
A Formal Model for Databases in DNA

Joris J.M. Gillis� and Jan Van den Bussche

Hasselt University and Transnational University of Limburg,
Agoralaan Gebouw D, 3590 Diepenbeek, Belgium

Abstract. Our goal is to better understand, at a theoretical level, the
database aspects of DNA computing. Thereto, we introduce a formally
defined data model of so-called sticker DNA complexes, suitable for the
representation and manipulation of structured data in DNA. We also
define DNAQL, a restricted programming language over sticker DNA
complexes. DNAQL stands to general DNA computing as the standard
relational algebra for relational databases stands to general-purpose con-
ventional computing. The number of operations performed during the
execution of a DNAQL program, on any input, is only polynomial in
the dimension of the data, i.e., the number of bits needed to represent
a single data entry. Moreover, each operation can be implemented in
DNA using a constant number of laboratory steps. We prove that the
relational algebra can be simulated in DNAQL.

Keywords: DNA Computing, Formal Model, Relational Algebra.

1 Introduction

In DNA computing [16,3], data are represented using synthetic DNA molecules
in vitro. Operations on data are performed by biotechnological manipulations
of DNA that are based on DNA self-assembly (Watson–Crick base pairing) or
on explicit effects upon DNA by specific enzymes. In the original approach to
DNA computing, which we could call the Adleman model [2,5,18], one uses a
more or less standard repertoire of operations on DNA, where each operation
corresponds to a fixed number of steps in the laboratory. (These steps could be
performed by a human or by a robot.)

In more recent years, research in DNA computing is largely focusing on the
goal to let an entire computation happen by self-assembly alone, without (or with
minimal) outside intervention, e.g., [23,22,11]. Whereas the pure self-assembly
model is very attractive, it is harder to achieve in practice, and indeed this is
the subject of a lot of current research in the area of DNA nanotechnology.

Meanwhile, the original Adleman model deserves further study, and in this pa-
per we have a renewed look at the Adleman model, specifically from the perspec-
tive of databases. Indeed, DNA computing is very attractive from the database
perspective: the nanoscale and robustness of DNA molecules are promising from

� Ph.D. fellowship of the Research Foundation - Flanders (FWO)

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 18–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Formal Model for Databases in DNA 19

a data storage point of view, and the highly parallel operations of DNA com-
puting correspond well with the bulk data processing nature typical of database
query processing [1]. Most earlier theoretical work on the possibilities of DNA
computing has focused either on the ability to mimick classical models of com-
putation such as finite automata or Turing machines, or on the relationship
with parallel computation, but this always from a general-purpose computing
perspective.

In contrast, in database theory, one considers restricted models of computa-
tion, limited in computational power but still with sufficient expressiveness for
structured database manipulation. The classical model is the relational algebra
for relational databases [1]. This algebra consists of six operations on relations
(database tables): union; difference; cartesian product; selection; projection; and
renaming. These operations can be composed to form expressions. These express
database queries, and the relational algebra can express precisely those database
queries that can be defined in first-order logic, thus providing a well-delineated
restriction in computational power.

The benefit of restricted computational models is that they facilitate the iden-
tification of optimisation strategies for more efficient processing; hence there ex-
ists a large body of techniques for database query processing, e.g., [17]. From the
point of view of theoretical science, an added benefit of a restricted computa-
tional model is that it allows us to study and attempt to characterise the precise
computational abilities of the computational systems that are being modeled
(such as relational database systems).

Motivated by the above considerations, in this paper, we want to propose a
solution to the following equation:

relational databases and relational algebra
general-purpose conventional computing

=
?

DNA computing (Adleman model)

We define a formal data model of sticker complexes, which represent complexes of
DNA molecules. Our complexes are general enough to serve as data structures for
structured data such as found in relational databases. At the same time, however,
sticker complexes are restricted so that we avoid the complications connected to
the difficult secundary structure prediction problem of general DNA complexes
[14]. Indeed, our main contribution consists in formally defining a well-behaved
family of DNA-complex data structures, with an accompanying set of operations
on these data structure that preserve the well-behavedness restrictions. We fit
the operations into a first-order query language, called DNAQL, with a formal
operational semantics. We thus propose the sticker complex data model, together
with DNAQL, as the DNA computing analogues of the relational database model
and the accompanying relational algebra. Restrictive as sticker complexes and
DNAQL may be, we prove that they can still simulate the relational data model
and the relational algebra. At the same time, we stress that our new DNA
database model should also be appreciated in its own right as a restricted model
of DNA computing specialised to database manipulation.

This paper is organised as follows. Section 2 discusses related work. Section 3
defines the data model. Section 4 introduces important operations on sticker

20 J.J.M. Gillis and J. Van den Bussche

complexes. Section 5 discusses the representation of structured data using com-
plexes. Section 6 discusses the implementation in DNA of the operations. Sec-
tion 7 defines the query language DNAQL. Section 8 presentes the simulation of
the relational algebra in DNAQL. We conclude in Section 9.

2 Related Work

Our work can be seen as a followup of Reif’s original work [18] on relating DNA
computing with conventional parallel computing. Indeed, Reif also formalized
DNA complexes and considered similar operations. Our model specializes Reif’s
model to a database model. For example, it is well known [1,12] that the data
complexity of the relational algebra (first-order logic) belongs to the parallel
circuit complexity class AC0, denoting constant-depth, polynomial-size circuits
with unbounded fan-in. Likewise, DNAQL programs execute a number of op-
erations on complexes that are largely independent of the data size, except for
a polynomial dependence on the number of bits needed to represent a single
data entry, a number we call the dimension of the data. Moreover, as usual for
DNA computing, each operation works in parallel on the different DNA strands
present in a complex, and each operation can be implemented in real DNA in a
constant number of laboratory steps.

Our work also clearly fits in a recent trend in DNA computing to identify spe-
cialised computational models within the general framework of DNA computing.
This trend is nicely exemplified by the work by Cardelli [6] and Majumder and
Reif [15], where the specialised computational model is that of process algebras;
in our work, it is that of databases.

While our work is not the first to relate the relational algebra with DNA com-
puting, we are the first to do it formally and in detail. An abbreviated account
of achieving relational algebra operations through DNA manipulation was given
recently by Yamamoto et al. [26], but unfortunately that paper is too sketchy to
allow any comparison with our approach. In contrast, our own methods are fully
formalised, and importantly, our work identifies restrictions on DNA computing
within which relational algebra simulation remains possible. More influential to
our work is the older work by Arita et al. [4] demonstrating how one can accom-
plish concatenation and rotation of DNA strands. Such manipulations, which
involve circular DNA, are crucial in our model, and indeed were already crucial
to Reif [18].

Finally, we mention the earlier works on DNA memories [19,7], which, while
having a database flavor, are primarily about supporting searching in sets of
DNA strands and largely ignore the more complex operations of the relational
algebra such as difference, projection, cartesian product, and renaming.

3 The Sticker-Complex Data Model

In this section we formally define a family of data structures which we call
sticker complexes. They are an abstraction of complexes of DNA strands. Reif

A Formal Model for Databases in DNA 21

[18] already defined a similar data structure, but our definition introduces several
limitations so as to avoid unrealistic or otherwise complicated and unmanage-
able secundary structures. The adjective ‘sticker’ points to our restriction of
hybridization to short primers (which we call “negative” strands) for the recog-
nition and splicing of the strands carrying the actual data (called the “positive”
strands).

Basically, we assume the following disjoint, finite alphabets: Λ of atomic value
symbols; Ω of attribute names ; and Θ = {#1, #2, #3, #4, #5, #6, #7, #8, #9} of
tags. The union of these three alphabets is denoted by Σ and called the positive
alphabet.

Furthermore, we use a negative alphabet, denoted Σ, disjoint from Σ, defined
as Σ = {ā | a ∈ Σ}. Thus there is a bijection between Σ and Σ, which is called
complementarity and is denoted by overlining a symbol; we set ¯̄a = a.

We will first define pre-complexes that contain the overall structure of sticker
complexes. Sticker complexes will then be defined as pre-complexes satisfying
various restrictions. A pre-complex is a finite, edge-labeled directed graph where
the edges represent bases in strands, and the nodes represent the endpoints
between the bases in a strand. Moreover, a pre-complex is equipped with a
matching, representing base pairing, and two predicates. One predicate indicates
which bases are “immobilized”, i.e., do not float freely and can be separated from
solution in a controlled manner; the other predicate indicates which bases are
“blocked”, i.e., cannot participate in base pairing. Formally, a pre-complex is a
6-tuple (V, E, λ, μ, immob, blocked) such that:

1. V is a finite set of nodes,
2. E ⊆ V × V is a finite set of directed edges without self-loops,
3. λ : E → Σ ∪ Σ is a total function labeling the edges,
4. μ ⊆ [E]2 = {{e, e′} | e, e′ ∈ E and e �= e′} is a partial matching on the edges,

i.e., each edge occurs in at most one pair in μ,
5. immob ⊆ E,
6. blocked ⊆ E.

Let C be a pre-complex as above. We introduce the notion of “strand” and
“component” of C as follows. A strand of C is simply a connected component of
the directed graph (V, E). Furthermore, we say two strands s and s′ are bonded
if there exists some edge e in s and some edge e′ in s′ with {e, e′} ∈ μ. When
two strands are connected (possibly indirectly) by this bonding relation, we say
they belong to the same component. Thus, a component of a pre-complex is
a substructure formed by a maximal set of strands connected by the bonding
relation.

A sticker complex now is a pre-complex satisfying the following restrictions:

1. There are no isolated nodes, i.e., each node occurs in at least one edge.
2. Each node has at most one incoming and at most one outgoing edge. Thus,

each strand has the form of a chain or a cycle.
3. The labels on a chain are “homogeneous”, in the sense that either all edges

are labeled with positive symbols or all edges are labeled with negative

22 J.J.M. Gillis and J. Van den Bussche

symbols. Naturally, a strand with positive (negative) symbols is called a
positive (negative) strand.

4. Negative strands are severely restricted: specifically, every negative strand
must be a chain of one or two edges.

5. Matchings by μ can only occur between complementarly labeled edges.
6. An edge can be immobilized only if it is the sole edge of a negative strand.
7. Edges in blocked do not occur in μ.
8. Each component can contain at most one immobilized edge.

Henceforth, for simplicity, we will refer to sticker complexes simply as “com-
plexes”.

We remark that the predicate blocked and the matching μ serve to abstract
two different features of double-strandedness. The matching μ is used to make
explicit where the stickers (short negative strands) pair with the positive strands.
The predicate blocked represents longer stretches of double strands. As in the
work by Rozenberg and Spaink [20], blocking is used to restrict the places where
hybridization can still occur.

We also remark that it is not necessary to require that edges matched by μ run
in opposite directions (in accordance with the opposite 5′–3′ and 3′–5′ directions
of double-stranded DNA). This is because stickers of length one can trivially be
placed in the desired direction, and stickers of length two can always fold so as
to be again in the desired direction. The latter is illustrated in Figure 1.

b

a b

a

b

a

b

a

Fig. 1. On the left, a complex with two strands spelling the words ab and b̄ā and
the expected complementary base pairing. On the right, a complex with two strands
spelling the words ab and āb̄ and a “folded” base pairing. Dotted lines denote edges
matched by μ.

Redundancy in complexes. In practice, a test tube will contain many duplicate
strands, and indeed this multiplicity is typically crucial for DNA computing
to work. Accordingly, in our model, each component of a complex stands for
possibly multiple occurrences. (This important issue is not addressed in Reif’s
formalisation of complexes [18].) In order to formalize this, we define the notions
of subsumption, equivalence, redundant extension, and minimality.

A complex C′ is said to subsume a complex C if for each component D of C,
there exists an isomorphic component D′ in C′. Two complexes C and C′ are

A Formal Model for Databases in DNA 23

said to be equivalent if they subsume each other. When C′ is equivalent to C
and an extension of C, we call C′ a redundant extension of C.

A component D of a complex C is called redundant if some other component
of C is isomorphic to D. Note that removing a redundant component from C
yields a complex that is still equivalent to C. A complex that has no redundant
components is called minimal. Naturally, each complex C has a unique (up
to isomorphism) minimal complex C′ that is equivalent to C; we call C′ the
minimization of C.

4 Operations on Complexes

In this section, we formally define a set of operations on complexes that are rather
standard in the DNA computing literature, except perhaps the difference. But
what is interesting, however, is that we have defined sticker complexes in such a
way that each operation always result in a sticker complex when applied to sticker
complexes. Moreover, the difference operation imposes additional restrictions on
its input so as to guarantee effective implementability in real DNA (discussed in
Section 6).

As a general proviso, in the following definitions, a final minimization step
should always be applied to the result so as to obtain a mathematically deter-
ministic operation. In the following definitions we keep this implicit so as not
to clutter up the presentation. Also, it is understood that the result of each
operation is defined up to isomorphism.

Union. Let C1 = (V1, E1, λ1, μ1, immob1, blocked1) and C2 = (V2, E2, λ2, μ2,
immob2, blocked2) be two complexes. W.l.o.g. we assume that V1 and V2 are
disjoint. Then the union C1∪C2 equals (V1∪V2, E1∪E2, λ1∪λ2, μ1∪μ2, immob1∪
immob2, blocked1 ∪ blocked2).

Difference. Let C1 and C2 be two complexes that satisfy the following conditions:

1. μ1 = immob1 = blocked1 = ∅ = μ2 = immob2 = blocked2, i.e., all compo-
nents in C1 and C2 are single strands.

2. All strands of C1 and C2 are positive, noncircular, and all have the same
length.

3. Each strand of C2 ends with #4 and does not contain #5.

Then the difference C1 − C2 equals the union of all strands in C1 that do not
have an isomorphic copy in C2. If C1 and C2 do not satisfy the above conditions
then C1 − C2 is undefined.

Hybridize. Let C = (V, E, λ, μ, immob, blocked) and C′ = (V ′, E′, λ′, μ′, immob ′,
blocked ′) be two complexes. We say that C′ is a hybridization extension of C
if V = V ′, E = E′, λ = λ′, immob = immob ′, blocked = blocked ′ and μ′ is an
extension of μ. Beware that a hybridization extension must satisfy all conditions
from the definition of sticker complex. A complex C′ is said to have maximal
matching if the only hybridization extension of C′ is C′ itself.

24 J.J.M. Gillis and J. Van den Bussche

The notion of hybridization extension is not sufficient, however, since we want
to allow duplicate copies of components in C to participate in hybridization.
(This important issue is glossed over in Reif’s formalisation [18].) To formalize
this behavior, let us call C′ (with matching μ′) a multiplying hybridization exten-
sion (MHE) of C if C′ is a hybridization extension, with maximal matching, of
some redundant extension C′′ of C. Moreover, we call a component D of an MHE
unfinished if there exist another MHE in which D occurs bonded within a larger
component. We then call an MHE saturated if it has no unfinished components.
This is illustrated in Figure 2.

b

c d

b c

b

a

d

b c
b

a b c

d

b c
a b

b

a b c

Fig. 2. Left: a complex C; top right: a hybridization extension of C with maximal
matching, but not saturated in view of the MHE of C shown bottom right; that MHE
is saturated. Dotted lines denote edges matched by μ.

Finally we say that C has recursion-free hybridization if there exists only a
finite number of saturated hybridization extensions of C.

A Formal Model for Databases in DNA 25

On the other hand, we do not want hybridization to go off into an uncontrolled
chain reaction. Indeed, our very goal in this paper is to explore a “first-order” or
“recursion-free” version of DNA computing, in line with the first-order nature of
the relational algebra [1]. Thus we want to stay away from recursive self-assembly
DNA computations. Formally, we want to rule out the situations where there
are infinitely many possible non-equivalent MHE’s. Such situations are very well
possible. Consider, for a simple example, the complex C consisting of two non-
circular strands spelling out the words ab and āb̄. Taking n copies of ab and
n copies of āb̄, we can form arbitrary long non-equivalent MHE’s of C. An
illustration for n = 3 is given in Figure 3.

b

ab

a

b

ab ab ab

a b a ab

Fig. 3. A complex (top) and one of its MHE’s (bottom). Dotted lines denote edges
matched by μ. Note that the MHE forms a ring structure.

Formally, we say that C has recursion-free hybridization if their are only
finitely many saturated MHE’s of C. If this is the case, we define hybridize(C)
to equal the disjoint union of all saturated MHE’s of C. If C does not have
recursion-free hybridization, we consider hybridize(C) to be undefined. For
example, it can be verified that the complex from Figure 2 has recursion-free
hybridization.

Ligate. The ligate operator concatenates strands that are held together by a
sticker. Formally, define a gap as a set of four edges {e1, e2, e3, e4} such that
{e1, e4} ∈ μ; {e2, e3} ∈ μ; e1 and e2 (in that order) are consecutive edges on a
negative strand; e3 is the last edge on its (positive) strand; and e4 is the first
edge on its (positive) strand. By filling a gap we mean modifying the complex
so that the endnode of e3 and the startnode of e4 are identified. We now define
ligate(C) as the complex obtained from C by filling all gaps.

Flush. Quite simply flush(C) equals the complex obtained from C by removing
all components that do not contain an immobilized edge.

Split. Consider a node u in some complex C. By splitting C at u, we mean the
following.

26 J.J.M. Gillis and J. Van den Bussche

– If u has an incoming (outgoing) edge, denote it by e1 (e2).
– If both e1 and e2 exist, then replace u by two nodes u1 and u2, letting e1

arrive in u1, and letting e2 start in u2.
– Furthermore, if there exists a node u′ with incoming edge e4 and outgoing

edge e3, such that {e1, e3} ∈ μ or {e2, e4} ∈ μ, then u′ is also split in an
analogous manner.

Also, an edge is called interacting if it neither occurs in blocked nor in μ.
Now consider the set of triples shown in Table 1. Each triple is called a split-

point and has the form (label , interacting, place). By splitting C at such a split-
point, we mean splitting C at all startnodes (if place is ‘before’) or endnodes
(otherwise) of edges labeled label , on condition that the edge is interacting
(or noninteracting, depending on the boolean value interacting). The result is
denoted by split(C, label).

Table 1. The allowed split points

Label Interacting Place

#2 false before
#3 false before
#4 false after
#6 true after
#8 true before

Blocking. There are two blocking operations. Here we assume that C is “satu-
rated” in the sense that C is equivalent to hybridize(C); if this condition is not
satisfied then the blocking operations on C are considered to be undefined.

The simplest operation is block(C, σ), for any σ ∈ Σ, which equals the com-
plex obtained from C by adding all edges labeled σ to blocked .

For the other operation, let again be σ ∈ Σ, and consider any contiguous
substrand s in C. We call s a σ-blocking range if it satisfies three conditions.
Firstly, all edges of the substrand are interacting (in the sense of the previous
paragraph). Secondly, either the substrand contains the first edge of its strand,
or the edge preceding the first edge of the substrand is blocked. Thirdly, the last
edge of the substrand is labeled with σ. Now we define blockfrom(C, σ) to be
the complex obtained from C by adding to blocked all edges appearing in some
σ-blocking range.

Cleanup. The cleanup operator undoes matchings and blockings and removes
all strands except for the longest positive strands. Here we assume the condition
that every positive strand in C is at least three long, and has at least one
interacting edge; if C does not satisfy this condition, cleanup(C) is not defined.
Otherwise, cleanup(C) equals the union of all positive strands of C of maximal
length; there are no matched and no blocked edges in cleanup(C).

A Formal Model for Databases in DNA 27

5 Data Representation

When we want to represent structured data as sticker complexes, the symbols
from the alphabet Σ = Λ ∪ Ω ∪ Θ will be used in different ways. Attributes
(Ω) will be used to indicate the structure of the data; tags (Θ) will be used as
separators and auxiliary markers in data manipulation. Atomic value symbols
(Λ) will be used to represent the actual data entries. However, since Λ is just a
finite alphabet typically of small size, we will need to use strings (or vectors) of
atomic value symbols to represent data entries, just like words of bits are used
in conventional computing to represent data entries like characters or integers.
In analogy to the word length of a conventional computer processor, in our
approach we assume some dimension �, a natural number, is known. Then every
data entry is encoded by an �-vector of atomic data symbols.

Formally, we say that a sticker complex C has dimension � if every edge e la-
beled by some (positive) atomic value symbol is part of a sequence (e0, e1, . . . , e�,
e�+1) of � + 2 consecutive edges, where e0 is labeled #3; each ei for i = 1, . . . , �
is labeled with a positive atomic value symbol; and e�+1 is labeled #4. So, e is
one of the ei’s with i ∈ {1, . . . , �}. We call (e0, e1, . . . , e�, e�+1) an �-vector in C.
A complex of dimension � is also called an �-complex.

We also introduce an additional blocking operator on �-complexes. Let n be
a natural number and let C be a complex satisfying the following conditions:

1. C is an �-complex with � ≥ n;
2. in every �-vector in C, either all edges are blocked or no edge is blocked;
3. C is equivalent to hybridize(C).

Then blockexcept(C, n) equals the complex obtained from C by blocking,
within each �-vector (e0, e1, . . . , e�, e�+1) that is not yet blocked, all edges ex-
cept en. If (C, n) does not satisfy the conditions above, then blockexcept(C, n)
is undefined.

6 Implementation in DNA

In this section, we argue that the abstract sticker complexes and the operations
on them presented above can be implemented by real DNA complexes. Our
discussion remains theoretical as we have not performed laboratory experiments.
On the one hand, our main purpose is to make the abstract model plausible
as a theoretical framework in which the possibilities and limitations of DNA
computing as a database model; on the other hand, we use only rather standard
biotechnological techniques.

Each component of an abstract complex is represented by a large surplus of
duplicate copies in DNA. Each positive alphabet symbol from Σ is implemented
by a strand of (single-stranded) DNA, such that the resulting set of DNA strands
forms a set of DNA codewords [8,21,24]. If the DNA strand for symbol a ∈ Σ
is w, then the DNA strand for the complementary symbol ā, is, naturally, the
Watson-Crick complementary strand to w. Then, matching of edges by μ in an

28 J.J.M. Gillis and J. Van den Bussche

abstract complex is implemented by base pairing in the DNA complex. We will
see below how blocking is implemented. Immobilization is implemented as is
standard in DNA computing by attachment to surfaces [13] or magnetic beads.

The union operation amounts to mixing two test tubes together.
The difference C1 − C2 of complexes can be implemented by a subtractive

hybridization technique [10]. Let C1 (C2) be stored in test tube t1 (t2). Because
all strands in t2 end in #4, we can easily append #5 to them. Next we add to
t2 an abundance of immobilized short primers #5. Using polymerase we obtain
complements to all strands in t2, still immobilized, so that it is now easy to
separate them. It remains to use these complements to remove all strands from
t1 that occured in t2. Since all strands have the same length, partial hybridiza-
tion, leading to false removals, can be avoided by using a very precise melting
temperature based on the precise length of the strands.

Hybridization happens naturally and is merely controlled by temperature.
Still, we must argue that the result still satisfies the definition of sticker complex.
The only peculiarity in this respect is the requirement that each component can
contain at most immobilized edge. Since immobilized edges are implemented
by strands affixed to surfaces, implying some minimal distance between such
strands, it seems reasonable to assume that the large majority of hybridization
reactions will occur among freely floating strands, or between freely floating and
immobilized ones.

Recursion-free hybridization is very hard to control by nature. It will be the
responsability of the algorithm designer to design DNAQL programs (see Sec-
tion 7) that, on the intended inputs, will apply hybridize only to inputs that
have recursion-free hybridization. Our simulation of the relational algebra in
DNAQL (see Section 8) is well-defined in this sense.

Splitting is achieved as usual by restriction enzymes. A feature of our abstract
model is that we require only five recognition sites (Table 1). Of course, these
recognition sites will have to be integrated in the DNA codeword design.

Blocking is implemented by making strands double-stranded, so that they
cannot be involved in later hybridizations. The ordinary block operation can be
implemented by adding the appropriate primer which will anneal to the desired
substrands thus blocking the corresponding edges. As in the Sanger sequenc-
ing method, however, the base at the 3′ end of the primer is modified to its
dideoxy-variant. In this way unwanted interaction with polymerase from possi-
ble later blockfrom operations is avoided. Indeed, blockfrom is implemented
using polymerase.

For the blockexcept operation to work, we need to adapt the implemen-
tation of �-vector strands #3v1 . . . v�#4, with vi ∈ Λ for i = 1, . . . , �, by in-
troducing additional markers φi, so that we get #3φ1v1 . . . φ�v�#4. These �
additional markers must be part of the set of codewords. We can then imple-
ment blockexcept(., n) by the composition block(., #3); blockfrom(., φn−1);
block(., φn+1); blockfrom(., #4).

The cleanup operation starts by denaturing (warming up) the tube. Immobi-
lized strands are removed from the tube. Next a gel electrophoresis is carried out

A Formal Model for Databases in DNA 29

to separate the longest DNA molecules from the other molecules. Thanks to the
conditions we have imposed on inputs to cleanup, the result of this separation
is either empty or consists of positive DNA molecules.

7 DNAQL

In this section we define a limited functional programming language, DNAQL,
for expressing functions from �-complexes to �-complexes. A crucial feature of
DNAQL is that the same program can be applied uniformly to complexes of any
particular dimension �. DNAQL is not computationally complete, as it is meant
as a query language and not a general-purpose programming language. The
language is based on the operations on complexes introduced earlier, and adds
to this the following features: some distinguished constants; an emptiness test
(if-then-else); let-variable binding; counters that can count up to the dimension
of the complex; and a limited for-loop for iterating over a counter.

The syntax of DNAQL is given in Figure 4. Note that expressions can contain
two kinds of variables: variables standing for complexes, and counters, ranging
from 1 to the dimension. Complex variables can be bound by let-constructs, and
counters can be bound by for-constructs. The free (unbound) complex variables
of a DNAQL expression stand for its inputs. A DNAQL program is a DNAQL
expression without free counters. So, in a program, all counters are introduced
by for-loops.

〈expression〉 ::= 〈complexvar〉 | 〈foreach〉 | 〈if 〉 | 〈let〉 | 〈operator 〉 | 〈constant〉
〈foreach〉 ::= for 〈complexvar〉 := 〈expression〉 iter 〈counter 〉 do 〈expression〉

〈if 〉 ::= if empty(〈complexvar〉) then 〈expression〉 else 〈expression〉
〈let〉 ::= let x := 〈expression〉 in 〈expression〉

〈operator 〉 ::= ((〈expression〉) ∪ (〈expression〉)) | ((〈expression〉) − (〈expression〉))
| hybridize(〈expression〉) | ligate(〈expression〉)
| flush(〈expression〉)
| split(〈expression〉, 〈splitpoint〉)
| block(〈expression〉, Σ)
| blockfrom(〈expression〉, Σ)
| blockexcept(〈expression〉, 〈counter 〉)
| cleanup(〈expression〉)

〈constant〉 ::= Σ+ | (
Σ − Λ

) (
Σ − Λ

) | immob(Σ)
| leftboot | rightboot | empty

〈splitpoint〉 ::= #2 | #3 | #4 | #6 | #8

Fig. 4. Syntax of DNAQL

The constants have the following meaning as particular complexes:

– A word w ∈ Σ+ stands for a single, linear, positive strand that spells the
word w.

30 J.J.M. Gillis and J. Van den Bussche

– A two-letter word āb̄, for a, b ∈ Σ − Λ, stands for a single, linear, negative

strand of length two of the form 1 b̄−→ 2 ā−→ 3.
– immob(ā), for a ∈ Σ, stands for a single, negative, immobilized edge labeled

ā.
– leftboot and rightboot are illustrated in Figure 5.
– empty stands for the empty complex, i.e., the complex with the empty set

of nodes.

#
1

#
2

#
1

#
5

#
5

#
4

Fig. 5. Left- and right-boot-shaped complexes

The semantics of a DNAQL expression e is defined relative to a context con-
sisting of a dimension �, an �-complex assignment β, and an �-counter assignment
γ. An �-complex assignment is a mapping from complex variables to �-complexes;
an �-counter assignment is a mapping from counters to {1, . . . , �}. Naturally, β
must be defined on all free variables of e, and γ must be defined on all free coun-
ters of e. Within such a context, the expression can evaluate to an �-complex,
denoted by [[e]]�(β, γ). The semantic rules that define this evaluation are shown
in Figure 6. The superscript � has been omitted to reduce clutter. The rules
for let and for use the oft-used notation f [x := u] to denote the mapping f
updated so that x is mapped to u. Because the operations on complexes are not
always defined, the evaluation may fail, so [[e]]�(β, γ) may be undefined. When e
is a program, we denote [[e]](β, ∅) simply by [[e]](β).

8 Simulation of the Relational Algebra

Let us first recall some basic definitions concerning the relational data model.
Basically we assume a universe U of data elements. A relation schema R is a
finite set of attributes. A tuple over R is a mapping from R to U . A relation over
R is a finite set of tuples over R. A database schema is a mapping D on some
finite set of relation variables that assigns a relation schema to each relation
variable. An instance of D is a mapping I on the same set of relation variables
that assigns to each relation variable x a relation over D(x).

The syntax of the relational algebra [1] is generated by the following grammar:

e ::= x | (e ∪ e) | (e − e) | (e × e) | σA=B(e) | π̂A(e) | ρA/B(e) .

Here, x stands for a relation variable, and A and B stand for attributes. Our
version of the relational algebra is slightly nonstandard in that our version of

A Formal Model for Databases in DNA 31

x is a complex variable

[[x]](β, γ) = β(x)

[[e1]](β, γ) = C1 [[e2]](β, γ) = C2

[[e1 ∪ e2]](β, γ) = C1 ∪ C2

[[e1]](β, γ) = C1 [[e2]](β, γ) = C2 C1 − C2 is well-defined

[[e1 − e2]](β, γ) = C1 − C2

[[e′]](β, γ) = C′

[[hybridize(e′)]](β, γ) = hybridize(C′)

[[e′]](β, γ) = C′

[[ligate(e′)]](β, γ) = ligate(C′)

[[e′]](β, γ) = C′

[[flush(e′)]](β, γ) = flush(C′)

[[e′]](β, γ) = C′ σ ∈ {#2, #3, #4, #6, #8}
[[split(e′, σ)]](β, γ) = split(C′, σ)

[[e′]](β, γ) = C′
block(C′, σ) is well-defined

[[block(e′, σ)]](β, γ) = block(C′, σ)

[[e′]](β, γ) = C′
blockfrom(C′, σ) is well-defined

[[blockfrom(e′, σ)]](β, γ) = blockfrom(C′, σ)

[[e′]](β, γ) = C′ i is a counter blockexcept(C′, γ(i)) is well-defined

[[blockexcept(e′, i)]](β, γ) = blockexcept(C′, γ(i))

[[e′]](β, γ) = C′
cleanup(C′) is well-defined

[[cleanup(e′)]](β, γ) = cleanup(C′)

[[e1]](β, γ) = C1 [[e2]](β[x := C1], γ) = C2

[[let x := e1 in e2]](β, γ) = C2

[[e1]](β, γ) = C1 β(x) is the empty complex

[[if empty(x) then e1 else e2]](β, γ) = C1

[[e2]](β, γ) = C2 β(x) is not the empty complex

[[if empty(x) then e1 else e2]](β, γ) = C2

[[e1]](β, γ) = C0 [[e2]](β[x := Cn−1], γ[i := n]) = Cn for n = 1, . . . , �

[[for x := e1 iter i do e2]](β, γ) = C�

Fig. 6. Semantics of DNAQL

projection (π̂) projects away some given attribute, as opposed to the standard
projection which projects on some given subset of the attributes.

The semantics of the relational algebra is well known and we omit a formal def-
inition. A relational algebra expression e can be evaluated in the context of some
database instance I that is defined on at least the relation variables occurring
in e. When the evaluation succeeds, e evaluates to a relation denoted by [[e]](I).

32 J.J.M. Gillis and J. Van den Bussche

(The evaluation of a relational algebra operator may fail due to mismatches
between the attributes present in the argument relations and the attributes ex-
pected by the operator [25].)

We want now to represent relations by complexes. We will store data elements
as vectors of atomic value symbols. So formally, we use Λ∗ as our universe U .
Then a tuple t (relation r, instance I) is said to be of dimension � if all data
elements appearing in t (r, I) are strings of length �. Let t be a tuple of dimension
� over relation schema R. We may assume a fixed order on the attributes of R, say,
A, . . . , B. We then represent t by the following �-complex: (using the constant
notation of DNAQL)

complex (t) = #2A#3t(A)#4 . . . #2B#3t(B)#4 .

A relation r of dimension � is then represented by the �-complex
⋃{complex (t) |

t ∈ r} which we denote by complex (r). Moreover, a database instance I of
dimension � can be represented by the �-complex assignment complex (I) that
maps each relation variable x (used as a complex variable) to complex (I(x)).

We are now in a position to state our main theorem.

Theorem 1. Let some database schema D be fixed. Every relational algebra
expression e can be translated into a DNAQL program eDNA, such that for each
natural number � and for each �-dimensional database instance I over D, if
[[e]](I) is defined, then so is [[eDNA]]�(complex (I)), and

complex ([[e]] (I)) = [[eDNA]]�(complex (I))

(up to isomorphism).

For the proof we introduce a few useful abbreviations. For a, b ∈ Σ, we use
blockfromto(x, a, b) to abbreviate blockfrom(block(x, b), a). For attributes A
and B, we use circularize(x, A, B) to abbreviate

cleanup(ligate(hybridize(

hybridize(blockfromto(x6, B, A) ∪ immob(#3))

∪ #4#2))) .

If x holds a complex of the form complex (r) for some relation r over a schema
with first attribute A and last attribute B, then circularize(x, A, B) will equal
the complex obtained from x by circularizing every strand [18,4].

The proof now goes by induction on the structure of e.

Union, difference. If e is e1 ∪ e2, then eDNA = eDNA
1 ∪ eDNA

2 . If e is e1 − e2, then
eDNA = eDNA

1 − eDNA
2 .

Cartesian product. Let e be of the form e1 × e2 with e1 over relation schema R
and e2 over a disjoint relation schema S. Let A be the first and B be the last

A Formal Model for Databases in DNA 33

attribute of R and let C be the first and D be the last attribute of S. Consider
the following DNAQL program e′:

let x := eDNA
1 in let y := eDNA

2 in

if empty(x) then empty else if empty(y) then empty else e4

where e4 is given by the following:

e4 := cleanup(split(split(blockfromto(e5, B, C), #2), #4))
e5 := circularize(e6, A, D)
e6 := cleanup(ligate(hybridize[xa

6 ∪ xb
6 ∪ #5#1]))

xa
6 := cleanup(ligate(hybridize(x ∪ rightboot)))

xb
6 := cleanup(ligate(hybridize(y ∪ leftboot)))

Parts ea
6 and eb

6 attach a unique ending (beginning) to the tuples in r (s). The
new tuples are added together, in x6, along with a sticky bridge (#5#1), resulting
in all possible joins of tuples of eDNA

1 and eDNA
2 . The rest of the expression is

concerned with cutting out the #5#1 piece in the middle of the new chains and
getting the “old” eDNA

1 -tuples back in front of the “new” tuples.
The program e′ is not yet quite correct, however, since we assume that the

attributes in complex representations of tuples are ordered in lexicographical
order. This order may be disrupted by joining tuples from eDNA

1 and eDNA
2 .

Therefore it is necessary to reorder the attribute-value pairs within each tuple
resulting from eDNA. Shuffling attribute-value pairs around in a tuple is done
using a new technique we call double bridging. Instead of using a single sticky
bridge, two sticky bridges are hybridized onto one chain. A careful placement of
the bridges allows us to cut twice in the chain without separating parts from the
chain. Moreover, the two bridges guide the chain into its new conformation.

Next we describe (in outline) a DNAQL program for shuffling some attribute
C to the end of a chain. Assume that A is the first attribute, attribute B occurs
just in front of C, C is the attribute that we want to move, D occurs exactly
after C and E is the last attribute of the chain. The general outline of the
program is:

1. Insert the first marker (#6#7) between attributes B and C.
2. Insert the second marker (#8#9) between attributes C and D.
3. Insert the third marker (#9#1) at the end of the chain.
4. Add the two bridges to the mix: #6#8 and #1#7.
5. Cut at #6 and #8 and ligate the resulting complex.
6. Remove the markers from the chains.

An illustration is in Figure 7. A detailed DNAQL program to do these steps will
have a similar structure to program e′.

Projection. Let e be of the form π̂C(e1), where the relation schema of e1 is R.
Assume that B is the attribute just in front of C and D is the attribute just

34 J.J.M. Gillis and J. Van den Bussche

#
6

#
7

#
8

#
1

#
6

#

#
8

#
1
 #

7

##

#
6

#
7

#
8

#
1
 #

7
 #

1

#
8

#
6

#
6 #

8

#
1
 #

7
 #

1
 #

7

#

#
6

#
7

#
8

#
1

#
8

#
1

#
6

#
7

##
7
 #

1

#
8

#
6

#
6

#
7

#
8

#
1

#
7

#
1

#
8

#
6

#
6

#
7

#
8

#
1

#
8

#
6

Fig. 7. Illustration of steps 1–3 (top left); step 4 (top right); and step 5 (bottom left,
which simplifies to bottom right) described in the proof of simulation of Cartesian
product

after attribute C. In the case that attribute C is the first attribute of the relation
schema R, B is the last attribute of R. Likewise in the case that attribute C is
the last attribute of R, then D is the first attribute of R. We thus perceive R to
be circular. Assume that A and E are the first resp. last attribute of R.

We define eDNA as the following program:

let x := eDNA
1 in if empty(x) then empty else f1

where

f1 := cleanup(split(blockfromto(cleanup(ligate(f2)), E, A), #4))
f2 := circularize(f3, D, B)
f3 := cleanup(split(blockfromto(cleanup(ligate(f4)), B, D), #4))
f4 := circularize(x, A, E)

Renaming. Let e be of the form ρC/F (e1), where R is the relation schema of e1.
Simulating renaming involves the following steps:

1. Rotate the chains to get attribute C at the start of each chain.
2. Cut the attribute from the chain, leaving the values of C on the chain.
3. Add the F attribute using stickers.
4. Rotate the chains again to get the first attribute at the start of each chain.

Assume that attribute B occurs just in front of C, D just after C, A is the first
attribute of R and E is the last attribute. Then eDNA is the following program:

let x := eDNA
1 in if empty(x) then empty else f1

A Formal Model for Databases in DNA 35

where

f1 := cleanup(split(blockfromto(f2, E, A), #4))
f2 := cleanup(ligate(hybridize[f3 ∪ #2F ∪ #4#2 ∪ F#3]))
f3 := hybridize(split(blockfromto(f4, B, D), #3) ∪ immob(#3))
f4 := cleanup(split(blockfromto(cleanup(ligate(f5)), B, D), #2))
x5 := circularize(x, A, E)

This program is not yet fully correct as attribute F may need to be shuffled into
the right place. This can be done by repeatedly applying the shuffle procedure
described in the case of cartesian product.

Selection. Let e be of the form σB=D(e1), where R is the relation schema of
e1. Translating the selection operator requires the most complicated expressions
thus far. Assume that relation schema R has A as its first attribute, C following
directly behind B, E following directly after D and F the last attribute of the
schema. The Λ is fixed. The number of atomic value symbols is thus a constant;
we denote them by v1 to vn. Note A = B, or C = D or D = E = F is possible;
the program will still function correctly.

We define eDNA as follows:

let x := eDNA
1 in if empty(x) then empty else for xs := x iter i do e′

where

e′ := cleanup(split(blockfromto(
let xc := circularize(xs, A, F) in e′′, F, A), #4))

e′′ := selectD
v1

(selectB
v1

(xc)) ∪ · · · ∪ selectD
vn

(selectB
vn

(xc))

selectB
a (x′) := cleanup(flush(hybridize(ea

1(x′))))
ea
1(x

′) := blockexcept(blockfromto(x′, B, C), i) ∪ immob(a)
selectF

a (x′) := cleanup(flush(hybridize(ea
2(x′))))

ea
2(x

′) := blockexcept(blockfromto(x′, D, E), i) ∪ immob(a)

9 Concluding Remarks

Many interesting questions remain open. A first issue is that an arbitrary DNAQL
program may not evaluate on all possible inputs. We would like to have a type
system by which programs can be statically typechecked to be safe on inputs of
given types.

We would also like to better understand the expressive power of DNAQL.
The relational algebra provides a lower bound on this expressive power. What is
an upper bound? Can the semantics of DNAQL be defined in first-order logic?
What is the computational complexity of DNAQL? Also, are all operations and

36 J.J.M. Gillis and J. Van den Bussche

constructs of DNAQL really primitive in the language, or can some of them be
simulated using the others?

Another interesting issue is the relationship between DNAQL and graph gram-
mars. Furthermore, we could consider extensions, or restrictions, of DNAQL, just
this has been done for the relational algebra. Extensions can lead to greater ex-
pressive power, while restrictions may lead to decidable static verification prob-
lems, such as testing the equivalence of DNAQL programs.

Finally, while we have gone to great efforts to design an abstraction that is as
plausible as possible, of course, it would be great if it could be experimentally
verified if DNAQL is workeable for practical DNA computing.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 226, 1021–1024 (1994)

3. Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg
(2005)

4. Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In:
Proceedings 1997 IEEE International Conference on Evolutionary Computation,
pp. 243–248 (1997)

5. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of
DNA. Discrete Applied Mathematics 71, 79–94 (1996)

6. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [9], pp.
12–24

7. Chen, J., Deaton, R.J., Wang, Y.-Z.: A DNA-based memory with in vitro learning
and associative recall. Natural Computing 4(2), 83–101 (2005)

8. Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design.
Journal of Computational Biology 8(3), 201–220 (2001)

9. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg
(2009)

10. Diatchenko, L., Lau, Y.F., et al.: Suppression subtractive hybridization: a method
for generating differentially regulated or tissue-specific cDNA probes and libraries.
Proceedings of the National Academy of Sciences 93(12), 6025–6030 (1996)

11. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction.
Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004)

12. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
13. Liu, Q., Wang, L., et al.: DNA computing on surfaces. Nature 403, 175–179 (1999)
14. Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Dı́az,

J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 919–931. Springer, Heidelberg (2004)

15. Majumder, U., Reif, J.H.: Design of a biomolecular device that executes process
algebra. In: Deaton and Suyama [9], pp. 97–105

16. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg
(1998)

17. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
(2002)

A Formal Model for Databases in DNA 37

18. Reif, J.H.: Parallel biomolecular computation: models and simulations. Algorith-
mica 25(2-3), 142–175 (1999)

19. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C.,
Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases
with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA
2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

20. Rozenberg, G., Spaink, H.: DNA computing by blocking. Theoretical Computer
Science 292, 653–665 (2003)

21. Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Sur-
vey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 275–289. Springer, Heidelberg (2006)

22. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999)
23. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic

circuits. Science 315(5805), 1585–1588 (2006)
24. Shortreed, M.R., et al.: A thermodynamic approach to designing structure-free

combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005)
25. Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course in database

queries. In: Proceedings 26th ACM Symposium on Principles of Database Systems,
pp. 143–154. ACM Press (2007)

26. Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development
of DNA Relational Database and Data Manipulation Experiments. In: Mao, C.,
Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg
(2006)

	A Formal Model for Databases in DNA

	Introduction
	Related Work
	The Sticker-Complex Data Model
	Operations on Complexes
	Data Representation
	Implementation in DNA
	DNAQL
	Simulation of the Relational Algebra
	Concluding Remarks
	References

