without copying. To investigate
on this effect the values copying was implemented firstly in the 10th class, and
then added to 9th, 8th, etc, since the last classes contain most computationally
demanding interpolation points. The sums of differences between the values in-
terpolated by the algorithm with copying in the consecutive classes’ sets and the
previous algorithm without copying were calculated and are shown on Figure 6.

Based on those results the authors decided to implement the values copying
only in the last three classes 8th, 9th and 10th.
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Fig. 6. Sum of differences between results estimated by the algorithm without values
copying and algorithm with values copying in the consecutive classes sets

4 Application of the Proposed Algorithm for the
PSInSAR Data

In this work both algorithms - previous parallel kriging solution described in
[6], and the improved algorithm presented here - were tested for PSInSAR (Per-
manent Scatterers Interferometry Synthetic Aperture Radar) data. In the PSIn-
SAR method the large sets of the satellite radar images are used to detect slow,
long-term ground deformations [3]. The PSInSAR technique derives information
about terrain deformations only at PS (Permanent Scatterers) points that are a
stable radar targets. These points correspond mostly with a man-made objects
on the ground like buildings, bridges, viaducts etc. As a result of the PSInSAR
method application the map of PS points with determined values of deformations
velocity (mm/year) is obtained. The spacing of a PS points is usually irregular
and their density can be very high. In the urban areas it can be even higher
than 100 points per km2. The PSInSAR data used in this work provide infor-
mation about slow deformations in the area of Upper Silesian Coal Basin (south
Poland). In this region that covers 1200 km2 about 120,000 unevenly spaced PS
points were identified. The both versions of the parallel kriging algorithm (with
and without values copying) were tested using the samples of 5,000, 10,000 and
15,000 data points.

Table 1 shows the distribution of interpolation points among the classes based
on the number of neighboring data points. Class 1 groups interpolation points
with the smallest number of neighbors, while class 10 groups points with the
largest number of neighbors. It is clearly visible, that only about 4-5% of all
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interpolation points are in the last three classes, where the values copying was
implemented. But since those points have the largest numbers of neighbors,
their calculations are most complex and time consuming. Table 1 also shows the
maximum number of neighbors in each class.

Table 1. Percentage of PS points and maximum number of neighbors in each class for
different size of input data

5,000 PS 10,000 PS 15,000 PS

Class Max of
neighbors

% of points Class Max of
neighbors

% of points Class Max of
neighbors

% of points

1 276 28.27 1 473 26.76 1 575 45.18
2 518 23.17 2 947 25.62 2 1150 28.17
3 800 15.98 3 1414 15.67 3 1727 12.57
4 1076 10.58 4 1867 10.93 4 2303 4.11
5 1234 8.10 5 2354 8.41 5 2870 1.48
6 1626 5.33 6 2808 5.20 6 3435 1.58
7 1846 4.47 7 3300 3.49 7 4023 1.74
8 2192 2.48 8 3781 2.45 8 4583 1.74
9 2432 1.11 9 4227 0.85 9 5170 1.71
10 2765 0.51 10 4733 0.62 10 5755 1.71

The calculation times of the previous version of the proposed algorithm (with-
out values copying) and the new one (with values copying) are presented in
Table 2. All computations in this study were conducted using 8 CPUs.

Table 2. Computation times of two parallel kriging algorithms and speedup of the
newly proposed one

PS points Algorithm without copying [s] Algorithm with copying [s] Speedup

5000 1772 1033 1.72
10000 13272 8096 1.64
15000 23943 14714 1.63

The results shows that the proposed modification of the parallel kriging al-
gorithm can noticeably speedup the interpolation procedure. The time spent on
the calculations using improved version of the parallel kriging algorithm was
approximately 1.65 times shorter than in the version without copying.

In the current work the effectiveness tests of the algorithm with values copy-
ing were conducted. In those tests the calculation times of the newly proposed
algorithm for different number of CPUs were measured. The results are shown
on the Figure 7.



212 J. Strzelczyk and S. Porzycka

Fig. 7. Calculation times of the new parallel kriging algorithm for different number of
CPUs

5 Conclusions

This study shows that the newly proposed solution can significantly decrease
the interpolation time in case of unevenly spaced data. There are no major
differences in the estimation results between the previous version of the algorithm
and the newly described solution with values copying in 8th, 9th and 10th class.
The computation time decreases with the increasing number of CPUs, but this
relation slowly faints. Adding 7th and 8th CPU has no significant impact on the
calculation time. Those results are in keeping with the Amdhal’s Law, which says
that the effectiveness of the algorithm decreases with the number of computation
nodes. But in this case the speed of the decrease is acceptable.

References

1. Weckernagel, H.: Multivariate Geostatistics. Springer, Heidelberg (1995)
2. Lesniak, A., Porzycka, S.: Geostatistical Computing in PSInSAR Data Analysis. In:

Allen, G., Nabrzyski, J., Seidel, E., van Albada, G.D., Dongarra, J., Sloot, P.M.A.
(eds.) ICCS 2009. LNCS, vol. 5544, pp. 397–405. Springer, Heidelberg (2009)

3. Ferretti, A., Prati, C., Rocca, F.: Permanent Scatterers in SAR Interferomenty.
IEEE Transaction on Geoscience and Remote Sensing 39(1), 8–20 (2001)

4. Kerry, K.E., Hawick, K.A.: Kriging Interpolation on High-Performance Computers.
In: Bubak, M., Hertzberger, B., Sloot, P.M.A. (eds.) HPCN-Europe 1998. LNCS,
vol. 1401, pp. 429–438. Springer, Heidelberg (1998)

5. Gebhardt, A.: PVM Kriging with R. In: Proceedings of the 3rd International Work-
shop on Distributed Statistical Computing, DSC 2003 (2003),
http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Gebhardt.pdf

6. Strzelczyk, J., Porzycka, S., Leniak, A.: Analysis of ground deformations based on
parallel geostatistical computations of PSInSAR data. In: Proceedings of 17th In-
ternational Geoinformatics Conference (Fairfax 2009) (2009)

http://www.ci.tuwien.ac.at/Conferences/DSC-2003/Drafts/Gebhardt.pdf


Parallel Particle-in-Cell Monte-Carlo Algorithm

for Simulation of Gas Discharges
under PVM and MPI

Christoph Schwanke, Andreas Pflug, Michael Siemers, and Bernd Szyszka

Fraunhofer Institute for Surface Engineering and Thin Films IST,
Bienroder Weg 54e, 38108 Braunschweig, Germany

Abstract. The simulation of complex problems in the field of plasma de-
position technology requires the usage of parallel code running on modern
multicore architectures. The inhouse developed Particle-in-Cell Monte-
Carlo (PIC-MC) simulation environment has recently been ported from
PVM towards MPI, which is the de-facto standard for parallelization by
message passing. We measured a shorter latency time of MPI in compar-
ison with PVM and determined the impact on the PIC-MC performance.

Keywords: Plasma-Simulation, Magnetron-Sputtering, Parallel-
Computing, Message-Passing-Interface, D-Grid.

1 Introduction

Low pressure gas discharges play an important role in various industrial deposi-
tion methods such as magnetron sputtering and plasma enhanced chemical vapor
deposition (PECVD). Due to continuously increasing demands on productivity
and precision of such coating lines, the development of future deposition sources
by pure empirical approaches becomes more and more elaborate.

To support the development of novel plasma sources, a parallel Particle-
in-Cell Monte-Carlo (PIC-MC) simulation environment has been developed at
Fraunhofer IST [1,2], which allows for description of transport phenomena and
gas discharges in the low-pressure regime. Low-pressure in this context means,
that the application of continuum dynamics for description of the transport and
gas dynamics is not appropriate due to the large mean free paths.

This software has recently been ported from the parallel library PVM towards
MPI, which is the de-facto standard for parallelization by message passing. Fur-
thermore, an interface compatible with Grid computing has been implemented
in order to address large problems with heavy CPU usage.

2 The PIC-MC Method

A detailed treatment of the density and the velocity distribution function suit-
able for the low-pressure regime is given by the Boltzmann transport equation,

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 213–219, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



214 C. Schwanke et al.

Fig. 1. Schedule of the main loop in a Particle-in-Cell Monte-Carlo (PIC-MC) simula-
tion run

which can be solved statistically by a particle-based approach as given in [3].
For transport of neutral as well as charged particles, we combined this approach
with electric and magnetic field computation modules, which is referred to as
PIC-MC algorithm as described in detail in [4].

The main principle of this algorithm is to separately perform motion and colli-
sion of representative particles within discrete time steps δt as sketched in Fig. 1.
Representative means, that one simulation particle represents a larger number
of real particles depending on a weighting factor. For transport of neutral as well
as charged particles, we combined this approach with electric and magnetic field
computation modules.

We can apply any 3D CAD data of industrial coating setups with a hybrid
geometry approach: A finite element mesh of arbitrarily shaped surfaces is em-
bedded into a Cartesian grid for particle movement.

An example of a PIC-MC simulation result is shown in Fig. 2, where the sim-
ulated electron density distribution within a two-dimensional model of a bipolar
magnetron discharge is plotted. The model consists of two sputtering targets at
the bottom, a substrate on floating potential as well as a surrounding conduct-
ing chamber wall. The magnetron discharges operate at alternating current at
a frequency of 100 kHz and target voltage amplitudes of ±300 V. In this simu-
lation run, electrons, neutral Ar, ionized Ar+ as well the excitation process of
metastable Ar* are considered.

3 Parallelization Scheme

The PIC-MC simulation software is parallelized by domain decomposition with
a master-slave approach. A master process reads the input data comprising the
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Fig. 2. Simulated electron density in a two-dimensional model for bipolar magnetron
sputtering at a frequency of 100 kHz and a target voltage of ±300 V

whole geometrical information and all simulation parameters and manages a
number of slave processes. The slave processes perform the computation of mo-
tion, collision and electrical field solving for a specified fraction of the simulation
domain. Every time step the slaves exchange simulation particles among each
other and get synchronized with the master.

All computations are performed on a Linux cluster based on the distribution
”Debian Lenny” with 64bit. The cluster consists of seven nodes, whereof each
node is equipped with Dual-Quadcore Intel Xeon R© CPUs E5430 at 2.66 GHz
and 16 GB of RAM. The communication between the nodes is realized with a
GBit Ethernet switch.

4 Message Passing Interface

Our initial version of the simulation code uses PVM 3.4.5 for message passing.
In the course of a public funded project ”Plasma Technology Grid” within the
D-Grid initiative1, we ported this software towards OpenMPI 1.3.3. Nowadays,
MPI is the de-facto standard for parallelization based on message passing and
is most likely available on any external Grid resource.

In the master-slave architecture, the PIC-MC code uses two different modes
to send a message. It can be passed from the master to every slave process or
directly from slave to slave (e.g. transfering particle packages). For measuring
the performance of both message passing interfaces, we started with a pure
communication benchmark of these two modes (Fig. 3). On the one hand, a
32 byte sized message is passed 105 times from master toN slaves and backwards,

1 http://www.D-Grid.de

http://www.D-Grid.de
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Fig. 3. Comparison of both message passing interfaces: Benchmark of a bidirectional
master-slave (blue colored) and a ring-cycle slave-slave (red colored) communication

which is called the bidirectional mode. On the other hand N slaves are arranged
in a ring, passing the message 105 rounds, called the ring cycle mode.

The result in Fig. 3 shows a significant performance advantage of the Open-
MPI library over PVM. If only one node of the cluster is used (up to 8 CPUs),
OpenMPI bypasses the network interface resulting in an even higher perfor-
mance increase. In this case a difference of more than one order of magnitude
between OpenMPI and PVM was measured. With more than 8 CPUs some mes-
sages will be transferred through the network, which immediately slows down the
performance. Therefore the advantage of MPI’s shorter latency time is getting
detracted, but MPI still remains 2-5 times faster than PVM.

However, the OpenMPI tasks always consume 100% of a CPU core, respec-
tively, even when in blocking receive mode, while the PVM tasks seem to produce
a CPU load only outside blocking receive calls. The reason is that OpenMPI ob-
viously tries to minimize latency while polling messages at the price of an always
high CPU load, while PVM allows some additional latency during blocking re-
ceive.

We analyzed the impact of these findings on the new PIC-MC version based
on OpenMPI via comparative benchmarks and found a performance increase
of up to 90% in case of a rarefied gas flow simulations and about 30% in case
of simulated magnetron sputter discharges. We assume that the performance
difference between the PVM- and the OpenMPI based version is mainly due to
the different latency times during message passing. To confirm this assumption
we introduced an artificial latency time of 1 μs within the receive procedure of
the OpenMPI based version. In this case, the performances of both versions were
almost equal.

As another indication of our hypothesis, the performance difference is in-
creased for simulation runs with high communication load, which is e. g. the
case for gas flow simulation at low pressure. This is shown in Fig. 5, where the
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Fig. 4. Cylindrical 3D tube model, demonstrated with Argon velocity distribution
at 100 mPa inlet pressure, as test case for benchmarking the particle-based gas flow
simulation

Fig. 5. Benchmark result of the 3D tube gas flow simulations (Fig. 4) using different
pressures
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relative performance difference is measured for an Argon flow through a cylindri-
cal tube (Fig. 4): For an inlet pressure of 1.0 Pa, the performance boost of MPI
using 12 slave processes is in the range of 40% while it increases up to 90% for
a reduced inlet pressure. In the latter case, the computational load per process
is reduced due to the decrease in collision activities. Thus the time fraction for
particle data exchange and thus for message passing becomes higher.

Table 1. Simulation parameters of the particle-based gas flow simulation (Fig. 4)

5 Conclusion

For simulation of rarefied gas flows and low-pressure gas discharges we imple-
mented a parallel Particle-in-Cell Monte-Carlo simulation environment, where
the parallelization is realized with the PVM 3.4.5 library.

For compatibility with Grid computing, the porting of this software towards
MPI was required; we used the library OpenMPI 1.3.3 for this purpose.

Comparative benchmarks demonstrated a performance boost of the MPI based
version of up to 90% for applications with high communicative load. We attribute
this to the more aggressive message polling strategy of OpenMPI focused on
minimizing latency times.

The testing of the software within a D-Grid environment will be an issue of
future work. Further planned developments are on a better integration of field
solver modules into the particle transport code in order to exploit the CPU
resources more efficiently.
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I-00100 Roma Italy

3 Deutsches Elektronen-Synchrotron DESY, D-15738 Zeuthen Germany,
and INFN Sezione di Ferrara, I-44100 Ferrara Italy

4 Dipartimento di Matematica, Università di Ferrara and INFN Sezione di Ferrara,
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Abstract. We optimize codes implementing Monte Carlo simulations of
spin-glass systems for some multi-core CPU and GPU architectures. We
consider both the binary Ising and floating-point Heisenberg spin-glass
models in 3 dimensions. We provide performance figures for the Intel
Nehalem quad-core and the IBM Cell/BE CPUs and the Nvidia Tesla
C1060 GPU; for the binary model we also draw a comparison with the
performance of dedicated computers, such as the Janus machine.

Keywords: Monte Carlo Simulations, Multi-core Architectures, Spin-
Glass Systems.

1 Introduction

Spin models are ubiquitous in statistical mechanics; they are important tools to
model and describe the properties of several condensed-matter systems and –
equally importantly – they are emerging as fundamental paradigms of complex-
ity [1]. The study of the properties of these systems relies critically on Monte
Carlo simulations. The computational effort associated to these simulations is
huge: a state of the art investigation requires computing resources in the order
of tens of thousands of CPU- years. This huge effort is made manageable by the
exploitation of the large amount of available parallelism, that can be exposed
–up to some degree– on conventional architectures with reasonable programming
effort. Over the years, carefully optimized application-driven machines have also
been developed[2,3,4,5,6]; they have exploited available parallelism at unprece-
dented levels making very large simulations possible [7]. While application-driven
solutions are still the most performing, the advent of new generation processors,
such as multi-core CPUs and GPUs, offers new opportunities in this area. In
this paper we assess the efficiency of these architectures for the computational
problem at hand and compare with the performance of dedicated systems.

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 220–230, 2012.
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2 Spin Models

Spin models are defined in terms of generalized-spins, variables defined on the
sites i of a discrete hyper-cubic D-dimensional lattice of linear size L. For discrete
models, spins have values in a finite (usually small) set of values; in the simplest
case (the Ising model) they take just two values, si = ±1, i = 1 · · ·N = LD.
For continuous models, spins are real variables; in the Heisenberg model, each
spin is a 3D vector of unit length si. A configuration Ck is an assignment of a

spin value s
(k)
i at all lattice sites. The energy of each configuration is a simple

function of all spin values:

E(Ck) = −
∑

Jijs
(k)
i s

(k)
j , (1)

the sum being taken only on nearest neighbor pairs of sites on the lattice, charac-
terized by interaction parameters Jij . The term sisj is a suitably defined product
(e.g., the usual scalar product for Heisenberg spins or the ordinary arithmetic
product for the Ising model). At finite temperature T , the Boltzmann distribu-
tion gives the probability that the system is in any given configuration:

P (Ck) ∼ e−βE(Ck), (2)

(β = 1/T ), so the energy function determines the properties of the system.
Physically interesting informations on these systems are measured by statistical
averages of configuration-dependent observables, O(Ck), formally defined as

〈 O 〉 =
∑
Ck

O(Ck)P (Ck). (3)

Monte Carlo algorithms explore the space of configurations, generating se-
quences distributed in accordance with (2) (see e.g., [8] for an overview of Monte
Carlo algorithms), so the averages of (3) are simply estimated as

〈 O 〉 �
∑
CM

O(CM ), (4)

where CM labels configurations produced by the Monte Carlo procedure.
Monte Carlo algorithms proceed by changing the values of the spin at each and

all sites of the lattice, following appropriate rules (see again [8]) that guarantee
that Eq. 2 is respected; they depend only on the contribution of that spin to
energy.

For Ising-like models, one specific Monte Carlo procedure, the so-called
Metropolis algorithm, either leaves the spin value untouched or flips it, with
probability depending on the value of the current spin and its neighbors. The
spin-flip probability depends on the corresponding energy cost ΔE(si → −si);
from Eq. 1 we have:

ΔE(si → −si) = 2
∑
j

Jijsisj (5)
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where, as already remarked, the sum extends only to neighbors of site i. The flip
probability is unity if ΔE ≤ 0; otherwise it is exp (−βΔE).

For Heisenberg-like models the procedure must generate one point on the
unit sphere, with probability modulated by the values of the neighbor spins. In
this case fairly complex floating-point mathematics is necessary, including the
computation of special functions.

The key point in either case is that energy, and the corresponding energy
dependent distribution, is a function of the value of the spin and of its near-
est neighbors only, so the algorithm can be applied concurrently on many grid
points, exposing a very large amount of parallelism: if we consider a checkerboard
partition of the grid we can update in parallel all white (or black) sites.

The values of the couplings Jij characterize the properties of the system. If
all Jij are equal (and positive) these models describe the well-known behavior of
a ferromagnetic material. If on the other hands the Jij are randomly extracted,
we have a true spin-glass model. A ferromagnet at zero temperature will run
into one of the two fully magnetized states, with all spins aligned in the same
direction. At finite temperature it still has two opposite partially magnetized
states corresponding to free energy minima, and can eventually flip between
them. For the spin-glass cases, where Jij are randomly selected, the situation is
much more complex: due to concurrent couplings the energy landscape becomes
rugged, i.e. many almost degenerate local minima are present, and the number of
Monte Carlo steps, and consequently the Monte Carlo time, needed to overcome
energy barriers between these minima grows exponentially with system size;
this is the main reason why simulations are so time consuming. Among several
possible choices, we use a bimodal distribution Jij = ±1 for the Ising model,
and a Gaussian distribution with zero mean and unit variance for the Heisenberg
model.

There are two different opportunities for parallelism in the simulation of these
systems: first, we are physically interested in averages of the properties of the
system over a large number of independent instantiations of the couplings (we
call each such instantiation a sample); this implies a large number of independent
simulations of systems that do not interact among them. We call this trivial but
useful parallelism external. The second avenue for parallelism, we call it internal,
exploits the opportunities – described before – of the Monte Carlo dynamics of
each system. The challenge is then combining both opportunities in the most
efficient way for each architecture. This has been recognized since many years by
the spin glass community; simulation codes for tradition architectures have been
carefully simulated, and even application-driven systems have been developed.
Most of the state-of-the-art results in the last ten years critically depend on this
computer related developments (see, among many others, the physical results of
[7,9]).

In the following we proceed on this line of research, targetting new computer
architectures (GPUs and multi-core CPUs) that have recently become available;
the results we have obtained apply to this application and cannot be directly
generalized to other scientific problems.
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Algorithm 1. Bit-wise algorithm to update one spin. See the text for a definition
of Xi.
Require: ρ pseudo-random number
Require: ψ = min{3, int (−(1/4β) log ρ)}{coded on two bits}
Require: η = ( not Xi){coded on two bits}
1: c1 = ψ[0] and η[0]
2: c2 = (ψ[1] and η[1]) or ((ψ[1] or η[1]) and c1)
3: σ′

i = σi xor (c2 or not Xi[2])

3 Simulation Algorithm

In this section we discuss ways to exploit the parallelism outlined in the previous
section. A first approach to internal parallelism is instruction-level, using SIMD
instructions within each computing-core, processing several spins in parallel. A
further level of internal parallelism exploits data-level parallelism, partitioning
the whole lattice across the cores, and updating each sub-lattice in parallel. In
the following, we show how these options can be best combined for a few target
architectures, for both discrete and continuous models.

3.1 Simulation Algorithms for the Ising Spin-Glass

Spin values for binary models can be coded in just one bit, while CPUs operate on
long words of k bits (e.g., k = 32, 64, 128), so it is useful to combine internal and
external parallelism. We proceed by mapping V (V = 2, . . . , 16) binary-valued
spins of w = k/V lattice samples on a single CPU-word. We then use SIMD
instructions to update in parallel V spins for each of w independent lattices, so
we compound an internal parallelism of degree V and an external parallelism of
degree w. We have used this approach first for the IBM/Cell processor (see [10]
for details) and then ported it to the Intel architecture, using SSE instructions.

The actual steps of the algorithm (apart from random number generation)
are first formally reduced to just a handful of logic operations, described by
algorithm 1; the main advantages of this scheme are that it exploits the SIMD
capabilities of the architecture leveraging on internal and external parallelism
and that it does not use conditional statements. The very simple structure of
algorithm 1 derives from the following considerations: first, we perform bit-wise
transformations for the spin value at site i and coupling at edge (i, j):

si ∈ {−1, 1} −→ σi = (si + 1) /2 ∈ {0, 1} , (6)

Jij ∈ {−1, 1} −→ λij = (Jij + 1) /2 ∈ {0, 1} ; (7)

We now write the energy cost associated to a spin flip (equation (5) ) asΔE(si →
−si) = 4Xi − 12, with

Xi =
∑
j

λij xor σi xor σj . (8)
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(Xi is an integer in {0, 6}). Considering the bit representation ofXi =
∑

kXi[k]×
2k, a negative energy cost (that is a unit flip probability) corresponds toXi[2] = 0
(case i) ). If, on the other hand, Xi[2] = 1 (case ii), the spin flips if, given a
random number ρ in [0, 1], the relation ρ ≤ exp (−βΔE) holds; in this case,
considering the bit-wise transformation, the condition reads

− 1

4β
log ρ−Xi ≥ −3 . (9)

The last relation can be manipulated further to allow an easy bit-wise imple-
mentation. First of all, in a three bit representation, not Xi = 7 −Xi; second,
the outcome of testing Eq. 9 must be or ’ed with the outcome of testing case
i) above, making it possible to limit the representation of Xi to two-bits only;
also, in case ii), the spin always flips when (log ρ)/(4β) ≥ 3; in addition, only
the integer part of the first term on the r.h.s of Eq. 9 is needed. It turns out
that, being ψ = min[3, int(log ρ)/(4β)], the spin flips if at least one of the two
conditions Xi[2] = 0 and ψ + ( not Xi)%4 ≥ 4 is verified; this last condition
reduces to the value of the last carry when adding the two-bit quantities ψ and
( not Xi)%4. See again [10] for a more detailed description of this efficient but
cumbersome sequence of transformations.

The mapping into machine words of k = w ∗ V bits must also apply to the
quantities ψ, Xi[0], Xi[1], Xi[2]; in this way, the set of logical operations de-
scribed above and needed to update a single spin may be efficiently performed
in parallel for a set of k independent spins.

The choice and implementation of the pseudo-random number generator has
a non-negligible impact on overall performance. We choose the reliable Parisi-
Rapuano algorithm [11]; when exploiting internal parallelism, we must use dif-
ferent random numbers for the update process of each spin of a given sample;
on the other hand, we can tolerate a small amount of correlation by sharing the
same random number among different samples. These considerations impact on
the best choice of w and V .

So far, we have discussed how to exploit instruction-level parallelism within a
core. We now consider how to exploit multi-core parallelism. We divide the whole
lattice into sub-lattices, and assign each partition to a different core. We split
the lattice in C sub-lattices of contiguous planes (C is the number of cores), and
we map each sub-lattice of L×L×L/C sites onto a different core. Each thread,
running on a different core, executes the program defined by a loop in which
it first updates all its white spins and then updates all the black ones. White

Algorithm 2. Program of each thread

1: update the boundaries half-plane (indexes (0) and ((L3/C)− 1)).
2: for all i ∈ [1..((L3/C) − 2)] do
3: update half-planes (i)
4: end for
5: exchange half-plane (0) to the previous core and half-plane ((L3/C) − 1) to the

next core.
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Algorithm 3. 3D Ising spin-glass: program executed on the host for the GP-
GPU simulation
1: loop {loop on Monte Carlo steps}
2: MCupdate(black)
3: updateBorder()
4: MCupdate(white)
5: updateBorder()
6: end loop

and black spins are stored in data-structures called half-planes, each housing
L2/2 spins. Each core updates the half-planes of one color performing the steps
described by algorithm 2. Each core houses a sub-lattice plus the boundary
planes with the adjoining sub-lattices, which have to be updated at end of a
sweep of the sub-lattice. Before performing such operation, the cores must be
synchronized.

On the Cell processor[12] the details of the implementation vary; if the full
simulation data-base can not stays within the local stores of the cores, DMA
operations have to be carefully scheduled to move data from/to main memory
with non-negligible performance penalty. For this reason, performances vary sig-
nificantly as a function of the lattice size (see later).

On the Intel Nehalem processor[13], memory is shared (through a common
L3 cache) so the implementation is conceptually simpler. We have implemented
and compared the simulation program against:

– different libraries to handle intra-cpu parallelism: openMPI, openMP and
pthread.

– shared and distributed memory allocation. In the shared case, the threads
share the same data structure allocated by the main program, while in the
distributed case each core copies the data items that it needs into a private
structure.

– different compilers: we have used both gcc and icc, the Intel C compiler.

We obtain the best results using the pthread library, a distributed memory al-
location, and the icc compiler, (performance gain is of the order of 10 − 15%,
compared to the other options). We also find that a synchronization performed
by active waiting is slightly better than a synchronization by pthread mutex-
variables. The program has been written using intrinsic functions to map opera-
tions directly to SSE instructions, and can be compiled with a variable number
of threads and variable degree of internal parallelism.

Simulations on GP-GPU use the same update algorithm used for CPUs, but
the structure of the computation is slightly different. Following CUDA [14] termi-
nology, a 3D lattice of side L is divided into a 2D-grid of (L/2×L/2) sub-lattices.
Each sub-lattice is a 3D-grid of (2× 2×L) sites. This partition has been chosen
for the following main reasons:

– ensure that each block fits on registers and shared memory of the GPU
streaming multiprocessors (SM), for the most relevant sizes of L = 16 . . .128,
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Algorithm 4. 3D Ising spin-glass: program executed on the GP-GPU

Require: color = {black, white}
1: load a set of (4× 4× L) points
2: apply MC-step to bulk’s points
3: save bulk to memory {required to sync blocks}

– generate many blocks to keep active as long as possible each SM and hide
memory access latencies,

– generate a large number of warps (groups of 8 instructions that can be exe-
cuted in parallel) per SM to exploit memory coalescing, in order to improve
the bandwidth between the SM and the memory.

The main simulation-program runs on the host, copies the lattice on the global
memory of the GPU – replicating the surface planes – and launches several GPU
kernels as described by algorithm 3. The MCupdate() kernel is invoked to update
the white or black spins. As we need to update L3/2 sites, the kernel runs on a
thread-array configured as a 2D-grid of (L/2×L/2) blocks, where each block is
configured as a 3D-array of (2 × 2 × L)/2 threads. This configuration allows to
have all threads of the block running while the update step is performed. The
updateBorder() kernel is invoked on a grid of L blocks of L threads; it updates
the surface planes of the lattice by performing memory copies in parallel .

The code executed by the GPU is organized as shown by algorithm 4. Each
block loads a sub-lattice of (4×4×L) sites, including the bulk of spins to update,
plus the planes of neighbors necessary for the Monte Carlo update step. As each
block has been configured as a 3D-grid of (2 × 2 × L)/2 threads, this step is
performed by 8 coalesced memory read operations. Each thread then applies the
Monte Carlo update step to a single site, and stores the new value to memory.
In our implementation we also used the multi-spin coded approach described
above. We used one 32-bit word to map one spin plus the value of three coupling
variables. This mapping allows to run in parallel up to 8 different simulations.

3.2 Simulation of the Heisenberg model

The Heisenberg model, as outlined in the introduction, uses floating-point arith-
metics. Accuracy on long simulations requires that double precision be used
throughout. In our tests, we have used a slightly more complex energy function

E = −
∑

sαi J
αβ
ij s

β
j , (10)

where the interaction term J is a 3×3 symmetric matrix (summation of repeated
greek indexes is implied), allowing to model anisotropic interactions among the
spins; we expect that these models will become very important from the physical
point of view in the near future. As far as implementation is concerned, this
model implies a larger amount of floating-point computation and needs larger
storage and higher memory bandwidth.
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As in the Ising model, we have exploited instruction parallelism by updating
in parallel two non-adjacent spins using SIMD instructions, and data parallelism
by dividing the lattice in C sub-lattices, where C is the number of cores, each
one housing (L × L × L/C) spins. We have developed one implementation for
the Intel Nehalem processor and, one for the Nvidia Tesla C1060 GPU [15].

On the Intel processor we use the pthread library to manage parallelism among
the cores and the gcc compiler, as it allows to define vector variables; operations
on such variables are automatically mapped on SSE instructions that update
in parallel two non-adjacent spins of the sub-lattice. We also use vector ver-
sions of the log and exp functions – heavily used in this code – using intrinsics
instructions.

On the GPU we follow the same approach of the binary case, but the structure
of the thread-array is slightly more complex. As in the binary case, each block
updates a sub-lattice of (2 × 2 × L) sites, but due to larger register and shared
memory requirements to store the variables of the model, the update procedure
is performed by dividing the sub-lattice in blocks of (2×2×k) sites. The value of
k that uses up all available memory space on the GPU streaming multiprocessor
depends on the lattice size L, however k = 16 is an acceptable choice for most
physically relevant values of L.

4 Results, Comparison and Conclusions

In this section we compare performance results for the codes and architectures
described above. Our benchmark for the binary case is the Janus special-purpose
machine [6], currently the most powerful system available for this class of simu-
lations (Janus, on the other hand, does not support floating-point arithmetics).

We present results using two metrics, both relevant for physics applications.
The System spin Update Time (SUT) is the average time needed by the Monte
Carlo procedure to update one spin of one system (neglecting the w parameter
if greater than 1); improving the SUT reduces the wall-clock time of the simula-
tion, so this parameter is relevant for long simulations on large lattices; in this
case, one usually deploys many (e.g., 128 · · · 256) independent simulations to
accumulate statistics. The Global spin Update Time (GUT) is the average time
to process one spin of all simulated systems using multi-spin encoding (taking
into account the w parameter); in other words, GUT is simply SUT divided
by the number of replicas that the simulation handles concurrently. Programs
optimizing GUT allow to run efficiently simulations of smallish lattices with
high statistics using a small number of computing elements (it is important to
simulate efficiently also small lattices, since it is useful for physics analysis to
compare the same quantities measured on lattices of several different sizes). All
in all, SUT is a measure of how well we exploit internal parallelism, while GUT
measures the combined benefits of internal and external parallelism. According
to the physics program underlying the simulation, either of the metrics (or both)
are relevant.
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Table 1. System update time for the 3D Ising spin-glass (binary) model. I-NH (8-
Cores) identifies a dual-socket quad-core Intel Nehalem board, while CBE (16-SPE) is
a dual-socket Cell board

3D Ising spin-glass Model SUT (ns/spin)

L Janus I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060

16 0.016 0.98 0.83 1.17 –
32 0.016 0.26 0.40 0.26 1.24
48 0.016 0.34 0.48 0.25 1.10
64 0.016 0.20 0.29 0.15 0.72
80 0.016 0.34 0.82 1.03 0.88
96 – 0.20 0.42 0.41 0.86
128 – 0.20 0.24 0.12 0.64

We collect our results for the Ising spin-glass model in tables 1 and 2. For
each lattice size, GUT values are the best SUT times divided by the number of
systems updated concurrently.

Table 3 presents performance data for the Heisenberg model on an Intel dual
quad-core Nehalem and on a Tesla C1060 board (as mentioned before the Janus
system does not support floating-point arithmetics, and we have not implement
a code for the IBM Cell so far). For the GPU case, we also quote results for
single-precision versions of the code. Indeed, the Tesla C1060 system has rather
poor support for double-precision, while the more recent Fermi [16] architecture
supports it efficiently: we regard our single-precision results as educated guesses
of what the Fermi architecture may achieve with double-precision.

Figure 1 presents the relative speed-up of the Ising spin-glass and Heisenberg
programs on the Intel system, as a function of the number of cores. The Ising
spin-glass code scales linearly up to 4 cores for all lattice sizes except for L=16
where the sub-lattice allocated on each core is too small, making synchronization
and memory access overheads too high. Using 8 cores the code scales almost

Table 2. Global update time for the 3D Ising spin-glass (binary) model, for the same
systems as in the previous table. The number of systems simulated in parallel (w
parameter) in the multi-spin approach is shown in parentheses.

3D Ising spin-glass Model GUT (ns/spin)

L Janus I-NH (8-Cores) CBE (8-SPE) CBE (16-SPE) Tesla C1060

16 0.001 (16) 0.031 (32) 0.052 (16) 0.073 (16) –
32 0.001 (16) 0.032 ( 8) 0.050 ( 8) 0.032 ( 8) 0.31 (4)
48 0.001 (16) 0.021 (16) 0.030 ( 8) 0.016 (16) 0.27 (4)
64 0.001 (16) 0.025 ( 8) 0.072 ( 4) 0.037 ( 4) 0.18 (4)
80 0.001 (16) 0.021 (16) 0.051 (16) 0.064 (16) 0.22 (4)
96 – 0.025 ( 8) 0.052 ( 8) 0.051 ( 8) 0.21 (4)
128 – 0.025 ( 8) 0.120 ( 2) 0.060 ( 2) 0.16 (4)
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Table 3. Simulation performance for the 3D Heisenberg model (SP = single-precision,
DP = double-precision)

3D Heisenberg Model SUT (ns/spin)

L I-NH (8-Cores) Tesla C1060

16 55.4 (DP) –
32 38.0 (DP) 34.4 (SP) / 139.0 (DP)
48 32.5 (DP) 29.6 (SP) / 134.8 (DP)
64 29.6 (DP) 31.0 (SP) / 131.5 (DP)
80 29.9 (DP) 28.3 (SP) / 130.7 (DP)
96 30.8 (DP) 29.2 (SP) / 129.6 (DP)
128 30.5 (DP) 28.9 (SP) / 129.1 (DP)

Fig. 1. Relative speed-up for the Ising spin-glass (left) and the Heisenberg (right)
simulations

linearly and it has an almost perfect scaling for L = 128 and V = 16 . With this
combination of parameters each spin and each coupling-terms allocate one single
byte, the lattice size fits the L3 cache and the run time is mainly dominated by
the computation time and not by memory access. The Heisenberg code scales
almost linearly up to 4 cores. Using 8 cores the scale behavior is linear for small
lattice sizes, while for large lattices the overhead due memory access becomes
relevant.

The good scaling behavior of our code for some lattice sizes as function of the
number of threads/core (we use one thread per core), gives the opportunity to
improve further the performances using quad-socket boards based on quad-, six-
or eight-core CPUs. We have measured a similar behavior also on the Cell-based
systems.

Some final comments are in order:

– Multi-core and GPU architectures have roughly similar performance levels
for this class of applications (both binary and floating-point models), even
if corresponding peak performances differ by one order of magnitude. We
believe that this is due mainly to memory-bandwidth problem and synchro-
nization overheads.
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– Widely different multi-core architectures produce performances that hardly
differ for more than a factor 4. Performance for the Cell/BE is strongly de-
pendent on lattice size, as the schedule of data transfers to the local store has
a strong impact; this effect is less severe for the Nehalem CPU (performance
of the latter CPU however drops, in the binary case, as soon as the L3 cache
is not large enough for the simulation data-base).

– New architectures narrow substantially the gap between special-purpose and
commercial systems. However the former machines – in the cases in which
they can be used – still have an edge of approximately two order of magni-
tudes; however, this edge is expected to shrink further in the not too distant
future.
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Abstract. A new software that supports research on algorithms for re-
source allocation in multi-commodity markets is presented. Thanks to
a much more general data model used, and possibility of plugging in
external optimization engines, various solvers can be used to extend the
functionality of the platform. The software functionality is focused on
supporting researchers in the algorithm engineering process, facilitating
e.g. analysis and comparison of market strategies. An example appli-
cation of the software to travelling salesman problem, solved by many
agents, is presented.

1 Introduction

There exist many drivers for the growth of contemporary computation tasks
complexity. The most obvious of them is the increase of data collection, stor-
age and transmission capabilities of todays IT infrastructure. Less evident but
equally grave is the fact that isolated systems get more and more connected,
and start to exhibit completely different behaviour. Such phenomena are easy
to appear, quite easy to expect, hard to foresee, difficult to simulate and mostly
impossible to be described analytically. Networking and its intricate couplings
has become a fact.

Due to the nonpolynomial complexity of many network problems it is usually
very time-consuming, hence impractical, to look for their exact solutions. Let
us consider, for example, travelling salesman problem (TSP) whose exact brute-
force solving has complexity of O(n!), n being the number of vertices. A much
more common approach is to find a good heuristic algorithm, e.g. running in
polynomial time [10]. The process of finding a good heuristics is a problem of
its own, often consisting of tedious verifications of suites of similar algorithms,
varying in details, over a number of test problems, their reference solution known.
Managing data from such experiments in order to retrieve useful information can
present difficulties, especially if the heuristic algorithm is to be run in parallel.
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This paper presents capabilities of a novel software platform for agent-based
distributed simulation and its usability for prototyping control strategies. Orig-
inally, such control was to be executed over market entities sell/buy offers, in
order to achieve optimal allocation of transport network resources. However, it
can be equally well applied for coordinating threads of any parallel algorithm,
being particularly suitable for graph problems. In such generalized approach mar-
ket entities become workers processing parallelized tasks, and exchanging data
(formerly, ‘offers’) in a way managed by the coordinator (formerly, ‘resource
allocator’). The platform imposes a unified problem description and communi-
cation scheme, leaving modules implementation details to user’s choice — not
precluding further parallelism in their implementation.

The next section presents a formal complete model of all objects necessary
to describe the process of offering and market clearing, M3, presented in [2] and
exploited by its authors in a number of applications. Then comes the description
of the abovementioned software platform facilitating the research on algorithms.
Next, the analysis of applicability of the platform in a few more general research
scenarios is given, taking as an example the TSP problem solved in parallel by
partitioning the set of all possible salesman paths. The paper concludes with
studies of more advanced applications of the platform and the underlying prob-
lem description format, in research activities.

2 Multi-commodity Market Model

Multi-commodity market model, M3, is a method and format for a formal de-
scription of a market where trade of resources takes place. It has been initially
developed to describe offer structure in the energy market in Poland [3]. For
its generality it has been next used to model IP network bandwidth trade [4].
With the research platform atop it may be successfully used to model, solve and
investigate properties of virtually any graph problem.

M3 defines the following basic entities and relations between them:

– network nodes and arcs, describing the topology of the network where ca-
pacity trade takes place,

– market entities (users, providers) that offer or sell resources (capacity),
– resources being offered, with their proper attributes,
– offers, i.e. bindings of market entities and resources, offered or demanded at

a specific price.

It is also possible to define compound resources, i.e. containing simple resources
and other compound resources. Analogously, one can define simple and com-
pound offers and market entities. An UML graph representing offers is pre-
sented in Fig. 1, to show how flexible the M3 model is. However, one can use
it without being bothered by advanced features, like aggregation facilities. It is
possible to declare only key values, offeredPrice, min/maxValue and shareFactor
(1 for sell, -1 for buy offers), leaving other unset. The field acceptedVolume and
sell/buyPrice parameters in Commodity structure contain results of the market
balancing process.
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Fig. 1. Relations between offers and other key elements of M3 model: market entities
and commodities. The model allows defining complex offers recursively.
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At first, one can perceive the M3 model merely as a tool for network problem
definition, containing placeholders for attributing nodes or arcs with parameters.
M3 defines only the minimum set of those attributes the ones needed in M3

original applications. Those are defined in XSL dictionary files and, in fact,
define the M3 generic model completely. Concretisation of the generic model for
a specific network (e.g. power grid or IP, or road network) is done by specifying
extra node/arc attributes in network kinds XML file. Analogously, any specific
data type describing market entities or offers can be made in proper XML files.

Having concretised the generic type, one can place the data regarding network
topology, market entities and offers in appropriate three files. The content of
these files defines one market case. Also, it contains placeholders where the
solution (resources allocation and resource prices) can be put into. XML has
been chosen as a format for M3 because it makes possible easy transformation of
network problems into formats supported by standard optimisation solvers e.g.
GAMS, AMPL. This is done by means of XSLT [8].

3 The Platform for Research on Bidding and Resource
Allocation Strategies

Good structural design and contemporary technology made M3 quite popular in
the local academic environment. A number of authors used it, mostly in pursuit
of developing engines for clearing the market [5], [6]. However, due to variety
of approaches to the problem (especially, various assumptions), their results
were hardly comparable. It was only recently when they realised that creating
a common research environment would be a good idea in several aspects. The
major assumption was to store each numerical result in a common database in
order to be capable of performing searches, queries and comparisons. This led
to work on the formulation of a number of quantitative criteria for ranking the
resource allocation algorithms in case of bandwidth trading scenario: economic
(total transaction surplus, competition level for network resources) and technical
ones (length of allocate network paths, ratio of contracted bandwidth to offered
bandwidth) [7].

The platform implementation makes use of many technologies currently being
considered industrial standards. The reason for using such standards was to make
the platform itself a proof of concept for a to-be commercial trading system.
There are three main use cases of the platform:

– Experiment definition. A mechanism designer prepares a set of M3 files de-
scribing the simulation task. Also, the designer implements, if needed, own
appropriate resource allocation mechanisms and user agents (or endpoint
application for human users acting as agents, cf. Fig. 2).

– Simulation. A chosen experiment is being run: solver and agents’ processed
are spawned and they communicate alternately with the platform. The re-
sults are being stored into the database.

– Result analysis. A selected set of experiment results is selected, by advanced
query, from the database. Their results are being compared and displayed in
the GUI.
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The software was created using technologies allowing application scaling,
portability and flexibility. The platform runs as a web service, accessible and
configurable via a browser. Such approach minimizes application maintenance
costs. To accelerate application operation, some part of GUI processing is shifted
to the browser thanks to Google Web Toolkit technology [9]. Links between ap-
plication modules are managed by Spring framework, allowing for modules re-
placements without rebuilding of the whole application. The persistence layer
is accomplished using recognised products: MySQL, now from Oracle Inc., and
Hibernate. The communication with agents and the resource allocation module
is managed reliably by Java Message Service. The web application container was
Apache Tomcat. Apparently, all the presented technologies are freeware, well
supported, popular and documented.

Performance of application three crucial components: XML/POJO serializa-
tion, JMS communication and RDBMS communication, has been checked for
two test problems. The smaller problem data size was 22 kB, and the bigger
problem data was 424 kB. The simulation was run on 4-core PC with Linux OS,
using loopback interface instead of a real network. Execution times for different
kinds of operations have been logged and analysed, with the following results:

– Serialization times were proportional to the problem sizes (measured in kilo-
bytes).

– JMS communication times were also proportional both to problem sizes and
the number of agents.

– RDBMS communication was worse than proportional to the problem sizes,
n, but better than O(n2).

Therefore, the weak points of the architecture were the database and the com-
munication queues. However, implementations of both the technologies come
in large variety, and it would be relatively easy to replace e.g. inefficient JMS
implementation with another one.

Since the users of the platform will not only run simulations but actually
actively develop new agents, a friendly API has been designed, with the aim to
keep Java entities structure and communication rules as simple as possible. Any
user module, be it agent or solver, must implement methods onInit and onAlloca-
tion, defined by the Endpoint interface, requiring and returning InitParams and
RunParams, respectively. InitParams contains module configuration data, while
RunParams carries offers or allocations, depending on communication context.

To relieve platform user from laborious interaction with JMS, a user mod-
ule skeleton class, EndpointStub was created. The class implements main JMS
message processing loop, in particular activating onInit and onAllocation meth-
ods in a user-provided object. Also, an exemplary, do-nothing extension of End-
pointStub was provided to users. The extension, GenericEndpoint echoes received
parameters of onAllocation method; it is excellent for initial configuration test-
ing, and as a base cllass for any user-specific implementation. It also provides
a bunch of utility methods, e.g. for XML/POJO conversion.

From the point of view of the agents placing bids for resources, the platform
remains rather a transparent thing (Fig. 2). Its only role is to merge individual
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Fig. 2. Interaction of the platform with bidding agents and resource allocation engine
(in simulation mode; message flow is up and down), and in result analysis mode (data
flow is from left to right)

requests into a single M3 document set, which is then presented to the resource
allocation module. The content of an exemplary M3 offers file is presented below.
Attributes offeredPrice contain individual agents’ price expectations.

<?xml version="1.0" encoding="windows-1250" ?>

<m3:offers xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xsi:schemaLocation=http://www.openM3.org/m3 M3Offers.xsd

xmlns:m3=http://www.openM3.org/m3 xmlns:ia="http://www.ia.pw.edu.pl/m3">

<m3:Offer id="ia:o12345-67" offeredPrice="32000.00">

<m3:description>Exemplary elementary offer</m3:description>

<m3:offeredBy ref="ia:siekierki" />

<m3:offerStatus status="m3:offer-open">

<m3:durationPeriod startTime="2007-04-09T08:00:00"

endTime="2007-04-09T09:59:59" />

Resource allocations are then sent back to the bidders (using Commodity section
of M3 model) and, optionally, the process is re-iterated until the allocations
settle. This could be done easily without the platform altogether, save for the
fact that all bids and allocations get stored in the database both in plain XML
and in the structured form. Turning the original XSD definitions into an object
hierarchy and a RDBMS scheme constituted the biggest part of the architectural
and programming work. The information flow for the most important use case,
the simulation, is presented in Fig. 3.

Once stored in the database, experimental results can be compared easily
in a number of ways. A flexible system of experiment tagging allows searches
across many dimensions: the author, allocation engine type, version and running
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Fig. 4. Screenshots of results browse tree (left), with possibility to indicate variables
to be exported or displayed as a table (right)

parameters, type of the problem etc. A number of specific data can be then ex-
tracted from such pre-filtered data: allocation or prices of a resource in n-th or
last iteration, total number of iterations etc. Those can then be arranged freely
in a table in order to draw a graph or to be exported for further processing
outside the platform (Fig. 4). A number of pre-defined market mechanism per-
formance indicators are calculated in each simulation iteration, and stored in the
database. They include the total benefit of the operator of the market as well
as a similar coefficient defined for the market participants. New algorithms for
scoring simulation results, taking into account specifics of individual problems,
can be easily implemented. Such freedom is also well handled by the database
design, allowing any number of so obtained measures. Apart from the compiled-
in functionality, the platform provides means to formulate and evaluate XPath
expressions over some queried result set of performed experiments. In such way,
platform user may calculate fancy measures for experiment results.

4 Application of the Platform to Parallel Computation
Tasks

Inherently, the presented platform is able to support both distributed compu-
tation and subsequent analysis of results for any problems describable in the
M3 model. This means it can handle most of graph problems: TSP, coloring,
transport etc. Also, it can be applied to massive parallel algorithms that are
apparently not related to graphs, as evolutionary strategies. Noteworthy is the
possibility of performing social networks analysis, using the platform. The most
computationally demanding part of extracting knowledge from the social graph is
to find communities, i.e. sets of vertices particularly mutually closely connected,
in a sense. The complexity of exact solution finding is NP-hard. That is why ap-
proximate community-finding algorithms are being constructed. The platform
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can easily improve the process of good heuristic algorithm research in the field.
This application scenario has been presented mostly for current popularity of
social network analysis, applicable e.g. in marketing process, fraud detection,
business/military/terrorist organisation structure analysis. Social network anal-
ysis is another topic of interest of the author of this paper, and the prospect of
employing the platform in such research activities will hopefully be fruitful.

The platform has been successfully applied for an exemplary travelling sales-
man problem. The purpose was to demonstrate that coding of the problem
can be simple, and that using the environment does not require any clumsy
workarounds. One starts with adapting basic M3 definitions in order to create
data types matching ones problem. In our case no changes to the built-in mar-
ket entity and network definitions were needed. The M3 “commodity” term has
been used in TSP problem to represent a single stage of a salesmans route. An
extra property stage number was created to identify stages. All stages are linked
to an artificial network node, n0. Recall that offers tie stages and market enti-
ties. In the context of TSP, market entities are identical with computation units
performing the work in parallel. To code the actual solution found by a unit,
standard minValue and offeredPrice fields of the offer type. The first one indi-
cates the concerned stage, while the second one indicates the node a salesman
passed in that stage.

Computation units are started in this example as Java instances: they perform
a specified part of the computational task, and report progress to the platform
periodically. The resource allocation module implementation is a trivial one,
selecting and recording the best solution found so far by the agents.

Fig. 5. TSP solution in subsequent algorithm steps

The example problem was defined for 14 major Polish cities. The graph of
connections was full mesh, with geodesic distances. Rather than coding those
distances as M3 graph arcs, there were calculated dynamically by each agent us-
ing a dedicated Java package [1]. Thus, the M3 network definition consisted only
of cities names, latitudes and longitudes. No arcs were declared in order to ac-
celerate communication. The exact solution of the problem was found correctly
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(Fig. 5). There were two path calculation modules performing, one resource al-
location module and the platform software, of course. In the case described no
relevant information was passed back from the allocation to computation mod-
ules; however, passing some extra control data, e.g. adjusting their operations,
would be easy to implement.

5 Conclusion

It was shown that the platform originally developed for investigating properties
of resource allocation problem to the market can be successfully used to sup-
port research also in other areas. The presented example was a TSP problem.
Platform’s ability to incorporate external solvers and the design based on M3

information model make it a convenient tool to perform comparative analysis of
parallel tasks — a tool for a groupwork research.

The presented platform API was designed in abstraction of any programming
paradigm. In fact, it does not impose any constraint on the user, save for the
necessity of implementing the two methods: onInit() and onAllocation(). In par-
ticular, the user has the ability of accessing any object of the M3 structures
directly, by using POJO representation of the XML code. Alternatively, she or
he may prefer to do high-level XSL transforms on the plain XML to complete
problem definition with extra information (e.g. the objective function), difficult
or impractical to be stored in M3. Then, an external solver can be called. Also,
the possibilities of performing any local parallelisation of the pre-assigned piece
of the problem, are not limited in any way.

It should be stressed that the added value of the work presented in this paper is
not related to equipment or algorithmic performance. Most of the work presented
here was spent of mapping advanced modelling scheme, M3, into a relational
database, and on developing ergonomic programming and graphical interfaces,
with the aim to create a teamwork scientific environment. Hopefully, this will
make cooperation quicker and clearer, and the results — more objective.

Acknowledgments. The work presented in this paper was supported by the
Polish Ministry of Science and Higher Education research grants no. PBZ-
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Abstract. Computational methods for solving coupled systems of par-
tial differential equations can generally be divided into segregated and
monolithic solvers. Monolithic solvers are often considered to be compu-
tationally expensive, and it is believed that their rewards are realized only
in situations where segregated solvers have convergence problems due to
the strong coupling. We give opposite empirical evidence by demonstrat-
ing that cost-effective monolithic solvers may be derived from using seg-
regated solvers as preconditioners in the iterative solution of monolithic
systems.

Keywords: monolithic solver, segregated solver, preconditioning, Elmer
software, incompressible flow.

1 Introduction

A contemporary challenge in many fields of computational modeling is related
to the design of efficient solution methods for simultaneous discrete systems
which stem from a coupling between different physical phenomena described by
partial differential equations. In many cases, sophisticated software to solve the
constituent single-physics models are already available. Therefore, the simulation
tools that enable the coupling of different models have usually been developed
by using segregated solution strategies, where the solution is obtained iteratively
by decoupling the equations and solving the resulting subproblems sequentially.
A chief strength of such segregated solvers is that reusing the existing software
is often simple, since only small modifications are usually required to implement
the interaction terms. Also, given that the solution is obtained by solving simpler
equations, they offer the potential for highly efficient implementations.

It is well known, however, that in cases where the coupling of the equations
is strong the convergence of basic segregated solvers may be problematic. More
robust solvers may generally be constructed by employing the monolithic solu-
tion strategy based on using fully coupled discretizations. In this approach, all
discrete equations are assembled into a single system and the resulting algebraic
equations are then solved simultaneously. Obviously, this strategy often requires
the development of new software components and does not hence support the
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software modularity to the same extent as segregated solvers. As a result, many
practitioners and software developers opt for using the segregated solution ap-
proach. This traditional strategy has also been the leading design paradigm in
the development of our Elmer product [1], which is a versatile open source mul-
tiphysics simulation software based on finite elements.

The aim of this paper is to demonstrate that if a segregated solver exists,
building an efficient solver for the fully coupled equations is not necessarily dif-
ficult. This judgment is based on a largely empirical observation that segregated
solvers can be used to efficiently accelerate the convergence of a Krylov subspace
method applied to the fully coupled discrete system, even when the basic segre-
gated solution procedure fails to converge. Importantly, the Krylov acceleration
can be advantageous also in regimes where the stability is not an issue. To pro-
vide an illustration of these points, we shall here consider an example fluid flow
problem, which is solved with representative methods implemented into Elmer
software.

2 Algorithmic Aspects

To address further the question of what is generally required by a monolithic
solver in comparison with the sequential solution methods, consider a two-field
multiphysics problem, the discretization of which leads to solving a linear system
of equations [

A G
D K

] [
V
Q

]
=

[
F
H

]
, (1)

where the vectors V and Q contain the coefficients of finite element expansions
of the unknown fields. Alternatively, a sequential solution method may be used
so that assembling all the equations into the same system is avoided. A classical
choice is the block Gauss-Seidel iteration

AVk+1 = F −GQk,

KQk+1 = H −DVk+1,
(2)

with k ≥ 0.
When the coupling of the equations is strong, the basic block Gauss-Seidel it-

eration may have only limited applicability due to convergence problems. There-
fore, relaxation strategies are often employed. Then, if the relaxation is applied
after solving (2), we come to updating the solution as

Vk+1 = Vk + λk+1(V
′
k+1 − Vk),

Qk+1 = Qk + λk+1(Q
′
k+1 −Qk),

(3)

where λk+1 is an iteration parameter and (V ′
k+1, Q

′
k+1) is the basic Gauss-Seidel

iterate.
We note that there is a close relationship between certain preconditioned ver-

sions of Krylov subspace methods for solving the fully coupled problem (1) and
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the iteration (3). For example, the preconditioned version of the GCR method
based on the block triangular preconditioner

P =

[
A 0
D K

]
(4)

is readily seen to produce updates of the form (3). The resulting method gener-
ates a sequence of minimal residual updates via determining the scalar λk+1 at
each iteration step such that the 2-norm of the residual∥∥∥∥ [ FH

]
−
[
A G
D K

] [
Vk+1

Qk+1

] ∥∥∥∥ (5)

is minimal over the set of corrections spanned by all search directions.
We conclude that if solvers for the subproblems associated with the update

(2) exist, building a preconditioned solver for the fully coupled problem (1) is
not particularly difficult. Basically, only the ability to perform the matrix-vector
product associated with the linear algebra problem (1) is required. It is important
to note that employing the block Gauss-Seidel preconditioning is not the focal
point here. In practice any other sequential solution method could also be used
to produce the search directions V ′

k+1 − Vk and Q′
k+1 − Qk in (3). Therefore,

these ideas generally offer a way to reuse segregated solvers in connection with
the fully coupled solution strategies.

3 An Example Problem: Unsteady Flow over a Cylinder

In addition to multiphysics problems, the segregated solution approaches have
been used widely in the simulation of incompressible fluid flow. In order to
compare the relative merits of traditional sequential solution approaches and
the monolithic solution strategy based on the preconditioning, we consider here
a standard benchmark problem of unsteady flow over a cylinder. The underlying
partial differential equation model now consists of the incompressible Navier–
Stokes equations expressed in the terms of the fluid velocity and pressure.

The semi-implicit Euler time integration of the spatially discretized version of
the incompressible Navier–Stokes equations leads to solving linear systems that
at each time step n take the form (1). As a prototype of segregated solvers, we
consider the consistent splitting scheme [2], where the principal idea is to replace
the incompressibility constraint by a consistent pressure Poisson equation. A
fully discrete version of this scheme leads to solving systems of the form⎡⎣A 0 0

D M 0
D C S

⎤⎦⎡⎣V n+1

ψn+1

Qn+1

⎤⎦ =

⎡⎣Fn+1 −GQn

0
SQn −DV n

⎤⎦ , (6)

where ψn+1 is an auxiliary variable, M is the discrete version of the identity
operator on pressure space, while C and S are approximations of scaled Laplacian
operators associated with the pressure Poisson equation. This algorithm can be
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viewed as a three-step procedure for advancing from time level n to n+1. Thus,
in contrast with the example scheme (2), the iteration is not performed. This is
motivated by the fact that an iteration is not necessary in order to maintain the
time accuracy.

A preconditioned iteration for the fully coupled problem can be derived easily
from (6). Then, instead of performing one update of the form (6), we compute
similar updates repeatedly at the same time level in order to produce search
directions for solving the coupled system by the minimal residual iteration. This
iteration may seem as an unnecessary computational burden in comparison with
the original consistent splitting scheme, where the solution is updated sequen-
tially in a three-step fashion. However, we shall see that there is a considerable
gain in using the additional iteration.

Some additional details regarding the example simulations are as follows. Both
solvers employ the MINI finite element discretization on a two-dimensional body
Ω = (0, 2.2 m) × (0, h) \ ΩC , where h = 0.41 m and the boundary of the
body ΩC is a circle having the diameter d = 0.1 m and the center point at
(x1, x2)=(0.2m,0.2m). On the inflow boundary x1 = 0 a flow profile with com-
ponents

v1 = 6 sin(πt/8)(1− x2/h)x2/h (m/s),

v2 = 0
(7)

is prescribed, while on the outflow boundary x1 = 2.2 m the surface traction is
assumed to vanish. In addition, a zero velocity condition is imposed at the top
and bottom of the channel. Finally, the fluid density and viscosity are given by
ρ = 1 kg/m3 and μ = 0.001 kg/(ms). The quantities we consider here are the
drag and lift coefficients cD and cL over the cylinder for t ∈ (0, 8]. The time step
size is taken to be Δt = 1/720, and the preconditioned GCR iteration to solve
the fully coupled linear system is stopped when the ratio of the 2-norm of the
linear system residual to the norm of the forcing vector is smaller than 10−5.

It is noted that the average count of GCR iterations to solve the fully coupled
linear system at each time step was 1.48, so the preconditioning strategy is indeed
very effective. If we omit the costs of assembling the fully coupled matrix and
performing the orthogonalization process to find the minimal residual update,
one iteration of the fully coupled solver can be considered to be as expensive
as one step of the basic consistent splitting algorithm. Given that the fully
coupled iteration require about 3/2 iterations in average and thus the cost of the
orthogonalization process is basically one matrix-vector product per iteration,
we conclude that the overall computational cost of the preconditioned solution
is comparable to that of the standard consistent splitting scheme. One might
expect that the solution quality should also be the same.

The drag and lift coefficients obtained by using the basic consistent splitting
algorithm and the preconditioned solver are now displayed in Figures 1 and
2. Interestingly, the computed lift coefficients are seen to differ significantly.
It appears that the solution computed via the preconditioned algorithm has
superior quality. This is evident from Figure 3 where the lift coefficient given
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Fig. 1. The drag coefficients given by the consistent splitting scheme (dashed curve)
and the preconditioned fully coupled solver (continuous curve) when the backward
Euler time stepping with the time step size Δt = 1/720 is employed

Fig. 2. The lift coefficients given by the consistent splitting scheme (dashed curve) and
the preconditioned fully coupled solver (continuous curve) when the backward Euler
time stepping with the time step size Δt = 1/720 is employed
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Fig. 3. The lift coefficients given by the preconditioned fully coupled solver based on
the backward Euler time stepping with the time step size Δt = 1/720 (dashed curve)
and the fully implicit monolithic solver based on BDF(2) with Δt = 1/120 (continuous
curve)

by the preconditioned solver is compared with the reference solution, which is
obtained by the fully implicit BDF(2) time integration with the time step size
Δt = 1/120. We see that these results show good agreement and produce a fairly
accurate approximation to the maximum value of the lift coefficient reported in
the literature [3].

4 Concluding Remarks

It is widely believed that monolithic solvers are computationally expensive and
that their rewards are realized only in situations where segregated solvers have
convergence problems due to the strong coupling. The computational examples
given here do not support this conclusion; for similar evidences in connection
with fluid-structure interaction problems, see also [4]. Our general experience is
that cost-effective monolithic solvers can often be obtained by utilizing segre-
gated solvers as preconditioners in the iterative solution of monolithic systems.
We have demonstrated here that if the segregated solver exists, a further step
to build an efficient preconditioned solver for the fully coupled problem is not
necessarily difficult. Rewards of this effort can be significant and may not be lim-
ited to obtaining improved robustness. Importantly, the possibility for reusing
effective solvers for simpler subproblems also remains a natural option.
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Abstract. We implemented the quadruple precision Basic Linear Al-
gebra Subprograms (BLAS) functions, AXPY, GEMV and GEMM, on
graphics processing units (GPUs), and evaluated their performance. We
used DD-type quadruple precision operations, which combine two double
precision values to represent a quadruple precision value. On an NVIDIA
Tesla C1060, our BLAS functions are up to approximately 30 times faster
than the existing quadruple precision BLAS on an Intel Core i7 920. Ad-
ditionally, the execution time of quadruple precision AXPY takes only
approximately 2.7 times longer than that of double precision AXPY on
the Tesla C1060. We have shown that quadruple precision BLAS opera-
tions are suitable for GPUs.

Keywords: quadruple precision BLAS, double-double precision, GPU.

1 Introduction

Floating-point operations have round-off errors. These errors may become a criti-
cal issue for some applications. For example, the convergence of iterative methods
is heavily influenced by round-off errors, and there is a study to try to improve
the convergence using quadruple precision operations [6]. In addition, the accu-
mulation of round-off errors in large-scale computing has become a problem. On
the other hand, double precision accuracy may not be sufficient for some scien-
tific applications, especially the high-precision arithmetic demanded by scientific
computations.

However, the hardware of most modern processors only supports up to dou-
ble precision. Therefore, high-precision operations must be carried out via soft-
ware emulation. Since this emulation is extremely computationally complex, it
severely limits the performance of most traditional computers.

Recently, the performance of graphics processing units (GPUs) has increased
more rapidly than that of CPUs. Furthermore, GPU programming has become
easier with the development of GPU programming tools, such as NVIDIA’s Com-
pute Unified Device Architecture (CUDA). Thus, general purpose computing on
GPUs (GPGPU) has been a major topic of research in recent years.

GPGPUs have two main characteristics. The first is a ”many-core” and ”multi-
threaded” architecture, which makes them suited to highly parallel computations

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 249–259, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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and vector operations. The second is that a GPU can act as an accelerator for
the CPU via a peripheral bus, such as the PCI-Express (PCIe) bus. The NVIDIA
Tesla C1060 has a peak double precision performance of 78 GFlops. However,
a GPU connected by PCIe 2.0 x16 has a theoretical maximum bandwidth of
only 8 GB/s. Thus only computationally-intensive applications are capable of
effectively utilizing GPUs.

We have implemented three quadruple precision Basic Linear Algebra Subpro-
grams (BLAS) functions, AXPY, GEMV and GEMM on GPUs. Quadruple pre-
cision operations using software emulation are highly computationally complex
but require few memory references. Hence, quadruple precision BLAS operations
are suitable for GPUs and are capable of attaining high performance.

2 Related Work

QD [1] is a quadruple and octuple precision floating-point arithmetic library.
QD uses a double-double (DD) type algorithm for quadruple precision and a
quad-double (QD) type algorithm for octuple precision operations. These algo-
rithms represent quadruple and octuple precision values by combining two and
four double precision values respectively. Our implementation uses the DD-type
algorithm described in the next section.

XBLAS [8] is a well-known extended precision BLAS for CPUs. XBLAS uses
the DD-type algorithm internally. However, it does not support full quadruple
precision because the input and the output are double precision. MBLAS [10]
is a multi-precision BLAS for CPUs. MBLAS uses two existing multi-precision
libraries: the GNU Multiple-Precision Library (GMP) for arbitrary precision
operations, and the QD for octuple and quadruple precision operations. The
input and the output data are also multi-precision. MBLAS is the only multi-
precision BLAS that fully supports quadruple precision operations.

There is some research on high-precision floating-point operations on GPUs.
Graça [4] implemented double-float type double precision operations for GPUs
that are not supported by hardware. Thall [12] also implemented double-float
and quad-float type operations on GPUs. In addition, Lu et al. [9] implemented
an implementation of the QD library on GPUs, called GQD.

On the other hand, CUBLAS [2] is a single and double precision BLAS on
GPUs implemented using CUDA. However, there has been no research on im-
plementing quadruple precision BLAS on GPUs. In this paper, we will present,
”CUDDBLAS”, our implementation of a DD-type quadruple precision BLAS for
GPUs using CUDA. Like MBLAS, CUDDBLAS fully supports quadruple preci-
sion operations. The input and the output data are DD-type quadruple precision
values.

3 Quadruple Precision Operations

There are two ways to store high-precision values using software emulation of
high-precision floating-point operations: the first stores them in a format defined
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binary128 (IEEE 754-2008 Quadrupe Precision)

binary64 (IEEE 754-2008 Double Precision)

DD-type Quadruple Precision

significandexponent

sign(1bit)

112 bits

52 bits52 bits

52 bits

11bits

15 bits

11bits

Fig. 1. DD-type quadruple precision value

using integer values, and the second stores them using hardware-implemented
floating-point formats. The first approach is used by GMP and is suitable for
arbitrary precision. DD-type operations use the second approach. This approach
is simple because it can use the exponent and the significand of the existing
floating-point format, thus it has a speed advantage, but the exponent is not
extendable. Therefore, this approach cannot represent a wide range of values,
and it is not feasible for more than octuple precision. Thus we decided to use
the DD-type algorithms for quadruple precision operations. We used the same
algorithms as the QD library. For more details, refer to Hida et al. [7].

3.1 Quadruple Precision Format

In IEEE 754-2008, the quadruple precision format is defined as ”binary128” with
a significand part of 112 bits. In fact, the total precision is 113 bits because the
significand has an implicit integer bit value of 1, and the format is approximately
34 decimal digits. The DD-type algorithm represents a quadruple precision value
by combining two double precision values. In IEEE 754-2008, the double preci-
sion format is defined as ”binary64” with a significand part of 52 bits; similarly,
the total precision is 53 bits including the implicit bit. Therefore, the total preci-
sion of DD-type quadruple precision must be twice that, 106 bits. This is still 7
bits less than binary128’s 113 bits and is approximately 32 decimal digits. Also,
its exponent part is still only 11 bits (see Figure 1).

3.2 DD-type Algorithms

The DD-type algorithms are based on the error-free floating-point arithmetic
algorithms. The given IEEE 754 double precision values are used with round-to-
even for binary operations. The normal operations are represented as {+,−,×,÷},
and the rounded operations are represented as { +©, −©, ×©, ÷© }.

The TwoSum algorithm (see Figure 2) produces an expansion a+ b such that
s+e = a+ b, where s is an approximation of a+ b and e represents the round-off
error in the calculation of s. The QuickTwoSum algorithm (see Figure 3) also
produces an expansion a + b such that s + e = a + b, where |a| ≥ |b|. These
algorithms are also described in Shewchuk’s paper [11].
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TwoSum(a, b, s, e){
s = a +© b
v = s −© a
e = (a −© (s −© v)) +© (b −© v)

}

Fig. 2. TwoSum algorithm

QuickTwoSum(a, b, s, e){
s = a +© b
e = b −© (s −© a)

}

Fig. 3. QuickTwoSum algorithm

SPLIT(a, h, l){
t = (227 + 1)×© a
h = t −© (t −© a)
l = a −© h

}

Fig. 4. SPLIT algorithm

TwoProd(a, b, p, e){
p = a ×© b
SPLIT(a, aH , aL)
SPLIT(b, bH , bL)
e = ((aH ×© bH −© p) +© aH ×© bL

+© aL ×© bH) +© aL ×© bL
}

Fig. 5. TwoProd algorithm

TwoProdFMA(a, b, p, e){
p = a ×© b
e = fl(a × b − p)

}

Fig. 6. TwoProdFMA algorithm

In the SPLIT algorithm (see Figure 4), the double precision value a is split
into two double precision values such that a = h+ l, where h is the upper part
and l is the lower part of each 26 bits.

The TwoProd algorithm (see Figure 5) produces p+ e = a× b, where p is an
approximation of a × b, and e represents the round-off error in the calculation
of p.

However, the TwoProdFMA algorithm (see Figure 6) can be used only on
machines that implement the double precision Fused-Multiply Add (FMA) in-
struction to calculate a× b + c, with an intermediate result of 106 bits with no
round-off error. This instruction is shown as fl(a× b− p) in Figure 6. The Tesla
C1060 supports this FMA instruction (using the built-in function: fma rn). We
can use it and reduce the operation count from 17 Flop to 3 Flop.

The DD-type quadruple precision operations consist of the aforementioned
algorithms. The quadruple precision value a is represented as a = aH +aL using
two double precision values, aH and aL, where |aH | > |aL|.

The QuadAdd algorithm (see Figure 7) calculates the quadruple precision
addition, c = a+ b. The total number of operations are 20 Flop. The QuadMul
algorithm (see Figure 8) calculates quadruple precision multiplication, c = a×b.
Its total operation count is 10 Flop when using TwoProdFMA.
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QuadAdd(aH , aL, bH , bL, cH , cL){
TwoSum(aH , bH , sh, eh)
TwoSum(aL, bL, sl, el)
eh = eh +© sl
QuickTwoSum(sh, eh, sh, eh)
eh = eh +© el
QuickTwoSum(sh, eh, cH , cL)

}

Fig. 7. QuadAdd algorithm

QuadMul(aH , aL, bH , bL, cH , cL){
TwoProd(aH , bH , p1, p2)
(TwoProdFMA(aH , bH , p1, p2))
p2 = p2 +© (aH ×© bL +© aL ×© bH )
QuickTwoSum(p1, p2, cH , cL)

}

Fig. 8. QuadMul algorithm

4 Implementation

We used CUDA to implement CUDDBLAS. We decided to target our implemen-
tation to the NVIDIA Tesla C1060, which is based on the GT200 architecture.
The Tesla C1060 has 30 streaming multiprocessors (SM), each of which consists
of 8 single-precision floating-point units (FPUs), and one double-precision FPU.

We implemented AXPY, GEMV, and GEMM. The BLAS operations are per-
formed after the data transfer from the CPU to the GPU is finished. In other
words, it does not overlap computations with data communications. The imple-
mentation techniques of these BLAS operations use the same general approach as
double precision BLAS. Each element of a vector or a matrix is computed in par-
allel with each thread. These threads are arranged as a one- or two-dimensional
structure. In addition, GEMV and GEMM use a blocking algorithm to use shared
memory for data reuse. The shared memory is a fast on-chip memory of 16 KB
per SM that can be shared among threads in the SM. The user can use this as
scratch-pad memory. For GEMM, each of the 16 × 16 elements of a matrix of
A and B is loaded. The number of the blocking size is decided by the group
processing the threads and memory access, and the capacity of the shared mem-
ory. Each SM executes 32 threads concurrently, and 16 threads can access the
memory concurrently.

Our implementation of GEMV uses parallel reduction operations [5] for inner
product computations to avoid a bank conflict. Thus there is a small amount
of error in the lower part of the DD-type value when compared to MBLAS,
which does not use parallel reduction operations. However, if we do not use the
reduction operation, the kernel-only executing performance drops by one-third.

We implemented DD-type quadruple precision operation functions, as well
as the QuadAdd and QuadMul with TwoProdFMA algorithms using the FMA
instruction. Quadruple precision operations are used in each thread. We note
that there is no function call overhead because these DD-type operations were
compiled using the CUDA compiler’s inline expansion function. In addition,
the compiler automatically replaces the multiply-add operation with the FMA
instruction. In cases where the FMA instruction would alter the result of the
DD-type algorithms, we used the built-in functions dmul rn and dadd rn to
replace FMA with separate multiplication and addition instructions.
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5 Performance Evaluation

5.1 Methodology

We compared the performance of our CUDDBLAS with some of the currently
available BLAS implementations, shown in Table 1. GotoBLAS [3] is the opti-
mized BLAS implementation for CPUs. CUBLAS is the BLAS implementation
using CUDA by NVIDIA. Both are single and double precision BLAS. MBLAS
is the only BLAS implementation that fully supports quadruple precision opera-
tions. It uses QD 2.3.7’s quadruple precision operations. XBLAS is an extended
precision BLAS using DD-type operations internally, but it does not support full
quadruple precision since the input and the output are double precision.

Table 1. BLAS implementations used for performance evaluation

Version Hardware Precision

GotoBLAS 2-1.00 CPU Double
CUBLAS 2.3 GPU (CUDA)
XBLAS 1.0.248 CPU Extended
MBLAS 0.6.4 CPU Quadruple
CUDDBLAS – GPU (CUDA) Quadruple

We measured the performance of AXPY, GEMV, and GEMM. The perfor-
mance of the double precision BLAS (GotoBLAS and CUBLAS) are measured
in Flops. Meanwhile the DD-type BLAS (MBLAS, XBLAS and CUDDBLAS)
are measured in DDFlops, which means DD-type operations per second. In the
case of BLAS running on GPUs (CUBLAS and CUDDBLAS), these measure-
ments do not include the time spent transferring data between the CPU and
GPU via PCIe. To measure the performance accurately, we repeatedly executed
each BLAS function for approximately one second, then computed the average
execution time for one iteration of the function. All matrices are square matri-
ces of size N ×N , and all vectors have length N and are composed of uniform
random numbers. The evaluation environment is shown in Table 2.

Table 2. Evaluation environment

CPU Intel Core i7 920 (2.67 GHz, Quad-Core, Hyper-Threading enabled)

RAM 12 GB (DDR3)

GPU NVIDIA Tesla C1060

Video RAM 4 GB (GDDR3)

GPU Bus PCI-Express 2.0 x16

OS CentOS 5.3 (x86-64) kernel 2.6.18

CUDA CUDA SDK 2.30, CUDA Driver 2.30

Compiler gcc 4.1.2 (-O3) for CPU code, nvcc 2.3 (-O3) for GPU code
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We note that GotoBLAS is performed in parallel on 4 threads with 4 physical
cores. XBLAS does not support parallel processing. MBLAS supports parallel
processing only for some level-1 functions, including AXPY, but not for GEMV
and GEMM. MBLAS’ AXPY is performed in parallel on 8 threads with 4 phys-
ical cores. MBLAS’ GEMV and GEMM as well as all XBLAS functions were
performed on a single thread.

5.2 Theoretical Peak Performance

The theoretical peak double precision performance of the NVIDIA Tesla C1060
is 78 GFlops (1.3 GHz × 30 double precision FPUs × 2 Flop with FMA = 78
GFlops). The theoretical peak double precision performance of the Intel Core i7
920 is 42.72 GFlops on 4 cores.

On the other hand, the theoretical peak performance of DD-type quadruple
precision operation on the GPU is as follows: DD-type quadruple precision ad-
dition and multiplication operations consist of 20 and 10 Flop double precision
operations, respectively. Among these, 2 Flop in the quadruple precision mul-
tiplication are performed using an FMA instruction. Therefore, the quadruple
precision multiplication and addition are performed using 20 and 9 instructions,
respectively. AXPY, GEMV and GEMM functions consist of multiply-add oper-
ations, and the ratio of multiplications and additions is 1 : 1. Thus, on quadruple
precision multiply-add operation, only one FMA instruction can performs 2 Flop,
the rest of the 28/29 instructions cannot save a Flop by using FMA.

Hence, the theoretical peak performance of DD-type quadruple precision op-
eration on the NVIDIA Tesla C1060 is as follows: First, 1.3 GHz×30 FPUs
×((1/29)× 2 Flop+(28/29)× 1 Flop) ≈ 40.3 GFlops of double precision opera-
tions. Then, 2 Flop of quadruple precision multiply-add operation equals 30 Flop
of double precision operations. Therefore, 40.3 GFlops/(30/2) ≈ 2.69 GDDFlops.

5.3 AXPY

Figure 9 shows the results of AXPY. When N = 102400, the performance of
DDAXPY on CUDDBLAS is approximately 2.03 GDDFlops. This equals ap-
proximately 30.4 GFlops double precision operations, and approximately 39%
of the theoretical peak performance of the GPU. However this performance is
approximately 75% of the theoretical peak performance of DD-type quadruple
precision operations on the GPU. Even though the computational cost of DD-
type operations is 15 times that of the double precision operation, the execution
time on CUDDBLAS is only approximately 2.7 times that of CUBLAS. This is
because the performance of AXPY is bound by the memory bandwidth on dou-
ble precision, since AXPY is a memory-intensive operation, O(N) computations
are performed on O(N) load/store operations. On the other hand according to
our analysis, when N = 102400, AXPY becomes computationally-bound when
using quadruple precision on the GPU.

The actual measured memory bandwidth of the GPU and the CPU for a
transfer of 1MB is approximately 67.5 GB/s and 12.5 GB/s, respectively. Thus,
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Fig. 9. Performance evaluation results of AXPY

the GPU’s memory bandwidth is approximately 5.4 times as large as the CPU’s.
However when N = 102400 CUBLAS is only approximately 1.7 times faster than
GotoBLAS, since GotoBLAS’s data fits into L3 cache. For quadruple precision
operations, CUDDBLAS is approximately 4.3 times faster than MBLAS. This
is because the GPU’s theoretical peak performance is much higher than the
CPU’s. Additionally, the GPU can use the FMA instruction to reduce quadruple
precision multiplication from 24 Flop to 10 Flop, as described in Section 3.2.

5.4 GEMV

Figure 10 shows the GEMV results. When N = 7680, our GEMV on CUD-
DBLAS performs up to approximately 1.86 GDDFlops. This performance corre-
sponds to approximately 36% of the theoretical peak performance of the GPU.
However this performance is approximately 69% of the theoretical peak perfor-
mance of DD-type quadruple precision operations on the GPU. Our GEMV is ap-
proximately 8.2% slower than our AXPY, even though GEMV performs O(N2)
computations and O(N2) load/store operations, which is more computationally-
intensive than AXPY. This is because AXPY becomes computationally-intensive
when using quadruple precision.

For double precision, CUBLAS is approximately 5.5 times faster than Goto-
BLAS. However for quadruple precision, CUDDBLAS is approximately 21 times
faster than MBLAS. The reasons for the growth of the performance gap be-
tween double and quadruple precision operations are as follows: GotoBLAS is
performed using 4 threads, but MBLAS and XBLAS are performed on a single
thread. Furthermore, the GPU can use the FMA instruction as we described in
Section 5.3. Finally, we feel that MBLAS and XBLAS are not well optimized for
speed when compared to GotoBLAS (e.g. GotoBLAS uses Intel’s SIMD instruc-
tion).

5.5 GEMM

Figure 11 shows the results for GEMM. When N = 4096, our GEMM on CUD-
DBLAS attains approximately 2.63 GDDFlops and reaches approximately 98%
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Fig. 11. Performance evaluation results of GEMM

of the theoretical peak performance of DD-type operations on the GPU. In
general, GEMM’s performance is close to a processor’s theoretical peak (as
seen in GotoBLAS and CUBLAS in our results). This is because GEMM is
computationally-intensive, it performs O(N3) computations with only O(N2)
load/store operations. Our GEMM performance of 2.63 GDDFlops corresponds
to approximately 39.4 GFlops double precision operations, and approximately
51% of the theoretical peak performance of the GPU. This is because the theoret-
ical peak performance of the GPU is calculated when using the FMA instruction,
and most instructions of the DD-type algorithms cannot use the FMA instruc-
tion.

CUBLAS is approximately 1.9 times faster than GotoBLAS. However, CUD-
DBLAS is approximately 30 times faster than MBLAS, and approximately 134
times faster than XBLAS. The performance gap on quadruple precision opera-
tions is due to the same reasons we described in Section 5.4.
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Fig. 12. The percentage of PCIe data transfer time of the total operation time (AXPY:
N = 102400, GEMV: N = 7680, GEMM: N = 4096)

5.6 Effects of the PCIe Data Transfer

When a BLAS function on GPUs operates with data stored in the CPU’s mem-
ory, it needs to transfer data from the CPU to the GPU via PCIe. However,
for example for a 1MB transfer, the actual measured bandwidth of PCIe is ap-
proximately 5.3 GB/s (from the CPU to the GPU), whereas the bandwidth of
the GPU memory is approximately 67.5 GB/s. Thus, the PCIe bandwidth is
potentially a huge bottleneck for the GPU.

Figure 12 shows the PCIe data transfer time as a percentage of the total oper-
ation time. The total operation time includes the time spent transferring input
and output data between the CPU and the GPU, and the memory allocation on
the GPU. We note that CUBLAS and CUDDBLAS do not overlap computations
with data communications. To measure the performance accurately, we repeat-
edly executed each BLAS function for approximately one second, then computed
the average execution time for one iteration of the function (e.g. 800 and 450
repetitions for AXPY functions on CUBLAS and CUDDBLAS, respectively).

The PCIe data transfer time of AXPY on CUBLAS and CUDDBLAS ac-
counted for approximately 97% and 96% of the total operation time, respectively.
In GEMV, the data transfer time on CUBLAS and CUDDBLAS accounted for
approximately 96% and 74%, and for GEMM it’s 33% and 0.4% respectively.
For quadruple precision operations, the computational time greatly increases,
and therefore the percentage of time spent on transferring data via the PCIe
bus decreases. The performance of quadruple precision GEMM in particular is
not heavily affected by the PCIe bandwidth.

6 Conclusions

In this research, we implemented three DD-type quadruple precision BLAS func-
tions, AXPY, GEMV, and GEMM, on GPUs using CUDA. We showed that
GPUs can perform quadruple precision BLAS operations faster than CPUs.
Our BLAS functions on the NVIDIA Tesla C1060 are up to approximately 30
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times faster than the existing quadruple precision BLAS, MBLAS, on the In-
tel Core i7 920. On the GPUs, the performance of memory-intensive operations
such as level-1 subroutines are not much slower than that of double precision.
Computationally-intensive operation such as the level-3 subroutines are suitable
for GPUs. However, DD-type quadruple precision operations perform only at
approximately one-half of the peak performance of the GPUs since most of the
DD-type algorithm instructions cannot be implemented via FMA instructions.
Additionally, for quadruple precision operations, the computational time greatly
increases, and therefore the percentage of time spent on transferring data via
the PCIe bus decreases. We showed that quadruple precision BLAS operations
are a computationally-intensive application suitable for GPUs.

We will focus on implementing all the BLAS functions and QD-type octuple
precision operations. Additionally, we will evaluate the performance in actual
applications and on the next generation Tesla GPU based on the Fermi archi-
tecture, which has a double precision peak performance of 515 GFlops. We expect
that level-3 subroutines will be much faster than those on the Tesla C1060.
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Abstract. Large scale potable water transmission system considered
in this paper is the Toronto Water System (TWS), one of the largest
existing potable water supply networks. The main objective of the on-
going Transmission Operations Optimizer (TOO) project consists of de-
veloping an advanced tool for providing pumping schedules for 153 TWS
pumps, with all quantitative requirements with respect to system opera-
tion being met while the energy costs are minimized (“The aim of pump
scheduling is to minimize the marginal cost of supplying water while
keeping within physical and operational constraints, such as maintain-
ing sufficient water within the system’s reservoirs, to meet the required
time-varying consumer demands.” – [6]). It is assumed that TOO should
produce detailed optimal schedules for all pumps. The following modules
of TOO are being currently developed: demand forecasting module, en-
ergy rates forecasting module, pumping schedule optimizer and, finally,
an assessment module consisting mainly of hydraulic, EPANET based,
TWS simulator. This paper presents key component of the pumping
schedule optimizer, namely, the Aggregated Pumping Station Operation
Planning Problem (APSOP) and the approach to its solution.

Keywords: water supply, minimum cost operation planning, large-scale
nonlinear programming.

1 Introduction: Hydraulic Model of TWS

For the purpose of optimizing a water supply system operation it is advisable to
consider sufficiently accurate model of such system [2,5]. In case of TWS there
are over 3500 pipes, 4000 nodes (1000 demand nodes) in the main network to
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be taken into account. There are 19 pressure zones in the system and purified
(treated) drinking water is stored in 28 potable water reservoirs and elevated
tanks, many of them having two or more cells. Treated water is provided from
clearwells at four treatment plants and a number of ground sources (wells).
Pumping is done at 29 pumping stations, where, for planning purposes, 153
pumps are grouped into 47 pump groups as logical pumping stations. Each group
of pumps draws water at its suction side from a common node and discharges it
into a common collector. Majority of pumps are constant speed units. There are
also more than 700 valves of various types, the majority of which are throttle
control valves (TCV). There are 20 pressure reducing valves (PRV) and 24 check
valves (CV) outside of the pumping stations. The TWS is described roughly at
Toronto Water site ({urlhttp://www.toronto.ca/water/) and its hydraulic model
is provided in EPANET format [7].

2 Goal of the Optimization

For the purpose of operation optimization the pumping schedules and valve
settings must be computed with at least a 24-hour planning perspective; in fact
due to specific electrical energy tariffs within Ontario’s power system, planning
over an longer period may be required.

Aggregated Pumping Station Operation Planning Problem (APSOP), pre-
sented in this paper, was designed to provide desired aggregated flows, together
with pressure (head) gains, at each logical pumping station (PS), and to pro-
vide such valve settings that are not predetermined. All these values should be
specified as average values for hourly intervals over the 24-hour planning period.
The input to APSOP consists of: initial and required final tank/reservoir vol-
umes, forecasted demand at the various water supply nodes where water is being
withdrawn from the network, and forecasted energy rates needed to compute the
pumping costs.

The performance index to be minimized involves various cost components re-
lated to electrical energy usage over time. The actual energy consumption is
charged based upon a special tariff, where a given fraction, (determined by con-
tractual obligations), of the energy actually consumed is charged according to
predetermined per unit cost and the remaining energy is charged according to
current spot market price (rate); thus the need to forecast future spot rates
(http://www.ieso.ca/imoweb) prior to solving APSOP. In addition to energy
consumption there are other costs related, in particular, to peak power values,
i.e., to peak kW and peak kVA values attained over the considered period. To
compute power consumption at the pumping stations it is necessary to use aggre-
gated pumping station efficiency curves. The resulting cost function is complex,
non-convex and highly nonlinear.

3 Mathematical Modeling of Hydraulic System

The hydraulic model of the network involves static nonlinear flow equations; the
Hazen-Williams model is used for all pipe sections. A number of specific con-

http://www.ieso.ca/imoweb
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straints define, for the purpose of optimization, the operation of PRVs and other
active system components. In fact, modeling of such components as PRVs has to
be, for the purpose of optimization, different from description of those compo-
nents as used for simulation; optimization solvers require them to be represented
by a set of constraints.

The most important elements of APSOP formulation are the following.
For each i-th network node flow continuity law must be fulfilled:∑

j∈L:Λc
ij �=0

Λc
ij · Qjk = dik, (1)

where Λc is connectivity (incidence) matrix for nodes, dik is i-th node demand
at k-th hour (nonzero for demand node, zero for connecting node), and L is set
of network links.

A pipe segment, with heads h1 and h2 at bordering nodes 1, 2, and flow Q
considered positive when directed from node 1 to node 2, is described by the
Hazen-Williams (HW) empirical head-loss formula:

h1 − h2 = A · sgnQ · |Q|α, (2)

where A is the resistance coefficient for that pipe and α is the flow exponent
(α=1.852) (see [6]). Because of numerical difficulty with absolute value term in
the HW formula (non-differentiability at 0 – no second derivative) we use its
smooth approximation on interval [−δ, δ] (δ = 0.1) [1]:

h1 − h2 =
(

3δα−5

8
+

1
8
(α − 1)αδα−5 − 3

8
αδα−5

)
Q5

+
(
−5δα−3

4
− 1

4
(α − 1)αδα−3 +

5
4
αδα−3

)
Q3 (3)

+
(

15δα−1

8
+

1
8
(α − 1)αδα−1 − 7

8
αδα−1

)
Q

Outside of the interval we use original HW formula.
The throttle valves (TCV) are modeled in a similar way as a pipe segment

with α=2. The pressure reducing valves (PRV) are modeled by set of nonlinear
constraints involving multiplication of two or three variables.

For each i-th reservoir (tank) we have a mass-balance state equation:

Vi,k+1 = Vik +
∑

j∈L:Λr
ij �=0

Λr
ij · Qjk · Δt, (4)

where Vik is i-th reservoir volume at k-th hour, Λr is connectivity matrix for
reservoirs, Qjk is flow through j-th link at k-th hour, and Δt is the hydraulic
time step.

For the k-th hour and for each reservoir (tank), average head H̄ik required for
flow modeling is computed as:

H̄ik = Ei +
1
12

(−xi,k−1 + 8 · xik + 5 · xi,k+1) , (5)
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where Ei is tank elevation, xik is tank level, and xi,k−1 = f−1(Vi,k−1), xik =
f−1(Vik), xi,k+1 = f−1(Vi,k+1), and where Vi,k−1, Vik and Vi,k+1 are, respec-
tively, reservoir volumes for previous, current, and next hour, and f(.) is the
level-capacity curve, i.e., at each time V = f(x). In equation (5) we used two-
interval extended Simpson’s rule because it was more numerically stable for the
resulting nonlinear optimization problem.

At most of the nodes the bounds on admissible pressure values are specified
together with the demand patterns.

The decisions regarding j-th logical pumping station operation during each
hour are specified as average head gain ΔHjk (in meters) and average aggregate
flow Qjk (in megalitres); they are related to power consumption (in MWh) at
this pump station given by

Pjk = β
ΔHjk · Qjk

ηj(ΔHjk, Qjk)
, (6)

where β is the unit conversion coefficient, and ηj(ΔHjk, Qjk) is the aggregated
pumping station efficiency. Constraints on admissible values of ΔHjk and Qjk,
with bounds on Qjk dependent on ΔHjk, are computed from the individual
pump curves, while aggregated efficiency is computed from pump efficiency
curves assuming best configuration of active pumps for given head gain and
aggregate flow.

The performance index is computed as

J =
∑
jk

cjk · Pjk +
∑

l

Pmax
l , (7)

where the unit energy price:

cjk = 0.22 · cj,con + 0.78 · cj,spot,k; (8)

the first unit price component is fixed according to long term contract with
electrical power supplier and the second term is related to local energy market
spot price cj,spot,k at given location and hour k. This price is unknown for a
decision maker before actual real time occurrence and so has to be forecasted
prior to performing the optimization. The second sum term of the performance
index is related to peak power consumption at each of physical pumping stations;
for a given l-th station:

Pmax
l = cp max

k

⎛⎝∑
j∈l

Pjk

⎞
⎠ , (9)

where cp is the peak energy cost and l is the set of logical pump stations within
physical pump station l. Th minimax objective (9) can be easily converted into a
conventional nonlinear programming form by introducing an auxiliary variables
and additional constraints to represent the above objective [11].
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The decision variables in resulting optimization problem also include:

– flows and head losses for every pipe and valve
– heads at every junction and demand node
– heads, volumes and water levels for every reservoir and elevated tank

For all variables there are simple bounds constraints.

4 The NLP Problem

The resulting nonlinear optimization problem (NLP) is a truly large scale non-
linear optimization problem. The basic, 24-hour period, version involves above
250000 variables and nearly 600000 equality and inequality constraints. In fact,
the authors have found so far only one truly comparable problem, in size and
complexity, reported in the literature and concerned with operation of the Berlin
Water Works (Berlin Wasserbetriebe), presented in [4,3]. Yet, TWS is about
twice as big in size, i.e., in the number of components, than the Berlin sys-
tem. Also, in APSOP there was a need to take into account, properly modeled,
pressure reducing valves, and, as mentioned above, to use specific, complicated,
energy tariffs. These components were not present in water distribution system
as considered by Burgschweiger et. al. [4,3], while the inclusion of such elements
increases considerably both the modeling effort and complexity of the optimiza-
tion problem.

5 Solution Method: The IPOPT Solver

For the solution of APSOP we use a primal-dual interior-point algorithm with
line-search minimization based on the filter method, used in the implementation
of the IPOPT solver [10]. An open-source C++ version of IPOPT is available
at http://projects.coin-or.org/Ipopt. A formal description and analysis of
the filter line-search procedure implemented in the IPOPT solver can be found in
[9]. In comparison with traditional line-search algorithms, such as a single merit
function technique, the filter method is usually less conservative and makes it
possible to take larger stepsizes. Moreover, the protection in the form of a restora-
tion phase makes the filter algorithm resistant to unnecessary errors, such as
those presented in [8].

The computationally most expensive part of the optimization algorithm im-
plemented in the IPOPT solver (not including computations of the objective
function, constraints and their derivatives) is the solution of the linear system
of equations, which is most often of high order and has a sparse structure. For
its factorization and solution, IPOPT uses external sparse direct linear solvers,
such as MA27 (default option), MA57, WSMP, PARDISO and MUMPS.

http://projects.coin-or.org/Ipopt
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6 Numerical Results

The IPOPT solver calculated the least-cost operational aggregated flows and
head gains at each logical pumping station for 24-hours time horizon (with 1-hour
discretization). The hydraulic model of TWS in EPANET format is converted to
the NLP problem which contains all the network links and nodes, without use of
any simplification or skeletonization algorithms. The unit energy price cjk was
time-dependent but the same for all PSs, and did not contain the spot market
term. The reservoir and elevated tank volumes were kept between 100% and
10% of the maximum volume during the 24-hour horizon and the final reservoir
volume was made equal to that from historical simulation. These constraints
were satisfied and the results for the two reservoirs and two elevated tanks are
presented, respectively, in figures 1 and 2. The original and optimal aggregated
pump flows from the two major sources in the network and the corresponding
electricity tariffs are shown in figure 3. The optimal aggregated pumping sta-
tion flows have a direct correspondence with the electricity tariffs. There are
higher flows during lower tariff periods and vice versa. The pumps flows before
optimization did not follow the tariffs. The obtained energy savings compared
to original controls was approximately 11%. The reduction of pumping energy
costs at water distribution systems by optimizing pumping schedules is typically
up to 10%.

IPOPT was executed on an Intel Q6600 PC with a clock speed of 2.4 GHz.
The total calculation time for 24-hour problem was approximately 4 hours and
required almost 2000 IPOPT iterations. The starting point for IPOPT optimizer
was generated from EPANET simulation of TWS hydraulic model with historical
pumping schedules. IPOPT was configured to use MA57 matrix solver which
had been found the most stable and reliable for our NLP problem. The solver
convergence was very slow because of high nonlinearity of the NLP problem.

7 Conclusions and Future Work

One possibility to make the computations faster is to use parallel matrix solvers
(like PARDISO or WSMP) for matrix computations within the IPOPT solver.
Yet, it appears that the structure of APSOP, due to underlying tightly con-
nected hydraulic network, does not create enough flexibility to achieve a sig-
nificant speedup through the use of parallel computing. The other possibility
for improving convergence and solution time for IPOPT solver is to use proper
NLP problem scaling (own scaling of variables and constraints). The third, very
promising technique, is based on model size reduction algorithms, such as skele-
tonization and simplification of hydraulic network structure: elimination of short
pipes, reduction of parallel pipes and node merging.

Nevertheless, being able to solve APSOP in a reasonable time is, by itself,
an important, in fact crucial, step in development of Transmission Operation
Optimizer for the Toronto Water System.
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Fig. 1. Reservoir volume profiles for historical and optimized aggregated flows at logical
PSs obtained from EPANET simulation
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Fig. 2. Elevated tank volume profiles for historical and optimized aggregated flows at
logical PSs obtained from EPANET simulation
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Fig. 3. Aggregated flows for two pumping stations of TWS, plus daily electricity tariff
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Abstract. We introduce and describe PerPI, a software tool analyzing
the instruction level parallelism (ILP) of a program. ILP measures the
best potential of a program to run in parallel on an ideal machine – a
machine with infinite resources. PerPI is a programmer-oriented tool the
function of which is to improve the understanding of how the algorithm
and the (micro-) architecture will interact. PerPI fills the gap between the
manual analysis of an abstract algorithm and implementation-dependent
profiling tools. The current version provides reproducible measures of the
average number of instructions per cycle executed on an ideal machine,
histograms of these instructions and associated data-flow graphs for any
x86 binary file. We illustrate how these measures explain the actual per-
formance of core numerical subroutines when measured run times cannot
be correlated with the classical flop count analysis.

Keywords: Run time performance, instruction level parallelism, ideal
processor, BLAS, polynomial evaluation, mixed precision.

1 Introduction

1.1 Motivation

We introduce PerPI, a programmer-oriented tool focusing the instruction level
parallelism of numerical algorithms. This tool is motivated by results like those

Table 1. Flop counts and run times are not proportional

Measure Eval AccurateEval1 AccurateEval2

Flop count 2n 22n+ 5 28n+ 4
Flop count ratio (/Eval) 1 ≈ 11 ≈ 14

Measured #cycles ratio (/Eval) 1 2.8 – 3.2 8.7 – 9.7

presented in Table 1 where two algorithms, AccurateEval1 and AccurateEval2,
are respectively compared to a third one, Eval [3]. The three algorithms evaluate
a polynomial of degree n. Eval is the classical Horner algorithm, AccurateEval1

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 270–281, 2012.
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and AccurateEval2 are two competing evaluations which are both twice more
accurate. These two algorithms solve the same problem: how can we double the
accuracy of a core numerical subroutine? Such a need appears also, for example,
in numerical linear algebra where an accurate iterative refinement relies on a dot
product performed with twice the current computing precision [2].

Table 1 presents the flop counts and the ratios of flop counts and run times
for the two accurate algorithms over Eval ones. The first two lines are significant
for the algorithm’s complexity, while the last one presents the range of run times
measured on several desktop computers. Such measures are quite familiar when
publishing new core numerical algorithms, e.g., floating-point summation, dot
product, polynomial evaluation — see entries in [8] for instance. Here Accura-
teEval1 appears to run about three times faster than AccurateEval2, whereas
their flop counts are similar. Such a speedup is important for basic numerical
subroutines that are used at any parallelism level. This gap between the classi-
cal manual analysis of the abstract algorithms (flop counts) and the measures
provided by automatic profiling tools (cycle counts, with [6] for instance) has to
be justified.

Of course, merely counting the number of flop within an algorithm does not
fully explain the actual performance of its implementation, which depends on
other factors such as parallelism and memory access. Moreover, measuring actual
run times is hard to reproduce and yields results with a very short life-time since
computing environments evolve fast. This process is very sensitive to numerous
implementation parameters such as architectural and microarchitectural charac-
teristics, OS versions, compilers and options, programming language, etc. Even if
the same data test is used in the same execution environment, measured results
suffer from numerous uncertainties: spoiling events (e.g., OS process scheduling,
interrupts), non-deterministic execution and accuracy of the timings [11].

Measuring the computing time of summation algorithms in a high-level
language on today’s architectures is more of a hazard than scientific
research [8].

We believe that this recent quotation is significant for (a call for) a change of
practice in the numerical algorithm community. Indeed, uncertainty increases as
the computer system complexity does, e.g., multicore or hybrid architectures.
Even in the community of program and compiling optimization, it is not always
easy to trust this experimental process.

If we combine all the published speedups (accelerations) on the well-
known public benchmarks for four decades, why don’t we observe exe-
cution times approaching to zero? [10]

A last difficulty comes from the gap between the algorithm design step and the
profiling one. The algorithmic step benefits from the abstraction of high level
programming languages and, more and more, from the interactivity of integrated
developing frameworks such as Matlab. Run time performance analysis is a later
step process, and it takes place in a technically more complex and change-prone
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environment. The programmer suffers from the lack of performance indicators,
and associated tools, being independent of the targeted computing architecture
that would help at the algorithmic level to choose the most efficient and long-
lasting solutions.

2 Analysis: Principles and Pen-and-Paper Example

2.1 Principles

We propose to analyze the instruction level parallelism (ILP) of a program by
simulating its run with a Hennessy-Patterson ideal machine [1]. An ideal ma-
chine has infinite resources: renaming registers, perfect branch predictor, perfect
memory disambiguation. As a result, running a code on an ideal machine is like
having at hand the full trace and picking up from this trace instructions as soon
as their sources are available. In such a way, the run is ordered according to the
only producer/consumer dependencies.

ILP represents the best potential of the instructions of a program that can be
executed simultaneously. Every current processor exploits program’s ILP thanks
to well-known techniques such as pipelining, superscalar execution, out-of-order
execution, dynamic branch prediction or address speculation, etc. The ideal ma-
chine removes all artificial constraints on ILP (registers, memory, control flow),
so it runs the program in such a way that every instruction is scheduled imme-
diately after the execution of the latest producer on which it depends.

The following example illustrates how to quantify this ILP and what kind of
information is useful to understand and improve the potential performance of
an algorithm.

2.2 A first Pen-and-Paper Analysis

The algorithms presented in Table 1 consist of one loop n times iterated. Fig-
ure 1 represents the data-flow graphs of the two accurate algorithms: (a) one
iteration, (b) one iteration depending on its predecessor, and (c) the shape of
the n iterations (or part of it) [3]. In each of the three parts of the figure, two
consecutive horizontal layers represent two consecutive execution cycles within
the ideal machine. To be performed manually, the data dependency analysis
has been restricted to the floating-point operations, i.e., to the algorithmic level
description.

Table 2. Floating-point ILP as in Table 1

Measure Eval AccurateEval1 AccurateEval2

FP ILP 1 ≈ 11 ≈ 1.65

From these graphs, we count the number of floating-point operations and the
number of cycles to run them, i.e., the total number of nodes and the depth
of the (c) graph. The ratio of these values measures the (floating-point) ILP,
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Fig. 1. Data-flow graphs of the main loop in AccurateEval1 (left) and AccurateEval2
(right). (a) one iteration, (b) its dependencies and (c) n iterations (part of it for the
right one)

i.e., the average width of the full loop data-flow graph. These values are re-
ported in Table 2. AccurateEval1 benefits from about 6.66 times more ILP than
AccurateEval2. This certainly justifies that AccurateEval1 runs faster than Ac-
curateEval2 on modern processors that are designed for exploiting this ILP. Of
course no quantitative correlation with the measured cycles ratios can be done:
current processors have limited resources compared to the ideal machine, and
this pen-and-paper analysis only considers floating-point operations. In the next
Section we present the PerPI tool which builds the full data dependency graph,
including all the instructions in the trace, being floating point computations or
integer control. Nevertheless, comparing this floating point ILP (Table 2) and
the floating point count ratios (Table 1) of this manual analysis, we deduce that
the accurate evaluation AccurateEval1 will run as fast as Eval on a processor
that will exploit the whole ILP of this algorithm.

The graph analysis also exhibits the origin of such ILP differences. The two
algorithms use almost the same groups of operations, but AccurateEval2 suf-
fers from two bottle-necks identified as vertical rectangles on the (a) graph.
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A detailed analysis is presented in [3]. In this perspective, this property will be
useful to design other accurate algorithms more inspired by AccurateEval1 than
by AccurateEval2.

3 The PerPI Tool

We now present the PerPI tool that automates this ILP analysis. PerPI currently
includes the following facilities: ILP computation, ILP histogram and data flow
graph displays.

3.1 Computing ILP

The measuring part of PerPI is a Pin tool [7]. Pin [4] is an Intel (R) free pro-
grammable tool. Pin consists of an engine which instruments any code at run
time with user-defined measurement routines. PerPI is a set of routines aiming
at computing the run code ILP. The ILP is computed while the real code is
run. The examining routine gives the control of the examined code for a single
instruction run and recovers control to update its examination statistics. This
back and forth execution is continued until the examined code has been fully
scanned. At each step of the examination, PerPI computes the run cycle of the
examined instruction, increments the number of instructions run so far and pos-
sibly updates the highest run cycle. In such a way, PerPI computes ILP = I/C,
where I is the number of machine instructions run, and C is the number of steps
needed to complete the run. The higher the ILP, the more parallel the piece of
code.

A step is defined as the following sequence of operations: for every runnable
instruction, its source registers are read, its memory read references are loaded,
its operations are computed, its destination registers are written, and eventually
its memory write references are stored.

For example, addl %eax,4(%ebp) reads registers eax and ebp, computes a =
ebp + 4, loads memory referenced by a (assume value v is loaded), computes
r = eax+ v, and stores r to memory referenced by a (the addl instruction could
be the translation of a C source code instruction such as x=x+y, where x is in
the function frame on the stack at address a and y is in register eax).

A step is performed in many cycles in a real machine. However in our tool,
a step is considered as atomic to match the ideal machine. As in the example,
ILP is the average number of machine instructions run per step. This definition
of the ILP removes any micro-architectural details such as latency and through-
put. We assume the piece of code is run on the best possible processor, with
infinite resources and single cycle latency operators (including memory access
and conditional and indirect branch resolution).

An instruction is runnable when all the source registers and all the memory
read references are ready, i.e., have been written by preceding instructions.

The Pin tool computes ILP as follows. For each instruction of the run in turn,
apply the following procedure (i.e., the procedure is applied to the full trace, in
order).
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1. For each source register, get the step at which it is updated
2. For each memory read reference, get the step at which it is updated
3. Let R be the latest of all the source register update steps
4. Let M be the latest of all the memory read reference update steps
5. The instruction is run at step c = max(R,M) + 1
6. For each destination register, mark it as being updated at step c
7. For each memory write reference, mark it as being updated at step c

While we compute the steps c, we adjust the step that has been last computed,
giving the number of cycles of the run C = max(c).

For reproducibility, the system calls involved in the measured piece of code
are not considered.

Table 3 illustrates how this algorithm computes the ILP of the expression
(a+b)+(c+d). The first instruction (eax=a, line 2) has its source ebp available
at cycle 0 (line 1, column 7). It is run and it updates its destination register eax,
making it available for later instructions at cycle 1 (line 2, column 3). Column 8
is the instruction number (I). Column 9 is its run cycle (c) and column 10 is the
greatest run cycle (C). The last instruction (edx+=ebx) reads its sources ebx
and edx at cycle 2 (look at the preceding line) and so is run and updates edx at
cycle 3 (last line, column 6). There are 6 instructions (I = 6, last line column
8) run in 3 cycles (C = 3, last line column 10) on an ideal machine, which gives
an ILP of 6/3 = 2. The ideal machine runs this fragment of code at an average
rate of two instructions per cycle.

Table 3. ILP computation yields ILP = I/C = 2, when evaluating (a+ b) + (c+ d)

Availability as source register
Instruction Semantic eax ebx ecx edx ebp I c C

0 0 0 0 0 0 0 0
mov eax,DWP[ebp-16] eax=a 1 0 0 0 0 1 1 1
mov edx,DWP[ebp-20] edx=b 1 0 0 1 0 2 1 1
add edx,eax edx+=eax 1 0 0 2 0 3 2 2
mov ebx,DWP[ebp-8] ebx=c 1 1 0 2 0 4 1 2
add ebx,DWP[ebp-12] ebx+=d 1 2 0 2 0 5 2 2
add edx,ebx edx+=ebx 1 2 0 3 0 6 3 3

3.2 Analyzing Facilities

The analysis part of the tool consists in histogram and graph displaying func-
tions. These functions allow the user to zoom in and out of the trace. As in the
example, the graph represents the instruction dependencies where an instruction
j depends on an instruction i iff j has a source provided by i (j reads a register
or a memory word x written by i and no instruction between i and j writes to
x). The histogram represents the variation of the ILP along the steps.

The histogram tool is useful to locate the good (high ILP) and bad (low ILP)
portions of the code run. The graph tool is useful to analyze why a code has a
high or low ILP as illustrated in Section 4.
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Table 4. ILP of a+=b; equals 4/3 for the RISC translation and 1 for the CISC one

c RISC CISC
Instruction Semantic Instruct. Semantic

1 load a,ra load memory a into register ra mov b,rb load mem. b into reg. rb
1 load b,rb load memory b into register rb
2 add ra,rb,ra ra:=ra+rb add rb,a add reg. rb to mem. a
3 store ra,a store register ra into memory a

3.3 How to Interpret the Measured ILP?

ILP is defined as the number of machine instructions run divided by the number
of ideal machine cycles needed to run them all on the ideal machine.

This definition shows that ILP is architecture-dependent. The number of in-
structions depends both on the machine language employed and the compiler.

For example, it is easy to exhibit examples where a RISC-like (e.g., PowerPC,
ARM, MIPS, SPARC) translation of a high-level code sequence shows a higher
ILP than its CISC-like (e.g., x86) equivalent. Table 4 illustrates this for the
C code instruction a += b;. The c column depicts the cycle during which the
instruction is run (starting from cycle 1).

In this example, we have ILP(RISC) > ILP(CISC). This comes from the
load/store model inherent to the RISC-like machine languages in which an in-
struction is either a memory access (load or store) or a computation involving
registers only. In a CISC-like machine language, an instruction may involve both
a memory access and a computation. This difference results in a RISC trans-
lation having more instructions than its CISC equivalent, leading to a possibly
higher ILP (if more instructions are run in the same number of cycles).

However, we may notice that #cycles(CISC) < #cycles(RISC), meaning that
the CISC code can be run faster than the RISC one. We may also notice that
#instructions(CISC)<#instructions(RISC), meaning that the CISC code needs
less resources than the RISC one.

Another difference between RISC and CISC leads to the opposite ILP ranking.
Any x86 machine language computing instruction has an accumulating destina-
tion whereas in any RISC machine language, the destination may be distinct
from the sources. As a consequence, a succession of computations may be trans-
lated in less instructions in a RISC language than in a CISC language.

A second example illustrating the preceding remark is given with the trans-
lation of x = |a − b| from the C code sequence x=(a-b>=0)?(a-b):(b-a);.
Corresponding RISC and CISC language translations are presented in Table 5.
In this second example, we have ILP(RISC) < ILP(CISC). We also have #cy-
cles(RISC) < #cycles(CISC) and #instructions(RISC) < #instructions(CISC).

These two examples show that ILP should not be taken as the ultimate code
quality factor. ILP is dependent on the architecture style (RISC vs CISC, 2-
operands vs 3-operands instructions). A high ILP is not synonymous with a fast
run but rather with a run which can fill the processor parallel units.
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Table 5. ILP of x = |a− b| equals 1.25 for RISC and 1.4 for CISC

c RISC CISC
Instruction Semantic Instruct. Semantic

1 load a,ra load mem. a into reg. ra mov a,ra load mem. a into reg. ra
1 load b,rb load mem. b into reg. rb mov b,rb load mem. b into reg. rb
2 sub ra,rb,rx rx:=ra-rb mov rb,rc rc:=rb
2 sub ra,rb rb:=ra-rb
3 csub (rx<0),

0,rx,rx

rx:=(rx<0)?(0-rx):rx sub rc,ra ra:=rc-ra

4 store rx,x store reg. rx into mem. x cmovge ra,rb rb:=(b-a≥0)?ra:rb
5 mov rb,x x:=rb

4 Examples of Results

We present PerPI results for some accurate summation algorithms introduced in
[5,9,8] and the previous polynomial evaluation algorithms. Sum2 and SumXBLAS
are in that sense similar to AccurateEval1 and AccurateEval2. These algorithms
are implemented as C functions and are called in a main part. From a practical
point of view, binary files are submitted to PerPI through a graphical interface,
and then some menu items generate the following outputs.

We first illustrate the ILP measure with Figure 2. Every called subroutine is
analyzed, i.e., PerPI returns the number of machine instructions I, the number
of steps C, and the corresponding ILP. One run is enough since these values are
reproducible.

Sum ::I[511] ::C[105]::ILP[4.86]

Sum2 ::I[1617]::C[214]::ILP[7.55]

SumXBLAS ::I[2097]::C[898]::ILP[2.33]

Fig. 2. ILP measure for the three summation algorithms from [5] (100 summands)

Corresponding histograms are presented in Figure 3 and can be zoomed in as
in Figure 4. This latter exhibits the color significance. In this case the red bars
correspond to floating point operations, while purple ones are data transfers.
These histograms exhibit the regularity of the ILP of the two algorithms and
the better efficiency of Sum2.

The shape of the histograms starts with a high ILP part which comes from the
control flow instructions. They usually are independent of the data flow compu-
tation (they control it) and so can all of them start simultaneously on the ideal
machine. Branch, increment and compare (loop control) instructions are located
only in this initial part of the histogram. This part serves also as a data flow ILP
increasing period as the precomputed control flow instructions launch the data
flow instructions which depend on them. After this, we find a data flow plateau
(more uniformly colored) and an ILP decreasing end part.
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Fig. 3. ILP histograms for Sum2 and SumXBLAS and 100 summands

The last outputs are the data-flow graphs presented in Figure 5. This output
automates the pen-and-paper results of Figure 1; cycles are on the Y-axis. After
zooming into interesting parts of this graph, corresponding program instructions
are displayed in such a way that the programmer can analyze the code.

In Figure 6 we display a zoom into the innermost loop for two other accu-
rate summation algorithms introduced in [9,8], resp. AccSum and FastAccSum.
The count of the floating-point operations suggests that FastAccSum should run
about 30% faster than AccSum. Performance counter timing of some implemen-
tation confirms this speed-up – as in [8] we measure it for instance using gcc -O3
on an Intel Core 2. Nevertheless PerPI yields measures and data flow graphs that
exhibit a higher degree of parallelism in one of the innermost loops of AccSum.
This parallelism was not automatically detected by the previously mentioned
implementation (as the assembly code reveals). A classical way to transform
ILP into data parallelism is vectorization, here using SSE instructions. Such an
improved implementation of AccSum now exhibits an average speed-up of 1.7
compared to FastAccSum1 – while no cache size limitation applies. The AccSum
ILP potential could be caught by vectorization while the lack of ILP in FastAcc-
Sum did not give any advantage compared to a vectorized implementation. This
analysis also tells us that this algorithm may even benefit from larger vector mi-
croarchitectures as the ones present today in GPUs or tomorrow in AVX units
in Intel corei7 2011 releases. It still has some ILP left.

1 A speed-up of 1.3 has also been identified later with the newest version of the icc
compiler without having to modify the source code. This again illustrates how the
measured run times are dependent of the compiler and its versions.
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Fig. 5. Sum2 and SumXBLAS data flow graphs for 100 summands (Y-axis: cycles,
vertical scales reduce the height of the right one)
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Fig. 6. Zoom into the dataflow graph of corresponding instructions in an innermost
loop for two accurate summation algorithms from [9,8] (Y-axis: cycles). AccSum (left)
exhibits more ILP than FastAccSum (right). The added ILP can be exploited thanks
to vector units (SSE). The left zoom is actually only partially displayed (it is to be
continued on each side with the same 4-steps shape), while the right zoom displays the
full (but more limited) width of the loop for FastAccSum.

5 Conclusions and Current Work

The presented performance analysis and its PerPI tool aim to fill the gap be-
tween high level algorithm analysis and machine-dependent profiling tools. We
illustrate on some core numerical algorithms that the first results are interesting
and validate the proposed approach. These results are reproducible and help
the programmer both to justify the measured performances and to improve the
algorithm. As PerPI is based on Pin, it handles x86 machine code only. We
have commented on how the machine language has an impact on the ILP mea-
sure. The presented version of PerPI will be publicly available soon. Work is
in progress to extend the analysis facilities implemented in PerPI, as for exam-
ple identifying longest dependency instruction chains or introducing constraints
within the ideal machine.
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Abstract. InterCell is an open and operational software suite for im-
plementation, code generation and interactive simulation of fine grained
parallel computational models. This article describes the software archi-
tecture, some use cases from physics and cortical networks as well as first
performance measurements.

Keywords: fine grained parallel models, interactivity, rapid
prototyping.

1 Introduction

The goal of the InterCell project is to help non-experts in parallel computing to use
large scale parallel computers when developing models for physical phenomena,
especially when these models have to be evaluated at large scale. To achieve
this goal a software suite has been developed in order to allow rapid design
and implementation of fine grained parallel computing models on coarse grained
parallel architectures, e.g clusters or mainframes. The InterCell development cycle
typically has several stages:

(1) rapid design of a mathematical model,
(2) automatic implementation of a fine grained parallel simulator,
(3) parallel execution of large scale interactive simulations, and
(4) large scale prototyping from the very beginning of model design.

Fine grained models of computation are widely adapted in different applica-
tion domains. For our project this concerns two of these domains, namely the
modeling of physical phenomena that have some notion of ‘locality’ (spatial or
timely) and the modeling and development of neuromimetic networks [7]. But
most likely InterCell could be useful for other domains as well.

Fig. 1 introduces the InterCell software architecture. At top level users describe
their problems with application domain tools, such as a PDE solver or a cortical

K. Jónasson (Ed.): PARA 2010, Part I, LNCS 7133, pp. 282–292, 2012.
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�

#Poisson ’ s equat ion f o r semiconductor d ev i c e s
eq1=(lmbda∗nlap ( phi (x , y ) , r , dr ) ==

ni ∗( exp ( phi (x , y))−exp(−phi (x , y)))−dop (x , y ) ) . s ub s t i t u t e (x=0,y=0)

#Newman con t i d i on s on one border
anp=(lmbda∗nd2 ( phi (x , y ) , y , dy ) ==

ni ∗( exp ( phi (x , y))−exp(−phi (x , y)))−dop (x , y ) ) . s ub s t i t u t e (x=0,y=0)
� �

Fig. 2. SAGE file (extract) specifying the electrostatic potential of a 2D P-N junction
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inspired neural network simulator. These high level tools generate fine grained
parallel simulators, using a C++ library named Booz1. This library ensures the
interactive control of the simulations and in turn uses the parXXL library2. With
that, it efficiently maps the fine grained computations on coarse grained parallel
architectures. The parXXL runtime hides the underlying parallel or distributed
hardware. The final software has two parts: a parallel and interactive server that
handles the actual computations, and a set of easy-to-use control and visualiza-
tion clients.

2 Fine Grained Parallel Computations

Fine grained computations that act on statically structured data (generally ma-
trices) are nowadays well mastered and can be parallelized on coarse grained
architectures (typically multicore clusters) with good results.

The case focused here is the computation on unstructured data for which the
structure may even change occasionally and where the compute function that
has to be executed may differ for each data point. Here an efficient mapping of
computations to processors is not straightforward and good efficiency is generally
difficult to achieve. parXXL provides a framework that facilitates programming
under such constraints and draws good performances out of nowadays platforms.

The parXXL framework, see [5], includes several software layers, as shown in
Fig. 1. Important for this project here are the following.

par::cell: a set of functionalities and a programming model to design and
implement fine grained computations in the paradigm of so-called cellular
computation. This layer allows to dynamically create and connect cells to
establish cellular networks that are executed cyclically. When created, each
cell is associated to four cell behavior functions : a function that is executed
in each compute cycle, a query function that can be used to capture the state
of the cell, a constructor and a destructor. A network of cells can easily be
controlled by a sequential program, using missions, to create cells, execute
one compute cycle, or extract data from the cells.

par::mem: an abstraction layer for handling large chunks of data. These allow
for an efficient handling of large tables that are allocated on the heap or inside
files and that can be resized dynamically. Technically, such a chunk may
refer to memory on the heap (allocated with malloc), in shared segments
(allocated through shm open) or in files.
For the par::cell layer, it allows to group the cell data and output and
access them in order or through hashed indices.

par::cntrl: handles the basic communication functionalities. It abstracts from
the underlying runtime, currently MPI or POSIX threads. In particular im-
portant for this project has been the transfer family of functions that
implements a all to all v communication (used when each parXXL process

1 http://ims.metz.supelec.fr/spip.php?rubrique27
2 http://parxxl.gforge.inria.fr/doxymentation/

http://ims.metz.supelec.fr/spip.php?rubrique27
http://parxxl.gforge.inria.fr/doxymentation/
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needs to exchange different data with all other processes). In combination
with the resizability of the mem::chunk, transfer dispenses to specify com-
munication sizes and to allocate buffers beforehand.
For the par::cell layer, these functions are mainly useful to implement cell
communications, cell network creation and update.

par::bench: is used to instrument the library and to collect various performance
data. In particular it registers the number of communications and their size,
wall-clock and CPU times.

All these features are the foundations of parXXL, and have already been intro-
duced in [5] and [4]. However, we have improved parXXL to support more asyn-
chronous execution of cell networks, to easily collect and save results of large
cell networks, and to increase its portability.

Cells can communicate the data from output to input channels in a syn-
chronous or quasi-asynchronous mode. If in synchronous mode, cell input is
updated at the end of each computation cycle. In quasi-asynchronous mode,
cells are grouped in subsets and the output channels of the different groups are
routed at different communication sub-cycles in the middle of the cell computa-
tions. So different cells reading a same output channel can read different values,
depending on the concrete time of execution of their behavior functions in the
computation cycle. The number of communication sub-cycles can be tuned at
execution time. More sub-cycles lead to more asynchronism but to longer cell
execution cycles.

In order to ease the extraction of results from large cell networks, we have
designed some collector generic classes, and we have defined some new missions
to easily run these data collection from a controlling sequential program. All
these collections of large data are stored in chunks. These have been improved to
map into files and avoid memory size limitations. Some optimized functionalities
to read and write large data files storing N -dimension arrays of output channel
values, have been added to parXXL. For example, they ease the initialization of
large cell networks from data large files containing initial values for the output
channels.

Finally, three parXXL runtimes exist: a first on top of MPI, a second on top
of POSIX threads for multicore shared memory architectures, and a third on
top of shared memory segments. All runtimes are available on 32 and 64 bits
architectures. Moreover, great efforts have been made to improve the portability
of our C++ template classes and functions, and our C++ meta-computing code.
All these improvements make parXXL available and efficient on a larger set of
parallel architectures.

3 Interactive Parallel Computations

One original property of the InterCell software suite is that cellular computation
can be performed interactively. It allows visualization, writing and loading of
snapshots, setting of cell values. This are all performed while the cellular au-
tomaton is briefly suspended. In addition it allows to step through the execution
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Fig. 3. Example of interactive Booz client

of the application. In our context that
means that compute cycle after com-
pute cycle may be observed individ-
ually. These features are provided by
the Booz library that includes a visu-
alization client, see Fig. 3.

This interactivity allows to use
a cluster for situated systems, like
robots, where cellular computation
models the inclusion of an artificial
brain in some real robot perceptivo-
motor loop. It also provides a real-
time view of the running process, that
allows to detect convergence problems of the cellular models. Such an on-line
availability allows programmers of cellular automata to prototype their model
at a large scale, from the very first design stage. This is of primary impor-
tance since properties of large scale discrete dynamical systems are not easily
predictable from small prototypes.

4 Examples of InterCell Usage

Fig. 4 to 7 show examples of InterCell simulations. Fig. 4 is a classic 2D-Jacobi
relaxation, where each cell simply computes the average value of its four neigh-
bors. It has been implemented to test the functionality of our software suite.
The application of Fig. 5 is modeled as a 2D grid of cells, each connected to
its 8 neighbors. Here, each cell represents the elongation of a coil spring that
is coupled to neighboring springs, in order to create 2D waves along the grid
surface. The springs have different elasticity, the “lens” that is visible in light
yellow shows the distribution of the elasticity among the springs.

The next sections, give the details of two simulations are real use cases of the
InterCell suite, and that correspond to applicative research that was achieved in
our laboratories.

Fig. 4. InterCell simulation of a Jacobi
relaxation

Fig. 5. InterCell simulation of a wave prop-
agation
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4.1 High Level Application Codes

As illustrated in Fig. 1, applications are developed using high level program-
ming environments and not the parXXL or Booz layers directly. The semicon-
ductor simulation detailed in Section 4.2 has been implemented using only the
SAGE programming environment. This allows to implement our PDE within a
mathematical paradigm, easily. Our PDE solver module then automatically gen-
erates C++ source files that wrap Booz and parXXL functionalities. A final C++
compilation produces a parallel application running on any parXXL runtime.

The cortical networks detailed in Section 4.3 have been developed in C++,
using our Bijama library (see Fig. 1). Again, the application developer focusses
on the expression of his scientific models. For himself, he does not implement
process creation, internode cluster communication, or process synchronization.
However, the distribution of the neural network on the different cluster nodes is
not yet fully automatic and requires some directives of the application developer.
This issue in currently under investigation.

4.2 Modeling and Simulating a Semiconductor

Fig. 6 is a more complex simulation from semiconductor physics. It shows the
result of a simulation of the electrostatic potential in a 2D P-N junction whose
N-doped side is the square upper part while the P-doped part is the rest. This
computation is done through the sage/escabooz part as described in Fig. 1.

Fig. 6. InterCell simulation of a 2D P-N
junction

The numerical method is based
on a modified version of the Least
Squares Finite Element Method (LS-
FEM), see [6]. From LSFEM, we have
derived a “local only” recursive rule.
It allows for each point in a mesh to be
considered as an independent automa-
ton. This is particularly well suited
for fine grained parallel computing.
The initial problem is a partial dif-
ferential system of equations involving
a Poisson equation and the field ex-
pressions from the doping of the ma-
terial. Added to this system is a set
of boundary conditions: Dirichlet type
where ohmic contacts are present, and Neumann type elsewhere.

The complete modeling and development process is thus as follows: the physi-
cist (non-expert in parallelism) programs his equations in the SAGE[8] language,
see Fig. 2, focusing entirely on physical and mathematical issues. Then, the
escabooz.sage software suite, formally derives an update rule for each point of
a given discretization mesh. Thereby it describes a complete cellular automaton.
The SAGE program applies Newton’s minimization method to a global error
term. This error results from a discretized form of the initial partial differen-
tial problem. Following Newton’s method, an approximate solution is fed to the
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Fig. 7. InterCell implementation and run of a biologically-inspired neural network, for
environment perception and robot control

automaton. Once run in asynchronous mode, the automaton eventually stabi-
lizes around a fixed point. This is the nearest minimum of the error term and
corresponds to the solution to the discretized problem.

4.3 Modeling and Simulating Cortical Networks

Fig. 7 illustrates a second kind of application of InterCell simulations. In this
simulation, we aim at studying the emergent properties of dynamic neural fields,
a model of cortical neural tissue [1], in particular focusing on sensorimotor control
of embedded physical agents (e.g. a robot). The interaction of perceptive, motor
and motivational flows of information within the neural network allows the agent
to interact on a physical world. The bio-inspired nature of this work requires to
simulate large population of neurons that are permanently feeded by a perceptive
input and that produce motor actions. To simulate the dynamic neural fields,
the continuous equation (1) is discretized using the Euler scheme.

τ
du

dt
(x, t) = −u(x, t) + h+

∑
y

w(x, y)f(u(y, t)) + s(x, t) (1)

where u(x, t) is the membrane potential of the neuron at position x and time
t, h is a constant baseline, w(x, y) is the kernel defining the interactions within
the neural field and s(x, t) is the input provided at position x and time t. The
membrane potential u(x, t) of all the cells evolves according to the same equa-



InterCell: A Software Suite for Rapid Prototyping 289

tion and therefore the computations are homogeneous across the cells. Simulat-
ing dynamic neural fields is, in this regard, particularly well suited for parallel
implementations since a simulation usually involves large populations of fine-
grained units. InterCell provides essential tools for scaling up models for realistic
situations.

The simulation shown in Fig. 7 is a visual search task involving 11 2D dynamic
neural fields, each made of 60×60 neurons (see [3] for details). The perceptive in-
put is pre-processed along several dimensions (two colors, two orientations) and
feeds a perceptive neural field. Specific connectivities within and between the
fields lead to different emergent properties at the level of a neural field such as a
competition between potential candidate targets, a working memory of targets
that have been analysed or anticipatory mechanisms when camera movements
are involved. On the bottom left of Fig. 7 is represented a visualization of the
simulation with InterCell tools. The opportunity to visualize the whole network
or a part of it is essential for tuning the parameters of the neural fields. In
addition, InterCell allows to interact with the simulation on-line, constantly per-
turbating the network with a new perceptive input which is critical in the study
of sensorimotor control.

The performance measurements provided in Section 5.1 were evaluated on a
subpart of the model. This subpart involves three neural fields consisting of an
input feeded by five stimuli, a competition neural field and a workingmemory. The
connectivity within this model is rather dense. It contains 10800 neurons with a
total of around 30 million connections. InterCell easily handles large networks with
dense connections while such a scale-up is hardly handled by a single computer.

The modeling and development process is as follows: the computational neu-
roscientist (not expert in parallelism) writes done the differential equations gov-
erning the evolution of the state of the neurons. This definition is written in
C++ with the Bijama library. It involves defining a step method for the units,
the connectivity kernel, the parameters of the equation (e.g. h in eq. 1) as well
as communication methods that allow to embed the model within the physi-
cal environment. Once these methods have been defined, InterCell automatically
handles the parallel computations and communications and the situated agent
can be controlled by a simulation running on a cluster without taking care of
where and how the simulation actually runs.

5 Experimental Performances

5.1 Performances of a Wave Propagation Simulation

In Fig. 8 we show the results of a first performance evaluation of the second
application of Section 4 on the InterCell cluster, see Fig. 5. This cluster consists of
256 2.66 GHz Xeon bi-core nodes that are connected via standard Gbit Ethernet.

The example application consists of a 100 × 300 grid of cells that is split
evenly among the parXXL processes. We experimented several different splitting
strategies to find out that (for this example) the difference in performance is
negligible. Thus, here we only give the values for a split along the long side
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Fig. 8. Execution time per compute cycle of the wave propagation simulation

(300) of the grid. Thus the grid is divided into 1× 2 parts, 1× 3 parts etc, where
each part is treated by a separate parXXL process. In one series of experiments
we placed one parXXL process per compute node and in a second series we placed
two, i.e one parXXL process per compute core.

Each data point in the figures represents an average over several runs of
batches of 1000 compute cycles. We have chosen 1000 compute cycles per run,
because it leads to execution times of our benchmarks from 5.7s to 45.5s in
function of the number of parXXL processes used. These times are all several
orders of magnitude greater than the precision of our time measurement tool. We
did not observe significant variances of our measurements other than changing
the number of process per core or node. So we concluded that the variation that
was introduced by the OS or the interconnexion network was negligible. As a
consequence, we only performed 3 runs per parameter set to do the averaging.

Plotted are the run times broken down to the time for one compute cycle for
the network. Fig. 8(a) shows the time against the number of nodes, Fig. 8(b)
the time against the number of parXXL processes. We see that both series show
an optimal speedup in the range of 2–8 processes, and up to 16 processes the
speedup is still reasonable. From thereon the addition of additional processes /
nodes doesn’t accelerate the computation. So for the given problem, a number
of about 2000 cells per parXXL process is a reasonable minimal requirement.
Fig. 8(a) also demonstrates that this setting is well suited to take advantage of
the two cores in each node.

5.2 Performances of a Biologically-Inspired Neural Network

In Fig. 9 we show the results of a first performance evaluation of the biologically-
inspired neural network application introduced in Section 4.3, see the bottom of
Fig. 7. Again we used the dual-core nodes InterCell cluster to run our benchmarks,
and a similar performance measurement approach.

This neural network system is composed of three cortical maps: a medium one
and two large ones. Execution attempts on 1 or 2 nodes failed, because of lack
of memory. We implemented the medium map on 2 parXXL processes running on
2 CPU cores located on 1 or 2 nodes (dual-core nodes), and we distributed each
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large map on 1 to 8 processes running on other cores and nodes. We realized
two series of benchmarks with 1 and 2 parXXL processes per node. To fulfill the
minimum memory requirements of the application, we had to launch at least 4
parXXL processes running on 4 nodes and 6 parXXL process running on 3 nodes,
respectively.

We achieved a good scalability distributing the large cortical maps, and a
speed up close to 6.8 using 18 = 2 + 2 × 8 nodes in place of 4 = 2 + 2 ×
1 with one process per node, see Fig. 9(a). However, at the opposite of the
wave propagation simulation, execution times are approximately 2 times longer
when running two parXXL processes per dual-core node, see Fig. 9(b). More
investigations are required to identify the contention: this might be due to a
memory contention during computations steps, or a network contention during
communication steps, or both.

6 Conclusion and Perspectives

In this paper we presented InterCell, an open, operational software suite published
under the GPL, see http://ims.metz.supelec.fr. This development tool is cur-
rently used by researchers in optics, photonics, and cortically-inspired neural
networks. The later models are generally large and require interactive execution
on large parallel systems. To these researchers, InterCell offers an easy-to-use tool
to model and implement on a large, realistic scale. It provides automatic code
generation and permits the parallel and interactive control of the simulation.
First performance measurements are satisfying and show a good potential to
address problems on a larger scale.

The next step in the development of InterCell will thus be to tackle applica-
tions of a larger scale: complex models are under investigations and large scale
simulations are being implemented. Therefore, the Sage program that is cur-
rently used to specify the cellular automaton (which is still sequential) has to
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be parallelized to be able to process large problems rapidly. Also, some serial
optimizations remain possible in the parXXL cell management.
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informations et systèmes numériques (MIS)”. Also we want to specially thank
Patrick Mercier for his continuous support on the InterCell cluster.

References

1. Amari, S.: Dynamics of pattern formation in lateral-inhibition type neural fields.
Biol. Cybern. 27(2), 77–87 (1977)

2. Boumba Sitou, D., Ould Saad Hamady, S., Fressengeas, N., Frezza-Buet, H., Vialle,
S., Gustedt, J., Mercier, P.: Cellular based simulation of semiconductors thin films.
In: Innovations in Thin Film Processing and Characterization - ITFPC 2009, France,
Nancy (2009), http://hal.archives-ouvertes.fr/hal-00433062/en/

3. Fix, J., Rougier, N., Alexandre, F.: From physiological principles to computational
models of the cortex. J. Physiol. Paris 101(1-3), 32–39 (2007)

4. Fressengeas, N., Frezza-Buet, H., Gustedt, J., Vialle, S.: An interactive problem
modeller and pde solver, distributed on large scale architectures. In: Third Interna-
tional Workshop on Distributed Frameworks for Multimedia Applications - DFMA
2007, IEEE, France (2007), http://hal.inria.fr/inria-00139660/en/

5. Gustedt, J., Vialle, S., De Vivo, A.: The parXXL Environment: Scalable Fine Grained
Development for Large Coarse Grained Platforms. In: K̊agström, B., Elmroth, E.,
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Abstract. Accurate prediction of parallel applications’ performance is
becoming increasingly complex. We seek to characterize the behavior of
message-passing applications by extracting a signature to predict the per-
formance in different target systems. We have developed a tool we called
Parallel Application Signature for Performance Prediction (PAS2P) that
strives to describe an application based on its behavior. Based on the ap-
plication’s message-passing activity, we have been able to identify and
extract representative phases, with which we created a signature. We
have experimented using scientific applications and we predicted the ex-
ecution times on multicore architectures with an average accuracy of over
97%.

Keywords: Performance Prediction, Parallel Application Signature.

1 Introduction

Scientific programmers using any of the existing parallel programming models
often must rely on performance analysis tools to help them optimize the perfor-
mance of their programs. We propose a tool (PAS2P) that makes an analysis
of the trace obtained by the execution of an application, with which it is ex-
tracted a signature (machine-independent application model) represented by a
set of phases and weights, with their respective checkpoints, that predicts the
execution time of the application on other target machine by running the sig-
nature and the processing times obtained. That helps to identify performance
issues with minimal effort by providing information on the phases behavior such
as communication, computational or waiting times.

To know the performance of a parallel application, our tool can helps to com-
pared by means of different algorithms that solves the same problem, quickly and
precisely, because the signature execution time is much less than the execution
time of application, in contrast with the whole application the time required to
run it thoroughly is an onerous requirement.
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We propose identifying these repetitive portions of an application creating
a tool, which we dubbed Parallel Application Signature for Performance Pre-
diction (PAS2P), to characterize message-passing parallel applications. PAS2P
instruments and executes applications in a parallel machine, and produces a
trace log. The data collected is used to characterize computation and commu-
nication behavior. To obtain the machine-independent application model, the
trace is assigned a logical global clock according to causality relations between
communication events, through an algorithm inspired by Lamport [8]. Then, we
identify and extract the most relevant event sequences (phases) and assign them
a weight from the number of times they occur. Finally, we create a signature de-
fined by a set of phases selected depending on the value obtained by multiplying
the weight of each phase by its execution time. This is the signature through
whose execution in different target systems allows us to measure the execution
time of each phase, and hence to estimate the entire application’s run time in
each of those systems. We do this by extrapolating of each phase’s execution
time using the weights we have obtained.

In order to evaluate the quality of the proposed tool, we have conducted a
series experiments extracting signatures from applications such as CG and BT
from NPB [1], Sweep3D [6], Parallel Ocean Model (POP) [12] and SMG2000 [2].

2 Related Work

There are other works which are more focused on the creation of an application
signature. Snavely et al [10], extract the signature of an application using tools
that allow them to capture its profile with emphasis on memory access patterns.
To generate a machine signature, they use a probe developed for determining
the “feeds and speeds” at single-processor or SMP nodes. Finally, they run these
results on a network simulator to predict the performance of the parallel applica-
tion. The main difference with our approach lies in the fact that, as our signature
is the “core” of the parallel application itself, when we execute it on different par-
allel computers, real memory access patterns and the real computation resources
requirements are used to evaluate the performance.

John Gustafson et al [4] propose a method that involve the creation of two
profiles, a hardware signature and an application signature. In our proposed
method, we do not need hardware characteristics as we create one single machine-
independent signature because we execute in real systems. When we execute
the signature on target machines, real memory access patterns and the real
computation resources requirements are used to evaluate the performance.

S. Sodhi et al [11], claim that it is possible to obtain what they called a
“performance skeleton” of an application by means of execution traces, and
then generate code. We use the trace to create a signature using checkpoints.
In short, we’re using relevant application segments to predict the application’s
performance, instead of creating mock-ups.

Dimemas tool [3] is a performance prediction simulator for message-passing
applications. In our approach we create a signature that represents the
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application, with the advantage that we can execute this signature on real sys-
tems quickly without simulation.

3 Methodology

Applications typically possess highly repetitive behavior, and parallel applica-
tions are no exception [9]. To characterize the computational and comunications-
related behaviour of parallel applications, we propose identifying these repetitive
portions of an application. We use this information to create a signature that,
when executed, will allow the prediction of the full execution time in the partic-
ular machine where the signature was run.

As shown in Figure 1, there is a sequence of stages that are necessary to
obtain the relevant portions (phases) and their weights. With this information,
we can proceed to create a completely machine-independent signature for each
application, that we can then execute in other systems in a shorter amount of
time, since the execution time of the signature will always be a small fraction
of the whole application’s runtime. Finally, in the last stage, we predict the full
execution time of the parallel application by adding the execution time of all the
phases multiplied by their weights.

PAS2P Methodology
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Fig. 1. PAS2P Methodology

As shown in Figure 1, there is a sequence of stages that are necessary to
obtain the relevant portions (phases) and their weights. With this information,
we can proceed to create a completely machine-independent signature for each
application. Finally, to predict the full execution time of the application by
adding the execution time of all the phases multiplied by their weights.

3.1 Data Collection

To instrument the applications, we need to collect communication and com-
putation time. We instrument the communication calls to produce a log trace,
adding specific code to extract the computational time between each pair of MPI
primitives.
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Starting from the concept of “Basic Block” (BB) [9] we can define a similar
concept for parallel applications, and other similar helpful ones:

Event : The action of sending or receiving a message.

P1

P2

P3P3

P4

Time
Extended Basic Blocks
(Computational time)

Fig. 2. Extended Basic Blocks

Extended Basic Block (EBB): We define it as a segment of a process whose
beginning and end are defined by occurrences of messages, either sent or re-
ceived. We may also say that it is a “computational time” segment bounded by
communication actions, illustrated in Fig. 2.

3.2 Parallel Application Model

Synchronization between computing nodes, which is absent in sequential appli-
cations, becomes necessary.

In a previous work [13], we showed a logical clock based on the order of
precedence of events across processes as defined by Lamport [8].

When we increase the number of processes, we found that the quality of
prediction falls, due to processes becoming more independent and because there
is a non-deterministic ordering of receives.

To solve the non-deterministic events (receives) problem, we have decided to
introduce a new algorithm [14] inspired by Lamport’s. Through this algorithm,
we define a new logical ordering, in which, if one process sends a message in
a logical time (LT), its receive will be modeled to arrive at LT + 1 and never
afterwards. We show how we assign a Logical Time to events in Figure 3.

Once all events have been assigned an LT, we create a logical trace where
Logical Times will be given by LT for the Send events (LTSend) and LT for
the reception events (LTRecv), and so on as shown in Figure 3. We know that
the message reception ordering may be random in the execution due to variable
delays in the interconnection network generated by message collision; therefore
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Fig. 3. Physical trace to Logical trace

we perform a permutation only inside the LTRecvs of the logical trace so the
reception events will be ordered ascendant. Finally, once we have located each
event, we divide the logical trace into more logical times, that is, there can only
be one event for each process in a Logical Time.

Now, we are able to introduce two new concepts:
Tick : Logical time unit.
Parallel Basic Block (PBB): The set of Extended Basic Blocks delimited by

two ticks. The first tick defined as Entry Point has at least one event, and the
second tick defined as Exit Point also has at least one event.

3.3 Pattern Identification

To find the repetitive behavior of an application, we need to compare the be-
havior of each PBB and see if there are any similarities. We search for similarity
between two PBBs based on the three main components of its structure as shown
in Figure 4:

1. Communication Type: each of the assigned values of the entry points and
each of the assigned values of the exit points should be the same; the tool
compares the communication type. A positive value (source process) when
an event is a Send and a negative value (destination process) when it’s a
Receive. When there are no events in a PBB, the value is zero.
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2. Communication Volume: each of the values of the entry and exit points must
be similar, and can accept a difference of 5%.

3. Computation Time: each computational time allows for a difference of 5%.

Now we seek the PBBs with the similar behavior to “PBB1”, we find that
“PBB12” is similar to the behavior of “PBB1”. So we rename it “PBB1” as it is
essentially the same PBB. We apply this method to each of the PBBs, in which
case the PBB list, obtained, including eleven different PBBs is shown in Figure
5. To identify and create the phases, a Phase is defined as sub-chains of grouped
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PBBs that repeat along the execution. If we look at this simple example, we can
identify two phases, see Figure 5.

Once we have identified phases, we proceed to create its weight vector and
define the relevant phases.

Weight Vector : Will be given by the frequency in which each phase repeats.
Relevant Phase: A phase is relevant when the weight vector multiplied by the

execution time is representative of the total runtime of the application.

3.4 Parallel Application Signature and Execution Prediction

Construction of the Signature. In order to build the signature, we have to
built it in the same machine (machine base), to do this, we re-run the application
to make the coordinated checkpoints [7] before each relevant phase happens. The
checkpoint operation is taken before the starting point of the specific phase, in
order to guarantee a correct warm-up time for the machine’s components (cache,
TLBs, etc) [5].

Signature Execution and Performance Prediction. Now, we can run the
signature on target machines. This is done restarting from the saved state and
start measuring from the point a phase begins until it ends. We repeat this
method and proceed to execute all constituent phases. Finally, we obtained a
unique signature for each program to run in different clusters. Once with the
execution time of each phase and the weights of each phase, to predict the
execution time of the whole application, we multiply the execution time of each
phase by its weight.

4 Results

In this section, we show how we apply the PAS2P tool for the extraction of
phases from scientific applications. We show the execution of the signature of
each application on two clusters varying the number of cores. We predicted their
execution time and demonstrated the prediction quality of each signature.

To evaluate the quality of the prediction and validate the proposed methodol-
ogy, we performed the experimental evaluation in two target machines, labeled

Table 1. Cluster characteristics.

Cluster Characteristics

Cluster A Dual-Core Intel(R) Xeon(R) CPU 5150 2.66GHz 4MB L2,
8 GB Fully Buffered DIMM 667 MHz,
Network Gigabit Ethernet, 128 cores.

Cluster B 2 x Quad-Core Intel(R) Xeon(R) CPU E5430, 2.66GHz
2x6MB cache L2, 16 GB RAM Fully Buffered DIMMs
667MHz, Network Gigabit Ethernet, 64 cores.
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Fig. 6. Experimental methodology

A and B. We present the results obtained for the following Parallel Program:
CG, BT and SP from the NPB, Sweep3D, POP (Parallel Ocean Model) and
SMG2000 and the characteristics of these machines are shown in Table 1. We
show the Predicted Execution Time of each application and demonstrated the
prediction quality of each signature.

The methodology of the results consists in executing each application, as
shown in Figure 6, on Cluster A to extract its signature and afterwards execute it
over Cluster A and B to obtain the Signature Execution Time (SET). Finally we
execute the application over the two cluster to compare the Predicted Execution
Time (PET) with the Application Execution Time (AET) to show the Prediction
Execution Time Error (PETE).

To obtain the following results, we applied the proposed methodology in the
above mentioned applications to extract phases and obtain the applications’
signatures. Once we have run the signatures from all applications, we know
the execution time of each phase, and therefore the Signature Execution Time
(SET) which is the sum of all constituent phases. Now, to obtain the Predicted
Execution Time (PET), we multiply the execution time of each phase by the
weight vector given by the PAS2P, then sum up all times obtained.

The results from cluster A and B are shown in Tables 2. When we compare
columns 3 (SET) and 7 (AET), we observe we have notably shortened the SET
compared with the AET. In column 4 we put the percentage value from the
division of SET by AET to demonstrate the reduction versus the Application
Execution Time. In column 5, we can see the Predicted Execution Time (PET).
Finally, in column 7, Prediction Execution Time Error is presented.

We have executed on two clusters to verify that the signature behavior is
machine-independent. That is, we have the same number of phases and weights
and the only part that varies is the execution time of the signature, which allows
us to know (to predict) the application performance on each cluster we use.

With these results, we can show that the Signature Execution Time is lower
in 98.37% than the Application Execution Time and the quality of prediction
with an average accuracy of over 97.55%.
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Table 2. Predictions on cluster A.

Predictions on cluster A

Program Processes / SET SET vs. PET PETE AET
Cores (Sec) AET(%) (Sec) (%) (Sec)

CG 64/32 5.39 0.22 2413.01 0.01 2412.70
CG 64/64 3.18 0.34 1165.24 2.85 1199.39
BT 64/32 6.24 0.58 1055.04 1.02 1066.00
BT 64/64 5.02 0.83 597.96 1.08 604.47
SP 64/32 7.76 0.76 1004.12 0.45 1008.74
SP 64/64 3.50 0.78 441.429 1.38 447.61
SMG2000 64/32 11.58 1.94 581.29 2.40 595.55
SMG2000 64/64 6.15 3.23 187.20 1.54 190.12
Sweep3D 32/16 2.44 0.10 2235.15 1.34 2265.34
Sweep3D 32/32 1.94 0.15 1257.03 0.27 1260.32
POP 64/32 19.92 1.48 1324.32 1.44 1343.55
POP 64/64 15.48 1.95 758.31 4.33 792.56

Predictions on cluster B

CG 64/32 8.42 0.29 2793.42 1.90 2847.42
CG 64/64 4.87 0.32 1504.66 0.48 1511.91
BT 64/32 13.47 0.80 1652.65 0.9 1667.64
BT 64/64 10.19 0.77 1302.76 0.55 1309.91
SP 64/32 2.04 0.24 808.76 1.28 819.17
SP 64/64 2.08 0.51 388.367 3.05 400.55
SMG2000 64/32 16.75 2.63 633.23 0.38 635.61
SMG2000 64/64 8.37 10.15 162.87 2.32 166.74
Sweep3D 32/16 4.32 0.17 2494.36 0.06 2492.74
Sweep3D 32/32 3.01 0.22 1328.04 0.40 1322.62
POP 64/32 22.79 1.41 1608.85 0.17 1611.59
POP 64/64 18.36 1.79 1016.01 0.61 1022.28

SET: Signature Execution Time
SET vs. AET: 100(SET/AET)
PET: Predicted Execution Time
AET: Application Execution Time
PETE: Prediction Execution Time Error

5 Conclusions and Future Work

PAS2P methodology allows us to generate a model of a parallel application,
and subsequently, extract its most significant behavior (phases) automatically in
order to create a signature, that by its execution, lets us predict the application’s
performance on different parallel computers. We have tested our methodology
with a set of scientific applications varying numbers of cores obtaining a 97%
prediction quality.



302 A. Wong et al.

We propose the PAS2P tool to help programmers to find scientific computa-
tion which are performance issues when designing the scientific algorithms. This
tool allows us to generate a model of the application, and subsequently, extract
its most significant phases automatically in order to create a signature, that by
its execution, lets us predict the application’s performance on target machines.

We are working in the analysis the impact of the workload. We know workload
is an important characteristic of the programs; it may be that different workloads
alter the behavior of the phases or cause them to increase the weights.
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Abstract. The applicability of parallel discrete event simulation to de-
sign and evaluation of ad hoc networks is discussed. In this paper we
describe the design, functionality, implementation and performance of
our software system named MobASim. It is a Java-based integrated
framework for wireless sensor and mobile ad hoc networks simulation
performed on parallel computers and computer clusters that utilizes the
paradigm of federating simulators and asynchronous distributed simu-
lation technology. The computational results presented in the final part
of the paper show the efficiency of parallel simulation performed upon
MobASim and the application of our tool to design self-organizing com-
munication network.

Keywords: Ad hoc network, MANET, WSN, discrete event system
(DEVS), parallel discrete event simulation (PDES).

1 Introduction

The ad hoc networking is a relatively new area of research that has become
extremely popular over the last decade and is rapidly increasing its advance into
different areas of technology. Two types of such networks can be distinguished:
Wireless Sensor Networks (WSNs) and Mobile Ad hoc Networks (MANETs).
Typical WSN consists of a large number of homogenous, stationary nodes, i.e.,
densely deployed sensor devices. Nodes networked through wireless must gather
local data and communicate with other nodes. MANET is formed through the
cooperation of an arbitrary set of independent nodes, i.e., mobile, heterogeneous
wireless devices. The nodes are free to move randomly and organize themselves.
The network’s wireless topology may change rapidly and unpredictably. There
is no prearrangement assumption about specific role each node should perform.
It makes its decision independently, based on the situation in the domain and
its knowledge about the network.
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Ad hoc architecture has many benefits, however its flexibility come at a price.
Currently research effort is directed toward the specifics and constraints in ad
hoc networking, such as: limited transmission range, limited link bandwidth and
quality of transmission, constrained resources, mobility and multihop nature of
the network [1,3,17]. Design, development and evaluation of such networks are
non-trivial task. The complexity and scale of modern networks limit the applica-
bility of purely analytic approaches. In this paper, we discuss some guidelines re-
lated to wireless ad hoc networks modeling and simulation. We model WSN and
MANET simulators using discrete event systems methodology (DEVS) [2,18],
and address the challenges to design high-performance simulation of these sys-
tems. Next, we describe the integrated software framework MobASim for simu-
lation of ad hoc networks.

2 Simulation of Ad Hoc Networks

2.1 Wireless Network Simulation Tools

Recently a number of software systems for cable and wireless networks sim-
ulation have been developed to aid programmers. A survey of open source
and commercial platforms for simulation of wireless networks is presented in
[4,7,8,9,15]. Some of them are dedicated systems that are focused on a specific
attribute of the behavior of a given network simulation, the others are general
purpose tools that can be used for development and testing various types of
networks. The high-level functionality, rich feature sets, comprehensive docu-
mentation and support options are available in commercial simulators: OPNET
Modeler (www.opnet.com), QualNet (www.scalable-networks.com), which is the
commercial version of GloMoSim (pcl.cs.ucla.edu/projects/glomosim). The com-
mercial simulators have many advantages and offer scalable solutions but they
are costly and typically do not offer the customization options of an open source
simulator. Hence, they may not be the best choice for new technology design.
Ns-2 (www.isi.edu/nsnam/ns), OMNeT++ (www.omnetpp.org) and GloMoSim
are very popular open source simulators primarily used in network planing, re-
search and education. However, all these general purpose network simulators
are often not very suitable for large scale WSNs and MANETs. They do not
address with the expected accuracy the complex interactions among nodes and
environment. The other solutions are tools dedicated to simulate WSNs and
MANETs. The TinyOS operating system is a common framework for sensor ap-
plications. TOSSIM (docs.tinyos.net/index.php/TOSSIM) is a discrete-events
simulator for TinyOS wireless sensor networks. By exploiting the sensor net-
work domain and TinyOS’s design, TOSSIM can capture network behavior at
a high fidelity while scaling to thousands of nodes. The same code can be used
for simulation and real test-bed operating in TinyOS. A powerful product – NC-
TUns (nsl10.csie.nctu.edu.tw) for ad hoc network simulation and emulation was
developed by SimReal Inc. The other system – SWANS is a scalable platform for
large scale WSN simulation. SWANS is built atop the JiST (jist.ece.cornell.edu)
– a high-performance discrete event simulation engine that runs over a standard



A Software Tool for Federated Simulation of WSN and MANET Networks 305

Java virtual machine. It should be pointed that most of presented open source
simulators are now professional tools that compete with commercial software.

2.2 Parallel Simulation of WSN and MANET

The main difficulty in ad hoc networks simulation is the enormous computation
power, i.e., speed and memory requirements needed to execute all events involved
by internodes communication, and time varying topology. Another problem is
scalability, i.e. how a given simulator scales for large topologies, high speed
channels, and nodes mobility. As a consequence, the developments of methods
to speed up calculations has recently received a great deal of interest. Parallel
discrete event simulation (PDES) is a promising technique when performing the
analysis of complex network systems [3,12]. Parallel execution of simulation can
improve the scalability of a given simulator both in term of network size and
execution speed, enabling large scale networks to be simulated in real time.

When DEVS simulation runs, it pulls events of the event queue (sorted by
time) and executes them. In sequential discrete event simulation all compu-
tational processes simulating the physical ones access the same event list. In
parallel discrete event simulation the shared data objects, i.e. the global clock
and global event list are discarded – each computational process maintains its
own local clock and local event list. Hence, all processes require explicit schemes
for synchronization. Since events are characterized by their time stamps, the
obvious mechanism for achieving PDES is to simultaneously execute the set of
events with the same time stamp (i.e., occurring at the same time) on multiple
processors or machines. Such mechanism is labeled synchronous parallel simu-
lation. This approach is extensively restrictive. In asynchronous approach, the
times of events do not dictate the order of execution of the events. To obtain
the correct simulation results the calculations have to be performed with re-
spect to the schemes described in [10,11,18]. Asynchronous simulation is much
more effective due to its potentially high performance on a parallel platform
[14]. In the last decades numerous integrated software platforms for parallel and
distributed processing have been developed. OPNET, OMNeT++, GloMoSim,
QualNet, NTUns provide tools for parallel and distributed calculations.

3 The MobASim System

There is a variety of simulators that ad hoc networks researchers and engineers
are using to cover their needs. The common ones were described in the section
2. However, there were some reasons we decided to build our own simulator.
We have found that most existing tools focus on the various IEEE standards
for wireless communication with the lack of the reliable radio channel model-
ing. NS-2 and OMNeT++ provide only simplified wireless transmission models,
TOSSIM does not model radio propagation. The more advanced signal propaga-
tion channel models are supported by NCTUns. Moreover, TOSSIM, GloMoSim,
OMNeT++, OPNET do not support gathering power measurements, and do not



306 E. Niewiadomska-Szynkiewicz and A. Sikora

consider signal strength. Many commonly used simulators do not model disloca-
tions of nodes (TOSSIM) or provide simple mobility models (ns-2, OPNET, Glo-
MoSim, QualNet, Castalia project in OMNeT++ : castalia.npc.nicta.com.au).
Usually they have only implemented a mobility pattern model – the user just
describes the destination point of a line segment (Castalia), and simple random
mobility models (NCTUns). The other reason for developing a new simulator
was the complicated architecture of available tools and limitations in results vi-
sualization and user-system interaction. In case of OPNET, OMNeT++ or ns-2
systems a user must read a large number of manuals to learn how to use the
tool. The source coding is usually specialized for a given simulator and it is not
easy to implement a given application and extend the system with the mod-
ules developed by the user (TOSSIM, OPNET, ns-2). Hence, we have decided
to build an open expandable, flexible and scalable simulator that can be used
for real-time simulation of self-organizing MANET and WSN. The focus was on
reliable signal propagation, nodes’ motion modeling and advanced programming
interface. We plan to use our tool to ad hoc networks design and on-line decision
support in operational management in real life applications (i.e., self-organizing
network for monitoring, design and support in rescue actions, etc.).

3.1 MobASim Overview

MobASim is a general purpose software system for ad hoc networks simulation.
The DEVS methodology is applied to model ad hoc network operation, i.e., the
process being modeled is understood to advance through events. In MobASim
simulation events can represent hardware interrupts (such as switch off the node)
or high-level system events (such as packet reception, dislocation of nodes, etc.).
In our application a model of each node of ad hoc network is composed of three
types of components responsible for different functionalities: Device – a static
or mobile radio device; Communication Manager – an object that models the
wireless communication with other nodes in the network; Mobility Manager –
an object responsible for tracking the node on the map and collision avoidance.
Hence, the logical process (LP) simulating each node of given WSN or MANET
simulator developed upon MobASim consists of three sets of classes (see Fig. 1):
D – implementing tasks to be performed by static or mobile nodes; CM – imple-
menting internode wireless communication and updating of the network commu-
nication topology; MM – implementing mobile nodes movement and providing
the access to the information about environment and other nodes’ positions in
the network.

Three techniques for estimation of the signal degradation with a distance
(path loss) are extensively used in practice [6]: long-distance, log-normal shad-
owing, and fading model. The MobASim simulator provides two models: long-
distance and log-normal shadowing, hence each process CM implements one of
these two models. The long-distance models combine analytical and empirical
methods. They were developed to predict variations of the signal intensity over
large distances. The log-normal shadowing models consider the fact that the
transmission area of a transmitter may be different at two different locations,
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Fig. 1. Architecture of logical processes – WSN and MANET nodes

which leads to measure signals that are different than the average value cal-
culated by the long-distance model. In these models path loss is modeled as a
random variable with log-normal distribution.

The MobASim system provides the library of classes implementing the IEEE
802.15.4 standard for wireless communication. We have implemented physical
and MAC (Medium Access Control) layer protocols according to the specifica-
tion drawn up by the IEEE Computer Society, network and application layers
protocols according to the specification drawn up by ZigBee Standard Organi-
zation. The user can select one of three types of MAC protocols.

Modeling of node mobility plays the crucial role in MobASim. The real-life
movement patterns are very difficult to obtain, realistic models are usually very
complicated. Many mobility models have been introduced. The detailed survey
of these models is presented in [13]. In current version of MobASim each process
from the group MM implements one of the following models for mobility pattern
generation:

– The user describes the destination point of a line segment.
– The random waypoint model (two variants), i.e., random mobility model

with randomly generated destination point and velocity.
– The map-based model that is used for applications in which nodes are con-

strained to move within defined paths.
– Our novel model named PFM (Potential Function Model) that combines the

idea of potential function and particle-based mobility modeling. It calculates
a collision-free movement at a group of mobile devices, and is dedicated to
self-organizing network modeling.

In all mobility provided in MobASim the obstacles are included. The obsta-
cles are generated by the user or are loaded from a real map. It is assumed
that wireless signal is obstructed by the obstacles, too. All models utilize DEVS
methodology. The state of each mobile node is described by four variables: lo-
cation within the deployment region, orientation, velocity, and energy stored in
the node. It is possible to combine various mobility models in one simulator, i.e.,
the model of mobility can switch w.r.t. the current state of the node.
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3.2 Components of the System

The system consists of two sets of components: MobASim Simulator and Mod-
eler, Fig. 2. The MobASim Modeler provides tools that allow to create the model
of the system to be simulated. The model can be generated using the MobASim
graphical editor or can be read from an XML file. The bidirectional interface to
XML file that uses ASimML language – XML Schema specification for building
XML file with description of parameterized system model is provided. A user
can perform various operations during the experiment, i.e., configure the net-
work system and manage the simulation. Hence, the MobASim Modeler consists
of the following set of components implementing models and standards presented
in section 3.1: communication models library – a collection of classes implement-
ing models of wireless transmission, wireless communication standards library –
a collection of classes implementing wireless communication standards, mobility
models library – a collection of classes implementing mobility models, GUI – the
graphical interface responsible for user-system interaction, MobASim database
that stores all geographical information – a map of a deployment area, and all
network nodes’ positions.

Fig. 2. Components of the MobASim system

The second component – MobASim Simulator is responsible for the DEVS
simulator implementation and performance. It provides: basic library – a collec-
tion of classes implementing basic elements of each DEVS simulator, such as:
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logical processes, events, event lists, messages passing, etc., runtime infrastruc-
ture – the library of classes that provide communication between the processes
and machines, synchronization protocols library – a collection of classes imple-
menting synchronization protocols reported in the next section.

3.3 Parallel Implementation of MobASim

MobASim is an integrated framework for parallel simulation. The model of an
application to be simulated is decomposed into a number of entities with respect
to their functionality and data requirements. A fine grained decomposition (a set
of nodes) or coarse grained (a set of networks) are available. All network nodes
are implemented as logical processes (LPs) utilizing classes from MobASim li-
braries. LPs communicate with each other through message-passing. Each simu-
lator created upon MobASim has a hierarchical structure as depicted in FiLogical
Process (LP) – simulating the network nodes operation, Domain – a set of LPs,
Simulator – a collection of domains. Computational processes that belong to
the same level of hierarchy are synchronized. To provide high performance and

Fig. 3. Hierarchical structure of MobASim application

scalability we utilized the paradigm of federating disparate simulators [5] and
asynchronous parallel simulation technology [18]. Such implementation distin-
guishes our software from the commonly used tools. Federated simulation is a
way to interconnect separate simulators to serve as a simulation-of-simulations.
In our application a model of given application is designed as a federation of
disparate simulators of network nodes (Fig. 4) or networks (Fig. 5). By link-
ing each of these simulators together through runtime infrastructure (RTI) that
enables information exchange between them, they form a federated simulation
that can be handled by a set of processors or computers. MobASim enables to
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Fig. 4. A federation of simulators of wireless devices: fine grained parallelization

Fig. 5. A federation of simulators of networks: coarse grained parallelization

do synchronous and asynchronous simulation. Four algorithms for asynchronous
simulator implementation are supplied: conservative protocol with null messages
(CMB) [10], window conservative protocol (WCP) [11], optimistic Time Warp
(TW) [11] and hybrid Moving Time Window (MTW) [16]. Parallel and dis-
tributed versions of MobASim were implemented; one simulator can utilize both
of them.

The MobASim system is completely based on Java. It is built atop the ASim-
Java library described in [14], and developed by the authors. The Java messaging
service (JMS) API provided by Sun Microsystems is used for interprocess com-
munication.
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3.4 Simulation Under MobASim

Three main phases can be distinguished during a simulation experiment: prepara-
tory phase, configuration phase and experimental phase. At the first one the
model of MANET or WSN to be simulated is investigated, developed and im-
plemented. Within the configuration phase the user is asked to enter the parame-
ters concerned with the whole simulated network (number of nodes, transmission
model, etc.), the parameters concerned with each node (radio range, minimal and
maximal speed, mobility model, routing protocol, energy reserve, etc.), and set
up the simulation experiment (simulation time, number of processes, number of
machines, etc.). The setting windows (MobASim GUI) are used to facilitate the
configuration phase. The network can be constructed graphically. Finally, the
application is saved in XML configuration files and can be used in many future
simulations. After completing all initial settings and implementing all expected
modules, the experimental phase begins. All processes are executed. The results
of calculations are displayed (wireless transmission, time varying topology, etc.).
The user employs the monitoring and analysis of the current situation (see Fig.
6). All results may be recorded into the disc file during the experiment.

4 Simulation Results

MobASim software was used to perform simulation of several network systems. It
allows for setting up simulation experiments on parallel machines or computer
clusters, and the analysis for different types of ad hoc networks. It does not
involve any restrictions regarding the size of the simulation. The calculation
speedup depends on the application and its decomposition. In this paper we
present the results of two case studies. The first is concerned with the design
of MANET to support the rescue action, the second presents the efficiency of
parallel simulation of WSN upon MobASim software.

Example 1. Consider a situation where the fixed network infrastructure in a
disaster area is damaged due to human activity. A rescue mission requires that
new communication channels be quickly established in order to coordinate the

Fig. 6. MobASim: Design of communication network for rescue mission
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actions. MANET can be successfully used here. It will enable communications
with an adequate quality and will adapt to changing conditions and require-
ments in the danger zone. Computer simulation performed upon MobASim can
be used to design an ad hoc network that will provide the continuous communi-
cation with all rescuers. During the tests the bandwidth of all links and current
traffic are calculated, and the critical paths are pointed. The animation of time
varying network topology – all nodes moving from the initial position to the
destination, avoiding the obstacles – are displayed. The user can keep track how
the communication network created by a set of mobile nodes adopts to the new
positions of rescue teams. The current network connectivity is marked by lines
connecting the nodes. Figure 6 shows the dynamically changing network topol-
ogy during the entire network operational lifetime. The snapshots of initial and
final topologies calculated for 1 and 65 time stamps are presented.

Example 2. The goal of experiments was to simulate 10 hours of WSN oper-
ation. The network was created by 60 sensor nodes. In case of battery equipped
typical WSN, the primary design goal is to optimize the amount of energy used
for transmission. The popular power save protocols attempt to save nodes en-
ergy by putting its radio transceiver in the sleep state. In our experiment it was
assumed that each node was 2 hours in active mode and 8 hours in sleep mode.
The objective of the test was to compare the efficiency of parallel simulation
with the sequential realization. Two variants of implementation – S (sequential)
and P (parallel) performed on the following hardware platforms were compared:
S – AMD Sempron 1,67 GHz; P – AMD Sempron 1,67 GHz, AMD Athlon 1,2
GHz, Intel Core2 Duo 2,2 GHz. The execution times of each experiment are
given in Table 1. We can observe that parallel simulation developed based on
MobASim software can seriously speed up simulations of WSN operation w.r.t.
sequential implementation. The calculation speedup depends on the size of the
network model and assumed degree of parallelism.

Table 1. Results of WSN simulation – two implementations

S (1 processor) P(4 processors)

simulation time [s] 155 44

speedup w.r.t. sequential simulation - 3.52

5 Conclusions

We described the MobASim software platform for ad hoc networks modeling and
simulation. MobASim can support researches and engineers in network design,
research, and network education. The system offers many unique advantages that
can not be easily achieved by commercial and common open source simulators.
MobASim is easy to use, and is especially useful in large scale applications in
which the speed of simulation is of essence, such as real time mobility ad hoc
network simulation. The federated approach to parallel simulation of networks,
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provided functionality, easy usage and its extensibility to include other open
source modules or modules developed by a user, make our tool different from
the popular software systems for simulation. We plan to release our system for
research and education.
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Abstract. Since modern high-performance computer systems consist
of many hardware components and software layers, they present severe
challenges for application developers who are primarily domain scientists
and not experts with continually evolving hardware and system software.
Effective tools for performance analysis are therefore decisive when de-
veloping performant scalable parallel applications. Such tools must be
convenient to employ in the application development process and anal-
ysis must be both clear to interpret and yet comprehensive in the level
of detail provided. We describe how the Scalasca toolset was applied in
engineering the GemsFDTD computational electromagnetics solver, and
the dramatic performance and scalability gains thereby achieved.

Keywords: performance engineering, parallel execution tuning, scala-
bility, MPI, computational electromagnetics.

1 Introduction

Parallel applications develop from initial barely-functional implementations, via
a series of debugging and performance improvement stages, into efficient and
scalable versions via disciplined performance engineering practices. This pro-
cess remains on-going throughout the productive lifetime of the application, as
larger and more complex computational problem are addressed and upgraded
hardware and system software become available. Although codes which become
accepted benchmarks are more rigorously investigated than typical applications,
they are not immune from the need for continual performance evaluation and
re-engineering.

This paper considers the GemsFDTD code from the SPEC MPI2007 bench-
mark suite [6] which was found to perform particularly poorly at larger scales on
distributed-memory computer systems. Initial analysis with the Scalasca toolset
and then other tools pinpointed aspects in the application’s initialization phase
that severely limited scalability. Scalasca is an open-source toolset for analysing
the execution behaviour of applications based on the MPI and OpenMP parallel
programming interfaces supporting a wide range of current HPC platforms [2,3].
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It combines compact runtime summaries, that are particularly suited to obtain-
ing an overview of execution performance, with in-depth analyses of concurrency
inefficiencies via event tracing and parallel replay. With its highly scalable de-
sign, Scalasca has facilitated performance analysis and tuning of applications
consisting of unprecedented numbers of processes [10,11].

Based on these performance analyses, the developers of the GemsFDTD code
could rework the initialization and further optimize the time-stepping loop, to
realize substantial application execution performance and overall scalability im-
provements, ultimately leading to an entirely updated version of the benchmark.
We review both initial and revised versions of the code, and their performance
analysis with the Scalasca toolset which revealed now resolved and still remain-
ing performance optimization opportunities.

2 GemsFDTD Code Versions

2.1 113.GemsFDTD — SPEC MPI2007 v1.1

The SPEC MPI2007 code 113.GemsFDTD solves the Maxwell equations using
the finite-difference time-domain (FDTD) method [8]. The radar cross-section
of a perfectly conducting object is computed. 113.GemsFDTD is written in For-
tran 90 and is a parallel version of the SPEC CFP2006 (Floating Point Compo-
nent of SPEC CPU2006) code 459.GemsFDTD. 113.GemsFDTD is a subset of
a general purpose time-domain code for the Maxwell equations developed within
the General ElectroMagnetic Solvers (GEMS) project at PSCI [5].

The core of the FDTD method is second-order accurate central-difference
approximations of Faraday’s and Ampere’s laws. These central-differences are
employed on a staggered Cartesian grid resulting in an explicit finite-difference
method. These updates are performed in the module material_class. The
FDTD method is also referred to as the Yee scheme. It is the standard time-
domain method within computational electromagnetics [8].

An incident plane wave is generated using so-called Huygens’ surfaces. This
means that the computational domain is split into a total-field part and a
scattered-field part, where the scattered-field part surrounds the total-field part.
It uses the excite_mod module to compute the shape of the incident fields.

The computational domain is truncated by an absorbing layer in order to min-
imize the artificial reflections at the boundary. The uni-axial perfectly matched
layer (UPML) by Gedney [1] is used. A time-domain near-to-far-field transfor-
mation computes the radar cross-section according to Martin and Pettersson [4],
handled by the module NFT_class.

The execution time during the timestepping is concentrated in five subrou-
tines, two update routines, two UPML routines, and the routine NFT_store.

The problem size in 113.GemsFDTD is 580×580×580 FDTD cells (Nx =
Ny = Nz = 580) surrounded by a twelve cell UPML layer.



316 U. Andersson and B.J.N. Wylie

2.2 145.lGemsFDTD — SPEC MPI2007 v2.0

113.GemsFDTD was designed to be scalable up to 256 processes according to
the aim of SPEC MPI 2007. Version 2.0 of SPEC MPI demanded that the
codes were scalable up to 2048 processes. 113.GemsFDTD failed miserably at
this [7], thus an extensive rewrite was needed. The end result of this rewrite
was 145.lGemsFDTD (‘l’ signifies large) which was accepted into version 2.0 of
SPEC MPI. (The original 113.GemsFDTD is retained in SPEC MPI 2007 v2.0
medium-sized benchmark suite for compatibility with earlier releases.)

The problem size in 145.lGemsFDTD is 960×960×960 FDTD cells (Nx =
Ny = Nz = 960) surrounded by a twelve cell UPML layer. This was selected in
order to meet the SPEC request that the memory footprint should be slightly
less than 64GiB.

Initial performance analysis with Scalasca showed clearly that 113.GemsFDTD
performed a lot of 4-byte broadcasts during initialization. Time measurements
inside the code itself showed that the multiblock_partition routine on the
master rank was a serial bottleneck. In fact, the execution time increased with
the number of blocks, which increases linearly with the number of MPI pro-
cesses. This performance analysis made it clear where the hotspots in the code
were and was very useful to the programmer.

2.3 Domain Decomposition of GemsFDTD

The original Gems code (MBfrida) lets the user select the number of processes
(p) and the number of FDTD blocks in all three dimensions (Nbx,Nby,Nbz),
where the total number of FDTD blocks are NbF = Nbx×Nby×Nbz. If the
user selects Nbx = Nby = Nbz = 0, then the code sets NbF = p and uses
MPI_Dims_create to set (Nbx,Nby,Nbz). The size of the FDTD blocks are
(Nbx/Nx, Nby/Ny, Nbz/Nz) (or slightly smaller). If a layer of UPML is added,
then the total number of blocks becomeNbT = (Nbx+2)×(Nby+2)×(Nbz+2).

In 113.GemsFDTD it was chosen to always use MPI_Dims_create, but setting
NbF to p−2 or p−3 instead of p so that NbF is an even number. This was done
in order to get at least two processes that only have UPML blocks. NbF is then
sometimes further decreased in order to avoid getting elongated FDTD-blocks
which is undesirable since that will lead to more UPML-blocks and more data
to communicate between the blocks. A precalculated table decides which NbF
values are accepted. In the case of p = 256, 254 and 253 are not accepted values,
while 252 (=6×6×7) is. Due to a bug in the code only 252+2=254 processes are
used when computing a distribution of the 576 blocks (252 FDTD blocks and
324 UPML blocks).

When the number of blocks and their sizes are decided, the master computes
the workload of each block and then, in the routine multiblock_partition,
computes a distribution of the blocks onto the MPI ranks.

For 145.lGemsFDTD, NbF is the largest approved value that is less than
or equal to the number of processes p. For p <= 256, the same precalculated
table as for 113.GemsFDTD is used to decide whether a NbF value is approved,
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whereas for p > 256 we demand that (NbT/NbF )/(1+6/ 3
√
NbF ) < 1.3 in order

to approve NbF . This makes sure that NbT/NbF is bounded.
After a block distribution is computed, the master loops through the blocks

and broadcasts information about each block. In 113.GemsFDTD this part had
65×NbT+25 four-byte broadcasts. In 145.lGemsFDTD this has been reduced to
7×NbT+11 small broadcasts by merging adjacent broadcasts. Further reductions
were possible but would have meant extensive rewrites of the code.

2.4 Summary of the Main Changes

The major improvements in 145.lGemsFDTD compared to 113.GemsFDTD for
the phases where they apply:

Initialization

1. Develop a new multiblock_partition routine designed for larger numbers
of processes, which produces a completely different domain decomposition.

2. Use of fewer MPI_Bcast operations within multiblock_distribute and as-
sociated routines.

3. Separation of broadcasts and allocations in the block distribution phase,
such that the rank that owns the block delays allocations for the block until
after block information has been broadcasted for all blocks.

Time-stepping iterations

1. Removal of expensive recomputation of the communication pattern used to
exchange blocks in multiblock_communicate, since the same communica-
tion pattern is used in each timestep.

2. Replacement of MPI_Sendrecvwith non-blocking MPI_Isend and MPI_Irecv

communication.
3. Interchanging loops in the near-to-far-field transformation computations.

(This improvement was found analyzing the serial code 459.GemsFDTD.)

3 Performance Measurements and Analyses

During the course of development of GemsFDTD, performance measurements
of each version were done on a variety of platforms and with different compilers
to verify the portability and effectiveness of each of the modifications. Although
benefits depend on the respective processor, network and compiler/optimizer
capabilities, execution performance analysis with Scalasca and the improvement
achieved for a representative example system are studied in detail.

3.1 Execution Scalability

The original version of the GemsFDTD benchmark code (113.GemsFDTD SPEC
in MPI2007 v1.1) and revised version (145.lGemsFDTD in SPEC MPI2007 v2.0)
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were executed on the HECToR CrayXT4 [9] with varying numbers of processes.
The XT4 has quad-core 2.3GHz AMD Opteron processors in four-socket com-
pute blades sharing 8GiB of memory, allowing the benchmark code to run with
32 or more MPI processes. The codes were built with PGI 9.0.4 compilers using
typical optimization flags “-fastsse -O3 -Mipa=fast,inline” as well as processor-
specific optimization. Although 113.GemsFDTD would normally be run with
a ‘medium-sized’ input dataset (sphere.pec), to allow comparison of the two
versions we ran both with the ‘large-sized’ training (i.e., ltrain) dataset using
RAk_funnel.pec. It was convenient to use only 50 timesteps rather than the
lref benchmark reference number of 1500 timesteps, since previous analysis of
GemsFDTD [7] determined that there was no significant variation in execution
performance for each timestep. Full benchmark execution time can be estimated
by multiplying the time for 50 iterations by a factor of 30 and adding the ini-
tialization/finalization time.

Execution times reported for the entire code and only for the 50 timestep loop
iterations of both versions are shown in Figure 1. While the iterations are seen
to scale well in both versions, the initialization phases only scale to 128 and 512
processes, respectively. For the original code, the initialization phase becomes
particularly dominant, even with only 256 processes, and makes it prohibitive
to run at larger scales.

3.2 Scalasca Performance Analyses

Both versions of GemsFDTD were prepared for measurement with the Scalasca
instrumenter (1.3 release), which configured the Cray/PGI compiler to auto-
matically instrument each user-level source routine entry and exits, and linked
with its measurement library which include instrumented wrappers for MPI li-
brary routines. The instrumented executables were then run under the control of
the Scalasca measurement and analysis nexus within single batch jobs (to avoid
impact of acquiring different partitions of compute nodes in separate jobs).

By default, a Scalasca runtime summarization experiment consisting of a
full call-path execution profile with auxilliary MPI statistics for each process
is collected and stored in a unique archive directory. With all of the user-level
source routines instrumented, there can be undesirable measurement overheads
for small frequently-executed routines. An initial summary experiment is there-
fore scored to identify which routines should be filtered: with GemsFDTD, the
names of nine routines were placed in a text file and specified to be filtered from
subsequent measurements in Scalasca summary and trace experiments.

Scalasca summary analysis reports contain a breakdown of the total run time
into pure (local) computation time and MPI time, the latter split into time for
collective synchronization (i.e., barriers), collective communication and point-
to-point communication, as detailed in Figure 2. Both code versions show good
scaling of the computation time, with the new version demonstrating better ab-
solute performance (at any particular scale) and better scalability overall. The
extremely poor scalability of the original code version is due to the rapidly in-
creasing time for collective communication, isolated to the numerous MPI_Bcast
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Fig. 1. Execution times of original and revised GemsFDTD versions with ‘ltrain’
dataset for a range of configuration sizes on CrayXT4
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Fig. 2. Scalasca summary analysis breakdown of executions of original and revised
GemsFDTD versions with ‘ltrain’ dataset on CrayXT4 (averages of all processes)
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calls during initialization. Collective communication in the revised version is
seen growing significantly at the largest scale, however, the primary scalability
impediment is the increasing time for explicit barrier synchronization (which
is not a factor in the original version). Point-to-point communication time is
notably reduced in the revised version, but also scales less well than the local
computation, which it exceeds for 1024 or more processes.

Scalasca automatic trace analysis profiles are similar to those produced by
runtime summarization, however, they include assessments of waiting times in-
herent in MPI collective and point-to-point operations, such as Late Sender time
when an early receiver process must block until the associated message transfer
is initiated. Trace analysis profiles from 256-process experiments as presented by
the Scalasca analysis report explorer GUI are shown in Figures 3 and 4 compar-
ing the original and improved GemsFDTD execution performance. In Figure 3,
with the metric for total time selected from the metric trees in the leftmost
panes, and the routines that constitute the initialization phase of GemsFDTD
selected from the central call-tree panes, the distribution of times per process
is shown with the automatically acquired CrayXT4 machine topology in the
right panes. The MPI process with rank 0 is selected in the v2.0 display, and the
two processes in the uppermost row of compute nodes that idled throughout the
v1.1 execution can be distinguished. (Only the subset of the HECToR CrayXT4
associated with the measured execution is shown, with non-allocated compute
nodes grayed or dashed.) In contrast, Figure 4 features Point-to-point communi-
cation time selected from the metric tree and the associated MPI routines within
multiblock communicate of the solver iteration phase.

The Scalasca analysis reports from GemsFDTD v1.1 and v2.0 trace experi-
ments with 256 processes on the Cray XT4 are compared in Table 1 to examine
the 12-fold speedup in total execution time of the revised version. Dilation of
the application execution time with instrumentation and measurement process-
ing was under 2% compared to the uninstrumented reference version.

Initialization is more than 40 times faster through the combination of re-
working the multiblock_partition calculation and using almost 9 times fewer
broadcasts in multiblock_distribute (even though 3% more bytes are broad-
cast). Note that in v1.1 the majority of broadcast time (measured in MPI_Bcast)
is actually Late Broadcast time on the processes waiting for rank 0 to complete
multiblock_partition, however, the non-waiting time for broadcasts is also
reduced 20-fold for v2.0. Improvement in the solver iterations is a more modest
33%, however, still with speedup in both calculation and communication times.
Significant gains were therefore realized through use of non-blocking communica-
tion and improved load balance (including exploiting the two previously unused
processes), despite 5% more data being transfered in multiblock_communicate.

The Scalasca traces are less than one quarter of the size for the v2.0 version
due to the reduced number of broadcasts, requiring less than half a second to
write the traces to disk and unify the associated definitions. Replay of recorded
events requires correspondingly less time, however, the time processing event
timestamps to correct logical inconsistencies arising from the unsynchronized
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Fig. 3. Scalasca analysis report explorer presentations of GemsFDTD trace experi-
ments with ‘ltrain’ dataset for 256 processes on CrayXT4 (v1.1 above and v2.0 below)
highlighting 675-fold improvement of total time for the initialization phase
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Fig. 4. Scalasca analysis report explorer presentations of GemsFDTD trace experi-
ments with ‘ltrain’ dataset for 256 processes on CrayXT4 (v1.1 above and v2.0 below)
highlighting 2-fold improvement of point-to-point communication time in solver phase
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Table 1. Selected performance metrics and statistics for Scalasca trace experiments
for GemsFDTD versions with ‘ltrain’ dataset for 256 MPI processes on CrayXT4.
(Maximum of any individual measured process where qualified.)

GemsFDTD v1.1 v2.0

Reference execution time [s] 611.3 47.8
Measured execution time [s] 613.8 48.6

Initialization 561.1 13.1
– multiblock partition time [s] (max) 509.5 0.2
– multiblock distribute time [s] (max) 554.9 0.9

– broadcast time [s] (max) 554.1 0.3
– Late Broadcast time [s] (max) 552.0 0.2

– number of broadcasts (max) 37465 4214
– bytes incoming by broadcast [kiB] (max) 146.3 150.1

Time-stepping iterations 52.6 35.0
– Calculation time [s] (max) 47.6 34.4
– Communication time [s] (max) 33.9 25.3

– number of sends/receives (max) 2900 2200
– bytes sent [MiB] (max) 134.5 140.7
– Late Sender time [s] (max) 33.7 25.2

– number of Late Senders (max) 1455 50

Scalasca tracing
– Trace total size [MiB] 410 96
– Trace collection time [s] 0.5 0.4
– Trace analysis time [s] 227.6 2.3

– event replay analysis [s] 2.2 0.5
– event timestamp correction [s] 223.8 1.3

– number of violations corrected 2529 762

clocks on Cray XT compute nodes is reduced by over 170-fold, since correcting
timestamps of collective operations is particularly expensive. For the v2.0 version
of GemsFDTD at this scale, Scalasca trace collection and automatic analysis
require only 6% additional job runtime compared to the usual execution time.

4 Conclusions

The comprehensive analyses provided by the Scalasca toolset were instrumental
in directing the developer’s performance engineering of a much more efficient
and highly scalable GemsFDTD code. Since these analyses show that there are
still significant optimization opportunities at larger scales, further engineering
improvements can be expected in future.
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Abstract. Current multicore system technology enables implementa-
tion of particular program functions like library operations, special func-
tions generation, optimized data search etc. using dedicated computing
units to increase overall program performance. A parallel system can be
equipped with a set of such units to speed up execution of applications,
which use such functionality. To properly model and schedule programs
using such functions running on a dedicated hardware, a proper program
representation must be introduced. The paper presents special scheduling
algorithm for programs represented as graphs, based on a modified ETF
heuristics. The algorithm is meant for a modular architecture composed
of many CMP modules interconnected by a global data communication
network. The assumed architecture of dedicated CMP modules enables
personalized fully synchronous program execution, which uses communi-
cation on the fly to strongly reduce inter–core communication overheads.

Keywords: CMP architectures; program execution control, program
scheduling, data communication optimization.

1 Introduction

Cluster–based systems, supported by adequate communication solutions, can
strongly increase execution efficiency of parallel programs and scalability. Devel-
opment of efficient architectural paradigms and new parallel programming styles
for cluster computing are currently strongly stimulated by recent advances in the
multicore processor technology. This is strongly supported by the interconnect–
centric style in the design of Chip Multiprocessors (CMP) systems [1,2]. With
interconnect–centric design style in multiple CMP systems both intra–cluster
and inter–cluster network structures should be targeted. Due to technology limi-
tations large monolithic systems should be replaced by systems in which a single
layer network fabric connecting all processor cores can be replaced by a hierar-
chical structure of many CMP modules connected by a central global network
as in the RoadRunner system [3] (currently number 7 on the TOP 500 list [12]).
With such modular approach to the design of CMP systems both inter–module
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communication and intra module network can be optimized to match different
specific technical requirements at local and global communication levels.

Optimal design of program code for such dedicated units can impose particu-
lar requirements on the structure and behavior of the involved embedded parts
of programs. Parallel or distributed programs built for such executive architec-
tural assumptions can be considered as built of well defined regions dedicated to
execution in specialized parallel units bound with the rest of the program code
by scripts (glue code) which define the necessary program execution interfaces.

In this paper, we propose a scheduling algorithm for parallel programs which
are to be executed in a modular CMP system built of different kinds of con-
stituent CMP modules. The system has a hierarchical modular structure of many
smaller CMP modules with efficient local data exchange, interconnected by a cen-
tral global network. Architecture of the CMP modules allows dynamic creation
of temporary shared memory processor (SMP) core clusters [6,7,8], which pro-
vide efficient means for direct and fast transmission of shared data between data
caches of computing cores by means of reads on the fly. The internal structures
of a CMP module dynamically adjusts to communication requirements of a frag-
ment of an application program part, which is mapped to it for execution. The
presented algorithm is based on identification of code regions inside the program
graph, which can be efficiently executed by dedicated architecturally supported
CMP modules.

Scheduling programs to such defined executive systems requires special pro-
gram representation and algorithms. The macro data flow graph representation
of programs is used for the approach proposed in this paper. The scheduling
algorithm is based on a modified Earliest Task First (ETF) [10] heuristics with
extended system of task priorities. As a result, a scheduled program task graph
is produced in which computation and internal communication are assigned to
resources inside CMP modules and global communication between tasks is as-
signed to links of the global network. Performance of the scheduled programs is
verified by experiments accomplished using a simulator, which executes struc-
tured application program graphs and evaluates their parallel efficiency.

The paper is composed of 4 parts. In the first part, the proposed architecture of
the executive system is described. In the second part, the graph representation
of programs applied to design the programs for the assumed architecture is
explained. In the third part, a scheduling algorithm which set the necessary
structure in the application programs is described. The fourth part presents a
scheduling example, which illustrates the proposed approach.

2 General System Architecture

The general structure of the proposed parallel multi–CMP system is presented
in Fig. 1. Basic system elements are CMP modules interconnected by a global
network. A single CMP module consists of a number of processor cores, each
with its local L1 data cache and a number of shared L2 data cache banks inter-
connected through a local data communication network, Fig. 2. Dynamic core



Scheduling Architecture–Supported Regions in Parallel Programs 327

Fig. 1. General system structure

clusters can be created inside CMP modules using local data exchange networks
(L2 buses) by connecting to them L1 banks. Dynamic core clusters enable very
advanced group data communication involving a core or a cluster of cores, es-
pecially useful for shared data. Multiple parallel reads of data by many cores to
their data caches can take place while a core writes data from its L1 cache to
the cluster L2 memory (reads on the fly, similar to cache injection [5]). It is done
by snooping L2 buses by L1 banks controllers and capturing the desired data. A
new method for data exchange has been used among core clusters. It consists in
dynamic switching of cores with their L1 data cache contents between L2 buses
and provides a very fast way of data exchange between core clusters. It converts
data transmissions through shared memory and/or some global network, into
dynamic cluster reconfiguration with data transfers performed directly between
L1 data caches. All L2 cache banks of a CMP module are connected to the local
fragment of the distributed memory shared by all CMP modules in the system.

Tasks in programs are built according to a cache–controlled macro data–flow
paradigm, so, all data have to be pre–fetched to core’s L1 data cache before a
task begins execution and L1 cache reloading is disabled. Current task results
are sent to the L2 cache module only after task completes.

New features of the data cache organization consist in multi–ported structure
of L1 data caches (multiple banks are used, which can be connected to many L2
buses). It enables parallel loading of arguments of subsequent numerical opera-
tions and many communications (or reads) on the fly performed at a time for a
core. More details on the proposed architecture of the CMP modules and system
execution control, however, for single level data caches can be found in [6,7,8].

The global interconnection network allows to exchange data between any
shared memory fragments (modules) present in the system on request coming
from a core. The global network can constitute a crossbar switch, a multistage
network or a multibus structure. The global network thus provides standard
data transfers between CMP modules, but at the cost of high latency. However,
when data brought by global network are written to the CMP module shared
memory, data transfers on the fly can be done to L2 data banks inside this mod-
ule. This strongly accelerates data pre–fetching for computations performed by
given CMP module cores and core clusters.
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Fig. 2. The structure of a CMP module

The executive system may contain CMP modules as described above, and,
additionally, a set of standard, general purpose CMP modules, which may be
used for execution of parts of the graph, whose execution in architecturally
supported modules is not profitable (because they are irregular or have small
level of data sharing).

3 Graph Representation Used in Program Design

Programs for the proposed architecture are designed according to their macro
data flow graph (MDFG) representation, which may be created automatically at
compile time. Fig. 3a presents an simple MDFG consisting of 6 nodes (T0...T5)
assigned to 5 cores (C1...C5) located in 2 CMP modules (CMP1, CMP2). To
represent all actions which take place in a program executed in the proposed
architecture we introduce an extended macro data flow graph (EMDFG) repre-
sentation in which some new types of nodes are introduced in Fig. 3b: W2 – write
of data from core’s data cache L1 to L2, WM – write of some data from L2 to
the shared memory of a CMP module, MMW – write from the shared memory
of a CMP module to the memory of another CMP module, RqL1 – deposing
read on the fly request in a BRC of a L1 bank, RL1 – read on the fly from the
L1 bus, RqL2 – deposing a read on the fly request to a BRC of a L2 bank, RL2 –
read on the fly from the L1–L2 bus to L2, B – a barrier, SW – switching a core’s
data cache bank from one cluster to another – i.e. from one L2 data cache bus to
another. Results of task T0 are transmitted to L1 banks of cores C1 and C2 and
L2 banks of cores C4 and C5 using data transfers on the fly. Task T0 writes its
results from L1 to the L2 bank contained in the CMP1 module after fulfillment
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a) b)

Fig. 3. A simple MDFG (a) and its extended notation (b)

of barrier B1 by read on the fly requests issued by tasks T1, T2. These tasks read
on the fly data written by T0 to L2. T0 passes data to T3 in L1 cache. Some
data produced by T0 are next sent back to the shared memory of CMP1 (WM).
Next these data are sent to the CMP2 memory via the X–bar switch (MMW).
When the data are written to the memory over the ”L2–memory” bus in CMP2,
they are read on the fly to two CMP2 L2 cache banks (RL2). Here barrier B2
works for cores belonging to two CMPs. After data are read to L2 banks they
are pre–fetched to L1 caches of two CMP2 cores (RL1).

The read on the fly to L2 in CMP2, as in Fig. 3b, can be organized efficiently
(without blocking the CMP1 NIC for a long time) if the barrier B2 can be
fulfilled quickly from the side of CMP2. If however, the tasks in CMP2 become
ready to receive data with a large delay, the pre–fetching to CMP2 L2 banks can
be organized on the initiative of cores in CMP2. It is done by an independent
read of data from memory to one of L2 banks and next a pre–fetch to L1 banks
with the use of read on the fly for one L1 bank.

4 Regions in a Program Graph

Program graph can be logically divided into subgraphs of two forms: subgraphs,
which show structural or functional features which qualify the respective pro-
gram parts to be executed in system hardware modules with special architecture
which can accelerate program execution, and subgraphs without promising fea-
tures for special hardware acceleration.

In the case of our architecture, subgraphs of the first type are intended to be
implemented inside CMP modules with architecture described in previous sec-
tions, called the architectural CMP modules – ACMPs. Consequently, program
subgraphs assigned to ACMPs will be called Architecturally–Supported Regions
(ASR). For the requirements of our architecture, such ASRs should show phase–
like regular structure or high level of data sharing, which makes data transfers
on the fly and dynamic core switching profitable.
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The second kind of subgraphs contains nodes which constitute ”a glue”, which
fills in the gaps between ASRs and can be executed using a set of general purpose
hardware modules in a system with standard architecture. Such standard CMPs
will be called general–purpose CMPs – GCMPs (in our case, standard multicore
CMP modules). Regarding features of our architecture, the subgraphs for the
standard CMP modules have either very irregular (un–phased) structure or they
are very loosely data related with low level of data sharing, in which case using
core switching and data transfers on the fly will not give performance profits.

Formally, a program is described by a macro data flow graph G = (V, E),
where V , E are the set of nodes and edges of the graph, respectively. G can
be divided into two disjoint sets of subgraphs Vr and Va, such that V = Vs ∪
Va, Vs ∩ Va = ∅ where Vs contains standard nodes, which constitute a glue,
and Va contains nodes belonging to ASRs. The division may be determined
automatically by a compiler, or it can be done manually by a programmer. We
assume, that incoming data communications to a given ASR may happen only at
its beginning (before its computations are started) and outgoing data transfers
are possible after the region execution is finished. No additional external transfers
are allowed during execution of a region. Under such restrictions, ASRs can
correspond to subroutines, which may be replaced by a single meta node in the
program macro data flow graph. We will call the meta–nodes in such transformed
program graph the ”architectural nodes”.

We assume, that each ASR program subgraph is optimally mapped to cores in
an architectural CMP by separate application of the special scheduling algorithm
such as described in [9,10]. We assume that only one ASR subgraph may be
executed on a given architectural CMP at a time and that all the cores in this
module are potentially enabled for the ASR execution. We also assume, that
execution of any ASR may not be interrupted.

5 Scheduling of Programs with Architecturally
Supported Regions

The assumed architecture shows heterogeneity of applied computing resources.
The algorithm schedules standard nodes to GCMPs and architectural nodes
to ACMPs. It aims at minimal program execution time by equal loads of all
available resources. Regarding the selection of nodes for mapping to system
resources, the proposed scheduling algorithm is based on list scheduling with
the ETF heuristics [10], but the selection is extended by classification of nodes
in the program graph to enable gradual load balancing of both general purpose
and architectural CMPs. The classification consists in prioritization of nodes in
such way, that at each point of the scheduling algorithm, only such glue nodes are
considered, whose results are required for execution of the topologically nearest
ASRs in the graph. Other standard nodes are scheduled within the remaining
available processing resources preventing from delaying execution of other nodes.

Assignment of the 1st level priority (denoted as pr1(v) for each node v) divides
a set of architectural nodes into layers used to schedule the program nodes in the
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Algorithm 1. Definition of 2nd level priorities for a set U of nodes
1: Let p = 0 be the first value of priority for this set.
2: while U is not empty do
3: Determine Xu sets for all nodes from U .
4: Determine a subset V of architectural nodes from U chosen to be assigned pri-

ority p and XV as a sum of sets Xv for all v ∈ V , using Algorithm 2.
5: Assign pr2(u) = p for all nodes u from V ∪ XV .
6: Remove the architectural nodes, which belong to V from the set U .
7: Let p = p + 1
8: end while

breadth–first–way. Each such layer contains a subset of nodes, which are pair–
wise independent, i.e. there is no data dependency between any two of them.
The scheduling algorithm tries to schedule such architectural nodes layer–by–
layer. The layers are based on topological properties of a graph and are created
using graph paths analysis. To compute 1st level priorities, an ”architectural task
graph” Ga = (Va, E′) is defined. In this graph, nodes correspond to architectural
nodes in an initial graph G. For two nodes u, v ∈ Va, an edge u → v ∈ E′ exists
in Ga, if there is a directed path between these two nodes in original graph G
containing only standard nodes. For each u ∈ Va, the priority of a node u is equal
to its depth in graph Ga (the number of nodes on the longest path leading to u
from one of the nodes which have no predecessors in Ga). Priorities for standard
nodes depend on priorities of architectural nodes. For each v ∈ Vs, we determine
a set X ⊂ Va of nodes such that there exists a path from node v to each of these
nodes. If X is not empty, the priority of a node v is equal to minimal priority
over the nodes from X and is equal to maxu∈Va(pr1(u)) + 1 otherwise. A set of
nodes with the same 1st level priority constitutes a layer of nodes.

The 2nd level priority (denoted as pr2(v) for each node v) aims at division
of nodes in layers determined by the 1st level priority, into subsets in such way,

Algorithm 2. Selection of architectural nodes to be assigned the same priority
in a loop in Algorithm 1
1: Let V = ∅ and XV = ∅
2: while |V | is smaller than the number of resources for execution of architectural

nodes do
3: if V is empty then
4: for all tasks u from U do
5: Schedule a subgraph Xu on available resources dedicated to execution of

the standard nodes, using an ETF–based list scheduling.
6: end for
7: Select such node u from U , for which its Xu set gives the shortest schedule in

the previous step and uses the smallest number of resources.
8: else
9: Select node u ∈ U such, that Xu ∩ XV is the biggest.

10: end if
11: Let V = V ∪ {u} and XV = XV ∪ Xu

12: end while
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that we can obtain equal, high load of all CMPs. Each subset of nodes contains
no more architectural nodes, than the number of ACMPs in the system. We
determine 2nd level priorities, if there is a set U of architectural nodes, which
have the same 1st level priorities. For each node u ∈ U we determine Xu as a
set of standard nodes v ∈ V such that there exists a directed path from v to u,
pr1(v) = pr1(u), and which have no 2nd level priority assigned yet. The nodes in
such sets are used to put architectural nodes in order. Priorities for nodes from
the U–sets are assigned using the algorithm shown as Algorithm 1.

The final priority pr(v) is defined as follows: for two nodes u and v (both
must be either architectural or standard), pr(u) < pr(v) ⇐⇒ pr1(u) < pr1(v)∨
(pr1(u) = pr1(v) ∧ pr2(u) < pr2(v)).

Algorithm 3. List scheduling algorithm with modified ETF heuristics
1: {Input: a program graph G = (V, E)}
2: Determine architectural task graph G′ based on graph G and, based on it, compute

priorities pr1(v) for all nodes v ∈ G.
3: for all nodes v ∈ G determine pr2(v) using Algorithm 1 do
4: Let P be the set of ready nodes from graph G. Initially, insert all the nodes

without predecessors from G into P .
5: while P is not empty do
6: Let prmin = minu∈P (pr(u))
7: for all nodes u ∈ P such that pr(u) = prmin and all cores p do
8: Check the earliest possible execution start time of node u on core p and

select such pair (u, p), for which the selected node’s execution is the earliest
on the selected core.

9: Schedule the selected node for execution on the chosen core.
10: Remove this node from P .
11: for all descendants of the selected node do
12: if all their predecessors have already been scheduled then
13: insert them into P
14: end if
15: end for
16: end for
17: for all nodes v ∈ P with higher priorities do
18: Check, if any such node may be executed on any core in such way, that its

execution ends before execution of the node selected in the previous step.
19: if there exists such node v then
20: Schedule v for execution on the selected core.
21: Remove v from P
22: for all descendants of node v do
23: if all their predecessors have already been scheduled then
24: insert them into P
25: end if
26: end for
27: end if
28: end for
29: end while
30: end for
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The final scheduling algorithm (Algorithm 3) is based on list scheduling. Stan-
dard (glue) nodes are scheduled for execution on general purpose cores, architec-
tural nodes are scheduled for execution on architectural CMPs. Each time, when
a node is to be selected, first, the nodes with the lowest priorities are examined
and scheduled. Other nodes are scheduled only when their execution doesn’t
interfere with execution of those with currently the lowest priority. Such selec-
tion of nodes leads to a situation, where architectural nodes may be executed as
soon as possible, using cores from architectural CMPs. In the same time, general
purpose cores may be used to execute standard nodes, whose execution doesn’t
depend on architectural nodes and which are required for further computations.

6 A Scheduling Example

As an example, scheduling of a graph of Strassen parallel square matrix multipli-
cation algorithm is presented. Fig. 4 presents the graph of this algorithm unrolled
at 1st recursion level. Each multiplication node Mi is further parallelized using
standard multiplication method with decomposition of matrices into quarters.
Each such node is a parallel task, which needs 8 cores for execution. The par-
allel multiplication nodes are additionally structured to use core switching and
reads on the fly, so they might be efficiently executed on ACMPs as architectural
nodes. The addition nodes in the Strassen algorithm (nodes labeled ”A i,1–4”)
are also parallelized with decomposition into quarters to preserve the same data
granularity at each computation level, but due to their simple internal struc-
ture, they are treated as ”glue nodes”. All the experiments were prepared with
the software simulator of the proposed architecture.

Table 1 shows parallel speedup of the scheduled Strassen algorithm graph for
3 different recursion levels, different matrix sizes and different system configura-
tions, comparing to standard serial multiplication. Two versions of the algorithm
were studied: ”reg” – regions scheduling without priorities and ”reg+pri” – re-
gions scheduling with priorities. The numbers of ACMPs and GCMPs (8 and

Fig. 4. The general view of the exemplary program graph
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Table 1. Parallel speedup of the scheduled Strassen algorithm graph, comparing stan-
dard serial multiplication

Rec. System config. Algorithm Matrix size
level ACMPs GCMPs 32 64 128 256 512

2 reg, reg+pri 8.15 14.05 22.76 33.42 43.85
1 7 4 reg, reg+pri 9.56 16.18 25.54 36.36 46.31

8 reg, reg+pri 9.64 16.31 25.70 36.52 46.44
2 reg 6.70 13.11 27.52 53.24 96.21

reg+pri 7.41 14.28 28.03 55.52 113.74
2 49 16 reg, reg+pri 23.43 43.32 78.61 135.33 213.47

32 reg, reg+pri 27.51 50.52 90.54 152.83 234.78
64 reg, reg+pri 28.22 51.74 92.54 155.71 238.18
2 reg 3.22 6.22 12.85 24.92 51.43

reg+pri 3.88 7.47 14.67 29.06 57.83
16 reg 21.69 42.11 81.38 162.49 315.29

3 343 reg+pri 23.90 46.01 90.41 178.85 355.98
128 reg, reg+pri 77.64 147.08 278.98 518.01 916.26
256 reg, reg+pri 82.74 156.54 296.30 548.04 963.16
512 reg, reg+pri 84.32 159.48 301.65 557.27 977.45

4 cores, respectively) were so selected as to enable full parallelization of mul-
tiplication in ACMPs and to check the influence of the number of GCMPs on
the overall program performance due to potential serialization of the execution
of the ”glue”. Cores in ACMPs and GCMPs are assumed to be equally fast in
terms of computation. Computations were assumed to be 3 times faster than lo-
cal communication on the L1–L2 bus. Global communication was assumed to be
4 times slower than the local one. Execution at higher recursion level increased
program parallelization level and also the ”glue” part of the graph increased.
It required more ACMPs and GCMPs to obtain maximal speedup. At the 1st

recursion level the speedup saturates already for 4 GCMPs. At the 2nd and 3rd

recursion levels the speedup saturates above 32 and 256 GCMPs, respectively.
The influence of the special priorities of tasks is visible when the execution of
the ”glue” is ”squeezed” to a small number of GCMPs. The speedup strongly de-
pends on the matrix size since it decides on parallelization grain. For considered
matrix sizes 32–512, the parallelization grain is determined by the size of the
matrix parts used for elementary serial multiplication after recursive decomposi-
tion at a given recursion level – for example at the 3rd recursion level, the grain
is the smallest: it is 2, 4, 8, 16, 32, respectively.

7 Conclusions

Special parallel program scheduling algorithms for modular CMP systems have
been proposed in the paper. The target system is composed of two kinds of CMP
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modules interconnected by a global network: architectural CMP modules com-
patible with the described architecture, dedicated for execution of these parts
of the graph (Architecturally Supported Regions), which can profit from execu-
tion based on core switching and data transfers on the fly, and general purpose
shared memory CMP modules, built of standard cores with classic interconnec-
tions, used for execution of other (glue) nodes. Special graph program repre-
sentation, required for designing programs for such system, has been proposed.
Because of heterogeneity of the system, the proposed scheduling algorithm ex-
tends the standard list scheduling method with ETF heuristics by application
of multi–level priorities of graph nodes, which enables efficient use of computing
resources to achieve load balancing at the level of both general and architectural
CMP modules. To illustrate the proposed scheduling algorithm, execution of
program graphs of parallel Strassen matrix multiplication with data decomposi-
tion into quarters have been analyzed. To obtain maximal parallel speedup, the
number of applied ACMPs and GCMPs should match the requirements of the
program graph. Otherwise performance is reduced. The extension of the algo-
rithm by special task priorities improves the quality of scheduling in the assumed
architecture when execution of the ”glue” is strongly serialized or the number of
used ACMPs does not cover the width of the program graphs.
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