
Imperative versus Declarative Process Modeling

Languages: An Empirical Investigation

Paul Pichler1, Barbara Weber1, Stefan Zugal1, Jakob Pinggera1,
Jan Mendling2, and Hajo A. Reijers3

1 University of Innsbruck, Austria
paul.pichler@student.uibk.ac.at

{barbara.weber,stefan.zugal,jakob.pinggera}@uibk.ac.at
2 Humboldt-Universität zu Berlin, Germany

jan.mendling@wiwi.hu-berlin.de
3 Eindhoven University of Technology, The Netherlands

h.a.reijers@tue.nl

Abstract. Streams of research are emerging that emphasize the advan-
tages of using declarative process modeling languages over more tradi-
tional, imperative approaches. In particular, the declarative modeling
approach is known for its ability to cope with the limited flexibility of
the imperative approach. However, there is still not much empirical in-
sight into the actual strengths and the applicability of each modeling
paradigm. In this paper, we investigate in an experimental setting if
either the imperative or the declarative process modeling approach is
superior with respect to process model understanding. Even when task
types are considered that should better match one or the other, our study
finds that imperative process modeling languages appear to be connected
with better understanding.

Keywords: Imperative and Declarative Business Process Models, Cog-
nitive Dimensions Framework, Empirical Research.

1 Introduction

At the present stage, formal properties of business process models like liveness
and boundedness are quite well understood [1]. In contrast to these aspects, we
know rather little about theoretical foundations that might support the superi-
ority of one process modeling language in comparison to another one. There are
several reasons why suitable theories are not yet in place for language design,
most notably because the discipline is still rather young. Only little research
has been conducted empirically in this area so far, e.g., [2,?] which relate model
understanding to the modeling language and to model complexity.

The lack of empirical research on language quality has contributed to a no-
table, continuous invention of new techniques and to the claims on the supposed
superiority. For instance, Nigam and Caswell introduce the OpS technique in
which “the operational model is targeted at a business user and yet retains the

F. Daniel et al. (Eds.): BPM 2011 Workshops, Part I, LNBIP 99, pp. 383–394, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



384 P. Pichler et al.

formality needed for reasoning and, where applicable, automated implementa-
tion” implying that existing languages fall short on these characteristics [3, p.
429]. In a Poplin white paper, Owen and Raj claim a general superiority of one
modeling language over another, i.e., BPMN over UML Activity Diagrams, be-
cause “[BPMN] offers a process flow modeling technique that is more conducive
to the way business analysts model” [4, p.4]. As a final example, Smith and Fin-
gar state in their book that “BPML is the language of choice for formalizing
the expression, and execution, of collaborative interfaces” [5, p.205]. We do not
want to judge on the correctness of these statements here. Rather, we wish to
emphasize that a clear and objective baseline to judge such claims is in demand.

The matter of understanding is well-suited to serve as a pillar for discussing
process modeling language quality. Insights from cognitive research on program-
ming languages point to the fact that ‘design is redesign’ [6]: A computer program
is not written sequentially; a programmer typically works on different chunks of
the problem in an opportunistic order which requires a constant reinspection and
comprehension of the current work context. If we assume that process modelers
design their models in a similar fashion, we clearly have to accept the importance
of understanding as a quality factor. In other words, characteristics of a process
modeling language presumably facilitate comprehension to differing degrees in
a particular context.

To investigate whether process modeling languages actually offer different lev-
els of support for sense-making, we will necessarily need to limit our scope. One
of the important watersheds that exists between process modeling languages is
the one between imperative and declarative process modeling languages. For the
recently developed ConDec, a declarative process modeling language, its first de-
sign criterion has been that “the process models developed in the language must
be understandable for end-users” [7, p.15]. While it is claimed in the same work
that imperative languages, in comparison, deliver larger and more complex pro-
cess models, only anecdotic evidence is presented to support this. Also, in the
practitioner community opinions are manifold about the advantages of declar-
ative and imperative languages to capture business processes, see for example
[8,?,?]. These claims and discussions clearly point to the need for an objective,
empirically founded validation of the presumed advantages of the different types
of process modeling languages, which motivates the scope of our research.

The contribution of this paper is that it empirically examines if either imper-
ative or declarative process models are superior with respect to understanding
matters. To this purpose, we will test a set of theoretically grounded propositions
about the differences between the imperative and declarative process modeling
approach. The paper is structured as follows. Sect. 2 provides the background for
our research. Sect. 3 describes the experimental definition and planning, covering
the experimental setup and design. Sect. 4 presents the experimental execution
and the analysis of collected data. Furthermore, the results are discussed in this
section. Sect. 5 concludes the paper by providing a summary and an outlook.



Imperative versus Declarative Process Modeling Notations 385

2 Background

The differentiation between imperative and declarative languages has its roots
in computer programming. Imperative programming implies to “say how to do
something” [9, p.406], whereas declarative programming implies to “say what
is required and let the system determine how to achieve it” [9, p.406]. Similar
to imperative programming, imperative process modeling is characterized by
a so-called ‘inside-to-outside’ approach. It primarily specifies the procedure of
how work has to be done. Simply put, imperative modeling languages require
all execution alternatives to be explicitly specified in the model before the exe-
cution of the process. All new alternatives must be added to the model during
build-time. It is argued that this results in process models being over-specified
[7]. Declarative process modeling, by contrast, is referred to as an ‘outside-to-
inside’ approach. In contrast to imperative languages, declarative languages do
not specify the procedure a priori. Instead of determining how the process has
to work exactly, only its essential characteristics are described. Adding new con-
straints to the model limits the number of execution alternatives [7]. This may
be understood as follows: Initially, only the process activities are in the model,
allowing every possible execution behavior. By adding constraints to the model,
execution alternatives are discarded step by step. Figure 1 shows an example of
a declarative process model consisting of three activities A, B, and C and two
constraints. The constraint attached to activity C specifies that it has to be exe-
cuted at least once. The constraint between activities A and B requires that the
execution of activity B is preceded by activity A. Except for these restrictions,
the activities in the model can be executed arbitrarily often and in any order.

A B

C

1..*

Fig. 1. Declarative Process Model

Clearly, the above mentioned claims need to be substantiated in terms of
appropriate theories. The Cognitive Dimensions Framework (CDF) offers a ref-
erence for discussing and evaluating various types of notations based on their
cognitive effectiveness [10]. Its development is based on the ‘mental operations
theory’ [6], which in essence states that a notation performs better if fewer men-
tal operations are required to perform a task. In this way, a “matched pair”
between particular, notational characteristics and a specific task gives the best
performance. This view has evolved and matured over the years towards the
CDF [10,?], which contains many different characteristics to distinguish no-
tations from each other. In particular, the dimensions hard mental operations
(to understand a model) and hidden dependencies (between notation elements)
directly apply to process modeling understanding [10].



386 P. Pichler et al.

In line with the CDF, different notations should be judged relatively, i.e., in
terms of their aptitude towards different types of understanding tasks. “A no-
tation is never absolutely good, therefore, but good only in relation to certain
tasks” [10, p.3]. In this vein, it seems appropriate to investigate whether impera-
tive languages are better understandable with tasks containing a particular type
of information and declarative languages with tasks containing another type of
information [10]. For such a distinction, the classification between sequential and
circumstantial information is relevant.

Sequential information explains how input conditions lead to a certain out-
come. An example of a statement containing sequential information is: “Activity
X must be directly preceded by activity Y”. As this example demonstrates, se-
quential information often concentrates on what actions could be either next or
previous in a model [6]. In other words, sequential information typically relates
to actions immediately leading to or following from a certain outcome. On the
other hand, circumstantial information, given an outcome, relates to the overall
conditions that produced that outcome. An example of a statement containing
circumstantial information is: “If activity X or Y has been executed, it is possible
to terminate a process instance by executing at least one additional activity”. As
this example demonstrates, circumstantial information frequently corresponds to
what (combination of) circumstances will cause a particular outcome or action
[6]. In this context, circumstantial information typically relates to conditions
that have or have not occurred.

Empirical evidence has already been established that imperative programming
languages display sequential information in a readily-used form, while declar-
ative languages display circumstantial information in a readily-used form [6].
Based on the similarities between software programs and process models, it may
be assumed, therefore, that a similar, relativist viewpoint could also provide
a theoretical basis for the comparison of imperative versus declarative process
modeling languages [11]. Consequently, the following set of propositions may be
advanced, which are in line with those proposed in an earlier paper [11]:

P1. Given two semantically equivalent process models, establishing sequential
information will be easier on the basis of the model that is created with the
process modeling language that is relatively more imperative in nature.

P2. Given two semantically equivalent process models, establishing circumstan-
tial information will be easier on the basis of the model that is created with
the process modeling language that is relatively more declarative in nature.

To test these expectations, we will next describe an experimental design for that
purpose.

3 Experimental Definition and Planning

This section introduces the hypotheses, describes the subjects, objects, factors,
factor levels and response variables of our experiment. It will also present the



Imperative versus Declarative Process Modeling Notations 387

instrumentation, data collection procedure, and experimental design. Finally,
the parameters we controlled for in our experiment are discussed.

Factor and Factor Levels. The considered factors were model type and task
type, with two factor levels each. For the model type factor, we considered the
factor levels of imperative and declarative. For the task type factor, we considered
the factor levels sequential versus circumstantial.

Subjects. Students enrolled in classes on business process management were
participating as subjects in the experiment.

Objects. In preparation for the experiment, four semantically equivalent pro-
cess model pairs were created1. Semantic equivalence was ensured by testing
valid traces based on both model variants. BPMN was used to create the im-
perative models, and ConDec to create the declarative models. Both imperative
and declarative process models were created considering the following criteria:
1) Correctness, 2) Executability and 3) Representativeness. Correctness is the
precondition of executability, a characteristic of understandable process models
defined by the SEQUAL Framework [12]. For imperative models soundness and
structuredness were considered as correctness notions [13]. For declarative mod-
els, in turn, absence of dead activities and conflicts was required [7]. To ensure
executability we transformed the imperative models to Petri nets allowing us to
apply the token game. For declarative models, in turn, we tested executability
using the in-built verification functionality of DECLARE [7]. To ensure con-
tent validity, i.e., the representativeness of the experimental objects, we ensured
that the four model pairs covered the core concepts of both the imperative and
declarative paradigm. Imperative process models covered the five basic control
flow patterns (i.e., sequence, exclusive choice, simple merge, parallel split and
synchronization) [14] as well as loops. Declarative models, in turn, covered all
major constraint groups (i.e., existence, relation and negation constraints [15]).

Tasks. For each of the model pairs, i.e., a declarative versus an imperative
model, four sequential and four circumstantial tasks had to be created (compris-
ing understandability questions) considering the following criteria: 1) Typical
constructs, 2) Model parts, 3) Difficulty and 4) Consistency. To maintain con-
tent validity it had to be ensured that the experimental tasks cover all relevant
aspects of understandability for each modeling language. In [16], the four con-
structs order, concurrency, exclusiveness, and repetition are mentioned as being
crucial for the understanding of imperative process models and were therefore
considered for creating the sequential tasks. Circumstantial tasks, in turn, were
adjusted in terms of the constraints groups which determine declarative repre-
sentativeness (i.e., existence, relation, and negation constraints).

Sequential information usually affects local parts of a process model [17].
Consequently, sequential tasks were formulated with reference to local actions
(e.g., next or previous) in the model. Contrary to sequential information,

1 The material used for this study can be downloaded from:
http://barbaraweber.org/experiments/2010_Declarative_vs_Imperative.pdf

http://barbaraweber.org/experiments/2010_Declarative_vs_Imperative.pdf


388 P. Pichler et al.

circumstantial information tends to affect the process model rather globally [17].
Therefore, circumstantial tasks were formulated such that they ask for (the com-
bination of) circumstances that caused or will cause a particular action within
the process. To establish a balanced level of difficulty among the experimental
tasks, and hence avoid that tasks which are either too easy or too difficult impact
the result of the experiment, a pre-test was conducted. To ensure that only the
information captured by the tasks is of relevance for the experimental outcome,
the tasks were formulated consistently in respect of their structure and the use
of terms.

Response Variables. To compare declarative and imperative modeling lan-
guages we defined the following response variables: 1) accuracy as measured by
the number of correctly answered questions (tasks) and 2) speed by measuring
the time needed to complete the tasks. Since four sequential and four circum-
stantial tasks had to be completed for each model pair, accuracy values could
range between 0 and 4 for sequential and circumstantial tasks respectively.

Hypotheses. A statistical test with two factors is always associated with three
null hypotheses [18], one for each factor and one for the interaction between the
factors:

– Null Hypothesis H1: There is no significant difference in the performance
(in terms of accuracy and speed) of imperative and declarative models.

– Null Hypothesis H2: There is no significant difference in the performance
(in terms of accuracy and speed) of sequential and circumstantial tasks.

– Null Hypothesis H3: There is no significant interaction between the factor
model type and the factor task type (in terms of accuracy and speed).

Parameters. In addition to the described factors other variables can affect
the response variables under examination and therefore need to be controlled
[19]. For this experiment we considered three main parameters that can influ-
ence the understandability of process models, i.e., model characteristics, domain
knowledge and personal factors [20]. Model characteristics we controlled involved
visual layout and structural attributes. To control visual layout we maximized
symmetry, minimized bends and minimized edge crosses for both model variants
(i.e., imperative and declarative), since they are known factors which influence
model understandability [21]. To control the structural attribute size, which has
significant impact on model understandability [22], we had to ensure that the
imperative and declarative variants have equal size. Consequently, to avoid size
rather than the used modeling paradigm dictating the outcome, the used model
pairs comprised two small and two large models for each factor level. Fig.2 shows
an experimental model pair consisting of a small imperative and a small declar-
ative model.

To eliminate the influence of domain knowledge, activities of the process mod-
els were labeled with random letters. To control personal factors, the selection
of experimental subjects comprised preferably persons with uniform knowledge
regarding business process modeling. Nevertheless, the subjects had to complete



Imperative versus Declarative Process Modeling Notations 389

X +

X X Z XX

X N X

L

+ X R X

Z

init 1

X
1..*

R

0..1

0..1

L

N

Fig. 2. Imperat. BPMN model (left) and equivalent, declarat. ConDec model (right).

a questionnaire at the beginning of the experiment allowing us to analyze how
possible variations between the individual modeling knowledge influenced the
model understanding and quantify the distribution of modeling experience be-
tween the imperative and declarative modeling approach.

Experimental Design. The experimental design is based on the guidelines
for designing experiments from [19]. Following these guidelines, a randomized
2x2 factorial experiment has been designed, which investigates the influence of
two factors with two factor levels each. The experiment is called randomized,
since subjects are assigned to groups randomly. Fig. 3 illustrates the described
setup: Overall, the experiment comprised four model pairs. Depending on their
group, subjects either started with the imperative variant of Model Pair 1 or
with the semantically equivalent declarative variant. For two of the remaining
model pairs, the levels of factor model type were switched for the two groups,
i.e., overall, every subject worked on two declarative and two imperative process
models. Regarding factor task type every subject worked on both factor levels
(i.e., sequential and circumstantial tasks) for each model pair. To ensure inde-
pendence of samples, both sequential and circumstantial tasks were presented in
a random, and thus unique order to each subject.

Instrumentation and Data Collection Procedure. The participants con-
ducted the experiment using the Cheetah Experimental Platform [23], which
guided them through the experiment. The tool also automatically logged the
given answers, as well as the time that was needed to accomplish the experimen-
tal tasks.

Subjects

Group 2

n/2 Subjects

Group 1

n/2 Subjects

Model Pair 1

Experiment

Model P. 2 Model P. 3 Model P. 4

Factor 1

Level
1.2:
Imper.

Level
1.1:
Declar.

Factor 1

Level
1.1:
Declar.

Level
1.2:
Imper.

Factor 1

Level
1.2:
Imper.

Level
1.1:
Declar.

Factor 1

Factor Level 1.2:
Imperative

Factor Level 1.1:
Declarative

Factor 2

Factor Level 2.1:
Sequential

Factor Level 2.2:
Circumstantial

Factor Level 2.1:
Sequential

Factor Level 2.2:
Circumstantial

Objects

Declarative
Process Model

Imperative Process
Model

Fig. 3. Experimental Design



390 P. Pichler et al.

4 Performing the Experiment

This section deals with the experiment’s execution. Sect. 4.1 covers operational
aspects, i.e., how the experiment has been executed. Then, in Sect. 4.2 data is
analyzed and subsequently discussed in Sect. 4.3.

4.1 Experimental Operation

Experimental Preparation. Four semantically equivalent model pairs were
created for the empirical test. Additionally, for each model pair a set of four
sequential and four circumstantial tasks was developed (cf. Sect. 3). To ensure
the overall understandability of the experimental setup and a balanced degree
of difficulty, a pre-test was conducted.

Experimental Execution. The experiment was conducted in July 2010. In
sum, 28 subjects from the Humboldt Universität zu Berlin and the University
of Innsbruck participated in this empirical test. Subjects had one week time to
complete the experiment in an “offline” mode, i.e., they were not constantly
monitored.

Fig. 4 shows the structure of the experiment by means of a complete run: Each
student received a PDF file containing the introduction, hints for the experiment
and troubleshooting as well as specific instructions on how to download and
execute it.2 Having downloaded the experiment, the subjects had to complete
the questionnaire about their personal modeling knowledge and experience. An
example followed providing the solution as well as the respective explanation to
every test task. During the experimental phase, the subjects had to complete
eight tasks (four sequential and four circumstantial ones) for each of the four
models. A legend with the used modeling elements was attached to every process
model.

Introduction Questionnaire Example Model 1 Model 2 Model 3 Model 4

Experiment PhaseIntroduction and Familiarization Phase

Fig. 4. The Structure of the Experiment

Data Validation. Once the experimental study was carried out, the logged
data were analyzed regarding their consistency and plausibility. Finally, data
provided by 27 students were used in our data analysis. Data from one student
had to be removed because it was incomplete.

2 The version of CEP which was used for the experiment including the experimental
workflow can be downloaded from:
http://barbaraweber.org/experiments/2010_Declarative_vs_Imperative.zip

http://barbaraweber.org/experiments/2010_Declarative_vs_Imperative.zip


Imperative versus Declarative Process Modeling Notations 391

4.2 Data Analysis

In the following we describe the analysis and interpretation of data.

Descriptive Analysis. To give an overview of the experiment’s data, Table 1
shows mean values and standard deviation for accuracy and speed.

Table 1. Descriptive Statistics

Model Type Task Type N Accuracy
Mean(score)

Accuracy
Std. Dev.

Speed
Mean(min.)

Speed Std.
Dev.

Declarative Sequential 54 2.61 1.14 2.213 1.13
Circumst. 54 2.44 1.18 2.79 1.69

Imperative Sequential 54 3.26 0.89 1.91 0.98
Circumst. 54 2.87 0.95 2.06 0.80

Declarative 108 2.53 1.16 2.50 1.46
Imperative 108 3.06 0.94 1.98 0.89

Sequential 108 2.94 1.07 2.06 1.06
Circumst. 108 2.66 1.10 2.43 1.37

Hypotheses Testing. In a next step, the hypotheses introduced in Sect. 3
were tested. The empirical test in this work was designed as a two-way factorial
experiment. Accordingly, a two-way factorial research design requires a statistical
analysis method that allows the interpretation of both factors together (i.e.,
(M)ANOVA). Since the requirements for the application of ANOVA were not
satisfied, we applied the Sheirer-Ray-Hare test, a non-parametric alternative for
ANOVA [18].

First we discuss the result of testing null hypothesis H3, since the effect of
a factor can be interpreted individually only when there is no evidence that it
interacts with another factor [19].

Null Hypothesis H3: With an obtained p-value (=significance value) of 0.45
(>0.05), null hypothesis H3 cannot be rejected at a confidence level of 95%
for the response variable of accuracy. Also, the results for the response variable
of speed turned out to be insignificant (p-value of 0.37, >0.05). Hence, there is
no statistically significant interaction between the factors model type and task
type. Since there is no evidence of a significant interaction, the effect of the fac-
tors can be interpreted individually [19].

Null HypothesisH1:With an obtained p-value of 0.001 (<0.05), null hypothesisH1

has to be rejected for the response variable accuracy at a confidence level of 95%.
Hence, there is a statistically significant difference between the alternatives of the
factor model type: Imperative models have a better performance in terms of accu-
racy than declarative models, regardless of the factor task type. With an obtained

3 A lower number in terms of response variable “speed” implies a better result.



392 P. Pichler et al.

p-value of 0.002 (<0.05), null hypothesis H1 has to be rejected for response vari-
able speed. This result indicates that imperative models have a better performance
in terms of speed than declarative models, regardless of the factor task type.

Null Hypothesis H2: With an obtained p-value of 0.06, which just exceeds the
0.05 level, null hypothesis H2 cannot be rejected at a confidence level of 95%,
i.e., there is no statistically significant difference between the alternatives of the
factor task type, i.e., sequential or circumstantial tasks, in terms of accuracy.
Since there is the possibility that one type of process models is significantly better
performing with one type of the tasks, and the other type of process models is
not, we additionally analyzed this hypothesis separately for each factor level of
factor model type using the Mann-Whitney-U test. With an obtained p-value
of 0.02 (<0.05), a statistically significant difference between the alternatives of
the factor task type could be established when imperative models are used, i.e.,
sequential tasks compared to circumstantial tasks lead to a better performance
in terms of accuracy when imperative models are used. For declarative models,
in turn, with a p-value of 0.51 >0.05 no statistically significant results could
be obtained. For the response variable of speed, null hypothesis H2 has to be
rejected (p-value of 0.01, <0.05): Sequential tasks compared to circumstantial
tasks lead to a better performance in terms of speed than circumstantial tasks,
regardless of the factor model type.

4.3 Discussion

The objective of this paper has been to investigate if either the imperative or the
declarative process modeling approach is superior with respect to understanding
matters. The set-up for this investigation has been grounded on insights from
cognitive research on programming languages. Our findings suggest that imper-
ative process models are significantly better understandable than declarative
models, irrespective of the type of tasks involved (sequential vs. circumstantial).

This result, however, must be treated with care, since an ex-post analysis of the
process modeling experience of our subjects revealed that the experimental sub-
jects were rather familiar with imperative process modeling, but at best only to
a limited extent to declarative modeling. Based on this imbalance, a subsequent
analysis was examined. This revealed that a learning effect for declarative models
might have occurred during the experiment. Since this affects generalizability of
the results, replications regarding this research objective are required with sub-
jects having a more balanced level of familiarity for both modeling paradigms.

In addition to examining imperative versus declarative process models, our
goal has been to test if the theoretical axioms of the CDF, which were originally
established for computer programming as part of extensive cognitive research,
also apply to business process modeling. Based on the obtained data it could
only be confirmed that tasks containing sequential information are better un-
derstandable using imperative process models, but not that tasks containing
circumstantial information are better understandable using declarative mod-
els. Regarding the response variable accuracy, sequential tasks were easier to



Imperative versus Declarative Process Modeling Notations 393

understand using imperative models. However, we could not confirm that cir-
cumstantial tasks are easier to understand using declarative models. In terms of
the response variable speed, sequential tasks turned out to be better performing
irrespective of the type of model concerned.

We effectively conducted the experiment with a homogeneous group of stu-
dents. Still, further potential limitations must be considered. In particular, the
relatively low number of experimental subjects constitutes a limitation as tests
converge towards significant results with more subjects. Moreover, due to the
small number of participants in the pre-test, it was not possible to conduct
a statistically significant reliability analysis on the internal consistency of the
different understandability tasks. Even though we tried to balance the level of
difficulty with a pre-test, it cannot be entirely excluded that this issue might
have influenced the experimental result. Another limitation regarding the gener-
alizatbility of our results relates to the fact that our experiment only compares
one concrete modeling language representing each process modeling approach.

5 Summary and Outlook

In this paper, we compared the imperative process modeling approach with the
declarative approach with reference to understanding based on insights from cog-
nitive researchon programming.Essentially, imperative processmodels turned out
to bemore comprehensible thandeclarative processmodels, irrespective of the type
of task involved. However, based on the imbalance of subjects’ familiarity with im-
perative and declarative process modeling, this result must be treated with care.

A further insight concerns the theoretical axioms of the Cognitive Dimensions
Framework, stating that tasks containing sequential information are better un-
derstandable using imperative languages, and tasks containing circumstantial
information are better understandable using declarative languages. This could
be confirmed partially. Apparently, sequential tasks are better understandable,
regardless whether an imperative or declarative process model was used.

The most important direction for future research we identify would be to
replicate the experiment in a situation where the participants’ knowledge of and
experience with both imperative and declarative languages is less skewed. One
can argue that this may be hard to establish, given the dominant emphasis
in many settings on the use of imperative approaches, for example in academic
programs. A step forward here may be taken by involving people with no training
or background at all in process modeling, who can be provided equal amounts
of training time in both paradigms.

References

1. Reisig, W., Rozenberg, G. (eds.): APN 1998. LNCS, vol. 1491. Springer, Heidelberg
(1998)

2. Recker, J., Dreiling, A.: Does It Matter Which Process Modeling Language We
Teach or Use? An Experimental Study on Understanding Process Modelling Lan-
guages without Formal Education. In: Proc. ACIS 2007, pp. 356–366 (2007)



394 P. Pichler et al.

3. Nigam, A., Caswell, N.: Business artifacts: An approach to operational specifica-
tion. IBM Systems Journal 42(3), 428–445 (2003)

4. Owen, M., Raj, J.: BPMN and Business Process Management: Introduction to
the New Business Process Modeling Standard. Popkin, Technical report (2003),
http://whitepaper.talentum.com/whitepaper/view.do?id=7050

5. Smith, H., Fingar, P.: Business Process Management: The Third Wave. Meghan-
Kiffer Press (2003)

6. Gilmore, D.J., Green, T.R.: Comprehension and recall of miniature programs.
IJMMS 21, 31–48 (1984)

7. Pesic, M.: Constraint-Based Workflow Management Systems: Shifting Control to
Users. PhD thesis, TU Eindhoven (2008)

8. Korhonen, J.: Evolution of agile enterprise architecture (April 2006),
http://blog.jannekorhonen.fi/?p=11 (retrieved May 10, 2011)

9. Roy, P.V., Haridi, S.: Concepts, Techniques, and Models of Computer Program-
ming. The MIT Press (2004)

10. Green, T.R.: Cognitive dimensions of notations. In: Proc. BCSHCI 1989, pp. 443–
460 (1989)

11. Fahland, D., Mendling, J., Reijers, H.A.,Weber, B.,Weidlich,M., Zugal, S.: Declara-
tive Versus Imperative ProcessModeling Languages: The Issue of Understandability.
In: Halpin, T., Krogstie, J., Nurcan, S., Proper, E., Schmidt, R., Soffer, P., Ukor, R.
(eds.) EMMSAD 2009. LNBIP, vol. 29, pp. 353–366. Springer, Heidelberg (2009)

12. Krogstie, J., Sindre, G., Jørgensen, H.: Process models representing knowledge for
action: a revised quality framework. EJIS 15, 91–102 (2006)

13. Mendling, J.: Metrics for Process Models: Empirical Foundations of Verification,
Error Prediction, and Guidelines for Correctness. Springer, Heidelberg (2008)

14. Russell, N., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mulyar, N.: Workflow
Control-Flow Patterns. A Revised View. BPM Center Report, 6–22 (2006)

15. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a Truly Declarative Service
Flow Language. In: Bravetti, M., Núñez, M., Tennenholtz, M. (eds.) WS-FM 2006.
LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

16. Melcher, J., Mendling, J., Reijers, H.A., Seese, D.: On Measuring the Understand-
ability of Process Models. In: Rinderle-Ma, S., Sadiq, S., Leymann, F. (eds.) BPM
2009. LNBIP, vol. 43, pp. 465–476. Springer, Heidelberg (2010)

17. Weidlich, M., Zugal, S., Pinggera, J., Fahland, D., Weber, B., Reijers, H.A.,
Mendling, J.: The Impact of Sequential and Circumstantial Changes on Process
Models. In: Proc. ER-POIS 2010, pp. 43–54 (2010)

18. Dytham, C.: Choosing and Using Statistics. A Biologist’s Guide. John Wiley &
Sons (2003)

19. Juristo, N., Moreno, A.M.: Basics of Software Engineering Experimentation.
Kluwer Academic Publishers (2001)

20. Mendling, J., Strembeck, M.: Influence factors of understanding business process
models. In: Proc. BIS 2008, pp. 142–153 (2008)

21. Purchase, H.: Which Aesthetic has the Greatest Effect on Human Understand-
ing? In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 248–261. Springer,
Heidelberg (1997)

22. Mendling, J., Reijers, H.A., Cardoso, J.: What Makes Process Models Understand-
able? In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714,
pp. 48–63. Springer, Heidelberg (2007)

23. Pinggera, J., Zugal, S., Weber, B.: Investigating the process of process modeling
with cheetah experimental platform. In: Proc. ER-POIS 2010, pp. 13–18 (2010)

http://whitepaper.talentum.com/whitepaper/view.do?id=7050
http://blog.jannekorhonen.fi/?p=11

	Imperative versus Declarative Process Modeling Languages: An Empirical Investigation
	Introduction
	Background
	Experimental Definition and Planning
	Performing the Experiment
	Experimental Operation
	Data Analysis
	Discussion

	Summary and Outlook
	References




