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Abstract. We develop a hierarchical model for an organism which is primarily 
based on structural scale. This is then compared with the Kronig-Penney model 
for electron propagation in a crystal. Both models exhibit similar multi-level 
structure, where the levels are separated by complex or forbidden regions. We 
conclude that cross-modeling between natural hierarchy and electron band 
structures may help in formulating future models of biological systems. 
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1 Introduction 

There have been many and varied attempts to provide models of living systems or 
organisms. Possibly the two most well-known are due to James Grier Miller (1978) 
and Robert Rosen (1991). Miller proposed that living systems form 8 levels of com-
plexity, from biological cells up to supranational organizations, each depending on the 
same 20 essential subsystems in order to survive. Rosen developed his (M,R) repre-
sentation of an organism by internalizing efficient cause. Unfortunately, neither of 
these successfully describes a multi-scalar organism: Miller’s model takes no account 
of inter-scalar coupling, and Rosen’s makes no attempt to deal with scale (Cottam  
et al., 2007). 

In this paper we will develop a model of a living system – or organism – which is 
primarily based on structural scale. A major characteristic of the model is the way in 
which scales are coupled together through complex fractal regions, and this leads us 
in the direction of another different model. Arguably, the most developed model of a 
physical domain is that of solid state physics, through its application to the develop-
ment of integrated circuits and computer processors. Fascinatingly, this model itself 
presents a number of different energetic levels similarly separated by ‘forbidden 
zones’. Our central thesis is that it may be possible to develop better models of life by 
crossover between the two very different representations. An immediate objection 
which comes to mind is that the solid state physics of informatics applications is 
based on the long-range atomic order of perfect crystals, which is absent from living 
entities. However, many of the constituent chemicals which go to make up living 
tissue present an almost crystal-like appearance – for example the lipid pdmpg, or 
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even DNA. We do not propose that simplistic solid state physical models can be di-
rectly applied to organisms, merely that it should be instructive to compare them with 
models of life. 

2 Scale 

Different systems or systemic sub-units exhibit different bandwidths in the way that 
they relate to their surroundings. In the theoretical extreme, these could range from 
sensitivity to all sizes to sensitivity to only one size (Figure 1(a), 1(b)). Practically, 
however, these extremes never exist, and real bandwidths range from large-but-finite 
to small-but-finite extents (Figure 1(c), 1(d)). Individual bandwidths start to become 
interesting when their owners are combined into more complicated systems. 

 

(a) (c)

(b) (d)
 

Fig. 1. System sub-unit bandwidths: (a) and (b) theoretical extremes; (c) and (d) realistic limits. 

In the case of the theoretical extremes, if all sub-units possessed infinite sensitivities, 
then the individual sub-units would have no relevance at all (Figure 2(a)); and if all pos-
sessed sensitivities to just one size there would be no inter-unit coupling (Figure 2(b)). 

 

(a)

(b)

 

Fig. 2. Theoretical extremes of sub-unit bandwidth combinations. 
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More pragmatically, combining differently-‘scaled’ sub-units with wide bandwidths 
results in a global system which exhibits hardly any effects of scale – as in the case of a 
crystal (Figure 3(a)) – while combining sub-units with narrow but still overlapping 
bandwidths results in a system which exhibits complex inter-scalar properties – as in the 
case of an organism (Figure 3(b)). 

 

(a)

(b)

 

Fig. 3. Realistic limits of sub-unit bandwidth combinations 

Given a system consisting of a number of different interacting scalar levels, then 
the ease or difficulty of transiting between any pair of adjacent levels depends on the 
similarity or diversity of their internal representations. Figure 4 presents an example 
of such a set of model-levels: those used to represent an electronic diode. 

 

(a) (b) (c)

(d) (e) (f)

 

Fig. 4. A sequential set of models of an electronic diode. 
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The first, simplest model 4(a) corresponds to zero electronic current i for reverse 
(negative) voltage V, but a positive electronic current for forward (positive) voltage. 
The next, 4(b) adds in a zero-offset (the ‘turn-on’ voltage). Model 4(c) adds a linear 
slope to the forward current characteristic. All three of these – 4(a), 4(b) and 4(c) – 
are related piecewise linear models. The fourth model, 4(d) is radically different, be-
ing based on an exponential evaluation of electronic flow – the ‘ideal diode equation’. 
Model five 4(e) adds in the result of ‘reverse breakdown’ of the diode, and model six 
4(f) adds in the result of ‘high-level injection’. None of these models is universally 
‘the best’ – each of them relates best to a specific set of environmental conditions, 
mainly in terms of the applied voltage. This in itself is a valid generalization of all 
model sets for a specific parameter or phenomenon: a long-standing model is rarely 
‘wrong’, but usually badly adapted to newly occurring or discovered environmental 
conditions. Transit between levels 4(a), 4(b) and 4(c) or between 4(d), 4(e) and 4(f) is 
comparatively easy, but certainly not between 4(c) and 4(d), where the models’ deri-
vations are completely different. 

This question of inter-scalar transit is fundamental to the way multi-scalar systems 
operate. Each scalar level must be partially independent – or ‘closed’ – to maintain 
itself, while partially communicating with its neighbors – or ‘open’ – to maintain 
system unification. A good example of the problems involved in going from lower to 
higher scales of a system is the equation 1 + 1 = 2. This is far more complex than 
initially appears. The first thing we should notice is that there is no generally applica-
ble manner of combining two entities to make one. The equation itself belongs in a 
completely abstract mathematical domain where its meaning and result are pre-
defined. The problem is that between the left hand side and the right hand side of the 
equation there is a loss of degrees of freedom – a loss of information! In reality, one 
apple plus one apple does not give one bigger apple. And if it did, would that apple be 
two times the volume, or two times the width, or two times the height, or … This is a 
basic difficulty for the progressive evolution of multiple scales… at each level of 
development information is lost. 

A place we expect to find scale, where in fact there is none, is in large complicated 
digital information processors. A computer has a physical nature, and as such there 
may/will be some aspects of spatial scale depending on the construction of its compo-
nents. However, in its role as a digital information processor the individual processing 
gate operations are absolutely isolated from each other by the system clock, which 
ensures that all of the gates have settled down to their pre-ordained states before they 
are connected or re-connected for a short period. In essence, the only global properties 
of such an information processor were in the head of the computer designer or pro-
grammer, or are in the head of its user. Consequently, any attempt to create global-
dependent phenomena in a digital computer – whether ‘intelligence’ or ‘conscious-
ness’ – is doomed to failure. 

In passing, this raises another, more general question: that of information. Informa-
tion depends on interpretation. Habitually, the concept of information is closely tied 
to the work of Shannon (1948) on communication channels. Unfortunately, Shannon 
effectively maintains that information exists not only in ‘the sender’ and ‘the receiv-
er’, but also within the intervening channel (Schroeder, 2011). This is unreasonable. 
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As we pointed out, information depends on interpretation – it is a combination of data 
and context, whose correlation is absent from the communication channel, where data 
and context are indistinguishable1. 

The principal function of a computer clock, therefore, is to isolate local from glob-
al. A result of this is that a computer cannot provide output until it has waited for the 
outputs of each and every one of its gates (it is no defense to maintain that many gates 
are eliminated by ‘if-then’ clauses; in terms of the current computation these gates do 
not exist!). Consequently, the bigger you make a processing structure, the slower the 
computer will be (for the same clock speed): lower ‘levels’ run faster than higher 
ones. This is fundamentally different from a biological multi-scalar system, where the 
bigger the scalar assembly, the faster it can run in responding to external stimuli: 
higher levels run faster than lower ones! 

3 Hierarchy 

Hierarchy is nominally “a human abstraction”2. Traditionally, only two types of hie-
rarchy are recognized: 

 

a scalar hierarchy, e.g. atoms – molecules – cells – organisms - … 
 

a specification hierarchy, e.g. physics – chemistry – biology – society - … 
 

However, natural systems are better represented by a model hierarchy, similar to that 
described in Figure 4, which resembles a specification hierarchy that has been con-
structed in terms of scale. Conventionally, the highest level of a hierarchy is supposed 
to be dominant, but in a model hierarchy this is not the case; any model level can be 
the most suitable in a specific context. 
 

 

Fig. 5. A general representation of a natural multi-scalar hierarchy. 

                                                           
1 Clearly, in the case that both are transmitted as binary digits there is no distinction between them. 
2 A quotation from Stan Salthe. 
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To indicate this difference we will draw our hierarchy turned on its side (Figure 5), 
with the ‘highest’ level3 at the right hand side. In Figure 5, each scalar level is 
represented by a vertical line, where the length of the line indicates how much infor-
mation is needed to define that level. Between each pair of levels is a complex region 
which corresponds to the difficulty in generalizing the loss of degrees of freedom on 
transiting upscale3. 

The complexity we refer to here is not the Kolmogorov complexity related to digi-
tal systems, it is equivalent to Robert Rosen’s definition: 

 

“A system is simple if all its models are simulable. A system 
that is not simple, and that accordingly must have a nonsimul-
able model, is complex.” (Rosen, 1991) 
 

More generally, for our purposes, we can suggest that: 
 

simple implies ‘easy to compute’, 
complicated implies ‘more of the same’, 
complex implies ‘only imprecisely computable, if that!’ 
 

The logistic plot of xi+1 = -Kxi (1-xi) has the same form as this representation of a 
natural hierarchy (Figure 6), with scaled simple discrete solutions separated by re-
gions of complexity4. This suggests that this general nature of scale sets and complex 
coupling may be more widespread than at first appears. 

 

xi+1 = K xi (1-xi)

x

K

Scaled
discrete
solutions

Inter-
solution
complexity

 
 

Fig. 6. The form of the logistic plot is similar to that of the natural hierarchy. 

                                                           
3 The ‘higher’ the level, the more descriptive information has been lost (c.f. 1+1=2). 
4 Note that here the complexity is not naturally Rosennean, it is created by temporal incompu-

tability. 
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Natural multi-scalar systems, like organisms, are unified. However, unification 
cannot be imposed from outside – it is the result of inter-scalar correlations. It is im-
portant to note again that individual scalar levels are partially ‘enclosed’ – shut off 
from their neighbors – and therefore can only be approximately observed from out-
side. In essence, any specific level can ‘decide’ what it communicates and what it 
withholds (in the way that a biological cell does with respect to its neighbors). 

The result of this cross-scalar-set correlation is a systemic identity referred to as 
hyperscale – an approximate reproduction of the scalar set but one which is transpa-
rent to inter-scalar transit (Figure 7). Hyperscale is the real nature of the system, 
whether it is observed from inside or from outside. To the extent that we can, we 
create a hyperscalar image of everything we encounter – even of ourselves! Any lack 
of ‘correct’ information is filled in subconsciously with un-validated images, conve-
nient but outdated models, etc.5 

 

 
 

Fig. 7. Integration of the scales of a unified natural hierarchy into its hyperscalar identity. 

The central premise of this paper is that the establishment of this kind of natural 
hierarchy is sufficient to create life. Such a hierarchical framework appears to be the 
basic building block of nature. Ergo, life is unavoidable. In searching for a mathemat-
ical formulation to represent biology this is an important guide; we should look for 
mathematical structures which naturally generate this kind of complexity-coupled 
multi-layer framework. 

4 Electron Properties in the Solid State 

We can refer to electrons in crystals either as particles or as waves. 
In free space, the motion of electrons as particles can be characterized by 

ܧ  ݕ݃ݎ݁݊ܧ  ൌ ଵଶ  ,ଶ where ݉ is electron massݒ݉

and ݒ is its velocity 

                                                           
5 For example, it is convenient when using satellite navigation (GPS) to re-assume that the 

earth is flat! 
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 Momentum ݒ݉ = ݌ 
 

ܧ ݕ݃ݎ݁݊ܧ  ൌ ሺ1 2݉⁄ ሻ݌ଶ 
 

In a crystal, solution of Schrödinger’s equation injects Dirac’s constant h/2π : 
 

ܧ ݕ݃ݎ݁݊ܧ  ൌ  ൫݄ଶ 8πଶ⁄  ଶ݌൯כ݉
where m* is the electron’s effective mass6 

 

This yields the parabola of Energy E plotted against p shown in Figure 8. 
 

 

Fig. 8. Energy E versus momentum p for a particulate electron in a crystal 

In a crystal with atomic separation a, and an electron characterized as a wave with 
wavelength λ, discontinuities in wave propagation will occur when λ/2 = a. Using the 
De Broglie relation p = h/λ these will occur on the ݌-axis of Figure 8 at values of nπ, 
where n is any integer. 

Kronig and Penney (1930) proposed that the energy potential associated with each 
atom in a crystal, which causes these discontinuities, could be represented by a rec-
tangular profile of width w and height V0. Solutions for the electron wave propagation 
are then derived from the global equation 

 cos ݇ܽ ൌ  ሺܴ αܽ⁄ ሻsinαܽ ൅  cosαܽ                                                 
where                ݇ ൌ 2π λ⁄                                 α ൌ ሺ2π ݄⁄ ሻ√2כ݉ܧ  
                           ܴ ൌ ଴ܸݓሺ4πଶ݉ܽכ ݄ଶ⁄ ሻ  
 

                                                           
6 In a crystal, an electron appears to have a different mass from its free space value, called the 

effective mass m*. 



 Towards Cross-Modeling between Life and Solid State Physics 93 

 

 

Fig. 9. Solutions of the Kronig-Penney equation. Valid portions are those closest to the parabola. 

This yields the set of sinusoidal solutions shown superimposed on the parabola in 
Figure 9. 

Restriction of the solutions to real values of sin/cos between -1 and 1 retains only 
the parts of the solutions which are closeto the parabola (Figure 10).  

 

 

Fig. 10. Remaining real solutions to the Kronig-Penney equation 
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Regions of these solutions which are far from values of nπ in the plot coincide with 
the free-space parabola7, but there are distortions from the parabola at values of nπ. 
The repeated occurrence of discontinuities with nπ means that the individual sections 
of the plot can be folded in on themselves until everything lies between –π and +π 
(Figure 11). This gives us the normal way in which the electron energy bands are 
portrayed. 

As indicated in Figure 11, we now have a set of permitted regions for electron oc-
cupancy which are separated by forbidden gaps: precisely the form we were looking 
for to represent the scale-set of a natural hierarchy. 

 

 

Fig. 11. Real solutions to the Kronig-Penney equation folded in to the region –π to +π. 

In addition, the folding in of the different energy bands to the central region closely 
resembles the generation of hyperscale in the multiscalar representation of a living 
system. 

5 Conclusion 

The mathematics of solid state physics does indeed present us with a possible mathe-
matical route towards representing the scale-set of a natural hierarchy. As we com-
mented earlier, a clear restriction is the lack of precise long-range order in a biological 

                                                           
7 … except for the modified value of electron mass m*. 
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system when compared to a crystal, and it would be fatuous to suggest that the com-
parison between natural hierarchy and electron energy bands is sufficient to apply the 
mathematics we have presented directly to living systems. However, it may be that 
the fuzziness of biochemical and cellular order, which would correspond to a fuzzi-
ness in any comparison, indicates that the hierarchical model we have presented is 
itself far too precise. It remains to be seen whether cross-modeling between these two 
very different organizations may directly or indirectly lead to more successful models 
of biological systems. 
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