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Abstract. Historically, mathematics developed hand-in-hand with the physical 
sciences. While biological processes must obey the laws of physics, biology is 
not reducible to physics (otherwise we would not be able to distinguish one set 
of phenomena from the other!), and therefore mathematics that have been  
adequate for describing physical processes are often inadequate to describe  
biological ones. In consequence, I argue that the a new phase of scientific de-
velopment is required in which mathematicians turn to biological processes for 
inspiration in creating novel forms of mathematics appropriate to describe bio-
logical functions in a more useful manner than has been done so far. Many the 
kinds of problems that seem to remain unaddressable at present involve forms 
of mathematics that currently have competing assumptions. For example, biolo-
gists need to describe phenomena that involve discrete and continuous functions 
simultaneously (control of metabolism through binding of single molecules to 
unique gene promoters; the statistical description of continuously varying mole-
cular complexes); they need to handle spatial descriptors (geometry?) at the 
same time as kinetic data (calculus?) to explain developmental processes; they 
need to explain how scalar processes (random diffusion) gave rise to vectorial 
ones (facilitated transport). These, and other hybrid problems described in this 
paper, suggest that a fertile field of enquiry exists for mathematicians interested 
in developing new forms of biologically-inspired mathematics. I predict the re-
sult of the development of this new field of biologically-inspired mathematics 
will be as fundamentally revolutionary as physics-inspired mathematics was 
during the original Scientific Revolution. 

Keywords: Positivism, biological mathematics, Scientific Revolution, history 
of science, scalar-vector transitions, developmental biology, set theory, auto-
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I once took a graduate course on the history of physics that focused on the work  
of Laplace. The professor teaching the course pointed out a phenomenon that he 
found very surprising. Laplace, he noted, had a very checkered career. He seemed to 
work on physics or astronomy for several years and then drop whatever he was work-
ing on and switch to studies of pure mathematics for a few years; then suddenly, he 
would switch back to physics or astronomy, and so forth for decades (Gillispie, 2000). 
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The professor could think of no good reason for such erratic behavior. I, however, 
suggested a very simple explanation. I believe that Laplace was such a productive 
scientist and mathematician because the two fields were completely integrated in his 
mind. He derived his mathematical problems from his astronomical and physical re-
searches and his astronomical and physical problems from the regions in which exist-
ing mathematical methods failed. So in practice, what Laplace did was to study a 
physical process, develop a model for the behavior of the system that would, in turn, 
yield a set of equations describing the model. More often than not, because Laplace 
focused on processes that had no adequate physical explanation, he would find that it 
was impossible to solve the equations needed to model the system. Being a first-rate 
mathematician, he would therefore refocus his efforts on deriving from first principles 
the new methods necessary to solve the sets of equations he had invented. This effort 
often took him several years. Once he had satisfactorily set that new area of mathe-
matics to rights, he would go back to his astronomical or physical studies, apply his 
new mathematical insights to his models, and see what kinds of new problems these 
revealed.  

I recount this story about understanding Laplace’s methods because it is important 
in devising a new field of biomathematics that those undertaking the work understand 
that, historically, both science and mathematics have provided each other with fruitful 
problems and methods. Laplace was not a mathematical physicist or a physical ma-
thematician – he was both, simultaneously. I understand full well that this integral (or 
back-and-forth) view of the relations between science and mathematics is quite at 
odds with the dominant (and long-outmoded) Comteian positivistic philosophy of 
science that still predominates among scientist and mathematicians today. Positivism 
explicitly posits the notion that mathematics drives progress in the rest of science so 
that it is possible to rank-order the scientific reliability of a field on the degree to 
which it has become mathematized. The increase in “positive knowledge” is always 
from mathematics through physics to the “softer” sciences.  

There are two errors in this positivistic philosophy. One is that even pseudoscience 
can be expressed in equations, this process making the pseudoscience no more “true” 
than it was when expressed only in words. The other error is to mistake the purpose of 
mathematization as being primarily a means of validating scientific research. To the 
contrary, I believe that mathematics can provide novel tools for exploring scientific 
problems. But that said, I also believe that existing mathematics does not contain all 
the possible tools that scientists may need. Like Laplace, present-day mathematicians 
are likely to find fascinating and valuable mathematical problems by learning enough 
biology to understand where existing mathematical tools fail. From this perspective, 
mathematics is useful to any given science only to the extent to which it is appropriate 
to addressing the problems posed by that science. Simply mathematizing biology 
using existing methods does not, in fact, add anything to our understanding of biology 
unless the mathematics illuminates points that non-mathematical statements of the 
same models or theories cannot address. Unfortunately, many scientists make their 
models conform to existing mathematical methods rather than doing what Laplace 
did, which is to devise an appropriate model and then invent the mathematics to de-
scribe it. Thus, historically, “mathematical biology” has not yielded many deep  
insights.  



 Processes and Problems That May Define the New BioMathematics Field 7 

My studies of the history of science suggest a second reason that mathematics has 
not been as useful in the biological sciences as in the physical sciences. Scientists tend 
to ascribe the power of physical sciences to their mathematization, but I would argue 
that the real power has come from the ability of astronomers and physicists to define 
their problems accurately and precisely enough for mathematical methods to be valu-
able. My emphasis here is on problem finding and defining. Historically, chemists, 
biochemists, biologists, and social scientists have rarely been able to define their 
problems with the precision and accuracy of the physicist or astronomer, making the 
mathematical investigation of their relatively “fuzzy” problems difficult. Thus, one 
reason for the lack of mathematics in biology is that the lack of well-defined problems 
has made the field less amenable to mathematization than, say, physics. Recognizing 
that categories in non-physical systems are often “fuzzy” is, in fact, what led Zadeh to 
invent his theory of “fuzzy sets”, a major advance for both mathematics and modeling 
in biological and social sciences (Zadeh, 1996). I would therefore argue that the de-
gree to which we can define our biological problems accurately and precisely enough 
to intrigue mathematicians will determine whether we make progress in developing 
biomathematics.   

The third reason that biology has so far failed to benefit from mathematization to 
the degree that physics and astronomy have, is that the mathematics that is used to 
describe physics and astronomy developed hand-in-hand with those sciences but has 
not developed hand in hand with biological problems. Laplace is hardly unique in 
having had hands in both mathematics and physics simultaneously – think Descartes, 
Leibnitz, Lagrange, Fourier, Poincare, etc. Unfortunately, the mathematical methods 
developed to model physical processes do not (in general) illuminate biological prob-
lems. Biology is not chemistry which is not physics. Simple hierarchical reasoning 
states that we can recognize a new level of organization when the principles, proper-
ties and models that worked for the previous level of organization can be ignored 
(Weiss, 1971). Chemistry becomes chemistry and not physics at the point where we 
can ignore the physical properties of the components carrying out the chemistry. We 
don’t need an understanding of nuclear physics to describe the kinetics of a chemical 
reaction; we don’t need to know the movements of every molecule in a gas to meas-
ure its temperature or volume; we don’t need an understanding of electron shells to 
explain how DNA encodes genetic information. Similarly, biology becomes biology 
and not chemistry when we can ignore the chemical properties of the components 
carrying out the biology. For example, Mendelian genetics was invented without any 
concept of the structure of a gene, let alone what macromolecular structure encoded 
genetic information. Darwinian evolution by survival of the fittest does not rely upon 
any chemistry at all! This is not to say that biological systems are not comprised of 
chemicals or to deny that they obey the laws of physics, but rather to make the point 
that biological systems are recognizably biological because they have organizational 
properties that allow them to carry out processes that cannot be accounted for purely 
on the basis of the physics and chemistry of their individual components. So what we 
need is a new mathematics and a new form of computing that permits us to model the 
emergence of new properties resulting in the carrying out of novel processes as a 
result of innovative forms of organization within complex systems. Or, put more 
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simply, a mathematics appropriate to biology must be motivated by problems that are 
biological in their origins and nature, just as a mathematics appropriate to physics was 
physical in its origin and nature. 

In order, therefore, to develop a new field of biomathematics, I would therefore 
hope that we will behave as a community as Laplace and his colleagues did, by going 
back and forth between the science and the mathematics, letting each inform the oth-
er. Biology has much to contribute to mathematics, especially to the development of 
new forms of mathematics appropriate to solving the kinds of problems that make 
biology different than physics or astronomy. And biologically-inspired mathematics 
can be expected to return to biology the same kinds of gifts that physics-inspired ma-
thematics returned to physics. Indeed, not until we abandon the Comteian idea that 
mathematics should drive science will biology benefit as it should from mathematics. 
I maintain that reversing the equation and permitting biology to drive the mathematics 
(at least half of the time!) may yield us new insights as important as those generated 
by Laplace and the other physicist-mathematicians who founded their fields. Moreo-
ver, it may revolutionize mathematics itself, just as the focus on physical problems 
motivated many of the great mathematicians of the past. 

So what kinds of well-defined biological problems exist that seem not to be ame-
nable to current mathematical approaches, or have simply been overlooked by ma-
thematicians who already have the kinds of novel approaches that would open up 
these biological areas to formal analysis? I and my collaborators and colleagues have 
been struggling with five such areas, all of which are general enough to have broad 
implications both in and beyond biology and are therefore potentially worth the effort 
of a mathematician to explore. All of them, in one way or another, share the common 
feature that the systems that need to be described combine some type of continuous 
function with some type of discontinuous function and some add the fillips of vectori-
al and geometrical aspects as well. The mathematical challenge is how to analyze 
biological problems that currently exist in two or more of these (as far as I know) 
essentially unrelated domains of mathematics.  

My first problem concerns the modeling of a cell as a dynamic process. The cell it-
self is a discrete object yet the flow of materials in, out, and through a cell is conti-
nuous. Moreover, if one asks what defines the cell at any given time, the details of 
this description will differ at any other time point. For example, when a cell repli-
cates, it breaks down its Golgi apparatus, its actin fibers, and various other cell  
organelles, into the molecular constituents from which they are assembled. These 
molecular constituents are randomly distributed into the two daughter cells. Both of 
the resulting cells are still cells of the same species as the parent cell, yet neither has 
exactly the same number or even exactly the same proportion of cellular constituents 
as the parent cell or as each other. So clearly there is variance in the absolute numbers 
and in the proportions of the constituents of a cell within which the cell can still func-
tion as a cell. Moreover, the rates at which these constituents turn over, are reple-
nished and excreted also vary from cell to cell and from time point to time point. 
Now, this variance is clearly open to experimental manipulation. One can dehydrate 
cells and find out how little or how much water they require or can sustain and con-
tinue to live. One can destroy particular cellular constituents, or block particular  
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receptors or transporters, and see how these modifications affect the proportions of 
other cellular constituents in relation to whether, and how, the cell continues to func-
tion. So we can obtain plenty of quantitative data. But what do these data mean in 
terms of what the interactive variances in constituents can be within a living system? 
The problem becomes even more complicated when we start playing with cellular 
structures and macromolecules. While there are so many molecules of water or glu-
cose or ATP in a cell that it might be acceptable to model cellular dehydration as a 
continuous function, one cannot vary the numbers of actin fibrils, Golgi apparatus, 
mitochondria, chloroplast, ribosomes, nucleoli, centrosomes, chromosomes, etc. as 
continuous functions. These are very discrete variables, with variances that are meas-
ured in discrete units. The mathematical problem therefore becomes one of finding 
means to utilize all of this information – both continuous and discrete – in an inte-
grated model that lets us understand what are the limits of variance, and therefore the 
limits of life, for a functioning cell.  

The posing of the question of what constitutes a cell in this way has caused me to 
become interested in set theory as a possible basis of a new biological mathematics. 
But the current state of set theory (at least as available to a novice such as myself) 
seems inadequate in two fundamental ways. First, cells are autopoetic – they form 
themselves. Indeed, evolutionary theory asserts that cells evolved from primordial 
aggregates of self-organizing compounds built from even simpler interactive modules, 
back to the primordial soup. Sets, at least as they exist in mathematical forms, are not 
autopoetic. There is always a “god” – the mathematician – who defines the criteria for 
what is a set and what is not. What would happen if one did not have the mathemati-
cian “god” to define sets, but created a system of definitions that would permit sets to 
form autopoetically? This is, in a sense, what complexity theory is about (e.g., 
Kauffmann, 1993), but complexity theory does not incorporate most of the useful 
features of set theory. Could a mathematics that described autopoetic sets through 
complexity-like theory exist? Might it shed light on the evolution of the “sets” we call 
“cellular life” by permitting us to describe continuous functions that produce rules 
that then limit the entry and exit of possible components of the set and that can under-
go transformations (metabolism) within the set? After all, this is what cells do, so why 
cannot there be a mathematics that describes what nature can already do? 

The second way in which modern set theory (again in my limited experience) 
seems to fail to inform biological problems is because biological sets have the va-
riance property I described above. Any given cell must have chromosomes, but their 
number can vary (as they do in cancers and parthenogenotes) and still be viable; they 
can have many ribosomes and mitochondria or few and still live; they can accumulate 
certain amounts of toxins or lose a certain amount of key ions and still function; etc. 
So in addition to inventing autopoetic sets, is it possible to invent sets that are not 
defined by specific numbers of constituents, but by variances within which all of 
these constituents must exist. A bacterial cell that becomes dehydrated may die, or it 
may sporulate. How can some form of set theory be devised that models the process 
of switching between stable states when certain variances are exceeded? What, in 
general, does such a state-sensitive, mathematical set look like? How does it behave? 
What properties does it have that sets, as currently defined in mathematics, do not? 
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How might these new set properties inform living systems and perhaps even our un-
derstanding of social processes, supply chains, and other useful functions? 

So one thing that is needed in our new biomathematics are ways to model  
self-emergent sets (origins of first cells; self-assembly of viruses, etc.) But these self-
emergent sets would seem to need the ability to carry out functions (select-
ing/rejecting among possible components; minimizing what a physicist thinks of as 
free energy; etc). So one possible focus of a new biomathematics would be to invent 
an appropriate theory of self-emergent sets that can carry out functions within va-
riances. Such a set theory would preferably incorporate the work that has been done 
on understanding hierarchical systems, emergent properties, complexity theory and so 
forth. Such a mathematics would therefore be extrordinarily integrative, a point to 
which I shall return below. 

A biological problem related to their set-like properties is that their organization 
strictly limits their variance through the formation of modules in a manner that re-
quires novel approaches to probability theory. Imagine a clueless, blind “watchmak-
er” of the sort that Richard Dawkins likes to put in charge of evolutionary processes. 
But let this watchmaker carry out a process first investigated by Herb Simon in one of 
his little-known and under-appreciated essays on evolutionary processes (Simon, 
1981). Combining Dawkins’s and Simon’s watchmakers produces the following sce-
nario that I believe exemplifies one of the critical problems that needs to be addressed 
in the origins and evolution of life. I imagine two watchmakers, the first of which 
must randomly assemble 25 parts in order to put together a “watch”. This completely 
ignorant watchmaker must explore every possible combination of the 25 parts he has 
in front of him, which is to say 25!, or about 1.55 x 1025 possibilities! If it took a sin-
gle minute for each of these possibilities to be explored, our watchmaker would not 
succeed in making even a single watch within the lifetime of the universe! Moreover, 
because he’s just a random assembler and cannot learn from experience, he has to 
explore all these possibilities each and every time he tries to build a watch! Clearly, 
such an entity working by such a process would, for all intents and purposes, never 
succeed, making de novo evolution of life virtually impossible. 

But what Simon first recognized, and I have developed (Root-Bernstein and Dillon 
1997; Hunding, et al., 2006), is that an equally dumb, blind and random watchmaker 
who uses stable modules built on the principle of molecular complementarity would 
succeed, and astoundingly quickly! Simon’s model assumed that the watchmakers 
knew how to make a watch (a clearly un-biological assumption), from which he de-
rived the following equation: The time required for the evolution of a complex form 
from simple elements depends critically on the number and distribution of potential 
intermediate stable forms. In particular, if there exists a hierarchy of potentially stable 
‘sub-assemblies’, with about the same span, s, [i.e., the number of parts or compo-
nents required to form each stable subunit] at each level of the hierarchy, then the 
probability that a subassembly process will be completed within any given time, T, 
can be expected to be about 1/(1 – p)s, where p is the probability that the assembly 
process will be interrupted during time T. Clearly the less stable each step is in the 
assembly (i.e., the greater p is) and the larger the number of components that must  
be assembled to achieve a complete assembly (s), the less probable any particular 
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assemblage is to evolve. Conversely, the more stable each step in assembly is (i.e., the 
smaller p gets) and the smaller the number of components required to produce a com-
pleted assembly (s), the greater the probability an assemblage is to evolve, (Simon, 
1981, p. 203). The implication of Simon’s model is that we should therefore expect 
evolution to be characterized by the selection of semi-stable modules arranged in a 
hierarchical fashion that minimizes wasted time, effort and resources. This is precise-
ly what we do see. But Simon’s model is not an accurate portrayal of the biological 
problem. 

The problem with Simon’s model is that evolutionary watchmakers do not know 
how to make a watch and must search randomly for stable modules. Fortunately, mo-
lecular complementarity between compounds naturally forms such stable modules, so 
these come into existence in just the kind of random fashion that needs to be assumed. 
So once again assume our modular watchmaker needs to make a watch from 25 piec-
es, but also assume that she makes her watches in stable sets of five parts. Assume 
also that all other combinations of the five parts are unstable. Stable five-element 
modules could be built by exploring only 5! possibilities, or just 120 combinations. 
Then our modular watchmaker would need to explore randomly the 5! possible com-
binations of these five modules, or another 120 possibilities. Altogether, the modular 
watchmaker explores only 720 possible combinations, which, if they could be ex-
plored at one possibility per minute, would yield a watch every two hours. Quite a 
difference from 1.55 x 1025 minutes to explore the original 25! Combinations! The 
impossible becomes highly likely (Root-Bernstein, 2011)! 

Now obviously, the advantage of modularity is not as great as I have just stated for 
a real, molecularly complementary system. In the first place, stable modules might not 
result from any given set of five components so that our modular watchmaker may 
have to explore more sets than I have assumed. Secondly, the specificity of module 
building is not perfect and some non-functional modules will also likely be stable, 
confusing final assembly. We can also assume that the proper modules will out-
compete the improper ones in producing complete watches, but this may not be the 
case if improper modules, inefficient at assembly as they may be, so out-number the 
proper ones as to swamp them. Finally, there is no biological reason to assume that 
stable modules have five components – the number could vary from two or three to 
two or three dozen per module. And this is exactly the point at which current proba-
bility theory fails. How do I model the kind of system I have just propounded in 
which modular sets are formed in a chemically reversible manner (describable as a 
continuous function), may contain variable numbers of components, and compete 
with each other in a probabilistic scenario? To solve this problem requires a mathe-
matics that can simultaneously deal with continuous variations in chemical kinetics 
yet yields information about modular probabilities. Again, such a mathematics must 
exist since Nature already performs these functions, but what does that mathematics 
look like? 

The importance of being able to address this modularity-probability problem can 
be seen by the fact that the formation of complementary module building within com-
plex systems can prune out huge numbers of possibilities at each step of hierarchical 
assembly. In general, the greater the number of pieces, and the more modular steps 
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involved in the process, the more efficient the process becomes. Given the mathemat-
ics of these probabilities, there must be some optimal number of pieces per module, 
and an optimal number of modules per functional unit, and an optimal stability that 
must be attained. All of these variables must be optimized so as to maximize the rate 
at which functional modules are generated while minimizing the number of possibili-
ties that must be explored. My guess is that nature has already solved this problem, 
and that the answer is about 3 to 6 elements per module. Analyzing naturally occur-
ring modular hierarchies for rules of optimization might therefore have vast implica-
tions for not only understanding the evolution of life, but also, as Simon (1981) notes 
in his original essay, for the most efficient design of chemical, technological, and 
even human systems of organization. 

Now, I have already alluded above to various biological problems that require 
working at the interfaces between continuous and what might be called “grainy” func-
tions (e.g., continuous flow of elements through discrete sets; modular probabilities 
determined by continuous chemical kinetics). One might posit that most of biology 
consists of sets of problems that exist at this continuous-grainy interface. For exam-
ple, chemical neurotransmitters (describable as continuous functions) release a single 
electrical discharge (a discrete function); individual organisms such as bacteria (dis-
crete) can potentially interact more or less strongly with other individuals by means of 
chemical messages (continuously variable) that determine whether they develop as 
many individuals or transform themselves into a single super-organism (a biofilm). 
How can we mathematically handle interactions that may vary continuously but act 
on a small set of definable individuals? These are not amenable to modeling solely 
using mathematics that assume continuous or infinitely small functions.  

I am particularly interested in these continuous-grainy problems from the perspec-
tive of complementarity. Any given species of molecule may interact more or less 
with any other type of molecule, so that in a very diverse mixture of molecules, a 
large number of weak interactions may overwhelm a small number of strong ones. 
The same can be true among sets of cells or in species or social interactions that in-
volve what Csermely has called “weak links” (Csermely, 2006) and I call “comple-
mentarity” (Root-Bernstein and Dillon, 1997; Root-Bernstein, 2011). There appears 
to be no good way to model such systems mathematically at present, yet such systems 
occur at every level of biological complexity. Again, since biological systems are able 
to integrate units with continuous functions, surely there is a mathematics that is ap-
propriate for modeling how biological systems do so. 

A fourth set of problems are also very intriguing and currently resistant to mathe-
matical analysis. One of the characteristic features of biological systems is that some 
of their properties involve transformations from scalar to vector quantities. Now we 
know from tensor calculus that multiplying a scalar and a scalar gives a scalar; and 
multiplying a scalar times a vector gives a vector; and multiplying a vector times a 
vector gives a scalar; but how does one get from purely scalar quantities to a vectorial 
one? How do racemic mixtures of chemicals give rise to chiral handedness in living 
systems? How does a chemical neurotransmitter signal (scalar diffusion) become a 
directional electrical signal? How does one evolve from random diffusion (scalar)  
to facilitated transport systems (vectorial)? How does one evolve from all possible 
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reactions occurring (primordial soup, laboratory bench) to reaction pathways (vectori-
al)? In all these cases (and many more) scalar processes result in vectorial ones, yet 
mathematics generally treats either scalar quantities or vectorial quantities, but not the 
transformation of scalar to vector. Do we need a new mathematical formalism to  
do so?   

If I might speculate, what we may need is a mathematics in which one assumes that 
every scalar quantity is actually a pair of inverse vectors that normally cancel each 
other out, but which, under the appropriate circumstances can be disentangled. For 
example, in all vectorial systems in biology of which I am aware, an inflow of one 
kind of molecule is always balanced by an outflow of another; selection for right-
handed sugars occurs only where there is concomitant selection for left-handed amino 
acids. So is it possible that in fact the overall balance of vectors in a biological system 
is always conserved and that the local manifestation of one half of an inverse vector 
pair (e.g., inflow) is always balanced by the expression of the opposite vector pair 
(outflow) in the opposing process? Is there a mathematics that can help us investigate 
the rules that might govern such processes by integrating vectorial reasoning into the 
kinds of set thinking postulated above so we can understand how molecules move 
directionally through cells as a result of metabolic processes, etc.? 

My fifth and final type of problem involves the linkage of form and function. Biol-
ogists who deal with almost any level of biological organization recognized that natu-
ral selection attempts to optimize forms to carry out particular functions, but since 
novel functions evolve from existing forms, these attempts may be seriously limited. 
The mathematical challenges involved in attempting to model these form-function 
interactions are far from trivial. On the one hand, we do not have geometrical tools 
that can easily model processes such as the complex folding of proteins or chromo-
somes let alone embryological development. Fractals and other forms of mathematics 
that generate lovely images that look like the final products of some of these 
processes (e.g., the branching structure of the bronchioles in the lungs) share nothing 
of the actual biological processes that give rise to these structures. Thus, our mathe-
matical geometries generally do not illuminate the processes that give rise to biologi-
cal geometries, but only their outward forms. More importantly, the interesting things 
about biological forms is not their geometries per se, but the ways in which these 
forms are reifications of the biochemical processes they carry out or make possible. 
For example, it has become evident that the folding of chromosomes is a prerequisite 
to bringing together genes that would otherwise be spatially separated; and that spatial 
proximity permits the rapid diffusion and control of interactive gene products that 
would otherwise be unable to interact in a reasonable biological time frame across an 
unfolded genome (Junier, et al., 2011). But what kind of mathematics would make it 
possible to model simultaneously the effects of geometry (spatial structure) on conti-
nuous functions such as diffusion that in turn regulate on-off gene regulatory switches 
that act discontinuously or digitally?  

Similarly, in developmental biology, we now have excellent data concerning the 
sets of genes that must be turned on and when they must be activated or inactivated in 
order to produce proper embryological development (e.g., Carroll, 2005), yet the dis-
crete information generated from combinations of individual genes is expressed as 
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continuous flow of proteins and hormones that produce gradients which must be  
reified as organized groupings of cells that have a specific form. So once again, em-
bryology is stymied by the lack of mathematical approaches that can link discrete, 
continuous and geometrical information simultaneously. Current approaches to these 
sorts of problems rely on modeling one aspect of the problem with one form of ma-
thematics, switching to another sort of mathematics to address the next aspect, and to 
a third to describe yet another. All this switching is an indication of how inadequate 
our mathematical tools are for addressing these problems. Biological systems function 
at all of these levels simultaneously, so why cannot our mathematics? 

I maintain that it is not the biology that is too messy to be modeled in these cases, 
but the mathematics that is inadequate (because inappropriate) to addressing these 
sorts of biological problems. This is why we need a new biomathematics! Indeed, I 
speculate that complementarity might be the solution to both the biological and the 
mathematical problems here. What we seem to need are the means to describe all of 
the biological problems listed above as manifestations of a single problem that can be 
examined using a single, new type of math – a mathematics that treats continuous 
functions, sets, vectors and geometries within a single formalism or through comple-
mentary formalisms that are integratable. 

To summarize, my contention is that the reason that biology has failed to develop a 
viable set of mathematical methods appropriate to solving its problems is that we have 
relied too long on mathematics developed to model physical problems that are intrin-
sically different. The assumption has been that biology can be reduced to chemistry 
and eventually to physics and therefore that a physics-derived mathematics should be 
sufficient. But hierarchy theory suggests that reductionism can never explain how 
novel properties and processes emerge. Biological entities have properties that are 
different from chemical and physical ones and which require novel mathematics to 
describe. What we need is not, therefore, more detailed physical models of biological 
systems that can handle greater and greater amounts of detailed data from increasing-
ly find-grained studies of the components of systems, but ways of identifying the 
biological properties that are as unique to such complex conglomerations as tempera-
ture is to a set of molecules. What we lack, in short, is a uniquely evolutionary ma-
thematics that deals with the emergence of organization from non-random selection 
among replicating variations within complex populations of things. The challenge of a 
biological mathematics, or biomathematics, is to invent what a mathematics of such 
emergent properties and organization look like. This new biomathematics will have to 
integrate at a minimum concepts of continuous mathematics with discrete mathemat-
ics, vector formalisms, and geometrical principles. Such a biologically relevant ma-
thematics does not currently exists. 

In conclusion, if I may be permitted one final speculation, I feel compelled to ask 
whether biomathematics may revolutionize mathematics itself by finding novel links 
between set theory, probability theory, hierarchy theory, network theory, vectorial 
mathematics etc. leading to a new type of super-mathematics that integrates (hopeful-
ly through fundamentally simple insights) disparate areas of both mathematics and the 
sciences. Since I have to think about biological systems in all of these ways in order 
to model them, and since biological processes are intrinsically carried out in these 
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integrated ways by Nature itself, it seems to me logical that real and useful connec-
tions must exist within the mathematical formulations of these natural processes as 
well. Indeed, as I have indicated in passing several times above, I believe that biology 
is just one of many such sets of emergent properties resulting from spontaneous or-
ganization within complex systems. In consequence, the principles that are derived 
from our studies of biomathematics should apply to an understanding of how novel 
properties can emerge in complex systems of any kind, whether ecological, social, 
behavioral, technological or economic. Thus, just as the Scientific Revolution pro-
vided us with physics-based mathematics that made possible the investigation of 
whole new realms of science, so can we expect the development of a biology-based 
mathematics to have equally far-reaching and revolutionary results. 
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