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Abstract. We show that several variants of the problem k-DOMINATING SET,
including k-CONNECTED DOMINATING SET, k-INDEPENDENT DOMINATING

SET, k-DOMINATING CLIQUE, d-DISTANCE k-DOMINATING SET, k-PERFECT

CODE and d-DISTANCE k-PERFECT CODE, when parameterized by the solution
size k, remain W[1]-hard in either multiple-interval graphs or their complements
or both.

1 Introduction

We introduce some basic definitions. The intersection graph Ω(F) of a family of sets
F = {S1, . . . , Sn} is the graph with F as the vertex set and with two different vertices
Si and Sj adjacent if and only if Si ∩ Sj �= ∅; the family F is called a representation
of the graph Ω(F). Let t ≥ 2 be an integer. A t-interval graph is the intersection graph
of a family of t-intervals, where each t-interval is the union of t disjoint intervals in
the real line. A t-track interval graph is the intersection graph of a family of t-track
intervals, where each t-track interval is the union of t disjoint intervals on t disjoint
parallel lines called tracks, one interval on each track. Note that the t disjoint tracks for
a t-track interval graph can be viewed as t disjoint “host intervals” in the real line for
a t-interval graph. Thus t-track interval graphs are a subclass of t-interval graphs. If a
t-interval graph has a representation in which all intervals have unit lengths, then the
graph is a unit t-interval graph. If a t-interval graph has a representation in which the
t disjoint intervals of each t-interval have the same length (although the intervals from
different t-intervals may have different lengths), then the graph is a balanced t-interval
graph. Similarly we define unit t-track interval graphs and balanced t-track interval
graphs.

As generalizations of the ubiquitous interval graphs, multiple-interval graphs
such as t-interval graphs and t-track interval graphs have numerous applications, tra-
ditionally to scheduling and resource allocation [13,1], and more recently to bioin-
formatics [4,8]. For this reason, a systematic study of various classical optimization
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problems in multiple-interval graphs has been undertaken by several groups of re-
searchers. In terms of approximability, Bar-Yehuda et al. [1] presented a 2t-
approximation algorithm for MAXIMUM INDEPENDENT SET in t-interval graphs, and
Butman et al. [2] presented approximation algorithms for MINIMUM VERTEX COVER,
MINIMUM DOMINATING SET, and MAXIMUM CLIQUE in t-interval graphs with ap-
proximation ratios 2 − 1/t, t2, and (t2 − t + 1)/2, respectively.

Fellows et al. [7] initiated the study of multiple-interval graph problems from the per-
spective of parameterized complexity. In general graphs, the four problems k-VERTEX

COVER, k-INDEPENDENT SET, k-CLIQUE, and k-DOMINATING SET, parameterized
by the solution size k, are exemplary problems in parameterized complexity theory [6]:
it is well-known that k-VERTEX COVER is in FPT, k-INDEPENDENT SET and k-
CLIQUE are W[1]-hard, and k-DOMINATING SET is W[2]-hard. Since t-interval graphs
are a special class of graphs, all FPT algorithms for k-VERTEX COVER in general
graphs immediately carry over to t-interval graphs. On the other hand, the parameter-
ized complexities of k-INDEPENDENT SET, k-CLIQUE, and k-DOMINATING SET in
t-interval graphs are not at all obvious. Indeed, in general graphs, k-INDEPENDENT

SET and k-CLIQUE are essentially the same problem (the problem k-INDEPENDENT

SET in any graph G is the same as the problem k-CLIQUE in the complement graph G),
but in t-interval graphs, they manifest different parameterized complexities. Fellows
et al. [7] showed that k-INDEPENDENT SET in t-interval graphs is W[1]-hard for any
t ≥ 2, then, in sharp contrast, gave an FPT algorithm for k-CLIQUE in t-interval graphs
parameterized by both k and t. Fellows et al. [7] also showed that k-DOMINATING

SET in t-interval graphs is W[1]-hard for any t ≥ 2. Recently, Jiang [9] strengthened
the two hardness results for t-interval graphs, and showed that k-INDEPENDENT SET

and k-DOMINATING SET remain W[1]-hard even in unit t-track interval graphs for any
t ≥ 2. In particular, we have the following theorem on the parameterized complexity of
k-DOMINATING SET in unit 2-track interval graphs:

Theorem 1 (Jiang 2010 [9]). k-DOMINATING SET in unit 2-track interval graphs is
W[1]-hard with parameter k.

The lack of symmetry in the parameterized complexities of k-INDEPENDENT SET and
k-CLIQUE in multiple-interval graphs and their complements leads to a natural ques-
tion about k-DOMINATING SET, which is known to be W[1]-hard in multiple-interval
graphs: Is it still W[1]-hard in the complements of multiple-interval graphs? Our fol-
lowing theorem (here “co-3-track interval graphs” denotes “complements of 3-track
interval graphs”) gives a positive answer:

Theorem 2. k-DOMINATING SET in co-3-track interval graphs is W[1]-hard with
parameter k.

A connected dominating set in a graph G is a dominating set S in G such that the in-
duced subgraph G(S) is connected. An independent dominating set in a graph G is both
a dominating set and an independent set in G. A dominating clique in a graph G is both
a dominating set and a clique in G. With connectivity taken in account, the problem k-
DOMINATING SET has three important variants: k-CONNECTED DOMINATING SET,
k-INDEPENDENT DOMINATING SET, and k-DOMINATING CLIQUE. Recall the sharp
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contrast in parameterized complexities of the two problems k-INDEPENDENT SET and
k-CLIQUE in multiple-interval graphs and their complements. This leads to more nat-
ural questions about k-DOMINATING SET: Are the two problems k-INDEPENDENT

DOMINATING SET and k-DOMINATING CLIQUE still W[1]-hard in multiple-interval
graphs and their complements? Also, without veering to either extreme, how about k-
CONNECTED DOMINATING SET?

We show that our FPT reduction for the W[1]-hardness of k-DOMINATING SET in
co-3-track interval graphs in Theorem 2 also establishes the following theorem:

Theorem 3. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in co-
3-track interval graphs are both W[1]-hard with parameter k.

Similarly, it is not difficult to verify that the FPT reduction for the W[1]-hardness of
k-DOMINATING SET in unit 2-track interval graphs [9] also establishes the following
theorem:

Theorem 4. k-INDEPENDENT DOMINATING SET in unit 2-track interval graphs is
W[1]-hard with parameter k.

For the two problems k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE

in multiple-interval graphs, we obtain a weaker result:

Theorem 5. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in unit
3-track interval graphs are both W[1]-hard with parameter k.

Another important variant (indeed a generalization) of k-DOMINATING SET is called
d-DISTANCE k-DOMINATING SET, where each vertex is able to dominate all vertices
within a threshold distance d. Note that k-DOMINATING SET is simply d-DISTANCE

k-DOMINATING SET with d = 1. For this distance variant of k-DOMINATING SET, we
obtain the following theorem:

Theorem 6. d-DISTANCE k-DOMINATING SET for any d ≥ 2 in balanced 3-interval
graphs is W[1]-hard with parameter k.

The last variant of k-DOMINATING SET that we study in this paper is called k-PERFECT

CODE. A perfect code in a graph G = (V, E), also known as a perfect dominating set
or an efficient dominating set, is a subset of vertices V ′ ⊆ V that includes exactly
one vertex from the closed neighborhood of each vertex u ∈ V . Recall that the open
neighborhood of u is N(u) = {v | {u, v} ∈ E}, and that the closed neighborhood of
u is N [u] = N(u) ∪ {u}. The problem k-PERFECT CODE is that of deciding whether
a given graph G has a perfect code of size exactly k. It is known to be W[1]-complete
with parameter k in general graphs [5,3]. Since every graph of maximum degree 3 is
the intersection graph of a family of unit 2-track intervals [10, Theorem 4], it follows
that k-PERFECT CODE is NP-complete in unit 2-track interval graphs. In the following
theorem, we show that k-PERFECT CODE is indeed W[1]-hard in unit 2-track interval
graphs:

Theorem 7. k-PERFECT CODE in unit 2-track interval graphs is W[1]-hard with
parameter k.
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The distance variant of k-PERFECT CODE, denoted as d-DISTANCE k-PERFECT CODE,
is also studied in the literature [12]. We show that d-DISTANCE k-PERFECT CODE is
also W[1]-hard in unit 2-track interval graphs:

Theorem 8. d-DISTANCE k-PERFECT CODE for any d ≥ 2 in unit 2-track interval
graphs is W[1]-hard with parameter k.

We refer to [11] for some related results. All proofs of W[1]-hardness in this paper
are based on FPT reductions from the W[1]-complete problem k-MULTICOLORED

CLIQUE [7]: Given a graph G of n vertices and m edges, and a vertex-coloring κ :
V (G) → {1, 2, . . . , k}, decide whether G has a clique of k vertices containing ex-
actly one vertex of each color. Without loss of generality, we assume that no edge in G
connects two vertices of the same color.

2 Dominating Set

In this section we prove Theorem 2. We show that k-DOMINATING SET in co-3-track
interval graphs is W[1]-hard by an FPT reduction from the W[1]-complete problem
k-MULTICOLORED CLIQUE [7].

Let (G, κ) be an instance of k-MULTICOLORED CLIQUE. We will construct a family
F of 3-track intervals such that G has a clique of k vertices containing exactly one
vertex of each color if and only if the complement of the intersection graph GF of F
has a dominating set of k′ vertices, where k′ = k +

(
k
2

)
.

Vertex selection: Let v1, . . . , vn be the set of vertices in G, sorted by color such that
the indices of all vertices of each color are contiguous. For each color i, 1 ≤ i ≤ k,
let Vi = {vp | si ≤ p ≤ ti} be the set of vertices vp of color i. For each vertex
vp, 1 ≤ p ≤ n, let 〈vp〉 be a vertex 3-track interval consisting of the following three
intervals on the three tracks:

〈vp〉 =

⎧
⎨

⎩

track 1 : (p − 1, p)
track 2 : (p − 1 + m + 1, p + m + 1)
track 3 : (p − 1 + m + 1, p + m + 1).

For each color i, 1 ≤ i ≤ k, let 〈Vi〉 be the following 3-track interval:

〈Vi〉 =

⎧
⎨

⎩

track 1 : (ti, m + n + 1)
track 2 : (0, si − 1 + m + 1)
track 3 : (m, m + 1).

Edge selection: Let e1, . . . , em be the set of edges in G, also sorted by color such that
the indices of all edges of each color pair are contiguous. For each pair of distinct colors
i and j, 1 ≤ i < j ≤ k, let Eij = {er | sij ≤ r ≤ tij} be the set of edges vpvq such
that vp has color i and vq has color j. For each edge er, 1 ≤ r ≤ m, let 〈er〉 be an edge
3-track interval consisting of the following three intervals on the three tracks:

〈er〉 =

⎧
⎨

⎩

track 1 : (r − 1 + n + 1, r + n + 1)
track 2 : (r − 1, r)
track 3 : (r − 1, r).
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For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let 〈Eij〉 be the following
3-track interval:

〈Eij〉 =

⎧
⎨

⎩

track 1 : (0, sij − 1 + n + 1)
track 2 : (tij , n + m + 1)
track 3 : (m, m + 1).

Validation: For each edge er = vpvq such that vp has color i and vq has color j, let
〈vper〉 and 〈vqer〉 be the following 3-track intervals:

〈vper〉 =

⎧
⎨

⎩

track 1 : (p, sij − 1 + n + 1)
track 2 : (tij , p − 1 + m + 1)
track 3 : (r − 1, r),

〈vqer〉 =

⎧
⎨

⎩

track 1 : (q, sij − 1 + n + 1)
track 2 : (tij , q − 1 + m + 1)
track 3 : (r − 1, r).

Let F be the following family of n + m + k +
(
k
2

)
+ 2m 3-track intervals:

F =
{〈vp〉 | 1 ≤ p ≤ n

} ∪ {〈er〉 | 1 ≤ r ≤ m
}

∪ {〈Vi〉 | 1 ≤ i ≤ k
} ∪ {〈Eij〉 | 1 ≤ i < j ≤ k

}

∪ {〈vper〉, 〈vqer〉 | er = vpvq ∈ Eij , 1 ≤ i < j ≤ k
}
.

This completes the construction. We refer to Figure 1 for an example. The following
five properties of the construction can be easily verified:

1. For each color i, 1 ≤ i ≤ k, all 3-track intervals 〈vp〉 for vp ∈ Vi are pairwise-
disjoint.

2. For each color i, 1 ≤ i ≤ k, 〈Vi〉 intersects all other 3-track intervals except the
vertex 3-track intervals 〈vp〉 for vp ∈ Vi.

3. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, all 3-track intervals 〈er〉 for
er ∈ Eij are pairwise-disjoint.

4. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, 〈Eij〉 intersects all other
3-track intervals except the edge 3-track intervals 〈er〉 for er ∈ Eij .

5. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, for each edge er ∈ Eij and
each vertex vp incident to er, 〈vper〉 intersects all other 3-track intervals except the
vertex 3-track interval 〈vp〉 and the edge 3-track intervals for the edges in Eij other
than 〈er〉.

Lemma 1. G has a k-multicolored clique if and only if GF has a k′-dominating set,
where k′ = k +

(
k
2

)
.

Proof. For the direct implication, if K ⊆ V (G) is a k-multicolored clique in G, then
the following subset D ⊆ F of 3-track intervals is a k′-dominating set in GF :

D =
{〈vp〉 | vp ∈ K

} ∪ {〈er〉 | vp, vq ∈ K, er = vpvq
}
.

To verify this, check that each 〈vp〉 /∈ D is dominated by 〈vp′〉 ∈ D for some vertex vp′

of the same color as vp (Property 1), each 〈er〉 /∈ D is dominated by 〈er′〉 ∈ D for some
edge er′ of the same color pair as er (Property 3), each 〈Vi〉 is dominated by 〈vp〉 ∈ D
for some vp ∈ Vi (Property 2), each 〈Eij〉 is dominated by 〈er〉 ∈ D for some er ∈ Eij
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Fig. 1. Top: A graph G of n = 4 vertices v1, v2, v3, v4 and m = 4 edges e1 = v1v3, e2 =
v1v4, e3 = v2v4, e4 = v3v4, with k = 3 colors κ(v1) = κ(v2) = 1, κ(v3) = 2, and κ(v4) = 3.
V1 = {v1, v2}, V2 = {v3}, V3 = {v4}; E12 = {e1}, E13 = {e2, e3}, E23 = {e4}. K =
{v1, v3, v4} is a 3-multicolored clique. Bottom: A family F of n + m + k +

(
k
2

)
+ 2m = 22 3-

track intervals. D = {〈v1〉, 〈v3〉, 〈v4〉, 〈e1〉, 〈e2〉, 〈e4〉} is a 6-dominating set in the complement
of the intersection graph of F .

(Property 4), and each 〈vper〉 is dominated either by 〈vp〉 ∈ D, when vp ∈ K , or by
〈er′〉 ∈ D for some edge er′ of the same color pair as er, when vp /∈ K (Property 5).

For the reverse implication, suppose that D ⊆ F is a k′-dominating set in GF . We
will find a k-multicolored clique K ⊆ V (G) in G. For each color i, 1 ≤ i ≤ k, D
must include either 〈Vi〉 or at least one of its neighbors in GF . Thus by Properties 1 and
2, we can assume without loss of generality that D does not include 〈Vi〉 but includes
at least one vertex 3-track interval 〈vp〉 for some vp ∈ Vi. Similarly, for each pair of
distinct colors i and j, 1 ≤ i < j ≤ k, we can assume by Properties 3 and 4 that D does
not include 〈Eij〉 but includes at least one edge 3-track interval 〈er〉 for some er ∈ Eij .
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Since k′ = k+
(
k
2

)
, it follows that D includes exactly one vertex 3-track interval of each

color, and exactly one edge 3-track interval of each color pair. For each pair of distinct
colors i and j, 1 ≤ i < j ≤ k, let er = vpvq be the edge whose 3-track interval 〈er〉
is included in D. By Property 5 of the construction, the two 3-track intervals 〈vper〉
and 〈vqer〉 cannot be dominated by 〈er〉 and hence must be dominated by 〈vp〉 and
〈vq〉, respectively. Therefore the vertex selection and the edge selection are consistent,
and the set of k vertex 3-track intervals in D corresponds to a k-multicolored clique
K in G.

3 Connected Dominating Set, Independent Dominating Set, and
Dominating Clique

In this section we prove Theorems 3, 4, and 5.
For Theorem 3, to show the W[1]-hardness of k-CONNECTED DOMINATING SET

and k-DOMINATING CLIQUE in co-3-track interval graphs, let us review our FPT re-
duction for Theorem 2, in particular, the proof of Lemma 1, in the previous section.
Observe that for the direct implication of Lemma 1, our proof composes a dominat-
ing set D of pairwise-disjoint 3-track intervals, and that for the reverse implication
of Lemma 1, our proof uses only the fact that D is a dominating set without any as-
sumption about its connectedness. This implies that our FPT reduction for Theorem 2
also establishes Theorem 3. By a similar argument, it is not difficult to verify that the
FPT reduction for the W[1]-hardness of k-DOMINATING SET in unit 2-track interval
graphs [9] also establishes the W[1]-hardness of k-INDEPENDENT DOMINATING SET

in unit 2-track interval graphs in Theorem 4.
For Theorem 5, to show the W[1]-hardness of k-CONNECTED DOMINATING SET

and k-DOMINATING CLIQUE in unit 3-track interval graphs, we use the same construc-
tion as in the previous FPT reduction for the W[1]-hardness of k-DOMINATING SET

in unit 2-track interval graphs [9] for the first two tracks. Then, on track 3, we use the
same (coinciding) unit interval for all multiple-intervals in

F ′ =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

} ∪ {
ûivj left, ûivj right | uv ∈ Eij , 1 ≤ i < j ≤ k

}
,

and use a distinct unit interval disjoint from all other unit intervals for each of the re-
maining multiple-intervals. Now the dominating set composed in the direct implication
of the proof in [9] becomes a clique. Since the reverse implication of the proof in [9]
does not depend on the additional intersections between the multiple-intervals in F ′,
the modified reduction establishes Theorem 5.

4 Distance Dominating Set

In this section we prove Theorem 6. We show that d-DISTANCE k-DOMINATING SET

is W[1]-hard in 3-interval graphs for any d ≥ 2 by an FPT reduction again from k-
MULTICOLORED CLIQUE.

First we consider the case d = 2. Let (G, κ) be an instance of k-MULTICOLORED

CLIQUE. We will construct a family F of 3-intervals as illustrated in Figure 2 such
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that G has a k-multicolored clique if and only if the intersection graph GF of F has a
2-distance k′-dominating set, where k′ = k +

(
k
2

)
. For convenience, we specify some

3-intervals in F as 2-intervals or intervals, and assume an implicit extension of each
2-interval or interval to a 3-interval by adding extra intervals that are disjoint from the
other intervals in F . We use (u, v, w) to denote a 3-interval that is the union of three
disjoint intervals u, v, w, in no particular order. Similarly, we use (u, v) for a 2-interval.

x u1 u2 u′
1 u′

2

e′1 e′2 e′3 e′4

e1,1 e1,2

e2,1 e2,2

e3,1 e3,2

e4,1 e4,2

y e1 e2 e3 e4

Fig. 2. The vertex gadget for Vi (left) is connected to the edge gadget for Eij (right) by a valida-
tion gadget (middle)

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
Write |Vi| = φ. There are 2φ+1 disjoint intervals labeled with x, u1, . . . , uφ, u

′
1, . . . , u

′
φ

in the vertex selection gadget for Vi. For each vertex u = us ∈ Vi, we add two 2-
intervals 〈u〉1 = (x, us) and 〈u〉2 = (us, u′

s) to F . We also add four dummy intervals
to F : two dummy intervals intersect with x; the other two dummy intervals intersect
with the first two dummy intervals, respectively.

Edge Selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be
the set of edges uv such that u has color i and v has color j. Write |Eij | = ψ. There are
ψ + 1 disjoint intervals labeled with y, e1, . . . , eψ in the edge selection gadget for Eij .
For each edge e = es ∈ Eij , we add a 2-interval 〈e〉 = (y, es) to F . We also add four
dummy intervals to F in the same way as in each vertex selection gadget.

Validation: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we construct two
validation gadgets that connect the two vertex gadgets for Vi and Vj , respectively, to
the edge gadget for Eij . In the following we describe the validation gadget between the
vertex gadget for Vi and the edge gadget for Eij ; the construction of the other validation
gadget is similar. Write |Eij | = ψ. There are 3ψ intervals in this validation gadget. First,
there are ψ disjoint intervals labeled with e′1, . . . , e

′
ψ. Then, for each e′s, there are two

disjoint intervals es,1 and es,2 intersecting with all intervals e′t with t �= s. For each edge
e = es ∈ Eij , we add a 2-interval 〈e, i〉 = (es, e′s) to F . For each vertex u = ut ∈ Vi
incident to some edge e = es ∈ Eij , we add a 3-interval 〈u, e〉 = (u′

t, es,1, es,2) to F .
In summary, the construction gives us the following family F of 3-intervals:

F =
{〈u〉1, 〈u〉2 | u ∈ Vi, 1 ≤ i ≤ k

} ∪ {〈e〉 | e ∈ Eij , 1 ≤ i < j ≤ k
}

∪ {〈e, i〉, 〈e, j〉, 〈u, e〉, 〈v, e〉 | e = uv ∈ Eij , 1 ≤ i < j ≤ k
} ∪ DUMMIES,

where DUMMIES is the set of 4k + 4
(
k
2

)
dummy intervals.
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Observe that for each pair of disjoint intervals es,1 and es,2 in the validation gad-
gets, we can extend es,1 to the left and extend es,2 to the right until they have the same
length. This does not change the intersection pattern of the intervals. Therefore F can
be transformed into a family of balanced 3-intervals, where 〈e〉, 〈e, i〉, 〈e, j〉 and DUM-
MIES use intervals of length 1, and 〈u〉1, 〈u〉2, 〈u, e〉 use intervals of length m, where
m is the number of edges in G.

Lemma 2. G has a k-multicolored clique if and only if GF has a 2-distance k′-
dominating set, where k′ = k +

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then it is easy to verify the following subfamily D of 3-intervals is a
2-distance k′-dominating set in GF :

D =
{〈u〉1 | u ∈ K

} ∪ {〈e〉 | e = uv, u, v ∈ K
}
.

We next prove the reverse implication. Suppose that D is a 2-distance k′-dominating
set in GF . In order to dominate the dummies we can assume without loss of generality
that D includes at least one 〈u〉1 from each vertex gadget and at least one 〈e〉 from each
edge gadget. Since D has size k′ = k +

(
k
2

)
, we must have exactly one 〈u〉1 from each

vertex gadget and exactly one 〈e〉 from each edge gadget in D. Consider 〈e〉 from the
edge gadget for Eij , where e = uv. Note that 〈e〉 dominates all multiple-intervals in
the two validation gadgets for Eij except 〈u, e〉 and 〈v, e〉, which must be dominated
by 〈u〉 and 〈v〉, respectively, in the corresponding vertex gadgets. Therefore the subset
of vertices K = {v ∈ V (G) | 〈v〉1 ∈ D} is a k-multicolored clique in G. �
The above construction can be easily generalized to handle the case d > 2. To do this,
extend each vertex gadget to include d pairs of dummy intervals instead of two pairs,
and to include d disjoint intervals for each vertex u (instead of only the two labeled with
u and u′) such that there is a path of length d− 1 from 〈u〉1 to 〈u〉d in GF . Extend each
edge gadget in a similar way. Then the same argument applies.

5 Perfect Code

In this section we prove Theorem 7. We show that k-PERFECT CODE in unit 2-track
interval graphs is W[1]-hard by a reduction from k-MULTICOLORED CLIQUE.

Let (G, κ) be an instance of k-MULTICOLORED CLIQUE. We will construct a family
F of unit 2-track intervals such that G has a k-multicolored clique if and only if the
intersection graph GF of F has a k′-perfect code, where k′ = k + 2

(
k
2

)
.

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
We construct a vertex-selection gadget for Vi as illustrated in Figure 3. Write |Vi| = φ.
On each track, we start with 2φ unit intervals arranged in φ rows and two (slanted)
columns. The φ intervals in each column are pairwise-intersecting. The two intervals
in each row slightly overlap such that each interval in the left column intersects with
all intervals in the same or higher rows in the right column. For the rth vertex u in Vi,
1 ≤ r ≤ φ, we add a vertex 2-track interval 〈u〉 = (u1, u2) to F , where u1 and u2
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u1u′
1

dummy

track 1

u2u′
2track 2

dummy

Fig. 3. An illustration of a vertex-selection gadget

are the intervals in the rth row and the right column on tracks 1 and 2, respectively.
Denote by u′

1 and u′
2 the intervals in the rth row and the left column on tracks 1 and

2, respectively; they will be used for validation. Besides the φ vertex 2-track intervals
〈u〉, we also add two dummy 2-track intervals to F . The first (resp. second) dummy
2-interval consists of a unit interval on track 1 (resp. track 2) that intersects all intervals
in the right column and no interval in the left column, and a unit interval on track 2
(resp. track 1) that is disjoint from all other intervals.

u1u′
1

u2u′
2

u′′
1û1

u′′
2û2

v′′
1v̂1

v′′
2v̂2

v1v′
1

v2v′
2

Fig. 4. An illustration of an edge-selection gadget (middle) and the corresponding vertex-
selection gadgets (left and right). Two edge 2-track intervals (û1, v̂2) and (û2, v̂1) are represented
by dashed lines. Dummy 2-track intervals are omitted from the figure.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij
be the set of edges uv such that u has color i and v has color j. We construct an edge
selection gadget for Eij as illustrated in Figure 4. We start with four disjoint groups of
intervals, two groups on each track, with two columns of intervals in each group. Write
|Vi| = φi and |Vj | = φj . The two groups on the left correspond to color i and have
φi rows; the two groups on the right correspond to color j and have φj rows. Different
from the formation in the vertex selection gadgets, here in each group each interval in
the left column intersects with all intervals in higher rows in the right column but not
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the interval in the same row. In the two groups on the left, for the rth vertex u ∈ Vi,
1 ≤ r ≤ φi, denote by û1 and û2 the intervals in the rth row and the left column on
tracks 1 and 2, respectively, and denote by u′′

1 and u′′
2 the intervals in the rth row and the

right column on tracks 1 and 2, respectively. Similarly, for each vertex v ∈ Vj , denote by
v̂1, v̂2, v

′
1, v

′
2 the corresponding intervals in the two groups on the right. For each edge

uv ∈ Eij , we add two edge 2-track intervals 〈uv〉1 = (û1, v̂2) and 〈uv〉2 = (û2, v̂1) to
F . Besides these edge 2-track intervals, we also add four dummy 2-track intervals to F ,
one for each group of intervals. The dummy 2-track interval for each group consists of
a unit interval that intersects all intervals in the left column and no interval in the right
column in the group, and a unit interval on the other track that is disjoint from all other
intervals.

Validation: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we add 2|Vi| +
2|Vj | validation 2-track intervals to F as illustrated in Figure 4. Specifically, for each
vertex u ∈ Vi, we add 〈u∗ij〉1 = (u′

1, u
′′
2) and 〈u∗ij〉2 = (u′

2, u
′′
1), and for each vertex

v ∈ Vj , we add 〈∗vij〉1 = (v′1, v
′′
2 ) and 〈∗vij〉2 = (v′2, v

′′
1 ).

In summary, the construction gives us the following family F of unit 2-track inter-
vals:

F =
{〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

} ∪ {〈uv〉1, 〈uv〉2 | uv ∈ Eij , 1 ≤ i < j ≤ k
}

∪ {〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k
}

∪ DUMMIES,

where DUMMIES is the set of 2k + 4
(
k
2

)
dummy 2-track intervals.

Lemma 3. G has a k-multicolored clique if and only if GF has a k′-perfect code,
where k′ = k + 2

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then it is easy to verify that the following subfamily D of unit 2-track
intervals is a k′-perfect code in GF :

D =
{〈u〉 | u ∈ K

} ∪ {〈uv〉1, 〈uv〉2 | u, v ∈ K
}
.

We next prove the reverse implication. Suppose D is a k′-perfect code in GF . Observe
that the dummy 2-track intervals in our construction are pairwise-disjoint. Moreover,
the two dummies in each vertex gadget share the same open neighborhood which is not
empty, and the same is true about the two dummies associated with the two groups of
intervals, the left group on track 1 and the right group on track 2 (resp. the right group on
track 1 and the left group on track 2) of each edge gadget. It follows that these dummies
cannot be included in D. In order to perfectly dominate the dummies, D must include
exactly one vertex 2-track interval 〈u〉 from each vertex selection gadget and two edge
2-track intervals 〈uv〉1 and 〈xy〉2 from each edge selection gadget. Consider an edge 2-
track interval 〈uv〉1 = (û1, v̂2) from the edge selection gadget for Eij , and observe the
validation 2-track intervals dominated by 〈uv〉1. To perfectly dominate the validation
2-track intervals 〈w∗ij〉2 for all w ∈ Vi, D must include 〈u〉 from the vertex selection
gadget for Vi. Similarly, to perfectly dominate the validation 2-track intervals 〈∗wij〉1
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for all w ∈ Vj , D must include 〈v〉 from the vertex selection gadget for Vj . Then, to
perfectly dominate the validation 2-track intervals 〈w∗ij〉1 for all w ∈ Vi, and 〈∗wij〉2
for all w ∈ Vj , the two intervals û2 and v̂1 must be used. This implies that the other
edge 2-track interval from the same edge selection gadget must be 〈uv〉2 = (û2, v̂1).
Therefore the subset of vertices K = {u ∈ V (G) | 〈u〉 ∈ D} is a k-multicolored clique
in G. �

6 Distance Perfect Code

In this section we prove Theorem 8. We show that d-DISTANCE k-PERFECT CODE

is W[1]-hard in unit 2-interval graphs for any d ≥ 2 by an FPT reduction from k-
MULTICOLORED CLIQUE.

We consider the case d = 2 first. Let (G, κ) be an instance of k-MULTICOLORED

CLIQUE. We will construct a family F of unit 2-intervals as illustrated in Figure 5 such
that G has a k-multicolored clique if and only if the intersection graph GF of F has a
2-distance k′-perfect code, where k′ = k +

(
k
2

)
.

x

u

û1 u′

û2u′′

e

y

Fig. 5. The vertex gadget for Vi (left) is connected to the edge gadget for Eij (right) by a valida-
tion gadget (middle)

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
We construct a vertex-selection gadget for Vi as illustrated in Figure 5. Write |Vi| = φ.
On track 1 there is an interval labeled by x. On track 2 there are φ disjoint intervals, one
for each vertex in Vi. For the rth vertex u in Vi, 1 ≤ r ≤ φ, we add a 2-track interval
〈u〉 = (x, u) to F . We also add four dummy 2-track intervals to F : two dummy 2-track
intervals intersect with x; the other two dummy 2-track intervals intersect with the first
two dummy 2-track intervals, respectively. In figure 5, only one interval (on track 1) of
each dummy 2-track intervals is drawn.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be the
set of edges uv such that u has color i and v has color j. Write |Eij | = ψ. There are ψ
disjoint intervals on track 1, one for each edge in Eij . There is an interval labeled by y
on track 2. For each edge e ∈ Eij , add a 2-track interval 〈e〉 = (y, e) to F . We also add
four dummy 2-track intervals to F in the similar way as in each vertex selection gadget.
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Validation selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we
construct two validation gadgets that connect the two vertex gadgets for Vi and Vj ,
respectively, to the edge gadget for Eij . First we describe the validation gadget between
the vertex gadget for Vi and the edge gadget for Eij . Write |Vi| = φ and |Eij | = ψ.
On track 1, there are 2φ interval arranged in φ rows and two (slanted) columns. The φ
intervals in each column are pairwise-intersecting. Moreover, each interval in the left
column intersects with all intervals in higher rows in the right column but not the interval
in the same row. For the rth vertex u ∈ Vi, 1 ≤ r ≤ φ, denote by û1 and u′ the
left and right intervals, respectively, in the rth row. On track 2, the arrangement of the
2φ intervals are similar except that each interval in the left column intersects with all
intervals in the higher rows and the interval in the same row. Denote by u′′ and û2 the
left and right intervals, respectively, in the rth row. We add 2φ + ψ validation 2-track
intervals to F . For each vertex u ∈ Vi, add 〈u∗ij〉1 = (u, u′) and 〈u∗ij〉2 = (û1, û2)
to F . For each edge e = uv ∈ Eij , add 〈u, e〉 = (e, u′′) to F .

The validation gadget between the vertex gadget for Vj and the edge gadget for
Eij (not shown in Figure 5) is constructed similarly. For each vertex v ∈ Vj , we add
〈∗vij〉1 = (v, v′) and 〈∗vij〉2 = (v̂1, v̂2) to F . For each edge e = uv ∈ Eij , we add
〈v, e〉 = (e, v′′) to F .

In summary, the construction gives us the following family F of unit 2-track inter-
vals:

F =
{〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

} ∪ {〈e〉 | e ∈ Eij , 1 ≤ i < j ≤ k
}

∪ {〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k
}

∪ {〈u, e〉, 〈v, e〉 | e = uv ∈ Eij , 1 ≤ i < j ≤ k
} ∪ DUMMIES,

where DUMMIES is the set of 4k + 4
(
k
2

)
dummy 2-track intervals.

Lemma 4. G has a k-multicolored clique if and only if GF has a 2-distance k′-perfect
code, where k′ = k +

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then one can verify that the following subfamily D of 2-track intervals is a
2-distance k′-perfect code in GF :

D =
{〈u〉 | u ∈ K

} ∪ {〈e〉 | e = uv, u, v ∈ K
}
.

We next prove the reverse implication. Suppose that D is a 2-distance k′-perfect code
in GF . By a similar argument as in the proof of Lemma 3, the dummies cannot be
included in D. In order to perfectly dominate the dummies, D must include exactly one
〈u〉 from each vertex gadget and exactly one 〈e〉 from each edge gadget. For the rth
vertex u and tth vertex w in Vi, we write u ≤i w if r ≤ t and u >i w if r > t. Consider
〈e〉 from the edge gadget for Eij , where e = uv. Observe that in the validation gadget
between the vertex gadget for Vi and the edge gadget for Eij , the 2-track intervals
{〈w∗ij〉2 | w ∈ Vi, w ≤i u} are within distance 2 from 〈e〉. Then, to perfectly dominate
the 2-track intervals {〈w∗ij〉2 | w ∈ Vi, w >i u}, the 2-track interval 〈u〉 from the
vertex gadget for Vi must be included in D. Similarly, to perfectly dominate the 2-track
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intervals 〈∗wij〉2 in the other validation gadget, the 2-track interval 〈v〉 from the vertex
gadget for Vj must also be included in D. Therefore the subset of vertices K = {u ∈
V (G) | 〈u〉 ∈ D} is a k-multicolored clique in G. �
The above construction can be generalized to handle the case d > 2. We postpone the
details to the full version of this paper.

Concluding Remarks. A general direction for extending our work is to strengthen
the existing W[1]-hardness results for more restricted graph classes. For example, we
showed in Theorem 2 that k-DOMINATING SET in co-3-track interval graphs is W[1]-
hard with parameter k. Is it still W[1]-hard in co-2-track interval graphs or co-unit
3-track interval graphs? Many questions can be asked in the same spirit. In particular,
are k-INDEPENDENT DOMINATING SET and k-PERFECT CODE W[1]-hard in co-t-
interval graphs for some constant t?

References
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