

Lecture Notes in Computer Science 6479
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Katsuhisa Horimoto Masahiko Nakatsui
Nikolaj Popov (Eds.)

Algebraic and
Numeric Biology
4th International Conference, ANB 2010
Hagenberg, Austria, July 31–August 2, 2010
Revised Selected Papers

13

Volume Editors

Katsuhisa Horimoto
Masahiko Nakatsui
National Institute of Advanced Industrial Science and Technology (AIST)
Computational Biology Research Centre (CBRC)
Tokyo 135-0064, Japan
E-mail:{k.horimoto, m.nakatsui}@aist.go.jp

Nikolaj Popov
Johannes Kepler University of Linz
Research Institute for Symbolic Computation (RISC)
4040 Linz, Austria
E-mail: popov@risc.uni-linz.ac.at

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-28066-5 e-ISBN 978-3-642-28067-2
DOI 10.1007/978-3-642-28067-2
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945509

CR Subject Classification (1998): F.3.1, F.4, D.2.4, I.1, J.3

LNCS Sublibrary: SL 1 – Theoretical Computer Science and General Issues

© Springer-Verlag Berlin Heidelberg 2012

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the proceedings of the InternationalConference on Algebraic
and Numeric Biology (ANB 2010). It was held during July 31–August 2, 2010 in
the Castle of Hagenberg, Austria, and was organized by the Research Institute for
Symbolic Computation (RISC) of the Johannes Kepler University, Linz, Austria,
together with the National Institute of Advanced Industrial Science and Technol-
ogy (AIST), Tokyo, Japan.

Algebraic and numeric biology is the interdisciplinary forum for the presenta-
tion of research on all aspects of the application of symbolic and numeric computa-
tion in biology. Algebraic and Numeric Biology was renamed after our traditional
name, Algebraic Biology, to consider its wider scope of mathematical methods,
especially numeric computation.

The Algebraic and Numeric Biology conference is a follow-up of the Algebraic
Biology conference. Since 2005, we have been organizing an international con-
ference, Algebraic Biology, that focuses on the application of computer algebra,
automated reasoning, hybrid algebraic and numeric computation, which is also
called symbolic computation, to all types of problems from biology. The first
conference, AB 2005, was held in November 2005 in Tokyo, Japan. The second
conference, AB 2007, was held in July 2007 in Hagenberg, Austria. The third
conference, AB 2008, was held in July and August again in Hagenberg, Aus-
tria. These conferences were quite successful. For this issue of the conference, we
extended the range of mathematical methods.

The initiation of the series of these conferences was motivated by the re-
cent trends in symbolic and numeric computation and biology: In symbolic and
numeric computation, the recent advances in computer performance and algo-
rithmic methods have accelerated the extension of the scientific fields to which
symbolic and numeric computation can be applied. In biology, the determination
of complete genomic sequences and the subsequent improvements of experimen-
tal techniques have yielded large amounts of information about the biological
molecules underlying various biological phenomena. Under these circumstances,
the marriage of symbolic and numeric computation and biology is expected to
generate new mathematical models for biological phenomena and new symbolic
and numeric techniques for biological data analysis.

We received submissions from 16 countries (Austria, Belgium, Chile, France,
Germany, Hong Kong, Ireland, Italy, Japan, Mexico, Portugal, Singapore, Spain,
UK, Ukraine, and USA) and 10 papers were accepted for presentation at the
conference. Each submission was assigned to at least two Program Committee
members, who carefully reviewed the papers, in some cases with the help of
external referees. The merits of the submissions were discussed by the Steering
Committee at the dedicated meeting in Hagenberg.

VI Preface

We are pleased to continue our collaboration with Springer, who agreed to
publish the conference proceedings in the Lecture Notes in Computer Science
series.

We, the ANB 2010 organizers of the conference, are grateful to the following
sponsors for their financial contributions toward its operation and success: the
Doctoral Program Computational Mathematics at the Johannes Kepler Univer-
sity supported by the Austrian Science Fund (FWF), the International Studies
for Informatics Hagenberg, Linzer Hochschulfonds, the National Institute of Ad-
vanced Industrial Science and Technology, and the Upper Austrian Government.

Our thanks are also due to the members of the Program Committee and to
those who ensured the effective running of the conference.

July 2010 Bruno Buchberger
Katsuhisa Horimoto
Masahiko Nakatsui

Nikolaj Popov

Conference Organization

Steering Committee

Bruno Buchberger Johannes Kepler University of Linz, Austria
Katsuhisa Horimoto National Institute of Advanced Industrial

Science and Technology, Japan
Reinhard Laubenbacher Virginia Bioinformatics Institute, USA
Bud Mishra New York University, USA
Nikolaj Popov Johannes Kepler University of Linz, Austria

Program Chairs and Proceedings Editors

Katsuhisa Horimoto National Institute of Advanced Industrial
Science and Technology, Japan

Masahiko Nakatsui National Institute of Advanced Industrial
Science and Technology, Japan

Nikolaj Popov Johannes Kepler University of Linz, Austria

Program Committee

Tatsuya Akutsu Kyoto University, Japan
Hirokazu Anai Kyushu University, Japan
Niko Beerenwinkel Swiss Federal Institute of Technology Zurich,

Switzerland
Armin Biere Johannes Kepler University of Linz, Austria
François Boulier University of Lille I, France
Bruno Buchberger Johannes Kepler University of Linz, Austria
Luca Cardelli Microsoft Research, Cambridge, UK
Luonan Chen Osaka Sangyo University, Japan
Wai-Ki Ching University of Hong Kong, China
Kwang-Hyun Cho Korea Advanced Institute of Science and

Technology, Korea
Franck Delaplace Evry University, France
Hoon Hong North Carolina State University, USA
Katsuhisa Horimoto National Institute of Advanced Industrial

Science and Technology, Japan
Peter Huggins Carnegie Mellon University, USA
Abdul Salam Jarrah Virginia Bioinformatics Institute, USA
Erich Kaltofen North Carolina State University, USA
Hans Kestler University of Ulm, Germany
Temur Kutsia Johannes Kepler University of Linz, Austria

VIII Conference Organization

Philipp Kügler RICAM, Austria and University of Stuttgart,
Germany

Doheon Lee Korea Advanced Institute of Science and
Technology, Korea

James Lynch Clarkson University, USA
Manfred Minimair Seton Hall University, USA
Stefan Müller RICAM, Austria
Masahiko Nakatsui National Institute of Advanced Industrial

Science and Technology, Japan
Masahiro Okamoto Kyushu University Japan
Eugenio Omodeo University of Trieste, Italy
Sonja Petrovic University of Illinois at Chicago, USA
Nikolaj Popov Johannes Kepler University of Linz, Austria
Georg Regensburger RICAM, Austria
Carolyn Talcott SRI International, USA
Ashish Tiwari SRI International, USA
Hiroyuki Toh Kyushu University, Japan
Dongming Wang Beihang University, China and UPMC-CNRS,

France
Limsoon Wong National University of Singapore
Ruriko Yoshida University of Kentucky, USA

Local Organization Chair

Nikolaj Popov Johannes Kepler University of Linz, Austria

Table of Contents

P0-Matrix Products of Matrices (Invited Talk) . 1
Murad Banaji

A Formal Model for Databases in DNA . 18
Joris J.M. Gillis and Jan Van den Bussche

Efficient and Accurate Haplotype Inference by Combining Parsimony
and Pedigree Information . 38

Ana Graça, Inês Lynce, João Marques-Silva, and Arlindo L. Oliveira

MABSys: Modeling and Analysis of Biological Systems 57
François Lemaire and Asli Ürgüplü

Models of Stochastic Gene Expression and Weyl Algebra 76
Samuel Vidal, Michel Petitot, François Boulier,
François Lemaire, and Céline Kuttler

Reconciling Competing Models: A Case Study of Wine Fermentation
Kinetics . 98

Rodrigo Assar, Felipe A. Vargas, and David J. Sherman

Computational Modeling and Verification of Signaling Pathways
in Cancer . 117

Haijun Gong, Paolo Zuliani, Anvesh Komuravelli,
James R. Faeder, and Edmund M. Clarke

Composability: Perspectives in Ecological Modeling 136
Ozan Kahramanoğulları, Ferenc Jordán, and Corrado Priami

A General Procedure for Accurate Parameter Estimation in Dynamic
Systems Using New Estimation Errors . 149

Masahiko Nakatsui, Alexandre Sedoglavic, François Lemaire,
François Boulier, Asli Ürgüplü, and Katsuihisa Horimoto

Analyzing Pathways Using ASP-Based Approaches 167
Oliver Ray, Takehide Soh, and Katsumi Inoue

Author Index . 185

P0-Matrix Products of Matrices

Murad Banaji

Department of Mathematics, University of Portsmouth, Lion Gate Building,
Lion Terrace, Portsmouth, Hampshire PO1 3HF, UK

Abstract. The question of when the product of two matrices lies in
the closure of the P -matrices is discussed. Both sufficient and neces-
sary conditions for this to occur are derived. Such results are applicable
to questions on the injectivity of functions, and consequently the pos-
sibility of multiple fixed points of maps and flows. General results and
special cases are presented, and the concepts illustrated with numerous
examples. Graph-theoretic corollaries to the matrix-theoretic results are
touched upon.

Keywords: P -matrix; P0-matrix; matrix factorisation; injectivity;
stability.

1 Introduction

We will be interested in P -matrices and certain closely related classes of matrices.
In each of the definitions below, A is a real square matrix:

Definition 1. A is a P -matrix if all of its principal minors are positive.

Definition 2. A is a P0-matrix if all of its principal minors are nonnegative.

Definition 3. A is a P (−)-matrix if −A is a P -matrix.

Definition 4. A is P
(−)
0 -matrix if −A is a P0-matrix.

Matrices belonging to any of these classes will be termed P -type matrices.
P -type matrices play important roles in various applications, including to the
linear complementarity problem [1], and to a variety of questions in biology [2].

This paper explores necessary and sufficient conditions for the product of two
matrices to be a P0-matrix. The work is motivated primarily (but not solely) by
two observations:

1. Differentiable functions with P -matrix Jacobians on certain domains are in-
jective [3]. The same is true for functions with P0-matrix Jacobians, provided
certain additional conditions are satisfied [4]. Such results have been applied
to problems in economics [5], biology [6] and chemistry [7].

2. Matrices which arise as Jacobian matrices in various areas of application
often have natural factorisations as a consequence of physical constraints
[7,8]. In practice, it is often the case that some of the factors are constant,
while only the sign pattern of others is known. Determining whether all
allowed products are P -type matrices is a nontrivial problem.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 1–17, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 M. Banaji

Here, rather than focussing on the applications, a number of matrix-theoretic
results which have proved useful are reviewed and generalised, while previously
published applications are referenced. The results are in most cases amenable
to straightforward algorithmic implementation. Elementary proofs are presented
and some graph-theoretic corollaries are touched upon.

1.1 Some Properties of P -Type Matrices

It follows from elementary properties of P -matrices that any P0-matrix plus a
positive diagonal matrix is a P -matrix. In fact, the P0-matrices can be charac-
terised as follows:

Lemma 1. A square matrix A is a P0-matrix if and only if det(A+D) > 0 for
every positive diagonal matrix D.

Proof. See Section 3.2 in [8]. ��

Eigenvalues and Stability. Other properties of P -matrices include that their
eigenvalues are excluded from a certain wedge around the negative real axis [9],
implying that real eigenvalues of P -matrices are positive, and further that 2× 2
P -matrices are positive stable (i.e., have eigenvalues with positive real part).
Positive stability for P -matrices satisfying additional constraints can also be
deduced in higher dimensions, and a result in this direction of Hershkowitz and
Keller (Theorem 1.1 in [10]) will be applied later to prove that certain matrices
are positive stable.

Injectivity of Functions. Define a rectangular domain in R
n to be the

product of intervals on the coordinate axes, each of which may be open, closed or
semi-open. The following result of Gale and Nikaido has proved highly applicable:
given a rectangular domain X ⊆ R

n, each differentiable function f : X → R
n

with P -matrix Jacobian is injective on X (Theorem 4 and subsequent remarks
in [3]). If X is, additionally, open, then it suffices for the Jacobian matrix to be a
nonsingular P0-matrix (Theorem 4w in [3], and see also [4]). For simplicity, the
results presented below involve P - and P0-matrices, but, since injectivity of −f is
equivalent to injectivity of f , all results have easy duals stated in terms of P (−)-

and P
(−)
0 -matrices. It is the dual results which generally arise in practice, and

most of the previous results referenced actually involve P (−)- and P
(−)
0 -matrices.

This point will not be laboured.

1.2 The Main Question

Notation. Let Rn×m denote the real n×m matrices. Define P0 to be the set of
P0-matrices, and P0,n ⊆ R

n×n to be the set of n× n P0-matrices. Clearly, P0,n

is the closure of the set of n× n P -matrices.

P0-Matrix Products of Matrices 3

P0-matrix Products. It has been well illustrated in previous work that ma-
trices which arise as Jacobian matrices in applications often have a natural
factorisation [11,8]. Further, by Lemma 1, showing that A ∈ P0 is both nec-
essary and sufficient to ensure that A + D is nonsingular (and is in fact a
P -matrix) for each positive diagonal matrix D. This is important because in
certain classes of applications, Jacobian matrices can be written as such a sum
with the magnitude of entries in D unknown, and thus proving that the first
matrix A is a P0-matrix becomes both necessary and sufficient to rule out singu-
larity of the Jacobian matrix (which in turn is sufficient to rule out saddle-node
bifurcations).

The key question in this paper is most generally phrased in terms of matrix-
valued functions. Given an arbitrary set X , let A : X → R

n×m be some function
ascribing to each x ∈ X an n × m matrix A(x). Similarly, let B : X → R

m×n

ascribe to each x ∈ X the m× n matrix B(x). The question is:

When is {A(x)B(x) |x ∈ X} ⊂ P0?

We will answer this question for a number of cases of importance. In applications,
X is often the state space of some dynamical system, assumed to be a rectangular
subset of Rn, for reasons touched on above. However, this restriction on X is
unnecessary for the matrix-theoretic results presented here.

2 Notation and Definitions

Sets of Real Numbers. Define R>0 ≡ (0,∞), R≥0 ≡ [0,∞), R<0 ≡ (−∞, 0)
and R≤0 ≡ (−∞, 0]. A set of real numbers R is signed if R ⊆ R>0 or R ⊆ R<0

or R = {0}, and is weakly signed if R ⊆ R≥0 or R ⊆ R≤0. A set of real
numbers which fails to be weakly signed (i.e., which intersects both R>0 and
R<0) is unsigned.

Classes of Matrices. P -type matrices have already been defined above. Real
matrices all of whose eigenvalues have negative real part are said to be Hurwitz:
a square matrix M is Hurwitz if and only if −M is positive stable. Dn will refer
to the set of n× n diagonal matrices with positive diagonal entries.

Submatrices, Minors, etc. For any positive integer n, define In = {1, . . . , n}.
Let A be an n × m matrix, with α ⊆ In, β ⊆ Im nonempty. The following
notation will be used:

– A(α|β) is the submatrix of A with rows indexed by α and columns indexed
by β.

– A[α|β] ≡ det(A(α|β)). We write A[α] as shorthand for A[α|α].
– Aαβ is an n × m matrix defined by (Aαβ)ij = Aij if i ∈ α and j ∈ β and

(Aαβ)ij = 0 otherwise.

4 M. Banaji

Consider some minor Aαβ [γ|δ]. If |γ| = |α|, then either γ = α, or Aαβ(γ|δ)
contains a row of zeros; similarly If |δ| = |β|, then either δ = β, or Aαβ(γ|δ)
contains a column of zeros. In particular, all |α| × |β| submatrices of Aαβ , apart
possibly from A(α|β), must contain a row or column of zeros (and hence, if they
are square, must be identically singular).

Example 1. Given the matrix:

A =

⎛⎝ 2 1 1
1 1 1
0 3 1

⎞⎠ ,

we have

A({1, 2}|{1, 3}) =
(

2 1
1 1

)
, A[{1, 2}|{1, 3}] = 1, and A{1,2}{1,3}

⎛⎝ 2 0 1
1 0 1
0 0 0

⎞⎠ .

Matrix-Valued Functions, Sets of Matrices and Independence. Given
a set X and matrix-valued functions A : X → R

n×m, B : X → R
m×n. De-

fine A(X) = {A(x) : x ∈ X}, B(X) = {B(x) |x ∈ X}, and (AB)(X) =
{A(x)B(x) |x ∈ X}. Naturally, AT : X → R

m×n will be defined by AT (x) =
[A(x)]T , Aij : X → R will be defined by Aij(x) = [A(x)]ij . Similarly, the func-
tions A(δ|γ) : X → R

|δ|×|γ|, A[δ|γ] : X → R, Aδγ : X → R
n×m, etc. all have

their natural meanings. From here on, X will always refer to an arbitrary set,
which is the domain of some matrix-valued functions.

If, for each A ∈ A(X), B ∈ B(X), there exists x ∈ X such that A = A(x), B =
B(x), then we will say that A and B are independent. Observe that for inde-
pendent functions, (AB)(X) = {AB |A ∈ A(X), B ∈ B(X)}. Where A and B
are defined as sets of n×m and m×n matrices respectively (rather than matrix-
valued functions), the set AB = {AB |A ∈ A, B ∈ B} can always be regarded as
the image of the product of independent matrix-valued functions (defined, for
example, as projections on the Cartesian product A × B). For brevity we will
refer to AB as an independent product.

QualitativeClasses. AmatrixA ∈ R
n×m determines a qualitative classQ(A) ⊂

R
n×m [12,13], the set of all matrices with the same dimensions and sign pattern

as A. Q(A) is convex and hence path connected, and so, by continuity of the
determinant, all matrices in Q(A) are nonsingular if and only if either they all
have positive determinant, or they all have negative determinant. Define Q0(A)
to be the closure of Q(A).

Sign-Classes. A set A of n×m matrices is termed a left sign-class if AαIm ∈
cl(A) for each A ∈ A, α ⊆ In. A is a right sign-class if AInβ ∈ cl(A) for each
A ∈ A, β ⊆ Im. If Aαβ ∈ cl(A) for each A ∈ A, α ⊆ In, β ⊆ Im, then A is
a sign-class. More intuitively, taking any matrix in a left sign-class A and setting

P0-Matrix Products of Matrices 5

an arbitrary subset of rows to zero gives a matrix in the closure of A. Similarly, if
A is a right sign-class, then setting an arbitrary subset of columns to zero gives a
matrix in the closure of A. If A is a sign-class, then simultaneously setting some
subset of rows to zero, and some subset of columns to zero, gives a matrix in the
closure of A. It is not hard to see that A is a sign-class if and only if it is both
a left sign-class and a right sign-class. Qualitative classes are examples of sign-
classes, but sign-classes need not be qualitative classes (see Example 2 below).
A function A : X → R

n×m will be termed a sign-class (resp. left sign-class, resp.
right sign-class) if A(X) is such.

Example 2. Given an n×m matrix A, the sets

{DA |D ∈ Dn}, {AD |D ∈ Dm} and {D1AD2 |D1 ∈ Dn, D2 ∈ Dm}

are a left sign-class, a right sign-class and a sign-class respectively. Thus for
example the set of matrices{(

ac ad
bc bd

)
, a, b, c, d > 0

}
,

which can be factorised via(
ac ad
bc bd

)
=

(
a 0
0 b

)(
1 1
1 1

)(
c 0
0 d

)
,

is a sign-class. Note, however, that this set of matrices is not a qualitative class:
not every 2× 2 matrix with positive entries can be factorised in this way.

Compatible Matrices. Given two n × n matrices A,B, define σ(A,B) =
det(A)det(B). Given n×m matrices A,B, the pair (A,B) will be termed com-
patible if for each α ⊆ In, β ⊆ Im with |α| = |β|, σ(A[α|β], B[α|β]) ≥ 0. The
definition extends naturally to the functions A : X → R

n×m and B : X → R
n×m:

A and B are compatible if A(x) and B(x) are compatible for each x ∈ X . From
the definition, if A and B are independent, then they are compatible if and only
if for each α ⊆ In, β ⊆ Im, either:

1. A[α|β](X) = {0}, or
2. B[α|β](X) = {0}, or
3. A[α|β](X) and B[α|β](X) are both weakly signed with either A[α|β](X),

B[α|β](X) ⊆ R≥0 or A[α|β](X),B[α|β](X) ⊆ R≤0.

Example 3. The matrices:

A =

(
2 0 1
1 1 1

)
and B =

(
1 0 1
2 1 1

)
fail to be compatible because

A[{1, 2}|{1, 3}] =
∣∣∣∣ 2 1
1 1

∣∣∣∣ = 1 and B[{1, 2}|{1, 3}] =
∣∣∣∣ 1 1
2 1

∣∣∣∣ = −1

have opposite signs.

6 M. Banaji

3 Main Results

3.1 Preliminary Results

The next three lemmas are slightly adapted from [8].

Lemma 2. Consider an n×m matrix A and an m×n matrix B. If A and BT

are compatible, then AB ∈ P0,n.

Proof. The result follows from the Cauchy-Binet formula ([14] for example)
which gives, for any nonempty α ⊆ In:

(AB)[α] =
∑

β⊆Im

|β|=|α|

A[α|β]B[β|α] .

By compatibility, of A and BT , A[α|β]B[β|α] ≥ 0, and thus (AB)[α] ≥ 0. Since
α was arbitrary, this proves that AB is a P0-matrix. ��

Clearly, compatibility of matrices A and BT is not necessary for AB to be a P0-
matrix: for example, the matrices A and B in Example 3 fail to be compatible,
but ABT is a P -matrix. However, given two sets of matrices, compatibility may
be necessary to ensure that all products are P0-matrices:

Lemma 3. Consider sets of matrices A ⊆ R
n×m and B ⊆ R

m×n. Define the
independent product AB. Assume that, AB ⊆ P0,n, and either:

1. B is a left sign-class, or
2. A is a right sign-class.

Then A and BT are compatible.

Proof. The case where B is a left sign-class is treated; the other case is similar.
Suppose that A and BT are not compatible, i.e., there are α ⊆ In, β ⊆ Im such
that A ∈ A and B ∈ B satisfy A[α|β]B[β|α] < 0. Since B is a left sign-class,
BβIn ∈ cl(B). Moreover, (ABβIn)[α] = A[α|β]B[β|α] < 0 (since BβIn [β|α] =
B[β|α], and all minors BβIn [β

′|α] with β′ �= β are zero). Thus ABβIn �∈ P0,n.
Since P0,n is closed, its complement is open. Thus any matrix sufficiently near to
ABβIn fails to be a P0-matrix. By independence of A and B, ABβIn ∈ cl(AB),
and so there are matrices in AB which fail to be P0-matrices. The argument is
similar if A is a right sign-class. ��

Example 4. Consider the matrices:

A =

⎛⎝ 2 1 0
1 1 1
1 3 1

⎞⎠ and B =

⎛⎝ 1 2 0
1 1 1
1 3 1

⎞⎠ .

We can check that AB is a P -matrix. However A and BT are not compatible,
as A[{1, 2}|{1, 2}]B[{1, 2}|{1, 2}] < 0. By Example 2, {DB |D ∈ D3} is a left

P0-Matrix Products of Matrices 7

sign-class. Consequently, by Lemma 3, there exists D ∈ D3 such that ADB fails
to be a P0-matrix. For example, it can be checked that ADB is not a P0-matrix
if we choose

D =

⎛⎝ 5 0 0
0 5 0
0 0 1

⎞⎠ .

Lemma 4. Consider the functions A : X → R
n×m and B : X → R

m×n.
Assume that A and B are independent, one of A or B is a sign-class, and
(AB)(X) ⊆ P0,n. Then A and BT are compatible.

Proof. By assumption, either A must be a right sign-class or B must be a left
sign-class. The result now follows immediately from Lemma 3. ��
Lemmas 2, 3 and 4 are the basic results which can be specialised to give necessary
and sufficient conditions for matrix-products to be P0.

Remark 1. Where a product of more than two matrices is concerned, there is
no elementary generalisation of the notion of compatibility. However, an elegant
necessary and sufficient graph-theoretic condition for the product of an arbitrary
number of qualitative classes to consist of P0-matrices can be constructed [15].

3.2 Qualitative Classes and Related Ideas

In applications, it frequently arises that we know the signs of quantities, but
not their magnitudes. When this applies to the entries in a matrix, then our
knowledge of the matrix is only that it belongs to a particular qualitative class.
From the definitions of qualitative classes:

1. If B ∈ Q(A), then Q(B) = Q(A),
2. If B ∈ Q0(A), then Q(B) ⊆ Q0(A), and so Q0(B) ⊆ Q0(A).

Sign Nonsingularity and Sign Singularity. Define Sn to be the set of n×n
singular matrices. Let A be some n× n matrix. Then A is sign-singular (SS) if
Q(A) ⊆ Sn. A is sign-nonsingular (SNS) [13] if Q(A) ∩ Sn = ∅. Note that if A
is SNS, then convexity, and hence path-connectedness, of Q(A) implies that all
matrices in Q(A) have determinant of the same sign. Following the terminology
of [13], a square matrix which is either sign nonsingular or sign singular is a
matrix with signed determinant. If A has signed determinant, sign(det(Q(A)))
is well defined.

Notation. Let SNSn be the set of n× n SNS matrices, SSn be the set of n× n
SS matrices, and Sn to be the set of n× n singular matrices.

Remark 2. Note that Sn is closed by continuity of the determinant. SNSn and
SSn consist of entire qualitative classes, namely:

1. If A ∈ SNSn, then Q(A) ⊆ SNSn.
2. If A ∈ SSn, then Q(A) ⊆ SSn.

Both statements follow immediately from the definitions.

8 M. Banaji

Characterising Matrices Which are SNS or SS. Given an n×n matrix A,
and a permutation σ = [σ1, . . . , σn] of the list [1, . . . , n], define the n×n matrix
Aσ by Aσ

ij = Aij if j = σi, and Aσ
ij = 0 otherwise. Note that Aσ ∈ Q0(A). The

complement of the set of square matrices which are SNS or SS is characterised
as follows:

Lemma 5. Let A be an n × n matrix. Then A �∈ (SNSn ∪ SSn) if and only if
there exist A1, A2 ∈ Q(A) with det(A1)det(A2) < 0.

Proof. Suppose there exist A1, A2 ∈ Q(A) with det(A1)det(A2) < 0. Clearly
A �∈ SSn. On the other hand, convexity and hence path-connectedness of Q(A)
implies that there exists A3 ∈ Q(A) which is singular, so A �∈ SNSn.

Conversely, det(A) is simply a polynomial in the entries Aij , and the assump-
tion that A �∈ (SNSn ∪ SSn) means that det(A) consists of a sum containing at
least one positive monomial, corresponding say to permutation σ1 of [1, . . . , n],
and at least one negative monomial, corresponding say to permutation σ2 of
[1, . . . , n]. Note that Aσ1 , Aσ2 ∈ Q0(A) and det(Aσ1) > 0, and det(Aσ2) < 0. By
continuity of the determinant, there exist matrices in Q(A) with both positive
and negative determinants. ��

Example 5. Consider the matrix

A =

(
a b
c d

)
where a, b, c, d > 0. We can confirm that A �∈ (SNSn ∪ SSn). The matrices

A[1,2] =

(
a 0
0 d

)
and A[2,1] =

(
0 b
c 0

)
both lie in the closure of Q(A), and have determinants of opposite sign. So, for
example,

A1 =

(
a ε
ε d

)
and A2 =

(
δ b
c δ

)
with ε =

√
ad/2 and δ =

√
bc/2 are both in Q(A), and have determinants of

opposite sign.

Lemma 6. Let A be an n×n matrix. Then A �∈ (SNSn∪Sn) if and only if there
exists B ∈ Q(A) satisfying det(A)det(B) < 0.

Proof. That det(A)det(B) < 0 implies A �∈ (SNSn ∪ Sn) is immediate. In the
opposite direction, note that A �∈ (SNSn ∪ Sn) implies that A �∈ (SNSn ∪ SSn).
By Lemma 5, there certainly exist matrices in Q(A) with determinants of all
signs. Since A is nonsingular, we simply choose B to be some matrix in Q(A)
with determinant of opposite sign to A to get the result. ��

P0-Matrix Products of Matrices 9

Lemma 7. The following hold:

1. SSn is closed.
2. If A ∈ SSn, then Q0(A) ⊆ SSn.
3. If A ∈ SNSn, then Q0(A) ⊆ (SNSn ∪ SSn).
4. SNSn ∪ SSn is closed
5. SNSn ∪ Sn is closed.

Proof. 1. Consider a sequence (Ai) ⊂ SSn with Ai → A. By continuity of the
determinant, A ∈ Sn. Consider any B ∈ Q(A). It is easy to construct a sequence
(Bi) ⊂ SSn with Bi → B, so B ∈ Sn. (For example, choose (Bi)jk = (Ai)jk
when Ajk = 0, and (Bi)jk = Bjk(Ai)jk/Ajk otherwise; then Bi ∈ Q(Ai), and so
Bi ∈ SSn.) Since B was arbitrary, Q(A) ⊆ Sn, i.e., A ∈ SSn.

2. If A ∈ SSn, then by definition Q(A) ⊆ SSn. By closure of SSn, Q0(A) ⊆
SSn.

3. Let A ∈ SNSn, and assume for definiteness that det(A) > 0. Suppose there
exists B ∈ Q0(A)\(SNSn ∪ SSn). By continuity of the determinant, det(B) ≥ 0,
and sinceQ(B) ⊆ Q0(A), det(C) ≥ 0 for each C ∈ Q(B). But since B �∈ (SNSn∪
SSn), by Lemma 5 there exists C ∈ Q(B) with det(C) < 0, a contradiction. The
argument is similar if det(A) < 0.

4. By parts 2 and 3, A ∈ (SNSn ∪ SSn) implies that Q0(A) ⊆ (SNSn ∪ SSn).
Since there are a finite number of closed qualitative classes of n × n matrices,
SNSn ∪ SSn is the finite union of closed sets and is hence closed.

5. Since SSn ⊆ Sn, SNSn ∪ Sn = (SNSn ∪ SSn) ∪ Sn. Moreover, Sn is closed
by continuity of the determinant. As the union of two closed sets, SNSn ∪ Sn is
closed. ��

3.3 Compatibility of all Matrices in a Qualitative Class

Consider some matrix C. What are necessary/sufficient conditions for every pair
of matrices inQ(C) to be compatible? Note that if every pair of matrices inQ(C)
are compatible, then this extends by closure to Q0(C).

Definition 5. AmatrixA will be termed completely sign determined (CSD)
if every square submatrix of A has signed determinant. A ∈ CSD will mean that
A is a CSD matrix, and A ∈ CSDn×m will mean that A is an n×m CSD matrix.

The next two results show that the answer to the question posed above is pre-
cisely: “Every two matrices in Q0(C) are compatible if and only if C ∈ CSD.”
Consequently, since Q0(C) is a sign-class, by Lemmas 2 and 4 all matrices
{AB |A,BT ∈ Q0(C)}, are P0-matrices if and only if C ∈ CSD.

Lemma 8. If C ∈ CSD, then for any A,B ∈ Q0(C), A and B are compatible.

Proof. Let C be an n × m matrix. Choose any A,B ∈ Q0(C) and any α ⊆ In,
β ⊆ Im with |α| = |β|. If C(α|β) ∈ SS|α|, then A[α|β] = 0 and so A[α|β]B[α|β] =
0. If C(α|β) ∈ SNS|α|, then C[α|β] �= 0 and further C[α|β]A[α|β] ≥ 0 and
C[α|β]B[α|β] ≥ 0. Thus (C[α|β]A[α|β])(C[α|β]B[α|β])≥0. Dividing by (C[α|β])2
(which is nonzero), we have A[α|β]B[α|β] ≥ 0. ��

10 M. Banaji

Lemma 9. Let C be an n × m matrix. If C �∈ CSD, then there exist A,B ∈
Q(C), such that A and B fail to be compatible.

Proof. Since C �∈ CSD, there must be α ⊆ In, β ⊆ Im with |α| = |β| and such
that C(α|β) �∈ (SNSn ∪ SSn). By Lemma 5, there exist A,B ∈ Q(C), such that
A[α|β]B[α|β] < 0. Thus A and B fail to be compatible. ��

Theorem 1. Given a matrix C, every two matrices in Q0(C) are compatible if
and only if C ∈ CSD. Consequently all matrices ABT , where A,B ∈ Q0(C), are
P0-matrices if and only if C ∈ CSD.

Proof. The first statement follows immediately from Lemmas 8 and 9. The sec-
ond follows from Lemmas 2 and 4, noting that qualitative classes are sign-classes,
and that and Q(C)Q(CT) is an independent product. ��

Example 6. The following matrix can be checked to be CSD:⎛⎝ 1 1 0
−1 1 −1
0 1 1

⎞⎠ .

Consequently the product of any two matrices with the sign patterns⎛⎝ + + 0
− + −
0 + +

⎞⎠ and

⎛⎝ + − 0
+ + +
0 − +

⎞⎠
is necessarily a P0 matrix. Phrased differently, the product matrix⎛⎝a2b3 + a1b1 a2b4 − a1b2 a2b5

a4b3 − a3b1 a5b6 + a4b4 + a3b2 a4b5 − a5b7
a6b3 a6b4 − a7b6 a7b7 + a6b5

⎞⎠
is a P0-matrix for any nonnegative values of ai, bi. It is important to note that
the sign pattern of the product is not constant, but nevertheless all principal
minors are nonnegative.

A check for whether a matrix is CSD can also be sufficient to confirm that an
entire qualitative class consists of P0-matrices:

Corollary 1. Consider an n × n matrix A with nonnegative diagonal entries,
and let I be the n× n identity matrix. If A+ I ∈ CSD, then Q0(A) ⊆ P0,n.

Proof. Define C = A + I. Then A ∈ Q0(C) and I ∈ Q0(C). Since C ∈ CSD,
Lemma 8 implies that A and I (and hence A and IT) are compatible. Hence, by
Lemma 2, A(= AIT) ∈ P0,n. Since Q0(A) ⊆ Q0(C), the same argument applies
to any matrix in Q0(A), so Q0(A) ⊆ P0,n. ��

P0-Matrix Products of Matrices 11

Example 7. There is no immediate converse to Corollary 1: for example, consider
the matrix

A =

⎛⎝ 1 0 0
1 1 0
1 1 1

⎞⎠ .

By inspection, Q0(A) ⊂ P0,3, even though A �∈ CSD (and hence A + I �∈ CSD)
as a consequence of the submatrix

A({2, 3}|{1, 2}) =
(

1 1
1 1

)
which is neither SNS nor SS.

Graph Theoretic Characterisation of CSD Matrices. CSD matrices have
an elegant and simple graph-theoretic characterisation. Given any n×mmatrixA
we define a signed bipartite graph GA as follows. GA has n S-vertices associated
with the rows of A, and m R-vertices associated with the columns of A. An edge
exists between S-vertex i and R-vertex j if and only if Aij �= 0. The edge takes
the sign of Aij .

Let C be any cycle in GA defined as a set of edges. The sign of C is

sign(C) =
∏
e∈C

sign (e) .

As GA is bipartite, |C| is even, and one can define:

P (C) = (−1)|C|/2sign(C).

C will be termed an o-cycle if P (C) = −1. An example illustrating the defini-
tions is shown in Figure 1.

Theorem 2. Consider any matrix A and the associated graph GA. The follow-
ing two statements are equivalent:

1. A ∈ CSD;
2. All cycles in GA are o-cycles.

Proof. This is proved in [11]. ��

By Theorems 1 and 2, all matrices in the product Q0(A)Q0(A
T) are P0-matrices

if and only if all cycles in GA are o-cycles. Quite naturally, the same holds for
all matrices in the product Q0(A

T)Q0(A).

Example 8. Let A be any matrix of the form depicted in Figure 1. Taking the
product of a matrix in Q0(A

T) with one in Q0(A) gives a matrix of the form(
a4b2 + a1b1 a5b2 − a2b1
a4b5 − a1b3 a5b5 + a3b4 + a2b3

)
,

12 M. Banaji

⎛
⎝

−a b
0 c

−d −e

⎞
⎠

1 2 2

1 3

b

d

a e

c

Fig. 1. A matrix and the corresponding signed bipartite graph. It is assumed that
a, b, c, d, e > 0. Vertices corresponding to rows are depicted as circles and labelled with
the row number; vertices corresponding to columns are depicted as squares and labelled
with the column number. Negative edges are shown as dashed lines, while positive edges
are shown as bold lines. Labels on the edges show the correspondence with entries in
the matrix. The only cycle involves edges a, b, e, d. This has sign (−1)3 = −1 and so
the value of P for this cycle is (−14/2)(−1) = −1. Thus this cycle is an o-cycle.

(where ai, bi are arbitrary nonnegative numbers.) By the results above any such
matrix is necessarily a P0 matrix. In fact, since 2 × 2 P matrices are positive
stable, it lies in the closure of the positive stable matrices. Of course, both of
these facts can be checked directly.

Theorem 2 gives a sufficient condition guaranteeing that an entire qualitative
class consists of P0-matrices:

Corollary 2. Consider any square matrix A with nonnegative diagonal
elements. If all cycles in GA+I are o-cycles then Q0(A) ⊂ P0.

Proof. Applying Theorem 2, all cycles in GA+I are o-cycles, if and only if A+I ∈
CSD. If A + I ∈ CSD, then C = Q0(A + I) ⊂ CSD, and since Q0(A) + I ⊆
Q0(A+ I), Q0(A) + I ⊂ CSD. By Corollary 1, Q0(A) ⊂ P0. ��

Remark 3. Corollary 2 has no immediate converse. However various conditions
on the “interaction graph” of A, or a graph called the “directed SR graph” are
equivalent to the statement Q0(A) ⊂ P0 [6,16]. It is interesting in general to ask
when all matrices in a qualitative class have some property. For example, the
question of when a qualitative class consists of matrices which are Hurwitz is
posed in [12].

3.4 Compatibility of a Matrix with its Qualitative Class

A special case which arises frequently is when one of the factors in a product is
constant, namely when, given functions A : X → R

n×m and B : X → R
n×m, the

function A is constant, i.e., A(x) = A for all x ∈ X . In particular we examine
the situation where B(X) ⊆ Q0(A

T), and are led to the question: “What are
necessary and sufficient conditions on a matrix A to guarantee that all matrices
in Q0(A) are compatible with A?”

P0-Matrix Products of Matrices 13

Example 9. To see that compatibility of {A} and Q0(A) does not imply that
every two matrices in Q0(A) are compatible, consider the matrix

A =

(
1 1
1 1

)
.

It is easy to check that A is compatible with each B ∈ Q0(A), whereas∣∣∣∣ 1 2
2 1

∣∣∣∣ ∣∣∣∣ 2 1
1 2

∣∣∣∣ < 0,

and thus there are two matrices in Q(A) which fail to be compatible. Thus
matrices which are compatible with their entire qualitative class form a larger
set than the CSD matrices.

To motivate the discussion, consider functions F (x) = Av(x), where A is a
constant n×mmatrix, x ∈ X ⊆ R

n, v : Rn → R
m is a C1 function, and v satisfies

the condition Dv(x) ∈ Q0(A
T) for each x ∈ X (here Dv(x) is the Jacobian

matrix of v evaluated at x). Such functions arise in models from chemistry [7].
From arguments above, DF (x) = ADv(x) ∈ P0 for each x and all allowed
functions v if and only if all matrices in Q0(A) are compatible with A.

Definition 6. A matrix A will be termed strongly sign determined (SSD)
if all square submatrices of A are either SNS or singular. A ∈ SSD will mean
that A is an SSD matrix, and A ∈ SSDn×m will mean that A is an n×m SSD
matrix.

The following two results show that the condition A ∈ SSD is both necessary
and sufficient to ensure that all matrices in Q0(A) are compatible with A.

Lemma 10. Consider an n ×m matrix A and some B ∈ Q0(A). If A ∈ SSD,
then (i) A and B are compatible; (ii) ABT ∈ P0,n.

Proof. Consider any α ⊆ In, β ⊆ Im with |α| = |β|. Since A is SSD, ei-
ther A[α|β] = 0 or A(α|β) is SNS. In the latter case, by Part 3 of Lemma 7
Q0(A(α|β)) ⊆ (SNS|α|∪SS|α|), so either B[α|β] = 0, or A[α|β]B[α|β] > 0. In all
cases A[α|β]B[α|β] ≥ 0. Part (ii) now follows from Lemma 2. ��

Theorem 3. Consider an n × m matrix A. Then every matrix B ∈ Q0(A) is
compatible with A if and only if A is SSD. Consequently ABT ∈ P0,n for every
matrix B ∈ Q0(A) if and only if A is SSD.

Proof. By Lemma 10, if A is SSD, then each matrix in Q0(A) is compatible
with A, and ABT ∈ P0,n. Conversely if A fails to be SSD, then there are sets
α ⊆ In, β ⊆ Im with |α| = |β|, such that A(α|β) is neither SNS nor singular.
By Lemma 6, there is some B ∈ Q(A) such that A[α|β]B[β|α] < 0. Thus A and
BT fail to be compatible. That we can choose B such that ABT fails to be a
P0-matrix now follows from Lemma 4, since Q(A) is a sign-class and {A}Q(AT)
is an independent product. ��

14 M. Banaji

Remark 4. Unlike the CSD matrices (Theorem 2), there is no known neces-
sary and sufficient graph-theoretic characterisation of SSD matrices. However,
a graph-theoretic condition, first presented in [17], was shown in [11] to be a
sufficient condition for a matrix to be SSD. The construction is somewhat more
involved than that for CSD matrices, requiring the introduction of edge-labels,
and so is omitted here. It can be regarded as a special case of a very gen-
eral sufficient graph-theoretic condition for a product of two matrices to be a
P0-matrix [8].

Example 10. An n × m matrix in which every entry is the same is (trivially)
SSD, since every square submatrix is singular. However if n,m > 1, and the
entries are nonzero, then it is not CSD. This was illustrated in Example 9.

Remark 5. Parts 4 and 5 of Lemma 7 imply that both CSDn×m and SSDn×m

are closed. Moreover, CSDn×m (but not SSDn×m) consists of entire qualitative
classes. One interesting consequence is that some chemical reaction network
structures do not permit multiple equilibria, regardless both of the kinetics and of
the stoichiometries. The frequency with which CSD/SSD matrices occur among
n×m matrices whose entries are small integers is an interesting question worthy
of some exploration.

3.5 Matrices with Diagonal Factors

We now consider matrix products of the form ADmBDn, where A is an n×m
matrix, B is an m × n matrix, and Dm ∈ Dm, Dn ∈ Dn. There are a variety
of situations in which such products arise, including chemical models involving
mass-action and generalised mass-action kinetics. To motivate the discussion,
consider the function F (x) = Av(x), where A is a constant n × m matrix,
x ∈ X ⊆ R

n, v : Rn → R
m, and components of v take the form:

vj(x) = φj

(
n∑

k=1

Bjkgk(xk)

)
. (1)

Here φj(·) and gk(·) are C1 functions satisfying φ′
j(·) > 0 and g′k(·) > 0, and Bjk

are constants.

Example 11. Defining X to be the interior of the nonnegative orthant in R
n,

and choosing gk(x) = lnx and φj(y) = Kje
y, gives

vj(x) = Kj

∏
k=1,...,n

x
Bjk

k

which is the functional form for the rates of reactions assuming “generalised
mass-action kinetics”. The particular choice Bjk = max{−Skj , 0} gives mass-
action kinetics.

P0-Matrix Products of Matrices 15

Differentiating (1) gives

∂vj
∂xi

= φ′
j

(
n∑

k=1

Bjkgk(xk)

)
Bjig

′
i(xi) .

So Dv(x) = D1(x)BD2(x), where D1 and D2 are positive diagonal matrices
with entries (D1)jj = φ′

j (
∑n

k=1 Bjkgk(xk)) and (D2)ii = g′i(xi). Thus DF (x) =
AD1(x)BD2(x).

Lemma 11. Two n×m matrices A and B are compatible if and only if A and
DnBDm are compatible for every Dn ∈ Dn and Dm ∈ Dm.

Proof. Since only principal minors of a diagonal matrix can be nonzero, for any
α ⊆ In and β ⊆ Im,

(DnBDm)[α|β] = Dn[α]B[α|β]Dm[β] .

As Dn[α] and Dm[β] are positive, (DnBDm)[α|β] has the same sign as B[α|β].
��

Lemma 12. Consider n × m matrices A and B. If A and B are compatible,
then ADmBTDn ∈ P0,n for any Dm ∈ Dm and any Dn ∈ Dn.

Proof. By Lemma 11, since B is compatible with A, (DnBDm) is compatible
with A. By Lemma 2, ADmBTDn = A(DnBDm)T ∈ P0,n. ��

Remark 6. Given a matrix A, define A−, the negative part of A, via (A−)ij =
min{Aij , 0}. Matrices compatible with their negative parts were termed “weakly
sign determined” (WSD) in [7]. By Lemma 10, matrices which are SSD are
WSD, but the converse need not be true. Theorem 4.1 in [7] can be seen as an
application of Lemma 12.

Example 12. The matrices

A =

(
1 −2

−1 1

)
and A− =

(
0 −2

−1 0

)
are compatible, even though A fails to be SSD. Consequently, by Lemma 12,
AD1(A−)TD2 ∈ P0,n for any D1, D2 ∈ D2.

Lemma 13. Consider n×m matrices A and B, which are not compatible. Then
given any fixed Dn ∈ Dn, there exists Dm ∈ Dm such that ADmBTDn �∈ P0,n.

Proof. By Lemma 11, A and DnBDm are not compatible for any positive diag-
onal matrices Dn, Dm. Further, C = {DmBTDn |Dm ∈ Dm} is a left sign-class.
Moreover, {A}C is an independent product. So, by Lemma 3, there exists a Dm

such that ADmBTDn �∈ P0,n. ��

Remark 7. Theorem 4.3 in [7] is an application of this result.

16 M. Banaji

A special case is where we have B = AT . In this case, the results of Lemma 12
can be strengthened:

Theorem 4. Let Dm ∈ Dm, Dn, D̃n ∈ Dn, and A be an n × m matrix. Then
(i) ADmATDn + D̃n is positive stable; (ii) ADmATDn lies in the closure of the
positive stable matrices.

Proof. Since A is (trivially) compatible with itself, we immediately have from
Lemma 12 that ADmATDn ∈ P0,n, and so ADmATDn + D̃n is a P -matrix.

Secondly, J = ADmATDn + D̃n is “sign-symmetric”, i.e., given any α ⊆ In,
γ ⊆ Im with |α| = |γ|, J [α|γ]J [γ|α] ≥ 0. To see this, rewrite J = (ADmAT +
D̃nD

−1
n)Dn, and note that C ≡ ADmAT + D̃nD

−1
n is symmetric. Applying the

Cauchy-Binet formula, we have

J [α|γ]J [γ|α] = C[α|γ]C[γ|α]Dn[γ]Dn[α] = (C[α|γ])2Dn[γ]Dn[α] ≥ 0 .

Since sign-symmetric P -matrices are positive stable (Theorem 1.1 in [10]), it
follows that ADmATDn+ D̃n is positive stable. The second claim follows imme-
diately because D̃n can have arbitrarily small diagonal entries. ��

Remark 8. The example in Section 4.4 of [18] can be regarded as an application
of this result. As usual in applications, it is the dual result which appears, and
certain Jacobian matrices arising in biochemistry are shown to be structurally
Hurwitz. In general, examples of systems in biology/chemistry which are struc-
turally Hurwitz are few and far between. These systems provide an exception.

4 Discussion and Conclusions

A variety of sufficient and necessary conditions have been found for the product
of matrices to lie in the closure of the P -matrices. In some cases, it has been
shown that (positive) stability of the product follows. Underlying most of these
results are the notion of compatibility, and application of the Cauchy-Binet
formula. The results themselves have been shown to have application to questions
of injectivity and stability in situations where Jacobian matrices have a natural
product structure as, for example, occurs often in biology and chemistry. A
number of examples have been presented to illustrate the basic concepts, and it
has been remarked that several previously obtained results are special cases of
those presented here.

References

1. Murty, K.G.: Linear Complementarity, Linear and Nonlinear Programming.
Heldermann Verlag, Berlin (1988)

2. Hofbauer, J., Sigmund, K.: Evolutionary games and population dynamics.
Cambridge University Press (1998)

3. Gale, D., Nikaido, H.: The Jacobian matrix and global univalence of mappings.
Math. Ann. 159, 81–93 (1965)

P0-Matrix Products of Matrices 17

4. Parthasarathy, T.: On global univalence theorems. Lecture Notes in Mathematics,
vol. 977. Springer, Heidelberg (1983)

5. Nikaido, H.: Convex structures and economic theory. Academic Press (1968)
6. Soulé, C.: Graphic requirements for multistationarity. Complexus 1, 123–133 (2003)
7. Banaji, M., Donnell, P., Baigent, S.: P matrix properties, injectivity and stability

in chemical reaction systems. SIAM J. Appl. Math. 67(6), 1523–1547 (2007)
8. Banaji, M., Craciun, G.: Graph-theoretic approaches to injectivity and multiple

equilibria in systems of interacting elements. Commun. Math. Sci. 7(4), 867–900
(2009)

9. Kellogg, R.B.: On complex eigenvalues of M and P matrices. Numer. Math. 19,
70–175 (1972)

10. Hershkowitz, D., Keller, N.: Positivity of principal minors, sign symmetry and
stability. Linear Algebra Appl. 364, 105–124 (2003)

11. Banaji, M., Craciun, G.: Graph-theoretic criteria for injectivity and unique equilib-
ria in general chemical reaction systems. Adv. in Appl. Math. 44, 168–184 (2010)

12. Maybee, J., Quirk, J.: Qualitative problems in matrix theory. SIAM Rev. 11(1),
30–51 (1969)

13. Brualdi, R.A., Shader, B.L.: Matrices of sign-solvable linear systems. Cambridge
tracts in mathematics, vol. 116. Cambridge University Press (1995)

14. Gantmacher, F.R.: The theory of matrices. Chelsea (1959)
15. Banaji, M., Rutherford, C.: P -matrices and signed digraphs. Discrete Math. 311(4),

295–301 (2011)
16. Banaji, M.: Graph-theoretic conditions for injectivity of functions on rectangular

domains. J. Math. Anal. Appl. 370, 302–311 (2010)
17. Craciun, G., Feinberg, M.: Multiple equilibria in complex chemical reaction net-

works: II. The species-reaction graph. SIAM J. Appl. Math. 66(4), 1321–1338
(2006)

18. Donnell, P., Banaji, M., Baigent, S.: Stability in generic mitochondrial models. J.
Math. Chem. 46(2), 322–339 (2009)

A Formal Model for Databases in DNA

Joris J.M. Gillis� and Jan Van den Bussche

Hasselt University and Transnational University of Limburg,
Agoralaan Gebouw D, 3590 Diepenbeek, Belgium

Abstract. Our goal is to better understand, at a theoretical level, the
database aspects of DNA computing. Thereto, we introduce a formally
defined data model of so-called sticker DNA complexes, suitable for the
representation and manipulation of structured data in DNA. We also
define DNAQL, a restricted programming language over sticker DNA
complexes. DNAQL stands to general DNA computing as the standard
relational algebra for relational databases stands to general-purpose con-
ventional computing. The number of operations performed during the
execution of a DNAQL program, on any input, is only polynomial in
the dimension of the data, i.e., the number of bits needed to represent
a single data entry. Moreover, each operation can be implemented in
DNA using a constant number of laboratory steps. We prove that the
relational algebra can be simulated in DNAQL.

Keywords: DNA Computing, Formal Model, Relational Algebra.

1 Introduction

In DNA computing [16,3], data are represented using synthetic DNA molecules
in vitro. Operations on data are performed by biotechnological manipulations
of DNA that are based on DNA self-assembly (Watson–Crick base pairing) or
on explicit effects upon DNA by specific enzymes. In the original approach to
DNA computing, which we could call the Adleman model [2,5,18], one uses a
more or less standard repertoire of operations on DNA, where each operation
corresponds to a fixed number of steps in the laboratory. (These steps could be
performed by a human or by a robot.)

In more recent years, research in DNA computing is largely focusing on the
goal to let an entire computation happen by self-assembly alone, without (or with
minimal) outside intervention, e.g., [23,22,11]. Whereas the pure self-assembly
model is very attractive, it is harder to achieve in practice, and indeed this is
the subject of a lot of current research in the area of DNA nanotechnology.

Meanwhile, the original Adleman model deserves further study, and in this pa-
per we have a renewed look at the Adleman model, specifically from the perspec-
tive of databases. Indeed, DNA computing is very attractive from the database
perspective: the nanoscale and robustness of DNA molecules are promising from

� Ph.D. fellowship of the Research Foundation - Flanders (FWO)

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 18–37, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

A Formal Model for Databases in DNA 19

a data storage point of view, and the highly parallel operations of DNA com-
puting correspond well with the bulk data processing nature typical of database
query processing [1]. Most earlier theoretical work on the possibilities of DNA
computing has focused either on the ability to mimick classical models of com-
putation such as finite automata or Turing machines, or on the relationship
with parallel computation, but this always from a general-purpose computing
perspective.

In contrast, in database theory, one considers restricted models of computa-
tion, limited in computational power but still with sufficient expressiveness for
structured database manipulation. The classical model is the relational algebra
for relational databases [1]. This algebra consists of six operations on relations
(database tables): union; difference; cartesian product; selection; projection; and
renaming. These operations can be composed to form expressions. These express
database queries, and the relational algebra can express precisely those database
queries that can be defined in first-order logic, thus providing a well-delineated
restriction in computational power.

The benefit of restricted computational models is that they facilitate the iden-
tification of optimisation strategies for more efficient processing; hence there ex-
ists a large body of techniques for database query processing, e.g., [17]. From the
point of view of theoretical science, an added benefit of a restricted computa-
tional model is that it allows us to study and attempt to characterise the precise
computational abilities of the computational systems that are being modeled
(such as relational database systems).

Motivated by the above considerations, in this paper, we want to propose a
solution to the following equation:

relational databases and relational algebra
general-purpose conventional computing

=
?

DNA computing (Adleman model)

We define a formal data model of sticker complexes, which represent complexes of
DNA molecules. Our complexes are general enough to serve as data structures for
structured data such as found in relational databases. At the same time, however,
sticker complexes are restricted so that we avoid the complications connected to
the difficult secundary structure prediction problem of general DNA complexes
[14]. Indeed, our main contribution consists in formally defining a well-behaved
family of DNA-complex data structures, with an accompanying set of operations
on these data structure that preserve the well-behavedness restrictions. We fit
the operations into a first-order query language, called DNAQL, with a formal
operational semantics. We thus propose the sticker complex data model, together
with DNAQL, as the DNA computing analogues of the relational database model
and the accompanying relational algebra. Restrictive as sticker complexes and
DNAQL may be, we prove that they can still simulate the relational data model
and the relational algebra. At the same time, we stress that our new DNA
database model should also be appreciated in its own right as a restricted model
of DNA computing specialised to database manipulation.

This paper is organised as follows. Section 2 discusses related work. Section 3
defines the data model. Section 4 introduces important operations on sticker

20 J.J.M. Gillis and J. Van den Bussche

complexes. Section 5 discusses the representation of structured data using com-
plexes. Section 6 discusses the implementation in DNA of the operations. Sec-
tion 7 defines the query language DNAQL. Section 8 presentes the simulation of
the relational algebra in DNAQL. We conclude in Section 9.

2 Related Work

Our work can be seen as a followup of Reif’s original work [18] on relating DNA
computing with conventional parallel computing. Indeed, Reif also formalized
DNA complexes and considered similar operations. Our model specializes Reif’s
model to a database model. For example, it is well known [1,12] that the data
complexity of the relational algebra (first-order logic) belongs to the parallel
circuit complexity class AC0, denoting constant-depth, polynomial-size circuits
with unbounded fan-in. Likewise, DNAQL programs execute a number of op-
erations on complexes that are largely independent of the data size, except for
a polynomial dependence on the number of bits needed to represent a single
data entry, a number we call the dimension of the data. Moreover, as usual for
DNA computing, each operation works in parallel on the different DNA strands
present in a complex, and each operation can be implemented in real DNA in a
constant number of laboratory steps.

Our work also clearly fits in a recent trend in DNA computing to identify spe-
cialised computational models within the general framework of DNA computing.
This trend is nicely exemplified by the work by Cardelli [6] and Majumder and
Reif [15], where the specialised computational model is that of process algebras;
in our work, it is that of databases.

While our work is not the first to relate the relational algebra with DNA com-
puting, we are the first to do it formally and in detail. An abbreviated account
of achieving relational algebra operations through DNA manipulation was given
recently by Yamamoto et al. [26], but unfortunately that paper is too sketchy to
allow any comparison with our approach. In contrast, our own methods are fully
formalised, and importantly, our work identifies restrictions on DNA computing
within which relational algebra simulation remains possible. More influential to
our work is the older work by Arita et al. [4] demonstrating how one can accom-
plish concatenation and rotation of DNA strands. Such manipulations, which
involve circular DNA, are crucial in our model, and indeed were already crucial
to Reif [18].

Finally, we mention the earlier works on DNA memories [19,7], which, while
having a database flavor, are primarily about supporting searching in sets of
DNA strands and largely ignore the more complex operations of the relational
algebra such as difference, projection, cartesian product, and renaming.

3 The Sticker-Complex Data Model

In this section we formally define a family of data structures which we call
sticker complexes. They are an abstraction of complexes of DNA strands. Reif

A Formal Model for Databases in DNA 21

[18] already defined a similar data structure, but our definition introduces several
limitations so as to avoid unrealistic or otherwise complicated and unmanage-
able secundary structures. The adjective ‘sticker’ points to our restriction of
hybridization to short primers (which we call “negative” strands) for the recog-
nition and splicing of the strands carrying the actual data (called the “positive”
strands).

Basically, we assume the following disjoint, finite alphabets: Λ of atomic value
symbols; Ω of attribute names ; and Θ = {#1, #2, #3, #4, #5, #6, #7, #8, #9} of
tags. The union of these three alphabets is denoted by Σ and called the positive
alphabet.

Furthermore, we use a negative alphabet, denoted Σ, disjoint from Σ, defined
as Σ = {ā | a ∈ Σ}. Thus there is a bijection between Σ and Σ, which is called
complementarity and is denoted by overlining a symbol; we set ¯̄a = a.

We will first define pre-complexes that contain the overall structure of sticker
complexes. Sticker complexes will then be defined as pre-complexes satisfying
various restrictions. A pre-complex is a finite, edge-labeled directed graph where
the edges represent bases in strands, and the nodes represent the endpoints
between the bases in a strand. Moreover, a pre-complex is equipped with a
matching, representing base pairing, and two predicates. One predicate indicates
which bases are “immobilized”, i.e., do not float freely and can be separated from
solution in a controlled manner; the other predicate indicates which bases are
“blocked”, i.e., cannot participate in base pairing. Formally, a pre-complex is a
6-tuple (V, E, λ, μ, immob, blocked) such that:

1. V is a finite set of nodes,
2. E ⊆ V × V is a finite set of directed edges without self-loops,
3. λ : E → Σ ∪ Σ is a total function labeling the edges,
4. μ ⊆ [E]2 = {{e, e′} | e, e′ ∈ E and e �= e′} is a partial matching on the edges,

i.e., each edge occurs in at most one pair in μ,
5. immob ⊆ E,
6. blocked ⊆ E.

Let C be a pre-complex as above. We introduce the notion of “strand” and
“component” of C as follows. A strand of C is simply a connected component of
the directed graph (V, E). Furthermore, we say two strands s and s′ are bonded
if there exists some edge e in s and some edge e′ in s′ with {e, e′} ∈ μ. When
two strands are connected (possibly indirectly) by this bonding relation, we say
they belong to the same component. Thus, a component of a pre-complex is
a substructure formed by a maximal set of strands connected by the bonding
relation.

A sticker complex now is a pre-complex satisfying the following restrictions:

1. There are no isolated nodes, i.e., each node occurs in at least one edge.
2. Each node has at most one incoming and at most one outgoing edge. Thus,

each strand has the form of a chain or a cycle.
3. The labels on a chain are “homogeneous”, in the sense that either all edges

are labeled with positive symbols or all edges are labeled with negative

22 J.J.M. Gillis and J. Van den Bussche

symbols. Naturally, a strand with positive (negative) symbols is called a
positive (negative) strand.

4. Negative strands are severely restricted: specifically, every negative strand
must be a chain of one or two edges.

5. Matchings by μ can only occur between complementarly labeled edges.
6. An edge can be immobilized only if it is the sole edge of a negative strand.
7. Edges in blocked do not occur in μ.
8. Each component can contain at most one immobilized edge.

Henceforth, for simplicity, we will refer to sticker complexes simply as “com-
plexes”.

We remark that the predicate blocked and the matching μ serve to abstract
two different features of double-strandedness. The matching μ is used to make
explicit where the stickers (short negative strands) pair with the positive strands.
The predicate blocked represents longer stretches of double strands. As in the
work by Rozenberg and Spaink [20], blocking is used to restrict the places where
hybridization can still occur.

We also remark that it is not necessary to require that edges matched by μ run
in opposite directions (in accordance with the opposite 5′–3′ and 3′–5′ directions
of double-stranded DNA). This is because stickers of length one can trivially be
placed in the desired direction, and stickers of length two can always fold so as
to be again in the desired direction. The latter is illustrated in Figure 1.

b

a b

a

b

a

b

a

Fig. 1. On the left, a complex with two strands spelling the words ab and b̄ā and
the expected complementary base pairing. On the right, a complex with two strands
spelling the words ab and āb̄ and a “folded” base pairing. Dotted lines denote edges
matched by μ.

Redundancy in complexes. In practice, a test tube will contain many duplicate
strands, and indeed this multiplicity is typically crucial for DNA computing
to work. Accordingly, in our model, each component of a complex stands for
possibly multiple occurrences. (This important issue is not addressed in Reif’s
formalisation of complexes [18].) In order to formalize this, we define the notions
of subsumption, equivalence, redundant extension, and minimality.

A complex C′ is said to subsume a complex C if for each component D of C,
there exists an isomorphic component D′ in C′. Two complexes C and C′ are

A Formal Model for Databases in DNA 23

said to be equivalent if they subsume each other. When C′ is equivalent to C
and an extension of C, we call C′ a redundant extension of C.

A component D of a complex C is called redundant if some other component
of C is isomorphic to D. Note that removing a redundant component from C
yields a complex that is still equivalent to C. A complex that has no redundant
components is called minimal. Naturally, each complex C has a unique (up
to isomorphism) minimal complex C′ that is equivalent to C; we call C′ the
minimization of C.

4 Operations on Complexes

In this section, we formally define a set of operations on complexes that are rather
standard in the DNA computing literature, except perhaps the difference. But
what is interesting, however, is that we have defined sticker complexes in such a
way that each operation always result in a sticker complex when applied to sticker
complexes. Moreover, the difference operation imposes additional restrictions on
its input so as to guarantee effective implementability in real DNA (discussed in
Section 6).

As a general proviso, in the following definitions, a final minimization step
should always be applied to the result so as to obtain a mathematically deter-
ministic operation. In the following definitions we keep this implicit so as not
to clutter up the presentation. Also, it is understood that the result of each
operation is defined up to isomorphism.

Union. Let C1 = (V1, E1, λ1, μ1, immob1, blocked1) and C2 = (V2, E2, λ2, μ2,
immob2, blocked2) be two complexes. W.l.o.g. we assume that V1 and V2 are
disjoint. Then the union C1∪C2 equals (V1∪V2, E1∪E2, λ1∪λ2, μ1∪μ2, immob1∪
immob2, blocked1 ∪ blocked2).

Difference. Let C1 and C2 be two complexes that satisfy the following conditions:

1. μ1 = immob1 = blocked1 = ∅ = μ2 = immob2 = blocked2, i.e., all compo-
nents in C1 and C2 are single strands.

2. All strands of C1 and C2 are positive, noncircular, and all have the same
length.

3. Each strand of C2 ends with #4 and does not contain #5.

Then the difference C1 − C2 equals the union of all strands in C1 that do not
have an isomorphic copy in C2. If C1 and C2 do not satisfy the above conditions
then C1 − C2 is undefined.

Hybridize. Let C = (V, E, λ, μ, immob, blocked) and C′ = (V ′, E′, λ′, μ′, immob ′,
blocked ′) be two complexes. We say that C′ is a hybridization extension of C
if V = V ′, E = E′, λ = λ′, immob = immob ′, blocked = blocked ′ and μ′ is an
extension of μ. Beware that a hybridization extension must satisfy all conditions
from the definition of sticker complex. A complex C′ is said to have maximal
matching if the only hybridization extension of C′ is C′ itself.

24 J.J.M. Gillis and J. Van den Bussche

The notion of hybridization extension is not sufficient, however, since we want
to allow duplicate copies of components in C to participate in hybridization.
(This important issue is glossed over in Reif’s formalisation [18].) To formalize
this behavior, let us call C′ (with matching μ′) a multiplying hybridization exten-
sion (MHE) of C if C′ is a hybridization extension, with maximal matching, of
some redundant extension C′′ of C. Moreover, we call a component D of an MHE
unfinished if there exist another MHE in which D occurs bonded within a larger
component. We then call an MHE saturated if it has no unfinished components.
This is illustrated in Figure 2.

b

c d

b c

b

a

d

b c
b

a b c

d

b c
a b

b

a b c

Fig. 2. Left: a complex C; top right: a hybridization extension of C with maximal
matching, but not saturated in view of the MHE of C shown bottom right; that MHE
is saturated. Dotted lines denote edges matched by μ.

Finally we say that C has recursion-free hybridization if there exists only a
finite number of saturated hybridization extensions of C.

A Formal Model for Databases in DNA 25

On the other hand, we do not want hybridization to go off into an uncontrolled
chain reaction. Indeed, our very goal in this paper is to explore a “first-order” or
“recursion-free” version of DNA computing, in line with the first-order nature of
the relational algebra [1]. Thus we want to stay away from recursive self-assembly
DNA computations. Formally, we want to rule out the situations where there
are infinitely many possible non-equivalent MHE’s. Such situations are very well
possible. Consider, for a simple example, the complex C consisting of two non-
circular strands spelling out the words ab and āb̄. Taking n copies of ab and
n copies of āb̄, we can form arbitrary long non-equivalent MHE’s of C. An
illustration for n = 3 is given in Figure 3.

b

ab

a

b

ab ab ab

a b a ab

Fig. 3. A complex (top) and one of its MHE’s (bottom). Dotted lines denote edges
matched by μ. Note that the MHE forms a ring structure.

Formally, we say that C has recursion-free hybridization if their are only
finitely many saturated MHE’s of C. If this is the case, we define hybridize(C)
to equal the disjoint union of all saturated MHE’s of C. If C does not have
recursion-free hybridization, we consider hybridize(C) to be undefined. For
example, it can be verified that the complex from Figure 2 has recursion-free
hybridization.

Ligate. The ligate operator concatenates strands that are held together by a
sticker. Formally, define a gap as a set of four edges {e1, e2, e3, e4} such that
{e1, e4} ∈ μ; {e2, e3} ∈ μ; e1 and e2 (in that order) are consecutive edges on a
negative strand; e3 is the last edge on its (positive) strand; and e4 is the first
edge on its (positive) strand. By filling a gap we mean modifying the complex
so that the endnode of e3 and the startnode of e4 are identified. We now define
ligate(C) as the complex obtained from C by filling all gaps.

Flush. Quite simply flush(C) equals the complex obtained from C by removing
all components that do not contain an immobilized edge.

Split. Consider a node u in some complex C. By splitting C at u, we mean the
following.

26 J.J.M. Gillis and J. Van den Bussche

– If u has an incoming (outgoing) edge, denote it by e1 (e2).
– If both e1 and e2 exist, then replace u by two nodes u1 and u2, letting e1

arrive in u1, and letting e2 start in u2.
– Furthermore, if there exists a node u′ with incoming edge e4 and outgoing

edge e3, such that {e1, e3} ∈ μ or {e2, e4} ∈ μ, then u′ is also split in an
analogous manner.

Also, an edge is called interacting if it neither occurs in blocked nor in μ.
Now consider the set of triples shown in Table 1. Each triple is called a split-

point and has the form (label , interacting, place). By splitting C at such a split-
point, we mean splitting C at all startnodes (if place is ‘before’) or endnodes
(otherwise) of edges labeled label , on condition that the edge is interacting
(or noninteracting, depending on the boolean value interacting). The result is
denoted by split(C, label).

Table 1. The allowed split points

Label Interacting Place

#2 false before
#3 false before
#4 false after
#6 true after
#8 true before

Blocking. There are two blocking operations. Here we assume that C is “satu-
rated” in the sense that C is equivalent to hybridize(C); if this condition is not
satisfied then the blocking operations on C are considered to be undefined.

The simplest operation is block(C, σ), for any σ ∈ Σ, which equals the com-
plex obtained from C by adding all edges labeled σ to blocked .

For the other operation, let again be σ ∈ Σ, and consider any contiguous
substrand s in C. We call s a σ-blocking range if it satisfies three conditions.
Firstly, all edges of the substrand are interacting (in the sense of the previous
paragraph). Secondly, either the substrand contains the first edge of its strand,
or the edge preceding the first edge of the substrand is blocked. Thirdly, the last
edge of the substrand is labeled with σ. Now we define blockfrom(C, σ) to be
the complex obtained from C by adding to blocked all edges appearing in some
σ-blocking range.

Cleanup. The cleanup operator undoes matchings and blockings and removes
all strands except for the longest positive strands. Here we assume the condition
that every positive strand in C is at least three long, and has at least one
interacting edge; if C does not satisfy this condition, cleanup(C) is not defined.
Otherwise, cleanup(C) equals the union of all positive strands of C of maximal
length; there are no matched and no blocked edges in cleanup(C).

A Formal Model for Databases in DNA 27

5 Data Representation

When we want to represent structured data as sticker complexes, the symbols
from the alphabet Σ = Λ ∪ Ω ∪ Θ will be used in different ways. Attributes
(Ω) will be used to indicate the structure of the data; tags (Θ) will be used as
separators and auxiliary markers in data manipulation. Atomic value symbols
(Λ) will be used to represent the actual data entries. However, since Λ is just a
finite alphabet typically of small size, we will need to use strings (or vectors) of
atomic value symbols to represent data entries, just like words of bits are used
in conventional computing to represent data entries like characters or integers.
In analogy to the word length of a conventional computer processor, in our
approach we assume some dimension �, a natural number, is known. Then every
data entry is encoded by an �-vector of atomic data symbols.

Formally, we say that a sticker complex C has dimension � if every edge e la-
beled by some (positive) atomic value symbol is part of a sequence (e0, e1, . . . , e�,
e�+1) of � + 2 consecutive edges, where e0 is labeled #3; each ei for i = 1, . . . , �
is labeled with a positive atomic value symbol; and e�+1 is labeled #4. So, e is
one of the ei’s with i ∈ {1, . . . , �}. We call (e0, e1, . . . , e�, e�+1) an �-vector in C.
A complex of dimension � is also called an �-complex.

We also introduce an additional blocking operator on �-complexes. Let n be
a natural number and let C be a complex satisfying the following conditions:

1. C is an �-complex with � ≥ n;
2. in every �-vector in C, either all edges are blocked or no edge is blocked;
3. C is equivalent to hybridize(C).

Then blockexcept(C, n) equals the complex obtained from C by blocking,
within each �-vector (e0, e1, . . . , e�, e�+1) that is not yet blocked, all edges ex-
cept en. If (C, n) does not satisfy the conditions above, then blockexcept(C, n)
is undefined.

6 Implementation in DNA

In this section, we argue that the abstract sticker complexes and the operations
on them presented above can be implemented by real DNA complexes. Our
discussion remains theoretical as we have not performed laboratory experiments.
On the one hand, our main purpose is to make the abstract model plausible
as a theoretical framework in which the possibilities and limitations of DNA
computing as a database model; on the other hand, we use only rather standard
biotechnological techniques.

Each component of an abstract complex is represented by a large surplus of
duplicate copies in DNA. Each positive alphabet symbol from Σ is implemented
by a strand of (single-stranded) DNA, such that the resulting set of DNA strands
forms a set of DNA codewords [8,21,24]. If the DNA strand for symbol a ∈ Σ
is w, then the DNA strand for the complementary symbol ā, is, naturally, the
Watson-Crick complementary strand to w. Then, matching of edges by μ in an

28 J.J.M. Gillis and J. Van den Bussche

abstract complex is implemented by base pairing in the DNA complex. We will
see below how blocking is implemented. Immobilization is implemented as is
standard in DNA computing by attachment to surfaces [13] or magnetic beads.

The union operation amounts to mixing two test tubes together.
The difference C1 − C2 of complexes can be implemented by a subtractive

hybridization technique [10]. Let C1 (C2) be stored in test tube t1 (t2). Because
all strands in t2 end in #4, we can easily append #5 to them. Next we add to
t2 an abundance of immobilized short primers #5. Using polymerase we obtain
complements to all strands in t2, still immobilized, so that it is now easy to
separate them. It remains to use these complements to remove all strands from
t1 that occured in t2. Since all strands have the same length, partial hybridiza-
tion, leading to false removals, can be avoided by using a very precise melting
temperature based on the precise length of the strands.

Hybridization happens naturally and is merely controlled by temperature.
Still, we must argue that the result still satisfies the definition of sticker complex.
The only peculiarity in this respect is the requirement that each component can
contain at most immobilized edge. Since immobilized edges are implemented
by strands affixed to surfaces, implying some minimal distance between such
strands, it seems reasonable to assume that the large majority of hybridization
reactions will occur among freely floating strands, or between freely floating and
immobilized ones.

Recursion-free hybridization is very hard to control by nature. It will be the
responsability of the algorithm designer to design DNAQL programs (see Sec-
tion 7) that, on the intended inputs, will apply hybridize only to inputs that
have recursion-free hybridization. Our simulation of the relational algebra in
DNAQL (see Section 8) is well-defined in this sense.

Splitting is achieved as usual by restriction enzymes. A feature of our abstract
model is that we require only five recognition sites (Table 1). Of course, these
recognition sites will have to be integrated in the DNA codeword design.

Blocking is implemented by making strands double-stranded, so that they
cannot be involved in later hybridizations. The ordinary block operation can be
implemented by adding the appropriate primer which will anneal to the desired
substrands thus blocking the corresponding edges. As in the Sanger sequenc-
ing method, however, the base at the 3′ end of the primer is modified to its
dideoxy-variant. In this way unwanted interaction with polymerase from possi-
ble later blockfrom operations is avoided. Indeed, blockfrom is implemented
using polymerase.

For the blockexcept operation to work, we need to adapt the implemen-
tation of �-vector strands #3v1 . . . v�#4, with vi ∈ Λ for i = 1, . . . , �, by in-
troducing additional markers φi, so that we get #3φ1v1 . . . φ�v�#4. These �
additional markers must be part of the set of codewords. We can then imple-
ment blockexcept(., n) by the composition block(., #3); blockfrom(., φn−1);
block(., φn+1); blockfrom(., #4).

The cleanup operation starts by denaturing (warming up) the tube. Immobi-
lized strands are removed from the tube. Next a gel electrophoresis is carried out

A Formal Model for Databases in DNA 29

to separate the longest DNA molecules from the other molecules. Thanks to the
conditions we have imposed on inputs to cleanup, the result of this separation
is either empty or consists of positive DNA molecules.

7 DNAQL

In this section we define a limited functional programming language, DNAQL,
for expressing functions from �-complexes to �-complexes. A crucial feature of
DNAQL is that the same program can be applied uniformly to complexes of any
particular dimension �. DNAQL is not computationally complete, as it is meant
as a query language and not a general-purpose programming language. The
language is based on the operations on complexes introduced earlier, and adds
to this the following features: some distinguished constants; an emptiness test
(if-then-else); let-variable binding; counters that can count up to the dimension
of the complex; and a limited for-loop for iterating over a counter.

The syntax of DNAQL is given in Figure 4. Note that expressions can contain
two kinds of variables: variables standing for complexes, and counters, ranging
from 1 to the dimension. Complex variables can be bound by let-constructs, and
counters can be bound by for-constructs. The free (unbound) complex variables
of a DNAQL expression stand for its inputs. A DNAQL program is a DNAQL
expression without free counters. So, in a program, all counters are introduced
by for-loops.

〈expression〉 ::= 〈complexvar〉 | 〈foreach〉 | 〈if 〉 | 〈let〉 | 〈operator 〉 | 〈constant〉
〈foreach〉 ::= for 〈complexvar〉 := 〈expression〉 iter 〈counter 〉 do 〈expression〉

〈if 〉 ::= if empty(〈complexvar〉) then 〈expression〉 else 〈expression〉
〈let〉 ::= let x := 〈expression〉 in 〈expression〉

〈operator 〉 ::= ((〈expression〉) ∪ (〈expression〉)) | ((〈expression〉) − (〈expression〉))
| hybridize(〈expression〉) | ligate(〈expression〉)
| flush(〈expression〉)
| split(〈expression〉, 〈splitpoint〉)
| block(〈expression〉, Σ)
| blockfrom(〈expression〉, Σ)
| blockexcept(〈expression〉, 〈counter 〉)
| cleanup(〈expression〉)

〈constant〉 ::= Σ+ | (
Σ − Λ

) (
Σ − Λ

) | immob(Σ)
| leftboot | rightboot | empty

〈splitpoint〉 ::= #2 | #3 | #4 | #6 | #8

Fig. 4. Syntax of DNAQL

The constants have the following meaning as particular complexes:

– A word w ∈ Σ+ stands for a single, linear, positive strand that spells the
word w.

30 J.J.M. Gillis and J. Van den Bussche

– A two-letter word āb̄, for a, b ∈ Σ − Λ, stands for a single, linear, negative

strand of length two of the form 1 b̄−→ 2 ā−→ 3.
– immob(ā), for a ∈ Σ, stands for a single, negative, immobilized edge labeled

ā.
– leftboot and rightboot are illustrated in Figure 5.
– empty stands for the empty complex, i.e., the complex with the empty set

of nodes.

#
1

#
2

#
1

#
5

#
5

#
4

Fig. 5. Left- and right-boot-shaped complexes

The semantics of a DNAQL expression e is defined relative to a context con-
sisting of a dimension �, an �-complex assignment β, and an �-counter assignment
γ. An �-complex assignment is a mapping from complex variables to �-complexes;
an �-counter assignment is a mapping from counters to {1, . . . , �}. Naturally, β
must be defined on all free variables of e, and γ must be defined on all free coun-
ters of e. Within such a context, the expression can evaluate to an �-complex,
denoted by [[e]]�(β, γ). The semantic rules that define this evaluation are shown
in Figure 6. The superscript � has been omitted to reduce clutter. The rules
for let and for use the oft-used notation f [x := u] to denote the mapping f
updated so that x is mapped to u. Because the operations on complexes are not
always defined, the evaluation may fail, so [[e]]�(β, γ) may be undefined. When e
is a program, we denote [[e]](β, ∅) simply by [[e]](β).

8 Simulation of the Relational Algebra

Let us first recall some basic definitions concerning the relational data model.
Basically we assume a universe U of data elements. A relation schema R is a
finite set of attributes. A tuple over R is a mapping from R to U . A relation over
R is a finite set of tuples over R. A database schema is a mapping D on some
finite set of relation variables that assigns a relation schema to each relation
variable. An instance of D is a mapping I on the same set of relation variables
that assigns to each relation variable x a relation over D(x).

The syntax of the relational algebra [1] is generated by the following grammar:

e ::= x | (e ∪ e) | (e − e) | (e × e) | σA=B(e) | π̂A(e) | ρA/B(e) .

Here, x stands for a relation variable, and A and B stand for attributes. Our
version of the relational algebra is slightly nonstandard in that our version of

A Formal Model for Databases in DNA 31

x is a complex variable

[[x]](β, γ) = β(x)

[[e1]](β, γ) = C1 [[e2]](β, γ) = C2

[[e1 ∪ e2]](β, γ) = C1 ∪ C2

[[e1]](β, γ) = C1 [[e2]](β, γ) = C2 C1 − C2 is well-defined

[[e1 − e2]](β, γ) = C1 − C2

[[e′]](β, γ) = C′

[[hybridize(e′)]](β, γ) = hybridize(C′)

[[e′]](β, γ) = C′

[[ligate(e′)]](β, γ) = ligate(C′)

[[e′]](β, γ) = C′

[[flush(e′)]](β, γ) = flush(C′)

[[e′]](β, γ) = C′ σ ∈ {#2, #3, #4, #6, #8}
[[split(e′, σ)]](β, γ) = split(C′, σ)

[[e′]](β, γ) = C′
block(C′, σ) is well-defined

[[block(e′, σ)]](β, γ) = block(C′, σ)

[[e′]](β, γ) = C′
blockfrom(C′, σ) is well-defined

[[blockfrom(e′, σ)]](β, γ) = blockfrom(C′, σ)

[[e′]](β, γ) = C′ i is a counter blockexcept(C′, γ(i)) is well-defined

[[blockexcept(e′, i)]](β, γ) = blockexcept(C′, γ(i))

[[e′]](β, γ) = C′
cleanup(C′) is well-defined

[[cleanup(e′)]](β, γ) = cleanup(C′)

[[e1]](β, γ) = C1 [[e2]](β[x := C1], γ) = C2

[[let x := e1 in e2]](β, γ) = C2

[[e1]](β, γ) = C1 β(x) is the empty complex

[[if empty(x) then e1 else e2]](β, γ) = C1

[[e2]](β, γ) = C2 β(x) is not the empty complex

[[if empty(x) then e1 else e2]](β, γ) = C2

[[e1]](β, γ) = C0 [[e2]](β[x := Cn−1], γ[i := n]) = Cn for n = 1, . . . , �

[[for x := e1 iter i do e2]](β, γ) = C�

Fig. 6. Semantics of DNAQL

projection (π̂) projects away some given attribute, as opposed to the standard
projection which projects on some given subset of the attributes.

The semantics of the relational algebra is well known and we omit a formal def-
inition. A relational algebra expression e can be evaluated in the context of some
database instance I that is defined on at least the relation variables occurring
in e. When the evaluation succeeds, e evaluates to a relation denoted by [[e]](I).

32 J.J.M. Gillis and J. Van den Bussche

(The evaluation of a relational algebra operator may fail due to mismatches
between the attributes present in the argument relations and the attributes ex-
pected by the operator [25].)

We want now to represent relations by complexes. We will store data elements
as vectors of atomic value symbols. So formally, we use Λ∗ as our universe U .
Then a tuple t (relation r, instance I) is said to be of dimension � if all data
elements appearing in t (r, I) are strings of length �. Let t be a tuple of dimension
� over relation schema R. We may assume a fixed order on the attributes of R, say,
A, . . . , B. We then represent t by the following �-complex: (using the constant
notation of DNAQL)

complex (t) = #2A#3t(A)#4 . . . #2B#3t(B)#4 .

A relation r of dimension � is then represented by the �-complex
⋃{complex (t) |

t ∈ r} which we denote by complex (r). Moreover, a database instance I of
dimension � can be represented by the �-complex assignment complex (I) that
maps each relation variable x (used as a complex variable) to complex (I(x)).

We are now in a position to state our main theorem.

Theorem 1. Let some database schema D be fixed. Every relational algebra
expression e can be translated into a DNAQL program eDNA, such that for each
natural number � and for each �-dimensional database instance I over D, if
[[e]](I) is defined, then so is [[eDNA]]�(complex (I)), and

complex ([[e]] (I)) = [[eDNA]]�(complex (I))

(up to isomorphism).

For the proof we introduce a few useful abbreviations. For a, b ∈ Σ, we use
blockfromto(x, a, b) to abbreviate blockfrom(block(x, b), a). For attributes A
and B, we use circularize(x, A, B) to abbreviate

cleanup(ligate(hybridize(

hybridize(blockfromto(x6, B, A) ∪ immob(#3))

∪ #4#2))) .

If x holds a complex of the form complex (r) for some relation r over a schema
with first attribute A and last attribute B, then circularize(x, A, B) will equal
the complex obtained from x by circularizing every strand [18,4].

The proof now goes by induction on the structure of e.

Union, difference. If e is e1 ∪ e2, then eDNA = eDNA
1 ∪ eDNA

2 . If e is e1 − e2, then
eDNA = eDNA

1 − eDNA
2 .

Cartesian product. Let e be of the form e1 × e2 with e1 over relation schema R
and e2 over a disjoint relation schema S. Let A be the first and B be the last

A Formal Model for Databases in DNA 33

attribute of R and let C be the first and D be the last attribute of S. Consider
the following DNAQL program e′:

let x := eDNA
1 in let y := eDNA

2 in

if empty(x) then empty else if empty(y) then empty else e4

where e4 is given by the following:

e4 := cleanup(split(split(blockfromto(e5, B, C), #2), #4))
e5 := circularize(e6, A, D)
e6 := cleanup(ligate(hybridize[xa

6 ∪ xb
6 ∪ #5#1]))

xa
6 := cleanup(ligate(hybridize(x ∪ rightboot)))

xb
6 := cleanup(ligate(hybridize(y ∪ leftboot)))

Parts ea
6 and eb

6 attach a unique ending (beginning) to the tuples in r (s). The
new tuples are added together, in x6, along with a sticky bridge (#5#1), resulting
in all possible joins of tuples of eDNA

1 and eDNA
2 . The rest of the expression is

concerned with cutting out the #5#1 piece in the middle of the new chains and
getting the “old” eDNA

1 -tuples back in front of the “new” tuples.
The program e′ is not yet quite correct, however, since we assume that the

attributes in complex representations of tuples are ordered in lexicographical
order. This order may be disrupted by joining tuples from eDNA

1 and eDNA
2 .

Therefore it is necessary to reorder the attribute-value pairs within each tuple
resulting from eDNA. Shuffling attribute-value pairs around in a tuple is done
using a new technique we call double bridging. Instead of using a single sticky
bridge, two sticky bridges are hybridized onto one chain. A careful placement of
the bridges allows us to cut twice in the chain without separating parts from the
chain. Moreover, the two bridges guide the chain into its new conformation.

Next we describe (in outline) a DNAQL program for shuffling some attribute
C to the end of a chain. Assume that A is the first attribute, attribute B occurs
just in front of C, C is the attribute that we want to move, D occurs exactly
after C and E is the last attribute of the chain. The general outline of the
program is:

1. Insert the first marker (#6#7) between attributes B and C.
2. Insert the second marker (#8#9) between attributes C and D.
3. Insert the third marker (#9#1) at the end of the chain.
4. Add the two bridges to the mix: #6#8 and #1#7.
5. Cut at #6 and #8 and ligate the resulting complex.
6. Remove the markers from the chains.

An illustration is in Figure 7. A detailed DNAQL program to do these steps will
have a similar structure to program e′.

Projection. Let e be of the form π̂C(e1), where the relation schema of e1 is R.
Assume that B is the attribute just in front of C and D is the attribute just

34 J.J.M. Gillis and J. Van den Bussche

#
6

#
7

#
8

#
1

#
6

#

#
8

#
1
 #

7

##

#
6

#
7

#
8

#
1
 #

7
 #

1

#
8

#
6

#
6 #

8

#
1
 #

7
 #

1
 #

7

#

#
6

#
7

#
8

#
1

#
8

#
1

#
6

#
7

##
7
 #

1

#
8

#
6

#
6

#
7

#
8

#
1

#
7

#
1

#
8

#
6

#
6

#
7

#
8

#
1

#
8

#
6

Fig. 7. Illustration of steps 1–3 (top left); step 4 (top right); and step 5 (bottom left,
which simplifies to bottom right) described in the proof of simulation of Cartesian
product

after attribute C. In the case that attribute C is the first attribute of the relation
schema R, B is the last attribute of R. Likewise in the case that attribute C is
the last attribute of R, then D is the first attribute of R. We thus perceive R to
be circular. Assume that A and E are the first resp. last attribute of R.

We define eDNA as the following program:

let x := eDNA
1 in if empty(x) then empty else f1

where

f1 := cleanup(split(blockfromto(cleanup(ligate(f2)), E, A), #4))
f2 := circularize(f3, D, B)
f3 := cleanup(split(blockfromto(cleanup(ligate(f4)), B, D), #4))
f4 := circularize(x, A, E)

Renaming. Let e be of the form ρC/F (e1), where R is the relation schema of e1.
Simulating renaming involves the following steps:

1. Rotate the chains to get attribute C at the start of each chain.
2. Cut the attribute from the chain, leaving the values of C on the chain.
3. Add the F attribute using stickers.
4. Rotate the chains again to get the first attribute at the start of each chain.

Assume that attribute B occurs just in front of C, D just after C, A is the first
attribute of R and E is the last attribute. Then eDNA is the following program:

let x := eDNA
1 in if empty(x) then empty else f1

A Formal Model for Databases in DNA 35

where

f1 := cleanup(split(blockfromto(f2, E, A), #4))
f2 := cleanup(ligate(hybridize[f3 ∪ #2F ∪ #4#2 ∪ F#3]))
f3 := hybridize(split(blockfromto(f4, B, D), #3) ∪ immob(#3))
f4 := cleanup(split(blockfromto(cleanup(ligate(f5)), B, D), #2))
x5 := circularize(x, A, E)

This program is not yet fully correct as attribute F may need to be shuffled into
the right place. This can be done by repeatedly applying the shuffle procedure
described in the case of cartesian product.

Selection. Let e be of the form σB=D(e1), where R is the relation schema of
e1. Translating the selection operator requires the most complicated expressions
thus far. Assume that relation schema R has A as its first attribute, C following
directly behind B, E following directly after D and F the last attribute of the
schema. The Λ is fixed. The number of atomic value symbols is thus a constant;
we denote them by v1 to vn. Note A = B, or C = D or D = E = F is possible;
the program will still function correctly.

We define eDNA as follows:

let x := eDNA
1 in if empty(x) then empty else for xs := x iter i do e′

where

e′ := cleanup(split(blockfromto(
let xc := circularize(xs, A, F) in e′′, F, A), #4))

e′′ := selectD
v1

(selectB
v1

(xc)) ∪ · · · ∪ selectD
vn

(selectB
vn

(xc))

selectB
a (x′) := cleanup(flush(hybridize(ea

1(x′))))
ea
1(x

′) := blockexcept(blockfromto(x′, B, C), i) ∪ immob(a)
selectF

a (x′) := cleanup(flush(hybridize(ea
2(x′))))

ea
2(x

′) := blockexcept(blockfromto(x′, D, E), i) ∪ immob(a)

9 Concluding Remarks

Many interesting questions remain open. A first issue is that an arbitrary DNAQL
program may not evaluate on all possible inputs. We would like to have a type
system by which programs can be statically typechecked to be safe on inputs of
given types.

We would also like to better understand the expressive power of DNAQL.
The relational algebra provides a lower bound on this expressive power. What is
an upper bound? Can the semantics of DNAQL be defined in first-order logic?
What is the computational complexity of DNAQL? Also, are all operations and

36 J.J.M. Gillis and J. Van den Bussche

constructs of DNAQL really primitive in the language, or can some of them be
simulated using the others?

Another interesting issue is the relationship between DNAQL and graph gram-
mars. Furthermore, we could consider extensions, or restrictions, of DNAQL, just
this has been done for the relational algebra. Extensions can lead to greater ex-
pressive power, while restrictions may lead to decidable static verification prob-
lems, such as testing the equivalence of DNAQL programs.

Finally, while we have gone to great efforts to design an abstraction that is as
plausible as possible, of course, it would be great if it could be experimentally
verified if DNAQL is workeable for practical DNA computing.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison-Wesley
(1995)

2. Adleman, L.M.: Molecular computation of solutions to combinatorial problems.
Science 226, 1021–1024 (1994)

3. Amos, M.: Theoretical and Experimental DNA Computation. Springer, Heidelberg
(2005)

4. Arita, M., Hagiya, M., Suyama, A.: Joining and rotating data with molecules. In:
Proceedings 1997 IEEE International Conference on Evolutionary Computation,
pp. 243–248 (1997)

5. Boneh, D., Dunworth, C., Lipton, R.J., Sgall, J.: On the computational power of
DNA. Discrete Applied Mathematics 71, 79–94 (1996)

6. Cardelli, L.: Strand algebras for DNA computing. In: Deaton and Suyama [9], pp.
12–24

7. Chen, J., Deaton, R.J., Wang, Y.-Z.: A DNA-based memory with in vitro learning
and associative recall. Natural Computing 4(2), 83–101 (2005)

8. Condon, A.E., Corn, R.M., Marathe, A.: On combinatorial DNA word design.
Journal of Computational Biology 8(3), 201–220 (2001)

9. Deaton, R., Suyama, A. (eds.): DNA 15. LNCS, vol. 5877. Springer, Heidelberg
(2009)

10. Diatchenko, L., Lau, Y.F., et al.: Suppression subtractive hybridization: a method
for generating differentially regulated or tissue-specific cDNA probes and libraries.
Proceedings of the National Academy of Sciences 93(12), 6025–6030 (1996)

11. Dirks, R.M., Pierce, N.A.: Triggered amplification by hybridization chain reaction.
Proceedings of the National Academy of Sciences 101(43), 15275–15278 (2004)

12. Immerman, N.: Descriptive Complexity. Springer, Heidelberg (1999)
13. Liu, Q., Wang, L., et al.: DNA computing on surfaces. Nature 403, 175–179 (1999)
14. Lyngsø, R.B.: Complexity of Pseudoknot Prediction in Simple Models. In: Dı́az,

J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP 2004. LNCS, vol. 3142,
pp. 919–931. Springer, Heidelberg (2004)

15. Majumder, U., Reif, J.H.: Design of a biomolecular device that executes process
algebra. In: Deaton and Suyama [9], pp. 97–105

16. Paun, G., Rozenberg, G., Salomaa, A.: DNA Computing. Springer, Heidelberg
(1998)

17. Ramakrishnan, R., Gehrke, J.: Database Management Systems. McGraw-Hill
(2002)

A Formal Model for Databases in DNA 37

18. Reif, J.H.: Parallel biomolecular computation: models and simulations. Algorith-
mica 25(2-3), 142–175 (1999)

19. Reif, J.H., LaBean, T.H., Pirrung, M., Rana, V.S., Guo, B., Kingsford, C.,
Wickham, G.S.: Experimental Construction of Very Large Scale DNA Databases
with Associative Search Capability. In: Jonoska, N., Seeman, N.C. (eds.) DNA
2001. LNCS, vol. 2340, pp. 231–247. Springer, Heidelberg (2002)

20. Rozenberg, G., Spaink, H.: DNA computing by blocking. Theoretical Computer
Science 292, 653–665 (2003)

21. Sager, J., Stefanovic, D.: Designing Nucleotide Sequences for Computation: A Sur-
vey of Constraints. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892,
pp. 275–289. Springer, Heidelberg (2006)

22. Sakamoto, K., et al.: State transitions by molecules. Biosystems 52, 81–91 (1999)
23. Seelig, G., Soloveichik, D., Zhang, D.Y., Winfree, E.: Enzyme-free nucleic acid logic

circuits. Science 315(5805), 1585–1588 (2006)
24. Shortreed, M.R., et al.: A thermodynamic approach to designing structure-free

combinatorial DNA word sets. Nucleic Acids Research 33(15), 4965–4977 (2005)
25. Van den Bussche, J., Van Gucht, D., Vansummeren, S.: A crash course in database

queries. In: Proceedings 26th ACM Symposium on Principles of Database Systems,
pp. 143–154. ACM Press (2007)

26. Yamamoto, M., Kita, Y., Kashiwamura, S., Kameda, A., Ohuchi, A.: Development
of DNA Relational Database and Data Manipulation Experiments. In: Mao, C.,
Yokomori, T. (eds.) DNA12. LNCS, vol. 4287, pp. 418–427. Springer, Heidelberg
(2006)

Efficient and Accurate Haplotype Inference

by Combining Parsimony
and Pedigree Information

Ana Graça1, Inês Lynce1, João Marques-Silva2, and Arlindo L. Oliveira1

1 INESC-ID/IST, Technical University of Lisbon
{assg,ines}@sat.inesc-id.pt, aml@inesc-id.pt

2 CSI/CASL, University College Dublin
jpms@ucd.ie

Abstract. Existing genotyping technologies have enabled researchers to
genotype hundreds of thousands of SNPs efficiently and inexpensively.
Methods for the imputation of non-genotyped SNPs and the inference
of haplotype information from genotypes, however, remain important,
since they have the potential to increase the power of statistical associ-
ation tests. In many cases, studies are conducted in sets of individuals
where the pedigree information is relevant, and can be used to increase
the power of tests and to decrease the impact of population structure on
the obtained results. This paper proposes a new Boolean optimization
model for haplotype inference combining two combinatorial approaches:
the Minimum Recombinant Haplotyping Configuration (MRHC), which
minimizes the number of recombinant events within a pedigree, and the
Haplotype Inference by Pure Parsimony (HIPP), that aims at finding a
solution with a minimum number of distinct haplotypes within a popu-
lation. The paper also describes the use of well-known techniques, which
yield significant performance gains. Concrete examples include symme-
try breaking, identification of lower bounds, and the use of an appropri-
ate constraint solver. Experimental results show that the new PedRPoly
model is competitive both in terms of accuracy and efficiency.

Keywords: Haplotype inference, Boolean optimization.

1 Introduction

The majority of complex diseases are influenced by both environmental and
genetic factors. Existing technologies have enabled researchers to genotype hun-
dreds of thousands of single nucleotide polymorphisms (SNPs) in a single run.
Data obtained with genotyping or sequencing technologies for thousands of in-
dividuals will be available in the near future. This will enable researchers to
conduct whole genome association studies in an unprecedented scale to de-
tect increasingly subtle and more complex associations between genomes and
diseases [33].

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 38–56, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Haplotype Inference by Combining Parsimony and Pedigree Information 39

Despite these technological advances, existing technologies still generate
genotypes obtained from the conflation of two haplotypes on homologous chro-
mosomes. Hence, haplotypes must be inferred computationally using the exper-
imentally identified genotypes. Inference of the haplotypes is made possible by
the fact that, in many cases, there exists a strong correlation between the allele
present in a particular SNP and other nearby sites. A given combination of alleles
in one chromosome is termed a haplotype, and the deviation from independence
that exists between alleles is known as linkage disequilibrium.

Haplotype inference from genotype data remains an important and challenging
task. The identification of haplotypes allows to develop haplotype-based associ-
ation studies [5]. In addition, most imputation methods require the haplotype
data [30].

Many haplotype inference methods apply to unrelated individuals. Nonethe-
less, pedigree information is available in many studies and can be used to improve
the results of inference methods. Combinatorial methods for haplotype inference
have been shown to be practical and relevant, either for phasing families [20] or
unrelated individuals [10]. Recently, a study comparing the haplotype inference
methods using pedigrees and unrelated individuals [21] concluded that taking
into consideration both pedigree and population information leads to improve-
ments on the precision of haplotype inference methods.

This paper proposes the combination of two well-known haplotype inference
methods: pure parsimony, which aims at finding a solution that uses the min-
imum possible number of distinct haplotypes, and the minimum recombinant
approach used to phase individuals organized in pedigrees by minimizing the
number of recombination events within each pedigree. The resulting haplotype
inference model, PedRPoly, is shown to be quite competitive and more accurate
than the existing methods for haplotype inference from pedigrees, in particular,
using the minimum recombinant approach [20]. Note that a simpler and fairly
inefficient version of this model was first outlined in [9].

The models developed in this paper represent challenging combinatorial op-
timization problems, which can be viewed as a special case of multi-objective
optimization. The solution methods for these problems combine techniques often
used in the fields of operations research and artificial intelligence. Furthermore,
the proposed models yield accuracy results that conclusively outperform the min-
imum recombinant approach. This paper describes the first PedRPoly algorithm
which can actually be used in practice, since it is both efficient and accurate.

This paper is organized in two main parts. The first part describes the PedR-
Poly model, which combines the pure parsimony and the minimum recombinant
approaches. This model is enhanced with several constraint modeling techniques.
These techniques aim at improving the efficiency of the method and include the
identification of lower bounds, symmetry breaking and a heuristic sorting tech-
nique. The second part conducts a comprehensive experimental evaluation of
the accuracy and efficiency of PedRPoly on a large set of instances. The experi-
mental evaluation was also used to select the best performing constraint solver,
among a representative number of solvers.

40 A. Graça et al.

2 Haplotype Inference

Variations in the DNA sequence are the basis for evolution. Single Nucleotide
Polymorphisms (SNPs) are the most common variations between human beings,
and occur when a nucleotide base (A, T, C, G) is changed to other nucleotide base
at a single DNA position. Moreover, the mutant type nucleotide must be repre-
sented in a significant percentage of the population (normally 1%). An example
of a SNP is the mutation of the DNA sequence ACTTGAC to ACATGAC,
where the third nucleotide is changed from T to A. DNA is organized in struc-
tures called chromosomes. Chromosomes contain the genetic information coded
in different type of substructures, of which the best known are the genes. A gene
is a sequence of DNA bases which encodes a specific protein.

A given combination of SNPs in a single chromosome is called a haplotype.
Moreover, SNPs within a haplotype tend to be inherited together. The deviation
from independence that exists between SNPs is known as linkage disequilibrium
(LD).

Diploid organisms, such as human beings, have pairs of homologous chro-
mosomes, with each chromosome in a pair inherited from a single parent. In
practice, experimental technology is only able to obtain genotypes, which cor-
respond to the conflated data of two haplotypes on homologous chromosomes.
The haplotype inference problem consists in obtaining the set of haplotype pairs
which originated a given set of genotypes.

Considering that the assumptions underlying the infinite-site model [14] are
valid, we may assume that each SNP can only have two values (called alleles).
Each haplotype can therefore be represented by a binary string, with size m ∈ N,
where 0 represents the wild type allele and 1 represents the mutant type allele.
Each site of the haplotype hi is represented by hi j (1 ≤ j ≤ m). In addition,
each genotype is represented by a string, with size m, over the alphabet {0, 1, 2},
and each site of the genotype gi is represented by gi j . Each genotype is explained
by two haplotypes. A genotype gi is explained by a pair of haplotypes (ha

i , h
b
i),

which is represented by gi = ha
i ⊕ hb

i , if

gi j =

{
ha
i j if ha

i j = hb
i j

2 if ha
i j �= hb

i j
.

A genotype site gi j with either value 0 or 1 is a homozygous site (the same allele
is inherited from both parents), whereas a site with value 2 is a heterozygous
site (different alleles are inherited from each parent).

Definition 1. (Haplotype Inference) Given a set G of n genotypes, each with
size m, the haplotype inference problem consists in finding a set of haplotypes
H, such that each genotype gi ∈ G is explained by two haplotypes ha

i , h
b
i ∈ H.

Observe that for each genotype g with k heterozygous sites, there are 2k−1 non-
ordered pairs of haplotypes that can explain g. For example, genotype g = 022
can be explained either by haplotypes (000, 011) or by haplotypes (001, 010).

Haplotype Inference by Combining Parsimony and Pedigree Information 41

Most often genotyping procedures leave a percentage of missing data, i.e.
genotype positions with unknown values. To represent missing sites, the alphabet
of the genotypes is extended to {0, 1, 2, ?}.

Pedigrees. Pedigree data adds new relevant information to the haplotype infer-
ence problem. A pedigree refers to the genealogical tree which allows studying
the inheritance of genes within a family. The Mendelian laws of inheritance are
well established assumptions and, in particular, state that all sites in a single
haplotype are inherited from a single parent, assuming there are no mutations
within a pedigree. We assume that haplotype ha is inherited from the father and
hb is inherited from the mother. Nonetheless, a recombination may happen. A
recombination occurs when two haplotypes of a parent are mixed together and
the recombinant is inherited by the child. For example, suppose a father has the
haplotype pair (000, 111) and the haplotype that he passed on to his child is
100. Here, one recombination event must have occurred: haplotypes 000 and 111
got shuffled and originated a new haplotype h = 100. Therefore, the child has
inherited the first allele from the paternal grandmother, while second and third
alleles were inherited from the paternal grandfather. In a pedigree, an individual
is a founder if he does not have parents on the pedigree (and a non-founder if
he has both parents on the pedigree).

2.1 Minimum Recombinant Haplotype Configuration

Most rule-based haplotype inference methods for pedigrees assume no recombi-
nation within each pedigree [35, 37, 22]. The assumption of no recombination
is valid in many cases because recombination events are rare in DNA regions
with high linkage disequilibrium. Nonetheless, this assumption can be violated
even for some dense markers [19]. Therefore, a more realistic approach consists
in minimizing the number of recombinations within pedigrees [13, 31, 20].

Definition 2. The minimum recombinant haplotype configuration (MRHC)
problem aims at finding a haplotype inference solution for a pedigree which min-
imizes the number of required recombination events.

For example, suppose the father has the genotype g1 = 202, the mother has
the genotype g2 = 212 and the child has the genotype g3 = 222. One possible
solution to the haplotype inference problem is g1 = 001 ⊕ 100, g2 = 010 ⊕ 111
and g3 = 101 ⊕ 010. However, this solution implies that one recombination
has occurred, because the child has not inherited an integral haplotype from
his father, but a mixture of his paternal grandparents haplotypes. A different
solution to this example admits no recombination and, therefore, is a MRHC
solution: g1 = 000⊕ 101, g2 = 010⊕ 111 and g3 = 000⊕ 111.

In general, there can be a significant number of MRHC solutions to the same
problem. For instance, g1 = 000⊕ 101, g2 = 010⊕ 111, g3 = 101⊕ 010 is another
0-recombinant solution for the previous example, i.e. another MRHC solution.

The MRHC problem has been shown to be a NP-hard [19, 25] problem. The
PedPhase tool [20] implements an integer linear programming (ILP) model for
MRHC with missing alleles.

42 A. Graça et al.

2.2 Haplotype Inference by Pure Parsimony

The haplotype inference by pure parsimony problem consists in finding a solu-
tion to the haplotype inference problem which minimizes the number of distinct
haplotypes [12].

Natural phenomena tend to be explained parsimoniously, using the minimum
number of required entities. The haplotype inference by pure parsimony ap-
proach is also biologically motivated by the fact that individuals from the same
population have the same ancestors and mutations do not occur often. More-
over, it is also well-known that the number of haplotypes in a population is much
smaller than the number of genotypes [34].

Definition 3. The haplotype inference by pure parsimony (HIPP) approach aims
at finding a minimum-cardinality set of haplotypes H that can explain a given
set of genotypes G.

For example, consider the set of genotypes G = {g1, g2, g3} = {202, 212, 222}.
There are solutions using 6 different haplotypes: H1 = {101, 000, 111, 010, 001,
110}, such that g1 = 101⊕ 000, g2 = 111⊕ 010 and g3 = 001⊕ 110. However the
HIPP solution only requires 4 distinct haplotypes: H2 = {101, 000, 111, 010}
such that g1 = 101⊕ 000, g2 = 111⊕ 010 and g3 = 000⊕ 111.

The HIPP problem is NP-hard [16]. RPoly [10] is a state-of-the-art solver
implementing a 0-1 ILP model for solving the HIPP problem.

3 The PedRPoly Model

This section describes the minimum recombinant maximum parsimony model,
denoted as PedRPoly model. In practice, the PedRPoly model is a combination
of the MRHC PedPhase model [20] and the HIPP RPoly model [10].

Definition 4. Given sets of pedigrees from the same population, the minimum
recombinant maximum parsimony (MRMP) model aims at finding a haplotype
inference solution which first minimizes the number of recombination events
within pedigrees and then minimizes the number of distinct haplotypes used.

Figure 1 illustrates two trios (mother ©, father � and child ♦) from two families
A and B with the corresponding genotypes. The figure includes three haplotype
inference solutions. Solution 1 is a 0-recombinant solution with 7 distinct haplo-
types {100, 101, 000, 111, 011, 001, 110}. Solution 2 is a 1-recombinant solution
(there is one recombination event in family B) using 5 distinct haplotypes {100,
101, 000, 111, 011}. Solution 3 is a 0-recombinant solution using 5 distinct hap-
lotypes {100, 101, 000, 111, 011}.

According to the PedRPoly model, solution 3 is preferred to the other solu-
tions. Solution 3 is both a MRHC and a HIPP solution. Consequently, solution
3 is a MRMP solution. If there exists no solution that minimizes both crite-
ria, then preference is given to the MRHC criterion. Hence, the MRHC solution
which uses the smallest number of distinct haplotypes would be chosen.

Haplotype Inference by Combining Parsimony and Pedigree Information 43

Fig. 1. Solutions for haplotype inference with two trios

The minimum recombinant maximum parsimony model combines the Ped-
Phase and the RPoly models, in a new 0-1 integer linear programming model,
so called PedRPoly. A 0-1 integer linear programming problem aims at finding
a Boolean assignment to the variables which optimizes the value of a given cost
function, subject to a set of linear constraints. The cost function and the general
constraints of the PedRPoly model are detailed in Table 1, which is described in
the following paragraphs.

Following the RPoly model, PedRPoly associates two haplotypes, ha
i and hb

i ,
with each genotype gi, and these haplotypes are required to explain gi. Moreover,
PedRPoly associates a variable ti j with each heterozygous site gi j , such that
ti j = 1 indicates that the mutant value was inherited from the father (ha

i j = 1)

and the wild value was inherited from the mother (hb
i j = 0) whereas ti j = 0

indicates that the wild value was inherited from the father (ha
i j = 0) and the

mutant value was inherited from the mother (hb
i j = 1). In addition, PedRPoly

associates two variables with each missing site. Variable tai j is associated with the

44 A. Graça et al.

Table 1. The PedRPoly Model

minimize: ((2n+ 1) ×∑
non-founder i

∑m−1
j=1 (r1i j + r2i j)) +

∑n
i=1(u

a
i + ub

i)

subject to:

Equation Constraint Indexes

Mendelian laws of inheritance rules (Table 2)

l ∈ {1, 2}
(1)

−rli j + gli j − gli j+1 ≤ 0
1 ≤ i ≤ n, i non-founder

−rli j − gli j + gli j+1 ≤ 0
1 ≤ j ≤ m− 1

p, q ∈ {a, b}
(2) ¬(R ⇔ S) ⇒ xp q

i k (Table 3)
1 ≤ k < i ≤ n

1 < i ≤ n

(3)
∑

k<i ; q∈{a,b}
xp q
i k − up

i ≤ 2i− 3
p ∈ {a, b}

paternal haplotype site ha
i j , whereas variable t

b
i j is associated with the maternal

haplotype site hb
i j . The values of ha

i and hb
i at homozygous sites are implicitly

assumed.
The grandparental origin of each site of the haplotypes must be considered

when analyzing recombination events within pedigrees. Following the MRHC
PedPhase model, for each non-founder individual i and site j, two variables are
defined: g1i j and g2i j . The assignment g1i j = 0 means that the paternal allele of

individual i at site j (i.e. ha
i j) comes from the paternal grandfather, and g1i j = 1

means that ha
i j comes from the paternal grandmother, i.e.

g1i j =

{
0 if ha

i j = ha
f(i) j

1 if ha
i j = hb

f(i) j

,

where f(i) corresponds to the father of individual i. In a similar way, g2i j = 0

(g2i j = 1) means that the maternal allele of individual i at site j comes from the
maternal grandfather (grandmother), i.e.

g2i j =

{
0 if hb

i j = ha
m(i) j

1 if hb
i j = hb

m(i) j

,

where m(i) corresponds to the mother of individual i.
Constraints to ensure that the Mendelian laws of inheritance are satisfied

are defined in Table 2. Note that PedRPoly only associates variables with het-
erozygous and missing sites (inspired by RPoly), while PedPhase also associates
variables with homozygous sites. The new definition of variables associated with
sites requires the redefinition of the constraints related with Mendelian laws.
For instance, consider the first constraint of Table 2, tf(i) j ⇔ g1i j , for the case

Haplotype Inference by Combining Parsimony and Pedigree Information 45

Table 2. Mendelian laws of inheritance rules regarding variables g1i j . (The constraints
involving variables g2i j are defined similarly. f(i) corresponds to the father of i. 1 ≤
i ≤ n, i non-founder, 1 ≤ j ≤ m.)

Condition Constraint

gi j = 0 ∧ gf(i) j = 2 tf(i) j ⇔ g1i j
gi j = 0 ∧ gf(i) j =? (g1i j ∨ ¬taf(i) j) ∧ (¬g1i j ∨ ¬tbf(i) j)
gi j = 1 ∧ gf(i) j = 2 tf(i) j ⇔ ¬g1i j
gi j = 1 ∧ gf(i) j =? (g1i j ∨ taf(i) j) ∧ (¬g1i j ∨ tbf(i) j)

gi j = 2 ∧ gf(i) j = 0 ¬ti j
gi j = 2 ∧ gf(i) j = 1 ti j
gi j = 2 ∧ gf(i) j = 2 (g1i j ∨ ti j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬ti j ∨ tf(i) j)∧

(¬g1i j ∨ ti j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ ¬tf(i) j)
gi j = 2 ∧ gf(i) j =? (g1i j ∨ ti j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬ti j ∨ taf(i) j)∧

(¬g1i j ∨ ti j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬ti j ∨ tbf(i) j)

gi j =? ∧ gf(i) j = 0 ¬tai j
gi j =? ∧ gf(i) j = 1 tai j
gi j =? ∧ gf(i) j = 2 (g1i j ∨ tai j ∨ ¬tf(i) j) ∧ (g1i j ∨ ¬tai j ∨ tf(i) j)∧

(¬g1i j ∨ tai j ∨ tf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tf(i) j)
gi j =? ∧ gf(i) j =? (g1i j ∨ tai j ∨ ¬taf(i) j) ∧ (g1i j ∨ ¬tai j ∨ taf(i) j)∧

(¬g1i j ∨ tai j ∨ ¬tbf(i) j) ∧ (¬g1i j ∨ ¬tai j ∨ ¬tbf(i) j)

gi j = 0 and gf(i) j = 2. Clearly, if tf(i) j = 1 (representing that individual f(i)
has inherited value 1 from his father and value 0 from his mother) then g1i j = 1
(representing that individual i must have inherited the value 0 from his paternal
grandmother) and conversely.

In addition, in order to allow counting the number of recombinations, the
model defines new variables r. For each non-founder individual i, variable r1i j
(r2i j) is assigned value 1 if a recombination took place at site j, to create the

paternal (maternal) haplotype of individual i. Thus, rli j = 1 if gli j �= gli j+1, for
l ∈ {1, 2} and 1 ≤ j ≤ m − 1, which is ensured by constraints (1) in Table 1.
Here, another simplification to the original MRHC is considered. Actually, in
the PedPhase model, rli j = 1 if and only if gli j �= gli j+1. Observe that an
implication, instead of an equivalence, is sufficient for correctness and reduces
in half the number of these constraints.

Moreover, the model defines variables to count the number of distinct hap-
lotypes used. Let xp q

i k , with p, q ∈ {a, b} and 1 ≤ k < i ≤ n, be 1 if haplotype
p of genotype gi (hp

i) and haplotype q of genotype gk (hq
k) are different. The

conditions on the xp q
i k variables are based on the values of variables ti j and tk j

for heterozygous sites and of variables tai j , t
b
i j , t

a
k j and tbk j for missing sites, and

are described by equations (2) in Table 1.
Furthermore, the model needs variables u to denote when one of the hap-

lotypes, associated with a given genotype, is different from all previous haplo-
types. Hence, up

i , with p ∈ {a, b} and 1 ≤ i ≤ n, is 1 if haplotype p of genotype gi

46 A. Graça et al.

Table 3. Definition of predicates R and S, accordingly to index values

Condition Constraint

gi j �= 2 ∧ gk j = 2 R = (gi j ⇔ (q ⇔ a)) and S = tk j

gk j �= 2 ∧ gi j = 2 R = (gk j ⇔ (p ⇔ a)) and S = ti j
gi j = 2 ∧ gk j = 2 R = (p ⇔ q) and S = (ti j ⇔ tk j)

gi j =? ∧ gk j /∈ {2, ?} R = tpi j and S = gk j

gk j =? ∧ gi j /∈ {2, ?} R = tqk j and S = gi j
gi j =? ∧ gk j = 2 R = (q ⇔ a) and S = (tpi j ⇔ tk j)

gk j =? ∧ gi j = 2 R = (p ⇔ a) and S = (tqk j ⇔ ti j)

gi j =? ∧ gk j =? R = tpi j and S = tqk j

is different from all previous haplotypes. Then, the conditions on the up
i variables

are based on the conditions for the xp q
i k variables, with 1 ≤ k < i and q ∈ {a, b}.

These conditions are described by equations (3) in Table 1.
Finally, the cost function consists in minimizing the number of recombination

events and the number of distinct haplotypes, which are, respectively, given by
the sum of variables r and u,

minimize ((2n+ 1)×
∑

(non-founder i)

m−1∑
j=1

(r1i j + r2i j)) +

n∑
i=1

(ua
i + ub

i). (1)

Given that higher importance is given to the minimum recombinant criterion,
a larger weight is given to the number of recombinations. Note that 2n is a
trivial upper bound on the number of haplotypes in the solution, and therefore
giving weight 2n + 1 to the number of recombinations implies that a MRHC
solution is always preferred. The idea of giving more weight to the number of
recombinations is biological motivated by the fact that recombination events
within haplotypes in a pedigree are rare. Moreover, note that a larger number of
recombinants suggests a larger number of haplotypes. In general, a recombination
event generates a new haplotype, whereas without recombination, the haplotypes
of the child are exact copies of the parents’ haplotypes. Nonetheless, different
weights w, 1 < w < 2n + 1, were also tried but did not lead to improvements
neither on accuracy or efficiency.

Finally, we would like to point out that a two-step approach which obtains
all MRHC solutions first and then picks the solution with the smallest number
of haplotypes would not be practical. The number of MRHC solutions is, in
general, significantly large, specially with higher missing rates, and usually it
is not feasible to compute all solutions. In addition, note that the number of
all MRHC solutions is the product of the number of MRHC solutions for each
pedigree. On the other hand, the minimum recombinant maximum parsimony
criterion reduces the search space and results confirm that it produces more
accurate results.

Haplotype Inference by Combining Parsimony and Pedigree Information 47

4 Improving Efficiency

This section describes three improvements on the original PedRPoly model,
which contribute for an efficient haplotype inference model. The practical con-
tribution of each technique is detailed in Section 5.1.

4.1 Lower Bounds

The integration of lower bounds is a modeling technique implemented previously
in other approaches [26, 11]. The algorithms for computing lower bounds rely
on information regarding (in)compatible genotypes. Two genotypes are declared
compatible if does not exist a site for which one genotype has value 0 and the
other genotype has value 1. Otherwise, the genotypes are incompatible. Clearly,
two incompatible genotypes cannot be explained by the same haplotypes. Given
the incompatibility relation we can create an incompatibility graph I, where
each vertex is a genotype, and two vertexes are linked with an edge if they are
incompatible. Suppose I has a clique of size k. Hence, the number of required
haplotypes is at least 2 · k− σ, where σ is the number of genotypes in the clique
which do not have heterozygous sites.

In addition, an analysis of the structure of the genotypes allows the lower
bound to be further increased. The objective of the new procedure is to identify
heterozygous sites which require at least one additional haplotype given a set
of previously chosen genotypes. For each genotype g not in the clique, if the
genotype has a heterozygous site and all compatible genotypes have the same
value at that site (either 0 or 1), then g is guaranteed to require one additional
haplotype to be explained. Hence the lower bound can be increased by 1.

Therefore, the lower bound procedure provides a list of genotypes with an in-
dication of the contribution of each genotype to the lower bound. Each genotype
either contributes with +2, indicating that 2 new haplotypes will be required for
explaining this genotype, or with +1, indicating that 1 new haplotype will be
required.

This technique has been included in the PedRPoly model. In practice, the
implementation of lower bounds allows the variables u associated with haplo-
types affected by the lower bound to be fixed and, consequently, the clauses used
for constraining the value need not to be generated. Indeed, if gi is a genotype
contributing with +2 to the lower bound, then ua

i = 1 and ub
i = 1. Moreover,

if gi is a genotype contributing with +1 to the lower bound, then either ua
i or

ub
i can be assigned 1. The new model with integration of lower bounds will be

named PedRPoly-LB.

4.2 Sorting Genotypes

The order in which the genotypes are organized, before the model is generated,
can have an important impact on the efficiency of the solver. In particular, note
that variables u designate whether a haplotype associated with a genotype is
different from all previous haplotypes. We used as an heuristic the lexicographic

48 A. Graça et al.

order on the genotypes, defined by a total order on the genotype sites where
0 < 1 < 2 < ?, i.e.

gi j < gl j ∧ (∀{k: k<j} gi k = gl k) ⇒ i < l. (2)

The new model, which integrates lower bounds and where the genotypes are
sorted according to the lexicographic order is named PedRPoly-LB-Ord.

4.3 Symmetries

Symmetry breaking is a well-known technique for pruning the search space and,
therefore, contributing to the efficiency of a model. Note that, in general, in the
haplotype inference problem, if a genotype g is explained by haplotype pair (ha,
hb), then g is also explained by haplotype pair (hb, ha). Within pedigrees, this
symmetry on pairs of haplotypes does not exist for every individual. For non-
founders, symmetry is already broken by imposing that the first haplotype comes
from the father and the second haplotype comes from the mother. Nonetheless,
the symmetry can be broken on founders. This symmetry is broken by intro-
ducing a new constraint for each heterozygous founder, imposing that the first
heterozygous site gi j is explained with ha

i j = 1 and hb
i j = 0, i.e.

gi j = 2 ∧ (∀{k: k<j} gi k �= 2) ⇒ ti j = 1. (3)

The new model which includes breaking symmetry on founders is named
PedRPoly-LB-Ord-Sym.

5 Experimental Evaluation

This section has a threefold purpose. First, it illustrates the contribution of each
technique described in Section 4 to the efficiency of PedRPoly. Second, it presents
the results obtained using a number of constraint optimization solvers to solve
the PedRPoly model, enabling the user not only to choose the best constraint
solver for PedRPoly, but also indicating which solvers are more appropriate for
solving Boolean constraint problems with multiple cost functions. Finally, it
tests the accuracy of the PedRPoly model against the accuracy of the PedPhase
approach.

Experimental Data. The experimental data was simulated using the SimPed soft-
ware [17]. SimPed generates haplotypes for families, given the pedigree structure,
as well as the haplotypes and their frequencies for founders. The haplotypes for
founders and their frequencies were obtained from 7 real data sets of experimen-
tally identified haplotypes [2, 29], and correspond to the A-G data sets already
used in other haplotyping studies [6]. The number of SNPs range from 5 to 47.
Note that haplotyping regions with tens of SNPs are still relevant in several as-
sociation studies. Moreover, larger regions can always be partitioned into small
blocks [36].

Haplotype Inference by Combining Parsimony and Pedigree Information 49

100

101

102

103

100 101 102 103

P
la

in
M

o
d
el

LBs Model

100

101

102

103

100 101 102 103

L
B

s
M

o
d
el

LBs+Ord Model

Fig. 2. CPU time comparison between models: plain PedRPoly model vs PedRPoly-LB
model and PedRPoly-LB model vs PedRPoly-LB-Ord model

In addition, the same three pedigree structures used by PedPhase [20] were
considered: pedigree 1 with 15 individuals, pedigree 2 with 29 individuals and
pedigree 3 with 17 individuals. Pedigree 3 contains a mating loop, which means
that two mating individuals have a common ancestor in the pedigree. Each sim-
ulated instance consists of 10 replicates of the given pedigree, simulating 10
different families from the same population. Hence, the number of genotypes
per instance may be 150, 290 or 170. Recombination events are uniformly dis-
tributed between alleles with probabilities 0.1%, 0.5% and 1%. Three variations
on missing rates were considered: 1%, 10% and 20%. For each combination of
parameters, 5 independent replicates were selected, resulting in a total of 945
(= 7× 33 × 5) input trials.

Genotyping errors have not been simulated. Nonetheless, genotype errors do
not represent a significant limitation because they can be minimized by previ-
ously applying an appropriate error detection software [32].

Experimental Setup. All results were obtained on a Intel Xeon 5160 server
(3.0GHz, 1333Mhz, 4GB) running Red Hat Enterprise LinuxWS4. PedPhase ILP
was run on Windows because this software is not available for Linux. Results are
presented for a timeout of 1000 seconds and a memory limit of 3.5 GB.

5.1 Efficiency

This section studies the contribution of each modeling technique to improving
the efficiency of PedRPoly. Furthermore, a significant number of constraint op-
timization solvers is tested. The use of an appropriate optimization solver with
the model contributes for an efficient haplotype inference solver. In what follows,
we used PedRPoly with the Boolean multilevel optimization (BMO) Max-SAT
solver provided by the authors [4].

50 A. Graça et al.

100

101

102

103

100 101 102 103

L
B

s+
O

rd
M

o
d
el

LBs+Ord+Sym Model

100

101

102

103

100 101 102 103

P
la

in
M

o
d
el

LBs+Ord+Sym Model

Fig. 3. CPU time comparison between models: PedRPoly-LB-Ord model vs PedRPoly-
LB-Ord-Sym model and plain PedRPoly model vs PedRPoly-LB-Ord-Sym model

Lower Bounds. Figure 2 (left) provides a scatter plot which compares the per-
formance of the plain PedRPoly with PedRPoly implementing the identification
of lower bounds, within a timeout of 1000 seconds. Each point in the plot cor-
responds to a problem instance, where the x-axis corresponds to the CPU time
required by PedRPoly-LB and the y-axis corresponds to the CPU time required
by the plain PedRPoly. Points in the 103 lines represent instances which cannot
be solved within 1000 seconds.

PedRPoly-LB reduces in half the number of instances aborted by the plain
PedRPoly. The plain model aborts 59 instances while PedRPoly-LB is not able to
solve 26 instances. PedRPoly-LB solves 37 instances which the plain PedRPoly
aborts, although being able to solve 4 instances which PedRPoly-LB aborts.
Moreover, PedRPoly-LB is faster than plain PedRPoly for more than 94% of the
problem instances.

Sorting Genotypes. Figure 2 (right) compares the performance of PedRPoly-
LB with PedRPoly-LB-Ord. PedRPoly-LB-Ord does not solve 12 instances but
is able to solve 17 instances which PedRPoly-LB aborts. However, there are 3 in-
stances which PedRPoly-LB solves and PedRPoly-LB-Ord is not able to solve.
Moreover,PedRPoly-LB-Ord is faster thanPedRPoly-LB for 86%of the instances.

Symmetries. Figure 3 (left) compares the performance of PedRPoly-LB-Ord
with PedRPoly-LB-Ord-Sym. The final model is able to solve 938 out of 945
instances. PedRPoly-LB-Ord-Sym solves 7 instances which PedRPoly-LB-Ord
aborts and aborts 2 instances which PedRPoly-LB-Ord solves. Moreover,
PedRPoly-LB-Ord-Sym is faster than PedRPoly-LB-Ord for 99% of the
instances.

Moreover, figure 3 (right) compares the performance of plain PedRPoly and
PedRPoly-LB-Ord-Sym. The later is faster than the former for all instances,

Haplotype Inference by Combining Parsimony and Pedigree Information 51

Table 4. The PedRPoly model: comparison between models (timeout 1000 sec; memory
limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

PedRPoly 886/945 93.76% 62.50
PedRPoly-LB 919/945 97.25% 47.30
PedRPoly-LB-Ord 933/945 98.73% 41.64
PedRPoly-LB-Ord-Sym 938/945 99.26% 24.08

and solves 52 instances which the plain model aborts. These facts illustrate the
importance of the improved model in the efficiency of PedRPoly.

Table 4 summarizes the improvement achieved by combining modeling tech-
niques. Overall, PedRPoly-LB-Ord-Sym outperforms all other models, being ca-
pable of solving 99.26% of the instances within 1000 seconds, and using an
average run time of 24 seconds. In the remainder of the paper, PedRPoly-LB-
Ord-Sym will be denoted simply by PedRPoly.

Solvers. A key issue for the efficiency of the haplotype inference solver is to
select an adequate underlying optimization solver. In this subsection, 8 differ-
ent optimization solvers were tested for solving the final version of the Ped-
RPoly model. Integer linear programming, pseudo-Boolean optimization and
also weighted Max-SAT solvers were considered. Scip [1] (version 1.2.0) combines
constraint programming and mixed integer programming methodologies. Cplex
(version 12.1) is an IBM/ILOG commercial linear programming optimization
tool. Weighted Max-SAT solvers were also tested: MaxSat bmo [4], WPM1 [3],
WMaxSatz [18] (version 2.5), and IncWMaxSatz [23]. MiniSat+ [7] and
Bsolo [27] (version 3.5) are pseudo-Boolean optimization solvers, also known
as 0-1 ILP solvers.

Table 5 summarizes the performance of the different solvers. Clearly, the solver
which is able to solve a larger number of instances is MaxSat bmo, which solves
99.26% of the instances.

The second best performing solver is WPM1 which solves 96.40% of the
instances. The third and fourth best performing solvers are the integer program-
ming solvers. Cplex solves 58.52% and Scip solves 48.15% of the instances,
followed by MiniSat+ which solves 27.51% and IncWMaxSatz which solves
23.39% of the problem instances. Bsolo solves 16.93% and WMaxSatz solves
1.69% of the instances. Most of the instances aborted by IncWMaxSatz and
WMaxSatz were due to limitations in the internal data structures used by these
solvers.

5.2 Accuracy

This section analyzes the gains in accuracy of PedRPoly, that integrates both
HIPP with MRHC, with PedPhase [20], which uses only the MRHC approach.
Two different commonly used error rates were considered. The switch error rate

52 A. Graça et al.

Table 5. The PedRPoly model: comparison using different solvers (timeout 1000 sec;
memory limit 3.5 GB)

Solver # Solved inst. % Solved inst. Avg run time (sec)

MaxSat bmo 938/945 99.26% 24.08
WPM1 911/945 96.40% 14.75
Cplex 553/945 58.52% 84.73
Scip 455/945 48.15% 139.07
MiniSat+ 260/945 27.51% 238.45
IncWMaxSatz 221/945 23.39% 71.04
Bsolo 160/945 16.93% 170.26
WMaxSatz 16/945 1.69% 113.16

measures the percentage of possible switches in haplotype orientation, used to
recover the correct phase in an individual [24]. Missing alleles are not considered
for computing the switch error. The missing error rate (or genotype inference
error rate) is the percentage of incorrectly inferred missing data [28].

Note that instances for which at least one of the solvers is unable to give
a solution have been removed from the comparison. PedPhase is able to solve
99.8% of the instances, whereas and PedRPoly is able to solve 99.3%. As a result,
9 out of 945 instances have been left out.

Figure 4 presents a bar graph comparing the switch error rate of PedRPoly
with the switch error rate of PedPhase. Results have been organized by pa-
rameter value: missing rate, recombination rate and pedigree. Each value is the
average of the error rate for the instances generated with the corresponding
parameter value. PedRPoly is more accurate than PedPhase for 67.09% of the
instances. The two solvers have equal error rates for 19.55% of the instances. For
13.35% of the instances, PedRPoly is less accurate than PedPhase.

Figure 5 presents a bar graph for evaluating the missing error rate of the two
tools. PedRPoly is more accurate than PedPhase for 73.93% of the instances.
The two solvers have equal error rate for 12.39% of the instances. For 13.68% of
the instances, PedRPoly is less accurate than PedPhase. Indeed, the population
information included by the PedRPoly model is shown to be particularly impor-
tant for inferring missing genotypes. Overall, we can conclude that PedRPoly
consistently outperforms PedPhase in terms of accuracy.

Although the goals of the paper are to show that MRHC combined with HIPP
has better accuracy than MRHC alone, and the development of optimizations to
the plain model, two distinct statistical methods for haplotype inference within
pedigrees were also evaluated. The methods evaluated are Superlink [8] and
PhyloPed [15], and both exhibit error rates higher than PedRPoly.

Finally, the number of distinct haplotypes in the PedRPoly solution and in
the PedPhase solution was compared with the number of haplotypes used in the
real solution. The number of haplotypes in the PedRPoly solution is exactly the
same as in the real solution for 60% of the instances, and for more than 99.6%
the number of haplotypes in the PedRPoly solution differs from the number of
haplotypes in the real solution by less than 5 haplotypes. PedPhase solutions,

Haplotype Inference by Combining Parsimony and Pedigree Information 53

Fig. 4. Switch error: comparing PedRPoly and PedPhase

Fig. 5. Missing error: comparing PedRPoly and PedPhase

however, are less similar to the real solutions with respect to the number of
haplotypes. For the same set of instances, PedPhase has the same number of
haplotypes as the real solution for 12.3% of the instances, and differs from the
real solution by less than 5 haplotypes for 45.8% of the instances.

6 Conclusions

This paper addresses the problem of haplotype inference from pedigrees, and
proposes a new Boolean optimization model for haplotype inference which com-
bines the pure parsimony approach with the minimum recombinant approach.

54 A. Graça et al.

Moroever, the paper details the integration of well-known modeling techniques
exploited in order to improve the performance of the method. These techniques
include integration of lower bounds, ordering heuristics and symmetry breaking,
as well as the selection of an appropriate constraint solver. The new PedRPoly
approach was tested on a set of instances of considerable dimension. Experi-
mental results show that the new approach is both accurate and efficient when
compared to other methods.

The problem instances generated by the combined model represent challenging
combinatorial optimization problems, related with multi-objective optimization.
A number of techniques was suggested to improve the performance for this class
of problem instances. Future research will address further optimizations to the
model, aiming at improving both accuracy and efficiency. The topic of improved
efficiency will also involve the development of solvers capable of solving Boolean-
based multi-objective optimization problems.

Acknowledgments. This work is partially supported by Fundação para a
Ciência e Tecnologia under research project SHIPs (PTDC/EIA/64164/2006)
and PhD grant (SFRH/BD/28599/2006), and by Microsoft under contract 2007-
017 of the Microsoft Research PhD Scholarship Programme.

References

[1] Achterberg, T., Berthold, T., Koch, T., Wolter, K.: Constraint Integer Program-
ming: A New Approach to Integrate CP and MIP. In: Trick, M.A. (ed.) CPAIOR
2008. LNCS, vol. 5015, pp. 6–20. Springer, Heidelberg (2008)

[2] Andrés, A., Clark, A., Shimmin, L., Boerwinkle, E., Sing, C., Hixson, J.: Un-
derstanding the accuracy of statistical haplotype inference with sequence data
of known phase. Genetic Epidemiology 31(7), 659–671 (2007)

[3] Ansótegui, C., Bonet, M.L., Levy, J.: Solving (Weighted) Partial MaxSAT
through Satisfiability Testing. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584,
pp. 427–440. Springer, Heidelberg (2009)

[4] Argelich, J., Lynce, I., Marques-Silva, J.: On solving Boolean multilevel opti-
mization problems. In: International Joint Conference on Artificial Intelligence
(IJCAI 2009), pp. 393–398 (2009)

[5] Cheng, I., Penney, K.L., Stram, D.O., Le Marchand, L., Giorgi, E., Haiman,
C.A., Kolonel, L.N., Pike, M., Hirschhorn, J., Henderson, B.E., Freedman, M.L.:
Haplotype-based association studies of IGFBP1 and IGFBP3 with prostate
and breast cancer risk: the multiethnic cohort. Cancer Epidemiol Biomarkers
Prev. 15(10), 1993–1997 (2006)

[6] Climer, S., Jäger, G., Templeton, A.R., Zhang, W.: How frugal is mother nature
with haplotypes? Bioinformatics 25(1), 68–74 (2009)

[7] Eén, N., Sörensson, N.: Translating pseudo-Boolean constraints into SAT. Jour-
nal on Satisfiability, Boolean Modeling and Computation 2, 1–26 (2006)

[8] Fishelson, M., Dovgolevsky, N., Geiger, D.: Maximum likelihood haplotyping for
general pedigrees. Human Heredity 59(1), 41–60 (2005)

[9] Graça, A., Lynce, I., Marques-Silva, J., Oliveira, A.: Haplotype inference com-
bining pedigrees and unrelated individuals. In: Workshop on Constraint Based
Methods for Bioinformatics (WCB 2009), pp. 27–36 (2009)

Haplotype Inference by Combining Parsimony and Pedigree Information 55

[10] Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient Haplotype In-
ference with Pseudo-boolean Optimization. In: Anai, H., Horimoto, K., Kutsia,
T. (eds.) AB 2007. LNCS, vol. 4545, pp. 125–139. Springer, Heidelberg (2007)

[11] Graça, A., Marques-Silva, J., Lynce, I., Oliveira, A.L.: Efficient Haplotype In-
ference with Combined CP and OR Techniques. In: Trick, M.A. (ed.) CPAIOR
2008. LNCS, vol. 5015, pp. 308–312. Springer, Heidelberg (2008)

[12] Gusfield, D.: Haplotype Inference by Pure Parsimony. In: Baeza-Yates, R.,
Chávez, E., Crochemore, M. (eds.) CPM 2003. LNCS, vol. 2676, pp. 144–155.
Springer, Heidelberg (2003)

[13] Haines, J.L.: Chromlook: an interactive program for error detection and mapping
in reference linkage data. Genomics 14(2), 517–519 (1992)

[14] Kimura, M.: The number of heterozygous nucleotide sites maintained in a finite
population due to steady flux of mutations. Genetics 61(4) (1969)

[15] Kirkpatrick, B., Rosa, J., Halperin, E., Karp, R.M.: Haplotype Inference in Com-
plex Pedigrees. In: Batzoglou, S. (ed.) RECOMB 2009. LNCS, vol. 5541, pp.
108–120. Springer, Heidelberg (2009)

[16] Lancia, G., Pinotti, C.M., Rizzi, R.: Haplotyping populations by pure parsi-
mony: complexity of exact and approximation algorithms. INFORMS Journal
on Computing 16(4), 348–359 (2004)

[17] Leal, S.M., Yan, K., Müller-Myhsok, B.: SimPed: A simulation program to gener-
ate haplotype and genotype data for pedigree structures. Human Heredity 60(2),
119–122 (2005)

[18] Li, C.M., Manyà, F., Mohamedou, N., Planes, J.: Exploiting Cycle Structures
in Max-SAT. In: Kullmann, O. (ed.) SAT 2009. LNCS, vol. 5584, pp. 467–480.
Springer, Heidelberg (2009)

[19] Li, J., Jiang, T.: Efficient inference of haplotypes from genotypes on a pedigree.
Journal of Bioinformatics and Computational Biology 1(1), 41–69 (2003)

[20] Li, J., Jiang, T.: Computing the minimum recombinant haplotype configuration
from incomplete genotype data on a pedigree by integer linear programming.
Journal of Computational Biology 12(6), 719–739 (2005)

[21] Li, X., Li, J.: Comparison of haplotyping methods using families and unrelated
individuals on simulated rheumatoid arthritis data. In: BMC Proceedings, pp.
S1–S55 (2007)

[22] Li, X., Li, J.: Efficient haplotype inference from pedigree with missing data using
linear systems with disjoint-set data structures. In: International Conference on
Computational Systems Bioinformatics (CSB 2008), pp. 297–307 (2008)

[23] Lin, H., Su, K., Li, C.M.: Within-problem learning for efficient lower bound com-
putation in Max-SAT solving. In: National Conference on Artificial Intelligence
(AAAI 2008), pp. 351–356 (2008)

[24] Lin, S., Chakravarti, A., Cutler, D.J.: Haplotype and missing data inference in
nuclear families. Genome Research 14(8), 1624–1632 (2004)

[25] Liu, L., Xi, C., Xiao, J., Jiang, T.: Complexity and approximation of the mini-
mum recombinant haplotype configuration problem. Theoretical Computer Sci-
ence 378(3), 316–330 (2007)

[26] Lynce, I., Marques-Silva, J., Prestwich, S.: Boosting haplotype inference with
local search. Constraints 13(1), 155–179 (2008)

[27] Manquinho, V., Marques-Silva, J.: Effective lower bounding techniques for
pseudo-Boolean optimization. In: Design, Automation and Test in Europe Con-
ference and Exhibition (DATE 2005), pp. 660–665 (2005)

56 A. Graça et al.

[28] Marchini, J., Cutler, D., Patterson, N., Stephens, M., Eskin, E., Halperin, E.,
Lin, S., Qin, Z.S., Munro, H.M., Abecassis, G.R., Donnelly, P., International
HapMap Consortium: A comparison of phasing algorithms for trios and unrelated
individuals. American Journal of Human Genetics 78(3), 437–450 (2006)

[29] Orzack, S.H., Gusfield, D., Olson, J., Nesbitt, S., Subrahmanyan, L., Stanton,
V.P.: Analysis and exploration of the use of rule-based algorithms and consensus
methods for the inferral of haplotypes. Genetics 165(2), 915–928 (2003)

[30] Pei, Y., Zhang, L., Li, J., Papasian, C.J., Deng, H.-W.: Analyses and comparison
of accuracy of different genotype imputation methods. PLoS ONE 3(10) (2008)

[31] Qian, D., Beckmann, L.: Minimum-recombinant haplotyping in pedigrees. Amer-
ican Journal of Human Genetics 70(6), 1434–1445 (2002)

[32] Sánchez, M., Givry, S., Schiex, T.: Mendelian error detection in complex pedi-
grees using weighted constraint satisfaction techniques. Constraints 13(1-2), 130–
154 (2008)

[33] The International HapMap Consortium: A second generation human haplotype
map of over 3.1 million SNPs. Nature 449, 851–861 (2007)

[34] Wang, L., Xu, Y.: Haplotype inference by maximum parsimony. Bioinformat-
ics 19(14), 1773–1780 (2003)

[35] Wijsman, E.M.: A deductive method of haplotype analysis in pedigrees. Ameri-
can Journal of Human Genetics 41(3), 356–373 (1987)

[36] Zhang, K., Qin, Z., Chen, T., Liu, J.S., Waterman, M.S., Sun, F.: HapBlock: hap-
lotype block partitioning and tag SNP selection software using a set of dynamic
programming algorithms. Bioinformatics 21(1), 131–134 (2005)

[37] Zhang, K., Sun, F., Zhao, H.: HAPLORE: a program for haplotype reconstruc-
tion in general pedigrees without recombination. Bioinformatics 21(1), 90–103
(2005)

MABSys: Modeling and Analysis

of Biological Systems

François Lemaire and Asli Ürgüplü

University of Lille I, LIFL
Villeneuve d’Ascq, France

{Francois.Lemaire,Asli.Urguplu}@lifl.fr

Abstract. We present the MABSys package which gathers, as much as
possible, some functions to carry out the modeling of biochemical reac-
tion networks, their qualitative analysis and the exact simplification of
systems of ordinary differential equations. The main functions are illus-
trated with examples including the corresponding commands. Then we
discuss Tyson’s negative feedback oscillator model and the parameters
values for which this system oscillates.

Keywords: software design, systems of ordinary differential equations,
qualitative analysis.

1 Introduction

This article presents the MABSys package, a pilot implementation conceived and
developed by the authors using the Maple computer algebra software. MABSys
assists biologists and bioinformaticians in the analysis of their biological systems
modeled by medium size (about twenty coordinates) systems of ordinary differ-
ential equations (ODEs). Such mathematical models (assumed to be continuous
dynamical systems) are of precious help to understand biological systems. They
describe qualitative dynamics of a model where the intuition is no more sufficing.
Furthermore, we have chosen to be accessible to non-expert users in mathemat-
ics: the use of our algorithms, that are based on the algebraic elimination, Lie
symmetries etc., does not require any mathematical knowledge.

MABSys includes three main parts: the modeling of biochemical reaction net-
works by means of ODEs, the exact symbolic simplification of these dynamical
systems and the qualitative analysis tools to retrieve informations about the be-
havior of the model. The main structure of MABSys is given in figure 1. Every
rectangular box corresponds to a set of functions and every ellipsis to an input
or an output element. The arrows indicate directions of function sequences.

Section 2 presents the related works about existing softwares on systems bi-
ology and similar domains. Section 3 introduces the main structure of MABSys
with illustrations on simple examples. Section 4 treats Tyson’s negative feed-
back oscillator using MABSys and discusses the results. Section 5 helps with the
installation of MABSys and last section concludes the paper.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 57–75, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

58 F. Lemaire and A. Ürgüplü

Information

Qualitative Analysis Tools

Nonlinear ODEs

Exact Symbolic Simplification

Reduction
Semi-

Rectification

Nonlinear ODEs

Modeling

Rate Laws QSSA

Biochemical
Reaction Networks

Fig. 1. Main structure of MABSys

2 Related Works

There exist many approaches used for the comprehension of biological systems
(for example see [23,29]). An exhaustive list of available softwares can be found
in SBML Software Guide (see [15]). Many of these tools are based on simula-
tions, not symbolic analysis because of the complexity of the studied models. For
instance, COPASI is a software application for simulation and analysis of bio-
chemical networks and GNA is a computer tool for modeling and simulation of
genetic regulatory networks in the form of piecewise-linear differential equations.
Our MABSys package treats systems of ODEs with symbolic approaches.

Computer algebra softwares need a formal structuring of biological systems.
Diagram editors for drawing such systems as CellDesigner or JDesigner permit
to export networks in the form of SBML. For now, the description made in
MABSys includes only the most important parts of biochemical reactions in their
simplest way which is sufficient for their modeling by means of ODEs. In the
future, it could be interesting to integrate SBML format.

There exist also widely used general strategies for simplification of differ-
ential systems. The lumping, the sensitivity analysis or the time-scale analy-
sis (see [24]), all decrease the number of coordinates but they cause a loss of
information about individual original coordinates. In our work, we keep the
explicit relationships between the original and the simplified systems. Our algo-
rithms are based on the well-known Lie symmetry theory with new approaches.

MABSys: Modeling and Analysis of Biological Systems 59

It generalizes for example the dimensional analysis (see [16]) which is a classi-
cal reduction method based on the units of coordinates. The existing softwares
on this domain (see ch. 17 of [11], [13,21]) are not suitable for non-experts in
mathematics. In addition, they do not guarantee the polynomial complexity of
the algorithms contrarily to the simplification methods used in MABSys.

3 Main Structure of ������

MABSys is a package which is oriented towards biochemical reaction networks
and their analysis. This section details its functionalities. We illustrate the use
of main functions but for more specific aspects, options and auxiliary functions,
we refer the reader to the associated help pages [20].

3.1 Description of Biochemical Reaction Networks

Functions: GetFastReactions, GetReactionRate, GetReactionReactants,
GetReactionProducts, GetSlowReactions, IsReactionFast, NewReaction

Types: Reaction, ReactionSystem
In MABSys, a biochemical reaction network describes interactions between

macromolecules (genes, mRNAs, proteins) towards some process as binding, re-
lease, synthesis, degradation, transformation and signal responses. Such networks
are denoted by the usual chemical notation which is used to generate models of
ODEs. For instance, the reaction A + B → C between 3 chemical species is rep-
resented by its reactants (A,B), its product (C) and the rate law of the reaction.
Every one-way reaction is represented by a simple Reaction data structure. It is
created by the NewReaction constructor and needs: the reactants and the prod-
ucts given as a linear combination of species names, the rate law of the system.
A classical way of modeling reactions is to use the mass-action law indicated by
the keyword MassActionLaw but one can also choose another reaction law in the
form of rational fractions (for instance Hill functions) indicated by the keyword
CustomizedLaw. For the mass-action law, one must give the associated rate con-
stant and for a customized law the whole rate. An optional boolean fast that
indicates the velocity of the reaction can be specified. The true value is used for
fast reactions and the false value is used for slow reactions. The default value
is false. This option is important in order to apply the QSSA (see § 3.2) on the
reaction system. A system of reaction that corresponds to the ReactionSystem
data structure is a list of reactions.

Remark 1. Because the MABSys package is developed in Maple, in this paper,
piece of codes are detailed by respecting the Maple syntax. Each line in the code
frames that begins with the symbol “>” stands for the commands sent to Maple.
Each line without this symbol stands for an output. The symbol “#” indicates a
comment. Also, the keywords that belong to MABSys are written in bold so that
one can distinguish them from standard Maple commands.

60 F. Lemaire and A. Ürgüplü

E + S C
k1

k−1

C E + P
k2

Fig. 2. Basic enzymatic biochemical reaction system

Example 1. Let us see a basic enzymatic reaction system given in figure 2 and
its construction in MABSys. This system describes the transformation of a sub-
strate S into a product P under the action of the enzyme E. Meanwhile, an
intermediate complex C is produced. Each reaction follows the mass-action law
and the associated rate constants are indicated above or below of the arrows.
The system contains 3 one-way reactions defined in two timescales. The first
two reactions are considered fast w.r.t. the third one meaning that their rate
constants k1, k−1 are supposed to be greater than the third one k2.
� �

> # The biochemical reactions

> R1 := ���������	
 (E+S,C,�������	
��� (k1),fast=true);

R1 := ������	
 ([E, S], [C], �������	
��� (k1), true)

> R2 := ���������	
 (C,E+S,�������	
��� (km1), fast=true);

R2 := ������	
 ([C], [E, S], �������	
��� (km1), true)

> R3 := ���������	
 (C,E+P,�������	
��� (k2));

R3 := ������	
 ([C], [E, P], �������	
��� (k2), false)

> type(R1, ������	
);

true

> # The biochemical reaction system

> RS := [R1 ,R2 ,R3];

RS := [������	
([E, S], [C], �������	
��� (k1), true),

������	
([C], [E, S], �������	
��� (km1), true),

������	
([C], [E, P], �������	
��� (k2), false)]

> type(RS, ������	
������);

true

> # Auxiliary functions

> ��������	
���� (R1);

true

> �������������	
� (RS);

[������	
 ([E, S], [C], �������	
��� (k1), true),

������	
 ([C], [E, S], �������	
��� (km1), true)]

> �����	�������	
� (RS);

[������	
 ([C], [E, P], �������	
��� (k2), false)]

� �

As you see, in MABSys there are also many auxiliary functions to manipulate the
reactions such as to extract the name of products, the name of reactants, to get
fast or slow reactions, to get rate constants etc. For all these functions see the
associated help pages [20].

Mass-action Law. The mass-action law is a classical way of defining dynamics
of a reaction in function of the concentration of the present species and the rate
constant which quantifies its speed. Mainly, this law tells that, for an elementary
reaction, the reaction rate is proportional to the reactant concentrations raised
to a particular power which is their stoichiometric coefficient and to the rate
constant.

MABSys: Modeling and Analysis of Biological Systems 61

Example 2. In the following example we create a reaction where two molecules
of A and one molecule of B are transformed into the product C by following
the mass-action law with k as rate constant. By default, the reaction is consid-
ered as slow. Then we call some MABSys commands to illustrate the associated
functionalities.
� �

> # Mass -action law

> R4 := ���������	
 (2* A+B,C,�������	
��� (k));

R4 := ������	
 ([2 A, B], [C], �������	
��� (k), false)

> ���������	
������
�� (R4);

[2 A, B]

> ���������	
��	����� (R4);

[C]

> ���������	
���� (R4);

2

k A B

� �

Customized Law. A customized law lets the user to indicate the rate law of a
reaction in rational function. Again, the names of species indicate associated
concentrations and the new letters are considered as parameters. This option is
important, for example, in order to manage the signal effects on the biochemical
reactions.

Example 3. In this code example we create two reactions. The transformation
consists of converting a protein P into another protein Q by respecting the given
customized law. We also create the synthesis of the protein P without considering
the source and assuming that the reaction follows a customized law in the form
of a Hill function depending on a gene G. Both are considered as slow.
� �

> # Customized law

> R5 := ���������	
 (P,Q,����	�������� (k*P/(V+P)));

k P

R5 := ������	
 ([P], [Q], ����	�������� (-----), false)

V + P

> ���������	
���� (R5);

k P

V + P

> R6 := ���������	
 (0,P,����	�������� (G/(G+theta)));

G

R6 := ������	
 ([], [P], ����	�������� (---------), false)

G + theta

> ���������	
���� (R6);

G

G + theta

� �

3.2 Modeling by Means of ODEs

Two intimately related kinds of modeling by means of ODEs are available for
these networks. On the one hand, one can use directly the rate laws of the
reactions to construct the so called basic model. On the other hand, the new
algorithm that performs the quasi-steady state approximation (see [4]) assures a
modeling by reducing this basic model. The quasi-steady state approximation is
preferable if the network possesses two timescales, fast and slow reactions, since
it can lead to a simpler model than the basic one.

62 F. Lemaire and A. Ürgüplü

Basic Modeling

Functions: RateVector, ReactionSystem2ODEs, StoichiometricMatrix
One of the simplest classical way of modeling a biological system consists

of constructing a model by following directly the rate laws (mass-action or cus-
tomized) of the reactions. The basic modeling of a biological system of r one-way
reactions that involves k species denoted by X by means of ODEs requires the
associated rate vector V of dimension r and the stoichiometric matrix M of
dimension k × r. In vector-valued notations, the basic model is given by the
formula Ẋ = M V . This model can be obtained by the ReactionSystem2ODEs
function of MABSys.

Example 4. The computation of the basic model that corresponds to the enzy-
matic reaction system of figure 2 follows.⎛⎜⎜⎝

Ė

Ṡ

Ċ

Ṗ

⎞⎟⎟⎠ =

⎛⎜⎜⎝
−1 1 1
−1 1 0
1 −1 −1
0 0 1

⎞⎟⎟⎠
⎛⎝k1 E S

k−1 C
k2 C

⎞⎠ ⇔

⎧⎪⎪⎨⎪⎪⎩
Ė = −k1 E S + k−1 C + k2 C,

Ṡ = −k1 E S + k−1 C,

Ċ = k1 E S − k−1 C − k2 C,

Ṗ = k2 C.

(1)

This biological system is already encoded in the variable RS in example 1. Here
are the associated functions outputs.
� �

> # The rate vector

> ��������	� (RS);

[k1 E S]

[]

[km1 C]

[]

[k2 C]

> # The stoichiometric matrix

> ��	����	������������ (RS , [E,S,C,P]);

[-1 1 1]

[]

[-1 1 0]

[]

[1 -1 -1]

[]

[0 0 1]

> # Basic modeling

> ������	
������� !"� (RS, [E,S,C,P]);

d

[-- E(t) = -k1 E(t) S(t) + km1 C(t) + k2 C(t),

dt

d

-- S(t) = -k1 E(t) S(t) + km1 C(t),

dt

d

-- C(t) = k1 E(t) S(t) - km1 C(t) - k2 C(t),

dt

d

-- P(t) = k2 C(t)]

dt

� �

Quasi Steady-State Approximation

Function: ModelReduce
There are different ways to perform the quasi-steady state approximation

(QSSA) which is an inexact simplification method. The classical one which con-
sists to replace some variables with their steady state values is useful in many

MABSys: Modeling and Analysis of Biological Systems 63

cases. However, for example when one is interested in the timescales over which
the system equilibrates or in the period and the amplitude of oscillations for
an oscillating system, this classical QSSA must be adjusted. Indeed, the separa-
tion of timescales is the key for observing nontrivial behaviors. In biology, many
processes like dimerization occur faster than others. In [4], the QSSA method
considered by [32] is reformulated and made fully algorithmic. In MABSys the
function ModelReduce implements this algorithm. It attempts to construct a re-
duced model that represents biochemical reaction networks behavior with less
chemical species thus a simpler model than the basic one. The algorithm can be
expressed by means of either differential elimination methods (see [3,2,25]) or
regular chains using [18]. In [1], authors apply the QSSA to a family of networks
proposed in [5] and obtain a more precise model.

For biological systems, two classes of reactions are considered: slow and fast
ones. The idea is to study the dynamics of slow reactions, assuming that the
fast ones are at quasi-equilibrium, thereby removing from the system of ODEs,
the differential equations which describe the evolution of the variables at quasi-
equilibrium.

Example 5. The QSSA applied on the basic enzymatic reaction system of figure 2
yields a formula that describes the dynamics of S automatically:

dS

dt
= − Vm S (K + S)

K E0 + (K + S)2
(2)

where Vm = k2 E0 and K are parameters and E0 is the initial concentration
of E. Moreover, the classical formula given in the early xxth century for the
same problem (see [12,22,6]) rely on a few extra assumptions than QSSA. Our
result seems more accurate when S is not supposed to be greater than E0. For
numerical simulations that verify these phenomena see [4,1]. Here follows the
output of the function ModelReduce executed on the variable RS, the system
reaction constructed within the example 1.
� �

> # Modeling by QSSA

> QSSAModel := �	��������� (RS , [E,C,P,S], useConservationLaws =true)[1 ,1]:

> # The further simplifications

> QSSAModel := simplify(subs({k1=km1/K,C_0=0,P_0 =0,k2=Vm/E_0}, QSSAModel)):

> # The last equation correspond to the substrate.

> QSSAModelS := QSSAModel [-1];

d Vm S(t) (K + S(t))

QSSAModelS := -- S(t) = - -----------------------------

dt 2 2

2 S(t) K + S(t) + E_0 K + K

� �

3.3 Exact Symbolic Simplifications

Any system of polynomial ODEs, coming from any scientific context, can be
treated by the exact simplifications part i.e. by the reduction and the semi-
rectification methods. These exact simplifications are based on the classical Lie
symmetry theory which is adapted in an original way to the modeling in biology.
The reduction of the parameter set of a model consists in eliminating some
parameters thus in decreasing their number. The semi-rectification of a model

64 F. Lemaire and A. Ürgüplü

consists in understanding more the influence of the parameters values on the
system dynamics. The goal of these simplifications is to reorganize the model
coordinates so that the resulting equivalent model can be more easily tractable.

The use of our algorithms does not require any knowledge about Lie sym-
metries. However, even if the simplification algorithms are fully automatic, the
choice of the parameters to eliminate, the parameters and the variables to adjust,
etc. remain under the control of the user.

Implementation Remarks The MABSys package, where these simplification
algorithms are implemented, relies on the ExpandedLiePointSymmetry package
(see [27]) for the computation of (scaling type) Lie point symmetries. The com-
plexity of the algorithm employed for this issue is polynomial in the input size
(see [26,14] and proposition 4.2.8 in [31]). This gain of complexity arises mostly
from the limitation to only scalings and the restriction of the general definition
of Lie symmetries.

The structure of used Lie symmetries in MABSys permits to get the exact re-
lations associated to model simplification and to respect the positivity property
of biological quantities (parameters and concentrations) when the system mod-
els a biological phenomenon. It is possible to generalize the methods used in
MABSys, for example to the reduction of state variables, to the simplification of
discrete dynamical systems etc. These generalizations are implemented in the
ExpandedLiePointSymmetry package (see [27]).

Reduction

Function: InvariantizeByScalings
The objective of the reduction method is to eliminate some parameters by

constructing new coordinates and thus to decrease their number. Thanks to our
algorithm, there exists a bijection between the positive solutions of the original
system of ODEs and these of the reduced one.

The arguments of the associated function InvariantizeByScalings are the
model to reduce and two lists to guide this reduction: the list of parameters
assumed positive given by decreasing order of preference to remove from the
model and the list of remaining coordinates. For now, this second list must
contain the state variables. The algorithm takes each parameter in the first list
and tries to eliminate it before considering the next one. It may happen that some
of these parameters cannot be eliminated because of the system structure. The
output is composed of three objects: the reduced system of ODEs, the change of
coordinates that gives the exact relations between the original and the reduced
systems coordinates and the list of parameters that were eliminated.

Example 6. Let us illustrate the outputs of the reduction process on the two-
species oscillator that models the dynamics of a biochemical reactions network:{

dx
dt = a − k1 x + k2 x2 y,

dy
dt = b − k2 x2 y.

(3)

MABSys: Modeling and Analysis of Biological Systems 65

This system has two state variables x, y and depends on 4 parameters: a, b, k1

and k2. Assuming that the system parameters are positive, our algorithm per-
mits to rewrite it in a new coordinate set where the system depend on only
2 parameters instead of 4. According to the algorithms given in [31], the new
coordinate set Ẑ =

(
t̂, x̂, ŷ, k̂1, k̂2, â, b̂

)
is defined by:

t̂ = t k1, x̂ =
xk1

a
, ŷ =

y k1

a
, k̂1 = k1, k̂2 =

k2 a2

k3
1

, â = a, b̂ =
b

a
· (4)

This change of coordinates is reversible by construction. The substitution of
its inverse gives the reduced system:⎧⎨⎩

dx̂
dt̂

= 1 − x̂ + k̂2 x̂2 ŷ,

dŷ

dt̂
= b̂ − k̂2 x̂2 ŷ.

(5)

Remark that the parameters â and k̂1 do not appear in the system definition.
However, this new system (5) is equivalent to the system (3) by the exact rela-
tions (4). There is a bijection between the positive solutions (coming from the
positive coordinates values) of these two systems. Here follows the MABSys code
that computes automatically this simplification. Remark that the output nota-
tion in the code example does not differentiate the new coordinates from the old
ones for the sake of computational simplicity. The outputs must be interpreted
exactly as above.
� �

> # Model

> ODEs := [diff(x(t),t)=a-k1*x(t)+k2*x(t)^2*y(t), diff(y(t),t)=b-k2*x(t)^2*y(t)];

d 2 d 2

ODEs := [-- x(t) = a - k1 x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> # Reduction

> out := �
#����
����$������
%� (ODEs ,[a,b,k1 ,k2],[x,y]):

> ReducedODEs := out [1];

d 2 d 2

ReducedODEs := [-- x(t) = 1 - x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> CoC1 := out [2];

2

k2 a x k1 y k1

CoC1 := [b = b/a, k2 = -----, t = t k1 , x = ----, y = ----]

3 a a

k1

> EliminatedParams := out [3];

EliminatedParams := [a, k1]

� �

Semi-rectification

Function: SemiRectifySteadyPoints
The objective of the semi-rectification method is to make some parameters to

appear as factors in the right-hand side of ODEs (see [19]). This property sim-
plifies the expressions of the associated steady points and permits to distinguish
the roles of the parameters. For example, some parameters matter to decide only
the nature (attractor or repellor) of steady points. Other ones are involved also
to define their place.

66 F. Lemaire and A. Ürgüplü

The associated function SemiRectifySteadyPoints needs the model to re-
duce and two lists to guide this semi-rectification. One must specify the list
of parameters assumed positive given by decreasing order of preference for the
semi-rectification and the list of remaining coordinates. For now, this second list
must contain the state variables.The output includes: the semi-rectified system
of ODEs, the algebraic system that defines the steady points of this new differ-
ential system, the change of coordinates that gives the exact relations between
the original and the semi-rectified systems and the list of parameters that do not
appear anymore in the solutions of the algebraic system that defines the steady
points of the new differential system.

Example 7. Let us illustrate the outputs of the semi-rectification process on the
reduced two-species oscillator given in (5). Remark that this system cannot be
reduced anymore by our reduction process. Assuming that the parameters b̂
and k̂2 are positive, our semi-rectification algorithm permits to define a new
coordinate set Z̃ =

(
t̃, x̃, ỹ, k̃1, k̃2, ã, b̃

)
where ỹ = ŷ k̂2 and all other coordinates

remain the same. Again, this change of coordinates is reversible by construction.
The substitution of its inverse gives the semi-rectified system:⎧⎨⎩

dx̃
dt̃

= 1 − x̃ + x̃2 ỹ,

dỹ

dt̃
=

(
b̃ − x̃2 ỹ

)
k̃2.

(6)

Remark that the parameter k̃2 does not appear anymore in the algebraic system
defining the steady points of this final system of ODEs:{

1 − x̃ + x̃2 ỹ = 0,

b̃ − x̃2 ỹ = 0.
(7)

There is a bijection between the positive solutions (coming from the positive
coordinates values) of (5) and (6). Here follows the MABSys code that computes
automatically this simplification. Once more, remark that the output notation
in the code example does not differentiate the new coordinates from the old
ones for the sake of computational simplicity. The outputs must be interpreted
exactly as above.
� �

> # Semi -rectification

> ReducedODEs ;

d 2 d 2

[-- x(t) = 1 - x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> out := ���������&��������	�
�� (ReducedODEs , [b,k2], [x,y]):

> out := out [1]:

> FinalODEs := out [1];

d 2 d 2

FianlODEs := [-- x(t)=1 - x(t) + x(t) y(t), -- y(t)=(b - x(t) y(t)) k2]

dt dt

> FinalAlgSys := out [2];

2 2

FinalAlgSys := [1 - x + x y, b - x y]

> CoC2 := out [3];

CoC2 := [y = y k2]

> FactorizedParams := out [4];

FactorizedParams := [k2]

� �

MABSys: Modeling and Analysis of Biological Systems 67

Remark 2. The semi-rectification process can be improved using the triangular-
ization notion via the RegularChains package [18] of Maple. This option can
help to simplify more the studied system. The disadvantage is that the complex-
ity of the associated computations is not polynomial in the worst case because
this method requires the algebraic elimination. In this paper we do not detail
this option for the sake of clarity.

Change of Coordinates

Functions: ApplyChangeOfCoord,
ComposeChangeOfCoord, InverseChangeOfCoord
The change of coordinates found by the exact simplification methods gives the

relationships between the old coordinates Z = (z1, . . . , zn), in which the original
system is written, and the new coordinates Z̃ = (z̃1, . . . , z̃n), in which the sim-
plified system is written. In MABSys, these changes of coordinates are restricted
to monomial maps of the form:

z̃j =
n∏

k=1

z
Ck,j

k ∀j ∈ {1, . . . , n} (8)

where the Ck,j ’s are elements of a n × n invertible matrix with rational coeffi-
cients (see § 2.1 in [19]). These changes of coordinates are invertible.

Example 8. In this example, we illustrate the functions that inverse changes of
coordinates, apply them to a given system and compose them with each other.
� �

> # The inverse of CoC1

> �
#�������
%� &�		�� (CoC1);

3

k2 k1 t x a y a

[b = a b, k2 = ------, t = ----, x = ---, y = ---]

2 k1 k1 k1

a

> # Application of CoC1 to our model , the result is the reduced system ReducedODEs

> ''�����
%� &�		�� (ODEs , CoC1);

d 2 d 2

[-- x(t) = 1 - x(t) + k2 x(t) y(t), -- y(t) = b - k2 x(t) y(t)]

dt dt

> # The final change of coordinates giving the relationships

> # between the original system ODEs and the last simplified system FinalODEs

> FinalCoC := �	�'	�����
%� &�		�� (CoC1 , CoC2);

2

k2 a x k1 y a k2

FinalCoC := [b = b/a, k2 = -----, t = t k1 , x = ----, y = ------]

3 a 2

k1 k1

> # Application of FinalCoC to our model , the result is the last simplified system FinalODEs

> ''�����
%� &�		�� (ODEs , FinalCoC);

d 2 d 2

[-- x(t) = 1 - x(t) + x(t) y(t), -- y(t) = -k2 (-b + x(t) y(t))]

dt dt

� �

3.4 Qualitative Analysis

Functions: JacobianMatrix,
HopfBifurcationConditions, SteadyPointSystem

68 F. Lemaire and A. Ürgüplü

The last part of MABSys involves some qualitative analysis tools for computing
steady points, Hopf bifurcation conditions, etc. There is a large literature for
this kind of studies, among which one can cite [10,9,8] for continuous dynamical
systems. The qualitative analysis functions of MABSys don’t come with new ideas.
Some of them already exist in some Maple packages or use Maple commands in
their implementations.

Example 9. Let us analyze the oscillation behavior of Van der Pol oscillator of
the form: {

dx
dt =

(
1 − y2

)
μx − y,

dy
dt = x

(9)

via Routh-Hurwitz criterion (see § I.13 of [9]) using MABSys. First, we define the
differential system and deduce the associated algebraic system that defines its
steady points.
� �

> # The definition of the system of ODEs.

> ODEs := [diff(x(t),t)=mu*(1-y(t)^2)*x(t)-y(t),diff(y(t),t)=x(t)];

d 2 d

ODEs := [-- x(t) = mu (1 - y(t)) x(t) - y(t), -- y(t) = x(t)]

dt dt

> # Algebraic equations defining its steady points.

> SteadyPoint := �������	�
������� (ODEs);

2

SteadyPoint := [mu (1 - y) x - y, x]

> # The steady point of the system.

> SP := [x=0, y=0];

SP := [x = 0, y = 0]

� �

The behavior of a system of ODEs, at the neighborhood of a given steady point,
is classified by looking the signs of the eigenvalues of the Jacobian evaluated at
this point (see § 1.3 of [10]). This matrix follows.
� �

> # The associated Jacobian matrix.

> J := (��)��
������ (ODEs , statevars =[x,y]);

[2]

J := [-mu (-1 + y) -2 mu y x - 1]

[]

[1 0]

> J0 := subs(SP , J);

[mu -1]

J0 := []

[1 0]

� �

The Routh-Hurwitz criterion applied on the characteristic polynomial of the
evaluated Jacobian gives necessary conditions so that a Hopf bifurcation may
occur. In the neighborhood of a Hopf bifurcation, a stable steady point of the
system gives birth to a small stable limit cycle. Here is the MABSys commands
that compute these conditions:
� �

> P := LinearAlgebra :- CharacteristicPolynomial (J0 , lambda);

2

P := lambda - mu lambda + 1

> # Necessary conditions so that a Hopf bifurcation can happen

> pos , zero , neg := *	'&$�&������	
�	
����	
� (CP , lambda);

pos , zero , neg := [1], -mu , -1

� �

According to this result, conditions to satisfy follow:

1 > 0, −μ = 0, −1 < 0. (10)

MABSys: Modeling and Analysis of Biological Systems 69

Because the first and the third conditions are obvious, one can conclude that a
Hopf bifurcation may occur for the Van der Pol oscillator if μ = 0.

4 Tyson’s Negative Feedback Oscillator

In [30], authors show how to embed simple signaling pathways in networks using
feedbacks to generate more complex behaviors in non-linear control systems. This
section is devoted to the analysis of, what we call, Tyson’s negative feedback
oscillator figure 2.a taken from this paper. Such negative feedback loops are
widely used in modeling in biology domain to cause oscillations (see [7,17,28]).
We illustrate how MABSys, especially its exact simplification part, could help to
predict numerical values that engender oscillation of this particular system and
also to clarify the influence of each parameter on this behavior.

S

X

Y YP

R RP

Fig. 3. Tyson’s negative feedback oscillator

The figure 3 shows the interactions in the negative-feedback control loop of our
study. S is the signal, X, Y, R, YP and RP are other components of the signaling
network. The negative feedback loop is closed by RP activating the degradation
of X . The kinetic equations corresponding to this diagram follow:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

dX

dt
= k0 + k1 S − k2 X − k′

2 RP X,

dYP

dt
=

k3 X (YT − YP)
Km3 + YT − YP

− k4 YP

Km4 + YP
,

dRP

dt
=

k5 YP (RT − RP)
Km5 + RT − RP

− k6 RP

Km6 + RP

(11)

where YT = Y + YP and RT = R + RP are total concentrations of the associated
molecules thus constants. In [30] the studied oscillations arise by the mechanism
of Hopf bifurcation. Except for the signal strength S, that varies between two
critical values, all parameters are taken fixed. The question arises whether the
oscillations occur for other set of parameter values, and if so, how one can find
some of them algorithmically. To answer this question we engage in the symbolic
simplification of the mathematical model (11) and then we discuss different
approaches.

70 F. Lemaire and A. Ürgüplü

4.1 Symbolic Simplification

The symbolic simplification methods implemented in MABSys let us construct
an equivalent but simpler model that keeps same qualitative behaviors as the
original model. Assuming that the parameters are positive i.e. in R

�
+, we im-

pose a bijection between the positive solutions of these original and simplified
models. Moreover, the exact relationships between the old and the new coordi-
nates permit us to predict sets of numerical values of kinetic constants for which
oscillatory behavior is observed.

The model (11) possesses 15 parameters and 3 state variables. For a qualitative
analysis, such a system arises complexity problems for symbolic approaches and
has too large exploration domains for numerical approaches. That is why, using
MABSys and its functions of polynomial complexity in the input size, we can find
an equivalent system with less and better organized parameters.

Here are the MABSys commands and their outputs used to perform the reduc-
tion (see § 3.3) and the semi-rectification (see § 3.3) methods. We assume that
all parameters are positive and give them by decreasing order of preference for
both simplifications. Note that eliminated or factorized parameters can change
according their order in function calls. The state variables, given in the second
argument, are supposed to not be used in the new parameters expressions.
� �

> # Tyson ’s negative feedback model

> ODEs := [diff(X(t),t)=k0+k1*S-k2*X(t)-k2p *RP(t)*X(t),

> diff(YP(t),t)=(k3*X(t)*(YT -YP(t)))/(Km3+YT -YP(t))-(k4*YP(t))/(Km4+YP(t)),

> diff(RP(t),t)=(k5*YP(t)*(RT -RP(t)))/(Km5+RT -RP(t))-(k6*RP(t))/(Km6+RP(t))]:

> # Reduction

> out := �
#����
����$������
%� (ODEs ,[k1 ,k3 ,k5 ,Km3 ,Km5 ,k4 ,k6 ,k2p ,Km4 ,Km6 ,k2,YT ,RT ,S],[X,YP,RP ,k0]):

> InterODEs := out [1]:

> CoC1 := out [2]:

> FreedParams1 := out [3];

FreedParams1 := [k1 , k3 , k5 , Km3 , Km5]

> # Semi - rectification

> out := ���������&��������	�
�� (InterODEs ,[k2p,k2 ,Km4 ,Km6 ,k4 ,k6 ,YT ,RT ,S],[X,YP ,RP ,k0]):

> FinalODEs := out [1 ,1]:

> CoC2 := out [1 ,3]:

> FreedParams2 := out [1 ,4];

FreedParams2 := [k2p , k4]

> # Results

> FinalChangeOfCoord := �	�'	�����
%� &�		�� (CoC1 ,CoC2);

2

k4 Km5 k6 k2p Km5 Km4 Km6 k0 k3

FinalChangeOfCoord := [k4 = -------, k6 = ------, k2p = --------, Km4 = ---, Km6 = ---, k0 = ----------,

2 Km3 k5 Km3 k5 Km3 Km5 Km5 k2p k4

Km3 k5

k2 YT RT S k1 k3 t Km3 k5 X k3 YP RP

k2 = -------, YT = ---, RT = ---, S = ----------, t = --------, X = ----, YP = ---, RP = ---]

Km5 k2p Km3 Km5 Km5 k2p k4 Km5 k4 Km3 Km5

> FinalODEs ;

d

[-- X(t) = (k0 + S - k2 X(t) - RP(t) X(t)) k2p,

dt

2 2

d k4 (-X(t) YT Km4 - X(t) YT YP(t) + X(t) YP(t) Km4 + X(t) YP(t) + YP(t) + YT YP(t) - YP(t))

-- YP(t) = --,

dt (-1 - YT + YP(t)) (Km4 + YP(t))

2 2

d -YP(t) RT Km6 - YP(t) RT RP(t)+ YP(t) RP(t) Km6+ YP(t) RP(t) + k6 RP(t)+ k6 RP(t) RT - k6 RP(t)

-- RP(t) = --]

dt (-1 - RT + RP(t)) (Km6 + RP(t))

� �

It took less then 2 seconds to find an equivalent system where the number of
parameters of the whole differential system is decreased by 5 and the number of
parameters defining the location of steady points is decreased by 7. According

MABSys: Modeling and Analysis of Biological Systems 71

to the outputs of the MABSys commands, this equivalent system written in the
new coordinates set Z̃ follows in the factorized form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dX̃

dt̃
=

(
k̃0 + S̃ − k̃2 X̃ − R̃P X̃

)
k̃′
2,

dỸP

dt̃
=

⎛⎝ X̃
(
ỸT − ỸP

)
1 + ỸT − ỸP

− ỸP

K̃m4 + ỸP

⎞⎠ k̃4,

dR̃P

dt̃
=

ỸP

(
R̃T − R̃P

)
1 + R̃T − R̃P

− k̃6 R̃P

K̃m6 + R̃P

·

(12)

Again, according to the above outputs, the new coordinates are described w.r.t.
the old ones as follows:

k̃4 = k4 Km5
K2

m3 k5
, k̃6 = k6

Km3 k5
, k̃′

2 = k′
2 K2

m5
Km3 k5

, K̃m4 = Km4
Km3

, K̃m6 = Km6
Km5

,

k̃0 = k0 k3
Km5 k′

2 k4
, k̃2 = k2

Km5 k′
2
, ỸT = YT

Km3
, R̃T = RT

Km5
, S̃ = S k1 k3

Km5 k′
2 k4

,

t̃ = t Km3 k5
Km5

, X̃ = X k3
k4

, ỸP = YP

Km3
, R̃P = RP

Km5
,

k̃1 = k1, k̃3 = k3, K̃m3 = Km3, k̃5 = k5, K̃m5 = Km5.

(13)

Remark that the parameters k̃1, k̃3, k̃5, K̃m3, K̃m5 do not appear in the equations
of the system (12) and the parameters k̃1, k̃3, k̃5, K̃m3, K̃m5, k̃

′
2, k̃4 do not influ-

ence the location of its steady points. These properties allow to considerably
facilitate further analyses and to deduce supplementary information about the
original system dynamics.

4.2 Discussion

The previous exact simplifications help the analysis of the studied system by
constructing an equivalent system with less parameters and same qualitative
behaviors under some positivity assumptions. This fact eases considerably to go
further on the comprehension of the biological phenomena. Computed change of
coordinates between the original and the simplified systems are effective to find
useful numerical values. In the sequel we discuss two such cases.

Oscillation values. The analysis of the simplified model (12) yields information
about the original model (11) via the change of coordinates (13). The parameter
values which let the simplified model oscillate can be carried back to the original
model. Since the number of parameters of the new system is less then the original
one, we get a set of parameters values that can be adjusted by free numerical
values. In our case, there are 5 free values, as much as the number of eliminated
parameters. The following set:

k̃4 = 200, k̃6 = 50, k̃′
2 = 1, K̃m4 = 1, K̃m6 = 1,

k̃0 = 0, k̃2 = 0.1, ỸT = 100, R̃T = 100, S̃ = 10
(14)

72 F. Lemaire and A. Ürgüplü

with suitable initial conditions for the state variables causes the oscillation of
the simplified model (12). By the help of the new coordinates expressions, we
can conclude that any parameter values set satisfying following relations allow
the oscillation of the original system:

200 = k4 Km5
K2

m3 k5
, 50 = k6

Km3 k5
, 1 = k′

2 K2
m5

Km3 k5
, 1 = Km4

Km3
, 1 = Km6

Km5
,

0 = k0 k3
Km5 k′

2 k4
, 0.1 = k2

Km5 k′
2
, 100 = YT

Km3
, 100 = RT

Km5
, 10 = S k1 k3

Km5 k′
2 k4

·
(15)

Five of the parameters, not necessarily the eliminated ones, can take any desired
value satisfying above equalities. The change of the timescale and the initial
conditions is only important for the coherence of simulations. This phenomenon
helps to adapt the system information in order to reproduce the oscillation
behavior.

For example, let us consider the specializations k1 = 1, k′
2 = 10, k4 = 0.2,

YT = 1 and Km6 = 0.01. The above relations impose (except k3 because of the
null value of k̃0):

k4 = 0.2, k6 = 0.05, k′
2 = 10, Km4 = 0.01, Km6 = 0.01,

k0 = 0, k2 = 0.01, YT = 1, RT = 1, S = 2,

k1 = 1, k3 = 0.1, Km3 = 0.01, k5 = 0.1, Km5 = 0.01.

(16)

We recognize the parameter values given in [30]. If we perform the special-
ization S = 8, k6 = 1, RT = 10, Km5 = 0.1 and k4 = 4 then the above relations
impose:

k4 = 4, k6 = 1, k′
2 = 0.2, Km4 = 0.1, Km6 = 0.1,

k0 = 0, k2 = 0.002, YT = 10, RT = 10, S = 8,

k1 = 1, k3 = 0.1, Km3 = 0.1, k5 = 0.2, Km5 = 0.1.

(17)

These values oscillates also the original model of Tyson’s negative feedback loop.
Remark that the same logic works for any other parameter values than (14) that
cause the oscillation of the simplified model (12).

Influence of parameters. One of the contributions of these simplification proce-
dures is to show which quantities really influence the dynamics of the studied
system. For example, in (12) we see clearly that the steady points of the system
depend on 8 parameters k̃0, S̃, k̃2, ỸT , K̃m4, R̃T , k̃6, K̃m6. If we return back to the
original coordinates, in fact we deduce that what really matters is the following
equalities:

k̃0 = k0 k3
Km5 k′

2 k4
, S̃ = S k1 k3

Km5 k′
2 k4

, k̃2 = k2
Km5 k′

2
, ỸT = YT

Km3
,

K̃m4 = Km4
Km3

, R̃T = RT

Km5
, k̃6 = k6

Km3 k5
, K̃m6 = Km6

Km5

(18)

that come from the change of coordinates computed by MABSys. Certainly, it is
still possible to ripen these dependency relations but for now, our methods give
a non-negligible start.

MABSys: Modeling and Analysis of Biological Systems 73

Let us illustrate how one can use this information concretely for the numerical
values. For instance, with no preceding knowledge, looking for numerical values
that change the location of steady points of (11) require a “blind” exploration of
the domain in which the parameters live. However we can improve this research
using (18). Suppose that we have the location of a steady point

(
X̃0, ỸP0, R̃P0

)
of (12) for the following numerical values:

k̃0 = 0, S̃ = 5, k̃2 = 0.1, ỸT = 50,

K̃m4 = 2, R̃T = 50, k̃6 = 20, K̃m6 = 1.
(19)

Any original parameters values satisfying these equalities, for example, each of
the following sets:

k4 = 0.125, k6 = 4, k′
2 = 2, Km4 = 0.4, Km6 = 0.2,

k0 = 0, k2 = 0.04, YT = 10, RT = 10, S = 2.5,
k1 = 1, k3 = 0.1, Km3 = 0.2, k5 = 1, Km5 = 0.2

(20a)

k4 = 4, k6 = 2, k′
2 = 1, Km4 = 0.2, Km6 = 0.1,

k0 = 0, k2 = 0.01, YT = 5, RT = 5, S = 1,
k1 = 5, k3 = 0.4, Km3 = 0.1, k5 = 1, Km5 = 0.1

(20b)

k4 = 2, k6 = 0.4, k′
2 = 10, Km4 = 0.02, Km6 = 0.01,

k0 = 0, k2 = 0.01, YT = 0.5, RT = 0.5, S = 2,
k1 = 5, k3 = 0.1, Km3 = 0.01, k5 = 2, Km5 = 0.01

(20c)

yields predictable locations of steady points for the original system (11). These
locations (X0, YP0, RP0) can be deduced directly by a simple transformation
coming from (13):

X0 =
k4 X̃0

k3
, YP0 = Km3 ỸP0, RP0 = Km5 R̃P0. (21)

5 Installation of ������

The software is available for download with the associated help pages [20]. It
requires at least Maple 11. Because MABSys uses some types and functions of the
package ExpandedLiePointSymmetry, you need to install also this last one. First,
download the libraries of ExpandedLiePointSymmetry in a directory named,
for example, /̃softwares/ExpandedLiePointSymmetry/ and the libraries of
MABSys in a directory named /̃softwares/MABSys/. Second, make them vis-
ible to Maple. The global variable libname must be updated. You can do it once
forever in your .mapleinit file or every time you open a Maple session as:
� �

> libname := libname , "~/ softwares/ ExpandedLiePointSymmetry ", "~/ softwares /MABSys/":

� �

Once the libname has been properly set, the package can be loaded and you can
enjoy it by the following command.

74 F. Lemaire and A. Ürgüplü

� �

> with(MABSys);

[''�����
%� &�		�� , �	�'	�����
%� &�		�� , �	
���#���	
���� , "+����)��� , "#�������	����	
 ,

����������	
���
�� , �������)����������� , �������������	
� , ���������	
��	����� , ���������	
���� ,

���������	
������
�� , �����	�������	
� , *	'&$�&������	
�	
����	
� , *������!������
�
�� , *������������ ,

�
#����
����$������
%� , �
#�������
%� &�		�� , ��������	
���� , (��)��
������ , �	��������� , ���������	
 ,

����������	����	
 , ��	��	����	
 , ��������	� , ������	
������� !"� , ���������&��%�)���������� ,

���������&������%�)���������� , ���������&��������	�
�� , �������	�
������� , ��	����	������������]

� �

The online help is also loaded and is accessible by ?MABSys.

6 Conclusion and Perspectives

We have presented our MABSys package and illustrated its main functions. Even
if MABSys’ pilot implementation is in Maple, one of the perspectives is to have
a computer algebra software independent package. Other open softwares or pro-
gramming languages such as C can be preferred in the future to reach more
people. Moreover, we seek to improve our modeling and simplification proce-
dures along with our qualitative analysis tools.

References

1. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Applying a Rigorous Quasi-
Steady State Approximation Method for Proving the Absence of Oscillations in
Models of Genetic Circuits. In: Horimoto, K., Regensburger, G., Rosenkranz, M.,
Yoshida, H. (eds.) AB 2008. LNCS, vol. 5147, pp. 56–64. Springer, Heidelberg
(2008), http://hal.archives-ouvertes.fr/hal-00213327/

2. Boulier, F.: Réécriture algébrique dans les systèmes d’équations différentielles poly-
nomiales en vue d’applications dans les Sciences du Vivant. H497. Université de
Lille 1, LIFL, 59655 Villeneve d’Ascq France, Mémoire d’Habilitation à Diriger des
Recherches (May 2006)

3. Boulier, F.: Differential Elimination and Biological Modelling. In: Rosenkranz, M.,
Wang, D. (eds.) Gröbner Bases in Symbolic Analysis Workshop D2.2 of the Special
Semester on Gröbner Bases and Related Methods, Hagenberg Autriche. Radon
Series Comp. Appl. Math, vol. 2, pp. 111–139. De Gruyter (2007)

4. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E.: Model Reduc-
tion of Chemical Reaction Systems using Elimination. In: MACIS (2007),
http://hal.archives-ouvertes.fr/hal-00184558/fr

5. Boulier, F., Lefranc, M., Lemaire, F., Morant, P.-E., Ürgüplü, A.: On Proving the
Absence of Oscillations in Models of Genetic Circuits. In: Anai, H., Horimoto,
K., Kutsia, T. (eds.) AB 2007. LNCS, vol. 4545, pp. 66–80. Springer, Heidelberg
(2007), http://hal.archives-ouvertes.fr/hal-00139667

6. Briggs, G.E., Haldane, J.B.S.: A note on the kinetics of enzyme action. Biochemical
Journal 19, 338–339 (1925)

7. Griffith, J.S.: Mathematics of Cellular Control Processes. I. Negative Feedback to
One Gene. Journal of Theoretical Biology 20, 202–208 (1968)

8. Guckenheimer, J., Myers, M., Sturmfels, B.: Computing Hopf Bifurcations I. SIAM
Journal on Numerical Analysis (1997)

9. Hairer, E., Norsett, S.P., Wanner, G.: Solving ordinary differential equations I: non-
stiff problems, 2nd revised edn. Springer-Verlag New York, Inc., New York (1993)

10. Hale, J., Koçak, H.: Dynamics and Bifurcations. Texts in Applied Mathematics,
vol. 3. Springer, New York (1991)

11. Heck, A.: Introduction to Maple, 3rd edn. Springer, Heidelberg (2003) ISBN 0-387-
00230-8

http://hal.archives-ouvertes.fr/hal-00213327/
http://hal.archives-ouvertes.fr/hal-00184558/fr
http://hal.archives-ouvertes.fr/hal-00139667

MABSys: Modeling and Analysis of Biological Systems 75

12. Henri, V.: Lois générales de l’Action des Diastases. Hermann, Paris (1903)
13. Hubert, É.: AIDA Maple package: Algebraic Invariants and their Differential Al-

gebras (2007)
14. Hubert, É., Sedoglavic, A.: Polynomial Time Nondimensionalisation of Ordinary

Differential Equations via their Lie Point Symmetries. Internal Report (2006)
15. Hucka, M., Keating, S.M., Shapiro, B.E., Jouraku, A., Tadeo, L.: SBML (The

Systems Biology Markup Language) (2003), http://sbml.org
16. Khanin, R.: Dimensional Analysis in Computer Algebra. In: Mourrain, B. (ed.) Pro-

ceedings of the 2001 International Symposium on Symbolic and Algebraic Compu-
tation, London, Ontario, Canada, July 22-25, pp. 201–208. ACM, ACM press (2001)

17. Kholodenko, B.N.: Negative feedback and ultrasensitivity can bring about oscilla-
tions in the mitogen-activated protein kinase cascades. European Journal of Bio-
chemistry 267, 1583–1588 (2000)

18. Lemaire, F., Maza, M.M., Xie, Y.: The RegularChains library in MAPLE 10. In:
Kotsireas, I.S. (ed.) The MAPLE Conference, pp. 355–368 (2005)

19. Lemaire, F., Ürgüplü, A.: A Method for Semi-Rectifying Algebraic and Differen-
tial Systems using Scaling type Lie Point Symmetries with Linear Algebra. In:
Proceedings of ISSAC (2010) (to appear)

20. Lemaire, F., Ürgüplü, A.: Modeling and Analysis of Biological Systems. Maple
Package (2008), www.lifl.fr/~urguplu

21. Mansfield, E.: Indiff: a MAPLE package for over determined differential systems
with Lie symmetry (2001)

22. Michaëlis, L., Menten, M.: Die Kinetik der Invertinwirkung (the kinetics of inver-
tase activity). Biochemische Zeitschrift 49, 333–369 (1973), Partial english trans-
lation, http://web.lemoyne.edu/~giunta/menten.html

23. Murray, J.D.: Mathematical Biology. Interdisciplinary Applied Mathematics,
vol. 17. Springer, Heidelberg (2002)

24. Okino, M.S., Mavrovouniotis, M.L.: Simplification of Mathematical Models of
Chemical Reaction Systems. Chemical Reviews 98(2), 391–408 (1998)

25. Ritt, J.F.: Differential Algebra. American Mathematical Society Colloquium Pub-
lications, vol. XXXIII. AMS, New York (1950),
http://www.ams.org/online_bks/coll33

26. Sedoglavic, A.: Reduction of Algebraic Parametric Systems by Rectification of
Their Affine Expanded Lie Symmetries. In: Anai, H., Horimoto, K., Kutsia,
T. (eds.) AB 2007. LNCS, vol. 4545, pp. 277–291. Springer, Heidelberg (2007),
http://hal.inria.fr/inria-00120991

27. Sedoglavic, A., Ürgüplü, A.: Expanded Lie Point Symmetry, Maple package (2007),
http://www.lifl.fr/~urguplu

28. Smolen, P., Baxter, D.A., Byrne, J.H.: Modeling circadian oscillations with inter-
locking positive and negative feedback loops. Journal of Neuroscience 21, 6644–6656
(2001)

29. Szallasi, Z., Stelling, J., Periwal, V. (eds.): System Modeling in Cellular Biology.
The MIT Press, Cambridge (2006)

30. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dy-
namics of regulatory and signaling pathways in the cell. Current Opinion in Cell
Biology 15, 221–231 (2003)

31. Ürgüplü, A.: Contribution to Symbolic Effective Qualitative Analysis of Dynamical
Systems; Application to Biochemical Reaction Networks. PhD thesis, University
of Lille 1 (January 13, 2010)

32. Vora, N., Daoutidis, P.: Nonlinear model reduction of chemical reaction systems.
AIChE (American Institute of Chemical Engineers) Journal 47(10), 2320–2332
(2001)

http://sbml.org
www.lifl.fr/~urguplu
http://web.lemoyne.edu/~giunta/menten.html
http://www.ams.org/online_bks/coll33
http://hal.inria.fr/inria-00120991
http://www.lifl.fr/~urguplu

Models of Stochastic Gene Expression

and Weyl Algebra

Samuel Vidal1, Michel Petitot2, François Boulier2,
François Lemaire2, and Céline Kuttler2,3

1 Univ. Lille I
Lab. Paul Painlevé

samuel.vidal@math.univ-lille1.fr
2 Univ. Lille I

LIFL
{michel.petitot,francois.boulier,

francois.lemaire,celine.kuttler}@lifl.fr
3 Univ. Lille I

IRI

Abstract. This paper presents a symbolic algorithm for computing the
ODE systems which describe the evolution of the moments associated to
a chemical reaction system, considered from a stochastic point of view.
The algorithm, which is formulated in the Weyl algebra, seems more
efficient than the corresponding method, based on partial derivatives.
In particular, an efficient method for handling conservation laws is pre-
sented. The output of the algorithm can be used for a further investiga-
tion of the system behaviour, by numerical methods. Relevant examples
are carried out.

Keywords: Stochastic models, Weyl algebra, Generating series.

1 Introduction

This paper is concerned with the modeling of gene regulatory networks by chem-
ical reaction systems, from a stochastic point of view. To such systems, it is
possible to associate a time varying random variable which counts the numbers
of molecules of the various chemical species. It is well-known that the evolution,
over time t, of the moments (mean, variance, covariance) of this random variable,
may be described by a system of ordinary differential equations (ODEs), at least
for first order chemical reaction systems [6,16]. See also [13] for an introduction
to these topics. These systems of ODEs can be built from the probability gen-
erating function associated to a given chemical reaction system, by performing,
essentially, the three following steps:

1. compute a Schrödinger equation analog [4, Eq. (5.60)] for the probability
generating function φ(t, z), where t denotes the time and z denotes a vector
of formal variables ;

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 76–97, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Models of Stochastic Gene Expression and Weyl Algebra 77

2. compute iterated derivatives of this equation, with respect to t ;
3. evaluate the differentiated equation at z = 1.

This paper shows how to build these ODE systems by using Weyl algebra meth-
ods. The idea consists in formulating the Schrödinger equation analog using
Euler derivation operators (of the form z ∂/∂z) instead of more traditional par-
tial derivatives (of the form ∂/∂z). As far as we know, the use of Weyl algebra in
this context is new. It leads to a new algorithm which seems more efficient than
the equivalent method, based on the use of partial derivatives. This last claim is
not proved in this paper. It was suggested to us by the following observations.
The formulation in the Weyl algebra permits to:

1. “combine in one step” steps 2 and 3 above, and thereby reduce the expression
swell produced by step 2 (Formula (14) in Proposition 2) ;

2. prove the Formula (14), which we find more compact and simpler than the
formulas in [6,16].

3. allows to encode, in the Schrödinger equation analog, the linear conservation
laws of the system (Algorithm of Section 5.1), and thereby take advantage
of them at the very first step of the method ;

A software prototype has been developed by the second author in the MAPLE
computer algebra software. Supplementary related data are available at the url
http://www.lifl.fr/~petitot/recherche/exposes/ANB2010.

The paper is organized as follows. In Section 2, the classical theory is recalled.
The material can essentially be found (often piecewise) in many texts such as [4,
chapter 5] or [8]. We feel the need to recall it in order to avoid confusions, since,
depending on slight variants of the underlying assumptions, or slight variants
of notations, different formula may be obtained. Our presentation is based on
stochastic Petri nets [14,17]. In Section 3, the Weyl algebra and Euler operators
are introduced, and the Schrödinger equation analog is reformulated, in this
setting. In Section 4, the construction of the ODE system for the moments,
from the differential operators, is explained (Proposition 1) and the algorithm is
stated. In Section 5, the method for simplifying the Schrödinger equation analog
using the conservation laws is provided. Section 6 provides a, new, combined
formula for steps 1 and 2 (Formula (14) in Proposition 2). Some properties of
the algorithm, which depend on the order of the chemical reaction system under
study are explored in Section 7. In particular, some well-known results (related
to compartmental models) are recovered from the Weyl algebra theory. Some
examples are carried out in Section 8. The problem of the “infinite cascade” is
studied for second order systems. Many parts of this article can be found in [15,
Annexe A].

2 The Classical Theory

2.1 Chemical Reactions Systems

Definition 1. A chemical reaction system is given by a set of chemical species
(R1, R2, . . . , Rn), and, a set of chemical reactions, of the following form, where

http://www.lifl.fr/~petitot/recherche/exposes/ANB2010

78 S. Vidal et al.

α = (α1, α2, . . . , αn), β = (β1, β2, . . . , βn) are multi-indices of nonnegative inte-
gers and c is a positive real valued kinetic constant1.

α1R1 + · · ·+ αnRn
c−→ β1R1 + · · ·+ βnRn (1)

Such a system, denoted R, involves several reactions in general ; therefore it
is a finite set of triples (c, α, β) ∈ R>0 × N

n × N
n. The state of the sys-

tem ν = (ν1, ν2, . . . , νn) ∈ N
n is the number of molecules of the n chemical

species at a given time. When reaction (1) occurs, the state vector instanta-
neously changes from the current value ν to the new value ν′ = ν − α + β.
The vector α indicates the quantities of the various species being consumed
by the reaction while the vector β indicates the produced quantities. For a
reaction to occur it is necessary that α ≤ ν, i.e. αi ≤ νi for i = 1 . . . n.
An example is provided by the following system, which is encoded by the set
R =

{(
λ, (2, 1, 0, 0), (0, 0, 1, 0)

)
,
(
μ, (0, 0, 1, 0), (0, 0, 0, 3)

)}
.

2R1 +R2
λ−→ R3 , R3

μ−→ 3R4 . (2)

2.2 Stochastic Petri Nets

Definition 2. A Petri net is a finite directed bipartite graph. Its nodes represent
transitions (i.e. events that may occur, represented by boxes) and places (i.e.
conditions for the events, represented by circles).

Denote P = {p1, p2, . . . , pn} the set of places and T = {t1, t2, . . . , tm} the set of
transitions. At every instant, the place pk, (1 ≤ k ≤ n) is supposed to contain
νk indistinguishable tokens. The state vector ν = (ν1, ν2, . . . , νn) ∈ N

n is the
number of tokens present in the places. One denotes C− and C+ the integer
matrices where C−

i,j is the number of arrows going from place pj to transition

ti, and C+
i,j is the number of arrows going from transition ti to place pj . The

incidence matrix is C = C+ − C−.

Definition 3. A stochastic Petri net is a Petri net endowed with a function
ρ : T −→ R>0.

The category of the stochastic Petri nets is strictly equivalent to the category
of chemical reaction systems. To each transition ti ∈ T , a chemical reaction
like (1) is associated. It is coded by a triple (c, α, β) ∈ R>0 × N

n × N
n with

α = (C−
ij)j=1...n, β = (C+

ij)j=1...n and c = ρ(ti). The incidence matrix C is then
the transpose of the stoichiometry matrix of the chemical reaction system. The
correspondence holds:

token ←→ chemical molecule
place ←→ chemical species

transition ←→ chemical reaction

1 Called stochastic reaction constant in [7].

Models of Stochastic Gene Expression and Weyl Algebra 79

The chemical reaction system (2) corresponds to the Petri net of Figure 1 with
the associated matrices

C− =

(
2 1 0 0
0 0 1 0

)
, C+ =

(
0 0 1 0
0 0 0 3

)
, C =

(
−2 −1 1 0
0 0 −1 3

)
.

R1

R2

R3 R4

Fig. 1. Petri net of Example (2)

2.3 Markov Chain of the Temporisation and Master Equation

One gives the “standard temporisation” of a stochastic Petri net by associating
it with a continuous time Markov chain {N(t); t ∈ R≥0} where the vector valued
random variable N(t) counts, at time t, the number of tokens in the places of
the network. Let πν(t) be the probability that the process is in state N(t) = ν at
time t. The master-equation [5] of a Markov chain is a linear differential system
governing the evolution, over time, of the row vector π(t) = (πν(t); ν ∈ N

n). It
is written as follows:

d

dt
π(t) = π(t)A . (3)

For each couple of multi-indices (α, ν) ∈ N
n × N

n, the following product of
binomial coefficients is defined(

ν

α

)
=

(
ν1
α1

)(
ν2
α2

)
· · ·

(
νn
αn

)
. (4)

The Markov chain {N(t); t ∈ R≥0} associated to the stochastic Petri net R, is
defined on the discrete state space Nn. For each triple (c, α, β) ∈ R and for each
state ν ≥ α an arrow going from ν to ν′ = ν−α+ β is built. It is labeled by the
transition rate c

(
ν
α

)
. Schematically, this can be written:

(ν + α− β)
c(ν+α−β

α)
−−−−−−→ (ν)

c(να)−−−−→ (ν − α+ β).

Assume that the system is in state ν ∈ N
n at time t. The probability that the

chemical reaction (c, α, β) occurs within the time range[t, t+ ε[is ε c
(
ν
α

)
+ o(ε).

Then the master-equation (3) takes the form

d

dt
πν(t) =

∑
(c,α,β)∈R

c

(
ν + α− β

α

)
πν+α−β(t)− c

(
ν

α

)
πν(t). (5)

80 S. Vidal et al.

According to Definition (4), the first term of the sum is zero whenever β > ν and
the second is zero whenever α > ν. This differential system involves an infinite
number of unknowns πν(t) constrained by an infinite linear differential system
(see Example (8)).

2.4 The Schrödinger Equation Analog

For investigating models analytically we introduce the probability generating
function [4, sect. 5.3]

φ(t, z) =
∑
ν≥0

πν(t) z
ν . (6)

Note that φ(t, z) is also equal to E zN(t)
(
i.e. the mean value of zN(t)

)
since

E zN(t) =
∑

ν≥0 prob(z
ν = zN(t))zν . Given any chemical reaction system, it is

possible to compute a general equation for φ [4, Eq. (5.60)]. This general equation
is a Schrödinger equation analog. The differential operator H is a Hamiltonian.

∂

∂t
φ(z, t) = H φ(z, t) where H =

∑
(c,α,β)∈R

c

α!

(
zβ − zα

)(
∂

∂z

)α

. (7)

The Hamiltonian of Example (2) is

H =
1

2
λ (z3 − z21z2)

∂2

∂z21

∂

∂z2
+ μ (z34 − z3)

∂

∂z3
·

By differentiating the probability generating function (6) and evaluating it at
z = 1, i.e, at z1 = · · · = zn = 1, formulas which bind φ, the means and the
variances of the number of molecules of the chemical species, are obtained. Here
are a few examples. A mere evaluation yields: φ(t, z) |z=1= 1. Differentiating (6)
with respect to any zi and evaluating at z = 1 provides the expected value of
the number of molecules of species Ri, i.e. ENi(t)(

∂

∂zi
φ(z, t)

)
|z=1

=
∑
ν

νi πν(t) = ENi(t) .

Differentiating (6) twice with respect to some fixed zi and evaluating at z = 1
provides a formula featuring the expected value of the square of the number of
molecules of Ri, denoted ENi(t)

2, together with ENi(t):(
∂

∂zi

∂

∂zi
φ(z, t)

)
|z=1

=
∑
ν

νi (νi − 1)πν(t)

=
∑
ν

ν2i πν(t)− νi πν(t) = ENi(t)
2 − ENi(t) .

The variance of the number of molecules of Ri satisfies the well-known formula:
VarNi(t) = ENi(t)

2− (ENi(t))
2. The above formula can then be restated using

ENi(t) and VarNi(t) only. Then, from the arguments above and the Schrödinger

Models of Stochastic Gene Expression and Weyl Algebra 81

equation analog (7), an ODE system for the means and the variances ENi(t)
and VarNi(t) can be computed. The method is illustrated over the following
example:

∅ λ−→ R R
μ−→ ∅ . (8)

It corresponds to the creation and degradation of mRNA by a unregulated gene.
It also corresponds to the M/M/∞ client-server system [5]. The following set
of triples R =

{(
λ, (0), (1)

)
,
(
μ, (1), (0)

)}
provides a description of that system.

The Markov chain is described by the transition rates λ
(
ν
0

)
= λ and μ

(
ν
1

)
= μν

for all ν ∈ N. Using the convention π−1(t) = 0, the master-equation (5) of that

30

2 4

1 2

3

Fig. 2. The Markov chain associated to System (8)

Markov chain is:

d

dt
πν(t) = λ

[
πν−1(t)− πν(t)

]
+ μ

[
(ν + 1)πν+1(t)− νπν(t)

]
(ν ≥ 0). (9)

The Schrödinger equation analog (7) is:

∂

∂t
φ(t, z) =

[
λ(z − 1) + μ(1− z)

∂

∂z

]
φ(t, z) = λ (z−1)φ(t, z)+μ (1−z)φz(t, z) .

In order to compute an ODE for the mean EN(t), that relation is differentiated
with respect to z,

∂

∂z

∂

∂t
φ(t, z) = λ

[
φ(t, z) + (z − 1)φz(t, z)

]
+ μ

[
− φz(t, z) + (1− z)φzz(t, z)

]
.

The partial derivatives ∂
∂t and ∂

∂z commute. At the point z = 1, this equation
becomes:

∂

∂t
φz(t, z)|z=1

= λ− μφz(t, z)|z=1
i.e.

d

dt
EN(t) = λ− μ EN(t) .

An ODE for EN(t) is obtained. Similar computations provide an ODE for
VarN(t). The initial values are easily obtained since, at t = 0, the expected
value of N(t) is equal to the initial quantity n0 of the chemical species and the
variance of N(t) is zero. The analysis of that dynamics can be done numerically
or symbolically, depending on the instance of the problem.

Using this method, an ODE for any moment EN q(t), where q ∈ N, can be
computed. In the particular case of order 1 chemical reaction systems (Defini-
tion 6), the ODE system is finite and exact values of the means and the variances
[4, sect. 5.3.3] can be computed. The above example has order 1.

82 S. Vidal et al.

In the general case, the ODE system is infinite, since for any q ∈ N, the evo-
lutions of the moments of order q depend on moments of higher order (problem
of the infinite cascade [6,16]). It is sometimes possible to compute exact values
for the means and the variances by ad hoc arguments. Otherwise, the ODE sys-
tem needs to be truncated and provides a more or less usable approximation.
The truncation, which is obtained by assuming that random variables Ni(t) are
independent, provides the classical deterministic model, which is used when the
number of molecules is large.

3 Reformulation in the Weyl Algebra

In this section, the properties of the Weyl algebra [3] needed to understand the
algorithm of Section 4 are introduced. Then, the construction of the Hamiltonian
(7) is reformulated.

The Weyl algebra Weyl
R
(z1, . . . , zn) = R[z1, z2, . . . , zn] [∂z1 , ∂z2 , . . . , ∂zn] is

the algebra of (polynomial) differential operators defined on the affine algebraic
manifold R

n. It is a non-commutative and associative algebra generated by the
symbols zk and ∂zk for k = 1 . . . n constrained by the commutation relations
[∂zi , zj] = ∂zi zj − zj ∂zi = 1 if i = j, and 0 otherwise. The commutator
(also called Lie Bracket) between A and B, denoted [A,B], is defined by the
relation [A,B] = AB − BA. For all α, β ∈ N

n, denote zα = zα1
1 zα2

2 . . . zαn
n

and ∂β
z = ∂β1

z1 ∂
β2
z2 . . . ∂βn

zn
. For each element zα∂β

z , define the degree deg zα∂β
z as

|α| − |β|, and the order ord zα∂β
z as |β|, where |α| = α1 + α2 + · · · + αn and

|β| = β1 + β2 + · · ·+ βn.
We now define the evaluation of a differential operator. Any differential op-

erator D ∈ Weyl
R
(z1, . . . , zn) can be written in a unique way as a finite sum of

terms fν ∂
ν
z where ν ∈ N

n, and where fν ∈ R[z1, z2, . . . , zn] defines a function
R

n → R. This allows to define the evaluation of D at a point p ∈ R
n:

D|p =
∑
ν

fν(p) ∂
ν
z . (10)

The operator D|p : R[z1, z2, . . . , zn] → R is defined in a coordinate free way by
setting D|p(h) = D(h)|p for any function h ∈ R[z1, z2, . . . , zn]. The term D(h)|p
denotes the real number obtained by evaluating the function D(h) at p. The
evaluation does not commute with the multiplication of the algebra Weyl

R
(z).

We now reformulate the Schrödinger equation analog, using “falling powers”
(also called falling factorials) and Euler operators. Falling powers are defined by
xp = x(x− 1)(x− 2) · · · (x−p+1), where p ∈ N. Then, binomial coefficients can
be reformulated as follows:

(
x
p

)
= (1/p!)xp .

Definition 4. Euler operators are defined by θk = zk ∂/∂zk.

For any α ∈ N
n, one defines θα = θ

α1
1 θ

α2
2 · · · θαn

n . The next lemma is classical:

Lemma 1. For any α ∈ N
n, one has θα = zα

(
∂

∂z

)α

·

Models of Stochastic Gene Expression and Weyl Algebra 83

Given any chemical reaction system, the Schrödinger equation analog (7) which
governs the probability generating function (6) can be formulated in the Weyl
algebra as follows. The formula can be justified using Formula (7) and Lemma 1.
The Hamiltonian H belongs to Weyl

R
(z). It is a linear operator acting on the

formal series in the variables (z1, z2, . . . , zn):

H =
∑

(c,α,β)∈R

c

α!

(
zβ−α − 1

)
θα . (11)

The Hamiltonian of Example (2) can now be written as:

H =
1

2
λ

(
z3
z21z2

− 1

)
θ1(θ1 − 1)θ2 + μ

(
z34
z3

− 1

)
θ3 .

4 The Algorithm

This section presents our algorithm which computes the differential equations
satisfied by the moments a stochastic Petri net (up to a certain order). First
Proposition 1 is proved. Then our algorithm is stated and proved using Propo-
sition 1.

Since N(t) is a (time dependent) random variable taking values in N
n, it

is possible to consider any random variable of the form f(N(t)) where the
function f : N

n → R is a polynomial function represented by an element
f ∈ R[θ1, θ2, . . . , θn], i.e, a polynomial in the Euler operators. Observe that,
by definition of θk, the polynomial f is also an element of the algebra Weyl

R
(z).

For example, to the polynomial f = θ21θ2 +3θ1 ∈ R[θ1, θ2], the following objects
can be associated: the operator f(θ) = θ21θ2 + 3θ1 ∈ Weyl

R
(z1, z2) ; the number

f(ν) = ν21ν2 + 3ν1 ∈ R ; the random variable f(N(t)) = N2
1 (t)N2(t) + 3N1(t)

defined on N
2 with value in R ; the commutator [f(θ), H] = f(θ)H−Hf(θ) ; and

the evaluated commutator, [f(θ), H]|z1=z2=1
, which is a polynomial in R[θ1, θ2].

The mean value of the random variable f(N(t)) is, by definition, equal to
E f(N(t)) =

∑
ν f(ν)πν(t).

Lemma 2. For any polynomial f ∈ R[θ1, θ2, . . . , θn], interpreted as a differ-
ential operator acting on the generating series φ(t, z), one has the relation:
E f(N(t)) = f(θ) E zN(t)|z=1

.

Proof. For any element ν ∈ N
n, one has f(θ) zν = f(ν) zν. It follows that

f(θ)φ(t, z) =
∑

ν f(ν)πν(t) z
ν . Thus, evaluating at the point z = 1 leads to:

f(θ) E zN(t)|z=1
=

∑
ν f(ν)πν(t) = E f(N(t).

Proposition 1. Given f ∈ R[θ1, θ2, . . . , θn], denote fH(θ) = [f(θ), H]|z=1
. Then

d

dt
E f(N(t)) = E fH(N(t)) .

84 S. Vidal et al.

Proof. Start from the Schrödinger equation analog ∂
∂tφ(t, z) = H φ(t, z). The

partial derivation ∂/∂t commutes with the operator f(θ) and the evaluation at
z = 1. Thus ∂/∂t f(θ)φ(t, z)|z=1

= f(θ)H φ(t, z)|z=1
. The left-hand side of the

equality is equal to d/dt E f(N(t)) according to Lemma 2. In the right-hand side,
the product f(θ)H van be replaced by the commutator [f(θ), H] since, according
to Formula (11), the Hamiltonian H is zero at z = 1. The second member is
equal to E fH(N(t)) by Lemma 2.

The Algorithm
Input: A stochastic Petri net R and a maximum order q ∈ N.
Output: A linear differential system characterizing the time evolution of mo-
ments, up to degree q.

1. Compute the Hamiltonian H of R using formula (11).
2. For all multi-indices κ ∈ N

n such that |κ| ≤ q, compute the commutator
evaluated at z = 1

fκ = [θκ, H]|z=1
, (fκ ∈ R[θ1, . . . , θn]) , (12)

Then generate the linear differential equation
d

dt
ENκ(t) = E fκ(N(t)), us-

ing Proposition 1.

The polynomial fκ in Formula (12) can be computed in different ways. It can
be computed by using a smart computation of the Lie bracket (which avoids the
expansion of the Lie bracket by computing θκH and then substracting H θκ)
and a specialization to z = 1. Otherwise, it is possible to compute fκ = θκ H|z=1

since the term Hθκ|z=1
cancels.

Remark 1. The algorithm is stated using Weyl algebras computations since it
makes the proofs easier to establish. Section 6 also provides a formula only based
on basic operations on commutative polynomials in θ. As detailed in Section 6,
we believe that avoiding Weyl algebras computations is easier from a software
implementation point of view.

The returned ODE system is truncated. Thus, some ODE may depend on mo-
ments of order higher than q, for which no ODE is generated. This problem does
not occur in Example (8). The Hamiltonian is

H = λ(z − 1) + μ

(
1

z
− 1

)
θ with θ = z

∂

∂z
.

The algorithm computes the brackets

[θ,H]|z=1
= λ− μθ , [θ2, H]|z=1

= λ+ (2λ+ μ) θ − 2μθ2 .

and returns the differential system

d

dt
EN(t) = λ− μEN(t) ,

d

dt
EN2(t) = λ+ (2λ+ μ) EN(t)− 2μEN2(t) .

Models of Stochastic Gene Expression and Weyl Algebra 85

The variance is computed using VarN(t) = EN2(t)− (EN(t))2. The dynamics
of the mean x(t) = EN(t) and the variance v(t) = VarN(t) follows immediately.

d

dt
x(t) = λ− μx(t) ,

d

dt
v(t) = λ+ μx(t) − 2μv(t) .

5 Model Reduction, Model Restriction and Conservation
Laws

Definition 5. Let λ be a n-dimensional vector of integers. A conservation law
Iλ is a linear combination of the following form, with integer coefficients, which
is conserved by each transition of the considered Petri net:

Iλ(ν) = λ1ν1 + λ2ν2 + · · ·+ λnνn, (ν ∈ N
n, λ ∈ Z

n).

This notion is independent of the temporisation, hence of the kinetic constants
associated to chemical reactions. Recall that the incidence matrix of a Petri net
is the transpose of the stoichiometry matrix of a chemical reaction system. The
next lemma is then well-known [9, sect. 5.3].

Lemma 3. Let R be a Petri net. The column vector λ = (λ1, λ2, . . . , λn) ∈ Z
n

defines a conservation law iff Cλ = 0 where C = C+ − C− is the incidence
matrix of R.

5.1 Model Reduction

A conservation law Iλ induces a graduation wλ of the algebra Weyl
R
(z) defined

by wλ(∂/∂zk) = −λk and wλ(zk) = λk for all k = 1 . . . n. Define, moreover,
wλ(z

ν) =
∑

k λkνk, that is wλ(z
ν) = Iλ(ν), for all ν ∈ N

n.

Lemma 4. Assume that a conservation law Iλ holds. Then, φ(t, z) is a formal
power series, homogeneous for wλ, with weight wλ(φ(t, z)) = Iλ(ν0), where the
multi-index ν0 ∈ N

n denotes the initial state at t = 0.

Proof. As Iλ(ν) is independent of the time t, the fact that Iλ(ν) �= Iλ(ν0) implies
that πν(t) = 0 for any t ≥ 0. As a consequence, the series φ(t, z) =

∑
ν πν(t) z

ν

is wλ-homogeneous of weight wλ(z
ν0).

Denote C0 = Iλ(ν0) ∈ Z. Then the operator Iλ(θ) − C0 =
∑

k λkθk − C0 van-
ishes on the generating series φ(t, z) because, according to Lemma 4, one has
Iλ(θ)φ(t, z) = C0φ(t, z). Every operator of the left ideal generated in Weyl

R
(z)

by Iλ(θ) − C0 has therefore a null action on φ(t, z).

The Model Reduction Algorithm
Input: A Hamiltonian H ∈ Weyl

R
(z1, . . . , zn) describing the evolution of the

multi-index N(t) = (N1(t), . . . , Nn(t)) and a conservation law Iλ. One assumes,
without loss of generality, that λn is nonzero.

86 S. Vidal et al.

Output: A reduced Hamiltonian H ′ ∈ Weyl
R
(z1, . . . , zn−1) describing the evo-

lution of (N1(t), . . . , Nn−1(t)).
The new Hamiltonian H ′ is obtained from H by the following substitution

θn �→ 1

λn

[
C0 − (λ1θ1 + λ2θ2 + · · ·+ λn−1θn−1)

]
, zn �→ 1 .

5.2 Model Restriction

The presence of conservation laws often enables us to bound some random vari-
ables of the model. Those bounds in general depend on the initial state ν0 ∈ N

n.
In this situation, it is possible to restrict the model by taking a quotient of the
Weyl algebra Weyl

R
(z1, . . . , zn) by a left ideal. The method is presented over the

following system of chemical reactions

R1 +R2
λ−→ R3 , R3

μ−→ R1 +R2 ,

together with initial conditions ν0 = (a, b, 0) for a, b ∈ N. The Petri net R admits
two conservation laws ν1 + ν3 = a and ν2 + ν3 = b. It is therefore possible to
consider the random variable N3(t) only, with the bound 0 ≤ N3(t) ≤ min(a, b).
Our software computes the Hamiltonian:

H = λ

(
z3
z1z2

− 1

)
θ1θ2 + μ

(
z1z2
z3

− 1

)
θ3 .

Performing the substitutions θ1 �→ a−θ3, θ2 �→ b−θ3, z1 �→ 1 and z2 �→ 1, leads,
to the reduced Hamiltonian H ′ = λ (z3−1)(b−θ3)(b−θ3)+μ (z3

−1−1)θ3, which
is an element of Weyl

R
(z3). The bound N3(t) ≤ m with m = min(a, b) implies

that the function f(ν3) = ν3(ν3 − 1) · · · (ν3 −m) is zero at all time t. One then
gets

f(θ3) φ(t, z3) =
∑

0≤ν3≤m

πν3 (t) f(ν3) z
ν3
3 = 0, ∀t ∈ R≥0 .

The operator f(θ3) vanishes on the generating series φ(t, z3). All computations
can therefore be done in the quotient of the algebra Weyl

R
(z3) by the left ideal

generated by f(θ3). From an algorithmic point of view, this can be achieved
by Gröbner basis techniques on the polynomials fκ (which are commutative
polynomials in θ).

6 A Combined Formula for Differentiating and
Evaluating

In this section, the explicit Formula (14) is given for computing fκ (Formula 12)
which are commutators evaluated at z = 1. We believe that this formula has
several advantages. First, this combined formula provides an improvement of the
algorithm of Section 4. Indeed, Formula (14) can be implemented only with basic
operations on commutative polynomials in θ. Moreover, Formula (14) does not

Models of Stochastic Gene Expression and Weyl Algebra 87

need any specialization z = 1. Second, all computations in the Weyl algebra can
be avoided, which makes the algorithm easier to implement since no library for
computing in Weyl algebras is needed. Indeed, Weyl algebras computations are,
to our knowledge, only available through softwares like Maple [2,1], Macaulay 2
[10], which makes it hard to produce an independant or GPL standalone library.
Third, we believe that Formula (14) helps finding interesting formulas such as in
Lemma 9 (page 94). Fourth, the computation of Formula (14) can be easily mixed
with the reductions detailed in section 5 by using modular exponentiations.

Lemma 5. Let A and B taken in Weyl
R
(z1, . . . , zn). Define adA(B) = [A,B].

Then

AkB =

k∑
i=0

(
k

i

)
adiA(B)Ak−i , (13)

where adiA denotes the adA function composed i times.

Proof. Let t be an indeterminate. The classical identity, between formal series
in t, exp(tA)B exp(−tA) = exp(t adA)(B) holds (adjoint representation of a Lie
group over its Lie algebra, see [3] for details). This formula can be rewritten
as exp(tA)B = exp(t adA)(B) exp(tA) and developed with a Taylor expansion.
The result is proved by identifying the coefficients of tk in each side of∑

k≥0

tk

k!
AkB =

∑
i,j≥0

ti+j

i! j!
adiA(B)Aj .

Lemma 6. For all m ∈ Z and any k ∈ N, one has θkzm = zm(m + θ)k with
θ = z ∂

∂z .

Proof. One has adθ(z
m) = [θ, zm] = mzm. Thus, adiθ(z

m) = mizm for any i ≥ 0.
The lemma then follows from Lemma 5 by taking A = θ and B = zm.

Let ν ∈ Z
n and κ ∈ N

n. Denote (ν+ θ)κ = (ν1+ θ1)
κ1(ν2 + θ2)

κ2 · · · (νn+ θn)
κn .

Lemma 7. The commutation relation between θκ and zν, viewed as an element
of Weyl

R
(z1, z2, . . . , zn), can now be written:

θκzν = zν (ν + θ)κ .

Proof. The proof relies on Lemma 6. It is only given for n = 3.

θκ zν = (θκ1
1 θκ2

2 θκ3
3)(zν11 zν22 zν33) = (θκ1

1 zν11)(θκ2
2 zν22)(θκ3

3 zν33)
= zν11 (ν1 + θ1)

κ1 zν22 (ν2 + θ2)
κ2 zν33 (ν3 + θ3)

κ3

= (zν11 zν22 zν33)(ν1 + θ1)
κ1(ν2 + θ2)

κ2(ν3 + θ3)
κ3 = zν (ν + θ)

κ
.

Proposition 2. Let R be a stochastic Petri net, the Hamiltonian of which is H.
Then

[θκ, H]|z=1
=

∑
(c,α,β)∈R

c

α!

[(
β − α+ θ

)κ − θκ
]
θα , (κ ∈ N

n) . (14)

88 S. Vidal et al.

Proof. The evaluated commutator [θκ, H]|z=1
is linear in H . For simplicity, it is

assumed that a single chemical reaction is involved, so that H = (zβ−α − 1) θα.
The proof reduces to the computation of [θκ, (zβ−α−1) θα]|z=1

. Lemma 7 is used

to make the terms θκ and zβ−α − 1 commute. Computations give the following
formula

θκ (zβ−α − 1) = θκ zβ−α − θκ = zβ−α
(
β − α+ θ

)κ − θκ .

Evaluate it at z = 1 and apply the fact that H|z=1
= 0. The proposition is

proved.

7 Order of a Chemical Reaction System

In this section, well-known results on order 1 systems are recovered from the
Weyl algebra theory (see [12] and [4, sect. 5.3.3]). First, some further theoretical
developments on Weyl algebra are introduced.

The algebraWeyl
R
(z) = Weyl

R
(z1, . . . , zn) is graded by the degree. It is readily

checked that the product AB of two elements A,B ∈ Weyl
R
(z) homogeneous by

degree, is also homogeneous of degree deg(A) + deg(B). Moreover, the algebra
is filtered by the order (in the sense of differential operators). The component
Fq ⊂ Weyl

R
(z), q ∈ N, of the growing filtration

F : F0 ⊂ F1 ⊂ F2 ⊂ · · · (15)

is the R-vector space spanned by the elements zα∂β
z of order at most q, i.e. such

that |β| ≤ q. It is possible to check that FkFl ⊂ Fk+l for all k, l ∈ N. The graded
algebra associated to the filtration F is commutative since [Fk,Fl] ⊂ Fk+l−1 for
all k, l ∈ N (with the convention F−1 = {0}). It is defined by

grWeyl
R
(z) = F0 ⊕F1/F0 ⊕F2/F1 ⊕ · · · (16)

Definition 6. A chemical reaction system R is said to be of order q ∈ N, if
each reaction (c, α, β) ∈ R satisfies |α| ≤ q (where |α| = α1 + α2 + · · ·+ αn for
any α ∈ N

n).

Thus, a chemical reaction system R is of order q if every reaction of R consumes
at most q molecules. The next lemma follows immediately from Formula (11).

Lemma 8. A chemical reaction system is of order q iff its Hamiltonian H be-
longs to the Fq component of the Weyl algebra filtration defined by (15).

Any polynomial f ∈ R[θ1, θ2, . . . , θn], homogeneous of degree d, defines a degree
d moment E f(N(t)).

Proposition 3. In a chemical reaction system of order q, the derivative with
respect to the time of a degree d moment, only depends on other moments of
order at most q + d− 1.

Models of Stochastic Gene Expression and Weyl Algebra 89

Proof. Let H ∈ Weyl
R
(z1, z2, . . . , zn) be an order q operator i.e. H ∈ Fq. If

f ∈ R[θ1, θ2, . . . , θn] is an homogeneous polynomial of degree d, then one has
[f(θ), H] ∈ Fq+d−1. Evaluation at z = 1 yields [f(θ), H]|z=1

∈ R[θ1, θ2, . . . , θn]
of degree at most q + d− 1.

Corollary 1. In a chemical reaction system, the dynamics of the mean values
ENk(t), k = 1 . . . n, (i.e. first order moments) can be written as follows (with
k ∈ N, α, β ∈ N

n). Moreover, the dynamics of a first order system is linear in
the variables ENk(t).

d

dt
ENk(t) =

∑
(c,α,β)∈R

c

α!
(βk − αk) EN(t)α

Proof. One deduces θkH =
∑

(c,α,β)∈R
c
α! (βk −αk) z

β−α θα + c
α! (z

β−α − 1)θk θ
α

from Formula (11). The evaluation at the point z = 1 leads to the relation
θkH |z=1

=
∑

(c,α,β)∈R
c
α! (βk − αk) θ

α. Applying Lemma 2 and Proposition 1,

the formula is proved. Whenever |α| ≤ 1, α! = 1 and N(t)α = N(t)α. Moreover
N(t)α = 1 iff α = 0 and N(t)α = Nj(t) if α = (0, . . . , 0, 1, 0, . . . , 0), the “1”
occuring in jth position.

The deterministic models in chemical kinetics, classically built using the mass
action law, are recovered. For first order systems, the deterministic model cor-
responds to an unbiased averaging of the random variables Nk(t). It does not
apply to covariance matrices Cov(Ni(t), Nj(t)), where i, j = 1 . . . n.

8 Examples

8.1 First Order Systems

The following model of a non-regulated gene [11] is interesting because it was
verified experimentally and because it shows the importance of random phenom-
ena in gene expression. The transcription of the gene produces messenger RNAs
(mRNA) which are translated into proteins:⎧⎪⎪⎪⎨⎪⎪⎪⎩

DNA
kR−→ DNA +mRNA (transcription)

mRNA
kP−→ mRNA+ protein (translation)

mRNA
γR−→ ∅ (mRNA degradation)

protein
γP−→ ∅ (protein degradation)

(17)

The three chemical species are numbered is the following manner: R1 = DNA,
R2 = mRNA and R3 = protein. It admits the conservation law ν1 = 1, meaning
that there is only one gene involved in the network (at any time t). The model
is reduced by setting θ1 = 1 and z1 = 1. The reduced Hamiltonian is equal to

H = kR (z2 − 1) + kP (z3 − 1) θ2 + γR
(
z2

−1 − 1
)
θ2 + γP

(
z3

−1 − 1
)
θ3

90 S. Vidal et al.

Only two state variables remain ν = (ν2, ν3) ∈ N
2, the number of mRNA and

the number of proteins at time t. Let N(t) = (N2(t), N3(t)) be the stochastic
process associated to (17). We are going to compute the means x2(t) = EN2(t)
et x3(t) = EN3(t) and the covariance matrix xij(t) = Cov(Ni(t), Nj(t)) for
i, j = 2, 3. According to the algorithm of Section 4, our software computes the
commutators evaluated at the point z2 = z3 = 1:

[θ2, H]|z=1
= kR − γRθ2

[θ3, H]|z=1
= kP θ2 − γP θ3

[θ22, H]|z=1
= kR + (2kR + γR)θ2 − 2γRθ

2
2

[θ2θ3, H]|z=1
= kRθ3 + kP θ

2
2 + (−γR − γP)θ2θ3

[θ23, H]|z=1
= kP θ2 + γP θ3 + 2kP θ2θ3 − 2γP θ

2
3

and generates the system which describes the time evolution of the means and
the covariances:

d

dt
x2 (t) = kR − γR x2(t)

d

dt
x3(t) = kP x2 (t)− γP x3(t)

d

dt
x2,2(t) = γR x2 (t) + kR − 2 γR x2,2(t)

d

dt
x2,3 (t) = (−γR − γP)x2,3 (t) + kP x2,2 (t)

d

dt
x3,3(t) = kP x2(t)− 2 γP x3,3(t) + 2 kP x2,3(t) + γP x3(t)

(18)

Since the chemical reaction system has order 1, a linear system is obtained and
the phenomenon of the infinite cascade does not occur. For simplification, a
time scale such that γR = 1 is selected. The computation of the means and the
variances at the stationary state give:

x2 = kR, x3 = kP kR

γP
,

x2,2 = kR, x2,3 = kP kR

1+γP
, x3,3 = kP kR(γP+kP+1)

γP (1+γP)

This result is exact. The same formulas appear in [11] and are proved by using
Langevin’s technique: the two first equations of (18) are viewed as a determin-
istic model (arising from the mass action law). Then, two white noises of zero
average are incorporated in the righthand sides. This method is difficult to jus-
tify theoretically. By solving the equations (18), by, say, a Laplace transform
technique, we obtain exact formulas for the means and the variances during the
transient stage, given below:

Models of Stochastic Gene Expression and Weyl Algebra 91

x2(t) = kR
(
−e−t + 1

)
x3(t) =

kP kR (−1 + e−γP t + γP (−e−t + 1))

γP (−1 + γP)

x2,2(t) = kR
(
−e−t + 1

)
x2,3(t) =

(
−e−t (1 + γP) + γP + e−(1+γP)t

)
kRkP

γP (1 + γP)

8.2 Second Order Systems

The dynamics of the degree d moments depends on moments of degree strictly
greater than d. In other words, an infinite cascade occurs. This is the main source
of difficulty. In order to break an infinite cascade there are two possible methods:

1. One can operate an approximation assuming that the centered moments of
degree d are zero for d large enough. This is a legitimate approximation when-
ever the number of tokens in each place (the number of chemical molecules
of each chemical species) remains high at any time t.

2. One has a relation expressing degree d + 1 moments as a function of mo-
ments of degree at most d. This case occurs, in particular, whenever random
variables only take a finite number of different values.

A
A

A

a
a

a

A

translation

mRNA

transcriptioninhibition

proteins

gene g

Fig. 3. Autoregulated gene

Autoregulated Gene. The transcription of the gene produces messenger RNA,
which in turn are translated in proteins. If a protein binds to the gene, then the
transcription is blocked. (see Figure 3).

gene
λ1−→ gene + mRNA

mRNA
λ2−→ mRNA + protein

mRNA
μ1−→ ∅

protein
μ2−→ ∅

gene + protein
c1−→ blocked gene

blocked gene
c2−→ gene + protein

92 S. Vidal et al.

The four chemical species are numbered: R1 = mRNA, R2 = gene, R3 = blocked
gene, R4 = protein. That system obeys the conservation law I(ν) = ν2 + ν3,
meaning that the total number of “molecules” of type gene and blocked gene
remains constant. In practice, only one gene is involved. Therefore the Petri net
gets initialized with the following assumption ν2 + ν3 = 1. Since at any time t,
ν2+ ν3 = 1, we choose to remove the state variable ν3 putting ν3 = 1− ν2. After
model reduction, the Hamiltonian becomes

H = λ1 (z1 − 1) θ2 + λ2 (z4 − 1) θ1 + μ1

(
1

z1
− 1

)
θ1 + μ2

(
1

z4
− 1

)
θ4

+c1

(
1

z2z4
− 1

)
θ2θ4 + c2 (z2z4 − 1) (1− θ2) .

We introduce the means xi(t) = ENi(t) for i = 1, 2, 4 and the covariance ma-
trix xij(t) = Cov(Ni(t), Nj(t)) for i, j = 1, 2, 4. The random variable N2(t) is
boolean (ν2 = ν22), the model restriction algorithm can therefore be applied. The
algorithm computes the brackets [θκ, H] in the Weyl algebra quotiented by the
left ideal spanned by the relation θ2 = θ22 . The evaluation at z = 1 is performed
afterwards. It yields:

[θ1, H]|z=1
= −μ1θ1 + λ1θ2

[θ2, H]|z=1
= c2 − c2θ2 − c1θ2θ4

[θ4, H]|z=1
= c2 + λ2θ1 − c2θ2 − μ2θ4 − c1θ2θ4

[θ21, H]|z=1
= μ1θ1 + λ1θ2 − 2μ1θ

2
1 + 2λ1θ1θ2

[θ2θ1, H]|z=1
= c2θ1 + λ1θ2 − (μ1 + c2)θ1θ2 − c1θ1θ2θ4

An infinite cascade occurs because the dynamics on the degree 2 moments in-
volves two degree three moments, namely the moment coded by the following
operators θ1θ2θ4 and θ2θ

2
4. The approximation assumption that all centered mo-

ments of degree 3 are zero, can be used to break this cascade. Consider three
random variables (X1, X2, X3) with respective means (x1, x2, x3). A routine com-
putation gives the centered moment of order three E((X1−x1)(X2−x2)(X3−x3))
as E(X1X2X3)− x1x2x3 − x1 Cov(X2, X3)− x2 Cov(X3, X1)− x3 Cov(X1, X2).
We have no proof that this approximation is best fit. Our software computes the
ordinary non-linear differential equation system:

d

dt
x1 (t) = −μ1x1 (t) + λ1x2 (t)

d

dt
x2 (t) = c2 − c2x2 (t)− c1x4 (t)x2 (t)− c1x2,4 (t)

d

dt
x4 (t) = c2 + λ2x1 (t)− c2x2 (t)− c1x4 (t)x2 (t)

−μ2x4 (t)− c1x2,4 (t)

Models of Stochastic Gene Expression and Weyl Algebra 93

d

dt
x1,1 (t) = μ1x1 (t) + 2λ1x1,2 (t) + λ1x2 (t)− 2μ1x1,1 (t)

d

dt
x1,2 (t) = λ1x2 (t)− c1x1,4 (t) x2 (t)− c1x4 (t)x1,2 (t)

− (μ1 + c2)x1,2 (t)− λ1x2 (t)
2

The Figures 4, 5 and 6 show the numerical simulations produced by our software.
We used the parameter values λ1 = 30.0, λ2 = 10.0, μ1 = μ2 = 0.1, and
c1 = c2 = 1.0, and the initial conditions x1(0) = 0 (mRNA), x2(0) = 1 (gene),
x3(0) = 0 (protein).

(a) Average expression
rate of the gene

(b) Accuracy test on vari-
ance

Fig. 4. Autoregulated gene (boolean variable). Simulations are consistent with the fact
that any boolean variable X satifies VarX = x(1− x), where x = EX.

(a) Average number of mRNA and
proteins

(b) Relative standard deviation

Fig. 5. Joint evolution of mRNA and protein number. The relative standard deviation
of a random variable X is σ/x with σ2 := VarX and x := E(X).

94 S. Vidal et al.

(a) Gene-mRNA corre-
lation

(b) Gene-protein corre-
lation

(c) mRNA-protein cor-
relation

Fig. 6. Evolution over time of correlation rates. The correlation rate c(X, Y) between

two random variables X and Y is defined by c(X,Y) := Cov(X,Y)
σ(X)σ(Y)

.

Second Order Degradation. Consider the chemical reaction

2R
μ−→ ∅ (19)

Using a time dilatation, it is assumed that μ = 1. The Hamiltonian is then, with
θ = z ∂/∂z:

H =
1

2

(
1

z2
− 1

)
θ(θ − 1) =

1

2

(
1− z2

)(
∂

∂z

)2

.

On this example, the dynamics on the moments EN(t)k, k = 1 . . . 4 is coded by

[θ,H]|z=1
= −θ2 + θ

[θ2, H]|z=1
= −2 θ3 + 4 θ2 − 2 θ

[θ3, H]|z=1
= −3 θ4 + 9 θ3 − 10 θ2 + 4 θ

[θ4, H]|z=1
= −4 θ5 + 16 θ4 − 28 θ3 + 24 θ2 − 8 θ

(20)

Lemma 9. For all m ∈ N, Formulas (20) take the following closed form:

[θm, H]|z=1
=

1

2

[
(−2 + θ)m − θm

]
θ(θ − 1) (21)

Proof. Apply Formula (14) for (c, α, β) := (1, (2), (0)).

Let x(t) denote the mean and v(t) the variance of N(t). The previously devel-
opped approximation, obtained by killing centered order 3 moments, then gives

d

dt
x (t) = x (t)− v (t)− (x (t))

2

d

dt
v (t) = −2 x (t) + 4 v (t) + 2 (x (t))

2 − 4 v (t)x (t) .

This approximation method behaves badly when EN(t) gets smaller than
1 (see Figure 7). Unfortunately the situation does not improve if the centered
moment is kept up to a higher order.

Models of Stochastic Gene Expression and Weyl Algebra 95

Fig. 7. Evolution of the mean x(t) = EN(t) over time, starting with state n0 = 8. The
approximation gets worse after x(t) crosses the value 1 (around t = 1).

We show now how to get the exact dynamics on the moments of any order.
Assume, as an example, that the initial state is n0 = 8. Then, the polyno-
mial function f(ν) = ν(ν − 2)(ν − 4)(ν − 6)(ν − 8) is zero at any instant t.
According to Lemma 2 and Proposition 1, we have to quotient the algebra
Weyl

R
(z) by the left ideal spanned by the relation f(θ) = 0. This leads to

f(θ) = θ (θ − 2) (θ − 4) (θ − 6) (θ − 8). Adding this extra relation to System (20)
enables us to get order 5 moments as functions of the moments of order at most
4. This way, we get the exact dynamics, a linear system, describing the time
evolution of the moments xk(t) = ENk(t), for k = 1 . . . 4.

d

dt
x1 (t) = x1 (t)− x2 (t)

d

dt
x2 (t) = −2 x1 (t) + 4 x2 (t)− 2 x3 (t)

d

dt
x3 (t) = 4 x1 (t)− 10 x2 (t) + 9 x3 (t)− 3 x4 (t)

d

dt
x4 (t) = 1528 x1 (t)− 1576 x2 (t) + 532 x3 (t)− 64 x4 (t)

with the initial conditions: x1(0) = 8, x2 (0) = 64, x3 (0) = 512, x4 (0) = 4096.
These linear differential equations get solved by means of the Laplace transform:

x1(t) =
8

3
e−t +

112

33
e−6 t +

64

39
e−15 t +

128

429
e−28 t

x2(t) =
16

3
e−t +

784

33
e−6 t +

1024

39
e−15 t +

3712

429
e−28 t

x3(t) = · · ·

(22)

The infinite cascade if thereby broken by an exact method (see the simulations
shown in Figure 8)

96 S. Vidal et al.

(a) Mean x(t) (b) Variance v(t)

Fig. 8. Simulation of System (19), starting with state n0 = 8

9 Conclusion

The algorithm presented in this paper allows the investigation on the study of
genetic regulatory networks, considered from a stochastic point of view. The al-
gorithm yields a system of differential equations whose integration yields values
for some moments of the number of molecules of chemical species. The algorithm
and its theory are formulated in the Weyl algebra. However, Proposition 2 shows
how to replace computations in Weyl algebra by basic operations on commuta-
tive polynomials. This seems to produce a more efficient algorithm which com-
bines the differentiation and evaluation steps of the straightforward approach.
The issue of the infinite cascade, well-known is statistical physics, reduces the
usefulness of the overall method. Approximation techniques, useful to break it,
still need some investigation.

References

1. Abramov, S.A., Le, H.Q., Li, Z.: OreTools: a computer algebra library for univari-
ate ore polynomial rings. School of Computer Science CS-2003-12, University of
Waterloo (2003)

2. Chyzak, F.: The Ore algebra library. In: Maple, Maplesoft, Canada. Software
3. Dixmier, J.: Enveloping Algebras. American Mathematical Society (1996); (Trans-

lation of the french edition Algèbres enveloppantes published in 1974 by Bordas)
4. Érdi, P., Tóth, J.: Mathematical models of chemical reactions. Princeton University

Press (1989)
5. Feller, W.: An introduction to probability theory and its applications, 2nd edn.,

vol. I. John Wiley and Sons, Inc., New York (1957)
6. Gillespie, C.S.: Moment-closure approximations for mass-action models. Systems

Biology, IET 3(1), 52–58 (2009)
7. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. Jour-

nal of Physical Chemistry 81(25), 2340–2361 (1977)
8. Kalinkin, A.V.: Markov branching processes with interaction. Russian Math.

Surveys 57, 241–304 (2002)

Models of Stochastic Gene Expression and Weyl Algebra 97

9. Klamt, S., Stelling, J.: Stoichiometric and Constraint-based Modeling. In:
Szallasi, Z., Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology:
From Concepts to Nuts and Bolts, pp. 73–96. The MIT Press, Cambridge (2006)

10. Leykin, A.: D-modules for macaulay 2. mathematical software. In: Mathematical
Software, pp. 169–179. World Sci. Publishing, River Edge (2002)

11. Ozbudak, M., Thattai, M., Kurtser, I., Grossman, A.D.: Regulation of noise in the
expression of a single gene. Nature Genetics 31, 69–73 (2002)

12. Paulsson, J.: Models of stochastic gene expression. Physics of Live Rev. 2, 157–175
(2005)

13. Paulsson, J., Elf, J.: Stochastic Modeling of Intracellular Kinetics. In: Szallasi, Z.,
Stelling, J., Periwal, V. (eds.) System Modeling in Cellular Biology: From Concepts
to Nuts and Bolts, pp. 149–175. The MIT Press, Cambridge (2006)

14. Reutenauer, C.: Aspects mathématiques des réseaux de Petri. Masson (1989)
15. Vidal, S.A.: Groupe Modulaire et Cartes Combinatoires. Génération et Comptage.

PhD thesis, Université Lille I, France (July 2010)
16. Singh, A., Hespanha, J.P.: Lognormal moment closures for biochemical reactions.

In: Proceedings of the 45th IEEE Conference on Decision and Control, pp. 2063–
2068 (2006)

17. Tadao, M.: Petri nets: properties, analysis and applications. Proceedings of the
IEEE 77(4), 541–580 (1989)

Reconciling Competing Models:

A Case Study of Wine Fermentation Kinetics

Rodrigo Assar1,�, Felipe A. Vargas2, and David J. Sherman1

1 INRIA Team MAGNOME and CNRS UMR 5800 LaBRI. Universit Bordeaux I
33405 Talence Cedex, France

2 Department of Chemical and Bioprocess Engineering. Pontificia Universidad
Católica de Chile. Casilla 306, Correo 22, Santiago, Chile

{rodrigo.assar,david.sherman}@inria.fr, ftvargas@ing.puc.cl

Abstract. Mathematical models of wine fermentation kinetics promise
early diagnosis of stuck or sluggish winemaking processes as well as better
matching of industrial yeast strains to specific vineyards. The economic
impact of these challenges is significant: worldwide losses from stuck or
sluggish fermentations are estimated at 7 billion AC annually, and yeast
starter production is a highly competitive market estimated at 40 mil-
lion AC annually. Additionally, mathematical models are an important
tool for studying the biology of wine yeast fermentation through func-
tional genomics, and contribute to our understanding of the link between
genotype and phenotype for these important cell factories.

We have developed an accurate combined model that best matches
experimental observations over a wide range of initial conditions. This
model is based on mathematical analysis of three competing ODE models
for wine fermentation kinetics and statistical comparison of their predic-
tions with a large set of experimental data. By classifying initial con-
ditions into qualitative intervals and by systematically evaluating the
competing models, we provide insight into the strengths and weaknesses
of the existing models, and identify the key elements of their symbolic
representation that most influence the accuracy of their predictions. In
particular, we can make a distinction between main effects and secondary
quadratic effects, that model interactions between cellular processes. We
generalize our methodology to the common case where one wishes to
combine competing models and refine them to better agree with ex-
perimental data. The first step is symbolic, and rewrites each model
into a polynomial form in which main and secondary effects are conve-
niently expressed. The second step is statistical, classifying the match of
each model’s predictions with experimental data, and identifying the key
terms in its equations. Finally, we use a combination of those terms to
instantiate the combined model expressed in polynomial form. We show
that this procedure is feasible for the case of wine fermentation kinetics,
allowing predictions which closely match experimental observations in
normal and problematic fermentation.

� Work supported by the doctoral program in Informatics of the University Bordeaux
I, the INRIA Team MAGNOME and CNRS UMR 5800 LaBRI.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 98–116, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combined Kinetic Model of Wine Fermentation 99

Keywords: wine fermentation, fermentation problems, combined and
refined model, statistical comparison with experimental data, mechanis-
tic kinetic models.

1 Introduction

Obtaining ways to combine models has become a necessity. When a development
area has promoted interest of many investigation teams, it is common that com-
peting models are developed, each one constructed to meet particular needs and
that fit specific data. The same problem is approached of different ways, doing
different estimations or working in different complexity levels. Reconciling mod-
els into a combined one it is possible to answer particular needs and obtaining
general models. Different models may use different mathematical approaches and
description formalisms, so we must conserve a degree of independence between
the models.

In this particular study, we are interesting in the wine industry that annu-
ally produces 5 millions of tonnes only in France and whose worldwide losses
from stuck or sluggish fermentations are estimated at 7 billion AC annually. Yeast
starter production is highly competitive (estimated at 40 million AC annually).
While fermentation has been used from antiquity for the production of wine and
other alcoholic drinks, advances in the understanding of this process have al-
lowed the modernization of this industry throughout time. As mechanisms that
participate in fermentation are understood better it is possible to control the
process. Fermentation is carried out by the action of yeasts, that convert the
two grape sugars, glucose and fructose, to ethanol and by-products like aromas,
flavors, carbon dioxide gas, and heat. Fermentation is the anaerobic alternative
to respiration for generating energy molecules (ATP), but it is remarkably less
efficient. While respiration generates ATP with yield of 30 per glucose molecule,
fermentation produces only 2 ATP molecules. In spite of the efficiency of res-
piration, some types of yeasts, in particular Saccharomyces cerevisiae, prefer to
ferment in the presence of oxygen given a high enough concentration of sugar.
Because it is more rapid to get ATP from glycolysis and fermentation than from
respiration, S.cerevisiae has developed biological mechanisms that, for high sugar
concentrations, repress the synthesis of mRNA from genes that are involved in
respiration and oxidizing metabolism, privileging fermentation ([5]). There ex-
ist several factors that affect the process of fermentation: the composition of
the flora that is used to ferment, and those related with yeast nutrition and
maintenance of viability of cells are fundamental. Although yeasts carry out the
fermentation, some types of bacteria like lactic, acetic bacteria and streptomyces
can survive fermentation ([10], [9]), affecting the results. Different strains and
species of yeasts also influence the development of the process. Among the nu-
trients that are important are carbon sources (glucose, fructose) and nitrogen
sources (amino acids, ammonia, nucleotide base peptides); temperature, pres-
ence of oxygen, low ethanol levels, and controlled pH are also important for the
viability of cells. The pH index affect flora composition: low levels (< 3.5) inhibit

100 R. Assar et al.

many bacteria but yeasts are resistant to wide pH ranges. On the other hand,
yeasts are tolerant to ethanol only in limited ranges, up to 17%v/v approxi-
mately. Low temperatures favor non-yeast flora while high temperatures work
against the diversity. Carbon and nitrogen sources are essential for the growth of
yeast cells but their excess can generate problems too. One considers two types
of fermentation problems in industrial applications: stuck and sluggish fermen-
tation ([3]). Stuck fermentation happens when not all the sugar is consumed by
the yeasts, and sluggish fermentations are those where the process is very slow.
The risk of stuck fermentation is increased when the levels of temperature and
sugar concentrations are high. Lower temperatures promote slower fermentation
rates and consequently the risk of sluggish fermentation. High levels of nitrogen
diminish the risk of sluggish fermentation but affects the flavor and quality of
the wine. Strains of yeast that are highly tolerant to ethanol also have reduced
risk of sluggish fermentation.

Different approaches have been used to explain the influence of fermentation
factors on the production of ethanol. Even though the qualitative effect of the
temperature or the inhibiting effect of the ethanol is known, it is not easy to
quantify these relations in a mathematical model. A difficulty is the complexity
of the biological mechanisms and the great amount of factors, making it neces-
sary to estimate relations and reducing the number of variables. The variables
that have been considered most important in previous studies are temperature,
sugar, carbon dioxide, nitrogen, biomass, glycerol and ethanol. The influence of
the type of yeast and mixtures have been studied little ([31], [23]). There exist
two groups of models for the wine fermentation process; the first type focuses
on the predictability and the second type on interpretability. By means of data
mining techniques like decision trees, machine learning, support vector machines
or neural networks ([29], [30], [33] and [32]), the first type of models exploit ad-
vances in computing technologies and large databases to predict fermentation
profiles. These types of models have the advantage of including a large quan-
tity of factors of the process, but they lack biological, physical or mechanical
foundations and generally they are complex and difficult to interpret. The more
predictable a the model, the more it is complex. The second type of models
correspond to mechanistic kinetic models that are based on physical and biolog-
ical principles. One of the first mechanistic models of oenological fermentation
was developed by Boulton in 1980 ([4]), with the possibility of obtaining ac-
curate measures of fermentation factors concentrations once the parameters of
the models have been adjusted. This last approach allows the inclusion of black
box models to estimate some behaviors, which also facilitates the generalization
of the models to extend them to different environmental conditions, strains or
cultures.

Our goal is to build a general method to build a combined model that rec-
onciles existing models. We select models validated by their authors and look
for the conditions in that they fit better reality, without modifying the internal
coefficients of the models. For doing this, first we homogenize the notation and
evaluate the models in different conditions and then we select the model that

Combined Kinetic Model of Wine Fermentation 101

best represents reality in function of these conditions. Finally we build a com-
bined model whose terms and coefficients are obtained of the original models. We
applied our method to three interpretable models of the fermentation process:
Coleman ([6]), Scaglia ([26]) and Pizarro ([22], [24]).

2 Methods

We divided our work in three steps: the symbolic, the statistical and the con-
structive one. First we rewrite each model to homogenize the notations and to
separate the different effects that are included in the models. In particular for
ODE models, we rewrite the models into polynomial form (or other appropriate
base) to separate main and interaction effects. In the statistical step we classify
each model according to how they agree with experimental data. For doing this,
we identify the factors and select the independent variables that represent the
process. To classify the results in function of configurations of factors, based in
the availability of experimental data and the considerations of other studies, we
construct a discreet set of intervals or levels of their domains. We compare the
model’s predictions of independent variables with experimental data for each
configuration of factors. To decide the quality of the fitting we used two statis-
tical criteria: confidence intervals and shape analysis. The first one is local and
the second one is global. Given a configuration, one says that a simulation is
locally right if it belongs to the confidence interval of experimental results for
each time point (with experimental measures). This criterion allows us to decide
if the model agrees with the experimental results at that time. For each time
we can observe that there exist significant differences between simulations and
experimental results, but the global behavior (the shape) can be the same. To
decide if the shape of the simulated profile is similar to that of experimental
results, we used linear regression and techniques of linearization to fit the ex-
perimental and simulated curves and compare them. We consider that a model
is better than other one when the adjustment with experimental data is statis-
tically better. Finally, we define a criterion to select the best model in function
of configuration of factors and the independent variable to study. We build a
combined model that optimizes the results to obtain the estimated profiles of
the variables. This model uses coefficients of the original models and considers
main and interaction effects.

Description of Analyzed Models

We analyzed three mechanistic approaches of fermentation process. The models
have the common characteristic of being composed of a set of first degree differ-
ential equations, whose coefficients relate one variable with the others. Table 1
lists the number of equation associated to each variable and model in section of
Results. The Coleman model ([6]) was built on the model previously presented
by [7] to include the effects of temperature. Its main goal is introducing tem-
perature dependency to predict difficult fermentations. It consists of a 5 coupled

102 R. Assar et al.

Table 1. Number of equation associated to each variable and model

Model
Coleman ([6]) Pizarro ([22]). Scaglia ([26]) Logistic ([20])

X 1 6 11 15
XA 2
N 3 7

EtOH 4 8 12
S 5 9 13
Gly 10
CO2 14

ODEs (equations 1- 5) that are combined with 4 one-dimensional regression
models to estimate parameters. The variables that are represented in differen-
tial equations are concentrations of: biomass (X), active biomass (XA), nitrogen
(N), ethanol (EtOH) and sugar (S). In basic terms, the Coleman model con-
siders biomass concentration controlled by the growth rate and death rate (μ
and τ). The growth rate is computed using Monod’s equation with nitrogen
nutrition and without considering competition ([19]; see Table 2); it considers
that the lower is the remaining nitrogen the lower the growth rate. The death
rate is considered proportional to ethanol concentration. The other fermentation
variables are obtained by estimating production rates (for EtOH) or consump-
tion rates (for N and S) per biomass unit. The effect of temperature is included
to estimate parameters of the system with regression techniques. The Pizarro
model ([22], [24], equations 6- 10) uses essentially the same differential equations
as Coleman model, it adds the fermentation variable glycerol and does not con-
sider active biomass concentration. The Pizarro method uses a different way for
estimating uptakes and consumption rates per biomass unit. In this case intra-
cellular behavior, studied by flux balance analysis, gives the specific production
and consumption rates for the environmental conditions that are modeled by dy-
namic mass balance. It is built through an iterative process where intracellular
network fluxes are bounded according to extracellular conditions, and for each
iteration a maximization (of growth or glucose consumption rate) is performed
to obtain uptakes and consumption rates that are used to predict extracellular
concentrations of metabolites. The main goal is to better introduce the influence
of environmental conditions in wine fermentation.

The Scaglia model includes other types of relations between variables (equa-
tions 11- 13). It considers only 4 fermentation variables: X (biomass concen-
tration), S (sugar concentration), CO2 (carbonic dioxide gas concentration) and
EtOH (ethanol concentration). The cell growth expression (equation 11) is based
on Verlhust’s logistic equation (15), where μ represents the growth rate and the
quadratic coefficient of population, β, models the competition for available re-
sources. The growth rate (μ in Table 2 for Scaglia method) of equation 15 is
obtained by adaptations of Monod’s model ([19]) with sugar nutrition: the lower
is the remaining sugar the lower the growth rate. To model the death rate τ
they observe that the faster the decrease of substrate concentration, the larger

Combined Kinetic Model of Wine Fermentation 103

the increase in the cellular death rate. Scaglia included coefficients associated
to proportion of yeast cells in growth cellular step, Fμ, and for those in death
step, Fτ (see Table 2), to avoid the discontinuity of Blackman’s equation to
model growth rate ([28]). These factors estimate the transition according to the
proximity of carbon dioxide emission to the maximum expected for a normal
fermentation progress (max(CO2)). It is considered Carbon dioxide concentra-
tion (CO2, equation 14), being estimated with a emission rate coefficient per
biomass unity, and the rate of an additional coefficient that we called CO2Form
(see Table 2). The ethanol production rate is obtained by estimating the conver-
sion factor (yield) of carbon dioxide emitted to ethanol produced (equation 12).
Nitrogen consumption is not considered, and the sugar consumption rate (equa-
tion 13) is composed by a term acting on biomass and a quadratic term (logistic
equation type, 15).

The three teams worked on different strains of Saccharomyces cerevisiae. The
Coleman team worked with the yeast Premier Cuvee (Red Star, Milwaukee,
WI). It is a commercial strain of Saccharomyces cerevisiae. The fermentations
were prepared at pH 3.35, total nitrogen was determined by measuring ammo-
nia concentration and alpha amino acid concentration. The Pizarro team worked
with Prise de Mousse EC1118 (Lalvin, Zug, Switzerland), which is another com-
mercial strain. The pH was kept constant at 3.5, nitrogen measures considered
ammonia and free aminoacidic nitrogen. The Scaglia team used experimental re-
sults of other two studies: [31] and [11]. The Saccharomyces cerevisiae Bsc411 of
[31] was identified according to Kurtzman & Fell protocols and was taken from
Argentina. The Fleet team studies are widely recognized. In both cultures acid-
ity was controlled, the reducing sugars were determined colorimetrically using
the 3,5-dinitrosalicylic acid (DNS) method ([18]). Coleman and Pizarro models
reviewed an ample range of temperatures and initial conditions of sugar and
nitrogen. The Scaglia model was adjusted only on moderate levels of temper-
ature, sugar and nitrogen concentrations. For more details about cultures and
fermentation conditions which were used, refer directly to the papers.

Experimental Data

In our study we considered experimental data of three papers: [22], [15] and [16].
The experimental measures of the Pizarro team correspond to a wide range of
data. We used laboratory results that were obtained with the strain Prise de
Mousse EC1118, and industrial results for Industrial Cabernet Sauvignon, wine
fermentations that were monitored during the 2003 vintage at a commercial win-
ery in Chile. Sugar profiles for six batch fermentations at 28 ◦C with high/low
nitrogen and other two at 12 ◦C and 17 ◦C with high conditions of nitrogen
were used to calibrate the model, and consequently we expect a better adjust-
ment of this model for sugar in this conditions. By direct communication with
[15], we obtained data of biomass profiles in two particular conditions: moderate
temperature (24 ◦C), high level of sugar (280 g/l) and moderate/high levels of ni-
trogen (approximately 220 mg/l and 551 mg/l respectively). The data set avail-
able in Mendes-Ferreira studie ([16]) used the strain Saccharomyces cerevisiae

104 R. Assar et al.

PYCC4072 that was supplied by the Portuguese Yeast Culture Collection. The
paper describes experimental biomass, ethanol and sugar (and other indexes)
results for two experimental conditions, fermentation maintained at 20 ◦C with
moderate initial sugar concentration (200 g/l) and initial nitrogen concentra-
tion high (267 mg/l) or low (66 mg/l). The acidity conditions were adjusted to
pH 3.7, nitrogen is supplied by ammonium phosphate and sugar corresponds to
glucose.

Fig. 1. Fermentation variables profiles for some initial conditions configurations. For
Biomass and Sugar one shows experimental results in LHH (low temperature: 12
◦C, high initial sugar: 268 g/l, high initial nitrogen: 300 mg/l), HMM (28◦C, sugar:
238 g/l, nitrogen: 50mg/l) and HMH (28 ◦C, sugar: 233 g/l, nitrogen: 300 mg/l)
configurations. For Ethanol we show data for MMM configuration (20 ◦C, sugar:
200 g/l, nitrogen: 66 mg/l) instead of LHH . Log-Biomass profiles are shown too, we
obtained linear correlations in transient phase of 0.98, 0.99 and 0.97 respectively.

3 Results

Exploratory Analysis

The observation of experimental data gave us some ideas about the profiles of fer-
mentation variables. In the three variables (biomass, ethanol and sugar concen-
trations) we observed two phases, transient and stable. Before a particular time,
that we call stabilization time, fermentation variables change exponentially over
time. After stabilization these are statistically constant. We verified the exponen-
tial behavior of biomass profiles statistically by means of linearization and linear
regression (Figure 1), the growth rate can be assumed constant over time. In the
case of biomass, in the first phase it increases exponentially until the cells stop

Combined Kinetic Model of Wine Fermentation 105

T
a
b
le

2
.
N
o
ta
ti
o
n
,
co
m
p
a
ri
so
n
w
it
h
o
ri
g
in
a
l
p
a
p
er
s
n
o
m
en

cl
a
tu
re

O
r
ig

in
a
l
n
o
t
a
t
io

n
a
n
d

c
o
m

p
u
t
a
t
io

n

N
o
t
a
t
io

n
M

e
a
n
in

g
C
o
le

m
a
n

(
[6

])
P
iz

a
r
r
o

(
[2

2
])

S
c
a
g
li
a

(
[2

6
])

X
v
ia

b
le

b
io

m
a
s
s

c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]]

X
t
o
t
a
l

b
io

m
a
s
s

c
o
n
-

c
e
n
t
r
a
t
io

n
X

V
X

X
A

a
c
t
iv

e
b
io

m
a
s
s

c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]]

X
A

N
n
it
r
o
g
e
n

c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]

N
N

H
4

N

E
t
O

H
e
t
h
a
n
o
l
c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]

E
E

t
O

H
P

S
s
u
g
a
r

c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]

S
g
lu

S

G
ly

g
ly

c
e
r
o
l
c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]

G
ly

C
O

2
c
a
r
b
o
n

d
io

x
id

e
c
o
n
c
e
n
t
r
a
t
io

n
,
[g

·l
−

1
]

C
O

2

μ
g
r
o
w
t
h

r
a
t
e

o
f
y
e
a
s
t

c
e
ll
s
,
[h

−
1
]

M
o
n
o
d
’s

m
o
d
e
l

n
i-

t
r
o
g
e
n

n
u
t
r
it
io

n
:

m
a
x
(
μ
)
·N

K
N

+
N

μ
,
F
lu

x
b
a
la

n
c
e

a
n
a
ly

s
is

1
2
.0

7
2

·
m

a
x
(
μ
)
·S

S
+

K
S

·9
3
.0

2
3
1
.5

0
8

τ
d
e
a
t
h

r
a
t
e

o
f
y
e
a
s
t

c
e
ll
s
,
[h

−
1
]

k
d
,

t
e
m

p
e
r
a
t
u
r
e

a
n
d

e
t
h
a
n
o
l
d
e
p
e
n
d
e
n
t

(
0
.0

0
0
1

−
0
.0

4
7

·
d
S

d
t
)

ν
N

n
it
r
o
g
e
n

c
o
n
s
u
m

p
t
io

n
r
a
t
e
p
e
r
y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·h

−
1
]

μ
Y
X

/
N

ν
N

H
4
,
F
lu

x
b
a
la

n
c
e

a
n
a
ly

s
is

ν
E

t
O

H
e
t
h
a
n
o
l
p
r
o
d
u
c
t
io

n
r
a
t
e

p
e
r

y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·h

−
1
]
β

=
m

a
x
(
ν
E

t
O

H
)
·S

K
S

+
S

ν
E

t
O

H
,
F
lu

x
b
a
la

n
c
e

a
n
a
ly

-
s
is

ν
S

s
u
g
a
r
c
o
n
s
u
m

p
t
io

n
r
a
t
e

p
e
r

y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·h

−
1
]

ν
E

t
O

H
Y
E

t
O

H
/
S

ν
g
lu

,
F
lu

x
b
a
la

n
c
e

a
n
a
ly

s
is

1
Y
X

/
S

·
m

a
x
(
μ
)
·S

S
+

K
S
·9

3
.0

2
3
1
.5

0
8

ν
S
0

in
it
ia

l
s
u
g
a
r
c
o
n
s
u
m

p
t
io

n
r
a
t
e

p
e
r
y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·

h
−

1
]

F
=

0
.0

0
8
,
in

it
ia

l
s
u
g
a
r

d
e
p
e
n
d
e
n
t

ν
g
ly

g
ly

c
e
r
o
l
p
r
o
d
u
c
t
io

n
r
a
t
e

p
e
r
y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·h

−
1
]

ν
g
ly

,
F
lu

x
b
a
la

n
c
e

a
n
a
ly

s
is

ν
C

O
2

c
a
r
b
o
n

d
io

x
id

e
p
r
o
d
u
c
t
io

n
r
a
t
e

p
e
r
y
e
a
s
t
m

a
s
s
,
[g

·g
−

1
·

h
−

1
]

G
·

m
a
x
(
μ
)
·S

S
+

K
S

·9
3
.0

2
3
1
.4

4
5

K
N

c
o
n
s
t
a
n
t

fo
r

n
it
r
o
g
e
n
-l
im

it
e
d

g
r
o
w
t
h
,
[g

·l
−

1
]

0
.0

0
9

M
o
n
o
d

c
o
n
s
t
a
n
t

K
S

c
o
n
s
t
a
n
t

fo
r

s
u
g
a
r

u
t
il
iz

a
t
io

n
in

g
r
o
w
t
h
,
[g

·l
−

1
]

1
0
.2

7
8

M
ic
h
a
e
li
s
-

M
e
n
t
e
n
-t
y
p
e

c
o
n
s
t
a
n
t

2
.1

5
M

o
n
o
d

c
o
n
s
t
a
n
t

fo
r

s
u
g
a
r
-l
im

it
e
d

g
r
o
w
t
h

Y
X

/
N

y
ie

ld
c
o
e
ff
ic

ie
n
t

fo
r

c
e
ll

m
a
s
s

g
r
o
w
n

p
e
r

m
a
s
s

o
f
n
it
r
o
-

g
e
n

u
s
e
d
,
[g

·g
−

1
]

Y
X

/
N

,
t
e
m

p
e
r
a
t
u
r
e

d
e
p
e
n
d
e
n
t

Y
E

t
O

H
/
S

y
ie

ld
c
o
e
ff
ic

ie
n
t

fo
r

e
t
h
a
n
o
l

p
r
o
d
u
c
e
d

p
e
r

s
u
g
a
r

c
o
n
-

s
u
m

e
d
,
[g

·g
−

1
]

Y
E

/
S

=
0
.5

5

Y
X

/
S

y
ie

ld
c
o
e
ff
ic

ie
n
t

fo
r

c
e
ll
s

fo
r
m

e
d

p
e
r

s
u
g
a
r

c
o
n
s
u
m

e
d
,

[g
·g

−
1
]

0
.0

2
9

Y
C

O
2
/
E

t
O

H
y
ie

ld
c
o
e
ff
ic

ie
n
t

fo
r

C
O

2
fo

r
m

e
d

p
e
r

e
t
h
a
n
o
l
p
r
o
d
u
c
e
d
,

[g
·g

−
1
]

Y
C

O
2
/
P

,
in

it
ia

l
c
o
n
d
it
io

n
s

d
e
p
e
n
d
e
n
t

m
a
x
(
μ
)

m
a
x
im

u
m

g
r
o
w
t
h

r
a
t
e

o
f
y
e
a
s
t

c
e
ll
s
,
[h

−
1
]

μ
m

a
x
,

t
e
m

p
e
r
a
t
u
r
e

d
e
p
e
n
d
e
n
t

μ
m

,
in

it
ia

l
c
o
n
d
it
io

n
s

d
e
p
e
n
d
e
n
t

m
a
x
(
ν
E

t
O

H
)

m
a
x
im

u
m

e
t
h
a
n
o
l
p
r
o
d
u
c
t
io

n
r
a
t
e
,
[g

·g
−

1
·h

−
1
]

β
m

a
x
,

t
e
m

p
e
r
a
t
u
r
e

d
e
p
e
n
d
e
n
t

m
a
x
(
C

O
2
)

m
a
x
im

u
m

C
O

2
fo

r
n
o
r
m

a
l

fe
r
m

e
n
t
a
t
io

n
p
r
o
g
r
e
s
s
,

[g
·

l−
1
]

C
O

2
,9

5
=

7
8
,
c
o
r
r
e
s
p
o
n
d
s

t
o

9
5
%

o
f
m

a
x
im

u
m

e
m

is
s
io

n
s

fo
r

in
it
ia

l
c
o
n
d
it
io

n
s
.

F
μ

c
o
r
r
e
c
t
io

n
fa

c
t
o
r

o
f
g
r
o
w
t
h

r
a
t
e

e
x
p
(
−

(
C

O
2
−

m
a
x
(
C

O
2
)
)
)

e
x
p
(
C

O
2
−

m
a
x
(
C

O
2
)
)
+

e
x
p
(
−

(
C

O
2
−

m
a
x
(
C

O
2
)
)
)

F
τ

c
o
r
r
e
c
t
io

n
fa

c
t
o
r

o
f
d
e
a
t
h

r
a
t
e

1
−

F
g

β
β

c
o
m

p
e
t
it
io

n
c
o
e
ff
ic

ie
n
t
in

lo
g
is
t
ic

e
q
u
a
t
io

n
1
5
,
l
·g

−
1
·

h
−

1
β
,
in

it
ia

l
c
o
n
d
it
io

n
s

d
e
p
e
n
d
e
n
t

C
O

2
F

o
r
m

a
d
d
it
io

n
a
l
S
c
a
g
li
a

c
o
n
c
e
n
t
r
a
t
io

n
c
o
e
ff
ic

ie
n
t

fo
r

c
a
r
b
o
n

d
io

x
id

e
fo

r
m

a
t
io

n
,
[g

·l
−

1
]

2
4
1
.4

4
·m

a
x
(
μ
)

S
2

(
S
+

K
S

·9
3
.0

2
3
1
.0

)
(
S
+

K
S

·9
3
.0

2
3
1
.4

4
5
)
·

X
+

0
.0

1
·X

106 R. Assar et al.

their growth. Ethanol concentration increases while the yeast cells are active,
after the stabilization time the production stops. Sugar concentration decays
in an exponential way until it is completely consumed. Different samples show
different uptake (for biomass and ethanol) and consumption rates (for sugar).
For the Coleman ([6]) and Pizarro ([22]) models, fermentation variables evolve in
time according to uptake (biomass, ethanol and glycerol) or consumption (sugar,
nitrogen) factors per concentration unity of yeast cell (biomass). They assume
that these coefficients change in time depending of the fermentation or environ-
mental variables and do not depend only on initial conditions. When solving
these models one obtains exponential behaviors whose rates change over time,
according to the value of the fermentation variables or environmental conditions,
finishing in a stable phase. According to the sign of the factors we have expo-
nential growth (positive sign) or decay (negative sign) followed by stabilization.
Biomass profiles resemble the solutions of logistic differential equation 15, that
are well known in ecology to model population growth. These types of differential
equations were derived by Verhulst in 1838 to describe the self-limiting growth of
a biological population (Verlhurst’s model; see [20]). Population starts to grow in
an exponential phase, as it gets closer to the carrying capacity the growth slows
down and reaches a stable level. The equations (11-13) that define the Scaglia
model ([26]) include logistic components but they are more complex, and one
observes relations between one-order differential expressions of variables.

Symbolic Step: Rewriting the Models

We rewrote the models into a polynomial form that in this case allowed to
separate main effects of interaction effects that are represented by quadratic
coefficients. The Coleman model is expressed by equations 1-5, the Pizarro model
by equations 6-10 and the Scaglia model by equations 11-14. Table 2 describes the
meaning of the variables and our notation as compared with the nomenclature
of the original papers.

dX

dt
= μ ·XA (1)

dXA

dt
= (μ− τ) ·XA (2)

dN

dt
= −νN ·XA (3)

d[EtOH]

dt
= νEtOH ·XA (4)

dS

dt
= −νS ·XA (5)

dX

dt
= μ ·X (6)

dN

dt
= −νN ·X (7)

Combined Kinetic Model of Wine Fermentation 107

d[EtOH]

dt
= νEtOH ·X (8)

dS

dt
= −νS ·X (9)

d[Gly]

dt
= νGly ·X (10)

dX

dt
= (Fμ · μ− Fτ · τ) ·X − Fμ · β ·X2 (11)

d[EtOH]

dt
= 1

YCO2/EtOH
· dCO2

dt (12)

dS

dt
= −

(
(νS + νS0) ·X − 0.00002

YX/S
·X2

)
(13)

dCO2

dt
= νCO2 ·X + d(C02Form)

dt (14)

dX

dt
= μ ·X ·

(
1− β

μ
·X

)
(15)

Statistical Step: Classifying the Results

For fermentation process the considered factors are initial conditions and time.
We studied the fermentation variables: X (biomass concentration), EtOH
(ethanol concentration) and S (sugar concentration). Initial conditions were de-
termined by ranges of initial temperature, sugar and nitrogen concentration, and
we divided in transient and stable phase. The levels of initial conditions were
ranges of initial temperature, sugar and nitrogen concentrations. We considered
that the temperature is low when it is lower than 19 ◦C, is moderate for values
between 20 ◦C and 27 ◦C, and high for larger values. Initial sugar concentration
was called moderate for values less than 240 g/l and high for superior values.
Initial nitrogen concentration was moderate for values less than 240 mg/l and
high for those superior values. For each initial conditions configuration, we sep-
arated the profiles in transient and stable phase by analyzing the experimental
results.

In Table 3 we show the origin of experimental data for different initial condi-
tion levels and fermentation variables. This classification allowed us to cover a
wide range of configurations. In spite of this, for some combinations we do not
have experimental data because conditions of fermentation are difficult. This
is the case for low initial temperature, sugar and nitrogen concentrations. For
high temperature and sugar with insufficient levels of nitrogen source, we have
the same situation. Part of the data have superior statistical quality. While the
number of samples that describe an initial condition configuration is larger, the
quantity of information that validates our assertions about the adjustment of
each model in this configuration is also larger. In particular the Pizarro sam-
ple for HMM (high temperature, moderate initial sugar level and moderate
initial nitrogen level) and HMH configurations give us standard deviations for

108 R. Assar et al.

Fig. 2. Summary of results of adjustment according to initial conditions. Quality of
adjustment of each model for each initial conditions configuration and phase (transient
and stable).

variable profiles. Mendes-Ferreira ([16]) samples for MHM (moderate temper-
ature, high initial sugar level and moderate initial nitrogen level) and MHH
supply means and standard deviations of measures too. We evaluated the three

Table 3. Origin of experimental data. For each Initial Temperature-Sugar-Nitrogen
configuration, and fermentation variable it is showed the origin of available data.

studied models according to how well they agree with the experimental results
(Figure 2). For each sample we reviewed the adjustment in the transient and the
stable phase. For the local criterion, at each point we built confidence intervals
of experimental results by using measures of means and standard deviations,
and computed the p-values associated to the decision of considering simulated
value equal to experimental result. Because we observe exponential behavior, for
the global criterion we have computed the correlation between the logarithm of
simulations and the data over the time (Table 4). In general, an adjustment was
considered Very good if the local criterion and the global one are very favorable
(p-value≥ 0.1, correlation≥ 0.98); Good if a criterion is very favorable and the
other one is only favorable (0.05 ≤p-value< 0.1 or 0.95 ≤correlation< 0.98);

Combined Kinetic Model of Wine Fermentation 109

Little wrong if a criterion is unfavorable (p-value< 0.05 or correlation< 0.95)
and the other one is favorable or superior; and Wrong if both criteria are unfa-
vorable. The cases near to the limits were checked especially. In case the local
criterion is absolutely unfavorable (p-value= 0) we qualified in Wrong, if local
criterion is unfavorable (but not absolutely) and global criterion is optimum
(correlation= 1) we considered it Good.

Table 4. Statistical analysis of models. For each configuration of factors and fermenta-
tion variable, we show the average p-value for the local criterion (C.1), and correlation
for global criterion (C.2). The lower the p-value, the bigger the local error in simu-
lations. The bigger the correlation, the bigger the global similarity between data and
simulations. Results for other configurations can be asked.

Coleman model Pizarro model Scaglia model Combined model
Transient Stable Transient Stable Transient Stable Transient Stable

Config. Variable C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2 C.1 C.2
MMM X 0.006 1 0.006 0.92 0.109 1 0 1 0.012 0.96 0 0.77 0.033 1 0.006 0.92

EtOH 0.001 1 0 0.97 0 1 0 1 0 1 0 0.93 0.001 1 0 0.97
S 0.07 0.97 0.001 0.93 0.022 1 0 0.98 0.017 0.95 0 0.98 0.063 1 0.001 0.93

MMH X 0.045 0.98 0.001 0.90 0.006 1 0.483 1 0.113 0.98 0.06 0.99 0.256 0.99 0.483 1
EtOH 0.047 1 0 0.97 0.001 1 0.053 1 0.048 1 0.149 0.92 0.049 1 0.053 1

S 0.129 0.93 0.152 0.98 0.140 0.98 0.27 0.98 0.064 0.99 0.015 0.97 0.129 0.99 0.27 0.98
HMM X 0.388 0.99 0.476 0.97 0.102 0.83 0.027 1 0.082 0.99 0 0.87 0.388 0.99 0.476 0.97

EtOH 0.049 0.95 0.155 0.97 0.129 0.95 0 1 0.08 0.92 0 -0.97 0.129 0.95 0.155 0.97
S 0.171 0.79 0 -0.7 0.238 1 0.272 0.97 0.107 0.91 0.032 0.73 0.238 1 0.272 0.97

HMH X 0.203 0.97 0 0.28 0.156 0.98 0.048 0.97 0.197 0.96 0 0.91 0.203 0.97 0.048 0.97
EtOH 0.275 1 0.089 0.80 0.162 0.99 0.214 0.99 0.264 0.98 0.001 1 0.339 0.99 0.214 0.99

S 0.327 1 0 0.59 0.135 0.98 0.167 0.99 0.197 0.95 0.001 1 0.327 1 0.167 0.99

Constructive Step: Building the Combined Model

As a direct consequence this criterion allows us to obtain better predictions of
fermentation variable profiles than those obtained by each individual model. In
Table 5 we summarize our criteria, and according to initial conditions and vari-
able to consider (between Biomass, Ethanol and Sugar) we say which approach
to use. We used the criteria to build a combined model where we separate the
different effects in polynomial way to obtain a combined model (equations 16-18).
These equations capture the three models and the variables XA and CO2 are
those computed by the Coleman and Scaglia models respectively. The coefficients
μA, εA and σA correspond to coefficients of the Coleman model to represent lin-
ear effect of XA on X . The linear coefficient of X on EtOH , ε(1), is associated to
the Pizarro model; μ(1) is composed by contributions of the Pizarro and Scaglia
models, and quadratic effects (coefficients μ(2) and σ(1)) are obtained from the
Scaglia model. The coefficients are active or not in function of initial configura-
tion and time (Table 6). For instance let us consider the configuration MMH .
The equations 16-18 take the form from the equations 19-21. One observes that
the main factor is the linear effect of X . In the transient phase there exists a
cuadratic effect of X , a linear effect of CO2 rate on EtOH , and XA only affects
the ethanol modelling.

110 R. Assar et al.

Table 5. Criterion of selection of best models in function of initial conditions. For each
combination variable-phase is written the best model, colors represent the quality of
the adjustment when comparing between all the initial conditions.

Table 6. Temporal intervals at which the coefficients of equations 16-18 are active for
each configuration of initial conditions and the formulas. One writes − if there are not
experimental data to validate, FBA denotes the result by using Flux balance Analysis.

Configuration of initial conditions
Coefficient Meaning LMH LHH MMMMMH MHM MHH HMM HMH HHH

μA =
max(μ)·N
KN+N

linear effect of XA - ∅ ∀t ∅ ∅ ∅ ∀t t ≤
30

-

μ(1) = FBA, (Fμ ·μ +
Fτ · τ)

linear effect of X - t >
110

t ≤
96

∀t ∀t ∀t ∅ t >
30

-

μ(2) = Fμ · β quadratic effect of X - ∅ ∅ t ≤
51

t ≤
27

∀t ∅ ∅ -

εA =
max(νEtOH)·S

KS+S
linear effect of XA - - t ≤

96
t ≤
51

- - t >
300

t ≤
30

-

ε(1) = FBA linear effect of X - - ∅ ∀t - - t ≤
300

∀t -

εCO2
= 1

YCO2/EtOH
linear effect of

dCO2
dt

- - ∅ t ≤
51

- - ∅ t ≤
30

-

σA =
νEtOH

YEtOH/S
linear effect of XA ∅ ∅ ∀t ∅ - t >

107
∅ t ≤

30
∅

σ(1) = FBA, 0.008 +
max(μ)·S

YX/S ·(S+KS ·93.021.51)

linear effect of X ∀t ∀t t ≤
96

∀t - t ≤
107

∀t t >
30

∀t

σ(2) = 2·10−5

YX/S
quadratic effect of X ∅ ∀t ∅ t ≤

51
- t ≤

107
∅ ∅ t > 103

dX

dt
= μA ·XA + μ(1) ·X − μ(2) ·X2 (16)

d[EtOH]

dt
= εA ·XA + ε(1) ·X + εCO2 · dCO2

dt (17)

dS

dt
= −

(
σA ·XA + σ(1) ·X − σ(2) ·X2

)
(18)

dX

dt
= μ(1) ·X − 1t≤51 · μ(2) ·X2 (19)

d[EtOH]

dt
= 1t≤51 · εA ·XA + ε(1) ·X + 1t≤51 · εCO2 · dCO2

dt (20)

dS

dt
= −

(
σ(1) ·X − 1t≤51 · σ(2) ·X2

)
(21)

Combined Kinetic Model of Wine Fermentation 111

For configuration MMH we observed an initial effect of competition to consume
resources; but for HHH the sugar consumption (equation 22) initially, when the
substrates are abundant, competition does not exist but it appears when the
resources become scarce.

dS

dt
= −

(
σ(1) ·X − 1t>103 · σ(2) ·X2

)
(22)

As a result, in function of factors, we go from one profile type to another one.
Temporal phase and initial condition affects the results. For each fermentation
there exists a time at which the profiles change from transient to stable phase:
stabilization time. According to environmental conditions one obtains different
profiles of the fermentation variables; for different level of initial temperatures,
sugar and nitrogen concentration, one observes different growth/decrease rates
and the change to the stable phase happens in different time (Figure 1). The
bigger the initial temperature, sugar or nitrogen concentration; the bigger the
growth rate of biomass. As the biomass changes to its stable phase, ethanol
production and the consumption of sugar stop.

4 Conclusions and Discussion

We built a general method to combine models in function of configurations of
factors. The method was applied to fermentation process modelling to explain
the profiles of fermentation variables: concentration of yeast biomass, ethanol
and sugar; by considering four factors: initial temperature, sugar and nitrogen,
and growth phase. Our method starts with a symbolic step to homogenize the
notation, for ODE models by rewriting into polynomial form and by identify-
ing main and interaction effects. It continues with a statistical step to evaluate
the models, in function of experimental data ([22], [15] and [16]). We defined
discrete levels for each factor, for each configuration of factors and fermenta-
tion variable we statistically compared the results of three kinetic fermentation
models ([6], [22] and [26]) with the experimental results and we obtained quality
indexes of each model (Figure 2). We finished with the construction of a com-
bined model, where one selects the best resolution method for each fermentation
variable and configuration of factors (Table 5). The equations 16-18 allows to
interpret the combined model in function of initial configuration, for instance
equations 19-21 for MHH . Although generally for all variables there exist com-
binations of models of good adjustment to the experimental data, for each one
of the fermentation variables and initial conditions the approaches showed dif-
ferent quality levels (Table 5, Figure 2). The best simulations were obtained for
sugar consumption, in general terms Pizarro model showed the best adjustments
especially for high levels of temperature. For low temperature and high levels
of sugar and nitrogen the Scaglia model showed results similar to those of the
Pizarro model. The configurationMMH (Figure 3) was covered by two different
data sets for sugar simulations, the Pizarro and Mendes-Ferreira data ([16]). We
observed similar measures between data sets and that for the transient phase

112 R. Assar et al.

Fig. 3. Comparison between models adjustments for sugar profiles in MMH initial
configuration. Sugar profiles simulated by the three models and our combined model.
Two experimental samples; with temperature: 20 ◦C, sugar: 200 and 207 g/l, nitrogen:
267 and 240 mg/l.

the Scaglia model agreed better with the Mendes-Ferreira data ([16]), and for
the stable phase the predictions of Pizarro are the best. For the HMM config-
uration we observed the best results with the Pizarro simulations; this agreed
with the calibration data used to estimate sugar uptake parameters. For HMH
configuration Coleman model showed the best results in transient phase, Pizarro
worked better in stable phase and for HHH configuration.

The worst quality levels were obtained for biomass: Coleman and Scaglia
models best agreed with experimental data in the transient phase. The configu-
rations HMH and HMM showed the best results for Coleman model; MHM
and MHH for the Scaglia model. Pizarro model worked better in stable phase,
best results in LHH , MMH , MHM , MHH and HMM . Pizarro and Coleman
models showed the best results for Ethanol production simulations.

Our combined model, obtained good results for almost all the initial condi-
tions configurations. As it is observed in Figure 2 there exist very few initial
conditions in which no model obtains good results of adjustment. The only neg-
ative cases are LHH configuration in transient phase for biomass, and MMM
configuration in stable phase of Ethanol. We observed the best results for sugar
profiles simulations, for all the initial conditions one obtains that the transient
or stable phase is adjusted with quality good (Table 5). For the transient phase
the best configurations are HHH , HMM and HMH ; for stable phase HMM ,
followed by LMH and LHH . For this fermentation variable, the configurations
LHH , HMM and HMH were represented mainly by Pizarro model, in which

Combined Kinetic Model of Wine Fermentation 113

they were used to calibrate sugar-uptake parameters. For MMH (Figure 3)
we obtained good results in transient phase, by combining Scaglia and Pizarro
model, and very good results in stable phase with the Pizarro model. The best
result for biomass adjustments were obtained for the configuration HMM that
showed very good results for both transient and stable phase. We obtained good
results for MMH , MHM and MHH in both temporal phases too. With re-
spect to simulations of ethanol profiles, the best result was obtained for HMH
configurations. For this configuration the transient phase is very good repre-
sented by the three models and the stable phase only by the Pizarro approach.
Another important fermentation variable is nitrogen concentration. The experi-
mental data of [15] and [16] give us nitrogen measurements for MMM , MMH ,
MHM and MHH configurations. We observed that for these initial conditions,
the combined model is completely represented by the Pizarro model. It obtains
the best results (good or very good quality), the Coleman approach showed poor
results and the Scaglia model does not include this variable.

In this study we chose to build combined models without changing the individ-
ual models, since by design we assume that the original models are validated. The
other alternative is to tune the internal parameters to refine the models and to
obtain more generality. Several types of experimental results can be included to
improve the estimation methods, looking for the correct inclusion of the relevant
factors of the fermentation process. The effect of these factors can directed com-
puted by using devices to measure the number of cells (by using Hemacytometer
or Neubauer for example) on fermentation samples or by biotechnological tools
as DNA Microarrays ([14]) and PCR (Polymerase chain reaction, [13]). The es-
timations of profiles features as growth rate, death rate and yield coefficients
developed in [6] can be extended to more strains and species. Microarrays and
PCR can give us estimations of the profiles too. In [1], [16] and [17] were done
studies of gene expression profiles of particular strains of Saccharomyces cere-
visiae during fermentations with high level of sugar but different levels of nitro-
gen concentration. In [1] was observed that some genes involved in biosynthesis
of macromolecular precursors have superior levels of expression in high nitrogen
condition than low. Low levels of nitrogen showed expression levels superior for
genes involved in translation and oxidative carbon metabolism. In [16] and [17]
were observed early responses of yeast cells to low nitrogen. They identified 36
genes highly expressed under conditions of low or absent nitrogen in comparison
with a nitrogen-replete condition for Saccharomyces cerevisiae PYCC4072, the
behavior of four of these transcripts was confirmed by RT-PCR analysis in this
and another wine yeast strain. The signature genes of both studies can be used to
predict nitrogen deficiency and to prevent fermentation problems. These ideas
can be extended to study the temporal transcriptional, responses of genes on
different pH, initial temperature, sugar and nitrogen concentrations, strains and
species of yeasts. The analysis can be oriented, for example, to genes associated
with oxidation of glucose, glycolysis and anaerobic functions. Expression levels
of enzymes allow to simulate phenotype by FBA on metabolic models to obtain
uptakes and consumption rates on different conditions and yeast strains.

114 R. Assar et al.

Another challenge to obtain better approaches of the reality is to construct
and to calibrate fermentation models that consider interacting yeast populations
competing by resources. Although it has been observed that Saccharomyces cere-
visiae is dominant in the majority of spontaneous alcoholic fermentations ([12],
[25]) and it is the most popular yeast in inoculated cultures, there exist many
strains and other yeasts as Candida cantarellii that participate in the process
([21], [34]) and it influences the aroma ([23]). The intervention of lactic acid and
acetic bacteria in fermentations is also documented ([10], [9]). One can consider
competence between individuals of the same population, modelled by logistic-like
models similar to equation 15, and interactions between different populations.
A usual way to model the presence of two or more populations competing by
resources is the Lotka-Volterra-like models ([27]). Different strains of Saccha-
romyces cerevisiae can present different levels of tolerance to ethanol, acidity,
growth and death rate between other coefficients, Another fermenting yeast Can-
dida cantarellii present different rates of growth, ethanol and glycerol yields [31].
In future versions we will introduce the dependency of these rates with respect
to yeast strains or species, and pH conditions.

In System Biology the combination of models takes relevance to analyze hier-
archical systems. The notion composition ([8]) is used to build models by defining
their components and the relations between them. A system is analyzed in a hi-
erarchic way, defining it as being composed by subsystems. The components
with different nature are well defined using different formalisms to generating
sub-models, and Base formalisms capable of including the semantics of a wide
variety of languages are used to define combined models ([2]). In this study we
focused in the mathematical way of combining models, in future works we will
approach the formalism for defining general combinations.

References

1. Backhus, L.E., DeRisi, J., Brown, P.O., Bisson, L.F.: Functional genomic analysis
of a commercial wine strain of saccharomyces cerevisiae under diering nitrogen
conditions. FEMS Yeast Research 1, 111–125 (2001)

2. Barros, F.J., Mendes, M.T., Zeigler, B.P.: Variable DEVS-variable structure mod-
eling formalism: an adaptive computer architecture application. In: Fifth Annual
Conference on AI, and Planning in High Autonomy Systems, Gainesville, FL, USA,
pp. 185–191 (1994)

3. Bisson, L.F.: Stuck and sluggish fermentations. Am. J. Enol. Vitic. 50(1), 107–119
(1999)

4. Boulton, R.: The prediction of fermentation behavior by a kinetic model. Am. J.
Enol. Vitic. 31(1), 40–45 (1980)

5. Boulton, R.B., Singleton, V.L., Bisson, L.F., Kunkee, R.E.: Principles and Practices
of Winemaking, 1st edn. Springer, Heidelberg (1996)

6. Coleman, M.C., Fish, R., Block, D.E.: Temperature-Dependent kinetic model
for Nitrogen-Limited wine fermentations. Applied and Environmental Microbiol-
ogy 73(18), 5875–5884 (2007); PMID: 17616615 PMCID: 2074923

7. Cramer, A.C., Vlassides, S., Block, D.E.: Kinetic model for nitrogen-limited wine
fermentations. Biotechnology and Bioengineering 77(1), 49–60 (2002)

Combined Kinetic Model of Wine Fermentation 115

8. SBML developers. Sbml composition workshop (September 2007),
http://sbml.info/Events/Other_Events/SBML_Composition_Workshop_2007

9. Drysdale, G.S., Fleet, G.H.: Acetic acid bacteria in winemaking: A review. Am. J.
Enol. Vitic. 39(2), 143–154 (1988)

10. Fleet, G.H., Lafon-Lafourcade, S., Ribreau-Gayon, P.: Evolution of yeasts and lac-
tic acid bacteria during fermentation and storage of bordeaux wines. Applied and
Environmental Microbiology 48(5), 1034–1038 (1984); PMID: 16346661 PMCID:
241671

11. Fleet, G.H.: Wine Microbiology and Biotechnology, 1st edn. CRC Press (1993)
12. Frezier, V., Dubourdieu, D.: Ecology of yeast strain saccharomyces cerevisiae dur-

ing spontaneous fermentation in a bordeaux winery. Am. J. Enol. Vitic. 43(4),
375–380 (1992)

13. Kleppe, K., Ohtsuka, E., Kleppe, R., Molineux, I., Khorana, H.G.: Studies on
polynucleotides: XCVI. repair replication of short synthetic DNA’s as catalyzed by
DNA polymerases. Journal of Molecular Biology 56(2), 341–361 (1971)

14. Kulesh, D.A., Clive, D.R., Zarlenga, D.S., Greene, J.J.: Identification of interferon-
modulated proliferation-related cDNA sequences. Proceedings of the National
Academy of Sciences of the United States of America 84(23), 8453–8457 (1987)

15. Malherbe, S., Fromion, V., Hilgert, N., Sablayrolles, J.-M.: Modeling the effects of
assimilable nitrogen and temperature on fermentation kinetics in enological condi-
tions. Biotechnology and Bioengineering 86(3), 261–272 (2004)

16. Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E.,
Mendes-Faia, A., Perez-Ortin, J.E., Leao, C.: Transcriptional response of saccha-
romyces cerevisiae to different nitrogen concentrations during alcoholic fermenta-
tion. Appl. Environ. Microbiol. 73(9), 3049–3060 (2007)

17. Mendes-Ferreira, A., del Olmo, M., Garcia-Martinez, J., Jimenez-Marti, E., Leao,
C., Mendes-Faia, A., Perez-Ortin, J.E.: Saccharomyces cerevisiae signature genes
for predicting nitrogen deficiency during alcoholic fermentation. Applied and En-
vironmental Microbiology 73(16), 5363–5369 (2007); PMID: 17601813 PMCID:
1950961

18. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing
sugar. Analytical Chemistry 31(3), 426–428 (1959)

19. Monod: La technique de culture continue; thorie et applications. Ann Ist Pasteur
Lille 79, 390–410 (1950)

20. Murray, J.D.: Mathematical Biology: I. An Introduction (Interdisciplinary Applied
Mathematics), 3rd edn. Springer, Heidelberg (2007)

21. Nurgel, C., Erten, H., Canbas, A., Cabaroglu, T., Selli, S.: Yeast flora during the
fermentation of wines made from vitis viniferaL. cv. emir and kalecik karasi grown
in anatolia. World Journal of Microbiology and Biotechnology 21(6), 1187–1194
(2005)

22. Pizarro, F., Varela, C., Martabit, C., Bruno, C., Ricardo Prez-Correa, J., Agosin,
E.: Coupling kinetic expressions and metabolic networks for predicting wine fer-
mentations. Biotechnology and Bioengineering 98(5), 986–998 (2007)

23. Rodrguez, M.E., Lopes, C.A., Barbagelata, R.J., Barda, N.B., Caballero, A.C.:
Influence of candida pulcherrima patagonian strain on alcoholic fermentation be-
haviour and wine aroma. International Journal of Food Microbiology 138(1-2),
19–25 (2010); PMID: 20116878

24. Sainz, J., Pizarro, F., Ricardo Prez-Correa, J., Agosin, E.: Modeling of yeast
metabolism and process dynamics in batch fermentation. Biotechnology and Bio-
engineering 81(7), 818–828 (2003)

http://sbml.info/Events/Other_Events/SBML_Composition_Workshop_2007

116 R. Assar et al.

25. Santamara, P., Garijo, P., Lpez, R., Tenorio, C., Gutirrez, A.R.: Analysis of yeast
population during spontaneous alcoholic fermentation: Effect of the age of the cellar
and the practice of inoculation. International Journal of Food Microbiology 103(1),
49–56 (2005)

26. Scaglia, G.J.E., Aballay, P.M., Mengual, C.A., Vallejo, M.D., Ortiz, O.A.: Im-
proved phenomenological model for an isothermal winemaking fermentation. Food
Control 20(10), 887–895 (2009)

27. Selgrade, J.F.: Dynamical behavior of a competitive model with genetic variation.
Applied Mathematics Letters 2(1), 49–52 (1989)

28. Shuler, M.L., Kargi, F.: Bioprocess Engineering: Basic Concepts, 1st edn. Prentice
Hall College Div. (November 1991)

29. Subramanian, V., Buck, K.K.S., Block, D.E.: Use of decision tree analysis for deter-
mination of critical enological and viticultural processing parameters in historical
databases. Am. J. Enol. Vitic. 52(3), 175–184 (2001)

30. Teissier, P., Perret, B., Latrille, E., Barillere, J.M., Corrieu, G.: A hybrid recurrent
neural network model for yeast production monitoring and control in a wine base
medium. Journal of Biotechnology 55(3), 157–169 (1997)

31. Toro, M.E., Vazquez, F.: Fermentation behaviour of controlled mixed and sequen-
tial cultures of candida cantarellii and saccharomyces cerevisiae wine yeasts. World
Journal of Microbiology and Biotechnology 18(4), 347–354 (2002)

32. Urtubia, A., Ricardo Prez-Correa, J., Soto, A., Pszczlkowski, P.: Using data mining
techniques to predict industrial wine problem fermentations. Food Control 18(12),
1512–1517 (2007)

33. Vlasides, S., Ferrier, J., Block, D.: Using historical data for bioprocess optimization:
modeling wine characteristics using artificial neural networks and archives process
information. Biotechnology and Bioengineering 73(1), 55–68 (2001)

34. Zott, K., Miot-Sertier, C., Claisse, O., Lonvaud-Funel, A., Masneuf-Pomarede, I.:
Dynamics and diversity of non-Saccharomyces yeasts during the early stages in
winemaking. International Journal of Food Microbiology 125(2), 197–203 (2008);
PMID: 18495281

Computational Modeling

and Verification of Signaling Pathways in Cancer

Haijun Gong1, Paolo Zuliani1, Anvesh Komuravelli1,
James R. Faeder2, and Edmund M. Clarke1

1 Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213, USA

{haijung,pzuliani,anvesh,emc}@cs.cmu.edu
2 Department of Computational Biology, University of Pittsburgh

Pittsburgh, PA 15260, USA
faeder@pitt.edu

Abstract. We propose and analyze a rule-based model of the HMGB1
signaling pathway. The protein HMGB1 can activate a number of regu-
latory networks – the p53, NFκB, Ras and Rb pathways – that control
many physiological processes of the cell. HMGB1 has been recently shown
to be implicated in cancer, inflammation and other diseases. In this pa-
per, we focus on the NFκB pathway and construct a crosstalk model of
the HMGB1-p53-NFκB-Ras-Rb network to investigate how these cou-
plings influence proliferation and apoptosis (programmed cell death) of
cancer cells. We first built a single-cell model of the HMGB1 network us-
ing the rule-based BioNetGen language. Then, we analyzed and verified
qualitative properties of the model by means of simulation and statistical
model checking. For model simulation, we used both ordinary differen-
tial equations and Gillespie’s stochastic simulation algorithm. Statistical
model checking enabled us to verify our model with respect to behav-
ioral properties expressed in temporal logic. Our analysis showed that
HMGB1-activated receptors can generate sustained oscillations of irreg-
ular amplitude for the NFκB, IκB, A20 and p53 proteins. Also, knockout
of A20 can destroy the IκB-NFκB negative feedback loop, leading to the
development of severe inflammation or cancer. Our model also predicted
that the knockout or overexpression of the IκB kinase can influence the
cancer cell’s fate – apoptosis or survival – through the crosstalk of dif-
ferent pathways. Finally, our work shows that computational modeling
and statistical model checking can be effectively combined in the study
of biological signaling pathways.

Keywords: Model Checking, cancer, HMGB1, verification.

1 Introduction

Computational modeling is increasingly used to gain insights into the behavior of
complex biological systems, such as signaling pathways. Moreover, powerful veri-
fication methods (e.g., model checking [8]) from the field of hardware verification

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 117–135, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

118 H. Gong et al.

have been recently applied to the analysis of biological system models. In this
paper we build a single-cell model of the HMGB1 pathway using the rule-based
BioNetGen language [21], and use statistical model checking to formally verify
interesting properties of our model. We argue that computational modeling and
statistical model checking can be combined into an effective tool for analyzing
the emergent behavior of complex signaling pathways. In particular, the use of
statistical model checking enables us to tackle large systems in a scalable way.

The High-Mobility Group Box-1 (HMGB1) protein is released from necrotic
cells or secreted by activated macrophages engulfing apoptotic cells [12]. Recent
studies have shown that HMGB1 and its receptors, including the Receptor for
Advanced Glycation End products (RAGEs) and Toll-Like Receptors (TLRs),
are implicated in cancer, inflammation and other diseases [10,41]. Elevated ex-
pression of HMGB1 occurs in various types of tumors, including colon, pancre-
atic, and breast cancer [12,33,44]. HMGB1 can activate a number of regulatory
networks – the PI3K/AKT, NFκB, and Ras pathways – which control many
physiological processes including cell cycle arrest, apoptosis and proliferation.
The cell cycle is strictly regulated and controlled by a number of signaling path-
ways that ensure cell proliferation occurs only when it is required by the organism
as a whole [19]. Overexpression of HMGB1 can continuously activate cell-growth
signaling pathways even if there are protein mutations or DNA damage, possibly
leading to the occurrence of cancer in the future. Recent in vitro studies with
pancreatic cancer cells [26] have shown that the targeted knockout or inhibition
of HMGB1 and its receptor RAGE can increase apoptosis and suppress cancer
cell growth. This phenomenon has also been observed with lung cancer and other
types of cancer cells [4,12].

Model Checking [7,8] is one of the most widely used techniques for the au-
tomated verification and analysis of hardware and software systems. System
models are usually expressed as state-transition diagrams and a temporal logic
is used to describe the desired properties (specifications) of system executions.
A typical property stated in temporal logic is G(grant req → F ack), meaning
that, it is always (G = globally) true that a grant request eventually (F = future)
triggers an acknowledgment. One important aspect of Model Checking is that
it can be performed algorithmically – user intervention is limited to providing
a system model and a property to check. Because biological systems are often
probabilistic in nature, we make use of statistical model checking, a technique
tailored to the verification of stochastic systems (see Section 2).

In [18], we proposed the first model of HMGB1 signal transduction, based
on known signaling pathway studies [6,38,47]. The model was used to investi-
gate the importance of HMGB1 in tumorigenesis. In this work, we propose a
single-cell model of the HMGB1 signaling pathway, which includes the NFκB
pathway and a crosstalk model of the HMGB1-p53-NFκB-Ras-Rb network. The
model is described by means of the rule-based BioNetGen language [21]. We
analyze and verify qualitative properties of the model using simulation and
statistical model checking. For model simulation, we use both ordinary differ-
ential equations (ODEs) and Gillespie’s stochastic simulation algorithm [15].

Computational Modeling in Cancer 119

Statistical model checking enables us to verify our model with respect to behav-
ioral properties expressed in temporal logic.

Our baseline simulations show that HMGB1-activated receptors can generate
sustained oscillations of irregular amplitude for the NFκB, IκB, IKK and A20
proteins. However, mutation or knockout of the A20 protein can destroy the IκB-
NFκB negative feedback loop, leading to the development of severe inflammation
or cancer. Further analysis shows that overexpression of HMGB1 can up-regulate
the oncoproteins NFκB and Cyclin E (which regulate cell proliferation), but
down-regulate the tumor-suppressor protein p53 (which regulates cell apoptosis).
Also, overexpression of NFκB can increase the expression level of both Cyclin E
and p53. Our model also predicts that the knockout or overexpression of the IκB
kinase (IKK) can influence the cancer cell’s fate – apoptosis or survival – through
the crosstalk of different pathways. To the best of the authors’ knowledge, this
work is the first attempt to integrate the NFκB, p53, Ras, and Rb signaling
pathways activated by HMGB1 in one rule-based model.

2 Statistical Model Checking

In the past few years, there has been growing interest in the formal verification
of stochastic systems, and biological systems in particular [25,28,39], by means
of model checking techniques. The verification problem is to decide whether a
stochastic model satisfies a temporal logic property with a probability greater
than or equal to a certain threshold. To express properties, we use a temporal
logic in which the temporal operators are equipped with bounds. For example, the
property “p53 will always stay below 30 in the next 80 time units” is written as
G80(p53 < 30). We ask whether our stochastic system M satisfies that formula
with a probability greater than or equal to a fixed threshold (say 0.99), and
we write M |= Pr�0.99[G

80(p53 < 30)]. Such questions can be answered by
Statistical Model Checking [50], the technique we use for verifying BioNetGen
models simulated by Gillespie’s algorithm.

Statistical model checking treats the verification problem as a statistical in-
ference problem and solves it by randomized sampling of traces (simulations)
from the model. In particular, the inference problem can be solved by means of
hypothesis testing or estimation. The former amounts to deciding between two
hypotheses – M |= Pr�θ[φ] versus M |= Pr<θ[φ], where θ is a given probability
threshold and φ is a temporal logic property. The latter, instead, approximates
probabilistically (that is, it computes with high probability an estimate close to)
the true probability p that φ holds, and then compares that estimate with θ. In
both approaches, sampled traces are model checked individually to determine
whether property φ holds, and the number of satisfying traces is used by the
hypothesis testing (or estimation) procedure to decide between p � θ and p < θ.
(In the case of estimation, one also has an estimate that is close to p with high
probability.) Note that statistical model checking cannot guarantee a correct
answer to the verification problem. However, the probability of giving a wrong
answer can be arbitrarily bounded by the user.

120 H. Gong et al.

In the next section we describe the temporal logic used in this work, Bounded
Linear Temporal Logic (BLTL) [25,51].

2.1 Bounded Linear Temporal Logic

Let SV be a finite set of real-valued variables. An atomic proposition AP is a
boolean predicate of the form e1 ∼ e2, where e1 and e2 are arithmethic expres-
sions over variables in SV , and ∼ is either ≥, ≤, or =. A BLTL property is
built over atomic propositions using boolean connectives and bounded temporal
operators. The syntax of the logic is the following:

φ ::= AP | φ1 ∨ φ2 | φ1 ∧ φ2 | ¬φ1 | φ1U
tφ2.

The bounded until operator φ1U
tφ2 requires that, within time t, φ2 will be

true and φ1 will hold until then. Bounded versions of the F and G operators
can be easily defined: Ftφ = true Utφ requires φ to hold true within time t;
Gtφ = ¬Ft¬φ requires φ to hold true up to time t.

The semantics of BLTL is defined with respect to traces (or executions) of a
system. In our case, a trace will be the output of a BioNetGen model simulated
by Gillespie’s algorithm. Formally, a trace is a sequence of time-stamped state
transitions of the form σ = (s0, t0), (s1, t1), ..., where (si, ti) denotes that the
system moved to state si+1 after having sojourned for ti time units in state si.
The fact that a trace σ satisfies the BLTL property φ is written σ |= φ. We
denote the trace suffix starting at step k by σk.

We have the following semantics of BLTL:
1. Note that the semantics of BLTL is defined over infinite traces, while of

course any simulation trace must be finite in length.
2. It can be shown that traces of an appropriate (finite) length are sufficient to

decide BLTL properties.

The interested reader can find details elsewhere [51].

2.2 Bayesian Statistical Model Checking

We recently introduced sequential Bayesian hypothesis testing and estimation
techniques and applied them to the verification of signaling pathways and other
stochastic systems [25,51]. Sequential sampling means that the number of sam-
pled traces is not fixed a priori, but it is instead determined at “run-time,”
depending on the evidence gathered by the samples seen so far. This often leads
to a significantly smaller number of sampled traces. Both approaches are based
on Bayes’ theorem, which enables us to use prior information about the model
being verified, where available. We now briefly describe both techniques.

Bayesian Hypothesis Testing. The hypothesis test is based on the Bayes Factor,
which is the likelihood ratio of the sampled data with respect to the two hypothe-
ses. For statistical model checking, the hypotheses being tested are H0 : p � θ
and H1 : p < θ, where p is the (unknown) probability that our model satisfies
a given property, and θ is a probability threshold. Formally, the Bayes Factor

Computational Modeling in Cancer 121

of data d and hypotheses H0 and H1 is B = Pr(d|H0)
Pr(d|H1)

. Therefore, B can be

interpreted as a measure of evidence (given by the data d) in favor of H0. Now,
fix an evidence threshold T > 1. Our algorithm iteratively draws independent
and identically distributed (iid) sample traces σ1, σ2, ..., and checks whether they
satisfy φ. After each trace, the algorithm computes the Bayes Factor B to check
if it has obtained conclusive evidence. The algorithm accepts H0 if B > T , and
rejects H0 (accepting H1) if B < 1

T . Otherwise (if 1
T � B � T), it continues

drawing iid samples. It can be shown that when the algorithm terminates, the
probability of a wrong answer is bounded above by 1

T . The algorithm is shown
below in Algorithm 1 – full details can be found elsewhere [51].

Algorithm 1. Statistical Model Checking by Bayesian Hypothesis Testing

Require: BLTL Property φ, Probability threshold θ ∈ (0, 1), Threshold T > 1, Prior
density g for unknown parameter p

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying φ so far}
loop

σ := draw a sample trace of the system (iid)
n := n+ 1
if σ |= φ then

x := x+ 1
end if
B := BayesFactor(n, x) {compute the Bayes Factor}
if (B > T) then

return H0 accepted
else if (B < 1

T
) then

return H1 accepted
end if

end loop

Bayesian Interval Estimation. Recall that in estimation, we are interested in
computing a value (an estimate) which is close to p with high probability, the
true probability that the model satisfies the property. The estimate is usually
in the form of a confidence interval – an interval in [0, 1] which contains p with
high probability. Our estimation method follows directly from Bayes’ theorem.
Given a prior distribution over p and sampled data, Bayes’ theorem enables us
to obtain the posterior distribution of p (i.e., the distribution of p given the
data sampled and the prior). This means that we can estimate p with the mean
of the posterior distribution. Furthermore, by integrating the posterior over a
suitably chosen interval, we can compute a Bayes interval estimate with any given
confidence coefficient. Fix a confidence c ∈ (12 , 1) and a half-width δ ∈ (0, 1

2). Our
algorithm iteratively draws iid traces, checks whether they satisfy φ, and builds
an interval of total width 2δ, centered on the posterior mean. If the integral of
the posterior over this interval is greater than c, the algorithm stops; otherwise,
it continues sampling. The algorithm is given in Algorithm 2. Again, full details
are given in [51].

122 H. Gong et al.

Algorithm 2. Statistical Model Checking by Bayesian Interval Estimates

Require: BLTL Property φ, half-interval size δ ∈ (0, 1
2
), interval coefficient c ∈ (1

2
, 1),

Prior Beta distribution with parameters α, β

n := 0 {number of traces drawn so far}
x := 0 {number of traces satisfying φ so far}
repeat

σ := draw a sample trace of the system (iid)
n := n+ 1
if σ |= φ then

x := x+ 1
end if
p̂ := (x+ α)/(n+ α+ β) {compute posterior mean}
(t0, t1) := (p̂− δ, p̂+ δ) {compute interval estimate}
if t1 > 1 then

(t0, t1) := (1− 2 · δ, 1)
else if t0 < 0 then

(t0, t1) := (0, 2 · δ)
end if
{compute posterior probability of p ∈ (t0, t1)}
γ := PosteriorProb(t0, t1)

until (γ � c)
return (t0, t1), p̂

3 Crosstalk Model of HMGB1

Apoptosis and cell proliferation are two important processes in cancer and are
respectively regulated by two proteins – p53 and Cyclin E – acting in two differ-
ent signaling pathways. The protein p53 is a tumor suppressor whose activation
can lead to cell cycle arrest, DNA repair or apoptosis. Cyclin E is a cell cycle reg-
ulatory protein that regulates the G1-S phase transition during cell proliferation.
The behavior of these two signaling pathways can be influenced by crosstalk or
coupling with other pathways and proteins.

3.1 Motivations

Experimental studies have shown that HMGB1 can activate three fundamental
downstream signaling pathways: the PI3K/AKT, RAS-ERK and NFκB path-
ways. These in turn lead to the activation of two other signaling pathways: the
p53-MDM2 and Rb-E2F pathways, which regulate apoptosis and cell prolifera-
tion, respectively. In [18], we proposed the first computational model for HMGB1
signal transduction (also called the NFκB-knockout model). The model included
the p53-MDM2, Ras-ERK, and Rb-E2F pathways and was able to explain qual-
itatively some existing experimental phenomena in tumorigenesis. One of our
goals in this work is to integrate the NFκB signaling pathway into our previous
NFκB-knockout model in order to explain recent results linking overexpression
of HMGB1 with a decrease of apoptosis (and increased cancer cell survival).

Computational Modeling in Cancer 123

The NFκB protein is involved in a variety of cellular processes, including
inflammation, cell proliferation and apoptosis. Studies have shown that NFκB is
also a transcription factor for the pro-apoptotic gene p53 [48], for anti-apoptotic
genes, including Bcl-XL [23] and for the cell-cycle regulatory proteins Myc and
Cyclin D [20]. We aim to understand how the NFκB pathway influences the
HMGB1 signal transduction pathway.

Recent experiments with mammalian cells [22,36] have found oscillations of
NFκB, activated by tumor necrosis factor (TNF), with a time period in the
order of hours. Several mathematical models based on ODEs were constructed
to study the NFκB system [22,27,32]. Since biological systems are intrinsically
stochastic, our goal is to study the oscillations of NFκB’s expression level in the
nucleus and compare the stochastic simulation results with the ODEs results.

Finally, the NFκB pathway is regulated by many proteins including A20,
IKK and NFκB. The overexpression or mutation of IKK and NFκB [5,11] occur
frequently in many cancer types. We aim to investigate how these proteins’
mutation or overexpression changes the cell’s fate – apoptosis or survival.

3.2 Model Formulation

In Fig. 1, we illustrate the crosstalk model of the HMGB1 signaling pathway. It
includes 44 molecular species (nodes), 82 chemical reactions, and four coupling
signaling pathways: the RAS-ERK, Rb-E2F, IKK-NFκB and p53-MDM2 path-
ways. We now briefly describe these signaling pathways and their interplay with
the NFκB network. We denote activation (or promotion) by → and inhibition
(or repression) by �.

Fig. 1. Schematic view of HMGB1 signal transduction. Blue nodes represent tumor
suppressor proteins; red nodes represent oncoproteins/lipids; brown nodes represent
protein complexes. Solid lines with arrows denote protein transcription, degradation or
changes of molecular species; dashed lines with arrows denote activation processes.

124 H. Gong et al.

The p53-MDM2 pathway is regulated by a negative feedback loop: TLR →
PI3K→ PIP3→ AKT → MDM2 � p53 → MDM2, and a positive feedback loop:
p53 → PTEN � PIP3 → AKT → MDM2 � p53 → Apoptosis [29]. The protein
PI3K is activated by the toll-like receptors (TLR2/4) [45] and can phosphorylate
the lipid PIP2 to PIP3, leading to the phosphorylation of AKT. The oncoprotein
MDM2 can only reside in the cytoplasm before it is phosphorylated by AKT.
The phosphorylated MDM2 can enter the nucleus to bind with p53, inhibit p53’s
transcriptional activity and target it for degradation. The protein p53 can also
induce the transcription of another tumor suppressor protein, PTEN, which can
hydrolyze PIP3 to PIP2 and inhibit the phosphorylation of MDM2.

The RAS-ERK pathway is RAGE→ RAS→ RAF→MEK→ ERK. Upon ac-
tivation by HMGB1, RAGE will activate the RAS proteins, leading to a cascade
of events including the activation and phosphorylation of the RAF, MEK and
ERK1/2 proteins. The mutated K-RAS protein, a member of the RAS protein
family, can continuously activate the downstream cell cycle signaling pathways.
The activated ERK can enter the nucleus and phosphorylate transcription fac-
tors which induce the expression of cell cycle regulatory proteins, such as Cyclin
D and Myc (see Fig. 1).

The Rb-E2F pathway is Cyclin D � Rb � E2F→ Cyclin E � Rb. This pathway
plays an important role in the regulation of the G1-S phase transition in the cell
cycle. In particular, E2F is a transcription factor that regulates the expression
of a set of cell-cycle regulatory genes [49]. In resting cells, E2F’s transcriptional
activity is repressed by the unphosphorylated Rb, a tumor suppressor protein,
through the formation of an Rb-E2F complex. The oncoproteins Cyclin D and
Myc can phosphorylate the Rb protein, which can then activate E2F. In turn,
E2F activates the transcription of Cyclin E and Cyclin-dependent protein kinase
2 (CDK2), which promotes cell-cycle progression from G1 to S phase. Cyclin E
can also phosphorylate and inhibit Rb, leading to a forward positive feedback
loop [42,37]. The protein INK4A is another important tumor suppressor that
can repress the activity of Cyclin D-CDK4/6 and inhibit E2F’s transcriptional
activity and cell cycle progression. It is known that INK4A is mutated in over
90% of pancreatic cancers [3].

The NFκB pathway is regulated by two negative feedback loops: TLR → IKK
� IκB � NFκB → IκB � NFκB, and NFκB → A20 � IKK � IκB � NFκB. In
the resting wild-type cells, IκB resides only in the cytoplasm where it is bound
to NFκB. Upon being activated by HMGB1, TLR2/4 can signal via MyD88,
IRAKs and TRAF to activate and transform IκB kinase (IKK) into its active
form IKKa, leading to the phosphorylation, ubiquitination and degradation of
IκB. The free NFκB rapidly enters the nucleus to bind to specific κB sites in
the A20 and IκB promoters, activating their expression. The newly synthesized
IκB enters the nucleus to bind to NFκB and takes it out into the cytoplasm to
inhibit its transcriptional activity. Moreover, the newly synthesized A20 can also
inhibit IKK’s activity, leading to inhibition of NFκB.

Besides the main signal transduction, the interplay between these four signal-
ing pathways can influence the cell’s fate. As shown in Fig. 1, RAS can activate

Computational Modeling in Cancer 125

the PI3K-AKT signaling pathway; ERK and AKT can activate IKK in the NFκB
pathway. The tumor suppressor protein ARF, activated by the overexpressed on-
coprotein E2F, can bind to MDM2 to promote its degradation and stabilize p53’s
expression level, leading to apoptosis. Moreover, it has been demonstrated [46]
that the p53-dependent tumor suppressor proteins p21 and FBXW7 can restrain
the activity of Cyclin D-CDK4/6 and Cyclin E-CDK2 (only p21 is shown in Fig. 1
to represent both p21 and FBXW7’s contribution). Mutations of RAS, ARF, P21
and FBXW7 have been found inmany cancers [3,9]. NFκB is a transcription factor
for p53, Myc and Cyclin D, regulating cell proliferation and apoptosis. The over-
expression of NFκB occurs in approximately 80% of lung cancer cases [43], and it
is also common in pancreatic cancer [5]. Our model and simulation will investigate
how these mutations and overexpressions affect the cell’s fate.

3.3 Simulation Models

Similar to the model in our previous work [18], in this model (see Fig. 1), all sub-
strates are expressed in terms of the number of molecules. A protein with the
subscript “a”, “p” or “t” corresponds respectively to active form, phosphorylated
form or mRNA transcript of the protein. For example:

– AKT (AKTp) - unphosphorylated (phosphorylated) AKT.
– RAS (RASa) - inactive (active) RAS.
– IκBt - mRNA transcript of IκB.

We sometimes use CD to stand for the Cyclin D-CDK4/6 complex, CE for the Cy-
clin E-CDK2 complex, RE for the Rb-E2F complex, and IκNF for the (IκB|NFκB)
or (IκB-NFκB) dimer. We also assume that the total number of active and inac-
tive forms of the RAGE, TLR, PI3K, IKK, PIP, AKT, RAS, RAF, MEK, ERK
and NFκB molecules is constant [18]. For example, AKT + AKTp = AKTtot,
PIP2 + PIP3 = PIPtot and NFκB + NFκBn + (IκB|NFκB) = NFκBtot.

We have formulated a reactionmodel corresponding to the reactions illustrated
in Fig. 1 in the form of rules specified in the BioNetGen language [21]. We use
Hill functions to describe the rate laws governing the transcription of some pro-
teins, including PTEN, MDM2, CyclinD (CD), Myc, E2F, CyclinE (CE), A20
and IκB, and use mass action rules for other reactions. We use both ODEs and
Gillespie’s stochastic simulation algorithm (SSA) [15] to simulate the same model
with BioNetGen. Stochastic simulation is important because when the number of
molecules involved in the reactions is small, stochasticity and discretization effects
become more prominent [17,16,31]. The ODEs for the NFκB-knockout HMGB1
model have been provided in our previous work [18]. The ODEs for the HMGB1-
p53-Ras-NFκB-Rb crosstalk model are listed in the online supplementary materi-
als [2]. We now give an example to illustrate how to convert an ODE into BioNet-
Gen rules. The ODE for the phosphorylated AKT – AKTp is

d

dt
AKTp(t) = k4PIP3(t)AKT (t)− d4AKTp(t),

126 H. Gong et al.

where the first term describes the phosphorylation of AKT, activated by PIP3.
The second term describes AKTp dephosphorylation. In BioNetGen, the molecule
type AKT (a ∼ U ∼ p) has a component named a with state label U (unphospho-
rylated) and p (phosphorylated). The BioNetGen rules for the ODE above are:

AKT (a ∼ U) + PIP3 → AKT (a ∼ p) + PIP3 k4

AKT (a ∼ p) → AKT (a ∼ U) d4

where k4 and d4 are the constants for AKT phosphorylation and dephosphoryla-
tion rates, respectively. The interested reader can refer to the BioNetGen tutorial
[13] for details. The BioNetGen code of ourmodel is available online [1]. Themodel
contains a large number of undetermined parameters which are difficult to esti-
mate from available experimental data or from the literature. We emphasize that
in this work, the values for several undetermined parameters listed in [2] have been
chosen in order to produce a qualitative agreement with previous experiments.

4 Simulation Results

To validate the properties of the HMGB1 signal transduction model, we have con-
ducted a series of deterministic and stochastic simulations and compared our re-
sults with known experimental facts. In our model, the p53-MDM2 and NFκB
signaling pathways are regulated by two feedback loops. Recent experimental re-
sults have shown that p53’s and MDM2p’s expression levels undergo oscillations
in response to stress signals. For example, oscillations lasted more than 72 hours
after γ irradiation in Geva-Zatorsky et al.’s experiment [14]. Also, Hoffmann’s ex-
periment found oscillations of NFκB in response to TNF stimulation, with four
equally spaced peaks over the course of the 6-hour experiment [22]. We first con-
ducted baseline simulations for several important proteins involved in the HMGB1
signaling pathway. In our simulations, we set the initial value for the number of
HMGB1molecules to be 102; the nonzero initial values for other proteins are listed
in Table 1. The input parameters and reaction descriptions are listed in the online
supplementary materials [2].

Table 1. Initial values for the proteins in the crosstalk model of HMGB1

Proteins TLR PI3K PIP2 AKT MDM2 MDM2p p53 IκB-NFκB

of Mol. 103 105 105 105 104 2× 104 2× 104 105

Proteins RAGE RAS RAF MEK ERK RE IKK

of Mol. 103 104 104 104 104 104 105

In Fig. 2, we give the dynamic of the NFκB, IKK, IκB-NFκB complex, IκB,
and A20 proteins using both stochastic simulation and ODEs. In Fig. 2 (A,D),
we see that IKK, upon being stimulated by HMGB1, is activated immediately by
the TLR, AKT and ERK proteins. This leads to the phosphorylation of IκB iso-
form (Fig. 2 B,E), which in turn allows NFκB to translocate into the nucleus.

Computational Modeling in Cancer 127

0 500 1000
0

1

2

3

4

5

6

7
x 10

4

Nu
m

be
r o

f M
ole

cu
les

A:SSA

IKKa
NFκ B

0 500 1000
0

2

4

6

8

10
x 10

4 B:SSA

Iκ B−NFκ B
Iκ Bp

0 500 1000
0

2000

4000

6000

8000

10000

12000

C:SSA

A20
Iκ B

0 500 1000
0

1

2

3

4

5

6

7
x 10

4

Time (min)

Nu
m

be
r o

f M
ole

cu
les

D:ODE

IKKa
NFκ B

0 500 1000
0

2

4

6

8

10
x 10

4

Time (min)

E:ODE

Iκ B−NFκ B
Iκ Bp

0 500 1000
0

2000

4000

6000

8000

10000

12000

Time (min)

F:ODE

A20
Iκ B

Fig. 2. Number of IKKa, NFκB (A,D), IκBp, IκB-NFκB complex (B,E), IκB and A20
(C,F) molecules versus time for baseline simulations with SSA(A-C) and ODE(D-F)
models

There, NFκB binds to the DNA and induces the transcription of the IκB and
A20 inhibitor genes (Fig. 2 C,F). The synthesized IκB can enter the nucleus and
recapture NFκB back into the cytoplasm to form the IκB-NFκB complex. How-
ever, IκB is continuously phosphorylated and degraded, resulting in the contin-
ued translocation of NFκB. The stochastic simulation of HMGB1-induced NFκB
oscillation depicted in Fig. 2A fits very well with Nelson’s experimental results
[36] – the oscillation of NFκB continued for more than 20 hours after continuous
TNFα stimulation, damping slowly with a period of 60-100 minutes. However, the
ODEs simulation results in Fig. 2D show no NFκB oscillation after 500 minutes,
when the cell reaches the resting state. The phosphorylation of IκB leads to the
decrease of the IκB-NFκB complex in Fig. 2(B,E). The A20 protein can inactivate
IKK to stabilize the IκB-NFκB complex. The stochastic simulation shows contin-
uous oscillation (Fig. 2C) in 20 hours, but no oscillation is present in the ODE
simulation (Fig. 2F) after 400 minutes. This discrepancy shows that in modeling
signal transduction, it is important to capture accurately both the discretization
and stochasticity of chemical reactions. Similar stochastic oscillations of p53 and
MDM2 proteins are shown in the online supplementary materials [2].

The A20 protein plays an important role in the regulation of the NFκB network.
It is known that A20 knockout can result in severe inflammation and tissue dam-
age in multiple organs [24]. As Fig. 3 shows, when A20 is knocked out, over 90% of
IKK is activated, which can then phosphorylate and ubiquitinate IκB. This leads
to the disassembly of the IκB-NFκB dimer and liberation of NFκB, which rapidly
translocates into the nucleus. TheA20-knockout results in Fig. 3 demonstrate that
the oscillation of NFκB dampens very quickly, with a small period compared to
Fig. 2A. This phenomenon is consistent with Mengel et al.’s discovery that A20

128 H. Gong et al.

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (min)

Nu
m

be
r o

f M
ol

ec
ul

es

A: A20 Knockout (SSA)

IKKa
NFκ B
Iκ B−NFκ B

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8

9

10
x 10

4

Time (min)

B: A20 Knockout (ODE)

IKKa
NFκ B
Iκ B−NFκ B

Fig. 3. Number of IKKa, NFκB, IκB-NFκB molecules versus time in the A20-knockout
model

can not only dampen the oscillations, but also control the oscillation period of
NFκB [35]. So, the loss of A20 can destroy the IκB-NFκB negative feedback loop.
The precise role of the A20 negative feedback remains to be elucidated in future
experiments.

A number of studies have found that overexpression of HMGB1 and its re-
ceptors is associated with cancer [12,33]. Our recent NFκB-knockout HMGB1
model [18] qualitatively explained the experimental result that overexpression of
HMGB1 decreases apoptosis and promotes DNA replication and proliferation in
cancer cells. We now ask the following question: How do the expression levels
of HMGB1 and other proteins influence the cell’s fate when the NFκB signaling
pathway is integrated?

0 1 2 3 4 5 6
0.95

1

1.05

1.1
x 10

4

log
10

HMGB1

N
um

be
r o

f M
ol

ec
ul

es

A: SSA

CyclinE

0 1 2 3 4 5 6
2

3

4

5

6

7

8

9

x 10
4

log
10

HMGB1

B: SSA

p53

NFκ B

Fig. 4. Overexpression of HMGB1 leads to the increase of DNA replication proteins
Cyclin E and Nuclear Factor NFκB and the decrease of p53 with the SSA model

In Fig. 4, we varied the level of HMGB1 to determine how it affects cell be-
havior. We increased the number of HMGB1 molecules from 1 to 106, and Cyclin
E’s expression level at 300 minutes, and the first maximum of p53 and NFκB in

Computational Modeling in Cancer 129

phase G1 were measured using stochastic simulation. All the experiments were
repeated 10 times per value to compute the mean and standard errors. In Fig. 4,
we see that an increase of HMGB1’s initial value can increase the number of Cy-
clin E and NFκB molecules, and decrease p53’s expression level. With respect to
our previous model [18], we see that the expression level of Cyclin E and p53 are
higher, since NFκB can induce the transcription of p53, Cyclin D and Myc, which
can activate the expression of Cyclin E during cell cycle progression. Therefore,
the knockout of HMGB1 and its receptors can inhibit the expression of NFκB and
Cyclin E, leading to cell cycle arrest or inhibition of cancer cell proliferation.

The expression of the IKK protein is elevated in many cancer cells [11]. Since
IKK regulates NFκB’s DNA-binding activity, we investigated how the dynamic
of IKK influences the expression levels of the cell-cycle regulatory proteins Cyclin
E and NFκB. We increased the number of IKK molecules and measured Cyclin
E’s expression level at 300 minutes. As for NFκB, we measured two values: the
first maximum and the expression level at 300 minutes. In Fig. 5(A,B) we see that
with the increase of IKK’s expression level, Cyclin E and NFκB’s concentrations
increase quickly, since more active IKK can promote NFκB’s DNA-binding and
transcriptional activity, accelerating the progression of cell proliferation or inflam-
mation. It has been observed that NFκB plays a key role in the development and
progression of cancer, including proliferation, migration and apoptosis [5]. Aber-
rant or constitutive NFκB activation has been detected in many cancers [5,43].
Furthermore, overexpression of NFκB is very common in pancreatic cancer [5].
In our model, we set the initial value for NFκB to 0, so that NFκB is only found
in the form of the transient IκB-NFκB dimer. In Fig. 5C, we increased the ini-
tial value of IκB-NFκB dimers and measured the pro-apoptotic protein p53 and
cell-cycle regulatory protein Cyclin E’s expression level. The results demonstrate
that the overexpression of NFκB can increase Cyclin E’s concentration, thereby
promoting cancer cell proliferation. However, for the pro-apoptotic protein p53,

0 2 4 6

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

log
10

IKK

N
um

be
r o

f M
ol

ec
ul

es

A: SSA

Cyclin E

0 2 4 6

1

2

3

4

5

6

7

8

9

x 10
4

log
10

IKK

B: SSA

NFκ B(1st Spike)

NFκ B(300 min)

0 2 4 6

1

2

3

4

5

6

7

8
x 10

4

log
10

(Iκ B−NFκ B)

C: SSA

p53(1st Spike)
p53(300 min)
Cyclin E

Fig. 5. Overexpression of IKK leads to the increase of Cyclin E and NFκB (A-B); over-
expression of NFκB increases Cyclin E and p53’s concentration (C)

130 H. Gong et al.

the simulations show that the amplitude of p53’s first maximum increases sharply
when the number of NFκB-IκBdimers is over 104. The expression level at 300min-
utes (in the steady state) is almost stable even when the number of NFκB-IκB
dimers reach 106. This is because p53’s expression level is regulated by its nega-
tive regulator MDM2 and stays at a low level in the resting state. Fig. 5 explains
the experimental discovery that the overexpression of IKK and NFκB decreases
apoptosis and promotes DNA replication and proliferation in cancer cells [5,11]
(though NFκB could also induce the transcription of p53).

The results visualized in Fig. 4 and Fig. 5 provide some ways to inhibit tumor
cell proliferation and induce tumor cell apoptosis through inhibition or deacti-
vation of the HMGB1 and NFκB signaling pathways. This can be achieved, for
example, via the inhibition of IKK and NFκB’s transcription activity on Cyclin
D and Myc. Recently, the targeting of IKK and IKK-related kinases has become
a popular avenue for therapeutic interventions in cancer [30]. Inhibitor drugs for
NFκB’s upstream protein RAS [34,40], and downstream protein CDK, have also
been developed to inhibit tumor growth.

5 Verification of the HMBG1 Pathway

We applied statistical model checking to formally verify several important prop-
erties related to NFκB. We first applied the Bayesian Hypothesis Testing method
to verify the properties in the stochastic HMGB1 model. We tested whether our
model satisfied a given BLTL property with probability p � 0.9. We set the
Bayesian Hypothesis Testing threshold T = 1000, so the probability of a wrong
answer was smaller than 10−3.
Property 1: It is known that NFκB in the nucleus increases quickly after IκB is
phosphorylated by IKK, which is activated by HMGB1 after approximately 30-60
minutes. Let R = NFκBn

NFκBtot
be the fraction of NFκB molecules in the nucleus. We

verified the following property

Pr�0.9[F
t(R � a)],

which informally means that the fraction of NFκB molecules in the nucleus will
eventually be greater than a threshold value a within t minutes. We verified this
property with various values of a and t. The results are shown in Table 2.

Table 2. Verification of Property 1 (HMGB1 = 102)

Property: Pr�0.9[F
t(NFκBn/NFκBtot � a)]

t(min) a # of Samples # of Successes Result Time (s)

30 0.4 22 22 True 21.30

30 0.45 92 87 True 92.86

30 0.5 289 45 False 537.74

60 0.65 22 22 True 26.76

Property 2: The IκB and A20 proteins, which are NFκB’s transcription targets,
inhibit the expression of NFκB, leading to the oscillation of NFκB’s expression
level. We verified the property

Computational Modeling in Cancer 131

Pr�0.9[F
t(R � 0.65 & Ft(R � 0.20 & Ft(R � 0.20 & Ft(R � 0.20))))] .

That is, the fraction of NFκB molecules in the nucleus is oscillating: R will even-
tually be greater than 65% within t minutes, it will then fall below 20% within
another t minutes, will increase over 20% within the following t minutes, and will
finally decrease to 20% within another t minutes. We verified this property with
various values of t and HMGB1, and the results are shown in Table 3.

Table 3. Verification of Property 2

Property: Pr�0.9[F
t(R � 0.65 & Ft(R � 0.20 & Ft(R � 0.20 & Ft(R � 0.20))))]

HMGB1 t(min) # of Samples # of Successes Result Time (s)

102 45 13 1 False 76.77

102 60 22 22 True 111.76

102 75 104 98 True 728.65

105 30 4 0 False 5.76

Property 3: A large proportion of PI3K, RAS and IKK molecules can be acti-
vated when the overexpressedHMGB1 binds to RAGE and TLRs. We verified the
following property

Pr�0.9[F
tG180(PI3Ka/PI3Ktot>0.9&RASp/RAStot>0.8 & IKKa/IKKtot > 0.6)],

which means that 90% of PI3K, 80% of RAS and 60% of IKK will be activated
within t minutes, and they will always stay above these values during the next 3
hours. This property was tested with HMGB1 overexpressed (105) and for various
values of t given in Table 4.

Table 4. Verification of Property 3 and 4

Property 3 Property 4

t(min) Samples Successes Result Time (s) IKK Samples Successes Result Time (s)

90 9 0 False 21.27 105 22 22 True 547.52

110 38 37 True 362.19 2× 104 9 2 False 55.86

120 22 22 True 214.38 102 4 0 False 16.89

Property 4: The overexpression of IKK can promote the translocation of NFκB
into the nucleus, induce the transcription of protein Cyclin D and Myc and lead
to the overexpression of Cyclin E. We verified the property

Pr�0.9[F
300G300(CyclinE >= 10, 000)].

The results are presented in Table 4.
We also used the Bayesian interval estimation algorithm to perform a more ac-

curate study of several temporal properties. In Table 5, we report the estimates

132 H. Gong et al.

for the probability that the HMGB1-NFκB model satisfies three temporal logic
properties. We ran the tests with uniform prior and half-interval size δ = 0.01
and coverage probability c = 0.9. We can see from the computation time of the
tables that statistical model checking is feasible even with large reaction networks,
such as the one under study.

Table 5. Bayesian Estimation of Temporal Logic Properties

IKK Property Posterior Mean # of Samples Time (s)

105 [F30(NFκBn/NFκBtot � 0.45)] 0.9646 903 464

105 [F60(NFκBn/NFκBtot � 0.65 &
F60(NFκBn/NFκBtot � 0.2))] 0.9363 689 1783

102 [F300G300(CyclinE >= 10, 000)] 0.0087 113 252.83

6 Discussion

This paper is the first attempt to integrate the NFκB signaling pathway with the
p53-MDM2 and Rb-E2F pathways to study HMGB1 signal transduction at the
single cell level. The NFκB pathway is important because it regulates the tran-
scription of many pro-apoptotic and anti-apoptotic proteins. Several experiments
were simulated using ODEs and Gillespie’s algorithm under a range of conditions,
using the BioNetGen language and simulator. We used statistical model checking
to formally and automatically validate our model with respect to a selection of
temporal properties. Model validation is performed efficiently and in a scalable
way, thereby promising to be feasible even for larger BioNetGen models.

Our stochastic simulations show that HMGB1-activated receptors can generate
sustained oscillations of irregular amplitude for several proteins including NFκB,
IKK and p53. These results are qualitatively confirmed by experiments on p53 [14]
and NFκB [36]. The simulations also demonstrate a dose-dependent p53, Cyclin
E and NFκB response curve to an increase in HMGB1 stimulus, which is qual-
itatively consistent with experimental observations in cancer studies [26,44]. In
particular, overexpression of HMGB1 can promote the expression of the cell cycle
regulatory proteins Cyclin E and NFκB. It can also inhibit the pro-apoptotic p53
protein, which can lead to increased cancer cell survival and decreased apoptosis.
We also investigated how the mutation or knockout of the IKK, A20 and NFκB
proteins influence the fate of cancer cells.

Moreover, understanding of HMGB1 at the mechanistic level is still not clear,
and reaction rates for some proteins interactions in the four signaling pathways
have not been measured by experiments. We have also made some simplifications
and assumption in our model. For example, the NFκB protein complex is com-
posed of RelA(p65), RelB, cRel and NFκB1(p50), but we neglected the forma-
tion of the NFκB complex in our HMGB1 model in order to make the model
relatively simple.

Our current HMGB1-Ras-p53-NFκB-Rb crosstalk model compares qualita-
tively well with experiments, and can provide valuable information about the be-
havior of HMGB1 signal transduction in response to different stimuli. In the future

Computational Modeling in Cancer 133

we plan to improve further our model with the help of new experimental results.
Furthermore, the use of model checking techniques will enable us identifying and
validating more realistic models.

Acknowledgments. This work was supported by a grant from the U.S. National
Science Foundation’s Expeditions in Computing Program (award ID 0926181).
The authors thank Michael T. Lotze (University of Pittsburgh) for calling their
attention to HMGB1 and for helpful discussions on the topic. H.G. would like to
thank Marco E. Bianchi (San Raffaele University) for email discussions on
HMGB1. The authors would also like to thank Ilya Korsunsky and Máté L. Nagy
for their comments on this paper.

References

1. HMGB1-NFkB BioNetGen Code,
http://www.cs.cmu.edu/~haijung/research/HMGB1ANB.bngl

2. Online Supplementary Materials,
http://www.cs.cmu.edu/~haijung/research/ANBSupplement.pdf

3. Bardeesy, N., DePinho, R.A.: Pancreatic cancer biology and genetics. Nature Re-
views Cancer 2(12), 897–909 (2002)

4. Brezniceanu, M.L., Volp, K., Bosser, S., Solbach, C., Lichter, P., et al.: HMGB1
inhibits cell death in yeast and mammalian cells and is abundantly expressed in
human breast carcinoma. FASEB Journal 17, 1295–1297 (2003)

5. Cascinu, S., Scartozzi, M., et al.: COX-2 and NF-kB overexpression is common in
pancreatic cancer but does not predict for COX-2 inhibitors activity in combina-
tion with gemcitabine and oxaliplatin. American Journal of Clinical Oncology 30(5),
526–530 (2007)

6. Ciliberto, A., Novak, B., Tyson, J.: Steady states and oscillations in the p53/Mdm2
network. Cell Cycle 4(3), 488–493 (2005)

7. Clarke, E.M., Emerson, E.A., Sifakis, J.: Model checking: algorithmic verification
and debugging. Commun. ACM 52(11), 74–84 (2009)

8. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT Press (1999)
9. Downward, J.: Targeting RAS signalling pathways in cancer therapy. Nature Re-

views Cancer 3, 11–22 (2003)
10. Dumitriu, I.E., Baruah, P., Valentinis, B., et al.: Release of high mobility group box

1 by dendritic cells controls T cell activation via the receptor for advanced glycation
end products. The Journal of Immunology 174, 7506–7515 (2005)

11. Eddy, S.F., Guo, S., et al.: Inducible IkB kinase/IkB kinase expression is induced
by CK2 and promotes aberrant Nuclear Factor-kB activation in breast cancer cells.
Cancer Research 65, 11375–11383 (2005)

12. Ellerman, J.E., Brown, C.K., de Vera, M., Zeh, H.J., Billiar, T., et al.: Masquer-
ader: high mobility group box-1 and cancer. Clinical Cancer Research 13, 2836–2848
(2007)

13. Faeder, J.R., Blinov, M.L., Hlavacek,W.S.: Rule-based modeling of biochemical sys-
tems with BioNetGen. Methods in Molecular Biology 500, 113–167 (2009)

14. Geva-Zatorsky, N., Rosenfeld, N., Itzkovitz, S., Milo, R., Sigal, A., Dekel, E.,
Yarnitzky, T., Liron, Y., Polak, P., Lahav, G., Alon, U.: Oscillations and variability
in the p53 system. Molecular Systems Biology, 2:2006.0033 (2006)

http://www.cs.cmu.edu/~haijung/research/HMGB1ANB.bngl
http://www.cs.cmu.edu/~haijung/research/ANBSupplement.pdf

134 H. Gong et al.

15. Gillespie, D.T.: A general method for numerically simulating the stochastic time
evolution of coupled chemical reactions. Journal of Computational Physics 22(4),
403–434 (1976)

16. Gong, H., Guo, Y., Linstedt, A., Schwartz, R.: Discrete, continuous, and stochastic
models of protein sorting in the Golgi apparatus. Physical Review E 81(1), 011914
(2010)

17. Gong, H., Sengupta, H., Linstedt, A., Schwartz, R.: Simulated de novo assembly of
Golgi compartments by selective cargo capture during vesicle budding and targeted
vesicle fusion. Biophysical Journal 95, 1674–1688 (2008)

18. Gong, H., Zuliani, P., Komuravelli, A., Faeder, J.R., Clarke, E.M.: Analysis and ver-
ification of the HMGB1 signaling pathway. BMC Bioinformatics (2010) (to appear)

19. Hanahan, D., Weinberg, R.A.: The hallmarks of cancer. Cell 100(1), 57–70 (2000)
20. Hinz, M., Krappmann, D., Eichten, A., Heder, A., Scheidereit, C., Strauss, M.: NF-

κB function in growth control: regulation of cyclin D1 expression and G0/G1-to-S-
phase transition. Mol. Cell Biol. 19, 2690–2698 (1999)

21. Hlavacek, W.S., Faeder, J.R., Blinov, M.L., Posner, R.G., Hucka, M., Fontana, W.:
Rules for modeling signal-transduction system. Science STKE 2006 re6 (2006)

22. Hoffmann, A., Levchenko, A., Scott, M.L., Baltimore, D.: The IκB-NFκB signal-
ing module: Temporal control and selective gene activation. Science 298, 1241–1245
(2002)

23. Huang, Z.: Bcl-2 family proteins as targets for anticancer drug design. Oncogene 19,
6627–6631 (2000)

24. Idel, S., Dansky, H.M., Breslow, J.L.: A20, a regulator of NFκB, maps to an
atherosclerosis locus and differs between parental sensitive C57BL/6J and resistant
FVB/N strains. Proceedings of the National Academy of Sciences 100, 14235–14240
(2003)

25. Jha, S.K., Clarke, E.M., Langmead, C.J., Legay, A., Platzer, A., Zuliani, P.: A
Bayesian Approach to Model Checking Biological Systems. In: Degano, P., Gorrieri,
R. (eds.) CMSB 2009. LNCS, vol. 5688, pp. 218–234. Springer, Heidelberg (2009)

26. Kang, R., Tang, D., Schapiro, N.E., Livesey, K.M., Farkas, A., Loughran, P., Bier-
haus, A., Lotze, M.T., Zeh, H.J.: The receptor for advanced glycation end products
(RAGE) sustains autophagy and limits apoptosis, promoting pancreatic tumor cell
survival. Cell Death and Differentiation 17(4), 666–676 (2009)

27. Krishna, S., Jensen, M.H., Sneppen, K.: Minimal model of spiky oscillations in NF-
kB signaling. Proceedings of the National Academy of Sciences 103, 10840–10845
(2006)

28. Langmead, C.J.: Generalized queries and bayesian statistical model checking in dy-
namic bayesian networks: Application to personalized medicine. In: CSB, pp. 201–
212 (2009)

29. Larris, S., Levine, A.J.: The p53 pathway: positive and negative feedback loops.
Oncogene 24, 2899–2908 (2005)

30. Lee, D.F., Huang, M.C.: Advances in targeting IKK and IKK-related kinases for
cancer therapy. Clinical Cancer Research 14, 5656 (2008)

31. Lipniacki, T., Hat, T., Faeder, J.R., Hlavacek, W.S.: Stochastic effects and bistabil-
ity in T cell receptor signaling. Journal of Theoretical Biology 254, 110–122 (2008)

32. Lipniacki, T., Paszek, P., Brasier, A., Luxon, B., Kimmel, M.: Crosstalk between p53
and nuclear factor-kB systems: pro-and anti-apoptotic functions of NF-kB. Journal
of Theoretical Biology 228, 195–215 (2004)

33. Lotze, M.T., Tracey, K.: High-mobility group box 1 protein (HMGB1): nuclear
weapon in the immune arsenal. Nature Reviews Immunology 5, 331–342 (2005)

Computational Modeling in Cancer 135

34. McInnes, C.: Progress in the evaluation of CDK inhibitors as anti-tumor agents.
Drug Discovery Today 13(19-20), 875–881 (2008)

35. Mengel, B., Krishna, S., Jensen, M.H., Trusina, A.: Theoretical analyses predict A20
regulates period of NF-κB oscillation. arXiv: bio-ph 0911.0529 (2009)

36. Nelson, D.E., Ihekwaba, A.E.C., et al.: Oscillations in NF-κB signaling control the
dynamics of gene expression. Science 306, 704–708 (2004)

37. Nevins, J.R.: The Rb/E2F pathway and cancer. HumanMolecular Genetics 10, 699–
703 (2001)

38. Puszynski, K., Hat, B., Lipniacki, T.: Oscillations and bistability in the stochastic
model of p53 regulation. Journal of Theoretical Biology 254, 452–465 (2008)

39. Rizk, A., Batt, G., Fages, F., Soliman, S.: On a Continuous Degree of Satisfac-
tion of Temporal Logic Formulae with Applications to Systems Biology. In: Heiner,
M., Uhrmacher, A.M. (eds.) CMSB 2008. LNCS (LNBI), vol. 5307, pp. 251–268.
Springer, Heidelberg (2008)

40. Rotblat, B., Ehrlich, M., Haklai, R., Kloog, Y.: The Ras inhibitor farnesylthiosal-
icylic acid (salirasib) disrupts the spatiotemporal localization of active Ras: a po-
tential treatment for cancer. Methods in Enzymology 439, 467–489 (2008)

41. Semino, C., Angelini, G., Poggi, A., Rubartelli, A.: NK/iDC interaction results in
IL-18 secretion by DCs at the synaptic cleft followed by NK cell activation and re-
lease of the DC maturation factor HMGB1. Blood 106, 609–616 (2005)

42. Sherr, C.J., McCormick, F.: The Rb and p53 pathways in cancer. Cancer Cell 2,
103–112 (2002)

43. Tang, X., Liu, D., Shishodia, S., Ozburn, N., Behrens, C., Lee, J.J., Hong, W.K.,
Aggarwal, B.B., Wistuba, I.I.: Nuclear factor-κB (NF-κB) is frequently expressed
in lung cancer and preneoplastic lesions. Cancer 107, 2637–2646 (2006)

44. Vakkila, J., Lotze, M.T.: Inflammation and necrosis promote tumour growth. Na-
ture Reviews Immunology 4, 641–648 (2004)

45. van Beijnum, J.R., Buurman, W.A., Griffioen, A.W.: Convergence and amplifica-
tion of toll-like receptor (TLR) and receptor for advanced glycation end products
(RAGE) signaling pathways via high mobility group B1. Angiogenesis 11, 91–99
(2008)

46. Vogelstein, B., Lane, D., Levine, A.J.: Surfing the p53 network. Nature 408, 307–310
(2000)

47. Wee, K.B., Aguda, B.D.: Akt versus p53 in a network of oncogenes and tumor sup-
pressor genes regulating cell survival and death. Biophysical Journal 91, 857–865
(2006)

48. Wu, H., Lozano, G.: NF-κB activation of p53. a potential mechanism for suppressing
cell growth in response to stress. J. Biol. Chem. 269, 20067–20074 (1994)

49. Yao, G., Lee, T.J., Mori, S., Nevins, J., You, L.: A bistable Rb-E2F switch underlies
the restriction point. Nature Cell Biology 10, 476–482 (2008)

50. Younes, H.L.S., Simmons, R.G.: Statistical probabilistic model checking with a fo-
cus on time-bounded properties. Information and Computation 204(9), 1368–1409
(2006)

51. Zuliani, P., Platzer, A., Clarke, E.M.: Bayesian statistical model checking with ap-
plication to simulink/stateflow verification. In: HSCC, pp. 243–252 (2010)

Composability: Perspectives

in Ecological Modeling

Ozan Kahramanoğulları1, Ferenc Jordán1, and Corrado Priami1,2

1 The Microsoft Research – University of Trento,
Centre for Computational and Systems Biology

2 Department of Information Engineering and Computer Science,
University of Trento

Abstract. The multiplicity of ecological interactions acting in paral-
lel calls for novel computational approaches in modeling ecosystem dy-
namics. Composability, a key property of process algebra-based models
can help to manage complexity and offer scalable solutions in ecological
modeling. We discuss and illustrate how composability of process algebra
language constructs can be used as a language aid in the construction of
complicated ecosystem models.

Keywords: ecology, modeling, stochastic process algebra, BlenX.

1 Introduction

The systems approach to biology [Kitano, 2002] is now broadly established. Cat-
alyzed by the advances in computational capabilities and the introduction of
promising technologies from various disciplines, formal modeling and analysis
methodologies are now becoming one of the common instrument-ensembles in
biological research. The contribution of the systems point of view to the exper-
imental biology is twofold. Firstly, formal models enforce a rigorous represen-
tation of the biological knowledge. This results in disambiguous descriptions of
the mechanistic behavior of the biological systems under study. Secondly, simula-
tion and analysis with formal models often provide insights into implicit aspects
of the biological systems, and deliver predictions that help biologists to design
further experiments.

The algorithmic approach to systems biology [Priami, 2009], driven by the
application of core computer science technologies, is based on describing the ca-
pabilities of the components of biological systems and their interactions in terms
of discrete state spaces. The topological structure and quantitative aspects of
algorithmic models mediate various simulation and analysis techniques that are
adapted from computer science, and shed light to the mechanistic understanding
of the biological systems they model. For example, stochastic simulations pro-
vide a means to observe the emergent behavior of the modeled systems, while
static analysis capabilities, such as reachability queries on the state space, help
to address topological properties.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 136–148, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Composability: Perspectives in Ecological Modeling 137

One of the underlying metaphors of algorithmic systems biology is the percep-
tion of biological systems as complex, reactive, information processing systems,
where system components interact with each other in diverse ways, and generate
new patterns of interaction. Such a consideration makes concurrency theory an
appropriate formal framework for studying biological systems with respect to the
parallel, distributed and mobile interactions exhibited by these systems. In this
regard, the field of process algebra provides the principles for defining specific
programming primitives and draws the guidelines for designing algorithms that
are tailored for biology [Regev and Shapiro, 2002]. In particular, composability
of the algebraic operators, which is commonly exploited in modeling of com-
puter systems with process algebras, becomes also instrumental while building
biological models. This is because composability makes it possible to specify the
meaning of a system component in terms of its components and the meaning of
the algebraic operator that composes them. As a result of this, each component
of a biological system can be modeled independently, allowing large models to be
constructed by composition of simple components. Moreover, because one can
work on individual components, modifications to the dynamics of a model can
be made locally on the appropriate component of the model without modifying
the rest of the model.

Although the pioneering efforts in systems biology can be attributed to
the differential equation models of Lotka and Volterra of the predator-prey
interactions in fisheries [Lotka, 1927,Volterra, 1926], the systems approach is
rather underrepresented in ecology in comparison to molecular biology (see
[Ulanowicz, 1986,Platt et al., 1981] for early discussions on ecological processes).
This can be partly due to diverging considerations of ecosystems, on one hand, in
terms of general principles and universal laws, and on the other hand, in terms
of phenomena that emerge as a result of vastly parallel, stochastic processes,
driven by local rules. This latter perspective, which is closer to the algorithmic
approach to systems biology, is emphasized in ecology within individual based
models (IBM) [DeAngelis and Gross, 1992,Grimm, 1999,Grimm et al., 2006] or
agent based models (ABM). Another discussion in ecological modeling with par-
allels to both IBMs and algorithmic systems biology is based on the consider-
ation of ecosystems as complex adaptive systems in which patterns at higher
levels emerge from localized interactions and selection processes acting at lower
levels [Levin, 1998].

IBMs build on the observations above by emphasizing the ideas that individ-
uals of an ecosystem are different and the interactions between individuals take
place locally. Based on these assumptions, IBMs describe populations of systems
in terms of discrete and autonomous individuals with distinguished properties.
Models built this way are then studied by tracking their individuals, also in
terms of their collective behavior through space and time. The aim here is to
understand the implications of the local interactions to the whole system with
respect to the emerging patterns of behavior during stochastic simulations, and
this way link mechanisms to behaviors [Seth, 2007].

138 O. Kahramanoğulları, F. Jordán, and C. Priami

The ideal scenario in IBMs is that a model with as little detail as possible
reveals as much as possible during simulation. As in molecular biology models,
in IBMs there is often a trade-off between simpler, more abstract models and
models that reflect more aspects of reality. The main challenge here is to sum-
marize the knowledge on nature accurately into a model, also by resorting to an
appropriate level of abstraction. The model should capture the key aspects of
each individual’s capabilities in terms of its interactions with others and the en-
vironment while remaining simple enough for a fruitful analysis. However, IBMs
pose this challenge with an additional twist: while the complexity of cellular
processes comes mostly from how many (and how many kinds of) molecules
interact, an important component of ecological complexity is how many ways
components can interact with each other. In ecosystems, several types of in-
teractions act in parallel and they are also in interaction with each other (e.g.
[Billick and Case, 1994]). Understanding and modeling the interactions of inter-
actions, as well as finding appropriate common currencies for their quantifica-
tion are among the most important motives in community and systems ecology
[Vasas and Jordán, 2006].

Having emerged as an area of computer science, process algebras profit from a
theoretical foundation that provides a rich arsenal of formal techniques and tools
as well as a broadly expanding culture of software engineering. In the following,
we argue that stochastic process algebra languages may contribute to ecology
models [Priami and Quaglia, 2004,Priami, 2009], partly resolving the challenges
that confront IBMs. As an evidence for this, we present process algebra represen-
tations of ecosystem models and primitives, where composability is the essential
ingredient for extending and refining models at different levels, and for design-
ing specialized modeling interfaces. For the models, we use the stochastic process
algebra language BlenX [Dematté et al., 2008,Dematté et al., 2010].

2 The BlenX Language

In this section, we provide a brief introduction to stochastic process algebras, in
particular, the BlenX language.

Process algebras are formal languages, which were originally introduced as a
means to study the properties of complex reactive systems. In these systems,
concurrency, that is, the view of systems in which potentially interacting com-
putational processes are executing in parallel, is a central aspect. Due to their
capability to capture such a form of concurrency, the process algebra languages
qualify as appropriate tools for describing the dynamics of biological systems
[Regev and Shapiro, 2002].

BlenX [Dematté et al., 2008,Dematté et al., 2010] is a stochastic process al-
gebra language that shares features with stochastic pi-calculus [Priami, 1995]
and Beta-binders [Degano et al., 2005]. As these other members of the family of
process algebra-based languages, BlenX has a strong focus on the interactions of
entities. BlenX is explicitly designed to model biological entities and their inter-
actions. It is a stochastic language in the sense that the probability and speed

Composability: Perspectives in Ecological Modeling 139

of the interactions and actions are specified in the programs that are written in
this language. In this respect, BlenX provides an efficient implementation of the
Gillespie algorithm [Gillespie, 1977], the semantics of which is given by contin-
uous time Markov-chains. BlenX is a part of the software platform CoSBiLab.

In BlenX, each individual is given with an abstract entity that we call a
box. Each box has a number of connectivity interfaces called binders, and it is
equipped with an internal program. The sites of interaction are represented as
binders on the box surface. For example, in Figure 1, each box has only one
binder. Binders are identified by their names, e.g., x and their types, e.g., X.

The mechanism, realized by the interfaces and the internal program govern
the interactions of the box and their effects on the box: this mechanism describes
a number of possible actions with which the individual can evolve to a new state
possibly by interacting with others or on its own. At each simulation step, the
simulation engine picks an action of the model in a manner which is biased by
the rates of the actions with respect to the Gillespie algorithm. This gives rise
to a model behavior in the form of a sequence of model actions that can be read
as a time series, depicting the behavior of the model components.

Fig. 1. Two BlenX boxes representing two interacting species A and B

A BlenX model consists of two parts, where the first part contains a descrip-
tion of all the boxes of the model, together with their binders. The second part
of the model contains a list of compatibilities of different binders with respect to
their types. With respect to the compatibilities described in this part, binders
can bind or unbind to binders of other boxes, or perform communications with
them to exchange information. For example, with respect to the model given in
Figure 1, the compatibility expression (X,Y, 0, 0, 1) indicates that the binders
with types X and Y can communicate with a rate 1. The third and forth pa-
rameters of this expression state the binding and unbinding rates between these
types, which are 0 in this case.

A box can stochastically interact with another box, and change state as a
result of this interaction with respect to the actions specified in its internal
program. Alternatively, a box can autonomously change state by stochastically
performing an action that is given in its internal program. For instance, the
interaction of a predator A and its prey B can be described in a BlenX model
with the boxes depicted in Figure 1. The interaction rate, specified in the BlenX
code, determines the rate of the predation being modeled. The internal program,
which can be nil, describes this interaction and its consequences in terms of the

140 O. Kahramanoğulları, F. Jordán, and C. Priami

actions the box can undertake. The nil action does nothing. Other stochastic
actions that a BlenX box can perform are summarized as follows: a box can

(i.) communicate with another box (or with itself) by performing an input
action, e.g., x?(message) that is complementary to the output action,
e.g., x!(message), of the other box, or vice versa, and this way send or
receive a message;

(ii.) perform a stochastic delay action;
(iii.) change (ch) the type of one of its interfaces;
(iv.) eliminate itself by performing a die action;
(v.) expose a new binder;
(vi.) hide one of its binders;
(vii.) unhide a binder which is hidden.

In addition to these actions, there are also other programming constructs avail-
able such as if-then statements and state-checks. For example, let us consider
the box A in Figure 1. We can define the program P such that it changes the
type X to Z if this box is bound to another speices via its interface x:

if (x,X) and (x,bound) then ch(x,Z) endif

In BlenX, following the process algebra tradition, we can compose actions by
using algebraic composition operators to define increasingly complex behaviors.
We can sequentially compose actions by resorting to the prefix-operator, which is
written as an infix dot. For instance, ch(x,Z).hide(x).nil denotes a program
that first performs change action and then hides the changed binder. Programs
can be composed in parallel. Parallel composition (denoted by the infix operator
|, for instance P|Q) allows the description of programs, which may run inde-
pendently in parallel and also synchronize on complementary actions (i.e., input
and output over the same channel). Programs can also be composed by stochastic
choice, denoted with the summation operator ”+”. The sum of processes P and
Q, P + Q behaves either as P or as Q, determined by their stochastic rates, and
selection of one discards the other forever.

In BlenX, we use events, which are programming constructs for expressing
actions that are enabled by global conditions. For example, in ecosystem models,
we use the new construct to introduce new individuals of a species to the system,
for instance, to model migration or birth, or to implement global influences on
the model individuals such as change of seasons.

3 Composability as a Modeling Aid

As we illustrate in the previous section, in BlenX, model expressions are written
by resorting to the algebraic notion of composition. In a model, the capabilities of
an individual is described by composing atomic BlenX actions within the internal
program of the box that models the individual. This way, we can define each
model individual in terms of its potential behavior with respect to its interactions

Composability: Perspectives in Ecological Modeling 141

Fig. 2. Composition of two predator-prey interactions, providing an apparent compe-
tition module [Holt, 1977]. In the two simple models, A preys on either B or C. In the
composed model, A preys on both B and C

and state changes as an algebraic expression. The meaning of this expression
is thus delivered in terms of the meaning of its action components and the
composition operators, giving rise to composability.

Composability of model expressions becomes an instrumental aid in modeling
complex interactions and dynamics such as those that can be observed among
individuals of ecosystems. From an analytic bottom-up point of view, compos-
ability of BlenX language allows the modelers to consider parts of a complex
ecological system in isolation, and build models by composing these parts at the
same level. This makes it easy to build larger models when required.

As for illustration for bottom-up composability, let us consider two simple
predator-prey models in isolation as depicted in Figure 2. In the first model,
species A exclusively preys only on species B. In the second model, species A
preys on species C. In BlenX, we can consider these two models in isolation, and
simply merge the two models in order to obtain a composed model as depicted
in Figure 2 and Figure 3. Then in the composed model, the only additional
requirement is the inclusion of the compatibility parameters, which contain the
information on which boxes interact with each other.

From a dual top-down point of view, composability makes it possible to con-
sider a component of a model as a black-box, or “open the black-box” to modify
the model to include further aspects. This kind of composability becomes instru-
mental, for example, when a model is refined with a previously ignored detail of
the modeled system. Here what we mean by refinement concerns the structure

Fig. 3. Graphical representation of the composition in BlenX of the models depicted
in Figure 2

142 O. Kahramanoğulları, F. Jordán, and C. Priami

Fig. 4. Refinement of a simple model by further aspects of the predator-prey interac-
tion. In the simple model A preys on B with rate r. In the refined model, A preys on
B with rate r′ if B is accompanied by D

of the model (rather than size), which boils down to choosing the appropriate
component of the model and extending it. Within BlenX, algebraic constructs
aid to refine the model by making it possible to work locally on the boxes rep-
resenting the involved species and including the new data on the system. For
example, consider a model, as depicted in Figure 4, where we have a species A
that preys on species B. However, in this case, we refine the model with the
information that in the presence of species D, the feeding rate of A on B changes
from r to r′ [Wootton, 1993].

By providing the means for these two dual perspectives, composability be-
comes instrumental in extending and refining the models to capture the optimal
level of representation with respect to the goals of the model [Grimm et al., 2006].
Refined models reflect more aspects of the reality in the structure of the model
with respect to the modeled ecosystem. However, sensitivity analysis and other
static and dynamic analysis of the model and the simulations with it become
more involved as the level of refinement increases. Moreover, the choice on which
aspects of “reality” to include in the model in terms of qualitative and quan-
titative data is an important decision. In this respect, composability becomes
an instrumental modeling aid that provides the means to move between dif-
ferent levels of abstraction and extend, and shrink the model with respect to
requirements.

4 Composability and Language Design

The algebraic operators and the language constructs of specialized languages
such as BlenX allow these languages to capture the mechanistic structure of
the systems that they model. This way, for instance, BlenX can capture with its
syntax the ecological phenomena that are otherwise challenging to model in other
languages. This is an advantage in contrast to other programming languages that
can provide a complex encoding of the desired behavior of these phenomena.
However, the mathematical syntax of these languages makes them difficult to
use for the people who lack training in these languages. This results in a barrier
for these languages to be used effectively by a broader audience.

Composability: Perspectives in Ecological Modeling 143

As a remedy for this barrier, one of the central objectives of algorithmic
systems biology is the development of user-friendly interface languages for mod-
eling. These interface languages profit from the expressive power of specialized
languages, such as BlenX, while remaining accessible to domain specialists who
are not familiar with formal languages. In this respect, when stochastic pro-
cess algebra languages such as BlenX are considered as target languages for
user-friendly interface languages, composability becomes a valuable feature that
brings an ease to the design and development process.

The CoSBiLab LIME [Kahramanoğulları et al., 2011] is an example to such
interface languages for ecosystem modeling. LIME is a language interface to
BlenX for building ecosystem models. LIME allows the user to give a biolog-
ically intuitive model description in a narrative style controlled natural lan-
guage. After performing static analysis on the model structure, the LIME trans-
lation software tool translates the model description into a BlenX program. This
makes the BlenX and CoSBiLab modeling framework handy and intuitive for
ecologists. Simulations can be run by the BetaWB and the output can be ana-
lyzed and visualized by both Plotter [Dematté et al., 2008] and CoSBiLab Graph
[Valentini and Jordán, 2010].

An example LIME model is depicted in Figure 5. A LIME input file can consist
of five parts that describe different aspects of the model.

1. The first part is a single statement on the simulation duration.
2. The second part consists of sentences that describe the interactions of the

individuals of the modelled ecosystem. Each sentence describes an interaction
in the ecosystem together with the ecological patch where it happens and
its rate. The interactions can be of four different kinds: predator-prey, plant-
pollinator, direct competition, and facilitation.

3. The optional third part of the input file collects the information on the birth
and death rates of the species. Each sentence in this part describes the birth
and/or death rates for each species in each habitat patch. If a habitat patch
is not specified, the rate is distributed and applies to all the patches: this
way, general rates can be defined.

4. The optional fourth part of the input file contains the information on patch
dynamics of the ecosystem: each sentence here describes the migration rate
between two particular patches of a given species.

5. The fifth part provides the information on the initial population sizes (at
the beginning of the simulation).

For an illustrative example, consider the LIME model in Figure 5 that consists of
two habitat patches, X and Y, with identical parameters. The local communities
consist of two predators, A and B, sharing a single prey, C. The consumption
rate of A and B on C are 0.4 and 0.8, respectively. However, A migrates between
the patches, with rate 1. A and B have a death rate of 0.0001, and C has a
birth rate of 10. Finally, the initial population size is 5 for the predators and 15
for the prey. The LIME description of this model consists of the frames given
in Figure 5, which is much easier to write and work with in comparison to the
BlenX code that it generates. In order to see this explicitly, let us consider the

144 O. Kahramanoğulları, F. Jordán, and C. Priami

Fig. 5. A graphical representation of an ecosystem model and its CoSBiLab LIME
representation. The species A and B are two predators which both prey on C. The
species A can move between the patches X and Y

following sentence:

A eats C with rates 0.4 and 0.4 in X

This sentence is translated into BlenX code, a part of which is

... if (ex,Aex_X) then ex!().start!() endif

+ if (ey,Aey_X) then ey!().ch(r,ArRep_X) endif ...

and the sentence

A dies with rate 0.0001 in X

is translated to the following code:

... + if (ex,Aex_X) then die(0.00010) endif ...

Migration between patches in the narrative form

A moves from X to Y with rate 1.0

is translated to the following BlenX expressions:

... + if (ex,Aex_X) then delay(1.0).ch(r,Ar_Y).

ch(ex,Aex_Y).ch(ey,Aey_Y).start!() endif ...

Composability: Perspectives in Ecological Modeling 145

In comparison to BlenX, LIME has a limited expressive power, since it can
be used to model only certain kinds of ecological interactions and dynamics.
However, LIME enjoys a higher level of composability in comparison to BlenX.
This is because LIME models can be written, extended and modified with a great
ease with almost no prior knowledge of this language. For example, the food web
models that we borrow from [Pimm, 1980] in Figure 6 can be written within few
minutes. This capability makes it very easy to experiment with different models.

Modeling different types of concurrent interspecific interactions is a big chal-
lenge in ecology [Olff et al., 2009]. There are many works in ecology literature
on single interaction types, with an emphasis on food webs, and an increasing
focus on plant-pollinator networks in isolation. However, in ecosystems, different
kinds of interactions always happen in parallel, thus it is paramount to model
them simultaneously. In LIME, composability of the process algebra constructs
play a key role in expressing these different kinds of interactions in a unified
manner in a single model. Moreover, composability brings a great ease into the
design and maintenance of such interface languages.

5 Discussion

For both technical and historic reasons, individual based models (IBMs) still
face major computational challenges [Gronewold and Sonnenschein, 1998]. Some
of these challenges are linking elegantly mechanisms and behavior [Seth, 2007],
minimizing the combinatorial explosion in state space of complex models, and
modeling common currency-based integration of several, multi-level and multi-
scale processes [Allen and Starr, 1982,Levin et al., 1997]. In particular, a desired
advancement in IBMs is the development of generic mechanisms for integrating
multiple, parallel ecological processes [Levin et al., 1997,Olff et al., 2009]. Simi-
lar to processes addressed by the language LIME, these processes can act at the
same level, for example, as in predation and facilitation interactions among the
species of an ecosystem [Bertness and Callaway, 1994], or they can act at differ-
ent organizational levels, for example, as in dispersal in the metacommunity and
competition in the local community. Progress in these problems could help in
better understanding the relationship between patterns and processes in ecology
[Pimm, 1991].

Fig. 6. Graphical representation of two food webs that are variations of each other

146 O. Kahramanoğulları, F. Jordán, and C. Priami

The view of ecological systems as complex reactive systems, similar to now
broadly established consideration of molecular biology systems, provides the
means to model, simulate and analyze these systems, and also indicates direc-
tions which can contribute to the solution of above mentioned challenges that
confront IBMs. In fact, the consideration of ecosystems as complex reactive sys-
tems has parallels also with the complex adaptive system view of of ecosystem
models, which are summarized by three properties [Levin, 1998]: (i.) diversity
and individuality, (ii.) qualitative and quantitative aspects of the localized inter-
actions, and (iii:) autonomous processes that reflect the effects of the interactions
to their replication or removal, and to the enhancement of their interactions. As
we have demonstrated above, composability properties and language constructs
of the language BlenX are promising tools for addressing these properties.

The computer simulations in ecology promise the further added value of filling
the void due to the impossibility of experiments within the study of certain
ecosystems. This is simply because it is not plausible, even if possible, to ’knock
out’ all the members of a species in a certain ecosystem in order to see the
effect. However, certain experiments can be easily designed in silico by resorting
to languages such as BlenX and LIME.

An important aspect of the BlenX language with respect to ecological mod-
eling is its stochastic semantics. Stochasticity, which manifests itself as fluctua-
tions in simulations, is an instrumental feature for studying the inherent noise in
ecosystems, both at individual level and at the population level. Certain sources
of noise are much more important in small populations [Powell and Boland, 2009].
For example, as opposed to deterministic population-level models, stochastic
IBMs make it possible to model actual extinction events. While the extinction
of rare species is at the frontier of applied ecological research and conservation
biology, more generalistic discussions of ecosystem models are limited in both
handling the noisy behavior of small populations and modeling extinction. For
instance, the same amount of living biomass can behave quite stochastically if
it corresponds to two whale individuals, and quite deterministically if it corre-
sponds to millions of organisms in the zooplankton. Availability of stochasticity
together with composability is an additional asset from the point of view of
IBMs.

References

Allen and Starr, 1982. Allen, T.F.H., Starr, T.B.: Hierarchy: Perspectives for Ecolog-
ical Complexity. The University of Chicago Press (1982)

Bertness and Callaway, 1994. Bertness, M.D., Callaway, R.: Positive interaction in
communities. Trends in Ecology and Evolution 9, 191–193 (1994)

Billick and Case, 1994. Billick, I., Case, T.J.: Higher order interactions in ecological
communities: what are they and how can they be detected? Ecology 75, 1529–1543
(1994)

DeAngelis and Gross, 1992. DeAngelis, D.L., Gross, L.J.: Individual-based Models and
Approaches in Ecology. Chapman and Hall, New York (1992)

Degano et al., 2005. Degano, P., Prandi, D., Priami, C., Quaglia, P.: Beta binders for
biological quantitative experiments. ENTCS 164(3), 101–117 (2005)

Composability: Perspectives in Ecological Modeling 147

Dematté et al., 2010. Dematté, L., Larcher, R., Palmisano, A., Priami, C., Romanel,
A.: Programming biology in BlenX. Systems Biology for Signaling Networks 1,
777–821 (2010)

Dematté et al., 2008. Dematté, L., Priami, C., Romanel, A.: The beta workbench: a
computational tool to study the dynamics of biological systems. Briefings in Bioin-
formatics 9, 437–449 (2008)

Dematté et al., 2008. Dematté, L., Priami, C., Romanel, A.: The Blenx Language: A
Tutorial. In: Bernardo, M., Degano, P., Tennenholtz, M. (eds.) SFM 2008. LNCS,
vol. 5016, pp. 313–365. Springer, Heidelberg (2008)

Gillespie, 1977. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reac-
tions. Journal of Physical Chemistry 81, 2340–2361 (1977)

Grimm, 1999. Grimm, V.: Ten years of individual-based modelling in ecology: what
have we learned and what could we learn in the future? Ecological Modelling 115,
129–148 (1999)

Grimm et al., 2006. Grimm, V., Berger, U., Bastiansen, F., Eliassen, S., Ginot, V.,
Giske, J., Goss-Custard, J., Grand, T., Heinz, S.K., Huse, G., Huth, A., Jepsen,
J.U., Jørgensen, C., Mooij, W.M., Müller, B., Peer, G., Piou, C., Railsback, S.F.,
Robbins, A.M., Robbins, M.M., Rossmanith, E., Rüger, N., Strand, E., Souissim,
S., Stillman, R.A., Vabø, R., Visser, U., DeAngelis, D.L.: A standard protocol for
describing individual-based and agent-based models. Ecological Modelling 198(1-
2), 115–126 (2006)

Gronewold and Sonnenschein, 1998. Gronewold, A., Sonnenschein, M.: Event-based
modelling of ecological systems with asynchronous cellular automata. Ecological
Modelling 108(1-3), 37–52 (1998)

Holt, 1977. Holt, R.D.: Predation, apparent competition, and the structure of prey
communities. Theoretical Population Biology 12(2), 197–229 (1977)

Kahramanoğulları et al., 2011. Kahramanoğulları, O., Jordán, F., Lynch, J.: CoSBi-
Lab LIME: A language interface for stochastic dynamical modelling in ecology.
Environmental Modelling and Software 26, 685–687 (2011)

Kitano, 2002. Kitano, H.: Systems biology: A brief overview. Science 295, 1662–1664
(2002)

Levin, 1998. Levin, S.A.: Ecosystems and the biosphere as complex adaptive systems.
Ecosystems 1(5), 431–436 (1998)

Levin et al., 1997. Levin, S.A., Grenfell, B., Hastings, A., Perelson, A.S.: Mathemat-
ical and computational challenges in population biology and ecosystems science.
Science 275(5298), 334–343 (1997)

Lotka, 1927. Lotka, A.J.: Fluctuations in the abundance of a species considered math-
ematically. Nature 119, 12 (1927)

Olff et al., 2009. Olff, H., Alonso, D., Berg, M.P., Eriksson, B.K., Loreau, M., Piersma,
T., Rooney, N.: Parallel ecological networks in ecosystems. Philosophical Transac-
tions of Royal Society B 364(1524), 1755–1779 (2009)

Pimm, 1980. Pimm, S.L.: Food web design and the effects of species deletion. Oikos 35,
139–149 (1980)

Pimm, 1991. Pimm, S.L.: The Balance of Nature? Ecological Issues in the Conservation
of Species and Communities. The University of Chicago Press (1991)

Platt et al., 1981. Platt, T., Mann, K.H., Ulanowicz, R.E.: Mathematical Models in
Biological Oceanography. The UNESCO Press (1981)

Powell and Boland, 2009. Powell, C.R., Boland, R.P.: The effects of stochastic pop-
ulation dynamics on food web structure. Journal of Theoretical Biology 257(1),
170–180 (2009)

148 O. Kahramanoğulları, F. Jordán, and C. Priami

Priami, 1995. Priami, C.: Stochastic π-calculus. The Computer Journal 38(6), 578–589
(1995)

Priami, 2009. Priami, C.: Algorithmic systems biology. Communications of the
ACM 52(5), 80–89 (2009)

Priami and Quaglia, 2004. Priami, C., Quaglia, P.: Modelling the dynamics of biosys-
tems. Briefings in Bioinformatics 5(3), 259–269 (2004)

Regev and Shapiro, 2002. Regev, A., Shapiro, E.: Cellular abstractions: Cells as com-
putation. Nature 419, 343 (2002)

Seth, 2007. Seth, A.K.: The ecology of action selection: insights from artificial life.
Philosophical Transactions of Royal Society B 362(1485), 1545–1558 (2007)

Ulanowicz, 1986. Ulanowicz, R.E.: Growth and Development: Ecosystems Phe-
nomenology. Springer, Heidelberg (1986)

Valentini and Jordán, 2010. Valentini, R., Jordán, F.: CoSBiLab Graph: the network
analysis module of CoSBiLab. Environmental Modelling and Software 25, 886–888
(2010)

Vasas and Jordán, 2006. Vasas, V., Jordán, F.: Topological keystone species in ecologi-
cal interaction networks: considering link quality and non-trophic effects. Ecological
Modelling 196(3-4), 365–378 (2006)

Volterra, 1926. Volterra, V.: Fluctuations in the abundance of species considered math-
ematically. Nature 118, 558–560 (1926)

Wootton, 1993. Wootton, J.T.: Indirect effects and habitat use in an intertidal com-
munity: interaction chains and interaction modifications. The American Natural-
ist 141(1), 71–89 (1993)

A General Procedure for Accurate Parameter

Estimation in Dynamic Systems Using New
Estimation Errors

Masahiko Nakatsui1, Alexandre Sedoglavic2, François Lemaire2,
François Boulier2, Asli Ürgüplü2, and Katsuihisa Horimoto1,�

1 Computational Biology Research Center, National Institute of Advanced Industrial
Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan

2 Lille Computer Science Laboratory, University of Science and Technology of Lille,
59655 Villeneuve d’Ascq Cédex, France

Abstract. The investigation of network dynamics is a major issue in
systems and synthetic biology. One of the essential steps in a dynamics
investigation is the parameter estimation in the model that expresses bi-
ological phenomena. Indeed, various techniques for parameter optimiza-
tion have been devised and implemented in both free and commercial
software. While the computational time for parameter estimation has
been greatly reduced, due to improvements in calculation algorithms and
the advent of high performance computers, the accuracy of parameter
estimation has not been addressed.

We previously proposed an approach for accurate parameter optimiza-
tion by using Differential Elimination, which is an algebraic approach for
rewriting a system of differential equations into another equivalent sys-
tem. The equivalent system has the same solution as the original system,
and it includes high-order derivatives, which contain information about
the form of the observed time-series data. The introduction of an equiva-
lent system into the numerical parameter optimizing procedure resulted
in the drastic improvement of the estimation accuracy, since our ap-
proach evaluates the difference of not only the values but also the forms
between the measured and estimated data, while the classical numerical
approach evaluates only the value difference. In this report, we describe
the detailed procedure of our approach for accurate parameter estima-
tion in dynamic systems. The ability of our approach is illustrated in
terms of the parameter estimation accuracy, in comparison with classi-
cal methods.

1 Introduction

The investigation of network dynamics is a major issue in systems and synthetic
biology[1]. In general, a network model for describing the kinetics of constituent
molecules is first constructed with reference to the biological knowledge, and
then the model is mathematically expressed by differential equations, based on

� Corresponding author.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 149–166, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

150 M. Nakatsui et al.

the chemical reactions underlying the kinetics. Finally, the kinetic parameters
in the model are estimated by various parameter optimization techniques[2],
from the time-series data measured for the constituent molecules. While the
computational time for parameter estimation has been greatly reduced, due to
the improvements in calculation algorithms and the advent of high performance
computers, the accurate numerical estimation of parameter values for a given
model remains a limiting step. Indeed, the parameter values estimated by various
optimization techniques are frequently quite variable, due to the conditions for
parameter estimation, such as the initial values. In particular, we cannot always
obtain the data measured for all of the constituent molecules, due to limitations
of measurement techniques and ethical constraints. In this case, one of the issues
we should resolve is that the parameters are estimated from the data for only
some of the constituent molecules. Unfortunately, it is quite difficult to estimate
the parameters in such a network model including unmeasured variables.

Differential elimination was applied[3] to improve the parameter estimation
methods, especially in the model dynamics including unmonitored variables. The
idea consisted of computing differential equations from the input system, from
which the unmonitored variables were eliminated. These differential equations
could then be used to guess the initial values for the Newton-type numerical
parameter optimization scheme. The overall method was implemented over the
BLAD libraries[4]. Differential elimination theory is a branch of the differential
algebra of Ritt and Kolchin[5], [6]. Its basis was developed by Ritt, who founded
the theory of characteristic sets. Ritt’s ideas were subsequently developed by
Seidenberg [7], Wu[8], Boulier et al.[9],[10] and many other researchers. The
Rosenfeld-Gröbner algorithm[9], [10] is the first complete algorithm for differen-
tial elimination ever implemented. It relies on Ritt and Seidenberg’s ideas, on the
Rosenfeld Lemma, which reduces differential problems to non-differential poly-
nomial ones, and on the Gröbner bases theory for solving non-differential polyno-
mial systems (although recent implementations completely avoid Gröbner bases
computations). The Rosenfeld-Gröbner algorithm was implemented in 1996 in
the diffalg package of the MAPLE computer algebra software. Starting from
MAPLE 14, it should be replaced by the MAPLE DifferentialAlgebra package,
which relies on the BLAD libraries[11].

Recently, we proposed a new procedure for optimizing the parameters, by
using differential elimination. Our procedure partially utilizes a technique from
a previous study[12], [13], regarding the introduction of differential elimination
into parameter optimization in a network. Instead of using differential elimina-
tion for estimating the initial values for the following parameter optimization,
the equations derived by differential elimination are directly introduced as the
constraints into the objective function for the parameter optimization[14], [15],
[16], [17]. Here, we will describe the detailed procedure of our approach, by using
a simple model represented as non-linear differential equations. We also discuss
the merits and pitfalls of our procedure, in terms of its extension to more realistic
and complex models.

General Procedure for Accurate Parameter Estimation 151

2 Procedure

2.1 Overview of Present Procedure

The key point of this study is the introduction of new constraints obtained
by differential elimination into the objective function, to improve the parameter
accuracy. This section outlines our new procedure for estimating the parameters,
using constraints built from differential elimination, and compared it with the
classical constraints based on the total relative error. For clarity, the method is
described using an academic example.

We first present the example. We then show how to build our new constraints
using differential elimination, and how to optimize the evaluation of those new
constraints over numeric values. Subsequently, we present our genetic algorithm
for estimating the parameter values, and finish with the results. All Maple com-
mands used for computing the expressions described in the following subsections
are provided in appendix A.

2.2 Example

Differential algebra aims at studying differential equations from a purely alge-
braic point of view[5], [6]. Differential elimination theory is a sub theory of differ-
ential algebra, based on Rosenfeld-Gröbner[9]. Differential elimination rewrites
the inputted system of differential equations to another equivalent system, ac-
cording to (order of terms). Here, we provide an example of differential elimina-
tion, as shown below, according to Boulier[12].

x
1

x
2

k12

k21

Ve, ke

(Michaelis-Menten exchange)

(Linear exchange)

Fig. 1. Schematic representation of the model
The model is composed of two state variables, x1 and x2. We assumed that the

time-series data for one of the variable, x1, are obtained.

Assume a model of two variables, x1 and x2, as schematically depicted in Fig. 1,
with the corresponding system of differential equations expressed as follows:

{
ẋ1 = −k12x1 + k21x2 − Vex1

ke+x1

ẋ2 = k12x1 − k21x2
(1)

152 M. Nakatsui et al.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

x 1

Time

Fig. 2. Reference curve

According to the kinetics of the model (Eqn. (1)), a reference curve of one variable, x1,
was generated for 0 ≤ t ≤ 1.5 with intervals of 0.05, under the following conditions:
x1(0) = 50.0, x2(0) = 0.0, V e = 101.0, k12 = 0.5, k21 = 3.0 and ke = 7.0.

where k12, k21, ke and Ve are some constants. Two molecules are assumed to
bind according to Michaelis-Menten kinetics.

Here we assume that the time-series of only one variable, x1, can be observed.
x2 is assumed to be non-observed; however, we assumed that x2(0) = 0 was
known. According to the model in Fig. 1, a reference curve of one variable, x1,
was generated in Fig. 2. Among the parameters in the model, the values of three
parameters, k12, k21, and Ve, were estimated, and the values of the remaining
parameters were set to the same values as those used in the generation of the
reference curve of Fig. 2.

2.3 Differential Elimination

The differential elimination then produces the following two equations equivalent
to the above system.

{
ẋ1(k21 + x1) + k21x

2
1 + (k12 + Ve)x1 − k21(ke + x1)x2 = 0

ẍ1(x1 + ke)
2 + (k12 + k21)ẋ1(x1 + ke)

2 + Veẋ1ke + k21Vex1(x1 + ke) = 0
(2)

General Procedure for Accurate Parameter Estimation 153

As a consequence, the latter two equations should be zero for any solution
of (1). The latter to equations, respectfully, called C1,t and C2,t in the following,
will be used to define our error estimation, based on the evaluation of |C1,t| +
|C2,t|.

System (2) can be computed in Maple 14, using the following commands:

> with(DifferentialAlgebra):
> sys := [
> x1[t] - (-k12*x1 + k21*x2 - Ve*x1/(ke+x1)),
> x2[t] - (k12*x1 - k21*x2)
>];

Ve x1
sys := [x1[t] + k12 x1 - k21 x2 + -------, x2[t] - k12 x1 + k21 x2]

ke + x1

> R := DifferentialRing(blocks=[x2,x1,k12(),k21(),Ve(),ke()], derivations=[t]);
R := differential_ring

> Ids := RosenfeldGroebner(numer(sys), denom(sys), R,
> basefield=field(generators=[k12,k21,Ve,ke]));

Ids := [regular_differential_chain]

> eqs := Equations(Ids[1]);
eqs := [

2
k21 x2 x1 + k21 x2 ke - x1[t] x1 - x1[t] ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2
x1[t, t] x1 + 2 x1[t, t] x1 ke + x1[t, t] ke + x1[t] x1 k12

2 2
+ x1[t] x1 k21 + 2 x1[t] x1 k12 ke + 2 x1[t] x1 k21 ke + x1[t] k12 ke

2 2
+ x1[t] k21 ke + x1[t] Ve ke + x1 k21 Ve + x1 k21 Ve ke]

2.4 Simplification

In general, the problem of reducing the evaluation complexity (additions, mul-
tiplications) is difficult and requires a large number of computer operations
(a.k.a. a high algorithmic complexity). Moreover, the evaluation complexity of
the Rosenfeld-Gröbner output tends to be exponential in the evaluation com-
plexity of the input, especially when using elimination rankings, as in this case.
Consequently, before directly applying techniques such as factorization, Horner
schemes, common sub expression detection, etc. for reducing the evaluation com-
plexity, we try to use the knowledge we already have on the initial ODE system.

We now describe a preprocessing step that facilitates the evaluation of C̄DE =
|C1,t|+ |C2,t|.

The expressions of C1,t and C2,t given in (2) are not the expressions originally
computed by the Rosenfeld-Gröbner algorithm. Indeed, the Rosenfeld-Gröbner
algorithm outputs expanded expressions.

Thus, using the Rosenfeld-Gröbner outputs, one has to evaluate the following
expression, C̄DE :

154 M. Nakatsui et al.

C̄DE =
∣∣−k21x2ke − k21x2x1 + ẋ1ke + ẋ1x1 + k12x1ke + k12x

2
1 + Vex1

∣∣ (3)

+
∣∣k21keVex1 + 2kek12x1ẋ1 + 2k21keẋ1x1 + 2keẍ1x1 + k12ẋ1k

2
e

+keVeẋ1 + k12x
2
1ẋ1 + k21k

2
e ẋ1 + k21x

2
1ẋ1 + k21x

2
1Ve + ẍ1k

2
e + ẍ1x

2
1

∣∣
requiring 18 additions + 46 multiplications (+2 function evaluations for the
absolute value). These operations represent the evaluation complexity of the
expression C̄DE .

Since the expressions of C1,t and C2,t were computed from an ODE system in-
volving the denominator ke+x1, from a Michaelis-Menten factor, the expression
ke + x1 can be likely be factorized. By introducing a new variable, de = ke + x1,
and applying the substitution ke → de − x1 in the previous expression of C̄DE ,
one gets

C̄DE = |−k21x2de + ẋ1de + k12x1de + Vex1| (4)

+
∣∣k21Vex1de + k12ẋ1d

2
e + Veẋ1de − Veẋ1x1 + k21ẋ1d

2
e + ẍ1d

2
e

∣∣
requiring 9 additions + 21 multiplications.

Please note that the last expression of C̄DE does not involve ke anymore,
which shows that the variable ke only appears in C̄DE in the term ke + x1.

This trick with the denominators has divided the number of operations by 2.
On more complex systems, the benefit can be much greater. It is worth noting
that the trick works quite similarly if several denominators are involved and if
each denominator linearly involves a parameter that is not involved in the other
denominators. More precisely, if one has n denominators of the form ki+fi, and
if ki is not involved in any fi, then one performs n substitutions ki → fi − di.

Further computations using a Horner scheme can now be accomplished. For
example, applying a recursive Horner scheme with decreasing priority on the
variables de, x1, x2, ẋ1, ẍ1 yields:

C̄DE = |Vex1 − (k21x2 − ẋ1 − k12x1)de| (5)

+ |−Veẋ1x1 + (k21Vex1 + Veẋ1 + (ẍ1 + (k12 + k21)ẋ1)de)de|

requiring 9 additions + 12 multiplications.
To finish, further simplification can be achieved using the optimize command

of the optimize package in the Computer Algebra software Maple. This last
command tries to recognize common expressions in order to compute common
subexpressions only once. This command is not very costly, since it is based on
easy heuristics. In our case, it yields the sequence of commands:

t7 = |Vex1 − (k21x2 − ẋ1 − k12x1)de| , (6)

t8 = Veẋ1,

t19 = |−t8x1 + (k21Vex1 + t8 + (ẍ1 + (k12 + k21)ẋ1)de)de| ,
CDE = t7 + t19

requring 9 additions + 11 multiplications + 4 assignments. Note that the last
gain here is only 1 multiplication, but can be higher on larger systems.

General Procedure for Accurate Parameter Estimation 155

All previous operations can be automated in Maple (see appendix A for the
complete set of Maple commands); the C command of the optimize package
yields the C code as

t7 = fabs (Ve∗x1−(k21∗x2−x1t−k12∗x1)∗ de) ;
t8 = Ve∗x1t ;
t19 = fabs (− t8 ∗x1+(k21∗Ve∗x1+t8+(x1tt+(k12+k21)∗ x1t)∗de)∗de) ;
E = t7+t19 ; .

2.5 Introduction of Constraints

The objective function for parameter optimization in this study is composed of
two terms: one is the standard error function between the estimated and moni-
tored data, and the other is the constraints obtained by differential elimination.
The error function is defined as follows: Suppose xc

i,t is the time-series data at
time t of xi, simulated by using the estimated parameter values and the model
equations by integration, and xm

i,t represents the monitored data at time t. The
sum of the absolute values of the relative error between xc

i,t and xm
i,t gives the

averaged relative error over the numbers of monitored variables and time points,
E, as a standard error function, i.e.,

E =
1

NT

N∑
i=1

T∑
t=1

∣∣∣∣∣xc
i,t − xm

i,t

xm
i,t

∣∣∣∣∣ (7)

where N and T are the numbers of monitored variables and time points, respec-
tively.

Next we define the DE constraints obtained by the differential elimination
and simplification procedure. The simplified equivalent system (Eqn. (6)) is com-
posed of x1, its derivatives (ẋ1 and ẍ1), x2, and the parameters (k12, k21, Ve and
ke). Note that x2 in Eqn. (6) can be estimated by x1, the parameters, and x2(0).
The derivatives of variable x1 can be estimated numerically by the following
procedure. First, we obtain two equations by a Taylor expansion of x1(t),

x1(t+ h) = x1(t) + hx′
1(t) +

h2

2
x′′
1(t) +

h3

6
x′′′
1 (t) + · · · , (8)

x1(t− h) = x1(t)− hx′
1(t) +

h2

2
x′′
1 (t)−

h3

6
x′′′
1 (t) + · · · . (9)

Second, we subtract Eqn. (9) from (8),

x1(t+ h)− x1(t− h) = 2hx′
1(t) +

1

3
h3x′′′

1 (t) + · · · , (10)

2hx′
1(t) = x1(t+ h)− x1(t− h)− 1

3
h3x′′′

1 (t) + · · · ,

x′
1(t) =

x1(t+ h)− x1(t− h)

2h
− h2

6
x′′′
1 (t) + · · · .

156 M. Nakatsui et al.

Finally, we obtain following approximation, under the assumption of 0 < h < 1,

x′
1(t) =

x1(t+ h)− x1(t− h)

2h
+O(h2). (11)

We are able to obtain higher-order derivatives from lower-order derivatives in
same way, as mentioned above. For instance, we can estimate second order deriva-
tives of x1 by using following equation,

x′′
1 (t) =

x′
1(t+ h)− x′

1(t− h)

2h
+O(h2). (12)

The value of the simplified equivalent system (Eqn. (6)) can be calculated by
the substitution of the observed x1, its numerically the estimated derivatives,
estimated x2, and the parameter values estimated by the numerical parameter
optimizing procedure. In general, Differential Elimination rewrites the original
system of differential equations into an equivalent system, which means both
systems have the same solutions. This clearly shows that the evaluated values of
the equivalent system will be zero with exactly estimated parameter sets, time-
series data without noise, and derivatives. Thus, the equivalent system can be
regarded as a kind of objective function that expresses the difference between the
monitored and estimated data. In this study, we express DE Constraint (CDE),
as the average of the linear combination of the equation in the equivalent system
over the number of equations and time points, as follows:

CDE =
1

LT

L∑
l=1

T∑
t=1

|Cl,t| (13)

where L and T are the numbers of equivalent equations and time points, re-
spectively. Finally, we introduce CDE C̄DE , which is simplified as CDE , into the
objective function, F , in combination with E, as:

F = αE + (1− α)CDE (14)

where α(0 ≤ α ≤ 1) is the weight of the two functions. As a result, our computa-
tional task is to find a set of parameter values that minimize F . When we apply
the simplification procedure (see 2.4), then 1

LT C̄DE is used instead of CDE .
The weighting factor α in the objective function F is estimated from

the slope of the Pareto-optimal solutions. First, we obtained some pa-
rameter sets (in the case study, we obtained 200 kinds of parameter
sets) by the compute parameter set function, under the conditions of
δ = 1.0 and the tentative value of α ta = 1 (this means we used the
classical objective function, i.e. F = E). Second, we selected the Pareto-
optimal solutions from the list of estimated parameter sets, by the se-
lect pareto optimal solutions function. By fitting the linear function C = aE+ b
to the selected the Pareto-optimal solutions, we obtained the slope of Pareto-
optimal solutions, a. Finally, we estimated the value of α from the slope a.

General Procedure for Accurate Parameter Estimation 157

The detailed algorithms for estimating the value of α are shown in Algorithm
1 and 2. Fig. 3 represents a part of the estimated parameter sets in the case
study (the detailed algorithms for the parameter optimization we used for the
case study are shown in 2.6), the Pareto-optimal solutions, and the fitted line
for the Pareto-optimal solutions. We obtained the slope a = 20.7653 for the case
study, and the value of α was estimated as α = 0.95406.

2.6 Optimization Algorithm

Our approach can be applied to many kinds of parameter optimizing procedures,
such as the Gradient-based method and the evolutionary optimizing method,
including the Modified Powell method[18], [19], Genetic Algorithms[20], [21],
and Particle Swarm Optimization[22], [23], by modifying the objective function
(cost function) only[16].

 60

 80

 100

 120

 140

 160

 180

 200

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C

E

Fig. 3. Slope of Pareto-optimal solutions

The empty squares (�) indicate the set of evaluated values, E and CDE. The filled
squares (�) show the Pareto-optimal solutions, and the line represents the fitted line
for Pareto-optimal solutions.

Here, we applied our approach to Real-coded Genetic Algorithms[24], [25],
[26], to demonstrate its ability. The detailed algorithms used to analyze the case
study (Fig. 1 and 2) are shown in Algorithm 3 to 5.

158 M. Nakatsui et al.

Algorithm 1. Estimate value of weighting factor α

Function : estimate alpha(δ, pop, gen, trials)
Input : error tolerance δ, population of GA pop, maximum generation counts gen, and
trial number of GA trials
Return : estimated value of weighting factor α

1: RES ← compute parameter set(α = 1, δ, pop, gen, trials)
2: P ← select pareto optimal solutions(RES)
3: EV ← φ
4: CV ← φ
5: n size of P
6: for i = 0 to n do
7: EV ← EV union E(Pi)
8: CV ← CV union C(Pi)
9: end for
10: fit CVi = −aEVi + b from EV and CV by using least square method
11: return a/(a+ 1)

Algorithm 2. Select Pareto-optimal solutions

Function : select pareto optimal solutions(R)
Input : R set of estimated parameters
Return : Pareto-optimal solutions (P)

1: P ← φ
2: EV ← φ
3: CV ← φ
4: n size of R
5: for i = 0 to n do
6: EV ← EV union E(Ri)
7: CV ← CV union C(Ri)
8: end for
9: for i = 0 to n do
10: Flag lp = true
11: for j = 0 to n do
12: if !(EVi ≤ EVj and CVi ≤ CVj) then
13: lp ← false
14: end if
15: end for
16: if lp then
17: P ← P union Ri

18: end if
19: end for
20: return P

General Procedure for Accurate Parameter Estimation 159

Algorithm 3. Modify the parameter set K by computing the next generation

Function compute next generation(α, K)
Input : the weighting factor α, a parameter set K

1: n size of K
2: denote K = {k1, . . . , kn}
3: compute 1 ≤ s ≤ n such that ks is the one best element according to the F function

(i.e. F (ks) is the minimum of F (k1), . . . , F (Kn))
4: pick a random number r such that 1 ≤ r ≤ n, and r is different from s
5: mix ks and kr and compute a new set k′ = {K′

1, . . . , k
′
n}

6: K′ ← K′ union {ks}
7: modify k by replacing ks and kr by the two best elements of K′ according to the

F function

Algorithm 4. Optimization process

Function : compute one parameter set(α, δ, pop, gen)
Input : the weighting factor α, the error tolerance delta for function F , the population
size of GA pop, the maximum generation counts gen
Return : a set containing zero or one parameter set

1: create a set K containing pop random parameter sets
2: for i = 1 to gen do
3: compute next generation(α, K)
4: if an element k in K satisfies E(k) ≤ δ then
5: return k
6: end if
7: end for
8: return φ

Let us explain the differences between our procedure and the classical constraint
E. First of all, by using α = 1, one obtains a classical genetic algorithm using
the relative error E, since we have F = E when α = 1. Second, when using
α < 1, each parameter set k returned by the compute parameter sets satisfies
E(k) ≤ δ, as in the classical procedure. However, the manner in which the
population evolves (in the compute next generation) depends on the function F .
To summarize, the objective function F is only used to direct the evolution of the
population, by not using the objective function F to select the final candidates,
and thus it makes sense to compare the parameter sets computed in the classical
procedure and in our procedure.

2.7 Results

To evaluate the ability of our procedure, we performed a simulation study by
using the objective function with and without the newly developed DE con-
straints, by estimating the kinetic parameters in Eqn. (1). Here, we assume that

160 M. Nakatsui et al.

Algorithm 5. Generate a list of estimated parameter sets

Function : compute parameter sets(α, δ, pop, gen, trials)
Input : the weighting factor α, the error tolerance δ for function F , the population
size of GA pop, the maximum generation counts gen, the trial number trials
Return : a list of parameter sets

1: RES ← φ
2: for i = 1 to trials do
3: RES ← RES union compute one parameter set(α, δ, pop, gen)
4: end for
5: return RES

the time-series of only one variable, x1, can be observed. According to the model,
the reference curve of one variable, x1, was generated in Fig. 2. Among the pa-
rameters in the model, the values of three parameters, k12, k21, and Ve, were
estimated, and the values of the remaining parameters were set to the same
values as those used in the generation of the reference curve.

The introduction of DE constraints into the objective function was quite effec-
tive, in the comparison with the distributions of the parameter values estimated
with and without DE constraints (see Fig. 4). Indeed, the distribution of the
estimated k12 and k21 values was highly concentrated around the correct values
by the estimation with the introduction (Fig. 4 (A)), while the estimated pa-
rameters were widely distributed by the estimation without the introduction of
DE constraints (Fig. 4 (B)).

3 Discussion

The accuracy of parameter estimation was clearly improved by the introduction
of DE constraints into the objective function of the numerical parameter opti-
mizing method. Indeed, the parameter value sets estimated with the introduction
of DE constraints into the objective function were sharply distributed near the
correct values, in contrast to the wide distribution without the introduction. In
general, the derivatives included the information on the curve form of the ob-
served time-series data, such as slope, extremal point and inflection point. This
indicates that the new objective function we proposed estimates the difference
of not only the values but also the forms between the measured and estimated
data, while the classical objective function estimates only the value difference.
Note that the DE constraint is rationally reduced from the original system of
differential equations for a given model, in a mathematical sense. Thus, our ap-
proach is expected to become a general approach for parameter optimization to
improve the parameter accuracy.

As expected, the new objective function requires more computational time, in
comparison with an objective function with only a standard error function, due
to the increase of the function in the DE constraints. In equivalent systems de-
rived by Differential Elimination, the number of terms and operators frequently

General Procedure for Accurate Parameter Estimation 161

(A)

 2.85

 2.9

 2.95

 3

 3.05

 3.1

 3.15

 0.47 0.48 0.49 0.5 0.51 0.52 0.53

k2
1

k12

(B)

 2.85

 2.9

 2.95

 3

 3.05

 3.1

 3.15

 0.47 0.48 0.49 0.5 0.51 0.52 0.53

k2
1

k12

Fig. 4. Comparison of parameter value clouds estimated by the classical or our pro-
posed procedure, (A) with and (B) without DE constraints
The given values are as follows: x2(0) = 0.0 and ke = 7.0. The black circles indicate
the correct parameter set.

162 M. Nakatsui et al.

increases, and this may make the application of our procedure to a complex or
large system difficult, without simplification of the equivalent system. To over-
come the difficulty in the complex system, we applied simplification by symbolic
computation (see 2.4). For instance, we could estimate the kinetic parameters in
the negative feed-back oscillator model[27], [28], [29] by using the simplification
procedure[17], while the estimation without the simplification failed, due to the
immense computational time.

Another possible way to overcome the difficulty in complex models is to ap-
proximate the DE constraint. In the DE constraint, the terms with a higher order
of derivatives in the differential equations generally appeared in the equivalent
system. The magnitudes of the estimated values of the higher order derivatives
were relatively smaller than those of the lower order derivatives. Although our
procedure was useful, even for noisy data in a simple model[15], the estimated
values of the higher order derivatives for noisy data may become large in this
case. However, some techniques are frequently used for smoothing noisy data,
and after smoothing, the values of the higher order derivatives may be smaller.
If the terms with higher order derivatives can be neglected in the estimation,
then the computational time may be reduced. Further studies to improve the
computational time by approximation of the DE constraint will be reported in
the near future.

A Implementation of Simplification

The following commands use the new DifferentialAlgebra package, and thus re-
quire Maple 14 to work.

|\^/| Maple 14 (X86 64 LINUX)

._|\| |/|_. Copyright (c) Maplesoft, a division of Waterloo Maple Inc. 2010

\ MAPLE / All rights reserved. Maple is a trademark of

<____ ____> Waterloo Maple Inc.

| Type ? for help.

libname := "/home/calforme/lemaire/Triade/src/lib", "/usr/local/maple14/lib"

> with(DifferentialAlgebra):

> with(CodeGeneration):

> with(codegen):

> sys := [

> x1[t] - (-k12*x1 + k21*x2 - Ve*x1/(ke+x1)),

> x2[t] - (k12*x1 - k21*x2)

>];

Ve x1

sys := [x1[t] + k12 x1 - k21 x2 + -------, x2[t] - k12 x1 + k21 x2]

ke + x1

>

> R := DifferentialRing(blocks=[x2,x1,k12(),k21(),Ve(),ke()], derivations=[t]);

R := differential_ring

> Ids := RosenfeldGroebner(numer(sys), denom(sys), R,

> basefield=field(generators=[k12,k21,Ve,ke]));

Ids := [regular_differential_chain]

General Procedure for Accurate Parameter Estimation 163

> eqs := Equations(Ids[1]);

eqs := [

2

k21 x2 x1 + k21 x2 ke - x1[t] x1 - x1[t] ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2

x1[t, t] x1 + 2 x1[t, t] x1 ke + x1[t, t] ke + x1[t] x1 k12

2 2

+ x1[t] x1 k21 + 2 x1[t] x1 k12 ke + 2 x1[t] x1 k21 ke + x1[t] k12 ke

2 2

+ x1[t] k21 ke + x1[t] Ve ke + x1 k21 Ve + x1 k21 Ve ke]

One performs some necessary renaming

> eqs := subs(x1[t,t]=x1tt, x1[t]=x1t, x1[]=x1, x2[t]=x2t, x2[]=x2, eqs);

2

eqs := [k21 x2 x1 + k21 x2 ke - x1t x1 - x1t ke - k12 x1 - k12 x1 ke - Ve x1,

2 2 2 2

x1tt x1 + 2 x1tt x1 ke + x1tt ke + x1t x1 k12 + x1t x1 k21

2 2

+ 2 x1t x1 k12 ke + 2 x1t x1 k21 ke + x1t k12 ke + x1t k21 ke

2

+ x1t Ve ke + x1 k21 Ve + x1 k21 Ve ke]

> toTransform := [result = abs(eqs[1]) + abs(eqs[2])];

toTransform := [result =

2

| -k21 x2 x1 - k21 x2 ke + x1t x1 + x1t ke + k12 x1 + k12 x1 ke + Ve x1 |

2 2 2 2

+ | x1tt x1 + 2 x1tt x1 ke + x1tt ke + x1t x1 k12 + x1t x1 k21

2 2

+ 2 x1t x1 k12 ke + 2 x1t x1 k21 ke + x1t k12 ke + x1t k21 ke

2

+ x1t Ve ke + x1 k21 Ve + x1 k21 Ve ke |]

> cost(toTransform);

18 additions + 2 functions + 46 multiplications + assignments

One guesses that the denominator ke+x1 appears in many places.

To make it appear, one introduces de = ke + x1

and performs the substitution ke -> de - x1

> toTransform2 := subs(ke = de - x1, toTransform):

> toTransform2 := simplify(toTransform2);

toTransform2 := [result = | -k21 x2 de + x1t de + k12 x1 de + Ve x1 | + |

2 2 2

x1tt de + x1t k12 de + x1t k21 de + x1t Ve de - x1t Ve x1 + x1 k21 Ve de

164 M. Nakatsui et al.

|]

> cost(toTransform2);

9 additions + 2 functions + 21 multiplications + assignments

> eqs2 := subs(ke = de - x1, eqs):

> eqs2 := simplify(eqs2);

eqs2 := [k21 x2 de - x1t de - k12 x1 de - Ve x1,

2 2 2

x1tt de + x1t k12 de + x1t k21 de + x1t Ve de - x1t Ve x1 + x1 k21 Ve de

]

One remarks that ke does not appear anymore.

Using horner and optimization.

> eqs3 := convert(eqs2, horner, [de,x1,x2,x1t,x1tt]);

eqs3 := [-Ve x1 + (k21 x2 - x1t - k12 x1) de,

-x1t Ve x1 + (x1 k21 Ve + x1t Ve + (x1tt + (k12 + k21) x1t) de) de]

> toTransform := [result = abs(eqs3[1]) + abs(eqs3[2])];

toTransform := [result = | Ve x1 - (k21 x2 - x1t - k12 x1) de |

+ | -x1t Ve x1 + (x1 k21 Ve + x1t Ve + (x1tt + (k12 + k21) x1t) de) de |]

> cost(toTransform);

9 additions + 2 functions + 12 multiplications + assignments

> out := optimize(toTransform);

out := t7 = | Ve x1 - (k21 x2 - x1t - k12 x1) de |, t8 = x1t Ve,

t19 = | -t8 x1 + (x1 k21 Ve + t8 + (x1tt + (k12 + k21) x1t) de) de |,

result = t7 + t19

> cost([out]);

2 functions + 11 multiplications + 9 additions + 4 assignments

One generates the C code

> C([out]);

t7 = fabs(Ve*x1-(k21*x2-x1t-k12*x1)*de);

t8 = x1t*Ve;

t19 = fabs(-t8*x1+(x1*k21*Ve+t8+(x1tt+(k12+k21)*x1t)*de)*de);

result = t7+t19;

> quit

memory used=32.7MB, alloc=28.4MB, time=0.18

Acknowledgments. This work was partially supported by a project grant,
‘Development of Analysis Technology for Induced Pluripotent Stem (iPS) Cell’,
from The New Energy and Industrial Technology Development Organization
(NEDO).

General Procedure for Accurate Parameter Estimation 165

References

1. Kitano, H.: System Biology: A Brief Overview. Science 295(5560), 1662–1664
(2002)

2. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (1999)
3. Denis-Vidal, L., Joly-Blanchard, G., Noiret, C.: System identifiability (symbolic

computation) and parameter estimation (numerical computation). Numerical Al-
gorithms 34, 282–292 (2003)

4. Boulier, F., Denis-Vidal, F., Henin, T., Lemaire, F.: LÉPISME. In: Proceedings of
the ICPSS Conference (2004), http://hal.archives-ouvertes.fr/hal-00140368

5. Ritt, J.F.: Differential Algebra. Dover Publications Inc., New York (1950)
6. Kolchin, E.R.: Differential Algebra and Algebraic Groups. Academic Press,

New York (1973)
7. Seidenberg, A.: An elimination theory for differential algebra. Univ. California

Publ. Math. (New Series) 3, 31–65 (1956)
8. Wu, W.T.: On the foundation of algebraic differential geometry. Mechanization of

Mathematics, Research Preprints 3, 2–27 (1989)
9. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Representation for the radical of

a finitely generated differential ideal. In: Proceedings of ISSAC 1995, pp. 158–166
(1995)

10. Boulier, F., Lazard, D., Ollivier, F., Petitot, M.: Computing representations for
radicals of finitely generated differential ideals. Journal of AAECC 20(1), 73–121
(2009); (1997 Techrep. IT306 of the LIFL)

11. Boulier, F.: The BLAD libraries (2004), http://www.lifl.fr/~boulier/BLAD
12. Boulier, F.: Differential Elimination and Biological Modeling. Johann Radon Insti-

tute for Computational and Applied Mathematics (RICAM) Book Series 2, 111–139
(2007)

13. Boulier, F., Lemaire, F.: Differential Algebra and System Modeling in Cellular
Biology. In: Horimoto, K., Regensburger, G., Rosenkranz, M., Yoshida, H. (eds.)
AB 2008. LNCS, vol. 5147, pp. 22–39. Springer, Heidelberg (2008)

14. Nakatsui, M., Horimoto, K.: Parameter Optimization in the network dynamics
including unmeasured variables by the symbolic-numeric approach. In: Proc. of
the Third International Symposium on Optimization and Systems Biology (OSB
2009), pp. 245–253 (2009)

15. Nakatsui, M., Horimoto, K.: Improvement of Estimation Accuracy in Param-
eter Optimization by Symbolic Computation. In: Proceedings of IEEE Multi-
Conference on Systems and Control (in press)

16. Nakatsui, M., Horimoto, K., Okamoto, M., Tokumoto, Y., Miyake, J.: Parameter
Optimization by Using Differential Elimination: a General Approach for Introduc-
ing Constraints into Objective Functions. BMC Systems Biology (in press)

17. Nakatsui, M., Horimoto, K., Lemaire, F., Ürgüplü, A., Sedoglavic, F., Boulier, F.:
Brute force meets Bruno force in parameter optimization: Introduction of novel
constraints for parameter accuracy improvement by symbolic computation. IET
Systems Biology (in press)

18. Powell, M.J.D.: An efficient method for finding the minimum of a function of several
variables without calculating derivatives. Computer Journal 7, 142–162 (1954)

19. Powell, M.J.D.: On the calculation of orthogonal vectors. Computer Journal 11,
302–304 (1968)

20. Holland, J.H.: Adaptation in Natural and Artificial Systems. The University of
Michigan Press, Ann Arbor (1975)

http://hal.archives-ouvertes.fr/hal-00140368
http://www.lifl.fr/~boulier/BLAD

166 M. Nakatsui et al.

21. Goldberg, D.D.: Genetic Algorithms in Search, Optimization and Machine Learn-
ing. Addison-Wesley Longman Publishing Co., Inc., Boston (1989)

22. Eberhart, R., Kennedy, J.: A New Optimizer Using Particle Swarm Theory. In:
Proc. of Sixth International Symposium on Micro Machine and Human Science
(Nagoya Japan), pp. 39–43. IEEE Service Center, Piscataway (1995)

23. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proc. IEEE Interna-
tional Conference on Neural Networks (Perth, Australia), pp. IV:1942– IV:1948.
IEEE Service Center, Piscataway (1995)

24. Jonikow, C.Z., Michalewicz, Z.: An Experimental Comparison of Binary and Float-
ing Point Representations in Genetic Algorithms. In: Proceedings of the Fourth
International Conference on Genetic Algorithms, pp. 31–36 (1991)

25. Ono, I., Kobayashi, S.: A real-coded genetic algorithm for function optimization
using unimodal distribution crossover. In: Proc 7th ICGA, pp. 249–253 (1997)

26. Satoh, H., Ono, I., Kobayashi, S.: A new generation alternation model of genetic
algorithm and its assessment. J. of Japanese Society for Artificial Intelligence 15(2),
743–744 (1997)

27. Novák, B., Tyson, J.J.: Design principles of biochemical oscillators. Nat. Rev. Mol.
Cell Biol. 9(12), 981–991 (2008)

28. Kwon, Y.K., Cho, K.H.: Quantitative analysis of robustness and fragility in biolog-
ical networks based on feedback dynamics. Bioinformatics 24(7), 987–994 (2008)

29. Tyson, J.J., Chen, K.C., Novák, B.: Sniffers, buzzers, toggles and blinkers: dynam-
ics of regulatory and signaling pathways in the cell. Curr. Opin. Cell. Biol. 15(2),
221–231 (2003)

Analyzing Pathways Using

ASP-Based Approaches

Oliver Ray1, Takehide Soh2, and Katsumi Inoue3

1 University of Bristol
Merchant Venturers Building, Woodland Road

Bristol, BS8 1UB, United Kingdom
oray@cs.bris.ac.uk

2 Graduate University for Advanced Studies
3 National Institute of Informatics
2-1-2 Hitotsubashi, Chiyoda-ku

Tokyo, 101-8430, Japan
{soh,ki}@nii.ac.jp

Abstract. This paper contributes to a line of research which aims to
combine numerical information with logical inference in order to find
the most likely states of a biological system under various (actual or
hypothetical) constraints. To this end, we build upon a state-of-the-art
approach that employs weighted Boolean constraints to represent and
reason about biochemical reaction networks. Our first contribution is to
show how this existing method fails to deal satisfactorily with networks
that contain cycles. Our second contribution is to define a new method
which correctly handles such cases by exploiting the formalism of Answer
Set Programming (ASP). We demonstrate the significance of our results
on two case-studies previously studied in the literature.

1 Introduction

This paper is concerned with an area of research known as Symbolic Systems
Biology (SSB) which involves the application of formal methods to biological
networks. The main focus of the work is on combining numerical weights with
logical inference in order to find the most likely states of a biological system
under various (actual or hypothetical) constraints. To this end, we build upon a
state-of-the-art approach proposed by Tiwari et al. in [31] for analysing reaction
networks using Boolean weighted Maximal-Satisfiability (MaxSat) — a classical
NP-complete task for which surprisingly practical solvers now exist [1,20].

Following Tiwari et al., our aim is to use logical inference in the analysis of
biological networks, but to combine it with some form of numerical optimisation
to provide a more robust and useful approach. Thus, instead of regarding some
states as possible and others as impossible, we want to determine the degree
to which each state might account for a set of given constraints or preferences
(representing partial known or desired properties of the system). This allows us
to compute, for example, the most likely state that results from a given set of
initial inputs or the most likely state that results in a given set of target outputs.

K. Horimoto, M. Nakatsu, and N. Popov (Eds.): ANB 2011, LNCS 6479, pp. 167–183, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

168 O. Ray, T. Soh, and K. Inoue

Our paper makes two main contributions to this area. The first contribution
is to show how the existing MaxSat approach fails to deal satisfactorily with
networks that contain cycles (by incorrectly allowing self-supporting pathways
that produce their own inputs at no cost). The second contribution is to define a
new method which correctly handles these cases by exploiting the formalism of
Answer Set Programming (ASP) — a recent paradigm which is closely related
to that of Boolean satisfiability but which is specifically designed to penalise
logically unfounded loops [21,13] like those arising in this context.

The key insights of this paper can be related to a distinction between two well-
known theoretical concepts from the semantics of logic programming: namely, the
difference between so-called stable models and supported models of a program.
Intuitively, supported models allow self-supporting loops while stable models
do not. It turns out that the maximal-weight network states computed by the
MaxSat approach can be expressed as the minimal-cost supported models of a
dual answer set program; but that it is in fact the stable models which represent
the true cost of a given state. Since ASP solvers can compute both stable and
supported models, they offer a practical implementation of both methods.

The rest of the paper is structured as follows. Section 2 reviews the subject
of ASP. Section 3 briefly introduces the field of SSB. Sections 4, 5 and 6 are all
concerned with reviewing the MaxSat approach of Tiwari et al. [31]. Section 7
identifies some undesirable properties of the MaxSat method when applied to
reaction networks with cycles. It also proposes a suitable correction and looks
at its implications with respect to Tiwari et al.’s sporulation and MAPk case
studies. Section 8 provides an ASP implementation of our corrected approach.
Section 9 presents some related work. Section 10 concludes. For completeness,
some technical notes are presented at the end of the paper.

2 Answer Set Programming

Answer Set Programming (ASP) [21,13], which can be seen as a variation of
Logic Programming (LP) [22], is quickly becoming established as a prominent
knowledge representation and reasoning paradigm in its own right. Even though
both LP and ASP are built upon the language of first-order normal clauses,
their execution mechanisms are rather complementary. The LP approach, as
typified by many commercially available Prolog systems, is a top-down method
based on depth-first unfolding of clauses. The ASP approach, as popularised by
several freely available stable model solvers, is a bottom-up method based on
reduction to propositional satisfiability (SAT) solving. While both approaches
have advantages and disadvantages, the semantics and proof procedures of ASP
are especially well suited to the purposes of this paper.

Hereafter, we use the standard Boolean connectives: and ∧; or ∨; not ¬;
if ←; if and only if ↔. We use standard ASP constructs: normal rules a :-
l1, . . . , lk which ensure the head atom a is true if the body literals l1, . . . , lk are
true; optimisation directives #minimize[l1 = w1, . . . , lk = wk] which ensure the
sum of the weights wi on the true literals li is minimised; constraint literals

Analyzing Pathways Using ASP-Based Approaches 169

m {l1, . . . , lk}n which are true when at least m and at most n literals l1, . . . , lk
are true — and where the bounds assume default values m = 0 and n = k
if they are omitted; pooled literals p(. . . , a ; b , . . .) which stand for the two
choices p(. . . , a, . . .) and p(. . . , b, . . .); conditional literals l1 : l2 which stand for
all instances of l1 that satisfy l2; and domain constraints #domain p(V) which
restrict the domain of a variable V to terms satisfying a predicate p.

In general, ASP supports the use of both classical and default negation. But
here it suffices to consider only the latter negation inherited from normal logic
programming. Thus, if a is an atom then not a is true if there is no reason
to believe a. This operator has long been used as a convenient and powerful
way of representing and reasoning about defaults and exceptions. Its meaning is
formalised by identifying certain models of an Answer Set Program that satisfy
certain key properties. Two of the most important are the so-called supported
and stable models which, following [9], can be characterised as follows:

Definition 1. A supported model M of an Answer Set Program P is a set of
ground atoms such that for each atom a ∈ M there is a ground instance of a
rule r ∈ P whose head atom is a and whose body literals are satisfied by M .

Definition 2. A stable model M of an Answer Set Program P is a set of ground
atoms for which there is a strict well-founded partial order < such that for each
atom a ∈ M there is a ground instance of a rule r ∈ P whose head atom is
identical to a, and whose body literals are satisfied by M , and whose positive
body literals all precede a with respect to <.

These notions are closely related to the so-called Clark Completion [6]. As shown
in [23]: a model is stable only if it is a minimal Herbrand model of the Clark
Completion; and a model is supported if and only if it is a Herbrand model of
the Clark Completion. Hence all stable models are also supported models.

3 Symbolic Systems Biology

A considerable amount of current biological knowledge is represented in the
form of interaction networks at various levels of cellular abstraction. Much of
this information is publicly available from online data sources that specialise
in providing graph-based models of biological activity for many organisms at
the metabolic, proteomic and genomic levels. While the specific entities and
relations denoted by the nodes and edges in such networks are context dependent,
the obvious similarities shared by all such formalisms mean that it is possible
to develop general-purpose tools which can be used for analysing, interacting,
exploiting and integrating all types of information available in this form.

Biological networks are often mapped on to dynamical systems governed by
(ordinary or partial) differential equations. But the difficulty of finding suitably

170 O. Ray, T. Soh, and K. Inoue

accurate rate parameters has begun to motivate the use of more abstract types of
reasoning over discrete state spaces. Logic-based approaches are starting to play
an important role in these efforts by providing a highly-expressive and human-
understandable formalism for representing and reasoning about such networks.
This increasing application of logical methods to biological data has given rise
a growing area of research known as Symbolic Systems Biology (SSB).

Several logic-based methods have already been successfully exploited in this
context, such as action languages [7,2], active learning [17], causal models [3],
formal methods [5], integer programming [30], qualitative reasoning [16], spatio-
temporal logics [10], term rewriting [8], abduction [15,25], induction [27,24], and
their combination [29,26]. These approaches rest upon the common assumption
that, to a first approximation, stable biological states can be determined from
the network topology with no need for detailed quantitative simulations. This
paper is primarily concerned with the MaxSat method of Tiwari et al. [31] which
is distinguished by its ability to combine logic and weights.

The use of weights is motivated by the need for more flexibility when tailoring
generic reaction networks to particular biological contexts, the need for more
feedback when solving problems with too many or too few solutions, and the
need for more robustness when modelling noisy observations and/or uncertain
knowledge. On the one hand, weights can be set to make specific constraints more
or less important in different settings [31, p.157]. On the other hand, weights can
be used to rank possible solutions when there are too many of them — or even
to suggest likely causes of failure when there are too few [31, p.167].

4 Reaction Networks

Reaction networks have been proposed as a general framework for representing
and reasoning about complex biological interactions from metabolic networks to
signalling pathways and genetic interactions. Each network defines a set of basic
transformations, called reactions, between a set of basic biochemical entities,
called species. Depending on the biological context, species may denote enzymes
or metabolites, molecules or ions, ligands or receptors, or proteins in various
states of post-transcriptional modification. But, logically, they are just elements
s of a given set S. As formalised in [31, p.158]:

Definition 3. A species s is a member of a fixed set S.

A reaction is a biochemical transformation which results in the production of one
output set of species, called products, from two input sets of species, called re-
actants and modifiers. The difference between these two inputs is that reactants
undergo a permanent change (which means they are ‘used-up’ during a reaction)
while modifiers only undergo a temporary change (and so can be ‘re-used’ after
a reaction). For example, in a metabolic network, products, reactants, and mod-
ifiers would be used to model metabolites, substrates, and enzymes, respectively.
As formalised in [31, p.158]:

Analyzing Pathways Using ASP-Based Approaches 171

Definition 4. A reaction r = 〈R,M,P 〉 is a triple with three mutually disjoint
sets of species R, M , and P , called reactants, modifiers, and products, which are
said to be consumed, required, and produced by r, respectively. Reactants and
modifiers are also called inputs. Products are also called outputs. The reactants,
modifiers, and products of r are denoted R(r), M(r), and P (r), respectively.

In this way, a network is a set of reactions and a particular problem instance
is obtained by specifying a set of given input species (initial species), a set of
required output species (target species), and a set of species which should not
be produced (forbidden species). In the simplest case, each species is regarded
as being present or absent, and each reaction is regarded as being active or
inactive. For convenience the state of each individual reaction ri is represented
by a corresponding Boolean variable bi which is true (resp. false) if and only if
ri is active (resp. inactive). As formalised in [31, p.158]:

Definition 5. A network N = {r1, . . . , rn} is a set of reactions. With respect to
such a network, the sets of reactions in which some species s occurs as a reactant,
modifier, or product are denoted R−1(s), M−1(s), and P−1(s), respectively.

Definition 6. A network instance X = 〈N, I, F, T 〉 is a 4-tuple with a network
N and three sets of species I, F , and T called input species, forbidden species,
and target species, respectively. Associated with any network N = {r1, . . . , rn}
is a set of Boolean variables B = {b1, . . . , bn}, called state variables.

The state of an entire network N is given by a set of reactions σ ⊆ N which
are active. One of the main tasks relating to such networks is that of finding the
so-called equilibrium states of a network in which target species are consistently
produced from initial species by combinations of reactions, called pathways. This
is complicated by the fact that different reactions may compete for the same
species, which means that a given network can have many viable pathways in
which certain reactions are activated at the expense of their competitors.

Definition 7. Let N = {r1, . . . , rn} be a network. Two reactions ri and rj are
said to compete (with each other) if and only if i �= j and there exists a species
s which is an input of both reactions and which is consumed by at least one.

5 Equilibrium States

At the heart of their approach, Tiwari et al. aim to show how equilibrium states
can be characterised by a set of Boolean constraints over the variables bi that
represent the activities of the reactions ri. To avoid introducing further variables
that explicitly encode the presence of species, they augment a given network with
so-called dummy reactions. These do not represent real biochemical transform-
ations, as they have no inputs, but they do provide a formal way of ensuring that
any (initial or imported) species can be present by activating the corresponding
dummy reaction.

172 O. Ray, T. Soh, and K. Inoue

The definitions below formalise the constraints and dummy reactions in [31].
Definition 8 introduces the predicate present4i used by Tiwari et al. to denote
the presence of a species s for a reaction i. Definitions 9 and 10 characterise the
equilibrium states (of networks and instances) by a set of four constraints over
a network augmented with two types of dummy reaction. One dummy reaction,
which we call a completion reaction, is used to produce each non-initial species
with no other producer. Another dummy reaction, which we call an initialisation
reaction, is used to produce all of the initial species.

As described in [31, p.158], a species s is said to be present for a reaction i
(as a reactant) if and only if s is actually present (i.e., it is made as the product
of some active reaction) and s is not competitively consumed (i.e., it is not used
as a reactant of some other active reaction):

Definition 8. Let S be a set of species and let N = {r1, . . . , rn} be a network.
Then, for all species s ∈ S and for all integers 1 ≤ i ≤ n, let:

(∗) present4i(s, i) =
∨

rj∈P−1(s)

bj ∧
∧

rj∈R−1(s),j 	=i

¬bj

As described in [31, pp.159-162], equilibrium states are characterised by four
constraints stating that (A) a reaction is active if and only if all its inputs are
present for that reaction, (B) all dummy reactions are inactive, (C) all target
species are present, (D) all forbidden species are absent:

Definition 9. Let N be a network. Let N ′ be the network, called the completion
of N , obtained by adding to N one reaction 〈∅, ∅, {s}〉 for each species s which
is not produced by any reaction in N . Let σ be any subset of N ′ and assume that
a state variable bk is true if and only if the corresponding reaction rk is in σ.
Then σ is an equilibrium state of N if and only if the following hold: 1

(A) for all ri ∈ N : bi ↔
∧

s∈R(ri)∪M(ri)

present4i(s, i)

(B) for all ri ∈ N ′/N : ¬bi

Definition 10. Let X = 〈N, I, F, T 〉 be a network instance; and let N∗ be the
network, called the initialisation of N , obtained by adding to N one reaction
〈∅, ∅, I〉. Let σ be any equilibrium state of N∗. Then σ is an equilibrium state of
X if and only if the following hold: 2

(C) for all s ∈ T :
∨

rj∈P−1(s)

bj

(D) for all s ∈ F :
∧

rj∈P−1(s)

¬bj

Analyzing Pathways Using ASP-Based Approaches 173

6 Maximal Solutions

A key feature of Tiwari et al.’s MaxSat approach is that it actually treats all
constraints as soft requirements with associated weights. Thus the task they
consider is not to satisfy all of the constraints, but rather to maximise the total
weight of the satisfied constraints. In this way they introduce (one of) two further
constraints (E or F), called hints, which can be added to Definition 10 above.
These express a preference for turning on or turning off as many reactions as
possible. As formalised in [31, p.161]:

(E) for all ri ∈ N : bi

(F) for all ri ∈ N : ¬bi

To assign suitable weights xA − xF to the constraints (A-F) above, Tiwari et
al. suggest a methodology (tailored for signalling pathways) based on three pa-
rameters: the number W of reactions in the (augmented) network; the number
k of (non-initial) species with no producers; and if there is a preference pref for
turning reactions ‘on’ or ‘off’. The weights are specified in Definition 11 below
(which uses the fact that setting the weight of a constraint to zero is equivalent
to omitting that constraint altogether). As formalised in [31, p.162]:

Definition 11. Let X = 〈N, I, F, T 〉 be a network instance. Let N∗ be the ini-
tialisation of N . Let N ′ be the completion of N∗. Let W = ‖N ′‖. Let k =
‖N ′/N∗‖. Let pref be one of three values ‘on’, ‘off’, or ‘neither’. Let xA . . . xF

be integers, called weights, defined as follows:

• xA = W % importance of correctly using network reaction

• xB ≈ W/(k + 1) % importance of not using completion reaction

• xC = W % importance of producing a target species

• xD " W % importance of avoiding a forbidden species

• xE =

{
1 if pref = ‘on’

0 otherwise

% importance of turning on a reaction

% (if applicable)

• xF =

{
1 if pref = ‘off’

0 otherwise

% importance of turning off a reaction

% (if applicable)

Now let σ be any subset of N ′ and let nA . . . nF be the number of constraints
of the form (A. . .F), respectively, that are satisfied by σ. Then the weight of σ,
denoted μ(σ) is the defined as follows (and any state σ which maximises this
value is called a maximal solution of X):

μ(σ) =
∑

I∈{A,B,C,D,E,F}
nI . xI

174 O. Ray, T. Soh, and K. Inoue

7 Preferred Solutions

The maximal solutions above have some undesirable properties when applied
to networks with cycles. This is illustrated by Example 1 below which shows a
network N comprising a reversible pathway with four reactions {r1, r3, r5, r7} in
one direction (that take a to b to c to d to e) and four reactions {r8, r6, r4, r2}
in the other direction (that take e and f to d to c to b to a and f).

If there is one initial species a and one target species e, then there are two
maximal solutions which produce the latter from the former. The first activates
one linear pathway with reactions {r1, r3, r5, r7}. The second activates two cycles:
one comprising reactions {r1, r2} and the other comprising reactions {r7, r8}. In
both cases, one extra dummy reaction r0 (not shown) is also active.

Here, each arrow in a network diagram depicts a reaction, whose product(s)
are each denoted by arrow heads, whose reactants(s) are denoted by solid tails,
and whose modifier(s) are denoted by dotted tails. The feedback loop through
f is merely there to ensure the critique below applies under any preference for
turning reactions on or off; but similar arguments would apply without it.

Example 1. Fix a set of species S = {a, b, c, d, e, f} and a reaction network N =
{r1, r2, r3, r4, r5, r6, r7, r8} as shown below. Let X = 〈N, I, F, T 〉 be the network
instance with one initial species I1 = {a}, no forbidden species F1 = ∅, and one
target species T1 = {e}.

a b d ec
r1

f

r3 r5 r7

r2 r4 r6 r8

Initialising and completing the network results in the addition of just one dummy
reaction r0 = 〈∅, ∅, {a}〉. Hence, W = 9, k = 0, and so xA = xB = xC = 9. It can
be shown there are exactly two equilibrium states: σ1 = {r0, r1, r3, r5, r7} and
σ2 = {r0, r1, r2, r7, r8}. It can be shown these two states are the only maximal
solutions (under any preference for turning reactions ‘off’ or ‘on’).

The first solution is intuitive because all of the active reactions use inputs which
can be produced from the initial species. But the second solution is not intuitive
because two of the active reactions, r7 and r8 use inputs which cannot be pro-
duced from the initial species. It could be said that, in effect, σ2 produces d and
e out of ‘thin air’.

The problem is that, with no c, neither d nor e can be produced without the
other already being present. And, in many applications (as when interpreting
this network as a signalling pathway or metabolic network, for example), it would
simply not be reasonable to give this self-supporting loop the same weight as
the linear pathway from a to e.

This suggests that an alternative way of computing the weight of a state
is needed that pays some penalty for violating at least one reaction in every

Analyzing Pathways Using ASP-Based Approaches 175

such ‘unfounded’ loop. This can be done by observing that when there are no
problematic loops it is always possible to sequentially order the active reactions
in a way which ensures all inputs are the product of some preceding reaction.

Conversely, the non-existence of an ordering with this property indicates that
the state has a cyclic pathway that essentially produces its own inputs. But,
as formalised in Definition 12 below, finding the minimum number of reactions
which violate this property (under all possible orderings) determines how many
reactions must be penalised.

Definition 12. Let N be a network. Let σ be any subset of N and let μ(σ) be
the weight of σ (as formalised in Definition 11). Now let τ(σ) be the set of all
strict total orders on σ and, for each relation < in τ(σ), let ε(<) be the number
of reactions r in σ having an input species s that is not produced by any earlier
reaction r′ < r. Then the corrected weight γ(σ) of σ is defined as follows (and
any state σ which maximises this value is called a preferred solution of X): 3

γ(σ) = μ(σ) − xA . min
<∈ τ(σ)

ε(<)

Example 2. Recall the network N = {r1, r2, r3, r4, r5, r6, r7, r8} from Example 1
above. Let X ′ = 〈N, I ′, F, T 〉 be the network instance with no initial species
I ′ = ∅, no forbidden species F1 = ∅, and one target species T1 = {e}.

Now there are no dummy reactions so W = 8, k = 0 and xA = xB = xC = 8.
This time, there is just one equilibrium state σ3 = {r1, r2, r7, r8} which is the
unique maximal solution (under any preference). But, under any ordering of
the reactions, at least two will have inputs not produced by an earlier one. Thus
the true weight is obtained by subtracting 2*8=16 from the original value.

By contrast, there are six preferred solutions: π1 = ∅ which violates one
constraint (C) for e; π2 = {r7} which violates one constraint (A) for r7; π3 =
{r7, r8} which violates one constraint (A) for r8; π4 = {r5, r7} which violates
one constraint (A) for r5; π5 = {r3, r5, r7} which violates one constraint (A) for
r3; and π6 = {r1, r3, r5, r7} which violates one constraint (A) for r1.

All of the preferred solutions are clearly more reasonable than the maximal
solution because they do not allow five species {a, b, d, e, f} to be created from
no initial species at absolutely no cost!

Example 3. Consider the sporulation initiation network shown below, which is
recreated from [31, p.165] with 11 reactions (in the rounded box) omitted for
clarity. If I contains 9 species (in the dotted boxes) with no producers, and if
T contains the single species Spo0AP , then there is just one maximal solution
corresponding to the equilibrium state where the circled reactions are active (in
addition to the dummy reaction r0). But, this state has two unfounded loops.
The first loop involves reactions r16 and r17 (shown below). It is unfounded
because neither KinA nor KinAP can be present without the other already
being present. The second loop involves reactions r1 and r3 (not shown). By
contrast, there are two preferred solutions in which {r0, r4, r13, r15, r22, r23, r24}
are active. In one case r20 is inactive, violating one constraint (C) for Spo0AP .
In the other case r20 is also active, violating one constraint (A) for r20.

176 O. Ray, T. Soh, and K. Inoue

Spo0F

Spo0FP

Spo0B

Spo0BP

KinA

KinAP

Spo0A

Spo0AP

Spo0E

NoSoj

RapAPep5

r17

r18
r19 r20

r21

r15

RapA

NoKipI

HighCellDensity

SigmaA

CompAP

NoFood

r14r16

SinR

r13

r24

r22 r23

NoNitrogen

KipI

SigmaH

Hpr

r1 r2 r3

r5 r6 r7 r8

r9 r10 r11 r12

SinR4
r4

Example 4. Consider the MAPk network below which is recreated from [31,
p.166]. If I contains 9 species (in the dotted boxes) with no producers, then
there are two equilibrium states where {r1} or {r1, r3, r4} are active (along with
the dummy reaction r0). These are both maximal solutions. But, the latter has
an unfounded loop involving two reactions r3 and r4 — since neither Raf nor
Raf∗ can be present without the other already being present. By contrast, there
is just one preferred solution which corresponds to the first equilibrium state.

Ras

Ras*

Erk*

Erk

Raf

Raf*

Mek

Mek*AA*

AA

PKC*

PKC

Grb2 Sos1

PP2A

MKPgene MKP

Ca

DAG

r1r2

r3

r4

r5

r6

r7r8

r9

r10

r11

The existence of multiple cycles in both of these small case studies shows the
practical importance of developing methods which handle them correctly.

Analyzing Pathways Using ASP-Based Approaches 177

8 ASP Computation of Maximal and Preferred Solutions

The difference between the maximal solutions of Tiwari et al. and the preferred
solutions of the previous section is closely related to the distinction between
the supported models and stable models of a logic program. For this reason, it
is possible to translate the weighted Boolean constraints formalised above into
a dual answer set program whose minimal-cost supported and stable models
correspond, respectively, to the maximal and preferred network states.

Therefore modern ASP solvers which have the option of computing stable or
supported models, can be used to find both maximal solutions under the original
weights proposed by Tiwari et al. and preferred solutions under the corrected
weights proposed in the previous section. It should be noted the ASP solver
does not compute the true weight by naively applying the above correction to
the original weight, but by ruling out from the very beginning any unfounded
loops for which an appropriate penalty has not been paid.

Figure 1 shows how the network instance of Example 1 is easily encoded in the
language of ASP. The first three lines simply list the available species along with
any initial, target and/or forbidden species. The remaining lines each define one
reaction in the network by explicitly listing the individual reactants, modifiers,
and products of those reactions.

Figure 2 shows how the initialisation and weight constants of Example 1 are
easily encoded in the language of ASP. The first two lines provide an automatic
way of adding a dummy reaction r0 that produces all initial species. The other
lines specify the weights xA − xF using the fact that W = 9, k = 0, and there is
no preference for turning reactions on or off.

Figure 3 shows how the task of finding preferred or maximal states can be
represented in the language of ASP. First, variables R,R1, R2 and S are defined
over reactions and species. Then, three auxiliary predicates are defined. An input
of a reaction is any species that is a reactant or modifier of that reaction. Two
reactions compete if some species is an input of both and a reactant of one. A
reaction is viable if all its inputs are present and all its competitors are inactive.

A reaction is active if it is viable and we choose not to pay a penalty that would
allow us to render it inactive. Otherwise a reaction is active if it is not viable
but we choose to pay a penalty that allows us to render it active anyway. These
two penalties are both associated with weight xA as each of them represents one
way of violating constraint (A) in Definition 9.

A species is present if it is produced by an active reaction. Or a species is
present if it is not produced by any reaction but we choose to pay a penalty that
allows us to make it present anyway. This penalty is associated with weight xB as
it is equivalent to violating constraint (B) in Definition 9. Since we have explicit
atoms denoting the presence of species, we need not add dummy completion
reactions to the network.

In the cases discussed so far, the constraint literals indicate there is a choice
between paying the penalty in order to violate a constraint or not violating the
constraint in order not to pay the penalty.

178 O. Ray, T. Soh, and K. Inoue

species(a;b;c;d;e;f).

initial(a).

target(e).

reaction(r1). reactant(a,r1). product(b,r1).

reaction(r2). reactant(b,r2). product(a,r2). product(f,r2).

reaction(r3). reactant(b,r3). product(c,r3).

reaction(r4). reactant(c,r4). product(b,r4).

reaction(r5). reactant(c,r5). product(d,r5).

reaction(r6). reactant(d,r6). product(c,r6).

reaction(r7). reactant(d,r7). product(e,r7).

reaction(r8). reactant(e,r8). product(d,r8). modifier(f,r8).

Fig. 1. ASP encoding of network instance from Example 1

reaction(r0) :- initial(S).

product(S,r0) :- initial(S).

#const xA = 9.

#const xB = 9.

#const xC = 9.

#const xD = 999.

#const xE = 0.

#const xF = 0.

Fig. 2. ASP encoding of network initialisation and weights

The remaining penalties associated with not producing a target species xC ,
and producing a forbidden species xD, for turning on reactions xE or turning
off reactions xF are deterministically applied.

As well as providing a semantics that correctly handles unfounded loops in
reaction networks with cycles, another important advantage of the ASP frame-
work proposed here is that it allows both numeric and logical constraints to be
modularly added or removed. Such constraints can exploit the full expressive
power of ASP in order to define new preferences in addition to or instead of the
weight-based scheme proposed by Tiwari et al.

Analyzing Pathways Using ASP-Based Approaches 179

#domain species(S).

#domain reaction(R;R1;R2).

input(S,R) :- 1{reactant(S,R),modifier(S,R)}.
compete(R1,R2) :- 2{input(S,R1;R2)}, 1{reactant(S,R1;R2)}, R1 �= R2.

viable(R) :- present(S0):input(S0,R), not active(R0):compete(R0,R).

active(R) :- viable(R), not pay("viable-reaction-inactive",R).

active(R) :- pay("unviable-reaction-active",R).

present(S) :- product(S,R), active(R).

present(S) :- pay("unsynthesisable-species-present",S).

{pay("unviable-reaction-active",R)} :-

not pay("viable-reaction-inactive",R).

{pay("viable-reaction-inactive",R)} :-

viable(R).

{pay("unsynthesisable-species-present",S)} :-

not product(S,R0):reaction(R0).

pay("target-species-absent",S) :- target(S), not present(S).

pay("forbidden-species-present",S) :- forbidden(S), present(S).

pay("arbitrary-reaction-inactive",R) :- not active(R)

pay("arbitrary-reaction-active",R) :- active(R).

#minimize

[

pay("unviable-reaction-active",R0):reaction(R0)=xA,

pay("viable-reaction-inactive",R0):reaction(R0)=xA,

pay("unsynthesisable-species-present",S0):species(S0)=xB ,

pay("target-species-absent",S0):species(S0)=xC ,

pay("forbidden-species-present",S0):species(S0)=xD,

pay("arbitrary-reaction-inactive",R0):reaction(R0)=xE ,

pay("arbitrary-reaction-active",R0):reaction(R0)=xF

].

Fig. 3. ASP encoding of maximal or preferred solutions

180 O. Ray, T. Soh, and K. Inoue

The set of all maximal or preferred solutions can be computed using the ASP
system Gringo/Clasp [12,11]. All preferred solutions can be computed with the
option --opt-all while maximal solutions can be computed with the options
--opt-all and --supp-models. For all the examples in this paper, it took less
than 200 ms to compute all minimal-cost solutions using Gringo 2.0.3 and Clasp
1.3.0 on a 2GHz Intel Pentium Duo laptop with 4Mb RAM.

9 Related Work

The key problem addressed in this paper is that of integrating numerical and
logical information in order to better rank the solutions produced by biological
network analysis. This appears to be an important problem because empirical
evidence suggests that many solutions are usually produced in realistic problems
[19,18].

Following Tiwari et al., we add numerical weights into a logical framework in
order to define a preference on the solution space. The main difference is that
our approach correctly handles networks with loops while theirs does not. Earlier
work has approached the problem of cycles in other ways. For example, Tamura
et al. [30] describe a pre-processing method to break cycles using feedback vertex
sets; while Beasley and Planes [4] describe a post-processing method to check if
solutions include cycles. By contrast, our method exploits the stability of ASP
to appropriately penalise any unfounded loops.

Many authors have applied ASP to the analysis of biological networks. For
example, Schaub and Thiele use ASP methods to address the task of computing
metabolic scope and inverse scope [28]; while Dworschak et al. use a reduction of
action languages to ASP to reason about biological networks [7]. Ray et al. have
utilised an ASP system to propose revisions to metabolic networks in response
to biological data generated by a Robot Scientist [26].

Much previous work in the analysis of metabolic networks employs heuristics
aimed at maximising or minimising the number of reactions in a solution. For
example, in metabolic pathway recovery, Beasley and Planes suggest minimising
the number of reactions that must be added to a network [4]; while in the
analysis of structural robustness, Tamura et al. suggest minimising the number
of reactions that must be removed from a network [30]. Like Tiwari et al., our
approach naturally includes both these possibilities as special cases by setting
the preference parameter to ‘on’ or ‘off’.

In principle, all constraint-based approaches with native numeric support,
such as MaxSat, Integer Programming and ASP, allow the modular addition of
constraints (although a potential advantage of ASP is that it more naturally
allows those constraints to be expressed in terms of higher level logical concepts
relevant to the domain of interest).

A complementary approach is proposed by Inoue et al. [14] who combine a
first-order logical hypothesis-finding method with a probabilistic ranking based
on Expectation Maximization (EM). Variants of this ranking technique could

Analyzing Pathways Using ASP-Based Approaches 181

potentially be applied to other logical approaches, such as those which apply
action languages to metabolic networks [7] or signalling pathways [2].

The approach presented in this paper focuses on the computation of stable
states by abstracting away kinetic and stoichiometric parameters. There is a
growing body of related work based on qualitative reasoning [16] which tries to
approximate the solution of differential equations by reasoning over classes of
such parameter values (so the parameters can still be used to some extent even if
their precise values are unknown). Many other methods are explicitly concerned
with the temporal evolution of biological systems, such as BIOCHAM, which
answers queries expressed in a temporal logic [10].

10 Conclusion

This paper considered the integration of constraint-based and weight-based in-
ference to find the most likely states of a reaction network with respect to given
constraints. We showed how an existing state-of-the-art approach overestimates
the weight of unreachable states in networks with cycles. We defined a cor-
rected weight for penalising unfounded cycles and showed the impact of this on
the sporulation and MAPk case studies. We showed how both methods can be
implemented using an ASP solver. But it remains to assess the scalability of
proposed approach and to evaluate its utility in real applications.

Notes

1 Tiwari et al. show how constraints of the form (A) can be ‘broken up’ into finer
constraints which allow the assignment of different weights which capture, for example,
the fact that competition over a species which is consumed by two reactions is intu-
itively stronger than the competition over a species which is only consumed by one.
Our approach can also be also refined in this way with no difficulties.

2 Formally, an equilibrium state of an instance 〈N, I,F, T 〉 over a set of species S is
equivalent to any state of the extended network N ∪ {〈∅, ∅, I〉} ∪ {〈∅, ∅, {s}〉 | s ∈ S/I}
which satisfies constraints (A-D). Note the definitions imply that the network is first
initialised and then completed.

3 Tiwari et al. define a semantics for their reaction networks in terms of non-
deterministic state transition systems [31, p.158] and associate equilibrium states with
fixpoints of such transition systems. But a key drawback of their semantics is that it
does not distinguish between fixpoints that are reachable from the initial state and
fixpoints that are not. Fundamentally, this is the root cause underlying the counter-
intuitive properties of their approach that we address in this paper.

Acknowledgements. Thanks to the anonymous reviewers for their useful feed-
back. Thanks to Asish Tiwari for his helpful comments. Thanks to Research
Councils UK for funding the first author through a research fellowship in
Exabyte Informatics.

182 O. Ray, T. Soh, and K. Inoue

References

1. Alsinet, T., Manyà, F., Planes, J.: An efficient solver for weighted max-sat. Journal
of Global Optimization 41, 61–73 (2008)

2. Baral, C., Chancellor, K., Tran, N., Tran, N.L., Joy, A., Berens, M.: A knowledge
based approach for representing and reasoning about signaling networks. In: Proc.
12th Int. Conf. on Intelligent Systems for Molecular Biology, pp. 15–22 (2004)

3. Bay, S., Shrager, J., Pohorille, A., Langley, P.: Revising regulatory networks: From
expression data to linear causal models. Journal of Biomedical Informatics 35,
289–297 (2003)

4. Beasley, J., Planes, F.: Recovering metabolic pathways via optimization. Bioinfor-
matics 23(1), 92–98 (2007)

5. Bodei, C., Bracciali, A., Chiarugi, D.: On deducing causality in metabolic networks.
BMC Bioinformatics 9(4) (2008)

6. Clark, K.: Negation as failure rule. In: Gallaire, H., Minker, J. (eds.) Logic and
Data Bases, pp. 293–322. Plenum Press (1978)

7. Dworschak, S., Grell, S., Nikiforova, V., Schaub, T., Selbig, J.: Modeling Biological
Networks by Action Languages via Answer Set Programming. Constraints 13(1-2),
21–65 (2008)

8. Eker, S., Knapp, M., Laderoute, K., Lincoln, P., Talcott, C.: Pathway Logic: Ex-
ecutable models of biological networks. In: Proc. 4th Int. Workshop on Rewriting
Logic and Its Applications (2002)

9. Fages, F.: A new fixpoint semantics for general logic programs compared with the
well-supported and stable model semantics. New Generation Computing 9, 425–443
(1991)

10. Fages, F., Soliman, S., Chabrier-Rivier, N.: Modelling and querying interaction
networks in the biochemical abstract machine BIOCHAM. Journal of Biological
Physics and Chemistry 4, 64–73 (2004)

11. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp: A Conflict-Driven
Answer Set Solver. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007.
LNCS (LNAI), vol. 4483, pp. 260–265. Springer, Heidelberg (2007)

12. Gebser, M., Schaub, T., Thiele, S.: GrinGo: A New Grounder for Answer Set
Programming. In: Baral, C., Brewka, G., Schlipf, J. (eds.) LPNMR 2007. LNCS
(LNAI), vol. 4483, pp. 266–271. Springer, Heidelberg (2007)

13. Gelfond, M.: Answer sets. In: Handbook of Knowledge Representation, pp. 285–
316. Elsevier (2007)

14. Inoue, K., Sato, T., Ishihata, M., Kameya, Y., Nabeshima, H.: Evaluating Abduc-
tive Hypotheses using an EM Algorithm on BDDs. In: Proceedings of the 21st
International Joint Conference on Artificial Intelligence, pp. 810–815 (2009)

15. Juvan, P., Demsar, J., Shaulsky, G., Zupan, B.: GenePath: from mutations to
genetic networks and back. Nucleic Acids Research 33 (2005)

16. King, R., Garrett, S., Coghill, G.: On the use of qualitative reasoning to simulate
and identify metabolic pathways. Bioinformatics 21(9), 2017–2026 (2005)

17. King, R., Whelan, K., Jones, F., Reiser, P., Bryant, C., Muggleton, S., Kell, D.,
Oliver, S.: Functional Genomic Hypothesis Generation and Experimentation by a
Robot Scientist. Nature 427, 247–252 (2004)

18. Klamt, S., Stelling, J.: Combinatorial complexity of pathway analysis in metabolic
networks. Molecular Biology Reports 29(1-2), 233–236 (2002)

19. Küffner, R., Zimmer, R., Lengauer, T.: Pathway analysis in metabolic databases
via differetial metabolic display (DMD). In: German Conference on Bioinformatics,
pp. 141–147 (1999)

Analyzing Pathways Using ASP-Based Approaches 183

20. Kügel, A.: Improved exact solver for the weighted max-sat problem. In: Proc. of
the 2010 Pragmatics of SAT Workshop (2010)

21. Lifschitz, V.: What is answer set programming? In: Proc. 23rd AAAI National
Conf. on Artificial Intelligence, pp. 1594–1597. AAAI Press (2008)

22. Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1987)
23. Marek, W., Subrahmanian, V.S.: The relationship between stable, supported, de-

fault and autoepistemic semantics for general logic programs. Theoretical Com-
puter Science 103, 365–386 (1992)

24. Muggleton, S., King, R., Sternberg, M.: Protein secondary structure prediction
using logic-based machine learning. Protein Engineering 5(7), 647–657 (1992)

25. Papatheodorou, I., Kakas, A., Sergot, M.: Inference of Gene Relations from Mi-
croarray Data by Abduction. In: Baral, C., Greco, G., Leone, N., Terracina, G.
(eds.) LPNMR 2005. LNCS (LNAI), vol. 3662, pp. 389–393. Springer, Heidelberg
(2005)

26. Ray, O., Whelan, K., King, R.: Automatic Revision of Metabolic Networks through
Logical Analysis of Experimental Data. In: De Raedt, L. (ed.) ILP 2009. LNCS
(LNAI), vol. 5989, pp. 194–201. Springer, Heidelberg (2010)

27. Srinivasan, A., Muggleton, S., Sternberg, M., King, R.: Theories for Mutagenicity:
A Study in First-Order and Feature-Based Induction. Journal of Artificial Intelli-
gence 85(1-2), 277–299 (1996)

28. Schaub, T., Thiele, S.: Metabolic Network Expansion with Answer Set Program-
ming. In: Hill, P.M., Warren, D.S. (eds.) ICLP 2009. LNCS, vol. 5649, pp. 312–326.
Springer, Heidelberg (2009)

29. Tamaddoni-Nezhad, A., Chaleil, R., Kakas, A., Sternberg, M., Nicholson, J., Mug-
gleton, S.: Modeling the effects of toxins in metabolic networks. IEEE Engineering
in Medicine and Biology 26, 37–46 (2007)

30. Tamura, T., Takemoto, K., Akutsu, T.: Measuring Structural Robustness of
Metabolic Networks under a Boolean Model Using Integer Programming and Feed-
back Vertex Sets. In: Proc. 3rd Int. Conf. on Complex, Intelligent and Software
Intensive Systems, pp. 819–824. IEEE (2009)

31. Tiwari, A., Talcott, C., Knapp, M., Lincoln, P., Laderoute, K.: Analyzing Pathways
Using SAT-Based Approaches. In: Anai, H., Horimoto, K., Kutsia, T. (eds.) AB
2007. LNCS, vol. 4545, pp. 155–169. Springer, Heidelberg (2007)

Author Index

Assar, Rodrigo 98

Banaji, Murad 1
Boulier, François 76, 149

Clarke, Edmund M. 117

Faeder, James R. 117

Gillis, Joris J.M. 18
Gong, Haijun 117
Graça, Ana 38

Horimoto, Katsuihisa 149

Inoue, Katsumi 167

Jordán, Ferenc 136

Kahramanoğulları, Ozan 136
Komuravelli, Anvesh 117
Kuttler, Céline 76

Lemaire, François 57, 76, 149
Lynce, Inês 38

Marques-Silva, João 38

Nakatsui, Masahiko 149

Oliveira, Arlindo L. 38

Petitot, Michel 76
Priami, Corrado 136

Ray, Oliver 167

Sedoglavic, Alexandre 149
Sherman, David J. 98
Soh, Takehide 167

Ürgüplü, Asli 57, 149

Van den Bussche, Jan 18
Vargas, Felipe A. 98
Vidal, Samuel 76

Zuliani, Paolo 117

	Title
	Preface
	Conference Organization
	Table of Contents
	P$_0$-Matrix Products of Matrices
	Introduction
	Some Properties of P-Type Matrices
	The Main Question

	Notation and Definitions
	Main Results
	Preliminary Results
	Qualitative Classes and Related Ideas
	Compatibility of all Matrices in a Qualitative Class
	Compatibility of a Matrix with its Qualitative Class
	Matrices with Diagonal Factors

	Discussion and Conclusions
	References

	A Formal Model for Databases in DNA
	Introduction
	Related Work
	The Sticker-Complex Data Model
	Operations on Complexes
	Data Representation
	Implementation in DNA
	DNAQL
	Simulation of the Relational Algebra
	Concluding Remarks
	References

	Efficient and Accurate Haplotype Inference by Combining Parsimony and Pedigree Information
	Introduction
	Haplotype Inference
	Minimum Recombinant Haplotype Configuration
	Haplotype Inference by Pure Parsimony

	The PedRPoly Model
	Improving Efficiency
	Lower Bounds
	Sorting Genotypes
	Symmetries

	Experimental Evaluation
	Efficiency
	Accuracy

	Conclusions
	References

	MABSys: Modeling and Analysis of Biological Systems
	Introduction
	Related Works
	Main Structure of MABSys
	Description of Biochemical Reaction Networks
	Modeling by Means of ODEs
	Exact Symbolic Simplifications
	Qualitative Analysis

	Tyson’s Negative Feedback Oscillator
	Symbolic Simplification
	Discussion

	Installation of MABSys
	Conclusion and Perspectives
	References

	Models of Stochastic Gene Expression and Weyl Algebra
	Introduction
	The Classical Theory
	Chemical Reactions Systems
	Stochastic Petri Nets
	Markov Chain of the Temporisation and Master Equation
	The Schrödinger Equation Analog

	Reformulation in the Weyl Algebra
	The Algorithm
	Model Reduction, Model Restriction and Conservation Laws
	Model Reduction
	Model Restriction

	A Combined Formula for Differentiating and Evaluating
	Order of a Chemical Reaction System
	Examples
	First Order Systems
	Second Order Systems

	Conclusion
	References

	Reconciling Competing Models: A Case Study of Wine Fermentation Kinetics
	Introduction
	Methods
	Results
	Conclusions and Discussion
	References

	Computational Modeling and Verification of Signaling Pathways in Cancer
	Introduction
	Statistical Model Checking
	Bounded Linear Temporal Logic
	Bayesian Statistical Model Checking

	Crosstalk Model of HMGB1
	Motivations
	Model Formulation
	Simulation Models

	Simulation Results
	Verification of the HMBG1 Pathway
	Discussion
	References

	Composability: Perspectives in Ecological Modeling
	Introduction
	The BlenX Language
	Composability as a Modeling Aid
	Composability and Language Design
	Discussion
	References

	A General Procedure for Accurate Parameter Estimation in Dynamic Systems Using New Estimation Errors
	Introduction
	Procedure
	Overview of Present Procedure
	Example
	Differential Elimination
	Simplification
	Introduction of Constraints
	Optimization Algorithm
	Results

	Discussion
	References

	Analyzing Pathways Using ASP-Based Approaches
	Introduction
	Answer Set Programming
	Symbolic Systems Biology
	Reaction Networks
	Equilibrium States
	Maximal Solutions
	Preferred Solutions
	ASP Computation of Maximal and Preferred Solutions
	Related Work
	Conclusion
	References

	Author Index

