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Abstract. A method is presented for optimizing paths on high dimen-
sional surfaces, i.e. scalar functions of many variables. The method
involves optimizing simultaneously the end points and several interme-
diate points along the path and thus lends itself well to parallel com-
puting. This is an extension of the nudged elastic band method (NEB)
which is frequently used to find minimum energy paths on energy sur-
faces of atomic scale systems, often with several thousand variables. The
method is illustrated using 2-dimensional systems and various choices of
the object function, in particular (1) path length, (2) iso-contour and
(3) quantum mechanical tunneling rate. The use of the tunneling paths
to estimate tunneling rates within the instanton approximation is also
sketched and illustrated with an application to associative desorption
of hydrogen molecule from a copper surface, a system involving several
hundred degrees of freedom.
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1 Introduction

There can be several reasons for wanting to find a path on a surface that is opti-
mal in some sense. Our motivation comes mainly from the need to find minimum
energy paths (MEPs) on energy surfaces to estimate rates of transitions due to
thermally activated, classical trajectories [1], or - as is the focus here - quantum
mechanical tunneling through energy barriers [2]. The method used for the path
optimization is, however, quite general and can be used in various contexts.

The surface is described by a continuously differentiable function, V , of N
variables

V : RN −→ R (1)

In typical applications to transition rates in atomic scale systems, N is on the
order of 103. We assume that the gradient ∇V of the object function can be
evaluated readily, but second derivatives are not needed. The goal is to find a
finite path on the surface that is optimal in some sense. For example, the MEP
on an energy surface can be of interest since the point of highest energy on the
path, a first order saddle point, gives the activation energy barrier for going
from one local minimum to another and, thereby, determines the exponential
dependence of the rate on temperature [3,4]. At every point on a MEP
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∇V −∇V · τ̂ τ̂ = 0 (2)

were τ̂ is the unit tangent vector for the path at that point [5]. Furthermore, the
curvature for all modes perpendicular to the path must be positive. The NEB
is frequently used to find MEPs for estimating rates of thermal transitions in
atomic scale systems where the atoms are described by classical dynamics [5,6].
Some systems have even included over a hundred thousand coordinate variables
[7]. The path optimization method presented here is a generalization of the NEB
method and can be used, for example, to calculate rates of thermal transitions
in quantum mechanical systems were tunneling takes place.

Let R denote a vector of N variables and V (R) the surface. The object
function, S̃, can be defined as a functional of the path, R(s) where s ∈ [0, 1],
that is S̃ = S̃[R(s)]. The object function can, for example, involve an integral
over the path

S̃[R(s)] =

∫ Rn

R0

f(V (R))dR (3)

where f is some function. The path will be represented by a set of discrete
points along the path {R0,R1, . . .Rn} and the integral approximated using, for
example, the trapezoidal rule. The task is then to find the values of the vectors
Ri that minimize the object function for discretized paths

S̃[R(s)] ≈ S(R0, . . .Rn) =

=
1

2

n
∑

i=1

(f(V (Ri)) + f(V (Ri−1))) |Ri −Ri−1| (4)

There are n− 1 discretization points representing the path between the two end
points, R0 and Rn, which can be constrained to have some predetermined values
of V , i.e. V (R0) = va and V (Rn) = vb. In the NEB, end points of the path are
fixed (usually at minima), but in this more general formulation the position
of the end points is adjusted during the optimization along the iso-contours
corresponding to va and vb.

2 Path Optimization

The optimization is started by specifying some trial set of discretization points
{R0

0,R
0
1, . . .R

0
n} and then iterating until S(R0,R1, . . .Rn) has reached a min-

imum value. Let the negative gradient of the functional, S, with respect to the
discretization point, Rj , be denoted by

gj = −∇jS (5)

This represents the direction of steepest descent for each one of the discretization
points and can be used in a minimization algorithm to find the set of vectors
{R0,R1, . . .Rn} that minimize S. But, only the component of gj that is perpen-
dicular to the path should be included in the optimization [1,6]. The distribution
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of the discretization points along the path is controlled separately and should
not be affected by S. This projection is referred to as ‘nudging’. The negative
gradient, gj , is projected along the path

g
‖
j = (gj · τ̂j)τ̂j (6)

and the rest of the vector is the perpendicular component

g⊥
j = gj − g

‖
j . (7)

The discretization points can be distributed along the path in various ways, for
example by using a restraint method where a ‘spring’ acting between adjacent
discretization points is added, Again, a projection is used to make sure this does
not affect the location of the converged path. For the discretization points that
are not at the ends, {R1,R2, . . .Rn−1}, the component of gj parallel to the path
is replaced by

gsp
j = k (|Rj+1 −Rj | − |Rj −Rj−1|) τ̂j (8)

where k is analogous to a spring constant. A wide range of values can be chosen
for k without affecting the results, but the convergence rate is in general faster
if the gsp

j are roughly of the same magnitude as the gj . The total g that is used
in the optimization is then given by the vector sum

gopt
j = g⊥

j + gsp
j (9)

for j = 1, . . . , n− 1. In a steepest descent algorithm, all the discretization points
Rj will be displaced in the direction of gopt

j at each iteration. A more efficient
approach is discussed in section 2.1. If the spring constant, k, is the same for
all pairs of adjacent discretization points, then the points will be equally spaced
along the path when convergence has been reached. If a different distribution
is desired, the values of k for each adjacent pair of discretization points can be
chosen accordingly.

The steepest descent direction for the end points is defined differently since
they should only move along the iso-contours corresponding to va or vb. The
component of gsp parallel to the gradient of V needs to be zeroed so the end
points only get displaced along the iso-contour. Furthermore, a restraint is added
to pull the end points towards the iso-contour if curvature has resulted in a drift
away from the iso-contour. Denoting the unit vector in the opposite direction of
the gradient of V as

̂F = −∇V/|∇V | (10)

the steepest descent direction for end point R0 can be written as

gopt
0 = gsp

0 −
(

gsp
0 · ̂F0 − V (R0) + va

)

̂F0 (11)

where
gsp
0 = k (R1 −R0 − � ̂F0) (12)
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and ̂F0 = ̂F(R0). Here, the parameter � has been introduced to make it possible
to adjust the length of the path when the endpoints are not constrained (for
example, in the iso-contour example below). If � is chosen to be � = L/n the path
will have length L when the endpoints are free to move during the optimization.
An analogous expression holds for the other end point, Rn

gopt
n = gsp

n −
(

gsp
n · ̂Fn − V (Rn) + vb

)

̂Fn (13)

where
gsp
n = k (Rn−1 −Rn − � ̂Fn). (14)

and ̂Fn = ̂F(Rn). g
opt
0 and gopt

n give the steepest descent direction for the two
end points used in the iterative optimization while equation (9) applies to the
intermediate discretization points.

2.1 Optimization of the Path

While the location of the discretization points of the path can be optimized by
steepest descent displacements in the direction of gopt, this tends to have slow
convergence and various more efficient minimization algorithms can be employed.
We have found it useful to divide this numerical optimization into two phases:
an initial phase with a rather conservative algorithm and then a final phase with
a quadratically convergent algorithm. In the case of atomic scale systems, such
as the H2/Cu system discussed in section 4, the transition is made when the
RMS force has dropped to below 0.5 eV/Å.

In the beginning, the system can be far from the optimal path. Often, a good
guess for the optimal path is not available. A method we have found to be robust
and convenient to implement is based on modified classical dynamics where the
effective mass associated with each degree of freedom is arbitrarily set to unity
and the force is taken to be the steepest descent vector. By introducing a certain
damping in the dynamics, convergence to a minimum is obtained. The damping
involves zeroing the velocity from previous iteration, except for the component
in the direction of the force in the current iteration when the projection of the
velocity on the force is positive. This algorithm is explained in ref. [1]. In the sec-
ond phase, a quadratically convergent algorithm such as conjugate gradients or
BFGS is more efficient. Some modifications of these algorithms have to be made,
though, because an object function corresponding to the steepest descent direc-
tion gopt is not known. The projection (nudging) and addition of the springs
modifies the steepest descent direction in such a way that it no longer corre-
sponds to the gradient of S. A review of several minimization methods proposed
for the optimization of elastic bands in the context of minimum energy paths and
comparison of their efficiency has recently been published [8]. We expect similar
performance for the elastic bands presented here, but systematic performance
analysis have not yet been made.

Since the optimization of the paths is carried out by adjusting the location
of each one of the discretization points simultaneously, and the calculation of



Path Optimization with Application to Tunneling 49

the steepest descent direction only depends on coordinates of each point and its
two nearest neighbors, this algorithm for path optimization lends itself well to
parallel computing.

3 Examples

3.1 Example I: Shortest Path between Iso-contours

A simple illustration of the method described above is a search for the shortest
path between two iso-contours of a given value νa = νb = ν. Here, f can be
chosen to be a constant, f(V ) = 1, and � = 0. The object functional is simply

Sl(R0, . . . ,Rn) =

n
∑

i=1

|Ri −Ri−1| (15)

Differentiation of S gives

gj = −∇jS
l = − Rj −Rj−1

|Rj −Rj−1| +
Rj+1 −Rj

|Rj+1 −Rj | (16)

Using the equations (9), (11) and (13) in an iterative optimization scheme, gives
points along the path which has the shortest distance between two iso-contours,
as illustrated in figure 1.

Fig. 1. Path optimization where the object function is the length of the path and
the end points are confined to a contour on the surface. (a) Initial path with end
points at arbitrary locations on two separate segments the contour; (b) intermediate
configuration of the path during the optimization; (c) the final, converged, shortest
path between the two contour lines.

3.2 Example II: Tracing Out an Iso-contour

Another example is a path that lies along an iso-contour, say V = vc. Here, f is
chosen to be f(V ) = (V − vc)

2/2 and � = L/n where L is the desired length of
the path. The object function becomes
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Fig. 2. Path optimization where the object function includes the squared deviation
from the contour value. (left) An arbitrary initial path; (middle) intermediate config-
uration of the path during the optimization; (right) the final, converged path tracing
the contour.

Sc(R0, . . .Rn) =
1

2

n
∑

i=0

(V (Ri)− vc)
2 |Ri −Ri−1| (17)

Optimization using equations (9), (11) and (13), gives discretization points {Ri}
for a path that lies along the vc iso-contour as is shown in figure 2.

3.3 Example III: Tunneling Path

The optimization procedure described in the previous section can be used to find
optimal, quantum mechanical tunneling paths. The function V then represents
potential energy of the system and the vector R consists of the coordinates of all
the particles in the system, some of which may undergo a tunneling transition
from one position to another. In the path optimization, all particles in the system
are allowed to move, unless boundary conditions restricting their movement are
applied. In the JWKB method [2], the tunneling path for energy Ec is the path
between classical turning points V (R0) = V (Rn) = Ec where the action, St, is
minimized

S̃t[R(s)] =
1

�

∫ Rn

R0

√

2μ(V (R)− Ec)dR (18)

Here, μ is the effective mass which is conveniently taken into account by us-
ing mass weighted coordinates and forces [9]. The optimization yields a path
corresponding to the lowest value of the integral and gives the highest JWKB
estimate of the tunneling probability [2,10,11,12]. A reasonable initial guess for
the path could be a straight line interpolation between the minima of the initial
and final states, but any guess where the end points are placed on different sides
of a saddle point higher than Ec will give a tunneling path.
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After discretizing the integral, equation (18) becomes

St(R0, . . .Rn) =
1

2�

n
∑

i=1

(
√

2μ(V (Ri)− Ec)

+
√

2μ(V (Ri−1)− Ec)
)

|Ri −Ri−1| (19)

To simplify the notation, it is convenient to define a new function

ξi =
1

�

√

2μ(V (Ri)− Ec) (20)

and rewrite the action integral as

St(R0, . . .Rn) =
1

2

n
∑

i=1

(ξi + ξi−1) |Ri −Ri−1| (21)

Differentiating this expression with respect to the position of the intermediate
discretization points j = 1, . . . , n− 1, gives

gj = −∇jS
t = −1

2

(

μ

�ξj
(dj + dj+1)|∇V (Rj)|̂Fj− (22)

−(ξj + ξj−1)̂dj + (ξj+1 + ξj)̂dj+1

)

.

where ̂Fj is again given by equation (10) and the dj and ̂dj are defined as

dj = |Rj −Rj−1| (23)

̂dj = (Rj −Rj−1)/dj (24)

The steepest descent direction, gopt, is given by equation (9) for the intermediate
discretization points, but for the end points equation (11) and (13) are used. By
iteratively moving the discretization points, the optimal tunneling path can be
found, i.e. the values of {R0, . . .Rn} that minimize St.

To illustrate how the method works, the tunneling path of a particle subject
to the 2-dimensional potential function used in example II was found, starting
initially with an arbitrary, straight path. Various stages of the optimization of the
path are shown in figure 3: the initial guess, two intermediate paths during the
optimization process and the final, optimal tunneling path. Note that the surface
has extra minima and maxima which makes the problem somewhat challenging
even though only 2 degrees of freedom are included.

Since the wave function decays exponentially in the classically forbidden re-
gion, the tunneling path can be displaced from the MEP into a region of higher
potential energy if this leads to significant shortening of the path. This ‘corner-
cutting’ can be seen form the converged path in figure 3.

The corner-cutting becomes stronger as the temperature is lowered, as can
be seen from another 2-D model calculation shown in figure 4. The lower the
temperature is, the further the path moves away from the MEP. This effect is
particularly strong when the MEP has large curvature.
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Fig. 3. Path optimization on a surface with an intermediate local minimum and a
maximum, starting from an arbitrary straight line path, to illustrate the robustness of
the method. Initial path (far left); intermediate paths during the optimization (middle
two figures); and converged, optimal JWKB tunneling path (far right).

4 Application: Calculation of Tunneling Rates

The optimal, JWKB tunneling paths discussed in example III above can be used
to estimate the tunneling rate at a given temperature rather than at given total
energy. The theory is essentially a harmonic quantum transition state theory and
is often referred to as ‘instanton’ theory [10,11]. The path that minimizes the
object functional given by equation (18) turns out to be the same as a classical
periodic orbit for the inverted potential energy surface , −V (R), and is referred
to as the instanton [10]. This is a closed Feynman path and it gives maximum
tunneling probability at a temperature which can be related to the period, τ ,
of the periodic orbit through the relation T = �/kBτ . The calculation of the
period and location of discretization points in the statistical Feynman path cor-
responding to the optimized JWKB path can be obtained in a rather straight
forward way by interpolation between the discretization points. As in harmonic
transition state theory, where the reaction rate is estimated by approximating
the potential energy surface around the classical saddle point by a quadratic
expansion, the quantum mechanical rate can be obtained by expanding the ef-
fective quantum mechanical potential energy surface around the instanton to
second order [12]. The instanton rate constant, kins, is given by

QR kins =

√

S0

2π�

kBTP

�|∏′
j λj |

e−V ins
eff /kBT (25)

where QR is the partition function of the initial state, V ins
eff is the value of the

effective potential

Veff(R0, . . .Rn) =

P
∑

i=0

[

1

2
ksp |Ri+1 −Ri|2 + V (Ri)

P

]

(26)
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evaluated at the instanton. Here, P is the number of discretization points in the
Feynman path (RP+1 is set equal to RP ) and ksp is the temperature dependent
spring constant

ksp(T ) = μP

(

kBT

�

)2

(27)

The λj in equation (25) are the frequencies of the normal modes of vibration
of the instanton. One vibrational mode has zero eigenvalue, namely the one
corresponding to displacement of the images along the path. This mode gives
rise to S0 which is twice the instanton action due to the (imaginary-time) kinetic
energy

S0 =
μPkBT

�

P
∑

j=1

|Rj −Rj−1|2 (28)

The prime on the product sign in equation (25) denotes the absence of the zero-
mode, since it cannot be treated with a quadratic approximation.

This procedure for estimating the rate constant from JWKB tunneling paths
has been tested both on model 2-dimensional systems and for a large system
involving several hundred degrees of freedom, the associative desorption of H2

molecule from a Cu(110) surface. The desorption has been studied by several dif-
ferent methods in the past, including a full free energy method based on Feynman
path integrals, the so-called RAW-QTST method [14]. Here, the JWKB paths
were used to estimate the desorption rate as a function of temperature using
the instanton approximation as described above. The calculation involved 432
degrees of freedom, the coordinates of the two hydrogen atoms and four layers
of Cu atoms in a slab subject to periodic boundary conditions. The bottom two
layers of Cu atoms in the slab were held fixed. The results are shown in figure
4. The agreement with the full free energy calculation is surprisingly good con-
sidering the fact that a gas phase molecule is being formed and that harmonic
approximation, which the instanton approach is based on, applies mostly to sys-
tems where the effective range of the variables is limited, as is the case for atom
coordinates in solids. The instanton approximation involves much less compu-
tational effort than RAW-QTST, by about a factor of 104, and with the path
optimization method presented here, it can be used with atomic forces obtained
from electronic structure calculations where each force evaluation can easily take
tens of minutes of CPU time. For example, the rate constant for hydrogen atom
tunneling in solids has been carried out using the method presented above cou-
pled with density functional theory evaluation of the atomic forces, but those
results will be presented elsewhere.

5 Discussion

A general method for finding optimal paths on a multidimensional surface has
been presented here. Several two-dimensional problems have been used to il-
lustrate the method, but the strength of the approach is its applicability to
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Fig. 4. (a) Model 2-D energy surface with minimum energy path (far left), and con-
verged JWKB tunneling paths for high, intermediate and low (far right) energy. The
end points move to the specified system energy. The lower the energy, the more the
tunneling path ’cuts the corner’, as it moves to a region of higher energy and becomes
shorter. (b) Calculation of the rate of H2 molecule desorption from a Cu(110) surface,
including 432 atom coordinates as degrees of freedom. The number of discretization
points was n = 10 for the highest energy, and n = 40 for the lowest energy. The tem-
perature dependence of the rate constant for desorption shows an onset of tunneling at
around 250 K. RAW-QTST labels the results from full quantum TST calculation [14].
HQTST labels the results obtained from the instanton approximation, which performs
remarkably well here, especially considering that a gas phase molecule is formed.

problems where many, even thousands, of degrees of freedom need to be in-
cluded. One example of a large system was presented in connection with the
calculation of tunneling rate in an atomic scale system. There, the path opti-
mization method provides an efficient way of finding the tunneling path within
the so-called instanton approximation. The computational effort is similar to the
widely used NEB method for finding minimum energy paths in classical systems
where atomic forces from ab initio and density functional theory treatments of
the electronic degrees of freedom are used as input. Calculations of tunneling
rates using such atomic forces are not significantly harder.

An alternative approach to the implementation of the instanton approxima-
tion is to use the fact that the instanton path is a first order saddle point on
the effective potential surface, Veff given by equation (26), for closed Feynman
paths [14]. Methods converging to first order saddle points, such as the minimum
mode following method [15,16], can then be used to find tunneling paths. This
approach has been used in refs. [17,18]. But, the approach presented here has
several advantages over this methods. One is that the distribution of discretiza-
tion points in the optimization of the JWKB tunneling path can be controlled
and they can, for example, be chosen to be equally distributed while the replicas
in the Feynman paths tend to cluster in the neighborhood of the end points.
Also, the convergence to the saddle point has to be very tight in order to get
just one negative eigenvalue. This is particularly problematic when atomic forces
from electronic structure calculations are used as input. The method presented
here has similar convergence properties and computational effort as the NEB
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method, which is now widely used for finding classical transition paths. Finally,
multiple maxima and minima on the energy surface can make the convergence to
the right saddle point problematic while the calculations of the tunneling path
is more robust.

It is also possible to find the optimal tunneling path by constructing an elastic
band of Feynman paths, forming the so-called minimum action path, using the
NEB method as was done in [14]. This, however, involves much more compu-
tation as the total number of degrees of freedom in the optimization becomes
NP (n−1) where P is the number of discretization points in the Feynman paths,
(n+ 1) the number of discretization points in the minimum action path and N
is the number of variables in the system.
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