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Abstract. This paper claims that biological systems will more effectively create 
organized complexity if they use probabilistic inference that is context-
sensitive. It argues that neural systems combine local reliability with flexible, 
holistic, context-sensitivity, and a theory, Coherent Infomax, showing, in 
principle, how this can be done is outlined. Ways in which that theory needs 
further development are noted, and its relation to Friston’s theory of free energy 
reduction is discussed. 
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1 Unsolved Problems in Theoretical Neurobiology 

Biological systems create and preserve organized complexity despite the ever present 
forces of noise and disorder. This self-organization occurs in open, holistic, far-from-
equilibrium, non-linear systems with feedback, to which the classical paradigms of 
physics are not well-suited. Though usually implicit, probabilistic inference can be 
seen as being central to self-organization, and useful inference is only possible 
because the laws of physics are sufficiently reliable. The endless variety of individual 
circumstances and the prevalence of deterministic chaos and quantal indeterminacy 
make many things unpredictable, however; so, to thrive, biological systems must 
combine reliability with flexibility. 

Erwin Schrödinger (1944) played an important role in the discovery of the genetic 
code by correctly estimating the balance between reliability and flexibility (e.g. 
mutation) in the case of genetics, and by showing, contrary to the opinion of many 
physicists at that time, that the required balance could be achieved at the molecular 
level. Analogous insights are now needed to guide our search for general principles of 
information coding and processing in neural systems. We need to know whether it is 
possible to state in general abstract terms what is coded by neural activity, how it is 
coded, and what use is to be made of that information. 

Many forms of organized complexity have arisen in nature’s long journey from 
uniformity to maximal disorder, but it is in neural systems that the importance of 
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probabilistic inference is most obvious. Helmholtz correctly emphasized the centrality 
of unconscious inference to perception, and many examples of its use for contextual 
disambiguation can be given (e.g. Phillips, von der Malsburg and Singer 2010). 
Friston (2010) has now shown formally how such unconscious inference may also be 
central to reinforcement learning, motor control, and many other biological processes. 

These arguments suggest several issues on which we need to make progress. What 
is organized complexity? What are the capabilities and constraints of various forms of 
inductive inference, e.g. classical versus Bayesian (Jaynes 1998), conscious versus 
unconscious (Engel and Singer 2008)? How is reliability combined with flexibility, 
i.e. how is information about reliable generalities combined with information about 
individual particularities? How is localism combined with holism? Do various neural 
systems or sub-systems perform inductive inference in different ways with differing 
degrees of accuracy or generality? Do biological capabilities for probabilistic 
inference evolve towards forms of inference with greater accuracy or generality? 
What learning do the inferences require, and how is that learning implemented at the 
synaptic level in neural systems? Information theory measures such as Shannon 
entropy and free-energy have been applied to these issues, but how can they be tested 
and what do they contribute to our understanding? 

Better formalisation of these issues is clearly needed, so I will outline an 
elementary neurocomputational perspective that uses information theory measures to 
shed some light on them (Phillips, Kay and Smyth 1995; Kay, Phillips and Floreano 
1998; Kay and Phillips 2010). A major advantage of this perspective is that it has 
wide-ranging interdisciplinary roots, and is related, often in considerable detail, to 
much empirical data from neuroanatomy, cellular and synaptic physiology, cognitive 
psychology, and psychopathology. I will also argue, however, that this perspective is 
still greatly in need of further development and testing. 

2 Evidence for Local Reliability and Holistic Flexibility 

Within neurobiology the contrast between the requirements of reliability and 
flexibility is reflected by two frequently opposed perspectives that have arisen from 
the neuroscience of the last century. First, there is the classical perspective, such as 
that of Hubel and Wiesel. This sees sensory features and semantic attributes as being 
signalled by single cells, or small local populations of cells, with well-specified 
receptive fields about which they transmit information. Though modifiable by 
experience, these codes are highly reliable. They do not change from moment to 
moment, and do not depend upon what is going on elsewhere. From this perspective 
feature detection, object recognition, and other higher cognitive processes, are thought 
to be achieved through a fixed or slowly adapting feedforward projection through a 
hierarchy of cortical areas. 

In contrast, the second perspective emphasizes flexibility. From the early 1980s 
onwards, there has been a rapidly growing body of evidence showing that, even in 
sensory systems, neural activity is influenced by an ever-changing stimulus context 
that reaches far beyond the classical receptive field, and by high-level cognitive state 
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variables such as attention. This has led many to conclude that the simple classical 
assumption of cells with reliable receptive-fields is no longer viable, and that 
information is conveyed only by the rich non-linear dynamics of very large and ever-
changing populations of cells. 

Our perspective combines these two views. It emphasizes dynamic contextual 
interactions, but claims that, instead of robbing the local signals of their reliability, 
they increase both their reliability and their relevance. Its central hypothesis is that 
there are two classes of synaptic interaction: primary driving inputs that specify the 
information content of the output signals transmitted by the local processor, and gain-
controlling inputs that coordinate those computations so as to achieve current goals in 
current circumstances. This theory emphasises processes of contextual 
disambiguation and dynamic grouping that choose between alternative interpretations 
of the data. They do so by amplifying activity that is relevant to the current task and 
stimulus context, and by suppressing activity that is irrelevant. These coordinating 
interactions also group activity into coherent subsets, and combat noise by context-
sensitive redundancy.  

They are crucial to Gestalt perception, selective attention, working memory, 
strategic coordination, and perhaps also to reinforcement learning and motor control. 
The contextual coordinating inputs can be seen as learning to predict the activity 
driven by the primary inputs, and as using those predictions to emphasize and 
organize activity relevant to current tasks. 

Contextual disambiguation and dynamic grouping require many locally specific 
coordinating interactions between all the detailed processes that compute the 
cognitive contents. This implies that, in the case of the mammalian cerebral cortex, 
coordinating interactions must occur within and between cortical regions, because it is 
only they that know the detailed cognitive contents. Our working assumption is that 
there is a special class of ubiquitous synaptic interactions within the cortex that 
selectively amplify and synchronise relevant activities. They are predominantly 
located on long-range lateral and descending connections and influence post-synaptic 
activity via various mechanisms, including NMDA receptors (Phillips and Silverstein 
2003) and the control of synchronised disinhibition (Tiesinga, Fellous and Sejnowski 
2008). They do not themselves provide primary drive to post-synaptic cells, but 
modulate the effects of those that do. We call them coordinating, or gain-controlling, 
interactions to distinguish them from the diffuse effects of the classical 
neuromodulators. There is now clear evidence for a variety of mechanisms that 
implement such gain-control (von der Malsburg, Phillips and Singer 2010; Silver 
2010). Their variety and ubiquity provide evidence of their importance to neural 
function. One goal for formal studies within theoretical neurobiology is therefore to 
clarify the capabilities and limitations of such coordinating or gain-controlling 
mechanisms in more general and abstract terms. 

In the cerebral cortex there is anatomical evidence for hierarchical data selection 
and organization, with extensive context-sensitivity at each stage. Douglas and Martin 
(2007) review much evidence suggesting that feedforward driving signals provide 
only about 5% of the input to the layer 2/3 pyramidal cells that transmit information 
through the system, with the remaining 95% being composed of various forms of 
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contextual input. The small percentage of inputs that are driving may be telling us 
something crucial about constraints on the discovery of latent structure in data, i.e. it 
becomes much less feasible as the number of signals in the input to be summarised 
rises beyond a few hundred. The remaining 95% (several thousand inputs) then 
suggests that information from a much larger context can usefully guide that 
discovery. Adams and Cox (this Volume) argue that learning in neuronal systems 
requires highly accurate pairing of pre- and post-synaptic spikes, and that this faces 
unavoidable biophysical difficulties. Thus, this may be one of the constraints limiting 
the number of driving feedforward connections to no more than a few hundred. 

These broad claims of close relations between particular local neuronal interactions 
and particular aspects of cognitive function are based upon much psychophysical, 
neurobiological, and clinical evidence, as reviewed in Phillips and Singer (1997), 
Phillips and Silverstein (2003), and von der Malsburg, Phillips and Singer (2010). 
Though there will not be room to review this evidence here it is of great importance 
because it suggests that formal clarification of the role of context-sensitivity in 
probabilistic inference would be worthwhile. 

3 The Theory of Coherent Infomax 

Our contribution to this effort has produced the theory of Coherent Infomax (Phillips 
Smyth and Kay 1995; Kay, Floreano and Phillips 1998; Kay and Phillips 2010). Only 
a brief outline is given here. For full formal presentations see the original 
publications. The theory of Coherent Infomax uses three-way mutual information and 
conditional mutual information to show how it is possible in principle for contextual 
inputs to have large effects on the transmission of information about the primary 
driving inputs, while transmitting little or no information about themselves, thus 
influencing the transmission of cognitive content, but without becoming confounded 
with it. Guided by neuroanatomy, the gross system architecture assumed is that of at 
most a few tens of hierarchical layers of processing, with very many specialized but 
interactive local processors at each stage. Feedforward connections between layers are 
driving, whereas lateral and feedback connections provide coordinating gain-control. 
Minimally, the function of local processors is to select and compress that information 
in their primary input that is relevant to the current task and situation, as indicated by 
the contextual input that modulates primary information transmission. This is 
formalized in information theoretic terms as an objective function describing the 
signal processing work to be done. In short, the goal is to maximise the information 
transmitted about the primary inputs subject to the constraints of substantial data 
reduction while emphasizing the three-way mutual information between output and 
primary and secondary inputs and minimizing the information transmitted specifically 
about the secondary inputs. To show how that objective could be met in neural 
systems, a biologically plausible activation function for idealized local neural 
processors was formulated to include the required gain-control, and a learning rule for 
modifying the synaptic strengths of the connections between these local processors 
was derived analytically from the objective function by a statistician, Jim Kay. What 
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most impressed us about the consequent learning rule is that, although it was deduced 
formally from the objective function, assuming none of the physiological evidence 
concerning the dependence of synaptic plasticity on current and prior activity, it is 
broadly in agreement with that evidence. The theory of Coherent Infomax thus shows 
how it is possible for neural systems to perform probabilistic inference in a way that 
combines reliability with flexibility, and localism with holism. 

4 Unsolved Problems in the Theory of Coherent Infomax 

Despite its extensive roots in the relevant empirical sciences, however, there are still 
many ways in which this perspective requires improved conceptual development and 
empirical testing. One unresolved set of issues arises from what I think of as the 
impossibility of perfection. In the limit, coherence and information are opposed in 
that the total information within a system is reduced by correlations between its 
elements. Therefore, simultaneous maximisation of both considered separately is not 
possible. We assume that the objective is to increase the total information on which 
there is agreement, not the attainment of some final and complete optimum. 
Furthermore, applying the idealized Coherent Infomax objective to systems with 
many inputs and outputs is not computationally feasible unless simplifying 
approximations are used. Possible approximations were formally specified by Kay 
and Phillips (2010), but no attempt was made to explore either their applicability to 
realistic tasks or their biological plausibility. 

A second unresolved problem concerns relations between Coherent Infomax and 
concepts of complexity. Proposed measures of organized or structured complexity try 
to combine order (organization/coherence) with disorder (entropy/information) as does 
Coherent Infomax, and they often do so using mutual information (Sporns 2007). 
These measures are designed to ascribe high complexity to systems of many elements 
that interact in such a way as to achieve effective integration but without imposing 
such uniformity that their joint entropy is low. The contextual interactions of Coherent 
Infomax seem well-designed to contribute to this because they coordinate activities 
while not becoming confounded with the information that those activities variously 
transmit. Furthermore, Coherent Infomax is highly compatible with the small-world 
network architectures conducive to high complexity on these measures. Therefore, it 
may be possible to formulate or modify Coherent Infomax so as to relate it explicitly to 
these measures of complexity, but nothing of that sort has yet been done. 

The final unresolved issue concerns the relationship between Coherent Infomax 
and predictive coding. The current growth of interest in inference and prediction as 
possible keys to a fundamental understanding of neuronal systems is exemplified by 
the many groups that work on the ‘Bayesian brain’ and ‘predictive coding’. I will 
briefly discuss some relations of Coherent Infomax to the work of one of them, i.e. 
that proposing a unifying brain theory based on ideas from statistical physics and 
machine learning (Friston 2011) That theory interprets many aspects of neural 
structure and function as having evolved to reduce Helmholtz free-energy using a 
form of predictive coding in which ascending activities predicted by feedback 
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descending from higher levels in the hierarchy are suppressed. In contrast to this, 
Coherent Infomax proposes that activities predicted by contextual input are amplified. 
Thus, prima facie, predictive coding theories and Coherent Infomax propose opposing 
effects of context. There are at least three grounds for thinking that these theories are 
not fundamentally opposed, however. First, both Friston’s theory and ours imply that 
reduction of the difference between predicted and observed probability distributions is 
a major objective of neuronal dynamics. Furthermore, the reduction of free energy is 
central to Friston’s theory, and in or about 1993 unpublished work by John Hertz (a 
statistical physicist) gave a proof that Coherent Infomax implies the reduction of free 
energy. That proof is now lost, but if valid, it shows a deep unity between the two 
theories. Second, Coherent Infomax emphasizes lateral connections between streams 
of processing dealing with distinct data-sets, whereas predictive coding is concerned 
exclusively with feedback connections from higher levels in the hierarchy. Coherent 
Infomax is most obviously relevant to the use of co-occurrence constraints between 
distinct streams of processing to select between alternative interpretations of 
ambiguous inputs, whereas predictive coding theories are concerned with the coding 
of information for transmission through a hierarchy. Thus, the two theories may be 
complementary, rather than opposed. Third, Spratling (2008) argued that predictive 
coding theories can be made formally equivalent to theories based on evidence for 
amplifying effects of top-down attentional inputs. He did so by reorganising the 
computations required and assuming that suppressive effects of prediction operate on 
intra-regional signals, not on inter-regional signals. His work therefore suggests that 
some form of predictive coding may also be formally equivalent to Coherent Infomax, 
but it is not yet known whether this is so or not.  

Predictions may be amplifying in some cases and suppressive in others, so a more 
inclusive perspective that combines Coherent Infomax with Friston’s theory of free-
energy reduction may be possible. As the two theories emphasize many of the same 
details of neuroanatomy, neurophysiology, and psychopathology (Kay and Phillips 
2010; Engel et al 2010), it may not be too difficult to create such a perspective. As 
Friston’s theory emphasizes infomax, or redundancy reduction, as one component of 
his theory, it is important to note that Coherent Infomax is not simply a sub-type of 
infomax theory; it is infomax plus selective amplification of that information 
predicting activities elsewhere. It is thus our formalisation of another central 
component of Friston’s theory, inference. Overall, therefore, though there are 
important differences between the two theories, they are in broad agreement. They 
can be seen as examples of a perspective on biological computation that might be 
greatly improved by expertise such as that in the INBIOSA initiative. 
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