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Abstract. We give tight algorithmic lower and upper bounds for some
double-parameterized subgraph problems when the clique-width of the
input graph is one of the parameters. Let G be an arbitrary input graph
on n vertices with clique-width at most w. We prove the following results.
– The Dense (Sparse) k-Subgraph problem, which asks whether

there exists an induced subgraph of G with k vertices and at least q
edges (at most q edges, respectively), can be solved in time kO(w) ·n,
but it cannot be solved in time 2o(w log k) ·nO(1) unless the Exponen-
tial Time Hypothesis (ETH) fails.

– The d-Regular Induced Subgraph problem, which asks whether
there exists a d-regular induced subgraph of G, and the Minimum

Subgraph of Minimum Degree at least d problem, which asks
whether there exists a subgraph of G with k vertices and minimum
degree at least d, can be solved in time dO(w) · n, but they cannot
be solved in time 2o(w log d) · nO(1) unless ETH fails.

1 Introduction

The notion of clique-width introduced by Courcelle and Olariu [14] (we refer
the reader to the survey [24] for further information on different width parame-
ters) has now become one of the fundamental parameters in Graph Algorithms.
Many problems which are hard on general graphs can be solved efficiently when
the input is restricted to graphs of bounded clique-width. The meta-theorem
of Courcelle, Makowsky, and Rotics [13] states that all problems expressible
in MS1-logic are fixed parameter tractable (FPT), when parameterized by the
clique-width of the input graph (see the books of Downey and Fellows [18] and
Flum and Grohe [21] for a detailed treatment of parameterized complexity). In
other words, this theorem shows that any problem expressible in MS1-logic can
be solved for graphs of clique-width at most w in time f(w) · |I|O(1), where |I| is
the size of the input and f is a computable function depending on the parameter
w only. Here, the superexponential function f is defined by a logic formula, and
it grows very fast.

The basic method for constructing algorithms for graphs of bounded clique-
width is to use dynamic programming along an expression tree (the definition
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is given in Section 2). Computing clique-width is an NP-hard problem [20], but
it can be approximated and a corresponding expression tree can be constructed
in FPT-time [23,30]. In our paper it is always assumed that an expression tree
is given. In this case dynamic programming algorithms can be relatively effi-
cient: usually single-exponential in the clique-width. A natural question to ask
is whether the running times of such algorithms are asymptotically optimal up
to some reasonable complexity conjectures.

The Exponential Time Hypothesis has proved to be an effective tool for es-
tablishing tight complexity bounds for parameterized problems, but there are
still not many results of this nature in the literature. The Exponential Time
Hypothesis (ETH) [25] asserts that there does not exist an algorithm for solving
3-SAT running in time 2o(n) on a formula with n variables; this is equivalent
to the parameterized complexity conjecture that FPT �= M[1] [17,21]. Chen et
al. [8,9,10] showed that there is no algorithm for k-Clique running in time
f(k)no(k), for n-vertex graphs, unless ETH fails (on the other hand it is eas-
ily seen that k-Clique can be solved in time nO(k)). The lower bound on the
k-Clique problem can be extended to some other parameterized problems via
linear FPT-reductions [9,10]. In particular, for problems parameterized by clique-
width, Fomin et al. [22] proved that Max-Cut and Edge Dominating Set

cannot be solved in time f(w)no(w) on n-vertex graphs of clique-width at most
w, unless ETH collapses. For FPT problems, Cai and Juedes [6] proved that the
parameterized version of any MaxSNP-complete problem cannot be solved in
time 2o(k) · |I|O(1) if ETH holds. Here k is the natural parameter of an MaxSNP-
complete problem with the instance I, i.e. the maximized function should have
a value at least k.

Lokshtanov, Marx and Saurabh [28] considered several FPT problems solvable
in time 2O(k log k) · |I|O(1) and showed that a 2o(k log k) · |I|O(1)-time algorithm for
these problems would violate ETH. To do this, they introduced special restricted
versions of some basic problems like k-Clique on graphs with k2 vertices (and
with some other restrictions) and proved that these problems cannot be solved
in time 2o(k log k) · kO(1) unless ETH collapses. These results open the possibil-
ity of establishing algorithmic lower bounds for natural problems. We use this
approach to prove asymptotically tight bounds for some double-parameterized
subgraph problems when the clique-width of the input graph is one of the pa-
rameters. These results give the first known bounds for such types of problems
parameterized by clique-width.

First, we consider the Dense k-Subgraph problem (also known as the k-
Cluster problem). This problem asks whether, given a graph G and positive
integers k and q, there exists an induced subgraph of G with k vertices and at
least q edges. Clearly, Dense k-Subgraph is NP-hard since it is a generalization
of the k-Clique problem. It remains NP-hard, even when restricted to compa-
rability graphs, bipartite graphs and chordal graphs [12], as well as on planar
graphs [26]. Polynomial algorithms were given for cographs, split graphs [12],
and for graphs of bounded tree-width [26]. Considerable work has been done on
approximation algorithms for this problem [3,4,15,19,27].
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Next, we consider some degree-constrained subgraph problems. The objective
in such problems is to find a subgraph satisfying certain lower or upper bounds on
the degree of each vertex. Typically it is necessary to either check the existence
of a subgraph satisfying the degree constraints or to minimize (maximize) some
parameter (usually the size of the subgraph).

The d-Regular Subgraph problem, which asks whether a given graph con-
tains a d-regular subgraph, has been intensively studied. We mention here only
some complexity results. Chvátal et al. [11] proved that this problem is NP-
complete for d = 3. It was shown that the problem with d = 3 remains NP-
complete for planar bipartite graphs with maximum degree four, and that when
d ≥ 3, it is NP-complete even for bipartite graphs with maximum degree at most
d + 1. Some further results were given in [7,32,33,34]. We consider a variant of
this problem called d-Regular Induced Subgraph, where we ask whether
a given graph G contains a d-regular induced subgraph. This variant of the
problem has also been studied. In particular, the parameterized complexity of
different variants of the problem was considered by Moser and Thilikos [31] and
by Mathieson and Szeider [29]. Observe that, trivially, d-Regular Induced

Subgraph can be solved in polynomial time for d ≤ 2, and it easily follows
from the known hardness results for d-Regular Subgraph that d-Regular

Induced Subgraph is NP-complete for any fixed d ≥ 3.
In [2] Amini et al. introduced the Minimum Subgraph of Minimum De-

gree at least d problem. This problem asks whether, given a graph G and
positive integers d and k, there exists a subgraph of G with at most k vertices
and minimum degree at least d. The parameterized complexity of the problem
was considered in [2]. Some other hardness and approximation results can be
found in [1].

Our Main Results and the Organization of the Paper. In Section 2 we
give some basic definitions and some preliminary results. In Section 3 we consider
the Dense k-Subgraph and Sparse k-Subgraph problems. The Sparse k-
Subgraph problem is dual to Dense k-Subgraph and it asks whether, given
a graph G and positive integers k and q, there exists an induced subgraph of G
with k vertices and at most q edges. We prove that these problems can be solved
in time kO(w) · n for n-vertex graphs of clique-width at most w if an expression
tree of width w is given, but they cannot be solved in time 2o(w log k) · nO(1)

unless ETH fails even if an expression tree of width w is included in the input.
In Section 4 we consider the d-Regular Induced Subgraph and Minimum

Subgraph of Minimum Degree at least d problems. We construct dynamic
programming algorithms which solve these problems in time dO(w) ·n for n-vertex
graphs of clique-width at most w if an expression tree of width w is given, and
then prove that these problems cannot be solved in time 2o(w log d) ·nO(1) unless
ETH fails even if an expression tree of width w is provided. We conclude the
paper with some open problems.
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2 Definitions and Preliminary Results

Graphs. We consider finite undirected graphs without loops or multiple edges.
The vertex set of a graph G is denoted by V (G) and its edge set by E(G). A set
S ⊆ V (G) of pairwise adjacent vertices is called a clique. For v ∈ V (G), EG(v)
denotes the set of edges incident with v. The degree of a vertex v is denoted by
dG(v). For a non-negative integer d, a graph G is called d-regular if all vertices
of G have degree d. For a graph G, the incidence graph of G is the bipartite
graph I(G) with vertex set V (G) ∪ E(G) such that v ∈ V (G) and e ∈ E(G) are
adjacent if and only if v is incident with e in G. We denote by G the complement
of a graph G, i.e. the graph with vertex set V (G) such that any two distinct
vertices are adjacent in G if and only if they are non-adjacent in G. For a set of
vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and by G−S
we denote the graph obtained from G by the removal of all the vertices of S, i.e.
the subgraph of G induced by V (G) \ S.

Clique-Width. Let G be a graph, and let w be a positive integer. A w-graph
is a graph whose vertices are labeled by integers from {1, 2, . . . , w}. We call
the w-graph consisting of exactly one vertex v labeled by some integer i from
{1, 2, . . . , w} an initial w-graph. The clique-width cwd(G) is the smallest integer
w such that G can be constructed by means of repeated application of the
following four operations: (1) introduce: construction of an initial w-graph with
vertex v labeled by i (denoted by i(v)), (2) disjoint union (denoted by ⊕), (3)
relabel: changing the labels of each vertex labeled i to j (denoted by ρi→j) and
(4) join: joining all vertices labeled by i to all vertices labeled by j by edges
(denoted by ηi,j).

An expression tree of a graph G is a rooted tree T of the following form.

– The nodes of T are of four types: i, ⊕, η and ρ.
– Introduce nodes i(v) are leaves of T , and they correspond to initial w-graphs

with vertices v, which are labeled i.
– A union node ⊕ stands for a disjoint union of graphs associated with its

children.
– A relabel node ρi→j has one child and is associated with the w-graph result-

ing from the relabeling operation ρi→j applied to the graph corresponding
to the child.

– A join node ηi,j has one child and is associated with the w-graph resulting
from the join operation ηi,j applied to the graph corresponding to the child.

– The graph G is isomorphic to the graph associated with the root of T (with
all labels removed).

The width of the tree T is the number of different labels appearing in T . If a
graph G has cwd(G) ≤ w then it is possible to construct a rooted expression
tree T of G with width w. Given a node X of an expression tree, the graph GX

is the graph formed by the subtree of the expression tree rooted at X .

Parameterized Reductions. We refer the reader to the books [18,21] for a
detailed treatment of parameterized complexity. Here we only define the notion
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of parameterized (linear) reduction, which is the main tool for establishing our
results. For parameterized problems A, B, we say that A is (uniformly many:1)
FPT-reducible to B if there exist functions f, g : N → N, a constant α ∈ N

and an algorithm Φ which transforms an instance (x, k) of A into an instance
(x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.
The reduction is called linear if g(k) = O(k).

Capacitated Domination. For our reductions we use a variant of the Ca-

pacitated Dominating Set problem. The parameterized complexity of this
problem, with the tree-width of the input graph being the parameter, was con-
sidered in [5,16].

A red-blue capacitated graph is a pair (G, c), where G is a bipartite graph
with a vertex bipartition into sets R and B, and c : R → N is a capacity function
such that 1 ≤ c(v) ≤ dG(v) for every vertex v ∈ R. The vertices of the set R
are called red and the vertices of B are called blue. A set S ⊆ R is called a
capacitated dominating set if there is a domination mapping f : B → S which
maps every vertex in B to one of its neighbors such that the total number
of vertices mapped by f to any vertex v ∈ S does not exceed its capacity
c(v). We say that for a vertex v ∈ S, vertices in the set f−1(v) are dominated
by v. The Red-Blue Capacitated Dominating Set (or Red-Blue CDS)
problem asks whether, given a red-blue capacitated graph (G, c) and a positive
integer k, there exists a capacitated dominating set S for G containing at most
k vertices. A capacitated dominating set S ⊆ R is called saturated if there is a
domination mapping f which saturates all vertices of S, that is, |f−1(v)| = c(v)
for each v ∈ S. The Red-Blue Exact Saturated Dominating Set problem
(Red-Blue Exact Saturated CDS) takes a red-blue capacitated graph (G, c)
and a positive integer k as an input and asks whether there exists a saturated
capacitated dominating set with exactly k vertices.

The next proposition immediately follows from the results proved in [22].

Proposition 1. The Red-Blue CDS and Red-Blue Exact Saturated

CDS problems cannot be solved in time f(w) · no(w), where n is the number
of vertices of the input graph G and w is the clique-width of the incidence graph
I(G), unless ETH fails, even if an expression tree of width w for I(G) is given.

The proof of Proposition 1 uses the result of Chen et al. [8,9,10] that there is no
algorithm for k-Clique (finding a clique of size k) running in time f(k) · no(k)

unless there exists an algorithm for solving 3-SAT running in time 2o(n) on a
formula with n variables. Proposition 1 was proved via a linear reduction from
the k-Multi-Colored Clique problem (see [5,22]). The k-Multi-Colored

Clique problem asks for a given k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where
V1, . . . , Vk are sets of the k-partition, whether there is a k-clique in G. It should be
noted that the construction of an expression tree of bounded width is part of the
reduction and it is done in polynomial time. Lokshtanov, Marx and Saurabh [28]
considered a special restricted variant of k-Multi-Colored Clique called k×
k-Clique. In this variant of the problem |V1| = . . . = |Vk| = k. They proved the
following.
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Proposition 2 ([28]). The k × k-Clique problem cannot be solved in time
2o(k log k) · nO(1), where n is the number of vertices of the input graph G, unless
ETH fails.

By replacing k-Multi-Colored Clique by the k × k-Clique problem in the
reductions used for the proof of Proposition 1, we obtain the following corollary.

Corollary 1. The Red-Blue CDS and Red-Blue Exact Saturated CDS

problems cannot be solved in time 2o(w log n) · nO(1), where n is the number of
vertices of the input graph G and w is the clique-width of the incidence graph
I(G), unless ETH fails, even if an expression tree of width w for I(G) is given.

Observe that Corollary 1 gives a slightly stronger claim than Proposition 1: while
o(w) · log n = o(w log n), it is not so the other way around.

3 Sparse and Dense k-Subgraph Problems

In this section we consider the Dense k-Subgraph and Sparse k-Subgraph

problems. The aim of this section is the proof of the following theorem.

Theorem 1. The Sparse k-Subgraph problem can be solved in time kO(w) ·n
on n-vertex graphs of clique-width at most w if an expression tree of width w is
given, but it cannot be solved in time 2o(w log k) · nO(1) unless ETH fails, even if
an expression tree of width w is given.

Clearly, Sparse k-Subgraph and Dense k-Subgraph are dual, i.e. Sparse

k-Subgraph is equivalent to Dense k-Subgraph for the complement of the
input graph. Since for any graph G, cwd(G) ≤ 2 · cwd(G) (see e.g. [14,35]), we
can immediately get the following corollary.

Corollary 2. The Dense k-Subgraph problem can be solved in time kO(w) ·n
on n-vertex graphs of clique-width at most w if an expression tree of width w is
given, but it cannot be solved in time 2o(w log k) · nO(1) unless ETH fails, even if
an expression tree of width w is given.

3.1 Algorithmic Upper Bounds for Sparse k-Subgraph

We sketch a dynamic programming algorithm for solving Sparse k-Subgraph

in time kO(w) ·n on graphs of clique-width at most w. We describe what we store
in the tables corresponding to the nodes in an expression tree.

Let G be a graph with n vertices and let T be an expression tree for G of
width w. For a node X of T , let U1(X), . . . , Uw(X) be the sets of vertices of
GX labeled 1, . . . , w, respectively. The table of data for the node X contains
entries which store a positive integer p ≤ q and a vector (s1, . . . , sw) of non-
negative integers such that s = s1 + . . . + sw ≤ k for i ∈ {1, . . . , w}, for which
p is the minimum number of edges of an induced subgraph H with s vertices
such that for i ∈ {1, . . . , w}, si = |Ui(X) ∩ V (H)|. If X is the root node of T
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then G contains an induced subgraph with k vertices and at most q edges if and
only if the table for X contains an entry with the parameter p ≤ q and vector
(s1, . . . , sw) such that s1 + . . . + sw = k.

The details how the tables are created and updated are omitted here because
of the space restrictions. Correctness of the algorithm follows from the descrip-
tion of the procedure.

Since for each X , the table for X contains at most (k + 1)w vectors and for
each vector only one value of the parameter p is stored, the algorithm runs in
time kO(w) · n. This proves that Sparse k-Subgraph can be solved in time
kO(w) · n on graphs of clique-width at most w.

3.2 Lower Bounds

To prove our lower bounds we give a reduction from the Red-Blue CDS prob-
lem parameterized by the clique-width of the incidence graph of the input graph.

Construction. Let (G, c, k) be an instance of Red-Blue CDS with R =
{u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr} being the set
of blue vertices. Let m be the number of edges of G. We assume without loss of
generality that G has no isolated vertices. Hence, m ≥ n, r.

First, we construct the auxiliary gadget F (l) for a positive integer l.

Auxiliary gadget F (l): Construct an l+m+1-partite graph K2,...,2 and denote
by xi1, xi2 the vertices of the i-th set of the partition (see Figure 1).

Reduction: Now we describe our reduction.

1. A copy of a gadget F (k) is constructed. Denote this graph by FR and let
V (FR) = {xR

i1, x
R
i2|1 ≤ i ≤ k + m + 1}.

2. For each i ∈ {1, . . . , n}, a copy of a gadget F (c(ui)) is created. Denote this
graph by Fui and let V (Fui) = {xui

j1 , x
ui

j2 |1 ≤ j ≤ c(ui) + m + 1}.
3. For each i ∈ {1, . . . , r}, a copy of a gadget F (1) is created. Denote this graph

by Fvi and let V (Fvi ) = {xvi

j1, x
vi

j2|1 ≤ j ≤ m + 2}.
4. For each e ∈ E(G), the vertex we is constructed.
5. For each i ∈ {1, . . . , n}, let {e1, . . . , edi} = E(ui) for di = dG(ui). We con-

sider the vertices we1 , . . . , wedi
; these vertices are joined by edges to the

vertices xR
i1, x

R
i2 of FR, and for each j ∈ {1, . . . , di}, wej is joined by edges to

the vertices xui

j1 , xui

j2 of Fui .
6. For each i ∈ {1, . . . , r}, let {e1, . . . , edi} = E(vi) for di = dG(vi). We consider

the vertices we1 , . . . , wedi
and for each j ∈ {1, . . . , di}, wej is joined by edges

to the vertices xvi

j1, x
vi

j2 of Fvi .
7. Create 2m + 1 vertices z1, . . . , z2m+1 and join them to all vertices we for

e ∈ E(G).

Denote the obtained graph by H (see Figure 1).
Due the space restrictions the proof of the following lemmas are omitted.

Lemma 1. The red-blue graph G has a capacitated dominating set of size at
most k if and only if H contains an induced subgraph with 2(m+1)(n+ r+1)+
2m + 1 + r vertices and at most 2m(m + 1)(n + r + 1) + r(2m + 1) edges.
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ui

vj

FR

Fui
Fvj

z1 z2m+1

Graph F (l) for l = 2 and m = 2

x11 x21 x31 x41 x51

x22 x32 x42 x52x12

Fig. 1. Construction of H

We prove an upper bound for the clique-width of H as a linear function in the
clique-width of the incidence graph I(G) of G.

Lemma 2. We have cwd(H) ≤ 9 · cwd(I(G)) + 1 and an expression tree of
width at most 9 · cwd(I(G)) + 1 for H can be constructed in polynomial time
given an expression tree of width cwd(I(G)) for I(G).

To complete the proof of Theorem 1, notice that the number of vertices of H and
the parameter k are polynomial in n + r. Therefore, log k is linear in log(n + k),
and if we could solve Sparse k-Subgraph in time 2o(cwd(H) log k) · |V (H)|O(1)

then Red-Blue CDS could be solved in time 2o(cwd(I(G)) log |V (G)|)) · |V (G)|O(1).
By Corollary 1, it cannot be done unless ETH fails.

4 Degree-Constrained Subgraph Problems

The first aim of this section is the proof of the following theorem.

Theorem 2. The d-Regular Induced Subgraph problem can be solved on
n-vertex graphs of clique-width at most w in time dO(w) · n if an expression
tree of width w is given for the input graph, but it cannot be solved in time
2o(w log d) ·nO(1) unless ETH fails, even if an expression tree of width w is given.

Proof. The algorithmic upper bounds are proved by constructing a dynamic
programming algorithm for solving d-Regular Induced Subgraph in time
dO(w) · n on graphs of clique-width at most w. To prove our complexity lower
bound, we give a reduction from the Red-Blue Exact Saturated CDS prob-
lem, parameterized by the clique-width of the incidence graph of the input graph,
to the d-Regular Induced Subgraph problem. The proof is organized as fol-
lows: we first give a construction, then prove its correctness and finally bound
the clique-width of the transformed instance.

Construction. Let (G, c, k) be an instance of Red-Blue Exact Saturated

CDS with R = {u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr}
being the set of blue vertices. Let d = n+r+1 if n+r is even and let d = n+r+2
otherwise; notice that d is odd. We need an auxiliary gadget.
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Auxiliary gadget F (x): Let x be a vertex. We construct d−1
2 copies of Kd+1,

subdivide one edge of each copy, and glue (identify) all these vertices of degree
two into one vertex y. Finally we join x and y by an edge. We are going to
attach gadgets F (x) to other parts of our construction through the vertex x.
This vertex is called the root of F (x). The gadget F (x) for d = 5 is illustrated
in Figure 2.

Reduction: Now we describe our reduction. Let s = d− r−1 and t = d−k−1.

1. Vertices u1, . . . , un are created.
2. A clique of size r with vertices v1, . . . , vr is constructed.
3. For each edge e = uivj of G, a vertex we is added, joined by edges to ui and

vj , and d − 2 copies of F (we) are constructed.
4. A clique of size s with vertices a1, . . . , as is created, all vertices ai are joined

to vertices v1, . . . , vr, and for each i ∈ {1, . . . , s}, a copy of F (ai) is added.
5. A vertex x is introduced and joined by edges to v1, . . . , vr and a1, . . . , as.
6. A vertex y is added and joined by an edge to x, and k− 1 copies of F (y) are

added.
7. A clique of size t with vertices b1, . . . , bt is constructed, the vertex y is joined

by edges to all vertices of the clique, and for each j ∈ {1, . . . , t}, k copies of
F (bi) are added.

8. A vertex z is introduced and joined by edges to vertices y and b1, . . . , bt.
9. For each i ∈ {1, . . . , n}, we let li = d − c(ui) − 1 and do the following:

• Add a vertex pi, join it to z by an edge, and construct c(ui) − 1 copies
of F (pi).

• Construct a clique of size li with vertices ci1, . . . , cili , join them to the
vertex pi by edges, and for each j ∈ {1, . . . , li}, introduce c(ui) copies of
F (cij).

• Join the vertex ui to the vertices pi and ci1, . . . , cili by edges.

Denote the obtained graph by H . The construction of H is illustrated in Figure 2.
The proof of the following lemmas are omitted.

Lemma 3. The red-blue graph G has an exact saturated capacitated dominating
set of size k if and only if H contains an induced d-regular subgraph.

Now we show that the clique-width of H is bounded from above by a linear
function in the clique-width of the incidence graph I(G) of G.

Lemma 4. We have that cwd(H) ≤ 3 · cwd(I(G)) + 6 and an expression tree
of width at most 3 · cwd(I(G)) + 6 for H can be constructed in polynomial time
assuming we are given an expression tree of width cwd(I(G)) for I(G).

To conclude this part of the proof of Theorem 2, we observe that the num-
ber of vertices of H and the parameter d are polynomial in n + r, and there-
fore if we could solve d-Regular Induced Subgraph in time 2o(cwd(H) log d) ·
|V (H)|O(1) then the Red-Blue Exact Saturated CDS could be solved in
time 2o(cwd(I(G)) log |V (G)|)) · |V (G)|O(1). By Corollary 1, this cannot be done un-
less ETH fails. ��
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v1 vj vr

u1 ui un

we

p1 pi pn

x

y

z

a1 as

b1

bt
ci�

F (we)

x

y

The gadget F (x) for d = 5

Fig. 2. Construction of H

In the d-Regular Induced Subgraph problem we ask about the existence of a
d-regular induced subgraph for a given graph. It is possible to get similar results
for some variants of this problem. The Minimum d-Regular Induced Sub-

graph problem and the Maximum d-Regular Induced Subgraph problem
are respectively the problems of finding a d-regular induced subgraph of mini-
mum and maximum size. For the Counting d-Regular Induced Subgraph

problem, we are interested in the number of induced d-regular subgraphs of the
input graph. Using Theorem 2 we get the following corollary.

Corollary 3. The Minimum d-Regular Induced Subgraph, Maximum d-
Regular Induced Subgraph and Counting d-Regular Induced Sub-

graph problems can be solved on n-vertex graphs of clique-width at most w in
time dO(w) ·n if an expression tree of width w is given, but they cannot be solved
in time 2o(w log n) · nO(1) unless ETH fails, even if an expression tree of width w
is given.

We conclude this section by considering the Minimum Subgraph of Minimum

Degree at least d problem.

Theorem 3. The Minimum Subgraph of Minimum Degree at least d
problem can be solved on n-vertex graphs of clique-width at most w in time
dO(w) ·n if an expression tree of width w is given, but it cannot be solved in time
2o(w log d) ·nO(1) unless ETH fails, even if an expression tree of width w is given.

5 Conclusion

We established tight algorithmic lower and upper bounds for some double-
parameterized subgraph problems when the clique-width of the input graph is
one of the parameters. We believe that similar bounds could be given for other
problems. Another interesting task is to consider problems parameterized by
other width-parameters. Throughout the paper, in all our results we assumed
that an expression tree of the given width is part of the input. This is crucial,
since — unlike the case of tree-width — to date we are unaware of an efficient
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(FPT or polynomial) algorithm for computing an expression tree with a con-
stant factor approximation of the clique-width. The algorithm given by Oum
and Seymour in [30] provides a constant factor approximation for another graph
parameter — rank-width [24,30]. Hence, it is natural to ask whether it is possible
to establish tight algorithmic bounds for Dense k-Subgraph, d-Regular In-

duced Subgraph and Minimum Subgraph of Minimum Degree at least

d parameterized by the rank-width of the input graph. Also it would be inter-
esting to consider problems parameterized by the tree-width. For example, it
can be shown that d-Regular Induced Subgraph and Minimum Subgraph

of Minimum Degree at least d can be solved in time dO(t) · n for n-vertex
graphs of tree-width at most t. Is this bound asymptotically tight?
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