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Preface

The tenth Nordic conference on applied parallel computing, Para 2010: State
of the Art in Scientific and Parallel Computing, was held in Reykjavík, Iceland
during June 6–9, 2010. The topics of the conference were announced to include
software, hardware, algorithms, tools, environments, as well as applications of
scientific and high-performance computing. The conference was hosted by the
School of Engineering and Natural Sciences of the University of Iceland, and
the conference venue was in the School of Education of the University of Ice-
land. Three companies in Reykjavík supported the conference financially: the
video game developer CCP, Microsoft Íslandi, and Opin kerfi (Hewlett Packard
distributor for Iceland).

The series of Para meetings began in 1994. The Danish Computing Centre
for Research and Education (UNI-C) and the Department of Informatics and
Mathematical Modelling of the Technical University of Denmark (IMM/DTU)
in Lyngby, Denmark, organized a series of workshops on Applied Parallel Com-
puting, named Para94, Para95 and Para96. Jerzy Waśniewski, senior researcher
at DTU, initiated these workshops and Jack Dongarra, professor at the Uni-
versity of Tennessee, became involved during an extended visit to Lyngby. He
played a key part in promoting the meetings internationally. Since 1998, the
workshops have become a Nordic effort, but both Jerzy and Jack have continued
to be an integral part of the meetings. In fact Jerzy has been a keen advocate
of holding a Para conference in Iceland. The themes and locations of the Para
meetings have been:

PARA94 Parallel Scientific Computing, Lyngby, Denmark
PARA95 Physics, Chemistry and Engineering Science, Lyngby, Denmark
PARA96 Industrial Problems and Optimization, Lyngby, Denmark
PARA 1998 Large Scale Scientific and Industrial Problems, Umeå, Sweden
PARA 2000 New Paradigms for HPC in Industry and Academia, Bergen, Norway
PARA 2002 Advanced Scientific Computing, Helsinki, Finland
PARA 2004 State of the Art in Scientific Computing, Copenhagen, Denmark
PARA 2006 State of the Art in Scientific and Parallel Computing, Umeå, Sweden
PARA 2008 State of the Art in Scientific and Parallel Computing, Trondheim, Norway
PARA 2010 State of the Art in Scientific and Parallel Computing, Reykjavík, Iceland

The Para 2010 conference included five keynote lectures, one tutorial, 11 mini-
symposia consisting of a total of 90 presentations, 39 other contributed pre-
sentations organized under 10 separate topics, four poster presentations, and
eight presentations from industry. Except for the keynote lectures, that were 45
minutes long each, the presentations were organized in five tracks or parallel
streams, with 25-minute slots for each presentation, including discussion. The
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total number of presentations was thus 147. There were altogether 187 partici-
pants from 20 countries:

Denmark 9
Finland 4
Iceland 38
Norway 13
Sweden 17
Australia 2
Austria 2

Canada 1
Czech Republic 3
France 12
Germany 32
Italy 1
Japan 4
Netherlands 2

Poland 16
Russia 2
Spain 7
Switzerland 1
Turkey 1
USA 20

There were volcanic eruptions in Eyjafjallajökull in southern Iceland from March
until June 2010 disrupting international flights, and these may have had an
adverse effect on participation.

Extended abstracts (in most cases four pages long) of all the minisymposium
and contributed presentations were made available on the conference website,
http://vefir.hi.is/para10, and in addition a book of short abstracts (also available
on the website) was handed out at the conference.

After the conference the presentation authors were invited to submit manu-
scripts for publication in these peer-reviewed conference proceedings. The re-
viewing process for the articles appearing here was therefore performed in two
stages. In the first stage the extended abstracts were reviewed to select contribu-
tions to be presented at the conference, and in the second stage the full papers
submitted after the conference were reviewed. As a general rule three referee
reports per paper were aimed for, and in most cases these were successfully ob-
tained. However, in cases where it proved difficult to find three willing referees,
acquiring only two reports was deemed acceptable.

Fred G. Gustavson, emeritus scientist at IBM Research, New York, and pro-
fessor at Umeå University, and Jerzy Waśniewski gave a tutorial on matrix algo-
rithms in the new many core era. Fred celebrated his 75th birthday on May 29,
2010, and the Linear Algebra Minisymposium was held in his honor. The mate-
rial of the tutorial is covered in Fred Gustavson’s article in these proceedings.

A conference of this size requires considerable organization and many helping
hands. The role of the minisymposium organizers was very important. They re-
viewed and/or organized reviewing of contributions to their respective minisym-
posia, both the original extended abstracts and the articles for these proceedings,
and in addition they managed the minisymposium sessions at the conference.
Several members of the local Organizing Committee helped with the reviewing
of other contributed extended abstracts: Elínborg I. Ólafsdóttir, Hjálmtýr Haf-
steinsson, Klaus Marius Hansen, Ólafur Rögnvaldsson, Snorri Agnarsson and
Sven Þ. Sigurðsson. Other colleagues who helped with this task were Halldór
Björnsson, Kristín Vogfjörð and Viðar Guðmundsson.

The editor of these proceedings organized the reviewing of manuscripts
falling outside minisymposia, as well as manuscripts authored by the minisym-
posium organizers themselves. There were 56 such submissions. The following
people played a key role in helping him with this task: Sven Þ. Sigurðsson, Julien
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Langou, Bo Kågström, Sverker Holmgren, Michael Bader, Jerzy Waśniewski,
Klaus Marius Hansen, Kimmo Koski and Halldór Björnsson. Many thanks are
also due to all the anonymous referees, whose extremely valueable work must
not be forgotten.

The conference bureau Your Host in Iceland managed by Inga Sólnes did an
excellent job of organizing and helping with many tasks, including conference
registration, hotel bookings, social program, financial management, and main-
taining the conference website. Apart from Inga, Kristjana Magnúsdóttir of Your
Host was a key person and Einar Samúelsson oversaw the website design. Ólafía
Lárusdóttir took photographs for the conference website. The baroque group
Custos and the Tibia Trio, both led by recorder player Helga A. Jónsdóttir,
and Helgi Kristjánsson (piano) provided music for the social program. Ólafur
Rögnvaldsson helped to secure financial support from industry. Jón Blöndal and
Stefán Ingi Valdimarsson provided valuable TeX help for the editing of the pro-
ceedings.

Finally, I wish to devote a separate paragraph to acknowledge the help of
my colleague Sven Þ. Sigurðsson, who played a key role in helping with the
conference organization and editing of the proceedings through all stages.

October 2011 Kristján Jónasson
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Abstract. While the use of enhanced sampling techniques and parallel
computing to determine potentials of mean force is in widespread use in
modern Molecular Dynamics and Monte Carlo simulation studies, there
have been few methods that efficiently combine heterogeneous computer
resources of varying quality and speeds in realizing a single simulation
result on a distributed network. Here, we apply an algorithm based on
the Monte Carlo method of Wang and Landau within a client-server
framework, in which individual computing nodes report a histogram of
regions of phase space visited and corresponding updates to a centralized
server at regular intervals entirely asynchronously. The server combines
the data and reports the sum to all nodes so that the overall free energy
determination scales linearly with the total amount of resources allo-
cated. We discuss our development of this technique and present results
for molecular simulations of DNA.

1 Introduction

Observing and interpreting the phenomena that occur in complex model sys-
tems of interacting particles is a major computational challenge. Monte Carlo
sampling [13] is often an efficient technique in statistical mechanics for observing
the behavior of these model systems, sampling configurational states according
to their relative contribution to the ensemble partition function. However, diffi-
cult problems in effective sampling arise when transitions between very probable
states of the system can only be obtained by sampling through improbable states
of the system. Similarly, Molecular Dynamics simulations are another widespread
technique used in computer simulation, but they are similarly limited in address-
ing these difficulties, due to the limited sampling times that can be achieved in
a realistic computation time.

A number of enhanced sampling techniques have been proposed over the years
[6,7,18] to attempt to circumvent the problems encountered with these simulation
methods. Often, a major goal is estimating the potential of mean force (PMF),
or relative free energy of states with respect to the value of a specific reaction
coordinate or coordinates. Free energy simulation is an invaluable technique
to characterize a wide range of phenomena in model systems, such as molecular
clustering, ligand-target binding, and the folded landscape that may occur under
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certain conditions for semi-flexible polyelectrolytes such as DNA [1] as well as in
RNA molecules and protein-nucleic acid assemblies of biological relevance. For
dense systems, Molecular Dynamics simulation is sometimes more efficient, but
Monte Carlo is more general in allowing sampling of a reaction coordinate in
the absence of a definition of a force acting along this reaction coordinate. Here
we adapt a common Monte Carlo methodology to the problem of free energy
simulations for the case of intermediate particle densities, for a model in which
ions in solution are represented explicitly but the effect of the solvent is modeled
as an effective electrostatic dielectric constant which models the screening due
to solvent reorientation and polarizability. Importantly, the method presented
here is not model dependent and it is possible to use this approach to optimize
any type of system.

While the free energy is directly proportional to the probability density of a
system to be in a given state with the parameter of interest, in many instances,
large free energy maxima representing energetically unfavorable states may ex-
ist as a barrier to efficient and complete sampling of a parameter space using
the standard Metropolis Monte Carlo procedure [13] in a reasonable time for
computation. In order to circumvent such difficulties, an efficient technique for
generating a uniform density of states, as first introduced by Wang and Lan-
dau [19], has previously been applied to determining the free-energy profile of
molecular systems as a function of a system parameter chosen as the reaction
coordinate [2,9]. Unlike some other methods that generate a flat histogram, this
method is both scalable to large systems and easily parallelized [9], by use of
both multiple simulations for different ranges of the parameter space and mul-
tiple random walks for the same range of the parameter space of interest.

Here, to efficiently perform random walks on individual nodes that share in-
formation conjointly to generate the free energy with respect to a given system
parameter(s), a distributed architecture is proposed. A centralized server to re-
ceive all incoming communication requests is implemented, based on observation
that many network resources are secured from incoming network traffic, in or-
der to routinely update the node-summed potential of mean force (PMF) and
to update the individual nodes. Incoming requests to the server are handled
asynchronously, adding information about sites visited in the individual random
walks, and providing information about the node-summed PMF to these nodes
during the routine reporting intervals.

A few examples of model calculations from DNA and polyelectrolyte physics
are presented, illustrating the timing of the simplest implementations as well as
the implementation and use of the algorithm in a realistic network environment,
combining separate resources to perform a single calculation. With the Wang-
Landau implementation and communication framework described here, difficult
problems that are impossible to feasibly simulate using standard sampling tech-
niques are efficiently performed in parallel with no required synchronicity. We
demonstrate, with a few targetted calculation examples, how the technique may
effectively collect statistics about states that are extremely rare to encounter in
standard Monte Carlo simulations.



Free Energy Monte Carlo Simulations on a Distributed Network 3

2 Method

The Wang-Landau procedure for generating the density of states has been widely
applied to many types of problems in molecular simulation. In our current im-
plementation, a system parameter such as the absolute end-to-end distance or
radius of gyration of a polymer chain is used to characterize the free-energy
landscape of the polymer with respect to variation of this parameter. In the
simplest implementation, a range of interest for a single parameter is studied to
determine the potential of mean force, using a single random walk that deter-
mines the frequency of visiting each value in the range of the system parameter
of interest by dividing the space of values into discrete bins and determining
the total probability of configurations occurring in each bin. Typically, bins are
of uniform size for simplicity, but this behavior can be defined non-uniformly
depending on phenomena under consideration - in some cases, only one region
is of interest and coarse-graining other bins to determine the overall probability
of these states may be more efficient.

In this algorithm, every time the current configurational state of the random
walk falls within a given bin x, a biasing function U∗(x) is updated according to
the current value of the simulation parameter ΔU∗, corresponding to a penalty
value for biasing the simulation away from this bin. Initially, the value of U∗(x)
is zero for all bins, and the parameter ΔU∗ is chosen to be fairly large, such as
0.001kBT . Every time a configurational state occurs in simulation, the value of
U∗(x) for the corresponding bin is updated according to:

U∗
new(x) = U∗(x) +ΔU∗ . (1)

The Metropolis criteria used to determine the acceptance of a proposed system
move to a configuration specified by coordinates r′ is determined based on the
total potential plus bias energy of the proposed configuration, U(r′)+U∗(x(r′)),
relative to this value for the previous configuration with coordinates r. This
acceptance probability is written as follows (β is the Boltzmann factor 1

kBT ):

p = min(1, exp [−β {(U(r′) + U∗(x(r′))− (U(r) + U∗(x(r)))}]) . (2)

Rejection of a proposed change and returning to the previous configuration with
coordinates r includes also adding the penalty update value ΔU∗ again to the
corresponding bin x(r), updating U∗(x(r)). In addition, configurations that fall
outside of any system parameter bin (for simulations where a limited range of
possible system parameter space is examined) are discarded as having infinite
potential energy, treating the move also as a rejection and returning to the
previous system configuration r [16].

This procedure continues until all bins x are visited by a number of configu-
rations p(x) that is within a given Δp∗ of the average number of configurations
per bin, for example, Δp∗ = 20%. At this point, the probability of visiting each
bin is uniform to within the error given by this parameter, with respect to the
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current penalty update value ΔU∗. Then, the number of visits to each bin, p(x),
is reset to zero and the biasing potential is retained, but proceeds to be updated
according to adding a smaller value of ΔU∗ for each visit. A new histogram p(x)
is then collected for this new penalty update value.

The value of ΔU∗ is updated according to some function that monotonically
decreases to zero, for example, ΔU∗

new = ΔU∗/4. For this particular update
choice, every four visits to a given system parameter bin with this new penalty
update value will increase the biasing function the same amount as one visit
in the previous “sweep”, i.e., with the previous ΔU∗ value. Each iteration con-
cludes when all the values of p(x) are within the same Δp∗ of the mean p(x)
value of bin visits (the tolerance Δp∗ is the same for every sweep in the present
implementation).

The whole procedure proceeds until the value of ΔU∗ decreases below some
tolerance, such as ΔU∗ < 10−6kBT . At this point, ΔU

∗ is set to zero (no more
updates are made to the biasing function U∗(x)), and a final new histogram p(x)
is collected for the random walk with the resultant biasing function. This con-
cluding random walk obeys the detailed balance criteria, thus the sampling that
is performed is equivalent to umbrella sampling with the ideal biasing potential
that generates a flat histogram with respect to the system parameter of interest
x. The fluctuations in the logarithm of the number of visits to each bin with this
final sampling (times the factor kBT ) may be used to estimate the statistical
error in the resulting U∗(x).

In order to allow multiple random walks on separate computing nodes to
efficiently determine the value of U∗(x) in parallel for each sweep, a centralized
server is implemented (the present implementation communicates using TCP/IP
sockets). Alternatively, one of the nodes can assume the role as this centralized
server, with redundancy achieved automatically through sharing of the data,
allowing another node to pick up as the central server if this node is disconnected.
As a new node joins the network, it requests from this server the current value
of the simulation parameter ΔU∗, the system parameter(s) x to measure, as well
as the range of values of x to consider and the manner in which this range is
divided into discrete bins. In addition, upon joining the computational network,
the node receives the current value of U∗(x) for each bin, which is the sum of all
previous updates made by the other nodes in the current sweep and any other
sweeps that have already been performed.

The node then performs a random walk with the current bias function, making
new updates to U∗(x) according to the current penalty valueΔU∗, and reports to
the server only these new visits p(x) and the value of ΔU∗ used. In order to take
advantage of this architecture, nodes must communicate fairly frequently, for ex-
ample, reporting to the server every ten to one hundred moves. Speed-up due to
parallelization is often only achieved when updates to U∗(x) are communicated
relatively frequently, thus enabling nodes to rapidly explore the energy landscape
by combining information about visited values of the system parameter space
and the corresponding increases to the biasing function. However, in some cases
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this may not be a requirement if simulations are often trapped in separate regions
of high probability and need to make many updates to U∗(x) before sampling
outside regions. Also, in cases of large simulation systems, the time needed to
perform ten to one hundred moves may be much greater, significantly reducing
the overhead involved in adding more nodes.

The server examines the value of ΔU∗ for all incoming data, in order to
ensure that there was no update to the next sweep of the calculation since the
last incoming report from this node; this also verifies that the packet is correctly
delivered in an unreliable network. If the data corresponds to the current sweep,
the server adds the new visits of this node to the node-summed U∗(x) and p(x),
and reports this summed U∗(x) to the client, which the client then uses as the
current value of the bias function. In addition, if p(x) is then flat to within the
chosen accuracy Δp∗, the server updates the penalty value ΔU∗ and reports
this new value to the client to use when updating U∗(x). Otherwise, if the server
has proceeded to the next sweep since the previous reporting from this node, it
ignores the incoming data and informs the client of the new value of ΔU∗ to
use when updating bins, and reports the current node-summed value of U∗(x)
without including this invalid data.

When the server updates the penalty value ΔU∗ below the chosen tolerance,
it finally reports to all nodes for incoming requests and begins collecting a final
histogram that is flat to the accuracy of the last sweep. At this point, sampling
continues but no more updates are made to U∗(x). Statistics for the value of
some other system parameter y can then be obtained at this point with the
proper detailed balance condition, by measuring the value of this parameter as
a function of the system parameter x for these random walks and computing a
Boltzmann-weighted sum over all of the system parameter bins, as expressed:

〈y〉 =

∑
x

〈y〉x exp(βU∗(x))∑
x

exp(βU∗(x))
. (3)

Finally, the potential of mean force or free energy of the system as a function of
the system parameter x (to an arbitrary constant C) for the discretized region
of interest is given as:

F (x) = −U∗(x) + C . (4)

A multi-dimensional extension of this algorithm is trivially obtained by perform-
ing updates over a multi-dimensional grid that includes bins for multiple system
parameters, e.g., two-dimensional sampling over two unique system parameters
x1 and x2 can be performed by dividing the range into discrete bins on a 2D
grid, in order to determine F (x1, x2) = −U∗(x1, x2) + C. Essentially, it is anal-
ogous to a one-dimensional histogram with total number of bins X equal to the
product of number of bins for each parameter, or X = x1x2 elements.
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3 Models and Results

3.1 Semi-flexible Charged Bead Models of Polyelectrolytes for
Polymer Folding

In this section we explore the performance of our technique using a homoge-
neous network of computing nodes. The system under consideration is a charged
polymer (freely-jointed model) with counterions to maintain the system’s elec-
troneutrality within a rigid cell of radius, R (see Figure 1, left). No particle or
segment of the chain can go outside the cell. Beads of the chain are connected
with rigid bars. Moves of the chain and counterions are self-avoiding, so neither
ions nor chain beads can overlap.

Fig. 1. (Left) The polymer model used in calculations evaluating the algorithm per-
formace on a homogeneous network of computing nodes. (Right) The relative speed-up
(calculated proportionally to the inverse of computation time) for different numbers of
nodes in the synchronous MPI implementation.

All the electrostatics are calculated using Coulomb’s Law, U(rij) = Ke2
ZiZj

εrij
.

K is a constant, e is the electron charge, rij is the distance between particles
i and j, Zi and Zj are the valencies of particles i and j, and ε is the dielectric
constant of a media. The original version of our algorithm was implemented on
a homogenous network using MPI [9]. Every node contributed the same amount
of updates to the flat histogram. Details about the model and implementation
have been published earlier [8].

As the algorithm has stochastic behavior, care needs to be taken when dis-
cussing the performance. Specifically, this means that the same result (within
statistical errors) can be obtained with very different calculation times. The
number of steps needed to obtain a result will be different from run to run. The
exact reasons of this behavior is under intensive investigation[11,14]. In order to
calculate the efficiency together with error estimates, we ran every simulation
10 times.
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As illustrated by the graph in Figure 1 (right), parallelization reduces the
execution time significantly, in this case from an execution time of 550 minutes
on a single computing node to 22 minutes on 24 nodes. The relative speed-up
is νp = t1/tp, where t1 is the execution time for the program on one core and
tp is the execution time for p cores. The figure shows that the calculation scales
almost linearly at least up to 24 nodes.

3.2 Double-Helical Models of DNA and Charged Solute Interactions

While the semi-flexible ion bead models of polyelectrolytes are very simplified
models that are feasible for large-scale polymer folding simulations, a more re-
alistic account of the geometry of a polymer such as double-stranded DNA may
give clearer insight into the effect of electrostatic interactions in inducing localized
bending in short polymers, such as observed in protein-DNA interactions induced
by the E. coli bacterial nucleoid protein HU [5], which contains positive charge
due its high content of the cationic amino acid Lysine and binds to double-helical
DNA with little to no sequence specificity [17]. To attempt to address basic ques-
tions about the role of electrostatic mechanisms in localized DNA bending, a more
detailed but coarse-grained base-pair step parameter model that incorporates the
flexibility of DNA as modeled in previous work [4], and extended to consider the
shape and charge of double-stranded DNA and approximate positions of anionic
-1 phosphate charges along the grooves of the double helix, is incorporated into
ion simulations of the electrostatic environment around the polymer.

Fig. 2. (Left) Model of DNA-solute interaction calculation. The central axis of DNA is
aligned along the z axis with the central base pair at the origin. A solute is free to move
within the plane defined by z = 0 where the central base pair plane is positioned, and
the DNA-solute potential of mean force is calculated relative to the solute’s distance
from the origin, r. The electrostatic interactions between DNA and ions and solute are
represented by approximate positions of the DNA phosphates, as illustrated in red.
(Right) Result for two simulations using the asynchronous distributed method, one
in the presence of monovalent cation salt (dashed line) and one in a mixed monova-
lent/divalent cation salts (solid line). The value of the resulting U∗(r) is plotted with
the axis reversed to represent the resulting PMF, shown in kBT energy units.
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Here, the cell model is used, placing a DNA molecule containing 35 base pairs
within a cell of radius 100 Å, with the middle base pair centered at the origin of
the cell. The DNA radius is modeled as a flexible hard cylinder of radius 11 Å for
purposes of excluding ions from the space occupied by the polymer. Sixty-eight
neutralizing monovalent ions of +1 charge with standard 2 Å radius are placed
in the cell to neutralize the 68 phosphate charges (34 per strand), along with
additional salt with a total positive charge of 350. Simulations are performed at
a temperature T = 300K, where 1 kcal/mol of energy is approximately equal to
1.6kBT .

In one system, the positive charge is entirely composed of monovalent cations,
while in the other system there are 250 monovalent and 50 divalent cations, and
both systems include 350 monovalent anions. In addition, the charged solute
of charge +10 and radius 5 Å is placed within the plane defined by z = 0,
and another 10 monovalent anions are added into the cell in order to maintain
complete electroneutrality. These two simulation conditions roughly represent a
concentration of 100 and 140 mM monovalent salt, similar to conditions often
encountered in vivo. The ionic strength of the systems is equal in both cases, but
the second case incorporates some of this charge as divalent cations (at a low con-
centration representing at most 20 mM), which bind tightly to double-stranded
DNA in both analytical counterion condensation theory and in our simulation
observations. This model also uses the Coulomb interaction potentials for all
electrostatic interactions (the DNA-solute interaction is purely electrostatic),
and the cell model is identical to that in the previous section and illustrated
there in Figure 1.

In order to model the flexibility of double-helical DNA in a canonical BDNA-
like structure, an elastic potential in terms of base-pair step parameters from
previous work [3,4] is applied, where θ1, θ2, and θ3 are the tilt, roll, and twist,
respectively, of each of 34 base-pair steps of the 35 base-pair DNA:

U =
kT

2
(θ21 + 0.02θ22 + 0.06θ33) . (5)

The phosphates move with the DNA steps at a position relative to the center M
of the mid-basis of each base-pair step, in terms of displacements along the short,
long and normal unit axis vectors (x, y, and z) described in these same works [3].
These approximate positions of phosphates p1 and p2 for each base-pair step are
deduced from analysis of high-resolution X-ray and NMR structures for Protein
Databank (PDB) entries containing BDNA-like DNA (Dr. Andrew V. Colasanti,
personal communication) and are given as:

p1 = −3x+ 8.9y − 0.4z , p2 = −3x− 8.9y+ 0.4z . (6)

Each calculation is performed by 16 independent nodes, reporting data asyn-
chronously using the client-server architecture. Calculations begin with ΔU∗ =
(6.4 ∗ 10−3)kBT and procede for 5 iterations, with each successive iteration
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at one-fourth of the previous penalty value, down to a minimum of ΔU∗ =
(2.5∗10−6)kBT . Each move series consists of a random displacement of each ion
up to a distance of 5 Å, followed by a global pivot of each base pair by a bend
and twist of up to 1 degree each, followed by random displacement of the solute
up to 1 Å. The solute is constrained in the z = 0 plane of the central base pair
so that motions only in the x and y coordinates are allowed. The potential of
mean force representing the distance between this solute and the center of this
base pair is computed in 50 bins ranging from r = 20 Å and r = 50 Å, and
the final obtained PMF which produces equal probability of visiting each bin is
then normalized by the area A of each circular disc-like region and reported in
terms of the computed probability density ρ = p/A as −kBT ln ρ. In addition,
the average bending angle of DNA is calculated as a function of the DNA-solute
distance r, and the average x and y coordinates of the solute are also computed
for each r bin.

Figure 2 illustrates the model of DNA and solute, and the electrostatic rep-
resentation of DNA (in red) on the left, and the graph on the right reports the
resulting PMF for the cases with monovalent and with monovalent and diva-
lent cations, to illustrate the effect of salt on modulating solute binding. The
calculation also indicates (results not shown) that the solute binds stronger to
DNA when divalent are absent, also inducing greater DNA bending of nearly
45 degrees instead of nearly 38 degrees in the mixed salt solution at the closest
distances of approach. In both cases, the solute-DNA attraction is capable of
inducing some additional DNA bending over the average 33 degree bend found
for when the solute is far from DNA. Statistics on the solute position also indi-
cate that the solute approaches the center of the DNA model more often in the
major groove of DNA, the side opposite of phosphates neighboring the central
base pair (at positive x values).

The two asynchronous calculations presented here each took roughly 48 total
hours (each node of 16 total ran for 48 CPU-hours per calculation). Detailed
timing calculations for the asynchronous method used here on distributed nodes,
for comparison to the presented timings obtained using the previous synchronous
MPI method on single clusters, is currently a work in progress.

4 Discussion

For modeling the energetics of charged systems of particles, mean-field approxi-
mations of the electrostatic interaction based on Poisson-Boltzmann theory are
in many cases inaccurate and fail to predict attractive interactions that may
manifest under appropriate conditions. Polyelectrolytes such as DNA exhibit
complex interactions with counterions, which strongly associate with the surface
of a charged polymer like DNA, a phenomenon originally described by Manning
and Oosawa [12], and termed counterion condensation. The explicit treatment
of ions considered here and found extensively in past literature [15] allows for
a more accurate depiction of the association between a polyelectrolyte and the
ions in a solution environment.
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Fig. 3. Scaling up to as many as 384 nodes within the original MPI implementation.
The ideal speed-up is shown in the dashed line, while the three solid lines represent
the resulting speed-up for three different sets of polyelectrolyte simulations.

Our results show that for polyelectrolyte models, the build up of counterions
in shielding electrostatic interactions in the vicinity of the large charge density
of the polymer is poorly described by a Boltzmann distribution of ions, due to
strong electrostatic interactions and the correlation of ions built up around the
polymer. While the counterion condensation theory gives a much more accurate
account of the observed correlations in our ion simulations for polyelectrolytes,
it also does not, in its simple form, quantitatively provide an accurate fit to
the observed interactions for flexible polymers, such as complex attractive forces
between segments of the polymer chain at close distances, or the induced local
bending in a short double-stranded DNA molecule due to the presence of a
charged solute. These kinds of longstanding questions can be addressed by large-
scale simulations that are facilitated by the methods presented here.

The scaling of the algorithm with number of nodes from work with the previ-
ous synchronous method of performing the described Wang-Landau Monte Carlo
method with MPI is shown in Figure 3. The asynchronous distributed method
has advantages in that individual computations do not need to be on the same
cluster, and computations do not have to wait to synchronize. In practice, the
performance of the two is identical, but the distributed method allows for much
more robust scaling due to being able to efficiently combine many more resources
and is thus able to achieve a much greater number of nodes in practice. Some of
the small losses of ideal scaling with hundred of CPUs observed with the earlier
method in Figure 3 may be due to synchronization delays.

Another advantage of the asynchronous distributed method presented here is
in the maximization of the use of computer resources. The distributed Wang-
Landau approach allows for dynamic resizing of an ongoing simulation, such that
unallocated computer resources may be allocated to contribute to the calculation
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for just a fraction of the total simulation time. This allows for maximizing the to-
tal amount of computer time dedicated to the computation under the constraints
of scheduling issues often encountered with large supercomputing resources.

The applications of distributed and cloud computing to problems in molec-
ular simulation using the free energy methods presented here are endless. In
addition, the ideas presented here may be adapted to Molecular Dynamics sim-
ulations using similar techniques to Wang-Landau Monte Carlo sampling, such
as Metadynamics [10], to similarly obtain free energies from biasing functions
and evaluate histograms in parallel over the distributed client-server framework
described in this work. With the approach presented here, the goal of truly
massive-scale simulations for answering difficult questions in complex systems
may be realized.

References

1. Bloomfield, V.A.: DNA condensation by multivalent cations. Biopolymers 44(3),
269–282 (1997)

2. Calvo, F.: Sampling along reaction coordinates with the Wang-Landau method.
Molecular Physics 100, 3421–3427 (2002)

3. Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA
elasticity. Journal of Chemical Physics 118, 7127–7140 (2003)

4. Czapla, L., Swigon, D., Olson, W.K.: Sequence-dependent effects in the cyclization
of short DNA. Journal of Chemical Theory and Computation 2(3), 685–695 (2006)

5. Czapla, L., Swigon, D., Olson, W.K.: Effects of the nucleoid protein HU on the
structure, flexibility, and ring-closure properties of DNA deduced from Monte Carlo
simulations. J. Mol. Biol. 382(2), 353–370 (2008)

6. Ferrenberg, A.M., Swendsen, R.H.: Optimized Monte Carlo data analysis. Phys.
Rev. Lett. 63(12), 1195–1198 (1989)

7. Henin, J., Fiorin, G., Chipot, C., Klein, M.L.: Exploring multidimensional free
energy landscapes using time-dependent biases on collective variables. Journal of
Chemical Theory and Computation 6, 35–47 (2010)

8. Khan, M.O., Chan, D.Y.C.: Effect of chain stiffness on polyelectrolyte condensa-
tion. Macromolecules 38(7), 3017–3025 (2005)

9. Khan, M.O., Kennedy, G., Chan, D.Y.C.: A scalable parallel Monte Carlo method
for free energy simulations of molecular systems. J. Comput. Chem. 26(1), 72–77
(2005)

10. Laio, A., Gervasio, F.L.: Metadynamics: a method to simulate rare events and
reconstruct the free energy in biophysics, chemistry and material science. Reports
on Progress in Physics 71(12), 126601 (2008)

11. Lee, H.K., Okabe, Y., Landau, D.P.: Convergence and refinement of the Wang-
Landau algorithm. Technical Report cond-mat/0506555 (2005)

12. Manning, G.S.: Counterion binding in polyelectrolyte theory. Accounts of Chemical
Research 12(12), 443–449 (1979)

13. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equa-
tion of state calculations by fast computing machines. The Journal of Chemical
Physics 21(6), 1087–1092 (1953)

14. Morozov, A.N., Lin, S.H.: Accuracy and convergence of the Wang-Landau sampling
algorithm. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 76(2 pt. 2), 026701 (2007)



12 L. Czapla et al.

15. Olmsted, M.C., Bond, J.P., Anderson, C.F., Record Jr., M.T.: Grand canonical
Monte Carlo molecular and thermodynamic predictions of ion effects on binding of
an oligocation (L8+) to the center of DNA oligomers. Biophys J. 68(2), 634–647
(1995)

16. Schulz, B.J., Binder, K., Muller, M., Landau, D.P.: Avoiding boundary effects in
Wang-Landau sampling. Phys. Rev. E Stat. Nonlin. Soft. Matter Phys. 67(6 pt.
2), 067102 (2003)

17. van Noort, J., Verbrugge, S., Goosen, N., Dekker, C., Dame, R.T.: Dual archi-
tectural roles of HU: formation of flexible hinges and rigid filaments. Proc. Natl.
Acad. Sci. U S A 101(18), 6969–6974 (2004)

18. Voter, A.F.: Parallel replica method for dynamics of infrequent events. Physical
Review B 57, 13985–13988 (1998)

19. Wang, F., Landau, D.P.: Efficient, multiple-range random walk algorithm to
calculate the density of states. Phys. Rev. Lett. 86(10), 2050–2053 (2001)



Numerical Investigation of the Cumulant

Expansion for Fourier Path Integrals

Nuria Plattner1, Sharif Kunikeev2, David L. Freeman2, and Jimmie D. Doll1

1 Department of Chemistry
Brown University

Providence, RI 02912
2 Department of Chemistry
University of Rhode Island

Kingston, RI 02881

Abstract. Recent developments associated with the cumulant expan-
sion of the Fourier path integral Monte Carlo method are illustrated
numerically using a simple one-dimensional model of a quantum fluid.
By calculating the Helmholtz free energy of the model we demonstrate
that 1) recently derived approximate asymptotic expressions for the cu-
mulants requiring only one-dimensional quadrature are both accurate
and viable, 2) expressions through third-cumulant order are significantly
more rapidly convergent than either the primitive Fourier method or the
partial average method, and 3) the derived cumulant convergence orders
can be verified numerically.

Keywords: path integral, Monte Carlo, cumulant expansion.

1 Introduction

Computational algorithms[5,24] using path integral approaches[13,16] for quan-
tum statistical mechanics have been used for in excess of 30 years, and the tech-
niques have become part of the standard set of methods available to
practitioners of computational chemistry and physics.[1,10,4] One approach to
numerical path integration for quantum statistical mechanics is often called
discrete path integration (DPI), and begins with the quantum density matrix
in coordinate representation (we assume a one-dimensional system for simplic-

ity), ρ(x, x′) = 〈x′|e−βĤ |x〉, where x and x′ are particle coordinates, Ĥ is the
system Hamiltonian operator, and β is the inverse temperature. By writing

exp
(
−βĤ

)
=
[
exp

(
−βĤ/P

)]P
and introducing the resolution of the identity

P times into the density matrix element, and by using a Trotter product,[27]
approximations to the full density matrix are generated that become exact in
the limit of infinite P . We refer to the intermediate coordinate states as path
variables, and a key concern is the size of P required so that the approximations
do not introduce systematic errors in computed averages that are larger than
the statistical noise generated during the simulation. It has been proven[4] that

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 13–22, 2012.
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DPI converges to the exact density matrix as P−2, and Suzuki[25] has shown
that there is no simple approach to improve these convergence characteristics.
For the special case of intermolecular forces represented by pair potentials, there
is empirical evidence[4] that alternative formulations using accurate pair prop-
agators enhance the convergence rate to P−3. Other work[19,15,7,6,3,2,23] has
shown even better convergence characteristics by including higher-order com-
mutators and generating improved short-time propagators, and recent work on
many-body systems has been promising.[23]

An alternative to the DPI method is often called the Fourier path integral
(FPI) approach.[20,10] The FPI method starts with the Feynman-Kac expression
for the density matrix[13,16]

ρ(x, x′) =
∫

Dx(u) exp{−S[x(u)]} (1)

where
∫ Dx(u) represents an integral over all paths connecting x to x′ in imag-

inary time u and S is the action

S[x(u)] = β

∫ 1

0

du
[m
2
ẋ2 + V [x(u)]

]
(2)

with V the system potential energy. In the Fourier method each path x(u) is
expanded in a Fourier series about a straight-line path connecting x to x′,

x(u) = x+ (x′ − x)u + σ

∞∑
k=1

akΛk(u) (3)

with σ =
√
β�2/m, Λk(u) =

√
2 sin(kπu)/(kπ) and m the mass of the particle.

The integration over all paths is replaced by an integral with respect to the
infinite set of Fourier coefficients, {ak}. In actual simulations the Fourier series
is truncated at some upper index K with the K Fourier coefficients being the
path variables. As with the DPI method where the convergence with respect to
P is an important issue, the convergence of computed properties with respect to
the Fourier index K is central.

In the current work we focus on the FPI method and use a one-dimensional
model to illustrate recent developments[18,17] using a cumulant expansion that
significantly enhance the convergence properties of simulations with respect to
K in a manner that is amenable to practical applications. The contents of the
remainder of this paper are as follows. In Section 2 we present the key theoretical
developments associated with the cumulant expansion for Fourier path integrals.
In Section 3 we describe the one-dimensional model system used to illustrate our
key results, and we present numerical data illustrating the principal findings of
Ref. [17]. We summarize and discuss our results in Section 4.
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2 Theory

As shown elsewhere[12] the primitive FPI method converges as K−1, and the
partial averaging method[11,8] has been introduced to enhance this convergence
rate. It is useful to think of the partial averaging method as the first term in a
cumulant series for the density matrix,[9,17] and we now describe that cumulant
series and its convergence properties.

The cumulant expansion exploits a series of terms generated by the tail series
(k > K) in the Fourier expansion. Defining

xK(u) = x+ (x′ − x)u +
K∑

k=1

akΛk(u) (4)

and

xK+1(u) =

∞∑
k=K+1

akΛk(u) (5)

the density matrix can be expressed in terms of a tail integral (TI)

ρ(x, x′) =
K∏

k=1

(∫ ∞

−∞

dak√
2π

e−a2
k/2

)
〈exp(−βV )〉TI (6)

where the path-averaged potential energy is defined by

V =

∫ 1

0

duV [x(u)] (7)

and the average with respect to the TI is defined by

〈exp(−βV )〉TI =

∞∏
k=K+1

(∫ ∞

−∞

dak√
2π

e−a2
k/2

)
exp(−βV ). (8)

By expanding the exponential on the right hand side of Eq. (8) in a power series,
the TI can be expressed in terms of a series of moments

〈exp(−βV )〉TI = 1 +

∞∑
p=1

(−β)p
p!

μp (9)

where the moments are defined by

μp = 〈V p〉TI . (10)

The cumulant expansion is obtained by replacing the sum of moments by an
exponential

〈exp(−βV )〉TI = exp(νc) (11)
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where

νc = ln

(
1 +

∞∑
p=1

(−β)p
p!

μp

)
(12)

=

∞∑
k=1

(−β)k
k!

μck, (13)

and μck is called the kth-order cumulant.
Using the cumulant expansion the density matrix can be written

ρ(x, x′) =
K∏

k=1

(∫ ∞

−∞

dak√
2π

e−a2
k/2

)
exp(−βμc1 + (β2/2)μc2 − (β3/6)μc3 + . . .). (14)

If we truncate the exponential on the right hand side of Eq. (14) at the first-order
cumulant, we obtain the partial average approximation to the full density matrix.
As has been understood for some time,[21,17] the partial average method con-
verges asymptotically as K−3. Implementation of the partial averaged method
requires that the potential involved have a readily available Gaussian transform.
Because many potential functions used in simulations have either no finite Gaus-
sian transform or have a Gaussian transform not expressible in closed form, the
partial average method has typically been used only in approximate forms with
decreased convergence rates. The Lennard-Jones potential is an example of an in-
teraction that is not amenable to full partial averaging. While the Lennard-Jones
interaction appears to be problematic, we have recently shown[18] that we can
fit the Lennard-Jones potential to functions having closed-form Gaussian trans-
forms providing results having negligible systematic errors. The current work
uses a one-dimensional model that exploits the successful use of Gaussian-fit
potentials.

In a recent publication[17] we have demonstrated analytically that the cumu-
lant expansion truncated at order p converges to the exact density matrix as
K−(2p+1). Consequently, the first-order cumulant (partial averaging) converges
asymptotically as K−3, the second-order cumulant converges as K−5 and so on.
Previously,[9] we have examined the possibility of including the second-order
cumulant. Our past efforts have been hampered by the need to evaluate numer-
ically nested multiple integrals with respect to the imaginary time variable u.
In our most recent work,[17] by examining asymptotic representations of the
higher-order cumulants, we have developed expressions in the asymptotic limit
through third-cumulant order requiring u integrations in only a single dimen-
sion. Through the third-order cumulant these asymptotic expressions retain an
asymptotic convergence rate of, at least, K−5. A goal of the current work is to
provide a numerical demonstration that we reach the asymptotic convergence
rate rapidly so that our methods are viable.

Space limitations make it impossible to produce the proof of the assertions in
the previous paragraph, but formal proofs can be found in Ref. [17]. We do find
it useful to give the asymptotic forms for the second and third-order cumulants.
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Using Eqs. (77) and (98) from Ref. [17], we have

μc2=
σ2

3π4K3

{
4V ′(x)2+

σ2

2

∫ 1

0

du(V ′′
PA[xK(u)])2

}
+
2(−1)Kσ2

π4K4
V ′(x)2+O(K−5) (15)

and

μc3 =
σ4

5π6K5

{
σ2

∫ 1

0

du(V ′′
PA[xK(u)])3 + 6V ′′(x)(V ′(x))2

}
+O(K−6) (16)

where to simplify the current discussion we have limited the expressions to one-
dimensional systems, VPA represents the partial-average potential,[11,8] and the
expressions apply only to diagonal density matrix elements. We have also cor-
rected a typographical error from Ref. [17] in Eq. (16) where the partial averaged
rather than the bare potential is included inside the u integration on the right
hand side. Only one-dimensional integrals appear in Eqs. (15) and (16) making
the expressions numerically tractable.

We have included terms through third cumulant order in Eq. (14), because
truncation at second order can lead to partition functions that are not finite.
While partial averaging is well behaved, the second-order cumulant appears in
the exponent with a positive sign. In regions of space where the potential is
highly repulsive, the second-order term can dominate the first-order cumulant
resulting in a divergent partition function. The inclusion of the third-order cu-
mulant (having a negative sign) eliminates the divergence. Consequently, we
have well-behaved results when both Eqs. (15) and (16) are introduced into Eq.
(14). Numerical evidence supporting our assertion of the utility of these methods
appears in the next section.

3 Results

To explore numerically the utility of the asymptotic representations of the den-
sity matrix through third-cumulant order, we have also generated data for a
one-dimensional system where we have used the asymptotic expressions given in
Eqs. (15) and (16). The one-dimensional system chosen is a Gaussian fit to the
Lennard-Jones cage potential studied previously[14] as a model for particles in
a liquid. The explicit form used is

V (x) = Vg(a− x) + Vg(a+ x) (17)

where

Vg(x) = 4ε

(
a1 exp

{
−c1

(x
σ

)2
}
+ a2 exp

{
−c2

(x
σ

)2
})

(18)

with associated parameters a1=3177.6792398702582, a2=−1.4800039095374943,
c1 = 8.993289559255235, c2 = 1.2988205358018494, and Lennard-Jones parame-
ters chosen for neon, ε = 35.6K and σ = 2.749 Å. The cage parameter, a, is taken
to be 21/6σ, the minimum of the one-dimensional Lennard-Jones potential. The
Helmholtz free energy, A expressed in units of the Boltzmann constant k, at
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Fig. 1. The free energy of the cage potential in units of the Boltzmann constant k as
a function of Fourier index K. The solid circles represent the primitive Fourier path
integral data, the squares represent data computed with the first-order cumulant and
the triangles have been obtained using the asymptotic expressions through cumulant
order 3. As discussed in the text, the dashed line represents the numerically exact result
determined using numerical matrix multiplication. The solid lines connecting the data
points are included as a visual aid and have no independent meaning.

3.56 K (0.1 ε) as a function of the Fourier index K is represented in Fig. 1. To
calculate A, we have first determined the diagonal density matrix as a function
of coordinate using Eq.(14) followed by a quadrature evaluation of

A = −kT ln

∫ ∞

−∞
dxρ(x, x). (19)

The horizontal dashed line in Fig. 1 represents the exact result determined us-
ing numerical matrix multiplication (NMM).[26] The NMM calculation has been
performed on an equal spaced quadrature grid with the coordinate x ranging
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from -2.0 to 2.0 Bohr and a grid separation of 0.05 Bohr. For convergence 1024
iterations have been included. The free energy is then determined using trape-
zoid rule quadrature from the same grid points as generated from the NMM
calculation. Using the same grid the primitive Fourier and cumulant values of
the density matrix elements have been determined using Monte Carlo by gen-
erating Gaussian random noise for the Fourier coefficients. As with NMM the
free energy is determined using trapezoid rule quadrature. The circles in Fig.
1 represent the primitive Fourier data, the squares represent the first-order cu-
mulant data (partial averaging) and the triangles represents the data generated
asymptotically through third cumulant order using Eqs. (15) and (16). The error
bars generated from the Monte Carlo simulations are smaller than the resolu-
tion of the graph. The dramatic rapid convergence of the third-order cumulant
approach is evident.

2.3 2.4 2.5 2.6 2.7
ln (K)

-6

-5.5

-5

-4.5

ln
 (

A
-A

e)

y = 7.0165 - 5.011 x   R=0.9897

Fig. 2. The natural logarithm of the error in the free energy (error = A−Ae) computed
with the asymptotic expression through third cumulant order as a function of the
natural logarithm of the Fourier index K. The least-squares computed slope (shown in
the form y = b + mx with R the regression coefficient) is consistent with the formal
asymptotic convergence rate of K−5. The scatter of the plotted points reflects the
statistical fluctuations of the Monte Carlo generated results.

Numerical investigations of the asymptotic convergence rates of the primitive
Fourier and first-order cumulant methods have appeared in previous work.[22]
To determine numerically the asymptotic convergence order of the asymptotic,
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third-order cumulant method, we assume the difference between the exact
Helmholtz free energy Ae and the computed Helmholtz free energy A as a func-
tion K has the form

A− Ae = B/Kg (20)

where B is a constant and g is the exponent defining the asymptotic behavior.
Assuming K to be sufficiently large for asymptotic behavior, a graph of the
natural logarithm of A − Ae as a function of ln K should provide −g as the
slope. We have found the convergence of A − Ae not to be monotonic until
K = 10, and in Fig. 1 we present the previously discussed logarithmic plot for
K = 10 through 14. For K > 14 the error in the free energy becomes too small
to display meaningfully. The computed slope is consistent with an asymptotic
convergence rate of K−5.

4 Discussion

In a previous publication[17] we have formally explored the convergence char-
acteristics of the cumulant expansion for Fourier path integrals. An important
outcome of the formal work has been approximate expressions for the cumu-
lants that retain many of the convergence characteristics of the full cumulant
expansion with significant reduction in the amount of required numerical over-
head. The potential for exploiting the results of Ref. [17] in real simulations
appears high, but a full understanding of the potential of the cumulant-based
methods requires numerical experimentation. In the current work we have begun
the numerical investigation of the methods by illustrating some of the principal
findings using a previously developed one-dimensional cage model of a quantum
fluid. Using a Gaussian fit to a Lennard-Jones cage potential, we have com-
pared the convergence characteristics of the cumulant expansion approximately
through third-cumulant order. For the one-dimensional example we have numeri-
cally verified the derived asymptotic convergence rate, and we have demonstrated
the significantly improved convergence characteristics for the free energy of the
approximate third-order cumulant expressions compared to either the primitive
Fourier method or the first-order cumulant (partial averaged) results. We have
also verified the numerical tractability of the cumulant-based methods.

To further exploit these methods extensions to full many-particle example
problems are required. In this regard we see that the products of derivatives
appearing in Eqs. (15) and (16) for one-dimensional systems are replaced by
traces of Hessian matrix products. Because only traces are required, the expected
work should require acceptable computational resources. A detailed exploration
of the cumulant-based methods for a realistic many-particle system will appear
separately.
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Abstract. We discuss the optimization of a functional with respect to
sets of orthonormal functions where unitary invariance does not apply.
This problem arises, for example, when density functionals with explicit
self-interaction correction are used for systems of electrons. There, uni-
tary invariance cannot be used to reformulate the minimization of the
energy with respect to each of the functions as an eigenvalue problem as
can be done for the commonly used GGA-DFT and Hartree-Fock theory.
By including optimization with respect to unitary transformations as an
explicit step in the iterative minimization procedure, fast convergence
can, nevertheless, be obtained. Furthermore, by working with two sets of
orthonormal functions, the optimal functions and a set of eigenfunctions,
the implementation of the extended functional form in existing software
becomes easier. The additional computations arising from the lack of
unitary invariance can largely be carried out in parallel.

Keywords: functional optimization, orthonormal functions, electrons.

1 Introduction

The task of optimizing the value of a functional of orthonormal functions arises
in many contexts in engineering, physics and chemistry [1]. One example is
the description of many-electron systems using density functional theory (DFT)
which has become a widely used tool in calculations of the basic properties
of solids, liquids and molecules [2]. Various approximations to the exact but
unknown energy functional are used, but those that are commonly used and can
be applied to large systems have several limitations in terms of the accuracy of
the results, as described below. In this article, we discuss a possible extension
of the form of energy functionals and the corresponding modifications in the
minimization procedure. The extended functional form calls for new numerical
methods and software implementations for solving the resulting equations.

In Kohn-Sham (KS) DFT [3] using local (LDA) or semi-local (GGA) func-
tionals, the energy due to Coulomb interaction between the electrons

EH[ρ] =
1

2

∫
d3rd3r′

ρ(r)ρ(r′)
|r− r′| (1)
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and the energy due to an external potential vext(r)

Eext[ρ] =

∫
d3r vext(r)ρ(r) (2)

are evaluated directly from the total electron density, ρ(r), rather than the much
more complicated many-electron wave function. But, in order to get a good
enough estimate of the kinetic energy, a set of orthonormal functions ϕN =
{ϕ1, . . . , ϕN} ∫

d3r ϕ∗
i (r)ϕj(r) = δij (3)

each depending on the coordinates of just one electron (single-particle functions),
are introduced and the kinetic energy minimized with respect to all sets ϕN

consistent with the total electron density ρ(r) =
∑N

i ρi(r) where ρi(r) = |ϕi(r)|2

TKS[ρ] = min
ϕN

N∑
i

∫
d3r ϕ∗

i (r)

(
−1

2
∇2

)
ϕi(r) . (4)

The remaining contributions to the energy, which include the quantum mechan-
ical exchange and correlation energy as well as correction to the above estimate
of the kinetic energy, are denoted by Exc[ρ]. They are estimated by comparison
with numerically exact calculations of the homogeneous electron gas (when using
the LDA approximation) or - as in most calculations today - also include esti-
mates of the effect of local variations by including dependence on the gradient
of the density (the GGA approximation) [2]

EKS
xc [ρ] =

∫
d3r εxc(ρ,∇ρ) . (5)

The notation here ignores spin for simplicity. The ground state energy of the
system is then obtained by variational minimization of the energy with respect
to all electron density distributions, ρ, integrating to N electrons

EKS[ρ] = TKS[ρ] + EH[ρ] + EKS
xc [ρ] +

∫
d3r vext(r)ρ(r). (6)

Using Lagrange’s method, the orthonormality constraints are incorporated into
the objective functional by

SKS[ρ] = EKS[ρ] −
∑
i,j

λji

[∫
d3rϕ∗

i (r)ϕj(r)− δij

]
(7)

where Λ = {λij} is a matrix of Lagrange multipliers. The variational optimiza-
tion of SKS with respect to the orthonormal, single-particle functions [4] gives

Ĥϕi(r) =

N∑
j=1

λjiϕj(r) (8)
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where Ĥ is an operator (the Hamiltonian) defined as

Ĥϕi(r) =
δE

δϕ∗
i (r)

(9)

and turns out to be the same for all the functions. The functional is invariant
under unitary transformations of the functions and variation with respect to
ϕi rather than ϕ∗

i gives the same result. One can choose the particular set of
functions for which Λ is diagonal (see section 3). The set of coupled equations
for the ϕN functions then reduces to a set of eigenvalue problems

Ĥϕi(r) = εiϕi(r) (10)

which, however, are still coupled through the total electron density. A solution
can be obtained using an iterative procedure starting with a guess and eventually
obtaining self-consistency.

Functionals of this type are widely used in the modeling of solids and liquids.
Various semi-local approximations to Exc[ρ] have been proposed and powerful
software packages have been developed utilizing highly efficient optimization al-
gorithms to solve the fundamental minimization problem [5]. However, several
limitations of these functional approximations have also become apparent: (a)
The predicted total energy is generally not accurate enough. Useful estimates
of energy differences can still be obtained in many cases because of cancella-
tion of error, but this is problematic when the two systems being compared are
qualitatively different. For example, the energy of transition states compared
with energy of stable states (i.e. reaction barriers) are typically underestimated
[6,7]. (b) Electronic defect states tend to be overly delocalized and even unsta-
ble [8]. (c) Neither the functions ϕi nor energy eigenvalues εi have any known,
directly observable meaning (but the εi are sometimes used as estimates of ion-
ization energy or band gap, giving generally poor approximations). This list is
far from being complete, but illustrates that the deficiencies of GGA functionals
are significant. For a more complete discussion, see [9].

One approach to improve the semi-local approximation is to mix in some
‘exact exchange’ in so-called hybrid functionals [10,11] through a linear combi-
nation with LDA and GGA. Hybrid functionals can cure some of the deficiencies
mentioned above for example improved bond energy and bond length [6,12]. The
optimal linear combination coefficients, i.e. mixing parameters, are, however, not
the same for all types of systems (for example molecules vs. solids) and this ap-
proach should be regarded as semi-empirical and relies on tuned cancellation
of errors of different origin. For metallic systems, hybrid functionals in fact give
poorer predictions than GGA. Although hybrid functionals are available in most
major DFT software packages today, their application to systems with apprecia-
ble numbers of electrons is, furthermore, hampered by the expensive evaluation
of the non-local, exact exchange. The computational effort scales as N4 rather
than the N3 scaling for LDA and GGA.
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2 Orbital Density Dependent Functionals

While the single-particle functions, which frequently are referred to as ‘orbitals’,
are in GGA-DFT simply mathematical constructs that represent the total elec-
tron density and improve the estimate of the kinetic energy beyond what has
been possible from the total electron density alone, these functions can in prin-
ciple be interpreted as meaningful representations of the electrons and the cor-
responding probability density, ρi, represent the probability distribution of an
electron. This is an assumption, consistent with intuition that is often invoked,
but no proof of this has been presented. The form of the energy functional then
should include explicit dependence on the orbital densities. We will refer to such
an extended functional form as orbital density dependent (ODD) functionals.
This can lead to much improved estimates of various properties, but the math-
ematical task of finding the optimal set of orbitals becomes more challenging.

The ODD functional form can, in particular, be used to correct for the so-
called self-interaction error in GGA functionals. The evaluation of the Coulomb
energy from the total electron density as in (1) includes interaction of the elec-
trons with themselves, a self-interaction energy. Ideally, the Exc correction term
should remove this error, but in practice the approximations used for Exc, such
as PBE, only partly cancel it out. A better estimate of the Coulomb interaction
is the orbital density dependent expression

EODD
H [ρN ] =

1

2

∑
i�=j

∫
d3rd3r′

ρi(r)ρj(r
′)

|r− r′| = EH [ρ]− 1

2

N∑
i=1

∫
d3rd3r′

ρi(r)ρi(r
′)

|r− r′| (11)

where the i = j terms representing self-interaction are excluded. Here, ρN

denotes the set of N orbital densities, ρN = {ρ1 . . . ρN}. Revised exchange-
correlation functionals are necessary in order to account for this modification in
the Coulomb term. The evaluation of this expression for the Coulomb energy re-
quires N+1 solutions of the Poisson equation and thus is computationally much
less demanding than the exact exchange of hybrid functionals and scales as one
lower power in N . Furthermore, the N + 1 Poisson equations can be solved si-
multaneously on N nodes or sets of nodes, making parallel implementation easy
and efficient. Parallel implementation of hybrid functionals is more difficult [13].

Perdew and Zunger [14] proposed an estimate of the total self-interaction
energy for each orbital as

ESI[ρi] =
1

2

∫
d3r′

ρi (r) ρi (r
′)

|r− r′| d3r− Exc [ρi] (12)

and an improved estimate of the energy by explicit subtraction

EKS-SIC[ρN ] = EKS[ρ]−
∑
i

ESI [ρi]. (13)
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The energy is no longer invariant under unitary transformations of the orbitals.
For example, if delocalized Bloch functions are used in a calculation of a crystal,
the self-interaction energy is small or even zero, but if localized orbitals - which
can be formed by a unitary transformation of the Bloch functions - are used,
then ESI is finite and can be significant.

The problem is now to optimize SODD with respect to the orbitals, where

SODD[ρN ] = EODD[ρN ] −
∑
i,j

λji

[∫
d3rϕ∗

i (r)ϕj − δij

]
. (14)

The orbitals ϕN are in general complex functions, yielding two equations for the
extremum

δSODD

δϕ∗
i (r)

= 0

δSODD

δϕi(r)
= 0

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
=⇒

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ĥiϕi(r) =

N∑
j=1

λjiϕj(r)

Ĥiϕi(r) =
N∑
j=1

λ∗ijϕj(r)

(15)

where

Ĥiϕi(r) =
δE

δϕ∗
i (r)

(16)

is the functional derivative of the energy with respect to the conjugate orbital.
Note that both equations in (15) coincide whenever the matrix Λ is Hermitian.
Thus, an alternative set of conditions for the optimal set of orbitals is given by

Ĥiϕi(r) =

N∑
j=1

λjiϕj(r) (17a)

Λ = Λ†. (17b)

For GGA, Λ is guaranteed to be Hermitian, but not for ODD functionals. The
orbitals ϕN obtained from an ODD functional are not arbitrary since the energy
is not invariant under unitary transformations.

While there have been few self-consistent calculations using this functional
form in the 30 years since the publication of the article by Perdew and Zunger
(compared with the very large number of GGA calculations), see references in
[9], it is clear that this functional form introduces flexibility that can be used to
remove several deficiencies of the semi-local GGA functionals.

In the next section we will give a brief review of the minimization approaches
that have previously been used for PZ-SIC. We then present our approach and
compare the performance and reliability of various minimization schemes. We
emphasize that the algorithms discussed here may be utilized for any functional
of the ODD form, the PZ-SIC is used here only as an example. Development of
an improved functional of the ODD form is currently ongoing.



28 P. Klüpfel et al.

3 Minimization of Energy Functionals

3.1 Minimization of Unitary Invariant Functionals

For GGA functionals and hybrid functionals, the functional derivative of the
energy can be expressed by a single opeartor, Ĥ , the same for all orbitals

Ĥ = T̂ + vext(r) + vH(r) + v̂xc(r) . (18)

For GGA, v̂xc is a local multiplicative potential while hybrid functionals yield
a non-local potential. Projection of (17a) yields an expression for the Lagrange
multipliers

λij = λ∗ji =
∫
d3r ϕ∗

i (r)Ĥϕj(r) . (19)

which always fulfills also eqn. (17b). As the constraint matrix Λ is Hermitian, it
can be diagonalized using a unitary transformation W giving real eigenvalues εi

λij =

N∑
k=1

εkW
∗
kiWkj (20)

and eigenfunctions ψN = {ψ1, . . . , ψN}

ψi(r) =
N∑

k=1

W ∗
ikϕk(r) . (21)

The total density and energy do not change when the transformation is applied.
The functions ψN are commonly taken to represent pseudo-particles of the non-
interacting electron reference system. They span the total density ρ and make it
possible to get a good estimate of the kinetic energy. One may be tempted to go
beyond this and interpret these orbitals in terms of electrons since the defining
equations are structurally equivalent to non-interacting Schrödinger equations.
Any unitary transformation of the orbitals is, however, equally justified, but
can typically give a range from highly localized to delocalized functions. The
introduction of hybrid orbitals, for example sp2 and sp3 atomic orbitals, is an
example of this flexibility in choosing the unitary transformation.

3.2 Minimization of ODD Functionals

The algorithm for the minimization of an ODD functional with respect to the
orbitals needs to be substantially different from the one used to minimize GGA
functionals since the functional derivatives give a different operator, Ĥi for each
orbital

Ĥiϕi(r) =
δE

δϕ∗
i (r)

, Ĥi = Ĥ0 + V̂i (22)
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where Ĥ0 is the unitary-invariant part of the operator and V̂i an orbital depen-
dent part. From eqn. (17), a projection can be used to evaluate the Lagrange
multipliers

λij =

∫
d3r ϕ∗

i (r)Ĥjϕj(r) . (23)

Note that in contrast to eqn. (19), the constraint matrix is not Hermitian. An
asymmetry is introduced by the orbital dependence. The second condition (17b)
should be enforced explicitly. This has consequences for the SODD objective
functional: Its imaginary part is related to the anti-Hermitian part of Λ and the
deviation from orthonormality.

Im{SODD} =

N∑
i,j=1

λ∗ij − λji

2i

[∫
d3r ϕ∗

i (r)ϕj(r)− δij

]
(24)

While any solution of the extremum condition (15) yields a Hermitian Λ matrix,
intermediate stages of an iterative procedure typically lead to asymmetric matri-
ces and there is not a unique way to define a proper set of Lagrange multipliers.
Various possible choices to deal with this problem are discussed below.

Heaton, Harrison and Lin [16,17] presented an approach which corresponds
to solving equations (16) and (23) without considering the symmetry condition
for the Lagrange multipliers. An optimization with respect to unitary transfor-
mations of the orbitals was not included. Goedecker and Umrigar pointed out
problems with this approach [18].

Asymmetric and symmetric constraint An alternative approach is to use
one of the equations (15) to define the Lagrange multipliers and the other one
to define the orbitals, for example

Ĥiϕi(r) =
N∑
j=1

λajiϕj(r) , λaij =

∫
d3r ϕ∗

i (r)Ĥiϕj(r). (25)

The constraint matrix Λa is not necessarily Hermitian, but converges to a Her-
mitian matrix at the end of the iterative procedure.

Goedecker and Umrigar (GU) [18] used the Hermitian average, Λs, of the two
possible choices for the definition of the Lagrange multipliers

Ĥiϕi(r) =

N∑
j=1

λsjiϕj(r), λsij =

∫
d3r ϕ∗

i (r)
Ĥi + Ĥj

2
ϕj(r). (26)

It can be shown that for a given set of orbitals, ϕN , this choice of the constraint
yields the direction of steepest descent for a correction to the orbitals.

Unitary Optimization Neither the symmetrized Λs nor the asymmetric Λa

make explicit use of the necessary requirement for a Hermitian constraint matrix.
Defining κ as

κ = (Λa −Λa†)/2 (27)
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yields an anti-Hermitian matrix with elements

κij =

∫
d3r ϕ∗

i (r)
Ĥj − Ĥi

2
ϕj(r) (28)

=

∫
d3r ϕ∗

i (r)
V̂j − V̂i

2
ϕi(r). (29)

When the two orbital dependent operators are subtracted, the unitary invariant
part is cancelled out, leaving only the difference of the orbital dependent parts.

Expressing explicitly the dependency of κ on unitary transformations amongst
the orbitals

ϕi[U](r) =
N∑
j=1

Ujiϕj(r) , ρi[U] = |ϕi[U](r)|2 (30)

the equation defining the optimal unitary transformation U is

κ[U] = 0 . (31)

This is referred to as the “localization condition” [19]. The efficiency of unitary
variant minimization algorithms depends on fast and reliable solution of this
equation. Lagrange multipliers that are evaluated from orbitals satisfying the
localization condition are guaranteed to fulfill the symmetry requirement (17b).
Furthermore, using unitary optimization as a preconditioner for the constraint
matrix, unifies the previously reported constraint definitions.

Reintroduction of Eigenfunctions Although the minimization can be carried
out by solving the coupled set of equations (15), this is cumbersome and makes
it difficult to incorporate ODD functionals into existing software which typically
relies on the formulation of the optimization problem as an eigenvalue problem.
This has led to the idea of using two sets of functions.

The first set, referred to as the optimal basis, is given by the functions ϕN

which should converge to the solutions of the optimization problem (15). The
second set, the ‘canonical orbitals’ ψN , is introduced to decouple the equations
into single-particle eigenvalue equations analogous to the ones obtained for uni-
tary invariant functionals. Both sets of functions span the same total density ρ
and are related to each other by a unitary transformation W

ϕi(r) =

N∑
k=1

Wkiψk(r) , ψi(r) =

N∑
k=1

W ∗
ikϕk(r) . (32)

In order to decouple (15) into single-particle equations, W has to diagonalize
the constraint matrix

λij =
∑
k

εkW
∗
kiWkj , δij =

∑
k

W ∗
kiWkj . (33)
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This step requires a Hermitian constraint matrix, which is provided either by
the symmetrized eqn. (26), or by unitary optimization at each iteration.

Expressing the condition for minimal energy (15) in terms of the ψN yields

N∑
k′=1

Wk′iĤ0ψk′(r) +

N∑
k′=1

Wk′iV̂iψk′(r) =

N∑
jk′=1

λjiWk′jψk′(r). (34)

and the equations can be decoupled by forming the linear-combination
∑N

i=1W
∗
ki

Ĥ0ψk(r) +
N∑

ij=1

W ∗
kiV̂iWjiψj(r) = εkψk(r). (35)

The resulting operator is still orbital dependent but now with respect to the
canonical orbitals rather than the optimal ones(

Ĥ0 + V̂ c
k

)
ψk(r) = εkψk(r) (36)

where V̂ c
k is given by

V̂ c
k f(r) =

N∑
i=1

W ∗
kiV̂iϕi(r)

∫
d3r′ ψk(r

′)f(r′). (37)

V̂ c
k is structurally simpler than the previous V̂k in eqn. (22). It is invariant un-

der unitary transformations of the functions ψN in a subtle way: The unitary
transformation is simply compensated by an inverse change to W in eqn. (32)
maintaining the same ϕN . The canonical orbitals ψN turn out to converge faster
than the ϕN which improve mainly through the unitary optimization. Numer-
ically, the separation into basis set optimization and unitary optimization is
advantageous in the electronic structure problem as different energy scales are
separated, i.e. the relatively small contribution from V̂k is separated from the
large contribution from Ĥ0. A similar procedure has been used in time-dependent
DFT [20].

4 Performance

The performance of the minimization was benchmarked in all electron
Gaussian type orbital based calculations of the N2 molecule. The convergence
was measured in terms of the residual, R,

R =

⎡⎣ N∑
i=1

∫
d3r

∣∣∣Ĥiϕi(r) −
N∑
j=1

λjiϕj(r)
∣∣∣2
⎤⎦1/2

(38)

and a measure, K, of the error in the localization condition

K = ‖κ‖ =

⎡⎣ N∑
ij=1

|κij |2
⎤⎦1/2

. (39)
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Fig. 1. Convergence of steepest descent minimization for a N2 molecule starting from
same initial orbitals. The residual R (black) and K (grey) are shown for different
methods of evaluating the Λ matrix: symmetric, asymmetric and including unitary
optimization until K < 0.1R.

Figure 1 compares different choices for dealing with the Λ matrix. The energy
was minimized using the steepest descent method which allows for direct com-
parison of different functionals and algorithms. Both the symmetric definition
(26) and the asymmetric one (25) result in slow convergence rate in the later
stage of the minimization. However, the origin of the slow convergence is differ-
ent in the two cases. For the symmetric definition, the convergence of R andK is
roughly equally slow, but for the asymmetric definition, which gives faster con-
vergence, R is slower. In the unitary optimization, which converges much faster,
K is reduced to less than 10% of R by an intermediate unitary optimization,
followed by the use of the symmetric constraint.

The effort involved in minimizing the ODD type LDA-SIC functional is com-
pared with LDA, GGA (using PBE) and Hartree-Fock in Fig. 2. The ODD
calculation required similar number of iterations as the LDA and GGA calcu-
lations. Hartree-Fock requires many more iterations. The CPU time needed to
reach convergence is also shown. The ODD calculation turns out to be faster in
this case than the PBE calculation because the gradient dependent terms, which
are absent in LDA, involve significant computational effort. The Hartree-Fock
calculation is much faster than the others despite the large number of iterations
because the integrals can for this small system be stored in memory.
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Fig. 2. Convergence of a steepest descent minimization of the energy of N2 using
various functionals: LDA, PBE (a GGA functional), LDA-SIC (an ODD functional)
and Hartree-Fock (HF).
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5 Parallelization

The main computational effort when ODD functionals are used is related to the
evaluation of the N orbital dependent potentials. Each of them is as expensive
as the GGA potential for the total electron density. But, since the calculations
for the N orbitals are indendent, they can readily be distributed over N proces-
sors without the need for significant communication. The real time of an ODD
calculation would then be similar to a regular GGA calculation even for a large
system. Our results obtained so far indicate that performance similar to GGA
functionals can be accomplished for this more general functional form.
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Simulated Annealing with Coarse Graining

and Distributed Computing
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Abstract. EON is a software package that uses distributed comput-
ing, systematic coarse graining and bookkeeping of minima and first
order saddle points too speed up adaptive kinetic Monte Carlo simula-
tions. It can be used to optimize continuously differentiable functions
of a large number of variables. The approach is based on finding min-
ima of the cost function by traversing low-lying, first-order saddle points
from one minimum to another. A sequence of minima is thus generated
in a path through regions of low values of the cost function with the
possibility of ‘temperature’ controlled acceptance of higher lying saddle
points. Searches of first order saddle points are carried out using dis-
tributed computing and the minimum-mode following method. Coarse
graining which involves merging local minima into composite states and
the recognition of previous search paths and saddle points are used to
accelerate the exploration of the cost function. In addition to obtaining
an estimate of the global minimum, a simulation using this approach
gives information about the shape of the cost function in the regions
explored. Example applications to the simulated annealing of a cluster
of water molecules on a platinum metal surface and grain boundary in
copper are presented.

Keywords: optimization, distributed computing, coarse graining, water
cluster, grain boundary.

1 Introduction

Annealing has for a long time been used to improve the atomic scale structure
of materials by eliminating strain and defects. Glassblowers, for example, use
annealing to prevent new glass structures from cracking. When a material is
annealed, its temperature is brought to an elevated level to accelerate thermally
activated mobility of defects. However, the elevated temperature can also in-
crease the population of defects. By cooling slowly enough from the elevated
temperature, the defects become less stable while still being mobile enough to
get annihilated. The result of this treatment is a lowering of the energy as the
arrangement of the atoms is optimized. If the cooling is slow enough, all defects
will be eliminated and the global energy minimum reached. This, however, may
require impossibly long time.

Optimization of functions of many variables is often carried out using com-
puter simulated annealing algorithms that mimmic roughly the annealing of

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 34–44, 2012.
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materials. The 1983 article by Kirkpatrick, Gelatt and Vecchi [1] where such
an approach was promoted and applied to circuit design now has over 12000
citations. The cost function to be minimized is taken to give the ’energy’ of the
system. A Monte Carlo algorithm based on random numbers is used to simulate
an annealing process were changes in the arguments of the cost function are ac-
cepted or rejected in accordance with a fictitious ‘temperature’. The reason for
introducing temperature is to introduce and control the probability of accepting
increases in the cost function since they may be an essential intermediate step
to ultimately reach lower values.

The Adaptive kinetic Monte Carlo algorithm (AKMC) [2] can be used to accel-
erate simulations of the time evolution in materials without the need for a priori
information about possible transitions in the system. This is unlike the regular
KMC algorithm where the mechanism and rate of possible transitions is needed
as input [3]. It is also different from the Metropolis Monte Carlo algorithm [4]
in that the changes made to the variables represent likely transition mechanisms
rather than just random moves and one can estimate the ‘time’ evolved at each
iteration. The AKMC method has been applied successfully to several different
problems, for example the annealing of grain boundaries in metals [5], reactions
at surfaces [6] and crystal surface annealing during growth [7]. In AKMC, the
possible transitions are found by locating first-order saddle points on the energy
surface that are in the vicinity of currently known local minima. The probability
of the possible transitions decreases exponentially as a function of the height of
the saddle point over the current minimum. A random number is used to pick
the next transition according to the relative rates of possible transitions. Several
additional features in the implementation have been developed to speed up the
simulation such as (1) distributed computing using the BOINC communication
framework [18] were hundreds of computers connected by internet can be used
simultaneously for the saddle point searches; (2) systematic coarse graining were
local minima separated by low-lying saddle points are grouped together to form
composite states; (3) bookkeeping of previously found saddle points and search
paths to suggest new, short searches and terminate searches that are likely to
converge to known saddle points. The software package EON [8] has been writ-
ten to carry out such simulations. While it has so far been applied to studies
of atomic scale systems, it can in principle be used for optimization of any cost
function where first derivatives are continuous and can be evaluated readily.
Since the algorithm follows regions where the cost function is relatively small,
this approach may be particularly useful when the calculation of high values
of the cost function can be problematic because of, for example, convergence
problems.

In this article we describe briefly the algorithms on which the EON software is
based and discuss two applications: (1) ordering of water molecules in a cluster
on a Pt surface, and (2) atomic ordering at a grain boundary in Cu. We conclude
with some remarks on the applicability of this software to other, more general
optimization problems.
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2 The Cost Function

The cost function is assumed to be a continuously differentiable function of N
variables

f : RN −→ R (1)

In typical applications of AKMC such as the ones described below, N is on the
order of 103. The cost function defines a surface in high dimensional space and
the goal is to find the global minimum, or a representative minimum if there
are several roughly equally low minima. When navigating on the surface, the
extremal points where ∇f = 0 and the function value is low are of particular
interest, namely local minima and first order saddle points. At a minimum, the

Hessian matrix, Hij =
∂2f

∂xi∂xj
, has only positive eigenvalues but at a first order

saddle point it has one negative eigenvalue. Hereafter, a saddle point will be
taken to mean first order saddle point. An optimal path is such that at each
point on the path the gradient is pointing along the path [9,10]

∇f − ∇f · τ̂ τ̂ = 0 (2)

were τ̂ is the normalized tangent vector for the path at that point [11]. A first
order saddle point is a maximum along an optimal path between two minima.
We assume that the gradient ∇f of the cost function can be evaluated readily
(recent developments in automatic differentiation [12] could prove valuable in
this context), but second derivatives are not needed. The method used to find
first order saddle points involves a minimization using a transformed gradient
where the component along the minimum mode of the Hessian is reversed

∇feff = ∇f − 2(∇f · v̂λ)v̂λ (3)

Here, v̂λ is a normalized eigenvector corresponding to the minimum eigenvalue,
λ, of the Hessian. This projection locally transforms the gradient in the vicinity
of a first order saddle point to a gradient characteristic of the vicinity of a
minimum and the conjugate gradient method (without line search [13,14]), for
example, can be used to converge on the first order saddle point. The minimum
mode vector is found using the dimer method [13] without having to evaluate
the Hessian or any of the second derivatives. Given a local minimum, a small
random change of the variables away from the minimum is first made and the
minimum mode following (MMF) method is then used to climb up the cost
function surface and converge on to a saddle point. For more detail about this
method and its performance, see refs. [14].

Once a search trajectory exits the region in the neighborhood of a minimum
where all eigenvalues are positive, the MMF search path is stable and determin-
istic, i.e. a given point outside the positive region will converge onto a certain
saddle point. A basin of attraction can be defined as illustrated in Fig. 1.

3 Adaptive Kinetic Monte Carlo Algorithm

The kinetic Monte Carlo method (KMC) [3] is an iterative algorithm where a
Markov chain of states is generated using a predefined rule for transitions and
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Fig. 1. Left panel: A model cost function and paths from multiple saddle point searches
carried out with the MMF method. Minima are denoted by a white dot and saddle
points by a white + with arms pointing along the eigenvectors of the Hessian. Shaded
regions are basins of attraction of the saddle points. For each local minimum, several
paths (solid lines) leading to saddle points are generated using the MMF method. The
paths tend to merge as they approach a saddle point. Searches that lead to saddle points
outside the figure are not shown. Right panel: Schematic illustration of an iteration in
the AKMC method. For each saddle point, a rate can be evaluated from Eqn. 6. The
normalized rate for each of the three possible transitions gives a transition probability,
represented by the colored regions in the column, and a random number can be used
to pick the next transition.

their rate constants
CKMC = {f0, f1, f2, . . . fη}. (4)

The mechanism and probability of transitions needs to be read in as input before
the simulation starts. In the adaptive kinetic Monte Carlo method (AKMC) [2]
this input is not required but at each state, which is a minimum of the cost
function, multiple low lying saddle points are found by MMF searches starting
from slightly different starting points (as illustrated in Fig. 1) where the displace-
ments are drawn from a Gaussian distribution . Each saddle point or rather the
optimal path going through the saddle point, represents a transition mechanism
and a possible new state in the Markov chain. After several low lying saddle
points have been found, a random number in the interval [0, 1] is used to pick
one of the possible transitions according to the relative rates. By repeating this
procedure, a chain of minima and associated saddle points is generated

CAKMC =
{
fmin
0 , {f sp

1 , fmin
1 }, {f sp

2 , fmin
2 }, . . . {f sp

η , fmin
η }} . (5)

The rate constant for a transition from i−1 to i via saddle point i is an expo-
nential function of the value of the cost function at the saddle point, consistent
with Boltzmann distribution of thermal energy

ki = A exp

[
−f sp

i − fmin
i−1

T

]
(6)

where T is the temperature and A is some prefactor which can in the simplest
approach be taken to be the same for all transitions. In transition state theory
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(TST) of thermal transitions on an energy surface [15], the rate constant is
estimated from the probability of a thermal fluctuation that brings the system
to a transition state separating the initial state from other states multiplied
by the rate of crossing the transition state. After making second order Taylor
expansions of the cost function about the saddle point and the minimum, the
expression for the prefactor becomes [16]

AHTST =

∏D
j νmin

j∏D−1
j νspj

(7)

where νmin
j is the frequency associated with eigenmode j at the minimum and

νspj at the saddle point. The mode with negative eigenvalue at the saddle point
is not included. This expression does require the evaluation of the Hessian at the
minimum and at the saddle point. It assigns higher probability for transitions
where the ‘valley’ widens when going from the minimum to the saddle point
and lower probability if the valley narrows. But, typically the value is similar for
transitions in a given system and AKMC simulations are sometimes carried out
using just a fixed prefactor, thereby avoiding the evaluation of second derivatives
all together. The saddle point searches are continued until a predefined criterion
has been reached, for example that the lowest saddle point has been found a
certain number of times, or that no new saddle point in the relevant range
(defined by the temperature) has been found in the last n searches where n is
some predefined number.

From all the successful saddle point searches from the current minimum, i, in
the Markov chain (some searches may not converge, and some may converge to
a saddle point that is not directly connected by an optimal path to the current
minimum), a table of possible transitions and their normalized probability, Pi

is constructed. This is illustrated in Fig. 1. A random number is then used to
pick one of the possible transitions and the system advanced to a new state,
found by sliding down forward along the optimal path from the saddle point.
From the Poisson distribution of residence time, the expectation value of the
time evolved in each iteration can be estimated to be τ = 1/

∑
i ki where the

sum extends over all possible transitions from this state. Random sampling from
this distribution is made by picking another random number, χ, in the interval
[0, 1] and estimating the time increment as τ = −logχ/

∑
i ki.

3.1 Distributed Computing

The most computationally demanding part of an AKMC simulation is the search
for saddle points. But, each search is independent of the others, requires only the
location of the current local minimum and an initial search direction as input.
For large systems each search can take several minutes. The saddle point searches
can, therefore, be distributed to several computers connected only by internet.
The EON software is based on such a distributed computing approach [8]. In
the first version, the communication middleware Mithral was used [17] but a
more recent version of EON is based on BOINC. In the later implementation,
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the client software is executed as a remote procedure and the communication
uses http. BOINC offers stability of the central server as the core parts are a
SQL database and an Apache server. The client and server are decoupled which
is particularly useful when debugging since the client calculation can be run as
stand-alone calculation and ordinary debugging tools applied.

Even though BOINC supports distributed computing using public computers,
we typically only run EON clients on local resources in clusters dedicated to
research where EON-clients get executed when nodes become idle. Currently,
EON is being extended to work also with the ARC-middleware [19] which will
enable execution of EON on the Nordic data grid [20] and it is, furthermore,
being extended to run on Amazon’s ‘elastic cloud’ [21].

A rough estimate of the performance of a distributed AKMC simulation using
EON carried out on a cluster of 2.8 GHz Intel Pentium 4 computers with GB
internet connection shows that if a calculation on the client takes ca. 5 min. then
the server can on average keep 100 clients busy. When saddle point searches are
too fast for the server to keep up, two or more searches can be sent to the client
at a time, thus saving on the overhead in the distribution of the tasks.

3.2 Coarse Graining

Kinetic Monte Carlo simulations, including AKMC, often get stuck in a small
subset of states. This happens, for instance, when two states are connected by a
transition that is much faster than any transition away from the pair. Essentially,
the problem arises when there is large disparity in the rate constants. To address
this problem, a coarse graining algorithm has been developed and implemented
in EON. The problem is two-fold: (1) to automatically identify such sets of states
and group them into a composite state, and (2) devise an algorithm for escaping
the composite state and estimating the time that would have been spent there
in the absence of coarse graining.

The first issue is addressed by defining a reference value of the cost function for
each state, f cg

i which starts out being equal to the minimum value f cg
i = fmin

i .
Each time this minimum is entered and added to the Markov chain, the reference
value is incremented by a small amount, ε

ε = ε0
f sp
i − fmin

i

f sp
i − fmin

low

(8)

where fmin
low is the lowest minimum found in the simulation so far and ε0 is some

constant chosen for the simulation (the results of the simulation are unaffected
by the choice of ε0 over several orders of magnitude as illustrated in a test case
below). When a transition occurs with fsp

i < f cg
i−1, then state i is merged with

state i−1 to form a new composite state. If either of the states i or i−1 or both
already belong to a composite state, then the composite states are extended
by an additional state or two composite states are merged depending on the
situation.

This process of merging states into composite states is illustrated in Fig. 2.
The simulation starts at the state corresponding to the second lowest minimum
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and there is a high saddle point separating it from the global minimum. Only
after all the minima close to the initial minimum have been grouped into one
large composite state, can the high saddle point be overcome and the global
minimum is then found after only a few iterations. This example illustrates how
EON could be used to find the global minimum of a cost function where multiple
local minima are present and one or more high saddle point separate groups of
minima. When a composite state has been formed from a set of minima, the
time evolution within that set of states becomes irrelevant and only two things
need to be determined: (1) From which one of the local minima will the system
escape the composite state? (2) How long time will the system spend in the
composite state before escaping. These questions can be answered rigorously
using absorbing Markov chain theory [22].
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Fig. 2. Example of a cost function of one variable where the annealing simulation
starts in a basin consisting of several local minima but is separated by a large barrier
from the global minimum. Without coarse graining the simulation would be stuck for
many iterations between the initial state (green star) and the adjacent shoulder state.
These two are the first to get merged into a composite state (1). Then a new composite
state (2) is formed, also by merging two minima. In the third merger the two composite
states are combined into a composite state with four minima (3). Eventually, the large
barrier is overcome when all 10 minima have been merged into one composite state
(9). Then, the global minimum (red star) is quickly reached.

Test: Annealing in One-dimension. A problem where the coarse graining
algorithm was tested on a cost function of one variable is illustrated in Figure 3.
An AKMC simulation both with and without coarse graining was used to esti-
mate the time it takes the system to go from a high initial state minimum to the
global minimum, traversing a high barrier. The results are presented on Table 1
and show that the coarse graining does not affect the estimated time, even as
the basic increment, ε0, is varied over several orders of magnitude.

This simple test illustrates how the coarse graining speeds up the annealing
simulation without affecting the results, in particular the estimated time. In
this case, the acceleration is up to 100 fold. But, more importantly, the coarse
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graining can make a simulation doable while it is impossible without the coarse
graining (for example, this same objective function but a significantly lower
temperature). Fig. 3 shows how the number of iterations needed in a KMC
simulation increases for the simple one-dimensional test case as the temperature
is lowered. Without the coarse graining, the number of iterations needed to reach
the global minimum is about three orders of magnitude larger at a temperature
of 0.007 than at 0.1, but with the coarse graining there is only less than a factor
of 2 increase.
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Fig. 3. A model cost function of one variable used to test the coarse graining algorithm.
Starting in state H, the AKMC simulation with and without coarse graining was used
to estimate the time needed to reach the global minimum, L. The results are given in
Table 1 and show that the coarse graining does not affect the estimated time, even as
the basic increment, ε0, is varied over many orders of magnitude. Right panel: Average
number of transitions (iterations) needed in the simulations versus the estimated mean
time needed to go from point H to point L for different ’temperatures’. While the regular
KMC needs many more iterations at low temperature, the coarse grained simulation
only requires slightly more.

Table 1. The elapsed time and number of transitions required to move from local
minimum H to global minimum L in Fig. 3, averaged over 1000 runs at a ’temperature’
of 0.09, with no coarse graining (no CG) and with using various values of the basic
increment, ε0 in the coarse graining algorithm. The prefactor was set to A = 10.

log ε0 Time Ave. Trans.

no CG 708 ± 23 1547 ± 51
-5 670 ± 20 1287 ± 31
-4 684 ± 21 405 ± 6
-3 683 ± 18 71 ± 1
-2 698 ± 13 15 ± 0

3.3 Other Tricks to Improve Efficiency

Each minimum visited is stored, i.e. the value of the variables and the value of
the cost function. When a minimum is revisited, new saddle point searches are
not carried out unless the reference energy has increased beyond the region where



42 A. Pedersen, J.-C. Berthet, and H. Jónsson

good sampling of saddle points has been obtained previously. Also, since search
paths tend to merge together close to the saddle points, as shown in Fig. 1
intermediate points along search paths in the basin of attraction (where one
eigenvalue is negative) are stored and used to terminate later searches that come
close to a previous search path. Only the values of variables that change most
along the path are stored. We refer to this as the ‘skipping-path’ method [23].
Around each of the stored intermediate points, a spherical region with small
radius is defined and any later search that comes within one of these regions
gets terminated and the intermediate points of that search added to the list.
When thorough sampling of saddle points is carried out, this can save substantial
computational effort [23].

In some systems the transitions are ‘local’ in that they only involve appreciable
change in some small subset of the variables. Then, one transition may not
affect strongly transitions involving another set of variables. An example of that
from the atomic scale simulations is a rearrangement of atoms in one part of
the simulated system affecting only insignificantly atoms in another part of the
system. The stored saddle points can, therefore, be good guesses for new saddle
point searches where only a few iterations using the MMF method are needed to
re-converge on saddle points. This can save substantial amount of computational
effort [24].

4 Applications

Two applications of simulations with EON are presented here briefly, both in-
volving the optimization of the structure of atomic scale systems. In the first, a
cluster consisting of 7 water molecules adsorbed on a Pt(100) surface is annealed
to find the optimal structure. The interaction potential function was developed
by Zhu and Philpott [25] but the interaction between the water molecules and
the surface has been scaled down to match recent density functional theory cal-
culations [26]. The initial configuration is generated by adding two molecules
to the optimal configuration of a cluster consisting of five molecules, which is a
pentagonal ring. The structure is shown in Fig. 4. A shallow minimum slightly
higher in energy has one of the molecules rotated in such a way that a hydrogen
atom gets pointed away from the surface. The AKMC simulation jumps between
those two states several times until eventually the two are joined in a composite
state. A significant barrier is involved in breaking up the pentagonal ring to
form a rectangular core of 6 molecules with one molecule weakly bound to the
edge, but this leads to substantial lowering of the energy. After that, the AKMC
simulation flips the under-coordinated edge molecule and this is repeated until
the two configurations get merged in a composite state.

The second example comes from a study of a twist and tilt grain boundary
in copper. The results of an extensive study have been presented elsewhere [5]
but here we present for the first time the improvement obtained by using coarse
graining. A potential function of the EMT form is used here to describe the
intermolecular interactions [27]. The simulated system consists of 1309 atoms
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but the two outermost layers parallel to the grain boundary are kept frozen so
the cost function (the energy of the system) is a function of 3567 variables, three
coordinates for each movable atom. The goal is to gain information about the
atomic arrangement at the grain boundary. Away from the grain boundary the
atoms are in a FCC crystal arrangement. One of the questions addressed in these
studies is how wide a region around the grain boundary atoms are anomalously
coordinated and what arrangement of atoms is most characteristic for the grain
boundary. Since the atoms that are not in an FCC crystal arrangement are the
focus here and are most likely to be involved in transitions, the initial random
displacement is generated in a spherical region including about 30 atoms centered
on a randomly picked, non-FCC atom. Typically, 1 to 10 atoms are displaced by
more than half an Ångström in a single transition [5].

The excess energy due to the non-FCC arrangement of atoms at the grain
boundary, the interface energy, is shown as a function of iterations in the sim-
ulation for a temperature of 300 K in Fig. 4. At first, the coarse graining was
turned off and while some transitions occurred and annealing took place, the
simulation was not making any progress for a long time. The energy in the last
200 iterations is shown far to the left in the figure. The system is going back and
forth between a few states with interface energy between 81.8 and 82.0 meV/Å2.
Then, coarse graining is turned on (iteration labeled ’0’) and a composite state
is formed which enables the simulation to get to higher energy states, up to 82.4

Fig. 4. Left: Simulation of a cluster of seven water molecules on a Pt(100) surface.
The horizontal dashed lines show the reference level, fcg, after 100 and 200 transitions.
First, the two states on the far left are merged into a composite state. Then, the
pentagonal ring breaks up and a rectangular hexamer core is formed with one water
molecule at the edge. The difference between the two deep minima to the right is just the
orientation of the low coordinated molecule. This kind of rotational flipping which does
not represent a change in the energy or the structure is a significant problem in many
simulations when coarse graining is not used. Right: Interface energy in a twist and tilt
grain boundary between copper crystal grains as a function of iterations in an AKMC
simulation. After 633350 iterations without coarse graining where the simulation was
caught in a subset of 11 states and little progress was made (marked as ’0’ on the
horizontal axis), the coarse graining algorithm is turned on. Then, a composite state
of these minima was formed and the simulation reached higher energy states which
eventually lead to a significant annealing event. By applying coarse graining, only 700
additional iterations were required to reach this annealing event while it took 300.000
additional iterations without coarse graining.
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meV/Å2 and eventually find a transition that reduces the energy significantly,
an annealing event. It took less than 700 iterations from the time the coarse
graining was turned on until the annealing event was observed. The same kind
of annealing event was also observed by continuing the simulation without coarse
graining, but then 300.000 iterations were needed.
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Abstract. A method is presented for optimizing paths on high dimen-
sional surfaces, i.e. scalar functions of many variables. The method
involves optimizing simultaneously the end points and several interme-
diate points along the path and thus lends itself well to parallel com-
puting. This is an extension of the nudged elastic band method (NEB)
which is frequently used to find minimum energy paths on energy sur-
faces of atomic scale systems, often with several thousand variables. The
method is illustrated using 2-dimensional systems and various choices of
the object function, in particular (1) path length, (2) iso-contour and
(3) quantum mechanical tunneling rate. The use of the tunneling paths
to estimate tunneling rates within the instanton approximation is also
sketched and illustrated with an application to associative desorption
of hydrogen molecule from a copper surface, a system involving several
hundred degrees of freedom.

Keywords: optimal paths, transitions, instantons.

1 Introduction

There can be several reasons for wanting to find a path on a surface that is opti-
mal in some sense. Our motivation comes mainly from the need to find minimum
energy paths (MEPs) on energy surfaces to estimate rates of transitions due to
thermally activated, classical trajectories [1], or - as is the focus here - quantum
mechanical tunneling through energy barriers [2]. The method used for the path
optimization is, however, quite general and can be used in various contexts.

The surface is described by a continuously differentiable function, V , of N
variables

V : RN −→ R (1)

In typical applications to transition rates in atomic scale systems, N is on the
order of 103. We assume that the gradient ∇V of the object function can be
evaluated readily, but second derivatives are not needed. The goal is to find a
finite path on the surface that is optimal in some sense. For example, the MEP
on an energy surface can be of interest since the point of highest energy on the
path, a first order saddle point, gives the activation energy barrier for going
from one local minimum to another and, thereby, determines the exponential
dependence of the rate on temperature [3,4]. At every point on a MEP

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 45–55, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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∇V − ∇V · τ̂ τ̂ = 0 (2)

were τ̂ is the unit tangent vector for the path at that point [5]. Furthermore, the
curvature for all modes perpendicular to the path must be positive. The NEB
is frequently used to find MEPs for estimating rates of thermal transitions in
atomic scale systems where the atoms are described by classical dynamics [5,6].
Some systems have even included over a hundred thousand coordinate variables
[7]. The path optimization method presented here is a generalization of the NEB
method and can be used, for example, to calculate rates of thermal transitions
in quantum mechanical systems were tunneling takes place.

Let R denote a vector of N variables and V (R) the surface. The object
function, S̃, can be defined as a functional of the path, R(s) where s ∈ [0, 1],
that is S̃ = S̃[R(s)]. The object function can, for example, involve an integral
over the path

S̃[R(s)] =

∫ Rn

R0

f(V (R))dR (3)

where f is some function. The path will be represented by a set of discrete
points along the path {R0,R1, . . .Rn} and the integral approximated using, for
example, the trapezoidal rule. The task is then to find the values of the vectors
Ri that minimize the object function for discretized paths

S̃[R(s)] ≈ S(R0, . . .Rn) =

=
1

2

n∑
i=1

(f(V (Ri)) + f(V (Ri−1))) |Ri −Ri−1| (4)

There are n− 1 discretization points representing the path between the two end
points, R0 and Rn, which can be constrained to have some predetermined values
of V , i.e. V (R0) = va and V (Rn) = vb. In the NEB, end points of the path are
fixed (usually at minima), but in this more general formulation the position
of the end points is adjusted during the optimization along the iso-contours
corresponding to va and vb.

2 Path Optimization

The optimization is started by specifying some trial set of discretization points
{R0

0,R
0
1, . . .R

0
n} and then iterating until S(R0,R1, . . .Rn) has reached a min-

imum value. Let the negative gradient of the functional, S, with respect to the
discretization point, Rj , be denoted by

gj = −∇jS (5)

This represents the direction of steepest descent for each one of the discretization
points and can be used in a minimization algorithm to find the set of vectors
{R0,R1, . . .Rn} that minimize S. But, only the component of gj that is perpen-
dicular to the path should be included in the optimization [1,6]. The distribution
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of the discretization points along the path is controlled separately and should
not be affected by S. This projection is referred to as ‘nudging’. The negative
gradient, gj , is projected along the path

g
‖
j = (gj · τ̂j)τ̂j (6)

and the rest of the vector is the perpendicular component

g⊥
j = gj − g

‖
j . (7)

The discretization points can be distributed along the path in various ways, for
example by using a restraint method where a ‘spring’ acting between adjacent
discretization points is added, Again, a projection is used to make sure this does
not affect the location of the converged path. For the discretization points that
are not at the ends, {R1,R2, . . .Rn−1}, the component of gj parallel to the path
is replaced by

gsp
j = k (|Rj+1 −Rj | − |Rj −Rj−1|) τ̂j (8)

where k is analogous to a spring constant. A wide range of values can be chosen
for k without affecting the results, but the convergence rate is in general faster
if the gsp

j are roughly of the same magnitude as the gj . The total g that is used
in the optimization is then given by the vector sum

gopt
j = g⊥

j + gsp
j (9)

for j = 1, . . . , n− 1. In a steepest descent algorithm, all the discretization points
Rj will be displaced in the direction of gopt

j at each iteration. A more efficient
approach is discussed in section 2.1. If the spring constant, k, is the same for
all pairs of adjacent discretization points, then the points will be equally spaced
along the path when convergence has been reached. If a different distribution
is desired, the values of k for each adjacent pair of discretization points can be
chosen accordingly.

The steepest descent direction for the end points is defined differently since
they should only move along the iso-contours corresponding to va or vb. The
component of gsp parallel to the gradient of V needs to be zeroed so the end
points only get displaced along the iso-contour. Furthermore, a restraint is added
to pull the end points towards the iso-contour if curvature has resulted in a drift
away from the iso-contour. Denoting the unit vector in the opposite direction of
the gradient of V as

F̂ = −∇V/|∇V | (10)

the steepest descent direction for end point R0 can be written as

gopt
0 = gsp

0 −
(
gsp
0 · F̂0 − V (R0) + va

)
F̂0 (11)

where
gsp
0 = k (R1 −R0 − � F̂0) (12)
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and F̂0 = F̂(R0). Here, the parameter � has been introduced to make it possible
to adjust the length of the path when the endpoints are not constrained (for
example, in the iso-contour example below). If � is chosen to be � = L/n the path
will have length L when the endpoints are free to move during the optimization.
An analogous expression holds for the other end point, Rn

gopt
n = gsp

n −
(
gsp
n · F̂n − V (Rn) + vb

)
F̂n (13)

where
gsp
n = k (Rn−1 −Rn − � F̂n). (14)

and F̂n = F̂(Rn). g
opt
0 and gopt

n give the steepest descent direction for the two
end points used in the iterative optimization while equation (9) applies to the
intermediate discretization points.

2.1 Optimization of the Path

While the location of the discretization points of the path can be optimized by
steepest descent displacements in the direction of gopt, this tends to have slow
convergence and various more efficient minimization algorithms can be employed.
We have found it useful to divide this numerical optimization into two phases:
an initial phase with a rather conservative algorithm and then a final phase with
a quadratically convergent algorithm. In the case of atomic scale systems, such
as the H2/Cu system discussed in section 4, the transition is made when the
RMS force has dropped to below 0.5 eV/Å.

In the beginning, the system can be far from the optimal path. Often, a good
guess for the optimal path is not available. A method we have found to be robust
and convenient to implement is based on modified classical dynamics where the
effective mass associated with each degree of freedom is arbitrarily set to unity
and the force is taken to be the steepest descent vector. By introducing a certain
damping in the dynamics, convergence to a minimum is obtained. The damping
involves zeroing the velocity from previous iteration, except for the component
in the direction of the force in the current iteration when the projection of the
velocity on the force is positive. This algorithm is explained in ref. [1]. In the sec-
ond phase, a quadratically convergent algorithm such as conjugate gradients or
BFGS is more efficient. Some modifications of these algorithms have to be made,
though, because an object function corresponding to the steepest descent direc-
tion gopt is not known. The projection (nudging) and addition of the springs
modifies the steepest descent direction in such a way that it no longer corre-
sponds to the gradient of S. A review of several minimization methods proposed
for the optimization of elastic bands in the context of minimum energy paths and
comparison of their efficiency has recently been published [8]. We expect similar
performance for the elastic bands presented here, but systematic performance
analysis have not yet been made.

Since the optimization of the paths is carried out by adjusting the location
of each one of the discretization points simultaneously, and the calculation of
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the steepest descent direction only depends on coordinates of each point and its
two nearest neighbors, this algorithm for path optimization lends itself well to
parallel computing.

3 Examples

3.1 Example I: Shortest Path between Iso-contours

A simple illustration of the method described above is a search for the shortest
path between two iso-contours of a given value νa = νb = ν. Here, f can be
chosen to be a constant, f(V ) = 1, and � = 0. The object functional is simply

Sl(R0, . . . ,Rn) =

n∑
i=1

|Ri −Ri−1| (15)

Differentiation of S gives

gj = −∇jS
l = − Rj −Rj−1

|Rj −Rj−1| +
Rj+1 −Rj

|Rj+1 −Rj | (16)

Using the equations (9), (11) and (13) in an iterative optimization scheme, gives
points along the path which has the shortest distance between two iso-contours,
as illustrated in figure 1.

Fig. 1. Path optimization where the object function is the length of the path and
the end points are confined to a contour on the surface. (a) Initial path with end
points at arbitrary locations on two separate segments the contour; (b) intermediate
configuration of the path during the optimization; (c) the final, converged, shortest
path between the two contour lines.

3.2 Example II: Tracing Out an Iso-contour

Another example is a path that lies along an iso-contour, say V = vc. Here, f is
chosen to be f(V ) = (V − vc)

2/2 and � = L/n where L is the desired length of
the path. The object function becomes
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Fig. 2. Path optimization where the object function includes the squared deviation
from the contour value. (left) An arbitrary initial path; (middle) intermediate config-
uration of the path during the optimization; (right) the final, converged path tracing
the contour.

Sc(R0, . . .Rn) =
1

2

n∑
i=0

(V (Ri)− vc)
2 |Ri −Ri−1| (17)

Optimization using equations (9), (11) and (13), gives discretization points {Ri}
for a path that lies along the vc iso-contour as is shown in figure 2.

3.3 Example III: Tunneling Path

The optimization procedure described in the previous section can be used to find
optimal, quantum mechanical tunneling paths. The function V then represents
potential energy of the system and the vector R consists of the coordinates of all
the particles in the system, some of which may undergo a tunneling transition
from one position to another. In the path optimization, all particles in the system
are allowed to move, unless boundary conditions restricting their movement are
applied. In the JWKB method [2], the tunneling path for energy Ec is the path
between classical turning points V (R0) = V (Rn) = Ec where the action, St, is
minimized

S̃t[R(s)] =
1

�

∫ Rn

R0

√
2μ(V (R)− Ec)dR (18)

Here, μ is the effective mass which is conveniently taken into account by us-
ing mass weighted coordinates and forces [9]. The optimization yields a path
corresponding to the lowest value of the integral and gives the highest JWKB
estimate of the tunneling probability [2,10,11,12]. A reasonable initial guess for
the path could be a straight line interpolation between the minima of the initial
and final states, but any guess where the end points are placed on different sides
of a saddle point higher than Ec will give a tunneling path.
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After discretizing the integral, equation (18) becomes

St(R0, . . .Rn) =
1

2�

n∑
i=1

(√
2μ(V (Ri)− Ec)

+
√
2μ(V (Ri−1)− Ec)

)
|Ri −Ri−1| (19)

To simplify the notation, it is convenient to define a new function

ξi =
1

�

√
2μ(V (Ri)− Ec) (20)

and rewrite the action integral as

St(R0, . . .Rn) =
1

2

n∑
i=1

(ξi + ξi−1) |Ri −Ri−1| (21)

Differentiating this expression with respect to the position of the intermediate
discretization points j = 1, . . . , n− 1, gives

gj = −∇jS
t = −1

2

(
μ

�ξj
(dj + dj+1)|∇V (Rj)|F̂j− (22)

−(ξj + ξj−1)d̂j + (ξj+1 + ξj)d̂j+1

)
.

where F̂j is again given by equation (10) and the dj and d̂j are defined as

dj = |Rj −Rj−1| (23)

d̂j = (Rj −Rj−1)/dj (24)

The steepest descent direction, gopt, is given by equation (9) for the intermediate
discretization points, but for the end points equation (11) and (13) are used. By
iteratively moving the discretization points, the optimal tunneling path can be
found, i.e. the values of {R0, . . .Rn} that minimize St.

To illustrate how the method works, the tunneling path of a particle subject
to the 2-dimensional potential function used in example II was found, starting
initially with an arbitrary, straight path. Various stages of the optimization of the
path are shown in figure 3: the initial guess, two intermediate paths during the
optimization process and the final, optimal tunneling path. Note that the surface
has extra minima and maxima which makes the problem somewhat challenging
even though only 2 degrees of freedom are included.

Since the wave function decays exponentially in the classically forbidden re-
gion, the tunneling path can be displaced from the MEP into a region of higher
potential energy if this leads to significant shortening of the path. This ‘corner-
cutting’ can be seen form the converged path in figure 3.

The corner-cutting becomes stronger as the temperature is lowered, as can
be seen from another 2-D model calculation shown in figure 4. The lower the
temperature is, the further the path moves away from the MEP. This effect is
particularly strong when the MEP has large curvature.



52 D.M. Einarsdóttir et al.

Fig. 3. Path optimization on a surface with an intermediate local minimum and a
maximum, starting from an arbitrary straight line path, to illustrate the robustness of
the method. Initial path (far left); intermediate paths during the optimization (middle
two figures); and converged, optimal JWKB tunneling path (far right).

4 Application: Calculation of Tunneling Rates

The optimal, JWKB tunneling paths discussed in example III above can be used
to estimate the tunneling rate at a given temperature rather than at given total
energy. The theory is essentially a harmonic quantum transition state theory and
is often referred to as ‘instanton’ theory [10,11]. The path that minimizes the
object functional given by equation (18) turns out to be the same as a classical
periodic orbit for the inverted potential energy surface , −V (R), and is referred
to as the instanton [10]. This is a closed Feynman path and it gives maximum
tunneling probability at a temperature which can be related to the period, τ ,
of the periodic orbit through the relation T = �/kBτ . The calculation of the
period and location of discretization points in the statistical Feynman path cor-
responding to the optimized JWKB path can be obtained in a rather straight
forward way by interpolation between the discretization points. As in harmonic
transition state theory, where the reaction rate is estimated by approximating
the potential energy surface around the classical saddle point by a quadratic
expansion, the quantum mechanical rate can be obtained by expanding the ef-
fective quantum mechanical potential energy surface around the instanton to
second order [12]. The instanton rate constant, kins, is given by

QR kins =

√
S0

2π�

kBTP

�|∏′
j λj |

e−V ins
eff /kBT (25)

where QR is the partition function of the initial state, V ins
eff is the value of the

effective potential

Veff(R0, . . .Rn) =

P∑
i=0

[
1

2
ksp |Ri+1 −Ri|2 + V (Ri)

P

]
(26)
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evaluated at the instanton. Here, P is the number of discretization points in the
Feynman path (RP+1 is set equal to RP ) and ksp is the temperature dependent
spring constant

ksp(T ) = μP

(
kBT

�

)2

(27)

The λj in equation (25) are the frequencies of the normal modes of vibration
of the instanton. One vibrational mode has zero eigenvalue, namely the one
corresponding to displacement of the images along the path. This mode gives
rise to S0 which is twice the instanton action due to the (imaginary-time) kinetic
energy

S0 =
μPkBT

�

P∑
j=1

|Rj −Rj−1|2 (28)

The prime on the product sign in equation (25) denotes the absence of the zero-
mode, since it cannot be treated with a quadratic approximation.

This procedure for estimating the rate constant from JWKB tunneling paths
has been tested both on model 2-dimensional systems and for a large system
involving several hundred degrees of freedom, the associative desorption of H2

molecule from a Cu(110) surface. The desorption has been studied by several dif-
ferent methods in the past, including a full free energy method based on Feynman
path integrals, the so-called RAW-QTST method [14]. Here, the JWKB paths
were used to estimate the desorption rate as a function of temperature using
the instanton approximation as described above. The calculation involved 432
degrees of freedom, the coordinates of the two hydrogen atoms and four layers
of Cu atoms in a slab subject to periodic boundary conditions. The bottom two
layers of Cu atoms in the slab were held fixed. The results are shown in figure
4. The agreement with the full free energy calculation is surprisingly good con-
sidering the fact that a gas phase molecule is being formed and that harmonic
approximation, which the instanton approach is based on, applies mostly to sys-
tems where the effective range of the variables is limited, as is the case for atom
coordinates in solids. The instanton approximation involves much less compu-
tational effort than RAW-QTST, by about a factor of 104, and with the path
optimization method presented here, it can be used with atomic forces obtained
from electronic structure calculations where each force evaluation can easily take
tens of minutes of CPU time. For example, the rate constant for hydrogen atom
tunneling in solids has been carried out using the method presented above cou-
pled with density functional theory evaluation of the atomic forces, but those
results will be presented elsewhere.

5 Discussion

A general method for finding optimal paths on a multidimensional surface has
been presented here. Several two-dimensional problems have been used to il-
lustrate the method, but the strength of the approach is its applicability to
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Fig. 4. (a) Model 2-D energy surface with minimum energy path (far left), and con-
verged JWKB tunneling paths for high, intermediate and low (far right) energy. The
end points move to the specified system energy. The lower the energy, the more the
tunneling path ’cuts the corner’, as it moves to a region of higher energy and becomes
shorter. (b) Calculation of the rate of H2 molecule desorption from a Cu(110) surface,
including 432 atom coordinates as degrees of freedom. The number of discretization
points was n = 10 for the highest energy, and n = 40 for the lowest energy. The tem-
perature dependence of the rate constant for desorption shows an onset of tunneling at
around 250 K. RAW-QTST labels the results from full quantum TST calculation [14].
HQTST labels the results obtained from the instanton approximation, which performs
remarkably well here, especially considering that a gas phase molecule is formed.

problems where many, even thousands, of degrees of freedom need to be in-
cluded. One example of a large system was presented in connection with the
calculation of tunneling rate in an atomic scale system. There, the path opti-
mization method provides an efficient way of finding the tunneling path within
the so-called instanton approximation. The computational effort is similar to the
widely used NEB method for finding minimum energy paths in classical systems
where atomic forces from ab initio and density functional theory treatments of
the electronic degrees of freedom are used as input. Calculations of tunneling
rates using such atomic forces are not significantly harder.

An alternative approach to the implementation of the instanton approxima-
tion is to use the fact that the instanton path is a first order saddle point on
the effective potential surface, Veff given by equation (26), for closed Feynman
paths [14]. Methods converging to first order saddle points, such as the minimum
mode following method [15,16], can then be used to find tunneling paths. This
approach has been used in refs. [17,18]. But, the approach presented here has
several advantages over this methods. One is that the distribution of discretiza-
tion points in the optimization of the JWKB tunneling path can be controlled
and they can, for example, be chosen to be equally distributed while the replicas
in the Feynman paths tend to cluster in the neighborhood of the end points.
Also, the convergence to the saddle point has to be very tight in order to get
just one negative eigenvalue. This is particularly problematic when atomic forces
from electronic structure calculations are used as input. The method presented
here has similar convergence properties and computational effort as the NEB
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method, which is now widely used for finding classical transition paths. Finally,
multiple maxima and minima on the energy surface can make the convergence to
the right saddle point problematic while the calculations of the tunneling path
is more robust.

It is also possible to find the optimal tunneling path by constructing an elastic
band of Feynman paths, forming the so-called minimum action path, using the
NEB method as was done in [14]. This, however, involves much more compu-
tation as the total number of degrees of freedom in the optimization becomes
NP (n−1) where P is the number of discretization points in the Feynman paths,
(n+ 1) the number of discretization points in the minimum action path and N
is the number of variables in the system.

Acknowledgements. We would like to thank Judith Rommel and Johannes
Kaestner for useful comments on this manuscript. This work was supported
by the Icelandic Research Fund, University of Iceland research fund and EC
integrated project NESSHy.

References

1. Jónsson, H., Mills, G., Jacobsen, K.W.: Classical and Quantum Dynamics in Con-
densed Phase Simulations. In: Berne, B.J., Ciccotti, G., Coker, D.F. (eds.), ch. 16,
p. 385. World Scientific (1998)

2. Razavy, M.: Quantum Theory of Tunneling. World Scientific Publishing (2003)
3. Wigner, E.: Trans. Faraday Soc. 34, 29 (1938); Eyring, H.: J. Chem. Phys. 3, 107

(1935)
4. Vineyard, G.H.: J. Phys. Chem. Solids 3, 121 (1957)
5. Henkelman, G., Jónsson, H.: J. Chem. Phys. 113, 9978 (2000)
6. Henkelman, G., Uberuaga, B., Jónsson, H.: J. Chem. Phys. 113, 9901 (2000)
7. Rasmussen, T., Jacobsen, K.W., Leffers, T., Pedersen, O.B., Srinivasan, S.G.,

Jónsson, H.: Physical Review Letters 79, 3676 (1997)
8. Sheppard, D., Terrell, R., Henkelman, G.: J. Chem. Phys. 128, 134106 (2008)
9. Wilson, E.B., Decius, J.C., Cross, P.C.: Molecular Vibrations: The Theory of In-

frared and Raman Vibrational Spectra. Dover (1980)
10. Callan, C.G., Coleman, S.: Phys. Rev. D 16, 1762 (1977)
11. Miller, W.H.: J. Phys. Chem. 62, 1899 (1975)
12. Messina, M., Schenter, G., Garrett, B.C.: J. Chem. Phys. 103, 3430 (1995)
13. Skodje, R.T., Truhlar, D.G.: J. Chem. Phys. 77, 5955 (1982)
14. Mills, G., Schenter, G.K., Makarov, D., Jónsson, H.: Chem. Phys. Lett 278, 91

(1997); RAW Quantum Transition State Theory. In: Berne, B.J., et al. (eds.) Clas-
sical and Quantum Dynamics in Condensed Phase Simulations, page 405. World
Scientific (1998)

15. Henkelman, G., Jónsson, H.: J. Chem. Phys. 111, 7010 (1999)
16. Kaestner, J., Sherwood, P.: J. Chem. Phys. 128, 014106 (2008)
17. Arnaldsson, A.: Ph.D. thesis, University of Washington, Seattle, WA, USA (2007)
18. Andersson, S., Nyman, G., Arnaldsson, A., Manthe, U., Jónsson, H.: J. Phys.

Chem. A 113, 4468 (2009)



Shallow Water Simulations on Multiple GPUs

Martin Lilleeng Sætra1 and André Rigland Brodtkorb2

1 Center of Mathematics for Applications, University of Oslo,
P.O. Box 1053 Blindern, NO-0316 Oslo, Norway

m.l.satra@cma.uio.no
2 SINTEF, Dept. Appl. Math., P.O. Box 124, Blindern, NO-0314 Oslo, Norway

Andre.Brodtkorb@sintef.no

Abstract. We present a state-of-the-art shallow water simulator running on mul-
tiple GPUs. Our implementation is based on an explicit high-resolution finite
volume scheme suitable for modeling dam breaks and flooding. We use row
domain decomposition to enable multi-GPU computations, and perform tradi-
tional CUDA block decomposition within each GPU for further parallelism. Our
implementation shows near perfect weak and strong scaling, and enables simula-
tion of domains consisting of up-to 235 million cells at a rate of over 1.2 gigacells
per second using four Fermi-generation GPUs. The code is thoroughly bench-
marked using three different systems, both high-performance and commodity-
level systems.

1 Introduction

Predictions of floods and dam breaks require accurate simulations with rapid results.
Faster than real-time performance is of the utmost importance when simulating these
events, and traditional CPU-based solutions often fall short of this goal. We address
the performance of shallow water simulations in this paper through the use of multiple
graphics processing units (GPUs), and present a state-of-the-art implementation of a
second-order accurate explicit high-resolution finite volume scheme.

There has been a dramatic shift in commodity-level computer architecture over the
last five years. The steady increase in performance does no longer come from higher
clock frequencies, but from parallelism through more arithmetic units: The newest CPU
from Intel, for example, contains 24 single precision arithmetic units (Core i7-980X).
The GPU takes this parallelism even further with up-to 512 single precision arithmetic
units (GeForce GTX 580). While the GPU originally was designed to offload a pre-
determined set of demanding graphics operations from the CPU, modern GPUs are
now fully programmable. This makes them suitable for general purpose computations,
and the use of GPUs has shown large speed-ups over the CPU in many application
areas [1,2]. The GPU is connected to the rest of the computer through the PCI Ex-
press bus, and commodity-level computers can have up-to two GPUs connected at full
data speed. Such solutions offer the compute performance comparable to a small CPU
cluster, and this motivates the use of multiple GPUs. In fact, three of the five fastest
supercomputers use GPUs as a major source of computational power [3]. However,
the extra floating-point performance comes at a price, as it is nontrivial to develop

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 56–66, 2012.
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efficient algorithms for GPUs, especially when targeting multiple GPUs. It requires
both different programming models and different optimization techniques compared to
traditional CPUs.

Related Work. The shallow water equations belong to a wider class of problems known
as hyperbolic conservation laws, and many papers have been published on GPU-accele-
ration of both conservation and balance laws [4,5,6,7,8,9,10]. There have been multiple
publications on the shallow water equations as well [11,12,13,14,15,16], illustrating
that these problems can be efficiently mapped to modern graphics hardware. The use
of multiple GPUs has also become a subject of active research. Micikevicius [17] de-
scribes some of the benefits of using multiple GPUs for explicit finite-difference simu-
lation of 3D reverse time-migration (the linear wave equation), and reports super-linear
speedup when using four GPUs. Overlapping computation and communication for ex-
plicit stencil computations has also been presented for both single nodes [18] and clus-
ters [19] with near-perfect weak scaling. Perfect weak scaling was shown by Acuña and
Aoki [20] for shallow water simulations on a cluster of 32 GPU nodes, by overlaping
computations and communication. Rostrup and De Sterck [21] further present detailed
optimization and benchmarking of shallow water simulations on clusters of multi-core
CPUs, the Cell processor, and GPUs. Comparing the three, the GPUs offer the highest
performance.

In this work, we focus on single-node systems with multiple GPUs. By utilizing more
than one GPU it becomes feasible to run simulations with significantly larger domains,
or to increase the spatial resolution. Our target architecture is both commodity-level
computers with up-to two GPUs, as well as high-end and server solutions with up-to
four GPUs at full data speed per node. We present a multi-GPU implementation of a
second-order well-balanced positivity preserving central-upwind scheme [22]. Further-
more, we offer detailed performance benchmarks on three different machine setups,
tests of a latency-hiding technique called ghost cell expansion, and analyzes of bench-
mark results.

2 Mathematical Model and Discretization

In this section, we give a brief outline of the major parts of the implemented numeri-
cal scheme. For a detailed overview of the scheme, we refer the reader to [22,23]. The
shallow water equations are derived by depth-integrating the Navier-Stokes equations,
and describe fluid motion under a pressure surface where the governing flow is hori-
zontal. To correctly model phenomena such as tsunamis, dam breaks, and flooding over
realistic terrain, we need to include source terms for bed slope and friction:⎡⎣ h
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+
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2gh
2

huv
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Here h is the water depth and u and v are velocities along the abscissa and ordinate,
respectively. Furthermore, g is the gravitational constant, B is the bottom topography,
and Cz is the Chézy friction coefficient.
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To be able to simulate dam breaks and flooding, we require that our numerical
scheme handles wetting and drying of cells, a numerically challenging task. However,
we also want other properties, such as well-balancedness, accurate shock-capturing
without oscillations, at least second order accurate flux calculations, and that the com-
putations map well to the architecture of the GPU. A scheme that fits well with the
above criteria is the explicit Kurganov-Petrova scheme [22], which is based on a stan-
dard finite volume grid. In this scheme, the physical variables are given as cell aver-
ages, the bathymetry as a piecewise bilinear function (represented by the values at the
cell corners), and fluxes are computed across cell interfaces (see also Figure 1). Using
vectorized notation, in which Q = [h, hu, hv]T is the vector of conserved variables, the
spatial discretization can be written,

dQij

dt
= Hf (Qij) +HB(Qij ,∇B)− [

F (Qi+1/2,j)− F (Qi−1/2,j)
]

− [
G(Qi,j+1/2)−G(Qi,j−1/2)

]
= Hf (Qij) +R(Q)ij .

(2)

Here Hf (Qij) is the friction source term, HB(Qij ,∇B) is the bed slope source term,
and F and G are the fluxes across interfaces along the abscissa and ordinate, respec-
tively. We first calculate R(Q)ij in (2) explicitly, and as in [23], we use a semi-implicit
discretization of the friction source term,
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This yields one ordinary differential equation in time per cell, which is then solved using
a standard second-order accurate total variation diminishing Runge-Kutta scheme [24],

Q∗
ij =

[
Qn

ij +ΔtR(Qn)ij
]
/
[
1 +ΔtH̃f (Q

n
ij)
]
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2ΔtH̃f (Q
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ij)
]
,

(4)

or a first-order accurate Euler scheme, which simply amounts to setting Qn+1 = Q∗.
The timestep, Δt, is limited by a CFL condition,

Δt ≤ 1
4minΩ

{∣∣Δx/λx∣∣, ∣∣Δy/λy∣∣}, λx = u±
√
gh,

λy = v ±
√
gh

(5)

that ensures that the fastest numerical propagation speed is at most one quarter grid cell
per timestep.

In summary, the scheme consists of three parts: First fluxes and explicit source
terms are calculated in (2), before we calculate the maximum timestep according to
the CFL condition, and finally evolve the solution in time using (4). The second-order
accurate Runge-Kutta scheme for the time integration is a two-step process, where
we first perform the above operations to compute Q∗, and then repeat the process to
compute Qn+1.
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Cell center A©
Cell corner B©

Stencil C©

D© Global ghost cells
E© Global domain

padding

F© Local ghost cells
G© Block

Fig. 1. Domain decomposition and variable locations for the single-GPU simulator. The global
domain is padded E© to fit an integer number of CUDA blocks, and global ghost cells D© are used
for boundary conditions. Each block G© has local ghost cells F© that overlap with other blocks to
satisfy the data dependencies dictated by the stencil C©. Our data variables Q,R,HB, and Hf

are given at grid cell centers A©, and B is given at grid cell corners B©.

3 Implementation

Solving partial differential equations using explicit schemes implies the use of stencil
computations. Stencil computations are embarrassingly parallel and therefore ideal for
the parallel execution model of GPUs. Herein, the core idea is to use more than one
GPU to allow faster simulation, or simulations with larger domains or higher resolu-
tion. Our simulator runs on a single node, enabling the use of multithreading, and we
use one global control thread in addition to one worker thread per GPU. The control
thread manages the worker threads and facilitates domain decomposition, synchroniza-
tion, and communication. Each worker thread uses a modified version of our previously
presented single-GPU simulator [23] to compute on its part of the domain.

Single-GPU Simulator. The single-GPU simulator implements the Kurganov-Petrova
scheme on a single GPU using CUDA [25], and the following gives a brief overview
of its implementation. The simulator first allocates and initializes data according to the
initial conditions of the problem. After initialization, we repeatedly call a step function
to advance the solution in time. The step function executes four CUDA kernels in order,
that together implement the numerical scheme. The first kernel computes the fluxes
across all interfaces, and is essentially a complex stencil computation. This kernel reads
four values from global memory, performs hundreds of floating point operations, and
writes out three values to global memory again. It is also the most time consuming
kernel, with over 87% of the runtime. The next kernel finds the maximum wave speed
in the domain, and then computes the timestep size according to the CFL condition.
The third kernel simply solves the ordinary differential equations in time to evolve the
solution. Finally, the fourth kernel applies boundary conditions by setting the values of
global ghost cells (see Figure 1).

Threaded Multi-GPU Framework. When initializing our simulator, the control thread
starts by partitioning the global domain, and continues by initializing one worker thread
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Fig. 2. Row decomposition and exchange of two rows of ghost cells. The shaded cells are a part
of the overlapping ghost cell region between subdomains.

per subdomain, which attaches to a separate GPU. We can then perform simulation
steps, where the control thread manages synchronization and communication between
GPUs. An important thing to note about this strategy is that the control thread handles
all multi-GPU aspects, and that each GPU is oblivious to other GPUs, running the
simulation on its subdomain similar to a single-GPU simulation.

We use a row domain decomposition, in which each subdomain consists of sev-
eral rows of cells (see Figure 2). The subdomains form overlapping regions, called
ghost cells, which function as boundary conditions that connect the neighbouring sub-
domains. By exchanging the overlapping cells before every timestep, we ensure that
the solution can propagate properly between subdomains. There are several benefits to
the row decomposition strategy. First of all, it enables the transfer of continuous parts
of memory between GPUs, thus maximizing bandwidth utilization. A second benefit is
that we can minimize the number of data transfers, as each subdomain has at most two
neighbours. To correctly exchange ghost cells, the control thread starts by instructing
each GPU to download its ghost cells to pinned CPU memory, as direct GPU to GPU-
transfers are currently not possible. The size of the ghost cell overlap is dictated by the
stencil, which in our case uses two values in each direction (see Figure 1). This means
that we need to have an overlap of four rows of cells, two from each of the subdomains.
After having downloaded the ghost cells to the CPU, we need to synchronize to guar-
antee that all downloads have completed, before each GPU can continue by uploading
the ghost cells coming from neighbouring subdomains. Note that for the second-order
accurate Runge-Kutta time integration scheme, we have to perform the ghost cell ex-
change both when computing Q∗ and when computing Qn+1, thus two times per full
timestep.

The multi-GPU simulator is based on our existing single-GPU simulator, which
made certain assumptions that made it unsafe to execute from separate threads. This
required us to redesign parts of the code to guarantee thread safety. A further difficulty
related to multi-GPU simulation is that the computed timestep, Δt, will typically dif-
fer between subdomains. There are two main strategies to handle this problem, and
we have investigated both. The simplest is to use a globally fixed timestep throughout
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the simulation. This, however, requires that the timestep is less than or equal to the
smallest timestep allowed by the CFL condition for the full simulation period, which
again implies that our simulation will not propagate as fast as it could have. The sec-
ond strategy is to synchronize the timestep between subdomains for each timestep, and
choose the smallest. This strategy requires that we split the step function into two parts,
where the first computes fluxes and the maximum timestep, and the second performs
time integration and applies boundary conditions. Inbetween these two substeps we can
find the smallest global timestep, and redistribute it to all GPUs. This strategy ensures
that the simulation propagates at the fastest possible rate, but at the expense of poten-
tially expensive synchronization and more complex code.

Ghost Cell Expansion. Synchronization and overheads related to data transfer can of-
ten be a bottleneck when dealing with distributed memory systems, and a lot of research
has been invested in, e.g., latency hiding techniques. In our work, we have implemented
a technique called ghost cell expansion (GCE), which has yielded a significant perfor-
mance increase for cluster simulations [26,27]. The main idea of GCE is to trade more
computation for smaller overheads by increasing the level of overlap between subdo-
mains, so that they may run more than one timestep per ghost cell exchange. For exam-
ple, by extending the region of overlap from four to eight cells, we can run two timesteps
before having to exchange data. When exchanging ghost cells for every timestep, we
can write the time it takes to perform one timestep as

w1 = T (m) + cT + C(m,n) + c,

in which m and n are the domain dimensions, T (m) is the ghost cell transfer time, cT
represents transfer overheads,C(m,n) is the time it takes to compute on the subdomain,
and c represents other overheads. Using GCE to exchange ghost cells only every kth
timestep, the average time per timestep becomes

wk = T (m) + cT /k + C(m,n+O(k)) + c,

in which we divide the transfer overheads by k, but increase the overlap, and thus the
size of each subdomain. This means that each worker thread computes on a slightly
larger domain, and we have larger but fewer data transfers.

4 Results and Analysis

To validate our implementation, we have compared the multi-GPU results with the orig-
inal single-GPU simulator [23], which has been both verified against analytical solu-
tions and validated against experiments. Our multi-GPU results are identical to those
produced by the single-GPU implementation, which means that the multi-GPU imple-
mentation is also capable of reproducing both analytical and real-world cases.

We have used three different systems for benchmarking our implementation. The
first system is a Tesla S1070 GPU Computing Server consisting of four Tesla C1060
GPUs with 4 GiB memory each1, connected to an IBM X3550 M2 server with two

1 Connected through two PCIe ×16 slots.
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2.0 GHz Intel Xeon X5550 CPUs and 32 GiB main memory (see Figure 3). The second
system is a SuperMicro SuperServer consisting of four Tesla C2050 GPUs with 3 GiB
memory each (2.6 available when ECC is enabled)2, and two 2.53 GHz Intel Xeon
E5630 CPUs with 32 GiB main memory. The third system is a standard desktop PC
consisting of two GeForce 480 GTX cards with 1.5 GiB memory each and a 2.67 GHz
Intel Core i7 CPU with 6 GiB main memory. The first two machine setups represent
previous and current generation server GPU nodes, and the third machine represents a
commodity-level desktop PC.

Fig. 3. Hardware setup of the Tesla S1070 GPU Computing Server with four Tesla C1060 GPUs
(right) connected to an IBM X3550 M2 server (left).

As our performance benchmark, we have used a synthetic circular dam break over
a flat bathymetry, consisting of a square 4000-by-4000 meters domain with a water
column placed in the center. The water column is 250 meters high with a radius of
250 meters, and the water elevation in the rest of the domain is 50 meters. At time
t = 0, the dam surrounding the water column is instantaneously removed, creating an
outgoing circular wave. We have used the first-order accurate Euler time integrator in
all benchmarks, and the friction coefficient Cz is set to zero. The bed slope and friction
coefficient do not affect the performance in this benchmark.

Ghost Cell Expansion. We have implemented ghost cell expansion so that we can
vary the level of overlap, and benchmarked three different domain sizes to determine
the effect. Figure 4 shows that there is a very small overhead related to transferring
data for sufficiently large domain sizes, and performing only one timestep before ex-
changing overlapping ghost cells actually yields the best overall results for the Tesla
S1070 system. Expanding with more than eight cells, the performance of the simula-
tor starts decreasing noticeably. From this, we reason that the overhead connected with
data transfers between subdomains in these tests is negligible, compared to the transfer
and computational time. Increasing the level of GCE only had a positive impact on the

2 Connected through four PCIe ×16 slots.
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Fig. 4. Testing the impact of different numbers of ghost cell expansion rows with four GPUs.
Tested on both The Tesla S1070 system (see Figure 3) (left), and the Tesla C2050-based sys-
tem (right). The domains tested consists of 10242 (dashed), 40962 (densely dashed) or 81922

(solid) cells. The graphs have been normalized relative to the peak achieved performance for each
domain size.

smallest domain for the Tesla S1070 system, where the transferred data volume is so
small that the overheads become noticeable. On the Tesla C2050-based system, how-
ever, we see that the positive impact of GCE is more visible. We expect this is because
this GPU is much faster, making the communication overheads relatively larger.

Our results show that ghost cell expansion had only a small impact on the shared-
memory architectures we are targeting for reasonably sized grids, but gave a slight
performance increase for the Tesla C2050 GPUs. This is due to the negligible transfer
overheads. We thus expect GCE to have a greater effect when performing ghost cell
exchange across multiple nodes, since the overheads here will be significantly larger,
and we consider this a future research direction.

Since our results show that it is most efficient to have a small level of GCE for the
Tesla S1070 system, we choose to exchange ghost cells after every timestep in all of
our other benchmarks for this system. For the Tesla C2050-based system we exchange
data after eight timesteps, as this gave the overall best results. Last, for the GeForce
480 GTX cards, which displayed equivalent behaviour to that of the Tesla C2050-based
system, we also exchange ghost cells after performing eight timesteps.

Timestep Synchronization. We have implemented both the use of a global fixed
timestep, as well as exchange of the minimum global timestep in our code, and bench-
marked on our three test systems to determine the penalty of synchronization. In the
tests we compared simulation runs with a fixed Δt = 0.001 in each subdomain, and
runs with global synchronization of Δt. When looking at the results we see that the
cost of synchronizing Δt globally has a negligible impact on the performance of the
Tesla S1070 system, with an average 0.36% difference for domain sizes larger than
five million cells on four GPUs. As expected, the cost is also roughly halved when
synchronizing two GPUs compared to four (0.17%). For smaller domain sizes, how-
ever, the impact becomes noticeable, but these domains are typically not candidates for
multi-GPU simulations. The Tesla C2050- and GeForce 480 GTX-based systems also
display similar results, meaning that global synchronization of Δt is a viable strategy
for reasonably sized domains.
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Fig. 5. (Left) Performance experiment on a Tesla S1070 system (see Figure 3) with up-to four
GPUs. (Right) Performance experiment on a Tesla C2050-based system, using up-to four GPUs.
The secondary y-axis on the right-hand side shows scaling relative to the peak achieved perfor-
mance of a single GPU.

Weak and Strong Scaling. Weak and strong scaling are two important performance
metrics that are used for parallel execution. While varying the number of GPUs, weak
scaling keeps the domain size per GPU fixed, and strong scaling keeps the global do-
main size fixed. As we see from Figure 5, we have close to linear scaling from one to
four GPUs. For domains larger than 25 million cells the simulator displays near perfect
weak and strong scaling on all three systems. Running simulations on small domains
is less efficient when using multiple GPUs for two reasons: First of all, as the global
domain is partitioned between more GPUs, we get a smaller size of each subdomain.
When these subdomains become sufficiently small, we are unable to fully occupy a sin-
gle GPU, and thus do not reach peak performance. Second, we also experience larger
effects of overheads. However, we quickly get close-to linear scaling as the domain size
increases.

The Tesla C1060 GPUs have 4.0 GiB of memory each, which enables very large
scale simulations: When using all four GPUs, domains can have up to 379 million cells,
computing at 396 megacells per second. Because the most recent Tesla C2050 GPUs
from NVIDIA have only 3.0 GiB memory per GPU, our maximum domain size is
smaller (235 million cells), but our simulation speed is dramatically faster. Using four
GPUs, we achieve over 1.2 gigacells per second. The fastest system per GPU, however,
was the commodity-level desktop machine with two GeForce 480 GTX cards. These
cards have the highest clock frequency, and we achieve over 400 megacells per second
per GPU.

5 Summary and Future Work

We have presented an efficient multi-GPU implementation of a modern finite volume
scheme for the shallow water equations. We have further presented detailed benchmark-
ing of our implementation on three hardware setups, displaying near-perfect weak and
strong scaling on all three. Our benchmarks also show that communication between
GPUs within a single node is very efficient, which enables tight cooperation between
subdomains.
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A possible further research direction is to explore different strategies for domain de-
composition, and especially to consider techniques for adaptive domain decompositions.
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Abstract. Biomedical images are intrinsically complex with each domain and
modality often requiring specialized knowledge to accurately render diagnosis
and plan treatment. A general software framework that provides access to high-
performance resources can make possible high-throughput investigations of
micro-scale features as well as algorithm design, development and evaluation. In
this paper we describe the requirements and challenges of supporting microscopy
analyses of large datasets of high-resolution biomedical images. We present high-
performance computing approaches for storage and retrieval of image data, im-
age processing, and management of analysis results for additional explorations.
Lastly, we describe issues surrounding the use of high performance computing
for scaling image analysis workflows.

1 Introduction

High-resolution biomedical imaging provides a valuable tool for scientists to investigate
the structure and function of biological systems at cellular, sub-cellular, and molecular
levels. Information obtained at these scales can provide biomarkers for better prognostic
accuracy and lead to new insights into the underlying mechanisms of disease progres-
sion. For example, current therapies and treatment regimens for breast cancer are based
upon classification strategies which are limited in terms of their capacity to identify spe-
cific tumor groups exhibiting different clinical and biological profiles. Tumors can be
analyzed using tissue microarrays (TMAs) to confirm clinico-pathologic correlations,
which have been established with whole tissue sections[1]. The process could involve
extracting and assimilating phenotypic and molecular features from images from multi-
ple groups of patients, comparing and correlating this information with the information
about the patient under study, and classifying the condition of the patient based on the
analysis results.

The field of genomics research has been transformed with advances in high-
throughput instruments which can generate large volumes of readings quickly. We are
observing a similar trend in biomedical imaging. Advanced microscopy scanners are
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capable of rapidly (usually within several minutes) imaging glass slides in their en-
tirety at high-resolution. The continuing increase in speed and resolution of imaging
instruments will usher in high-throughput, high-resolution micro-scale feature analysis.
Research studies will be able to collect large numbers of high-resolution images from
TMAs and whole slides from cohorts of patients. In these studies, multiple images
will be captured from the same tissue specimen using different stains and/or imaging
modalities; images from the same patient will also be captured at multiple time points
in a treatment or observation phase.

As advanced microscope scanners continue to gain favor in research and clinical
settings, microscopy imaging holds great potential for highly detailed examination of
disease morphology and for enhancing anatomic pathology. In order to realize this
potential, researchers need high-performance systems to handle data and computation
complexity of the high-throughput micro-scale feature analysis process. In addition, the
systems should be able to leverage Grid computing both for taking advantage of dis-
tributed resources and for supporting sharing of analytical resources as well as image
datasets and analysis results in collaborative studies.

In this paper we describe the requirements and challenges of supporting micro-scale
analyses of large datasets of high-resolution biomedical images. We argue that an in-
tegrated software framework to address the requirements should provide support for
researchers to efficiently store and retrieve large volumes of image data (image storage
and management component), execute complex analyses on image datasets (analysis
component), and manage, query, and integrate vast amounts of analysis results (re-
sults management component). We present high-performance computing approaches
for these three components. We describe the implementation of a Grid-enabled analy-
sis component for quantitative investigation of tissue microarrays and present empirical
performance results.

2 Requirements and Challenges of Microscopy Image Analysis

The first challenge to enabling high-throughput, high-resolution analyses of micro-scale
features is the fact that images obtained from contemporary scanners are very large. For
example, scanning a 15 mm x 15 mm section of tissue results in a billion pixels, or 3
GB of RGB data, and image sizes of 10 GB or more are common for images obtained
from a larger tissue section or scanned at higher resolutions. Large clinical studies may
recruit hundreds of participants; studies on animal models of disease, such as those that
make use of models based on mice, may have hundreds of specimens. These studies
will generate thousands of images (e.g., studies on morphological changes in mouse
placenta can generate up to thousand slides from a single placenta specimen to form a
3-dimensional representation of the placenta) over the course of the study, resulting in
multiple terabytes of image data.

The second challenge is the computational complexity of analyzing images. Oper-
ations on image data may range from relatively simple intensity/color correction tasks
to complex segmentation and feature extraction operations. A researcher may combine
these operations into analysis workflows for characterization of micro-scale structures.
In addition, multiple workflows composed of a number of interrelated algorithms may
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be needed to carry out segmentation and classification. One of the reasons for executing
multiple workflows is to facilitate algorithm development and evaluation. The compo-
sition of analysis pipelines, the values of input parameters of analysis methods, and
the characteristics of input datasets all affect the analysis results and the accuracy of
the analysis outcome. Given the large volume of images and the vast number of fea-
tures, it would not be feasible to manually inspect each image for every feature and
fine-tune analysis pipelines. A workable approach is to apply a few hundred variations
of analysis pipelines and input parameter values on a few hundred images. System-
atic management, comparison, and analysis of the results from these experiments can
weed out bad choices (for the intended study), reducing the number of potentially high-
quality pipelines to 10-20. These pipelines are then executed on the whole collection
of images. Besides increasing accuracy of and confidence in analysis results, an image
dataset can be analyzed multiple times with different algorithms and pipelines to detect
and extract different types of features.

Another challenge is the management of huge amounts of semantically complex
analysis results. Image markups can be either geometric shapes or image masks; an-
notations can be calculations, observations, disease inferences or external annotations.
Many of the analytical imaging results are anatomic objects such as lesions, cells, nu-
clei, blood vessels, etc. Features such as volume, area, elongation, are extracted from
these objects, and the objects are classified (annotated) based on feature characteristics
and domain knowledge. Annotations may draw from one or more domain ontologies,
resulting in a semantically rich environment. An example query from one of our stud-
ies is Search for objects with an observation concept (astrocytoma), but also expand
to include all its subclass concepts (gliosarcoma and giant cell glioblastoma). Spatial
relationships among the objects are often important to understanding the biomedical
characteristics of biology systems. Thus, additional annotations can be derived from
existing annotations and spatial relationships among structures and features – common
spatial relationships include containment, intersection or overlap, distance between ob-
jects, and adjacency relationships. Large image datasets and complex analyses result
in large volumes of metadata about objects, markups, and features computed for each
anatomic object, and semantic annotations (about cell types, genomic information as-
sociated with cells, etc). For instance, segmentation of whole slide images from brain
tumor specimens can lead to 100,000 to 1,000,000 cells in each virtual slide. Classi-
fication categories include classes of brain tumor cells, normal brain cell categories,
macrophages, endothelial cells, etc. Various markers can be used to identify possible
cancer stem cells, mutations, along with markers designed to identify blood vessels.
The process of classifying a given cell may involve 10-100 shape, texture, and stain
quantification features. As a result, systematic analysis of a large dataset consisting of
thousands of images can generate 1010 to 1013 features.

3 High Performance Computing Approaches

Distributed storage platforms can be leveraged to reduce I/O costs of storing and re-
trieving very large datasets of high-resolution images. To maximize the efficiency of
parallel storage and data accesses for image data, data declustering and indexing tech-
niques can be employed. In an earlier work[2], we evaluated several techniques for
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data distribution, indexing, and query processing of multi-resolution 3-dimensional im-
age datasets. We implemented Hilbert-curve based, random, and round-robin distribu-
tion strategies for declustering of sub-image regions across storage nodes. A two-level
R-tree based indexing scheme was employed. The two-level scheme consisted of an
R-tree index for each mesh on the local chunks assigned to a node and another R-tree
index on the bounding boxes of all the meshes in the dataset. We should note that stor-
age and I/O costs can further be reduced by applying additional optimizations. These
optimizations include incremental, adaptive declustering and partial replication. In the
incremental, adaptive scheme, a dataset is initially declustered using a simple and inex-
pensive declustering algorithm (e.g., a round-robin assignment of image subregions to
storage nodes) so that the data can be stored and made available for use quickly. The
initial declustering can then be incrementally refined using information on data access
patterns and a better, but potentially more expensive, declustering algorithm. Partial
replication can be useful if there are multiple types of queries and/or if it is detected
that certain regions of a dataset are accessed more frequently than others. In that case,
instead of redistributing the entire dataset, the regions of the dataset can be replicated.

Processing of very large images and image datasets require careful coordination of
data retrieval, distribution of data among processing nodes, and mapping of processing
tasks to nodes. A combination of multiple parallelism approaches can be employed to
quickly render results from a large dataset. Multiple images can be processed concur-
rently in a bag-of-tasks strategy, in which images are assigned to groups of processors
in a demand-driven fashion. High-resolution images, however, may not fit in the main
memory of a single processor. In addition, image analysis workflows may consist of
operations that can process data in a pipelined, streaming manner. These characteris-
tics of data and operations are suitable for combined use of task- and data-parallelism.
We have developed a middleware system, referred to as out-of-core virtual microscope
(OCVM)[3,4], based on the DataCutter infrastructure[5] in order to support multiple
parallelism approaches. In this system, multiple instances of workflows can be created
and executed with each instance processing a subset of images. Within each workflow
instance, an image is partitioned into user-defined chunks (rectangular sub-regions) so
that I/O operations can be coordinated by the runtime system rather than relying on the
virtual memory. The processing operations constituting the workflow can be mapped
to processors to reduce I/O and communication overheads. Multiple instances of an
operation can be instantiated to allow for data-parallelism. In this setup, the retrieval,
communication, and processing of chunks can be pipelined, wherever it is possible, and
the chunks can be processed concurrently by multiple instances of an operation.

As we presented in Section 2, high-throughput, high-resolution analyses of micro-
scale features will generate vast amounts of results. For example, in one of our projects,
an analysis involving 213 whole-slide images segmented and annotated approximately
90 million nuclei. An XML results document for a single image, which included the
boundaries of all segmented nuclei in the image along with 23 features computed for
each nucleus, was close to 7GB in size. In order to scale to large volumes of data,
databases of analysis results can be physically partitioned into multiple physical nodes
on cluster based computing infrastructure. The distributed memory on a cluster system
can also be leveraged to reduce I/O costs. We investigated the performance of different
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database configurations for spatial joins and cross-match operations[6]. The configura-
tions included 1) a parallel database management system with active disk style execu-
tion support for some types of database operations, 2) a database system designed for
high-availability and high-throughput (MySQL Cluster), and 3) a distributed collection
of database management systems with data replication. Our experimental evaluation of
crossmatch algorithms[7] shows that the choice of a database configuration can sig-
nificantly impact the performance of the system. The configuration with distributed
database management systems with partial replication provides a flexible environment,
which can be adjusted to the data access patterns and dataset characteristics.

The other challenge associated with analysis results is the complexity of the results.
As we presented in Section 2, semantic metadata is needed to describe analysis re-
sults (e.g., nuclear texture, blood vessel characteristics) and the context of the image
analyses. An important aspect of semantic information systems is the fact that addi-
tional annotations/classifications (also referred to as implicit assertions) can be inferred
from initial annotations (also called explicit assertions) based on the ontology and the
semantics of the ontology language. Query execution and on-the-fly computation of
assertions may take too long on a single processor machine. Pre-computation of in-
ferred assertions, also referred to as the materialization process, can reduce the execu-
tion of subsequent queries. Execution strategies leveraging high-performance parallel
and distributed machines can reduce execution times and speed up the materialization
process[8]. One possible strategy is to employ data parallelism by partitioning the space
in which the spatial objects are embedded. Another parallelization strategy is to parti-
tion the ontology axioms and rules, distributing the computation of axioms and rules
to processors. This partitioning would enable processors to evaluate different axioms
and rules in parallel. Inter-processor communication might be necessary to ensure cor-
rectness. This parallelization strategy attempts to leverage axiom-level parallelism. A
third possible strategy is to combine the first two strategies with task-parallelism. In this
strategy, N copies of the semantic store engine and M copies of the rule engine are in-
stantiated on the parallel machine. The system coordinates the exchange of information
and the partitioning of workload between the semantic store engine instances and the
rule engine instances.

4 Scalable Image Analysis Workflows

In this section, we describe some of the relevant issues surrounding our construction
and execution of scalable image analysis workflows.

4.1 Parallel and Grid-Enabled Analysis Techniques

We have developed a Grid service, based on the caGrid infrastructure[9], that encap-
sulates the computation of texton histograms given a set of TMA disc images. caGrid
enables remote access to resources. Using the caGrid infrastructure, multiple algorithm
developers can make their algorithms available using standard service interfaces and
object models for method input and output. This in turn encourages sharing of new
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Fig. 1. Upload speed of a batch file with 1 to 100 TMA images

algorithms and tools among researchers and algorithm developers, because client pro-
grams can easily access the new resources without requiring resource specific modifi-
cations. Moreover, the service can be implemented in a scalable fashion on clustered
computing resources to improve performance for increasing numbers of clients and
sizes of data. In our case, the TMA analytical service is implemented using the Data-
Cutter framework[5]. DataCutter is a stream-filter framework in which data is streamed
through a network of interacting filters. Filters modify, shape, or annotate data as it
passes through the network of streams, and can be grouped to achieve complex anal-
ysis tasks. DataCutter enables bag-of-tasks-style parallelism as well as combinations
of task- and data-parallelism. Our current implementation uses the bag-of-tasks model.
A single data processing operation or a group of interacting operations is treated as a
single task. Multiple task instances can be instantiated on different computation nodes
of a cluster. Images to be analyzed are distributed to and load-balanced among these in-
stances using a demand-driven, master-slave strategy in which each slave node requests
a new task from the master when it becomes available. The master node schedules up-
coming tasks among the available slave nodes. Analysis results are returned to the client
through the Grid.

We use the caGrid transfer service to exchange image data and analysis results ef-
ficiently between the caGrid service and clients. The caGrid transfer service allows us
to upload or download large data sets without incurring the serialization-related costs
associated with SOAP/XML messaging. Figure 1 compares the data upload speeds of
different data transfer protocols for uploading a batch of files with one to one hun-
dred TMA core images (size from 100KB to 20MB) over the Internet between a service
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Fig. 2. Processing time of TMA disc images versus number of processors

and client. Our results demonstrated that the caGrid transfer service performs signifi-
cantly faster than SOAP messaging, reflecting its avoidance of serialization costs, and
performs comparably to the SFTP protocol.

Figure 2 shows that the processing time of TMA images versus the number of pro-
cessors drops significantly as the number of CPUs increases. This result demonstrates
the scalability advantages of structuring these types of analyses in a loosely-coupled,
highly-parallel manner for execution on commodity cluster hardware. The experiment
was performed on a cluster machine at Ohio State University, whose compute nodes are
each equipped with AMD dual 250 Opteron CPUs, 8GB DDR400 RAM and 250GB
SATA hard drive. The compute nodes are connected through dual GigE Ethernet and
run CentOS 4.0.

4.2 Data Management and Query

We have implemented PAIS, a database infrastructure and accompanying data model, to
manage microscopy analysis results. The database is designed to support both metadata
and spatial queries. Examples of typical queries are: Find all cells in image A that
are segmented by Algorithm B1 and are annotated as tumor cells or Find all nuclei
segmented by Algorithm B1 that overlap nuclei segmented by Algorithm B2 in image
A. The implementation uses the IBM DB2 Enterprise Edition 9.7.1 with DB2 Spatial
Extender as the underlying database system. We chose DB2 since it is available free of
charge for research and provides integrated support for spatial data types and queries
through the spatial extender component.

To support efficient management and query of spatial information, we model and
manage markup objects as spatial objects as supported by the spatial extension of
DB2. We also employ in queries several spatial functions implemented in DB2 such as
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spatial relationship functions and functions that return information about properties and
dimensions of geometries. Many of our spatial queries are different from traditional
GIS queries. We have implemented additional optimizations to reduce query execution
times. A preliminary study showed that the performance of spatial joins between two
algorithms on the same image can be much improved by divide-and-conquer based ap-
proach. By dividing a region into four partitions, the cost of spatial overlap queries can
be immediately reduced to less than half.

High-throughput, high-resolution analyses of micro-scale features require retrieval
and processing of large image data and can benefit from parallel and distributed process-
ing. We have developed workflows for image tiling, processing, and analysis for execu-
tion in high-performance cluster computing environments. Image tiling operations are
performed using vendor software which integrates with our high-resolution microscopy
image scanning hardware. Algorithm development and execution is performed using
the MATLAB toolset. MATLAB provides a robust environment for prototyping, and
gives us the ability to seamlessly move analysis tasks from desktop development to
HPC cluster execution. These analysis tasks are executed on the Emory University EL-
LIPSE cluster, a 1024-core distributed-memory cluster with 2GB memory available to
each processor core. Our analysis workflows are executed in MATLAB on the ELLIPSE
cluster.

We are also using our experience with this analysis workflow to inform our thoughts
about how to handle analysis at larger scale. We have developed a middleware sys-
tem, referred to as out-of-core virtual microscope (OCVM)[3,4], implemented using
DataCutter, in order to support multiple parallelism approaches. OCVM supports pro-
cessing of multiple images concurrently and of images which may be too big to fit
in main memory. This support is provided through bag-of-tasks style parallelism and
combined task-data parallelism. The bag-of-tasks support facilitates processing of mul-
tiple images or image regions concurrently, where each task (image or image region)
is mapped to a processor using a demand-driven load distribution strategy. In the com-
bined task-data parallelism mode, processing operations constituting a workflow can be
mapped to processors to reduce I/O and communication overheads. Multiple instances
of an operation can be instantiated to allow for data-parallelism. In this mode, the re-
trieval, communication, and processing of images (or image chunks, if an image is too
big) can be pipelined, wherever it is possible, and the data elements can be processed
in parallel by multiple instances of an operation. We have demonstrated the efficacy
of OCVM on extremely large imaging data, ranging from several tens of gigabytes to
terabytes.

5 Related Work

Several leading institutions have already undertaken ambitious projects directed toward
digitally imaging, archiving, and sharing pathology specimens. One related software
technology, referred to as Virtual Microscopy (VM), provides access to the resulting
imaged specimens [10,11,12,13,14]. The Open Microscopy Environment project [15]
develops a database-driven system for analysis of biological images. The system con-
sists of a relational database that stores image data and metadata. Images in the database
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can be processed using a series of modular programs. These programs are connected to
the database; a module in the processing sequence reads its input data from the database
and writes its output back to the database so that the next module in the sequence can
work on it. OME provides a data model of common specification for storing details of
microscope set-up and image acquisition. CCDB/OpenCCDB [16] is a system and data
model developed to ensure researchers can trace the provenance of data and understand
the specimen preparation and imaging conditions that led to the data. CCDB imple-
ments an ontology link to support semantic queries and data sources federation. Our
work, particularly in the context of the PAIS data model, seeks to provide data manage-
ment along similar lines to these projects in a highly-scalable framework for parallel
application development.

Several research projects have implemented techniques and tools for efficient man-
agement, query, and processing of scientific datasets. Manolakos and Funk[17] describe
a Java-based tool for rapid prototyping of image processing operations. This tool uses a
component-based framework, called JavaPorts, and implements a master-worker mech-
anism. Oberhuber[18] presents an infrastructure for remote execution of image process-
ing applications using the SGI ImageVision library. Grid workflow management sys-
tems like Kepler[19] and Pegasus[20] seek to minimize the makespan by manipulating
workflow-level parameters such as grouping and mapping of a workflows components.
Glatard et al.[21] describe the combined use of data parallelism, services parallelism
and job grouping for data-intensive application service-based workflows on the EGEE
Grid. System-S[22] is a stream processing system developed at IBM. The system pro-
vides support for declaration and execution of system provided and user-defined oper-
ators on continuous streams of data on high-performance machines and in distributed
environments. SciDB is a database management system under development, which is
being designed to support very large scientific datasets[23]. SciDB is based on multi-
dimensional array storage, rather than traditional relational tables, in order to reduce
space and processing costs for scientific data. The MapReduce framework provides a
programming model and runtime support for processing and generating large datasets
on large cluster systems[24]. In MapReduce, two functions are provided by a user: A
map function that processes (key,value) pairs and generates a set of (key,value) pairs;
and a reduce function that merges and aggregates all the values with the same key.

While the projects described above address important pieces of the image analy-
sis problem, we wanted a framework that had each of a set of important characteris-
tics. For example, an open-source solution was desirable, as was one based in C/C++
for performance and scalability reasons. Programming models like Map/Reduce are
not well-suited for more tightly-coupled analysis tasks that can be expressed using the
DataCutter stream-filter model, and we wanted to remain compliant with service-style
approaches provided by caGrid. We continue to investigate integration with complemen-
tary research such as workflow systems like Pegasus and data repositories like SciDB.

6 Conclusion

Microscopy imaging has been an underutilized tool in a researcher’s arsenal of tools for
basic and translational biomedical research. While advanced instruments for imaging
tissues have been commercially available, the wider adoption of microscopy imaging
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in research and clinical settings has been hampered by the paucity of software tools for
handling very large image datasets, complex analysis workflows, and managing huge
volumes of analysis results. Use of parallel and distributed computing and storage en-
vironments can alleviate these challenges. It is possible to achieve good performance,
but careful coordination and scheduling of I/O, communication, and computation op-
erations in analysis workflows is necessary. Our work has showed that comprehensive
systems for microscopy image analysis need to implement high-performance comput-
ing techniques throughout the system, including the storage and management of image
data, execution of analysis algorithms, and management and exploration of analysis re-
sults. These systems should also leverage high performance computing technologies,
including cluster and Grid systems, both for access to distributed computational and
storage resources and for efficient sharing of data and tools in collaborative research
efforts.
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Abstract. Polynomial resultants are of fundamental importance in sym-
bolic computations, especially in the field of quantifier elimination. In
this paper we show how to compute the resultant resy(f, g) of two bivari-
ate polynomials f, g ∈ Z[x, y] on a CUDA-capable graphics processing
unit (GPU). We achieve parallelization by mapping the bivariate inte-
ger resultant onto a sufficiently large number of univariate resultants
over finite fields, which are then lifted back to the original domain. We
point out, that the commonly proposed special treatment for so called
unlucky homomorphisms is unnecessary and how this simplifies the par-
allel resultant algorithm. All steps of the algorithm are executed entirely
on the GPU. Data transfer is only used for the input polynomials and
the resultant. Experimental results show the considerable speedup of our
implementation compared to host-based algorithms.

Keywords: polynomial resultants, modular algorithm, parallelization,
GPU, CUDA, graphics hardware, symbolic computation.

1 Introduction

The resultant res(f, g) of two polynomials f =
∑m

i=0 aix
i and g =

∑n
i=0 bix

i is
the determinant of their Sylvester matrix:

res(f, g) = det(Syl(f, g)).

The (m + n) × (m + n) entries of the Sylvester matrix are determined by the
coefficients ai and bi, which may be polynomials itself. Therefore, one might use
it also in the case of multivariate polynomials, in our case for f, g ∈ Z[x, y].

The resultant is tightly coupled with the roots of polynomials. One of its
main applications is the elimination of quantifiers in systems of algebraic equa-
tions. It is used for instance for solving systems of polynomial equations and in
the analysis of implicit algebraic curves and surfaces. Unfortunately, computing
resultants is a very time consuming task, especially in the multivariate case. Sev-
eral algorithms have been proposed to reduce the complexity, respectively the
running time in practice. The modular resultant algorithm of Collins [2] suits
well for parallelization. The multivariate input polynomials over Z are mapped
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onto a certain number of univariate polynomials over prime fields. Resultants
are calculated for the univariate case and then combined into the final resultant
over the integers. The algorithm has been adapted for distributed systems [1]
and for shared memory machines [5].

In this paper we show how to implement the polynomial resultant algorithm
over Z[x, y] on a CUDA-capable graphics processing unit. We structure our pa-
per according to the divide-conquer-combine strategy of the algorithm: In the
first part we explain, how to apply parallel modular reduction and evaluation
homomorphisms on the input polynomials. We show, that the notation of un-
lucky homomorphisms is unnecessary in the context of polynomial resultants,
which also simplifies subsequent stages of the algorithm, and provide a fast im-
plementation of GPU-based modular arithmetics. Then the parallel computation
of univariate resultants using either global or shared memory of the GPU will
be described and we present our approach in combining the intermediate results
into a final resultant polynomial in Z[x]. Finally we compare the described GPU
parallelization with the sequential approach (see the benchmarks at the end).

2 Divide Phase: Applying Homomorphisms
According to Collins [2] we can use homomorphisms to split the resultant cal-
culation into several modular tasks. A homomorphism ϕ : R → R′ of commu-
tative rings R and R′ induces a homomorphism of R[x] into R′[x] defined by
ϕ(f(x)) = ϕ(

∑m
i aix

i) =
∑m

i ϕ(ai)xi.

Lemma 1 (Collins). If deg(ϕ(f)) = deg(f) and deg(ϕ(g)) = deg(g) − k, 0 ≤
k ≤ deg(g), then ϕ(res(f, g)) = ϕ(lc(f))k res(ϕ(f), ϕ(g)).

A similar statement holds for deg(ϕ(f)) = deg(f) − k and deg(ϕ(g)) = deg(g).
If both degrees decrease, the homomorphism is often considered to be unlucky
as in [5], because the commonly used repeated division algorithm for computing
the univariate resultant (see section 3) can not be applied. This is a drawback
for a parallel algorithm, because unlucky homomorphisms have to be discarded.
In the task-parallel algorithm of Hong and Loidl [5], unlucky homomorphisms
are reported back to the main task. This can not trivially be done on a GPU. To
sort out the bad cases, some kind of stream compaction would be necessary (e.g.
by applying prefix sum techniques). We solve this problem using the following
fact.
Lemma 2. If ϕ(lc(f)) = 0 and ϕ(lc(g)) = 0, then ϕ(res(f, g)) = 0.
Proof. Because ϕ is a ring homomorphism, the computation of the determi-
nant of a matrix commutes with the homomorphism. Thus ϕ(res(f, g)) =
ϕ(det(Syl(f, g))) = det(ϕ(Syl(f, g))). The only nonzero elements in the first
column of Syl(f, g) are lc(f) and lc(g), which are mapped onto zero by ϕ. There-
fore, det(ϕ(Syl(f, g))) = 0. ��
According to lemma 2, the previously unlucky homomorphisms are actually lucky
ones, because the value of the resultant is immediately known without further
calculations.
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GTX 480 2.6×
GTX 260 14.7×

Fig. 1. Speedup of our 32 bit modular multiplication compared to modular multiplica-
tion using 64 bit integer division on the NVIDIA GeForce GTX 260 and 480 GPUs.

2.1 Reduction Modulo a Prime Number

In the first step of the algorithm, we reduce the integer coefficients of f and g
modulo pairwise different prime numbers pi to coefficients in the prime field Zpi ,
which completely eliminates the occurrence of expression swell in subsequent cal-
culations. Several prime numbers are needed in order to reconstruct the integer
coefficients of the resultant with the help of the Chinese Remainder Theorem
(see section 4.2). To bound the number of primes needed, we use a bound on the
size of the coefficients of the resultant, which is taken from [7, p. 97]. We refer
there for details.

In our implementation the integer coefficients are represented in a number
system with radix 232. Reduction modulo a prime number p is easily implemented
by viewing the integer as a polynomial over Z232 and evaluating this polynomial
in Zp at 232 mod p using the Horner scheme. According to lemma 2, all prime
numbers are valid for the reduction. Therefore, we can reduce all coefficients of
f and g modulo all prime numbers in parallel without having any dependencies.

Arithmetics in Prime Fields. In our current implementation each prime
number p satisfies 231 < p < 232. Handling addition and subtraction in Zp

on 32 bit integers is trivial. But in general the result of a 32 bit multiplication
a · b = hi · 232 + lo with 0 ≤ hi, lo < 232 has a size of 64 bit. Decomposing
a · b = q · p + r, where r = a · b mod p, by using 64 bit integer division to find q
is very slow on current graphics processors. Instead we use a lower bound q on
q to eliminate the hi part of a · b and reduce the residual 32 bit part modulo p
afterwards. The exact value of q would be �(hi · 232)/p�, but this would also involve
another division. The main ingredient of the fast modular multiplication is the
precomputation of 232/p. Due to the size of p it holds that 1 < 232/p < 2, so the
0th binary digit of 232/p is implicitly known. The binary digits −1, . . . , −32 are
stored as a 32 bit integer u. Now 1 + u · 2−32 is a good lower bound for 232/p with
a maximum error smaller than 2−32. The product q′ =

⌊
hi · (1 + u · 2−32)

⌋
is

now equal to q or q − 1, depending on the round-off error. The true value of q is
obtained by checking, if hi ·232 −q′ ·p > 232. Because (hi ·232 −q ·p)+ lo < 3p, we
have to subtract p at most two times to find the final remainder r = a · b mod p.
See Algorithm 2.1 for the pseudocode and Figure 1 for a runtime comparison of
our algorithm and the modular multiplication using a 64 bit modulo operation.

Finally, modular inversion, the last operation in Zp, is implemented using the
standard Euclidean algorithm.
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Algorithm 2.1. Modular multiplication of 32 bit numbers a, b ∈ Zp using
only 32 bit integer addition and multiplication

Data: a, b ∈ Zp with 231 < p < 232; u =
⌊
(232/p − 1) · 232⌋

; all variables are
32 bit integers

Result: r = a · b mod p
1 begin
2 lo ← (a · b)lo � least significant 32 bits of a · b
3 hi ← (a · b)hi � most significant 32 bits of a · b

� (__umulhi on the GPU)
4 q ← (hi · u)hi + hi � lower bound on hi div p with q ≥ hi div p − 1
5 lo ← (q · p)lo; hi ← (q · p)hi � parts of q · p used to eliminate hi

6 hi ← hi − hi � try to eliminate hi
7 if lo �= 0 then
8 hi ← hi − 1 � subtract carry arising from lower part of q · p

9 if hi = 1 then lo ← lo + p � q was 1 to small
10 r ← lo − lo � 32 bit residue
11 if r < lo then r ← r − p � cope with overflow
12 if r ≥ p then r ← r − p � reduce modulo p

2.2 Evaluating Polynomials
Now let f, g ∈ Zp[x, y]. When calculating the resultant with respect to y, the
evaluation homomorphism (see [2]) simply maps Zp[x, y] onto Zp[y] by eval-
uating f(x, y) and g(x, y) at degx(resy(f, g)) + 1 pairwise different positions
x = xi ∈ Zp. It follows from lemma 2, that the choice of the xi is arbitrary as
long as degx(resy(f, g)) + 1 < p. We choose xi = i, which also simplifies the
reconstruction phase (see 4.1). The required number of interpolation nodes is
bounded by degx(resy(f, g)) ≤ degy(f) degx(g) + degy(g) degx(f) [7, p. 97].

The evaluation of the polynomials is again based on the Horner scheme. Due
to the independence of the evaluation nodes and the coefficients of f and g,
parallelization is easily achieved.

3 Conquer Phase: Calculating Resultants of Univariate
Polynomials

We first state some properties of the resultant taken from [3, p. 408, p. 411],
which we will use in our parallel algorithms.
Lemma 3. Let f =

∑m
i=0 aiy

i and g =
∑n

i=0 biy
i be univariate polynomials

over Zp[y] of nonzero degree, c ∈ Zp a nonzero constant and f = p · g + r with
deg(r) = l a decomposition of f by g into quotient p and remainder r, then

res(c, g) = cn, res(f, g) = (−1)mn res(g, f), res(g, f) = bm−l
n res(g, r),

res(cf, g) = cn res(f, g), res(ykf, g) = bk
0 res(f, g), k ≥ 0.
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The first line of equations in lemma 3 allows us to reduce the degrees of the
involved polynomials by successive polynomial division until the remainder is
constant. The repeated calculation of modular inversion during the polynomial
division can be avoided by using polynomial pseudodivision instead. It computes
the decomposition bm−n+1

n f = qg+r (see for example [6, p. 425ff]). Now we have

res(g, f) = b−n(m−n+1)
n res(g, bm−n+1

n f) = b(m−l)−n(m−n+1)
n res(g, r). (3.1)

If f and g are non constant, then (m − l) − n(m − n + 1) ≤ −l ≤ 0 and we
can calculate b

n(m−n+1)−(m−l)
n . Suppose the product of all these factors of the

resultant has been computed, then a single modular inverse yields the final result.

3.1 Parallelization on Global Memory

Due to our homomorphic mapping, the first idea to parallelize is to process
all independent homomorphic images in parallel. Because it is currently not
possible to store a sufficiently large number of images of even moderate degree
within the shared memory of the GPU, the first version of our algorithm operates
exclusively on global GPU memory. One thread calculates one resultant. If all the
homomorphic images of f and g are stored within a 2D-Array, each polynomial
occupying a single column, then coalesced memory access can be assured for the
first polynomial division.

After the division the degree of the remainder will almost always be deg(g) −
1, but it might be even lower for a few threads. This forces different threads
to perform uncoalesced and therefore slow memory accesses during the next
iteration. Although this case is rare, the uncoalesced access patterns are kept
until the end of the resultant computation. To solve this issue we apply the
last property of lemma 3 from right to left and calculate res(g, ykr) with k =
deg(g) − 1 − deg(r) instead of res(g, r) in the next iteration. Thus, all threads
carry on with a remainder of the same degree. But if the coefficient b0 of g is
zero, then res(g, ykr) = 0, because of the newly introduced common factor y. In
this case we proceed with res(g+r, ykr), because g+r will only have a factor x, if
also y | g and y | r. We also treat the special case r = 0 resulting in res(f, g) = 0.

The number of accesses to global memory can be reduced further. After the
initial polynomial division, we have deg(f) = deg(g)+1. The next division gives
a remainder of degree deg(f) − 2. Thus, we have to calculate cf − q1yg − q0g,
with q0, q1 ∈ Zp, to obtain the remainder. Both subtractions are done within
a single loop, by reusing already loaded coefficients of g. Intermediate results
are stored locally, thus saving another global memory store and load, improving
performance on architectures without a memory cache.

3.2 Parallelization on Shared Memory

We now restrict the size of f and g to fit into the shared memory of the GPU.
Without loss of generality we assume deg(f) ≥ deg(g) and use a thread block
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Algorithm 3.1. Parallel computation of univariate polynomial resultant
on shared memory.

Data: f, g ∈ Zp[y] with deg(f) ≥ deg(g); t is the thread index
Result: res = res(f, g)

1 begin
2 k ← 0 � used to index factors of resultant
3 if t = 0 then s ← 1 � sign of the resultant
4 while deg(g) > 0 do
5 (q, r) ← parallelPseudoDivide(f, g) � decomposition cf = qg + r
6 if t = 0 then
7 m → deg(f); n → deg(g); l → deg(r)
8 βk ← lc(g) � base of factor
9 ek ← n(m − n + 1) − (m − l) � exponent of factor

10 s ← s · (−1)deg(f) deg(g) � update sign of resultant
11 k ← k + 1 (f, g) ← (g, r)
12 if t = 0 then βk ← lc(g); ek ← deg f � base case with deg(g) = 0
13 if t ≤ k then βt ← βet

t � exponentiations of first k factors
14 reduce β0 =

∏k−1
i=0 βi in parallel � parallel reduction in O(log k) steps

15 if t = 0 then
16 res ← β−1

0 βks � single modular inverse; base case factor; sign

with deg g threads to calculate a single resultant. Parallelization is achieved in the
inner loop of the polynomial pseudodivision. Each thread is attached to a single
coefficient during the computation. Additionally, we delay the exponentiation
of the bn factors (see equation (3.1)) until all of them are known. Then the
exponentiation of all factors is done in parallel and their product is calculated
using parallel reduction. The pseudocode is shown in Algorithm 3.1.

Although the thread utilization is reduced after each iteration, this algorithm
is quite fast on GPUs, that do not have a cache for global memory. A runtime
comparison of both algorithms is shown in Table 1.

4 Combine Phase: Reconstructing the Integer Resultant

We now reconstruct the final integer resultant from the homomorphic images of
the resultant by polynomial interpolation and the Chinese Reminder Theorem.

4.1 Polynomial Interpolation

The interpolation is performed on the points (i, ri), where ri is the resultant
at x = i. We apply the classical Newton interpolation, which represents a poly-
nomial p(x) in the form p(x) =

∑n
k=0 vkNk(x) with Newton basis polynomials

Nk(x). The coefficients vk are computed efficiently by the scheme of divided
differences.
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Newton Basis Polynomials. Due to lemma 2 we chose the interpolation nodes
0, 1, 2, . . . , n. For these nodes the Newton basis polynomials have the structure

Nn(x) =
n−1∏

k=0
(x − k) =

n∑

k=0

[
n

k

]

(−1)n−kxk, (4.1)

where
[

n
k

]
are the Stirling numbers of the first kind. They are recursively given

by [
n

k

]

=
[
n − 1
k − 1

]

+ (n − 1)
[
n − 1

k

]

(4.2)

with base cases
[

n
0
]

=
[

n
n

]
= 1 and

[0
0
]

=
[0

k

]
= 0 (see [4, p. 243ff]). In our imple-

mentation n threads1 calculate the coefficients of Nn(x) in parallel by applying
equation (4.2) on the coefficients of Nn−1(x), which are stored in shared memory.
It is also possible to precompute the Nn(x), but one has to keep the quadratic
space requirements in mind.

Divided Differences. The definition of the divided differences supplied by [3,
p. 188] is suitable for our application. With our special interpolation nodes it
simplifies to

vk = (((· · · ((rk − v0)k−1) − v1)(k − 1)−1 − · · · vk−2)2−1 − vk−1)1−1 (4.3)

We start by computing the modular inverses 1−1, 2−1, . . . , n−1 in parallel by n
threads. Then thread k calculates vk by applying equation (4.3) step by step.
The vk, which is subtracted by each thread in iteration k + 1, is available since
iteration k and distributed among the threads via shared memory.

Overlapping Computations. A closer look at the previous two algorithms
reveals another possibility for optimization. In iteration k we need k threads
to compute the Newton basis polynomials and n − k threads to work on the
remaining divided differences. Thus, we can overlap both computations in a sin-
gle kernel, keeping all n threads occupied during the whole interpolation process.
Even the sum p(x) =

∑n
k=0 vkNk(x) is computed along with the Newton polyno-

mials. For iteration k of the sum, only vk and Nk(x) are needed. Thus, vk−1 and
Nk−1(x) are overwritten, as soon as they are no longer needed. Additionally, we
store the growing number of coefficients for the Nk(x) and the shrinking number
of modular inverses needed by the vk within the same array. The intermediate
coefficients of the interpolation polynomial are kept locally by each thread. This
results in a memory efficient algorithm, using only n 32 bit shared memory cells.

4.2 Lifting from Prime Fields to Integers

The last task is to combine the corresponding coefficients of the interpolation
polynomials from different prime fields into an integer number. To find a solution
1 The leading coefficient is always equal to one. No extra thread is required here.
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for the simultaneous congruences u ≡ uk mod pk of an integer u and its modular
images uk, we follow Garner’s algorithm, which is presented well in the book of
Knuth [6, p. 284ff]. The integer u is represented in mixed radix form

u = v0 + p0(v1 + p1(v2 + · · · + pn−1vn) · · · ) (4.4)

with mixed radix digits vk ∈ Zpi , that are defined as

vk = (· · · ((uk − v0)p−1
0 − v1)p−1

1 − · · · − vk−1)p−1
k−1 mod pk. (4.5)

The similarity between equations (4.3) and (4.5) is obvious and we use the same
scheme for parallelization here.

Converting from Mixed Radix to Fixed Radix Notation. The conversion
process involves alternate multiplication of a prime number and addition of a
mixed radix digit, both 32 bit integers, on the intermediate value of u, which
is a multi-precision integer. The multiplication is done in parallel. Each thread
multiplies its fixed radix digit with the prime number, followed by a phase of
carry propagation. The addition of the mixed radix digit is easily integrated as
the carry at the least significant digit. Each carry is added on the corresponding
digit, possibly generating another carry. We use the warp vote functions avail-
able on the GPU to determine within two synchronization steps, if there is still a
carry to propagate. The warp vote tells us, if there is a carry within a warp. This
information is written to shared memory and accumulated into the global carry
flag by another warp vote. Although the carry might ripple from the least signif-
icant digit to the most significant one, this rarely occurs in practice. We follow
this approach for reasons of simplicity in our first GPU-based implementation.

5 Experimental Results

We provide two types of benchmarks, which are both based on a NVIDIA
GeForce GTX 260 and 480 GPUs and a 2.8GHz Intel Xeon Prestonia CPU.

In Table 1 we list the computation times for all parts of the parallel resultant
algorithm for 65535 instances of the respective task. The time needed for one
instance is to short for accurate measurements. Modular reduction and evalua-
tion of polynomials are very fast operations. Their complexity is linear in the
input size and each task is processed by a single thread without any communi-
cation. The complexity of other parts of the algorithm is quadratic in the input
size. On the GTX 260 the univariate resultant on global memory is relatively
slow compared to the parallel variant, that operates on shared memory. Due
the on-chip cache for global memory, the GTX 480 behaves very well on the re-
sultant on global memory. Because it allows full thread utilization without any
synchronization, it is sometimes even faster than the resultant on shared mem-
ory. Polynomial interpolation and the lifting process from prime fields to integer
coefficients via the Chinese Remainder Theorem are very similar in its nature.
Unfortunately the lifting to integers involves mixed precision arithmetics and
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Table 1. Computing times for the different parts of the parallel resultant algorithm for
two different NVIDIA GeForce GPUs in milliseconds. The timings reflect the runtime
for 65535 instances of the respective task. The input size determines: size of the number
to reduce in digits (modular reduction); number of coefficients of the input polynomials
(polynomial evaluation, univariate resultant on global memory (gmem) and shared
memory (smem), interpolation); prime numbers (Chinese Remainder Theorem (crt)).

input size

2 4 8 16 32 64 128 256 512

G
T

X
26

0

modular reduction 0.1 0.1 0.2 0.4 0.8 1.5 3.1 6.2 12.3
evaluation 0.1 0.1 0.2 0.4 0.8 1.6 3.2 6.3 12.5
resultant gmem 0.6 4.8 20.3 74.9 280.9 1127.6 4409.5 17423.2 94637.4
resultant smem 8.8 32.7 43.0 62.9 121.5 280.6 868.8 3251.0 13230.8
interpolation 2.5 5.7 10.8 21.4 52.4 150.0 497.1 1790.6 7040.5
crt 13.1 35.6 83.2 183.0 530.2 1550.1 4258.2 11790.4 39005.0

G
T

X
48

0

modular reduction 0.1 0.1 0.1 0.1 0.1 0.3 0.5 1.1 2.2
evaluation 0.1 0.1 0.1 0.1 0.2 0.4 0.9 1.8 3.6
resultant gmem 0.1 0.3 1.2 3.6 12.0 46.1 202.1 761.5 5194.8
resultant smem 4.1 13.3 17.7 26.1 42.9 84.8 249.3 870.0 3254.6
interpolation 1.4 2.5 4.5 8.4 16.1 35.0 110.5 398.2 1576.6
crt 7.0 17.8 40.5 89.1 197.0 542.9 1400.9 3531.9 9062.6

Table 2. Benchmarks for resultant computations on random polynomials of various
degrees. We compare the timings in seconds of our CUDA-based resultant algorithm to
the time Mathematica 6 takes for the sequential modular resultant. The last column
graphically shows the percentage of the computation time consumed by each task
( modular reduction, evaluation, resultant smem, interpolation, crt). In the first
test group, the degree of the resultant and the size of the coefficients in the resultant
are held approximately constant. The second group shows several examples, where the
size of the coefficients in the input is smaller than 232. For the third test group the size
of the coefficients in the resultant is approximately constant again.
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510 509 10 26 10 25 10 232.92 0.881 264× 0.258 904×
510 511 6 43 6 42 6 259.47 1.107 234× 0.352 737×
510 502 5 52 5 50 5 278.19 1.347 207× 0.388 717×
510 511 3 85 3 85 3 371.36 2.250 165× 0.588 632×
510 507 4 128 2 127 2 467.83 4.195 112× 1.134 413×
200 46 1 20 5 20 5 3.95 0.038 104× 0.005 725×
300 69 1 30 5 30 5 10.38 0.099 105× 0.017 613×
400 93 1 40 5 40 5 26.98 0.147 184× 0.041 657×
200 511 13 20 5 20 5 27.95 0.389 72× 0.790 355×
300 510 9 30 5 30 5 79.02 0.685 115× 0.145 547×
400 510 7 40 5 40 5 148.83 0.757 197× 0.253 589×
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the computation of many modular inverses. The former also leads to a high com-
munication overhead within a thread block, which is reflected in the benchmark
results.

In Table 2 we list computing times for several resultants of polynomials of vari-
ous degrees and coefficient sizes. Our results are compared against the sequential
modular resultant algorithm implemented in Mathematica 6. We obtain substan-
tial speedups with our approach. From the last column we see, how much time
is spent on which part of the parallel modular resultant algorithm. The appli-
cation of the homomorphisms is almost negligible. Due to the large number of
homomorphic images, most time is spent on the univariate resultant. The next
part, the Newton interpolation, is quite fast. It also benefits from our choice of
interpolation nodes. The final phase, the lifting to integer coefficients, currently
involves mixed precision arithmetics and lots of communication, preventing the
algorithm from being as efficients as the interpolation.

6 Conclusion

We have presented a complete implementation of a parallel bivariate polynomial
resultant over the integers on a CUDA-capable graphics processor. All stages of
the algorithm exhibit a large amount of parallelism and we achieve high speedups
on the GPU with this approach. The parts of the parallel implementation can also
be used separately, e.g. to compute resultants over Zp[x, y]. Further investigation
will be done to expand our results on other symbolic computations.
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Abstract. Model order reduction of a dynamical linear time-invariant
system appears in many applications from science and engineering. Nu-
merically reliable SVD-based methods for this task require in general
O(n3) floating-point arithmetic operations, with n being in the range
103 − 105 for many practical applications. In this paper we investigate
the use of graphics processors (GPUs) to accelerate model reduction of
large-scale linear systems by off-loading the computationally intensive
tasks to this device. Experiments on a hybrid platform consisting of
state-of-the-art general-purpose multi-core processors and a GPU illus-
trate the potential of this approach.

Keywords: model reduction, dynamical linear systems, Lyapunov
equations, SVD-based methods, GPUs.

1 Introduction

Model order reduction is an important numerical tool to diminish the simulation
time or the cost of designing optimal controllers in many industrial processes,
with dynamics modeled by a linear time-invariant (LTI) system:

Eẋ(t) = Ax(t) +Bu(t), t > 0, x(0) = x0,
y(t) = Cx(t) +Du(t), t ≥ 0.

(1)

Here, x(t) contains the states of the system, with initial state x0 ∈ R
n, u(t) and

y(t) contain the inputs and outputs, respectively, and E,A ∈ R
n×n, B ∈ R

n×m,
C ∈ R

p×n, D ∈ R
p×m. The system in (1) can also be described by the associated
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c© Springer-Verlag Berlin Heidelberg 2012



Accelerating Model Reduction of Large Linear Systems 89

transfer function matrix (TFM) G(s) = C(sE − A)−1B + D. A particularly
important property is that the number of states (also known as the state-space
dimension or the order) of the system, n, is in general much larger than the
number of inputs and outputs, m and p, respectively.

The goal of model reduction is to find a reduced-order LTI system,

Ê ˙̂x(t) = Âx̂(t) + B̂u(t), t > 0, x̂(0) = x̂0,

ŷ(t) = Ĉx̂(t) + D̂u(t), t ≥ 0,
(2)

of order r, with r � n, and associated TFM Ĝ(s) = Ĉ(sÊ − Â)−1B̂ + D̂
which approximates the dynamics of the original system defined by G(s). The
reduced-order realization (2) can then replace the original high-order system in
a simulation or the design of an optimal controller, thus simplifying such tasks
considerably. Model reduction of large-scale systems appears, e.g., in thermal,
thermo-mechanical, electro-mechanical and acoustic finite element models [1].
We consider a system to be large-scale if n ∼ O(1, 000) − O(100, 000); while,
often, m, p ∼ O(10)− O(100).

The numerical method for model reduction considered in this paper is based
on the so-called state-space truncation approach and requires, at an initial
stage, the solution of two coupled generalized Lyapunov equations. The reduced-
order system is then obtained using a variant of the balanced truncation (BT)
method [2,3], which only requires a few dense linear algebra computations. Al-
though there exist several other approaches for model reduction (see, e.g., [1,4]
and the references therein), those are specialized for certain problem classes and
often lack properties such as error bounds or preservation of stability, passivity,
or phase information. A comparison of the numerical properties of SVD-based
methods (as BT) and Krylov subspace methods can be found in [1,5,6,7].

The Lyapunov equations are solved in our method via the matrix sign func-
tion, which yields a computational cost for the global model reduction procedure
of O(n3) flops (floating-point arithmetic operations). This calls for the applica-
tion of high performance computing in the reduction of models already with n
in the order of thousands.

Recent work on the implementation of BLAS and the major factorization rou-
tines for the solution of linear systems [8,9,10,11] has demonstrated the potential
of graphics processors (GPUs) to yield high performance on dense linear algebra
operations which can be cast in terms of matrix-matrix products. In [12] we built
upon these works to deal with the solution of the standard Lyapunov equation
on a GPU. Here, we further extend this work by tackling the different stages in
SVD-based methods for model reduction of generalized linear systems, namely,
the solution of the coupled generalized Lyapunov equations, the computation
of the SVD, and auxiliary computations. The target architecture is a hybrid
platform consisting of a general-purpose multicore processor and a GPU. We
exploit these two resources by designing a hybrid numerical algorithm for model
reduction that performs fine-grained computations on the CPU while off-loading
computationally intensive operations to the GPU. We also overlap computations
in both architectures in order to improve the performance.
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The rest of the paper is structured as follows. In Section 2 we briefly review
the BT method for model reduction, including the sign function-based Lyapunov
solver, and the remaining stages of the method. There we also describe the ap-
proach to computing all these operations on the hybrid platform. In Section 3 we
present experimental results that illustrate the accuracy and parallelism attained
by the numerical algorithms on a platform consisting of two Intel QuadCore pro-
cessors connected to an NVIDIA Tesla C1060 GPU via a PCI-e bus. Finally, in
Section 4 we provide a few concluding remarks.

2 SVD-Based Methods for Model Reduction

BT model reduction [13,14,15,16] belongs to the family of absolute error meth-
ods, which aim at minimizing

‖G− Ĝ‖∞ = sup
ω∈R

σmax(G(jω)− Ĝ(jω)),

where j :=
√−1 and σmax(M) stands for the largest singular value of a matrix

M .
Model reduction via BT methods employs information about the controlla-

bility Gramian Wc and the observability Gramian Wo of the system (1), given
by the solutions of the coupled generalized Lyapunov matrix equations

AWcE
T + EWcA

T +BBT = 0, (3)

AT W̃oE + ET W̃oA+ CTC = 0, (4)

with Wo = ET W̃oE. In most model reduction applications, the matrix pair
(A,E) is stable (i.e., all its generalized eigenvalues are in the open left complex
plane), so thatWc andWo are both positive semidefinite. Therefore, the solutions
of the Gramians can be factored as Wc = STS and Wo = RTR. (Here, S and R
are usually refereed to as the Cholesky factors of Wc and Wo, though they are
not necessarily Cholesky factors in a strict sense.)

Consider now the singular value decomposition (SVD) of the product

SRT = UΣV T = [U1 U2 ]

[
Σ1

Σ2

]
[V1 V2 ]

T
, (5)

where U and V are orthogonal matrices, and Σ = diag (σ1, σ2, . . . , σn) is a
diagonal matrix containing the singular values of SRT , also known as the Hankel
singular values (HSV) of the system. Given a partitioning of Σ into Σ1 ∈ R

r×r

and Σ2 ∈ R
(n−r)×(n−r), and a conformal partitioning of U and V in (5), the

square-root (SR) version of BT determines a reduced-order model of order r as

Ê = TlETr, Â = TlATr,

B̂ = TlB, Ĉ = CTr, D̂ = D,
(6)

with
Tl = Σ

−1/2
1 V T

1 RE−1 and Tr = STU1Σ
−1/2
1 . (7)
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The state-space dimension r of the reduced-order model can be chosen adaptively
as this method provides a realization Ĝ satisfying

‖G− Ĝ‖∞ ≤ 2

n∑
j=r+1

σj .

In the following subsection we revisit the sign function-based generalized Lya-
punov solver introduced in [17]. The solver yields low-rank approximations to
the Cholesky or full-rank factors of the solution matrices which can reliably
substitute S and R in the computations in (5) and (7).

2.1 The Sign Function Method

The matrix sign function was introduced in [18] as an efficient tool to solve stable
(standard) Lyapunov equations. The following variant of the Newton iteration
for the matrix sign function [17] can be used for the solution of the generalized
Lyapunov equations (3)-(4):

Algorithm CGCLNC:

A0 ← A, S̃0 ← BT , R̃0 ← C
k ← 0
repeat

Ak+1 ← 1√
2

(
Ak/ck + ck(EA

−1
k )E

)
Compute the rank-revealing QR (RRQR) decomposition

1√
2ck

[
S̃k, ckS̃k(EA

−1
k )T

]
= Qs

[
Us

0

]
Πs

S̃k+1 ← UsΠs

Compute the RRQR decomposition

1√
2ck

[
R̃k, ck(R̃kA

−1
k )E

]
= Qr

[
Ur

0

]
Πr

R̃k+1 ← UrΠr

k ← k + 1
until ‖Ak − E‖1 < τ‖Ak‖1

On convergence, after j iterations, S̃ = 1√
2
S̃jE

−T and R̃ = 1√
2
R̃jE

−1 of dimen-

sions k̃o × n and k̃c × n are, respectively, full (row-)rank approximations of S
and R, so that Wc = STS ≈ S̃T S̃ and Wo = RTR ≈ R̃T R̃.

The Newton iteration for the sign function usually presents a fast convergence
rate, which is ultimately quadratic. Initial convergence can be accelerated using
several techniques. In our case, we employ a scaling defined by the parameter

ck =
√

‖A‖∞/‖EA−1
k E‖∞.

In the convergence test, τ is a tolerance threshold for the iteration that is usu-
ally set as a function of the problem dimension and the machine precision ε. In
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particular, to avoid stagnation in the iteration, we set τ = n · √ε and perform
one or two additional iteration steps after the stopping criterion is satisfied. Due
to the quadratic convergence of the Newton iteration, this is usually enough
to reach the attainable accuracy. The RRQR decomposition can be obtained
by means of the traditional QR factorization with column pivoting [19] plus a
reliable rank estimator.

Each iteration of algorithm CGCLNC requires the following operations: the LU
decomposition of Ak (23n

3 flops), followed by the system solve EA−1
k and the

matrix product (EA−1
k )E (2n3 + 2n3 flops); let sk and rk be the number of

columns of Ŝk and R̂k; then an n×n×sk matrix product is required to construct
S̃k(EA

−1
k )T (2n2sk flops), a system solve with rk right-hand sides to obtain

R̃kA
−1
k (2n2rk flops), and an n × n × rk matrix product to build (R̃kA

−1
k )E

(2n2rk flops); finally, two QR factorizations with column pivoting complete the
major computations in the algorithm (2n(s2k+r2k)− 2

3 (s
3
k+r3k) flops). (The latter

flop count assumes that Sk and Rk are full rank, so the actual cost is smaller than
this.) Other minor operations, as norms, scalings, etc., contribute with negligible
computational costs.

2.2 Hybrid Implementation of the Lyapunov Solver

The objective of the hybrid implementation is to reduce the computational time
executing each operation on the most convenient architecture while, whenever
possible, overlapping the execution of operations in both architectures. On the
other hand, a careful scheduling of operations is necessary to minimize the com-
munication overhead, amortizing the cost of transferring the data between the
memory spaces of the GPU and the CPU.

The hybrid algorithm proceeds as follows. At the beginning of each iteration,
the CPU transfers matrix Ak to the GPU. Then, the CPU and the GPU coop-
erate in the LU factorization of matrix Ak. The solution of the EA−1

k system is

also obtained on the GPU while the CPU solves the R̃kA
−1
k system. Then, the

computation of the matrix product (EA−1
k )E proceeds on the GPU while the

CPU computes S̃k+1 and R̃k+1, (in particular, this will require the computation
of the two RRQR decompositions and four matrix-matrix products involving
relatively small matrices). Finally, the matrix and scalings to construct Ak+1 as
in algorithm CGCLNC are computed on the CPU.

Some other necessary secondary operations are performed on the CPU since
they require a minor computational effort.

The use of both architectures requires some data transfers. To control and
minimize the communication overhead, data transfers are only scheduled if there
is an important gain associated with them. Specifically, the data transfers needed
at each iteration are:

1. Send Ak from the CPU to the GPU to compute its LU decomposition.

2. Send the factors resulting from the LU decomposition of Ak from the GPU
to the CPU.
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3. Send the solution of EA−1
k from the GPU to the CPU so that S̃k+1 can be

computed there.
4. Send the result of (EA−1

k )E, required to compute Ak+1, from the GPU to
the CPU.

Besides these data transfers, there are some minor communications being per-
formed in the algorithm, in particular, by the LU decomposition kernel.

In summary, the most remarkable strengths of this implementation are:

– The use of a hybrid kernel for the LU decomposition. In this kernel the GPU
and the CPU cooperate for computing the decomposition [10].

– The new code generated for the solution of triangular systems on the GPU. A
great effort has been conducted to speed-up the execution of this operation;
several GPU-based variants were implemented, employing techniques like
padding. The best variant obtained, employed in this work, is a blocked
routine that casts most of the arithmetic operations in terms of matrix-
matrix products. As a result, this new version outperforms notoriously the
CUBLAS implementation (it is approximately a 30% and 70% faster for the
examples STEEL I and FLOW METER considered in Section 3, respectively) and
yields a significant acceleration of one of the most time-consuming stages in
the model reduction procedure.

– The use of two levels of parallelism. At the inner level, operations are per-
formed using multi-threaded implementations of BLAS. At the outer level,
different operations are executed concurrently in the two available resources:
CPU and GPU.

– The reduced overhead introduced by communications: only transfers that
are amortized over a large number of flops are performed, so that it will be
unlikely that communication produces a loss of efficiency. Note that whether
data transfers are or not amortized depends on the problem dimension, which
in our case, ranges in 103 − 105.

2.3 Remaining Stages in Model Reduction BT

Once the Cholesky factors S̃ and R̃ have been computed, the remaining opera-
tions to obtain the reduced order model comprise a matrix product of moderate
dimension (S̃T R̃ ≈ SRT ); the SVD of the result, see (5); and a few more matrix-
matrix operations and a system solve, see (6)–(7). All these computations require
a reduced number of flops and, therefore, are performed on the CPU.

3 Numerical Experiments

In this section we evaluate the numerical accuracy and parallel performance of
the BT model reduction method. The target platform consists of two Intel Xeon
QuadCore E5410 processors at 2.33GHz, connected to an Nvidia Tesla C1060
via a PCI-e bus. We employed the multi-threaded implementation of BLAS in
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MKL (version 10.2) for the general-purpose processor and Nvidia CUBLAS
(version 2.1) for the GPU. We set OMP NUM THREADS=8 so that one thread is
employed per core in the parallel execution of the MKL routines in the Intel
Xeon QuadCore processors.

In the following experiments, we evaluate the performance using single preci-
sion arithmetic on two model reduction problems from the Oberwolfach bench-
mark collection at the University of Freiburg1:

– STEEL I: This model arises in a manufacturing method for steel profiles.
The goal is to design a control that yields moderate temperature gradients
when the rail is cooled down. The mathematical model corresponds to the
boundary control for a 2-D heat equation. A finite element discretization,
followed by adaptive refinement of the mesh results in the example in this
benchmark. The dimensions of this problem are n = 5, 177, m = 7, p = 6.

– FLOW METER: This 2-D model of an anemometer-like structure mainly consists
of a tube and a small heat source. The model is given by a spatially semi-
discretized instationary convection-diffusion equation with Dirichlet bound-
ary conditions and a parabolic inflow profile. The reference temperature is
set to 300 K, and Dirichlet boundary conditions as well as initial conditions
are set to 0 with respect to the reference. The dimensions of this problem
are n = 9, 669, m = 1, p = 5.

Table 1 shows the results obtained with our hybrid CPU-GPU algorithm for the
solution of the coupled generalized Lyapunov equations associated with these
systems. Columns 2, 3, 4 and 5 of the table show the time (in seconds) for the
LU factorization of Ak, the solution of the four triangular systems in the compu-
tations EA−1

k and R̃kA
−1
k , the matrix product (EA−1

k )E, and the updates of the

factors S̃ and R̃, respectively (including the time for all the data transfers asso-
ciated to each one of the operations). The rest of columns show the global time
per iteration of the hybrid implementation, the time per iteration for the same
algorithm implemented on the multicore CPU, and the convergence criterion.

Most of the iteration time is spent in the computation of the LU decomposi-
tion (column 2), the solution of the four triangular systems (column 3) and the
matrix-matrix product (column 4). Those are the operations which, in part or
completely, are performed on the GPU.

The number of columns of the factors S̃ and R̃ is doubled at each iteration
and, in consequence, the cost associated to the update of the factors increases
with the iteration count. To keep the number of columns in the factors under
control, an RRQR factorization is computed at each step [19]. This approach
yields important gains when the number of iterations that are required for con-
vergence is large enough to increment notoriously the size of the factors, as is the
case for the two problems considered in this section. The increment in the num-
ber of columns of S̃ and R̃ results in an increment of the time required for their
update (column 5). This time becomes relevant after some iterations, as this is

1 http://www.imtek.de/simulation/benchmark/

http://www.imtek.de/simulation/benchmark/
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Table 1. Performance of the hybrid CPU+GPU implementation of the Newton itera-
tion for the solution of the Lyapunov equation with factored right-hand side

#Iter Time Time Time Time Time Time Conv. criterion

k PAk = LU EA−1
k , (EA−1

k )E S̃k(EA−1
k ), iteration iteration ‖Ak+E‖F

‖E‖F
R̃kA

−1
k R̃k(A

−1
k E), (Hybrid) (CPU)

compress

STEEL I

1 0.698 1.041 0.807 0.121 2.958 5.337 2.732e+02
2 0.544 1.023 0.788 0.047 2.618 5.286 2.064e+01
3 0.544 1.023 0.788 0.079 2.650 5.354 3.698e+00
4 0.544 1.023 0.788 0.159 2.732 5.465 1.140e+00
5 0.543 1.023 0.789 0.381 2.955 5.638 3.644e−01
6 0.545 1.023 0.788 0.909 3.486 6.219 7.936e−02
7 0.546 1.022 0.789 1.366 3.946 6.553 8.546e−03
8 0.543 1.023 0.788 1.866 4.442 6.909 5.706e−04
9 0.544 1.184 0.788 2.093 4.670 7.105 1.257e−05
10 0.546 1.209 0.788 2.185 4.767 7.250 7.319e−07

ACCUMULATED TIME 35.224 61.156

FLOW METER

1 3.380 7.741 5.183 0.289 17.359 31.516 6.884e+01
2 2.906 7.673 5.116 0.109 16.512 31.580 6.758e+00
3 2.918 7.673 5.116 0.137 16.553 31.725 1.585e+00
4 2.888 7.673 5.116 0.202 16.592 31.970 5.010e−01
5 3.007 7.673 5.115 0.359 16.871 32.126 1.580e−01
6 2.893 7.674 5.116 0.702 17.099 32.329 5.044e−02
7 2.886 7.673 5.116 0.971 17.365 32.525 1.241e−02
8 2.890 7.674 5.116 1.066 17.462 32.842 1.702e−03
9 2.893 7.673 5.117 1.191 17.591 32.896 1.156e−04
10 2.891 7.673 5.115 1.236 16.634 32.997 1.396e−06
11 2.891 7.673 5.116 1.248 17.994 32.881 2.389e−07

ACCUMULATED TIME 188.032 355.387

mostly a BLAS-2 based computation performed on the CPU, e.g., being nearly
half of the total iteration time for the STEEL I problem after 9 iterative steps.
Executing these operations on the GPU, though possible, would require some
extra CPU-GPU communications and would slow down the execution of the
initial iterations.

Compared with the execution of the same algorithm on a CPU, the use of the
GPU yields an important reduction of the execution times on the most compu-
tationally expensive operations which carries over to the global execution time
per iteration (the LU factorization, the solution of triangular systems and the
matrix-matrix product). Furthermore, while some computations are off-loaded
to the GPU, others are performed concurrently on the CPU. This second level
of parallelism further reduces the total execution time.
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4 Concluding Remarks

We have presented a new parallel algorithm for model reduction of large linear
systems on a hybrid CPU-GPU platform. Our algorithm exploits the capabilities
of both architectures, the multi-core CPU and the many-core GPU, obtaining
a high performance implementation of a BT model reduction technique. We
use two levels of parallelism: at the inner level, multi-thread implementations
of the BLAS library (MKL and CUBLAS) compute the most time-consuming
linear algebra kernels. At the outer level, operations proceed concurrently in
both architectures.

Results show that model reduction of large-scale linear systems can be tackled
with this kind of platforms in a reasonable computational time.

Future research resulting from this experience will include:

– Use of multiple GPUs to further reduce the computational time and increase
the dimension of the affordable problems. The computation of the matrix-
matrix product in (EA−1

k )E, due to its strong scalability, can be accelerated
using a multi-GPU implementation. Also the computation time for the LU
factorization of Ak can be reduced (see the results reported in [20]) as well as
the solution of the triangular system performed on the GPU (EA−1

k ), since
most of the operations are cast in terms of matrix-matrix products.

– Use of double precision arithmetic. Performance of current GPUs in double
precision is considerably lower than single precision, but the new generation
of GPUs will drastically reduce this difference. As an alternative, we will
investigate the use of iterative refinement which given a single precision
solution, obtains the double precision solution at a reduced cost.
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Abstract. Graphical Processing Units (GPUs) are massive floating-
point stream processors, and through the recent development of tools
such as CUDA and OpenCL it has become possible to fully utilize them
for scientific computing. We have developed an open-source CUDA-based
acceleration framework for 3D Computational Fluid Dynamics (CFD)
using Smoothed Particle Hydrodynamics (SPH). This paper describes
the methods used in our framework and compares the performance of
the implementation to previous SPH implementations. We implement
two different SPH models, a simplified model for Newtonian fluids, and
a complex model for Non-Newtonian fluids, which we use for simulation
of snow avalanches. Having implemented two different models, we inves-
tigate the performance characteristics of SPH simulations on the GPU
and find that despite the larger bandwidth-requirements of the complex
model the GPU scales well. Our simulations are rendered interactively
and in real-time. Using an NVIDIA GeForce GTX 470 Fermi-based card
we achieve 215.4, 122.2 and 64.9 FPS for the simple model and 69.6, 37.4
and 19.1 FPS for 64K, 128K and 256K particles respectively.

Keywords: GPU, CFD, SPH, GPGPU, CUDA, Fluid, Newtonian,
Non-Newtonian.

1 Introduction

Simulating fluids is a computationally intensive problem, especially in 3D. Due
to large computational demands most fluid simulations are not done in real-
time. We have developed a new open-source1 framework for 3D SPH calculations
on the GPU, where we provide computational primitives that accelerate the
building blocks of the SPH algorithm. By using our framework the number of
particles modeled in the simulation can be increased considerably, and the overall
simulation speed is greatly increased compared to CPU-based simulations. Our
work differs from previous works in several ways. We provide a modularized
framework that can be used for implementing different SPH models. We use an
acceleration algorithm that is well-suited for the GPU and finally we compare
two different SPH models implemented using the same framework, thus giving
a measure of how well the GPU scales with more complex models.

1 http://code.google.com/p/gpusphsim/

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 98–109, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Previous Work

Some of first implementations of SPH on the GPU were by Harada et al.[4]
and Zhang et al.[15]. This was before the introduction of CUDA and it was thus
done using OpenGL and Cg which imposed severe limits on the implementations.
Since then there has been growing interest in the implementation of SPH on the
GPU resulting in several implementations that take full or partial advantage of
the GPU and CUDA [14][2][5].

3 Computational Fluid Dynamics

Fluid dynamics is described using the the Navier-Stokes equations, and in their
Lagrangian form consist of mass and momentum conservation:

dρ

dt
= −ρ∇ · v (1)

dv

dt
= −1

ρ
∇p+ 1

ρ
∇ · S+ f (2)

Where v is the velocity field, ρ the density field, ∇p the pressure gradient field
resulting from isotropic stress, ∇ · S the stress tensor resulting from deviatoric
stress and f an external force field such as gravity. For incompressible Newtonian
fluids the momentum conservation reduces to:

dv

dt
= −1

ρ
∇p+ μ

ρ
∇2v + f (3)

Where the term μ is the dynamic viscosity of the fluid.

3.1 Smoothed Particle Hydrodynamics

In SPH the different effects of Navier-Stokes are simulated by a set of forces that
act on each particle. These forces are given by scalar quantities that are inter-
polated at a position r by a weighted sum of contributions from all surrounding
particles within a cutoff distance h in the space Ω. In integral form this can be
expressed as follows [9]:

Ai(r) =

∫
Ω

A(r′)W (r − r′, h)dr′ (4)

The numerical equivalent is obtained by approximating the integral interpolant
by a summation interpolant [9]:

Ai(ri) =
∑
j

Aj
mj

ρj
W (rij , h) (5)

where j iterates over all particles,mj is the mass of particle j, rij= ri−rj where
r is the position, ρj the density and Aj the scalar quantity at position rj .

For a more comprehensive introduction to SPH, please refer to [9].
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3.2 Snow Avalanche SPH

Snow avalanches wary greatly in behavior, from powder-snow avalanches to so
called dense-flow, or flowing snow avalanches. Snow avalanches can often appear
as a viscous flow down a slope, and it is this obvious property which has prompted
the use of fluid dynamics in avalanche simulation [1]. Several viscosity models
exist for modeling Non-Newtonian fluids, and rheological parameters have been
collected for flowing snow [7]. Many SPH models exist for viscoelastic fluids,
from melting objects [11] to lava flows [12] and generalized rheological models
[6]. We implement an SPH simulation of a Non-Newtonian fluid with configurable
support for multiple rheological models to approximate the behavior of a snow
avalanche.

4 Methods and Implementation

The simulation framework uses CUDA, a parallel computing architecture devel-
oped by NVIDIA. We parallelize the calculation of SPH by assigning a thread to
each particle in the simulation. Each thread is then responsible for calculating
the SPH sums over the surrounding particles.

When accessing memory on the GPU coalesced (correctly structured) access is
very important. Due to the nature of the acceleration algorithm we use, perfectly
coalesced access is unfortunately not possible. By utilizing the texture cache on
the GPU this problem is greatly alleviated.

4.1 Nearest-Neighbor Search

The summation term in the SPH-formulation is computationally heavy, it re-
quires looking at many nearby particles and computing interactions between
them. To avoid a naive brute-force O(N2) search for neighbors, a nearest-
neighbor search algorithm is commonly used, such as a linked list or a uni-
form grid. Our framework uses the acceleration algorithm found in the NVIDIA
CUDA ”Particles” demo [3], which is better suited to the GPU than many pre-
viously used algorithms. It can be summarized as follows:

1. Divide the simulation domain into a uniform grid.
2. Use the spatial position of each particle to find the cell it belongs to.
3. Use the particle cell position as input to a hash function (a spatial hash)
4. Sort the particles according to their spatial hash.
5. Reorder the particles in a linear buffer according to their hash value.

Particles in the same cell can then appear ordered in the linear buffer, the
specifics depending on the spatial hash function. Finding neighbors is thus just
a matter of iterating over the correct indices in the buffer. To sort the particles
on the GPU we used a radix sort [13].
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4.2 Non-Newtonian Fluids

Non-Newtonian fluids differ from Newtonian fluids in that their viscosity is not
constant. In a Newtonian fluid the relation between shear stress and the strain
rate is linear, with the constant of proportionality being the viscosity. For a
Non-Newtonian fluid the relation is nonlinear and can even be time-dependent.
There exist many classes of Non-Newtonian fluids, and many types of models, of
which we implement several. The complex SPH model differs primarily from the
simple SPH model in that it includes the much more complex stress calculation
presented in [6] and in that the viscosity parameter is not constant but modeled
using a rheological viscosity model.

4.3 SPH Models

We have implemented two different SPH models, a simple and a complex model.
The simple SPH model is a partial implementation (discarding surface tension)
of a well-known SPH model designed for interactivity [10]. In the complex SPH
model we combine some of the techniques used in [10] with models from [6] and
[12]. Compared to the Simple model we use a more accurate smoothing kernel,
we use a more accurate calculation of shear forces and we support a range of
rheological models which enable us to simulate different Non-Newtonian fluids.

4.4 SPH Formulation

By using the SPH formulation the Navier-Stokes equations can be approximated:

ρi =
∑
j

mjW (rij , h) (6)

fpressurei = −1

ρ
∇p(ri) =

∑
j 
=i

mj(
pi
ρ2i

+
pj
ρ2j

)∇W (rij , h) (7)

The incompressible fluid is simulated as a weakly compressible fluid where the
incompressibility constraint is applied to the pressure p by using an equation of
state given by the ideal gas law with an added rest density[4]: p = k(ρ− ρ0)

Finally the stress force is calculated:

fstressi =
1

ρ
∇ · Si =

∑
j 
=i

mj

ρiρj
(Si + Sj) · ∇W (rij , h) (8)

Where the Non-Newtonian fluid stress tensor S is calculated as [6]. Thus we
have that the acceleration for a particle is given by:

ai = fpressure
i + f stress

i + fexternal
i (9)
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4.5 SPH Algorithm

Due to the data dependencies between the various forces, some of them must
be calculated separately. Each calculation step is essentially a summation over
neighboring particles, and we combine the force calculations using loop fusion as
far as it is possible. For the complex SPH model we end up with the following
steps:

1. Update the hashed, radix sorted, uniform grid.

2. Calculate the SPH density

3. Calculate the SPH velocity tensor

4. Calculate the SPH pressure and SPH stress tensor

5. Apply external forces and integrate in time using Leap-Frog.

For the simplified SPH model, the stress tensor is replaced with a simplified
viscosity approximation. Thus viscosity force can be computed together with
the pressure in step 4 and as a result the simple SPH model can drop an entire
SPH summation loop.

5 Results

Comparing and evaluating the performance of the simulations is difficult due to
the large amount of parameters and their effect on performance. In addition it is
hard to compare to other SPH implementations due to different SPH models and
parameters. For the simple SPH model we compare against Mller and Harada
which use a very similar SPH model, using rest density selected to simulate water,
with the dynamic viscosity set to 1. For the complex SPH model we have not
found comparable implementations so must compare against our implementation

Fig. 1. A screenshot of the simple SPH model with 256K particles interacting with a
terrain model. Hue-based gradient shading for the velocity of the particles.
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Fig. 2. A screenshot of the simple SPH model with 256K particles in a box of repulsive
forces. Hue-based gradient shading for the velocity of the particles.

of the simple SPH model. To obtain absolute performance numbers we use a
fairly simple simulation setup; a square simulation domain with simple repulsive
forces as walls where a cubic volume of fluid is dropped into a shallow pool
of water Figure 2. The performance numbers were measured when the fluid
had reached a stable equilibrium to avoid errors introduced by fluctuations in
simulation performance.

Hardware. For all our performance results we used a fairly high-end computer
equipped with an Intel Core2 Quad Q9550 processor. We compare three different
graphics cards, an NVIDIA GeForce GTX 260, a GeForce GTX 470 and a Tesla
C2050, thus covering both the previous and the current generation of GPU
processors.

Simulation Parameters. The simulation parameters were chosen for their
stability and how realistic the resultant behavior fluid appeared. To improve
the consistency and validity of the results we chose to use a simple Newtonian
fluid rheology for performance measurements of the complex SPH model as well,
which eliminates the complexity of measuring the performance of a model with a
variable viscosity, while maintaining the computational complexity of the model.

We select a time step (dt) of 0.0005, and a rest density (ρ0) of 1000. In addition
we employ a simple aspring-like external boundary force with a stiffness and
dampening coefficients of 20000 and 256 respectively. Finally we set a viscosity
(μ) of 1.0. Our simulation is scaled with a factor of 0.0005.

Memory Usage. Since our implementations do not use constant or shared mem-
ory to any significant degree, the only memory usage that is of importance is
the usage of the global memory on the device. Due to the hashed uniform grid
structure the memory usage is highly efficient, since the particle data is stored in
continuous memory buffers that are fully utilized. For the Simple SPH model the
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memory usage is 176N bytes where N is the number of particles. The memory
usage of the complex SPH model is 240N bytes. This means that it is possible
to simulate very large systems even on commodity hardware. Using the NVIDIA
Tesla C2050, we have simulated up to 12 million particles with the Simple SPH
model, thus using roughly 2GB of memory.

5.1 Performance Results

By manually optimizing register usage, reordering memory accesses and opti-
mizing the block sizes for the CUDA code, performance gains as large as 40%
over our earlier implementation were realized [8].

The performance of the Tesla C2050 is nearly identical to that of the GeForce
GTX 470. The small difference in performance can most likely be attributed
to the difference in memory speed (1500 MHz vs. 1674 MHz) and clock speed
(1150 MHz vs. 1215 MHz). Our implementation is single precision only, so we can
not utilize the greatest feature of the Tesla; greatly increased double precision
performance.

It is interesting to note that though the Tesla has greater memory bandwidth
due to the larger memory bus (384 bit vs. 320 bit), this does not seem to increase
performance. This could be due to the slightly lower clocks of the Tesla or it may
mean that the raw memory bandwidth is less important than the performance
of the texture cache. Since the memory access pattern of the hashed uniform
grid algorithm cannot be coalesced perfectly there will be uncoalesced memory
access. In the context of this knowledge, the missing performance increase may
mean that the performance is severely bottlenecked by these uncoalesced memory
accesses, much in the same manner as a pipeline stall.

Access to the global memory on the GPU is not perfectly coalesced due to
limitations of the GPU acceleration algorithm, however this limitation is greatly
mitigated by use of the texture cache. The texture cache was found to increase
performance between 55% and 200% [8].
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16k 32k 64k 128k 256K 512k
Simple SPH 54,9 % 35,0 % 40,3 % 49,7 % 59,4 % 94,9 %
Complex SPH 130,4 % 116,1 % 115,6 % 128,2 % 137,0 % 151,1 %
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Fig. 4. Performance comparison between the GeForce GTX 470 and the GeForce GTX
260 for different amount of particles

5.2 NVIDIA Fermi Architecture

The new GF100/Fermi-architecture provides a large increase in performance
compared to the GT200-architecture.

In Figure 4 we show the performance increase from using a GeForce GTX
470 over a GeForce GTX 260. These two GPUs have memory bandwidths of
111.9 GiB/s and 133.9 GiB/s, an increase of 20%, but the increase in measured
performance is much larger, clearly indicating that the implementations are not
completely bandwidth bound. The complex SPH model benefits the most, with
improvements up to 150%, while the Simple SPH model sees improvements up
to 95%. This large increase in performance can primarily be attributed to the
new features of the Fermi architecture, which allows for greater utilization of
the GPU resources (occupancy) and which minimizes the performance penalty
of imperfectly coalesced memory access.

5.3 Kernels

We have measured the relative performance of the different kernels in our two
SPH implementations. Our findings show that the most performance intensive
parts are in the calculation of the SPH summation over neighboring particles.
This is due to the large amount of computation and memory transfer (from
global memory on the GPU) that occurs in these steps.

5.4 Rendering Overhead

We use direct rendering of the particle data using shaders on the GPU. This
means that the rendering overhead is fairly small, though relatively large for
small amounts of particles. With 16K particles the overhead is 95% and 60%
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Fig. 5. Distribution of calculation time for the algorithm steps

for the simple model and 30% and 40% for the complex model, on the GT260
and the GTX470 respectively. For 256K particles this is reduced to 20% and
5% for the simple model and 8% and 3% for the complex model, on the GT260
and the GTX470 respectively.

5.5 Performance Review

We have compared our implementation performance for the Simple SPH model
with that of other implementations. This algorithm has been widely implemented
since it is very well suited for interactive or real-time simulation and as such it is
possible to find comparable implementations. Unfortunately we have found that
it is nearly impossible to do a review of earlier implementations that is both
comprehensive and accurate since most authors do not specify all the parameters
they use. In addition there are slight differences in the SPH models and finally
also because of the different hardware used. Nonetheless we have attempted a
comparison, if only to give a rough picture of the performance landscape.

We find that our GPU implementation is significantly faster than earlier GPU
implementations, even for implementations using faster graphics cards. One such
implementation[14] use a NVIDIA GTX 280 and get 66 iterations per second at
16K particles. Comparing their implementation against our implementation run-
ning on a GTX260 (without rendering) we see a 6x speedup. It is also interesting
to note that our implementation seems to scale better, though the available data
is not enough to draw any conclusions.

Harada et al.[4] achieves real-time performance at 17 FPS with 60000 particles
on an NVIDIA GeForce 8800GTX and Zhang et al.[15] achieves 56 FPS with
60000 particles using the same GPU. Both these implementations use OpenGL
and Cg and are thus very constrained compared to more recent implementations
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using CUDA. A very interesting comparison is with the FLUIDS V.2 software,
which is a highly optimized SPH implementation for the CPU. Unfortunately
FLUIDS can only use one of the cores in this CPU so it should be assumed
that the performance could be almost quadrupled using all 4 cores. Comparing
the FLUIDS software with our GPU implementation (with rendering), we see
speedups of 91x for the GeForce GTX 470 and 49x for the GeForce GTX 260
with 16K particles.

5.6 Real-Time Appearance

By scaling the simulation domain, and relaxing the accuracy requirements by
selecting large time step, the fluid simulations produce beliveable real-time fluid
animations. Our complex SPH model is not as well suited to real-time simulation
due to the necessity of a somewhat lower timestep in order to support higher
viscosities, but by using 64K particles it is still possible to simulate avalanche-
like animations in real-time. We found that using a Cross rheological model best
captured the behavior of a flowing snow avalanche (Figure 7).

6 Conclusions

In this paper, we presented an implementation of Smoothing Particle Hydro-
dynamics (SPH) on the GPU using. Our implementation achieves very good
performance since we take advantage of the massive amount of parallelism avail-
able on modern GPUs, as well as use specialized acceleration data structures.
As a result of the computational acceleration afforded by the use of GPUs
our simulations can maintain very high performance with large problem sizes.
This produces real-time simulations whose animation appears more correct and
realistic than previously seen efforts.
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Fig. 7. A screenshot of the complex SPH model with 64K particles. We use a cross
rheological model to approximate the behavior of a flowing snow avalanche.

6.1 Current and Future Work

Simulations of snow can be used for everything from gaming to avalanche predic-
tion. For games snow simulation can help create complex environments, which
can lead to numerous possibilities for game-play mechanics. Predicting the be-
havior of snow avalanches can help prevent loss of both life and property. Our
simulation framework can be used for more complex SPH models that can be
used to produce qualitatively correct simulations.

The resource usage of our model has been investigated and it was found that
it does not consume much memory but is very memory bandwidth intensive
and suffers from imperfectly coalesced memory access, it would be interesting to
research ways to improve the memory access pattern.

Finally, the visualization of the fluid model can be improved, at the moment
a very simple but efficient and low-cost method of direct particle rendering is
used. By using a surface reconstruction model such as Marching-Cubes a real
surface can be rendered. It is also possible to use screen-space surface rendering
techniques to approximate the fluid surface without the large computational cost
associated with true surface reconstruction.
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Abstract. We introduce a variety of techniques toward autotuning data-
parallel algorithms on the GPU. Our techniques tune these algorithms in-
dependent of hardware architecture, and attempt to select near-optimum
parameters. We work towards a general framework for creating auto-
tuned data-parallel algorithms, using these techniques for common al-
gorithms with varying characteristics. Our contributions include tuning
a set of algorithms with a variety of computational patterns, with the
goal in mind of building a general framework from these results. Our
tuning strategy focuses first on identifying the computational patterns
an algorithm shows, and then reducing our tuning model based on these
observed patterns.

Keywords: GPU Computing, Auto-Tuning Algorithms, Data-Parallel
Programming, CUDA.

1 Introduction

Given the complexity of emerging heterogeneous systems where small parameter
changes lead to large variations in performance, hand-tuning algorithms have be-
come impractical, and auto-tuning algorithms have gained popularity in recent
years. When tuned, these algorithms select near-optimum parameters for any
machine. We demonstrate a number of techniques which successfully auto-tune
parameters for a variety of GPU algorithms. These algorithms are commonly
used, were not synthetically created and were chosen to rely on different param-
eters and be performance bound in different ways.

Both work by Liu et al. [4] and Kerr et al. [2] use adaptive database methods
for deriving relationships between input sets and their direct influence on the
parameter space. Work by Li et al. [3] focuses on tuning one GEMM algorithm,
while work by Ryoo et al. [5] mainly deals with kernel and compiler level opti-
mizations for one machine (an 8800GTX). Our work differs from these in that we
first try to identify computational patterns between algorithms and then tune
their parameters using a number of different techniques.

Rather than use a single database method for all of our algorithms, which
might be susceptible to non-linear relations, we try to identify relationships be-
tween each algorithm, possible input sets on any given machine; we then choose a
tuning strategy accordingly. Since we now have these relationships, we can heav-
ily prune the parameter search space before attempting to tune the algorithm,
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resulting in very fast tuning runs. For our set of algorithms, we show a quick
tuning run (less than a few minutes for most machines) can generate the needed
information to automatically choose near-optimum parameters for future runs.
We will next discuss the general strategy (or philosophy) we used for developing
each of our auto-tuned algorithms.

2 Algorithms

Algorithms designed in a data-parallel fashion are concerned with maintaining
the highest throughput possible. This means parameters are often dependent not
only on the machine, but also upon the workload being operated on. With this
in mind, when attempting to auto-tune an algorithm we approach the problem
using this philosophy:

– Identify the tunable parameters for the algorithm.
– Look for a relationship between the input space, and the parameter space.
– If such a relationship exists, we must build a model from the input space to

parameter space, or model the parameter space solely on machine charac-
teristics.

Therefore when considering the input parameters for each algorithm we iden-
tify two axes of tuning, workload specific and machine specific. The relationship
between these two may vary widely between algorithms, but we concentrate on
identifying common patterns between certain algorithms that can be used as a
starting point for general tuning. As an example, in our N-Body algorithm we
discovered a heavy dependence between our input parameters and the workload
(input space). Yet for our reduction kernel, once the workload reaches a critical
size, our tuning parameters rely solely on machine specific parameters. There-
fore using micro-benchmarks we developed a model that estimates the correct
parameters. Sections 2.2 covers this strategy in more depth. Next we will in-
troduce our auto-tuning test suite, and the approaches we took to quickly tune
each algorithm.

2.1 Test Suite

We studied four parallel algorithms extensively in our work. Reduction, a com-
mon parallel primitive which operates on a large set of values and reduces that
set to one value. Next, scalar product, which sums up the products between
two vectors. An N-Body algorithm which simulates the gravitational interac-
tions between a set of objects. Finally, SGEMM, a fast matrix multiply. For the
reduction, scalar product and N-Body algorithms we used the kernels found in
the NVIDIA SDK as our base algorithms. These algorithms have already been
highly optimized, and are considered standards for benchmarking. Since many
of these algorithms have been hand-tuned for certain machines, we may receive
only a marginal performance boost for certain devices and workloads. In par-
ticular, the NVIDIA SDK has changed a number of default parameters to obtain
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optimal performance on GT200 series cards. As a result, performance suffers
on older cards which highlights the importance of auto-tuning algorithms which
scale with architecture changes. For our SGEMM algorithm we used Chien’s
highly tuned and optimized kernel [1] which demonstrates higher performance
than that released by NVIDIA’s SGEMM. In our final auto-tuned algorithm we
wish to trim as much of the parameter search space as possible, while maintaining
an accurate model to select parameters.

Auto-tuning algorithms that use standard techniques such as model driven
inputs, with interpolation between points, may result in sub-optimal parameters
(one method does not fit all). This is where the major challenge lies, as great
care must be taken to ensure your auto-tuning strategy is not susceptible to
unpredictable non-linear effects.

2.2 Reduction

We made a few minor improvements to NVIDIA’s SDK reduction kernel code.
We chose this algorithm as it is obviously memory bound and each item can be
accessed in any order (coalesced reads would obviously be preferred). Therefore
tuning reduction would give insight into many other common parallel algorithms,
such as scan and sort, which have similar computational patterns. For the reduc-
tion kernel, the parameters that require tuning are the number of threads per
block, and the number of blocks. The optimum set of parameters may fluctuate
with respect to the number of elements we reduce.

Through experiments and benchmarking, we were able to show a standard
behavior for the optimum parameter set given a number of elements. Using the
results from these tests, our auto-tuning method first searches for a thread cap
for all elements, which is assumed to fully occupy the machine. The thread cap
is defined as the maximum number of threads optimum to any valid input set
(no optimum parameters will have more total threads than the thread cap).

Since our input set is a one-dimensional array in the reduction algorithm, it is
easy to test what this thread cap is, and where it applies. All workloads greater
than the number of elements where this thread cap applies, is also bound by the
thread cap. Next we test for a lower switchpoint where the CPU outperforms
the GPU, and the optimum parameters for that point. Using these two points,
and their associated number of elements, we are able to select a number of total
threads (threads per block and number of blocks) for any input set.

Therefore this algorithm is highly machine dependent, less workload depen-
dent, and therefore much easier to tune. Highly workload dependent algorithms
require micro-benchmarks in order to correlate the workload space with the pa-
rameter space. The next algorithms considered are cases where the workload has
a more dominant effect on the parameter space.

2.3 Scalar Product

This algorithm is also memory bound and available in NVIDIA’s SDK. However
the parameters for tuning the Scalar Product kernel are more complex as the
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vector size and total number of vectors adds a dimension to the tuning process.
Therefore while applying some of the same principles from our reduction method
for a thread cap and associated work cap (the minimum workload at which our
thread cap is applied), we also select a set of distributed points (vsizei, ni) such
that vsizei < vsizem and ni < nm, that are under the work cap and test for the
optimum number of threads, these points will operate as a nearest neighbor spline.

Here our machine dependent parameters help prune our tuning space, as we
generalize parameters for all input sets outside these limits. For all input sets
under the thread cap we pre-tune each point from our distributed and select
parameters for the knot closest to the input set. This works due to the fine
grained corelation between the input set and the parameter set. We used a
nearest neighbor approach rather than an interpolation approach, as our tests
showed the closest knot approach generally performed better and performance
was more stable (less variance).

Since we prune all points greater than (vsizem, nm), where vsizem and nm are
dependent on machine parameters. We have therefore reduced the tuning space
to a smaller subset of the original input space.

2.4 N-Body

We selected the N-Body algorithm as it has block-wise tunable parameters, is
more arithmetically intense, and therefore not global memory bound. The tun-
able parameters in this case are two dimensions of block sizes that will be shared
per block. Therefore tuning these parameters involves a tradeoff in register us-
age, and the amount of data sharing per block. These parameters are fairly
fine-grained, and when paired with a fine-grained input set we find that there
is a corelation between the input space and parameter space. In other words,
the optimum parameter points does not vary widely between input set ai and
ai + δx. Where δx is a small variation of the input set ai.

This motivates us to use a nearest-neighbor spline technique and concentrate
on intensely tuning a few distributed points. This technique allows us to greatly
reduce the tuning search space to only a small subset, while maintaining near
optimum performance for all inputs.

2.5 SGEMM

As mentioned previously we used Lung Sheng Chien’s optimized code [1] (which
is a further optimization of Vasily Volkov’s code [6]) as the base kernel for our
autotuning method. There are a number of variations to this set of code; we
selected the one with best performance, that would not lead to out-of-bound
problems (method8 in Chien’s benchmark suite). Using templates, we created
twenty-one valid versions of this method that relied on three input parameters.
Due to Chien’s reliance on precompiling kernels into cubin binaries before runs,
we created twenty-one associated binaries for each version. Experimental results
showed that a number of these valid versions were inherently inefficient, and
were removed from the tuning suite.
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We found that for larger matrices, one parameter set would deliver near opti-
mum performance. Therefore, our strategy was to find the optimum parameter
set (of the twenty-one available) for a given machine which would allow us to
tune all input-sets larger than a certain matrix size. It was also noticed that in
general, this preferred kernel had higher register usage per thread than other ker-
nels. Whether or not this is a rule of thumb one can follow for quickly selecting
an appropriate variation, requires more testing on a wider variety of devices.

For smaller matrices, our tests on a GTX260 and an 8600 GTS showed that
there was more variety and workload dependence on the optimal kernel. There-
fore, our complete tuning strategy for this algorithm is as follows:

– Find optimal kernel for large matrices. This relies on machine specific pa-
rameters.

– Find matrix size for which we switch strategies.
– Test a variety of candidates from a pre-tuning run, and finely tune all small

matrices with these candidates.

Though this algorithm requires us to finely tune for smaller matrices, we gain an
advantage by pruning all matrices greater than the switchpoint. Since smaller
matrices are solved much faster, we are able to prune the most vital section of
tuning space. Also, since we only select a few valid candidates for the smaller
matrices, we further eliminate unnecessary kernel tests.

3 Results

We tested our methods, and ran a number of experiments on a higher end GTX
260 and GTX 280, medium-end 8800GT and 5600FX, and a low-end 8600 GTS.
We had access to a Tesla C1060 for our reduction tests, however it was unavail-
able for test runs for our other algorithms.

In the next subsections, we will compare the performance for each of our
auto-tuned algorithms versus the untuned default algorithms. For all auto-tuned
algorithms, tuning runs are very short (around one to five minutes) due to our
carefully pruning the tuning space so that we gather only necessary information
for our tuning process.

3.1 Reduction

Figure 1 compares the performance of our auto-tuning method against that of
the SDK’s default parameters. The results show a speedup that brings memory
performance close to bandwidth limit. Our auto-tuned method(blue plot) per-
forms as well as a brute force check on all possible parameters (red dotted line),
while only taking a minute or less to run a one-time tuning run. As a mem-
ory bound function, we found performance depended directly on the number
of memory controllers available to the machine. Though this cannot be queried
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(a) 8600 GTS (b) GTX 280

(c) Tesla C1060

Fig. 1. Auto-Tuned vs SDK Performance Comparison for Reduction. The theoreti-
cal bound is the reported maximum DRAM bandwidth. In all cases, the auto-tuned
implementation performs as well as the algorithmic bound (brute force test of all im-
plementations).

directly (one can query the number of memory controllers, but not the bandwidth
at which each operates), some pretuning tests can supply this information, and
be used to reduce the tuning space further.

The performance comparison in Figure 1 also shows this algorithm is domi-
nated by machine dependent parameters. If there was a higher workload depen-
dence, selecting optimal parameters would be more difficult, resulting in pockets
of poorer performance. However, the auto-tuned reduction kernel consistently
matches the optimum algorithmic bound curve. This algorithmic bound curve is
a brute force performance check on every possible parameter combination.

3.2 Scalar Product

Though using knots adds complexity and possibility for non-optimal selections,
our results still perform better than that of NVIDIA’s SDK for most points.
Since visualizing the performance of a multi-dimensional input space is difficult,
we instead present our results in Table 1 as the relative performance from a set
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of random inputs. Our results in Table 1 show good speedups for almost all
cases on the GTX 280 and 260 (achieving nearly 30 percent performance boost
on the 280). While the performance gains on the 8800GT and 5600FX were not
as drastic, we still were able to boost performance slightly.

Table 1. Performance speedups comparison of auto-tuned kernel vs default for a set
of 1000 random selected points

Architecture (GPU) Speedup

GTX 280 1.2817

GTX 260 1.1511

8800 GT 1.0201

5600 FX 1.0198

(a) GTX 260 (b) GTX 280

(c) Quadro 5600 (d) 8800GT

Fig. 2. Auto-Tuned vs SDK performance comparison for N-Body
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3.3 N-Body

Figure 2 shows the performance comparison of our spline auto-tuned strategy
versus the default parameters. The spikes in performance from the untuned
implementation illustrate the workload dependence to the parameter space. As
the workload changes, the untuned parameters fall in and out of sync with the
optimum implementation.

Our spline strategy helps to minimize these spikes in performance, and main-
tain near-optimumperformance by updating parameters as the workload changes.
In some cases the speedups from these can be up to 2x that of the untuned per-
formance. One can also vary the amount of tuning in order to get nearer and
nearer to the optimum performance. The example in Figure 2 has twenty tuned
points which are used as a reference.

3.4 SGEMM

As was illustrated in Section 2.4, small variations in parameters could lead to
large variations in kernel performance. Therefore, we cannot use the same spline
technique from our previous two algorithms. The default parameters that Chien
[1] used were found to be the near-optimal for most cases on larger matrices
on both the GTX260 and 8600GTS. For smaller size matrices (N < M) other
kernels were preferred, as shown in Figure 3. More testing is needed to confirm
this holds true for a variety of devices. However, this motivated our hybrid tuning
technique where coarse tuning runs are used to select candidate parameters for
smaller matrices, and then a dominating machine-dependent parameter set for
all larger matrices.

Fig. 3. Performance of the coarser grained parameter selection for our SGEMM. The
right-hand figure demonstrates possible auto-tuned performance, versus the default
kernel. For smaller matrices one could possibly achieve a 2x speedup(e.g. for matrices
of 200 × 200, possible performance is about 130 GFlops/s versus 60 GFlops/sec).
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3.5 General Auto-tuning Summary and Practices

This section serves as both a summary of our previous techniques, and to which
types of algorithms each are applicable. Table 2 shows our tested algorithms, and
how strongly their optimum parameters are machine and workload dependent.
Once these are identified, one can begin developing an auto-tuning scheme for
parameter selection.

Generally speaking, we find that for strongly workload dependent algorithms
with a fine-grained input set and fine-grained parameter set, nearest neighbor
spline strategies have returned good results. This was evident in both our N-Body
and Scalar Product tuned algorithms. For our reduction kernel, we saw a strong
dependence between our thread parameters and the device parameters (memory
controllers). Therefore our strategy relies on this simple relationship. Finally,
our SGEMM kernel displayed various levels of dependency, and we therefore
developed a hybrid strategy for different workload ranges.

Table 2. Table summarizing each auto-tuned algorithm’s dependencies on device spe-
cific parameters and workload specific parameters(input space)

Algorithm Name Device Dependency Workload Dependency

Reduction Strong Weak

Scalar Product Medium Strong

N-Body Weak Strong

SGEMM Strong Medium

4 Conclusion

We believe that hand-tuning algorithms for each machine will become an im-
practical method as systems become more diverse in capability, and algorithm
bounds become more complex. Therefore, developing methods that either fully
automate or assist the tuning process, could prove powerful tools for developers
to boost utilization.

Future work is needed in developing firmer relationships between algorithms
with similar computational patterns, and developing auto-tuning schemes be-
tween these algorithms. Testing on newer architectures, such as the recently
released Fermi architecture is also needed. The Fermi 400x series cards contain
a number of new features that would change tuning strategies for a number of
algorithms. On top of faster global memory bandwidth, more shared memory
within blocks, and compute power, these additions include faster atomic opera-
tions than previous cards, and more computational power for double precision
operations.

Our work has shown a number of autotuning practices and methods which
boost performance for a number of common algorithms. We believe this is an
important stepping stone in developing a generalized tuning methodology for
data parallel programs.
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Abstract. To study the heat or diffusion equation, the Crank-Nicolson
method is often used. This method is unconditionally stable and has the
order of convergence O(k2 + h2), where k and h are mesh constants.
Using this method in conventional floating-point arithmetic, we get so-
lutions including not only the method error, but also representation and
rounding errors. Therefore, we propose an interval version of the Crank-
Nicolson method from which we would like to obtain solutions including
the discretization error. Applying such a method in interval floating-point
arithmetic allows one to obtain solutions including all possible numerical
errors. Unfortunately, for the proposed interval version of Crank-Nicolson
method, we are not able to prove that the exact solution belongs to the
interval solutions obtained. Thus, the presented method should be mod-
ified in the nearest future to fulfil this necessary condition. A numerical
example is presented. Although in this example the exact solution be-
longs to the interval solutions obtained, but the so-called wrapping effect
significantly increases the widths of these intervals.

Keywords: heat equation, Crank-Nicolson method, interval methods,
floating-point interval arithmetic.

1 Introduction

In a number of our previous papers we developed interval methods for solving
the initial value problem for ordinary differential equations (see e.g. [1] - [8]).
These methods rely on on conventional Runge-Kutta and multistep methods.
We have summarized our previous research in [9].

Now, our efforts are directed to construct similar methods for solving a variety
of problems in partial-differential equations. It seems that it is possible to use the
same technique as for ordinary differential equations. In [10], we have proposed
an interval method for solving the Poisson equation. Here, we propose interval
method based on the Crank-Nicolson scheme for solving the heat equation.

It should be mentioned that there are several other approaches to verify nu-
merical solutions of different problems in partial-differential equations (see e.g.
[11] – [15]).
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2 Application of the Crank-Nicolson Method to Solve the
Heat Equation

The parabolic partial-differential equation we consider in this paper is the heat
or diffusion equation (one-dimensional in space)

∂u

∂t
(x, t) = α2 ∂2u

∂x2
(x, t), a ≤ x ≤ b, t > 0 , (1)

subject to the conditions

u(a, t) = 0, u(b, t) = 0, t > 0 ,

and
u(x, 0) = f(t), a ≤ x ≤ b .

The approach one uses to approximate the solution to this problem involves
finite differences.

First, we select two mesh constants h and k with the stipulation that
m = (b − a)/h is an integer. The grid points are (xi, tj), where xi = a + ih
for i = 0, 1, . . . ,m, and tj = jk for j = 0, 1, 2, . . . . The implicit scheme, called
the Crank-Nicolson method, is based on numerical approximations for solutions
of the equation (1) at the points (xi, tj+1/2) = (xi, tj +k/2) that lie between the
rows in the grid.

Using the central-difference formula, we get

∂u

∂t
(xi, tj+1/2) =

u(xi, tj+1)− u(xi, tj)

k
− k2

24

∂3u

∂t3
(xi, μj) , (2)

where μj ∈ (tj , tj+1). The approximation used for

∂2u

∂x2
(xi, tj+1/2)

is the average of the approximations for the terms

∂2u

∂x2
(xi, tj+1) and

∂2u

∂x2
(xi, tj) .

Formally, we have

∂2u

∂x2
(xi, tj+1) =

∂2u

∂x2
(xi, tj+1/2) +

k

2

∂3u

∂t∂x2
(xi, tj+1/2) +

k2

8

∂4u

∂t2∂x2
(xi, δj) ,

∂2u

∂x2
(xi, tj) =

∂2u

∂x2
(xi, tj+1/2)− k

2

∂3u

∂t∂x2
(xi, tj+1/2) +

k2

8

∂4u

∂t2∂x2
(xi, δ̃j) ,

where δj ∈ (tj+1/2, tj+1) and δ̃j ∈ (tj , tj+1/2). Adding the above formulas, we
get

∂2u

∂x2
(xi, tj+1) +

∂2u

∂x2
(xi, tj) = 2

∂2u

∂x2
(xi, tj+1/2) +

k2

4

∂4u

∂t2∂x2
(xi, μ̃j) ,
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where μ̃j ∈ (tj , tj + 1), from which it follows that

∂2u

∂x2
(xi, tj+1/2) =

1

2

(∂2u

∂x2
(xi, tj+1) +

∂2u

∂x2
(xi, tj)

)
− k2

8

∂4u

∂t2∂x2
(xi, μ̃j) . (3)

Using the forward-difference method at the jth step in t and the backward-
difference method at the (j + 1)st step in t, we obtain

∂2u

∂x2
(xi, tj) =

u(xi+1, tj)− 2u(xi, tj) + u(xi−1, tj)

h2

− h2

12

∂4u

∂x4
(ξi, tj) ,

(4)

∂2u

∂x2
(xi, tj+1) =

u(xi+1, tj+1)− 2u(xi, tj+1) + u(xi−1, tj+1)

h2

− h2

12

∂4u

∂x4
(ξ̃i, tj+1) ,

where ξi, ξ̃i ∈ (xi−1, xi+1). Neglecting the error terms in (2), (3) and (4), we get
the following expression:

vi,j+1 −vij − α2k

2h2
(vi+1,j −2vij +vi−1,j +vi+1,j+1−2vi,j+1+vi−1,j+1) = 0 , (5)

where vij approximates u(xi, yj). This is the Crank-Nicolson method which has
a local rounding error of order O(k2 + h2) (see e.g. [16] – [18]), provided that
the usual differentiability conditions are satisfied.

3 An Interval Crank-Nicolson Method

Taking the local rounding errors into consideration, the equation (5) can be
written in the form

−λ

2
vi−1,j+1 + (1 + λ)vi,j+1 − λ

2
vi+1,j+1

=
λ

2
vi−1,j + (1− λ)vij +

λ

2
vi+1,j − α2kh2

24

[
∂4u

∂x4
(ξi, tj) +

∂4u

∂x4
(ξ̃i, tj+1)

]
(6)

−α2k3

8

∂4u

∂t2∂x2
(xi, μ̃j) +

k3

24

∂3u

∂t3
(xi, μj) ,

where λ = α2k/h2.
Let us assume that ∣∣∣∣∂3u

∂t3

∣∣∣∣ ≤ N ,

∣∣∣∣ ∂3u

∂t∂x2

∣∣∣∣ ≤ M , (7)

i.e.
∂3u

∂t3
(x, t) ∈ [−N,N ] ,
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and
∂3u

∂t∂x2
(x, t) ∈ [−M,M ] ,

where M,N = const. From (1) we have

∂3u

∂t3
(x, t)− α2 ∂4u

∂t2∂x2
(x, t) = 0 ,

∂3u

∂x2∂t
(x, t) − α2 ∂

4u

∂x4
(x, t) = 0 .

Thus, from (7) it follows that∣∣∣∣ ∂4u

∂t2∂x2
(x, t)

∣∣∣∣ = 1

α2

∣∣∣∣∂3u

∂t3
(x, t)

∣∣∣∣ ≤ 1

α2
N ,∣∣∣∣∂4u

∂x4
(x, t)

∣∣∣∣ = 1

α2

∣∣∣∣ ∂3u

∂t∂x2
(x, t)

∣∣∣∣ ≤ 1

α2
M ,

and it means that
∂4u

∂t2∂x2
(x, t) ∈ 1

α2
[−N,N ] ,

and
∂4u

∂x4
(x, t) ∈ 1

α2
[−M,M ] .

Taking into account the above relations, we define an interval version of the
Crank-Nicolson methods as follows:

−λ

2
Vi−1,j+1 + (1 + λ)Vi,j+1 − λ

2
Vi+1,j+1 =

(8)

=
λ

2
Vi−1,j + (1− λ)Vij +

λ

2
Vi+1,j +

k

6

(
k2[−N,N ]− h

2
[−M,M ]

)
,

where Vij = [vij , vij ].
The system of equations (8) is linear with a positive definite, symmetric,

strictly diagonally dominant and tridiagonal matrix. It can be solved by an
interval version of Crout reduction method.

In practice it can be difficult to determine the constants M and N since
u(x, t) is unknown. If it is impossible to determine M from any physical or other
conditions of the problem considered, we propose to solve the problem by the
conventional Crank-Nicolson method (5) and take

M ≈ 1.5

kh2
max

i=1,2,...,m−1
j=1,2,...,n−1

|vi+1,j − vi+1,j−1 − 2(vij − vi,j−1) + vi−1,j − vi−1,j−1| ,

and

N ≈ 1.5

k3
max

i=0,1,...,m
j=1,2,...,n−2

|vi,j+2 − 3vi,j+1 + 3vij − vi,j−1| .
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4 A Numerical Example

To have a view on the interval solutions obtained, let us consider a problem for
which the exact solution is known. Let the method (8) be used to approximate
the solution to the problem consisting of the equation

∂u

∂t
(x, t) − ∂2u

∂x2
(x, t) = 0 ,

subject to the conditions

u(x, 0) = cos
(πx

2

)
, −1 ≤ x ≤ 1 ,

and
u(−1, t) = u(1, t) = 0, t ≥ 0 .

The exact solution of the above problem is as follows:

u(x, t) = exp

(
−π2t

4

)
cos

(πx
2

)
. (9)

The graph of this solution for 0 ≤ t ≤ 1 is presented in Figure 1, and a particular
value is

u(0, 0.05) ≈ 0.88393649689751144 .
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-0.2

0.2

0.6

1.0

0.0

0.2
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0 6.

0 8.

1.0

t

u x t( , )

x

Fig. 1. The graph of the function (9)

Using the method (8) with M = π4/16, N = π6/64, m = 20, i.e. h = 0.1, and
k = 0.05, and carried out all calculations in floating-point interval arithmetic
(using the Delphi Pascal unit IntervalArithmetic described in [9]), we obtain

V (0, 0.05) = [0.88374057912065346, 0.88430495470686242] .
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The width of this interval is approximately equal to 5.6× 10−4. Unfortunately,
for larger values of t we observe a sudden increase of the widths of interval
solutions. This is caused by the so-called wrapping effect.

Let us note that the exact solution belongs to the interval solutions obtained.
Although in many other numerical experiments carried out we have observed
the same, it is not true in general. We have a number of examples in which the
exact solution is outside interval solutions Vij obtained by the method (8). It
follows from the fact that it is impossible to prove that u(xi, tj) ∈ Vij .

5 Conclusions and Further Studies

The interval method (8) based on the conventional Crank-Nicolson scheme is
only a proposal for solving parabolic partial-differential equations such as the
heat equation. Applying this method in floating-point interval arithmetic we
can automatically include the representation and rounding errors into interval
solutions.

Since we are not capable of proving that the exact solution belongs to the
interval solutions obtained for the method (8), the presented method should be
modified to fulfil this necessary condition. Moreover, the method should be also
modified with respect to the increase of interval widths for the larger number of
steps.
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Abstract. In this paper we define the interval overlapping relation and
develop a parallel hardware unit for its realization. As one application we
consider the interval comparisons. It is shown that a detailed classifica-
tion of the interval overlapping relation leads to a reduction of floating-
point comparisons in common applications.

Keywords: interval arithmetic, interval relations, hardware unit.

1 Introduction

Detection of overlapping intervals is a problem that occurs in many application
areas. The detection of overlapping boxes in computer graphics, overlapping time
slots in scheduling problems, containment or membership tests, or enclosure tests
in self-verifying scientific computing algorithms are some examples. In most of
the applications, like in scheduling, the information whether 2 intervals overlap
or not is not sufficient, but we also like to know how they overlap: completely
contained in the interior vs. touching one bound, e.g. In this paper we, hence,
define a general relation that describes the kind of overlapping between two
one-dimensional intervals, and develop a hardware unit for its evaluation. As
our intended first application of this unit we discuss the comparison relations in
interval arithmetic.

An interval is a connected, closed, not necessarily bounded subset of the reals.
It can be represented by its two bounds.

X := [x , x] = {x ∈ R | x ≤ x ≤ x} (1)

In this definition x can be −∞, x can be +∞, but the infinities never are members
of an interval. The set of all intervals including the empty set is denoted as IR.

2 Definition

The interval overlapping relation is not a boolean relation but delivers 14 dif-
ferent states describing all the possible situations that occur when the relative
positions of 2 intervals are regarded with respect to overlapping. Table 1 illus-
trates the meaning of the relation. Each row represents a different state. The

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 127–136, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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columns 2 through 5 contain sketches of the scene with the interval A at the
bottom and B on the top. Singleton or point intervals are denoted as dots where
appropriate. As usual numbers grow from left to right. Let Q be the set of the
13 cases for non-empty intervals [1] listed in Tab. 1.

Definition 1 (Interval Overlapping). The overlapping relation for two non-
empty intervals is defined by the mapping

◦◦1 : (IR \ ∅) × (IR \ ∅) → Q (2)
A ◦◦1 B �→ qi ∈ Q , i = 1 . . . 13 (3)

State 14, not in the table, characterises that one of the operands is empty. Then
there is no overlapping at all.

Remark 1. Note that all possible situations are considered.

Table 1. The 13 different cases of the interval overlapping relation for non-empty
intervals

A ◦◦1 B A ◦◦ B A ⊆ B A ⊇ B A = B A ∩B = ∅
q1 b b

a a a a

�
B b b

�
A

�
B

�
A

0001 •

q2 b b

a a

0101

q3 b b

a a

1101

q4 b b

a a

b b
�

A

0111 •

q5 b b

a a

b b
�

A

1111 •

q6 b b

a a

b b
�

A

1011 •

q7 b b

a a

1110

q8 b b

a a

1010

q9 b b

a a

b b
�

A

�
B

a a

�
B

�
A

0010 •

q10 b b

a a

�
B

a a

1001 •
q11 b b

a a

�
B

a a

1100 •
q12 b b

a a

�
B

a a

0110 •
q13 b b

a a

�
B

�
A

0011 • • •

We represent the states by 4-bit strings resulting from specific comparisons of
the bounds of the input intervals.
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Definition 2 (Interval Overlapping Representation). The interval over-
lapping relation

◦◦ : (IR \ ∅) × (IR \ ∅) → {0, 1}4 (4)
A ◦◦B �→ (r1, r2, r3, r4) (5)

for two non-empty intervals A = [a , a], B = [b , b] ∈ IR \ ∅ is defined by:

r1 := ((a 	= b) ⊕ (((a ≤ b) ∨ (a > b))

∧ ((a 	= b) ∧ (a 	= b))))
(6)

r2 := ((a 	= b) ⊕ (((a < b) ∨ (a ≥ b))

∧ ((a 	= b) ∧ (a 	= b))))
(7)

r3 := (a ≥ b) (8)

r4 := (a ≤ b) (9)

The function ◦◦ can be written as a composition of

◦◦ = ξ ◦ ◦◦1

where ξ : Q → {0, 1}4 maps the state into a representation as defined in
Tab. 1 columns 1 and 6. The 6th column of the table shows the state of overlap-
ping coded into 4 bits.

In principle, each result bit refers to one comparison of the bounds.

r1 := (a 	= b)

r2 := (a 	= b)
r3 := (a ≥ b)

r4 := (a ≤ b)

With these simple definitions we could not separate the states q1, q2, q3 or q7, q8, q9,
respectively. Therefore we developed the comparisons (6) and (7).

Corollary 1. For two non-empty intervals A = [a , a], B = [b , b] ∈ IR \ ∅ the
states with bitset “0000”, “0100” or “1000” do not occur as a result of the
interval overlapping relation A ◦◦B.

Proof.

(A 	= ∅) ∧ (B 	= ∅) ∧ (¬r3 ∧ ¬r4)
(8, 9)⇒ (a < b) ∧ (a > b)

⇒ (a 	= b) ∧ (a 	= b) ∧ (a > b) ∧ (a < b)
(6, 7)⇒ r1 ∧ r2

��
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3 Comparisons in Interval Arithmetic

Interval arithmetic is currently being standardized. Our definition of intervals
as connected, closed, not necessarily bounded subsets of the reals in section 1
follows the presumable standard P1788 [3]. Various competing sets of interval
comparisons are under discussion. Nearly every combination of operator symbol
and quantifier is proposed in the Vienna proposal [7]. That includes the so called
“certainly” and “possibly” operations where the relation holds for some or all
members of an interval, respectively. A smaller set of comparisons is given in the
book [5].

There is, however, consensus that the subset-relation, either interior or proper
or equal, the membership of a point in an interval, and the test for disjointness
are mandatory.

In the following propositions we show that all these comparisons can easily
be obtained from the interval overlapping relation.

Proposition 1 (Set Relations). For two non-empty intervals A = [a , a],
B = [b , b] ∈ IR\∅ the three relations =,⊆ and ⊇ as well the test for disjointness
are implied by the interval overlapping relation A ◦◦B as follows:

A ⊆ B ⇔ r3 ∧ r4 (10)
A ⊇ B ⇔ (r1 ⊕ r3) ∧ (r2 ⊕ r4) (11)
A = B ⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ r4 (12)

A ∩ B = ∅ ⇔ ¬r1 ∧ ¬r2 ∧ ¬(r3 ∧ r4) (13)

Proof.
(10):

A ⊆ B ⇔ (b ≤ a) ∧ (a ≤ b)
(8,9)⇔ r3 ∧ r4

(11):

A ⊇ B ⇔ (a ≤ b) ∧ (b ≤ a)

⇔ ¬(a > b) ∧ ¬(b > a)
⇔ ((¬(a ≥ b) ∧ (a 	= b)) ∨ ((a ≥ b) ∧ ¬(a 	= b)))

∧ ((¬(a ≤ b) ∧ (a 	= b)) ∨ ((a ≤ b) ∧ ¬(a 	= b)))
Def. 2⇔ (r1 ⊕ r3) ∧ (r2 ⊕ r4)

(12):

A = B ⇔ (A ⊆ B) ∧ (A ⊇ B)
(10,11)⇔ r3 ∧ r4 ∧ (r1 ⊕ r3) ∧ (r2 ⊕ r4)
⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ r4
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(13):

A ∩ B = ∅ ⇔ (a < b) ∨ (a > b)

⇔ (((a 	= b) ∧ (a 	= b)) ∧ (a ≤ b) ∧ (a < b)

∧ ¬(a ≥ b) ∧ (a ≤ b))

∨ (((a 	= b) ∧ (a 	= b)) ∧ (a ≥ b) ∧ (a > b)

∧ (a ≥ b) ∧ ¬(a ≤ b))
Def. 2⇔ ¬r1 ∧ ¬r2 ∧ (r3 ⊕ r4)

��
Besides the formal proofs given in this section the formulas can be verified with
the help of Tab. 1.

Corollary 2 (Set Membership). The set membership a ∈ B with a ∈ R,
B ∈ IR \ ∅ can be deduced to

[a , a] ◦◦B = (r1, r2, 1, 1) (14)

with r1, r2 ∈ {0, 1}.
Proof.

a ∈ B ⇔ [a , a] ⊆ B
(10)⇔ [a , a] ◦◦B = (r1, r2, 1, 1)

��
Up to now we only have considered non-empty intervals. In many realizations of
interval arithmetic the empty interval is represented as a pair of NaNs.

∅ := [NaN , NaN] (15)

Corollary 3 (Empty Interval). For two intervals A, B ∈ IR where at least
one of them is empty, the following equation

A ◦◦B = (0, 0, 0, 0) (16)

holds if the empty interval is represented by two NaNs.

Proof. As defined in the IEEE standard for floating-point arithmetic [4], com-
parisons to NaN always return false. ��
Hence, state 14 happens to be “0000” which was an unused bit combination so
far.

Remark 2. With this definition of the empty set we can omit the assumption of
non-empty intervals in Prop. 1 and Cor. 2.
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Proposition 2 (Order Relations). The order relations A ≤ B, A ≺ B,
A ≥ B and A � B with A = [a , a], B = [b , b] ∈ IR \ ∅ follow from the in-
terval overlapping relation A ◦◦B by

A ≤ B :⇔ (a ≤ b) ∧ (a ≤ b) ⇔ (¬r1 ∨ ¬r3) ∧ r4 (17)
A ≺ B :⇔ (a < b) ⇔ ¬r1 ∧ ¬r2 ∧ ¬r3 ∧ r4 (18)

A ≥ B :⇔ (a ≥ b) ∧ (a ≥ b) ⇔ (¬r2 ∨ ¬r4) ∧ r3 (19)

A � B :⇔ (a > b) ⇔ ¬r1 ∧ ¬r2 ∧ r3 ∧ ¬r4 (20)

Proof.
(17):

(a ≤ b) ∧ (a ≤ b) ⇔ ((a = b) ∨ ¬(a ≥ b)) ∧ (a ≤ b)
(6,8,9)⇔ (¬r1 ∨ ¬r3) ∧ r4

(18):

(a < b) ⇔ (a 	= b) ∧ (a 	= b) ∧ (a < b) ∧ ¬(a ≥ b) ∧ (a ≤ b)
Def. 2⇔ ¬r1 ∧ ¬r2 ∧ ¬r3 ∧ r4

Proof of (19) and (20) analogous to (17) and (18). ��

Closely related with comparisons are the lattice operations like interval hull or
intersection. They also can exploit the information obtained by one computation
of the overlapping relation.

Proposition 3 (Intersection). The intersection A ∩ B with A = [a , a],
B = [b , b] ∈ IR follows from the interval overlapping relation A ◦◦B by

A ∩ B :=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
[a , a] if (r3 ∧ r4)
∅ otherwise if (¬r1 ∧ ¬r2)
[a , b] otherwise if (r3)
[b , a] otherwise if (r4)
[b , b] otherwise

(21)

Proof.
if (r3 ∧ r4):

r3 ∧ r4
(10)⇒ A ⊆ B

⇒ A ∩ B = [a , a]

otherwise if (¬r1 ∧ ¬r2):

¬r1 ∧ ¬r2 ∧ ¬(r3 ∧ r4)
(13), Cor. 3⇒ A ∩ B = ∅
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otherwise if (r3):

(r1 ∨ r2) ∧ r3 ∧ ¬r4
(8,9,13)⇒ (a ≥ b) ∧ (a > b) ∧ (A ∩ B 	= ∅)
⇒ A ∩ B = [a , b]

otherwise if (r4):

(r1 ∨ r2) ∧ ¬r3 ∧ r4
(8,9,13)⇒ (a < b) ∧ (a ≤ b) ∧ (A ∩ B 	= ∅)
⇒ A ∩ B = [b , a]

otherwise:

(r1 ∨ r2) ∧ ¬r3 ∧ ¬r4
Cor. 1⇒ r1 ∧ r2 ∧ ¬r3 ∧ ¬r4

(11)⇒ A ⊇ B

⇒ A ∩ B = [b , b]

��

4 Hardware Unit

Remark 3. We realize that 8 independent floating-point comparisons are needed.
The hardware unit given in Fig. 1 thus consist of 8 comparators. They all work
in parallel followed by at most 3 gates to obtain the result.

&

&

= 1

&

≥ 1

= 1

a a bb

≥ 1

≤ > �= �= < ≥ ≥ ≤

r1 r2 r3 r4

Fig. 1. Logic circuit of the interval overlapping relation
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Algorithm 1. INewton (classi-
cal)

Input:
f : function
Y : interval
ε : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info, N ]
begin

if 0 �∈ f(Y ) then
return (Zero,Info,N)

c← μ(Y );
/* extended division */

[Z1, Z2]← f(c)/f ′(Y );
[Z1, Z2]← c− [Z1, Z2];
V1 ← Y ∩ Z1;
V2 ← Y ∩ Z2;
if V1 = Y then

V1 ← [y , c];
V2 ← [c , y];

if V1 �= ∅ and V2 = ∅ then
yUnique← yUnique or
V1 ⊂ Y ;

foreach i = 1, 2 do
if Vi = ∅ then

continue;

if drel(Vi) < ε then
N = N + 1;
Zero[N ] = Vi;
Info[N ] = yUnique;

else
INewton(f, Vi, ε,
yUnique, Zero, Info, N);

return (Zero,Info,N);
end

Algorithm 2. INewtonRel (rela-
tional)

Input:
f : function
Y : interval
ε : epsilon
yUnique : flag
Zero : list of enclosing intervals
Info : flag vector
N : number
Output: [Zero, Info, N ]
begin

if 0 �∈ f(Y ) then
return (Zero,Info,N)

c← μ(Y );
/* extended division */

[Z1, Z2]← f(c)/f ′(Y );
[Z1, Z2]← c− [Z1, Z2];
R1 ← Y ◦◦ Z1;
R2 ← Y ◦◦ Z2;
if R1.subseteq() then

V1 ← [y , c];
V2 ← [c , y];
bisected← true;

else if not R1.disjoint() and
R2.disjoint() then

yUnique← yUnique or
R1.state() == containedBy;

foreach i = 1, 2 do
if not bisected then

if Ri.disjoint() then
continue;

Ri ← Y ◦◦ Zi;
Vi ← Ri.intersect();

if drel(Vi) < ε then
N = N + 1;
Zero[N ] = Vi;
Info[N ] = yUnique;

else
INewtonRel(f, Vi, ε,
yUnique, Zero, Info, N);

return (Zero,Info,N);
end



Parallel Detection of Interval Overlapping 135

In this paper we represent the states with 4 bits to have a compact numbering.
We then need 8 comparisons to separate all states.

One may argue that specific relations like A ⊆ B or A = B can already be
checked by 2 (parallel) floating-point comparisons. But the benefit of our general
interval overlapping relation is that, if all 8 comparisons have been computed (in
one parallel step), we have enough information to perform dependent interval
comparisons only by bit-operations. The same holds for intersection that usually
needs 3 floating-point comparisons. See the discussion of the interval Newton
method in section 5.

5 Example

As an example for the use of the interval overlapping relation we discuss the
extended interval Newton method [2]. In the usual formulation in Alg. 1 up
to 6 interval comparisons and 2 intersections are used. We observe, however,
that the same intervals are compared several times. Hence, the bitsets R1 and
R2 gather all information with 2 calls of the interval overlapping relation in
Alg. 2.

This reduction of the use of interval comparisons and intersections is done by
replacing the 2 intersections by 2 calls of the interval overlapping relation storing
the precise information about the relative positions of the interval operands.
Then we can deduce all the necessery interval comparisons depending on the
results and operands of the replaced intersections by applying the rules of Prop. 1
to the precomputed states R1 and R2. That means that the interval comparisons
are replaced by bitset operations.

Additionally we introduce a flag bisected to determine, if a bisection of the
input interval was performed. Otherwise we can use the stored information R1

and R2 to catch up the replaced intersection for an recursive call of the algorithm
by applying the rules of Prop. 3.

6 Future Work

A companion paper [6] concerning interval comparisons has been submitted to
the IEEE interval standard working group P1788. In this paper we emphasize
the theoretical influence of the interval overlapping relation as a foundation for
interval comparisons. An abstract datatype for the specification of the interval
overlapping relation has been introduced. We further want to study its interface
in an object oriented environment.

We plan to explore other applications in the area of computer graphics and
time scheduling.

The hardware unit will be extended and optimized. Its collaboration with
other hardware units for interval arithmetic will be discussed.
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Abstract. The paper presents an extension of a previously developed
interval method for solving multi-criteria problems [13]. The idea is to use
second order information (i.e., Hesse matrices of criteria and constraints)
in a way analogous to global optimization (see e.g. [6], [9]). Preliminary
numerical results are presented and parallelization of the algorithm is
considered.

Keywords: Pareto-front, Pareto-set, multi-criteria analysis, interval
computations, second-order optimality conditions.

1 Introduction

We consider seeking the Pareto-set of the following problem:

min
x

qk(x) k = 1, . . . , N , (1)

s.t.

gj(x) ≤ 0 j = 1, . . . ,m ,

xi ∈ [xi, xi] i = 1, . . . , n .

Definition 1. A feasible point x is Pareto-optimal (nondominated), if there ex-
ists no other feasible point x′ such that:

(∀k) qk(y) ≤ qk(x) and

(∃i) qi(y) < qi(x) .

The set P ⊂ R
n of all Pareto-optimal points (Pareto-points) is called the Pareto-

set.

Definition 2. The Pareto-front is the image of the Pareto-set, i.e., the set of
criteria values for all nondominated points.

In the sequel one more definition will be needed.

Definition 3. A point y dominates a set B, iff D(y) ∩ B = ∅ and similarly a
set B′ dominates a set B, iff (∀y ∈ B′)D(y) ∩B = ∅.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 137–147, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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The interpretation of the definitions is straightforward. A feasible point is
Pareto-optimal if there is no other feasible point that would reduce some criterion
without causing a simultaneous increase in at least one other criterion. Pareto-
front is the image of Pareto-set in criterion space andD is the cone of domination
in this space.

Interval methods allow to solve the problem of approximating the Pareto-set,
using the branch-and-bound principle. Starting from the initial box and bisecting
the boxes subsequently, we can quickly discard dominated boxes, enclosing the
Pareto-set and Pareto-front with sets of boxes in decision and criteria spaces.

To discard or narrow boxes the algorithms use the following tools:

– checking if the box is non-dominated by other boxes (i.e., it may contain
non-dominated points),

– set inversion of boxes from the criteria space to the decision space,
– the monotonicity test adapted to multi-criteria case (this test uses the first-

order information).

No currently used interval algorithm ([3], [13], [16]) for computing the Pareto
set uses the second-order information; gradients of the criteria and constraints
are used, but not the Hesse matrices. The method of Toth and Fernandez [4]
allows it by reducing the problem of Pareto-front seeking to repeated global
optimization, but the approach can be applied to bi-criteria problems only.

Our idea is to extend the method proposed in [13] by using Hesse matrices
of criteria and constraints in a way similar to well-known global optimization
algorithms (see e.g. [6]), i.e., by solving the system of second order optimality
conditions (in this case: Pareto-optimality conditions).

2 Generic Algorithm

In previous papers we developed an algorithm to seek the Pareto-set. It subdi-
vides the criteria space in a branch-and-bound manner and inverts each of the
obtained sets using a version of the SIVIA (Set Inversion Via Interval Analysis)
procedure [8]. This version uses some additional tools (like the componentwise
Newton operator) to speedup the computations.

The algorithm is expressed by the following pseudocode described with more
details in previous papers ([13], [15]).

compute_Pareto-set (q(·), x(0), εy, εx)
// q(·) is the interval extension of the function

q(·) = (q1, . . . , qN )(·)
// L is the list of quadruples (y, Lin, Lbound, Lunchecked)
// for each quadruple: Lin is the list of interior boxes (in the decision space),
// Lbound – the list of boundary boxes and Lunchecked – of boxes to be checked yet

y(0) = q(x(0));

L =
{(

y(0), {}, {}, {x(0)})
}
;

while (there is a quadruple in L, for which widy ≥ εy)
take this quadruple (y, Lin, Lbound, Lunchecked) from L;
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bisect y to y(1) and y(2);
for i = 1, 2

apply SIVIA with accuracy εx to quadruple

(y(i), Lin, Lbound, Lunchecked);
if (the resulting quadruple has a nonempty interior,

i.e., Lin �= ∅)
delete quadruples that are dominated by y(i);

end if

insert the quadruple to the end of L;
end for

end while

// finish the Pareto-set computations
for each quadruple in L do

process boxes from Lunchecked until all of them get to Lin or Lbound;
end do;
end compute_Pareto-set

Obviously, both loops in the above algorithm – the while loop and the for each

loop can easily be parallelized.

3 Basic Idea

Let us formulate the set of Pareto optimality conditions; similar to the John con-
ditions set [6]. For an unconstrained problem it has the following form (notation
from [10] is used):

u1 · ∂q1(x)
∂x1

+ · · ·+ uN · ∂qN (x)

∂x1
= 0 , (2)

· · ·
u1 · ∂q1(x)

∂xn
+ · · ·+ uN · ∂qN (x)

∂xn
= 0 ,

u1 + u2 + · · ·+ uN = 1 ,

where ui ∈ [0, 1] i = 1, . . . , N .
The above is a system of (n+1) equations in (n+N) variables. As the problem

is supposed to have multiple criteria, clearly N > 1, which makes System (2)
underdetermined. Solving underdetermined problems is less studied than well-
determined ones (see paper [12] and references therein) and more difficult at the
same time.

To consider a constrained multi-criteria problem, System (2) has to be ex-
tended slightly. In addition to multipliers ui for all criteria i = 1, . . . , N , we
must have multipliers for all constraints: uN+j, j = 1, . . . ,m.

The resulting system would take the following form:

u1 · ∂q1(x)
∂x1

+ · · ·+ uN · ∂qN (x)

∂x1
+ (3)

+uN+1 · ∂g1(x)
∂x1

+ · · ·+ uN+m · ∂gm(x)

∂x1
= 0 ,
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· · ·
u1 · ∂q1(x)

∂xn
+ · · ·+ uN · ∂qN (x)

∂xn
+

+uN+1 · ∂g1(x)
∂xn

+ · · ·+ uN+m · ∂gm(x)

∂xn
= 0 ,

uN+1 · g1(x) = 0 ,

· · ·
uN+m · gm(x) = 0 ,

u1 + u2 + · · ·+ uN + uN+1 + · · ·+ uN+m = 1 ,

which is an underdetermined system of (n +m + 1) equations in (n +m + N)
variables.

This system is used for narrowing the boxes by interval Newton operators in
the SIVIA procedure. The procedure is similar to the one known from interval
global optimization (see [6], [9]).

Previous experiments [12] with underdetermined equations systems, like (3)
suggest that two methods are promising in solving them:

– the componentwise Newton operator [7],
– the Gauss-Seidel (GS) operator with rectangular matrix [9].

The first technique uses linearization of each equation with respect to only one
of the variables at a time. Pairs equation-variable can be chosen using several
heuristics. Our implementation uses the strategy of S. Herbort and D. Ratz [7]
and tries to use all possible pairs subsequently.

The well-know GS operator is commonly used in interval algorithms. In our
case it has to be used for a linear equations system with a rectangular matrix.
This does not change much in the method: we choose one variable for reduction
for each equation.

A slight adaptation of the classical GS procedure has to be done in precondi-
tioning. We use the inverse-midpoint preconditioner, choosing a square subma-
trix with the Gauss elimination procedure, performed on the midpoint-matrix.

In current implementation of our algorithm we can use both versions of the
Newton operator.

4 Implementation

Parallelization of the algorithm was done in a way described in [14] and [15].
This approach parallelizes the “outer loop” of the algorithm, i.e., operations on
different boxes in the criteria space are done in parallel, but there is no nested
parallelism on the SIVIA procedure applied to them. This allows larger grain-
size, but makes us to execute costly operations on the list of sets in a critical
section (deleting all dominated sets). Parallelization was obtained using POSIX
threads [2] as in previous implementations [14], [15].

The program uses the C-XSC library [1] for interval operations.
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5 Examples

We tested three versions of the algorithm:

– the version that uses 1st order information only; no Hesse matrices are com-
puted nor considered,

– the version using the componentwise interval Newton operator with the S.
Herbort and D. Ratz heuristic,

– the interval Gauss-Seidel operator with rectangular matrix.

Two problems to be solved were considered.

5.1 The Kim Problem

Our first example is a well-known hard problem for multi-criteria analysis [11]:

min
x1,x2

(
q1(x1, x2) = −(3(1− x1)

2 · exp(−x21 − (x2 + 1)2) +

−10 · (x1
5

− x31 − x52
) · exp(−x21 − x22) +

−3 exp(−(x1 + 2)2 − x22) + 0.5 · (2x1 + x2)
)
, (4)

q2(x1, x2) = −(3 · (1 + x2)
2 · exp(−x22 − (1− x1)

2) +

−10 · (− x2
5

+ x32 + x51
) · exp(−x22 − x21) +

−3 exp(−(2− x2)
2 − x21)

))
,

x1, x2 ∈ [−3, 3] .

The second example is related to a practical problem.

5.2 Tuning the PI Controller

A Proportional-Integral-Derivative (PID) controller can be found in virtually
all kind of control equipments. In the so-called ideal non-interacting form it is
described by the following transfer function:

R(s) = k · (1 + 1

Ts
+ Tds

)
, (5)

with parameters k, T and Td. The selection of these parameters, i.e., the tuning
of the PID actions, is the crucial issue in the control-loop design. A large number
of tuning rules has been derived in the last seventy years starting with the well-
known Ziegler-Nichols algorithm.

As many other engineering design problems PID tuning is generally a multi-
objective one and can be solved using multi-objective optimization techniques.
We are going to present an application of the derived algorithm for PID controller
tuning for a non-minimum-phase (inverse response) plant. It is well known that in
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Fig. 1. Control system composed of a plant and a controller with closed-loop feedback

this case the PI controller, i.e., with proportional and integral terms, is adequate.
Performance of the control loop can be measured in different way. In our example
two objective functions were chosen: integrated square error (ISE) and some
measure of overshoot. The ISE criterion minimized alone is insufficient, because
it accepts oscillatory unit-step set-point response of the control-loop, so a second
criterion has to be used. Controlled plant has inverse response, so we use as a
measure of overshoot the span of closed-loop response to unit step in reference.

Applying an interval method to this problem was challenging as closed-form
formulae are necessary to use them. Computing the formula for output signal
of the system required computing the poles of the transition function, i.e., roots
of its denominator, which is a quadratic function. The formulae are different
for different signs of the discriminant Δ of this quadratic equation. As Δ is
often an interval containing zero, one has to consider the interval hull of the
results of all three formulae (for Δ positive, negative and equal to 0). As the
automatic differentiation toolbox of C-XSC [1] does not have such operation,
changes had to be done to the library code. Moreover the formulae are quite
likely to result with improper operations, like division by 0 or computing the
square root of an interval containing negative values. All such cases had to be
carefully implemented.

Nevertheless, using our algorithm we are able to present the Pareto-front to
the control-loop designer, so that they could consider conflicting criteria simulta-
neously and basing, e.g. on Haimes’ multi-objective trade-off analysis [5] choose
the controller parameters properly.

6 Computational Experiments

Numerical experiments were performed on a computer with 16 cores, i.e., 8 Dual-
Core AMD Opterons 8218 with 2.6GHz clock. The machine ran under control
of a Fedora 11 Linux operating system. The solver was implemented in C++,
using C-XSC 2.4.0 library for interval computations. The GCC 4.4.4 compiler
was used.

The following notation is used in the tables:

– “1st order” – the version of our algorithm that uses 1st order information
only; no Hesse matrices are computed nor considered,

– “Ncmp” – the version using the componentwise interval Newton operator
with the S. Herbort and D. Ratz heuristic,
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– “GS” – the interval Gauss-Seidel operator with rectangular matrix,
– “high acc.” at the version’s name means results for smaller values of εy and
εx.

For the Kim problem (4) we set computational accuracies in criteria space at
εy = 0.2, and in decision space at εx = 10−3. As high accuracy we used εy = 0.1,
and εx = 10−4, respectively.
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Fig. 2. Pareto-set in decision space and Pareto-front in criteria space computed for the
Kim problem using 1st order information
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Fig. 3. Pareto-set and Pareto-front computed for the Kim problem using component-
wise Newton version of the algorithm (Ncmp)

It is easy to observe by inspection that using 2nd order information results
in dramatic improvement in accuracy of Pareto-set determination for the hard
Kim problem.

For the PID tuning problem we used finer computational accuracies, i.e., in
criteria space it was εy = 0.02, and in decision space – εx = 10−5. As high
accuracy we used εy = 0.001, and εx = 10−6, respectively.

The obtained results allowed control designer to choose P and I parameters,
i.e., k and T , resulting in very small values of rise time and inverse overshoot.
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Fig. 4. Pareto-set and Pareto-front computed for the Kim problem using interval GS
version of the algorithm (GS)

Table 1. Results for the Kim problem (4) and a single-threaded algorithm

1st order Ncmp GS GS (high acc.)

criteria evals. 10543390 4493434 2837044 26662794
criteria grad. evals 3906722 7642454 742694 8068624
criteria Hess. evals 0 1578964 1085072 11293078
bisecs.in crit.space 440 438 434 809
bisecs.in dec. space 956390 372062 253237 2796488
boxes deleted by monot. 17120 2234 6459 18411
boxes deleted by Newton 85716 128997 34390 274630
resulting quadruples 174 171 161 310
internal boxes 352922 101612 80782 1235138
boundary boxes 462448 94513 96066 1191551
Lebesgue measure crit. 4.84 4.76 4.48 2.16
Lebesgue measure dec. 0.76 0.24 0.19 0.13
time (sec.) 71 155 62 655
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Fig. 5. Fragment of Pareto-set and Pareto-front computed for the PID tuning problem
using interval GS version of the algorithm (GS) with the chosen PI controller settings
and the response generated by the closed-loop system
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Table 2. Results for the PID tuning problem and a single-threaded algorithm

1st order Ncmp GS Ncmp (high acc.) GS (high acc.)

criteria evals. 396436222 228916 231500 4250430 4255408
criteria grad. evals 160959276 87394 23554 1606786 424160
criteria Hess. evals 0 154456 155306 2392690 2390932
bisecs.in crit.space 452 451 452 8261 8262
bisecs.in dec. space 40222521 20318 20532 445048 445494
boxes deleted by monot. 634 108 111 120 123
boxes deleted by Newton 170201 3819 519 54741 10159
resulting quadruples 147 145 145 3589 3589
internal boxes 23795930 9268 9273 223554 223575
boundary boxes 16250540 954 948 28910 28921
Lebesgue measure crit. 0.04 0.04 0.04 0.00192 0.00192
Lebesgue measure dec. 1.85 0.32 0.32 0.00515 0.00515
time (sec.) 4995 14 13 202 203

Table 3. Speedup for parallelized algorithms on the Kim problem

1 2 4 6 8 10 12

1st order time (sec.) 71 41 25 19 17 16 15
speedup 1.0 1.73 2.84 3.74 4.18 4.44 4.73

Ncmp time (sec.) 155 81 41 29 22 19 17
speedup 1.0 1.91 3.78 5.34 7.05 8.16 9.12

GS time (sec.) 62 32 16 11 9 11 10
speedup 1.0 1.94 3.88 5.64 6.89 5.64 6.2

GS time (sec.) 655 342 176 122 92 89 78
(high acc.) speedup 1.0 1.92 3.72 5.37 7.12 7.36 8.40

Table 4. Speedup for parallelized algorithms on the PID tuning problem

1 2 4 6 8 10 12

1st order time (sec.) 4995 2575 1343 956 735 651 531
speedup 1.0 1.94 3.72 5.22 6.80 7.67 9.41

Ncmp time (sec.) 202 114 58 39 29 24 21
(high acc.) speedup 1.0 1.77 3.48 5.18 6.97 8.42 9.62

GS time (sec.) 203 103 53 35 27 22 18
(high acc.) speedup 1.0 1.97 3.83 5.80 7.52 9.23 11.28



146 B.J. Kubica and A. Woźniak

7 Results

It occurred that both version of the proposed modification of the algorithm allow
to enclose the Pareto-set far more precisely. The difference for Pareto-fronts was
only marginal (but not negligible), but for Pareto-sets (in the decision space) the
paving generated by the algorithm using the 2nd order information is more than
3 times smaller (measuring with the Lebesgue measure) for the Kim problem
and about 6 times smaller for the PID tuning problem.

The versions using the componentwise Newton operator is computationally
intensive for the Kim problem. It seems to be caused by the necessity to compute
Hesse matrices (in addition to gradients) using the automatic differentiation
arithmetic.

The traditional interval Newton step, based on the Gauss-Seidel operator,
requires only one computation of gradients of all functions to prepare to narrow
the box. The componentwise operator has to recompute the gradient information
in each step of the narrowing operator, i.e., to recompute all gradients each time.

This phenomenon does not affect efficiency for the PID tuning problem, which
is probably caused by the following reason. All solutions for this problem lie on
the boundaries. The version of the algorithm that uses 1st order derivatives only
is not able to delete the interior boxes at the early stage and has to deal with
them for several iterations. On the other hand both versions using the second
order derivatives are able to delete the interior boxes relatively quickly and most
of their work is analyzing the boundaries for which the Newton’s method cannot
be applied (in our implementation we do not use reduced gradients or Hesse
matrices as in [9]) and consequently there is no difference between the different
Newton operators used.

Parallelization, as it could be expected, improved the performance of the
algorithm. The speedup is satisfactory for 4–6 threads (except the 1st order in-
formation only version for the Kim problem), but it usually scales worse further.
This is probably caused by relatively time consuming critical sections (seeking
for dominated quadruples in a linked list).

8 Conclusions

In the paper we tested two versions of the interval algorithm using the 2nd order
information for seeking Pareto-set of a multi-criteria problem. We compared
them with interval algorithm based on 1st order information only. It occurred
that information enrichment – if processed properly – can improve both efficiency
and accuracy of the algorithm several times.

Also, using the Gauss-Seidel interval operator with rectangular matrix seems
to be a much better solution than using the componentwise Newton operator;
at least for some problems (like the Kim problem).
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9 Future Work

There is some more research to be done about the parallelization. It is going to
be improved by reducing the critical sections. Instead of the synchronized linear
search for quadruples to delete, we are going to store the information about
obtained non-dominated points in a separate shared data structure.
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Abstract. A new IEEE arithmetic standard 1788 is currently being
worked out. It will specify interval arithmetic and an exact dot product
(EDP). In an EDP, an arbitrary finite number of products is accumulated
without rounding errors.

These are essential tools for computations with reliable and accurate
results. In high performance computing, it is necessary that implemen-
tations of interval arithmetic and the EDP must be as efficient as the
ordinary floating-point arithmetic. In this paper, fast and accurate solu-
tions for the EDP are presented.

Keywords: Interval arithmetic, accurate dot product, IEEE standard.

1 Introduction

In high performance computing, there is a growing need for reliability and high
accuracy of results. Therefore, the IFIP Working Group on Numerical Soft-
ware and other scientists repeatedly requested that a future arithmetic standard
should consider and specify interval arithmetic and an exact dot product (EDP).

In contrast with floating-point arithmetic which only delivers approximations
of mathematical results, interval arithmetic (when correctly applied) computes
an enclosure of the corresponding exact mathematical results. This makes it pos-
sible to prove mathematical results in a rigorous way on the computer [11,20]. In
an EDP, an arbitrary number of products may be accumulated without rounding
errors. Combining these arithmetic tools, high accuracy can be achieved.

In 2008, an IEEE standardization group P1788 was set up for working out a
standard on interval arithmetic. Since then, work is making progress and many
details have been specified in ”motions” [10]. On Nov. 18, 2009 the IEEE stan-
dards committee P1788 on interval arithmetic accepted a motion [14] for includ-
ing the EDP into a future interval arithmetic standard. This justifies making the
basic ideas for realizing the EDP known to a wider audience.

� Required by the IEEE Standards Committee P1788.
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2 Definition of Dot Products

Let F = F(b, l, emin, emax) be a floating-point system with base b, l mantissa
digits and an exponent range of emin..emax, e.g. for IEEE-arithmetic double
precision we have:
b = 2; 64 bits word length; 1 bit sign; 11 bits exponent; l = 53 mantissa bits;
emin = −1022, emax = 1023.

For all floating-point operands ai, bi ∈ F, we are going to compute the two
results (dot products)

s :=

n∑
i=1

ai · bi = a1 · b1 + a2 · b2 + . . .+ an · bn (EDP)

and

c := �
n∑

i=1

ai · bi = �(a1 · b1 + a2 · b2 + . . .+ an · bn) = �s (CRDP)

where all additions and multiplications are the operations for real numbers and
� is a rounding symbol representing round to nearest, towards zero, upwards,
or downwards. s ∈ R is a real number which we call the Exact Dot Product
(EDP), whereas c ∈ F is a floating-point number which we call the Correctly
Rounded Dot Product (CRDP).

This contrasts with the traditional computation of a dot product which in-
volves a rounding in each multiplication and each addition (2 ·n− 1 roundings).

In Numerical Analysis the dot product is ubiquitous. It is not merely a fun-
damental operation in all vector and matrix spaces. It is the EDP which makes
residual correction effective. This has a direct and positive influence on all iter-
ative solvers of systems of equations [5,6].

The EDP is essential for fast long real and long interval arithmetic, as well as
for assessing and managing uncertainty in computing. Using an EDP and such a
long arithmetic, the result of every arithmetic expression can be guaranteed to
a number of correct digits. By operator overloading variable precision interval
arithmetic is very easy to use.

An EDP is mathematically precisely defined, leading to more portable
programs.

Many algorithms and implementations have been developed for the dot prod-
uct, as early as 1971 [16]. A survey of classical algorithms in hardware and
software, as well as concepts for pipelined and parallel machines can be found
in [3]. More recent highly optimized algorithms are presented e.g. in [17,19,21],
their mathematical properties are carefully studied. An EDP has been avail-
able in all ”XSC” programming languages developed in Karlsruhe since 1980
and maintained and further developed in Wuppertal since 1999. A description
of the C++ library C-XSC can be found in [7,8]. The most recent version 2.4.0
of C-XSC, released December 18, 2009, provides several variants of dot product
algorithms [22]; it may be downloaded from [9].
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3 Realization of a CRDP by Addition with Remainder

Floating-point operations may be made ”exact” by computing the remainder
of each operation. Algorithms for these error free transformations were already
developed in the 1960s. In particular, in the absence of overflow and underflow,
the product and the sum of two floating-point numbers a and b may be exactly
expressed as a pair of two floating numbers (s, r), where s is the rounded result
and r is the exact remainder (see figures 1 and 2, which are updated versions of
figures in [3]).

s = �(a+ b), r = (a+ b)− s (TwoSum)
s = �(a · b), r = (a · b)− s (TwoProd)

The quotient of two floating-point numbers may also be computed exactly –
with an appropriate definition of the remainder. The semantics for such exact
floating-point operations including the square root was studied in [4].

+� �
�

�

operand b

operand a sum s

remainder r

TwoSum

Fig. 1. Algorithm TwoSum

×� �
�

�

operand b

operand a product s

remainder r

TwoProd

Fig. 2. Algorithm TwoProd

A first algorithm implementing a dot product with approximately k-fold ac-
curacy (using older versions of such error free transformations) was presented
already in 1972 [18]. With some additional error estimations and guard digits,
this algorithm can be improved to compute an Exact Dot Product (EDP) [2].

Meanwhile, highly tuned versions of these error free transformations are com-
monly named TwoProd and TwoSum, resp. and the dot product algorithm based
on these is named DotK because k iterations lead to k-fold accuracy of the result.
Mathematical properties and implementation details are studied very closely in
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[17]. Exactly speaking, this result is neither an EDP nor a CRDP, but a multi-
precision interval enclosure of the exact result. But for large enough k, this is
satisfactory for many applications.

Basing on these ideas, cascaded and pipelined versions of a dot product may
be designed like in figures 3 and 4, which are essentially taken from [3].

xi � + + +� � �

reg. R1 reg. R2 reg. R3

� � �

� � �

sum sum sum

rem rem rem

main sum first order
remainder

second order
remainder

. . .

Fig. 3. Cascaded adders with remainder

+ + +

+ + +

. . .

. . .

. . .

x
(2)
1 x

(2)
2 x

(2)
n−1 x

(2)
n

x
(1)
1 x

(1)
2 x

(1)
3 x

(1)
n

Fig. 4. Pipelined addition with remainder

4 Realization of an EDP by a Complete Register

Actually the simplest and fastest way for computing a dot product is to compute
it exactly. Malcolm’s algorithm was a first step in this direction [16]. By pipelin-
ing, the dot product can be computed in the time the processor needs to read
the data, i.e., it comes with utmost speed. By a sample illustration we informally
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specify the implementation of the EDP on computers. While [14] defines what
has to be provided, how to embed the EDP into the new standard IEEE 754,
and how exceptions like NaN are to be dealt with, this section illustrates how
the EDP can be implemented on computers. There is indeed no simpler way of
accumulating a dot product. Any method that just computes an approximation
also has to consider the relative values of the summands. This results in a more
complicated method.

The hardware needed for the EDP is comparable to that for a fast multiplier by
an adder tree, accepted years ago and now standard technology in every modern
processor. The EDP brings the same speedup for accumulations at comparable
costs. It exceeds any approximate software computation (including the CRDP)
by several orders of magnitude.

Let a = (ai), b = (bi) be two vectors with n components which are floating-
point numbers ai, bi ∈ F(b, l, emin, emax), for i = 1(1)n. We compute
the sum

s :=
n∑

i=1

ai · bi (EDP),

where all additions and multiplications are the operations for real numbers.
All summands can be taken into a fixed-point register of length 2 · emax+2 ·

l + 2 · |emin| without loss of information.
If the register is built as an accumulator with an adder, all summands could

be added in without loss of information. To accommodate possible overflows, it
is convenient to provide a few, say g, guard digits of base b on the left. g can be
chosen such that no overflows will occur in the lifetime of the computer.

For IEEE double precision format we have l = 53, emin = −1022, emax =
1023. Products may be represented exactly with 2 · l = 106 bit mantissas and
an exponent range from 2 · emin = −2044 to 2 · emax = 2046. g may be chosen
sufficiently large in such a way that the size of the fixed-point register is a
multiple of 64. So, with g = 92 the entire unit consists of

L = g + 2 · emax+ 2 · l+ 2 · |emin| = g + 4196 = 4288
bits. It can be represented by 67 words of 64 bits. L is independent of n for
practical purposes (even the fastest current computer would have to work for
nearly a million years, computing a single dot product, before an overflow may
occur).

Figure 5 gives an informal description for realizing an EDP. The long register
(here represented as a chest of drawers) is organized in words of 64 bits. The
exponent of the products is obtained by adding the 11 bit exponents of the two
factors. It consists of 12 bits. The leading 6 bits give the address of the three
consecutive drawers to which the summand of 106 bits is added (The product of
the two 53 bit mantissas consists of 106 bits). The low end 6 bits of the exponent
are used for the correct positioning of the summand within the selected drawers.

A possible carry is absorbed by the next more significant word in which not
all bits are 1. For fast detection of this word, a flag is attached to each word. It is
set 1 if all bits of the word are 1. This means that a carry will propagate through
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interface

register file (or memory access unit)

128

exp(a) exp(b) mant(a) mant(b)

11 11 53 53

adder multiplier 53 × 53

12 106

mant(a)×mant(b)

106

ringshifter

LSB0123

456

MSB

6
6

Fig. 5. Complete register for exact scalar product accumulation

the entire word. In the figure the flag is shown as a dark point. As soon as the
exponent of the summand is available the flags allow selecting and incrementing
the carry word. This can be done simultaneously with adding the summand into
the selected drawers. Similar considerations may be applied to handle a possible
borrow.

5 Circuitry for the Exact Dot Product

Basing on an architecture which is similar to figure 5, a coprocessor chip has been
developed which demonstrates that an EDP may be implemented in hardware
as efficiently as an ordinary dot product in floating-point arithmetic [12,13].
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In figure 6 it can be seen that the EDP may be computed in a pipeline in the
same time which is required to fetch the operands. That shows that no other
implementation can be faster.

cycle read mult/shift accumulate

read ai−1

read bi−1

read ai ci−1 := ai−1 · bi−1

read bi ci−1 := shift (ci−1)

address decoding
read ai+1 ci := ai · bi

load

add/sub ci−1read bi+1 ci := shift (ci)
store & store flags

address decoding
read ai+2 ci+1 := ai+1 · bi+1

load

add/sub ciread bi+2 ci+1 := shift (ci+1)
store & store flags

address decoding
read ai+3 ci+2 := ai+2 · bi+2

load

add/sub ci+1read bi+3 ci+2 := shift (ci+2)
store & store flags

Fig. 6. Pipeline for the accumulation of scalar products

6 Two Simple Applications

To be successful interval arithmetic has to be complemented by some easy way
to use multiple or variable precision arithmetic. The fast and exact dot product
is the tool to provide this very easily.

With the EDP quadruple or other multiple precision arithmetic can easily
be provided on the computer [15,13]. This enables the use of higher precision
operations in numerically critical parts of a computation. It helps to increase
software reliability. A multiple precision number is represented as an array of
floating-point numbers. The value of this number is the sum of its components.
The number can be represented in the long register in the arithmetic unit.

Addition and subtraction of multiple precision numbers can easily be per-
formed in this register. Multiplication of two such numbers is simply a sum of
products. It can be computed easily and fast by means of the EDP. For instance,
using fourfold precision the product of two such numbers a = (a1+a2+a3+a4)
and b = (b1 + b2 + b3 + b4) is obtained by
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a · b = (a1 + a2 + a3 + a4) · (b1 + b2 + b3 + b4)

=
4∑

i=1

4∑
j=1

aibj.
(1)

The result is a sum of products of floating-point numbers. It is independent of
the sequence in which the summands are added.

A very impressive application is considered in [1], an iteration with the logistic
equation (dynamical system)

xn+1 := 3.75 · xn · (1− xn), n ≥ 0.

For the initial value x0 = 0.5 the system shows chaotic behavior.
Double precision floating-point or interval arithmetic totally fail (no correct

digit) after 30 iterations while long interval arithmetic still computes correct
digits of a guaranteed enclosure after 2790 iterations using the EDP. It is the
basic operation for long interval arithmetic. For definitions see [13], section 9.7.

7 Conclusions

Over the last decades, several algorithms and prototype implementations have
been developed for an exact dot product (EDP). The future IEEE standard 1788
requires an EDP, improving the chances that chip makers will integrate it on
their architectures. Work on details of the standard continues.

It can be shown that an EDP may be implemented as efficiently as ordinary
floating-point arithmetic. High performance computing would benefit consider-
ably from such an architecture.
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merische Mathematik 19, 400–406 (1972)

19. Rump, S.M.: Ultimately Fast Accurate Summation. SIAM Journal on Scientific
Computing 3(5), 3466–3502 (2009)

20. Rump, S.M.: Verification methods: Rigorous results using floating-point arithmetic.
Acta Numerica, 287–449 (2010)

21. Yamanaka, N., Ogita, T., Rump, S.M., Oishi, S.: A Parallel Algorithm for Accurate
Dot Product. Parallel Computing 34, 392–410 (2008)
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Abstract. In the paper an interval method for solving the one-dimensio-
nal heat conduction equation with mixed boundary conditions is consid-
ered. The idea of the interval method is based on the finite difference
scheme of the conventional Crank-Nicolson method adapted to the mixed
boundary conditions. The interval method given in the form presented
in the paper includes the error term of the conventional method.

Keywords: interval methods, finite difference methods, Crank-Nicolson
method, partial differential equations, heat conduction equation with
mixed boundary conditions.

1 Introduction

The boundary value problems for partial differential equations are important for
a large class of problems in many scientific fields. Hence, some verified methods
dealing with such problems have been developed. For example let us mention
an interval approach to the Laplace equation [3], the Poisson equation [4] and
the Navier-Stokes problems [7], [10]. An overview of some interval methods for
the initial and boundary value problems for the ordinary and partial differential
equations is also presented in [8].

Jankowska and Marciniak proposed an interval backward finite difference
method for solving the one-dimensional heat conduction equation [1]. Then
Marciniak made the first approach to an interval version of Crank-Nicolson
method for solving the one-dimensional heat conduction equation with the Dirich-
let boundary conditions [5].

Jankowska extended the research of Marciniak given in [5] and proposed an
interval finite difference method of Crank-Nicolson type for solving the one-
dimensional heat conduction equation with mixed boundary conditions. The
interval method of Crank-Nicolson type shown in the paper includes the error
term of the corresponding conventional method. Nevertheless, the method is
verified purely theoretically at the moment.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 157–167, 2012.
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2 Heat Conduction Equation with Mixed Boundary
Conditions and Conventional Crank-Nicolson Method

As an example of the parabolic partial differential equation we consider the
one-dimensional heat conduction equation of the form

∂u

∂t
(x, t)− α2 ∂

2u

∂x2
(x, t) = 0, 0 < x < L, t > 0, (1)

subject to the initial condition

u (x, 0) = f (x) , 0 ≤ x ≤ L, (2)

and the mixed boundary conditions

∂u

∂x
(0, t)−Au (0, t) = ϕ1 (t) , t > 0, (3)

∂u

∂x
(L, t) +Bu (L, t) = ϕ2 (t) , t > 0. (4)

Note that if A = 0 and B = 0 then the boundary conditions (3)-(4) are called
the Neumann (or second-type) boundary conditions.

Let us set the maximum time Tmax and choose two integers n and m. Then
we find the mesh constants h and k such as h = L/n and k = Tmax/m. Hence
the grid points are (xi, tj), where xi = ih for i = 0, 1, . . . , n and tj = jk for
j = 0, 1, . . . ,m.

Let us take the central difference formula for ∂u/∂t, together with the local
truncation error, at the point (xi, tj+1/2) of the form

∂u

∂t
(xi, tj+1/2) =

u(xi, tj+1)− u(xi, tj)

k
− k2

24

∂3u

∂t3

(
xi, η

(1)
j

)
, η

(1)
j ∈ (tj , tj+1) .

(5)
In order to find ∂2u/∂x2

(
xi, tj+1/2

)
we expand the derivative ∂2u/∂x2 (xi, tj)

in the Taylor series about
(
xi, tj+1/2

)
and evaluate it at (xi, tj) and (xi, tj+1),

respectively. We get

∂2u

∂x2
(xi, tj) =

∂2u

∂x2
(
xi, tj+1/2

)− k

2

∂3u

∂t∂x2
(
xi, tj+1/2

)
+
k2

8

∂4u

∂t2∂x2

(
xi, η̃

(2)
j

)
,

(6)
and

∂2u

∂x2
(xi, tj+1) =

∂2u

∂x2
(
xi, tj+1/2

)
+
k

2

∂3u

∂t∂x2
(
xi, tj+1/2

)
+
k2

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
,

(7)

where η̃
(2)
j ∈ (

tj , tj+1/2

)
and η

(2)
j ∈ (

tj+1/2, tj+1

)
. Now, let us add the formulas

(6) and (7). We get

∂2u

∂x2
(
xi, tj+1/2

)
=

1

2

(
∂2u

∂x2
(xi, tj) +

∂2u

∂x2
(xi, tj+1)

)
(8)

−k2

16

(
∂4u

∂t2∂x2

(
xi, η̃

(2)
j

)
+

∂4u

∂t2∂x2

(
xi, η

(2)
j

))
.
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Furthermore, as a consequence of the Darboux’s theorem we have

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
=

1

2

(
∂4u

∂t2∂x2

(
xi, η̃

(2)
j

)
+

∂4u

∂t2∂x2

(
xi, η

(2)
j

))
, (9)

where η
(2)
j ∈ (tj , tj+1). Hence, the formula (8) with (9) gives

∂2u

∂x2
(
xi, tj+1/2

)
=

1

2

(
∂2u

∂x2
(xi, tj) +

∂2u

∂x2
(xi, tj+1)

)
− k2

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
.

(10)
Finally, we take the central difference formula for ∂2u/∂x2, together with the
local truncation error, at the points (xi, tj) and (xi, tj+1), respectively. We have

∂2u

∂x2
(xi, tj) =

u (xi−1, tj)− 2u (xi, tj) + u (xi+1, tj)

h2
− h2

12

∂4u

∂x4

(
ξ
(1)
i , tj

)
(11)

and

∂2u

∂x2
(xi, tj+1) =

u (xi−1, tj+1)− 2u (xi, tj+1) + u (xi+1, tj+1)

h2
−h2

12

∂4u

∂x4

(
ξ
(2)
i , tj+1

)
,

(12)

where ξ
(1)
i , ξ

(2)
i ∈ (xi−1, xi+1). Inserting (11) and (12) to (10) we obtain

∂2u

∂x2
(
xi, tj+1/2

)
=

1

2h2
(u (xi−1, tj)− 2u (xi, tj) + u (xi+1, tj)

+ u (xi−1, tj+1)− 2u (xi, tj+1) + u (xi+1, tj+1)) (13)

−h2

24

(
∂4u

∂x4

(
ξ
(1)
i , tj

)
+
∂4u

∂x4

(
ξ
(2)
i , tj+1

))
− k2

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
.

Since we can express (1) at the grid points (xi, tj), i = 0, 1, . . . , n, j = 0, 1, . . . ,m,
inserting (5) and (13) in (1) yields

−λ

2
u (xi−1, tj+1) + (1 + λ) u (xi, tj+1)− λ

2
u (xi+1, tj+1) =

λ

2
u (xi−1, tj)

+ (1− λ)u (xi, tj) +
λ

2
u (xi+1, tj) + R̂i,j , (14)

i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1,

where λ = α2
(
k/h2

)
, ξ

(1)
i , ξ

(2)
i ∈ (xi−1, xi+1), η

(1)
j , η

(2)
j ∈ (tj , tj+1) and R̂i,j are

given as follows

R̂i,j =
k3

24

∂3u

∂t3

(
xi, η

(1)
j

)
− k3α2

8

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
− h2kα2

24

(
∂4u

∂x4

(
ξ
(1)
i , tj

)
+
∂4u

∂x4

(
ξ
(2)
i , tj+1

))
. (15)

Moreover, if we use the central difference formula for ∂u/∂x (0, tj) and
∂u/∂x (L, tj), and then we apply the boundary conditions (3)-(4) we get
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u (x−1, tj) = u (x1, tj)− 2h (Au (x0, tj) + ϕ1 (tj))− h3

3

∂3u

∂x3

(
ξ
(L)
j , tj

)
,

u (xn+1, tj) = u (xn−1, tj)− 2h (Bu (xn, tj)− ϕ2 (tj)) +
h3

3

∂3u

∂x3

(
ξ
(R)
j , tj

)
,

j = 1, 2, . . . ,m, (16)

where ξ
(L)
j ∈ (x−1, x1), ξ

(R)
j ∈ (xn−1, xn+1). Let us note that u (x−1, tj) and

u (xn+1, tj) are given only for j = 1, 2, . . . ,m. Hence we have to find the formulas
for u (x−1, t0) and u (xn+1, t0) that are also required in (14).

First we take the central difference formula for ∂u/∂x, together with the local
truncation error, at the point (x0, t0) of the form

∂u

∂x
(x0, t0) =

u(x−1, t0)− u(x1, t0)

2h
− h2

6

∂3u

∂x3

(
ζ(1), t0

)
, ζ(1) ∈ (x−1, x1) , (17)

and the forward difference formula for ∂u/∂x, together with the local truncation
error, at the point (x0, t0) of the form

∂u

∂x
(x0, t0) =

−3u(x0, t0) + 4u(x1, t0)− u(x2, t0)

2h
+
h2

3

∂3u

∂x3

(
ζ(2), t0

)
,

ζ(2) ∈ (x0, x2) . (18)

Then, if we compare (17) with (18) we get

u (x−1, t0) = −3u (x0, t0) + 5u (x1, t0)− u (x2, t0) (19)

+
2

3
h3

[
1

2

∂3u

∂x3

(
ζ(1), t0

)
+
∂3u

∂x3

(
ζ(2), t0

)]
.

Similarly, we take the central difference formula for ∂u/∂x, together with the
local truncation error, at the point (xn, t0) of the form

∂u

∂x
(xn, t0) =

u(xn−1, t0)− u(xn+1, t0)

2h
−h2

6

∂3u

∂x3

(
ζ(3), tn

)
, ζ(3) ∈ (xn−1, xn+1) ,

(20)
and the backward difference formula for ∂u/∂x, together with the local trunca-
tion error, at the point (xn, t0) of the form

∂u

∂x
(xn, t0) =

3u(xn, t0)− 4u(xn−1, t0) + u(xn−2, t0)

2h
+
h2

3

∂3u

∂x3

(
ζ(4), t0

)
,

ζ(4) ∈ (xn−2, xn) . (21)

Then, if we compare (20) with (21) we get

u (xn+1, t0) = −3u (xn, t0) + 5u (xn−1, t0)− u (xn−2, t0) (22)

−2

3
h3

[
1

2

∂3u

∂x3

(
ζ(3), t0

)
+
∂3u

∂x3

(
ζ(4), t0

)]
.
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Let ui,j approximate u (xi, tj). If we omit the error term then from (14) we get
the Crank-Nicolson method with the local truncation error O

(
k2 + h2

)
of the

form (see also [2], [9])

−λ

2
ui−1,j+1 + (1 + λ) ui,j+1 − λ

2
ui+1,j+1 =

λ

2
ui−1,j + (1− λ)ui,j +

λ

2
ui+1, j,

i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1, (23)

where

u−1,0 = −3u0,0 + 5u1,0 − u2,0, un+1,0 = −3un,0 + 5un−1,0 − un−2,0,

u−1,j = u1,j − 2h (Au0,j + ϕ1 (tj)) , un+1,j = un−1,j − 2h (Bun,j − ϕ2 (tj)) ,

j = 1, 2, . . . ,m, (24)

with the initial condition given as follows

ui,0 = f (xi) , i = 0, 1, . . . , n. (25)

3 Interval Finite Difference Method of Crank-Nicolson
Type with Mixed Boundary Conditions

Let us first transform the exact formula (14) with (16), (19) and (22). We get
as follows

(λ (1 + hA) + 1)u (x0, t1)− λu (x1, t1) =

(
1− 5

2
λ

)
u (x0, t0)

+3λu (x1, t0)− λ

2
u (x2, t0)− k

h
α2ϕ1 (t1)

−λ

6
h3
∂3u

∂x3

(
ξ
(L)
1 , t1

)
+
λ

3
h3

[
1

2

∂3u

∂x3

(
ζ(1), t0

)
+
∂3u

∂x3

(
ζ(2), t0

)]
+ R̂0,0,

i = 0, j = 0, (26)

(λ (1 + hA) + 1)u (x0, tj+1)− λu (x1, tj+1) = (−λ (1 + hA) + 1)u (x0, tj)

+λu (x1, tj)− k

h
α2 (ϕ1 (tj) + ϕ1 (tj+1))

−λ

6
h3

(
∂3u

∂x3

(
ξ
(L)
j , tj

)
+
∂3u

∂x3

(
ξ
(L)
j+1, tj+1

))
+ R̂0,j ,

i = 0, j = 1, 2, . . . ,m− 1, (27)

−λ

2
u (xi−1, tj+1) + (1 + λ) u (xi, tj+1)− λ

2
u (xi+1, tj+1) =

λ

2
u (xi−1, tj)

+ (1− λ)u (xi, tj) +
λ

2
u (xi+1, tj) + R̂i,j

i = 1, 2, . . . , n− 1, j = 0, 1, . . . ,m− 1, (28)
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−λu (xn−1, t1) + (λ (1 + hB) + 1)u (xn, t1) =

(
1− 5

2
λ

)
u (xn, t0)

+3λu (xn−1, t0)− λ

2
u (xn−2, t0) +

k

h
α2ϕ2 (t1)

+
λ

6
h3
∂3u

∂x3

(
ξ
(R)
1 , t1

)
− λ

3
h3

[
1

2

∂3u

∂x3

(
ζ(3), t0

)
+
∂3u

∂x3

(
ζ(4), t0

)]
+ R̂n,0,

i = n, j = 0, (29)

−λu (xn−1, tj+1) + (λ (1 + hB) + 1)u (xn, tj+1) = λu (xn−1, tj)

+ (−λ (1 + hB) + 1)u (xn, tj) +
k

h
α2 (ϕ2 (tj) + ϕ2 (tj+1))

+
λ

6
h3

(
∂3u

∂x3

(
ξ
(R)
j , tj

)
+
∂3u

∂x3

(
ξ
(R)
j+1, tj+1

))
+ R̂n,j ,

i = n, j = 1, 2, . . . ,m− 1. (30)

The formulas (26)-(30) can be given in the following matrix representation:

Cu(j+1) = D(j)u(j) + Ê(j), j = 0, 1, . . . ,m− 1, (31)

where u(j) = [u (x0, tj) , u (x1, tj) , . . . , u (xn, tj)]
T
and

C =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ (1 + hA) + 1 −λ 0
... 0 0 0

−λ
2 1 + λ −λ

2

... 0 0 0

0 −λ
2 1 + λ

... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·
0 0 0

... 1 + λ −λ
2 0

0 0 0
... −λ

2 1 + λ −λ
2

0 0 0
... 0 −λ λ (1 + hB) + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (32)

D(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− 5
2λ 3λ −λ

2

... 0 0 0

λ
2 1− λ λ

2

... 0 0 0

0 λ
2 1− λ

... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·
0 0 0

... 1− λ λ
2 0

0 0 0
... λ

2 1− λ λ
2

0 0 0
... −λ

2 3λ 1− 5
2λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (33)
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D(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−λ (1 + hA) + 1 λ 0
... 0 0 0

λ
2 1− λ λ

2

... 0 0 0

0 λ
2 1− λ

... 0 0 0

· · · · · · · · · . . . · · · · · · · · ·
0 0 0

... 1− λ λ
2 0

0 0 0
... λ

2 1− λ λ
2

0 0 0
... 0 λ −λ (1 + hB) + 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,(34)

j = 1, 2, . . . ,m− 1,

Ê(0) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− k
hα

2ϕ1 (t1)− λ
6h

3 ∂3u
∂x3

(
ξ
(L)
1 , t1

)
+

+λ
3h

3
[
1
2
∂3u
∂x3

(
ζ(1), t0

)
+ ∂3u

∂x3

(
ζ(2), t0

)]
+ R̂0,0

R̂1,0

· · ·
R̂n−1,0

k
hα

2ϕ2 (t1) +
λ
6h

3 ∂3u
∂x3

(
ξ
(R)
1 , t1

)
+

−λ
3h

3
[
1
2
∂3u
∂x3

(
ζ(3), t0

)
+ ∂3u

∂x3

(
ζ(4), t0

)]
+ R̂n,0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (35)

Ê(j) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

− k
hα

2 (ϕ1 (tj) + ϕ1 (tj+1))+

−λ
6h

3
[
∂3u
∂x3

(
ξ
(L)
j , tj

)
+ ∂3u

∂x3

(
ξ
(L)
j+1, tj+1

)]
+ R̂0,j

R̂1,j

· · ·
R̂n−1,j

k
hα

2 (ϕ2 (tj) + ϕ2 (tj+1))+

+λ
6h

3
[
∂3u
∂x3

(
ξ
(R)
j , tj

)
+ ∂3u

∂x3

(
ξ
(R)
j+1, tj+1

)]
+ R̂n,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (36)

j = 1, 2, . . . ,m− 1.

Let us consider the finite difference scheme (26)-(30). The problem is how to
find the intervals that contain the derivatives given in the error terms. From (1)
we have

∂3u

∂t3
(x, t) = α2 ∂4u

∂x2∂t2
(x, t) ,

∂4u

∂x2∂t2
(x, t) =

1

α2

∂3u

∂t3
(x, t) ,

∂4u

∂x4
(x, t) =

1

α2

∂3u

∂t∂x2
(x, t) ,

∂3u

∂x3
(x, t) =

1

α2

∂2u

∂t∂x
(x, t) , (37)

and we assume that
∂4u

∂x2∂t2
(x, t) =

∂4u

∂t2∂x2
(x, t) . (38)
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First, let us note that for i = 0, 1, . . . , n, j = 0, 1, . . . ,m− 1, we need

∂3u

∂t3

(
xi, η

(1)
j

)
= α2 ∂4u

∂x2∂t2

(
xi, η

(1)
j

)
,

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
=

1

α2

∂3u

∂t3

(
xi, η

(2)
j

)
,

(39)

where η
(1)
j , η

(2)
j ∈ (tj , tj+1). First, we assume that

∂3u

∂t3

(
xi, η

(1)
j

)
∈ Mi,j =

[
M i,j ,M i,j

]
. (40)

Furthermore, since η
(2)
j is such that η

(2)
j ∈ (tj , tj+1) and from (38)-(40) we have

∂4u

∂t2∂x2

(
xi, η

(2)
j

)
∈ 1

α2
Mi,j =

1

α2

[
M i,j ,M i,j

]
. (41)

Next, we consider

∂4u

∂x4

(
ξ
(1)
i , tj

)
=

1

α2

∂3u

∂t∂x2

(
ξ
(1)
i , tj

)
,
∂4u

∂x4

(
ξ
(2)
i , tj

)
=

1

α2

∂3u

∂t∂x2

(
ξ
(2)
i , tj

)
.

(42)

Since, ξ
(1)
i , ξ

(2)
i ∈ (xi−1, xi+1), then for i = 0, 1, . . . , n we assume that

∂3u

∂t∂x2

(
ξ
(1)
i , tj

)
∈ Qi,j =

[
Q

i,j
, Qi,j

]
, j = 0, 1, . . . ,m− 1, (43)

∂3u

∂t∂x2

(
ξ
(2)
i , tj

)
∈ Qi,j =

[
Q

i,j
, Qi,j

]
, j = 1, 2, . . . ,m. (44)

Then, for j = 1, 2, . . . ,m we need to know

∂3u

∂x3

(
ξ
(L)
j , tj

)
=

1

α2

∂2u

∂t∂x

(
ξ
(L)
j , tj

)
,
∂3u

∂x3

(
ξ
(R)
j , tj

)
=

1

α2

∂2u

∂t∂x

(
ξ
(R)
j , tj

)
,

(45)

where ξ
(L)
j ∈ (x−1, x1) and ξ

(R)
j ∈ (xn−1, xn+1). We assume that for j =

1, 2, . . . ,m, we have

∂2u

∂t∂x

(
ξ
(L)
j , tj

)
∈ N

(L)
j =

[
N

(L)
j , N

(L)
j

]
,

∂2u

∂t∂x

(
ξ
(R)
j , tj

)
∈ N

(R)
j =

[
N

(R)
j , N

(R)
j

]
.

(46)

Finally, we also need

∂3u

∂x3

(
ζ(1), t0

)
=

1

α2

∂2u

∂t∂x

(
ζ(1), t0

)
,
∂3u

∂x3

(
ζ(2), t0

)
=

1

α2

∂2u

∂t∂x

(
ζ(2), t0

)
, (47)

∂3u

∂x3

(
ζ(3), t0

)
=

1

α2

∂2u

∂t∂x

(
ζ(3), t0

)
,
∂3u

∂x3

(
ζ(4), t0

)
=

1

α2

∂2u

∂t∂x

(
ζ(4), t0

)
, (48)

where ζ(1) ∈ (x−1, x1), ζ
(2) ∈ (x0, x2), ζ

(3) ∈ (xn−1, xn+1) and ζ
(4) ∈ (xn−2, xn).

Similarly, we assume that for j = 0 we have

∂2u

∂t∂x

(
ζ(1), t0

)
∈ N

(L)
0 =

[
N

(L)
0 , N

(L)
0

]
,

∂2u

∂t∂x

(
ζ(3), t0

)
∈ N

(R)
0 =

[
N

(R)
0 , N

(R)
0

]
.

(49)
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Furthermore, we assume that we have such intervals P (L) and P (R) that

∂2u

∂t∂x

(
ζ(2), t0

)
∈ P (L) =

[
P (L), P

(L)
]
,
∂2u

∂t∂x

(
ζ(4), t0

)
∈ P (R) =

[
P (R), P

(R)
]
.

(50)
Now, substituting (40)-(41), (43)-(44), (46) and (49)-(50) to (26)-(30) we get an
interval finite difference method of Crank-Nicolson type of the following form

(λ (1 + hA) + 1)U0,1 − λU1,1 =

(
1− 5

2
λ

)
U0,0 + 3λU1,0 − λ

2
U2,0

−k

h
α2Φ1 (T1)− λ

6

h3

α2
N

(L)
1 +

λ

3

h3

α2

(
1

2
N

(L)
0 + P (L)

)
+R0,0,

i = 0, j = 0, (51)

(λ (1 + hA) + 1)U0,j+1 − λU1,j+1 = (−λ (1 + hA) + 1)U0,j + λU1,j

−k

h
α2 (Φ1 (Tj) + Φ1 (Tj+1))− λ

6

h3

α2

(
N

(L)
j +N

(L)
j+1

)
+Rn,j ,

i = 0, j = 1, 2, . . . ,m− 1, (52)

−λ

2
Ui−1,j+1 + (1 + λ)Ui,j+1 − λ

2
Ui+1,j+1 =

λ

2
Ui−1,j

+(1− λ)Ui,j +
λ

2
Ui+1,j +Ri,j ,

i = 1, . . . , n− 1, j = 0, 1, . . . ,m− 1, (53)

−λUn−1,1 + (λ (1 + hB) + 1)Un,1 =

(
1− 5

2
λ

)
Un,0 + 3λUn−1,0 − λ

2
Un−2,0

+
k

h
α2Φ2 (T1) +

λ

6

h3

α2
N

(R)
1 − λ

3

h3

α2

(
1

2
N

(R)
0 + P (R)

)
+Rn,0,

i = n, j = 0, (54)

−λUn−1,j+1 + (λ (1 + hB) + 1)Un,j+1 = λUn−1,j + (−λ (1 + hB) + 1)Un,j

+
k

h
α2 (Φ2 (Tj) + Φ2 (Tj+1)) +

λ

6

h3

α2

(
N

(R)
j +N

(R)
j+1

)
+Rn,j,

i = n, j = 1, 2, . . . ,m− 1, (55)

where

Ri,j =
k3

24
Mi,j − k3

8
Mi,j − kh2

24
(Qi,j +Qi,j+1) (56)

and

Ui,0 = F (Xi) , i = 0, 1, . . . , n. (57)
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Note that Xi, i = 0, 1, . . . , n, Tj , j = 0, 1, . . . ,m are intervals such that xi ∈ Xi

and tj ∈ Tj . Furthermore, F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval
extensions of the functions f = f (x), ϕ1 = ϕ1 (t) and ϕ2 = ϕ2 (t), respectively.

The interval method (51)-(55) with (57) has also the matrix representation

CU (j+1) = D(j)U (j) + E(j), j = 0, 1, . . . ,m− 1, (58)

where U (j) = [U0,j , U1,j , . . . , Un,j ]
T and

E(0) =

⎡⎢⎢⎢⎢⎢⎢⎣
− k

hα
2Φ1 (T1)− λ

6
h3

α2N
(L)
1 + λ

3
h3

α2

(
1
2N

(L)
0 + P (L)

)
+R0,0

R1,0

· · ·
Rn−1,0

k
hα

2Φ2 (T1) +
λ
6

h3

α2N
(R)
1 − λ

3
h3

α2

(
1
2N

(R)
0 + P (R)

)
+Rn,0

⎤⎥⎥⎥⎥⎥⎥⎦ , (59)

E(j) =

⎡⎢⎢⎢⎢⎢⎢⎣
− k

hα
2 (Φ1 (Tj) + Φ1 (Tj+1))− λ

6
h3

α2

(
N

(L)
j +N

(L)
j+1

)
+R0,j

R1,j

· · ·
Rn−1,j

k
hα

2 (Φ2 (Tj) + Φ2 (Tj+1)) +
λ
6
h3

α2

(
N

(R)
j +N

(R)
j+1

)
+Rn,j

⎤⎥⎥⎥⎥⎥⎥⎦ , (60)
j = 1, 2, . . . ,m− 1.

Theorem 1. Let us assume that the local truncation error of the Crank-Nicolson
scheme can be bounded by the appropriate intervals at each step. Moreover, let
F = F (X), Φ1 = Φ1 (T ), Φ2 = Φ2 (T ) denote interval extensions of the functions
f = f (x), ϕ1 = ϕ1 (t), ϕ2 = ϕ2 (t), given in the initial and boundary conditions
(2)-(4) of the heat conduction equation (1). If u (xi, 0) ∈ Ui,0, i = 0, 1, . . . , n and
the linear system of equations (58) corresponding to the interval version of the
Crank-Nicolson method (51)-(55) can be solved with some direct method, then
for the interval solutions considered we have u (xi, tj) ∈ Ui,j, i = 0, 1, . . . , n,
j = 1, 2, . . . ,m.

Remark 1. Taking into consideration the formulas (26)-(30) and (51)-(55) with
their appropriate matrix representations (31) and (58), we conclude that the
proof of the above theorem is a natural consequence of the thesis of Theorem 2.

Consider a finite system of linear algebraic equations of the form Ax = b, where
A is an n-by-n matrix, b is an n-dimensional vector and the coefficients of A and
b are real or interval values. The existence of the solution to Ax = b is provided
by Theorem 2 (see [6]).

Theorem 2. If we can carry out all the steps of a direct method for solving
Ax = b in the interval arithmetic (if no attempted division by an interval con-
taining zero occurs, nor any overflow or underflow), then the system has a unique
solution for every real matrix in A and every real matrix in b, and the solution
is contained in the resulting interval vector X.
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4 Conclusions

In the paper the interval version of Crank-Nicolson method for solving the one-
dimensional heat conduction equation with the mixed boundary conditions is
presented. In the form (51)-(55) it represents a scheme to compute a guaranteed
result. However, we have to assume that the values of the derivatives in the error
terms are enclosed by appropriate intervals.

In practice it is not easy to find the endpoints of such intervals exactly. We can
just approximate them with some possibly high order finite difference schemes.
In this case, the interval method considered validates the conventional Crank-
Nicolson method and we cannot guarantee that the exact solution belongs to
the interval solution obtained. Although such approximation is not presented in
the paper, it was developed and tested by the author on several problems. If
we broaden the intervals of the error term by some experimentally chosen value
we observe that the exact solution does belong to the interval solution. Such
advantage of the proposed method over the conventional one seems to be a good
starting point for further research.
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Abstract. C-XSC is a C++ class library for scientific computing, with
its main focus on reliable interval computations. Recently, several changes
and new features have been implemented, making C-XSCmuchmore suit-
able for tasks in high performance computing. However, these changes re-
quire that users take several factors into consideration when writing and
compiling programs using C-XSC to get the best possible performance
while still maintaining a sufficient level of numerical accuracy. This paper
gives an overview of the most important points concerning these factors
and tries to give background information and recommendations to the end
user for the implementation of efficient C-XSC programs.

Remark: An accompanying extended version of this paper is available,
see [10].

Keywords: C-XSC, high performance computing, compiler optimiza-
tions, dot product computation, error free transformation, BLAS,
openMP, MPI.

1 Introduction

The C-XSC (XSC stands for eXtended Scientific Computing) library [8,7], de-
rived from the earlier Pascal-XSC and several other XSC languages and libraries,
was introduced in 1992 and is thus now nearly 20 years old. The main focus of
the C-XSC development has always been to provide a rich feature set with high
reliability and accuracy. One of the paradigms of its development was that every
operation should be maximally accurate, i.e. at worst only one floating point
rounding away from the exact result. The run time performance however, espe-
cially when dealing with larger, multidimensional problems, has not taken a big
role in the development for a long time.

In recent years, the focus of the C-XSC development shifted into making
C-XSC fit for applications in high performance computing, where large problems
need to be solved effectively, while still preserving reliability and the features
introduced so far. The goal is to make C-XSC a valid option for the end users
who want to write such programs, whether they are interested in reliability and
the possibilities of using interval computations provided by C-XSC, or just want
to use a C++ library providing some basic data types and functionality.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 168–178, 2012.
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Parallel programming has become another point of interest in the develop-
ment of C-XSC. Whether one wants to write programs for huge distributed
memory clusters using MPI or on modern multicore systems using OpenMP or
some thread library, the newer C-XSC versions now make it easier to do so and
partially can take advantage of multicore machines themselves.

This paper discusses some of the most important factors to consider when
writing programs with C-XSC that aim for high performance and efficiency.
Recommendations for writing and compiling C-XSC programs as well as expla-
nations of some possible pitfalls are given. The paper is structured as follows.
Section 2 deals with the installation of C-XSC, while Section 3 is concerned with
various aspects of writing C-XSC programs. The following Section 4 gives some
advice on compiling C-XSC programs. Finally, the paper ends with a summa-
rizing example in Section 5 and some final remarks in Section 6.

Some more detailed information, explanations, and source codes may be found
in the accompanying extended version of this paper [10].

2 Installing an Efficient Version of the C-XSC Library

Many parts of the C-XSC library are defined directly in the header files to give
the compiler the opportunity to inline calls to the functions defined there (for
example all operators of the basic data types). This leads to a huge performance
increase compared to compiling all code directly into the library itself. However,
there are still big and vital portions of C-XSC that are compiled into the library
and whose performance can be of high importance for the whole library. This
section describes the issues to consider, when compiling C-XSC, and gives some
recommendations for the best settings for most users.

The installation procedure of C-XSC is guided by the install script
install cxsc. It queries all important questions regarding compiler and config-
uration options to the user.

First, the user has to decide which compiler to use. If there are multiple
compilers installed, the newest version should be used in most cases. The install
script will then ask whether compiler optimizations should be used and, if this
is the case, which flags are to be set. It is highly recommended to use at least
the default optimization flags (-O1 -finline-functions), which should work
correctly on every system.

If you use an x86 or x86-64 based system, you should activate the highest
optimization level -O3. This might lead to reliability problems for parts of C-XSC
that change the rounding mode, however, on these systems, assembler routines
for the affected code can be activated, which will not suffer from these problems.

If you do not want to use the compiled C-XSC library on different systems
(different processors), you should also tell the compiler to optimize specificially
for your processor. The generated code will only run on systems with the same
processor type, but with this option, the compiler will make use of the complete
instruction set of the actual processor (for example SSE instructions). To activate
this option, add -march=native for the gcc and -xHost for the icc to your
optimization options.
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When using icc, you should also activate so called interprocedural optimiza-
tions by adding -ip to your optimization options (for more detailed explanations
of this option as well as the other optimization options, see [6]). The same applies
for gcc [2].

If the FMA operation (Fused Multiply and Add) is available in hardware
on the specific machine, C-XSC can make use of it. If you want to use it, add
-DCXSC USE FMA to your optimization options. C-XSC will then call the standard
library function fma to perform this operation at the appropriate places. If the
FMA operation is supported in hardware and your standard library takes advan-
tage of this (for example using gcc 4.4.2 on a system with a Nehalem processor
should work), this will speed up some computations. If there is no hardware sup-
port, this option will also work, but will in fact slow down some computations,
since the FMA operation is then simulated in software. Thus, this option should
only be activated if hardware support is guaranteed.

After setting the compiler optimizations and when compiling on a 64 bit
machine, the install script will ask whether it should generate 64 bit oder 32 bit
code. In general it is recommended to compile 64 bit code. However, if you want
to use the library later also on a 32 bit machine, you have to choose the option
for 32 bit code generation.

The install script will then ask in which way C-XSC should set the rounding
mode of the processor. When compiling on an x86 or x86-64 machine, the option
to use assembler routines for this task will be available. It is strongly recommended
to use these routines if available, since they are not only faster but also more reli-
able. If instead the hardware rounding option is chosen at this point, C-XSC will
use the standard library function fesetround. This might lead to wrong numer-
ical results when using compiler optimizations. The optimization level should be
reduced in this case. The third option for the rounding mode is software rounding,
which will simulate the correct rounding in software. This option should always
work correctly, even with optimizations. However it will be very slow.

At the end of the installation procedure, the install script will finally ask
whether it should start the code generation. At this point, all the needed make-
files and configuration files have been generated. You can now modify them by
hand, if you want to add options or change anything that was not covered by
the installation script.

One last thing to consider during the installation of C-XSC is the functionality
of the error free transformations needed for the dot products in K-fold precision
described in Section 3.1. The algorithms for the error free transformations will
not work on processors that use 80-bit wide floating point registers (for example,
the FPU of most x86 processors use such registers).

The best way on x86 machines is to use the SSE registers, which have no excess
precision for floating point computations. With gcc, use the option -mfpmath=sse
to enable this (at least SSE2 instructions have also to be activated with -msse2).
The icc compiler will activate this by default on 32 bit x86 machines. If not, one
has to use the option -fp-model source, which unfortunately can also slow
down performance due to reduced optimizations on floating point operations.
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3 Writing One’s Own C-XSC Programs

This section shows how to write efficient C-XSC programs. The main focus of C-
XSC has always been to achieve very high accuracy, with the paradigm (which
still holds for the default settings of todays version) that the result of every
operation should be maximally accurate, i.e. that the computed result is only
one rounding away from the true, exact result.

In the newer C-XSC versions, a stronger focus on run time performance has
been established. The changes described in the following subsections reflect this.
It is however necessary to know how to use these new possiblities in order to
write an efficient C-XSC program. Especially the changes described in Section
3.1 can have a major impact on the performance of a program when using matrix
and vector operations.

3.1 Dot Products and BLAS Support

Since version 2.3.0, C-XSC includes the feature to switch the precision of all
dot product computations at runtime. Before this version, every dot product,
either explicitly computed oder implicitly computed in one of the operators (for
example, when computing matrix*matrix), was computed in maximum precision
using the so called long accumulator [11,12]. Since regrettably there is still no
hardware support for the long accumulator (which would be faster than normal
floating point dot products) available, it has to be simulated in software and
thus is very slow.

There are two ways to compute dot products or dot product expressions in C-
XSC. One is to use the operators of the appropriate data types. As an example,
we want to compute the result of z = b −Ax, where b, x and z are real vectors
(data type rvector) of length n and A is a real matrix (data type rmatrix) of
dimension n× n. The code for this example is given in Listing 1.1.

Listing 1.1. Computing b−Ax using operators

rmatrix A(n,n);
rvector b(n), x(n), z(n);

//... fill A, b, x with values ...

//set precision of operator dot products
opdotprec = 2;

// Compute expression
z = b - A*x;

When computing the matrix-vector product Ax via the appropriate operator,
C-XSC has to compute n dot products. The precision used to compute these
dot products can be set with the global C-XSC variable opdotprec. Setting
this variable to some integer value K ≥ 0 means that all following dot product
computations in any operator are computed in K-fold double precision (thus
if K = 1 normal floating point computations are used). If K = 0, the long
accumulator is used as in previous C-XSC versions. This is also the default



172 W. Krämer, M. Zimmer, and W. Hofschuster

setting to preserve compatibility with older C-XSC programs. If K ≥ 2, the
DotK algorithm is used to simulate higher precision. More details can be found
in [14,9].

A disadvantage when using operators is that while every dot product opera-
tion is computed in K-fold or even maximum precision, the result of every single
operation is rounded into double precision so that the evaluation of a whole ex-
pression like b−Ax might lead to results that are not very accurate due to the
rounding errors of the intermediate values. To compute a complete expression in
high precision, C-XSC provides the data type dotprecision (idotprecision
for intervals, cdotprecision for complex values and cidotprecision for com-
plex intervals), which represents a long accumulator. Listing 1.2 shows how to
compute the above example b−Ax that way.

Listing 1.2. Computing b−Ax using the long accumulator

rmatrix A(n,n);
rvector b(n), x(n), z(n);

//... fill A, b, x with values ...

// Initialize with 0
dotprecision dot(0.0);
//Set dot product precision
dot.set_dotprec(2);

for(int i=1 ; i<=n ; i++) {
dot = b[i];
accumulate(dot, -A[i], x);
z[i] = rnd(dot);

}

First, a dotprecision variable dot is defined. The precision for all dot prod-
ucts computed with this variable can be set with the set dotprec member
function. To compute the expression, a loop over all elements of the result vec-
tor is used. In each iteration of the loop, the accumulator is initialised with the
i-th element of b. Then, the dot product of the i-th row of A with the vector
x is computed in the precision selected for dot (in the example above this is
2-fold precision) and then added to the accumulator. What is important here is
that the added result with this method also has 2-fold double length precision
and that it is added to the value bi stored in the accumulator with maximum
precision. Thus, computing a dot product expression in this way can drastically
improve the accuracy of the result. The downside is that the computation will
be slower (but often, depending on the number of additions, only slightly slower)
and that the source code becomes more complex.

When writing a C-XSC program using matrix and vector computations, one
should always ensure that the precision is not set higher than really needed. If
pure floating point precision is sufficient for the specific application, setting the
dot product precision to one will result in vastly improved runtime performance.
Even if higher accuracy is needed, it will often be sufficient to use two fold
precision in many practical cases, which will still be a lot faster than the default
setting using the long accumulator.
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Another option concerning dot products is the possibility to use optimized
BLAS routines for matrix and vector computations. This feature has been intro-
duced with C-XSC version 2.4.0. BLAS routines will be used for all matrix and
vector operators explicitly or implicitly computing dot products (matrix*matrix,
matrix*vector, vector*vector). To make use of the BLAS, opdotprec has to be
set to one and your programmust be compiled with the option -DCXSC USE BLAS.
The program then also has to be linked against an appropriate BLAS and
CBLAS library. For example, when using ATLAS BLAS (if compiled as a static
library with the GNU Fortran compiler and installed in the directory
/usr/local/atlas) you would have to add the following options to your com-
piler call:

-DCXSC USE BLAS -L/usr/local/atlas/lib -latlas -lcblas -lf77blas -latlas -lgfortran

Using BLAS routines is highly recommended, especially when computing matrix-
matrix products, since this operation will normally see a drastic performance in-
crease with these routines. Also, many BLAS libraries are already multithreaded
and thus can take advantage of multicore or multiprocessor machines without
any additional work on the side of the C-XSC programmer.

3.2 Using Data Types Efficiently

C-XSC provides a lot of different data types, most importantly the four basic
types real, interval, complex and cinterval. Many other data types are
based on these types, for example dense vectors (rvector, ivector, ...), dense
matrices (rmatrix, imatrix, ...) and sparse matrices (srmatrix, simatrix, ...).
This section contains some remarks for using these data types in an efficient way
and choosing the most appropriate data type for a specific task.

The first important thing to note is that C-XSC uses the data type real

instead of the built in data type double. A double can be converted into a real

value by calling the corresponding constructor or by simply assigning the double
value to the real variable. If one wants to convert from real to double, either
a cast can be used or the function double(real&) has to be called.

When using interval data types, one has always to keep in mind that reli-
able interval computations on a machine require every operation to be rounded
outwards to guarantee an enclosure. To perform such an outward rounding, it
is necessary to switch the rounding mode of the processor which is expensive
in terms of run time performance. Because of this, one should always use the
provided functions and operators and not perform operations like a dot product
element wise.

When writing programs with matrices and vectors, it is important to distin-
guish dense matrices from sparse matrices (and vectors). If a matrix or vector
consists mostly of zero entries, it is said to be sparse. To take advantage of the
sparsity both in terms of performance as well as memory footprint, the sparse
matrix and vector types should be used in this case. Listing 1.3 gives a small
example.
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Listing 1.3. Using dense and sparse matrices

rmatrix A(n,n); // dense

//A is diagonal matrix
for(int i=1 ; i<=n ; i++)

A[i][i] = i;

// Create sparse matrix out of dense A
srmatrix B(A); // sparse

A = A*A; //dense times dense
A = B*A; //sparse times dense
B = B*B; //sparse time sparse

In this example, a diagonal matrix A is created and stored as a dense matrix.
Then, a sparse matrix B is created out of A. A dense matrix-matrix product will
be much slower than a sparse one, and still significantly slower than a sparse-
dense product. Furthermore, everything said in Section 3.1 also applies to sparse
data types.

When using sparse data types, some important facts about the underlying
data structure (sparse matrices are stored using compressed column storage)
have to be considered. Accessing single elements of a sparse matrix is quite
expensive and should be avoided, if possible. Since the data structure is column
based, accessing rows is also quite expensive, while accessing columns should be
a lot faster. It might therefore be a good idea to first transpose a sparse matrix
using the transp function and access the columns of the transposed matrix
instead of the rows of the original matrix. As with dense matrices, it is also
possible to access slices of a matrix in the form B(1,10,1,10) (this accesses the
upper left 10×10 submatrix of B). This operation is quite expensive with sparse
matrices and should not be overused. Further details about sparse matrices in
C-XSC can be found in [16].

3.3 Using OpenMP/Multithreading

Systems with multiple cores and/or multiple processors have become mainstream
in recent years. To make use of their possibilities, programs have to be multi-
threaded. In general, the easiest and most convenient way to do this is using
OpenMP, which in many cases allows one to make programs multithreaded by
simply adding some compiler pragmas and without directly changing pre-existing
serial code.

In older C-XSC versions (before version 2.3.0) one could easily run into prob-
lems when using multithreading, because in many calculations a global array of
dotprecision objects was used internally. This was not transparent to the user,
which made synchronisation between threads very hard. In newer C-XSC ver-
sions this has been changed, and implementing multithreaded C-XSC programs
is now much easier. However, the user still has to take some global C-XSC config-
uration variables into account. First and foremost, the global variable opdotprec
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which, as described in Section 3.1, controls the precision of all dot product
computations implied by corresponding operator calls. Changes to this variable
in one thread will have an effect on all other threads. If this variable is changed
during a dot product computation, this might even lead to undefined behaviour.
It is therefore recommended not to set this variable within a parallel region.

Another global C-XSC variable you have to take care of is stagprec. When
using staggered precision data types (l interval, lx interval etc.), this vari-
able controls the length of the staggered representation and thus the accuracy
of the computations. As with opdotprec, this variable should not be accessed
inside of a parallel region.

3.4 Using MPI in Connection With C-XSC

When writing parallel programs for distributed memory machines, i.e. clusters,
MPI has become a de-facto standard. In this form of parallelization, it is neces-
sary to send data between the different running processes. MPI provides some
built-in functions to do this for the standard C data types.

To also be able to send C-XSC data types via MPI, we provide an MPI-
interface which gives the user access to communication functions that work the
same way as the ordinary MPI routines. The recent changes in C-XSC (new
dot products and additional sparse data types) made it necessary to update this
interface appropriately. Older versions of the interface should be updated to the
newest release available on our C-XSC website [19].

The MPI interface gives the user the possibility to write parallel C-XSC ap-
plications for large clusters which have the potential to solve huge problems. An
example of this is the implementation of a verified solver for dense linear interval
systems discussed e.g. in [9,17].

4 Compiling One’s Own C-XSC Programs

This section deals with the compilation of C-XSC programs. Since huge portions
of the C-XSC library code reside in the header files to allow the compiler to inline
function calls, it is also very important for the performance of a C-XSC program,
to compile the source code using appropriate compiler options.

First, we strongly recommend to update your compiler to the newest ver-
sion. Newer versions can often give a significant performance boost “for free”,
especially if the compiler in use is already a few years old.

Inlining is of particular relevance to the performance of every C-XSC program.
Since C-XSC uses object-oriented concepts, a huge number of function calls are
necessary (for example, every use of an operator results in a function call). Since
function calls are quite expensive, this can result in very bad run time perfor-
mance, if the compiler is not forced to do inlining (function calls are replaced
by direct copies of the function codes). Depending on the compiler, inlining may
have already been activated by default. Nearly every compiler activates inlining
on the highest optimization level -O3.
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It is in general recommended to use the same optimization options as when
installing C-XSC (see Section 2). This means

– for the GNU Compiler: -O3 -march=native

– for the Intel Compiler: -O3 -xHost -ip

Again, the options -march=native and -xHost shall only be used if the compiled
program is not executed on different systems. Please refer to the manual of your
compiler for more detailed explanations of the possible options.

It is in general a good idea to use BLAS routines for matrix and vector
computations. As explained in Section 3.1, these can be activated by using
the compiler switch -DCXSC USE BLAS and linking to a BLAS and a CBLAS
library.

Some modules of the C-XSC Toolbox also can make use of optimized LAPACK
routines. At the moment this only applies to the computation of an approximate
inverse of a real matrix (header file matinv aprx.hpp) and the solvers for dense
linear systems (see Section 5). To make use of LAPACK the compiler switch
-DCXSC USE LAPACK has to be used and the program must be linked against
a LAPACK library. LAPACK support of C-XSC will be extended in the near
future.

5 An Example: Runtime Comparison When Solving
Linear Systems

In this very short section we discuss the possible improvement for applications
using C-XSC when following the recommendations and suggestions given in this
paper (more details and source code are presented in [10]). For this, we take
solvers for dense linear systems as an example and compare the old Toolbox
module LinSolve (see [3]) with the new optimized solvers, which were first
implemented in a separate package [9] and are now also included directly in the
C-XSC kernel. For both versions a C-XSC installation with full optimizations as
explained in Section 2 is used.

The new solvers are compiled with all the recommended optimizations, use
the new dot product algorithms as well as BLAS and LAPACK support, and
also take advantage of multicore processors via OpenMP. We compare the time
taken to solve a real linear point system of dimension n = 1000. (For the complete
program listing please refer to [10].)

Using the Intel Compiler 11.1 with full optimizations and using the Intel MKL
on a Nehalem based Intel Xeon 2.26 GHz computer with two processors with
four cores each, the new solver takes about 0.34 seconds, while the old solver
needs about 198 seconds. This is an extreme example (the improved solver is
about 600 times faster than the traditional solver!), but it shows how much
performance can be gained using and combining the new features of C-XSC in
a sensible way.
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6 Final Remarks and Future Prospect

In recent times the portable C++ class library C-XSC has made major advances
to become a library that is not only providing a rich set of numerical features
and that offers reliability and very high accuracy of numerical results, but is
also very attractive for highly demanding applications from high performance
computing (e.g. in solving parameter dependent linear systems [15]). The user
always has the choice to use C-XSC in the traditional way with a focus on
maximum accuracy, but now he can also adapt his programs for specific uses
requiring higher performance. The following list summarizes some of the major
advances:

– Choosable precision for dot products, ranging from dot products in pure
floating point to exact dot products using a long accumulator.

– Support for BLAS and some LAPACK routines, allowing huge speed in-
creases for some applications.

– Specific data types for sparse matrices and vectors that work much more
efficiently than their dense counterparts.

– Easier usage of OpenMP with C-XSC.
– New multiple-precision data types lx real, lx interval, . . . with corre-

sponding (interval) operations and a rich set of elementary functions [1].

In the near future, C-XSC will offer even more functionality in terms of pure
floating point algorithms by providing an interface to the routines from LA-
PACK. Furthermore, parts of the C-XSC Toolbox will be optimized for multicore
processors. With the current and future changes, C-XSC becomes more flexible
and an interesting alternative for multiple numerical applications, especially for,
but not restricted to the field of reliable computing.

This paper refers to C-XSC version 2.4.0 or higher. Note: C-XSC comes with a
powerful installation script. This makes it easy to install C-XSC even for begin-
ners by just accepting the default options proposed when executing the instal-
lation script. There is no need to first read this paper. But if you are interested
in creating the C-XSC library for extensive numerical computations (typically
done in high performance computing), you should know the possibilities to speed
up computations using more specific options when installing C-XSC and when
compiling your own C-XSC source code.

References
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Abstract. The straightforward implementation of interval matrix prod-
uct suffers from poor efficiency, far from the performances of highly op-
timized floating-point matrix products. In this paper, we show how to
reduce the interval matrix multiplication to 9 floating-point matrix prod-
ucts - for performance issues - without sacrificing the quality of the result.
Indeed, we show that, compared to the straightforward implementation,
the overestimation factor is at most 1.18.

Keywords: interval arithmetic, interval matrix multiplication, efficiency.

1 Introduction

Interval arithmetic is a means of obtaining guaranteed results: computing enclo-
sures of the exact results. Nonetheless, it suffers from lower performance than
non-guaranteed floating-point computations. Theoretically, the factor of perfor-
mance between interval arithmetic and floating-point arithmetic in theory is 4.
It is even much worse in practice, especially when a large number of operations
is involved.

In this paper we will study the case of matrix multiplication. Our implemen-
tation, based on the natural algorithm, gets good performances at the price of
a slight overestimation of the result. The idea is to exploit existing libraries
which are well optimized for floating-point matrix operations such as BLAS,
ATLAS, etc. In the same vein, Rump proposed a fast algorithm which uses only
four floating-point matrix products [9]. Rump’s algorithm returns a result wider
than the result obtained by replacing each floating-poing operation between two
numbers by its interval counterpart: the factor of overestimation of this algo-
rithm is 1.5 in the worst case. This paper proposes a new algorithm which costs
9 floating-point matrix products with a factor of overestimation in the worst
case of 1.18.

This paper is organized as follows. Section 2 briefly presents interval arith-
metic with some basic operations. A more thorough introduction to interval
arithmetic as well as some applications of interval arithmetic can be found in
[6,3,5]. These operations are extended to matrix operations which are studied
in section 3. Section 4 reminds the principle of Rump algorithm. Section 5 is
devoted to our proposed algorithm.
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Notations

In this paper, bold-face lower-case letters represent scalar intervals and bold-
face upper-case letters represent interval matrices. Below are some additional
notations:
[◦] is an expression computed by interval arithmetic,
(◦)↓, (◦)↑ are expressions computed by floating-point arithmetic with downward
and upward rounding mode respectively,
[i, s] is an interval whose endpoints are i and s,
{m, r} is an interval whose mid-point is m and radius is r,
a, a are the lower and upper bounds of a,

mag (a) is the maximal magnitude of a: mag (a)
def
= max{|a|, a ∈ a}=max(|a|, |a|).

2 Interval Arithmetic

Intervals are used to represent connected closed sets of real values. Interval arith-
metic defines operations between intervals. The result of an operation between
intervals is also an interval containing all the possible results between all possible
pairs of real values taken from input intervals: r = a ◦ b = �{a ◦ b, a ∈ a, b ∈ b},
where � denotes the hull of a set, i.e. the smallest interval enclosing the set.

Due to the monotonicity property, the sum of two intervals r = a+ b can be
computed via the sum of their two respective lower and upper bounds:

r = a+ b r = a+ b. (1)

Interval multiplication r = a∗b is formed by taking the minimum and maximum
value of the four products between two pairs of endpoints of the two input
intervals. {

r = min(a ∗ b,a ∗ b,a ∗ b,a ∗ b)
r = max(a ∗ b,a ∗ b,a‘ ∗ b,a ∗ b). (2)

Hence, in theory the factor, in terms of performance, between interval arithmetic
and floating-point arithmetic is 4.

Implementation

Intervals are implemented on computers using floating-point numbers. To ensure
the inclusion property of the results, rounding errors must be taken into account:
the lower endpoint must be computed with downward rounding mode, and the
upper endpoint with upward rounding mode.

For the interval addition r = a+ b, this yields:

r = (a + b)↓ r = (a+ b)↑. (3)

The interval product r = a ∗ b is computed following (2) by four floating-
point products. Nevertheless, to accomodate rounding errors, each floating-point
product must be computed twice, once with upward and once with downward
rounding mode. Thus in total, it requires eight floating-point products.



Efficient Implementation of Interval Matrix Multiplication 181

{
r = min((a ∗ b)↓, (a ∗ b)↓, (a ∗ b)↓, (a ∗ b)↓)
r = max((a ∗ b)↑, (a ∗ b)↑, (a ∗ b)↑, (a ∗ b)↑). (4)

We can reduce the number of floating-point products by inspecting the sign of
each component. But testing the sign and branching accordingly is costly also.

Particular Cases

If a and b are Centered in Zero , i.e., a = −a and b = −b then a + b =
−(a+ b). Hence, the sum r = a+ b can be computed by:

r =
(
a+ b

)
↑ r = −r. (5)

If b is Centered in Zero then max(x ∗ b, x ∗ b) = |x| ∗ b and min(x ∗ b, x ∗ b) =
− |x| ∗ b for all x ∈ R. Hence according to (2), r = a ∗ b can be computed by:

r = max(|a| , |a|) ∗ b
= mag (a) ∗ b

r = −max(|a| , |a|) ∗ b
= −r.

Using floating-point arithmetic, r can be computed by only one floating-point
product in upward rounding mode:

r =
(
mag (a) ∗ b)↑ r = −r. (6)

3 Interval Matrix Operations

Let’s now study the case of matrix operations. Suppose that each interval matrix
here is of dimension n×n and is represented by two floating-point matrices, one
for the lower endpoints and the other for the upper endpoints.

The addition of two interval matrices C = A +B can be computed by per-
forming scalar additions between corresponding elements of the two matrices.
Thus

C = (A+B)↓ C =
(
A+B

)
↑ .

For the case of interval matrix multiplication, each element of the result matrix
is computed by:

Ci,j =
∑
k

Ai,k ∗Bk,j . (7)

Using this natural formula, the computation of each product element requires
n interval multiplications and n interval additions, or, following (3) and (4), it
requires 8n floating-point products and 2n floating-point additions. Hence, the
overall cost in theory is 8n3

∗ + 2n3
+ floating-point operations. Nonetheless, this

cost does take into account neither min, max functions nor the cost of rounding
mode changes.
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Particular Cases

A is centered in Zero ,i.e., Ai,k is centered in zero for all i, k. From (6) we
get

Ai,k ∗Bk,j =
[
−Ai,k ∗ mag (B)k,j ,Ai,k ∗ mag (B)k,j

]
⇒ Ci,j =

[
−∑

k Ai,k ∗ mag (B)k,j ,
∑

k Ai,k ∗ mag (B)k,j

]
⇒ C =

(
A ∗ mag (B)

)
↑

C = −C.

Hence A∗B can be computed by one floating-point matrix product with upward
rounding mode.

A is Nonnegative. It means that 0 ≤ Ai,k ≤ Ai,k for all i, k. Hence⎧⎪⎪⎨⎪⎪⎩
max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bk,j .

Denote by xpos = max(x, 0) and xneg = min(x, 0) then{
max(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bpos

k,j +Ai,k ∗Bneg

k,j

min(Ai,k ∗Bk,j ,Ai,k ∗Bk,j) = Ai,k ∗Bpos
k,j +Ai,k ∗Bneg

k,j

⇒
{
Ai,k ∗Bk,j = Ai,k ∗Bpos

k,j +Ai,k ∗Bneg

k,j

Ai,k ∗Bk,j = Ai,k ∗Bpos
k,j +Ai,k ∗Bneg

k,j

⇒
{
C =

(
A ∗Bpos

+A ∗Bneg
)
↑

C = (A ∗Bpos +A ∗Bneg)↓ .

In this case, an interval matrix product can be computed using 4 floating-point
matrix products.

Similarly, if A is nonpositive, 4 floating-point matrix products suffice to com-
pute an interval matrix product.

A does not Contain Zero in its Interior. We can then split A into positive
and negative part by

A
pos
i,j =

{{a ∈ Ai,j | a ≥ 0} if Ai,j ≥ 0
0 if Ai,j < 0

Aneg
i,j =

{{a ∈ Ai,j | a ≤ 0} if Ai,j ≤ 0

0 if Ai,j > 0.

A does not contain zero in its interior, thus either Apos
i,j = Ai,j , and Aneg

i,j = 0 or

A
pos
i,j = 0, and A

neg
i,j = Ai,j . Hence

Ai,j ∗Bj,k = Ai,j ∗Bj,k
pos +Ai,j ∗Bj,k

neg

⇒ A ∗B = Apos ∗B +Aneg ∗B
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In total, it costs eight floating-point matrix products.
For these three particular cases, if all operations are performed in infinite

precision or if there is no rounding error, then the computed result is exact.
In general, when there is no assumption about the input intervals, then one

could resort to the natural algorithm. However, it would not be efficient. A
better solution is to exploit floating-point matrix multiplication because there are
available libraries which are well optimised for floating-point matrix operations.

4 Rump’s Algorithm

Rump proposes an algorithm which makes use of floating-point operations for
speed [9,10]. This algorithm is based on the midpoint-radius representation of
intervals.

Let A = {mA, rA} and B = {mB, rB} be two interval matrices, with mA,mB

their midpoints and rA, rB their radius respectively. The product A ∗ B is en-
closed by an interval matrix C whose midpoint and radius are computed by:

mC = mA ∗mB

rC = (|mA|+ rA) ∗ rB + rA ∗ |mB| .

In fact, because of rounding errors, mA ∗mB cannot be computed exactly. Thus
it must be computed with both upward and downward rounding mode to obtain
en enclosure of the midpoint. The radius rC must also be computed with upward
rounding to ensure the inclusion property.

mC =
[
(mA ∗mB)↓ , (mB ∗mB)↑

]
rC = ((|mA|+ rA) ∗ rB + rA ∗ |mB|)↑ .

Finally, the result can be easily converted back to endpoints representation by
two floating-point additions.

C = (mC + rC)↑ C =
(
mC − rC

)
↓ .

In total, this algorithm uses four floating-point products. In practice, the interval
matrix product implemented using Rump’s algorithm exhibits a speedup by a
factor 20 to 100 [9], in comparison with the BIAS’s approach [4] which is based
on the natural algorithm.

Over-estimation

Without taking into account the rounding errors, Rump’s algorithm always pro-
vides over-estimated results, compared to the natural algorithm. The factor of
over-estimation in the worst case is 1.5.

For example, by definition [0, 2] ∗ [0, 4] def= [0, 8].
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Meanwhile, Rump’s algorithm gives

[0, 2] = {1, 1} [0, 4] = {2, 2}
{1, 1} ∗ {2, 2} = {1 ∗ 2, (1 + 1) ∗ 2 + 1 ∗ 2}

= {2, 6}
= [−4, 8] .

The over-estimation factor in this case is 12/8 = 1.5.

5 Proposition

Rump’s algorithm can be considered as decomposing A and B into a sum of
two components representing its midpoint and radius respectively. A∗B is then
replaced by its development, which is a sum of four sub-products. Due to the
sub-distributive property of interval product, the result yielded by this sum is
an enclosure of the original product.

Our idea is to find another decomposition such that sub-products can be
efficiently computed, and that the over-estimation is small.

As we can see in Section 3, an interval product can be efficiently computed
when one of the two multipliers is centered in zero or does not contain zero.

Proposition 1. Let A be an interval matrix. If A is decomposed into two in-
terval matrices A0 and A∗ which satisfy:

– A0
i,j = 0,A∗

i,j = Ai,j if Ai,j ∗Ai,j ≥ 0,

– A0
i,j =

[
Ai,j ,−Ai,j

]
,A∗

i,j =
[
0,Ai,j +Ai,j

]
if Ai,j < 0 <

∣∣Ai,j

∣∣ ≤ Ai,j,

– A0
i,j =

[−Ai,j ,Ai,j

]
,A∗

i,j =
[
Ai,j +Ai,j , 0

]
if Ai,j < 0 < Ai,j <

∣∣Ai,j

∣∣
then

– A0 is centered in zero,
– A∗ does not contain zero in its interior, and
– A0 +A∗ = A.

Proof. Easily deduced from the formula.

Proposition 2. Let A and B be two interval matrices and (A0,A∗) a decom-
position of A by Proposition 1. Let C be an interval matrix computed by

C = A0 ∗B +A∗ ∗B (8)

Then A ∗B is contained in C. Denote C
def
= A�B.

Proof. Following Proposition 1: A = A0 + A∗. Interval multiplication is sub-
distributive, hence A ∗B ⊆ A0 ∗B +A∗ ∗B, or A ∗B ⊆ C.

A0 is centered in zero and A∗ does not contain zero, so according to Section
3, A0 ∗ B and A∗ ∗ B can be computed using 1 and 8 floating-point matrix
products respectively. Hence, the overall cost is 9 floating-point matrix products.
The following section will study the over-estimation factor of this operation in
the worst case.
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Over-estimation Factor

Let us first consider the product of two scalar intervals a and b with a being
decomposed, following Proposition 1, into two parts: a = a0 +a∗. Suppose that
all calculations here are performed in infinite precision. It means that rounding
errors will not be taken into account.

If a is Centered in Zero then a∗ = 0 → a ∗ b = a0 ∗ b. Thus the result is
exact.

If a does not Contain Zero in its Interior then a0 = 0 → a ∗ b = a∗ ∗ b.
Thus the result is exact too.

If a Contains Zero. Again, let us perform a case study (see details in [7]).
Case a < 0 < |a| < a. In this case a0 = [a,−a] and a∗ = [0,a+ a]. Proposition
2 yields that, in case b is either nonnegative or nonpositive, a � b = a ∗ b. In
case b contains 0 in its interior and b > |b|, then let us denote by{

M = max(|a| /a, |b| /b)
m = min(|a| /a, |b| /b)

then ⎧⎪⎪⎨⎪⎪⎩
0 < m ≤ M ≤ 1

min(a/a, b/b) = −M
a/a+ b/b = −m−M

a/a ∗ b/b = m ∗M.

Denote diam(x) the diameter of an interval x, then the factor of overestimation
is computed by:

diam(a� b)

diam(a ∗ b) =
1− a/a− b/b− a/a ∗ b/b

1− min(a/a, b/b)

=
1 +M +m−Mm

1 +M

=
1 +M +m(1−M)

1 +M

≤ 1 +M +M(1−M)

1 +M
.

Inspecting the last function of unknown M between 0 and 1, we have that its
maximum is 4− 2

√
2 ≈ 1.18 and this maximum is reached for m = M =

√
2− 1,

or a/a = b/b = 1− √
2.

The case where b contains 0 in its interior and b < |b| is similar.
Case a < 0 < a < |a|. Again, in the case where b is either nonnegative or

nonpositive, a � b = a ∗ b. In the case b contains 0 in its interior and b > |b|,
then the definition of M and m must be adapted to ensure that they are both
less than 1:



186 H.D. Nguyen {
M = max(a/ |a| , |b| /b)
m = min(a/ |a| , |b| /b)

and the rest of the proof is very similar to the previous case.
Let’s now extend to the case of matrix multiplication. Each element of the

result matrix is computed by

Ci,j =
∑
k

A0
i,k ∗Bk,j +

∑
k

A∗
i,k ∗Bk,j

=
∑
k

(A0
i,k ∗Bk,j +A∗

i,k ∗Bk,j).

Since diam(a+ b) = diam(a) + diam(b), then

diam(Ci,j) = diam

(∑
k

(A0
i,k ∗Bk,j +A∗

i,k ∗Bk,j)

)
=
∑
k

diam(A0
i,k ∗Bk,j +A∗

i,k ∗Bk,j).

With the assumption of no rounding error, the over-estimation factor in the
worst case for this scalar product is 4− 2

√
2. Hence

diam(Ci,j) ≤ (4− 2
√
2) ∗

∑
k

diam(Ai,k ∗Bk,j)

≤ (4− 2
√
2) ∗ diam

(∑
k

Ai,k ∗Bk,j

)
⇒ diam(C) ≤ (4− 2

√
2) ∗ diam(A ∗B).

Hence, the over-estimation factor in the worst case of interval matrix product is
also 4− 2

√
2 ≈ 1.18.

6 Numerical Experiments

We implemented, in MatLab using the IntLab library [8], a function called igemm

following Proposition 2. The igemm function uses in total 9 floating-point matrix
products, along with some matrix operations of order O(n2) to manipulate data.
Hence, in theory, the factor in terms of execution time between igemm and a
floating-point matrix product is 9.

In practice, when the matrix dimension is small, the difference between oper-
ations of order O(n2) and operations of order O(n3) is small. That is not only
because the theoretical factor n is small, but also that operations of order O(n3)
better exploit memory locality and parallelism.
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Fig. 1. Performance of igemm

As shown on Figure 1, when the matrix dimension is small, i.e smaller than
100, the execution time of igemm with respect to a floating-point matrix mul-
tiplication, marked by the × symbol, is high. Nevertheless, when the matrix
dimension gets higher, this factor gets smaller and gets close to the theoretical
factor.

The same phenomenon can be observed with Rump’s algorithm, marked by
the + symbol.

7 Conclusion

The algorithm presented in this paper implements the product of interval matri-
ces using floating-point operations. It constitutes a trade-off between the perfor-
mances of optimized floating-point libraries, and a slight overestimation of the
result. We have proven that the width of computed result is always less than
1.18 times the width of exact result. In particular, if one of the two multipliers
does not contain zero in its interior then the computed result is exact using exact
arithmetic.

The performance of the algorithm given above relies entirely on the perfor-
mance of the employed floating-point library. Such a library must support di-
rected rounding modes to be of use. This requirement is not really an issue,
since libraries such as LAPACK [1] or ATLAS [11], which are renowned for their
performances, support directed roundings.

However, the use of directed rounding modes restricts the algorithm that
can be used as a basic algorithm to implement the natural formula. Indeed, fast
algorithms for matrix products [2], which have a complexity below O(n3), do not
preserve the monotonicity of operations in finite precision (they use substraction
as well as addition and multiplication) and they cannot be used. Furthermore,
fast algorithms rely on algebraic properties such as (x + y) − y = x, which do
not hold in interval arithmetic.
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Abstract. The analysis of high energy physics experiment data is a
good example for the need of real-time access and processing of large
data sets. In this contribution we introduce the basic concepts and im-
plementations of high energy data analysis on the example of the LHCb
experiment at the LHC collider. Already now, but even more once run-
ning under nominal conditions it will produce unprecedented amounts of
data for years. The contribution will also discuss the potential of parts
of the existing implementations to be used in the analysis middleware
for future dedicated projects on fast distributed analysis frameworks for
LHC data.

Keywords: Particle physics, real-time access, large data sets.

1 Introduction

The analysis of high energy physics experiment data is a good example for the
need of real-time access and processing of large data sets (see, e.g., [1,2,3]). In
this contribution we introduce the basic concepts of high energy physics data
analysis on the example of the LHCb (LHC beauty) experiment [4]. LHCb is one
of the four major experiments at the proton–proton collider LHC (Large Hadron
Collider) at CERN near Geneva. It is build for precise measurements of CP
violation [5] and rare decays. CP is the symmetry under parity transformation
(P ) followed by the charge conjugation transformation (C). About 730 physicists
from 54 institutes are involved. The LHC started in late 2009 and is about
to produce unprecedented amounts of data for the next years. LHCb alone is
recording data with a rate in the order of 1 PB per year. This contribution
will also discuss the software implementations used by LHCb and show why the
existing solution does not satisfy all the physicist’s needs. It is aimed at scientists
of other fields, especially computer science. The reader is introduced to the state
of the art of the existing solutions and learns about its shortcomings, helping
him to participate in generating new solutions.

The remainder of this contribution is structured as follows. Chapter 2 de-
scribes how high energy physics data is taken and processed in modern experi-
ments on the example of LHCb. Chapter 3 describes the current LHCb analysis
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software including hardware and software requirements. This is followed by com-
ments on the relevance for a system for real-time access processing of large data
sets in Chapter 4. The contribution closes with a summary and conclusions in
Chapter 5.

2 High Energy Physics Experiment Data

For technical reasons, the proton beams in the LHC are not continuous but
broken up into packages of protons, so called bunches. An event is then called
the data collected corresponding to one crossing of bunches in the detector. In
such a bunch crossing only a few out of the O(1011) protons collide. The read
out of the detector for each event has to be triggered by hardware, called the
level zero trigger. There are different triggers, including higher level (software)
triggers, with different possible trigger conditions. The data at this stage is the
so called raw data that is read out of the detector.

After the data is taken, it is processed in a so called reconstruction process in
which single pieces of raw data are combined to more physical objects. As most
high energy physics detectors, LHCb consists of different types of detectors as
can be seen in a schematic view in Figure 1. For instance, the so called tracking
detectors are position sensitive detectors for charged particles. The detection of
a passage of such a particle is called a hit. These hits are combined into so called
tracks, describing the trace of a charged particle in the detector as visualized
in Figure 2. Note that a track is more than pure positional information, as it
contains also, e.g., the momentum of the particle obtained from the curvature
of the charged particle’s trajectory in the magnetic field of the experiment’s
magnet.

The data is organized in events, i.e., the data corresponding to the same colli-
sion of proton bunches. Since the computer resources are limited, the physicists
doing the analyses – of which there are several hundreds – can not have ac-
cess to the full data set. Instead, in a centralized so called stripping process, a
small subset of events suitable for further analysis is selected. The same proce-
dure also categorizes the events into possible different physical processes, the so
called stripping lines. The stripping is done about once every three months.

This needed (due to limited computing resources) but mostly unwanted fil-
tering has some disadvantages as the physicists do not have direct access to the
data. Firstly to define and check the selection criteria of the stripping, only a
small amount of unfiltered data can be used. This can cause some bias or ineffi-
ciency or even lead to very rare but interesting events being missed altogether.
Secondly the correction of bugs found after a stripping or missed deadlines for
code submission can only be corrected for the next stripping which is done a few
times per year. And lastly high statistics measurements that use more than a
small fraction of all the events are not possible. These are the reasons why real
time access and processing of the whole data set would be a great advantage.

After the reconstruction and stripping steps, the data is written to files in
the so called DST format and made public within LHCb via the grid (see, e.g.,
[7,8]). These files are the ones used for physics analysis.
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Fig. 1. A schematic few of the LHCb detector [6]. The proton beams are inside a
evacuated pipe that is depicted here going from left to right through the whole detector.
The point where the proton bunches cross, i.e., where the protons collide, is at the very
left of this view inside what is called Vertex Locator. The tracking detector stations
are labeled TT, T1, T2 and T3.

Magnet Magnet

Fig. 2. Symbolic visualization of the reconstruction of tracks from hits. The blue areas
represent the tracking detectors with the red and brown crosses as the hit positions.
The volume containing the magnetic field is indicated in green. On the left the hits are
shown only while on the right the red line marks the line fit to some of the hits, i.e., a
track. Note that the track is bend in the magnetic field (as charged particle trajectories
are) from which the momentum of the particle can be deduced.
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The grid is organized in tiers, where CERN is Tier-0 (see Figure 3). There
are 6 Tier-1s major computing centers in different countries. Tier-2s are local
computer cluster at institutes. The output files of the stripping are distributed
to CERN and the Tier-1s, while the Tier-2s are mainly used for Monte-Carlo
simulation production. Sending a job to the grid means sending a compiled li-
brary to one of the computing centers where the data in need is stored. For
LHCb the software for distributed analysis is called DIRAC [9,10], while the user
front-end is ganga [11,12]. DIRAC stands for Distributed Infrastructure with Re-
mote Agent Control. It is based on the pilot job technique to ensure fitting local
environments and load balancing. Ganga is the front-end for job definition and
management, implemented in Python. It was developed to be used as a user
interface to the grid for ATLAS and LHCb and allows easy switching between
testing on the host machine, running on a local batch system and running on
grid resources.

Fig. 3. The tier structure of the grid

3 The LHCb Analysis Software Framework

The LHCb software [13] is based on the open gaudi framework [15,16]. This
framework is providing interfaces and services necessary for building high en-
ergy physics experiment frameworks for event data processing applications. It
is experiment independent and used by different ones like ATLAS and LHCb.
The LHCb software contains the DaVinci package [17] which is a framework
adapted to the specific needs of LHCb analyses. It interfaces and uses the ROOT
software [18,19] which is the standard framework for statistical analysis and
visualization in high energy physics. DaVinci allows the user to access the in-
formation stored in the DST files and, for example, perform the analysis of a
particular decay mode. Here the first step usually is a selection of candidates of
the specific decay, i.e., a set of tracks that could stem from the decay of a particle
of interest and the properties of which are being studied. At this level, the data
organization usually changes from event based to candidate based. The output
typically consists of (ROOT) histograms or (ROOT) n-tuples. Histograms are used
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as estimators for the probability density function of characteristics, such as the
momentum distribution, of all selected candidates. N-tuples on the other hand
contain the candidates as list of variable – value pairs.

There are different ways the user can use DaVinci. One is by writing C++
code and compiling it as a library using the DaVinci framework. This library is
then linked into the DaVinci framework. There is the possibility to use python
scripts, to control the analysis (i.e., setting parameters). There are also built-in
tools that can be called from the same python script, so that a typical analysis
becomes a hybrid between C++ and python code. Since there are many default
tools ready to be used even some analyses without any user-written C++ code
can be done.

A large step towards python is the GaudiPython project [20]. Using this soft-
ware it is possible to access all the ROOT classes directly, i.e., like in C++,
including calling methods. In contrast to above, this is also done on full event
and candidate level. In addition there is the software package bender [21,22],
adding to GaudiPython the possibility to add your own classes in python, which
makes a purely python analysis as flexible as a C++ based one, although with
some loss in performance.

3.1 Hard- and Software Requirements

Here we give some information on the hardware and operating system require-
ments for the LHCb software any project on real-time access and processing of
large data sets that aims at using LHCb data needs. The operating system in
need is Linux SLC5 (64 bit) with compiler gcc 4.3.x (alternatively Linux SLC4
32/64 bit, gcc 3.4.x). Depending on the exact installation and the number of al-
ternative versions of the different projects, the LHCb software needs O(10 GB)
on hard disk. For distributing this software to all nodes of a real-time access
and processing of large data sets project, one would compress the software. In
an example of a 3 GB installation the produced bzip2 file had a size of 552 MB.

The memory requirements for an analysis job is about 2 GB. Typical analysis
times are O(10 ms) per event, where an event has about 100 kB on average. But
note that there are very different kinds of analyses so that the processing time
can change dramatically between them.

4 Relevance for Projects on Fast Distributed Analysis
Frameworks

As described above, using GaudiPython or bender, it is possible to do a complete
LHCb analysis in python. An analysis that is purely written in a script language
like python is of course an ideal candidate for being used in massively distributed
analyses when the shipping of the whole analysis code from the computer of the
user to all the worker nodes becomes prohibited by bandwidth. This will prob-
ably be the case in forthcoming projects dedicated to fast distributed analysis
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frameworks for LHC data. Thus one approach to the analysis framework of such
a project could involve using these software frameworks and restricting analysis
to be done in python only.

5 Summary and Conclusion

We have described the LHCb data analysis as an example for a typical high
energy physics experiment. We have shown that this is an example for the need
of a system for real-time access and processing of large data sets. The analysis
chain in LHCb has been described, including the needed, but unwanted filtering
step (stripping), which leads to the desire for such a system. There are some
software implementations already in the LHCb software, with potential for use
in dedicated future distributed analysis systems. These allow the physicist to do
his analysis purely in the script language python which would be an advantage
for a distributed system compared to shipping a large compiled code or library.
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Abstract. The Random Access, Visualization and Exploration Network
(RAVEN) aims to allow for the storage, analysis and visualisation of
peta-bytes of scientific data in (near) real-time. In essence, RAVEN is a
huge distributed and parallel system.

While testing of distributed systems, such as huge telecommunica-
tion systems, is well understood and performed systematically, testing of
parallel systems, in particular high-performance computing, is currently
lagging behind and is mainly based on ad-hoc approaches.

This paper surveys the state of the art of software testing and inves-
tigates challenges of testing a distributed and parallel high-performance
RAVEN system. While using the standardised Testing and Test Control
Notation (TTCN-3) looks promising for testing networking and commu-
nication aspects of RAVEN, testing the visualisation and analysis aspects
of RAVEN may open new frontiers.

Keywords: Testing, Distributed Systems, Parallel Systems, High-Per-
formance Computing, TTCN-3.

1 Introduction

The RAVEN project aims to address the problem of the analysis and visuali-
sation of inhomogeneous data as exemplified by the analysis of data recorded
by a Large Hadron Colider (LHC) experiment at the European Organization
for Nuclear Research (CERN). A novel distributed analysis infrastructure shall
be developed which is scalable to allow (near) real-time random access and in-
teraction with peta-bytes of data. The proposed hardware basis is a network of
intelligent Computing, data Storage and Routing (CSR) units based on standard
PC hardware. At the software level the project would develop efficient protocols
for data distribution and information collection upon such a network, together
with a middleware layer for data processing, client applications for data visual-
isation and an interface for the management of the system [1].

Testing of distributed systems, for example huge telecommunication systems,
is mature and performed rigorously and systematically based on standards [2].
In contrast, a literature study on testing of parallel computing systems, such
as high-performance cluster computing, reveals that testing is lagging behind
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in this domain. However, as computing clusters are just a special kind of dis-
tributed systems1, it seems worthwhile to apply the industry-proven mature test-
ing methods for distributed systems also for testing software of parallel systems.
The future RAVEN system is an example for such a parallel system. As testing
and testability should already be considered when designing a system [3], this
paper investigates the state of the art and the challenges of testing a distributed
and parallel high-performance RAVEN system, even though RAVEN is still at
it’s initial state of gathering requirements and neither a testable implementation
nor a design is available, yet.

This paper is structured as follows: Subsequent to this introduction, Section 2
provides as foundation an overview on the state of the art of software testing.
Section 3 gives a glimpse of the standardised Testing and Test Control Nota-
tion (TTCN-3) which is suitable for testing distributed systems. As the main
contribution, this paper discusses, in Section 4, the challenges of testing RAVEN.
Final conclusions are drawn in Section 5.

2 An Overview on Software Testing

Software testing is the most important means to give confidence that a system
implementation meets its requirements with respect to functional and real-time
behaviour. Even though testing is expensive2, it pays off as it is able to reveal
defects early and thus prevents them from manifesting during productive use.

In his seminal textbook on software testing [4], G. Myers defines testing as
“[. . . ] the process of executing a program with the intent of finding errors”. How-
ever, software testing is no formal proof. Hence, E.W. Dijkstra remarked that
testing can be used to show the presence of bugs, but never to show their ab-
sence [5].

While Myers refers in his above definition to a program which is tested, a more
general term for the object of test is item under test. The item might range from a
single software component (unit test) to a whole software system3 (system test –
the item under test is here typically called system under test (SUT)) via a com-
posed set of components (integration test). The possible levels (sometimes called
scopes) of testing are just one dimension of testing as shown in Fig. 1. The second
dimension refers to the goal or type of testing: structural testing has the goal to
cover the internal structure of an item under test, for example, the branches of
control flow. To achieve this, knowledge of the internal structure (for example,
conditional statements) is required (glass-box test [4]). The goal of functional
testing is to assess an item under test with respect to the functionality it should
fulfil with respect to it’s specification disregarding internal implementation de-
tails (black-box test [6]). Non-functional testing aims at checking the fulfillment

1 The main difference between distributed systems and parallel systems is probably
that distributed systems focus on communication, whereas parallel system focus on
computation.

2 Up to 50% of the overall software development costs are incurred in testing [4].
3 This can be even a large distributed or parallel system.
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Fig. 1. Dimensions of testing

of non-functional requirements. A variety of different non-functional properties
exist, for example, performance with respect to real-time requirements, scalabil-
ity, security, or usability. The third dimension of testing comes from the fact that
the tester (or test system as it is often called) may be distributed (that is: the test
runs on multiple nodes) or local (that is: the test runs on just one single node).
In particular if the item under test itself is distributed, a distributed tester may
ease testing or enable certain tests in the first place. The three dimensions are
independent from each other, thus the different test types can be performed at
all levels and in a local or distributed fashion.

Testing, in particular functional testing, is typically performed by sending
a stimulus (for example, a function call, a network message, or an input via a
user interface) to the item under test and observing the response (for example, a
return value, a network reply message or an output at the user interface). Based
on the observation, a test verdict (for example, pass or fail) is assigned. Testing
may be performed manually by running the item under test, providing input and
observing the output. Distributed tests, that require co-ordinated test actions,
and also real-time performance tests are preferably automated.

Due to the composition and interaction of components, testing at different
levels is likely to reveal different defects [7,8]. Hence, testing at just one level is
not considered sufficient, but performed at all levels. To reveal defects as soon
as possible, a component is unit tested as soon as it is implemented. In case of
a class, for example, a unit test would aim at covering all methods. Once mul-
tiple components are integrated, they are subject to integration testing. Here,
a test would aim at covering the interface between the integrated components.
Once the whole system is completed, a system test is performed. In this case, us-
age scenarios would be covered. All these tests are typically performed within an
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artificial test environment, often at special test lab. However, a special kind
of system test is the acceptance test that is performed in the final productive
environment.

Testing in artificial test environments allows test on single or integrated com-
ponents to be performed in isolation by replacing components on which the item
under test depends by special test components. This allows for better control of
the item under test and makes sure that really the item under test is tested and
not implicitly any of the other components. A layered architecture of a network
protocol stack shall serve as an example for this technique: At the system test
level, all the involved components (network layer and higher layers 1 and 2 of
the protocol stack on both sides) are tested (Fig. 2). At the unit test level, a
single unit (such as a class of an object-oriented implementation or an imple-
mentation of a network protocol layer as in the example in Fig. 3(a)) is tested.
As shown in Fig. 3(a), the environment of that unit under test is replaced by a
test environment consisting of test components that act at the interfaces of the
unit under test. In practice, this ideal approach may not be possible (or is too
expensive): in a layered architecture, higher layers may have hard-coded depen-
dencies on lower layers (thus the lower layer cannot be replaced) or the lower
layers provide quite complex functionality that cannot easily be replaced by a
test component. The ISO/IEC standard 9646 Conformance Testing Methodology
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and Framework (CTMF) [2] suggests to circumvent this problem by testing first
the lowest layer in an isolated unit test. Then, the next layer is tested together
with the already tested underlying layer (Fig. 3(b)) and so on. As a result of this
incremental approach, each layer (or unit) can be tested separately (assuming
that the lower layers have been adequately tested) even if the ideal approach is
not possible for pragmatic reasons.

3 Distributed Testing with TTCN-3

The Testing and Test Control Notation (TTCN-3) [9] is a language for specifying
and implementing software tests and automating their execution. Due to the fact
that TTCN-3 is standardised by the European Telecommunications Standards
Institute (ETSI) and the International Telecommunication Union (ITU), several
commercial tools and in-house solutions support editing test suites and compiling
them into executable code. A vendor lock-in is avoided in contrast to other
existing proprietary test solutions. Furthermore, tools allow to execute the tests,
to manage the process of test execution, and to analyse the test results.

While TTCN-3 has its roots in functional black-box testing of telecommu-
nication systems, it is nowadays also used for testing in other domains such as
Internet protocols, automotive, aerospace, service-oriented architectures, or med-
ical systems. TTCN-3 is not only applicable for specifying, implementing and
executing functional tests, but also for other types of tests such as real-time per-
formance, scalability, robustness, or stress tests of huge systems. Furthermore,
all levels of testing are supported.

TTCN-3 has the look and feel of a typical general purpose programming lan-
guage. Most of the concepts of general purpose programming languages can be
found in TTCN-3 as well, for example, data types, variables, functions, param-
eters, visibility scopes, loops, and conditional statements. In addition, test and
distribution related concepts are available to ease the specification of distributed
tests.

As TTCN-3 is intended for black-box testing, testing a system under test
(SUT)4 takes place by sending a stimulus to the SUT and observing the re-
sponse. In TTCN-3, communication with the SUT may be message-based (as,
for example, in communication via low-level network messages) or procedure-
based (as, for example, in communication via high-level procedure or method
calls). Based on the observed responses, a TTCN-3 test case can decide whether
an SUT has passed or failed a test.

In practise, testing a distributed system often requires that the test system
itself is distributed as stimuli and observations need to be performed at different
nodes. In contrast to other test solutions, TTCN-3 supports distributed test-
ing – not only the SUT may be distributed or parallel, but also the test itself
may consist of several test components that execute test behaviour in parallel.

4 Or any other test item depending on the test level.
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The parallel test components may even communicate with each other to co-
ordinate their actions or to come to a common test verdict. Figure 4 shows an
example of a distributed TTCN-3 test system.

TTCN-3 test cases are abstract, this, for example, means they do not care on
which concrete nodes the parallel test components are distributed. It is therefore
the responsibility of the TTCN-3 test execution tool to perform the mapping of
the abstract distributed test onto a concrete distributed test environment [10].
Thus, the abstract TTCN-3 test cases can be re-used in different distributed
environments.

TTCN-3 and it’s predecessors TTCN and TTCN-2 have been successfully ap-
plied by industry and standardisation for testing huge distributed systems (such
as the GSM, 3G, and 3G LTE mobile telecommunication systems). In addition
to pure functional tests, TTCN-3 has also been used for performance and load
tests that involve testing millions of subscribers [11]. While these applications of
TTCN-3 were mainly in the domain of testing “classical” distributed systems,
only one work is known where TTCN-3 is used in the domain of “classical” paral-
lel systems: Rings, Neukirchen, and Grabowski [12] investigate the applicability
of TTCN-3 in the domain of Grid computing, in particular testing workflows of
Grid applications.

More detailed information on TTCN-3 can be found in the TTCN-3 stan-
dard [9], in an introductory article [13], in a textbook [14], and on the official
TTCN-3 website [15].

4 Testing RAVEN

The intended overall architecture of RAVEN is depicted in Fig. 5(a): the Com-
puting, data Storage and Routing (CSR) nodes are connected via an underlying
network. High-level data analyses are co-ordinated by an analysis layer that dis-
tributes the work load to the individual CSR nodes where the respective data to
be analysed resides. The analysis results are then visualised by a corresponding
visualisation layer that also provides the general graphical user interface. In ad-
dition, to support analysis by the human eye, a direct visualisation of the data
is possible. To this aim, the visualisation layer accesses directly the CSR nodes.

For testing at the different test levels, the approaches described in Section 2
can be applied: In accordance to Fig. 3(b), Fig. 5(b) depicts how to perform a
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Fig. 5. RAVEN and different test levels

unit test of a CSR node. An integration test of a CSR node and the analysis
component that have been integrated together is shown Fig. 5(c). For the system
(and acceptance) test, the whole system is covered using representative usage
scenarios, however the system under test is interfaced via the user interface only
as depicted in Fig. 5(d).

Functional testing of RAVEN should be performed at all test levels. For
functional testing of the networking and communication aspects, the proven
TTCN-3-based standard approach from protocol testing for telecommunication
and network systems [2] is applicable including distributed testing. For testing
the user interface and visualisation aspects, the standard capture/replay testing
approach5 may not work here as RAVEN aims at providing completely new, yet
unknown kinds of graphical user interfaces that are not supported by current
capture/replay tools. However, testing of the user interface parts that are based
on standard user interface technology should be possible. Testing of the analysis
aspect should be feasible as long as small “toy” examples are used, where the
result is known in advance.

4.1 Challenges of Testing RAVEN

While functional testing of RAVEN seems to be feasible as described above,
the non-functional test types (performance test, scalability test, load test) that
seem to be crucial for a system such as RAVEN that aims at providing (near)
real-time responses and scalability can be expected to be a challenge. While

5 In capture/replay testing, a correct interaction with the system under test via the
user interface is recorded ( user inputs as well as resulting system outputs). For
testing, the recorded user inputs are replayed and the resulting actual system outputs
are compared against the expected recorded system outputs.



Taming the RAVEN 203

these tests may be possible at unit level, performance results from unit level
may not be extrapolated to the system level as, for example, scalability at unit
level does not imply scalability of the system as a whole due to management and
communication overheads. Thus, the non-functional tests need to be performed
at the system level. However, for system level testing of a system of this size,
probe effects [16] may occur at the software (and hardware) scale: by observing
(= testing) a system, we unavoidably influence it. For example, the communi-
cation overhead to co-ordinate distributed test components reduces the network
capacity that is available for the RAVEN system that is being tested. Similarly,
the actual observation requires CPU time that is lacking in the RAVEN system
under test.

A further challenge is how to test analysis algorithms working on peta-bytes
of test data. Comparison of the observed output with an the expected output
may be difficult if the expected output is not known in advance as it can only
be calculated by the analysis algorithm under test itself6. Furthermore, these
peta-bytes of test data need to be generated and stored. However, as RAVEN
itself will be challenged by storing and processing peta-bytes of data, the test
environment will be challenged as well to manage the test data. Thus, testing
of RAVEN will only be possible to a certain limit within an artificial test en-
vironment. RAVEN will require a huge amount of hardware and it will not be
economically feasible to use a comparable amount of hardware just for setting up
an artificial test environment. This fact inevitably results in the conclusion that
performance and scalability beyond a certain size will only testable by productive
use in the real environment. As such, a system test within a test environment
will not possible. Instead, RAVEN can only be tested immediately in it’s real
hardware environment – that is, only acceptance testing will be possible7. How-
ever, performance and scalability assessments of RAVEN beyond a certain size
may be evaluated by simulation or analytical techniques based on performance
models [18,19].

5 Conclusions

We have considered the state of the art in software testing and at the distributed
test language TTCN-3, and we investigated possibilities and challenges of testing
a RAVEN system.

It seems that the state of the art in software testing is in principle mostly
mature enough for testing a RAVEN system. However, it is the fact that the
large scale of RAVEN itself opens new frontiers that poses problems. As a result,
a true system test in an artificial test environment will not be possible because

6 This is a current research topic, see for example the “First International Workshop
on Software Test Output Validation” 2010.

7 The approach taken by others (for example the Apache Hadoop project for processing
huge data sets [17]) confirms this: only small tests are performed in an artificial test
environment – “big” tests (performance and scalability) involving huge amounts of
data are essentially productive-use tests.
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beyond a certain limit (in terms of size and complexity), only acceptance testing
in the final environment will be possible. To some extent, the problems to be
expected concerning the test of RAVEN are unavoidable due to testing overheads
and probing effects on the software, hardware and network scale. The challenges
of testing RAVEN should not lead to the conclusion to perform no testing at all,
but to the contrary: to test where possible.

TTCN-3 is a test language that has concepts for testing distributed and paral-
lel systems, mainly by supporting distributed testing based on concurrently run-
ning parallel test components. While these concepts are successfully applied for
testing distributed systems, there is a striking lack of applying them for testing
parallel systems. One reason might be that most software in parallel computing
is from the domain of scientific computing. Typically, this software is written by
the scientists themselves who are experts in their scientific domain, but typically
not experts in software engineering thus lacking a background in software test-
ing. Another reason is probably that distributed systems and testing them has
a strong focus on message exchange and communication, while in parallel sys-
tems this is only a minor aspect as the main focus is on computation. However,
both kinds of systems can be considered as similar when it comes to black-box
testing them; thus, TTCN-3 should be applicable for testing software of parallel
systems as well as it is for testing software of distributed systems. However, it
still needs to be investigated whether a generic test solution like TTCN-3 (and
the implementing TTCN-3 tools) is sufficient and in particular efficient enough,
or if specifically tailored and hand tuned test solutions are required.

Finally, as RAVEN aims at not being just deployable on a single cluster, but
to extend to external computing and storage resources in the Internet such as
cloud computing, a research project has just been started by the author that
investigates testability issues in cloud computing environments.
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Abstract. The analysis and visualization of the LHC data is a good
example of human interaction with petabytes of inhomogeneous data.
After outlining the computational requirements for an efficient analysis
of such data sets, a proposal, RAVEN – a Random Access, Visualization
and Exploration Network for petabyte sized data sets, for a scalable
architecture meeting these demands is presented. The proposed hardware
basis is a network of ”CSR”-units based on off-the-shelf components,
which combine Computing, data Storage and Routing functionalities.
At the software level efficient protocols for broadcasting information,
data distribution and information collection are required, together with
a middleware layer for data processing.

Keywords: LHC, Particle Physics, RAVEN, data analysis, CSR-unit.

1 Introduction

In particle physics the basic units which make up a data set are so-called
“events”. In former times an event did correspond to a photograph showing
the interaction of a high energy particle with an atomic nucleus in a bubble
chamber, at the LHC [1] it is the information recorded from a single bunch
crossing of the two proton beams. A bubble chamber photograph is shown in
Fig.1.

The bubble chamber is a detector device which allows to collect and to display
the full information about a high energy particle physics interaction in a very
intuitive form. Its main drawback is that it can only record events at a rate of a
few Hz, which renders it unsuitable to look for really rare types of interactions.
As a consequence, over the last 30 years they have been replaced by electronic
detectors which nowadays are able to scrutinize high energy interactions with
rates up to 40 MHz and to store information from potentially interesting events
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Fig. 1. Bubble chamber photograph of a high energy collision between elementary
particles. Secondary particles are created from the available energy and travel before
they decay or induce secondary interactions. The information about the reaction is
contained in the momentum vectors of the final state particles, their charges and the
points (vertices) of interactions. (Photo by CERN).

with a few kHz. For example at LHCb [2], one of the four large LHC experiments
at CERN, the typical amount of information corresponds to 50 kB per event and
events can be stored with a rate of 2 kHz. With an expected number of 2× 1010

events per year, the annual data volume amounts to O(1) PB.
Individual events are reconstructed by means of sophisticated numerical algo-

rithms. Those start from the raw information collected by the, depending on the
specific experiment, 1 - 200 million readout channels of the detector. From those
they extract the equivalent information one would have from a bubble chamber
photograph, i.e. particle trajectories, vertices, decay chains etc. An example how
the information from a modern electronic detector can be visualized is shown in
Fig.2.

The final analysis of the reconstructed data is conceptually simple in the sense
that all events are equivalent, i.e. at the event-level it parallelizes trivially. Also
the information content of a single event has a relatively simple structure, con-
sisting of lists of instances of a few basic elements such as “tracks” or “vertices”
which contain the measured information about the final state particles created
in a high energy collision. Different events will differ in the number of those
objects and the relations between them.

In contrast to analysis tasks in other branches science where the main prob-
lem is accessing the relevant data items, data analysis in particle physics is
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Fig. 2. Visualization of an interaction recorded by the LHCb experiment. Information
from electronically read out detectors is used to reconstruct trajectories of particles
created in a high-energy proton-proton collision. The computer generated image shows
a zoom to the region of the primary vertex where two protons from the counter-rotating
beams did collide. In a addition to a large number of particle created at the primary
vertex, the reconstruction also shows the decay of a so-called B-meson which after
creation at the primary vertex travels a few millimeters before decaying into three
longer lived final state particles (K+, μ+, μ−).

completely dominated by the processing of the event information. Compared to
the processing step reading and decoding the data usually requires negligible
CPU resources. To illustrate this, consider the problem of finding for example
decays of so-called D0-mesons into a pair of final state particles in LHCb. Find-
ing such decays in an event requires checking all combinations of two tracks and
to decide whether or not this pair is consistent with coming from a D0-decay. In
LHCb one has to check on average 73 combinations per event, with each single
check requiring up to hundreds of floating point operations. In addition, D0 de-
cays into two final state particles, though still frequent compared to many other
decay channels of interest, are already rather rare. Only about 1 percent of all
events contains a D0, and only about 4 percent of those decay into the specific
two-particle final state. Already for this “easy” example the data analysis has to
cope with a situation where the background is about 200,000 times larger that
the signal.

The basic mode of data analysis in particle physics is characterized by two
steps. In the first step the data set is scrutinized for events containing a specific
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signature. Events with this signature then are analyzed in detail, either by ex-
tracting some characteristic information or by iterating the selection process
with additional criteria.

It is evident that depending on the selection criteria the size of the event
sample used in a specific analysis can vary by many orders of magnitude. On
the other hand, the maximum communication bandwidth available to return
information back to the user will essentially by fixed, i.e. the interaction between
user and the full data set must be such that the network traffic stays below a
certain limit.

The quantities of interest in a typical particle physics analysis are probabilities
or probability density functions for a certain process or configuration to occur.
Numerical estimates are obtained by means of histograms, i.e. simple counters
for how often a certain condition is observed. The analysis framework thus must
be able to handle this kind of cumulative information, which even for very large
event samples reduces to a limited set of numbers.

In addition to cumulative information from many or even all events, the sys-
tem must be able to transmit some or all information from a few selected events.
This is of particular relevance for very rare types for final states, such as for ex-
ample events with a candidate Higgs decay or other exotic processes and which
require an in depth analysis of single events.

The combination of the two access modes becomes particularly relevant in the
context of interactive searches for special event types starting from the full data
set. Here powerful visualization tools and user interfaces are required, which
provide an intuitive representation of the properties of the event set, together
with the possibility of interactive select-and-zoom schemes to focus on certain
candidates.

2 Computing Requirements

During the construction of the CERN Large Hadron Collider (LHC) it was re-
alized that the analysis of the data produced by the LHC experiments requires
a computing infrastructure which at the time went beyond the capabilities of a
single computing center, and which since then has been built up in the frame-
work of the Worldwide LHC Computing Grid (WLCG) [3,4,5]. The design of the
WLGC was driven by the requirement to allow a sharing of the effort between
many partners and the ability to cope with future increases of the computing
demands.

Despite the fact that many new concepts regarding data distribution and
sharing of computing load have been implemented, the computing models for
the analysis of the LHC data (see e.g. [6]) are still very close to the approach by
earlier generation particle physics experiments. They focus on filtering the huge
initial data sets to small samples relevant for particular physics question, which
then are handled locally by the physicist doing the analysis.

While making efficient use of limited resources, this scheme has some obvious
shortcomings.
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– At a given time direct access is possible to only a small fraction of the total
event sample. This reduced sample also has to serve to define and check the
selection criteria for the selection jobs. As a consequence the selection may
be biased or inefficient.

– The time constant for full access to the data is given by the frequency of the
selection runs which go through the complete data set. Programming errors
or missed deadlines for code submission can easily result in serious delays
for the affected analyses.

– High statistics measurements, i.e. analysis which use information from more
than a small fraction of all events, are not feasible. The same holds for finding
exceptional rare events which are not caught by selection criteria based on
prior expectations.

What is needed is a framework which allows random access on petabyte-
size datasets. It should have a scalable architecture which allows to go to real
time information retrieval from the entire data set. The initial use case of this
infrastructure will be faster and more efficient access to the data for classical
analysis scenarios. Beyond that, however, also novel ways of interacting with the
data and new ways of data visualization will evolve.

3 Design Aspects

The requirements outlined above suggest a design similar to that of a biological
brain: a dense network of many “simple” nodes combining data storage, pro-
cessing and the routing of information flow. For the use case of particle physics,
each node would store a small fraction of the total event sample, have the possi-
bility to run an analysis task on those events and route information back to the
user having submitted the analysis query. In the following these nodes will be
referred to as Computing-Storage-Routing (CSR) units, which at the hardware
level are standard commodity CPUs. With an appropriate middleware-layer a
network of such CSR-units will then constitute a RAVEN system: a Random
Access, Visualization and Exploration Network for petabyte sized data sets.

The key feature which guarantees exact scalability is a peer-to-peer archi-
tecture [7] where every node is able to perform every functionality required by
the system. This departs significantly from the current Grid installation which
is built around a system of services that are associated with distinct units,
such as for example “worker nodes”, “storage elements” or “work-load man-
agement systems”. While the current Grid-approach is natural in the sense that
different functionalities are identified and implemented separately, it results in
a rather complex infrastructure with corresponding requirements in terms of
maintenance. The RAVEN approach, in contrast, aims at defining a protocol or
rule-set which allows the system to organize itself.

Another important aspect of RAVEN is redundant and possibly also encrypted
data storage. While encryption should simply ensure the confidentiality of the
data also in case that public computing resources are used, redundant storage
assures that the entire data set can still be processed even if some nodes become
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Node 1 Node 2

data set A

data set B

data set A

data set B

Fig. 3. Simple of example of redundant data storage on two nodes. If both nodes are
present, the analysis starts in parallel on different subsets. Node 1 will start on data
set A, node 2 will start with B. If one node is unavailable, either because it’s down or
busy with another task, then the other node will process the entire data set.

unavailable. A simple sketch how duplication of data between two nodes can serve
these purposes is shown in Fig. 3. Although encryption adds to the computing
costs, typical applications in particle physics analysis are such that the decoding
step only adds a small overhead to the actual analysis.

For a particular analysis or visualization task, instructions would be broadcast
to all CPUs. These instructions will then be executed on the local event samples,
and the information retrieved from those events routed back to the user.

As discussed before, with respect to the information that is returned one has
to distinguish between cumulative data, and per-event data. Since all data have
to go back to a single node, per-event data should either be of only limited
volume per event or should be transmitted for only a subset of all events. Cu-
mulative data on the other hand, such as histograms, flowing back through the
network can be accumulated on-the-fly such that the total amount of informa-
tion transmitted over the network stays small even for very large event samples.
Figure 4 illustrates the case.

4 Implementation Aspects

A central feature of the design of a RAVEN system is its scalability, which almost
automatically comes from the fact the different events are independent and thus
can be spread over as many CSR-units as are available. Scalability allows to
develop RAVEN on a small test system and later expand the working system to
the size required for a particular application, possibly also taking advantage of
cloud-computing infrastructures.

A particular implementation dealing with 1 PB of data spread over 105 CSR-
units would correspond to 10 GB per node. Assuming a processing speed of
10 MB/s, which seems possible today, the data set could be processed within
a quarter of an hour. A test system should typically have one percent of the
capacity of the 1 PB system.
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One problem that has to be addressed for RAVEN is the creation of ad-hoc
routing and communication topologies for a given analysis query to be used both
to distribute the query to all nodes and to collect the results of the analysis.
Here a big challenge arises from the fact that logically certain next-neighbor
topologies may be required which then have to be mapped to actual routing
schemes by taking into account the existing hardware capabilities and the data
flow that needs to be handled. Furthermore, since many analyses will only access
subsets of the full data set, the system should be able to process multiple queries
simultaneously.

Another issue is the distribution of data, analysis code and actual query of a
specific analysis. One big challenge is the distribution of the full data set. Here
different data items have to go to different nodes, which in view of the total data
volume that has to be distributed is a non-trivial task. Uniform distribution
can be achieved by some hashing scheme, where a hash-code of every event or
file determines on which node it will be stored and analyzed [8]. If the RAVEN
system is able to autonomously distribute the address-space spanned by the hash
code among its members, then an event entering the system via any node can
be routed to its proper destination. It is also easy to check whether a particular
event is already stored on the system. The data distribution scheme also should
take care of the redundant storage scheme. Finally, the RAVEN system must be
able to automatically detect new CSR-units joining the system and to migrate
part of the data to the new resources.

Apart from data distribution also bookkeeping of available data has to be
addressed. Although particle physics analyses can be performed on subsets of the
total event sample, a proper interpretation of the results requires the knowledge
about the actual events that have been processed. Even if the redundancy built
into the system will normally guarantee access to the full data set, a monitoring
of which events contribute to a particular result has to be foreseen.

While the distribution of the full data set will happen only rarely, updates
of the analysis code will be more frequent, though still rare compared to anal-
ysis queries. The latter two can be distributed via a broadcast mechanism. The
splitting into analysis code and query is motivated by the goal to minimize the
network traffic. Instead of distributing the full analysis code, which for a typical
LHC experiments amounts to O(1) GB, with each query, a layered (“middle-
ware”) approach suggests itself. Here the (in general machine dependent) anal-
ysis code forms a software layer on top of the operating system. This “analysis
middleware” then provides a machine independent high level language to per-
form the actual physics analysis.

While the mapping of the classical analysis models based on histograms or n-
tuples on a RAVEN infrastructure is relatively straightforward, the system calls
for novel approaches to exploit its real-time capabilities in new visualization
tools for the interaction of a human being with petabytes of data.

The performance of the system can be optimized by making sure that events
falling into the same class with respect to a specific selection are distributed
as evenly as possible. An analysis query addressing only that subset then will
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Fig. 4. Sketch of a RAVEN network. Histogram data, for example, produced by the
analysis jobs on the different CSR-units are routed back to the node connected to the
user, and updated on-the-fly on the way back. The links show which nodes are aware
of their neighbors, i.e. the network topology routing and data distribution have to deal
with.

harness a large number of CPU simultaneously and finish with minimal time.
Providing analysis jobs with the possibility to tag events as belonging to a certain
class should lead to a system which is able to automatically migrate data between
nodes in order to minimize access times.

Another level of optimization would be to store event related information
which is created by a specific analysis for further use. Information that should
be kept in a persistent store can either be specified by the user, or selected
automatically, e.g. storing by default all information that is determined with
computational cost above a certain threshold.

5 Prior Work

Realization of the RAVEN project will benefit greatly from already existing
knowledge in networking, middleware design, distributed data storage and com-
puting. Projects which are in principle interesting from the point of view of
RAVEN are for example BitTorrent [9,10] for broadcasting information over
a network, the Apache Hadoop [11] project addressing MapReduce-based [12]
scalable, distributed computing, the BOINC [13,14] framework for volunteer com-
puting and grid computing, or the xrootd [15,16] server for low latency high
bandwidth data access in the root [17,18] framework, which defines the de-facto
standard for data analysis in particle physics. Additional input could come from
the Grid-middleware developers e.g. gLite [19,20] or the Linux community [21].
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6 Summary

Physics analysis of the data recorded by the LHC experiments calls for new com-
puting architectures which ares scalable to allow fast parallel access to petabytes
of data. One possible approach is the RAVEN system, featuring redundant stor-
age, on-the-fly accumulation of results and a rigorous middleware-approach to
the data analysis.
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Abstract. Traditionally, little interaction has taken place between
the Grid and high-performance computing (HPC) storage research
communities. Grid research often focused on optimizing data accesses
for high-latency, wide-area networks, while HPC research focused on
optimizing data accesses for local, high-performance storage systems.
Recent software and hardware trends are blurring the distinction between
Grids and HPC. In this paper, we investigate the use of I/O forwarding —
a well established technique in leadership-class HPC machines— in a
Grid context. We show that the problems that triggered the introduction
of I/O forwarding for HPC systems also apply to contemporary Grid
computing environments. We present the design of our I/O forwarding
infrastructure for Grid computing environments. Moreover, we discuss
the advantages our infrastructure provides for Grids, such as simplified
application data management in heterogeneous computing environments
and support for multiple application I/O interfaces.

1 Introduction

Grid computing environments, such as the TeraGrid project, funded by the
National Science Foundation (NSF) , have recently begun deploying massively-
parallel computing platforms similar to those in traditional high-performance
computing (HPC) centers. While these systems do not support distributed
or multi resource MPI applications[8,2], they do support a variety of HPC
applications well suited for tightly coupled resources, including high-throughput
workloads [20] and massively parallel workloads [6]. To efficiently connect these
resources, TeraGrid has has focused on enhancing Grid data services. This trend
is evident in the goals for the emerging third phase of TeraGrid operations,
known as TeraGrid “eXtreme Digital.”

This shift in resource usage and deployments aligns Grids more closely
with traditional HPC data centers, such as the DOE leadership computing
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facilities at Argonne National Laboratory and Oak Ridge National Laboratory.
This realignment poses several data access challenges. One such challenge
is enabling efficient, remote data access by Grid applications using large
numbers of processing elements. Massively parallel applications can overwhelm
file systems with large numbers of concurrent I/O requests. Leadership-class
computing platforms face a similar data access problem for local data access
to high-performance storage systems. Grid computing platforms experience
similar problems for both local and remote data accesses. Existing Grid data
management tools do not address the impact of increased concurrency on remote
data access performance, nor do they account for the limited capacity of network
and storage resources as application data continues to increase.

In this paper, we describe how I/O forwarding can improve the performance
of Grid application data accesses to both local and remote storage systems. In
the following sections, we present our I/O forwarding infrastructure for Grid
computing environments and show how this infrastructure optimizes application
remote data accesses in Grids. Section 2 presents I/O forwarding and its use in
HPC. Section 3 describes typical I/O mechanisms used by Grid applications and
how I/O forwarding integrates into Grids. Section 4 describes our experiments to
evaluate the GridFTP driver compared to IOFSL and POSIX I/O. In Section 5,
we describe related work and conclude this paper.

2 HPC I/O

In this section, we introduce the concept of I/O forwarding, followed by a
description of our portable, open source implementation.

2.1 Revised I/O Software Stack

The current generation of leadership-class HPC machines, such as the IBM Blue
Gene/P supercomputer at Argonne National Laboratory or the Roadrunner
machine at Los Alamos National Laboratory, consists of a few hundred thousand
processing elements. Future generations of supercomputers will incorporate
millions of processing elements. This significant increase in scale is brought about
by an addition in the number of nodes along with new multi-core architectures
that can accommodate an increasing number of processing cores on a single chip.

While the computational power of supercomputers keeps increasing with every
generation, the same is not true for their I/O subsystems. The data access
rates of storage devices has not kept pace with the exponential growth in
processing performance. In addition to the growing bandwidth gap, the increase
in compute node concurrency has revealed another problem: the parallel file
systems available on current leadership-class machines, such as PVFS2 [4],
GPFS [15], Lustre [5] and PanFS [12] were designed for smaller systems with
fewer filesystem clients. While some of these filesystems incorporate features for
enhanced scalability, they are often not prepared to deal with the enormous
increase in clients brought on by the increasing trend toward more concurrency.
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Fig. 1. I/O Forwarding in HPC systems

MPI-IO, distributed as part of the MPI library, is the standard parallel I/O
API for HPC systems. In certain cases, by using collective I/O, the MPI-IO
implementation is able to reduce the number of requests made to the filesystem.
However, not all applications use the MPI-IO interface or are able to use
collective I/O, so improvements made at the MPI-IO layer may not be available
to the entire spectrum of scientific applications. Parallel high-level libraries such
as Parallel-NetCDF [11] use MPI-IO thus face many of the same limitations
outlined above. POSIX implementations and serial high-level libraries are an
artifact from an earlier generation and are available only on current HPC systems
to support legacy applications.

In order to address this I/O bottleneck, another layer needed to be introduced
into the I/O software stack. Clients, instead of directly making requests to the
parallel filesystem, forward their I/O operations to an I/O forwarder node, which
performs the I/O operation on their behalf. One I/O node is typically responsible
for 32 to 128 compute clients. Because of its position in the I/O path, the I/O
forwarder is able to perform a wide range of optimizations that were not previously
possible. For example, it can aggregate requests of unrelated software running
on multiple compute nodes, thereby reducing both the number of requests and
the number of clients visible to the parallel filesystem. Since the I/O forwarding
software—running on the I/O node—does not share any resources (CPU or mem-
ory) with the compute clients, it is free to dedicate memory and compute power
to optimizing I/O traffic without slowing down computation.

Another benefit of moving the actual I/O calls to the forwarder is that the
compute client can be simplified. Instead of requiring a full I/O stack, it needs
only to be able to send and receive requests to the I/O forwarder. The I/O
forwarder then takes care of using the correct protocol to access the remote
filesystem. Likewise, authentication (to the remote filesystem) can be handled
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by the I/O forwarder. This approach enables compute clients to use a simpler,
local authentication scheme to authenticate to the I/O forwarder. Figure 1 shows
the resulting I/O software stack.

2.2 I/O Forwarding Scalability Layer

In view of the importance of I/O forwarding in HPC systems, it is desirable to
have a high-quality implementation capable of supporting multiple architectures,
filesystems, and high-speed interconnects. While a few I/O forwarding solutions
are available for the IBM Blue Gene and other leadership-class platforms, such
as the Cray XT, they are each tightly coupled to one architecture [21,7]. The lack
of an open-source, high-quality implementation capable of supporting multiple
architectures, filesystems, and high-speed interconnects has hampered research
and makes the deployment of novel I/O optimizations difficult.

To address this issue, we created a scalable, unified I/O forwarding framework
for high-performance computing systems called the I/O Forwarding Scalability
Layer (IOFSL) [1,14]. IOFSL includes features such as the coalescing of I/O
calls on the I/O node, reducing the number of requests to the file system,
and full MPI-IO integration, which translates into improved performance for
MPI applications. IOFSL implements the ZOIDFS protocol for forwarding I/O
requests between applications and IOFSL servers. The ZOIDFS protocol is
stateless, uses portable file handles instead of file descriptors, and provides list
I/O capabilities.

Ongoing work includes the integration of techniques for improving HPC I/O
performance, such as data analytics [22] and checkpointing techniques [13]
workloads.

3 Grid Data Access

Two approaches to application data accesses in Grids have emerged. They are
described in Section 3.1. Section 3.2 describes how IOFSL can be used to improve
the performance and enhance the usability of these approaches.

3.1 Traditional Grid I/O

The first approach stages data at the resource where the application executes or
offloads data locally generated by an application to a remote storage system. This
approach often uses GridFTP to perform bulk data transfers between the high-
performance storage systems attached to Grid resources. While this approach
offers good performance, since remote I/O is used only for staging files in and out
the local storage, it has a number of drawbacks. For one, maintaining consistency
between the local and remote copy is difficult. The second issue is related to the
access granularity. Typically, the whole file needs to be transferred, reducing
efficiency if the application requires only a subset of the file data.
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The second approach is to host data on wide-area filesystems. These file-
systems construct a distributed, shared storage space, which is mounted locally on
each Grid resource to provide local application access. Examples of Grid-specific
filesystems include Gfarm [17] and Chirp [18]. These filesystems typically do not
provide traditional I/O semantics and are currently not well supported by parallel
applications. For example, in Gfarm, files are basically write-once, and parallel
read-write I/O has to be emulated through versioning and creating new files [16].

In addition to these Grid-specific filesystems, traditional HPC filesystems such
as Lustre and GPFS have been adapted for Grid environments. While these
do offer familiar parallel I/O facilities, the high latencies and large number of
filesystem clients severely limits their performance and stability.

3.2 I/O Forwarding in a Grid Environment

When designing IOFSL, portability and modularity were important goals.
IOFSL does not make any assumptions about operating system kernels, inter-
connects, filesystems, or machine architectures. Hence, it can be easily retargeted
to other environments, such as computational Grids.

In large HPC systems, I/O forwarding isolates local compute clients, con-
nected by a high bandwidth, low latency interconnect from the more distant,
higher latency parallel filesystem. At the same time, it protects the filesystem
from being crippled by a storm of requests, by aggregating and merging
requests before sending them to the filesystem. From the viewpoint of the
remote filesystem, this reduces the number of visible clients and requests, hence
increasing performance.

In a Grid environment, these optimizations are also applicable, albeit on a
different scale. While latencies might be much higher, the same discontinuity
exists when an application running on a local Grid resource needs to fetch data
from a remote data store. As is the case in large HPC systems, a large number
of simultaneous requests to a remote site might adversely affect the stability
and throughput of the remote file server. This observation is valid both for data
staging and for wide-area Grid filesystems.

Figure 2 shows the location of I/O forwarding in a Grid environment. Being
located at the gateway between the local compute resources and the remote data,
IOFSL acts as both a connection and a request aggregator: local applications can
share the same set of outgoing connections, increasing efficiency and reducing
the load on the remote filesystem. For example, if GridFTP is used as a data
transport between the site where data is stored and the site where data is
consumed or generated, when using IOFSL, the number GridFTP connections
will not depend on the number of clients. Instead, each I/O forwarder can be
configured to use an optimal number of GridFTP connections to obtain the
data. Clients interacting with the I/O forwarder will transparently share existing
connections when possible.

Another important advantage of deploying I/O forwarding in a Grid envi-
ronment is that, to the client software, IOFSL can offer a more familiar access
API. Currently, IOFSL implements two client-side APIs: POSIX and MPI-IO.
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Fig. 2. I/O forwarding in a Grid environment

For POSIX, there are FUSE and SYSIO implementations. The former enables
redirecting I/O accesses of unmodified binary applications. While the latter
requires relinking applications with the SYSIO library, it provides support on
platforms that do not support FUSE (for example, minimal operating system
kernels such as Cray’s Catamount kernel [9] or IBM BG/P’s compute node
kernel).

By directly supporting MPI-IO, the de facto I/O API for parallel MPI
programs, IOFSL enables unmodified MPI applications (such as parallel analysis
or visualization software) to transparently access remote data using GridFTP or
other protocols not normally supported by HPC software. In this case, IOFSL
effectively acts as a bridge between a local HPC program and remote Grid-style
storage.

Dedicating some nodes as I/O forwarders also helps with high-latency network
links, a typical problem when spanning multiple remote sites using a POSIX-
like filesystem such as Lustre or GPFS. By using local system memory of the
I/O forwarders for buffering read and write data, IOFSL is able to transform
synchronous client accesses into asynchronous remote accesses, reducing the
detrimental effects of high-latency links. Often requested data can be buffered
locally, where it can be accessed over a low-latency, high-bandwidth network.
As IOFSL transparently captures all file accesses, I/O requests from multiple
programs can be optimized if they are requesting the same data. For example,
several independent requests to the same data can be coalesced to a single
request.
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3.3 IOFSL GridFTP Module Implementation

IOFSL provides access to remote data using the GridFTP driver. This driver
is similar to other IOFSL drivers because it bridges generalized application I/O
requests to a specific I/O subsystem. This IOFSL driver maps the GridFTP
API to the ZOIDFS protocol. The driver manages all GridFTP file handles in
red–black trees and provides the application with portable, opaque IOFSL file
handles. Using this driver, IOFSL servers can proxy application I/O requests
to remote GridFTP servers when an application cannot directly access the data
because of IP routing constraints or other connection limitations. Implementing
this driver presented several challenges becuase it contains several features that
existing IOFSL drivers do not have. We currently use the GridFTP 4.2 client
library to provide GridFTP support.

In order to access remote data, the location of the data must be encoded
into the I/O request. For other IOFSL drivers, such as the POSIX and PVFS2
drivers, the file path is sufficient for IOFSL to locate the data since those file
systems are locally available to the nodes hosting IOFSL software. To access
remote data with the IOFSL GridFTP driver, we require that applications prefix
the file path with the remote access protocol to use, the remote host address,
and the port the GridFTP server is using. For example, an application that
requires access to the /etc/group file hosted on server 192.168.1.100 that hosts
a GridFTP server listening on port 12345 using the ftp protocol will construct
a file path /ftp/192.168.1.100/12345/etc/group.

Unlike other IOFSL drivers, the GridFTP client uses an asynchronous opera-
tion model. The existing IOFSL drivers use synchronous data management oper-
ations, which are easier to adapt to the synchronous ZOIDFS interface. To map
the asynchronousGridFTP operations to the synchronous ZOIDFS interfaces, we
developed a set of callbacks and monitors that poll the GridFTP client library
for operation completion. Supporting these operations also required additional
locking within the ZOIDFS driver operations to protect the GridFTP library from
concurrent requests. Without additional optimizations, the additional locking
within this driver can limit the performance of the IOFSL because of reductions
in parallelism. Fortunately, higher-level IOFSL optimizations that can aggregate
multiple operations into a single request will reduce the number of pending
GridFTP operations and lock contention with the IOFSL GridFTP driver.

The GridFTP 4.2 client library used by the IOFSL driver did not fully support
the ZOIDFS capabilities and interface. Several operations, including link and
symlink, are not available through GridFTP, and IOFSL cannot support these
operations for applications. GridFTP cannot provide all file attributes, including
file access times and group identifiers. For attribute retrieval operations, the
ZOIDFS GridFTP backend will fetch the available attributes and assumes that
application is aware that other attributes are invalid. List I/O capabilities are
supported for GridFTP write operations, but are not supported for GridFTP
read operations. The IOFSL GridFTP driver must treat all read list I/O requests
as individual requests, thus increasing the number of requests in flight that the
server must manage.
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4 Evaluation

We evaluated the IOFSL GridFTP driver to determine how well it performed
and to demonstrate the new capabilities provided by this driver.

To demonstrate the basic capability of this driver, we performed several
experiments to evaluate the GridFTP driver functionality and the baseline
performance of the GridFTP driver compared to an existing IOFSL driver. We
used the Argonne Leadership Computing Facility’s Eureka Linux cluster. Eureka
is a 100-node Linux cluster that uses a Myricom 10G interconnect. Each node in
the cluster contains eight Intel-based cores and 16 GB of RAM. In these tests,
the compute nodes of this cluster executed the application code, and the login
nodes hosted our GridFTP and IOFSL servers. All network communication in
these experiments use TCP/IP.

In the following tests, we evaluated the write performance of the GridFTP
driver to a local file system (accessed through a GridFTP server) on the Eureka
cluster login node. IOR was used to simulate an I/O bound application. We
also collected data for these experiments using the POSIX IOFSL driver. The
POSIX driver experiments accessed the data directly. When using the IOFSL
GridFTP driver, application I/O requests are forwarded to the IOFSL server,
and the IOFSL server delegates the application requests to the GridFTP server.

(a) POSIX (b) GridFTP

Fig. 3. Effect of request scheduling on POSIX and GridFTP access methods

We observed that the request merging optimization increased the performance
of the GridFTP driver as the number of application processes increased. Figure 3
illustrates the observed mean bandwidths and standard deviations of these
experiments. Without request merging, the overhead for issuing each I/O request
is large because of the GridFTP server overhead and the additional locking
within the IOFSL GridFTP driver. The request merging optimization is able to
aggregate multiple I/O requests into a single list I/O request to the GridFTP
server. For high-latency network connections or I/O requests, this optimization
can improve performance through the reduction of I/O requests. We observe this
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improvement when using the optimization with the GridFTP driver for IOFSL.
For the POSIX access method, having a lower per request cost, the effect is
less clear. It is difficult for the IOFSL to improve performance when using the
POSIX access method for these tests because there is not enough filesystem
contention. The additional processing overhead of the request merger hinders
the performance of the IOFSL server.

Note that Figure 3 is not meant to compare the performance of the GridFTP
access method with that of the POSIX access method. These methods each serve
distinct purposes, and typically only one of them will be available for accessing
a specific file. For example, while almost all compute nodes fully support POSIX
I/O, GridFTP access from a compute node will rarely be available because of
network limitations (the compute nodes do not have direct outside access) or
software restrictions (microkernel operating systems limit software portability).
The primary contribution of the IOFSL GridFTP module is that it provides
a remote data access capability for systems that limit remote connectivity to
compute nodes or other internal infrastructure.

5 Related Work and Conclusions

In this section, we present our future work related to the IOFSL GridFTP driver
and present our conclusions from our initial experiments.

5.1 Related Work

In [3], a method is described to allow MPI-IO access to GridFTP stores. It
differs from our work in that the MPI application itself makes the GridFTP
connection, as opposed to the I/O forwarder node when IOFSL is used. This
approach precludes optimizations such as request merging or link aggregation.

Stork [10] tries to improve I/O access time by explicitly scheduling data
staging. While IOFSL will also buffer data using local temporary storage, it does
this transparently—without explicit data staging—and on a sub file granularity.

Condor [19] enables remote I/O by shipping I/O operations back to the
submission site. It requires application to re-link with the Condor library. While
our approach also uses function call forwarding, the calls are not shipped to the
remote site but to local aggregators.

5.2 Conclusions

In this paper, we provide an overview of the IOFSL project and how the I/O
forwarding layer can be used to bridge HPC and Grid file I/O requests. We
describe the concept of I/O forwarding in HPC systems and show how the
same technique can be applied to Grid computing environments. We discuss
its advantages and disadvantages and show how it enables connecting existing
HPC and POSIX applications with Grid data stores.
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We demonstrate how our work enables transparent GridFTP access. We
evaluated our initial GridFTP driver using the IOR benchmark to simulate
an I/O-bound application accessing remote data within a cluster. This driver
demonstrates that we can effectively bridge HPC and Grid file I/O requests
and service remote data requests of applications without modifications to the
applications. Our current work includes improving the performance of the driver
by reducing lock contention within the GridFTP driver and evaluating the use
of this driver to proxy I/O requests from the compute nodes of an IBM Blue
Gene/P system to remote data sources.
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Abstract. The advent of multicore processors represents a disruptive
event in the history of computer science as conventional parallel program-
ming paradigms are proving incapable of fully exploiting their potential
for concurrent computations. The need for different or new programming
models clearly arises from recent studies which identify fine-granularity
and dynamic execution as the keys to achieve high efficiency on multicore
systems. This work presents an implementation of the sparse, multifrontal
QR factorization capable of achieving high efficiency on multicore systems
through using a fine-grained, dataflow parallel programming model.
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1 Introduction

The QR factorization is the method of choice for the solution of least-squares
problems arising from a vast field of applications including, for example, geodesy,
photogrammetry and tomography (see [15,3] for an extensive list).

The cost of the QR factorization of a sparse matrix, as well as other factoriza-
tions such as Cholesky or LU, is strongly dependent on the fill-in generated, i.e.,
the number of nonzero coefficients introduced by the factorization. Although the
QR factorization of a dense matrix can attain very high efficiency because of the
use of Householder reflections (see [16]), early methods for the QR factorization
of sparse matrices were based on Givens rotations with the objective of reducing
the fill-in. One such method was proposed by Heath and George [10], where the
fill-in is minimized by using Givens rotations with a row-sequential access of
the input matrix. In order to exploit the sparsity of the matrix, such methods
suffered a considerable lack of efficiency due to the poor utilization of the mem-
ory subsystem imposed by the data structures that are commonly employed to
represent sparse matrices.

The multifrontal method, first developed for the Cholesky factorization of
sparse matrices [8] and then extended to the QR factorization [12,9], quickly
gained popularity over these approaches thanks to its capacity to achieve high
performance on memory-hierarchy computers. In the multifrontal method, the
factorization of a sparse matrix is cast in terms of operations on relatively smaller
dense matrices (commonly referred to as frontal matrices or, simply, fronts)

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 226–236, 2012.
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which gives a good exploitation of the memory subsystems and the possibility
of using Householder reflections instead of Givens rotations while keeping the
amount of fill-in under control. Moreover, the multifrontal method lends itself
very naturally to parallelization because dependencies between computational
tasks are captured by a tree-structured graph which can be used to identify
independent operations that can be performed in parallel.

Several parallel implementations of the QR multifrontal method have been
proposed for shared-memory computers [14,2,7]; all of them are based on the
same approach to parallelization which suffers scalability limits on modern,
multicore systems (see Section 3.1).

This work describes a new parallelization strategy for the multifrontal QR fac-
torization that is capable of achieving very high efficiency and speedup on modern
multicore computers. This method leverages a fine-grained partitioning of compu-
tational tasks and a dataflow execution model [17] which delivers a high degree of
concurrency while keeping the number of thread synchronizations limited.

2 The Multifrontal QR Factorization

The multifrontal method was first introduced by Duff and Reid [8] as a method
for the factorization of sparse, symmetric linear systems and, since then, has
been the object of numerous studies and the method of choice for several,
high-performance, software packages such as MUMPS [1] and UMFPACK [6].

At the heart of this method is the concept of an elimination tree, exten-
sively studied and formalized later by Liu [13]. This tree graph describes the
dependencies among computational tasks in the multifrontal factorization. The
multifrontal method can be adapted to the QR factorization of a sparse ma-
trix thanks to the equivalence of the R factor of a matrix A and the Cholesky
factor of the normal equation matrix ATA. Based on this equivalence, the elim-
ination tree for the QR factorization of A is the same as that for the Cholesky
factorization of ATA.

In a basic multifrontal method, the elimination tree has n nodes, where n is
the number of columns in the input matrix A, each node representing one pivotal
step of the QR factorization of A. Every node of the tree is associated with a
frontal matrix that contains all the coefficients affected by the elimination of
the corresponding pivot. The whole QR factorization consists in a bottom-up
traversal of the tree where, at each node, two operations are performed:

– assembly: a set of rows from the original matrix is assembled together with
data produced by the processing of child nodes to form the frontal matrix;

– factorization: one Householder reflector is computed and applied to the
whole frontal matrix in order to annihilate all the subdiagonal elements in
the first column. This step produces one row of the R factor of the original
matrix and a complement which corresponds to the data that will be later
assembled into the parent node (commonly referred to as a contribution
block). The Q factor is defined implicitly by means of the Householder vectors
computed on each front.
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Fig. 1. Example of multifrontal QR factorization. The cij coefficients denote the
contribution blocks.

Figure 1 shows how the QR factorization of the small 8×5 matrix in the top-left
part can be achieved through the multifrontal method. The related elimination
tree is depicted in the bottom-right part of the figure. Beside each node of the
tree, the corresponding frontal matrix is shown after the assembly and after the
factorization operations (the transition between these two states is illustrated
by the dashed arrows).

In practical implementations of the multifrontalQR factorization, nodes of the
elimination tree are amalgamated to form supernodes. The amalgamated pivots
correspond to rows of R that have the same structure and can be eliminated
at once within the same frontal matrix without producing any additional fill-in.
This operation can be performed by means of efficient Level-3 BLAS routines.
The amalgamated elimination tree is also commonly referred to as assembly tree.

In order to reduce the operation count of the multifrontal QR factorization,
two optimizations are commonly applied:

1. once a frontal matrix is assembled, its rows are sorted in order of increasing
index of the leftmost nonzero (Figure 2 (middle)). The number of operations
can thus be reduced by ignoring the zeroes in the bottom-left part of the
frontal matrix;

2. the frontal matrix is completely factorized (Figure 2 (right)). Despite the fact
that more Householder vectors have to be computed for each frontal matrix,
the overall number of floating point operations is lower since frontal matrices
are smaller. This is due to the fact that contribution blocks resulting from
the complete factorization of frontal matrices are smaller.
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Fig. 2. Techniques to reduce the complexity of the multifrontal QR factorization

A detailed presentation of the multifrontal QR method, including the optimiza-
tion techniques described above, can be found in Amestoy et al. [2].

The multifrontal method can achieve very high efficiency on modern comput-
ing systems because all the computations are arranged as operations on dense
matrices; this reduces the use of indirect addressing and allows the use of ef-
ficient Level-3 BLAS routines which can achieve a considerable fraction of the
peak performance of modern computing systems.

The factorization of a sparse matrix is commonly preceded by a preprocessing
phase, commonly referred to as the analysis phase, where a number of (mostly
symbolic) operations are performed on the matrix such as row and column per-
mutations to reduce the amount of fill-in, the determination of the elimination
tree or the symbolic factorization to estimate the amount of memory needed
during the factorization phase.

In the rest of this paper, we assume that the analysis phase is already per-
formed, and thus we only focus on the factorization; specifically, we assume that
a fill-reducing permutation of the input matrix and the corresponding assembly
tree have been computed.

3 Thread-Level Parallelism

Sparse computations are well known for being hard to parallelize on shared-
memory, multicore systems. This is due to the fact that the efficiency of many
sparse operations, such as the sparse matrix-vector product, is limited by the
speed of the memory system. This is not the case for the multifrontal method;
since computations are performed as operations on dense matrices, a surface-
to-volume ratio between memory accesses and computations can be achieved
which reduces the utilization of the memory system and opens opportunities for
multithreaded, parallel execution.

In a multifrontal factorization, parallelism is exploited at two levels:

– tree-level parallelism: computations related to separate branches of the
assembly tree are independent and can be executed in parallel;

– node-level parallelism: if the size of a frontal matrix is big enough, its partial
factorization can be performed in parallel by multiple threads.
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3.1 The Classical Approach

The classical approach to shared-memory parallelization of QR multifrontal
solvers (see [14,2,7]) is based on a complete separation of the two sources of con-
currency described above. The node parallelism is delegated to multithreaded
BLAS libraries and only the tree parallelism is handled at the level of the multi-
frontal factorization. This is commonly achieved by means of a task queue where
a task corresponds to the assembly and factorization of a front. A new task is
pushed into the queue as soon as it is ready to be executed, i.e., as soon as all the
tasks associated with its children have been treated. Threads keep polling the
queue for tasks to perform until all the nodes of the tree have been processed.

Although this approach works reasonably well for a limited number of cores
or processors, it suffers scalability problems mostly due to two factors:

– separation of tree and node parallelism: the degree of concurrency in both
types of parallelism changes during the bottom-up traversal of the tree; fronts
are relatively small at leaf nodes of the assembly tree and grow bigger towards
the root node. On the contrary, tree parallelism provides a high level of
concurrency at the bottom of the tree and only a little at the top part
where the tree shrinks towards the root node. Since the node parallelism is
delegated to an external multithreaded BLAS library, the number of threads
dedicated to node parallelism and to tree parallelism has to be fixed before
the execution of the factorization. Thus, a thread configuration that may be
optimal for the bottom part of the tree will result in a poor parallelization
of the top part and vice-versa.

– synchronizations: the assembly of a front is an atomic operation. This in-
evitably introduces synchronizations that limit the concurrency level in the
multifrontal factorization.

3.2 A New, Fine-Grained Approach

The limitations of the classical approach discussed above can be overcome by
employing a different parallelization technique based on fine granularity par-
titioning of operations combined with a data-flow model for the scheduling of
tasks. This approach was already applied to dense matrix factorizations [4] and
extended to the supernodal Cholesky factorization of sparse matrices [11].

In order to handle both tree and node parallelism in the same framework, a
block-column partitioning of the fronts is applied and three elementary opera-
tions defined:

1. panel: this operation amounts to computing the QR factorization of a block-
column;

2. update: updating a block-column with respect to a panel corresponds to
applying to the block-column the Householder reflections resulting from the
panel reduction;

3. assemble: assembles a block-column into the parent node (if it exists);
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Fig. 3. The DAG associated to the problem in Figure 1

The multifrontal factorization of a sparse matrix can thus be defined as a se-
quence of tasks, each task corresponding to the execution of an elementary op-
eration of the type described above on a block-column. The tasks are arranged
in a Directed Acyclic Graph (DAG); the edges of the DAG define the dependen-
cies among tasks and thus the order in which they have to be executed. These
dependencies are defined according to the following rules:

– a block-column is fully assembled when all the corresponding portions of the
contribution blocks from its children have been assembled into it. Once a
block-column is fully assembled, any elementary operation can be performed
on it (according to the other dependencies) even if the rest of the front is
not yet assembled or if the factorization of its children is not completed;

– a panel factorization can be executed on a fully assembled block-column if
the block-column is up-to-date with respect to all the previous panel factor-
izations in the same front;

– a fully assembled block-column can be updated with respect to panel i in its
front if it is up-to-date with respect to all the panels 1, ..., i− 1 in the same
front and if the panel factorization on block-column i has completed;

– a block-column can be assembled into the parent (if it exists) when it is
up-to-date with respect to the last panel factorization to be performed on
the front it belongs to.

Figure 3 shows the DAG associated with the problem in Figure 1 for the case
where the block-columns have size one. The dashed boxes surround all the tasks
that are related to a single front and the horizontal displacement of a task
identifies the index, within the front, of the column on which the task is executed.
In the figure and in the above discussion, the assembly of the matrix nonzero
entries into the frontal matrices has been ignored for the sake of readability.

This DAG globally retains the structure of the assembly tree but expresses a
higher degree of concurrency because tasks are defined on a block-column basis
instead of a front basis. This allows us to handle both tree and node parallelism
in a consistent way.
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The execution of the tasks in the DAG is controlled by a data-flow model; a
task is dynamically scheduled for execution as soon as all the input operands are
available to it, i.e., when all the tasks on which it depends have finished. The
scheduling of tasks can be guided by a set of rules that prioritize the execution
of a task based on, for example,

– cache awareness: in order to maximize the reuse of data into cache memories,
tasks may be assigned to threads based on a locality policy (see [11]);

– fan-out: the fan-out of a task in the DAG defines the number of other tasks
that depend on it. Thus, tasks with a higher fan-out should acquire higher
priority since they generate more concurrency. In the case of the QR method
described above, panel factorizations are regarded as higher priority opera-
tions over the updates and assemblies.

4 Experimental Results

The method discussed in Section 3.2 was implemented in a software package
referred to as qrm below. The code is written in Fortran95 and OpenMP is the
technology chosen to implement the multithreading. Although there are many
other technologies for multithreaded programming (e.g., pThreads, Intel TBB,
Cilk or SMPSS), OpenMP offers the best portability since it is available on any
relatively recent system. The current version of the code does not include cache-
aware scheduling of tasks. The qrm code was compared to the SuiteSparseQR [7]
(referred to as spqr) released by Tim Davis in 2009. For both packages, the
COLAMD matrix permutation was applied in the analysis phase to reduce the
fill-in and equivalent choices were made for other parameters related to matrix
preprocessing (e.g., nodes amalgamation); as a result, the assembly trees pro-
duced by the two packages only present negligible differences. Both packages
are based on the same variant of the multifrontal method (that includes the
two optimization techniques discussed in Section 2) and, thus, the number of
floating point operations done in the factorization and the number of entries in
the resulting factors are comparable. The size of block-columns in qrm and the
blocking size (in the classical LAPACK sense) in spqr were chosen to be the
best for each matrix. The rank-revealing feature of spqr was disabled as it is
not present in qrm.

The two packages were tested on a set of ten matrices with different charac-
teristics from the UF Sparse Matrix Collection [5]; in this section, only results
related to the matrices listed in Table 1 are presented as they are representative
of the general behavior of the qrm and spqr codes measured on the whole test
set. In the case of underdetermined systems, the transposed matrix is factorized,
as it is commonly done to find the minimum-norm solution of a problem.

Experiments were run on two architectures whose features are listed in
Table 2.
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Table 1. Test matrices. nz(R), nz(H) and Gflops result from the qrm factorization

Mat. name m n nz nz(R) nz(H) Gflops

Rucci1 1977885 109900 7791168 184115313 1967908664 12340
ASIC 100ks 99190 99190 578890 110952162 53306532 729

ohne2 181343 181343 6869939 574051931 296067596 3600
mk11-b4 10395 17325 51975 21534913 42887317 396

route 20894 43019 206782 3267449 7998419 2.4

Table 2. Test architectures

Type # of cores freq. mem. type compilers BLAS/LAPACK

Intel Xeon 8 2.8 GHz UMA Intel 11.1 Intel MKL 10.2
(4-cores × 2-sockets)

AMD Opteron 24 2.4 GHz NUMA Intel 11.1 Intel MKL 10.2
(6-cores × 4-sockets)

Figure 4 shows the speedup achieved by the qrm code for the factorization of the
Rucci1 matrix on both test architectures compared to the spqr code; the curves
plot the results in Tables 3 and 4 normalized to the sequential execution time.

On the Intel Xeon platform (Figure 4, left), a remarkable 6.9 speedup is
achieved on eight cores which is extremely close to the value obtained by the
LAPACK dgeqrf dense factorization routine; the spqr code only achieves a 3.88
speedup using eight cores on the Intel Xeon system.

On the AMD Opteron system (Figure 4, right), the qrm code still shows a
good speedup when compared to spqr and dgeqrf although it must be noted
that all of them exhibit some scalability limits; this is most likely caused by
poor data locality due to the NUMA architecture of the memory subsystem.
An ongoing research activity aims at investigating cache-aware task scheduling
policies that may mitigate this problem.

Figure 5 shows the fraction of the dgemm matrix multiply routine performance
that is achieved by the qrm and spqr factorizations.

Tables 3 and 4 show the factorization times for the test matrices on the two
reference architectures. Analysis times are also reported for qrm in parentheses.

The number of threads participating in the factorization in the spqr code is
given by the product of the number of threads that exploit the tree parallelism
times the number of threads in the BLAS routines. As discussed in Section 3.1,
this rigid partitioning of threads may result in suboptimal performance; choosing
a total number of threads that is higher than the number of cores available on
the system may yield a better compromise. This obviously does not provide any
benefit to qrm. The last line in Tables 3 and 4 shows, for spqr, the factorization
times for the best combination of tree and node parallelism; for example, for
the ohne2 matrix, on the Intel Xeon system, the shortest factorization time is
achieved by allocating five threads to the tree parallelism and three to the BLAS
parallelism for a total of 15 threads.
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Fig. 4. Speedup for the qrm and spqr multifrontal factorization of the Rucci1 ma-
trix compared to the LAPACK dense dgeqrf factorization routine. The dashed lines
represent linear speedup.

The experimental results show that the proposed approach described in
Section 3.2 achieves better scalability and better overall execution times on
modern, multicore-based systems when compared to the classical parallelization
strategy implemented in the spqr software. On the AMD Opteron architecture,
the qrm code has consistently higher factorization times than spqr and a poor
scaling for the route matrix: this is exclusively due to flaws in the implementa-
tion of the tasks scheduler and are not related to the proposed parallelization
approach. The qrm tasks scheduler is currently undergoing a complete rewriting
that aims at improving its efficiency by reducing the search space in the tasks
DAG.
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Fig. 5. Performance for the qrm multifrontal factorization of the Rucci1 matrix and
the LAPACK dgeqrf dense matrix factorization routine compared to the BLAS dgemm

dense matrix product routine
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Table 3. Factorization times, in seconds, on the Intel Xeon system for qrm (top) and
spqr (bottom). Analysis times are reported in parentheses for qrm.

Intel Xeon

q
r
m

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1237.4 (3.0) 81.7 (0.5) 427.7 (6.6) 41.3 (0.1) 0.88 (0.1)
2 629.5 41.9 218.3 21.2 0.54
4 319.8 21.7 110.8 11.2 0.33
8 179.4 12.4 60.8 6.6 0.21

s
p
q
r

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1245.2 84.8 449.3 42.3 0.85
2 714.9 50.3 271.3 24.4 0.53
4 430.0 32.3 161.0 15.0 0.34
8 320.7 25.0 111.9 10.8 0.31
best 295.5 22.2 104.4 10.8 0.29

Table 4. Factorization times, in seconds, on the AMD Opteron system for qrm (top)
and spqr (bottom). Analysis times are reported in parentheses for qrm.

AMD Opteron

q
r
m

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 1873.8 (2.5) 125.9 (0.3) 664.8 (4.1) 66.7 (0.1) 1.33 (0.1)
2 969.0 64.7 338.8 34.8 0.76
4 507.1 33.8 175.7 18.5 0.45
8 281.7 18.3 92.2 11.4 0.31
16 193.7 12.7 55.7 10.5 0.61
24 175.4 12.2 46.0 9.9 0.97

s
p
q
r

# th. Rucci1 ASIC 100ks ohne2 mk11-b4 route
1 2081.1 134.4 712.8 65.8 1.15
2 1206.8 83.1 428.2 38.8 0.63
4 773.2 54.2 279.4 25.4 0.37
8 574.1 40.2 178.8 17.8 0.26
16 443.4 31.1 138.0 17.0 0.21
24 390.1 28.0 108.4 16.5 0.24
best 379.5 26.5 107.1 16.5 0.21
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Abstract. The convergence analysis of Krylov subspace solvers usu-
ally provides an estimation for the computational cost. Exact knowledge
about the convergence theory of error correction methods using differ-
ent floating point precision formats would enable to determine a priori
whether the implementation of a mixed precision iterative refinement
solver using a certain Krylov subspace method as error correction solver
outperforms the plain solver in high precision. This paper reveals char-
acteristics of mixed precision iterative refinement methods using Krylov
subspace methods as inner solver.

Keywords: Mixed Precision Iterative Refinement, Linear Solvers, Krylov
Subspace Methods, Convergence Analysis, GPGPU.

1 Introduction

In computational science, the acceleration of linear solvers is of high interest.
Present-day coprocessor technologies like GPUs offer outstanding single precision
performance. To exploit this computation power without sacrificing the accuracy
of the result which is often needed in double precision, numerical algorithms have
to be designed that use different precision formats. Especially the idea of using
a lower precision than working precision within the error correction solver of an
iterative refinement method has turned out to reduce the computational cost of
the solving process for many linear problems without sacrificing the accuracy of
the final result [2], [5], [9] and [10].

Although the free choice of the error correction solver type offers a large
variety of iterative refinement methods, this work is focused on Krylov subspace
methods, since they are used for many problems.

The combination of a given outer stopping criterion for the iterative refine-
ment method and a chosen inner stopping criterion for the error correction solver
has strong influence on the characteristics of the solver. A small quotient between
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outer and inner stopping criterion leads to a high number of inner iterations
performed by the error correction solver and a low number of outer iterations
performed by the iterative refinement method. A large quotient leads to a low
number of inner iterations but a higher number of outer iterations, and therefore
to a higher number of restarts of the inner solver. To optimize this trade-off, ex-
act knowledge about the characteristics of both the solver and the linear system
is necessary. Still, a theoretical analysis is difficult, since the convergence anal-
ysis of the iterative refinement solver is affected when using different precision
formats within the method.

This paper presents results of numerical analysis concerning error correction
methods based on Krylov subspace solvers. First the general mathematical back-
ground of iterative refinement methods is drafted, then the mixed precision ap-
proach is introduced and analyzed with respect to the theoretical convergence
rate. A conclusion and prospects to future work complete the paper.

2 Mathematical Background

2.1 Iterative Refinement Methods

The motivation for the iterative refinement method can be obtained from
Newton’s method. Here f is a given function and xi is the solution in the ith
step:

xi+1 = xi − (∇f(xi))−1f(xi). (1)

This method can be applied to the function f(x) = b − Ax with ∇f(x) = A,
where Ax = b is the linear system that should be solved.

By defining the residual ri := b−Axi, one obtains

xi+1 = xi − (∇f(xi))−1f(xi)

= xi + A−1(b−Axi)

= xi + A−1ri.

Denoting the solution update with ci := A−1ri and using an initial guess x0 as
starting value, an iterative algorithm can be defined, where any linear solver can
be used as error correction solver.

Iterative Refinement Method

x0:=rand(); sp //initial guess as starting vector

r0:=b-Ax0; //compute initial residual

do {
sp ri:=b-Axi;

sp solve (Aci=ri); //error correction equation

sp xi+1:=xi + ci; //update solution

} while ( ‖ Axi-b ‖ >ε ‖ r0 ‖ );

(Iterative refinement algorithm in pseudocode)
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In each iteration, the error correction solver searches for a ci such that Aci = ri
and the solution approximation is updated by xi+1 = xi + ci until the outer
residual stopping criterion with a given ε is fulfilled.

2.2 Error Correction Solver

Due to the fact that the error iterative refinement method makes no demands
on the inner error correction solver, any backward stable linear solver can be
chosen. Still, especially the Krylov subspace methods have turned out to be an
adequate choice for many cases. These provide an approximation of the residual
error iteratively in every computation loop, which can efficiently be used to
control the stopping criterion of the error correction solver. The Krylov subspace
methods used in our tests (see section 4) fulfill the demand of backward stability,
[3] and [8].

2.3 Convergence Analysis of Iterative Refinement Methods

Based on the residual ri = b−Axi in the ith step, we can analyze the improve-
ment associated with one iteration loop of the iterative refinement method.

Applying a solver to the error correction equation Aci = ri which generates
a solution approximation with a relative residual error of at most εinner ‖ ri ‖,
we get an error correction term ci, fulfilling

ri −Aci = di,

where di is the residual of the correction solver with the property

‖ di ‖≤ εinner ‖ ri ‖ .

In the case of using a Krylov subspace method as inner solver, the threshold
εinner ‖ ri ‖ can be chosen as residual stopping criterion (ε ≤ εinner < 1).

Updating the solution xi+1 = xi + ci, we can obtain the new residual error
term

‖ ri+1 ‖ = ‖ b−Axi+1 ‖
= ‖ b−A(xi + ci) ‖
= ‖ b−Axi︸ ︷︷ ︸

=ri

−Aci︸ ︷︷ ︸
=di−ri

‖

= ‖ di ‖ ≤ εinner ‖ ri ‖ .

Hence, the accuracy improvements obtained by performing one iteration loop
equal the accuracy of the residual stopping criterion of the error correction solver.
Using this fact, we can prove by induction, that after i iteration loops, the
residual ri fulfills

‖ ri ‖ ≤ εiinner ‖ r0 ‖ . (2)



240 H. Anzt, V. Heuveline, and B. Rocker

If we are interested in the number i of iterations that is necessary to get the
residual error term ri below a certain threshold

‖ ri ‖ ≤ ε ‖ r0 ‖ (3)

we use the properties of the logarithm and estimate based on (2) and (3)

εiinner ‖ r0 ‖ ≤ ε ‖ r0 ‖
⇔ εiinner ≤ ε

⇔ i ≥ log ε
log εinner

.

Since i has to be an integer, we use the Gaussian ceiling function and obtain

i =

⌈
log(ε)

log(εinner)

⌉
(4)

for the number of outer iterations that is necessary to guarantee an accuracy of
‖ ri ‖≤ ε ‖ r0 ‖.

3 Mixed Precision Iterative Refinement Solvers

3.1 Mixed Precision Approach

The underlying idea of mixed precision iterative refinement methods is to use dif-
ferent precision formats within the algorithm of the iterative refinement method,
approximating the relative residual error and updating the solution approxi-
mation in high precision, but computing the error correction term in a lower
precision format (see Fig. 1). This approach was also suggested by [2], [5], [9]
and [10].

Using the mixed precision approach to the iterative refinement method, we
have to be aware of the fact that the residual error bound of the error correction
solver may not exceed the accuracy of the lower precision format.

Furthermore, each error correction produced by the inner solver in lower pre-
cision cannot exceed the data range of the lower precision format. This means
that the smallest possible error correction is the smallest number εlow, that can
be represented in the lower precision. Thus, the accuracy of the final solution
cannot exceed εlow either. This can become a problem when working with very
small numbers, because then the solution correction terms can not be denoted
in low precision, but in most cases, the problem can be avoided by converting
the original values to a higher order of magnitude. Instead of solving the error
correction equation Aci = ri, one applies the error correction solver to the sys-
tem Aci = 2pri where p has to be chosen such that the solution update ci can be
represented in the used low precision format. In this case, the solution update
in high precision becomes xi+1 = xi + 2−pci.

But there are also some more demands to the used low precision floating point
format and the within used error correction solver with its respectively stopping
criterion. While the low precision floating point format has to be chosen with
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respect to the condition number of the linear system such that the linear system
is still solvable within this format, it has to be ensured that the used error
correction solver in low precision converges for the given problem, and does
not stagnate before the demanded accuracy of the solution update is achieved.
At this point it should be mentioned, that the condition number of the low
precision representation of the matrix A may differ from the condition number
of the original system.

Fig. 1. Visualizing the mixed precision approach to an Iterative Refinement Solver

If the final accuracy does not exceed the smallest number that can be repre-
sented in the lower precision format, and if the condition number of the linear
system is small enough such that the system is solvable in low precision and the
used error correction solver converges and does not stagnate before the demanded
accuracy is achieved, then the mixed precision iterative refinement method gives
exactly the same solution approximation as if the solver was performed in the
high precision format.

When comparing the algorithm of an iterative refinement solver using a certain
Krylov subspace solver as error correction solver to the plain Krylov solver, we
realize, that the iterative refinement method has more computations to execute
due to the additional residual computation, solution updates and typecasts.

The goal is to analyze in which cases the mixed precision iterative refine-
ment method outperforms the plain solver in high precision. Obviously this is
the case if the additional operations (denoted with K) are overcompensated by
the cheaper execution of the iterative error correction solver in low precision.
Using an explicit residual computation the computational costs of K is in the
magnitude of the matrix-vector multiplication. In case of an iterative update for
the residual, the complexity is even lower.

3.2 Convergence Analysis of Mixed Precision Approaches

When discussing the convergence of the iterative refinement method in section
2.3, we derived a model for the number of outer iterations that are necessary
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to obtain a residual error below a certain residual threshold ε ‖ r0 ‖. Having a
relative residual stopping criterion εinner of the Krylov subspace solver used as
error correction solver, we need to perform, according to (4),

i =

⌈
log(ε)

log(εinner)

⌉
iterations to obtain an approximation xi which fulfills

‖ ri ‖=‖ b−Axi ‖≤ ε ‖ b−Ax0 ‖= ε ‖ r0 ‖ .
It should be mentioned, that this stopping criterion can only be fulfilled, if the
Krylov subspace solver converges in the respectively used floating point format.

If we use the iterative refinement technique in mixed precision, we have to
modify this convergence analysis due to the floating point arithmetic. In fact,
two phenomena may occur that require additional outer iterations.

1. Independently of the type of the inner error correction solver, the low pre-
cision format representations of the matrix A and the residual ri contain
representation errors due to the floating point arithmetic. These rounding
errors imply that the error correction solver performs the solving process
to a perturbed system (A + δA)ci = ri + δri. Due to this fact, the solu-
tion update ci gives less improvement to the outer solution than expected.
Hence, the convergence analysis of the iterative refinement method has to be
modified when using different precision formats. To compensate the smaller
improvements to the outer solution, we have to perform additional outer
iterations.

2. When using a Krylov subspace method as inner correction solver, the resid-
ual is computed iteratively within the solving process. As floating point
formats have limited accuracy, the iteratively computed residuals may differ
from the explicit residuals due to rounding errors. This can lead to an early
breakdown of the error correction solver. As in this case the improvement to
the outer solution approximation is smaller than expected, the convergence
analysis for iterative refinement methods using Krylov subspace solvers as
error correction solvers has to be modified furthermore. It may happen, that
additional outer iterations are necessary to compensate the early breakdowns
of the error correction solver.

We denote the total number of additional outer iterations, induced by the round-
ing errors and the early breakdowns when using Krylov subspace methods for
the inner solver, with g, and obtain

itotal

⌈
log ε

log εinner

⌉
+ g (5)

for the total number of outer iterations. It should be mentioned, that in fact
g does not only depend on the type of the error correction solver, but also on
the used floating point formats, the conversion and the properties of the linear
problem including the matrix structure.
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In order to be able to compare a mixed precision iterative refinement solver to
a plain high precision solver, we derive a model serving as an upper bound for the
computational cost. We denote the complexity of a Krylov subspace solver gen-
erating a solution approximation with the relative residual error ε̃ as Csolver(ε̃).
We can obtain this complexity estimation from the convergence analysis of the
Krylov subspace solvers [11]. Using this notation, the complexity Cmixed(ε) of
an iterative refinement method using a correction solver with relative residual
error εinner can be displayed as

Cmixed(ε) =

(⌈
log(ε)

log(εinner)

⌉
+ g

)
· (Csolver(εinner) · s+K) , (6)

where s ≤ 1 denotes the speedup gained by performing computations in the
low precision format (eventually parallel on the low precision device) instead of
the high precision format. We denote the quotient between the mixed precision
iterative refinement approach to a certain solver and the plain solver in high

precision with fsolver = Cmixed(ε)
Csolver(ε)

, and obtain

fsolver =

(⌈
log(ε)

log(εinner)

⌉
+ g

)
· (Csolver(εinner) · s+K)

Csolver(ε).
(7)

Analyzing this fraction, we can state the following propositions:

1. If fsolver < 1, the mixed precision iterative refinement approach to a certain
solver performs faster than the plain precision solver. This superiority of the
mixed precision approach will particularly occur, if the speedup gained by
performing the inner solver in a lower precision format (e.g. on a accelerator)
overcompensates the additional computations, typecasts and the eventually
needed transmissions in the mixed precision iterative refinement method.

2. The inverse 1
fsolver

could be interpreted as speedup factor obtained by the
implementation of the mixed precision refinement method with a certain
error correction solver. Although this notation does not conform with the
classical definition of the speedup concerning the quotient of a sequentially
and a parallel executed algorithm, we can construe 1

fsolver
as measure for the

acceleration triggered by the use of the mixed precision approach (and the
potentially hybrid system).

3. The iteration loops of Krylov subspace solvers are usually dominated by a
matrix-vector multiplication, at least for large dimensions. Hence, using a
Krylov subspace method as inner error correction solver, the factor fsolver is
then for a constant condition number independent of the problem size. This
can also be observed in numerical experiments (see section 4 and [1]).

Exact knowledge of all parameters would enable to determine a priori whether
the mixed precision refinement method using a certain error correction solver
outperforms the plain solver. The computational cost of a Krylov subspace solver
depends on the dimension and the condition number of the linear system [11].



244 H. Anzt, V. Heuveline, and B. Rocker

While the problem size can easily be determined, an approximation of the
condition number of a certain linear system can be obtained by performing a
certain number of iterations of the plain Krylov subspace solver, and analyzing
the residual error improvement. Alternative method to obtain condition number
estimations can for example be found in [12].

The only factor that poses problems is g, the number of additional outer
iterations necessary to correct the rounding errors generated by the use of a lower
precision format for the inner solver. As long as we do not have an estimation
of g for a certain problem, we are not able to determine a priori, which solver
performs faster.

To resolve this problem, an implementation of an intelligent solver suite could
use the idea to determine a posterior an approximation of g, and then choose
the optimal solver. To get an a posterior approximation of g, the solver executes
the first iteration loop of the inner solver and then compares the improvement
of the residual error with the expected improvement. Through the difference, an
estimation for the number of additional outer iterations can be obtained, that
then enables to determine the factor fsolver and choose the optimal version of
the solver.

4 Numerical Experiments

In this section, we want to give a small set of experiments, showing three facts:

1. Depending on the condition number of the system, the plain solver or the
mixed precision iterative refinement variant is superior.

2. The factor fsolver is for constant condition number independent of the di-
mension of the problem. This includes, that the mixed precision method
works better for reasonably many problems.

3. The total number of outer iterations itotal (5) using limited precision usually
differs only by a small value g from the theoretical value i (4). Hence approx-
imating itotal by i+3 is usually a reasonable estimation for the upper bound.

To show these results, we use a set of artificially created test-matrices with fixed
condition number but increasing dimension.

To the linear system affiliated to these matrices, we apply a CG solver as
well as a GMRES solver, and compare the performance to the respective mixed
precision implementations. All solvers use the relative residual stopping criterion
ε = 10−10 ‖ r0 ‖2. Due to the iterative residual computation in the case of the
plain solvers, the mixed precision iterative refinement variants usually iterate to
a better approximation, since they compute the residual error explicitly, but as
the difference is generally small, the solvers are comparable. For the mixed pre-
cision iterative refinement implementations, we use εinner = 10−1. The GMRES
algorithm, taken from [11], is equipped with a restart parameter of 10.

A more detailed description of the used test matrices, and a more extensive
set of numerical experiments including physical applications, can be found in [1].
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Table 1. Structure plots and properties of the artificial test-matrices

M1 M2 M3

A = 10 · n
∗ = rand(0, 1)

V = 103 · n
W = 2 · 103 · n+ n

∗ = rand(0, 1)
H = 4 + 10−3

problem: artificial
problem size: variable
sparsity: nnz = n2

cond. num.: κ < 3
storage format: MAS

problem: artificial
problem size: variable
sparsity: nnz = n2

cond. num.: κ ≈ 8 · 103

storage format: MAS

problem: artificial
problem size: variable
sparsity: nnz ≈ 5n
cond. num.: κ ≈ 8 · 103

storage format: CRS

mixed precision CG
plain double precision CG mixed precision/plain double precision

Fig. 2. Performance of CG/mixed CG applied to test case M1; itotal = 5

mixed precision GMRES(10)
plain double precision GMRES(10) mixed precision/plain double precision

Fig. 3. Performance of GMRES/mixed GMRES applied to test case M1; itotal = 3
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mixed precision CG
plain double precision CG
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mixed precision/plain double precision

Fig. 4. Performance of CG/mixed CG applied to test case M2; itotal = 13

mixed precision GMRES(10)
plain double precision GMRES(10)

mixed precision/plain double precision

Fig. 5. Performance of GMRES/mixed GMRES applied to test case M2; itotal = 12

mixed precision/plain double precision
mixed precision CG
plain double precision CG

Fig. 6. Performance of CG/mixed CG applied to test case M3; itotal = 10

mixed precision/plain double precision
mixed precision CG
plain double precision CG

Fig. 7. Performance of GMRES/mixed GMRES applied to test case M3; itotal = 12
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5 Conclusions and Future Work

This paper shows results of numerical analysis concerning the convergence theory
of mixed precision iterative refinement methods. These results contribute to the
possibility to control the usage of different precision formats within an error
correction solver.

A problem still requiring a more satisfactory solution is to determine the exact
dependency of the number of additional outer iterations on the characteristics
of the linear system, the solver type, the inner and outer stopping criterion, and
the used floating point precision formats. Further work in this field is necessary
to enable an estimation depending on these parameters.

Technologies like FPGAs and application-specific designed processors offer
a free choice of floating point formats. Controlling the usage of these preci-
sion formats within iterative refinement solvers is necessary for optimizing the
performance.
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Abstract. The tile QR factorization provides an efficient and scalable
way for factoring a dense matrix in parallel on multicore processors.
This article presents a way of efficiently implementing the algorithm on
a system with a powerful GPU and many multicore CPUs.

1 Background

In recent years a tiled approach in applying Householder transformations has
proven to be a superior method for computing the QR factorization of a dense
matrix on multicore processors, including “standard” (x86 and alike) proces-
sors [7,8,10] and also the Cell Broadband Engine [9]. The basic elements con-
tributing to the success of the algorithm are: processing the matrix by tiles of
relatively small size, relying on laying out the matrix in memory by tiles, and
scheduling operations in parallel in a dynamic, data-driven fashion.

2 Motivation

The efforts of implementing dense linear algebra on multicore and accelerators
have been pursued in two different directions, one that emphasizes the efficient
use of multicore processors [7,8,10], exemplified by the PLASMA project [3],
and another that emphasizes the use of accelerators [15,16], exemplified by the
MAGMA project [2]. While the former makes great usage of multicores, it is void
of support for accelerators. While the the latter makes great usage of GPUs, it
seriously underutilizes CPU resources.

The main problem of existing approaches to accelerating dense linear algebra
using GPUs is that GPUs are used like monolithic devices, i.e., like another
“core” in the system. The massive disproportion of computing power between
the GPU and the standard cores creates problems in work scheduling and load
balancing. As an alternative, the GPU can be treated as a set of cores, each of
which can efficiently handle work at the same granularity as a standard CPU
core.
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3 Implementation

All aspects of the tile QR factorization have been relatively well documented
in recent literature [7,8,10,9]. Only a minimal description is presented here for
the sake of further discussion. Figure 1a shows the basics of the algorithm and
introduces the four sequential kernels relied upon. Kernel names are those used
in the current release of the PLASMA library. Brief description of each kernel
follows.

(a) Tile QR (b) Inner blocking

Fig. 1. Tile QR with inner blocking (light gray - data being read, dark gray - data
being modified)

SGEQRT: Performs standard (LAPACK-style) QR factorization within a tile.
Replaces the upper triangle of the tile with the R factor. Conceptually, anni-
hilates the entries in the lower triangle. Actually, replaces them with House-
holder reflectors used to zero these entries.

SORMQR: Applies the transformations of the SGEQRT kernel (the set of
Householder reflectors) to a tile on the right of the diagonal tile. This kernel
is used across all tiles in a row. (All invocations are independent, i.e., can be
done in parallel.)

STSQRT: Performs (incremental) QR factorization of the matrix constructed
by putting the diagonal tile, previously factored by SGEQRT, on top of
another tile in the panel. Updates the previous R factor. Conceptually, anni-
hilates the entries in the lower tile. Actually, replaces them with Householder
reflectors used to zero the tile. (All invocations within one panel are depen-
dent, i.e., have to be serialized.)

STSMQR: Applies the transformations of the STSQRT kernel (the set of
Householder reflectors) to two tiles to the right of the panel. This kernel
is used across all tiles in two rows. (All invocations are independent, i.e., can
be done in parallel.)
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One potential deficiency of the algorithm is the introduction of extra floating
point operations not accounted for in the standard 4/3N3 formula. These op-
erations come from accumulation of the Householder reflectors as reflected in
the triangular T matrices in Figure 1a and amount to 25 % overhead if the T
matrices are full triangles. The problem is remedied by internal blocking of the
tile operations as shown in Figure 1b, which produces T matrices of triangular
block-diagonal form and makes the overhead negligible.

The basic concept of the implementation presented here is laid out in Fig-
ure 2. It relies upon running the three complex kernels (SGEQRT, STSQRT,
SORMQR) on CPUs and only offloading the performance critical SSSMQR ker-
nel to the GPU. It is done in such a way that the Streaming Multiprocessor (SM)
of the GPU is responsible for a similar amount of work as one CPU core. In one
step of the factorization, the CPUs factorize one panel of the matrix (the SGE-
QRT and STSQRT kernels), update the top row of the trailing submatrix and
also update a number of initial columns of the trailing submatrix (through a
CPU implementation of the SSSMQR kernel). The GPU updates the trailing
submatrix through a GPU implementation of the SSSMQR kernel (Figure 2a).
As soon as some number of initial columns is updated, the CPUs can also initial-
ize follow-up panel factorizations and updates, a concept known as a lookahead
(Figure 2b). This way, when the GPU is finished with one update, the next panel
is immediately ready for the following update, which keeps the GPU occupied
all the time (avoiding GPU idle time). Also, at each step of the factorization, the
GPU part shrinks by one column, and when the size of the trailing submatrix
reaches the width of the lookahead, the work is continued by the CPUs only.

(a) First step (b) Lookahead

Fig. 2. Splitting the work between the CPUs and the GPU. (Different shades of gray
show different kernel operations.)
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3.1 CPU Kernels

CPU implementations of all four kernels are taken directly from the publicly
available core BLAS component of the PLASMA library. Ideally, core BLAS
would be implemented as monolithic kernels optimized to the maximum for a
given architecture. However, this amounts to a prohibitive coding effort, mainly
due to the challenges of SIMD’zation for vector extensions ubiquitous in modern
processors. Instead, these kernels are currently constructed from calls to BLAS
and LAPACK, which is a suboptimal way of implementing them, but the only
feasible one known to the authors. They are known to typically deliver about
75 % of the core’s peak, while large matrix multiplication (GEMM) delivers up
to 95 %.

3.2 GPU Kernel

The main building block of the SSSMQR kernel is matrix multiplication. The
process of coding fast matrix multiplication for a GPU relies on a classic auto-
tuning approach similar to the one utilized in the ATLAS library [17,1], where
a code generator creates multiple variants of code and the best one is chosen
through benchmarking. This is the approach taken by the MAGMA library and
here the authors leverage this work by using MAGMA SGEMM (matrix multi-
ply) kernels as building blocks for the SSSMQR kernel [11,12]. One shortcoming
of this (initial) work is that the kernels were developed for the Nvidia G80
(Tesla) architecture and are used for the Nvidia GF100 (Fermi) architecture. All
GPU development was done in Nvidia CUDA. OpenCL implementation was not
explored.

The two required operations are C = C−AT ×B and C = C−A×B. Figure 3
shows MAGMA implementations of these kernels. The first one is implemented
as a 32 × 32 by 32 × k matrix multiplication using a thread block of size 8 × 8
(Figure 3a). The second one is implemented as a 64 × 16 by 16 × k matrix
multiplication using a thread block of size 64× 1 (Figure 3b).

Figure 4 shows the process of constructing the SSSMQR kernel. MAGMA
SGEMM kernels allow for building an SSSMQR kernel for tile sizes NB =
32, 64, 96, ... with inner blocking IB = 32, 64, 96, ..., such that IB divides NB
(see the first paragraph of section 3 and Figure 1 for the explanation of inner
blocking). It has been empirically tested that the combination (IB, NB) of (32,
256) provides the best performance on the GPU and is also a good combination
for the CPUs.

The construction of the kernel can be explained in the following steps.
Figure 4a shows the starting point. (This would be a CPU implementation of
the kernel.) Operation 1 is a memory copy, which is trivial to implement in
CUDA, and will not be further discussed. Same applies to operation 5, which is
an AXPY operation, also trivial to implement. The first step is a vertical split of
all operations (Figure 4b) to provide more parallelism. (What is being developed
here is an operation for one thread block, and multiple thread blocks will run on
a single Streaming Multiprocessor.) The next step is a conversion of the in-place
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(a) AT×B (b) A×B

Fig. 3. GPU SGEMM kernels used as the building blocks for the SSSMQR kernel
(medium gray - inner loop input data, light gray - outer loop input data, dark gray -
in/out data)

triangular matrix multiplication (operation 3) to an out-of-place square matrix
multiplication (Figure 4c). The last step is using MAGMA SGEMM kernels to
implement operations 2, 3 and 4. The last step is done by incorporating the
SGEMM kernels into the body of the SSSMQR kernel and a number of man-
ual code adjustments such as reshaping pointer arithmetics and reshaping the
thread block, a somewhat tedious process. A quicker alternative would be to rely
on automatic function inlining. It turns out, however, that doing so results in
a higher register usage, which leads to lower occupancy and lower overall per-
formance. At the same time, forcing register usage with a compiler flag causes
register spills to the memory and, again, lower performance.

Since tiles in a column have to be updated in a sequence, each thread block
updates a stripe of the trailing submatrix of width IB = 32. This creates enough
parallelism to keep the GPU busy for matrices of size 4000 and higher.

3.3 Scheduling

The next critical element of the implementation is dynamic scheduling of opera-
tions. Given the lookahead scheme presented in Figure 2b, keeping track of data
dependencies and scheduling of operations manually would be close to impos-
sible. Instead, the QUARK scheduler was used, the one used internally by the
PLASMA library.

QUARK is a simple dynamic scheduler, very similar in design principles to
projects like, e.g., Jade [14,5], StarSs [13] or StarPU [6,4]. The basic idea is the
one of unrolling sequential code at runtime and scheduling tasks by resolving
three basic data hazards: Read After Write (RAW), Write After Read (WAR)
and Write After Write (WAW).
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Fig. 4. Steps of the construction process of the SSSMQR GPU kernel (light gray -
input data, dark gray - in/out data, hatching - simplifications)

The crucial concept here is the one of task aggregation. The GPU kernel is an
aggregate of many CPU kernels, i.e., one invocation of the GPU kernel replaces
many invocations of CPU kernels. In order to use the dynamic scheduler, the
GPU kernel inherits all data dependencies of the CPU kernel it aggregates.
This is done by a simple extension to the dynamic scheduler, where a task is
initialized without any dependencies and dependencies are added to it in a loop
nest. Figure 5a shows QUARK code for multicores only and Figure 5b shows
QUARK code for multicores and a GPU (with lookahead).

Although scheduling is based on runtime resolution of data dependencies, it
needs to be pointed out that GPU task placement is static. (It is predetermined
which tasks are offloaded to the GPU, based on the lookahead.)

3.4 Communication

If the CPUs and the GPU were sharing a common memory system, the solution
would be complete at this point. Since this is not yet the case, data has to
be transferred between the CPUs’ memory (the host memory) and the GPU
memory (the device memory) through the slow PCIe bus. Despite the disparity
between the computing power of a GPU and the communication power of the
PCIe, a GPU can be used efficiently for dense linear algebra thanks to the
surface-to-volume effect (O(N3) volume of computation and O(N2) volume of
communication).

Here an approach is taken similar to the one of the MAGMA library. It can
be referred to as wavefront communication, since at each step only a moving
boundary region of the matrix is communicated. Initially, a copy of the entire
matrix is made in the device memory. Then communication follows the scheme
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(a) CPUs only (b) CPUs + a GPU

Fig. 5. Simplified QUARK code

shown in Figure 6. Each GPU kernel invocation is preceded by bringing in to the
device memory the panel, the column of T factors, and the top row associated
with a given update (Figure 6a). Then, each GPU kernel execution is followed
with sending back to the host memory the row brought in before the kernel
execution, the first row and the first column of the update (Figure 6b). No
additional communication is required when the factorization is completed. At
that point the host memory contains the factorized matrix.

(a) Host to device (b) Device to host

Fig. 6. Wavefront CPU-GPU communication. Dark gray tiles show the moving front
of data transferred before each GPU kernel invocation (a) and after each invocation
(b)

For simplicity, synchronous host-device communication was used. It did not
introduce significant overhead, due to the wavefront pattern. Pinned memory
allocation was used for maximum performance. A separate thread was used for
GPU management. (One core was oversubscribed.)
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4 Results and Discussion

Performance experiments were run using 4 sockets with 6-core AMD OpteronTM

8439 SE (Istanbul) processors clocked at 2.8 GHz and an Nvidia GTX 480 (Fermi
architecture) graphics card clocked at 1.4 GHz. The core BLAS kernels relied on
Intel MKL 11.1 for performance, which turned out to be faster than the AMD
ACML library. GCC version 4.1.2 was used for compilation of the CPU code
and CUDA SDK 3.1 for compilation of the the GPU code and GPU runtime.
The system was running Linux kernel 2.6.32.3 x86 64.

The theoretical peak of the CPUs in single precision equals 2.8 × 24 × 8 =
537.6 [Gflop/s] (clock× cores× floating point operations per clock per core). The
theoretical peak of the GPU in single precision equals 1.4×480×2 = 1344 [Gflop/s]
(clock × CUDA “cores” × floating point operations per clock per core).

Figure 7a shows the performance results for CPUs-only runs, GPU-only runs
and runs using both the 24 CPU cores and the GPU. GPU-only runs are basically
CPU+GPU runs with lookahead = 1. This way the GPU is occupied most of
the time, but the CPUs only perform the minimal part of the update to be able
to factorize one consecutive panel, while the GPU performs the update so that
the GPU does not stall waiting for the panel to be factorized. The CPU+GPU
runs are runs with a deep level of lookahead, which keeps the CPUs occupied
while the GPU performs the update. The optimal level of the lookahead was
tuned manually and is reflected by the number on top of each performance point.
Figure 7b shows the performance of each invocation of the GPU SSSMQR kernel
throughout the largest factorization of a 19200 × 19200 (75 × 75 tiles) matrix
with lookahead of 28 (since the number of stripes of 75− 28− 1 = 46).

(a) Tile QR factorization (b) SSSMQR kernel

Fig. 7. Performance results

Interestingly, for this setup, the CPU-only and GPU-only runs deliver very
similar performance (slightly above 300 Gflop/s). One can clearly see the per-
formance advantage of using both the CPUs and the GPU, delivering together
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the performance of 520 Gflop/s. Once again, the authors admit to using sub-
optimal GPU kernels for the Fermi architecture. (The development of optimal
Fermi kernels is underway.)

5 Conclusions

The results suggest that a system equipped with a high number of conventional
cores and a GPU accelerator can be efficiently utilized for a classic dense linear
algebra workload. The necessary components are a dynamic scheduler capable of
task aggregation (accepting tasks with a very high number of dependencies) and
a custom GPU kernel (not readily available in the CUBLAS library). Although
a custom kernel is required, it can be built from blocks already available in a
BLAS implementation in the CUDA language, such as the ones provided by
MAGMA.

6 Future Work

The immediate objectives of the authors are to develop an optimized Fermi kernel
for the SSSMQR operation (which should at least double the GPU performance)
and generalize the work to multiple GPUs. One can observe that the latter can
be accomplished by splitting the trailing submatrix vertically among multiple
GPUs. In this case the wavefront communication will involve communication
between each GPU and the CPUs and also communication between each pair of
GPUs due to the shrinking size of the trailing submatrix and the necessity to
shift the boundaries between the GPUs to balance the load.
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Abstract. A new cache-efficient algorithm for reduction from block Hes-
senberg form to Hessenberg form is presented and evaluated. The al-
gorithm targets parallel computers with shared memory. One level of
look-ahead in combination with a dynamic load-balancing scheme signif-
icantly reduces the idle time and allows the use of coarse-grained tasks.
The coarse tasks lead to high-performance computations on each pro-
cessor/core. Speedups close to 13 over the sequential unblocked algo-
rithm have been observed on a dual quad-core machine using one thread
per core.

Keywords: Hessenberg reduction, block Hessenberg form, parallel al-
gorithm, dynamic load-balancing, blocked algorithm, high performance.

1 Introduction

We say that a square n×n matrix A with zeroes below its r-th subdiagonal, i.e.,
A(i, j) = 0 if i > j + r, is in (upper) Hessenberg form if r = 1 and in (upper)
block Hessenberg form if r > 1. The number of (possibly) nonzero subdiagonals
is r.

The Hessenberg decomposition A = QHQT of a square matrix A ∈ R
n×n con-

sists of an orthogonal matrix Q ∈ R
n×n and a matrix H ∈ R

n×n in upper Hes-
senberg form. The Hessenberg decomposition is a fundamental tool in numerical
linear algebra and has many diverse applications. For example, a Schur decompo-
sition is typically computed using the nonsymmetric QR algorithm with an initial
reduction to Hessenberg form. Other applications include solving Sylvester-type
matrix equations.

We focus in this paper on the special case where A is in block Hessenberg form.
There are certainly applications where this case occurs naturally. However, our
interest is primarily motivated by the fact that this case appears in the second
stage of a two-stage approach for Hessenberg reduction of full matrices. The
first stage is reduction to block Hessenberg form and efficient algorithms are
described in, e.g., [5,9].

In the following, we describe and evaluate a new high-performance algorithm
that computes a Hessenberg form H ∈ R

n×n of a block Hessenberg matrix A
with 1 < r � n nonzero subdiagonals.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 258–268, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Algorithm 1. (Unblocked) Given a block Hessenberg matrix A ∈ R
n×n with

r nonzero subdiagonals, the following algorithm overwrites A with H = QTAQ
where H ∈ R

n×n is in upper Hessenberg form and Q ∈ R
n×n is orthogonal.

1: for j = 1:n− 2
2: k1 = 1 +

⌊
n−j−2

r

⌋
3: for k = 0:k1 − 1
4: α1 = j + kr + 1; α2 = min{α1 + r − 1, n}
5: β1 = j +max{0, (k − 1)r + 1}; β2 = n
6: γ1 = 1; γ2 = min{j + (k + 2)r, n}
7: Reduce A(α1 :α2, β1) using a reflection Qj

k

8: A(α1 :α2, β1 :β2) = (Qj
k)

TA(α1 :α2, β1 :β2)
9: A(γ1 :γ2, α1 :α2) = A(γ1 :γ2, α1 :α2)Q

j
k

10: end for
11: end for

2 Algorithms

Our blocked algorithm evolved from a known unblocked algorithm for symmet-
ric band reduction [2] adapted to the nonsymmetric case. The band reduction
technique [2] has also been applied to the reduction of a matrix pair in block
Hessenberg-triangular form to Hessenberg-triangular form [3,1,4]. Since the un-
derstanding of the unblocked algorithm is crucial, we begin by describing it.

2.1 Unblocked Algorithm

Algorithm 1 reduces the columns of A from left to right [2,7,8]. Consider the
first iteration of the outer loop, i.e., j = 1. In the first iteration of the inner
loop, k = 0 and a Householder reflection, Q1

0, of order r is constructed on line 7.
Lines 8–9 apply a similarity transformation that reduces the first column and
also introduces an r × r bulge of fill-in elements in the strictly lower triangular
part of A(r + 2:2r + 1, 2:r + 1).

The next iteration of the inner loop, i.e., k = 1, constructs and applies the re-
flection Q1

1 of order r which reduces the first column of the bulge. This introduces
another bulge r steps further down the diagonal. The subsequent iterations of
the inner loop reduce the first column of each newly created bulge.

The second iteration of the outer loop, i.e., j = 2, reduces the second column
and the leftmost column of all bulges that appear. The new bulges align with
the partially reduced bulges from the previous iteration and the bulges move one
step down the diagonal.

Applying a Householder reflection of order r to a vector involves 4r flops.
The flop count of Algorithm 1 is thus 2n3 plus lower order terms. During one
iteration of the outer loop, each entry in the matrix is involved in zero to two
reflections. Consequently, Algorithm 1 has a low arithmetic intensity (flops per
byte transferred to/from memory) and its performance is ultimately bounded
by the memory bandwidth.
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Optionally, the reflections Qj
k generated by Algorithm 1 can be accumulated

into a orthogonal matrix Q such that A = QHQT for a cost of 2n3 additional
flops. An efficient accumulation algorithm is described in [2].

2.2 Blocked Algorithm

The key to increasing the arithmetic intensity of Algorithm 1, and thus creating a
blocked algorithm, is to obtain the reflections from multiple consecutive sweeps1

and then apply them in a different order. The reflections Qj
k are generated by

Algorithm 1 in the order of increasing j and increasing k for each j. A more effi-
cient way to apply them, however, is in the order of decreasing k and increasing
j for each k [2]. The reason for better efficiency is that the q reflections Qj

k for
q consecutive sweeps j and a fixed k touch only r + q− 1 unique entries in each
row/column of the matrix. As a result, the arithmetic intensity can be increased
almost by a factor of q. In [2], this reordering trick is used when accumulating
Q. Below, we show that the same technique can be applied to the updating of
A as well.

Overview of the Blocked Algorithm. The blocked algorithm consists of
a sequence of iterations, each containing three steps. In the first step, all re-
flections from q consecutive sweeps are generated while only necessary updates
are applied. In the second/third step, the remaining updates from the right-
hand/left-hand side are applied. Due to dependencies, the three steps must be
done in sequence. The first step is both time-consuming and sequential in nature,
which leads to idle processors/cores. Therefore, we bisect the second and third
steps and thus create a five-step iteration which supports one level of look-ahead.

The purpose of each step is explained below.

1. Generate the reflections from q consecutive sweeps (label: G).
2. Apply updates from the right-hand side to enable look-ahead (label: PR).
3. Apply updates from the left-hand side to enable look-ahead (label: PL).
4. Apply the remaining updates from the right-hand side (label: UR).
5. Apply the remaining updates from the left-hand side (label: UL).

Steps 4–5 are the most efficient in terms of memory traffic and parallelism.
Steps 2–3 are less efficient but still worthwhile to parallelize. Step 1 is sequential
in nature and cannot make efficient use of the cache hierarchy.

Figure 1 illustrates with an example which entries are touched by each step.
Note that the G-, PR-, and PL-steps combined touch entries near the main
diagonal (medium and dark gray in Figure 1). The thickness of the band depends
on the number of subdiagonals, r, and the number of consecutive sweeps, q, but is
independent of the matrix size, n. The algorithm as a whole therefore performs
O(n3) flops cache-efficiently via the UR- and UL-steps, and O(n2) flops less
efficiently via the G-, PR-, and PL-steps.

1 A sweep corresponds to one iteration of the outer loop in Algorithm 1.



Efficient Reduction from Block Hessenberg to Hessenberg Form 261

Sweep 1 Sweep 2 Sweep 3

Left

Right

Fig. 1. Entries touched in each of the five steps: G (dark gray), PR (medium gray,
bottom), PL (medium gray, top), UR (light gray, bottom), and UL (light gray, top).
Transformations from the left-hand side (top) are shown separately from the transfor-
mations from the right-hand side (bottom). The q = 3 sweeps are shown separately
from left to right.

Generate Reflections from Multiple Consecutive Sweeps. The core of
our algorithm is the G-step which is detailed in Algorithm 2.

This algorithm generates the reflections Qj
� for q consecutive sweeps starting

at column j = j1 while updating only a few entries near the main diagonal (dark
gray in Figure 1).

The structure of Algorithm 2 is as follows. The outer j-loop iterates over the
q sweeps starting at column j1. The inner k-loop iterates over the k1 reflections
contained in sweep j. First, the column that is about to be reduced is brought
up-to-date by applying delayed updates from the left (if any) in the loop that
starts on line 6. The actual reduction is performed on line 13. Finally, some of
the updates from the right-hand side are applied on line 16.

Apply Updates from Consecutive Sweeps Efficiently. Algorithm 3 imple-
ments the remaining steps PR, PL, UR, and UL. In this algorithm, the arithmetic
intensity is increased by using the reordering trick described in [2].

To facilitate parallel execution, Algorithm 3 restricts the updates from the
left-hand side to the column range c1 : c2 and the updates from the right-hand
side to the row range r1 : r2. By partitioning the range 1 : n into p disjoint
ranges, p threads can execute the same variant of Algorithm 3 in parallel without
synchronization. Note that there is no accumulation of reflections in any of the
steps and thus the blocked algorithm has the same flop count as the unblocked
algorithm, i.e., 2n3 plus lower order terms.
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Algorithm 2. (Generate) Given a block Hessenberg matrix A ∈ R
n×n with

r nonzero subdiagonals and where A is already in upper Hessenberg form in
columns 1 : j1 − 1, the following algorithm generates Qj

� for j = j1 : j1 + q − 1.
The matrix A is partially overwritten by the similarity transformation implied
by the q sweeps. The remaining updates can be applied using Algorithm 3.

1: for j = j1 :j1 + q − 1
2: k1 = 2 +

⌊
n−j−1

r

⌋
3: for k = 0:k1 − 1
4: α1 = j + kr + 1; α2 = min{α1 + r − 1, n}
5: β = j +max{0, (k − 1)r + 1}
6: for ĵ = j1 :j − 1
7: α̂1 = ĵ + kr + 1; α̂2 = min{α̂1 + r − 1, n}
8: if α̂2 − α̂1 + 1 ≥ 2 then

9: A(α̂1 : α̂2, β) = (Qĵ
k)

TA(α̂1 : α̂2, β)
10: end if
11: end for
12: if α2 − α1 + 1 ≥ 2 then
13: Reduce A(α1 :α2, β) using a reflection Qj

k

14: A(α1 :α2, β) = (Qj
k)

TA(α1 :α2, β)
15: γ1 = j1 + 1 +max{0, (k + j − j1 − q + 2)r}; γ2 = min{j + (k + 2)r, n}
16: A(γ1 :γ2, α1 :α2) = A(γ1 :γ2, α1 :α2)Q

j
k

17: end if
18: end for
19: end for

3 Parallelization

To develop a shared-memory implementation of the new algorithm we have to
decompose the five steps into independent tasks, map the tasks to threads, and
synchronize the threads to obey the dependencies. Moreover, we must balance
the workload to achieve high parallel efficiency.

3.1 Task Decomposition and Dependencies

Figure 2 illustrates all direct dependencies between the steps of four consecutive
iterations. The steps within one iteration are layed out horizontally. Note in
particular that the UR-step is not dependent on the PL-step and that the G-
step of the next iteration can start as soon as the PL-step of the current iteration
completes, which enables one level of look-ahead.

The polygons in Figure 2 must execute sequentially, and we therefore imple-
ment the computation as a loop, which we call the look-ahead loop, in which
each iteration corresponds to a polygon in Figure 2. The prologue and epilogue
polygons correspond to the computations before and after the look-ahead loop,
respectively. The steps PUR and PUL in the epilogue represent the union of PR

and UR and the union of PL and UL, respectively.
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Algorithm 3. (Update) Given a block Hessenberg matrix A ∈ R
n×n with r

nonzero subdiagonals, the following algorithm applies Qj
� for j = j1 :j1+q−1 to

both sides of A. This algorithm consists of four variants (PR, PL, UR, and UL).
Together they complete the updates that remain after Algorithm 2. The ranges
of rows and columns that are updated by the calling thread are r1 :r2 and c1 :c2,
respectively.

1: k1 = 1 +
⌊
n−j1−2

r

⌋
2: for k = k1 − 1:−1:0
3: for j = j1 :j1 + q − 1
4: α1 = j + kr + 1; α2 = min{α1 + r − 1, n}
5: if α2 − α1 + 1 ≥ 2 then
6: if variant is PR or UR then
7: if variant is PR then
8: γ1 = max{r1, j1 + (k + j − j1 − 2q + 2)r + 1}
9: γ2 = min{r2, j1 +max{0, (k + j − j1 − q + 2)r}}
10: else if variant is UR then
11: γ1 = max{r1, 1}
12: γ2 = min{r2, j1 + (k + j − j1 − 2q + 2)r}
13: end if
14: A(γ1 :γ2, α1 :α2) = A(γ1 :γ2, α1 :α2)Q

j
k

15: else if variant is PL or UL then
16: if variant is PL then
17: β1 = max{c1, j1 + q, j1 + q + (k − 1)r + 1}
18: β2 = min{c2, j1 + q + (k + q − 1)r}
19: else if variant is UL then
20: β1 = max{c1, j1 + q + (k + q − 1)r + 1}
21: β2 = min{c2, n}
22: end if
23: A(α1 :α2, β1 :β2) = (Qj

k)
TA(α1 :α2, β1 :β2)

24: end if
25: end if
26: end for
27: end for

3.2 Parallel Execution

Following the dependencies in Figure 2, we see that the PR-step must be
completed before either the PL-step or the UR-step starts, which implies a
barrier-style synchronization. Next, we could potentially do both PL and UR

concurrently. Heuristically, however, we would like to start the G-step as soon as
possible. Therefore, we compute the PL-step before starting the steps G and UR

in parallel. Note that the G-step must not start until PL has completed, but UR

can start at any time. Thus, the synchronization implied at this point is weaker
than a barrier. Proceeding to the UL-step, we see that both UR and PL must
be completed, which again implies a barrier-style synchronization. At the end
of the iteration there is a third and final barrier since all steps must complete
before the next iteration starts.
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G PUR PUL

Prologue
1st iteration

2nd iteration

3rd iteration

Epilogue

G PR PL UR UL

G PR PL UR UL

G PR PL UR UL

Fig. 2. Dependence graph for a problem consisting of four iterations (separated verti-
cally). The steps of one iteration are layed out horizontally. Polygons enclose the steps
within the prologue, epilogue, and look-ahead iterations, respectively.

The large number of barrier-style synchronization points, namely three per
iteration, makes it difficult to use dynamic scheduling with fine-grained tasks.
The reasons are that (i) fine-grained tasks cannot be executed as efficiently and
cause more overhead than large-grained tasks, and (ii) the barriers introduce
overhead due to idle processors/cores. We therefore use a model-driven dynamic
load-balancing scheme with coarse-grained tasks.

Task Mapping. We have chosen to execute the G-step on a single thread since
it is difficult to parallelize. The remaining steps are parallelized by partitioning
the rows and columns as described in Algorithm 3.

The main problem is how to map the tasks to the threads to minimize the
idle time caused by the synchronization points. Furthermore, thread p0 should
participate in (i) both UR and UL, (ii) only UL, or (iii) none of them. The choice
depends on the duration of the G-step. In Figure 3(a), the G-step is the limiting
factor and p0 should not take part in any update. In Figure 3(b), the G-step
finishes half-way into the UL-step and a (small) piece of the UL-step should
therefore be mapped to thread p0. In Figure 3(c), the G-step finishes before the
UR-step and now a (small) piece of UR as well as a (large) piece of UL should
be mapped to p0.

PR

PL

UR

UL

G

G

a) b) c)

G

Time

p0 p1 p2 p3 p4 p5 p6

Fig. 3. Three scenarios for parallel execution of one look-ahead iteration
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Dynamic Load Balancing. Given p threads and a step (PR, PL, UR, or UL),
we want to find a row/column partitioning corresponding to p tasks mapped to
p threads such that if thread pi starts executing its task at time ai, then all
threads finish their respective task at the same time.

Let f(x) be a function defined at the integer values x = 1:n such that f(x) is
the number of flops needed to update the entries on row/column x by the step
under consideration. Hence, the total number of flops is W =

∑n
x=1 f(x).

Suppose that pi executes its next task with an average speed of si flops/s.
Then, pi completes its task at time ti = ai + ωi/si, where ωi is the task’s flop
count. The optimal execution time, tmin, is obtained by solving

∫ x

0
s(t) dt = W

for x, where s(t) =
∑

ai≤t si. The optimal task flop counts are computed from
ωi = max{0, si(tmin−ai)}. Finally, a partitioning of the range 1:n is constructed

by solving
∑xi

x=1 f(x) =
∑i−1

j=0 ωj for xi where i = 1:p− 1. Using the convention
that x0 = 1 and xp = n+ 1, the partition mapped to pi is xi :xi+1 − 1.

The accuracy of the scheme above depends on how well we can guess the
speeds si. We adaptively model the speeds measuring the actual execution time
t̂i and using the estimate si = ωi/t̂i for the next iteration.

Synchronization. The many dependencies between steps (see Figure 2) sim-
plify the synchronization of threads. There are three barriers and one weaker
form of synchronization per iteration. A single mutex guards all the synchro-
nization variables, which consist of four task counters (one for each step except
G) and three condition variables (one for each of PR, PL, and UL). The counters
count the number of remaining tasks and the condition variables are signalled
when the corresponding counter reaches zero, which guarantees that the step is
complete.

4 Computational Experiments

Experiments were run on Akka at HPC2N. Akka is a cluster with dual Intel
Xeon L5420 nodes (4 cores per socket) with a double precision theoretical peak
performance of 80 Gflops/s (10 Gflops/s per core and 8 cores in total).

We compare four different implementations to demonstrate the impact of
various aspects of our implementation. The first is an implementation of Algo-
rithm 1 which we labeled Unblocked. The second, labeled Basic, is a variant
of our blocked algorithm without both look-ahead and adaptive modeling of
the speeds. The third, labeled Basic + Adapt, includes adaptive modeling. The
fourth implementation, labeled Look-ahead + Adapt, includes both look-ahead
and adaptive modeling.

The unblocked implementation is sequential while the others are parallel. All
parallel executions use one thread per core (8 threads in total). We performed
each experiment twice and selected the shortest execution time.

The performance, which we calculate as 2n3/t where t is the execution time,
is illustrated in Figure 4. As expected, the unblocked implementation is quite
slow since it is sequential and causes a lot of (redundant) memory traffic. The
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Fig. 4. Performance (r = 12, q = 16)
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most advanced implementation, Look-ahead + Adapt, comes out on top and
peaks close to 15 Gflops/s (19% of the theoretical peak). The corresponding
speedups over Unblocked are shown in Figure 5. The look-ahead technique adds
a significant performance boost (15–50%) as shown in Figure 5.

The idle time gets substantially reduced by the addition of adaptation and the
look-ahead implementation incurs relatively small amounts of idle time. Figure 6
illustrates this by showing the measured idle time per iteration for a problem
with n = 3000, r = 12, and q = 16. The improvements obtained when going
from Basic to Basic + Adapt are obvious. However, it is not possible to isolate
the effect of the adaptive modeling in the look-ahead implementation since the
adaptation is an integral part of the look-ahead approach (see Figure 3).

The partial trace in Figure 7 demonstrates that the load-balancing scheme
works in practice. Note that all threads arrive almost simultaneously at all syn-
chronization points (see Section 3.2). Moreover, the size of the tasks mapped to
p0 adapts to the time it takes to complete the G-step.
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The load-balancing scheme estimates the per-thread speed of each kernel.
Initially, no reliable estimates are available and this causes the idle time visible
just prior to the 0.2s mark in Figure 7. The difficulty is that the predicted time
for the first UR-step (guessed speed) cannot be related to the predicted time for
the second G-step (reliably adapted speed) and hence thread p0 is assigned a
disproportionally large chunk of the UR-step. Note, however, that the adaptation
model solves this problem already after the first iteration.

5 Conclusion

We have presented a new blocked high-performance shared-memory implementa-
tion of a Householder-based algorithm for reduction from block Hessenberg form
to Hessenberg form. The implementation delays updates and applies them cache-
efficiently in parallel. One level of look-ahead in conjunction with an adaptive
coarse-grained load-balancing scheme significantly improves the performance. A
performance of 15 Gflops/s (19% of the theoretical peak) has been observed on
a dual quad-core machine. This corresponds to a speedup close to 13 over a
sequential unblocked algorithm.
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5.1 Related Work

A different approach to increase the arithmetic intensity of the reduction from
block Hessenberg form to Hessenberg form is presented in [6]. A sliding com-
putational window is employed to obtain a set of reflections while at the same
time delaying most of the updates. The off-diagonal blocks are then updated
efficiently. However, the focus in [6] is on algorithms which are theoretically
I/O-efficient and it is also primarily concerned with efficiency in the asymptotic
sense. Specifically, the proposed blocking appears to be impractical for matrices
that fit entirely in main memory since the computational window would have to
be relatively large in order to obtain even modest improvements to the arithmetic
intensity.
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Abstract. The paper considers the use of cache-oblivious algorithms
and matrix formats for computations on interval matrices. We show how
the efficient use of cache is of less importance in interval computations
than in traditional floating-point ones. For interval matrices there are
more important factors, like the number of rounding modes switches or
the number of times we have to check if an interval contains zero or not.
Yet the use of cache still plays some role.
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1 Introduction

In recent years cache oblivious matrix formats have been intensively studied
(see e.g. [8], [5], [3], [9], [10]) and resulted in several useful approaches, like
the Rectangular Full Packed Format (RFP), Recursive Packed Format (RPF),
Z-order format, etc. The most basic idea is – crudely speaking – to support
recursive algorithms that split a matrix into submatrices subsequently [7], [5].

Very little effort on the other hand was put in studying such formats for
interval matrices; the only known exception is the Master’s thesis of the first au-
thor [4]. For example, the popular C-XSC interval library [1] uses only the sim-
plest representation, storing all elements of a matrix row-by-row. On the other
hand, the Profil/BIAS library [16] provides Basic Interval Arithmetic Operations
(analogously to BLAS) for matrices and they do not make use of cache-oblivious
formats. In this paper, we investigate the use of recursive algorithms together
with cache-oblivious matrix formats in order to improve the performance and
caching efficiency in interval arithmetic.

It might seem the formats and algorithms that are useful for floating-point ma-
trices should be useful for matrices containing elements from any other domain.
The aim of this paper is to investigate the usefulness of some of the common
matrix formats and a few new ones for interval matrix multiplication.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 269–279, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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2 Interval Computations

Interval computations (see, e.g., [11], [12], [14] and other textbooks) find appli-
cations in several branches of engineering, applied mathematics, control theory,
economical sciences, physics, etc.

The most basic tool is interval arithmetic, i.e. arithmetic operations (and
other basic operations) defined on intervals instead of numbers. Such operations
should fulfill the following condition.

Assume we have two intervals: a = [a, a], b = [b, b], where a, a, b, b ∈ R.
Assume, we have an arithmetic operator � ∈ {+,−, ·, /}.

Then:

a ∈ a, b ∈ b ⇒ a� b ∈ a� b . (1)

The arithmetic operations, satisfying (1) may be formulated as follows:

[a, a] + [b, b] = [a+ b, a+ b] ,

[a, a]− [b, b] = [a− b, a− b] , (2)

[a, a] · [b, b] = [min(ab, ab, ab, ab),max(ab, ab, ab, ab)] ,

[a, a] / [b, b] = [a, a] · [1 / b, 1 / b] , 0 /∈ [b, b] .

To make sure we enclose the actual result of the operation, the lower bound of
the interval is rounded downwards and the upper bound upwards.

3 Specific Features of Interval Arithmetic

The arithmetic defined by formulae (2) has several interesting and counter-
intuitive features. In contrast to real numbers, intervals do not form a ring nor
even a group (neither addition nor multiplication of intervals are invertible). In
particular, [a, b]− [a, b] is not necessarily equal to zero, but:

[a, b]− [a, b] = [a− b, b− a] , (3)

which always contains zero, but is equal to zero only when a = b. In general:
when an interval expression contains the same term a few times, it is likely to
be overestimated.

Similarly, the multiplication is not distributive with respect to addition (it is
subdistributive only, i.e. a · (b+ c) ⊆ ab+ ac). Obviously, for both variants the
true result will be enclosed, but the overestimation may be different.

We can say that issues with accuracy of floating-point operations are raised
to a new level for interval computations. For the floating-point, the numerical
inaccuracies are usually very small (unless the problem is ill-conditioned) and for
interval computations the diameters of initial intervals may be large already. This
makes some linear transformations very significant, e.g., the Strassen algorithm
applied to interval matrices computes very overestimated results (as it will be
discussed in Section 7).
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Please note also that the multiplication as defined by (2) is a particularly
costly operation – the operations necessary to multiply two intervals are at least
8 floating-point multiplications (4 in the downwards rounding mode and 4 in the
upwards one), a min() and a max() operation and some switching of the rounding
mode. According to [16] in the Profil/BIAS library a different procedure is used
to multiply intervals. It can be described by the following pseudocode:

if a ≥ 0 then

if b ≥ 0 then [c, c] = [ab, ab];

if b ≤ 0 then [c, c] = [ab, ab];

else [c, c] = [ab, ab];
if a ≤ 0 then

if b ≥ 0 then [c, c] = [ab, ab];

if b ≤ 0 then [c, c] = [ab, ab];

else [c, c] = [ab, ab];
else

if b ≥ 0 then [c, c] = [ab, ab];

if b ≤ 0 then [c, c] = [ab, ab];
else

if ab < ab then c = ab;
else c = ab;

if ab > ab then c = ab;

else c = ab;

This procedure reduces the required number of floating-point multiplications.
Note that for this algorithm the number of floating-point operations depends
heavily on operands values; the most expensive case is when they both con-
tain zero. This implies that when considering the efficiency of interval opera-
tions there can be more important factors than proper caching – the number
of floating-point operations (comparisons, multiplications, etc.) can be higher or
lower.

Finally, as mentioned in Section 2, interval arithmetic requires switching the
rounding modes of the processor. This operation – rarely used for floating-point
computations – is also time consuming.

Opposite Trick. To reduce the number of rounding mode switches a special rep-
resentation of an interval was proposed by some authors (see, e.g., [6]): storing
an interval [a, b] as a record 〈−a, b〉. Thanks to the new representation, all oper-
ations can be done with the upwards rounding mode (rounding −a upwards is
equivalent to rounding a downwards). It is called an “opposite trick”.

4 Interval Linear Algebra

Linear algebra operations are commonly used in interval algorithms (see [11],
[12], [14]). One important is solving systems of linear equations Ax = b, where
A is an interval matrix and b is an interval vector. Such systems arise from
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linearization of nonlinear equation systems (e.g., the interval Newton operator
in global optimization) and in problems with uncertain parameters.

Methods of solving such systems (often quite different from methods for non-
interval parameters) are out of the scope of this paper (see, e.g., [12], [14]), but
a tool they commonly use is – as for non-interval methods – multiplication of
two matrices.

Multiplication of two matrices (of numbers, intervals or yet other objects)
requires multiplications and additions of their elements (and some intermediate
terms, possibly). As it was discussed in Section 2, multiplication of interval quan-
tities is time consuming, which makes matrix multiplication even more costly.
This makes several acceleration or rationalization tools very welcome or even
necessary. Indeed, available interval packages do not multiply matrices naively,
but try to execute this operation in a more efficient way.

4.1 Profil/BIAS

This package decomposes the process of multiplication by an interval matrix to
several multiplications by its elements. This approach – completely improper for
numbers – is a quite good solution for intervals. It allows to check the sign of
interval bounds only once – as in the pseudocode at the end of Section 2 – and
multiply the whole matrix without checking it again.

4.2 C-XSC

Until recently, the XSC package offered only naive matrix multiplication. More-
over, a long accumulator was used to store partial results of the product – to
execute the calculations with highest possible accuracy. Consequently, matrix
multiplication was very precise, but very slow, also.

From version 2.3.0 the package started offering the DotK algorithm [17], which
uses the error-free transformation to compute dot products of vectors exactly.
The algorithm is quite efficient when implemented properly (at least on some
architectures) and probably it will be included in a future IEEE standard for
interval arithmetic [18].

Rump Algorithm. A yet more recent addition (from version 2.4.0) to XSC li-
braries is the possibility of using the Rump algorithm [19] for matrix multiplica-
tion. This algorithm requires a matrix in the midpoint-radius representation, i.e.
each interval is represented by a midpoint-radius pair, instead of a pair of end
points. This representation allows reducing the problem of interval matrix mul-
tiplication to four floating-point matrix multiplications with upwards rounding
only.

By this virtue, we can set the proper rounding mode and use the highly
optimized BLAS routines to multiply the matrices. Obviously, matrices have to
be transformed to the midpoint-radius representation and then back again.

The possibility of using BLAS routines comes however at a yet much higher
price: the result of the operation in the midpoint-radius representation is highly
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overestimated – up to the factor of 1.5. Therefore, the use of the Rump algorithm
with BLAS routines is a difficult design decision – it is neither the only option
nor the default one. In the authors’ opinion, the choice of DotK algorithm is
superior and this should be even more true for future architectures as there
might be hardware support for the exact dot product operation (see, e.g., [13],
[18]).

Recently, Nguyen [15] proposed an alternative to the Rump algorithm that
requires 9 floating-point matrix multiplications, but the overestimation factor is
bounded by 1.18.

Algorithm variants, described in this paragraph will not be considered in
the remainder of the paper. Their comparison may be an interesting subject of
further research.

4.3 New Possibilities

Both packages offer some optimized procedures to multiply interval matrices.
However both of them are far from being optimal as none of them considers
making efficient use of the cache. Following [4] we are going to adapt cache-
oblivious matrix formats to interval matrices.

As it was already mentioned, these formats and algorithms will not be identical
to the ones used for floating-point matrices as they have to take checking sign
and switching the rounding mode into account. In addition, for interval matrices
we may have a trade-off: the algorithm can compute the result more efficiently,
but less accurately or vice-versa [4].

5 Considered Formats

This section presents selected possibilities of applying cache-oblivious formats
to interval matrices. More considerations and extensive results can be found in
[4].

The following traditional matrix formats will be investigated for the interval
content: Z-order, RBR and RPF (Fig. 1).

Also, we consider some ideas specific for interval computations:

– the “opposite trick”, mentioned in Section 3, i.e. storing an interval [a, b] as
a record 〈−a, b〉 [6],

– separate matrices of lower and upper endpoints,
– interval Strassen algorithm (the Winograd version) [2].

Several tests have been executed for different combinations of algorithm features.
For recursive formats, the used algorithms are recursive, too, obviously. The

recursion is terminated for sufficiently small blocks, which is 64 for the Z-order
format and 100 – for other formats. According to [4], these block sizes were close
to optimal. Investigation of other block sizes and exploration of the space of
algorithms’ other parameters may be subject to further research.
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Fig. 1. Matrices in Z-order Format, Row-wise Block-Recursive Format (RBR) and
Recursive Packed Format (RPF)

6 The Configuration Used for Experiments

All computational experiments were performed on a machine with Intel Core 2
Duo processor (2 GHz) with 3 GB of memory and the following caches:

– two L1 caches, 32 KB each,
– an L2 cache of 4096 KB.

The line length was 64 bytes in both cases. The computer worked under su-
pervision of a Linux operating system – openSUSE 11.0. All algorithms were
implemented in C++, using the Profil/BIAS library for interval arithmetic op-
erations. Changing the rounding modes was done in a way known from BIAS
routines [4], i.e. using asm volatile ("fldcw BiasCwRoundDown") and asm

volatile ("fldcw BiasCwRoundUp") assembler calls, passing proper copro-
cessor control words.

7 Selected Experiments and Results

First, we present the comparison of variants using the “opposite trick” or not
in the multiplication algorithm used in the Profil/BIAS package (see Subsection
4.1). The comparison is presented in Figure 2. The notation is as follows:

– Profil/BIAS 1 – the traditional interval representation with matrices con-
taining zero in all elements,

– Profil/BIAS 1OT – the “opposite trick” interval representation with matrices
containing zero in all elements,

– Profil/BIAS 2 – the traditional interval representation with purely positive
matrices,

– Profil/BIAS 2OT – the “opposite trick” interval representation with purely
positive matrices.

Clearly, use of the opposite trick results in significant speedup.
But for what multiplication algorithms (and what matrix formats) should it be

used to optimize the performance? Let us compare the traditional Profil/BIAS
algorithm with the Z-order.
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Fig. 2. Comparison of Profil/BIAS algorithms using traditional and “opposite trick”
interval representations

Here we use the following notation:

– Profil/BIAS 1OT – the row-major order and matrices containing zero in all
elements (non-recursive algorithm),

– Z-order 1OT – the Z-order format and matrices containing zero in all ele-
ments (recursive algorithm),

– Profil/BIAS 2 – the row-major order and purely positive matrices (non-
recursive algorithm),

– Z-order 2OT – the Z-order format and purely positive matrices (recursive
algorithm).
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Fig. 3. Comparison of Profil/BIAS algorithms using “opposite trick” interval
representation on row-major order and Z-order format
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According to Figure 3, matrix multiplication was slightly slower with Z-order
than with Profil/BIAS for matrices containing 0 and slightly faster for purely
positive matrices.

For the RPF format two variants of the multiplication procedure have been
investigated:

– RPF-1 – recursion is used only for triangular submatrices,
– RPF-2 – recursion is used for both triangular and rectangular submatrices.

The comparison with each other and with alternative tools is presented in
Figure 4.

The results in Figure 4 show that the Profil/BIAS routine and the RPF-1
format are much slower than the RPF-2 and the RBR formats. This shows that
recursion is crucial for the efficiency of this operation, but specific reasons of this
phenomenon are uncertain.

3000x3000 3500x3500 4000x4000 4500x4500 5000x5000

10
2

matrix nxn

ex
ec

u
ti

o
n

 t
im

e[
s]

RPF−1
RPF−2
Profil/Bias
Block−Recursive

Fig. 4. Comparison of algorithms using RPF, Block-Recursive Format and Profil/BIAS
method with “opposite trick”

Yet another representation was considered – two distinct matrices of lower and
upper bounds stored separately. All matrices and interval matrices are stored in
RBR format. Matrix multiplications are applied in a blocked recursive manner.
Figure 5 presents results for the following variants of the separation strategy (for
matrices containing zeros):

– Standard – using standard interval format forA, B and C without separation,
– Sep-1 – using distinct matrices of upper and lower bounds for matrices A,
B and C; lower and upper bounds for matrix C are computed at the same
time,

– Sep-2 – using distinct matrices of upper and lower bounds for C only; A and
B are stored in standard interval format without separation; lower bounds
on all elements of C are computed, then all upper bounds,

– Sep-3 – using distinct matrices of upper and lower bounds for A, B and C;
lower bounds on all elements of C are computed, then all upper bounds.
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Fig. 5. Results for separate matrices of lower and upper bounds

Figure 5 clearly shows that versions using distinct matrices of upper and lower
bounds were slow – at least for matrices containing zeros. Apparently, such a
separation requires too many reads from the memory.

Please note that computing lower and upper bounds at the same time (Sep-1)
was slower than computing all lower bounds and then all upper bounds (Sep-2
and Sep-3), so minimizing the number of the rounding mode switches is impor-
tant. Yet the idea of separating matrices in the memory occurred to be inefficient;
the version when only matrix C is stored in this way (Sep-2) is more efficient
than the version storing all three matrices as pairs of boundary matrices (Sep-
3). And the version using no separation at all (Standard) is the most efficient.
Apparently, the caching penalty is more important than the speedup related to
smaller number of rounding mode switches.

The last version to be tested is the interval Winograd (Strassen) algorithm
[2]. Figure 6 compares it with the standard recursive algorithm using rectangu-
lar block-recursive data format. Clearly, the Strassen algorithm is less efficient.
According to [4], it is less accurate, also. Even for floating-point arithmetic, the
Strassen algorithm happens to be numerically inaccurate; features of interval
arithmetic (see Section 3) result in highly overestimated (and thus poor) results
for this method.

It occurs that the efficient use of cache is significant only when other problems
are solved:

– In particular when the “opposite trick” is used.
– For purely positive (or purely negative) matrices caching is more efficient

than for the ones that contain zeros.

The interval Strassen algorithm results in overestimated results (dependency
problem) and was not efficient either (Figure 6).
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Fig. 6. Results for the interval Strassen algorithm

8 Conclusions

Efficiently and accurately computing the multiplication of interval matrices is a
more difficult problem than this operation for floating-point matrices. Commonly
used interval libraries try to optimize this operation. The procedures of BIAS –
thanks to being somewhat optimized – allow doing this operation far quicker
than by naive calculations (see discussion in Section 4), but they do not take
caching effects into account.

It turns out that, as caching is not as important for interval matrix multipli-
cation as it is for floating-point matrices, it can still improve the performance
of computations. The improvement varied between a few and about 30% (e.g.
Figure 4).

Unfortunately, the main hopes of the authors that were to use these formats in
interval global optimization algorithms failed. The importance of proper caching
becomes noticeable only for matrix sizes far larger than the ones resulting from
global optimization problems that are tractable for present algorithms and com-
puters. Nevertheless, for solving large linear systems with interval parameters
the proposed formats are going to be very useful.

Comparing the results of the presented algorithms with the methods of Rump
or Nguyen and the ones based on error-free transformations might be an
interesting subject of future research.
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9. Gustavson, F.G., Waśniewski, J.: Rectangular Full Packed Format for LAPACKAl-
gorithms Timings on Several Computers. In: K̊agström, B., Elmroth, E., Dongarra,
J., Waśniewski, J. (eds.) PARA 2006. LNCS, vol. 4699, pp. 570–579. Springer,
Heidelberg (2007)

10. Gustavson, F.G., Wasniewski, J., Dongarra, J.J., Langou, J.: Rectangular full
packed format for Cholesky’s algorithm: factorization, solution, and inversion.
ACM Trans. Math. Soft. 37(2), article no. 18 (2010)

11. Hansen, E., Walster, W.: Global Optimization Using Interval Analysis. Marcel
Dekker, New York (2004)

12. Kearfott, R.B.: Rigorous Global Search: Continuous Problems. Kluwer, Dordrecht
(1996)

13. Kulisch, U.: Very fast and exact accumulation of products. Computing 91, 397–405
(2011)

14. Neumaier, A.: Interval Methods for Systems of Equations. Cambridge University
Press, Cambridge (1990)

15. Nguyen, H.D.: Efficient Implementation of Interval Matrix Multiplication. In:
Jónasson, K. (ed.) PARA 2010, Part II. LNCS, vol. 7134, pp. 179–188. Springer,
Heidelberg (2012)
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Abstract. ScaLAPACK contains a pair of routines for solving systems
which are narrow banded and diagonally dominant by rows. Mathema-
tically, the algorithm is block cyclic reduction. The ScaLAPACK im-
plementation can be improved using incomplete, rather than complete
block cyclic reduction. If the matrix is strictly dominant by rows, then
the truncation error can be bounded directly in terms of the dominance
factor and the size of the partitions. Our analysis includes new results
applicable in our ongoing work of developing an efficient parallel solver.
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cyclic reduction, parallel algorithms, ScaLAPACK.

1 Introduction

Let A = [aij ] be a real n by n matrix and consider the solution of the linear
system

Ax = f,

where f ∈ R
n. The matrix A is banded with bandwidth 2k + 1 if

|i− j| > k ⇒ aij = 0.

The matrix A is diagonally dominant by rows if |aii| ≥ ∑
j 
=i |aij | for all i. If

the inequality is sharp, then A is strictly diagonally dominant by rows. If A is
diagonally dominant by rows and nonsingular, then aii �= 0 and the dominance
factor ε is defined by

ε = max
i

⎧⎨⎩ 1

|aii|
∑
j 
=i

|aij |
⎫⎬⎭ ∈ [0, 1].

Narrow banded linear systems which are strictly diagonally dominant can be
found throughout the physical sciences. In particular, the solution of parabolic
PDEs using compact finite difference methods is a rich source of examples.

In general, we cannot assume ε � 1. However, in this paper we argue that
if ε is not too close to 1, then incomplete cyclic reduction becomes a viable

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 280–290, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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alternative to the ScaLAPACK algorithm [2], which is a special case of block
cyclic reduction.

We begin by stating a few results on matrices which are strictly diagonally
dominant by rows in Section 2. We review the cyclic reduction algorithm by R.
W. Hockney and G. H. Golub [4] and provide an elementary extension of a result
by Heller [3] in Section 3. We state and prove our main results in Section 4.

This paper builds on the analysis of the truncated SPIKE algorithm by
Mikkelsen and Manguoglu [5] and it requires a good understanding of the rou-
tines PDDBTRF/PDDBTRS [2,1] from ScaLAPACK, as well as the work of
Heller [3]. The truncated SPIKE algorithm (introduced by Polizzi and Sameh
[6,7]) also applies to systems which are banded and strictly diagonally dominant
by rows.

2 Basic Properties

The following results (proved in [5]) are central to our analysis.

Lemma 1. Let A be an m by m matrix which is strictly diagonally dominant by
rows with dominance factor ε. Let A = LU be the LU factorization of A. Then
U is strictly diagonally dominant by rows and εU , the dominance factor of U ,
satisfies εU ≤ ε.

Lemma 2. Let A be an m by m matrix and let B be an m by n matrix such
that [A,B] is strictly diagonally dominant by rows with dominance factor ε. Then
C = [I, A−1B] is strictly diagonally dominant by rows and εC , the dominance
factor of C, satisfies εC ≤ ε.

Lemma 3. Let A be a banded matrix with bandwidth 2k + 1 which is strictly
diagonally dominant by rows with dominance factor ε, and let A be partitioned
in the block tridiagonal form

A =

⎡⎢⎢⎢⎢⎣
D1 F1

E2
. . .

. . .

. . .
. . . Fm−1

Em Dm

⎤⎥⎥⎥⎥⎦ (1)

with block size μ = qk for an integer q > 0. Moreover, let
[
Ui Vi

]
be the solution

of the linear system
Di

[
Ui Vi

]
=
[
Ei Fi

]
,

where E1, U1, Fm, and Vm are undefined and should be treated as zero, and let

Ui =
(
UT
i,1, U

T
i,2, . . . , U

T
i,q

)T
, Vi =

(
V T
i,1, V

T
i,2, . . . , V

T
i,q

)T
be a partitioning of Ui and Vi into blocks each consisting of k rows. Then

‖Ui,j‖∞ ≤ εj , ‖Vi,j‖∞ ≤ εq−(j−1), j = 1, 2, . . . , q.
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3 Block Cyclic Reduction

Mathematically, the algorithm used by PDDBTRF/PDDBTRS is a special case
of block cyclic reduction [4] which we briefly review below. In addition, we present
an extension of a relevant result by D. Heller on incomplete block cyclic reduction
[3].

Let A be an m by m block tridiagonal matrix in the form (1) which is also
strictly diagonally dominant by rows, and let D be the matrix given by

D = diag(D1, D2, . . . , Dm)

and consider the auxiliary matrix B defined by

B = D−1(A−D) =

⎡⎢⎢⎢⎢⎢⎢⎣

0 D−1
1 F1

D−1
2 E2 0 D−1

2 F2

D−1
3 E3

. . .
. . .

. . .
. . . D−1

m−1Fm−1

D−1
m Em 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

The norm of the matrix B measures the significance of the off diagonal blocks of
A. Specifically, let f ∈ R

n and let x and y be the solutions of the linear systems

Ax = f, Dy = f.

Then,

x− y = x−D−1Ax = (I −D−1A)x = D−1(D −A)x = −Bx,
which for all x �= 0 implies that

‖x− y‖∞
‖x‖∞ ≤ ‖B‖∞.

Therefore, if ‖B‖∞ is sufficiently small, then y is a good approximation of x.
The linear systems Diyi = fi, i = 1, 2, . . . ,m can be solved concurrently on
different processors without any communication. Therefore, the block diagonal
linear system Dy = f is even more suitable for parallel computing than the
original linear system Ax = f .

We illustrate block cyclic reduction in the case of m = 7. Let P denote the
matrix which represents the usual odd-even permutation σ of the blocks, i.e.

σ = (1, 3, 5, 7, 2, 4, 6),

and define A′ by

A′ := PAPT =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 F1

D3 E3 F3

D5 E5 F5

D7 E7

E2 F2 D2

E4 F4 D4

E6 F6 D6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

[
A′

11 A
′
12

A′
21 A

′
22

]
.
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The Schur complement of A′ is the block tridiagonal matrix A(1) given by

A(1) := A′
11 −A′

21A
′−1
22 A

′
12 =

⎡⎢⎣D
(1)
1 F

(1)
1

E
(1)
2 D

(1)
2 F

(1)
2

E
(1)
3 D

(1)
3

⎤⎥⎦ ,
where

D
(1)
i = D2i − E2iD

−1
2i−1F2i−1 − F2iD

−1
2i+1E2i+1

and
E

(1)
i = −E2iD

−1
2i−1E2i−1, F

(1)
i = −F2iD

−1
2i+1F2i+1.

Heller [3] showed that if A is strictly diagonally dominant by rows, then block
cyclic reduction is well defined and the new auxiliary matrix

B(1) = D(1)−1
(A(1) −D(1)),

with D(1) = diag(D
(1)
1 , D

(1)
2 , D

(1)
3 ), satisfies

‖B(1)‖∞ ≤ ‖B2‖∞ ≤ ‖B‖2∞.

In addition, Heller [3] showed that if A is strictly diagonally dominant by rows,
then the initial matrix B satisfies ‖B‖∞ < 1 and the significance of the off
diagonal blocks decays quadratically to zero.

We have found that it is possible to explicitly incorporate the dominance
factor into the analysis. For the sake of notational simplicity we define Ui and
Vi as the solution of the linear system

Di

[
Ui Vi

]
=
[
Ei Fi

]
,

where E1, U1, Fm, and Vm are undefined and should be treated as zero. It follows
that

‖B(1)‖∞ = max ‖Zi‖∞,
where

Zi = (I − U2iV2i−1 − V2iU2i+1)
−1 [U2iU2i−1, V2iV2i+1] .

Therefore,

Zi =
[
U2i V2i

] [V2i−1

U2i+1

]
Zi +

[
U2i V2i

] [U2i−1 0
0 V2i+1

]
=
[
U2i V2i

] [ V2i−1 U2i−1 0
U2i+1 0 V2i+1

] [
Zi

I

]
.

The right hand side can be estimated using Lemma 2. We have

‖Zi‖∞ ≤ ε2 max{‖Zi‖∞, 1}. (2)

However, if we assume ‖Zi‖∞ ≥ 1, then (2) reduces to

‖Zi‖∞ ≤ ε2‖Zi‖∞
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which forces the contradiction ‖Zi‖∞ = 0, simply because ε < 1. Therefore,
‖Zi‖∞ < 1, which inserted into (2) yields

‖Zi‖∞ ≤ ε2.

It follows, that
‖B(1)‖∞ ≤ ε2. (3)

This estimate is tight and equality is achieved for matrices of the form

A =

⎡⎢⎢⎢⎢⎣
Ik εIk

. . .
. . .

. . . εIk
Ik

⎤⎥⎥⎥⎥⎦ .

4 Preliminary Analysis of the ScaLAPACK Routine
PDDBTRF

The ScaLAPACK routine PDDBTRF can be used to obtain a factorization of a
narrow banded matrix A which is diagonally dominant by rows, [1].

Mathematically, the algorithm is block cyclic reduction applied to a special
partitioning of the matrix, which is designed to exploit the banded structure.
Specifically, the odd numbered blocks are very large, say, of dimension μ = qk,
where q � 1 is a large positive integer, while the even numbered blocks have
dimension k.

The large odd numbered diagonal blocks can be factored in parallel without
any communication. It is the construction and factorization of the Schur comple-
ment A(1) which represents the parallel bottleneck. Obviously, the factorization
can be accelerated, whenever the off diagonal blocks can be ignored. Now, while
we do inherit the estimate

‖B(1)‖∞ ≤ ε2

from the previous analysis, this estimate does not take the banded structure into
account. We have the following theorem.

Theorem 1. Let A be a tridiagonal matrix which is strictly diagonally domi-
nant by rows.Then the significance of the off diagonal blocks of the initial Schur
complement is bounded by

‖B(1)‖∞ ≤ ε1+q.

Proof. We must show that Zi given by

Zi = (I − U2iV2i−1 − V2iU2i+1)
−1 [U2iU2i−1, V2iV2i+1]

satisfies
‖Zi‖∞ ≤ ε1+q.
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We solve this optimization problem by partitioning it into two subproblems,
which can be solved by induction.

We begin by making the following very general estimate

‖Zi‖∞ ≤ ‖U2i‖∞‖U (b)
2i−1‖∞ + ‖V2i‖∞‖V (t)

2i+1‖∞
1− ‖U2i‖∞‖V (b)

2i−1‖∞ − ‖V2i‖∞‖U (t)
2i+1‖∞

,

where the notation U (t) (U (b)) is used to identify the matrix consisting of the
top (bottom) k rows of the matrix U . This estimate is easy to verify, but it relies
on the zero structure of the matrices U2i and V2i. Now, let

α = ‖U (b)
2i−1‖∞, β = ‖V (b)

2i−1‖∞, γ = ‖U (t)
2i+1‖∞, δ = ‖V (t)

2i+1‖∞,

and define an auxiliary function

g(x, y) =
αx + δy

1− βx− γy
,

where the appropriate domain will be determined shortly. If

x = ‖U2i‖∞, y = ‖V2i‖∞
then by design

‖Zi‖∞ ≤ g(x, y).

In general, Lemma 1 implies that

‖[U2i, V2i]‖∞ ≤ ε

but in the current case of k = 1, this follows directly from the definition of strict
diagonal dominance. Regardless, we see that the natural domain for g is the
closure of the set Ω given by

Ω = {(x, y) ∈ R
2 : 0 < x ∧ 0 < y ∧ x+ y < ε}.

It suffices to show that g(x, y) ≤ εq for all (x, y) ∈ Ω̄. It is clear, that g is well
defined and g ∈ C∞(Ω̄), simply because β ≤ ε, γ ≤ ε and ε < 1, so that we
never divide by zero.

Now, does g assume its maximum within Ω? We seek out any stationary
points. We have

∂g

∂x
(x, y) =

α− (αγ − βδ)y

(1− βx− γy)2
, and

∂g

∂y
(x, y) =

δ + (αγ − βδ)x

(1− βx− γy)2
.

Therefore, there are now two distinct scenarios, namely

αγ − βδ = 0 or αγ − βδ �= 0.
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If αγ − βδ = 0, then there are no stationary points, unless α = δ = 0, in which
case g ≡ 0 and there is nothing to prove. If αγ − βδ �= 0, then

(x0, y0) =

(
α

αγ − βδ
,− δ

αγ − βδ

)
is the only candidate, but (x0, y0) �∈ Ω, simply because

x0y0 = − αδ

(αγ − βδ)2
≤ 0

is not strictly positive. In both cases, we conclude that the global maximum for
g is assumed on the boundary of Ω.

The boundary of Ω consists of three line segments. We examine them one at
a time. We begin by defining

g1(y) = g(0, y) =
δy

1− γy
, y ∈ [0, ε].

Then

g′1(y) =
δ(1− γy)− δy(−γ)

(1− γy)2
=

δ

(1 − γy)2
≥ 0

and we conclude that

g1(y) ≤ g1(ε) = g(0, ε) =
δε

1− γε
.

Similarly, we define

g2(x) = g(x, 0) =
αx

1− βx
, x ∈ [0, ε].

Then

g′2(x) =
α(1 − βx)− αx(−β)

(1− βx)2
=

α

(1 − βx)2
≥ 0

which allows us to conclude that

g2(x) ≤ g2(ε) =
εα

1− εβ
.

Finally, we let s ∈ [0, ε] and define

g3(s) = g(s, ε− s) =
αs+ δ(ε − s)

1− βs− γ(ε− s)
=

(α− δ)s+ δε

1− γε− (β − γ)s
.

Then

g′3(s) =
(α− δ)(1− γε) + δε(β − γ)

(1− γε− (β − γ)s)2
.

Therefore, g3 is either a constant or strictly monotone. In either case

g3(s) ≤ max{g3(0), g3(ε)}.
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We can now conclude that for all (x, y) ∈ Ω̄ : g(x, y) ≤ max{g(ε, 0), g(0, ε)}.We
will only show that

g(ε, 0) =
αε

1− βε
=

ε‖U (b)
2i−1‖∞

1− ε‖V (b)
2i−1‖∞

≤ ε1+q

simply because the other case is similar. The proof is by induction on q, i.e. the
size of the odd numbered partitions. Let⎡⎢⎢⎢⎣

c1 a1 b1
c2 a2 b2

. . .
. . .

. . .

cq aq bq

⎤⎥⎥⎥⎦
be a representation of the (2i − 1)th block row of the original matrix A. Using
Gaussian elimination without pivoting we obtain the matrix⎡⎢⎢⎢⎢⎢⎣

c′1 a′1 b′1
c′2 a′2 b2
c′3 a′3 b3
...

. . .
. . .

c′q a′q bq

⎤⎥⎥⎥⎥⎥⎦ .
Now, let V be the set given by

V =

{
j ∈ {1, 2, . . . , q} :

ε|c′j|/|a′j |
1− ε|bj |/|a′j|

≤ ε1+j , j = 1, 2, . . . , q

}
.

We claim that V = {1, 2, . . . , q}. We begin by showing that 1 ∈ V . Let

x = |c′1|/|a′1|, y = |b1|/|a′1|.
Then (x, y) ∈ Ω̄ and it is straightforward to show that

εx

1− εy
≤ ε2.

Now, suppose that j ∈ V for some j < q. Does j + 1 ∈ V ? We have

a′j+1 = aj+1 − cj+1
bj
a′j
, c′j+1 = −cj+1

c′j
a′j
,

which implies

ε|c′j+1|/|a′j+1|
1− ε|bj+1|/|a′j+1|

=
ε|c′j+1|

|a′j+1| − ε|bj+1| =
ε|cj+1|(|c′j |/|a′j|)

|aj+1 − cj+1(bj/a′j)| − ε|bj+1|

≤ ε|cj+1|(|c′j |/|a′j|)
|aj+1| − |cj+1||bj |/|a′j | − ε|bj+1|

=
ε(|cj+1|/|aj+1|)(|c′j |/|a′j |)

1− (|cj+1|/|aj+1|)(|bj |/|a′j|)− ε(|bj+1|/|aj+1|) .
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We simplify the notation by introducing

ν = |c′j |/|a′j |, μ = |bj|/|a′j |, x = |cj+1|/|aj+1|, y = |bj+1|/|aj+1|,

and defining

h(x, y) =
εxν

1− xμ− εy
.

By the strict diagonal dominance of A, we have (x, y) ∈ Ω̄ and it is easy to see
that h(x, y) ≤ h(ε, 0). Therefore

εxν

1− xμ− εy
≤ ε2ν

1− εμ
= ε

(
εν

1− εμ

)
≤ ε · ε1+j = ε1+(j+1)

and j + 1 ∈ V . By the well ordering principle, V = {1, 2, . . . , q}.
In view of Theorem 1 we make the following conjecture.

Conjecture 1. The auxiliary matrix corresponding to the initial Schur comple-
ment generated by the ScaLAPACK routine PDDBTRF satisfies

‖B(1)‖∞ ≤ ε1+q,

where μ = qk is the size of the odd number partitions and ε < 1 is the dominance
factor.

This is one possible generalization of the case q = 1 to the case q > 1 and it
does reduce to Theorem 1 in the case of k = 1. The proof of Conjecture 1 for
the general case is ongoing work. So far, we have derived the following results.

Theorem 2. If A is strictly diagonally dominant by rows and banded with band-
width (2k + 1) then

‖B(1)‖∞ ≤ ε1+q

1− ε2
.

Proof. By definition

Zi = [U2i, V2i]

{[
V2i−1

U2i+1

]
Zi +

[
Ũ2i−1 0

0 Ṽ2i+1

]}
.

Therefore
‖Zi‖∞ ≤ ε{ε‖Zi‖∞ + εq} = ε2‖Zi‖∞ + ε1+q

and the proof follows immediately from the fact that ε < 1.

It is the elimination of the singularity at ε = 1 which is proving difficult in the
case of k > 1. Specifically, it is the decomposition into two separate subproblems
which is difficult to achieve for k > 1.

In the case of matrices which are both banded and triangular Conjecture 1 is
trivially true.
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Theorem 3. If A is a strictly upper (lower) triangular banded matrix with dom-
inance factor ε and upper (lower) bandwidth k, then

‖B(1)‖∞ ≤ ε1+q,

where μ = qk is the size of the odd numbered partitions.

In general, we have the following theorem.

Theorem 4. Dropping the off diagonal blocks in the initial Schur complement
is equivalent to replacing the original matrix A with a perturbed matrix A+ΔA
for which

‖ΔA‖∞ ≤ ε1+q‖A‖∞.

Proof. By definition[
E

(1)
i , F

(1)
i

]
= − [

E2iD
−1
2i−1E2i−1, F2iD

−1
2i+1F2i+1

]
= − [E2iU2i−1, F2iV2i+1] .

However, the zero structure of E2i and F2i implies that

[E2iU2i−1, F2iV2i+1] =
[
E2iŨ2i−1, F2iṼ2i+1

]
,

where

Ũ2i−1 =

[
0

U
(b)
2i−1

]
, Ṽ2i+1 =

[
V

(t)
2i+1

0

]
isolate the bottom k rows of U2i−1 and the top k rows of V2i+1. By Lemma 3

‖U (b)
2i−1‖∞ ≤ εq, ‖V (t)

2i+1‖∞ ≤ εq.

It follows that [
E

(1)
i , F

(1)
i

]
= −D2i [U2i, V2i]

[
Ũ2i−1 0

0 Ṽ2i+1

]
which implies ∥∥∥[E(1)

i , F
(1)
i

]∥∥∥
∞

≤ ε1+q‖D2i‖∞ ≤ ε1+q‖A‖∞
and the proof is complete.

Conjecture 1 is interesting in precisely those cases where the relative backward
error bound given in Theorem 4 is small, but not small enough, to satisfy the
demands of the user. If the conjecture is correct, then the sequence of Schur
complements generated by the ScaLAPACK algorithm will satisfy

‖B(k)‖∞ ≤ (ε1+q)2
k−1

, k = 1, 2, . . .

Therefore, if ε is not too close to 1, then a few steps of cyclic reduction will
permit us to drop the off diagonal blocks, thus facilitating a parallel solve. In
addition, if we increase the number of processors by a factor of 2, then we must
replace q with q′ ≈ q/2, but the accuracy can be maintained by executing a
single extra step of cyclic reduction.
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5 Future Work

We have shown that incomplete cyclic reduction is applicable to tridiagonal
(k = 1) linear systems which are diagonally dominant by rows and we identified
the worst case behavior. Ongoing work includes extending our analysis to the
general case of k > 1. In addition, we are developing a parallel implementation
of incomplete, rather than complete cyclic reduction for narrow banded systems.
The factorization phase will feature an explicit calculation of the auxiliary ma-
trices, in order to determine the minimal number of reduction steps necessary
to achieve a given accuracy.
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Abstract. The processing power of multicore CPUs increases at a high
rate, whereas memory bandwidth is falling behind. Almost all modern
processors use multiple cache levels to overcome the penalty of slow main
memory; however cache efficiency is directly bound to data locality. This
paper studies a possible way to incorporate data locality exposure into
the syntax of the parallel programming system OpenMP. We study data
locality optimizations on two applications: matrix multiplication and
Gauß-Seidel stencil. We show that only small changes to OpenMP are
required to expose data locality so a compiler can transform the code.
Our notion of tiled loops allows developers to easily describe data local-
ity even at scenarios with non-trivial data dependencies. Furthermore,
we describe two optimization techniques. One explicitly uses a form of
local memory to prevent conflict cache misses, whereas the second one
modifies the wavefront parallel programming pattern with dynamically
sized blocks to increase the number of parallel tasks. As an additional
contribution we explore the benefit of using multiple levels of tiling.

1 Introduction

In the last years multicore CPUs became the standard processing platform for
both end user systems and clusters. However, whereas the available processing
power in CPUs continues to grow at a rapid rate, the DRAM memory bandwidth
is increasing rather slowly. CPUs use multiple levels of fast on-chip cache memory
to overcome the penalty of the slow main memory. Caches, however, are only
useful if the program exposes data locality, so reoccurring accesses to the data
may be fetched from cache instead of main memory.

Parallel programming without considering data locality provides far from op-
timal performance even on systems based on Intel’s Nehalem architecture, which
provides a highly improved memory subsystem compared to all previous Intel ar-
chitectures. In this paper we use two well-known applications – a matrix-matrix
multiplication and a Gauß-Seidel stencil – to demonstrate tiling and its effect.
We utilize two levels of tiling to increase performance in scenarios for which
single-level tiling is not already close to the maximum memory/cache band-
width. Explicit tiling is a technique to overcome conflict cache misses. Explicit
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Table 1. Memory bandwidth of the test system measured with the STREAM
benchmark

Test copy scale add triad

Bandwidth (MB/s) 18463 19345 17949 18356

tiling requires duplicating data, but still offers an overall increase in performance.
Furthermore we provide an example to demonstrate how the shown locality op-
timizations can be integrated into e. g. the OpenMP syntax with only small
changes. The approach however is not limited to OpenMP and could be imple-
mented into other pragma-based systems or as a standalone system, as well. As
a result of our OpenMP enhancements, developers must only hint the compiler
at what kind of changes are required to achieve the best performance. We ex-
pect this to ease locality optimizations. At the time of this writing, the changes
have not been implemented in a compiler, but the required transformations are
described in detail.

The paper is organized as follows. First, Sect. 2 describes the hardware used
for our experiments. Our applications, and the used locality optimizations and
results are shown in Sect. 3 for matrix multiplication and in Sect. 4 for the Gauß-
Seidel stencil, respectively. Section 5 describes the changes to OpenMP to allow
compilers to automatically change code the way we have described in Sects. 3
and 4. The paper finishes with an overview of related work and conclusions, in
Sects. 6 and 7, respectively.

2 Hardware Setup

All experiments shown were conducted at an Intel Core i7 920, which is a CPU
based on the Nehalem architecture. It is a quad core CPU running at 2.67 GHz
using a three-ary cache hierarchy. The level 3 cache can store up to 8 MB of
data and is shared by all cores of the CPU. In contrast every core has its own
level 2 (256 KB) and level 1 cache (32 KB for data). The caches are divided into
cache lines of 64 bytes, so in case a requested data element is not in the cache,
the system fetches the cache line storing it from main memory. Both level 1 and
level 2 cache are 8-way associative. The level 3 cache is 16-way associative. The
Nehalem is Intel’s first x86 architecture featuring an on-chip memory controller
to lower memory access latency. Table 1 shows memory bandwidth measured
with the STREAM benchmark [8] using 4 threads. We used three memory chan-
nels supplied with DDR3-1333 memory modules. Each CPU core provides addi-
tional hardware support to run up to two threads efficiently (SMT), so the CPU
supports up to 8 threads effectively.

3 Matrix Multiplication

We describe our first set of locality optimizations, for which OpenMP pragmas
are shown in Sect. 5. Their performance is shown by implementing them in a
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trivial matrix-matrix multiplication calculating A ∗ B = C with A, B, and C
being square matrices of size n. Our trivial implementation uses three nested
loops, which are ordered i-k-j with the i- and j-loop looping over C and the k-
loop being used to access a column/row of A/B. This loop order allows for easy
automatic vectorization and good data locality, for details see e. g. [11]. The
parallelization of the matrix multiplication is obvious, as each matrix element
can be calculated independently.

The trivial matrix multiplication algorithm is well-known to have low memory
locality, since successive accesses to elements of A, B are too far away to keep
data in cache [11]. A well-known optimization to improve data locality and cache
reuse in such scenarios is tiling [2], also known as loop blocking. Tiling divides
the loop iteration space into tiles and transforms the loop to iterate over the
tiles. Thereby a loop is split into two loops: an outer loop which loops over
tiles and an inner loop which loops over the elements of a tile. We applied loop
tiling to our matrix multiplication and refer to the tiles as Asub, Bsub and Csub,
respectively.

Tiling improves the performance of our matrix multiplication in almost all
cases. Measurements (not depicted here) show that there are hardly any L2
cache misses, but the performance suffers from regular L1 cache misses. The
phenomenon is measured at any block size, even when choosing a block size that
fits into the L1 data cache and its impact is at maximum, when the matrix size
is a power of two. Therefore, we expect these misses to be conflict misses, as
array sizes of a power of two are worst case scenarios for current CPU caches [4].
Conflict misses arise due to the associativity of the cache, meaning that there are
multiple data elements in Asub and Bsub that are mapped to the same position
in the cache and thereby replace each other even though there is enough space
in the cache available.

To resolve this problem we explicitly copy the data used during the calcu-
lation into a newly allocated array – in our example we allocate an array of
size blocksize ∗ blocksize to store both Asub and Bsub and copy the submatrix
from A/B to the newly allocated array. In the calculation we only access the
newly allocated arrays. We refer to this optimization as explicit blocking. By
using explicit block, we no longer suffer from conflict cache misses during the
calculations.

To improve the performance further, we added a second level of tiling. This is
a well known technique, which we refer to as multilevel tiling during this work.
We combined small explicitly tiled blocks that fit into L1 cache with larger tiles
that help to increase data locality in L2 and L3 cache. Our final implementation
thereby uses large blocks that are split into smaller subblocks.

Figure 1 shows the performance of our code with the matrix data being stored
in a one dimensional array, compiled with the Intel Compiler version 11.1. The
performance was measured using matrices of size 81922 at both single and dou-
ble precision. We compare our results with two libraries: Intel’s Math Kernel
Library1 (MKL) and TifaMMy [3]. Both libraries use hand-tuned code and

1 http://software.intel.com/en-us/intel-mkl/

http://software.intel.com/en-us/intel-mkl/
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Fig. 1. Matrix multiplication performance (matrix size: 81922)

thereby obviously outperform our implementation, which purely relies on the
Intel compiler to generate optimized code. TifaMMy has not been optimized for
Nehalem-based CPUs and therefore falls behind Intel’s MKL. Our trivial version
consists only of three nested loops, however the compiler automatically applies
tiling to the loop.

The code changes to achieve the performance increase are rather trivial, but
yet require writing multiple lines of code. For example applying explicit tiling
requires developers to create two new arrays and to copy data. Even though the
implementation is simple, it is still a source of bugs. Furthermore, the compiler
did not automatically detect that these transformations should be applied and
OpenMP does not offer us a way to express these. Some compilers offer ways
to specify loop tiling, however using compiler specific options obviously is not-
compiler compatible and even interfere with the OpenMP parallelization in an
unpredictable way.

4 Gauß-Seidel Stencil

The calculations of the Gauß-Seidel stencil are being applied on a two-dimensional
data matrix V with the borders having fixed values. The non-border element with
the coordinates (x, y) in the kth iteration is calculated by

V k
x,y =

V k
x−1,y + V k−1

x+1,y + V k−1
x,y−1 + V k

x,y+1

4
.

This calculation is repeated for a fixed number of steps or until it converges.
Considering the low arithmetic intensity of the calculations, it should come
at no surprise that the runtime is limited by memory bandwidth and not by
the available processing power. We consider a bandwidth-limited application an
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interesting scenario, as the gap between available processing power and memory
bandwidth is increasing and more scenarios will become bandwidth-limited in
the future.

We measure the performance of the Gauß-Seidel stencil by stencils computed
per second (Ste/s). We again applied the locality optimizations described in the
last section, to our sequential implementation and as a result we increased the
performance from 283 MSte/s to 415 MSte/s.

Figure 2(a) shows a visualization of the data dependencies of the Gauß-Seidel
stencil. It is important to notice that the upper and the left values are from
the current iteration, whereas the right and bottom value are from the previous
iterations. The parallelization requires using the wavefront pattern [9]. In a wave-
front, the data matrix is divided into multiple diagonals as shown in Fig. 2(b).
The elements in one diagonal can be calculated in parallel. Tiling can again be
applied to increase data locality by creating tiles of V .

We implemented both a strict and relaxed version of the wavefront pattern.
The strict version directly follows the wavefront pattern and only calculates the
diagonals in parallel, whereas the relaxed version breaks up the diagonals. In
the relaxed version we split up the matrix in x-dimension in multiple columns
and assign these columns to threads with a round robin scheduling and use
one counter per column, which indicates how much of that column has already
been updated in the current iteration. These counters are shared by all threads
and are used to identify how deep the current thread can calculate the current
column, before it has to wait on the thread calculating the column left from
it. We have implemented two different ways to prevent the race conditions at
accessing the shared counters. The first version uses OpenMP lock variables to
guard the counters. See Listing 1 for the source code. The second version uses
an atomic function provided by the host system to update the counters. We
cannot use OpenMP atomic operations as OpenMP does not allow threads to
read a variable that has been updated by another thread without synchronizing.
When using the host system atomic operation to update the counter, the read
must only be joined by a flush/fence. Tiling to x- and y-dimensions is applied in
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Algorithm 1. Manually blocked Gauß-Seidel

1 int nb blocks = s i z e / b l o c k s i z e ;
2 int ∗ counter = new int [ nb b locks +1] ;
3 counter [ 0 ] = s i z e −1;
4 // i n i t i a l i z e a l l o ther counters wi th 0
5 omp lock t ∗ l o ck s = new omp lock t [ nb b locks +1] ;
6 // c a l l omp i n i t l o c k f o r a l l l o c k s
7 #pragma omp paral le l for
8 for ( int x=1; x<s i z e −1; x+=b l o c k s i z e ) {
9 int y = 1 ;

10 const int x b lock = x/ b l o c k s i z e ;
11 while (y<s i z e −1) {
12 omp set lock (& lo ck s [ x b lock ] ) ;
13 const int l c oun t e r = counter [ x b lock ] ;
14 omp unset lock (& lo ck s [ x b lock ] ) ;
15 for ( ; y<l c oun t e r ; y+=b l o c k s i z e ) {
16 for ( int xx=x ; xx<x+b l o c k s i z e ; ++xx )
17 for ( int yy=y ; yy<y+b l o c k s i z e ; ++yy)
18 V[ yy ] [ xx ] = (V[ yy ] [ xx−1] + V[ yy ] [ xx+1] +

V[ yy−1] [ xx ] + V[ yy+1] [ xx ] ) /4 ;
19 omp set lock (& lo ck s [ x b lock +1]) ;
20 counter [ x b lock+1] += b l o c k s i z e ;
21 omp unset lock (& lo ck s [ x b lock +1]) ;
22 }
23 }
24 }

both versions. Tiling to the y-dimension reduces the number of times the shared
counters are updated, so larger tiles decrease the number of lock operations,
however also reduces the chance of having the rows y, y − 1 and y + 1 in the
cache.

To achieve better performance, we applied multi-level tiling. We continue to
use large tiles to reduce the number of lock operations and subdivide the large
tiles into smaller tiles to expose the best data locality. However multilevel tiling
increases the overhead and decreases performance when running with 8 threads.

As a final optimization we moved from fixed to dynamic tile sizes for the
large tiles. Our dynamic implementation chooses smaller tiles at the beginning
and the end of the data matrix and larger ones in the middle. Dynamic tile
sizes allow more work to be done in parallel, since e. g. the calculation of the
second column can only be started if the first tile of the first column is calculated.
However, this optimization imposes additional overhead, while on our test system
the performance loss due to data dependencies is rather small. As a result, the
performance is almost identical to the one using static tile sizes. We expect
dynamic tile sizes to be useful on systems with more cores and additional memory
bandwidth to satisfy all cores.
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Fig. 3. Gauß-Seidel performance

Figure 3 shows the achieved bandwidth with the different versions for calcu-
lating a matrix of size 163862 with 100 iterations. We use double precision for
our calculations. Our fully optimized implementation sustains a performance of
over 1000 MSte/s. In the best case, the Gauß-Seidel stencil requires both one
element read and one written to/from main memory per stencil. With 16 bytes
transfered between the CPU and main memory our implementation uses a band-
width of over 16 GB/s, which is about 83% of the performance measured with
the STREAM benchmark (Tab. 1). The best performance is achieved when using
8 threads with single level tiling. The additional overhead of multilevel tiling re-
duces performance with 4 or 8 threads, however the increased data locality helps
to outperform single level tiling with less threads. We can see that using locks
instead of atomic operations decrease our performance by about 6% when using
4 cores. With one thread the parallel atomic version performs almost identical
to the sequential version.

5 Locality-Aware OpenMP Syntax

In the last two sections, we have described our experiences with locality opti-
mizations in two scenarios. The first scenario was matrix-matrix multiplication,
which only consists of a perfect loop nest and a trivial parallelization. The loop
transformations could have automatically been applied by a compiler, however
our compilers did not. Our second scenario also benefits from tiling by both in-
creased data locality and decreased number of lock operations. The paralleliza-
tion of the second scenario was more complex and the code is not a perfect loop
nest. We expect that it is hardly possible for a compiler to identify all required
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Algorithm 2. Matrix multiplication with improved OpenMP

1 #pragma omp paral le l for schedule(blocked , 64)
2 for ( int i =0; i<s i z e ; ++i )
3 #pragma omp for schedule(blocked , 64)
4 for ( int k=0; k<s i z e ; ++k )
5 #pragma omp for schedule(blocked , 64)
6 for ( int j =0; j<s i z e ; ++j )
7 #pragma omp block
8 C[ i ] [ j ] += A[ i ] [ k ] ∗ B[ k ] [ j ] ;

optimizations, however we show in the rest of this section that the OpenMP
syntax can be enhanced to let developers tell the compiler which optimizations
should automatically be applied. Furthermore we sketch how compilers can do
the required transformations and discuss the impact on other parts of OpenMP.

We start with the matrix-matrix multiplication as an easy example to describe
our advanced OpenMP syntax. Algorithm 2 shows the new syntax for the matrix
multiplication. We introduce both a new scheduling variant called blocked and
the ability to nest the #pragma omp for pragma without using nested paral-
lelism. The OpenMP for pragma tells the compiler that the loop iterations can
be carried out in any order, which is true for all loops of the example, and the
new blocked schedule tells the compiler to apply tiling to this loop.

Compilers tile the loops annotated with schedule(blocked). The size of the
tiles can be specified as a second parameter of the scheduling-clause or may be
automatically determined by a compiler. Having the compiler determine the tile
size may not result in the optimal result, but in a reasonable good outcome.
Multilevel tiling may be specified by adding not one tile size, but multiple tile
sizes to the schedule clause. Explicit tiling can be specified by an additional
pragma parameter to identify the variables to which it should be applied. The
outer loop, which is generated when tiling is applied to the original loop, remains
at the position in the code where the original loop was. The inner loop, in
contrast, gets moved directly in front of what we call the instruction block. The
instruction block should contain only the code that must be executed in every
loop iteration. It is identified by #pragma omp block and there may only be one
instruction block in a tiled loop. In Alg. 2 only line 8 is the instruction block
and all newly created loops will be moved in front of this line. When multiple
loops are defined as schedule(blocked), the loop order in front of the block
is identical to the one of the original loops. It is expected that users make sure
that the modified code is still correct, that is e. g. only annotate loops that be
tiled. In perfect loop nests where the innermost loop body is the instruction
block – as it is the case for the matrix multiplication – this is given if all loop
iterations can be carried out in any order. If the loop body consists of more
than the instruction block, every code outside the instruction block will only be
executed once per tile. We discuss this behavior based on our Gauß-Seidel code
next.
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Algorithm 3. Gauß-Seidel with improved OpenMP

1 int ∗ counter ;
2 omp lock t ∗ l o ck s ;
3 #pragma omp paral le l for schedule(blocked)
4 for ( int x=0; x<s i z e ; ++x ) {
5 #pragma omp single
6 {
7 counter = new int [ omp num blocks ( ) +1] ;
8 counter [ 0 ] = s i z e ;
9 // i n i t i a l i z e a l l o ther counters wi th 0

10 l o ck s = new omp lock t [ omp num blocks ( ) +1] ;
11 // c a l l omp i n i t l o c k f o r a l l l o c k s
12 }
13 int y = 0 ;
14 int x b lock = omp block num ( ) ;
15 while (y<s i z e ) {
16 omp set lock (& lo ck s [ x b lock ] ) ;
17 int l c oun t e r = counter [ x b lock ] ;
18 omp unset lock (& lo ck s [ x b lock ] ) ;
19 #pragma omp for schedule(blocked)
20 for ( ; y<l c oun t e r ; ++y ) {
21 #pragma omp block
22 V[ y ] [ x ] = (V[ y ] [ x−1] + V[ y ] [ x+1] + V[ y−1] [ x ] +

V[ y+1] [ x ] ) /4 ;
23 omp set lock (& lo ck s [ x b lock +1]) ;
24 counter [ x b lock+1] += omp b lock s i z e ( ) ;
25 omp unset lock (& lo ck s [ x b lock +1]) ;
26 }
27 }
28 }

The extensions introduced up till now do not allow user to specify
dependencies between tiles, as they are used in the Gauß-Seidel example. List-
ing 3 shows the code with new library functions that overcome this limita-
tion. omp_num_blocks() returns the number of tiles a tiled loop is split into,
omp_block_num() returns the number of the tile currently calculated by the
calling thread and omp_block_size() returns the size of tile. The functions are
always bound to the tiled loop they are directly part of, meaning in our example
omp_block_size() (Alg. 3, line 24) is bound to the second for-loop. The code
to be generated based on Alg. 3 can be found in Alg. 1.

These functions allow users to specify dependencies between tiles. For example
in the Gauß-Seidel example one counter and lock per tile in the x-dimension is
allocated. In the y-dimension the counter is only updated once per tile, since
the update of the code is not part of the instruction-block. To achieve this, first
the two created inner loops must be moved in front of the instruction block
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and the instruction block must be modified so that it no longer uses the old
loop indexes but the indexes of the newly created loops. Furthermore the library
functions must be created, that is for example omp_block_num() must returns
the index of the outer tiling loop and omp_block_size() the size of the tiles.

The newly suggested blocked loop scheduling and the existing static schedul-
ing both offer a form of loop tiling. It would have been possible to reuse the
static schedule for our modified tiling approach – e. g. the existing behavior is
always used when there is no instruction block present. However since, in con-
trast to the existing scheduling variants, blocked may influence the correctness
of the program, we decided to not reuse the existing name. The extensions play
well with all data sharing clauses, however the concept will not ease of tiling
in SPMD style OpenMP programs using the threadprivate directive for data
privatization, since one thread will only execute a subset of tiles and not the
whole loop iteration space. We do not expect the extensions to interfere with
the existing synchronization concept. Adding the new functions to the runtime
system should be rather trivial, as they mostly must only return a value being
made available by the tiling.

It is left for future work to analyze the usability of the new extensions for
upcoming many-core architectures. However we expect that an user controlled
tiling mechanism will be needed for all tile-based many-core architectures, as
for example Intel’s Single-chip Cloud Computer (SCC) or GPUs. In tile based
many-core system it may for example be possible to have a set of closely coupled
cores working on a single tile. The new extensions do not tackle the problem
of NUMA like remote memory, but concentrate on a way to easily improve
cache usage in loop based code. Further research is necessary to identify ways
to support NUMA remote memory.

6 Related Work

A similar extension for OpenMP has been suggested by Gan et al. [7], however it
offers a subset of the functionality we present. Especially they focus only on per-
fect loop nests and do not offer direct access to the blocks nor allow using tiles be-
yond data locality. Compilers like IBMs XLC/C++ and SGI MIPSpro C/C++
offer directive-based support for loop tiling. Extensions for the ZPL [6] and
SAC [10] language provide tiling, even though again not with direct access to
the tiles. High Performance Fortran (HPF) offers tiling as part of the language.
Loop tiling in general has been worked on for several years and discussed in sev-
eral aspects, e. g. when a compiler can automatically incorporate loop tiling [1].
Optimizations on stencil computation have been analyzed again for several years,
a recent study has e. g. been done by Datta et al. [5].

7 Conclusion / Future Work

We demonstrated tiling on two scenarios with the result of increased perfor-
mance. The main performance increase resulted from the increased data locality
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of tiling, however tiling also reduced the number of lock and atomic operations.
We furthermore demonstrated that using the optimization technique of processor
local storage, which is well-known in the GPGPU realm, is beneficial on current
CPUs as well. As an addition, we experimented with dynamic tile size in the
wavefront pattern to increase the amount of work that can be done in parallel.
As a major contribution we showed that these optimizations techniques could
be added to OpenMP with only small changes.

Making the notion of tiles available in OpenMP will not only enable developers
to specify data locality and thereby increase performance on current CPUs,
but lays out the foundation for future work to effectively deploy OpenMP on
hardware which natively requires blocks, e. g. GPUs. Further work is required to
check if the suggested extensions may result in ambiguous situations, in scenarios
different from ones shown in this paper.
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Abstract. Adaptive mesh refinement and iterative traversals of un-
knowns on such adaptive grids are fundamental building blocks for PDE
solvers. We discuss a respective integrated approach for grid refinement
and processing of unknowns that is based on recursively structured trian-
gular grids and space-filling element orders. In earlier work, the approach
was demonstrated to be highly memory- and cache-efficient. In this pa-
per, we analyse the cache efficiency of the traversal algorithms using
the I/O model. Further, we discuss how the nested recursive traversal
algorithms can be efficiently implemented. For that purpose, we com-
pare the memory throughput of respective implementations with simple
stream benchmarks, and study the dependence of memory throughput
and floating point performance from the computational load per element.

Keywords: adaptive mesh refinement, cache oblivious algorithms, space-
filling curves, memory-bound performance, partial differential equations.

1 Mesh-Based PDE Solvers as Memory-Bound
Applications

Partial differential equations (PDE) are ubiquitous as modelling tools in numer-
ical simulation. A large family of PDE solvers, such as Finite Difference, Finite
Volume and Finite Element methods, as well as variants, such as discontinuous
Galerkin methods, is based on computational meshes to discretise the spatial
domain. Grid traversals, i.e., updating all cells or unknowns of such a mesh, are
thus essential building blocks for PDE solvers: grid traversals occur in explicit
time-stepping methods to solve time-dependent PDEs, in iterative solvers for
systems of equations obtained from discretisation, and in refinement and coars-
ening of the mesh, itself – including evaluation of error estimators, interpolation
operators, and maintaining certain balancing or conformity criteria of the mesh.

The computational load of such traversals, i.e., the ratio between the number
of operations and the accessed data is often small – usually a constant effort
per grid cell. Respective implementations are therefore typically memory-bound :
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their performance is limited by the latency and bandwidth of the memory hard-
ware and its ability to feed the data into the arithmetics units of the CPU. To
speed up memory-bound problems, we therefore have to improve how algorithms
use and access memory:

– Reducing the memory footprint of an implementation, and thus the band-
width requirements, can already speed up a memory-bound application.

– Modern memory hardware is hierarchical and parallel, with multiple cache
levels that are shared between CPU cores and with non-uniform memory ac-
cess (NUMA) on compute nodes with multiple CPUs. Maximal performance
is only achieved, if cache and memory are optimally exploited.

– CPUs and memory systems are optimised for rather simple memory access
patterns: pipelining, for example, requires stream-based memory access. In
contrast, random memory access (to unstructured data) is heavily penalised.

In earlier work [3,2], we introduced an approach that builds on bisection-based,
fully adaptive triangular grids represented via refinement trees and addresses
the described memory issues via a space-filling curve approach. The recursively
structured grid is traversed along a Sierpinski curve, which imposes an inherently
local, sequential order on the grid cells and corresponding unknowns. Element-
oriented traversals (in Sierpinski order) of the corresponding refinement tree
require only stacks and streams as basic data structures, and thus avoid random
access to memory entirely. The stream-based approach also allows to retain the
locality properties of data structure and traversal algorithms despite dynamic
refinement and coarsening of the grid.

In Section 2, we will recapitulate the Sierpinski-curve-based approach for
adaptive triangular grids. An analogous approach for quadrilateral, octree-type
grids has been developed by Mehl et al. [11,6]. In Section 3, we present an anal-
ysis of the cache misses using the I/O model, in order to quantify the previously
observed excellent cache hit rates for the algorithm. As our approach is inher-
ently recursive, special care has to be taken to avoid implementation overheads.
We will introduce loop-based techniques to implement our traversals in Section 4,
and present a study that demonstrates that a performance close to the available
memory bandwidth is achieved even for traversals on adaptive grids.

2 Sierpinski-Order Traversals on Triangular Grids

Our grid generation approach is based on recursive bisection of triangles, which
can be represented via a corresponding refinement tree. Respective approaches
were presented by Mitchell, for example [12]. Figure 1 illustrates such an adaptive
grid together with its refinement tree. Note that to encode the refinement status
of the grid (and the tree), a single bit per node of the refinement tree is sufficient.
These refinement bits can be stored as a bitstream in depth-first order.

Left and right children in the refinement tree are defined such that a depth-first
traversal of the refinement tree will lead to a grid traversal in Sierpinski order.
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Fig. 1. Adaptive triangular grid and corresponding refinement tree: the tree structure
is coded as a bit stream that carries the refinement status of each tree node in depth-
first-traversal order
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first-out access to the vertices 5–10 during a cell-oriented traversal) and resulting stack-
and-stream-based processing scheme (right image). The stream-based approach also
allows to introduce and delete cells for refinement and coarsening of the grid.

In PDE solvers, cell-local unknowns will be stored and accessed in Sierpinski
order, such that we obtain an optimal, stream-based memory access. However,
we still need to provide efficient access to unknowns located on cell vertices
and edges. Such unknowns are accessed by several grid cells throughout the
traversal, so we need to store intermediate values. Figure 2 illustrates that these
multiple accesses can be organised via stacks. In each grid cell, unknowns that
are accessed for the first time are obtained from an input stream, while unknowns
that have already been accessed by neighbouring cells will be retrieved from one
of two colour stacks. When leaving a cell during the traversal, unknowns are put
onto the output stream or onto one of the stacks, depending on whether the
respective unknown will be accessed again during the traversal. The resulting
stack&stream-based processing scheme is illustrated in Figure 2. For detailed
traversal algorithms, including the rules which unknowns to place on which stack
or stream, see [3] (for classical Finite-Element computations using cell-, egde-,
and vertex-located unknowns) and [2] (for edge-based unknowns).
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Fig. 3. Stack and stream access in two subsequent grid cells. We assume that the
element adjacent to edge 5 will still be visited during the traversal.

3 Cache Misses of the Traversals in the I/O-Model

To estimate the number of cache misses during a Sierpinski traversal, we use
the classical I/O model, as defined by Aggarwal and Vitter[1]. There, we assume
an arbitrarily large external (main) memory. The single CPU, however, can only
work on a smaller working memory (cache), which consists ofM words organised
asM/B cache lines of B words each. In this model, we count the number of read
and write transfers between external memory and cache, assuming an intelligent
strategy to use the cache lines. A similar approach would be to assume an ideal
cache that can foresee which cache lines are no longer required (note that a least-
recently-used strategy will perform as an ideal cache for stack data structures).

Figure 3 provides a schematic view on the stream- and stack-based access
to unknowns when moving from one cell to the next during a traversal. The
cell-located unknowns 4 are written back to the output stream. Similar, the
unknowns 8 are read from the input stream. The unknowns on 2 are finished
with processing, and are written to the output stream. In contrast, unknowns
on 1, 5, and 6 will be used again, and are thus written to the green stack.
Similar, unknowns on 3 and 7 are written to the red stack. The right cell obtains
unknowns on 6 from the green stack, and unknowns from 3, 7, 10, and 11 from the
red stack. The unknowns on 9 are accessed for the first time, and are thus read
from input stream. For our later study on cache misses, we denote the following
table that specifies the (re-)use of cache locations for all involved unknowns:

in left cell 1 2 3 4 5 6 7

in right cell 11 10 3 8 9 6 7

3.1 Cache Misses on a Uniformly Refined Grid

We now assume that the two cells in Figure 3 represent uniformly refined blocks
of a certain depth, which is chosen such that all unknowns on the boundary of
such a block fit into the cache. Our strategy is then to treat all interior unknowns
in a stream fashion: reading them from an input stream and writing them to
an output stream should require only a single cache line. The major part of the
cache will be used to hold the unknowns on the block boundaries.
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For simpler presentation, we will disregard unknowns on vertices, and assume
that we do two refinement steps at once from each refinement level to the next.
Hence, a uniformly refined block of depth k (in short: depth-k-block) will consist
of 4k elements, and each of the three block boundaries will have 2k adjacent
elements. A uniform grid of depth n will consist of 4n−k such depth-k-blocks.
We further stick to the case of one unknown (requiring one word of memory)
per element edge. To make sure that all unknowns on the boundary just fit into
cache, we therefore have to chose the depth k of our blocks such that 3 ·2k ≤ M ,
but 3 · 2k+1 > M . Assuming that we have at least 4 cache lines (i.e., M/B ≥ 4),
we can derive the following scheme to use the cache lines for a depth-k-block:

– The unknowns on 7 shall stay in cache and will not cause any loads or stores.
– The unknowns on 2 will be written to the output stream (located in main

memory) and are replaced by the unknowns on 10.
– The unknowns on 5 are written to the green stack, but cannot be held in

cache, as the respective lines are required by the unknowns on 9.
– Interior unknowns follow a stream access, so we get by with a single cache

line (4 is successively replaced by 8).

The last statement deserves some further attention, because during the recursive
traversal of the depth-k-block, many of the interior unknowns (all unknowns
located on a cell edge) will be stored on a colour stack. However, as the unknowns
on 2 are successively written to the output stream and the unknowns on 10 will
not be read, yet, in the left triangle, we have free cache lines available. The same
argument holds for the unknowns on 5 (which are written to the green stack) and
on 9. This additional cache capacity is sufficient to hold interior unknowns, if the
green and red stack, during a traversal of a grid block, together never contain
more unknowns than are located on the boundary. This property is quite easily
proved by induction. As a result, we can count the loads and stores to and from
main memory during the traversal of each depth-k-block:

– Writing back the unknowns on 5 to the green stack (to a part located in
main memory) requires 2k/B stores (as B unknowns fit into a cache line).
Similar, reading the unknowns on 10 from the red stack requires 2k/B loads.

– Writing 2 to the output stream and reading the unknowns on 9 will require
2k/B loads and stores, as well. However, these are compulsory reads and
stores that cannot be avoided: in any traversal, we have to read and write
each unknown at least once.

– Similar, all loads and stores of interior unknowns, 4 and 8, (located on
element edges in the interior of the depth-k-blocks) are compulsory.

We thus require 2k/B non-compulsory loads and stores for each of the 4(n−k)

depth-k blocks. As we chose 2k ≤ M/3, the total number of non-compulsory
loads and stores is at most 4(n−k) · M

3B . Compared to the number of elements

N = 4(n−k) · 4k, we have at most 4(n−k) · 4k · M
3B · 4−k = N · M

3B /(2
k)2 non-

compulsory loads and stores. As we chose k as large as possible in order to exploit
the entire cache, we required 3 · 2k+1 > M , which implies 2k > 1

6M . Altogether,

the number of non-compulsory cache misses is at most 12 N
MB ∈ O (

N
MB

)
.
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In addition, we require exactly one compulsory load and store for each un-
known, which leads to a total number of compulsory loads and stores of αN/B,
where αN is the number of unknowns in all N elements. Assuming 1 unknown
per edge plus 1 interior unknown in each element, we obtain approximately 2N
edge-located unknowns plus N element-local unknowns, such that α ≈ 3.

If we consider only vertex-located unknowns in our scheme, we have only
2k − 1 unknowns on the edge of each block. In return, we need to consider the
unknowns on 1, 3, 6, and 11, such that we basically obtain the same result.
For unknowns on both vertices and edges (even multiple unknowns per edge, as
in higher-order methods), we will obtain estimates of O (

N
MB

)
non-compulsory

loads and stores. Hence, in total, we require αN/B +O (
N

MB

)
loads and stores.

3.2 Extension to Non-uniform Grids

So far, we required a uniformly refined grid to determine the loads and stores
for the Sierpinski traversal. However, the upper bound of O (

N
MB

)
will hold as

long as the ratio of boundary unknowns vs. number of cells in a cell block stays
asymptotically the same. Consider a partitioning of a non-uniform grid of N
cells into N

K partitions, each consisting of K contiguous cells in Sierpinski order.

We demand that each such K-block has at most c
√
K element edges and that

all boundary unknowns fit into cache. Hence, K is chosen such that c
√
K < M .

Then, the number of non-compulsory cache misses per K-Block is definitely less
than c

√
K/B (on average c

3

√
K/B, as only one of the edges will cause cache

misses), such that we obtain N
K ·c√K/B = c N

B
√
K

cache misses for an entire grid

traversal. As K was chosen relative to the cache size M , c
√
K < M , we again

obtain O (
N

MB

)
non-compulsory loads and stores.

Hence, the upper bound of O (
N

MB

)
cache misses holds as long as a block of

K cells has only O(
√
K) cell edges. It is rather simple, however, to construct

a counter-example: take a triangular block, where only the (geometrically) left-
most cell is bisected in each level – the resulting block then consists of k+1 cells
and k + 3 edges, and we obtain O(N/B) non-compulsory cache misses.

3.3 Discussion and Related Work

As long as the ratio of K:
√
K between interior elements and edges of a K-block

holds, the Sierpinski traversal will exploit caches of any sizeM – including multi-
ple layers of caches – and lead to αN/B + O (

N
MB

)
cache misses (compulsory +

non-compulsory). ThisK:
√
K ratio also reflects the Hölder continuity of the Sier-

pinski curve, and is known as an argument for the asymptotically optimal quality
of parallel partitions induced by space-filling curves [14] (where it is also known
that this property does not hold for degenerate adaptive meshes).

There is not too much previous work on cache misses caused by traver-
sal algorithms on adaptive grids. For the case of structured, uniformly refined
grids, respective bounds are straightforward for simple vertex-oriented, row-wise
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traversals. There, in each vertex, we need to access neighbouring, vertex-located
unknowns of three successive rows. If the unknowns of one row do not fit into
cache, we cause non-compulsory misses for 2 of the 3 rows plus compulsory misses
for the third row, which leads to 3α

(
N
B

)
loads and stores. Intelligent blocking

of the grid, together with combining multiple traversals, leads to cache-oblivious
algorithms [7] that produce O(N/

√
M) cache misses in the I/O model. These

algorithms are not available for adaptive grids, however.
If element orders exist, where any two successive triangular elements share a

common edge, then element-oriented traversals along this order will only cause
compulsory misses for the unknowns on the common edges. Only accesses to the
unknowns on the third vertex will cause non-compulsory misses, which leads to
αN/B + O (

N
B

)
cache misses. Note that the cache size M is not exploited at

all, and that the same bound holds for our Sierpinski traversals for “degenerate”
adaptive grids. In computer graphics, such element orders are known as triangle
strips, and are also used for unstructured meshes [9,5] (however, triangle strips
cannot be constructed for any mesh). Several groups discussed the construction
of triangle strips on adaptive grids by using Sierpinski curves [13,10,8].

For the context of rendering unstructured triangle meshes, Bar-Yehuda and
Gotsman [4] presented an algorithm that requires only compulsory misses, pro-
vided the cache size is O(

√
N). Their approach is based on efficient algorithms

to find balanced partitions of size O(K), with a separator of length O(
√
K).

For limited cache size M , their traversal algorithm, similar to our Sierpinski
traversals, leads to O (

N
M

)
non-compulsory misses. However, generating these

cache-efficient rendering sequences requires O(N2) work, and the resulting algo-
rithm does not consider cache lines (i.e., assumes a cache line size of B = 1).

4 Implementation and Performance Results

The performance of recursive implementations of our Sierpinski traversals was
already examined for multigrid solvers [3] and for PDE solvers with explicit
time-stepping [2]. We observed excellent cache hit rates (> 99% level-1 hits),
however, the results also revealed that quite some overhead is caused by the
recursive implementation and by the data movement to and from the stacks.
This is partly caused by the effort to execute recursive calls and if-statements
(to check for leaf-level or end of a stack frame, e.g.), but also because all non-leaf
cells are visited during a refinement-tree traversal. Visiting interior nodes, in a
binary tree, requires twice as many recursive calls as we have elements (leaves
of the tree); hence, our goal was to particularly reduce this overhead.

The loop-based implementation exploits that we can infer the cell size and
orientation from the entry and exit points of the Sierpinski curve. For example,
if we leave a cell via its hypotenuse and enter via a leg, the entered cell has to be
coarser by 1 level. As the entry and exit points determine the stack access rules,
this classification is available from our refinement tree. For loop-based traver-
sals, we store the classification in an array using an initialisation traversal. We
thus only traverse the leaves of the refinement tree, which, together with saving
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overheads for recursive calls, accounts for a substantial performance improve-
ment. As an initialisation overhead, we have to rebuild the structures to enable
loop-based traversals in each global refinement and coarsening step. However, as
we see in the following section, the additional execution time is affordable.

4.1 Traversals for Grid Refinement and Coarsening

As a first test, we measured the execution time for an “empty” grid traversal
without any numerical unknowns. In these traversals, only the required data
movements are executed (as they would be required for traversals that ensure
conforming refinement and coarsening of an adaptive grid), but no actual com-
putations are performed. For a uniformly refined grid of approximately 2 million
(221) grid cells, such a traversal requires 0.13 seconds for the recursive imple-
mentation. The loop-based traversal requires 0.054 seconds, which is more than
twice as fast. This test, as well as all the following tests, were executed on a
single core of an Intel Core2 Duo processor (T7700, 2.4 GHz, 4MB L2 cache).

The following table lists the execution times for loop-based traversals for grid-
refinement, starting with a uniform grid (with 221 cells) and an a-priori adaptive
grid with roughly the same number of grid cells:

number of empty synchron. cells grid total time
grid cells traversal traversals added rebuild (incl. interp.)

uniform, 221 2,097,152 0.053 s 0.09 s – 0.11 s 1,049,600 0.66 s 1.42 s
a-priori ref. 2,121,520 0.053 s 0.09 s – 0.11 s 1,055,080 0.72 s 1,78 s

In particular, we wanted to compare the time required for synchronisation traver-
sals, which check the refinement status of each edge and ensure conforming grid
refinement, and we measured the total time spent for grid refinement, includ-
ing set up of the mesh and interpolation of the unknowns (here: trivial inter-
polation for piecewise constant basis functions). As expected, the performance
for uniform vs. adaptive grids does not vary significantly (the a-priori-refined
grid requires more synchronisation traversals, which explains the increased total
time for refinement). Column “grid rebuild” lists the execution time to rebuild
all grid data structures after refinement and coarsening, including the set-up of
the data structures for loop-based traversals (≈15–20% of the rebuild time).
Hence, switching to loop-based traversals will already pay off, if only 3–5 traver-
sals are performed between two refinement steps (for comparison: a forth-order
Runge-Kutta scheme would require 4 traversals).

We also measured the execution time of refinement traversals for grids that
were refined along a circle line with growing radius (mimicking an inflating shock
front, e.g.) – our implementation takes ≈ 0.05–0.06s per million grid cells for
the synchronisation traversals, and ≈ 0.6 s per million grid cells for the entire
refinement and coarsening step including interpolation of unknowns.

4.2 Traversals with Floating Point Operations

To determine the achievable performance of the recursive and of the loop im-
plementation of traversals for PDE solvers, we studied a set-up that artificially
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Fig. 4. Memory throughput for loop-based and recursive Sierpinski traversals with a
varying amount of floating-point operations per element

increases the computational load per element, and measured the effect on mem-
ory throughput (in MB/s) and floating point performance (in MFlop/s). Both
implementations include all stack operations to synchronise refinement data and
compute numerical data on common edges. In addition, they perform a prede-
fined number of floating point operations that mimic the execution of local ele-
ment operators in each cell. Increasing the number of the artificial operations per
cell should approach a situation where the performance is purely computation-
bound, and the MFlop/s ratio is only limited by the performance of the CPU
core. For very few operations per element, our traversal will rather be memory-
bound, and reach a throughput that is hopefully close to the available bandwidth.

From our analysis of cache misses, we can expect that our traversals can at
best be as efficient as a simple stream operation that causes the same number of
compulsory misses. We chose the BLAS daxpy subroutine, i.e. a simple vector
update y = y + βx, as benchmark, because it will cause αN/B compulsory
misses (here α = 2), similar to our traversals, and because it is known to achieve
a memory performance close to the available bandwidth.

Figure 4 plots the memory throughput of loop-based vs. recursive traversals
for increasing number of artificial operations per element. For 9 unknowns per
cell (corresponding to the use of piecewise linear basis functions for a system of
PDE with three components), we observe that up to 30–40 floating point opera-
tions per cell are executed “for free” – here, performance is memory-bound and
execution with fewer operations per cell does not give any speedup. The best
memory throughput achieved for the loop-based traversal is quite close to the
achievable throughput, as determined by the daxpy operation. The recursion-
based implementation behaves similarly, but reaches a substantially lower maxi-
mal throughput. The plot for 3 unknowns per cell reveals lower throughput and
slightly erratic behaviour, which demonstrates that a low memory footprint and
a low computational load per cell make it harder to achieve good performance.

Figure 5 shows that the MFlop/s performance increases “automatically” for
increasing work load per element, but apparently reaches a “limit performance”
of only about 1 GFlop/s, even for rather large computational load.
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4.3 Traversals for the Shallow Water Equation

Finally, we tested the performance of the loop-based traversal within our de-
sired target application, a dynamically adaptive solution of the shallow water
equations using the discontinuous Galerkin method for discretisation (see [2] for
details). With piecewise constant basis functions, we require three unknowns
(water height plus two velocity components) per grid cell. The inner kernels
to compute the flux terms and update the unknowns in each time step require
90 floating point operations per element. With that setting, a simple forward
Euler timestep requires 0.23 s, which is equivalent to a memory throughput of
778 MB/s, and to executing 833 MFlop/s. In comparison, solving only the trans-
port equation for the wave height requires only 30 floating point operations per
element, which reduces the execution time to 0.20 s on the same grid – equivalent
to a memory throughput of 895 MB/s and 320 MFlop/s. For the shallow-water
problem, both memory throughput and MFlop/s performance are well within
the performance range of the idealised traversal with artificial flops. For the
simpler transport problem, we are a bit below these values, which might be due
to slightly worse optimisation of the required operations (additional if-statements
to implement boundary conditions, less effective use of vectorisation capabilities
of the CPUs, etc.). The study in section 4.2 tells us that this performance is only
half of the theoretically available performance in terms of throughput. However,
we also see that improved results can be expected for higher order discretisations
with larger data volume and higher computational load per element.

5 Conclusion

Our goal is to provide a grid generation and processing scheme for fully adaptive
PDE solvers on dynamically refined grids with minimal memory requirements.
Our scheme is based on space-filling orders on the grid cells and uses stack
and stream data structures only. The interplay of locality properties induced by
the space-filling curve and inherently cache-friendly data structures leads to a
cache-oblivious algorithm with only O(N/MB) non-compulsory cache misses.
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Via optimised, loop-based traversals of these normally recursive traversals, we
can also achieve high computational performance in practice. We have provided
a performance analysis that demonstrates that the memory throughput of our
traversals comes close to the available memory bandwidth (and thus close to the
optimal achievable performance) for low computational load per element. For
problems such as simple transport equations, we achieved a memory throughput
of up to 75% of the throughput measured for simple vector operations. For prob-
lems with larger computational load, such as solving the shallow water equations,
we achieved more than 800 MFlop/s for piecewise constant basis functions, and
can expect more than 1 GFlop/s for the piecewise linear case, which would be
an exceptional performance for a matrix-free PDE solver on fully adaptive grids.
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Abstract. The move to multicore processors creates new demands on
software development in order to profit from the improved capabili-
ties. Most important, algorithm and code must be parallelized wherever
possible, but also the growing memory wall must be considered. Ad-
ditionally, high computational performance can only be reached if
architecture-specific features are made use of. To address this complex-
ity, we developed a C++ framework that simplifies the development
of performance-optimized, parallel, memory-efficient, stencil-based codes
on standard multicore processors and the heterogeneous Cell processor
developed jointly by Sony, Toshiba, and IBM. We illustrate the imple-
mentation and optimization of the Fast Wavelet Transform and its in-
verse for Haar wavelets within our hybrid framework, using OpenMP,
and using the Open Compute Language, and analyze performance
results for different platforms.

Keywords: cache blocking, parallelization, CBEA, OpenCL, OpenMP.

1 Introduction

Different approaches are viable to write fast, parallel code, each with different
support for or restrictions to algorithm, optimization techniques and target plat-
form, and different requirements on development time and experience. As today
even mobile computers are able to execute several instruction streams concur-
rently in hardware, sequential software can only utilize a fraction of any modern
machine.

A drawback of conservative multicore approaches is the growing gap between
computational power and available memory bandwidth per socket. Many algo-
rithms tend to be heavily memory bound on such systems after having been
parallelized, which is especially true for many stencil-based scientific computing
or image processing codes operating on large data sets. To some extent memory
layout optimizations and blocking techniques can increase spatial and temporal
locality of memory references, at the cost of increased development time and
code complexity.

The Cell Broadband Engine Architecture[9] takes a heterogeneous approach,
providing two diversified types of cores. PowerPC Processor Elements (PPEs)

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 313–323, 2012.
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are general purpose cores based on IBM’s Power architecture, meant to con-
trol the program flow and run the operating system. The Synergistic Processor
Elements (SPEs) are specialized cores optimized for computation and through-
put. Each SPE uses a small and fast local storage (LS) of 256KiB instead of
caches, and the instruction code must therefore explicitly exchange data be-
tween a remote address space (main memory) with its own using asynchronous
copy operations. By this specialization, Cell processors provide impressive peak
performance and memory throughput with low power consumption, but require
tailored and optimized software.

GPUs take the multicore approach one step further and typically offer tens or
hundreds of specialized compute units operating on dedicated memory. There-
fore they reach outstanding compute and memory performance and are more
and more used for compute-intensive applications, often called general purpose
programming on graphics processing units (GPGPU). They are best suitable
for massively-data parallel algorithms, inadequate problems, that e. g. require a
high degree of synchronization or provide only limited parallelism, are left to the
host CPU.

Currently the only way to write code that runs on all three hardware platforms
is to use the Open Compute Language (OpenCL)1. OpenCL provides a runtime
library running on a general-purpose core (host) that offers facilities to manage
memory objects, to compile kernels written in the OpenCL kernel language —a
derivative of C99—, and to issue many instances arranged on a logical grid to
compute cores, which may be CPU cores, SPEs or compute units on GPUs. Al-
though providing concepts representing features of certain platforms, like SIMD
operations on many general purpose CPUs and SPEs, local memories on GPUs
and SPEs, and asynchronous copy operations on the latter, it does not allow
low-level access to underlying hardware.

Besides OpenCL, vendors of GPUs also offer proprietary environments for
GPGPU. NVIDIA, e. g., provides the possibility to write single-source programs
that execute kernels written in a subset of C and C++ on their Compute Unified
Device Architecture (C for CUDA).

The OpenMP language extension2 allows for simple parallelization and makes
no restrictions on low-level optimizations, but the coarse control over synchro-
nization and coherency limits its applicability. Unfortunately, it cannot be used
directly on the CBEA except on the general purpose PPE.3

Manual parallelization using thread and synchronization primitives, e. g. using
pthreads, leaves all freedom to the programmer, but is tedious and results in
software for either common multicore or for Cell processors. On the CBEA,
separate code for PPE and SPE is required: SPE code must issue copy operations
between main memory and the respective LS, while the PPE code must employ
libraries to load binary code onto SPEs and control them.

1 See http://www.khronos.org/opencl/
2 See http://openmp.org/
3 IBM’s XL C/C++ for Multicore Acceleration compiler can to a limited extend
delegate work to SPEs in parallel OpenMP constructs.

http://www.khronos.org/opencl/
http://openmp.org/
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Our framework written in C++ is designed to relief the programmer from
cumbersome manual parallelization and its pecularities on the CBEA while leav-
ing all freedom in writing low-level optimized kernels. It allows to write cache-
efficient, parallel codes mainly for stencil-based algorithms. Generic C++ code
can be compiled on common multicore as well as on Cell processors, but highly
optimized versions can be made for compute-intensive parts.

While ours leaves as much control to the programmer as possible —also re-
quiring him or her to provide optimized versions where appropriate— other
frameworks try to automatically tune high-level descriptions. As an example,
[13] map OpenMP directives to CUDA, [4] presents an auto-tuning software to
generate code for standard CPUs, CBEA, and CUDA.

Limited to the CBEA, and therefore not considered here, two more solutions
are offered: Cell Superscalar4 allows to write annotated single-source programs
whose compute-intensive tasks are executed on SPEs. IBM offers the Accelerated
Library Framework (ALF) which orchestrates the execution of so-called tasks on
SPEs to manipulate memory objects.

The paper is organized as follows: In section 2 we briefly describe the concepts
of our multicore-aware hybrid framework that allows to develop code running on
standard multicore CPUs and on the CBEA. Section 3 summarizes the Wavelet
algorithm we have chosen as example application, and in section 4 we present
implementation details and performance results for different architectures before
concluding the paper in section 5.

2 Hybrid Framework

This section presents a novel framework design that simplifies the process of writ-
ing performance-optimized, parallel codes for stencil-based algorithms on regular
grids for multicore and shared memory multiprocessor machines, including the
CBEA. It is not a black box that tries to create fast code, but a tool that lets
the experienced programmer focus on the design of data structures and kernels
while program flow and synchronization are taken care of in a configurable way.

Algorithms that are based on stencils or show comparable access patterns
appear in many areas, from filtering in image processing to iterative solvers in
large-scale simulations, but the majority of them have similar well-understood
properties, so that a framework approach is reasonable and appropriate for them.
A former version of the framework not supporting the CBEA is described in [14].

Conception. The framework was designed to

1. enable writing parallel programs that can run on multicore as well as Cell
processors, without or with only minor modifications.

2. support cache blocking techniques, but without narrowing applicability to
certain types of stencils or data dependencies.

3. allow for kernels that employ machine-specific optimizations.

4 Developed by the Barcelona Supercomputing Center (CellSs), http://www.bsc.es/

http://www.bsc.es/
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The peculiar design of SPEs make it necessary to impose certain restrictions
on hybrid code. As SPE code works on local copies, this must become the default
case, even for homogeneous CPUs. Furthermore, it is necessary to separate the
control code from the compute kernels, as it must be possible to compile the latter
separately for the CBEA. Consequently, the framework must provide means to
exchange information between control part and kernels, and provide kernels the
ability to learn of and access data structures created by the control part.

Control and kernel components are implemented as C++ classes that make
use of the framework by inheritance and through utility classes and functions.
As data structures, only two-dimensional arrays of arbitrary type are supported
currently, as finding the best approach for extension to 3D requires further
investigation.

When executing, the control component first configures the thread setup, espe-
cially how many threads should be spawned, and set up required data structures
through the framework. The actual work is done by letting the framework guide
one or multiple so-called sweeps, which will be detailed below, of the working
threads through a rectangular logical grid. As no synchronization or ordering
of memory accesses is guaranteed during a sweep, data can either be read by
multiple threads, or accessed by a single thread if it is to be modified. This
is basically what pthreads and OpenMP enforce when beginning and end of a
sweep are the only synchronization points, and what OpenCL assumes during a
kernel execution.

Parallel Blocking Technique. Cache blocking techniques change the order of op-
erations in a way that increases cache locality to reduce main memory accesses.
Temporal blocking techniques carry this further by performing multiple opera-
tions on data that is already available in the cache hierarchy. Such methods can
also be applied to codes executed on SPEs despite their lack of cache, which is
why we refer more general to blocking techniques.

Different approaches to cache blocking can, e. g., be found in [12,11,17,2,3]
and have also been examined thoroughly in the DiME5 project[1,10,16].

The framework splits the rectangular domain into multiple stripes and a
thread is then responsible to compute all results within one stripe at a time
in an efficient way. In practice, whole stripes cannot be expected to fit into LS
or caches. Therefore, a stripe is divided horizontally into equally wide tiles to
implement a spatial or temporal blocking technique. For the considered Haar
wavelets, no overlapping data dependencies exist like in many stencil-based al-
gorithms, for temporal blocking in more complex cases we point to [14].

Sweeps. If the control component starts a number of sweeps, the framework
wakes the worker threads, which have been waiting or suspended by the kernel
base class. On SPEs, the kernel base class will also have to copy up-to-date
management information or input parameters to Local Storage – on general
purpose cores this information is directly accessible by the kernels. The worker

5 http://www10.informatik.uni-erlangen.de/Research/Projects/DiME/

http://www10.informatik.uni-erlangen.de/Research/Projects/DiME/
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threads cooperatively distribute stripes and make use of virtual function calls to
run the actual kernel implementation. Buffer structures, each being able to hold
data for computing a tile, are managed in a ring-like manner.

Kernel classes need to implement members to fill buffer structures with data
from persistent storage in main memory, perform computation, and store com-
puted data in buffers back. Data movement functions get a description of the
respective tile, a reference to the buffer structure to use, and an utility object for
reading and writing data. They are required on the CBEA, since SPEs need to
manage dynamic data structures and associate DMA transfers with a tag. The
actual computation has only access to a configurable number of tiles and their
descriptions.

Without local memory, this approach can only work effectively if the whole
ring buffer remains in the cache hierarchy most of the time, because otherwise
main memory access would increase. Fortunately, the relevant cache lines are
touched regularly, and on most architectures cache pollution can be avoided if
special load and store instruction are used for copying. But even without that
support by the ISA, the approach works surprisingly well in most cases due to
increasing size and associativity of caches. Padding can help for toxic cases.

The horizontal, tile-wise traversal is not only important to prevent redundant
computations. For cache-based architectures it can be expected that data of
neighboring tiles has already been allocated either due to hardware prefetchers
or if lines of a tile do not fully coincide with cache line boundaries. On the
CBEA, latencies of the asynchronous DMA transfers can only be hidden if they
are queued long before their results are required, so the next tile to be computed
must be known before the preceding one has been finished.

Clearly, additional time is spent for pure data movement on general purpose
cores. But various optimizations can often more than compensate for this: In-
termediate values, e. g. coefficients, can be managed in the ring buffer and will
not account to main memory traffic. Optimized copy routines can exploit special
features of the hardware more easily, like non-temporal moves available on the
Intel 64 architecture, which prevent unnecessary allocation of cache lines and
reduce cache coherency traffic.

3 Application: Fast Haar Wavelet Transform

Wavelets have a variety of applications, like analysis, denoising or compression
in image and signal processing, and a lot of research is done to accelerate them
on different architectures, e. g. [15,5,7,6]. Here, the simple Haar wavelet[8] trans-
form and its inverse are used to illustrate and evaluate implementation and
optimization of hybrid codes with OpenMP, in OpenCL, and within our hybrid
framework.

The fast wavelet transform and its inverse are simple algorithms, but their
optimization is challenging in that it is mainly memory bound and allows only for
limited saving of memory bandwidth using blocking techniques. For simplicity,
we restrict ourselves to input with sizes of 2n × 2n and perform horizontal and
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vertical transforms in alternation. The algorithm can be seen as a multi-level
algorithm, as it applied recursively to smaller and smaller regions of the input,
and inverses increasingly larger regions for the reconstruction.

4 Performance Results

The following section describes the implementations within the different envi-
ronments and presents performance results on appropriate architectures. Two
scenarios are considered: In scenario A, all data and computations are done in
single floating point precision. In scenario B, the input of the transform is 8 bit
and the inverse 16 bit integral data, while all computations and intermediate
data remain in single precision.

For measurements, the following test platforms have been chosen:

i7: A workstation housing an Intel Core i7 940 processor running at 2.93GHz,
with four cores sharing 8MiB of third level cache, exposing eight logical cores
using SMT. Three channels of DDR3-1066 memory provide a theoretical
peak bandwidth of 25.5GB/s. The machine is running openSUSE 11.2 and
programs were compiled using the GCC compiler suite in version 4.5.1.

Cell: A Sony PlayStation 3, equipped with an STI Cell/B.E. running at
3.2GHz, having access to two channels of Rambus XDR memory with a
theoretical peak bandwidth of 25.6GB/s. The machine is running Fixstar’s
Yellow Dog Linux 6.2, code was compiled with the GCC compilers in ver-
sion 4.1.1 distributed with IBM’s Cell SDK 3.1. In this configuration, only
six SPEs can be used.

Fermi: An NVIDIA Tesla C2050 GPGPU, providing 448 CUDA compute
units operating on GDDR5 memory with a theoretical peak bandwidth of
144GB/s. However, data needs to be transfered between host CPU and accel-
erator through a 16x PCIe. NVIDIA’s OpenCL 1.0 implementation shipping
with CUDA SDK 3.1 is used, host code is compiled with the GNU compiler
suite in version 4.4.1.

4.1 OpenMP Implementation

Transform and inverse have been implemented in plain C99 first before adding
OpenMP pragmas. A horizontal and vertical transform have been combined, so
that the innermost loop body of a kernel reads from four positions and writes four
results. Persistent memory arrays are used to hold temporary data to allow for
non-destructive and parallel processing . The conversions required for scenario B
are performed on-the-fly. Two SIMD-vectorized variants for Intel 64 have been
written using compiler intrinsics, one using usual memory operations, the other
memory operations optimized for streaming. Especially so-called non-temporal
stores can lead to a higher achievable memory bandwidth by removing the need
of allocating lines in cache that are only written to.
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Table 1. Time for wavelet transform and reconstruction on the i7 test platform in μs in
the OpenMP implementation. Cases in which four threads performed better than eight
are marked with an *. NT indicates the usage of non-temporal memory operations.

scenario A scenario B
size scalar SIMD SIMD NT scalar SIMD SIMD NT

512 236 194 377 276 156 333
1024 1605 1567 1474 1123 858 1259
2048 7450 7533 5763 5875 5836 4591*
4096 33804 32057 23609* 25364 24449 19044*

Table 1 shows the performance achievable on the i7 test platform. SIMD-
vectorization alone is only beneficial for problems that fully fit into the last
cache level. If this is not the case any more —for scenario A starting with a size
of 10242, for scenario B of 20482— only minor differences to the scalar kernels
can be observed. Streaming memory operations can increase the performance for
such large cases by about 30%, but can also about half the performance for small
problems. None of the optimized versions is able to surpass the simple scalar
version for all sizes, and an optimal implementation would need to carefully
choose non-temporal and caching memory operations.

Tests for the OpenMP-parallel scalar version have also been conducted on the
PPU of theCell platform, but the heterogeneous Cell design intends high memory
bandwidth and fast computation for the SPEs only. As it performed consistently
more than an order of magnitude slower than i7, no results are shown here.

4.2 OpenCL

The kernel for OpenCL basically corresponds to the inner loop body of the
scalar implementation, with the major difference that OpenCL natively only
supports one-dimensional arrays and the index for each access must be computed
explicitly. Additionally, the OpenCL kernel must check if it executes within
the bounds of the data to be processed. For the Fermi platform and its Single
Instruction Multiple Threads (SIMT) design, this simple kernel proved to be the
fastest. Similar to the OpenMP implementation, additional kernels are required
for scenario B that additionally convert from and to integral data.

Table 2. Time for wavelet transform and reconstruction on the Fermi test platform in
μs in the OpenCL implementation, either only counting the computation or considering
also the data transfer of input and reconstruction

scenario A scenario B
size computation w/ transfer computation w/ transfer

512 430 1918 423 1270
1024 611 3371 574 2244
2048 1185 10186 1033 5130
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Performance results for OpenCL on Fermi are shown in table 2. Obviously,
data transfer takes at least two third of the time. One would expect the runtime
to scale about with the problem size, but the superlinear scaling when only
computation is considered indicates that overhead for the kernels operating only
on few data, and therefore cannot exploit the whole GPGPU, and the runtime
overhead is predominant.

The very same kernel successfully executes on i7 6 and Cell7, table 3 compares
performance for a certain problem size. For i7, one would expect performance
similar to the scalar implementation for OpenMP, but is about 40% slower even
if looking only at the computation. On Cell, the OpenCL compiler, not sur-
prisingly, fails in transmogrifying scalar operations on global data into SIMD
operations on copies performed using large DMA transfers.

Table 3. Time for wavelet transform and reconstruction in μs for 20482, scenario A,
using OpenCL on different platforms

Fermi i7 Cell

computation 1185 10382 200863
w/ transfer/mapping 10186 14444 435505

4.3 Hybrid Framework

The implementation within the hybrid framework requires to write the control
part that provides the required configuration and parameters and instructs the
necessary sweeps, and the functionality to copy data into and out of the buffer
structures and to do the actual computation. For the transform, only a rectangu-
lar region from the input array must be copied from main memory. Computation
yields three temporary buffers containing wavelet coefficients that will be copied
into the output array, and a forth that will need to be transformed again and
needs to be stored in a temporary array. Temporal blocking can be facilitated by
immediately performing the next transform(s) recursively and preventing stor-
age of temporary data in main memory. Obviously, this approach can be applied
inverse in the reconstruction phase. For i7 as well as Cell, performing three
transform operations in a single sweep were fastest.

Similar to the OpenMP implementation, SIMD-optimized versions of the
scalar kernels were written. In contrast to the OpenMP implementation, conver-
sions for scenario B are not performed on the fly, but employ temporary buffer
structures. As copying between buffers and persistent storage is done by op-
timized routines of the framework, non-temporal stores can be combined with
unoptimized scalar kernels. To be able to chose the intensity of temporal blocking
and the size of tiles at runtime, it was necessary to implement custom dynamic
memory management based on memory pools. For the cache-based i7, it ensures

6 Using AMD’s Stream SDK 2.2 on the CPU.
7 Using IBM’s OpenCL 0.2.



Fast Wavelet Transform Utilizing a Multicore-Aware Framework 321

Table 4. Time for wavelet transform and reconstruction on the i7 test platform in
μs in the hybrid framework implementation. Cases, in which four threads performed
better than eight are marked with an asterisk.

scenario A scenario B
size scalar scalar NT SIMD SIMD NT scalar scalar NT SIMD SIMD NT

512 412 521 309 421* 521 591 296 399
1024 1727 1758 1463 1374 1782 2012 946 1222
2048 7031 6419 6117 4930 7388 7360 4624 4147
4096 27849 25589 24651 20304 29197 29354 18208 16214

Table 5. Time for wavelet transform and reconstruction on the Cell test platform in
μs in the hybrid framework implementation

scenario A scenario B
size scalar SIMD scalar SIMD

512 889 338 1710 301
1024 3268 1209 6552 1025
2048 12269 4299 25142 3580

that memory in cache is reused again. On Cell, SPEs allocate memory on their
LS anyway, but the default dynamic memory management implementation is
very slow.

Table 4 shows the performance for the framework implementation on the i7
platform. Similar to the OpenMP implementation, usage of streaming memory
operations can severely reduce performance for small problems. Performance on
the Cell platform is shown in table 5. As a PlayStation 3 provides only 256MiB
of main memory, data of size 40962 could not be tested. Please note that on
the same user code is used, except for the tailored SIMD kernels. The difference
between scalar and manually SIMD-vectorized code, however, is much larger on
Cell : the compiler fails in SIMD-vectorizing the scalar description automatically
and therefore must create intricate code to imitate scalar operation with the
SIMD-centralized ISA of SPEs. This also explains why scenario B performs worse
although it requires less memory transfer: The generated code for the scalar
description is compute bound.

4.4 Comparison

Table 6 gives an overview of the shortest runtimes measured. Except for the
smallest data size evaluated, the computation on Fermi using OpenCL takes
by far least time, but the transfer through the PCIe makes it an uneconomical
approach unless further operations on that data profit from GPGPU. The hybrid
framework is able to save memory transfer, but introduces additional overhead
for copying between persistent storage and temporary buffers. As a consequence,
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Table 6. Overview of time for wavelet transform and reconstruction. The best results
were taken on the respective platforms for the hybrid framework (HWF), OpenMP and
OpenCL, for the latter the time for only the computation is given in parentheses.

scenario size HFW i7 OpenMP i7 HFW Cell OpenCL Fermi

A 512 309T 194T 338 1918 (430)
A 1024 1374NT 1474NT 1209 3371 (611)
A 2048 4930NT 5763NT 4299 10186 (1185)
A 4096 20304NT 23609NT – –

B 512 296T 156T 301 1270 (423)
B 1024 946T 858T 1025 2244 (574)

B 2048 4147NT 4591NT 3580 5130 (1033)
B 4096 16214NT 19044NT – –

it is outperformed by OpenMP for small problems and is only beneficial for large
ones. Surprisingly, the two years older Cell beats i7 except for small problems
that fit in cache, confirming its suitability for many image processing algorithms.

5 Conclusions

We outlined performance-efficient implementations of the fast wavelet transform
for Haar wavelets using OpenMP, OpenCL and our hybrid framework, and pre-
sented performance results on three platforms – involving a general-purpose Intel
Core i7 processor, an STI Cell/B.E., and an NVIDIA Fermi GPGPU.

Not surprisingly, OpenMP was the most simple solution to use, and pro-
duced very good results after optimization of the compute routines, especially
SIMD-vectorization and the usage of streaming operations for larger problems.
However, OpenMP is limited to general-purpose CPUs.

OpenCL enforces a separation between control and compute code. It became
obvious that the OpenCL kernel language is not meant to write code that per-
forms great on any platform. Instead it provides non-orthogonal constructs that
match particular features of a certain platform which might be slow to imitate
on others. Especially with the SIMT design of NVIDIA’s GPUs, straight-forward
scalar code performs great for simple algorithms. A drawback of OpenCL is the
cumbersome management of contexts, command queues, memory, program and
kernel objects, and substantial overhead current implementations involve.

Our hybrid framework performed well on i7 and could outperform OpenMP
on it by exploiting temporal blocking. The control code was simpler to write than
for OpenCL, but the compute code required a more complicated management
of temporary arrays. SIMD-vectorization was equally simple as for OpenMP.
The main contribution of our framework is the possibility to write code working
equally well on common multicore CPUs as well as for the CBEA.
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6. Franco, J., Bernabé, G., Fernández, J., Ujaldón, M.: Parallel 3D fast wavelet trans-
form on manycore GPUs and multicore CPUs. Procedia Computer Science 1(1),
1095–1104 (2010)

7. Garcia, A., Shen, H.: GPU-based 3D wavelet reconstruction with tileboarding. The
Visual Computer 21(8), 755–763 (2005)

8. Haar, A.: Zur Theorie der orthogonalen Funktionensysteme. Mathematische An-
nalen 69, 331–371 (1910)

9. International Business Machines Corporation, Sony Computer Entertainment In-
corporated, Toshiba Corporation: Cell Broadband Engine Architecture 1.02 (2007)

10. Kowarschik, M.: Data Locality Optimizations for Iterative Numerical Algorithms
and Cellular Automata on Hierarchical Memory Architectures (2004)

11. McKinley, K.S., Carr, S., Tseng, C.W.: Improving data locality with loop trans-
formations. ACM Trans. Program. Lang. Syst. 18(4), 424–453 (1996)

12. Mohiyuddin, M., Hoemmen, M., Demmel, J., Yelick, K.: Minimizing communica-
tion in sparse matrix solvers. In: SC 2009: Proceedings of the Conference on High
Performance Computing Networking, Storage and Analysis. pp. 1–12. ACM, New
York (2009)

13. Ohshima, S., Hirasawa, S., Honda, H.: OMPCUDA: OpenMP Execution Frame-
work for CUDA Based on Omni OpenMP Compiler. In: Beyond Loop Level Par-
allelism in OpenMP: Accelerators, Tasking and More, pp. 161–173 (2010)
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Abstract. We present a parallel algorithm for the direct factorization
of sparse saddle-point matrices of moderate size coming from real-time
multibody dynamics simulations. We used the specific structure of these
problems both for a priori construction of supernodes and to avoid all
dynamic permutations during factorization. For the latter, we present a
technique we call “leaf swapping” which performs permutations of the
supernodes in the elimination tree without any reference to numerical val-
ues. The results compare favorably with currently available high perfor-
mance codes on our problem sets because of the high overhead necessary
to process very large problems on increasingly complex supercomputers.

1 Introduction

We consider the direct factorization of symmetric indefinite sparse matrices for
the solution of linear systems of the form

Hz = b, where H =

[
M GT

G −T
]
, (1)

where the vectors zT = [xT yT ] and bT = [cT dT ], have compatible dimen-
sions with the block matrices in H . MatrixM is symmetric, positive definite and
assumed to be well conditioned. Matrix T is symmetric positive semi-definite
with very small entries in comparison to those in M . In particular, the diagonal
elements Tii are considered to be logical zeros. The rectangular matrix G is such
that [G − T ] has full row rank. The resulting factorization yields

H = PLDLTPT , (2)

where L is unit lower triangular, D is diagonal, and P is a permutation matrix.
The latter is computed a priori to reduce fill-ins in the L factor and to avoid
pivots involving the diagonal elements Tii which are assumed to be very small.
We seek to exclude dynamic permutations based on the numerical values of in-
dividual entries during factorization. This is usually difficult to achieve for the
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symmetric indefinite matrices. We also seek to preserve the natural block struc-
ture inherent to certain classical mechanical problems to construct supernodes.
This increases performance since the smaller number of supernodes speeds up
the analysis stage, and since operations on supernodes involve Blas3 kernels as
opposed to scalar operations on the variables themselves. The detailed structure
of matrix H is given below in Sec. 4.

The problem with factorization of symmetric indefinite matrices is easily il-
lustrated with a 2× 2 matrix and its two symmetric permutations, yielding the
factorizations [

m g
g −t

]
=

[
1 0
g/m 1

] [
m 0
0 −t− g2/m

] [
1 g/m
0 1

]
(3)

and [−t g
g m

]
=

[
1 0

−g/t 1
] [−t 0

0 m+ g2/t

] [
1 −g/t
0 1

]
. (4)

Clearly, the second ordering is not numerically stable as t → 0, and the matrix
itself is badly conditioned if |g| ≈ 0. Diagonal block matrices of the form in
Eqn. (3) with g �= 0 are called 2 × 2 pivots. The Bunch-Kaufman (BK) proce-
dure [6] is commonly used to locate the pivots when a scalar one is unsuitably
small.

Our application context is the numerical integration of mechanical systems
made of discrete elements subject to kinematic constraints, namely, multibody
systems dynamics. This requires the solutions of saddle point problems of the
form given in Eqn. (1), since as a consequence of the least action principle,
the discretized trajectories are in fact solutions of constrained optimization
problems [11].

Our multibody dynamics simulations are at the heart of interactive appli-
cations such as virtual environment-based training systems. These have proved
effective for educating heavy machinery operators and surgeons among others.
Due to physiological and psychological factors, these simulations must deliver
visual updates at 60Hz, giving at most sixteen milliseconds available time for
computations. There is constant demand for more realism and more functionality
and this translates to a demand for faster numerical codes. Given the stagnation
of clock speeds, both on CPUs and data buses, parallelism is the only way to
achieve this.

Our main end user applications requires direct solutions of the linear systems
in double precision because of the mass ratios and stiffness involved. Unfortu-
nately, existing libraries designed for high performance computing computing
(HPC) incur too much overhead to be usable and this is why we developed our
own.

The performance of direct sparse factorization codes depends strongly on
good reorderings for the minimization of fill-ins, the introduction of blocking to
maximize utilization of Blas3 kernels, the reduction or elimination of the need
for dynamic pivoting, and the optimization of memory alignment. For parallel
codes, it is also necessary to reorganize the variables in evenly sized, weakly
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coupled groups to minimize communication and balance the work load. This
reorganization can compete with fill-in reduction and decrease speed up. The
main tradeoff is between the time taken for symbolic analysis vs that taken for
numerical factorization.

In what follow, we briefly summarize the state of the art in Sec. 2, explain
the principles behind our design in Sec. 3 and provide the specifics applicable
to multibody problems in Sec. 4, which also includes our main results regard-
ing numerically safe static pivoting which we call “leaf swapping”. Performance
results and a perspective on future work are presented in Sec. 5 and Sec. 6.

2 State of the Art

There are two main parallel codes which can process saddle point matrices,
namely, Mumps [1] and Pardiso [12,13]. The both provide a priori stability
preserving reordering for saddle point matrices, eliminating the need for most
dynamic pivoting [5,13]. These strategies are based on the numerical values of the
matrix elements and rely on the solution of maximum matching problems. Both
Mumps and Pardiso are HPC codes designed to handle very large problems
and even offer out-of-core functionality. They are also designed for general prob-
lems and make no assumption on structure. For maximum flexibility, they use
standard input matrix formats such as triplet, row, or column packed formats.

Recent performance analysis [7] indicate that Mumps is a good representative
choice for our performance tests, especially since it provides extensive support
for saddle-point matrices.

The analysis phase of direct sparse factorization codes consists of extracting
the graph structure of the matrix from the input format, computing a sparsity
preserving reordering based on that, discovering supernodes by matching spar-
sity patterns between columns, then computing the elimination tree, and then
computing a schedule for balancing the work load. The size of the supernodes
and the exact data layout of the data actually used during factorization is out-
side of the user’s control. In addition, the assumption made in Mumps is that
the frontal matrices are dense and large which is good since this increases the
Blas3 fraction. This is not true for the problems we consider however since
the overhead of Blas3 library calls for the relatively small frontal matrices is
prohibitive.

After experimenting with Mumps we concluded that our problems which in-
volve a few thousand variables at the present time, are simply too small to
benefit from parallelism and other features of that code because of the excessive
overhead necessary for general purpose software. Given the current trends in
HPC software, this can only get worse and for good reasons. Factorization is
relatively expensive and thus for very large problems, any amount of analysis is
easily amortized. The converse of this is that the HPC codes are likely to become
less usable for smaller problems.
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3 Our Strategy: The Sabre Solver

Multibody systems, lumped, discrete, and finite element models share a common
structure, namely, bodies or elements interacting via forces or connected with
kinematic constraints. This corresponds to a bipartite graph. Each body, ele-
ment or interaction carries a number of variables which defines a natural block
structure. The computation of forces and the time integration requires traversing
this bipartite graph. For strongly coupled systems, it is also necessary to solve
systems of linear equations whose matrices have essentially the same graph. The
difference being that the graph of the matrix has one node for each variable, but
the graph of the system has one node for each body, element, or interaction.

Having direct access to this bipartite graph makes it possible to construct the
elimination tree of the matrix and perform the fill-reducing analysis considering
only a fraction of the variables. It is then possible to allocate memory with
optimal layout before numerical values are computed and thus avoid all data
copying. We also use symbolic analysis only to avoid bad numerical pivots prior
to factorization using our “leaf swapping” technique described below in Sec. 4.

In terms of data layout, our matrices are composed of small, dense, rectangular
blocks in row major format. These blocks are contiguous, i.e., the leading dimen-
sion is the largest dimension of the block except for a small amount of padding
necessary for keeping good alignment. We use our own hand-coded Blas3 inline
kernels to perform matrix-matrix multiplication and symmetric rank-k updates
(Gemm and Syrk) for small dense matrices of various sizes using SSE3 instruc-
tions. The blocks themselves are then stored in column packed formats. This is
a simple two level hierarchical data layout.

Our factorization is based on common multifrontal techniques [8] and uses
threads since we target multi-CPU multi-core systems. We also used both Ap-
proximate Minimum Degree (Amd[2]) and the well-known nested dissection code
Metis [9] as the basis for reordering.

Considering that our matrices have moderate size, we separate the tasks as
purely parallel and purely sequential ones, the latter assigned to the master
thread and performed last. The parallel tasks factor independent subtrees in the
elimination tree. To select the subtrees and assign them to the different threads,
we first traverse the elimination tree from the leaves upward and compute an
estimate of the work required by each node, which includes the sum of that
required by its children. The negative of this estimate is used as a key in a
heap [4]. Then, starting at the top of the heap, we delete the root and insert
its children, and repeat this procedure until the number of nodes in the heap
is sufficiently large given the number of available threads. These nodes, which
are subtrees in the elimination tree and entirely independent of each other, are
then assigned to the threads in a greedy manner. Once the master thread has
completed its set of parallel tasks, it continues with the serial one. This serial
task traverses the elimination tree from the root down to the fully factored
subtrees, and processes the nodes that were deleted from the heap during the
load balancing computations on the way back up to the root. This is the only
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task that involves synchronization. The factorization of larger matrices would
require further refinement and parallelization of the serial task.

We coined our software Sabre after Zorro’s main weapon which is light and
effective.

4 Specialization to Multibody Systems

The physical systems considered consist of a number of bodies with generalized
coordinates q and generalized velocities v subject to kinematic constraints of the
form g(q) = 0. The numerical integration of the equations of motion requires the
solution of systems of linear equations of the form given in Eqn. (1), in which M
is the mass matrix of the system, and G = ∂g/∂q is the Jacobian matrix of the
constraints. Matrix T is a diagonal perturbation with very small non-negative
elements and so any Tii is considered as an unsafe pivot. It is for these elements
that we require the 2 × 2 pivots. The solution of Eqn. (1) yields the discrete
acceleration v̇ as well as the vector of Lagrange multipliers λ which produce the
constraint force GTλ.

Given n bodies, the mass matrix has the form

M = diag(M (1),M (2), . . . ,M (n)) (5)

where the blocks M (i) are the k (i) × k (i), i = 1, 2, . . . , n mass matrices of the
individual bodies, each with k (i) degrees of freedom.

The constraints g (i), i = {1, 2, . . . ,m} come in blocks of l (i) equations, each
acting on r (i) bodies. The Jacobian matrix then has the block form

G (i) =
[
. . . G

(i)
bj1

. . . G
(i)
bj2

. . . G
(i)
bjs

. . .
]
, (6)

with s = r (i), and where the ellipsis represent sequences of zero blocks. Each

block matrix G
(i)
b is rectangular of size l (i) × k (b). The perturbation matrix

Matrix T has the block diagonal form

T = diag(T (1), T (2), . . . , T (m)), (7)

with one block for each constraint.
For rigid multibody systems for instance, a hinge joint brings a block of five

rows containing two nonzero blocks of six columns each in G. This corresponds
to the number of individual constraint equations imposed by the geometry of
the hinge joint in this case, and the number of degrees of freedom of each of the
two rigid bodies connected by the constraint. The asymptotic fill ratio of matrix
H is O(1/(n · f +m · p)), where f is the average number of degrees of freedom
of the bodies, and p is the average number of bodies interacting via a constraint
or a force. For short range forces, p is small.

The computation of a fill reducing reordering of matrix H is a graph
theoretical problem[2,9], which can be addressed directly by considering the
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connectivity of the physical system, instead of the numerical matrix itself. But
since fill-reducing reordering makes no consideration for numerical values,
numerically unstable permutations can be generated.

This is illustrated in Fig. 1 for the case of a slider-crank mechanism. The same
figure contains the elimination tree obtained after an Amd reordering which has
precisely the form we want to avoid. The degree of a node here is the number of
connections to other nodes. Indeed, the constraints at the end of the mechanisms
have degree 1 as opposed to degree 2 for all other nodes in the graph, and so, one
of them becomes a leaf. The resulting reordered matrix H in Eqn. (8) cannot
be factored safely without permutation since the first block is very small, i.e.,
T11 ≈ 0 and thus an unsafe pivot. The labels used in Eqn. (8) apply to blocks
as they would have been assigned in the block form showed in Eqn. (1) once
each block is subdivided in the manner described, i.e., individual bodies and
constraints each introduce a block. This means also that G31 and G32 are the
constraint blocks from constraint 3 which apply to body 1 and 2 respectively.
Reordering the leaf node C1 with its first “body” ancestor as shown in Fig. 1
yields matrix H̃ in Eqn. (8) with only one more fill-in at position (3, 2), marked
with �, but is numerically stable, provided M22 is large enough, and that is our
assumption.

H =

⎡⎢⎢⎢⎣
−T11

GT
12 M22

G32 −T33

GT
34 M44

G54 −T55

⎤⎥⎥⎥⎦ , H̃ =

⎡⎢⎢⎢⎣
M22

G12 −T11

G32 � −T33

GT
34 M44

G54 −T55

⎤⎥⎥⎥⎦ . (8)

We call this procedure “leaf swapping”. In general, a T leaf is permuted upward
until its child is an M node, and this procedure is repeated until there are no T
leaves. This reordering is very quickly performed and involves no data motion
and no indirect addressing, just simple permutation operations on a tree. A
larger example of leaf swapping is shown in Fig. 2.

After leaf swapping, the blocks on the main diagonal have the form

Hii =

[
M̄ (i) Ḡ (i)T

Ḡ (i) −T̄ (i)

]
or Hii = M̄ (i), (9)

and these can be factored without without fear of division by zero as shown in
Eqns. (3) and (4). There might still be stability issues in the blocks Hii though,
and this can be addressed by using any of the stable algorithms that include
pivoting [6], or by introducing perturbations dynamically as is done in Pardiso

for instance [12,13], and the errors thus introduced can then be removed using
iterative refinement if needed. The computational cost of using complete pivoting
here would be small since the blocks Hii have moderate size and are dense.
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Fig. 1. The slider crank mechanism schematics across the bottom, the corresponding
bipartite graph above, and the elimination tree produced by Amd to the right

Fig. 2. Leaf swapping on a matrix. The disks with a white band are the unsafe T nodes,
the others are safe M nodes. The reordering makes the tree taller, which translates to
both less parallelism and more fill-ins.
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Table 1. Timing data in milliseconds for selected matrices of size 2867, 2278 and 2328,
respectively. The prefix labels A, F, and T stand for analysis, factor, and total time,
respectively. Labels S and M stand for Sabre and Mumps, respectively, and the suffix
1 and 2 denote Amd and Metis reordering, respectively. Mumps uses a reordering
based on Metis followed by stability preserving permutations.

Lines on deck Tractor with rocks Fluid matrix
#Threads 1 2 3 4 1 2 3 4 1 2 3 4

A-S1 2.07 2.40 2.41 2.41 0.29 0.44 0.45 0.46 3.43 4.94 4.95 5.00
A-S2 3.44 3.84 3.84 3.85 1.29 1.45 1.46 1.46 9.76 12.52 12.52 12.48
A-M 12.73 13.27 13.37 13.47 14.64 15.16 15.38 15.40 38.13 39.39 39.51 41.19

F-S1 1.88 0.98 0.81 0.72 0.96 0.61 0.41 0.40 12.92 6.65 7.20 8.07
F-S2 2.07 1.08 0.76 0.76 1.09 0.60 0.43 0.39 39.30 20.49 18.30 19.33
F-M 5.51 5.13 4.70 5.13 4.76 6.28 6.46 7.05 18.73 22.58 17.39 13.83

T-S1 3.95 3.38 3.22 3.13 1.25 1.05 0.86 0.86 16.35 11.59 12.15 13.07
T-S2 5.51 4.92 4.60 4.61 2.38 2.05 1.89 1.85 49.06 33.01 30.82 31.81
T-M 18.24 18.40 18.07 18.60 19.40 21.44 21.84 22.45 56.86 61.97 56.90 55.02
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Fig. 3. Scalability analysis. The representative problems are the “line on deck” with
2867 variables on the left, the “tractor with rocks” with 2278 variables in the center,
and the “fluid” with 2328 variables.
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Fig. 4. Matrices investigated here in their natural, unpermuted form. From left to
right, these are the “line on deck”, “tractor with rocks”, and “fluid” problems, with
2867, 2278 and 2328 variables, respectively.

Fig. 5. Sparsity pattern after factorization and reordering with Metis followed by leaf
swaping of matrices shown in Fig. 4

Fig. 6. Sparsity pattern after factorization and reordering with Amd followed by leaf
swaping of matrices shown in Fig. 4
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5 Experimental Results

We coded our libraries in C++ and used pthreads on a Linux desktop. We used
an Intel R© CoreTM3.07GHz i7-950 processor which has four cores. Our specific
model has L1 I and D caches of 32KB, L2 cache of 256KB, and L3 cache of
8192KB. The main memory was 6GB accessed by a 1066MHz bus. The OS
was Linux, kernel 2.6.32 (Ubuntu 10.04). We used Gnu gcc for our code and
gfortran for Mumps and linked against Open Mpi.

We chose three representative matrices extracted from three different simula-
tions. The first relates to marine cables and anchors in contacts with ships and
oil platforms [14]. The second is a wheel loader which shovels small stones. The
third example is from a fluid simulation based on smoothed particle hydrody-
namics, but including kinematic constraints to preserve volume and thus produce
incompressibility [3]. All three problems have different connectivity structure.
Common to the three simulations is a numerical integration method designed
for constrained systems [10]. The typical block sizes in these problems are 6× 6
for the first two, but there is a significant fraction of 1×3 blocks for the last. For
such node sizes, it makes no sense to use standard Blas routines but specialized
kernels are very effective nevertheless.

The matrices in default ordering are shown in Fig. 4. The result of fill-reducing
and leaf swapping reordering with Metis and Amd, respectively, are shown in
Fig. 5 and Fig. 6, respectively. Nested dissection algorithms such as Metis are
usually better at producing balanced elimination trees than Amd, though they
usually produce more fill-ins. Unfortunately, the leaf-reordering procedure breaks
this balance and introduces even more fill-ins. The reordering is followed by
memory allocation, load balancing computation, and then factorization. Timing
results of the different phase of the factorization process are provided in Table 1
which validates our claims. We obtain good scaling for the factorization itself as
shown in Fig. 3, but due to the cost of the analysis and preparation phase, the
overall result is sublinear. Yet there is almost no speedup for the factorization
phase of Mumps. This is not surprising as the user’s manual clearly indicates
that parallelization is beneficial only for problems which take at least a few
seconds to solve with the sequential version. A revealing aspect is the amount of
time required by Mumps to perform the analysis, which seems to increase when
there are more threads available. When this is considered, our solution is up to
20 times faster in some cases, and still more than 13% faster in the worst case.
More to the point, Mumps timings are never within the real-time requirement
of 16.67ms, as seen from Table 1.

6 Conclusion

Our results validate the effort invested in constructing this new specialized code
and demonstrate that the current trend in the development of parallel sparse fac-
torization software leaves a gap in functionality. The increasing overhead required
to solve very large problems efficiently significantly degrades the performance on
smaller ones.
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The techniques presented here are usable for other physical problems. Our
assumptions are only that the matrices are symmetric and have explicit block
structure defined by the physical models. Our leaf swapping technique is ap-
plicable to any symmetric indefinite matrix as long as nodes can be explicitly
identified as M or T nodes, referring to the sub-matrices in Eqn. (1).

The analysis phase in our code is still a significant fraction of the total cost
which indicates where to focus our future work. We are currently considering
fusing the computation of fill-in reducing and leaf swapping permutations to-
gether with the partitioning for load balancing, since these are all related graph
problems. There are also aspects of the connectivity structure common to several
problems in mechanics which could be exploited in this analysis.

We are also investigating recursive blocked data structures to store the sparse
columns to improve data locality, as well as possible GPGPU implementations.
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Abstract. This article introduces a C++ template library dedicated
at vectorizing algorithms for different target architectures: Multi-Target
Parallel Skeleton (MTPS). Skeletons describing the data structures and
algorithms are provided and allow MTPS to generate a code with opti-
mized memory access patterns for the choosen architecture. MTPS cur-
rently supports x86-64 multicore CPUs and CUDA enabled GPUs. On
these architectures, performances close to hardware limits are observed.

Keywords: GPU, SSE, Vectorization, C++ Template Metaprogram-
ming, Performances.

1 Introduction

In many scientific applications, computation time is a strong constraint. Opti-
mizing these applications for the rapidly changing computer hardware is a very
expensive and time consuming task. Emerging hybrid architectures tend to make
this process even more complex.

The classical way to ease this optimization process is to build applications
on top of High Performance Computing (HPC) libraries that are available for
a large variety of hardware architectures. Such scientific applications, whose
computing time is mostly consumed within such HPC library subroutines, then
automatically exhibit optimal performances for various hardware architectures.

However, most classical HPC libraries implement fixed APIs like BLAS which
may make them too rigid to match the needs of all client applications. In partic-
ular, classical APIs are limited to manipulate rather simple data structures like
dense linear algebra matrices. As a more complex issue, general sparse matri-
ces cannot be represented with a unified data structure and various formats are
proposed by more specialized libraries. In the extreme case, structured sparse
matrices cannot be efficiently captured by any of the classical library data struc-
tures. Several neutron transport codes developed at EDF R&D rely on such
complex matrices that another kind of library is required.

Following the model of the C++ Standard Template Library (STL), template
based generic libraries such as Blitz++ [13] provide more flexible APIs and
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extend the scope of library-based design for scientific applications. Such generic
libraries allow to define Domain Specific Embedded Languages (DSELs) [2].

Legolas++ (GLASS in [11]), a basis for several HPC codes at EDF, is a C++
DSEL dedicated to structured sparse linear algebra. In order to meet EDF’s in-
dustrial quality standards, a multi-target version of Legolas++, currently under
development, will provide a unified interface for the different target architec-
tures available at EDF, including clusters of heterogeneous nodes (i.e., with
both multi-core CPUs and GPUs). This article presents MTPS (Multi-Target
Parallel Skeletons), a C++ generic library dedicated to multi-target vectorization
that is used to write the multi-target version of Legolas++. Only developments
concerning a single heterogeneous node are presented here.

The next section presents the principles of Legolas++ and Section 3 intro-
duces MTPS. Its optimization strategies and the achieved performances are dis-
cussed in Section 4. Finally, conclusions are drawn in Section 5.

2 Towards a Multi-Target Linear Algebra Library

Legolas++ is a C++ DSEL developed at EDF R&D to build structured sparse
linear algebra solvers. Legolas++ provides building bricks to describe structured
sparse matrix patterns and the associated vectors and algorithms. This library
separates the actual implementation of the Linear Algebra (LA) computationnal
kernels from the physics issues.

Fig. 1. Block Matrix Patterns. A block diagonal matrix pattern is represented on the
left while a block diagonal matrix with tridiagonal blocks is represented on the right.

Block decomposition is a common linear algebra operation that allows to de-
scribe the sparsity pattern of a given matrix from one or several basic sparsity
patterns. For example Fig. 1(left) represents a matrix with a block diagonal
sparsity pattern that can help to identify the optimal algorithm for dealing with
this matrix. If a matrix block can itself be block-decomposed, the matrix is said
to be a multi-level block matrix. Fig. 1(right) represents such a multi-level block
matrix which is diagonal with tridiagonal blocks. Legolas++ is a C++ library
developed at EDF R&D for structured sparse linear algebra problems. The cen-
tral issue in this domain is to describe efficiently multi-level block matrices as
combinations of basic sparsity patterns. Legolas++ allows to access the block
elements of a block matrix in the same manner as if it was a simple matrix. For
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example A(i,j) returns a reference to the (i,j) matrix element which can be
either a scalar if A is a matrix, or a block if A is a block matrix. In the latter case,
this block can be seen as a simple sub-matrix and provides the same interface.
This means that A(i,j)(k,l) returns a reference to the (k,l) scalar element
of the (i,j) block.

Such a block matrix naturally operates with 2D vectors. For example let us
consider the following matrix-vector product Y = Y +A ∗X where A is a block
matrix and X and Y are vectors. Legolas++ allows to implement this product as:

1 for ( int i=0 ; i < A . nrows ( ) ; i++)
2 for ( int j=0 ; j < A . ncols ( ) ; j++)
3 Y [ i]+=A (i , j ) ∗X [ j ] ;

In this case, each elementary operation Y[i]+=A(i,j)*X[j] corresponds to a
simple matrix-vector sub-product and the C++ compiler statically transforms
the previous handwritten algorithm into the following generated block algorithm:

1 for ( int i=0 ; i < A . nrows ( ) ; i++)
2 for ( int j=0 ; j < A . ncols ( ) ; j++)
3 for ( int k=0 ; k < A (i , j ) . nrows ( ) ; k++)
4 for ( int l=0 ; l < A (i , j ) . ncols ( ) ; l++)
5 Y [ i ] [ k]+=A (i , j ) (k , l )∗X [ j ] [ l ] ;

The previous algorithm shows that the vectors X and Y, corresponding to the
block matrix A, are two-dimensional. In order to simplify the Legolas++ vocab-
ulary, one describes a block matrix like A as a 2-level Legolas++ matrix that
operates on 2D Legolas++ vectors. The main objective of the Legolas++ library
is to provide tools for the users to explicitely define their n-level matrices and
corresponding nD vectors. For instance, Fig. 2 shows the sparsity pattern of a
5-level Legolas++ matrix block that belongs to the 7-level matrix of our neutron
transport code [11,6,8].

The explicit GPU parallelization of a neutron transport code resulted in speed-
ups around 30 over the sequential Legolas++ CPU implementation [6,8]. To
generalize this gain of performances to other Legolas++ based applications, a
parallel and multi-target version of Legolas++ is to be developed. As the parallel
CPU and GPU versions exhibit strong similarities, Legolas++ developments for

Fig. 2. Sparsity Pattern of a 5-level Legolas++ block matrix
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Structured Sparse Linear Algebra

Fig. 3. Our hourglass software architecture to achieve a multi-target Legolas++: a
minimal MTPS library adapts the code for different hardware architectures

the different targets are factorized into an intermediate layer between Legolas++
and the different hardware architectures, namely MTPS (see Fig. 3). Note that
examples provided in the following of this paper correspond only to MTPS code
as the multi-target version of Legolas++ is currently under development.

3 Introduction to MTPS

3.1 Related Work

Many libraries parallelize for different architectures from a single source code.
A complete bibliography is beyond the scope of this article; only some examples
based on C++ meta-programming techniques are introduced.

Some libraries, like TrilinosNode [1], Quaff [4] or Intel TBB [12], require their
users to explicitly express the parallelism within the application by using parallel
skeletons. This expression of available parallelism can be encapsulated into spe-
cialized and implicitly parallel STL-like containers and algorithms, as in Thrust1

and Honei [3].
Our goal is to provide implicit parallelism within Legolas++ containers and

algorithms. To ease the writing of its containers and algorithms, Legolas++
relies on MTPS which follows a parallel skeletons based approach. Then MTPS
optimizes the code for the different architectures.

As this article presents MTPS, only code using MTPS is shown. However
Legolas++ will hide MTPS details in its containers and algorithms so its user
do not need to be aware of MTPS.

3.2 Collections and Vectorizable Algorithms

This section introduces the notions of collection and vectorizable algorithm on
which MTPS relies.

In C++, a Plain Old Data (POD) is a data structure that is represented only
as passive collections of field values, without using encapsulation or other object-
oriented features. POD non-static data members can only be integral types or

1 Thrust: http://code.google.com/p/thrust/

http://code.google.com/p/thrust/
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PODs. As a POD have neither constructor nor desctructor, it can be copied
or moved in memory [5]. This particularity allow MTPS to copy a POD from
one memory space to another (e.g., GPU memory space). In the following code
snippet, MyPOD is a POD with three float data members:

1 struct MyPOD{ float a , b , c ; } ;
Let a collection be a data structure containing different instances of the same

POD and f be a pure function (i.e., f has no side effects). An algorithm applying
f to all elements of a collection is said to be vectorizable. To parallelize such
algorithms, MTPS provides two parallel skeletons optimized for different target
architectures: map and fold which correspond to a parallel for loop and to a
parallel reduction respectively.

An algorithm applied to a set of data is vectorizable if and only if this set of
data is considered as a collection and if the algorithm can be decomposed as a
pure function applied to each element of the collection. We say that an algorithm
is vectorizable in reference to a given collection. For instance, an algorithm op-
erating on each row of a matrix is vectorizable only if the matrix is considered
as a collection of rows. The same algorithm is not vectorizable if the matrix
is considered as a collection of columns: the matrix must be transformed (i.e.,
transposed). Two algorithms vectorizable in reference to the same collection are
said to be in the same vectorial context. On the contrary, if two consecutive algo-
rithms are not vectorizable in reference to the same collection, a context switch
(the matrix transposition in our example) is required. In a distributed memory
system, context switches correspond to communications.

3.3 Linear Algebra Hello World of MTPS: saxpy

This section presents how to use MTPS to implement the saxpy operation and
to execute it efficiently on different target architectures. The saxpy operation is
part of the BLAS interface and its C implementation is:

1 float ∗X , ∗Y , a ;
2 for ( int i=0; i<N ; ++i ) Y [ i]+=a∗X [ i ] ;

First, the iteration-dependent data are gathered in a POD XYData whose
members correspond to X[i] and Y[i]. The types of the two members (float)
are passed as template arguments to MTPS::POD and their names (x and y) are
given in the Fields enum:

1 struct XYData : public MTPS : : POD<float , float>{
2 enum Fields{x , y } ;
3 } ;
Second, a collection of XYData elements, xyCol, is built using MTPS contain-

ers. Optimized containers are provided as member of the class corresponding
to the target architecture. Two levels of parallelism are available on CPUs:
thread parallelism and SIMD parallelism. The choice for each level is made
by passing two arguments to the CPU template class. Thread can be one of
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MTPS::Sequential, MTPS::OMP (openMP) or MTPS::TBB (Intel TBB). SIMD can
be one of MTPS::Scalar (no SIMD instruction generated) or MTPS::SSE (SIMD
instruction generated using SSE intrinsics). On CUDA-enabled GPUs, only the
SIMD parallelism is provided.

1 // typedef MTPS: :GPU: :CUDA Target ; // To use the GPU
2

3 // typedef MTPS: : S equent ia l Thread ; // S in g l e threaded
4 // typedef MTPS: :TBB Thread ; // TBB pa r a l l e l i sm
5 typedef MTPS : : OMP Thread ; // OpenMP ←↩

p a r a l l e l i sm
6 // typedef MTPS: : S ca lar SIMD; // Disab le SIMD ←↩

un i t s
7 typedef MTPS : : SSE SIMD ; // Enable SSE un i t s
8 typedef MTPS : : CPU<Thread , SIMD> Target ; // To use the CPU
9

10 Target : : collection<XYData> xyCol (N ) ;

Third, the function that is to be applied to all elements of the collection must
be written as a functor class: AxpyOp. The coefficient a is common for all elements
of the collection and is stored as a member of the AxpyOp functor class:

1 struct AxpyOp{
2 float a_ ;
3 template <template <class> class View>
4 INLINE void operator ( ) ( View<XYData> xy ) const {
5 typedef View<XYData> XYV ;
6 int x = XYV : : x ;
7 xy ( XYV : : y )+=a_∗xy ( x ) ;
8 }
9 } ;
As XYData elements may not be stored identically on different target archi-

tecture, AxpyOp::operator() does not take an XYData as argument. A View is
provided instead. XYData members can be accessed with the operator() of the
View which takes an int as argument. This int identifiy the data member that
is to be accessed; either X[i] or Y[i] in our exemple. Elements of the Fields

enum can be used either to initialize an int (line 7) or directly (line 8). The
declaration of AxpyOp::operator() must be preceeded by the INLINE macro
which defines target-dependent keywords (e.g. device for CUDA).

Finally, the functor is passed to the map and fold parallel skeletons provided
by the collection container:

1 AxpyOp axpyOp ; axpyOp . a_= . . . ;
2 xyCol . map ( axpyOp ) ;
3 . . .
4 DotOp dotOp ;
5 float dot = xyCol . fold ( dotOp ) ;

Although more verbose and harder to use than the approaches presented in
Section 3.1, this formalism allow MTPS to be the only library at our knowledge
that optimizes the data layout for different architectures as Section 4 will show.
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4 Optimization of Performances

For each architecture, the specific optimizations required to enable good perfor-
mances will be presented. The implementation of a more complex example will
then be discussed.

4.1 Multi-target Performance Optimizations

Parallelizing a vectorizable algorithm is straightforward. However, achieving good
performances on different hardware architectures is not: modifications of the
collection data structure may be required. Indeed, achieving efficient usage of
memory bandwidth on a given hardware architecture requires specific access
patterns [7]. Fig. 4 shows a block-diagonal matrix of 8 TriDiagonal Symmetric
Matrix blocks (TDSM) of size 4 (left). Assuming that this matrix is considered
as a collection of TDSM blocks in reference to an algorithm, Fig. 4 shows how
to store it on three different architectures to optimize the access pattern (right):

– on CPU (top), maximizing data locality is required to avoid cache misses.
As the TDSM blocks are independent, data locality only matters inside a
TDSM block. Hence, the best performances are achieved when each TDSM
block is stored in a contiguous chunk of memory;

– on GPU (bottom), memory accesses have to be coalesced to achieve good
performances (see the CUDA programming guide [10]). This implies that the
accesses made by two threads i and i + 1 must correspond to two elements
at index j and j + 1. As the same function is applied in a SIMD fashion to
the different TDSM blocks, all elements A are accessed at the same time and
they have to be stored in a contiguous chunk of memory;

– using the SSE units (middle) requires to pack the data into vectors containing
4 independent elements that have to be accessed together. Although a GPU
ordering would fill this need, this would break the data locality and imply
CPU cache misses. Finally, an intermediate storage between the two previous
is optimal.

Performances achieved thanks to this optimization will be shown in Section 4.3.
This optimization is made in MTPS collection container. To construct a collec-
tion, MTPS user must define both the size per POD-element of each field (4
for the diagonal field on Fig. 4) and the number of POD-elements. Using this
information, MTPS optimizes the storage for each target architecture.

As a context corresponds to a storage pattern, a context switch imply a data
reordering. For instance, switching a collection of matrix rows to a collection
of matrix columns modifies the effective storage (i.e. the matrix is transposed).
MTPS provides some switch skeletons.

4.2 Implementation of a Linear System Resolution

The example presented in this section corresponds to a basic operation that
represents the major part of the execution time of a neutron transport code [6,8].
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Fig. 4. The storage of the diagonal is adapted by MTPS for the target architecture

LetA be a block-diagonal matrix with TDSM blocks. TheAX = B linear system
can be seen as a collection of smaller block systems ax = b that can be solved
independently. To solve one ax = b system, the matrix a is factorized in-place
with a LDLT decomposition and a forward and backward substitution is then
applied on x. Only the code for the factorization is shown here.

First, let us introduce TData which represents a TDSM block. TData elements
are stored in two vectors corresponding to the diagonal and the lower diagonal:

1 struct TData : public MTPS : : POD<float , float>{
2 enum Fields{diag , low } ;
3 typedef typename MTPS : : POD<float , float > : : Shape Shape ;
4 static Shape createShape ( int size ) {
5 Shape out ;
6 out [ diag ] = size ; out [ low ] ←↩

= size−1;
7 }
8 } ;
The Shape type of line 5 contains the effective sizes of the two fields. All

elements of a collection have the same shape.
Second, to build a collection of TData, one has to provide both the number

of TData elements and their shape. With these elements, the storage pattern of
tCol can be optimized according to the target architecture (see Fig. 4):

1 TData : : Shape s=TData : : createShape ( size ) ;
2 Target : : collection<TData> tCol (N , s ) ;

Third, the TLDLtOp functor class that factorizes the matrix a in-place using a
LDLT decomposition has to be provided:

1 struct TLDLtOp{
2 template <template <class> class View>
3 INLINE void operator ( ) ( View<TData> a ) const{
4 typedef View<TData> TV ;
5 int low = TV : : low , diag = TV : : diag ;
6 typename TV : : template Type<low> : : Type low_i_1 ;
7 int size = a . shape ( ) [ diag ] ;
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8 for ( int i = 1 ; i < size ; i++){
9 a ( low , i−1)=a ( low , i−1)/a ( diag , i−1) ;

10 a ( diag , i )−=a ( diag , i−1)∗a ( low , i−1)∗a ( low , ←↩
i−1) ;

11 }
12 }
13 } ;
14 TLDLtOp op ;
15 tCol . map ( op ) ;

The elements of a field are accessed by passing their index as the second argument
of the view operator(). If no index is provided as in the line 8 of the AxpyOp

example of Section 3.3, the first element is returned. Line 7 shows how the type
of the field elements can be retrieved.

4.3 Performances

Table 1 shows the performances obtained to compute the solution of the AX =
B system from Section 4.2 with A having 105 blocks of size 100×100. The matrix
and vector are directly constructed on the target architecture and do not require
further reordering to fit the target architecture. Speed-ups take the sequential
scalar CPU version as reference. CPU tests are run on a machine with two
2.933 GHz Intel X5670 hexa-core processors. GPU tests are run on a Nvidia
Quadro C2050 card. Both architectures were launched in 2010. On CPU, icpc
11.1 and g++ 4.5 provide the same performances. On GPU, nvcc 3.2 has been
used. Computation performances are given in GFlops. Data throughput is given
in GB/s and takes into account the effective data transfers to and from the
memory. Consequently, an element remaining in the cache memory between two
loads is considered to have been loaded only once.

For each architecture, the achieved performances are compared to the ex-
pected performances corresponding to the best observed performances on the
given architecture. Expected computational power are measured with large BLAS
matrix-matrix multiplications (sgemm): 11.2 GFlops with one CPU core and
126.5 GFlops with the 12 CPU cores using Intel MKL. The MKL uses the SSE
units. As these units can execute 4 single precision floating point operations,
we define expected computational performances without the SSE units as 1⁄4
of the SSE performances (i.e., 2.8 GFlops and 31.6 GFlops respectively). On
GPU, the expected computational power measured is 435 GFlops. On CPU, the
expected memory throughputs are measured with an extended version of the
stream benchmark [9]. This version adds a new subroutine containing 9 memory
accesses (instead of 3 for the Triad routine) and shows 12.4 GB/s for single
threaded execution and 35.0 GB/s for the parallel execution using openMP.
On GPU, the expected memory throughput is measured with the CUDA SDK
bandwidth benchmark on GPU: 86.3 GB/s.

To provide comparable results in spite of the hardware differences, the spec-
ifications of the hardware have been taken into account. For the computational
power, the difference relies in the number of cycles to evaluate a floating point
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division: on GPU, 1 cycle is required but 15 are required on CPU. Thus, on
CPU, the division is considered as 15 floating point operations. For the memory
throughput, only accesses to the main memory are counted. In other words, ac-
cesses to a piece of data that have already been loaded in cache are considered as
free. On CPU, 3 accesses are saved whereas no accesses are saved on GPU. Eval-
uating the computational power and the memory throughputs this way allow us
to make fair comparison to the expected performances.

The performances of a code on a given architecture are limited either by the
computational power or by the memory throughput. Bold figures in Table 1 cor-
respond to the limiting factor for the corresponding target architecture. On CPU,
when no or few parallelism is used, the performances are limited by the compu-
tational power: the performances achieved are between 75% and 93% of the ex-
pected computational performances. When both the threading parallelism and
the SIMD parallelism are enabled, the performances are limited by the memory
throughput: almost 100% of the best observed throughput is obtained. On GPU,
all the available parallelism is used and the performances are thus limited by the
memory throughput: 95% of the best observed throughput is reached.

Table 1. Performances of MTPS for the TDSM example. Computation are carried out
in single precision floating point.

Thread SIMD
Time Speed Computational Power Data Throughput
(ms) Up GFlops Expected %Exp. GB/s Expected %Exp.

sequential
scalar 131.9 1.0 2.5 2.8 88 1.7 12.4 14
SSE 37.3 3.5 8.7 11.2 78 6.0 12.4 48

intel TBB
scalar 12.1 11. 27.0 31.6 85 18.5 35.0 53
SSE 6.6 20. 49.4 126.5 39 33.9 35.0 97

openMP
scalar 11.1 12. 29.4 31.6 93 20.1 35.0 57
SSE 6.5 20. 50.1 126.5 40 34.4 35.0 98

CUDA C 4.1 32. 15.9 435. 4 81.8 86.3 95

The limitation of the performances by the memory throughput shows the
importance of optimizing the memory accesses. Finally, Table 1 shows that by
abstracting the memory access pattern to the target architecture the the perfor-
mances of a given code can near the hardware limits on different architectures.

5 Conclusions and Perspectives

We have presented MTPS, a C++ generic library simplifying the parallelization
and the optimization of vectorizable algorithms for different architectures. Al-
though MTPS semantics and syntax remain complex, the end user should not
be aware of this complexity: MTPS is designed to be generated, especiallly with
the C++ template metaprogramming approach. Finaly, an algorithm written
once with MTPS can be compiled to be executed on the SSE units of multicore
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CPUs or on CUDA-enabled GPUs and obtain performances close to hardware
limits: more than 95% of peak performances were observed.

For further developments of MTPS, the design of an new version of Legolas++
on top of MTPS will allow to validate the set of skeletons provided by MTPS,
especially concerning the context switches. The implementation of a neutron
transport solver [6,8] with this version of Legolas++ will automaticaly provide
a multi-target version of this solver. Efforts will be made to keep the portability
of the performances currently available with MTPS.

Acknowledgement. Authors want to thank Region Lorraine and ANRT for
supporting this research.
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Abstract. Heterogeneous architectures and programming techniques
will be very important in the development of exascale HPC applications.
Adapting heterogeneous programming techniques to scientific program-
ming is not always straightforward. Here we present an in-depth analysis
of an astrophysical application used for performing an all-sky coherent
search for periodic signals of gravitational waves in narrowband detector
data. The application was first ported to the PowerXCell8i architecture
and then on the basis of achieved performance it was again redesigned
and programmed in a heterogeneous model. Moreover presented hetero-
geneous techniques could be easily adopted for other scientific computa-
tional problems involving FFT computations.

Keywords: hybrid computing, parallel computations, gravitational
waves.

1 Introduction

Nowadays using specialized hardware architectures or accelerators for specific
computational problems is very common. For large scientific codes it usually
means that special programming techniques have to be applied to offload some
of the computationally intensive parts of the application on given hardware.
Such techniques are usually called heterogeneous computing.

In this work we present an in-depth analysis of an astrophysical application
used for performing an all-sky coherent search for periodic signals of gravitational
waves in narrowband detector data. The application was ported to a prototype
hybrid platform based on the IBM PowerXCell8i architecture. The resulting
implementation can be compiled and used as a standalone x86-64 application,
standalone Cell application or hybrid x86-64/Cell application. The IBM Cell
processor was designed to bridge the gap between general purpose processors
and specialized computer architectures like GPUs. The architecture was already
extensively described i.e. in [1], [2] and [3]. Supercomputer architectures like
Roadrunner [4] or Nautilus [9] utilize the IBM PowerXCell8i processor as an
accelerator for calculations running on x86-64 cores. One of the programming
techniques available for such heterogeneous architectures is the IBM DaCS li-
brary which has proven to be useful in several scientific applications developed

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 347–356, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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for the Roadrunner and Nautilus supercomputers. The described application is
one of the codes implemented with the use of DaCS for execution on Nautilus.

The application itself and its reference setup is briefly discussed in Chapter 2.
A detailed description of the programming techniques used for implementation
of both the PowerXCell8i and hybrid versions of the code is presented in Chap-
ter 3. In this chapter we also show how the custom designed and implemented
data conversion mechanism improves the overall performance of the hybrid ap-
plication. In the last chapter we discuss the results and formulate the conclusions
and perspective of code development on described computer architectures.

2 Compute Problem

2.1 Scientific Background

A gravitational wave is a physical phenomenon which arises from Einstein’s
theory of general relativity and is defined as a fluctuation in the curvature of
spacetime which propagates as a wave, traveling outward from the source. Grav-
itational waves are radiated by objects whose motion involves acceleration. This
class of objects include binary star systems composed of white dwarfs, neutron
stars, or black holes. Compared to standard methods used for observing the
universe, like visible light or radio telescope observations, gravitational waves
have two important unique properties. First of all gravitational waves can be
emitted by a binary system of uncharged black holes without presence of any
type of matter nearby. Secondly gravitational waves can pass through any in-
tervening matter without being scattered significantly. Both of these features
allow researchers to explore astronomical phenomena which have never before
been observed by humans. The observations of gravitational waves are usually
done by ground-based interferometers. Big research projects like LIGO [5] or
VIRGO [6] usually involve operationally running interferometers and produce a
significant amount of observational data. This data is subject to further analysis
by computer codes developed by research groups involved in those projects. The
main computational tasks to be performed on those observational data sets are
usually described by algorithms for searching of periodicity or quasiperiodicity.

2.2 Compute Algorithm

In this work we present an in-depth analysis of an astronomical application used
for performing an all-sky coherent search for periodic signals of gravitational
waves in narrowband data from a detector. The search is based on the maxi-
mum likelihood statistics called the F -statistics as proposed by P.Jaranowski, A.
Królak and B.F.Schultz [8]. The computer code developed by the Polgraw group
[7] was used in an operational manner for analysis of observational data from
the NAUTILUS [9] and VIRGO [6] detectors. The algorithm implemented in the
code was designed for gravitational wave signals generated by rotating neutron
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stars. The mathematical description of the algorithm was given in previous works
of the code authors ([8],[10],[11],[12]). Here we will just shortly describe the most
important parts of the code. The simplified flowchart of the code is presented in
Fig. 1.

Fig. 1. Flowchart of the application

The code begins with reading the observational data sets and setting appro-
priate parameters for the searching algorithm. After that an outer loop across
the sky begins. The very first step in this loop is an ampiltude and phase demod-
ulation. The following step, the so-called resampling of the signal, is performed
in two stages: a Fourier interpolation and a spline interpolation. The most com-
putationally expensive part of the whole code is a loop over spindown which can
have a length between 0 and 1000 depending on the signal currently analyzed.
This loop consists of four main steps:

1. Phase demodulation (2nd part) - double precision sin/cos computations,
double precision complex multiplications

2. FFT computations - double precision 1 dimensional complex forward
transforms of size N = 524288

3. Interbinning step - interpolation algorithm, double precision complex
subtractions and divisions, double precision real square root computations

4. Finding and saving signals - nonlinear optimization for finding a maxi-
mum, saving the resulted signals with values below threshold
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3 Methodology

The very first attempt to accelerate the execution of the described application
was to port some of its functional parts to the Synergistic Processing Units
(SPUs) of the PowerXCell8i processor. In order to select appropriate parts of
the application the programmer usually has to perform the following tasks:

– compile, run and measure the performance of the application on a general
purpose architecture (i.e. x86-64)

– compile, run and measure the performance of the application on the PPU of
the PowerXCell8i processor,

– identify the most computationally intensive parts of the application,
– check the suitability of the selected parts for execution on SPUs.

Unfortunately the usual result of the first two tasks listed above is that the
application’s performance is much higher on the single core of the x86-64 archi-
tecture than on the PPU, which is related to the fact that the Power Processing
Unit of the Cell processor was not designed and optimized for computations.
This was also valid for the described application. Executions on the PPU were
approximately 3 times slower than on a corresponding single core of the x86-64
chip. This observation is of crucial importance to the overall performance of the
application on the Cell processor even if some of its parts were already opti-
mized for executions on SPUs. One of the ways to overcome this issue is to use
a heterogeneous programming model where only the well optimized parts of the
application are executed on the Cell processor whereas the application itself is
running on an x86-64 core. In this chapter we present the performance results of
the application ported to the Cell processor. Since not all of the parts/algorithms
are well suited for execution on the SPUs we decided to use a heterogeneous en-
vironment to increase the overall performance. This is briefly described in the
second section of this chapter.

3.1 SPU Implementation

We have identified 3 functional parts of the application that were especially well
suited for execution on the SPU architecture: the 2nd part of phase demodula-
tion, FFT computations and the interbinning step. However to achieve a certain
level of granularity for computations on the SPUs we needed to redesign the whole
program. We decided to make use of the available RAM memory (8GB for each
IBM QS22 Cell blade) and perform all 3 functional parts in seperate loops over
spindown. The new resulting flowchart of the program is presented in Fig. 2.

This small change turned out to be very important for the final performance
of the application on the Cell chip. Here we will describe the effort we have made
to optimize the code for this architecture in detail.

We have implemented a parallel version of the phase demodulation and in-
terbinning step on the SPUs with the use of the libspe2 library [17]. We have
used a double buffering scheme for DMA transfers between Local Store of the
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Fig. 2. Flowchart of the redesigned application

SPUs and main memory. We have then compared the resulting performance with
the use of 8 SPUs (one PowerXCell8i chip).

The FFT step was initially implemented with the use of the Fastest Fourier
Transform in the West (FFTW) library [13]. We have decided to use the same
library in our implementation since FFTW was already ported to the Cell pro-
cessor by a group of programmers at IBM Austin Research Laboratories.

A performance comparison between a single core AMD Opteron 2216 pro-
cessor and a single PowerXCell8i chip for the described functional parts is pre-
sented in Fig. 3. It should be also mentioned that all computations involved
in the algorithm are based on double precision arithmetic. Therefore the maxi-
mum performance rate that could be achieved on one PowerXCell8i chip is 102.4
GFlops. The single core of the corresponding AMD Opteron 2216 processor has
a maximum performance rate of 9.6 GFlops.

We were able to speed up few parts of the application with the use of multi-
ple SPUs. However not all steps of the implemented algorithm could be ported
and optimized on the Cell architecture. One example is the so-called ”Finding
signals” step based on the maximum likelihood statistics. Moreover as we men-
tioned before computational performance of the PPU core is very poor, thus
usually the fragments of the code that are not accelerated on SPUs slow down
the overall performance. In particular the ”Finding signals” step takes in average
2.67 sec. on the Cell and 0.5 sec. on a single core of the x86-64 architecture chip.
The final result we obtained was approximately 3.24 speedup of the 8 SPU
version compared to a single core x86-64 version.
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Fig. 3. Performance of the described functional parts of the algorithm on the Cell
architecture (blue - single core x86-64, red - PowerXCell8i)

3.2 Hybrid Implementation

The observation that some of the parts of the application have much better per-
formance on the x86-64 architecture encouraged us to prepare a heterogeneous
version of the code where we use the PowerXCell8i processor as an accelerator
to compute only the functional parts of the application that were optimized for
execution on multiple SPUs. For implementing such a scheme we have chosen to
use a hybrid library developed by IBM [14].

The Data Communication and Synchronization (DaCS) [14] library and run-
time was designed to support the development of applications for heterogeneous
systems based on the PowerXCell8i and x86-64 architectures. The DaCS API
provides an architecturally neutral layer for application developers. It serves as
resource and process manager for applications that use different computing de-
vices. With the use of specific DaCS functions we can execute different remote
processes and initiate data transfers or synchronization between them.
One of the main concepts of DaCS is a hierarchical topology which enables ap-
plication developers to choose between a variety of hybrid configurations. First
of all it can be used for programming applications for the Cell processor by ex-
ploiting its specific hybrid design. In such a model developers use DaCS to create
and execute processes on the PPU and SPUs and to initiate data transfers or
synchronization between those processes. It should be stated that developers can
choose between a few other programming concepts for Cell processor and that the
DaCS model is for sure not the most productive and efficient one. However the
DaCS library is much more interesting as a tool for creating hybrid applications
that use two different processor architectures, in this case: AMD Opteron and
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PowerXCell8i. In such a model DaCS can support the execution, data transfers,
synchronization and error handling of processes on three different architectural
levels: x86-64 cores, PPUs and SPUs. Additionally the programmer can decide
to use DaCS with any available Cell programming model on the level of PPU
process. PPU process can execute SPU kernels implemented within optimized
libraries or created originally by developers with the use of programming models
like libspe2 [17], Cell SuperScalar [18] or OpenMP [19].

The DaCS library has a much wider impact on high performance comput-
ing since it was designed to support highly parallel applications where the
MPI library is used between heterogeneous nodes and the DaCS model is used
within those nodes. It is presented schematically on Figure 4. Such programming
model was used for application development on the Roadrunner and Nautilus
supercomputers ([15],[16]).

Fig. 4. Scheme of multi-level DaCS programming model for heterogeneous architectures

The resulting heterogeneous scheme of the application is presented in Fig. 5.
The application is executed on the x86-64 architecture. The initialization of the
DaCS library is performed in the very beginning of the code together with the
allocation of specific memory regions reserved for synchronized data transfers
between hybrid processes. At this time the corresponding Cell process is executed
on the PPU via the DaCS library and hangs its execution waiting for proper
signals. The application parts performed on the Cell processor are only those
that presented good performance and were optimized for execution on SPUs
(the demodulation step, FFTs and the interbinning step). It should be stated
here that such an implementation introduces memory transfers between both
processes. The size of such data transfers is reaching 1 GB per each outer loop
step and thus the performance rate of the interconnect is of crucial importance
for the overall performance of the application.
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Fig. 5. Flowchart of the Hybrid DaCS version of the application

We have used two heterogeneous systems for testing purposes. Both of them
were composed of one IBM LS21 blade and two IBM QS22 blades and they dif-
fer in the type of interconnect used for data transfers between those blades. The
basic development system installed at ICM uses Gigabit Ethernet. The other
system is a node of IBM’s triblade cluster (RoadRunner-like prototype system)
located at Rochester, USA and uses PCI for data transfers. Like we have as-
sumed the performance of data transfers used for moving data from x86-64 to
the Cell architecture turned out to be very important for the overall speedup of
the application. On Gigabit Ethernet the maximum speedup was approx. 1.5.
First measurements made on PCI showed that the performance gain from the
hybrid approach is rather small reaching a maximum speedup of 3.56 compared
to the previously mentioned 3.24 result in the non-hybrid Cell version of the
application. Thus we decided to take a closer look at the performance of the
DaCS data transfers on PCI. Those data transfers always involve DMA opera-
tions followed by byte swapping applied to the binary data being sent (different
endianness of processing devices). In the DaCS library you can decide to turn
the byte swapping functionality on and off. We have measured that the byte
swapping operation limits the performance of the data transfers over PCI to ap-
prox. 280 MB/s. Transfers that don’t involve this step can reach performance of
more than 1100 MB/s. Following this observation we have decided to implement
an optimized version of byte swapping on the Cell processor itself which resulted
in much better data transfer performance reaching up to 900 MB/s for big data
sizes. Such a high performance level was achieved thanks to a number of Cell
programming techniques, mainly: parallel processing on SPUs and SIMD vector
processing. Our custom implementation of the byte swapping step is universal
and could be used as library by other applications. The following Fig. 6 shows
the performance gain of data transfers for different data sizes.
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Fig. 6. DaCS data transfer performance with optimized byte swapping library (blue)
compared to non-byte swapping (green) and DaCS byte swapping (red) versions. Data
size in bytes is depicted on the x-axis. Performance measured in GB/s is depicted on
the y-axis.

The application described in this work achieved a speedup of 4.5 with the use
of our optimized byte swapping technique and this performance level is our final
result. Moreover in our opinion it is the highest performance level that could be
achieved on the corresponding computer architectures.

4 Results and Conclusions

We have successfully implemented a heterogeneous version of the presented ap-
plication on RoadRunner-like prototype systems. The application described in
this work achieved the highest speedup of 4.5 with the use of a custom opti-
mized byte swapping technique and IBM DaCS programming model. Methods
used for the implementation can also be adopted and used in many different
scientific applications, especially those involving large FFT computations. The
main disadvantage in programming applications for heterogeneous systems is
usually related to the necessity of creating few programs dedicated for differ-
ent computational devices. Therefore our future work on the presented topic
will be addressing the development of a heterogeneous parser library for Fourier
computations. Such a tool could be used with minor code modifications within
scientific codes that make use of the FFTW library. All the important heteroge-
neous programming issues like data transfers and byte swapping can be hidden
behind the library interface. The overall performance of such a heterogeneous
tool will be based on the DaCS model and most importantly on heterogeneous
techniques developed and used in this work.
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Abstract. Erasure codes can improve the availability of distributed
storage in comparison with replication systems. In this paper, we fo-
cus on investigating how to map systematically the Reed-Solomon and
Cauchy Reed-Solomon erasure codes onto the Cell/B.E. and GPU multi-
core architecture. A method for the systematic mapping of computation
kernels of encoding/decoding algorithms onto the Cell/B.E. architecture
is proposed. This method takes into account properties of the architec-
ture on all three levels of its parallel processing hierarchy. The perfor-
mance results are shown to be very promising. The possibility of using
GPUs is studied as well, based on the Cauchy version of Reed-Solomon
codes.

Keywords: Erasure codes, Reed-Solomon codes, Cauchy Reed-Solomon
codes, multicore architectures, Cell/B.E., GPU.

1 Introduction

There is a rapid increase in sensitive data, such as biomedical records or finan-
cial data. Protecting such data while in transit as well as while at rest is crucial
[6]. An example are distributed data storage systems in grids [18], that have
different security concerns than traditional file systems. Rather than being con-
centrated in one place, data are now spread across multiple hosts. Failure of a
single host or an adversary taking control of a host could lead to loss of sensitive
data, and compromise the whole system. Consequently, suitable techniques, e.g.
cryptographic algorithms and data replication, should be applied to fulfill such
key requirements as confidentiality, integrity, and availability [18,19].

A classical concept of building fault-tolerant systems consists of replicating
data on several servers. Erasure codes can improve the availability of distributed
storage by splitting up the data into n blocks, encoding them redundantly using
m blocks, and distributing the blocks over various servers [2]. As was shown in
[15], the use of erasure codes reduces ”mean time of failures by many orders of
magnitude compared to replication systems with similar storage and bandwidth
requirements”.

There are many ways of generating erasure codes. A standard way is the use
of the Reed-Solomon (or RS) codes [10]. The main disadvantage of this approach
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is a large computational cost because all operations, including multiplications,
are performed over the Galois field GF (2w) arithmetic, which is not supported
by modern microprocessors, where 2w ≥ n + m. In this context, an interest-
ing alternative are the Digital Fountain Codes, or more generally, Low-Density
Parity-Check (LDPC) codes [7]. Their implementation can be reduced to a series
of bitwise XOR operations. However, this potential advantage of LDPC codes is
not always realized in practice [13], when relatively small values of n are often
used. In particular, it was shown that for the encoding ratio r = n/(n+m) = 1/2,
the performance of RS codes is not worse than that of LDPC codes if n ≤ 50.
This relationship depends on the ratio between the performance of a network,
and performance of processing units used for encoding/decoding. For a constant
network performance, increasing the performance of processing units gives ad-
vantage to the RS codes.

The last conclusion is especially important nowadays when multicore architec-
tures begin to emerge in every area of computing [16]. Furthermore, an important
step in the direction of improving the performance of RS codes has been done
recently, when a Cauchy version of these codes was proposed [14]. In particu-
lar, this new class of codes (CRS codes, for short) does not require performing
any multiplication using the Galois field arithmetic; a series of bitwise XOR
operations is executed instead.

In this work, we focus on investigating how to systematically map the RS and
CRS erasure codes onto the Cell/B.E. architecture [1]. This innovative hetero-
geneous multicore chip is significantly different from conventional multiproces-
sor or multicore architectures. The Cell/B.E. integrates nine processor elements
(cores) of two types: the Power processor element (PPE) is optimized for control
tasks, while the eight synergistic processor elements (SPEs) provide an execution
environment optimized for data-intensive processing. Each SPE supports vector
processing on 128-bit words, implemented in parallel by two pipelines. Each SPE
includes 128 vector registers, as well as a a private local store for fast instruction
and data access. The EIB bus connects all the cores with a high-performance com-
munication subsystem. Also, the Cell/B.E. offers an advanced, hardware-based
security architecture [19]. The impressive computational power of Cell/B.E., cou-
pled with its security features, make it a suitable platform to implement algo-
rithms aimed at improving data confidentiality, integrity, and availability [18,19].

In the last part of this paper, we study the possibility of using another, very
promising type of multicore architectures which are GPUs (Graphics Processing
Units) [5,17]. Basic features of GPUs include utilization of a large number of
relatively simple processing units which operate in the SIMD fashion, as well as
hardware supported, advanced multithreading. For example, Nvidia Tesla C1060
is equipped with 240 cores, delivering the peak performance of 0.93 TFLOPS.
A tremendous step towards a wider acceptation of GPUs in general-purpose
computations was the development of software environments which made it pos-
sible to program GPUs in high-level languages. The new software developments,
such as Nvidia CUDA [8] and OpenCL [9], allow programmers to implement
algorithms on existing and future GPUs much easier.
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2 Reed-Solomon Codes and Linear Algebra Algorithms

More precisely, an erasure code works in the following way. A file F of size |F | is
partitioned into n blocks (stripes) of size B words each, where B = |F |/n. Each
block is stored on one of n data devices D0, D1, ..., Dn−1. Additionally, there are
m checksum devices C0, C1, . . ., Cm−1. Their contents are derived from contents
of data devices, using a special encoding algorithm. This algorithm has to allow
for restoring the original file from any n (or a bit more) of n+m storage devices
D0, D1, . . ., Dn−1, C0, C1, . . ., Cm−1, even if m of these devices failed, in the
worst case.

The application of the RS erasure codes includes [10,11] two stages: (i) en-
coding, and (ii) decoding. At the encoding stage, an input data vector dn =
[d0, d1, . . . , dn−1]

T , containing n words, each of size w bits, is multiplied by a
special matrix

F(n+m)×n =

[
In×n

F∗
m×n

]
. (1)

Its first n rows correspond to the identity matrix, while the whole matrix is
derived as a result of transforming an (n +m) × n Vandermonde matrix, with
elements defined over the Galois field GF (2w).

The result of the encoding is an (n+m) column vector

en+m = F(n+m)×n × dn =

[
dn

cm

]
, (2)

where:
cm = F∗

m×n × dn . (3)

Therefore, the encoding stage can be reduced to performing many times the
matrix-vector multiplication (3), where all operations are carried out overGF (2w).

At the decoding stage, the following expression is used to reconstruct failed
data from non-failed data and checksum devices:

dn = φ−1
n×n × e∗n , (4)

where the inverse matrix φ−1
n×n is computed from those rows of the matrix

F(n+m)×n that correspond to non-failed data and checksum devices.

3 Mapping Reed-Solomon Erasure Codes and Their
Cauchy Version onto Cell/B.E. Architecture

3.1 Mapping Reed-Solomon Codes

In our investigation, we focus on mapping the following expression:

Cm×B = F∗
m×nDn×B , (5)

which is obtained from Eqn. (3) taking into consideration the necessity to process
not a single vector dn, but B such vectors. An expression of the same kind is
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used at the decoding stage. Moreover, in this work we neglect the influence of
computing the inverse matrix φ−1

n×n on the performance of the whole algorithm.
The cost of this operation can be neglected for relatively small values ofm, which
are of our primary interest in the case of distributed data storage in grids [18].

In this work, we propose a method for the systematic mapping of Eqn. (5)
onto the Cell/B.E. architecture. This method takes into account properties of
the architecture on all three levels of its parallel processing hierarchy, namely:

1. eight SPE cores running independently, and communicating via the EIB bus;
2. vector (SIMD) processing of 16 bytes in each SPE core;
3. executing instructions by two pipelines (odd and even) in parallel.

For this aim, Eqn. (5) is decomposed into a set of matrix-matrix multiplications:

Cm×16 = F∗
m×nDn×16 . (6)

To compute each of these multiplications within a corresponding SPE core using
its SIMD parallel capabilities, the following vectorization algorithm is proposed:

for i = 0, 1, . . . ,m− 1 do {
ci = [0, 0, . . . , 0]
for j = 0, 1, . . . , n− 1 do

ci := ci ⊕ f∗i,j � dj (7)

}
where:

– vector f∗i,j is obtained by copying element (byte) f∗
i,j of matrix F∗

n×mj onto
all 16 elements (bytes) corresponding to a vector register of SPE;

– operation � is the element-by-element multiplication of two vectors,
implemented over GF (28);

– ⊕ denotes the bitwise XOR operation.

Furthermore, to execute this algorithm efficiently on a SPE core, the multipli-
cation operation of the form c = f ∗ d is implemented using table lookups [11],
based on the following formula:

c = gfilog(gflog(f) + gflog(d)) . (8)

Here gflog and gfilog denote respectively logarithms and antilogarithms, de-
fined over GF (2w). Their values are stored in two tables, whose length does
not exceed 256 bytes. Following our previous work [19], the efficient implemen-
tation of table lookups required by Eqn. (8) is based on utilization of shufb
permutation instruction, which performs 16 simultaneous byte table lookups in
a 32-entry table. Larger tables are addressed using a binary-tree process on a
series of 32-entry table lookups, when successive bits of the table indices are used
as a selector (using selb instruction) to choose the correct sub-table value.
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Fig. 1. An example of encoding using the Cauchy binary matrix (based on [14])

3.2 Mapping Cauchy Reed-Solomon Codes

In case of the Cauchy version of RS codes, the matrix F∗
m×n is transformed into

a wm × wn binary matrix. An example of such a Cauchy matrix is shown in
Fig. 1, for GF (23), n = 5, m = 2. As a result, any multiplication over the Galois
field is reduced to a series of bitwise XOR operations. For example, the following
expression is used to compute the checksum c1,2 from Fig. 1:

c1,2 = d0,0 ⊕ d1,2 ⊕ d2,1 ⊕ d2,2 ⊕ d3,0 ⊕ d3,2 ⊕ d4,0 ⊕ d4,1 , (9)

where dj,l denotes the l-th package of the j-th data device, l = 0, 1, . . . , w − 1.
The mapping method proposed in Subsection 3.1 can be applied in this case

as well, providing that properties of binary Cauchy matrices are taken into ac-
count. In particular, the vectorization algorithm takes the following form:

for i = 0, 1, . . . ,m− 1 do {
for k = 0, 1, . . . , w − 1 do {

ci,k = [0, 0, . . . , 0]
for j = 0, 1, . . . , n− 1 do {

for l = 0, 1, . . . , w − 1 do

ci,k := ci,k ⊕ f∗
i,k,j,l ∗ dj,l (10)

}
}

}

where:

– coefficients f∗
i,k,j,l are equal to 1 or 0;

– depending on f∗
i,k,j,l, the innermost loop operation reduces to a XOR

operation with either the vector dj,l, or [0, 0, . . . , 0].
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One of the most important conclusions from this algorithm is the necessity to
consider a sparse format of representing the Cauchy matrix, besides the dense
format. By introducing some additional overhead, the use of sparse format [16]
allows us to avoid operations with nonzero coefficients f∗

i,k,j,l.

4 Performance Results on Cell/B.E. Processor

4.1 Using Reed-Solomon Codes

In Table 1, we present the performance results achieved for three different im-
plementations of the encoding procedure (7). The pair of values n,m = 4 was
applied as one of the most promising options to be used for our distributed data
storage system in the ClusteriX grid [18]. This table shows the number LC of
clock cycles necessary to process by a single SPE core either one (LB = 1) or
ten (LB = 10) data packages each of size n× 16 bytes. The variants correspond
to different optimization of the program code performed manually.

Based on Table 1, we can estimate the maximum bandwidth for encoding
data on all 8 SPEs as:

bRS
8 = (8× 3.2× LB × n× 16)/LC = 9.58 [GB/s] . (11)

Such a high value of the bandwidth bRS
8 means that in real circumstances it

is no longer a constraint for performance of the whole system. For example,
in the above-mentioned ClusteriX grid this performance is constrained by the
bandwidth of 2× 10 Gb/s available in the wide-area network PIONIER, which
is used to connect local clusters.

4.2 Using Cauchy Reed-Solomon Codes

Using the open-source Jerasure library [12] for m,n = 4, w = 3, we generate
the Cauchy matrix F∗

wm×wn = F∗
12×12, which contains 88 nonzero elements

among all 144 elements. For the Cauchy version of RS codes, Eqn. (11) takes
the following form:

bCRS
8 = (8× 3.2× LB × n× w × 16)/LC [GB/s] . (12)

Table 1. Performance results (number LC of clock cycles) for different variants of
implementing Reed-Solomon encoding

Compiler variant 1 variant 2 variant 3
option LB = 1 LB = 10 LB = 1 LB = 10 LB = 1 LB = 10

O1 223 2118 201 2078 214 2211

O2 215 1990 198 1710 215 1770

O3 215 1990 198 1710 215 1770
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Then by substituting here the values of LC achieved experimentally for the dense
and sparse formats of representing the Cauchy matrix, we obtain the following
estimations, respectively:

bCRSC
8,D = 13.65GB/s ;

bCRSC
8,S = 62.2GB/s .

These results confirm that the sparse format allows for achieving a much higher
performance than the dense one. However, the current implementation for the
sparse format is not flexible. A further investigation is required in order to com-
bine the flexibility of a program code with high performance.

Keeping in mind the achieved value bRS
8 of bandwidth for the classic RS

codes, we can also conclude that for the experimental setting considered in this
Section, it does not make sense to use the Cauchy version of RS codes instead of
the classic one. Also, in practice the estimated value of bCRSC

8,S is constrained by
the maximum bandwidth of access to the main memory of Cell/B.E. processor,
which is equal to 25.6 GB/s. However, the rationale for utilization of the CRS
erasure codes could have a place when considering other multicore architectures
than the Cell/B.E. processor, or other distributed storage systems characterized
by different values of parameters m and n than those studied in this Section.

5 Implementing CRS Codes on Nvidia Tesla C1060 GPU

The CUDA programming environment [8] makes it possible to develop parallel
applications for both the Windows and Linux operating systems, giving access to
a well-designed programming interface in the C language. On a single GPU, it is
possible to run several CUDA and graphics applications concurrently. However,
the utilization of GPUs in an everyday practice is still limited. The main reason
is the necessity of adapting implemented applications and algorithms to a target
architecture, in order to match its internal characteristics. This paper deals with
the problem of how to perform such an adaptation efficiently for the encoding
stage in the Cauchy version of Reed-Solomon codes.

The CUDA software architecture includes two modules dedicated respectively
to a general-purpose CPU, and a graphic processor. This allows for utilization
of GPU as an application accelerator, when a part of the application is executed
on a standard processor, while another part is assigned to GPU, as a so-called
”kernel”. The allocation of GPU memory, data transfers, and kernel execution
are initialized by the CPU. Each data item used in the GPU needs to be copied
from the main memory to the GPU memory; each of such transfers is a source of
latency which affects the resulting performance negatively [4]. These performance
overheads can be reduced in CUDA using the stream processing mechanism.
It allows for overlapping kernel computations with data transfers between the
main memory and the GPU memory using the asynchronous CUDA API, which
immediately returns from CUDA calls before their completion

Another key feature of modern GPUs is their hierarchical memory organiza-
tion, which includes several levels with different volume and access time. First
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of all, GPUs are equipped with a Global Memory accessible by all threads (read
and write). However, access to this relatively large memory is rather expensive.
Other types of GPU memory, accessible for all the threads running on a graphics
card, are Constant Memory and Texture Memory. Their access time is shorter,
but threads are allowed only to read from these memories. Threads within a
particular CUDA block share a fast Shared Memory, which is used for commu-
nication and synchronization among threads across a block. Finally, after being
initialized, each thread obtains access to a pool of registers.

5.1 Mapping CRS Codes onto GPU Architecture

The issue of how to implement erasure codes on GPUs using the Reed-Solomon
approach was investigated in [3,4]. The necessity to perform expensive multipli-
cations over the Galois Field GF (2w) limits the performance achieved for such
an approach. Therefore, we decided to investigate the possibility of using the
Cauchy version of Reed-Solomon codes for GPUs. For this aim, we have imple-
mented a modified version of the encoding algorithm (10), which is shown below:

for j = 0, 1, . . . , n− 1 do {
for l = 0, 1, . . . , w − 1 do {

—————————————————————– GPU kernel ——–
for i = 0, 1, . . . ,m− 1 do

for k = 0, 1, . . . , w − 1 do
ci,k := ci,k ⊕ f∗

i,k,j,l ∗ dj,l (13)

—————————————————————————————–
}

}
where dj,l and ci,k are data and checksums vectors, respectively; each of them
consists of LE = |F |/(4 ∗ n ∗ w) elements of int type. The total number LT

of created threads should be greater or equal to LE . For example, when encod-
ing a file of size 192 MB with m,n = 4, w = 3, this constraint gives LT =
192 ∗ 1024 ∗ 1024/(4 ∗ 4 ∗ 3) = 201326592/48 = 4194304 threads. Assuming
the maximum number of threads within a single block (512 threads), we should
create 8192 blocks of threads.

The proposed modification of the encoding algorithm allows us to utilize the
stream processing mechanism, when transfer of a certain data stream (vector dj,l)
is performed in a particular step. After copying the vectordj,l to theGPUmemory,
the GPU kernel is invoked. Each of the GPU threads created in this way is respon-
sible for the execution of XOR operations for a single element of the vector dj,l,
and corresponding elements of checksum vectors ci,k. The resulting distribution
of computation among threads, as well as the organization of data in the GPU
memory, allows us to optimize access to the available Global Memory, since con-
sequent threads access data in contiguous areas of memory.Moreover, each thread
fetches the vector dj,l only once, utilizing it m ∗ w times for computations.

The Cauchy matrix F∗ is small and constant; it is located in the Texture Mem-
ory in order to speed up fetching elements of the matrix by GPU threads. In this
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work, both the dense and sparse formats of representing the Cauchy binarymatrix
were implemented. In particular, to represent the sparsity structure of the Cauchy
matrix, the standard Compressed Sparse Row (CSR) format [16,17] was used.

5.2 Performance Results on Nvidia Tesla C1060

The performance experiments were carried out for the platform containing Tesla
C1060 CPU, and AMD PhenomII X4 3.12GHz CPU, with CUDA 2.2 as a soft-
ware environment. In this platform, GPU and CPU are coupled through the PCIe
x16 bus (version 2.0), which provides the maximum bandwidth of 8 GB/s. The
experimental results are presented in Tables 2 and 3, for two sets of parameters:
(i) n,m = 4, w = 3, and (ii) n = 8, m = 4, w = 4, respectively.

These tables show the real bandwidth of data encoding on a CPU accelerated
by graphics processor (GPU + CPU bandwidth). When measuring this band-
width, we take into account the following phases: (i) memory allocation and data
copying from the main memory to the GPU memory, and (ii) encoding on the
GPU. The phase of transferring results back to the main memory is not con-
sidered because this phase can be overlapped with transfer of data from CPU
to GPU, for the next file. Also, we measure the bandwidth achieved when the
general-purpose CPU is used solely (last column), as well as the performance
achieved by the GPU kernel (without any interaction with the CPU).

In general, the advantage of using a GPU as an accelerator against a solely
CPU-based implementation is reduced by the overhead caused by data transfers
between the CPU and the GPU. The results of the experiments confirm that this
overhead is compensated by using the GPU’s parallel processing capabilities
even for relatively short files, with size of several hundred kilobytes. For files
containing several megabytes, the accelerated environment processes data more

Table 2. Bandwidth achieved for GPUs and CPUs when encoding files with different
size (n,m = 4, w = 3)

dense format sparse format

File Number of GPU kernel GPU+CPU GPU kernel GPU+CPU CPU
size CUDA blocks bandwidth bandwidth bandwidth bandwidth bandwidth

[MB] [MB/s] [MB/s] [MB/s] [MB/s] [MB/s]

0.05 2 74 57 79 64 241
0.09 4 155 126 158 128 117
0.19 8 293 238 314 249 47
0.38 16 561 407 563 409 48
0.75 32 847 609 827 598 49
1.5 64 1139 899 1141 902 48
3 128 1466 1251 1456 1248 48
6 256 1504 1375 1507 1377 45
12 512 2047 1911 2038 1906 44
24 1024 2097 2021 2080 2002 47
96 4096 2136 2110 2127 2103 44
384 16384 2144 2132 2142 2131 47
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Table 3. Bandwidth achieved for GPUs and CPUs when encoding files with different
size (n = 8, m = 4, w = 4)

dense format sparse format

File Number of GPU kernel GPU+CPU GPU kernel GPU+CPU CPU
size CUDA blocks bandwidth bandwidth bandwidth bandwidth bandwidth

[MB] [MB/s] [MB/s] [MB/s] [MB/s] [MB/s]

0.06 2 42 38 39 36 42
0.13 4 83 75 81 74 36
0.25 8 166 149 161 145 18
0.5 16 286 249 292 249 16
1 32 437 379 441 381 6
2 64 580 525 580 527 6
4 128 740 689 740 690 5
8 256 754 725 755 727 5
16 512 1107 1075 1106 1075 5
32 1024 1124 1106 1125 1107 5
128 4096 1165 1158 1164 1158 5
512 16384 1168 1162 1168 1164 5

than ten times faster than CPU, for n,m = 4. When encoding large files, up
to several hundred megabytes, it becomes possible to achieve more than 2.1 GB
of bandwidth. For n = 8, m = 4, the advantage achieved by the accelerated
platform against the general-purpose CPU is even larger.

Another conclusion is a similar efficiency of using the dense and the sparse
formats of representing the Cauchy matrix F∗. The use of sparse representa-
tion reduces the amount of computations. However, this reduction is balanced
with the additional overhead related to indirect addressing of elements of the
checksum vectors ci,k. This effect is not surprising since the degree of sparsity of
Cauchy matrices is relatively low. For the matrices F∗ corresponding to Tables
2 and 3, less than 50% of all the elements of these matrices (41.9% and 48.2%,
respectively) are zeros.

6 Conclusions

Erasure codes can radically improve the availability of distributed storage in
comparison with replication systems. In order to realize this thesis, efficient im-
plementations of the most compute-intensive parts of the underlying algorithms
should be developed. The investigation carried out in this work confirms the ad-
vantage of using modern multicore architectures for the efficient implementation
of the classic Reed-Solomon erasure codes, as well as their Cauchy modification.
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Abstract. The time-dependent Schrödinger equation (TDSE) describes
the quantum dynamical nature of molecular processes. However, nu-
merical simulations of this linear, high-dimensional partial differential
equation (PDE) rapidly become computationally very demanding and
massive-scale parallel computing is needed to tackle many interesting
problems. We present recent improvements to our MPI and OpenMP
parallelized code framework HAParaNDA for solving high-dimensional
PDE problems like the TDSE. By using communication-efficient high-
order finite difference methods and Lanczos time propagators, we are able
to accurately and efficiently solve TDSE problems in up to five dimen-
sions on medium-sized clusters. We report numerical experiments which
show that the solver scales well up to at least 4096 computing cores, also
on computer systems with commodity communication networks.

Keywords: Lanczos algorithm, high-order finite difference, parallel
scalability.

1 Introduction

The time-dependent Schrödinger equation (TDSE) provides a description of dy-
namic processes at the quantum-mechanical level, e.g., “particles” (nuclei, elec-
trons) in atoms and molecules. The number of spatial dimensions d in the TDSE
is in principal given by d = 3n, where n denotes the number of particles involved.
This makes the numerical solution challenging since the number of degrees of
freedom for a grid-based numerical method will grow exponentially with the
number of particles. Therefore, the demands on memory as well as computing
power rapidly becomes huge, and it is necessary to employ massive parallelism.

The dimensionality of TDSE problems can be somewhat reduced by ignoring
global degrees of freedom of the system (translation, rotation). Also further mod-
eling can be introduced where some dimensions are removed or treated in another
way. An important model of this type is the Born–Oppenheimer approximation
where the nuclear and electronic degrees of freedom in a molecular system are
separated, leaving the nuclei to evolve on potential surfaces determined by the
electrons.
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The d-dimensional TDSE reads

i�
∂

∂t
ψ(x, t) =

(
−

d∑
i=1

�
2

2mi

∂2

∂x2i
+ V (x, t)

)
︸ ︷︷ ︸

:=Ĥ

ψ(x, t), ψ(x, 0) = ψ0, x ∈ R
d,

where the Hamiltonian Ĥ consists of a second-derivative part describing the ki-
netic energy of the system and the potential V (x, t) modeling interactions within
the system as well as with its surroundings (for instance, with electromagnetic
radiation). The reduced Planck constant is denoted by �, the particle mass cor-
responding to dimension i by mi, and the wave function by ψ. The TDSE is
posed on the whole of Rd and for a numerical simulation, we have to restrict our
attention to a finite domain. In order to cover boundary effects correctly, absorb-
ing boundary condtions might be needed for unbounded systems (e.g., scattering
and dissociation problems). Modeling of such boundary conditions and the so-
lution of the corresponding TDSE can be complicated since physical properties,
like conservation of total probability, do not hold anymore. For bounded sys-
tems, i.e., when the total probability is conserved, it is often preferable to pose
the problem on a sufficiently large d-orthope such that the wave function can
be considered to vanish at the boundaries. The actual boundary conditions are
then unimportant for the accuracy of the model (but can be important for the
stability of the numerical method). A standard choice for bounded problems is to
use periodic boundary conditions, and the current version of our code framework
HAParaNDA [1] is focused on bounded systems with periodic boundary closure.
However, our plan is to extend the implementation with support for unbounded
problems and other boundary conditions in HAParanNDA and we have already
developed some prototype code for doing this.

Our discretization is based on the standard method-of-lines approach where
we first introduce a spatial discretization and then solve the corresponding large-
scale ordinary differential equation problem in time. For a TDSE problem with
a time-independent Hamiltonian, the solution of this semi-discrete problem is
given by

u(t) = e−
i
�
H·tu(0),

where the Hamiltonian matrix H is the spatially discretized Hamiltonian oper-
ator and u the discrete wave function. For a time-dependent Hamiltonian, the
exponential form can still be used on small time intervals but the Hamiltonian
has to be time-averaged using the Magnus expansion (see [2] for details). This
means that deriving numerical methods for time propagation of the TDSE (and
other linear PDE problems) in effect boils down to finding efficient and accurate
schemes for computing the matrix exponential of a large matrix.

Even though the parallelization results reported in this article mainly focus
on a test problem with a time-independent Hamiltonian, our code framework
is mainly aimed at handling problems with explicit time dependence. For this
class of problems, small time steps are necessary for accuracy and the matrix ex-
ponential can be efficiently computed by the short-iterative Lanczos propagator
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(cf. [3]). The Lanczos algorithm is a Krylov subspace method and each iter-
ation involves both multiplying the Hamiltonian matrix with a wave function
vector and performing inner products of such vectors. In a parallel implementa-
tion, these operations will involve communication and make the parallelization
challenging on large-scale computers.

In quantum dynamics, the standard approach for discretizing the spatial
derivatives and computing the action of the Hamiltonian matrix is to use a
(pseudo)spectral discretization and the Fast Fourier Transform or explicit mul-
tiplication with a dense differentiation matrix in each spatial direction. However,
such schemes involve heavy global communication in the parallel implementation
and scalability on massive-scale computers will not be achievable. Instead, we
have chosen to compute the spatial derivatives using a qth order finite difference
(FD) method, where q an even number. The numerical dispersion error intro-
duced by the FD scheme can be controlled by using the formulas presented in [4].
The FD computations require nearest-neighbor communication only, which can
be implemented in a scalable way as described in Sec. 2. Compared to the mul-
tiplication with the Hamiltonian matrix, the arithmetic work and the amount of
communicated data for the inner product computations in the Lanczos scheme
is small. However, since these computations do involve global reductions, they
may potentially affect scalability for massive-scale systems. In Sec. 3, we inves-
tigate different versions of the Lanczos algorithm where the number of global
communication points is reduced. Performance tests are reported in Sec. 4, and
some conclusions are presented in Sec. 5.

2 Parallel Matrix-Vector Product

In HAParaNDA, the d-dimensional structured spatial grid is divided into equally
sized blocks, which are distributed among the compute nodes (a node consists of
one or more CPUs, where each CPU typically has several cores). In the current
implementation, the spatial grid is equidistant and each node hosts a single
MPI process handling a single grid block, but future versions will include spatial
adaptivity and a more general way of distributing the MPI processes and grid
blocks over the compute nodes.

Along the borders of a block, the finite difference stencils depend on function
values in neighboring blocks which are located in remote nodes. To retrieve
these data values to the local memory of each node as needed, we use a standard
scheme exploiting explicit message passing and local buffers referred to as ghost
regions. Since we only consider tensor-product stencils, each grid block will have
to exchange data with 2d other blocks that are logical neighbors.

In order to optimize the computation of the matrix-vector product, we use
non-blocking communication and attempt to overlap all inter-block communica-
tion delays with computations. First, each block issues non-blocking send and
receive operations in all directions. While waiting for the remote values to arrive,
each block performs all the calculations that are possible without having access
to any ghost region values. Thus, along the block border, the FD stencil is only
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partially applied at first. Finally, the missing FD computations are filled in as
the ghost region blocks are received, regardless of the order in which they arrive
for maximum latency hiding.

An important feature of our code framework is that the explicit partition-
ing of the grid into different MPI processes is performed at the level of nodes
in the computer system. Within each block, further parallelization is achieved
by using OpenMP threads which map to the cores within a node. The threads
share memory and no explicit replication of data is needed, which results in a
significant reduction of the memory overhead compared to an MPI-only imple-
mentation since the amount of memory that has to be allocated for the ghost
region buffers is reduced. Since the grid blocks are of fixed size and since all
gridpoints require the same amount of arithmetic operations, we split the work
within a block statically and equally among the available threads.

For efficient computation of the stencil operator in the matrix-vector prod-
uct, we must take care to maximize reuse of the data that we bring into the
caches. Here, we use cache-tiling which has proven to be a useful approach to
do blocking. Tiling makes use of the hardware prefetchers that are prevalent
in modern architectures and allows us to use larger block sizes than would be
feasible in simpler blocking techniques [5]. Furthermore, we do explicit inlining
of all computations in the kernels and, as far as possible, we have merged loops
to minimize the number of passes through data and combined parallel regions
to minimize the overhead of forking and joining threads.

3 Parallel Lanczos Propagators

The idea of the Lanczos propagator is to project the solution w = exp
(− i

�
HΔt

)
u

onto the Krylov subspace Kp(H,u) (spanned by {u,Hu, . . . , Hp−1u}). This is an
iterative process that successively builds an orthonormal basis, Vp = [v1, . . . , vp],
of Kp(H,u) and a tridiagonal projection matrix, Lp, of the matrix H ,

Lp =

⎛⎜⎜⎜⎜⎜⎝
α1 β1
β1 α2 β2

. . .
. . .

. . .

βp−2 αp−1 βp−1

βp−1 αp

⎞⎟⎟⎟⎟⎟⎠ = V T
p HVp ∈ R

p×p.

The vector w is then approximated by

w ≈ ‖u‖Vp exp
(
− i

�
LpΔt

)
e1,

with e1 = (1, 0, . . . , 0) ∈ R
p. The steps to compute (Lp, Vp) are summarized in

Algorithm 1.
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Algorithm 1. The Lanczos Algorithm

1: v1 = u / ‖u‖2, v0 = 0, β0 = 0
2: for j = 1, 2, . . . , p do
3: r = Hvj − βj−1vj−1

4: αj = (r,vj)
5: r = r − αjvj
6: βj = ‖r‖2
7: vj+1 = r / βj

8: end for

If the grid functions v and r are distributed among several nodes, the matrix-
vector product requires communication as described in the previous section.
Furthermore, the global communication required to perform the inner prod-
ucts in Algorithm 1 will become increasingly expensive as the number of nodes
grows. Thus, in a parallel environment, scalability will eventually be hampered
by the fact that two inner products have to be computed at different locations
in each iteration. When aiming at scalability for massively parallel systems, it
might therefore be better to rearrange the algorithm as described by Kim and
Chronopoulos [6], see Algorithm 2. At the expense of one extra vector operation,
the number of synchronization points is then reduced to one per iteration. We
refer to this scheme as FS-Lanczos.

Algorithm 2. The Few Synchronization (FS) Lanczos Algorithm

1: v0 = u / ‖u‖2, q0 = 0
2: for j = 0, 1, 2, . . . , p do
3: r = Hvj
4: u = (r,vj)
5: a = (vj ,vj)
6: βj =

√
a

7: αj+1 = u/a
8: qj+1 = vj/βj

9: vj+1 = r/βj − βjqj − αj+1qj+1

10: end for

Algorithm 2 still requires p synchronization points per time step. In the s-step
Lanczos method [6], presented in Algorithm 3, blocks of s consecutive steps are
executed with only one synchronization step required for each block. We have
transferred these ideas to the Lanczos propagator method.

3.1 Error Control and Stability

When using Lanczos procedures, the number of iterations p has to be chosen
with care to avoid loss of orthogonality of the basis vectors and possibly also nu-
merical instabilities. Therefore, it is common to choose p adaptively and to make
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Algorithm 3. The s-step Lanczos Algorithm

1: v11 = u / ‖u‖2
2: V̄1 = [ v11 ,Hv11 , . . . ,H

s−1v11 ]
3: Compute 2s inner products (Hjv11 , v

1
1), j = 0, . . . , 2s− 1

4: for k = 1, . . . , �m/s� do
5: Form Wk = V̄ T

k V̄k; solve Wk−1γ
i
k−1 = cik−1 and Wkα

i
k = dik, i = 1, . . . , s

6: v1k+1 = Hv1k −V̄k−1γ
s
k−1 − V̄kα

s
k

7: Compute Hv1k+1,H
2v1k+1, . . . ,H

sv1k+1

8: Compute 2s inner products (Hjv1k, v
1
k), j = 0, . . . , 2s− 1

9: Solve Wkt
j
k = bjk, j = 2, . . . , s

10: vjk+1 = Hj−1v1k+1 − V̄kt
j
k, j = 2, . . . , s

11: end for

sure the iterations are stopped once the Lanczos residual Rp is small enough.
Residual-based stopping criteria have been extensively studied for the standard
Lanczos method (cf. Saad [7] and Hochbruck, Lubich & Selhofer [8]), and the
same adaptivity criterion can be applied for the FS-Lanczos scheme. For the
Schrödinger equation, the residual after p iterations reads

Rp = Δt

(
exp

(
− i

�
ΔtLp

))
p,1

βp‖u‖.

We can compute the residual Rp after completion of the pth iteration. However,
in the FS-Lanczos scheme βp is not known until after the (p+1)th matrix-vector
product has been computed. Of course, βp could be computed before — but it
is this rearrangement that avoids one of the synchronization points. In order to
avoid computing an extra matrix-vector product, we combine both versions of the
algorithm to get an adaptive FS-Lanczos scheme: We start with the FS-Lanczos
and then switch to the standard Lanczos as soon as the residual comes close to
the tolerance. Since we are repeatedly using the Lanczos algorithm in consecutive
time steps, we can use the number of iterations needed in the previous time step
m as a guess for the number of iterations needed in the present step. We then
do m − 2 iterations with the FS-Lanczos before switching to the standard one.
We refer to this version as hybrid Lanczos in the following.

For the s-step variant introducing adaptivity gets more complicated. After M
outer loops with the s-step algorithm, it holds that

H · VM = VM T̄M + v1M+1esM ,

where VM = [V̄1, . . . , V̄M ], T̄M is a block matrix built from the αi
k and γik−1 in

line 5 of Algorithm 3, and esM = (0, . . . , 0, 1) ∈ R
sM . Based on this identity, one

can show, following the argumentation for the standard case, that the remainder
can be computed by

Δt

(
exp

(
− i

�
ΔtT̄M

))
p,1

‖v1M+1‖‖u‖.
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Hence, checking the residual in the s-step algorithm requires additional compu-
tational work as well as synchronization: We have to execute lines 5 and 6 for
loop index M +1. Furthermore, we have to synchronize computations after line
6 in order to decide whether or not we have to continue the iteration.

3.2 Scalability of Various Lanczos Variants

In order to better understand the scalability of the different Lanczos variants,
we compare the number of floating point operations required to take blocks of s
Lanczos steps. The results are summarized in Table 1 (cf. [6]).

Lanczos and FS-Lanczos are very similar in terms of computational complexity,
with the only difference that FS-Lanczos requires an extra vector update in each
iteration compared to Lanczos. We expect that this extra amount of computation
will at least be outweighed by doing half the amount of synchronization.

Clearly, the most dominant arithmetic operation is the matrix-vector multi-
plication, and its complexity will grow with the number of dimensions in the
TDSE as well as the order of the finite difference operator. Since the s-step al-
gorithm requires an extra matrix-vector multiplication in each iteration block,
we expect it to be slower than the other two algorithms when synchronization
latency is low. As we distribute the computations to more and more processors
(due to larger problems), synchronization delays will grow, and at some point
we expect the more communication efficient method to be faster.

Table 1. Comparison of the complexity of the different Lanczos variants (one block
for s-step)

FLOPs� Lanczos FS s-step

Inner products 4† 2s 2s 2s
Vector updates 4 5s 6s 2s(s+ 1)

Mat-vec multiplies 4d(q + 1)‡ s s s+ 1

All-to-all reductions 2s s 1
�Required number of FLOPs per gridpoint.
†In the Lanczos algorithm, the complex inner product is always pure real.
‡Computations are reordered for optimal cache efficiency, not minimal FLOPs.

4 Performance Tests

In order to demonstrate the performance of a massively parallel simulation of
the TDSE based on a FD-Lanczos discretization, we have conducted several sim-
ulations on two different clusters which are referred to as Kalkyl and Akka. The
hardware configurations are summarized in Table 2. We have used the same com-
bination of compilers and libraries on both machines; Intel icc (v11.1), OpenMPI
(v1.4.2), and Intel MKL (v10.1.1 on Kalkyl, v10.2.5 on Akka).
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Table 2. Overview of the clusters that have been used for the computations

Kalkyl Akka

No. Nodes 348 672
No. CPUs/node: 2 2
DRAM/node: 24 GB 16 GB
Interconnect: InfiniBand: InfiniBand:

20 Gbps, 4:1 oversubscribed 10 Gbps, full bisectional bw

CPU: Intel Xeon E5520 (Nehalem) Intel Xeon L5420 (Harpertown)
No. Cores: 4 4
Clock rate: 2.26 GHz 2.50 GHz
L1-cache: 32kB/32kB (I/D) 32kB/32kB (I/D)
L2-cache: 256 KB 2 × 6 MB
L3-cache: 8MB –

For the experiments, we use a model for a harmonic oscillator with

V (x) =
1

2

d∑
i=1

miω
2
i x

2
i , ω ∈ R.

This problem suits our scaling experiments well since it is bounded and can be
formulated in an arbitrary number of dimensions. Furthermore, the analytical
solution is known so we can verify the correctness of the solution. In quantum
physics, harmonic oscillators are common since they approximate the behavior
of more complicated potentials close to a stable equilibrium [9, Chapt. 2.3].

Fig. 1 shows weak scaling results for the two clusters for 3D and 4D prob-
lems. The curves for all four experiments show a similar behavior. The slopes
of the curves are very moderate, i.e., we get a good parallel speed-up for all
the methods. Overall one can state that the timings for the FS-Lanczos are
slightly superior. The timings for the standard Lanczos version are worse than
the other implementations, especially on Akka, indicating that the effect of syn-
chronization is slightly more pronounced on Akka than on Kalkyl, where the
computationally more intense s-step method performs the worst. On Akka, we
also note that the gain from reducing the amount of synchronization is less in
4D than in 3D. This seems reasonable since the higher the dimension, the more
points in the FD stencil, which increases the complexity of the matrix-vector
product and its proportion of the total cost. We expect the same effect to show
up also when the order of the FD stencil is changed. Indeed, we did perform
some experiments with a second order stencil where the impact of communica-
tion reduction on computing times was considerably higher than with the 8th
order stencil.

The wall clock timings are quite similar for Lanczos and s-step Lanczos. Since
the computational complexity of the s-step variant is 1/s times higher, the re-
arrangements of the algorithm appear to have an effect. However, the timings
cannot be explained by the latencies for the global reduction/synchronization



376 M. Gustafsson, K. Kormann, and S. Holmgren

operations. Typically, for small amounts of data, the node-to-node synchroniza-
tion latency of InfiniBand is about 10 μs [10], and [11] reports 60 μs latency
for global reduction operations. Since each time step in our scaling experiments
takes a few seconds, the synchronization latencies should not be noticeable. More
important are cache effects, since vector operations are merged into dense ma-
trix operations. Cache effects due to loop merging explain the fact that the
FS-Lanczos method performs slightly better than the standard version even on
a single compute node where no inter-node communication is involved.

In the next set of results, we adaptively select the size of the Krylov subspace.
Due to the problems with estimating the error for the s-step version (as discussed
in Sec. 3.1) together with the fact that its scaling does not seem to improve
the one observed with the FS version, we do not include the s-step Lanczos in
these tests. Instead, we compare the standard Lanczos and the hybrid version
in Fig. 2. For most of the experiments, the hybrid method slightly outperforms
the standard version. It is also obvious that reducing the synchronization again
pays off more in the 3D example than is the case for 4D. Note that Fig. 2 does
not show the results of a simple scaling experiment: When discretizing more
accurately in space, more Lanczos steps are needed to retain accuracy. Thus,
the slopes of the curves are due to the fact that more matrix-vector products
are performed and not due to inefficient parallelization.
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Fig. 1. Weak scaling of a model problem with a fixed workload per node. FD stencil
of order 8, 1000 timesteps with 6 Lanczos iterations (fixed) per step. Left: 3D, 2403

gridpoints per node. Right: 4D, 604 gridpoints per node.

In order to demonstrate that our implementation is indeed capable of solving
more complex problems with several coupled potential surfaces, time-dependent
potentials and five spatial dimensions, we finally present results for a TDSE de-
scribing two coupled 5D harmonic oscillators computed on Akka. In each spatial
coordinate, we discretize with 90 points and distribute the wave function over
256 computing nodes. It took 17h 25min to perform 1517 time steps with 9162
matrix-vector multiplications. We have chosen the time step size as well as the
Krylov space adaptively following the theory developed in [12]. Both parameters
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Fig. 2. Comparison of Lanczos and Hybrid Lanczos. FD stencil of order 8, 1000
timesteps, the number of Lanczos iterations adaptively chosen. Left: 3D, 2403 grid-
points per node. Right: 4D, 604 gridpoints per node.

are shown in Fig. 3(a). The time step is chosen based on the Magnus expansion
error only. The number of Krylov iterations needed to meet the same tolerance
is moderate (between 6 and 8), which means that the time step sizes are of a
magnitude where the Krylov method is efficient and not too memory intense.
Fig. 3(b) shows the estimated errors due to truncation in the Magnus expansion
and the Krylov space. Both errors are below the local tolerance (1e-8) at any
time.
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Fig. 3. Time-dependent test example in 5D. Left: step sizes (solid) and number of
Krylov vectors (dashed). Right: estimated error due to truncation in Magnus expansion
(solid) and due to the Lanczos algorithm (dashed).

5 Conclusions

We have presented the HAParaNDA package providing a hybrid MPI–OpenMP
implementation to solve the time-dependent Schrödinger equation based on fi-
nite differences in space and Lanczos propagation in space. Our performance
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experiments show that our code scales very nicely for massively parallel ap-
plications. On clusters with InfiniBand interconnect, we find the matrix-vector
product to be the by far most time-consuming part and that a reduction of the
number of synchronizations in the Lanczos algorithm only pays off as long as no
extra matrix-vector product is involved. We also solve a quantum system in 5D
that includes an oscillatory time-dependent potential. For this problem, we have
implemented adaptive time-stepping.
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Abstract. The field of high-performance computing is highly depen-
dent on increasingly complex computer architectures. Parallel computing
has been the norm for decades, but hardware architectures like the Cell
Broadband Engine (Cell/BE) and General Purpose GPUs (GPGPUs)
introduce additional complexities and are difficult to program efficiently
even for well-suited problems. Efficiency is taken to include both max-
imizing the performance of the software and minimizing the program-
ming effort required. With the goal of exposing the challenges facing a
domain scientist using these types of hardware, in this paper we dis-
cuss the implementation of a Monte Carlo simulation of a system of
charged particles on the Cell/BE and for GPUs. We focus on Coulomb
interactions because their long-range nature prohibits using cut-offs to
reduce the number of calculations, making simulations very expensive.
The goal was to encapsulate the computationally expensive component
of the program in a way so as to be useful to domain researchers with
legacy codes. Generality and flexibility were therefore just as important
as performance. Using the GPU and Cell/BE library requires only small
changes in the simulation codes we’ve seen and yields programs that run
at or near the theoretical peak performance of the hardware.

Keywords: Monte Carlo, GPU, Cell, electrostatics.

1 Introduction

The goals of this paper are twofold. First, we intend to characterize the challenges
that a domain scientist faces when programming different heterogeneous multi-
core architectures. This is done by examining a Monte Carlo code for molecular
electrostatics simulations. Second, we briefly describe an efficient library we’ve
developed for physical chemists interested in these simulations. In this intro-
duction, we’ll briefly cover the relevant concepts in chemistry and describe the
hardware.

1.1 Monte Carlo Simulations in Physical Chemistry

In the field of physical chemistry, certain problems have characteristics that make
simulations difficult or expensive. Whether the problem lies with the size of the
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system, the convergence rates of the available algorithms, or the sensitivity to
errors, they need a lot of computational resources and it is therefore of continual
interest to implement the latest numerical techniques on the latest hardware. One
such problem is the simulation of large electrostatic molecular systems. These
suffer from the curse of dimensionality and are therefore commonly solved using
Monte Carlo (MC) methods. These problems are of scientific value because the
behavior of many important systems in biology and industry is dominated by
electrostatic forces, for example polyelectrolytes like DNA [5].

1.2 Multicore Accelerators

We chose two specific architectures to represent two directions that heteroge-
neous multicore architecture design has taken. They promise very good perfor-
mance per Watt and per dollar, but are so different from ordinary processors
that traditional programming techniques are ineffective. The Cell Broadband
Engine (Cell/BE or Cell) was jointly developed by Sony, Toshiba and IBM, and
combines an “ordinary” CPU with eight SIMD coprocessors on a single chip. The
GPU is a highly parallel coprocessor with a large memory bank of its own, and
is connected much less closely to the CPU. In this section, we discuss some key
features of these architectures that must be taken into account when designing
high-performance applications.

Graphics Processing Units. The GPU is a true many-core architecture, con-
taining hundreds of computational units called stream processors grouped into a
number of multiprocessors. Each multiprocessor has one instruction unit, a pri-
vate memory bank shared between the stream processors, and a bus connecting
to the device’s main memory. High hardware utilization is achieved by spawning
many hundreds of threads to run in parallel. These threads are partitioned into
groups called warps, which run in lock-step fashion on a single stream processor
and share the processor’s private memory.

Stream processors have a relatively high-bandwidth connection to the device
memory, capable of multiple concurrent accesses. However, the ratio of floating
point rate (flops) to memory bandwidth is still quite low, such that data reuse
(e.g. by using the warp shared memory) is an important factor in performance.
Bandwidth between device memory and host memory is very much smaller.
Efficient use of memory is therefore critical to performance. [4]

Cell Broadband Engine. The Cell B/E is often called a “supercomputer on a
chip”. It features an ordinary but stripped-down CPU called the Power Process-
ing Element (PPE) and eight SIMD coprocessors called Synergistic Processing
Elements (SPEs), connected via a high-bandwidth bus called the Element Inter-
change Bus (EIB). Standard usage is to use the PPE for control processing and
to offload compute-intensive tasks to the SPEs. Parallelism is achieved mainly
by using the SPEs in parallel and leveraging SIMD instructions. Since each SPE
works on data stored in its own small private memory bank, the local store
(LS), data must be sent to and from the SPEs. Each SPE has a Memory Flow
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Controller (MFC), a processor that handles data transfers while the arithmetic
unit performs calculations. This allows computation and communication to be
effectively overlapped. [1]

There are many similarities between the Cell and GPU. On a high level, both
achieve high flop rates by trading large automatic caches for parallel arithmetic
units, requiring the user to manage the flow of data. For both architectures,
applications must be arithmetically intense so communication time can be hid-
den by computation. Blocking schemes are usually necessary to achieve data
reuse and minimize communication, often yielding very similar-looking program
designs.

In actual practice, however, programming the Cell differs from GPU program-
ming in a number of ways. First, the number of threads that can run concurrently
on the Cell is much smaller, and threads must be scheduled by hand. On the
GPU, communication time is automatically hidden by the scheduler, while the
Cell requires the user to use e.g. double-buffering. While the Cell has actual
SIMD registers, the GPU multiprocessor has ordinary registers but multiple
processors per instruction unit in a SIMT design. Cell SPEs can communicate
and synchronize with each other, while GPU multiprocessors have little or no
such functionality. These differences can make for very different-looking program
codes.

2 Model and Implementation

While the library we implemented can be made to work with any application
that involves electrostatic interactions between point charges, the application
we chose as a platform to test with is a Monte Carlo simulation of a charged
polymer (polyelectrolyte). The polyelectrolyte is described as a simple bead-
and-stick model with N monomers (see Fig. 1). Each monomer is taken to be
a hard, uniformly charged ball that is connected to its neighbors by a bond of
constant length. The main program loop effects a change in the conformation of
this string of monomers, calculates the change in energy, and accepts or rejects
the change according to a probability function. In this way, the conformational
space of the polyelectrolyte is explored and various properties can be extracted.

The main functionality of the library is to take a vector of particles and
calculate the electrostatic potential, U , of the system, given as

U =

N∑
i=1

N∑
j=i

qiqj
rij

(1)

where qi is the charge of particle i, rij is the distance between particles i and
j, and N is the number of particles. A particle is represented by a position in
3-space and a charge. The basic algorithm to be implemented is simply a nested
loop that calculates all the pairwise interactions.
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Fig. 1. Example polyelectrolyte conformations

2.1 Library Design

The goal in creating this library was to amortize the programming effort involved
in writing Cell and GPU code over as many applications as possible. One of the
main considerations was therefore to reformulate the computationally expensive
routines of the polyelectrolyte code into a more general form suitable for a wider
variety of molecular electrostatics codes. Program 1 gives the pseudocode for
the polyelectrolyte code. The functions pivot_move and calculate_delta_U

are written specifically for polyelectrolyte simulations and aren’t usable in other
cases. These functions change the system conformation and calculate the change
in electrostatic energy, respectively. While these can readily be implemented on
the Cell and GPU, the utility of such an effort is much less than a more general
implementation.

Program 1 Polyelectrolyte MC program

current_sys = init()

pivot = 1

while(! done)

pivot = (pivot+1)%N

proposed = pivot_move(current_sys, pivot)

delta_U = calculate_delta_U(current_sys,

proposed, pivot)

if evaluate(delta_U)

current_sys = proposed

end

A general program for electrostatics simulations is shown in Program 2. The
pivot_move function is replaced by a more general move function, and the
calculate_delta_U function is replaced by a function that calculates an electro-
static potential for the entire system. This formulation is quite general and with
a varying but small amount of work we’ve been able to rewrite three different
simulation codes to fit this program. Therefore, we believe that an acceleration
library that targets this generalized program can be of widespread utility in
Monte Carlo molecular electrostatics simulations.
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Program 2 Electrostatics MC program

current_system = init()

current_U = calculate_U( current_system )

while ( ! done )

proposed = move( current_system )

proposed_U = calculate_U( proposed )

if evaluate( current_U, proposed_U )

current_U = proposed_U

current_system = proposed

end

GPU Implementation. The implementation was based on the nbody example
from Nvidia’s SDK, described in Chapter 31 of GPU Gems 3 [7] and is written
in CUDA. Figure 2 illustrates the way the calculation is divided and work is
performed. One thread per particle is spawned and run concurrently. The array of
threads is split into blocks of equal size. Each of these blocks uses shared memory
to reduce the number of accesses to global memory. In a block, each thread loads
the data of a particle into shared memory, and then each thread computes the
interaction of its own particle with the particles in shared memory. When the
block runs out of data in shared memory, a synchronization point is reached
and a new set of coordinates are loaded into shared memory. The program loops
over the particles until all are consumed, summing the results. Unfortunately,
this computes each pairwise interaction twice, which could be avoided by not
calculating tiles that have no “new” results. Doing twice the necessary work is
obviously inefficient, but restructuring the calculations to avoid recomputation
is not a trivial task and is left as a future optimization.

Determining the right block size to use is essential for achieving good per-
formance. Unfortunately, this depends a little on the program and a lot on the
specific hardware. The optimal block size corresponds to maximum hardware
utilization and varies from graphics card to graphics card because it involves
balancing the need for a large number of blocks to hide communication latency
against the need to minimize the number of synchronization points.

Cell/BE Implementation. The Cell/BE implementation first partitions the
vector of particles among the available SPEs. Each SPE is responsible for cal-
culating the interactions of its own particles with all the particles, analogous to
a block in the CUDA implementation. Since the local store of each SPE is of
limited size, the SPE divides its particles into smaller sub-blocks which will fit
in memory. For each sub-block, the SPE retrieves a series of blocks of the whole
particle array, summing the results of each set of interactions. A double-buffering
scheme is used to hide communication. This is illustrated in Fig. 3.
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The PPE’s role is to execute the lightweight portion of the program, providing
the SPEs with the address of their chunk of the array of particles. When the SPEs
are done, the PPE sums the partial results from each. Work is distributed and
results are returned using mailbox messages, but SPEs get particle coordinates
with DMA transfers.

Having to write a double-buffering scheme, keeping track of memory align-
ment when transferring parts of an array, and properly using the vector registers
can be very challenging. These elements are in themselves not novelties in high-
performance computing, but there is a marked difference in that these techniques
are now required for a code to work rather than optimizations introduced into
a working code. We’ll discuss the implications of this difference in programming
style below.

3 Results

The results of our work can be divided into two parts. First, we show that the
implementations are efficient and yield high performance. Second, and of at least
equal importance, we try to characterize the effort required to use the library
and we discuss its limitations in a research environment.

To measure the performance of the codes in as general a way as possible,
we chose as a metric the number of particle-particle interactions processed per
second. This rate is effectively the limiting factor in any n-body simulation and
can be directly translated to an estimated simulation runtime. However, this
metric does not capture issues of numerical accuracy, which may influence the
real runtime of a simulation.

Fig. 4. Performance comparison of the implementations. The graph shows particle-
particle interactions per second vs. number of particles.
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Table 1. Comparing actual performance to theoretical peak performance. Units are
interactions per second. The peak measured performance for the GPU (in parentheses)
was limited by the maximum problem size that our program could handle, as opposed
to any asymptotic limit.

System PS3 GPU CPU

Peak 600 28000 440

Measured 600 (8487) 222

Efficiency 100% (30%) 50%

The test system for the Cell/BE was a PlayStation 3 (PS3). Other Cell plat-
forms exist with more resources, but the PS3 has received some attention because
its extremely low price makes for a low barrier to entry. The CPU and GPU runs
were on a machine with an Intel i7 920 CPU with four cores at 2.67GHz and a
Nvidia GeForce GTX260. We use a well-optimized single-threaded CPU code to
compare with to avoid artifacts arising from different parallelization methods.
Existing parallel MC codes for x86 processors typically scale well on multiple
cores and on clusters. [6]

The scaling of raw performance to problem size is shown in Fig. 4. Unsur-
prisingly, the single-threaded CPU code is outperformed by its competitors, but
it’s worth noting that it reaches its maximum performance already at small
systems, while the other two require larger systems to achieve a measure of ef-
ficiency. Table 1 shows the maximum performance we’ve managed to achieve
and the theoretical peak performance that should be achieved. The latter was
calculated from the number of floating point operations per interaction and the
reported peak flops of the hardware. The GPU requires a large problem (approx.
20,000 particles) to reach its peak performance, and we have unfortunately been
unable to run a sufficiently large problem with the chosen application make a
final comparison. This is likely to due to a problem in the application itself, not
the GPU library.

The reason why the GPU code performs relatively poorly compared to peak
at the problem sizes we’ve been able to run is communication. The application
is structured in a way that requires data to be transferred to the device for every
Monte Carlo iteration. The latency of this data transfer is on the order of 10
microseconds, comparable to the computation time for small problem sizes.

We’ve already discussed in Sect. 2.1 the structure that simulation codes must
follow in order for the library to be meaningful. Here we’d like comment on the
difficulty of the task of rewriting a typical program. Of the three programs we
worked with, one was already compatible, requiring only changes in a handful of
lines of code. The other two required more substantial rewriting, most of which
involved restructuring the way the energy calculations follow changes in system
conformation. While the absolute amount of work varies a lot depending on
the complexity of the code and the original design, it’s a relatively small task
compared to a complete rewrite or port in a new language.
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Our experiences with writing GPU code for this application compared to Cell
code can be summarized roughly as follows: we prefer GPU programming to
Cell. We find that while the programming concepts and the algorithm design
are very similar for both architectures, the scheduler makes GPU programming
much easier and more effective. With the Cell, a lot of programmer time is
spent on writing program structures that are unnecessary with a scheduler that
distributes the computational workload and hides the communication automat-
ically, as well as code to make vector processing and memory alignment issues
work properly. Unfortunately, we did not think to measure the time spent on
each code separately, so we have no quantitative measure to support this opinion.

There are two important weaknesses that harm the usefulness of our work in
a research environment. The first is that the library code, most notably the GPU
component, must be hand-tuned to fully utilize the hardware. Having to hand-
tune it is a significant drawback to the usability of a library, because it takes
time and is error-prone. Fortunately, much progress has been made recently in
the field of auto-tuning for GPU architectures [2][8][3], and we feel that this is a
necessary feature for a library like this if it is to see widespread use and longevity.

The second weakness is that our library explicitly requires the use of only
point-charges or small spherical charge distributions and the Coulomb potential.
If another charge distribution and/or another potential is desired, the user would
have to make changes in the particle-particle interaction function in the library
and recompile. This is because CUDA doesn’t support function pointers on the
GPU. With OpenCL’s just-in-time compilation, however, there is the possibility
of providing user-defined interaction functions and create a library with even
more flexibility than the current design.

4 Conclusions

In this paper, we have presented two implementations of a commonly used al-
gorithm in an attempt to provide a useful resource to domain scientists, to give
a hint as to what works, and to highlight the obstacles that may hinder non-
specialists from using hardware architectures like the Cell and GPU.

Using GPUs or the Cell/BE is generally more difficult than writing a program
for a single-core or even a multicore CPU. Domain scientists are better suited
at doing their science than spending months learning about and programming
for one of these architectures, especially given the rate of change in the industry.
Here, a library with a small set of function was general enough to be useful for a
range of applications and simple enough for a computer scientist to implement
efficiently as a relatively short-term project.

Comparing the experiences of writing very similar GPU and Cell programs
yields some small insight into how built-in structures that automate certain as-
pects of programming (i.e. the GPU scheduler) can reduce the burden on the
programmer and make programming more efficient. We believe this is an in-
creasingly important consideration, as both hardware and programming models
tend to growing complexity.
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We hope that future work can be directed at more general means of supporting
the use of heterogeneous multicore architectures in the scientific community.
The challenges involved in Cell/BE programming shows most clearly what is
needed for this effort. While GPU programming has come a long way since the
advent of CUDA and OpenCL, it still displays some of the same problems. In
traditional programming workflow, one is able to write a simple code first and
optimize later as needed. This makes debugging easier, it makes code easier to
maintain, and it focuses programming effort where it’s needed. Today, we must
often work backward, designing and writing advanced “optimizations” into the
first version of the code. While there is value in creating a useful library that
circumvents this problem for anyone with a certain type of simulation, a more
general solution would make it possible to move back to a more traditional
programming workflow.
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Abstract. Solvers for elliptic partial differential equations are needed in a wide
area of scientific applications. We will present a highly parallel CPU and GPU
implementation of a conjugate gradient solver with an algebraic multigrid pre-
conditioner in a package called Parallel Toolbox. The solvers operates on fully
unstructured discretizations of the PDE. The algorithmic specialities are inves-
tigated with respect to many-core architectures and the code is applied to one
current application. Benchmark results of computations on clusters of CPUs and
GPUs will be presented. They will show that a linear equation system with 25
million unknowns can be solved in about 1 second.

Keywords: Algebraic multigrid, GPU computing, High performance computing.

1 Introduction

As the finite-element approach for solving elliptic partial differential equations is very
popular in many scientific applications, fast solvers for the resulting linear equation
systems are of great interest. In this paper we want to present a parallel CPU and GPU
implementation of a conjugate gradient solver using an algebraic multigrid precondi-
tioner (AMG) called Parallel Toolbox. The basic ideas behind the parallelization con-
cept as well as the differences between the CPU and the GPU implementation will be
investigated.

Our code is designed for a fast AMG implementation on clusters of CPUs and GPUs
for special problems as the application project described in §2. In contrast, the more
general applicable AMG–code BOOMER/HYPRE requires longer setup times and is
not suited for GPUs but performs very well on large numbers of CPUs [1,5]. There exist
codes for Multigrid on GPUs but all of them require structured grids or at least locally
structured grids as in FEAST [10]. Therfore, our implementation is the first multigrid
solver on GPUs for fully unstructured discretizations of the underlying problem elliptic
partial differential equations.

2 The CARP Project

Let us first introduce the application project where our toolbox has been integrated.
The Cardiac Arrhythmias Research Package is a project for the electrophysiological
simulation of cardiac tissue which has been developed by Dr. Edward Vigmond and
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Dr. Gernot Plank [12]. Because of the great research activity in this area, CARP has a
plug-in framework allowing new ionic models to be easily implemented.

By design CARP can run on shared computers as well as on distributed comput-
ers. Parallelization is performed within the shared memory model by implementing
OpenMP directives and native numerical libraries. For distributed memory paralleliza-
tion, extensive use of the PETSc parallel library as well as MPI function calls is made.
In addition, efforts have been made to implement the Parallel Toolbox into CARP.

2.1 Components

The package consists of three main components: a parabolic solver, an ionic current
component, and an elliptic solver. Each of these components has a set of APIs for con-
nection to other components. The parabolic solver is responsible for determining the
propagation of electrical activity by determining the change in transmembrane voltage
from the extracellular electric field and the current state of the transmembrane voltage.

The elliptic solver unit determines extracellular potential from transmembrane volt-
age at each time step. The ionic model component is computed from a separate library
which must be linked in at compile time.

2.2 Mathematical Model

The most complete description of cardiac electricity is given by the bidomain
equations (see [12]). The basic bidomain equations relate the intracellular potential φi

to the extracellular potential φe through the transmembrane current density Im:

∇ · σ̄i∇φi = βIm (1)

∇ · σ̄e∇φe = −βIm − Ie (2)

Im = Cm
∂Vm

∂t
+ Iion − Itrans (3)

where σ̄i and σ̄e are respectively the intracellular and extracellular conductivity tensors,
β is the surface to volume ratio of the cardiac cells, Itrans denotes the transmembrane
current density stimulus as delivered by the intracellular electrode, Ie is an extracellular
current density stimulus, Cm is the capacitance per unit area, Vm is the transmembrane
voltage which is defined as φi−φe, and Iion refers to the current density flowing through
the ionic channels. Eqn. 3 is a set of ordinary differential equations which can be solved
independently for each node of the spacial discretization.

By adding Eqn. 1 and Eqn. 2 and using the definition of Vm, the equations can be
cast in a slightly different form with Vm and φe as independent variables.

∇ · (σ̄i + σ̄e)∇φe = −∇ · σ̄i∇Vm − Ie (4)

∇ · σ̄i∇Vm = −∇ · σ̄i∇φe + β

(
Cm
∂Vm

∂t
+ Iion − Itrans

)
(5)

Eqn. 4 is an elliptic equation and Eqn. 5 is a parabolic equation.
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The elliptic equation is discretized by the finite element method using unstructured
meshes. The result is a linear equation system of the form

K�ū� = f̄�.

This system of equation will be solved by our Parallel Toolbox.

3 The Parallel Toolbox

The Parallel Toolbox is a user friendly C++ toolbox for the parallelization of partial
differential equation solvers based on the finite element method.

In scientific computing the finite element approach is used in a variety of areas be-
cause of its flexibility towards the geometric complexity of the simulation domain.
Different parallelization approaches are possible. One naturally offered by the finite
element method evenly distributes the geometric elements on the processing nodes in-
volved in the parallel computation. As a consequence some finite element nodes are on
the interface between several subdomains and thus shared between several processes.
We call these nodes shared nodes.

Data on subdomains can have two different representations, accumulated and dis-
tributed. Accumulated data representation means, that a process is storing the full nu-
merical value of the nodes of its subdomain. Data stored distributed has only full value
on nodes uniquely belonging to one process. On a shared node each process owning
that node stores only a fraction of the full numerical value.

This definition leads to the conclusion, that accumulated and distributed data
representation differ only on the shared nodes of local vectors.

A local accumulated vector ūs (s = 1, . . . , P) stores a part of the global vector ū,
without changing any numerical values, and both are connected through the mapping
operation (or linear map) As.

ūs = Asū (6)

A(i, j)
s =

{
1 iff global node ū j is stored locally at ūs,i

0 else
(7)

dim As = # local nodes × # global nodes

The matrix As is not stored as matrix in process s but as vector l2g (local to global
node numbering) with l2gi := j. This vector is used to setup the corresponding commu-

nication routines. Note that R :=
P∑

s=1
AT

s As results in a diagonal matrix containing the

number of subdomains a node belongs to. Therefore, applying the local diagonal matrix
AsR−1AT

s to a local vector results in the partition of unity.
A local distributed vector holds only a fraction of the data values in its shared nodes.

To get the global data values, processes owning a certain node need to add up their
values and next neighbour communication is needed. Therefore the global vector ū can
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be obtained by applying the transposed mapping operation (AT
s ) on the local vectors ūs

and adding up the results over all processes.

ū =
P∑

s=1

AT
s ūs (8)

To minimize the communication between the processes, a partitioning strategy is nec-
essary that minimizes the number of boundary nodes between the subdomains. This can
be achieved using partitioning tools like METIS, which automatically creates optimal
partitions based on the mesh connectivity information. For the parallelization itself, the
Parallel Toolbox uses the distributed memory approach via the MPI standard.

3.1 Linear Algebra Operations

The Parallel Toolbox stores the system matrix in distributed data representation. This
means that the coefficient matrix K is defined as:

K =
p∑

s=1

AT
s KFEM

s As (9)

Where As is again the global-to-local mapping and KFEM
s is the local finite-element

matrix in the subdomain Ωs.
Depending on the actual algorithm, vectors are represented as distributed or accu-

mulated. However, algorithms are implemented in such a way that the amount of data
representation conversion, and thus MPI communication, is minimal[2, §5].

The following list shows the main linear algebra operations and their needed com-
munication:

No communication:
• Matrix-vector multiplication (product of distributed matrix and accumulated

vector; result is a distributed vector)

• Vector algebra with vectors of the same data representation

• Converting an accumulated vector into a distributed one

Next neighbour communication:
• Converting a distributed vector into an accumulated one

Global (reduce) communication:
• Computing a vector dot product

3.2 The Communicator Object

It is necessary in parallel linear algebra routines to communicate information that is
located on the shared boundary nodes. To make this communication transparent for the
user of the toolbox, a communicator object is created.

With the partitioning information of the elements – basically a one-to-one mapping
of elements to processors – and the mesh connectivity information it is possible to
derive the complete communication setup for parallel algorithms.
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In each processing node the constructor of the communicator object only needs the
global indices of the local nodes. Then it calculates the local shared nodes by sending
its global node numbers to every other processor and intersecting its set of global nodes,
with the sets received from the other processors.

After construction, all the relevant operations in parallel linear algebra can be exe-
cuted using the three communication functions offered by the communicator object:

Accumulate: Converts a distributed vector into a accumulated one, using next neigh-
bour communication to sum up values at nodes shared with neighbouring processes.

Distribute: Converts an accumulated vector into a distributed one without communi-
cation.

Collect: Sums globally a scalar value or a vector, e.g. used in a vector dot product.

For further information about the Parallel Toolbox and its parallelization concepts we
refer to [6].

3.3 The Algebraic Multigrid Preconditioner

In multigrid theory one has to assume, that there exists a series of regular (finite-
element) meshes τk, k = 1, . . . , �, where the coarser mesh τi can be derived from the
finer mesh τi+1. This leads to a series of systems of linear equations

Kiūi = f̄i

where Ki is the stiffness matrix of the according finite-element mesh τi. The main idea
of multigrid methods is, that the error of the solution can be represented as the sum
of the eigenfrequencies of the matrix K and lower frequency parts of the error can be
reduced faster on a coarser grid.

Algebraic multigrid means, that the hierarchy of meshes τi and appropriate operators
Ki (i < �) are created algebraically from the given finest mesh information K� (and τ�).

The idea of the coarsening algorithm is to part the set of all nodes I in a set of coarse
grid nodes C and a set of fine grid nodes F (see [8]).

C ∩ F = ∅, I = C ∪ F (10)

The matrix graph is assumed to be symmetric – i.e. originates form a symmetric matrix
– and represents the connectivity information of the nodes. An off-diagonal matrix entry
can be seen as a connection of one node to another node, for example if i � j and Ai j � 0
then node i is connected to node j.

A node connection is called strong if

| Ai j | > ε | Aii | (11)

otherwise it is called weak.
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The algorithm starts with selecting the first node in the set I and defining it as a coarse
grid node. All nodes that are strongly connected to the first node are defined as fine grid
nodes. After this initial step the next node that is yet neither fine nor coarse is selected
as a coarse grid node and all nodes strongly connected to this node are set as fine grid
nodes in the same way as for the first node. The algorithm terminates when all nodes are
either fine or coarse grid nodes. The set of coarse grid nodes now defines a coarse grid
on which another coarsening algorithm can be applied, thus creating a hierarchy of grids
(and linear equation systems). Between two levels in the equation system hierarchy, also
proper restriction / interpolation operators and smoothers are needed. Straightforward
implementations of the Omega-Jacobi and Gauß-Seidel iterative solvers were used as
smoothers. Because both smoothing algorithms need next-neighbour-communication,
the AMG performance depends on a fast intercommunication network. In future ver-
sions of the Parallel Toolbox, also block-wise multigrid implementations will be avail-
able similar to the smoothers used in [3].

Although the algebraic multigrid method can be used as a solver itself, our Parallel
Toolbox uses it as a preconditioner for a conjugate gradient solver. For more information
about algebraic multigrid methods and their parallelization we refer to [4,2] and [11].

3.4 The GPU Implementation

The main advantage of the GPU consists in the much higher memory bandwidth with
respect to the GPU memory and in the better arithmetic performance in comparison to a
CPU. The potential speedup of the GPU is at least one order of magnitude but it can only
be achieved for massive parallel algorithms taking into account coalesce memory access
of the data needed in the single threads. Additionally, unnecessary memory transfer
between CPU memory and the limited GPU memory has to be avoided (see [6]).

The GPU algorithms use the same concepts of domain decomposition and data rep-
resentation as their CPU counterparts. The main difference is, that algorithm parts that
would run sequentially on each CPU process – e.g. a matrix-vector product or vec-
tor arithmetic – are now implemented in CUDA. By other words, the computationally
challenging CPU routines were replaced by GPU routines of higher performance.

In the conjugate gradient solver the equation system, the initial guess and the right-
hand-side are transferred to the GPU memory and then all linear algebra operations
needed in a conjugate gradient algorithm (matrix-vector product, vector dot product
and vector arithmetic) are executed on the GPU. After that, the computed solution is
transferred back to CPU memory. If absolute error tolerance is needed, then also an
accumulation operation, and therefore MPI communication over the CPU memory, is
required.

The algebraic multigrid coarsening is part of the setup and not implemented on
GPUs. The interpolation and restriction operations during each solution step are matrix-
vector multiplications and can easily be executed on GPUs. For practical reasons, only
the Omega-Jacobi smoother is implemented.

Every MPI process uses one GPU (CUDA device) for its computations and the user
has basically the same freedoms in his choice of parallelization level and machine
topology as on a CPU computation.
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Fig. 1. The wedge 35um (left) and atria (right) geometries

4 Benchmarks

4.1 Geometries

In order to test the performance of the parallel solver we generated a stiffness matrix of
an 3D finite-element unstructured mesh and solved the linear equation system Kū = f̄ .
The meshes were provided by the CARP project (see [7] and [9]).

The mesh for the CPU benchmarks is called wedge 35um. It has approximately 150
million elements and 24.5 million nodes.

On the GPU clusters a geometry named atria is used. It consists of 11 million
elements and 2 million nodes.

4.2 Cluster Specifications

The CPU computations were made on the CINECA SP6 cluster. It features an IBM
pSeries 575 architecture with IBM Power6 4.7 GHz processors and 5376 computing
cores and a Infiniband x4 DDR network.

The GPU benchmarks were made on the gpuser GPU Cluster of the University of
Wyoming. It consists of 7 computing nodes connected by Gigabit Ethernet and a total
sum of 28 GeForce GTX 295 graphics cards. It should be noted, that the GTX 295
features two GPUs per card, so each computing node contains 4 GTX 295 cards and 8
GPUs.

4.3 Results

The CPU benchmarks were made on the wedge 35um geometry. The linear equation
system had 24.5 million unknowns. The error tolerance in the AMG-CG solver was
10−6. Benchmarking started with 4 processes and went until 512 processes, always dou-
bling the last number of processes in each new step. In order to have optimal caching
behaviour, hyper-threading was not activated on the Power6 processors, so each MPI
process used one processor core.
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Table 1. Wall clock solving time of the CPU algorithm

# processes Solving time [s] iterations # AMG levels

4 64.51 19 6
8 40.56 20 6

16 14.51 19 6
32 6.33 19 6
64 2.9 20 6

128 1.77 20 6
256 1.23 21 6
512 1.42 21 6

Table 1 shows the CPU benchmark results. It took 4 processes about 65 seconds to
compute the solution. The shortest solution time of 1.23 seconds was achieved with 256
processes. After that, the computation time was stagnating. The reasons for that will be
discussed later on.

The parallel efficiency has been computed from these results using 4 processes as
baseline, i.e. the efficiency for p processors is calculated as 4 t4

p tp
.

An optimal linear scalability occurs, when the amount of processes doubles and the
computation time halves, i.e. the efficiency is one. The efficiency in each parallelization
step can be seen in figure 2 on the left. Between 4 and 256 processes the scalability
is quite linear and thus the algorithm efficient. Because of caching effects on the IBM
Power6 processors, also a superlinear region between 16 and 128 was noticed.

The performance drop on the highest parallelization level can be explained by
analysing the amount of network communication in comparison to the local problem
sizes. The amount of shared nodes of the geometry increased dramatically on high par-
allelization levels. If the local problems get too small, the performance gain achieved
by reducing the local problem size is nihilated by the increased communication time.

The GPU benchmarks were made on a 2 million unknowns system generated from
the atria geometry. The error tolerance of the AMG-CG solver was again 10−6 and
between 2 and 16 processes have been used for the computations, with one MPI process
for each GPU.

Table 2. Wall clock solving time of the GPU algorithm

# processes Solving time [s] iterations # AMG levels

2 0.4 20 7
4 0.23 20 7
6 0.17 20 7
8 0.14 20 7

12 1.2 20 7
16 1.3 20 7

As seen in table 2, computation times started at 0.4 seconds with 2 GPUs and reached
the minimum of 0.14 seconds on 8 GPUs and on one computing node. After that, a big
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performance drop occurred. Using more than 8 GPUs requires a second computing node
and results in a dramatic performance drop (see table 2) caused by the relatively slow
network communication on the Gigabit Ethernet. This bottleneck has to be reduced
technically by a faster intercommunication network.

The right part of figure 2 shows the computation efficiency. Again the performance
bottleneck can be seen when more than one computing node is used.

For a direct comparison between GPU and CPU performance, the atria example
was also used for a CPU benchmark. The solving time was between 9.2 seconds on 2
cores and 3.6 seconds on 16 cores. On 6 CPU cores the solution was computed in 5.8
seconds whereas on the same amount of GPUs only 0.17 seconds were needed. This
resulted in a peak speedup of 34.
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Fig. 2. Efficiency of the CPU algorithm for 24.5 mill. unknowns (left) and efficiencyof the GPU
algorithm for 2 mill. unknowns (right).

5 Conclusion

We presented the concepts of our domain decomposition and data representation, which
are the basis of the parallel linear algebra implementations. Further we investigated the
algebraic multigrid method and the differences between the CPU and the GPU imple-
mentation. Finally we presented benchmarks on two geometries from the CARP project
and both the CPU and GPU benchmarks showed good efficiency on most parallelization
levels.

The CPU algorithm proved a very good efficiency up to 256 processes. The peak
performance was on 256 processes with a solution time for a 24.5 million unknowns
problem of 1.23 seconds. Only on the highest parallelization level of 512 cores the
performance dropped. The reason for that was the already tiny local problem size and
thus the bad ratio between computation and communication.

The GPU benchmarks showed, that data transfer is vital in GPU computations. Even
though the data transfer from the GPU memory to CPU memory and from one MPI-
host to another MPI-host are overlapping, performance dropped dramatically when the
benchmark was run on more then one computing node (more then 8 MPI-processes
were used). In that case the relatively low Gigabit network bandwidth proved to be
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the performance bottleneck. In any case it should be noted, that a dramatic increase in
performance, compared to CPU computations, was shown. The fastest solution time of
a 2 million unknowns system was 0.14 seconds and the peak speedup compared to a
CPU computation was 34.

GPU clusters with a very high network bandwidth and low latencies(e.g. Infiniband)
or with direct GPU to GPU data transfer technology, would help to improve parallel
GPU efficiency. Although the supreme computation performance of modern GPUs will
probably always render data transfer speed problematic for keeping efficiency rates high.

Using block solvers and block preconditioner, where operations needing more net-
work bandwidth are only used locally on the computing nodes and between the several
nodes only operations of lesser network demands are used, could be a solution for the
network limitations. This hypothesis is a subject of future research.
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Abstract. Problems of identification of material parameters (mostly pa-
rameters appearing in constitutive relations) have applications in many
fields of engineering including investigation of processes in a rock mass.
This paper outlines the structure of parameter identification problems,
methods for their solution and describes an identification (calibration)
problem from geotechnics, which will serve as a realistic benchmark prob-
lem for illustration of the behaviour of selected parameter identification
methods.
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1 Introduction

Generally, the identification problems appear in investigation of physical pro-
cesses in material environment. The processes are described by the state vari-
ables u and driven by the control variables f . The material is characterized by
parameters κ ∈ K ⊂ Rp.

Direct problems focus on computation of u = uh(κ) = uh(κ, x, t), where (x, t)
gives space and time localization, if f and κ are known. On the opposite, iden-
tification problems use the knowledge of f and some partial apriori knowledge
on the state variable u for (partial or full) determination of κ.

If the apriori information about the state variable u is given by the vector
d = (di) ∈ Rm of measured values, then the search for the unknown material
parameters can be formulated as the following minimization problem

F (κ) =‖ Muh(κ)− d ‖−→ min
κ∈K

. (1)

Above, M is an observation operator, which computes from uh values corre-
sponding to the measured data from d. In the simplest case, it just select the
values u(xi, ti) corresponding to di.

In contrary to direct problems, it is known that some identification problems
are not well posed [4], which means that some of the following properties can be
violated:

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 399–409, 2012.
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– there exists a solution of the problem,
– the solution is unique,
– the solution is stable under small changes of input data.

Although the properties of the minimization problems can be difficult to anal-
yse, a lot of different iterative techniques can be used for the minimization (1)
(mostly without theoretical proof of convergence). The range of applicable meth-
ods includes

– gradient methods, e.g. Gauss-Newton, Levenberg-Marquardt, conjugate
gradients, see [3], [4], [6], [7],

– gradient-free direct method, e.g. Nelder-Mead simplex method [3],
– stochastic methods e.g. [5], genetic algorithms e.g. [6], [9] and [8].

In this paper, we discuss the use of these methods also from the point of view
of parallelization. Some of the approaches are illustrated by numerical experi-
ments, implementation of the other methods is in progress. The problem we are
interested in concerns the temperature distribution determined by the solution
of the nonstacionary linear heat equation

cρ
∂τ

∂t
= λ

∑
i

∂2u

∂xi2
+Q(t) in Ω × (0, T ) (2)

which is to be fulfilled by the temperature u : Ω × (0, T ) → R with the cor-
responding boundary and initial conditions. Here, c is the specific heat, ρ is
the density of material, λ are the coefficients of the heat conductivity and Q is
the density of the heat source. The time interval under consideration is denoted
(0, T ).

Note also that the identification problem is very close to the calibration of a
mathematical model. The difference is in stressing either the computed material
parameters or the coincidence of values predicted by the model with measured
data.

2 A Benchmark Problem

In order to introduce our benchmark problem we present the in-situ Äspö Pillar
Stability Experiment (APSE) that has been performed at SKBs Äspö Hard Rock
Laboratory in south eastern Sweden with the aid of investigation of granite
mass damage due to mechanical and thermal loading. The measured data are
now used for validation of mathematical models within the DECOVALEX 2011
international project. APSE used electrical heaters to increase temperatures and
induce stresses in a rock pillar between deposition holes (Fig. 1) until its partial
failure. To determine accurately the temperature changes, a heat flow model is
formulated and monitored temperatures are used for identification of heat flow
parameters (heat capacity, heat conduction coefficient, heat convection into the
holes). The identification should provide parameters taking into account water
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bearing fractures and water flow and calibrate the model. More details and
another approach to the model calibration can be found in [1].

The modelling was realized by the GEM software [2], which can be character-
ized as a non-commercial 3-dimensional finite-element package oriented on the
solution of linear problems arising in geosciences (elasticity, plasticity, thermoe-
lasticity). GEM serves both research purposes and practical applications and
its development is mainly problem-driven, reflecting the needs of the current
research and practice.

Fig. 1. The APSE model – detail of the FE grid around the pillar created in the GEM
software [2] (left) and plan view on the pillar, holes, location of heaters and points of
temperature measurement (right)

The exploited APSE model considers domain of 105× 125× 118 m and 99×
105× 59 nodes. The grid is refined around the pillar, see Fig. 1. The heaters are
producing heat which varies in time. The model assumes original temperature
14.5◦C on the outer boundaries, zero flux onto the tunnel and nonzero flux
given the convection onto the holes. The initial condition is given again by the
temperature 14.5◦C.

Monitoring of the temperatures during two month heating phase of APSE is
essential for calibration of the thermal model. There are 14 temperature moni-
toring positions and temperatures are measured in 12 time moments. Altogether
168 values of temperature measurement (vector d) are used for parameter iden-
tification, which according to (1) can be written as follows

F = F (λ1, c1, λ2, c2, λ3, c3, H1, H2, H3)

= (
∑
i

[uh(xi, ti)− di]
2)0.5 −→ min . (3)

The material parameters represent different conductivity λ and heat capacity c
for dry and wet side of model (according to Fig. 1). The rock in the right hole
had yielded from a depth of approximately 0.5m down to 3m which motivates
to introduce a third type of material with different λ and c for the damaged part
of the pillar. We supposed heat conduction between rock and air in excavated
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holes determined by different values of the heat conduction coefficient H for
individual holes with third coefficient corresponding to surface for the above
mentioned damaged part of the pillar. It gives nine material parameters of the
cost functional F in (3).

3 Nelder-Mead Optimization

The first optimization algorithm, which we describe in this paper, is the Nelder-
Mead algorithm, which maintains a simplex S(k) in the space of parameter vec-
tors. This simplex locally approximates the cost function F and serves for getting
information about its behaviour and getting approximation to the optimal point.
If F = F (κ) and κ ∈ Rp then the k-th step simplex S(k) is determined by p+ 1
vectors of parameters (vertices) κ(k, 1), . . . , κ(k, p+1). We assume that the cost
function values are evaluated and vertices are sorted, so that

F (κ(k, 1)) ≤ F (κ(k, 2)) ≤ . . . ≤ F (κ(k, p+1)).

The k-th step then continues by evaluation of the stop criterion and if the ap-
proximation is not found to be satisfactory, then the worst vertex κ(k, p+1) is
replaced by a new one or, in a specific case, the whole simplex is shrunk.

In any case, first, the new vertex is sought in the form

κ(μ) = (1 + μ)κ̄− μκ(k, p+1),

where κ̄ =
(
(κ(k, 1) + . . .+ κ(k, p))/p

)
is the barycentre and μ is equal to μr = 1

for reflection, μe = 2 for extension, μoc = 1/2 for outer contraction and μic =
−1/2 for inner contraction.

The k-th step always begins with evaluation of Fr = F (κ(μr)). If F (κ(k, 1)) ≤
Fr < F (κ(k, p)) then we take κ(μr) as the new point, otherwise we gradually
test for the expansion, outside and inside contraction and take the selected case.
It means that the k-th step typically contains one or two evaluations of the
cost functions. In the case of contractions, we can also decide for shrinking the
simplex, which is more expensive and costs p evaluations of the cost function.
The details can be found in [3].

The optimization is stopped when both decrease of the cost functional F is
small (below εF ) and changes of parameters are small (below εp) or if too many
evaluations of the cost function are required.

As concerns the parallelization, the Nelder-Mead method is in principle se-
quential, which means that parallelization can be involved only in evaluation of
the cost function itself and eventually in realization of the shrinking of simplex
in some steps. In the GEM software mentioned above, the parallel solver, em-
ployed for providing the cost values, makes use of the OpenMP standard, i.e. its
parallelization is based on the shared variables model. We shall see some parallel
performance indicators in Section 5.

In the rest of the section, let us discuss the numerical solution of the bench-
mark problem from Section 2, i.e. searching for various heat transfer coefficients,
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Fig. 2. The convergence of the cost functional F (left) and one of the parameters (λ1)
(right)

by the Nelder-Mead method. Note that we use the method of unconstrained op-
timization, but to guarantee the positivity of the parameters, we use exponential
transformation, i.e. finding x such that κ = ex is the required parameter. As the
parameters have quite different orders, we scale the heat capacity c for having
all parameters in order of units.

To find a very accurate approximation of the parameters, we stop iterations
with εF = 0.001 and εp = 0.01. With a physically motivated initial guess,
the stop occurred after 764 iterations, for a non physical (more or less random)
initial guess surprisingly less iterations were required. The convergence behaviour
is illustrated in Fig. 2. But the stopping test could be fulfilled much earlier
(say after 100 iterations) if we weaken the requirement on small changes in all
parameters. This is also due to the fact that the cost function depends only mildly
on some of the parameters, see [11]. The use of weaker stopping parameter εp is
natural for solving calibration problems.

Note also that computation of u = u(κ, x, t) represents here the solution of an
evolution parabolic heat transfer problem, which is solved by linear finite element
(FE) discretization in space and backward Euler method in time. Linear systems
appearing in each time step are solved iteratively by conjugate gradient method
preconditioned by one-level additive Schwarz method, which is efficient it this
case, see [10]. Of course parallel processing can be also used for assembling the
FE matrices.

4 Stochastic and Evolution Methods

To get a larger space for parallelization we shall deal with stochastic and evo-
lution methods for optimization. In this section, we shall consider a constrained
search space for parameters, i.e. κ ∈ K =

∏p
1 〈κi,min, κi,max〉. The simplest

stochastic (Monte Carlo) algorithm is then as follows
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MC algorithm with N = NMC individuals

(1) generate N random vectors κ(i) ∈ K, i = 1, . . . , N ,
(2) evaluate (in parallel) F (κ(i)), i = 1, . . . , N ,
(3) select κ = argmini F (κ(i)).

Genetic algorithms (GA) enrich the selection by operations of crossing and
mutation. It provides the following algorithm

GA with N = NGA individuals

(1) generate N random vectors κ(i) ∈ K, i = 1, . . . , N
(2) for given generation, evaluate (in parallel)

Fi = F (κ(i)), if Fi is not known yet,
(3) select γN parameter vectors1 κ(i) with smallest values

Fi; so called parents. Then create (1− γ)N new
vectors (children) by crossing randomly selected
parents,

(4) create a new generation by taking the selected
parents and created children with mutating some of
them,

(5) evaluate stopping test and GOTO (2) if results are
still not satisfactory.

In our case, the crossing and mutation acts on parameter vectors and can be
described as algebraic (not binary) rule, see e.g. [8], [9]. For example:

Crossing of vectors x and y is a new vector z, which can be given by

zi = xi + αi(yi − xi),

where for discrete crossing αi is selected from {0, 1} with probability 1/2, but
also αi can be selected randomly in the range 〈−δ, 1 + δ〉 for e.g. δ = 0.25,

Mutation of the vector x concerns its components xi. Each component is
mutated with probability, which is usually 1/p. Mutation uses a range Δi, for
xi ∈ 〈κi,min, κi,max〉 it is typically Δi = 0.1(κi,max − κi,min). Mutation of x then
gives a new vector z, e.g.

zi = xi ±Δi2
−kα,

where α is chosen uniformly in 〈0, 1〉 and k is so called precision constant
depending on the problem.

For more details on GA, we refer to [9] and [8].
In our context, the GA approach is attractive for a large space for paralleliza-

tion and still reasonable efficiency, see [6]. The expectations for the case of an
ideal parallelization can be derived from (sequential) numerical experiments in
Table 1. The results are based on the solution of the APSE optimization prob-
lem described in Section 2. Ideal parallelization here means that the evaluation

1 γ is normally chosen in the range 0.5 to 0.1 [9].
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Table 1. The APSE model optimization problem – computation results (see text for
explanation)

# Function Ideal Parallel
Algorithm Evaluations Comp. Time λ1 c1 λ2 c2 F − Fbest

NM 150 1̃50 TU 2.9996 2.4046 5.9994 4.8041 0.0025
GA-DR 740 3̃7 TU 3.0653 2.4672 5.9338 4.7471 0.0404

GA-EIR 1220 6̃9 TU 3.0158 2.4209 5.9809 4.7868 0.0119
GA-ELR 890 4̃7 TU 3.0828 2.4628 5.9308 4.7629 0.0506

high acc. solution – 3.0000 2.4030 6.0000 4.8060 0

of the cost function dominates in GA and is parallelized with 100% efficiency,
which is not unrealistic with regards to the mutual independence of the calcu-
lations. TU is a time unit — the time needed for one cost function evaluation.
Recall that the FE system solution is responsible for 99% of the cost function
computation. In the table we can also see the differences in selected computed
material parameters (conductivity λ and heat capacity c) provided by different
optimization algorithms. The accuracy of different methods is also compared in
terms of difference between the cost function value for given experiment and
the best obtained cost function value. Several variants of genetic algorithms are
considered, namely

GA-DR (discrete recombination) Let x = (x1, . . . , xn) and y = (y1, . . . , yn)
are the parents strings. Then the offspring z = (z1, . . . , zn) is computed by
zi = xi or yi, where xi or yi are chosen with probability 0.5.

GA-EIR (extended intermediate recombination) zi = xi + αi(yi − xi),
i = 1, . . . , n; αi is chosen uniform randomly in the interval < −0.25, 1.25 >;
zi must be in the searching interval, ai ≤ zi ≤ bi.

GA-ELR (extended line recombination) zi = xi+α(yi −xi), i = 1, . . . , n;
α is chosen uniform randomly in the interval < −0.25, 1.25 >; zi must be in
the searching interval, ai ≤ zi ≤ bi.

In the GEM framework, we implemented the Breeder GA [9] and subsequently
parallelized the evaluation of the computationally dominant cost function F (κ(i))
in step (2), which is calculated for several vectors κ(i) simultaneously. This
parallelization was technically realized using the MPI standard, i.e. in the mes-
sage passing model. A straightforward approach is to replicate p GA (as MPI-
processes) on p processors simultaneously, each of which cares only for 1/p cost
function evaluations, the results of which they afterwards exchange (All-To-All
operation) to get the full set. Since each evaluation of the cost function implies
a call of the OpenMP-parallelized solver, the resulting application is hybrid in
the sense that it combines MPI and OpenMP parallelization.
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5 Numerical Experiments

For the numerical experiments, we had the opportunity to access a multiprocessor
machine boasting new twelve-core AMD Opteron 6172 processors. The multipro-
cessor, let us call it Hubert, had the following basic technical parameters:

– 4 x AMD Opteron 6172 processors (48 cores in total),

– 128GB of RAM,

– 2TB RAID-0 disk capacity.

The machine ran Linux (SLES 10) operating system and the code was developed
and executed using the Intel Cluster Toolkit with Compilers (ICT) version 4
package, which comprises among others an OpenMP-aware Fortran compiler
and MPI implementation.2

Our first experiments focused on the performance of the mixed MPI and
OpenMP parallelization in the optimization algorithm.We derived a small bench-
mark problem of 13 754 degrees of freedom, for the solution of which the FE
solver needs just several seconds. Running the GA optimization with differ-
ent parallelization parameters on this benchmark and using defaults in the
computing environment, we obtained timings summarized in Table 2.

As one can observe (bold characters), the MPI parallelization of the cost
function evaluation is beneficial on our computer when the number of processes
does not exceed the number of its processors (sockets), i.e. four. The speedup
related to the original code is 2 or more, and increases with decreasing number
of threads employed in the FE solver. This is quite understandable with regard
to the limits in memory and disk bandwidth. Moreover, with larger number
of processes the partition of the computation is not even. In total, the best
configuration of the parallel code (4 x 8, employs 32 cores) provides more than
ten times shorter solution time compared to the sequential GA optimization.

Next, we focused on the APSE optimization problem, described in Section 2
With this larger problem, having 613 305 degrees of freedom, it turned out soon
that on our machine (Hubert) the MPI parallelization of the cost function evalu-
ation in GA may not show any advantage over their sequential evaluation, once
the shared resources (memory, disk) are not able to feed several instances of
the demanding application with data. Thus, we invested considerable efforts to
tailor the run-time environment to our application through adjusting Intel MPI
parameters, especially those which control pinning, i.e. how processes and their
threads in hybrid applications are allocated on computing elements, e.g. to avoid

2 Our experience indicates that to avoid technical obstacles of hybrid parallel pro-
gramming, one should make use of cooperating MPI and OpenMP implementations
of the same vendor. Because of rapid developments in the software/hardware, the
latest versions are to be recommended. (For example, the precedent ICT version 3.2
did not handle the core domains on the new AMD processors correctly.)
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Table 2. Benefits of the MPI parallelization added to the GA optimization code and
demonstrated on a small benchmark problem

OpenMP code MPI + OpenMP code
(# threads) seconds (#processes x #threads) seconds

8 1016 1 x 8 1026
– 2 x 8 633
– 4 x 8 546
– 6 x 8 811

4 1586 1 x 4 1604
– 2 x 4 878
– 4 x 4 704
– 8 x 4 1049
– 12 x 4 1238

2 2442 1 x 2 2459
– 2 x 2 1494
– 4 x 2 965
– 8 x 2 1221

1 5710 1 x 1 5758
– 2 x 1 4098
– 4 x 1 1989
– 8 x 1 2134

unnecessary process migration. This was more or less a trial and error procedure
and we evaluated the omp:scatter pinning3 as the best choice.

But even with those optimized run-time parameters, it turned out to be more
efficient to increase the number of threads in the cost function computation
than to increase the number of functions (i.e. processes) evaluated in parallel.
Thus, the parallel GA showed its best execution time with only 2 parallel MPI
processes for evaluation of the cost function, each giving rise to 8 threads in
the FE solution. However, this best time was only by cca 30% better than the
sequential evaluation of the cost function employing 16 threads.

Finally, let us compare this timings with the Nelder-Mead approach
(Section 3). For this purpose, we slightly modified the computation and made
such a test arrangement that both codes started their iterative process from
the same initial values, generated by random.4 The stopping criterion was also
unified: The (lowest) attained cost function value is to be less than a prescribed
constant.

In this direct “competition”, the NM algorithm, employing 16 threads in the
cost function evaluation, provided his output after 17 311 s execution time and

3 Intel MPI terminology: Domain members, on which threads of each process are
allocated, are located as far from each other as possible in terms of common resources
(cores, caches, sockets, etc.)

4 Of course, this is not sufficient for a rigorous comparison of those two approaches,
but at least provides some preview.
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44 NM iterations. The parallel GA in the (2 processes x 8 threads) constella-
tion finished after 20 935 s and the sequential GA using 16 threads for the cost
function evaluation needed 23 488 s. Both GA versions carried out 6 iterations
and 200 cost function evaluations. So, there is no substantial difference in the
performance of those algorithms.

6 Conclusions

The paper describes the philosophy of the solution of the identification problems
and numerical realization of the method. Optimization with the Nelder-Mead
and genetic algorithms are discussed in more detail and compared on the basis
of solution of a selected real-life optimization problem as a benchmark. The
efficiency is increased by parallelization of the solution of the embedded direct
method and can be also substantially increased by gradual improvement of the
discretization accuracy during optimization.

From practical implementation and testing of the genetic methods we can
learn that the high theoretical expectations on nearly optimal efficiency of paral-
lelization in the case of parallel evaluation of the cost function might not be met
in some parallel computing environments and especially on entry-level shared
memory multiprocessors. We expect however, that the distributed memory ar-
chitectures, e.g. clusters, will be much more appropriate for our sort of hybrid
parallel code (e.g. the memory bottleneck issue will be significantly reduced),
and want to verify this in near future. That is why we do not regard the results
of our case study negative for the genetic approach.

Comparing the NM a GA algorithms, it was also observed that better cost
function values could be reached by the NM algorithm (while GA stagnated).
On the other hand, GA are more robust from the point of view of interest in a
global solution. Therefore, a combination of both algorithms may be a promising
solution.

In this paper, we omit the discussion on the gradient algorithms, which can
be efficient, involving some parallelism for computing the Jacobian by either fi-
nite differences or a semianalytic approach. For the future, similar identification
problems will be applied to other geotechnical problems including the devel-
opment of in-situ rock mass tests and testing samples of geocomposites in the
laboratory scale. There are also another aspects, which will be considered, such
as selection of parameters, regularization of the cost function, application to
nonlinear problems and computer oriented choice of the optimization method.
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Abstract. Characterizing the communication behavior of large-scale
applications is a difficult and costly task due to code/system complexity
and their long execution times. An alternative to running actual codes is
to gather their communication traces and then replay them, which facili-
tates application tuning and future procurements. While past approaches
lacked lossless scalable trace collection, we contribute an approach that
provides orders of magnitude smaller, if not near constant-size, com-
munication traces regardless of the number of nodes while preserving
structural information. We introduce intra- and inter-node compression
techniques of MPI events, we develop a scheme to preserve time and
causality of communication events, and we present results of our im-
plementation for BlueGene/L. Given this novel capability, we discuss
its impact on communication tuning and on trace extrapolation. To the
best of our knowledge, such a concise representation of MPI traces in a
scalable manner combined with time-preserving deterministic MPI call
replay are without any precedence.

Keywords: High-Performance Computing, Message Passing, Tracing.

1 Introduction

Scalability is one of the main challenges of petascale computing. One central
problem lies in a lack of scaling of communication. However, understanding the
communication patterns of complex large-scale scientific applications is non-
trivial. An array of analysis tools have been developed, both by academia and
industry, to aid this process. For example, Vampir is a commercial tool set includ-
ing a trace generator and GUI to visualize a time line of MPI events [2]. While
the trace generation supports filtering, trace files, which are stored locally, grow
with the number of MPI events in a non-scalable fashion. Another example is
the mpiP tool that uses the profiling layer of MPI to gather user-configurable
aggregate metrics for statistical analysis [10]. Locally stored profiling files are
constrained in size by the number of unique call sites of MPI events, which is
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independent of the number of nodes. However, mpiP does not preserve the struc-
ture and temporal ordering of events, which limits its use to high-level analysis.
Other communication analysis tools have similar constraints: either their storage
requirements do not scale or they are lossy with respect to program structure
and temporal ordering.

In contrast to prior work, our work develops a scalable trace-driven approach
to analyze MPI communication that can represent lossless, full traces in con-
stant size. We demonstrate in our results that our objective has been achieved
for a number of benchmarks. We have further developed tools (a) to replay com-
munication, optionally with widely preserved timing information, (b) to detect
inefficiencies in the utilization of the communication API, and (c) to extrapolate
traces for strong scaling.

2 Lossless Tracing

Communication analysis tools are currently constrained in that either their stor-
age requirements do not scale or they fall short in tracing all events by only
providing aggregate statistics.

In contrast to prior work, ScalaTrace provides a scalable trace-driven approach
to analyze MPI communication. While past approaches fail to gather full traces
for hundreds of nodes in a scalable manner or only gather aggregate information,
we have designed a framework that extracts full communication traces orders of
magnitude smaller, if not near constant size, regardless of the number of nodes
while preserving structural information and temporal event order.

Our trace-gathering framework utilizes the MPI profiling layer (PMPI) to
intercept MPI calls during application execution. Profiling wrappers trace which
MPI function was called along with call parameters within each node, such
as source and destination of communications, yet without recording the actual
message content. This intra-node information (task-level) is compressed on-the-
fly. We also perform inter-node compression upon application termination to
obtain a single trace file that preserves structural information suitable for lossless
replay.

Intra-Node Compression: Within each node, we compress MPI call entries,
generally repeated due to a code’s loop structure, on-the-fly. To this extent, reg-
ular section descriptors (RSDs) are exploited to express MPI events nested in a
single loop in constant size [3] while power-RSDs (PRSDs) are utilized to spec-
ify recursive RSDs nested in multiple loops [5]. MPI events may occur at any
level in PRSDs. For example, the tuple RSD1:<100, MPI Send1, MPI Recv1>
denotes a loop with 100 iterations of alternating send/receive calls with identical
parameters (omitted here), and PRSD1:<1000, RSD1, MPI Barrier1> denotes
1000 invocations of the former loop (RSD1) followed by a barrier. These con-
struct correspond to the code in Figure 1. The algorithmic details of MPI event
compressions over PRSDs can be found elsewhere [7,8].



412 F. Mueller et al.

To efficiently compress events, a set of generic and another set of domain-
specific optimizations are performed. (1) Calling sequences are identified by
generating a signature derived from a stack walk. Thus, call origins to common
routines (e.g., MPI Send at call site 1) can be distinguished. (2) Communica-
tion end-points are encoded in a location-independent manner (relative to the
rank of the current MPI task). This fosters identical encoding, e.g., for stencil
codes, across nodes. (3) Request handles are identified by a relative index into
a handle buffer of constant size, which is dynamically updated. This abstracts
from runtime-dependent data structures in a portable manner, e.g., for handles
returned by asynchronous communication calls such as MPI Isend. (4) Iterative
constructs with an indeterministic number of repetitions of a common event type
are aggregated into a single event. For example, an application may wait for the
completion of n asynchronous events using MPI Waitsome in a loop, yet the
MPI call may aggregate multiple completions as a result of each call. This will
be abstracted as n calls.

for (i = 1; i < 1000; i++) {
for (k = 1; k < 100; k++) {

MPI Send(...); /* send call 1 */
MPI Recv(...); /* recv call 1 */

}
MPI Barrier(...); /* barrier call 1 */

}

Fig. 1. Sample Code for PRSDs

Inter-Node Compression: Local traces are combined into a single global trace
upon application completion within the PMPI wrapper for MPI Finalize. This
approach is in contrast to generating local trace files, which results in linearly
increasing disk space requirements and does not scale as traces must be moved
to permanent (global) file space. The I/O bandwidth, particularly in systems
like BlueGene/L (BG/L) with a limited number of I/O nodes, could severely
suffer under such a load. To guarantee scalability, we instead employ cross-node
compression, step-wise and in a bottom-up fashion over a binary tree network
overlay. To this extent, events and structures (RSD / PRSDs) of nodes are
merged when events, parameters, structure and iteration counts match (see [7,8]
for algorithmic details).

We again employ a set of generic and domain-specific optimizations: (1) Se-
quences of nodes/task IDs are encoded using PRSDs, which allows a concise rep-
resentation even for subsets of nodes as traces from different nodes are merged
within the reduction tree. We utilize a radix tree whose encoding fosters efficient
PRSD representations of sets of task IDs. (2) Events are temporally reordered
when they originate from different nodes (and have no causal relation) to result
in a more concise representation.
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3 Deterministic Replay

One of the objectives of collecting communication traces is to analyze them off-
line. One key virtue of our environment is that one can replay communication
traces in a generic manner, even without the availability of application code. All
that is needed is the trace itself. Our replay engine will be discussed in more
detail in the preliminary results.

We have designed and implemented a replay engine that issues communica-
tion calls in the same order that they were originally issued by an application.
The input to the replay engine consists of the compressed trace. The replay
engine itself does not actually decompress this trace. Instead, it interprets the
compressed trace on-the-fly to issue communication calls. In effect, the replay
engine implements the inverse functions of the compression algorithms in an
interpretative manner. When it encounters an RSD or PRSD, it issues calls it-
eratively observing the structure, frequency and parameters of communication
calls. Hence, our structure-preserving compression scheme is key to a scalable
replay methodology, which does not require excess amounts of memory. In fact,
its memory requirement is loosely bounded by the size of the compressed trace,
which is often of constant size.

Using the replay engine, we conducted experiments to verify the correctness
of our scalable compression approach. We replayed compressed traces to ensure
MPI semantics are preserved, to verify that the aggregate number of MPI events
per MPI call matches that of the original code and that the temporal ordering
of MPI events within a node are observed. The results of communication replays
confirmed the correctness of our approach. During replay, all MPI calls are trig-
gered over the same number of nodes with original payload sizes, yet with a ran-
dom message payload (content). Thus, the replay incurs comparable bandwidth
requirements on communication interconnects, albeit with potentially different
contention characteristics since event times are not preserved (addressed be-
low). Communication replay also provides an abstraction from compute-bound
application performance, which is neither captured nor replayed. This makes the
replay mechanism extremely portable, even across platforms, which can benefit
rapid prototyping and tuning. It also supports assessing communication needs
of future platforms for large-scale procurements.

4 Preserving Time

The objective of trace analysis is generally to find inefficiencies in the code, e.g.,
as indicated by load imbalance between nodes. Such analysis requires knowledge
about the timing between events. Hence, conventional trace techniques simply
attach a timestamp to all communication events. Such timestamps also facili-
tate a time-accurate replay. However, for a scalable compression-based tracing
approach like ours, recording the precise timestamp is infeasible. Due to asyn-
chronous event occurrence across nodes, the timing between nodes diverges over
time so that absolute time differs. (This holds even if nodes were synchronized



414 F. Mueller et al.

at a job start, which is generally not the case). Consequently, absolute times-
tamping would require recording the timing information for every single node
without being able to compress, which leads to a linearly increasing trace size
wrt. the total number of nodes.

Our trace compression scheme and the replay engine support two methods of
capturing timing information of different tasks in computational sections (be-
tween any two communication calls) [9]. First, a low-cost statistical approach
to capture delta times has been designed. Second, to resemble computational
imbalance, a variation-preserving recording scheme was devised, still within a
constant size trace representation, yet with a higher constant factor. Delta times
denote the elapsed time between adjacent trace events. In contrast to absolute
time, the relative notion of time makes delta times amenable to compression.
Delta times are collected for event pairs. For example, RSD1 has two timing
regions that will be captured: (a) from send to receive and (b) from receive to
send (between consecutive loop iterations). Each delta time is associated with
the terminal communication event, i.e., at the beginning (prologue) of receive
for (a) and the beginning of send for (b).

We dynamically create size-limited histograms of delta times suitable for our
existing trace compression scheme. Based on a user-defined number of bins, delta
times are recorded in an online balancing scheme to equalize bin volumes using
a weighted subrange partitioning scheme (algorithm 2 in [9]).

5 Trace Extrapolation

Judging the effect of problem and/or task scaling on performance is a hard
problem. While some advances have been made using application modeling or
deriving similarities and characteristics from microbenchmarks [4,6,1], we fol-
low a complementary direction. We extrapolate larger communication traces
from smaller ones, which can then be used to replay these larger traces and
empirically detect communication problems or project system requirements for
future procurements of HPC systems. If communication is the impeding factor
to scalability, our framework can aid in the analysis of codes and performance
projections for existing and future systems.

The extrapolation of system overhead from small application runs to larger
ones is a challenging problem that has not been solved. Yet, a number of sub-
problems become feasible with ScalaTrace. We consider the problem of strong
(task) scaling. Given a set of communication traces of, say, 8, 16, 32 and 64 nodes,
we can extrapolate the corresponding trace for n nodes of the same application.
We devised a method to extrapolate larger communication traces from smaller
ones for task (strong) scaling. The key insight is that communication parameters
combined with PRSD iterators provide sufficient detail for this approach. E.g.,
if a communication parameter depends on the number of columns of a matrix
whose size is input dependent, then problem scaling will increase this parameter
at a certain rate. Given a minimum of three data points, a fitting curve can be
constructed to extrapolate the growth rate of this parameter. Thus, payloads
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can be adjusted according to such fitting curves. A larger problem size can also
affect the number of timesteps of a convergence algorithm. By capturing the
iterators of timesteps within histograms, such dependencies can be discovered
and modeled again via curve fitting.

Similar to problem scaling, the size of a group communicator may depend
on the total number of nodes, and this growth under task scaling can be ex-
trapolated with curve fitting methods. For such node dependencies, we require
d + 1 data points (traces) for a d-dimensional Cartesian layout and then ap-
ply Gaussian elimination to extrapolate parameters, such as communication
end-points, for arbitrary sizes n. E.g., after determining the dimensionality, we
can infer the coefficients A,B,C,D for a given layout and solve for values Vi:
A × ni + B × xi × yi + C × xi +D = Vi for i ∈ {1, ..., d+ 1} where ni = f(zi)
to facilitate the calculation for row-major layouts. We have prototyped a trace
extrapolation method for strong scaling that automatically transforms a set of
traces of smaller size (number of nodes) to one of arbitrary size. The extrapolated
traces have been replayed successfully, as reported in the next section.

6 Results

We assessed the effectiveness of ScalaTrace through experiments with bench-
marks and an application on BG/L. Our results confirm the scalability of our
on-the-fly MPI trace compression by yielding orders of magnitude smaller or
even near constant size traces for processor scaling and problem scaling.

We conducted experiments with the NAS Parallel Benchmark (NPB) codes
for class C inputs [12] and UMT2k on BG/L. Figures 2-4 depict the trace file
sizes on a logarithmic scale without compression (none), with local compression
(intra-node) and with cross-node compression (inter). We identified three cat-
egories of codes wrt. inter-node compression efficiency: (1) those that result in
near constant-size traces (DT, EP, LU, BT and FT), regardless of the number
of nodes, (2) those with sub-linear scaling of trace size as the node count in-
creases (MG and CG) and (3) those that do not scale yet (IS and UMT2k).
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The first class, represented by LU (Fig. 2), shows reductions for intra but only
inter delivers constant size traces. The second class, represented by CG (Fig. 3),
shows considerable compression at the node level (intra) and sub-linear (but not
constant) sized traces for inter-node compression. The third class, represented
by IS (Fig. 4), shows a similar trend but with a faster than linear growth rate
for inter.

The next experiment assesses the effectiveness of delta times to resemble ap-
plication behavior during replay. Figure 5 depicts the wall-clock time for the
uninstrumented application, mpiP[10]-instrumented application and three replay
options based on uncompressed, intra-node compressed and globally compressed
traces. It shows highly accurate replay times irrespective of number of nodes and
levels of compression, which is representative for all benchmarks.

We have also verified our extrapolation approach with a subset of the NAS Par-
allel Benchmark suite [13]. To verify the functional correctness, we replayed the
extrapolated traces at the target node size. We instrumented both the replay en-
gine and the original benchmarks with mpiP. We compared the MPI event statis-
tics generated by mpiP. The results demonstrated the communication overheads
at the target size are fully captured.
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Fig. 5. FT Replay: Aggregate of All Nodes (BG/L)

Besides the functional correctness, experimental results also indicate close
resemblance in timing of extrapolated traces when replayed compared to appli-
cation behavior at scaled size for up to 16k nodes (see Figure 6, dark/maroon
bars are extrapolated, scaling is limited by input sizes). We are working on gen-
eralizing our approach to a large number of common communication patterns.
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7 Conclusions

This paper gives an updated overview over ScalaTrace. ScalaTrace provides a
scalable methodology for event tracing that has been demonstrated for MPI
and I/O events. It annotates events with time-preserving information suitable
for deterministic MPI call replay. Traces can further be extrapolated in the
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dimension of number of tasks (nodes) to assess communication scalability and
assist procurement decisions for future HPC installations. Further information
about ScalaTrace can be found elsewhere [7,9,8,11].
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Abstract. MRNet is a software-based multicast reduction network for
building scalable tools. Tools face communication and computation issues
when used on large systems; MRNet alleviates these issues by provid-
ing multicast communication and data aggregation functionalities. Until
now, the MRNet API has been entirely in C++. We present a new,
lightweight library that provides a C interface for MRNet back-ends,
making MRNet accessible to a wide range of new tools. Further, this li-
brary is single threaded to accommodate even more platforms and tools
where this is a limitation.This new library provides the same abstrac-
tions as the C++ library, using an API that can be derived by applying
a standard translation template to the C++ API.

Keywords: scalability, tree-based overlay networks, tools.

1 Introduction

As high performance computers reach processor counts in the hundreds of thou-
sands, or even millions of cores, runtime tools are needed to support the per-
formance profiling and debugging of applications running on these computers.
Unfortunately, tools that previously worked at smaller scales do not work effec-
tively on the larger systems. To this end, we have developed a tree-based overlay
network infrastructure, called MRNet, for building tools that can scale to the
largest of computing platforms. MRNet makes operations such as command and
control, and data collection and reduction, efficient at large scale.

Runtime tools are often organized around two main activities: data collection,
with data originating from the tool daemons or back-ends and traveling to the
front-end, and application process control, initiated by a tool’s user interface or
front-end and directed to the back-end. These are the two areas in which tools
pay most costs: computation and communication. Computation is in the form
of data collection, aggregation, and analysis, and communication arises from the
transfer of data between tool components. Tools have typically been designed
with the front-end talking directly to the back-ends, causing the front-end to
become a bottleneck for both communication and computation.

MRNet is designed to address many of these issues by providing broadcast
and aggregation functionality [7,8]. MRNet uses a tree-based overlay network

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 419–429, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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Fig. 1. The components of a typical parallel tool (a) and an MRNet-based tool (b).
Shaded boxes show potential machine boundaries.

(TBON) of communication processes between the tool front-end and the tool
back-ends, as shown in Figure 1. MRNet leverages this structure to distribute
computation among internal processes and to support scalable multicast opera-
tions. Data can be filtered as it is passed up the tree; such filtering might do data
transformation or might simply aggregate packets to be passed to the front-end.
Data is transferred between nodes using an efficient, packed binary represen-
tation, which provides high-bandwidth communication. Further, the user may
designate multiple concurrent data channels, allowing for a variety of types of
data processing and aggregation to happen simultaneously. Together, these fea-
tures all work to mitigate the high costs of communication and computation
on large-scale systems. MRNet has been demonstrated on tools running on the
largest of existing computing platforms [2,4].

MRNet has two components: libmrnet, a library API that is linked into a
tool’s front-end and back-end components, and mrnet commnode, the program
that runs on intermediate nodes that forms the communication processes of the
tree-based network interposed between the front-end and back-ends.
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The standard MRNet library used in the front- and back-ends [7] provides a
C++ interface. While C++ offers many attractive software engineering
features, MRNet previously was incompatible with tools written in C. In prac-
tice, few parallel applications are written using C++ and not all high-performance
computing systems support general-purpose threading. In this paper, we intro-
duce a lightweight back-end library with a pure C interface. The lightweight
library is intended for use only within MRNet back-ends and offers a subset of
the functionality normally provided by the C++ library to back-ends.

There are two classes of tools for which we anticipate this being useful. The
first class is tools written in C; these tools need a C interface with which to
interact. The second class are tools that interact with applications written in
C, where such a tool might instrument the application with MRNet API calls
in order to extract information; the language of the application limits the API
that may be used for such purposes. The new library makes MRNet available to
many tools that were previously unable to use it. In addition, this lightweight
library is single threaded, to accommodate even more platforms and tools where
this is a limitation. This lightweight MRNet provides the same abstractions as
the C++ library; only the API is different. In most cases, however, there is a
direct translation between the C++ API call and the new C version.

We use the term “lightweight” to reflect that new library is less cumbersome
to integrate into existing tools as it does not require tool back-ends to use C++.
For many tools, a C-based library interface is much easier to develop against,
as C binding layers exist for many programming languages. As an example of
tools that benefit from MRNet’s new lightweight back-end library, consider two
MPI application profiling tools, TAU and the CEPBA Tools. The TAU Perfor-
mance System from the University of Oregon ([5],[9]) uses MRNet to aggregate
performance data from parallel processes. TAU inserts a tracing library into the
application and instruments the application with trace routines that use MR-
Net to send collected performance data for processing. A similar approach for
MPI profiling is used by the CEPBA-Tools from the Barcelona Supercomputing
Center([3]). Although it was previously possible to use standard MRNet in these
tracing libraries, it required them to be redeveloped in C++. This introduces a
dependency on the libstdc++ library that many tool and parallel application
developers feel is too heavyweight in terms of code size. The new lightweight
library makes it much easier to use MRNet in tools for profiling C-based MPI
applications with minimal overhead.

The remainder of this paper is organized as follows. In Section 2, we present
the basic abstractions of MRNet and describe how these are expressed in the
new C-based library. In Section 3, we describe our interface, and in Section 4,
we provide an example of a tool that can leverage this new library.

2 Abstractions

The MRNet library, libmrnet, allows a tool to use an overlay network of inter-
nal processes as a communication and data aggregation substrate between the
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tool’s front-end and back-end processes. MRNet uses a variety of abstractions to
support these functions. An MRNet end-point represents a tool or application
process. In particular, a back-end is a leaf node in the TBON. The front-end can
communicate in a multicast fashion with one or more of these endpoints. MRNet
uses communicators to represent groups of network end-points. Communicators
are created and managed by the front-end; currently communication is allowed
only between a tool’s front-end and its back-ends.

MRNet uses logical channels called streams to connect the front-end to the
end-points of a particular communicator. Streams can carry data packets down-
stream, from the front-end to back-ends, and upstream, from back-ends toward
the front-end. Packets are sets of data elements, where types are specified using
a format string similar to that used by C formatted I/O primitive printf. For
example, a packet whose data is described by the format ”%d %f %s” contains
an integer, float, and character string.

Data aggregation, the process of transforming input data packets into one
or more output packets, is a vital component of MRNet. MRNet uses filters to
aggregate data packets. When a stream is created, a filter is bound to the stream
that defines the aggregation operation to be performed and also the expected
packet data format that will be sent on the stream. MRNet supports two types
of filters: synchronization filters and transformation filters. Synchronization fil-
ters provide a mechanism to deal with asynchronous arrival of packets from
child nodes; these filters do no data transformation and operate on packets in a
type-independent fashion. MRNet supports three synchronization modes: Wait
For All, Time Out, and Do Not Wait. In contrast, transformation filters com-
bine data from multiple packets by performing an aggregation that yields one
or more new packets. Several general-use transformation filters are provided, in-
cluding basic scalar operations like min, max, sum, average, and concatenation
operations. Additionally, MRNet allows tool developers to use custom filters.
The developer simply writes one or more filter functions, compiles them into a
shared library, and loads the filter library in the network. Filters use a standard
function signature and can perform arbitrary computations.

The internal processes of the MRNet TBON provide the core functionalities,
including the logical channels for control messages and data. Further, these pro-
cesses perform the data aggregation or reduction operations. When a stream is
established, an internal process creates a new stream manager and initializes it
with a set of end-points to be associated with the stream and the filter(s) to
be used on the data packets sent on the stream. Upstream data buffers must
be unbatched, demultiplexed, processed, and then rebatched; downstream data
is similar, though the data packets may be placed in multiple output buffers
because the packet may be destined for multiple back-ends.

Although the new lightweight library provides the same abstractions as the
C++ library, there are a few cases in which an abstraction is not applicable in the
new library. Communicators are not present in the lightweight library because
they are a handle necessary only for the front-end. Standard MRNet allows for
both blocking and non-blocking receive operations; because the C-based API is
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not multi-threaded, only blocking receive is supported. Additionally, there are
slight differences in how filters are used. In standard MRNet, filtering is done
at every level of the tree, including at the back-end nodes. However, because
filtering at the C-based back-end nodes adds an additional level of complexity,
we have chosen initially to not filter at the back-ends.

3 Interface

To support the above abstractions, the MRNet API contains Network,
NetworkTopology, Communicator, Stream, and Packet classes. The Network

class is used to instantiate the TBON and access end-point objects representing
tool back-ends. The NetworkTopology class provides an interface for discovering
topology details of the instantiated Network. The Communicator class is used to
represent a group of end-points when creating a Stream for unicast, multicast,
or broadcast communication. The Packet class encapsulates the data packets
that are sent on a Stream.

C++: C:

return_type return_type

class:function_name ( class_function_name (

param1_type param1, class class_object,

...); param1_type param1,

...);

Fig. 2. API Translation Template

C++: C:

int int

Stream::send ( Stream_send (

int tag, Stream_t * stream,

char * fmt_string, int tag,

...); char * fmt_string,

...);

Fig. 3. API Translation Example

The lightweight library provides similar functionality for lightweight back-
ends, so its public API is comparable to the standard MRNet API. Lightweight
API classes are directly translated from the standard API. The translation
scheme is shown in Figure 2 and an actual example from the Stream class is
provided in Figure 3. In practice, creating a tool that uses the lightweight li-
brary will require familiarity with both the C++ and C APIs. However, because
they are so similar, this should not be difficult.
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Creating the MRNet overlay network is complicated by interactions with
various job management systems. In the simplest environments, MRNet launches
jobs using facilities like rsh or ssh. However, in more complex environments it is
necessary to submit requests to a job management system. In this case, we are
constrained by the operations provided by the job manager. To allow for these
models, we currently support two modes of instantiating MRNet-based tools.

In the first mode of process instantiation, MRNet creates the internal and
back-end processes, using the specified MRNet topology configuration to
determine the hosts on which components should be located.

In the second mode, MRNet relies on a process management system to create
some or all of the MRNet processes [1]. This mode accommodates tools that
require their back-ends to create, monitor, and control parallel application pro-
cesses. MRNet creates its internal processes as in the first instantiation mode,
but does not instantiate any back-end processes. When the back-ends are started
by the process management system, MRNet provides the information necessary
to connect the back-ends to the MRNet internal process tree. This information
includes the leaf processes’ host names and connection port numbers. A tool
front-end can extract this information and provide it to the back-ends via the
environment, using shared file systems or other information services available
on the target system. The new lightweight library supports both methods of in-
stantiation. Additionally, examples of both methods of instantiation are provided
with the MRNet source code.

4 Example Tool

MRNet can be used in a wide variety of tools and application. Here, we provide
a simple example to demonstrate a few key concepts. At a high level, the tool
front-end sends an integer value and a number of iterations to each back-end.
During each iteration, or “wave,” the back-end sends the integer multiplied by
the wave number back up the tree. The values are aggregated using a summation
filter and passed to the front-end as a single value, which should be equal to
num backends × val × wave number.

Figure 4 provides code for a custom filter used in this example. For each packet
being aggregated, a value is extracted and added to the current sum (lines 10-
13). Then, a new packet containing this summation is created (lines 16-18) and
added to the outgoing packets (line 19).

Code for the tool front-end is shown in Figure 5. After several variable def-
initions in lines 2-7, an instance of the MRNet Network is created on line 10,
using the topology specified in topology file. The Network then loads a fil-
ter, queries for the auto-generated broadcast communicator that contains all
available end-points, and then establishes a stream that will use this filter. The
front-end broadcasts two integers, a value and then number of iterations to com-
plete, on the new stream (line 27). For each iteration, the front-end performs
a blocking receive (line 32); it unpacks a single integer and checks the value
(lines 33-34). Finally, the front-end sends a message to the rest of the TBON to
shut down the network, and then deletes the network itself (lines 38-39).
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1. extern "C" {

2. void Integer_Add(std::vector<PacketPtr> & packets_in,

3. std::vector<PacketPtr> & packets_out,

4. std::vector<PacketPtr> & packets_out_reverse,

5. void ** /* filter state */

6. TopologyLocalInfo & /* topology information */)

7. {

8. int sum = 0, val;

9.

10. for (unsigned int i = 0; i < packets_in.size(); i++) {

11. PacketPtr cur_packet = packets_in[i];

12. cur_packet->unpack("%d", &val);

13. sum += val;

14. }

15.

16. PacketPtr new_packet (new Packet(packets_in[0]->get_StreamId(),

17. packets_in[0]->getTag(),

18. "%d", sum));

19. packets_out.push_back(new_packet);

20. }

21. } /* extern "C" */

Fig. 4. MRNet filter example code

Figures 6 and 7 provides code for the back-ends that reciprocate the actions of
the front-end. We provide code both for a standard back-end and a lightweight
back-end. It is easy to observe that the code is nearly identical. Each tool back-
end first connects to the MRNet network in line 8, using a Network constructor
that receives its arguments using the program argument vector. While the front-
end makes a stream-specific receive call, the back-end uses a stream-anonymous
network receive that returns the tag sent by the front-end, the Packet with
actual data, and a Stream object representing stream that the front-end has
established (line 12). In both cases, this receive operation is a blocking receive;
for the C++ version, this is the default mode, and for C this is the only mode
supported. For each iteration, the back-end sends an integer value upstream
towards the front-end (line 20).

While this example shows many of the basic concepts of MRNet, including
Network and Stream creation, Filter loading, and Stream send and receive,
these basic ideas allow for many other functionalities. The MRNet API Guide
provides a thorough explanation of these core abstractions and their possible
uses[6].
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1.void front_end_main(int argc, char ** argv) {

2. int send_val=32, recv_val=0;

3. int tag, retval, filter_id, num_backends, num_iters;

4. Network * net;

5. Communicator * comm;

6. Stream * stream;

7. PacketPtr pkt;

8.

9. // Create a new instance of a network

10. net = Network::CreateNetworkFE(topology_file,

11. backend_exe, &dummy_argv);

12. filter_id =

13. net->load_FilterFunc(so_file, "Integer_Add");

14.

15. // A Broadcast communication contains all the backends

16. comm = net->get_BroadcastCommunicator();

17.

18. // Create a stream that will use the Integer_Add filter

19. stream = net->new_Stream(comm, filter_id,

20. SFILTER_WAITFORALL);

21. num_backends = comm->get_EndPoints().size();

22.

23. // Broadcast a control message to back-ends to send us "num_iters"

24. // waves of integers

25. tag = PROT_SUM;

26. num_iters = 5;

27. stream->send(tag, "%d %d", send_val, num_iters);

28.

29. // We expect "num_iters" aggregated respnoses from all back-ends

30. for (unsigned int i = 0; i < num_iters; i++) {

31. // Receive and unpack packet containing single int

32. retval = stream->recv(&tag, pkt);

33. pkt->unpack("%d", &recv_val);

34. assert(recv_val == send_val*i*num_backends);

35. }

36.

37. // Tell the back-ends to exit; cleanup the network

38. stream->send(PROT_EXIT, "");

39. delete stream;

40. delete net;

41.}

Fig. 5. MRNet front-end sample code
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1.void back_end_main(int argc, char ** argv) {

2. Stream * stream;

3. PacketPtr pkt;

4. int tag = 0, retval = 0, num_iters = 0;

5.

6. // Create a new instance of a network

7. Network * net = Network::CreateNetworkBE(argc, argv);

8.

9. do {

10. // Anonymous stream receive

11. net->recv(&tag, pkt, &stream);

12. switch(tag) {

13. case PROT_SUM:

14. // Unpack packet with two integers

15. pkt->unpack("%d %d", &recv_val, &num_iters);

16.

17. // Send num_iters waves of integers

18. for (unsigned int i = 0; i < num_iters; i++) {

19. stream->send(tag, "%d", recv_val*i);

20. }

21. break;

22. case PROT_EXIT: break;

23. }

24. } while (tag != PROT_EXIT)

25.

26. // Wait for stream to shut down before deleting

27. while(!stream->is_Closed()) sleep(1);

28. delete stream;

29.

30. // Wait for the front-end to shut down the network, then delete

31. net->waitfor_ShutDown();

32. delete net;

33.}

Fig. 6. MRNet standard back-end sample code
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1.void back_end_main(int argc, char ** argv) {

2. Stream_t * stream;

3. Packet_t * pkt = (Packet_t*)malloc(sizeof(Packet_t));

4. int tag = 0, retval = 0, num_iters = 0;

5.

6. // Create a new instance of a network

7. Network_t * net = Network_CreateNetworkBE(argc, argv);

8.

9. do {

10. // Anonymous stream receive

11. Network_recv(net, &tag, pkt, &stream);

12. switch(tag) {

13. case PROT_SUM:

14. // Unpack packet with two integers

15. Packet_unpack(pkt, "%d %d", &recv_val, &num_iters);

16.

17. // Send num_iters waves of integers

18. for (unsigned int i = 0; i < num_iters; i++) {

19. Stream_send(stream, tag, "%d", recv_val*i);

20. }

21. break;

22. case PROT_EXIT: break;

23. }

24. } while (tag != PROT_EXIT)

25.

26. // Wait for stream to shut down before deleting

27. while (!Stream_is_Closed(stream)) sleep(1);

28. delete_Stream_t(stream);

29.

30. free(pkt); // Cleanup malloc’d variables

31.

32. // Wait for the front-end to shut down the network, then delete

33. Network_waitfor_ShutDown(net);

34. delete_Network_t(net);

35.}

Fig. 7. MRNet lightweight back-end sample code

5 Conclusions

MRNet is a customizable, software-based multicast reduction network for scal-
able performance and system tools. MRNet reduces the cost of tool activities by
leveraging a tree-based overlay network of processes between the tool’s front-end
and back-ends. MRNet uses this overlay network to distribute communication
and computation, reducing analysis time and keeping tool front-end loads man-
ageable. Previously, MRNet had only a C++ interface. We have presented a new
lightweight library for MRNet back-ends that is single-threaded and in C. This
addition makes MRNet accessible to a wide variety of tools that previously were
unable to use MRNet.
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Abstract. The use of parallel/distributed programming increases as it
enables high performance computing. There are many tools that help a
user in the performance analysis of the application, and that allow to
improve the application execution. As there is a high demand of compu-
tational power, new systems, such as large scale computer clusters, have
become more common and accessible to everyone to solve complex prob-
lems. However, these systems generate a new set of problems related to
the scalability of current analysis and tuning tools. Our automatic and
dynamic tuning environment MATE does not scale well because it has a
set of common bottlenecks in its architecture, and hence we have decided
to improve the tool for providing dynamic tuning on large scale systems
too. For this purpose, we are designing a new tool that introduces a
tree-based overlay network infrastructure for scalable metrics collection,
and to substitutes the current centralized performance analysis by a dis-
tributed one, in order to provide better scalability.

1 Introduction

Nowadays, parallel/distributed applications are used in many science and en-
gineering fields. They may be data intensive and/or may perform complex al-
gorithms. Their main goal is to solve problems as fast as possible. However,
development of an efficient parallel application is still a complex task, and par-
allel applications rarely achieve a good performance immediately. Therefore, a
careful performance analysis and optimization is crucial. These tasks are known
to be difficult and costly and, in practice, developers must understand both, the
application and the analysis/tuning environment behavior.

Moreover, there are many applications that depend on the input data set, or
even can vary their behavior during one particular execution according to the
data evolution. In such cases, it is not worth to carry out a post-mortem analysis
and tuning, since the conclusions based on one execution could be wrong for a
new one. It is necessary to carry out a dynamic and automatic tuning of the
application during its execution without stopping, recompiling nor rerunning it.
In this context, MATE environment was developed.

K. Jónasson (Ed.): PARA 2010, Part II, LNCS 7134, pp. 430–440, 2012.
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On the other hand, during last years the hardware evolution has increased
significantly, and its cost has sharply decreased. Therefore, new systems as com-
puter clusters became more common and accessible to everyone to solve new
classes of scientific problems which have high performance requirements. There
are many large scale systems that are composed of thousands of processors. In
this case, however, a new problem appears when considering performance anal-
ysis and tuning tools. They may present scalability difficulties when executing
in large scale systems. These tools may transform themselves in a bottleneck
and may cause a parallel application to decrease its performance instead of
improve it.

The goal of this work is to describe a set of difficulties that the analysis and
tuning tools may present in large scale systems. In general, the main problems
are related to the number of processes, the volume of collected data, and the
centralized performance analysis. In particular, we focus our work on the MATE
environment that automatically and dynamically improves parallel applications
performance. It may be executed on many processors; however, its architecture
contains certain components that might cause scalability bottlenecks.

In this paper we focus on a scalability problem that appears in the MATE
environment. In Section 2, we briefly describe the dynamic and automatic tun-
ing tool MATE. In Section 3, we present general problems of the scalability in
large-scale parallel systems. Section 4 shows the proposal architecture of MATE
that may allow for reducing its scalability limitations. Section 5 describes the
related work in automatic and dynamic tuning. Finally, Section 6 summarizes
the conclusions of this work.

2 MATE

MATE (Monitoring, Analysis and Tuning Environment) is a tuning environment
for MPI parallel applications [11]. It augments on-line automated performance
diagnosis with dynamic code optimization to combine the advantages of both
automated analysis and computational steering. MATE does not require pro-
gram modifications to expose steerable parameters. Instead, it uses dynamic
instrumentation to adjust program parameters. With MATE an application is
monitored, its performance bottlenecks are detected, their solutions are given,
and the application is tuned on the fly to improve its performance. All these steps
are performed automatically, dynamically, and continuously during application
execution.

MATE uses DynInst [3] to insert instrumentation into running code, collect
performance data, and finally tune the application. The fundamental idea is
that dynamic analysis and online modifications adapt the application behavior
to changing conditions in the execution environment or in the application itself.

MATE consists then of the following components that cooperate to control
and improve the execution of the application [14]:

– Application Controller (AC) - a daemon-like process that controls the
execution and dynamic instrumentation of individual MPI tasks.
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– Dynamic monitoring library (DMLib) - a library that is dynamically
loaded into application tasks to facilitate the performance monitoring and
data collection.

– Analyzer - a process that carries out the application performance analysis
and decides on monitoring and tuning. It automatically detects existing per-
formance problems on the fly and requests appropriate changes to improve
the application performance.

MATE uses the functionality required to parse and modify binary executables
by means of the DynInst API. It provides a lightweight data collection frame-
work composed of a number of distributed daemon processes and a centralized
analyzer process. The centralized performance analyzer is driven by a number of
so called tunlets that implement specific performance models and algorithms
that evaluate the current behavior and suggest tuning actions of a running
application.

MATE has been demonstrated to be an effective and feasible tool to improve
performance of real-world applications [13]. An extensive experimental work has
been conducted with parallel applications based on master-worker paradigm and
automatic tuning of data distribution algorithms like factoring [12]. This algo-
rithm calculates the optimal values of the factoring distribution parameters.These
values are later applied to the application using dynamic instrumentation.

MATE is, by design, suitable for any Linux-based cluster environment run-
ning MPI applications. In particular, the automatic tuning has been applied to a
parallel master-worker implementation of forest fire simulation called XFire de-
veloped at UAB [9]. The forest fire propagation is a very complex problem that
involves several distinct factors that must be considered: meteorology factors
such as temperature, wind, moisture; vegetation features, and terrain topogra-
phy. The simulation system is used to predict the evolution of the forest fire
in different scenarios and help minimize the fire risks and fire damages. Given
its complexity, this simulation requires high computing capabilities. The exper-
iments with this highly demanding application and MATE in a cluster environ-
ment has proven the benefits from dynamic tuning. However, the tool has been
used in this case only on a small size cluster.

3 Scalability Problems

The next step of our research aims to port the existing implementation of MATE
to large-scale parallel systems. The objective is to examine and resolve all scal-
ability issues that may appear when running on thousands of processors. The
key problems are related to the volume of collected data and the centralized
performance analysis [4]. MATE assumes that the performance analysis, based
on the global application view, is taking into consideration all the processes and
their interactions. Such an approach is feasible for environments with a relatively
small number of nodes. However, the centralized analysis becomes a scalability
bottleneck if the number of nodes increases. We want to solve this problem by
distributing the performance analysis process.
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The analyzer component is the main bottleneck of the MATE environment
because of the following factors:

– The volume of events to be processed by the analyzer, and the number of
connections and AC daemons that have to be managed, increase the tools
time response.

– Performance models and thus tuning techniques (tunlets) that we have de-
veloped are adequate for a centralized and sequential approach. Although
the models are quite simple to make their evaluation easier during execution
time, usually the complexity of this evaluation depends on the number of
processes. If this dependency is not linear, the scalability will be poor.

Figure 1 presents a master-worker application which is executed with a maximum
of 26 workers and 60 iterations under a controlled extra load. Certain variable
load is injected in the system to provoke variations in the current conditions
and the consequent reactions of MATE to adapt the application to the new
conditions. In this case we consider a tunlet to tune the number of workers. As
can be seen, the number of workers is adapted as the load pattern changes. As the
load in the system increases, the number of workers is changed into a bigger one.
Conversely, the number of workers is reduced as the load in the system decreases.
However, we can notice that the modifications of the number of workers are
delayed several iterations. It is provoked by the amount of workers and events
involved in the application execution. Thus, during the whole execution of the
application there is a continuous lag between the conditions of the system and
the tuning actions.

Fig. 1. The scalability problem in MATE

Our proposal is to enhance and extend the use of MATE from two different
points of view. First, we want to make MATE scalable with the proposal of
overcome the bottleneck presented by MATE when the number of processors
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involved in the execution of the application increases. Second, we want to au-
tomate the creation of tunlets (the inclusion of knowledge in MATE) in order
to make the use of this environment easier. We have proposed a solution to this
problem based on the definition of a high level specification language and the
development of an automatic tunlet generation tool [5].

This paper presents our approach for improving the scalability of MATE by
redefining its analysis phase. The novel approach is called the distributed hierar-
chical collecting-preprocessing approach. As for now, MATE had been following
a centralized approach, in which the collection and processing of the informa-
tion turned into a bottleneck as the amount of processes in the application -and
consequently the amount of events- increased.

This approach limited the scalability of MATE. Therefore, we studied dif-
ferent options to provide scalability; however, both distributed and hierarchical
approaches presented constraints from the user, the performance model, and the
application point of view. Consequently, we selected the best characteristics of
each approach in order to provide a viable alternative. The objective of the pro-
posed approach is to overcome the bottleneck of the analyzer, by distributing
what can be distributed (the collection of events) and preprocessing what can
be processed before the model evaluation. We compare the new approach with
the centralized one in order to appreciate the significance of the contribution.
We also study the intrusion caused by MATE and the resources requirements.

4 Architecture of Scalable MATE

To overcome these barriers to the scalability, MATE is being developed using
overlay networks. An overlay network is a network of computers constructed
on top of another network. Nodes in the overlay are connected by virtual or
logical links, each of which corresponds to a path in the underlying network. For
example, many peer-to-peer networks are overlay networks because they run on
top of the Internet. This kind of networks is scalable, flexible, and extensible.

Therefore, to make the MATE environment scalable, we propose to adapt it
applying Tree-based Overlay Network inside the MATE infrastructure. TBONs
[1] are virtual networks of hierarchically-organized processes that exploit the
logarithmic scaling properties of trees to provide efficient data multicast, gather,
and data aggregation.

An example implementation of the TBON model is the MRNet framework
[17] developed at the University of Wisconsin. MRNet is a software overlay net-
work that provides efficient multicast and reduction communications for parallel
and distributed tools and systems. It is useful to build scalable parallel tools
as it incorporates a tree hierarchy of processes between the tool’s front-end and
back-ends to improve group communication performance. These introduced in-
ternal processes are also used to distribute many important tool activities that
are normally performed by a front-end or tool daemon. As the calculation is dis-
tributed and performance data is aggregated, MRNet allows for reducing data
analysis time and keeping tool front-end loads manageable.
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TBONmodel allows for developing a new structure of the MATE environment,
shown in Figure 2, that will make it scalable.

Fig. 2. MATE architecture based on TBON overlay network

MATE sends all events from all processes to the central analyzer. In this
case, the data flow will be reduced applying the TBON architecture. A problem
related to the number of connections to the global analyzer will be solved by
introducing the hierarchy of processes between the ACs and the analyzer. These
internal processes will provide event aggregation; each process will be responsible
for receiving events generated by a reduced set of daemons, aggregate them, and
finally pass them to the superior level of the network. In this way, the aggregated
data will arrive to the global analyzer. Each level may aggregate, filter, or sort
data, this reduces the data volume and the processing time of the analysis.

All events generated by the application processes are sent through all levels of
the TBON (daemon to front-end direction). In the same way, all requests that
must be provided to the daemons may be transmitted through this network. For
example, a tuning request sent by the global analyzer (front-end) will be sent
from a level to an inferior level till the proper AC (daemon) process. Both, AC
and analyzer components should be adapted to work with the MRNet library
using its API.

However, in case of certain tuning techniques, the TBON usage will not solve
all scalability problems. The techniques that require the evaluation of perfor-
mance metrics calculated over a certain event pattern will remain a bottleneck
of the front-end process. As an example, suposse the following situations: calcu-
late the iteration time for each application process as a difference between the
start and the end of the iteration or, calculate the delay between a send event
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from one process and the corresponding receive event on another process. It is
impossible to evaluate these metrics directly in the application process as the
information required is available only in the global analyzer.

To solve these problems, we propose a new approach based on the distributed
evaluation of metrics. The idea is to delegate certain calculations to the inter-
nal TBON process (as local analyzers) and thus to unload the global analyzer.
Each tunlet must provide arithmetic expressions that characterize the event pat-
terns and distribute these declarations to the TBON nodes. In this way, each
TBON node provides a filter detecting required patterns and evaluating given
arithmetic expressions. This analysis is distributed and transparent to the global
analyzer. Each filter in MRNet may be a dynamically loaded library. Therefore,
AC component should be aware of the filter creation (based on the information
provided by the tunlet) and its dynamic insertion into TBON nodes.

Moreover, we can apply this solution to other performance models than master-
worker. A composition of two (or more) specific patterns gives a solution to a
complex parallel application. It implies that the problems existing in one or more
of these paradigms may exist in the composed paradigm. Therefore, these prob-
lems could be overcome by applying the existing performance models separately
for each paradigm. Examples of composed models are: herarchical master-worker
and master-worker of pipelines. The first model can be applied in the case of
XFire simulator where the data distribution may cause a scalability bottlenecks.
The master process may distribute the work to a set of sub-masters and each
of them can manage a set of workers. The second model can be applied in a
rendering application in order to exploid both functional and data parallelism.

Considering the second one - master-worker of pipelines (where each worker
is a pipeline), we can find some parts of the analysis that can be performed
independently for each pipeline, and globally for the whole master-worker [8].
Figure 3 presents an example of a master-worker with pipeline composition. It
is the typical structure of a master-worker application with five workers, where
each worker is a four stages pipeline. The master process sends tasks to each
worker and when a task arrives to a worker, this is processed stage by stage of
the pipeline. Finally, at the end of the computation, the result is returned to the
master process.

In this example we consider a composite performance model that consists of
two main levels. The first level is the local analysis, where MATE evaluates the
pipeline performance model and tries to improve the execution of each pipeline
separately. This part of the optimization uses the metrics provided by each pro-
cess of the local pipeline and takes into account the resources that each pipeline
has assigned. The local analyzer evaluates the performance strategy ”Dynamic
Pipeline Mapping (DPM)” [15], for the possible reassigment of resources in a
pipeline. In this case, each application process is controlled by one AC, all ACs
from a pipeline communicates with one TBON node and finally a TBON pro-
cess with one local analyzer process. Each TBON node provides the collection
of events to the local analysis of the corresponding pipeline.
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Fig. 3. Composite application example master-worker with pipeline

The second level is a global optimization process, where we can apply a per-
formance model to improve the number of workers required by the application
[6]. Then, the local analyzer or TBON processes may transmit all required met-
rics and results to the superior level. The global analyzer is then responsible for
evaluating the given performance model and tune the global number of workers.

Consequently, MATE must be prepared to support this kind of distributed
analysis. The architecture of the MATE environment considering the TBON
processes and the distributed analysis is presented in Figure 4.

5 Related Work

There is a set of performance analysis tools that manage the scalability problem.
However, none of them provides automatic and dynamic tuning of parallel ap-
plications. Nevertheless, these tools are already adapted for large scale systems.
A well known example is the Scalasca toolset from Jülich Supercomputing Cen-
tre [10]. It is a performance analysis tool that has been specifically designed for
being used on large-scale systems including Blue Gene and Cray XT. Scalasca
integrates both profiling and tracing in a stepwise performance analysis process.
It adopts a strategy of refined measurement configurations. It focuses on a fea-
ture to identify wait states that occur during the application execution. It was
used on more than 65000 processes on the Jugene Blue Gene/P.

The Cray performance analysis tools [7] provide an integrated infrastructure
for measurement and analysis of computation, communication, I/O, and memory
utilization. It is composed of CrayPat Performance Collector for data capture,
and Cray Apprentice2 Performance Analyzer to a post processing data visual-
ization. The Cray performance analysis tools have been used at large scale Cray
XT systems with more than 30000 processors.



438 A. Morajko et al.

Fig. 4. MATE architecture considering TBON overlay network and distribution
analysis

Paradyn was one of the first tools adapted to large scale systems [18]. It is
a performance tool for large-scale parallel applications which was developed at
University of Wisconsin. It provides monitoring and automatic analysis “on the
fly”. This tool uses the Dyninst library to instrument the application and then
provides automatic performance analysis of the running application. The group
that worked on the Paradyn project, developed the MRNet library to improve
the scalability of the tool. Paradyn was used in 2006 at large scale systems with
more than 1000 nodes at the LLNL.

Periscope [2] is a performance analysis environment which overcomes the scal-
ability barrier performing an automatic distributed online analysis on thousands
of processors. Its analysis architecture is based on a hierarchical network of
agents. These agents autonomously search performance characteristics on sub-
sets of the parallel application tasks and report the problems back to a master
agent.

All these tools manage the scalability problem but do not provide automatic
and dynamic tuning of parallel applications. On the other hand, MATE and
other tools, such as Autopilot [16] and Active Harmony [19], implement this
approach.

Autopilot conducts a performance improvement process using a distributed
analysis system of sensors and actuators. Sensors monitor the parallel applica-
tion obtaining data about its behavior, and actuators make modifications to
application variables to improve its performance.

Active Harmony is a framework that allows dynamic adaptation of an ap-
plication to the network and available resources on which it is running. The
main component of its architecture, the Adaptation Controller, is responsible
for tuning the application to achieve improved performance. With this objective,
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it switches algorithms or tunes the parameters that characterize the library used
by the application, or directly modifies parameters that characterize the appli-
cation performance.

However, these tools have features in its architecture that make them not
scalable to applications involving hundreds or thousands of processes.

6 Conclusions and Future Work

In this paper, we have presented the automatic and dynamic tuning environment
MATE. As in the last years, many large scale systems - composed of thousands
of processors - have appeared, a tool scalability problem has arisen. MATE and
many other tools are limited in such systems as they are developed using back-
end and front-end architecture with many processes controlling the application
execution in a centralized manner. Therefore, we decided to indicate the set of
bottlenecks of MATE and adapt it to these new large scale systems.

We have demonstrated the possible architecture of MATE considering com-
munication issues. In this case, the utilization of a TBON network is reasonable.
We have also presented the further step we plan to follow: a distributed analy-
sis. On the one hand, there are calculations that can be performed locally and
then passed to a global analysis. On the other hand, there are certain composed
performance paradigms that may be analyzed separately on two levels: local and
global (master-worker of pipeline).

Currently we are developing a new version of MATE adapted to large scale
systems. The experimentation tests must be performed on thousands of pro-
cessors. Once the MATE environment is scalable, we have to integrate the dis-
tributed analysis components with TBON and perform experimentation using
applications with composed paradigms.
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Abstract. Performance evaluation tools play an important role in help-
ing understand application performance, diagnose performance problems
and guide tuning decisions on modern HPC systems. Tools to observe
parallel performance must evolve to keep pace with the ever-increasing
complexity of these systems. In this paper, we describe our experience in
building novel tools and techniques in the TAU Performance SystemR©

to observe application performance effectively and efficiently at scale.
It describes the extensions to TAU to contend with large data volumes
associated with increasing core counts. These changes include new in-
strumentation choices, efficient handling of disk I/O operations in the
measurement layer, and strategies for visualization of performance data
at scale in TAU’s analysis layer, among others. We also describe some
techniques that allow us to fully characterize the performance of appli-
cations running on hundreds of thousands of cores.

Keywords: Measurement, instrumentation, analysis, performance tools.

1 Introduction

Tools for parallel performance measurement and analysis are important for eval-
uating the effectiveness of applications on parallel systems and investigating
opportunities for optimization. Because they executes as part of the parallel pro-
gram and process performance data that reflects parallel behavior, measurement
and analysis techniques must evolve in their capabilities to address the complex-
ity demands of high-end computing. Scaling in the degree of parallelism is one of
the key driving requirements for next-generation applications. To address scaling
concerns, performance tools can not continue with traditional techniques with-
out considering the impacts of measurement intrusion, increased performance
data size, data analysis complexity, and presentation of performance results.

This paper discusses approaches for improving the scalability of the TAU
Performance System R© instrumentation, measurement, and analysis tools. Our
perspective looks generally at the maximizing performance evaluation return
to the tool user. This starts with improving the instrumentation techniques to
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select key events interest and avoid the problem of blindly generating a lot of
low value performance data. Section §2 presents a few of the new techniques
in TAU to support more flexible and intelligent instrumentation. Performance
measurement presents a scaling challenge for tools as it places hard requirements
on overhead and efficiency. Section §3 describes TAU’s new measurement capa-
bilities for addressing scale. Scalable performance analysis deals mainly with
concerns of reducing large performance data into meaningful forms for the user.
Recent additions to TAU performance analysis are discussed in Section §4. The
paper concludes with thoughts towards future extreme-scale parallel machines.

2 Instrumentation

2.1 Source Instrumentation

For probe-based performance measurement systems such as TAU, instrumen-
tation is the starting point for thinking about scalability because it is where
decisions are made about what to observe. It is also where automation becomes
important for tool usability. TAU has traditionally relied on a source-to-source
translation tool to instrument the source code. Based on the PDT (Program
Database Toolkit) [6] static analysis system, the tau instrumentor [4] tool can
insert instrumentation for routines, outer loops, memory, phases, and I/O oper-
ations in the source code. While source code instrumentation provides a robust
and a portable mechanism for instrumentation, it does require re-compiling the
application to insert the probes. While not directly affected by scaling, source
instrumentation can become somewhat cumbersome in optimizing instrumenta-
tion for efficient measurement.

In the past, TAU addressed the need to re-instrument the source code by
supporting runtime instrumentation (via the tau run command) using binary
editing capabilities of the DyninstAPI [2] package. However, dynamic instru-
mentation requires runtime support to be efficient at high levels of parallelism
since every executable image would need to be modified. Techniques have been
developed in ParaDyn to use a multicast reduction network [9] for dynamic in-
strumentation control, as well as in TAU to use a startup shell script that is
deployed on every MPI process and then instruments and spawns an executable
image prior to execution [10,7].

2.2 Binary Instrumentation

To address both usability and scalability issues, we implemented binary instru-
mentation in TAU using re-writing capabilities of DyninstAPI. This allows us to
pre-instrument an executable instead of sending an uninstrumented executable
to a large number of cores just to instrument it there. By re-writing the exe-
cutable code using binary editing, probes can be inserted at routine boundaries
pre-execution, saving valuable computing resources associated with spawning
a DyninstAPI-based instrumentor on each node to instrument the application.
The approach improves the startup time and simplifies the usage of TAU as no
changes are introduced to the application source code or the build system.
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Fig. 1. Using a POSIX I/O interposition library, tau exec shows the volume of I/O
in an uninstrumented application

2.3 Instrumentation via Library Wrapping

While this is a solution for binary executables, shared libraries (dynamic shared
objects or DSOs) used by the application cannot be re-written at present. If the
source code for the DSO is unavailable, we are left with a hole in performance ob-
servation. To enable instrumentation of DSOs, we created a new tool, tau wrap,
to automate the generation of wrapper interposition libraries. It takes as input
the PDT-parsed representation of the interface of a library (typically provided
by a header file) and the name of the runtime library to be instrumented. The
tau wrap tool then automatically generates a wrapper interposition library by
creating the source code and the build system for compiling the instrumented
library. Each wrapped routine first calls the TAU measurement system and then
invokes the DSO routine with the original arguments. The wrapper library may
be preloaded in the address space of the application using the tau exec tool
that also supports tracking I/O, memory and communication operations[12].
Preloading of instrumented libraries is now supported on the IBM BG/P and
Cray XT5/XE6 architectures.

The ability to enable multiple levels of instrumentation in TAU (as well as
runtime measurement options) gives the user powerful control over performance
observation. Figure 1 shows how the volume of read and write I/O operations
can be tracked by TAU using library-level preloading of the POSIX I/O library
in tau exec. If callpath profiling is enabled in TAU measurement, a complete
summary of all operations on individual files, sockets, or pipes along a program’s
callpath can be generated, as shown in Figure 2. Here we have instrumented
MPI operations (through the standard MPI wrapper interposition approach). In
doing so, we can now see how MPI routines like MPI Allreduce invoke low-level
communications functions, typically unobserved in other performance tools.

The linker is another avenue for re-directing calls for a given routine with
a wrapped counterpart. For instance, using the GNU ld --wrap routine name

commandline flag, we can surround a routine with TAU instrumentation. How-
ever, this approach requires each wrapped routine to be specified on the link line.
While onerous, this could be automated (and TAU does), but one may exceed
the system limits for the length of the command line if a lot of routines are de-
sired. Using a combination of wrapped instrumentation libraries with re-linked or
re-written binaries provides complete coverage of application and system library
routines without access to the source code of the application.
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Fig. 2. I/O statistics along a calling path reveal the internal workings of MPI library
showing the extent of data transfers for each socket and file accessed by the application

2.4 Source and Compiler Instrumentation for Shared Libraries

When the source code is available for instrumentation, direct source instrumenta-
tion of static or shared libraries can be done automatically using TAU’s compiler
scripts (tau cxx.sh, tau cc.sh, and tau f90.sh). The purpose of these scripts
is to replace host compilers in the build system without disrupting any of the
rest of the build process. TAU also supports compiler-based instrumentation
where the compiler emits instrumentation code directly while creating an object
file. This is supported for IBM, Intel, PGI, GNU, and Pathscale compilers at
present. Source-based instrumentation involves deciphering and injecting rou-
tine names as parameters to timer calls in a copy of the original source code.
While shared object instrumentation is relatively easy to implement in source-
based instrumentation, it poses some unique challenges in identifying routine
names for compiler-based instrumentation. Compiler-based instrumentation in
statically linked code is easier to implement because the address of routines does
not change during execution and is the same across all executing contexts. The
address may be mapped to a name using BFD routines at any point during the
execution (notably at the end of the execution).

On the other hand, dynamic shared objects, by their very nature, load position-
independent object code at addresses that are assigned from an offset using a
runtime loader. The same routine may be loaded at a different address in differ-
ent executing contexts (ranks). Also, as the application executes, different shared
objects represented by Python modules may be loaded and unloaded, and the
map that correlates addresses to the routine names changes during the execution
of the application. This address map (typically stored in the /proc file system
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under Linux) cannot be queried at the end of the execution as the addresses
may be re-used and shift as different shared objects are brought in and out of
the executing process.

To handle instrumentation of shared objects, we examine the address ranges
for the different routines after loading a shared object and determine the map-
ping of routines names and their addresses, dynamically in each context. This
simplifies object code instrumentation in dynamic shared objects and we need
only store these address mappings for shared objects that are loaded during
execution. During execution, compiler-based instrumentation generates events
and calls the measurement library. Events from C and Fortran languages typi-
cally map directly to their routine names. C++ events need an additional de-
mangling step. Events from multiple layers co-exist in the executing context and
performance data is generated by each context separately.

Providing robust support for selecting events to observe is important for giv-
ing optimal visibility of performance. TAU integrates several instrumentation
approaches in a cohesive manner allowing a user to slice and examine the per-
formance across multiple application layers at an arbitrary level of detail. By
providing access to instrumentation hooks at multiple levels of program trans-
formation, the user can refine the focus of instrumentation to just the relevant
part while reducing the overhead by not instrumenting application constructs
that may not be pertinent to a given performance experiment, thereby reducing
the volume of the performance data generated.

3 Measurement

The scaling of parallel performance measurement must meet critical require-
ments. Most importantly, it must impact application’s performance a little as
possible. However the choice of what and how to measure is not that simple.
Every performance measurement system will intrude on the execution. It is im-
portant then to optimize the balance between the need for performance data
and the cost of obtaining it. Our goal in TAU is to provide flexible support for
making optimal choices concerning measurement type and degree.

3.1 Parallel Profiling

TAU provides both parallel profiling and tracing in its measurement system.
Parallel profiling characterizes the behavior of every application thread in terms
of its aggregate performance metrics such as total exclusive time, inclusive time,
number of calls, and child calls executed. A rich set of profiling functionality is
available in TAU, including callpath profiling, phase profiling, and parameter-
based profiling, that offers choices in scope and granularity of performance mea-
surement. Although parallel profiling records minimal temporal information, it
is the recommend first measurement choice in TAU because it allows significant
performance characterization and runtime performance data is of a fixed size.
All profiling measurements take place in a local context of execution and do not
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involve synchronization or communication. This keeps it lightweight in overhead
and intrusion even as the number of threads of execution scales.

However, the largest systems available now have exceeded many of the tradi-
tional means of profile data output, collection, and analysis. Tools like TAU have
historically written process-local profile files. This method no longer scales to the
largest systems since it creates challenges at multiple levels. It can excessively
slow down the execution of the application job by creating potentially hundreds
of thousands of files. The metadata operations to simply create this number of
files have been shown to be a significant bottleneck [3]. After execution, the
huge number of files is very difficult to manage and transfer between systems. A
more subtle problem is that TAU assigns event identifiers dynamically and lo-
cally. This means that the same event can have different IDs in different threads.
Event unification has typically been done in TAU in the analysis tools. Unfor-
tunately, this requires verbose and redundant event information to be written
with the profiles. Thus, not only do we end up with multiple profile files, they
contain excessive information.

The TAU project has been investigating these two issues for the past year.
We currently have prototype parallel implementations of event unification and
profile merging. These are built from a MPI-based parallel profile analyzer that
runs at the end of the application execution[15]. By using an efficient reduc-
tion layer based on a binomial heap, the unification and merging operations are
implementation is portable and fast. We have tested it on over 100,000 cores
on a Cray XT5 and IBM BG/P. More generally, we are looking to improve the
scalability of online profile-based performance measurement. A TAU monitoring
system is being implemented that uses scalable infrastructure such as MRNet to
provide runtime access to parallel performance data [8,15].

Moving forward, we plan to implement various forms of on-the-fly analysis
at the end of application execution, to reduce the burden on the post-mortem
analysis tools, and online, to provide data reduction and feedback to the live ap-
plication. For post-mortem analysis purposes, a new file format will be designed
to contain multiple levels of detail and pre-computed derived data (e.g., from
the runtime parallel analysis). This will allow the analysis tools the ability to
read only the portions of the overall profile that they need for a given analysis
or data view. In these way, we are confident that we can address the issues of
large scale profile collection and analysis.

3.2 Parallel Tracing

In contrast to profiling, tracing generates a timestamped event log that shows
the temporal variation of application performance. TAU traces can be merged
and converted to the Vampir’s [1] Open Trace Format (OTF), Scalasca’s Epilog
[5], Paraver [13], or Jumpshot’s SLOG2 trace formats. Merging and conversion of
trace files is an expensive operation at large core counts. To reduce the time for
merging and conversion, and to provide more detailed event information, TAU
interfaces with the Scalasca and VampirTrace libraries directly. VampirTrace
provides a trace unification phase at the end of execution that requires re-writing
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binary traces with updated global event identifiers. However, this can be an
expensive operation at large scale.

In the near future, TAU will write OTF2 traces natively using the Score-P
measurement library from the SILC[14] project. It will feature an efficient trace
unification system that only re-writes global event identifier tables instead of
re-writing the binary event traces. If the trace visualizer supports the OTF2
format, it will also eliminate the need to convert these large trace files from one
format to another. This will improve the scalability of the tracing system.

3.3 Measuring MPI Collective Operations

As applications are re-engineered to run on ever increasing machine sizes, track-
ing performance of the collective operations on the basis of individual MPI com-
municators becomes more important. We have recently introduced tracking of
MPI communicators in TAU’s profiling substrate using its mapping capabilities
in parameter-based profiling. TAU partitions the performance data on the basis
of its communicator in a collective operation. Each communicator is identified
by the list of MPI ranks that belong to it. When multiple communicators use
the same set of ranks, the TAU output distinguishes each communicator based
on its address. Figure 3 shows the breakdown of the average time spent in the
MPI Allreduce routine based on each set of communicators across all 32 ranks
in an MPI application. To contend with large core counts, TAU only displays
the first eight ranks in a communicator, although this depth may be altered by
the user while configuring TAU’s measurement library. This is shown for the
MPI Bcast call where all ranks participate in the broadcast operation on the
MPI COMM WORLD communicator.

4 ParaProf Scalable Analysis

Scalable performance measurement only produces the performance data. It still
needs to be analyzed. Analysis scalability concerns the exploration of potentially
large parallel performance datasets. The TAU ParaProf parallel performance
analyzer is specifically built for analysis of large scale data from the largest lead-
ership class machines. It can easily analyze full size datasets on common desk-
top workstations. TAU provides a compressed, normalized, packed data format
(ParaProf Packed format, .ppk) as a container for profile data from any sup-
ported measurement tool. This makes reading of parallel profiles significantly
more efficient in ParaProf.

Analysis in ParaProf takes place in-memory for fast access and to support
global aggregation and analysis views. Basic bar charts support large dataset
with standard scrollbars allowing the detail for each node/thread to be seen in
its own context. Additionally, we present aggregate statistics such as the mean
and standard deviation. Aggregate views such as the histogram display allow a
simplified view of the entire dataset in a single chart.
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Fig. 3. ParaProf’s shows the peformance of a collective operation partitioned by the
communicator

ParaProf uses OpenGL-based 3D visualization support to enhance the inter-
pretation of large-scale performance data. Here, millions of data elements can be
visualized at once and be manipulated in real time. We provide triangle mesh
displays, 3d bar plots, and scatterplots, all with width, height, depth, and color
to provide 4 axes of differentiable data values. For instance, Figure 4 shows a
ParaProf 3D view of the entire parallel profile for the XBEC application on
128K core of an IBM BG/P. Figure 5(left) is an example of ParaProf’s new 3D
communication matrix view showing the volume of point-to-point interprocessor
communication between sender and receiver tasks. Although this is for a smaller
execution, parallel programs larger than 2k processors will necessarily require
such a 3D communications perspective.

Internally, the performance data representation in ParaProf is kept as mini-
mally as possible. Rather than store NxM tables of performance data for each
region and node, we keep sparse lists to allow for differing regions on each node.
Our goal is to apply this to all visualization options where complete information
is being rendered. However, it is also possible to conduct various forms of data
dimensionality analysis and reduction. We have implemented several scalable
analysis operations, including averaging, histogramming, and clustering.

To validate the scalability of TAU’s paraprof profile browser, we synthesized
a large one million core profile dataset by replicating a 32k core count dataset
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Fig. 4. ParaProf 3D browser shows the profile of a code running on 128k cores

Fig. 5. Left: ParaProf’s 3D communication matrix shows the volume of communication
between a pair of communicating tasks. Right: ParaProf’s histogram display showing
the performance of MPI Barrier in a synthesized 1 million core count profile dataset.

repeatedly. While it is cumbersome to scroll through a million lines representing
individual MPI ranks, TAU’s histogram displays are useful in highlighting the
performance variation of a routine across multiple cores. Figure 5(right) shows
a histogram display of the distribution of threads based on their MPI Barrier

execution time. The number of bins partitions the range of the chose performance
metric for an event, and this can be selected by the user. Our goal here was to
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Fig. 6. ParaProf’s shows the profile of a kernel executing on a GPGPU using PGI’s
runtime library instrumentation

ensure that the profile browsers were capable of handling large data volumes and
able to handle displays of millions of cores. We do not have access to machines
with a million cores at present, but such large scale machines are being built
and will be available in the near future.

5 Conclusions and Future Work

Scaling will continue to be a dominant concern in high-end computing, espe-
cially as attention turns towards exascale platforms for science and engineering
applications. High levels of concurrent execution on upwards of one million cores
are being forecast by the community. Parallel performance tools must continue
to be enhanced, re-engineered, and optimized to meet these scaling challenges
in instrumentation, measurement, and analysis.

Scaling is not the only concern. Future HPC systems will likely rely on hetero-
geneous architectures comprised of accelerator components (GPGPU). This will
require development of performance measurement and analysis infrastructure to
understand parallel efficiency of the application at all levels of execution. We are
working closely with compiler vendors (such as PGI and CAPSEntrepriseHMPP)
to target instrumentation of accelerator kernels at the runtime system level. Us-
ing weak bindings of key runtime library events, TAU can intercept and track the
time spent in key events as they execute on the host. For instance, Figure 6 shows
the time spent in launching individual kernels on the GPGPU as well as the time
spent in transferring data from the host memory to the memory of the GPGPU.
Variable names as well as source locations are shown in the profile display.
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However, in general, the heterogeneous environment will dictate what is pos-
sible for performance observation. The challenge for heterogeneous performance
tools will be to capture performance data at all levels of execution and integrate
that information into consistent, coherent representation of performance for anal-
ysis purposes. Heterogeneity introduces issues such as asynchronous, overlapped
concurrency between the CPU and accelerator devices, and potentially limited
performance measurement visibility, making solutions to this challenge difficult.
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Abstract. OpenMP is a successful interface for programming parallel
applications on shared memory systems. It is widely applied on small
scale shared memory systems such as multicore processors, but also
in hybrid programming on large supercomputers. This paper presents
performance properties for OpenMP and their automatic detection by
Periscope. We evaluate Periscope’s OpenMP analysis strategy in the
context of the Altix 4700 supercomputer at Leibniz Computing Center
(LRZ) in Garching. On this unique machine OpenMP scales up to 500
cores, one partition of in total 19 partitions. We present results for the
NAS parallel benchmarks and for a large hybrid scientific application.

Keywords: Memory accesses analysis, OpenMP, Performance analysis,
Supercomputers.

1 Introduction

OpenMP, a directive-based programming interface for multi-threaded paral-
lelism, is a widely accepted de facto standard for programming scientific ap-
plications since 1997. The basic goal behind OpenMP is to express parallelism
in an easy way. Although, OpenMP succeeded in simplifying writing portable
parallel applications, it requires careful tuning, e.g., with respect to load balanc-
ing and distribution of threads and data. It is crucial to have tools that reveal
performance problems so that the tuning can be carried out by the programmer.

Periscope [4] is a performance analysis tool that searches performance prop-
erties, e.g., stall cycles due to cache misses, in a distributed fashion based on
agents. Each of the analysis agents, i.e., the nodes of the agent hierarchy, searches
autonomously for inefficiencies in a subset of the application processes or threads.

In this paper, we define properties formalizing the OpenMP performance
problems. The concept of performance properties was first introduced by the
European-American working group APART (www.fz-juelich.de/apart) on auto-
matic performance analysis tools. A new search strategy namedOpenMPAnalysis
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which is responsible for evaluating the OpenMP regions for performance bottle-
necks is presented. We evaluated the new OpenMP strategy on the Altix 4700
supercomputer which supports OpenMP runs with up to 512 cores in a sin-
gle partition. The Altix is the only machine where pure OpenMP codes can
be scaled to that size. For hybrid codes combining MPI and OpenMP, such as
the Gyrokinetic Electromagnetic Numerical Experiment (GENE) code, OpenMP
usage spreads over thousands of cores. The standard support of Periscope for
scaling to that size, i.e., runtime evaluation of raw data and online combina-
tion of performance properties from different processes, apply to the OpenMP
analysis in the same way as to pure MPI codes.

The rest of the paper is organized as follows. Section 2 presents related work
and Section 3 explains Periscope and its OpenMP search strategy. In Section 4,
we discuss the definition for various OpenMP performance properties. Section 5
discusses experimental results. Finally, Sections 6 presents a few conclusions.

2 Related Works

Performance analysis and tuning of threaded programs is one of the big chal-
lenges of the multi-core era. There exists a few performance analysis tools that
help the user to identify whether or not their application is running efficiently
on the computing resources available.

Performance analysis tools, such as, ompP, Intel Thread Profiler, and TAU,
analyze OpenMP based on a profiling approach, whereas, Scalasca and Vampir
undergo analysis using traces.

‘ompP’ [6] is a text-based profiling tool for OpenMP applications. It relies on
OPARI for source-to-source instrumentation. It is a measurement-based profiler
and does not use program counter sampling. An advantage of this tool is its
simplicity. ompP performs an overhead analysis based on synchronization, load
imbalance, thread management, and limited parallelism.

Intel Thread Profiler [5] supports applications threaded with OpenMP, Win-
dows API, or POSIX threads (Pthreads). Thread Profiler is used to identify
bottlenecks, synchronization delays, stalled threads, excessive blocking time and
so forth. It is a plug-in to the VTune Performance Analyzer. It provides results
in the form of graphical displays.

TAU [9] supports trace-based and profiling-based performance analysis. It
performs an off-line analysis and provides graphical and text-based displays. It
uses Vampir to display traces of OpenMP executions.

Scalasca [3] performs an offline automatic analysis of OpenMP codes based
on profiling data. OpenMP events are also inserted into a trace and can be
visualized with Vampir.

Vampir [1] is exclusively using traces of OpenMP programs and presents
analysis results via a rich set of different chart representations, such as, state
diagrams, statistics, and timelines of events.
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Compared with other performance analysis tools, Periscope enables an auto-
matic performance analysis that is based on a formal specification of high-level
performance properties. Instead of presenting raw performance data it delivers
the main bottlenecks including their severity. The search is performed online by
a set of autonomous agents distributed over the parallel system. In this way, per-
formance data could be analyzed locally and only severe performance problems
will be communicated to the central master agent which interacts with the user.

3 Periscope and the OpenMP Search Strategy

Periscope already had different search strategies for single node and MPI perfor-
mance bottlenecks when we developed a new search strategy named OpenMP-
Analysis, exclusively for detecting OpenMP-based performance problems. In this
section, we discuss Periscope’s overall agent-based architecture and the newly
developed OpenMP search strategy.

3.1 Overall Architecture

The overall architecture of Periscope consists of four major entities, namely,
User-Interface, Frontend, Analysis Agent Network, and MRI monitors. All en-
tities have their own obligations to finally identify the performance problems
in parallel applications. A more detailed description of the architecture can be
found in [8].

The User-Interface displays the results of the runtime analysis by directly
mapping the detected properties to the source code. The Frontend starts
the application and the analysis agents based on the specifications provided
by the user, namely, number of processes and threads, search strategy, and so
on. The analysis agent network consists of three different agent types, namely,
master agent, communication agent and analysis agent. The master agent for-
wards commands from the frontend to the analysis agents and receives the found
performance properties from the individual analysis agents and forwards them
to the frontend. The communication agents combine similar properties found
in their sibling agents and forward only the combined properties. The analy-
sis agents are responsible for performing the automated search for performance
properties based on the search strategy selected by the user. The MRI monitors
linked to the application provide an application control interface. They commu-
nicate with the analysis agents, control the application’s execution, and measure
performance data.

The search of the analysis agents is based on the phase concept. Scientific
applications are iterative and each iteration executes the same code, which is
called the phase region in Periscope. The agents analyze the performance for an
execution of the phase region, and, if necessary refine the search for performance
problems in subsequent executions.
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3.2 OpenMP Search Strategy

The new OpenMPAnalysis strategy to search for performance properties re-
lated to i) extensive startup and shutdown overhead for fine-grained parallel
regions, ii) load imbalance, iii) sequentialization, and iv) synchronization was
implemented.

The OpenMPAnalysis search strategy executes the following steps :

1. Create initial candidates set. At this stage, the strategy first creates OpenMP
candidate properties for every OpenMP region in the application. This is
based on the static program information created by Periscope’s source code
instrumentation tool.

2. Configure performance measurements. Based on these candidate properties
it requests the measurements of the required performance data to prove
whether the properties exist in the code. Each property provides information
about which data are required.

3. Execution of experiment. The agents release the application which then exe-
cutes the phase region. The measurements are performed automatically via
the MRI monitor.

4. Evaluate candidate properties. The application stops at the end of the phase
region and the agents retrieve the performance data. All the candidate prop-
erties are then evaluated whether their condition is fulfilled and the severity
of the performance problems are computed. Finally, the found property set
is checked whether further refinement is appropriate.

4 OpenMP Performance Properties

The OpenMP performance properties are specified as C++ classes. The prop-
erties provide methods to determine the required information, to calculate the
condition as well as to compute the severity. The notations used here for defining
OpenMP properties are as follows:

– Severity : Significance of the performance problem
– reg : Region name
– k : thread number
– n : number of threads
– T0 : execution time for the master thread
– T1...(n−1) : execution time for the team members - other than the master

thread
– phaseCycles : time spent in executing the entire phase

In the following, we present the individual properties that are currently included
in the OpenMPAnalysis strategy.
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4.1 Parallel Region Startup and Shutdown Overhead Property

For each execution of a parallel region in OpenMP, the master thread may fork
multiple threads and destroy those threads at the end. The master thread con-
tinues execution after the team of threads was started. In addition, initialization
of thread private data and aggregation of reduction variables has to be executed.
Writing too many parallel regions in an application causes overhead due to the
startup and shutdown process. This performance property is designed to expose
parallel region startup and shutdown overhead in parallel regions.

To calculate the severity of the parallel region startup and shutdown overhead
property, we measure the following:

– the parallel region execution time for the master thread T0

– the execution time for the parallel region body for thread k, Tk

The severity is calculated using the formula given below:

Severity(reg) =
T0 −∑

k=1...n(Tk/(n− 1))

phaseCycles
∗ 100 (1)

4.2 Load Imbalance in OpenMP Regions

Load imbalance emerges in OpenMP regions from an uneven distribution of
work to the threads. It manifests at global synchronization points, e.g., at the
implicit barrier of parallel regions, worksharing regions, and explicit barriers.
Load imbalance is a major performance problem leading to the under-utilization
of resources.

Load Imbalance in Parallel Region Property. The load imbalance in par-
allel region property is reported when threads have an imbalanced execution in
a parallel region. In order to calculate the severity, we measure implicit barrier
wait time W and calculate the difference of the observed unbalanced time UT
and the optimized balanced time BT .

Severity(reg) =
UT −BT

phaseCycles
∗ 100 (2)

UT and BT are represented in equations 3a and 3b.

UT = max {W0..Wn} (3a)

BT = Work +min {W0..Wn} (3b)

where, Work is the average computational work of all the threads executed
during the maximum barrier wait time.

Work =
∑

0≤k≤n

(max {W0..Wn} −Wk) (4)

Equation 2 is common for most of the load imbalance OpenMP properties.
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Load Imbalance in Parallel Loop Property. The parallel loop region dis-
tributes the iterations to different threads. While the scheduling strategies de-
termine the distribution of iterations, the application developer can tune the
application by selecting the best strategy. Often, choosing a better scheduling
strategy with correct chunk size is a question mark because even most experi-
enced developers are new to this programming sphere. A sub-optimal strategy
might thus lead to load imbalance. The measurements are done similar to the
load imbalance in parallel region property. Measurement of the load imbalance
based on the barrier time is only possible if the parallel loop is not annotated
with the nowait clause.

Load Imbalance in Parallel Sections Property. In OpenMP, the sections
construct allows the programmer to execute independent code parts in parallel.
A load imbalance manifests at the implicit barrier region, similar to the parallel
region, and determines the under-utilization of resources.

The load imbalance in parallel sections property is further refined into two sub
properties as below:

– load imbalance due to not enough sections property, is reported when the
number of OpenMP threads is greater than the number of parallel sections.
In this case, a few threads do not participate in the computation.

– load imbalance due to uneven sections property, identifies the load imbalance
which is due to the fact that threads execute different numbers of sections.

However, the calculation for the severity is quite similar to Equation 2 except
that additional static information (number of sections in the construct) and the
number of sections assigned to the threads at runtime are checked.

Load Imbalance in Explicit Barrier Property. Application developers of-
ten use explicit barriers to synchronize threads, so that they avoid race condi-
tions. Early threads reaching the barrier have to wait until all threads reach it
before proceeding further. The severity is calculated after measuring the explicit
barrier time for each thread using the Equation 2. To note, the wait time in this
property is the execution time of the explicit barrier.

4.3 Sequential Computation in Parallel Regions

In general, if parallel codes spend too much time in sequential regions, this will
severely limit scalability according to the famous Amdahl’s law. Sequential regions
within parallel regions are coded in form of master, single, and ordered regions.

Sequential Computation in Master Region Property. If a master region
is computationally expensive it limits scalability. The severity of sequential in
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master region property is the percentage of the execution time of the phase region
spent in the master region.

Severity(reg) =
T0

phaseCycles
∗ 100 (5)

Sequential Computation in Single Region Property. The underlying prin-
ciple of a single region is similar to the master region: code wrapped by the OMP
MASTER directive is only intended for the master thread, code wrapped by the
OMP SINGLE directive is intended for one and only one thread but not nec-
essarily to be the master thread. Thus, the code is executed sequentially. The
severity is calculated in the same way as for the master region.

Sequential Computation in Ordered Loop Property. An ORDERED re-
gion in the body of a parallel loop specifies that this code is executed in the order
of the sequential execution of the loop. Thus, the code is executed sequentially.
This performance property is modeled in a way to measure the performance loss
due to this ordered execution constraint. The severity is computed based on the
SUM of the time spent in the ordered region Ok in all the threads.

Severity(reg) =

∑
k=0..nOk

phaseCycles
∗ 100 (6)

4.4 OpenMP Synchronization Properties

In addition to the above mentioned OpenMP properties, we have defined prop-
erties that are specific to synchronization in OpenMP, namely, critical sections
and atomic regions.

Critical Section Overhead Property. For critical sections two aspects are
important. The first is the contention for the lock guarding its execution. The
second is the wait time of other threads while a thread is executing within a criti-
cal region. The severity of the Critical Section Overhead property is calculated by
taking the maximum value of critical section overhead CSO among the threads.
The CSO is the difference between the critical section region’s execution time
C and the execution time of the critical section’s body CB.

Severity(reg) =
max{CSO0..CSOn}

phaseCycles
∗ 100 (7)

where, CSOk = Ck − CBk

Frequent Atomic Property. To eliminate the possibility of race conditions,
the ATOMIC directive specifies that a memory location will be updated
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atomically. Those who are familiar with POSIX threads are aware of the overhead
for operating system calls to use semaphores for this purpose. Similarly, too many
atomic operations have a negative effect on the performance. Thus, the severity
of this property is the percentage of time spent in an atomic region with respect
to the phase region.

5 Experimental Results

The Periscope performance analysis environment with the OpenMP strategy has
been tested with several benchmarks and a real-world application on our Altix
4700 at Leibniz Rechenzentrum (LRZ) in Garching. The Altix supercomputer
consists of 19 NUMA-link4 interconnected shared memory partitions with over
9600 Itanium 2 cores with an aggregated peak performance of over 60 TFlops.
OpenMP can be used across one partition with 512 cores.

5.1 OpenMP Analysis of NAS Parallel Benchmarks (NPB)

In this paper we present results for LU, LU-HP, Block Tridiagonal (BT), and
Scalar Pentadiagonal (SP) from NPB version 3.2. with Class C. The LU bench-
mark is a simulated CFD application. SP and BT benchmarks solve partial
differential equations using different finite difference methods.

The tests were carried out in batch mode reserving 128 CPUs in a single
node. For test runs with 2, 4, 8, 16, 32, 64. and 128 threads, Periscope identified
OpenMP performance properties as shown in Table 1.

Table 1 shows the region name, file name, region first line number, property
name, and the severity of the performance properties obtained for different runs. A
few points could be observed as follows: 1) The highest severity values were found
for load imbalance in BT, 2) startup and shutdown overhead was found only for
large thread numbers and even for 128 threads it is only 0.01 in the parallel region
in line 26 in initialize.f in BT, and 3) the severity of most properties increase with
the number of threads. But in a few cases, the property’s severity was reduced for
larger thread numbers, e.g., in BT for load imbalance with 128 threads.

5.2 GENE Analysis

The GENE code [2] is an iterative solver for a non-linear gyrokinetic equations
in a 5-dimensional phase space to identify the turbulence in magnetized fusion
plasmas. It was developed in the Max Planck Institute for Plasma Physics in
Garching. GENE consists of 47 source files with 16,258 lines. The code is written
in Fortran 95 with MPI-based and OpenMP-based parallelization.

To check for OpenMP performance properties we ran GENE in a hybrid
mode with 2 to 32 threads per process. All the MPI processes showed the same
OpenMP performance behavior and the agents were able to combine the found
performance properties while propagating the properties in the agent tree for
output to the master agent.
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Table 1. Identified OpenMP properties in NPB benchmarks. A ’*’ indicates that
the property was not reported. ’L.I.x’ identifies load imbalance in parallel region and
loop as well as barrier region. ’S.S.O’ identifies parallel region startup and shutdown
overhead.

NAS File Region LineNo. Property Severity

Name Name Name 2 4 8 16 32 64 128

initialize.f Par.Reg. 36 S.S.O * * * * * * 0.01
BT x solve.f Par.Do.Reg. 55 L.I.L 1.37 * 5.14 11.92 14.74 15.81 8.5

y solve.f Par.Do.Reg. 52 L.I.L 1.34 2.63 3.32 15.21 19.16 20.3 11.6
z solve.f Par.Do.Reg. 52 L.I.L 1.34 2.63 3.32 15.21 19.16 20.37 11.63

ssor.f Bar.Reg. 211 L.I.B * * * 1.56 2.48 3.6 4.38
LU ssor.f Par.Reg. 120 L.I.P * * * 1.9 1.1 2.19 1.13

setbv.f Par.Reg. 27 S.S.O * * * * * 0.05 0.10

jacld.f Par.Reg. 35 S.S.O * * * * * * 8.38
jacld.f Par.Reg. 35 L.I.P 1.45 1.78 3.06 3.95 5.8 8.5 7.54
jacu.f Par.Reg. 35 S.S.O * * * * * * 8.51

LU-HP jacu.f Par.Reg. 35 L.I.P 1.22 1.15 2.16 2.76 5.3 7.4 7.71
blts.f Par.Do.Reg. 54 S.S.O * * * * * 5.63 8.64
blts.f Par.Do.Reg. 54 L.I.L 2.08 1.01 1.53 1.52 2.06 3.46 5.3
buts.f Par.Do.Reg. 54 L.I.L 2.47 1.24 2.05 2.44 3.69 4.56 5.61

tzetar.f Par.Do.Reg. 26 L.I.L * * 1.06 1.4 1.4 1.79 1.87
x solve.f Par.Do.Reg. 31 L.I.L * 1.76 3.6 3.64 2.85 1.73 1.04

SP y solve.f Par.Do.Reg. 31 L.I.L * 1.09 1.9 2.17 1.68 2.05 1.66
z solve.f Par.Do.Reg. 35 L.I.L * 2.33 3.4 3.1 2.9 4.0 2.66

Table 2. OpenMP properties found in GENE

File Name Line Number Property Threads

2 4 8 16 32

vel space.F90 244 L.I.L 0.08 0.098 0.15 * *

boundary.F90 140 L.I.L 0.002 0.038 0.0007 0.0019 0.00053

boundary.F90 140 S.S.O 0.001 * 0.001 0.0019 0.002

CalFullrhs kxky.F90 100 L.I.L 0.001 0.0006 0.002 0.0066 0.0089

CalFullrhs kxky.F90 84 L.I.L 0.0003 0.0005 0.0002 0.006 0.0009

From the results for GENE in Table 2 we can see that there are no signifi-
cant OpenMP performance bottlenecks for those runs. However, it can be seen
that the severity of the parallel region startup and shutdown overhead property
increases steadily when the number of threads is increased. It was observed
that there were slight load imbalance problems in various code regions, such as,
velspace.F90, boundary.F90, and CalFullrhs kxky.F90.
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6 Conclusions

The increasing need to develop applications for multi-core architectures based
on programming models such as OpenMP, leads to an increasing interest in tools
that can pinpoint and quantify performance problems on the fly. Such tools re-
quire formalized OpenMP performance properties to identify those problems.
In this work, we extended Periscope with a catalogue of OpenMP performance
properties and a new search strategy named OpenMPAnalysis. Periscope’s anal-
ysis agents are now able to search for OpenMP performance properties in pure
OpenMP codes as well as hybrid codes.

To evaluate our OpenMP support in Periscope, we experimented with four
NPB representatives, namely, LU, LU-HP, BT, SP, and GENE - a real world
scientific application. Our study revealed OpenMP performance problems and
the severities pinpoint those regions that would benefit from tuning transforma-
tions. In addition, the OpenMP performance analysis was demonstrated for the
GENE code. In addition to these applications we validated our OpenMP prop-
erties and analysis with the kernels of the APART Test Suite (ATS) (www.fz-
juelich.de/apart).

We ran the experiments on a scalable shared memory system, the Altix
4700, exploiting the scalability support built into Periscope. Please note, that
Periscope’s OpenMP analysis is not limited to large scale machines but can also
be used to tune OpenMP code on single multicore processors.
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Abstract. Scalasca is an open-source toolset that can be used to an-
alyze the performance behavior of parallel applications and to identify
opportunities for optimization. Target applications include simulation
codes from science and engineering based on the parallel programming
interfaces MPI and/or OpenMP. Scalasca, which has been specifically
designed for use on large-scale machines such as IBM BlueGene and
Cray XT, integrates runtime summaries suitable to obtain a performance
overview with in-depth studies of concurrent behavior via event tracing.
Although Scalasca was already successfully used with codes running with
294,912 cores on a 72-rack BlueGene/P system, the current software de-
sign shows scalability limitations that adversely affect user experience
and that will present a serious obstacle on the way to mastering larger
scales in the future. In this paper, we outline how to address the two
most important ones, namely the unification of local identifiers at mea-
surement finalization as well as collating and displaying analysis reports.

Keywords: Scalasca, scalability.

1 Introduction

Driven by growing application requirements and accelerated by current trends
in microprocessor design, the number of processor cores on modern supercom-
puters increases from generation to generation. With today’s leadership sys-
tems featuring more than a hundred thousand cores, writing efficient codes that
exploit all the available parallelism becomes increasingly difficult and requires
adequate tool support for performance analysis. Unfortunately, increased con-
currency levels impose higher scalability demands not only on applications but
also on the software tools needed for their development. When applied to larger
numbers of processors, familiar tools often cease to work in a satisfactory manner
(e.g., due to serialized operations, escalating memory requirements, limited I/O
bandwidth, or failed renderings).
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Scalasca [2] is an open-source toolset that can be used to analyze the
performance behavior of parallel applications and to identify opportunities for
optimization. Target applications include simulation codes from science and en-
gineering written in C, C++ and Fortran and based on the parallel programming
interfaces MPI and/or OpenMP. Scalasca has been specifically designed for use
on large-scale systems including IBM Blue Gene and Cray XT, but is also well
suited for a wide range of small- and medium-scale HPC platforms. Scalasca
combines runtime summaries suitable to obtain a performance overview with
in-depth studies of concurrent behavior via event tracing. The traces are an-
alyzed to identify wait states that occur, for example, as a result of unevenly
distributed workloads. Especially when trying to scale communication-intensive
applications to large processor counts, such wait states can present serious chal-
lenges to achieving good performance. Thanks to a novel parallel trace-analysis
scheme, the search can be performed even for very large numbers of cores. In-
ternally, runtime summarization and tracing are tightly integrated, allowing the
user to switch between the two modes via environment variables and even to
apply them simultaneously.

Although Scalasca’s scalable design already facilitated performance analy-
ses of application runs on a BlueGene/P system with 294,912 (288k) cores [6],
the architecture underlying version 1.3.0 (released March 2010) still shows scal-
ability limitations, which primarily occur (i) during the unification of local
identifiers at measurement finalization and (ii) while collating and displaying
analysis reports. Both limitations adversely influence user experience in the form
of either increased time needed for performance-data acquisition or prolonged
response times during the interactive exploration of analysis results. Since they
will present serious obstacles on the way to mastering higher scales in the future,
we outline in this paper how they can be effectively addressed to ensure scala-
bility even when hundreds of thousands of cores are employed. In the remainder
of the paper, we explain each of the two challenges in more detail along with the
progress achieved so far, followed by related work and an outlook on what still
needs to be done to match our objective of substantially increasing Scalasca’s
scalability.

2 Unification of Local Identifiers

In Scalasca, event data measured as part of the traces refer to objects such as
source-code regions, call paths, or communicators. Motivated by the desire to
minimize storage requirements and avoid redundancy in traces, events reference
these objects using numerical identifiers, while the objects themselves are defined
separately. However, to establish a global view of the program behavior during
analysis, these identifiers must be consistent across all processes. Unfortunately,
generating global identifiers purely locally as a hash function of some definition
key would pose the danger of global conflicts, which are very hard to resolve. For
this reason, each process may use a different local identifier to denote the same
object. However, ultimately a global set of unique object definitions must be cre-
ated and local identifiers mapped onto global identifiers in a consistent manner.
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This procedure, which is called unification and which requires exchanging and
comparing definitions among different processes, is performed during application
finalization to avoid perturbation during measurement. Since runtime summa-
rization and tracing share the same set of definitions, unification is also needed
in summary mode. Definitions always refer to processes with potentially multi-
ple threads, which is why both the previous and the new unification algorithms
equally apply to pure MPI as well as hybrid OpenMP/MPI applications.

Although Scalasca’s current unification algorithm already takes advantage of
message communication to facilitate the efficient exchange of object definitions
and the generation of local-to-global identifier mapping tables, it is still pre-
dominantly sequential, posing a serious scalability limitation. To overcome this
situation, this sequential step was parallelized using a hierarchical algorithm so
that it can be efficiently performed for codes running on hundreds of thousands
of cores. It consists of the following three steps:

– generation of a unified set of global definitions,
– generation of local-to-global identifier mappings for each process, and
– writing the global set of definitions as well as the identifier mappings to disk.

Note that the last step is only required in tracing mode, since the identifier
mapping can already be applied at run time in summarization mode. In the
following paragraphs, all three steps will be described in more detail.

2.1 Definition Unification

Unifying object definitions is a data-reduction procedure that combines the local
definitions from each process by first removing duplicates and then assigning a
unique global identifier to each of the remaining definitions. In the new hierarchi-
cal scheme, this is done in several iterations as can be seen in Figure 1. During
the first iteration, processes with odd rank numbers send their definitions to
their neighbor processes with even rank numbers, which unify them with their
own definitions. During subsequent iterations, these partially unified definitions
are exchanged in a similar way, doubling the rank offset between sender and
receiver in each step. In the end – after  log2 P ! iterations – the unified set of
global definitions is available at rank zero.

During this step, it is essential to use efficient data structures and algorithms
for identifying whether a particular definition object has already been defined or
not. Depending on the types of the definition objects and their expected number,
we use hash tables (e.g., for character strings), trees (e.g., for call paths), and
vectors (e.g., for Cartesian topology definitions). Moreover, definition objects
which are known to be unique across all processes, such as so-called “locations”
referring to a thread of execution or Cartesian topology coordinates, are simply
aggregated to avoid unnecessary search costs.

Note that an important prerequisite for using the hierarchical algorithm is
that the semantics of the individual attributes of a definition object remain
stable, which unfortunately was not the case for Cartesian topology definitions
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Process with data

MPI Communication

Fig. 1. Hierarchical definition unification algorithm

in the original scheme. Here the topology identifier assigned by the measure-
ment system was either the identifier of the associated communicator for MPI
Cartesians or a special constant for user-defined and hardware topologies. These
would have been mapped to identifiers in the range [0, n − 1] during the first
iteration of the unification, communicator or the special constant and creating a
need for a different unification algorithm during subsequent iterations. Since the
communicator identifier is also available via a second attribute, this issue could
be resolved by having the measurement system directly assign local topology
identifiers in the range [0, n− 1]. As a positive side effect, this change now also
allows us to handle more than one user-defined or hardware topology.

2.2 Generation of Local-to-Global Identifier Mappings

With the global set of definitions at hand, a translation table, in the following
called mapping, can be created that maps the local identifiers used by each pro-
cess onto the identifiers of the global definitions. This is done by broadcasting
the unified global definitions from rank zero to all other processes, which sub-
sequently compare their local definitions with the global ones to determine the
identifier mapping.

Here it is crucial to exclude the above-mentioned definition objects from the
broadcast that are unique to each process, since their data volume may dom-
inate the overall size of the global definitions even at relatively small scales
(512–1024 processes) and lead to prohibitively large data sets to be transferred
at larger scales. However, unique identifiers for location objects and an associated
mapping are still required. Due to the deterministic nature of the hierarchical
unification scheme presented in Section 2.1, the global location identifiers can be
locally reconstructed by determining the identifier offset via an exclusive prefix
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sum over the number of locations per process (emulated using MPI Scan and a
local subtraction for compatibility with non-MPI 2.x compliant MPI implemen-
tations).

2.3 Writing Definition Data and Mappings to Disk

To avoid expensive rewriting, traces still contain the local identifiers when they
are written to disk. Therefore, the per-process identifier mappings need to be
stored on disk as well if tracing mode is configured, from where they are later
retrieved to correctly resolve the still existing local-identifier references in the
traces before they are processed by Scalasca’s parallel trace analyzer. Currently,
all mappings are sequentially written to a single mapping file, with the file offset
for each rank stored in the global definitions file.

Ideally, all processes would write their information in parallel to disjoint sec-
tions of the single mapping file, however, the amount of data per process is rather
small so that lock conflicts on the file-system block level would significantly de-
grade I/O performance in this scenario. Therefore, the mapping information is
gathered in chunks of 4MB on a small set of processes, with the root process
within each group defined as the first rank providing data for a particular chunk
being gathered. Since there is no such “multi-root gather” operation provided by
the MPI standard, it has been implemented using point-to-point messages and
a hierarchical gather algorithm, very similar to the one used for the definition
unification.

Using parallel I/O from this small set of gather processes was evaluated on
the IBM Blue Gene/P system Jugene at Jülich Supercomputing Centre using a
GPFS parallel file system. However, we found that the setup costs grew signifi-
cantly when more than one I/O node was involved, which could not be amortized
while writing the relatively small amount of data. Our current solution therefore
lets rank zero write the mappings incrementally after receiving the 4MB chunks
already collected during the multi-root gather operations. In addition, rank zero
gathers the map file offsets for each rank and writes them to the global defini-
tions file. The offsets are again calculated using an exclusive prefix sum over the
amount of mapping data generated by each process.

2.4 Experimental Results

Figure 2(a) shows a comparison of the original serial version of the unification
algorithm and the new parallel algorithm for the definition data produced by
a fully compiler-instrumented binary of the SMG2000 benchmark code [1] at
various scales up to 288k processes, measured on the IBM Blue Gene/P system
Jugene at the Jülich Supercomputing Centre with no run-time filtering applied.
Although still exhibiting a similar scaling behavior, it can be seen that the new
algorithm shows a remarkable improvement over the previous sequential version,
reducing the time to unify the definitions at large scales by several orders of
magnitude.



468 M. Geimer et al.

1k 2k 4k 8k 16k 32k 64k 128k 256k
Processes

0.1

1

10

100

1000

10000

T
im

e
 [
s
]

(v1.3) Serial unification

(new) Parallel unification

(a)

1k 2k 4k 8k 16k 32k 64k 128k 256k
Processes

0.01

0.1

1

10

T
im

e
 [
s
]

Hierarchical unification
Global definition broadcast
Identifier map creation

Global definition & map writing

(b)

Fig. 2. Execution times of the new parallel and the previous serial unification schemes
(a) as well as a breakdown of the individual steps of the parallel scheme (b) for the
definition data of the SMG2000 benchmark code. (Note the different y-axis scales.)
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Figure 2(b) shows a detailed breakdown of the unification runtime into the
different steps involved, allowing the scalability of each step to be individually
judged. As could be expected, the time to write the global definition data and
mapping information is growing linearly at larger scales. This also applies to the
hierarchical unification, where the scale-dependent data (i.e., the definition ob-
jects which are unique for each process as well as MPI communicator definitions)
start to dominate the overall amount of data that is collected. Although almost
all of this kind of data is not included in the broadcast and hence not consid-
ered during the identifier map creation, this does not apply to the definitions of
communicators.

Currently, Scalasca encodes each communicator as a bitstring, with the i-th
bit indicating whether the global rank i is part of the communicator or not.
Therefore, the size of a communicator definition is linearly dependent on the
number of processes, causing also communicator definitions to become a dom-
inant part of the overall data volume sent during the broadcast and processed
during the identifier map creation at some point. This suggests that a revised
representation of communicators is required to further improve the scalability
of these two steps (as well as the hierarchical unification). The design of a more
space-efficient distributed scheme to record the constituency of a communicator
is already in progress.

3 Collating and Displaying Analysis Reports

At the end of runtime summary measurements and after automated parallel
trace analysis, Scalasca produces intermediate analysis reports from the unified
definitions and the metric values for each call path collated from each process.
The definitions of the measured and analyzed metrics, program call tree, and
system configuration constitute metadata describing the experiment, where only
the latter vary with the number of processes and threads. On the other hand, the
amount of metric value data increases linearly. Intermediate analysis reports are
sequentially post-processed to derive additional metrics and create a structured
metric hierarchy prior to examination with textual or graphical tools.

Scalasca 1.3 saves analysis reports as single files using XML syntax, where
‘exclusive’ metric values are stored for each call path (explained in Section 3.3).
This means that exclusive values first have to be calculated and then the nu-
meric values have to be converted to formatted text when writing. Since values
which are not present in reports default to zero when reports are read, a ‘sparse’
representation can be exploited which avoids writing vectors consisting entirely
of zeroes. Furthermore, the final report is typically compressed when writing,
which is advantageous in faster writing (and reading) time as well as much
smaller archival size. To calculate inclusive metric values, all of the exclusive
metric values must be read and aggregated.

Scaling of Scalasca analysis report collation time and associated analysis re-
port explorer GUI loading time and memory requirements for Sweep3D trace
analyses on Jugene [6] are shown in Figure 3.
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Fig. 3. Scalasca Sweep3D trace analysis report collation time, with associated loading
time and memory requirements for the analysis report explorer GUI

3.1 Storing Metric Values in Binary Format

To reduce the collation time, we designed a new file format for storing experiment
data, keeping the XML format essentially unchanged for storing metadata, while
introducing a new binary format and file organization for storing metric values.
In this way, third party tools such as TAU [5] that implement their own reader
and/or writer for Scalasca analysis reports can keep their implementations for
the more complicated metadata part of the report and only re-implement readers
for the metric index and value files.

Figure 3 shows that when using the new format at smaller scales the colla-
tion time is dominated by writing the metadata, whereas beyond 16 thousand
processes the writing time scales linearly with the amount of metric values to
be written (regardless of the format). As in Section 2.3, writing of metric values
in parallel from a configurable number of compute nodes was investigated, and
again, best performance was obtained using a single writer. Collation time for
the 288k-process analysis report is reduced from 13 minutes to 90 seconds. The
sizes of both old and new analysis report formats grow linearly with the number
of processes (as well as with the number of metrics and measured call paths).
While the uncompressed intermediate reports are comparable in size between
both format versions, the currently uncompressed set of binary files is typically
four times larger than the (compressed) XML report, in this case 1530MB vs.
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404MB for the 288k-process trace analysis report. When the file-system band-
width is low compared to the processor speed, however, the performance gained
from compression when writing intermediate or post-processed reports may jus-
tify the effort required to run the compression algorithm. For this reason, we are
contemplating a configurable solution with optional compression.

3.2 File Organization

Instead of writing the entire report to a single XML file as before, we split the
file into an XML part for metadata and a binary part for metric values. In
anticipation of the dynamic-loading capabilities described later, each metric is
stored in a separate file. This file is accompanied by an index file that specifies
the data layout, allowing a sparse data representation if needed. A trace analysis
report such as the ones considered here now consists of 197 files in total.

3.3 Dynamic Loading

Figure 3 shows that the time to load an entire analysis report and the amount
of memory required increase slightly worse than linearly with the number of
processes. For the 288k-process Sweep3D trace analysis report, loading takes 7
minutes on the 4.2GHz Power6 Jugene BG/P front-end system and requires
6.5GB of memory. (Naturally, a 64-bit version of the GUI and other report
tools is necessary for such large amounts of analysis data.) Although paging
to disk is fortunately avoided here, each GUI interaction still requires several
minutes, seriously impairing interactive analysis report exploration. Command-
line utilities to post-process analysis reports are found to require up to 15GB
memory and more than 30 minutes execution time. Since the binary analysis
reports are much larger than the compressed XML reports, utilities using the
new format are actually 10% slower when reading the entire report.

The solution to these problems is to avoid reading all the data into memory
at once. With the new format, it is now possible to read any part of the data
on-demand. In a typical usage scenario, the GUI would initially show only the
root of the call tree (i.e., main) plus associated metric values. As soon as the
user expands the root node, only the data of its direct children are loaded. The
children of a node can easily be stored in consecutive order, in which case this
will likely require just a single file system access. Of course, the indices for the
metrics are small enough to be kept in memory, allowing for efficient data lookup.

Another major source of prolonged response times is that metric values for
individual call-tree nodes (i.e., call paths) are stored with exclusive semantics.
Exclusive means that the value stored for a given call-tree node refers to that
node only – its children excluded – as opposed to an inclusive value, which is
the sum of the exclusive values in the subtree anchored at the node. Typically
we want to display both exclusive and inclusive values for a given node and if
we store one, we can calculate the other. Calculating inclusive values from ex-
clusive ones is very expensive, requiring a complete traversal of the correspond-
ing subtree and adding up all values after loading them into memory, whereas
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converting from inclusive to exclusive is cheap. One just subtracts the values
of the children from the value of the current node. In spite of losing some of
the sparsity that can be exploited to save disk space, inclusive semantics are
preferable with dynamic-loading. This would reduce the memory usage of the
GUI to just the data being currently displayed on screen (plus optionally some
additional caching). Of course, incremental reading can be easily extended to in-
cremental rewriting, limiting the memory footprint of most post-processing tools
to basically a single row of data at a time. At the time of writing, a quantitative
comparison was not yet available.

3.4 Index Structures for Sparse Data

While a few of the metrics such as time and the number of times a call path has
been visited (and optional hardware counter metrics) are dense, having non-zero
values for each call path, many of the metrics are very sparse. For example, MPI
point-to-point communication time has non-zero values only for the correspond-
ing MPI calls (and their parent call paths when stored with inclusive semantics).
For these metrics, we use a sparse representation, that is, we refrain from writing
the rows of data that would only contain zeros in this metric. To keep track of
which rows are written and allow for efficient lookup of the data straight from
the binary file, the index file contains a list of the identifiers of the call paths
whose data rows were actually stored. Keeping this index in memory, we can
find the appropriate file offset for any call path in logarithmic time. Utilities
which process analysis reports and change call path identifiers, such as remap
and cut, therefore need to update the primary XML metadata, any secondary
indices that refer to modified call-path identifiers, and potentially also the files
containing the associated metric data.

4 Related Work

Obviously, the problem of unifying process-local definitions is not specific to the
Scalasca toolset. For example, the VampirTrace measurement library [3] per-
forms the unification as a serial post-processing step, which in addition also
rewrites the generated trace files using the global identifiers. A second example
is the TAU performance system [5], which serially unifies call-path information
on-the-fly while loading profile data into the graphical profile browser Para-
Prof. Recently, a hierarchical unification algorithm for call paths has been im-
plemented to support on-line visualization of so-called snapshot profiles. Treating
unification as a global reduction problem puts it into a larger category of global
reduction operations used in parallel performance analysis, many of them applied
online [4].

Each performance tool typically has its own native format for profile data.
VampirTrace produces OTF profiles consisting of separate binary files for each
MPI process rank and several additional metadata files, which are subsequently
integrated into a plain text profile. TAU also produces individual textual profiles
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for each MPI rank by default, and can then combine these into a single-file packed
binary format, or alternatively, it can concatenate the individual profiles from
each process rank at the end of measurement into a single textual file for each
performance metric. TAU’s profile viewer can read all of these formats and many
more, including Scalasca integrated XML profiles and individual gprof textual
profiles.

5 Conclusion and Outlook

In this paper, we showed how to address the most serious impediments to
achieving further scalability in Scalasca. The previously serial unification of lo-
cal identifiers created to reference mostly global objects was parallelized using a
hierarchical reduction scheme, accelerating the procedure by almost a factor of
250 on 64k cores (and an estimated factor of about 350 on 288k cores) on an IBM
Blue Gene/P. Subsequent tests on other large-scale HPC systems, such as Cray
XT, showed similar benefits. Therefore, the parallel unification was integrated
into the Scalasca measurement system and is already part of the latest 1.3.2
release (November 2010). Further improvements can be achieved by revising the
handling and representation of MPI communicators as well as optimizing the
identifier mappings, which still contain a significant amount of redundancy.

A speedup of more than 7 was observed for collating and writing analysis
reports on 288k cores after replacing the XML file format used to store metric
values with a binary alternative. Further optimizations of the file layout and
the underlying data model as well as dynamic loading capabilities are likely to
improve the interactive response times of the report explorer GUI.
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