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Abstract. The paper presents an extension of a previously developed
interval method for solving multi-criteria problems [13]. The idea is to use
second order information (i.e., Hesse matrices of criteria and constraints)
in a way analogous to global optimization (see e.g. [6], [9]). Preliminary
numerical results are presented and parallelization of the algorithm is
considered.
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1 Introduction

We consider seeking the Pareto-set of the following problem:

min
x

qk(x) k = 1, . . . , N , (1)

s.t.

gj(x) ≤ 0 j = 1, . . . ,m ,

xi ∈ [xi, xi] i = 1, . . . , n .

Definition 1. A feasible point x is Pareto-optimal (nondominated), if there ex-
ists no other feasible point x′ such that:

(∀k) qk(y) ≤ qk(x) and

(∃i) qi(y) < qi(x) .

The set P ⊂ R
n of all Pareto-optimal points (Pareto-points) is called the Pareto-

set.

Definition 2. The Pareto-front is the image of the Pareto-set, i.e., the set of
criteria values for all nondominated points.

In the sequel one more definition will be needed.

Definition 3. A point y dominates a set B, iff D(y) ∩ B = ∅ and similarly a
set B′ dominates a set B, iff (∀y ∈ B′)D(y) ∩B = ∅.
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The interpretation of the definitions is straightforward. A feasible point is
Pareto-optimal if there is no other feasible point that would reduce some criterion
without causing a simultaneous increase in at least one other criterion. Pareto-
front is the image of Pareto-set in criterion space and D is the cone of domination
in this space.

Interval methods allow to solve the problem of approximating the Pareto-set,
using the branch-and-bound principle. Starting from the initial box and bisecting
the boxes subsequently, we can quickly discard dominated boxes, enclosing the
Pareto-set and Pareto-front with sets of boxes in decision and criteria spaces.

To discard or narrow boxes the algorithms use the following tools:

– checking if the box is non-dominated by other boxes (i.e., it may contain
non-dominated points),

– set inversion of boxes from the criteria space to the decision space,
– the monotonicity test adapted to multi-criteria case (this test uses the first-

order information).

No currently used interval algorithm ([3], [13], [16]) for computing the Pareto
set uses the second-order information; gradients of the criteria and constraints
are used, but not the Hesse matrices. The method of Toth and Fernandez [4]
allows it by reducing the problem of Pareto-front seeking to repeated global
optimization, but the approach can be applied to bi-criteria problems only.

Our idea is to extend the method proposed in [13] by using Hesse matrices
of criteria and constraints in a way similar to well-known global optimization
algorithms (see e.g. [6]), i.e., by solving the system of second order optimality
conditions (in this case: Pareto-optimality conditions).

2 Generic Algorithm

In previous papers we developed an algorithm to seek the Pareto-set. It subdi-
vides the criteria space in a branch-and-bound manner and inverts each of the
obtained sets using a version of the SIVIA (Set Inversion Via Interval Analysis)
procedure [8]. This version uses some additional tools (like the componentwise
Newton operator) to speedup the computations.

The algorithm is expressed by the following pseudocode described with more
details in previous papers ([13], [15]).

compute_Pareto-set (q(·), x(0), εy, εx)
// q(·) is the interval extension of the function

q(·) = (q1, . . . , qN )(·)
// L is the list of quadruples (y, Lin, Lbound, Lunchecked)
// for each quadruple: Lin is the list of interior boxes (in the decision space),
// Lbound – the list of boundary boxes and Lunchecked – of boxes to be checked yet

y(0) = q(x(0));

L =
{(

y(0), {}, {}, {x(0)})
}
;

while (there is a quadruple in L, for which widy ≥ εy)
take this quadruple (y, Lin, Lbound, Lunchecked) from L;
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bisect y to y(1) and y(2);
for i = 1, 2

apply SIVIA with accuracy εx to quadruple

(y(i), Lin, Lbound, Lunchecked);
if (the resulting quadruple has a nonempty interior,

i.e., Lin �= ∅)
delete quadruples that are dominated by y(i);

end if

insert the quadruple to the end of L;
end for

end while

// finish the Pareto-set computations
for each quadruple in L do

process boxes from Lunchecked until all of them get to Lin or Lbound;
end do;
end compute_Pareto-set

Obviously, both loops in the above algorithm – the while loop and the for each

loop can easily be parallelized.

3 Basic Idea

Let us formulate the set of Pareto optimality conditions; similar to the John con-
ditions set [6]. For an unconstrained problem it has the following form (notation
from [10] is used):

u1 · ∂q1(x)

∂x1
+ · · · + uN · ∂qN (x)

∂x1
= 0 , (2)

· · ·
u1 · ∂q1(x)

∂xn
+ · · · + uN · ∂qN (x)

∂xn
= 0 ,

u1 + u2 + · · · + uN = 1 ,

where ui ∈ [0, 1] i = 1, . . . , N .
The above is a system of (n+1) equations in (n+N) variables. As the problem

is supposed to have multiple criteria, clearly N > 1, which makes System (2)
underdetermined. Solving underdetermined problems is less studied than well-
determined ones (see paper [12] and references therein) and more difficult at the
same time.

To consider a constrained multi-criteria problem, System (2) has to be ex-
tended slightly. In addition to multipliers ui for all criteria i = 1, . . . , N , we
must have multipliers for all constraints: uN+j, j = 1, . . . ,m.

The resulting system would take the following form:

u1 · ∂q1(x)

∂x1
+ · · · + uN · ∂qN (x)

∂x1
+ (3)

+uN+1 · ∂g1(x)

∂x1
+ · · · + uN+m · ∂gm(x)

∂x1
= 0 ,
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· · ·
u1 · ∂q1(x)

∂xn
+ · · · + uN · ∂qN (x)

∂xn
+

+uN+1 · ∂g1(x)

∂xn
+ · · · + uN+m · ∂gm(x)

∂xn
= 0 ,

uN+1 · g1(x) = 0 ,

· · ·
uN+m · gm(x) = 0 ,

u1 + u2 + · · · + uN + uN+1 + · · · + uN+m = 1 ,

which is an underdetermined system of (n + m + 1) equations in (n + m + N)
variables.

This system is used for narrowing the boxes by interval Newton operators in
the SIVIA procedure. The procedure is similar to the one known from interval
global optimization (see [6], [9]).

Previous experiments [12] with underdetermined equations systems, like (3)
suggest that two methods are promising in solving them:

– the componentwise Newton operator [7],
– the Gauss-Seidel (GS) operator with rectangular matrix [9].

The first technique uses linearization of each equation with respect to only one
of the variables at a time. Pairs equation-variable can be chosen using several
heuristics. Our implementation uses the strategy of S. Herbort and D. Ratz [7]
and tries to use all possible pairs subsequently.

The well-know GS operator is commonly used in interval algorithms. In our
case it has to be used for a linear equations system with a rectangular matrix.
This does not change much in the method: we choose one variable for reduction
for each equation.

A slight adaptation of the classical GS procedure has to be done in precondi-
tioning. We use the inverse-midpoint preconditioner, choosing a square subma-
trix with the Gauss elimination procedure, performed on the midpoint-matrix.

In current implementation of our algorithm we can use both versions of the
Newton operator.

4 Implementation

Parallelization of the algorithm was done in a way described in [14] and [15].
This approach parallelizes the “outer loop” of the algorithm, i.e., operations on
different boxes in the criteria space are done in parallel, but there is no nested
parallelism on the SIVIA procedure applied to them. This allows larger grain-
size, but makes us to execute costly operations on the list of sets in a critical
section (deleting all dominated sets). Parallelization was obtained using POSIX
threads [2] as in previous implementations [14], [15].

The program uses the C-XSC library [1] for interval operations.
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5 Examples

We tested three versions of the algorithm:

– the version that uses 1st order information only; no Hesse matrices are com-
puted nor considered,

– the version using the componentwise interval Newton operator with the S.
Herbort and D. Ratz heuristic,

– the interval Gauss-Seidel operator with rectangular matrix.

Two problems to be solved were considered.

5.1 The Kim Problem

Our first example is a well-known hard problem for multi-criteria analysis [11]:

min
x1,x2

(
q1(x1, x2) = −(

3(1 − x1)2 · exp(−x2
1 − (x2 + 1)2) +

−10 · (x1

5
− x3

1 − x5
2

) · exp(−x2
1 − x2

2) +

−3 exp(−(x1 + 2)2 − x2
2) + 0.5 · (2x1 + x2)

)
, (4)

q2(x1, x2) = −(
3 · (1 + x2)2 · exp(−x2

2 − (1 − x1)2) +

−10 · (− x2

5
+ x3

2 + x5
1

) · exp(−x2
2 − x2

1) +

−3 exp(−(2 − x2)2 − x2
1)
))

,

x1, x2 ∈ [−3, 3] .

The second example is related to a practical problem.

5.2 Tuning the PI Controller

A Proportional-Integral-Derivative (PID) controller can be found in virtually
all kind of control equipments. In the so-called ideal non-interacting form it is
described by the following transfer function:

R(s) = k · (1 +
1

Ts
+ Tds

)
, (5)

with parameters k, T and Td. The selection of these parameters, i.e., the tuning
of the PID actions, is the crucial issue in the control-loop design. A large number
of tuning rules has been derived in the last seventy years starting with the well-
known Ziegler-Nichols algorithm.

As many other engineering design problems PID tuning is generally a multi-
objective one and can be solved using multi-objective optimization techniques.
We are going to present an application of the derived algorithm for PID controller
tuning for a non-minimum-phase (inverse response) plant. It is well known that in
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Fig. 1. Control system composed of a plant and a controller with closed-loop feedback

this case the PI controller, i.e., with proportional and integral terms, is adequate.
Performance of the control loop can be measured in different way. In our example
two objective functions were chosen: integrated square error (ISE) and some
measure of overshoot. The ISE criterion minimized alone is insufficient, because
it accepts oscillatory unit-step set-point response of the control-loop, so a second
criterion has to be used. Controlled plant has inverse response, so we use as a
measure of overshoot the span of closed-loop response to unit step in reference.

Applying an interval method to this problem was challenging as closed-form
formulae are necessary to use them. Computing the formula for output signal
of the system required computing the poles of the transition function, i.e., roots
of its denominator, which is a quadratic function. The formulae are different
for different signs of the discriminant Δ of this quadratic equation. As Δ is
often an interval containing zero, one has to consider the interval hull of the
results of all three formulae (for Δ positive, negative and equal to 0). As the
automatic differentiation toolbox of C-XSC [1] does not have such operation,
changes had to be done to the library code. Moreover the formulae are quite
likely to result with improper operations, like division by 0 or computing the
square root of an interval containing negative values. All such cases had to be
carefully implemented.

Nevertheless, using our algorithm we are able to present the Pareto-front to
the control-loop designer, so that they could consider conflicting criteria simulta-
neously and basing, e.g. on Haimes’ multi-objective trade-off analysis [5] choose
the controller parameters properly.

6 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e., 8 Dual-
Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control
of a Fedora 11 Linux operating system. The solver was implemented in C++,
using C-XSC 2.4.0 library for interval computations. The GCC 4.4.4 compiler
was used.

The following notation is used in the tables:

– “1st order” – the version of our algorithm that uses 1st order information
only; no Hesse matrices are computed nor considered,

– “Ncmp” – the version using the componentwise interval Newton operator
with the S. Herbort and D. Ratz heuristic,
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– “GS” – the interval Gauss-Seidel operator with rectangular matrix,
– “high acc.” at the version’s name means results for smaller values of εy and

εx.

For the Kim problem (4) we set computational accuracies in criteria space at
εy = 0.2, and in decision space at εx = 10−3. As high accuracy we used εy = 0.1,
and εx = 10−4, respectively.
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Fig. 2. Pareto-set in decision space and Pareto-front in criteria space computed for the
Kim problem using 1st order information
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Fig. 3. Pareto-set and Pareto-front computed for the Kim problem using component-
wise Newton version of the algorithm (Ncmp)

It is easy to observe by inspection that using 2nd order information results
in dramatic improvement in accuracy of Pareto-set determination for the hard
Kim problem.

For the PID tuning problem we used finer computational accuracies, i.e., in
criteria space it was εy = 0.02, and in decision space – εx = 10−5. As high
accuracy we used εy = 0.001, and εx = 10−6, respectively.

The obtained results allowed control designer to choose P and I parameters,
i.e., k and T , resulting in very small values of rise time and inverse overshoot.
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Fig. 4. Pareto-set and Pareto-front computed for the Kim problem using interval GS
version of the algorithm (GS)

Table 1. Results for the Kim problem (4) and a single-threaded algorithm

1st order Ncmp GS GS (high acc.)

criteria evals. 10543390 4493434 2837044 26662794
criteria grad. evals 3906722 7642454 742694 8068624
criteria Hess. evals 0 1578964 1085072 11293078
bisecs.in crit.space 440 438 434 809
bisecs.in dec. space 956390 372062 253237 2796488
boxes deleted by monot. 17120 2234 6459 18411
boxes deleted by Newton 85716 128997 34390 274630
resulting quadruples 174 171 161 310
internal boxes 352922 101612 80782 1235138
boundary boxes 462448 94513 96066 1191551
Lebesgue measure crit. 4.84 4.76 4.48 2.16
Lebesgue measure dec. 0.76 0.24 0.19 0.13
time (sec.) 71 155 62 655

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

ISE

Js
2

ISE = 0.3379; Js
2
 = 1.2571

0 5 10 15 20 25 30
−0.5

0

0.5

1

time

st
ep

 r
es

po
ns

e

k =  2.045; T = 1.441 
ISE = 0.3379; Js

2
 = 1.2571

−0.2571

Fig. 5. Fragment of Pareto-set and Pareto-front computed for the PID tuning problem
using interval GS version of the algorithm (GS) with the chosen PI controller settings
and the response generated by the closed-loop system



Using the Second-Order Information in Pareto-set Computations 145

Table 2. Results for the PID tuning problem and a single-threaded algorithm

1st order Ncmp GS Ncmp (high acc.) GS (high acc.)

criteria evals. 396436222 228916 231500 4250430 4255408
criteria grad. evals 160959276 87394 23554 1606786 424160
criteria Hess. evals 0 154456 155306 2392690 2390932
bisecs.in crit.space 452 451 452 8261 8262
bisecs.in dec. space 40222521 20318 20532 445048 445494
boxes deleted by monot. 634 108 111 120 123
boxes deleted by Newton 170201 3819 519 54741 10159
resulting quadruples 147 145 145 3589 3589
internal boxes 23795930 9268 9273 223554 223575
boundary boxes 16250540 954 948 28910 28921
Lebesgue measure crit. 0.04 0.04 0.04 0.00192 0.00192
Lebesgue measure dec. 1.85 0.32 0.32 0.00515 0.00515
time (sec.) 4995 14 13 202 203

Table 3. Speedup for parallelized algorithms on the Kim problem

1 2 4 6 8 10 12

1st order time (sec.) 71 41 25 19 17 16 15
speedup 1.0 1.73 2.84 3.74 4.18 4.44 4.73

Ncmp time (sec.) 155 81 41 29 22 19 17
speedup 1.0 1.91 3.78 5.34 7.05 8.16 9.12

GS time (sec.) 62 32 16 11 9 11 10
speedup 1.0 1.94 3.88 5.64 6.89 5.64 6.2

GS time (sec.) 655 342 176 122 92 89 78
(high acc.) speedup 1.0 1.92 3.72 5.37 7.12 7.36 8.40

Table 4. Speedup for parallelized algorithms on the PID tuning problem

1 2 4 6 8 10 12

1st order time (sec.) 4995 2575 1343 956 735 651 531
speedup 1.0 1.94 3.72 5.22 6.80 7.67 9.41

Ncmp time (sec.) 202 114 58 39 29 24 21
(high acc.) speedup 1.0 1.77 3.48 5.18 6.97 8.42 9.62

GS time (sec.) 203 103 53 35 27 22 18
(high acc.) speedup 1.0 1.97 3.83 5.80 7.52 9.23 11.28
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7 Results

It occurred that both version of the proposed modification of the algorithm allow
to enclose the Pareto-set far more precisely. The difference for Pareto-fronts was
only marginal (but not negligible), but for Pareto-sets (in the decision space) the
paving generated by the algorithm using the 2nd order information is more than
3 times smaller (measuring with the Lebesgue measure) for the Kim problem
and about 6 times smaller for the PID tuning problem.

The versions using the componentwise Newton operator is computationally
intensive for the Kim problem. It seems to be caused by the necessity to compute
Hesse matrices (in addition to gradients) using the automatic differentiation
arithmetic.

The traditional interval Newton step, based on the Gauss-Seidel operator,
requires only one computation of gradients of all functions to prepare to narrow
the box. The componentwise operator has to recompute the gradient information
in each step of the narrowing operator, i.e., to recompute all gradients each time.

This phenomenon does not affect efficiency for the PID tuning problem, which
is probably caused by the following reason. All solutions for this problem lie on
the boundaries. The version of the algorithm that uses 1st order derivatives only
is not able to delete the interior boxes at the early stage and has to deal with
them for several iterations. On the other hand both versions using the second
order derivatives are able to delete the interior boxes relatively quickly and most
of their work is analyzing the boundaries for which the Newton’s method cannot
be applied (in our implementation we do not use reduced gradients or Hesse
matrices as in [9]) and consequently there is no difference between the different
Newton operators used.

Parallelization, as it could be expected, improved the performance of the
algorithm. The speedup is satisfactory for 4–6 threads (except the 1st order in-
formation only version for the Kim problem), but it usually scales worse further.
This is probably caused by relatively time consuming critical sections (seeking
for dominated quadruples in a linked list).

8 Conclusions

In the paper we tested two versions of the interval algorithm using the 2nd order
information for seeking Pareto-set of a multi-criteria problem. We compared
them with interval algorithm based on 1st order information only. It occurred
that information enrichment – if processed properly – can improve both efficiency
and accuracy of the algorithm several times.

Also, using the Gauss-Seidel interval operator with rectangular matrix seems
to be a much better solution than using the componentwise Newton operator;
at least for some problems (like the Kim problem).
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9 Future Work

There is some more research to be done about the parallelization. It is going to
be improved by reducing the critical sections. Instead of the synchronized linear
search for quadruples to delete, we are going to store the information about
obtained non-dominated points in a separate shared data structure.
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