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Preface

The International Symposium on Parameterized and Exact Computation (IPEC,
formerly IWPEC) is an international symposium series that covers research in
all aspects of parameterized and exact algorithms and complexity. Started in
2004 as a biennial workshop, it became an annual event in 2008.

This volume contains the papers presented at IPEC 2011: the 6th Inter-
national Symposium on Parameterized and Exact Computation held during
September 6–8, 2011 in Saarbrücken. The symposium was part of ALGO 2011,
which also hosted the 19th European Symposium on Algorithms (ESA 2011), the
11th Workshop on Algorithms for Bioinformatics (WABI 2011), the 11th Work-
shop on Algorithmic Approaches for Transportation Modelling, Optimization,
and Systems (ATMOS 2011), the 9th Workshop on Approximation and Online
Algorithms (WAOA 2011), and the 7th International Symposium on Algorithms
for Sensor Systems, Wireless Ad Hoc Networks and Autonomous Mobile Entities
(ALGOSENSORS). The five previous meetings of the IPEC/IWPEC series were
held in Bergen, Norway (2004), Zürich, Switzerland (2006), Victoria, Canada
(2008), Copenhagen, Denmark (2009), and Chennai, India (2010).

The IPEC 2011 plenary keynote talk was given by Martin Grohe (Humboldt-
Universität zu Berlin) on “Excluding Topological Subgraphs.” We had two ad-
ditional invited tutorial speakers: Hans L. Bodlaender (Utrecht University, The
Netherlands) speaking on kernels and Fedor V. Fomin (University of Bergen,
Norway) speaking on width measures. We thank the speakers for accepting our
invitation.

In response to the call for papers, 40 papers were submitted. Each submission
was reviewed by at least three, and on average 3.8, reviewers. The reviewers were
either Program Committee members or invited external reviewers. The Program
Committee held electronic meetings using the EasyChair system, went through
extensive discussions, and selected 21 of the submissions for presentation at the
symposium and inclusion in this LNCS volume. The Program Committee decided
to award the Excellent Student Paper Award to the paper “A Faster Algorithm
for Dominating Set Analyzed by the Potential Method” by Yoichi Iwata (The
University of Tokyo). We thank Frances Rosamond for sponsoring the award.

We are very grateful to the Program Committee, and the external reviewers
they called on, for the hard work and expertise which they brought to the difficult
selection process. We also wish to thank all the authors who submitted their work
for our consideration.

October 2011 Dániel Marx
Peter Rossmanith
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On Multiway Cut Parameterized

above Lower Bounds�

Marek Cygan1, Marcin Pilipczuk1,
Micha�l Pilipczuk1, and Jakub Onufry Wojtaszczyk2

1 Institute of Informatics, University of Warsaw, Poland
{cygan@,malcin@,mp248287@students.}mimuw.edu.pl

2 Google Inc., Cracow, Poland
onufry@google.com

Abstract. In this paper we consider two above lower bound parameter-
izations of the Node Multiway Cut problem — above the maximum
separating cut and above a natural LP-relaxation — and prove them to
be fixed-parameter tractable. Our results imply O∗(4k) algorithms for
Vertex Cover above Maximum Matching and Almost 2-SAT as
well as an O∗(2k) algorithm for Node Multiway Cut with a stan-
dard parameterization by the solution size, improving previous bounds
for these problems.

1 Introduction

The study of cuts and flows is one of the most active fields in combinatorial
optimization. However, while the simplest case, where we seek a cut separating
two given vertices of a graph, is algorithmically tractable, the problem becomes
hard as soon as one starts to deal with multiple terminals. For instance, given
three vertices in a graph it is NP-hard to decide what is the smallest size of a cut
that separates every pair of them (see [4]). The generalization of this problem
— the well-studied Node Multiway Cut problem — asks for the size of
the smallest set separating a given set of terminals. The formal definition is as
follows:

Node Multiway Cut

Input: A graph G = (V, E), a set T ⊆ V of terminals and an integer k.
Question: Does there exist a set X ⊆ V \T of size at most k such that any
path between two different terminals intersects X?

For various approaches to this problem we refer the reader for instance to
[8,2,4,13].

Before describing our results, let us discuss the methodology we will be work-
ing with. We will be studying Node Multiway Cut (and several other prob-
lems) from the parameterized complexity point of view. Note that since the
� The first two authors were partially supported by National Science Centre grant no.

N206 567140 and Foundation for Polish Science.

D. Marx and P. Rossmanith (Eds.): IPEC 2011, LNCS 7112, pp. 1–12, 2012.
c© Springer-Verlag Berlin Heidelberg 2012
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solution to our problem is a set of k vertices and it is easy to verify whether a
solution is correct, we can solve the problem by enumerating and verifying all
the O(|V |k) sets of size k. Therefore, for every fixed value of k, our problem can
be solved in polynomial time. This approach, however, is not feasible even for,
say, k = 10. The idea of parameterized complexity is to try to split the (usually
exponential) dependency on k from the (hopefully uniformly polynomial) depen-
dency on |V | — so we look for an algorithm where the degree of the polynomial
does not depend on k, e.g., an O(Ck|V |O(1)) algorithm for a constant C.

Formally, a parameterized problem Q is a subset of Σ∗ × N for some finite
alphabet Σ, where the integer is the parameter. We say that the problem is fixed
parameter tractable (FPT) if there exists an algorithm solving any instance (x, k)
in time f(k)poly(|x|) for some (usually exponential) computable function f . It
is known that a decidable problem is FPT iff it is kernelizable: a kernelization
algorithm for a problem Q takes an instance (x, k) and in time polynomial in
|x| + k produces an equivalent instance (x′, k′) (i.e., (x, k) ∈ Q iff (x′, k′) ∈ Q)
such that |x′|+ k′ ≤ g(k) for some computable function g. The function g is the
size of the kernel, and if it is polynomial, we say that Q admits a polynomial
kernel. The reader is invited to refer to now classical books by Downey and
Fellows [5], Flum and Grohe [7] and Niedermeier [15].

The typical parameterization takes the solution size as the parameter. For
instance, Chen et al. [2] have shown an algorithm solving Node Multiway

Cut in time O(4knO(1)), improving upon the previous result of Daniel Marx
[13]. However, in many cases it turns out we have a natural lower bound on
the solution size — for instance, in the case of the Vertex Cover problem
the cardinality of the maximal matching is such a lower bound. It can happen
that this lower bound is large — rendering algorithms parameterized by the
solution size impractical. For some problems, better answers have been obtained
by introducing the so called parameterization above guaranteed value, i.e. taking
as the parameter the difference between the expected solution size and the lower
bound. The idea was first proposed in [12]. An overview of this currently active
research area can be found in the introduction to [10].

We will consider two natural lower bounds for Node Multiway Cut — the
separating cut and the LP-relaxation solution. Let I = (G, T, k) be a Node

Multiway Cut instance and let s = |T |. By a minimum solution to I we mean
a set X ⊆ V \ T of minimum cardinality that disconnects the terminals, even if
|X | > k.

For a terminal t ∈ T a set S ⊆ V \T is a separating cut (also called an isolating
cut) of t if t is disconnected from T \ {t} in G[V \ S] (the subgraph induced by
V \ S). Let m(I, t) be the size of a minimum isolating cut of t. Notice that for
any t the value m(I, t) can be found in polynomial time using standard max-flow
techniques. Moreover, the maximum of these values over all t is a lower bound
for the size of the minimum solution to I — any solution X has, in particular,
to separate t from all the other terminals.

Now we consider a different approach to the problem, stemming from linear
programming. Let P(I) denote the set of all simple paths connecting two different
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terminals in G. Garg et al. [8] gave a 2-approximation algorithm for Node

Multiway Cut using the following natural LP-relaxation:

minimize
∑

v∈V \T

dv (1)

subject to
∑

v∈P∩(V \T )

dv ≥ 1 ∀P ∈ P(I)

dv ≥ 0 ∀v ∈ V \ T

In other words, the LP-relaxation asks to assign for each vertex v ∈ V \ T a
non-negative weight dv, such that the distance between pair of terminals, with
respect to the weights dv, is at least one. This is indeed a relaxation of the
original problem — if we restrict the values dv to be integers, we obtain the
original Node Multiway Cut .

The above LP-relaxation has exponential number of constraints, as P(I) can
be exponentially big in the input size. However, the optimal solution for this
LP-relaxation can be found in polynomial time either using separation oracle
and ellipsoid method or by solving an equivalent linear program of polynomial
size (see [8] for details). By LP (I) we denote the cost of the optimal solution of
the LP-relaxation (1). As the LP-relaxation is less restrictive than the original
Node Multiway Cut problem, LP (I) is indeed a lower bound on the size of
the minimum solution.

We can now define two above lower bound parameters: L(I) = k − LP (I)
and C(I) = k − maxt∈T m(I, t), and denote by NMWC-a-LP (Node Mul-

tiway Cut above LP-relaxation) and NMWC-a-Cut (Node Multiway

Cut above Maximum Separating Cut) the Node Multiway Cut problem
parameterized by L(I) and C(I), respectively.

We say that a parameterized problem Q is in XP , if there exists an algorithm
solving any instance (x, k) in time |x|f(k) for some computable function f , i.e.,
polynomial for any constant value of k. The NMWC-a-Cut problem was defined
and shown to be in XP by Razgon in [17].

Our results. In Section 2, using the ideas of Xiao [20] and building upon analysis
of the LP relaxation by Guillemot [9], we prove a Node Multiway Cut in-
stance I can be solved in O∗(4L(I)) time1, which easily yields an O∗(2C(I))-time
algorithm. Both algorithms run in polynomial space. Consequently we prove
both NMWC-a-LP and NMWC-a-Cut problems to be FPT, solving an open
problem of Razgon [17]. Observe that if C(I) > k the answer is trivially nega-
tive, hence as a by-product we obtain an O∗(2k) time algorithm for the Node

Multiway Cut problem, improving the previously best known O∗(4k) time
algorithm by Chen et al. [2].

By considering a line graph of the input graph, it is easy to see that an edge-
deletion variant of Multiway Cut is easier than the node-deletion one, and our
results hold also for the edge-deletion variant. We note that the edge-deletion
1 O∗() is the O() notation with suppressed factors polynomial in the size of the input.
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variant, parameterized above maximum separating cut, was implicitly proven to
be FPT by Xiao [20].

Furthermore we observe that Vertex Cover above Maximum Matching

is a special case of NMWC-a-LP, while it is known that Vertex Cover above

Maximum Matching is equivalent to Almost 2-SAT from the point of view of
parameterized complexity [11,19]. The question of an FPT algorithm for those
two problems was a long-standing open problem until Razgon and O’Sullivan
gave an O∗(15k)-time algorithm in 2008, improved recently by Raman et al. [16]
to O∗(9k). Our results improve those bounds to O∗(4k) for both Vertex Cover

above Maximum Matching and Almost 2-SAT. The details are gathered in
Section 3.

One of the major open problems in kernelization is the question of a polyno-
mial kernel for Node Multiway Cut , parameterized by the solution size. Our
results show that the number of terminals can be reduced to 2k in polynomial-
time, improving a quadratic bound due to Razgon [18]. Moreover, our algorithm
includes a number of polynomial-time reduction rules, that may be of some in-
terest from the point of view of kernelization.

Finally, we consider the Node Multicut problem, a generalization of Node

Multiway Cut , which was recently proven to be FPT when parameterized
by the solution size [14,1]. In Section 4 we show that Node Multicut, when
parameterized above a natural LP-relaxation, is significantly more difficult and
even not in XP .

Notation. Let us introduce some notation. All considered graphs are undirected
and simple. Let G = (V, E) be a graph. For v ∈ V by N(v) we denote the
set of neighbours of v, N(v) = {u ∈ V : uv ∈ E}, and by N [v] the closed
neighbourhood of v, N [v] = N(v) ∪ {v}. We extend this notation to subsets of
vertices S ⊆ V , N [S] =

⋃
v∈S N [v], N(S) = N [S] \ S. By removing a vertex v

we mean transforming G to (V \ v, E \ {uv, vu : u ∈ V }). The resulting graph is
denoted by G \ v. By contracting an edge uv we mean the following operation:
we remove vertices u and v, introduce a new vertex xuv and connect it to all
vertices previously connected to u or v. The resulting graph is denoted by G/uv.
If u ∈ T and v /∈ T , we somewhat abuse the notation and identify the new vertex
xuv with u, so that the terminal set remains unchanged. In this paper we do not
contract any edge that connects two terminals.

2 Algorithms for Multiway Cut

Let I = (G, T, k), where G = (V, E), be a Node Multiway Cut instance.
First, let us recall the two known facts about the LP-relaxation (1).

Definition 1 ([8,9]). Let (dv)v∈V \T be a feasible solution to the LP-relaxation
(1) of I. For a terminal t, the zero area of t, denoted by Ut, is the set of vertices
within distance zero from t with respect to weights dv.
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Lemma 2 ([8]). Given an optimal solution (d∗v)v∈V \T to the LP-relaxation (1),
let us construct an assignment (dv)v∈V \T as follows. First, for each terminal t
compute its zero area Ut with respect to weights (d∗v)v∈V \T . Second, for v ∈ V \T
we take dv = 1 if v ∈ N(Ut) for at least two terminals t, dv = 1/2 if v ∈ N(Ut)
for exactly one terminal t, and dv = 0 otherwise. Then (dv)v∈V \T is also an
optimal solution to the LP-relaxation (1).

Lemma 3 ([9], Lemma 3). Let (d∗v)v∈V \T be any optimal solution to the LP-
relaxation (1) of I. Then there is a minimum solution to I that is disjoint with⋃

t∈T Ut.

Our algorithm consists of two parts. The first part is a set of several polynomial-
time reduction rules. At any moment, we apply the lowest-numbered applicable
rule. We shall prove that the original instance I is a YES–instance if and only
if the reduced instance is a YES–instance, we will say this means the reduction
is sound. We prove that no reduction rule increases the parameter L(I) or the
graph size. If no reduction rule can be applied, we proceed to the branching
rule. The branching rule outputs two subcases, each with the parameter L(I)
decreased by at least 1/2 and a smaller graph. If the answer to any of the two
subcases is YES, we return YES from the original instance, otherwise we return
NO. As the parameter L(I) decreases by at least 1/2 with each branching, and
we can trivially return NO if L(I) is negative, we obtain the claimed O∗(4L(I))
running time.

Reduction 1. If two terminals are connected by an edge or L(I) < 0, return
NO.

The first part of the above rule is obviously sound, as we only remove vertices,
not edges. The second part is sound as the optimal cost of the LP-relaxation (1)
is a lower bound for the size of the minimum solution to the instance I.

Reduction 2. If there exists a vertex w ∈ V \T that is adjacent to two terminals
t1, t2 ∈ T , remove w from G and decrease k by one.

The above rule is sound, as such a vertex w has to be included in any solution
to I. Let us now analyse how the parameter L(I) is influenced by this rule. Let
I ′ = (G \ w, T, k − 1) be the output instance. Notice that any feasible solution
(dv)v∈V \(T∪{w}) to I ′ can be extended to a feasible solution of I by putting
dw = 1. Thus LP (I) ≤ LP (I ′) + 1, and we infer L(I) ≥ L(I ′).

Reduction 3. Let w ∈ V \T be a neighbour of a terminal t ∈ T . Let (d◦v)v∈V \T

be a solution to the LP-relaxation (1) with an additional constraint dw = 0. If
the cost of the solution (d◦v)v∈V \T is equal to LP (I), contract the edge tw.

As (d◦v)v∈V \T is a feasible solution to the LP-relaxation (1), its cost is at least
LP (I). If the rule is applicable, (d◦v)v∈V \T is an optimal solution to the LP-
relaxation (1) and w ∈ Ut. The soundness of Reduction 3 follows from Lemma
3. Moreover, note that if I ′ is the output instance of Reduction 3, we have
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LP (I) = LP (I ′), as (d◦v)v∈V \(T∪{w}) is a feasible solution to the LP-relaxation
(1) for the instance I ′. We infer that L(I) = L(I ′).

The following lemma summarizes properties of an instance, assuming none of
the above reduction rules is applicable.

Lemma 4. If Reductions 1, 2 and 3 are not applicable, then:

1. An assignment (dv)v∈V \T that assigns dv = 1/2 if v ∈ N(T ) and dv = 0
otherwise is an optimal solution to the LP-relaxation (1).

2. For each terminal t ∈ T , the set N(t) is the unique minimum separating cut
of t.

Proof. Let (d∗v)v∈V \T be any optimal solution to the LP-relaxation (1). As Re-
duction 3 is not applicable, d∗w > 0 for any w ∈ N(T ). As Reduction 2 is not
applicable, if we invoke Lemma 2 on the assignment (d∗v)v∈V \T , we obtain the
assignment (dv)v∈V \T . Thus the first part of the lemma is proven.

For the second part, obviously N(t) is a separating cut of t. Let C ⊆ V \ T
be any other separating cut of t and assume |C| ≤ |N(t)|. Let d′v = dv + 1/2 if
v ∈ C \ N(t), d′v = dv − 1/2 if v ∈ N(t) \ C and d′v = dv otherwise. It is easy
to see that d′v is a feasible solution to the LP-relaxation (1). As |C| ≤ |N(t)|,∑

v∈V \T d′v ≤
∑

v∈V \T dv and we infer that (d′v)v∈V \T is an optimal solution to
the LP-relaxation (1). However, d′v = 0 for v ∈ N(t) \ C, since dv = 1/2 in this
case. Therefore Reduction 3 would be applicable.

Branching Rule. Let w ∈ V \ T be a neighbour of a terminal t ∈ T . Branch
into two subcases, either w is included in a solution to the Node Multiway

Cut instance I or not. In the first branch, we remove w from the graph and
decrease k by one. In the second one, we contract the edge tw.

The soundness of the branching rule is straightforward. We now prove that in
both subcases the parameter L(I) drops by at least 1/2. Let I1 = (G\w, T, k−1)
and I2 = (G/tw, T, k) be the output instances in the first and second cases,
respectively.

In the first subcase, it is sufficient to prove that LP (I1) ≥ LP (I) − 1/2, i.e.,
that the cost of the optimal solution to the LP-relaxation (1) drops by at most
half. Assume the contrary, that LP (I1) < LP (I) − 1/2. Let (dv)v∈V \T\{w} be
a half-integral optimal solution to the LP-relaxation (1) for I1, as asserted by
Lemma 2. Note that if we put dw = 1, then (dv)v∈V \T is a feasible solution to the
LP-relaxation (1) for I, and LP (I1) ≥ LP (I) − 1. By half-integrality, LP (I1) =
LP (I)−1 and (dv)v∈V \T is an optimal half-integral solution to the LP-relaxation
(1) for I. As Reduction 3 is not applicable, dv > 0 for all v ∈ N(T ). As (dv)v∈V \T

is half-integral, dv ≥ 1/2 for all v ∈ N(T ). However, the assignment given by
Lemma 4 has strictly smaller cost than (dv)v∈V \T (as dw = 1), a contradiction
to the fact that (dv)v∈V \T is an optimal solution to the LP-relaxation (1) for I.
Thus LP (I1) ≥ LP (I) − 1/2 and L(I1) ≤ L(I) − 1/2.

In the second subcase note that, as Reduction 3 is not applicable, LP (I2) >
LP (I). As the LP-relaxation (1) has half-integral solutions, we have LP (I2) ≥
LP (I) + 1/2. This implies that L(I2) ≤ L(I) − 1/2.



On Multiway Cut Parameterized above Lower Bounds 7

Since Reduction 1 stops when the parameter L(I) becomes negative, we obtain
the following theorem.

Theorem 5. There exists an algorithm that solves a Node Multiway Cut

instance I in O∗(4L(I)) time.

To solve Node Multiway Cut parameterized by C(I), we introduce one more
reduction rule. Recall s denotes the number of terminals.

Reduction 4. If C(I) ≥ s−2
s−1 · k or C(I) ≤ 2L(I), return YES.

Now we show that Reduction 4 is sound. Let t0 ∈ T be the terminal with the
largest separating cut, i.e., m(I, t0) = maxt∈T m(I, t). Let X = N(T \ {t0}).
Obviously no two terminals are in the same connected component of G[V \ X ].
We claim that |X | ≤ k.

If C(I) ≥ s−2
s−1 · k, |N(t)| = m(I, t) by Lemma 4, and:

|X | =
∑

t∈T\{t0}
m(I, t) ≤ (s − 1)m(I, t0) = (s − 1)(k − C(I)) ≤ k.

In the second case, the condition C(I) ≤ 2L(I) is equivalent to 2LP (I) −
m(I, t0) ≤ k. From the structure of the optimum half-integral solution given
by Lemma 4, we infer that 2LP (I) ≥ |N(T )|. By Lemma 4, |N(t0)| = m(I, t0).
Since Reduction 2 is not applicable, N(t0) ∩ N(t) = ∅ for t ∈ T \ {t0}. We infer
that |X | = 2LP (I) − m(I, t0) ≤ k, and Reduction 4 is sound.

Corollary 6. There exists an algorithm that solves a Node Multiway Cut

instance I in O∗(2min(C(I), s−2
s−1 ·k)) time. In the case of three terminals, this yields

a O∗(2k/2)-time algorithm.

Finally, we would like to note that all our reduction rules are polynomial-time
and could be used in a hypothetical algorithm to find a polynomial kernel for
Node Multiway Cut . Let us supply them with one additional clean-up rule.

Reduction 5. If there exists a connected component of G with at most one
terminal, remove it.

The following lemma shows that our reductions improve the quadratic bound on
the number of terminals due to Razgon [18].

Lemma 7. If Reductions 1, 2, 3 and 5 are not applicable, then |T | ≤ 2k.

Proof. As noted before, the optimal half-integral solution given by Lemma 4
implies that |N(T )| = 2LP (I). However, if Reduction 5 is not applicable, N(t) 
=
∅ for any t ∈ T , and |T | ≤ |N(T )| by Reduction 2. We infer that 2LP (I) ≥ |T |.
If |T | > 2k, then L(I) < 0 and Reduction 1 would return NO.
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3 From Node Multiway Cut to Almost 2-SAT

We start with problem definitions. For a graph G by μ(G) we denote the size of
a maximum matching in G.

Vertex Cover above Maximum Matching Parameter: k
Input: A graph G = (V, E) and an integer k.
Question: Does there exist a vertex cover in G of size at most μ(G) + k?

Almost 2-SAT Parameter: k
Input: A 2-SAT formula Φ and an integer k.
Question: Does there exist a set X of at most k clauses of Φ, whose
deletion makes Φ satisfiable?

Now we prove that Vertex Cover above Maximum Matching is a special
case of NMWC-a-LP.

Theorem 8. There exists an algorithm that solves Vertex Cover above

Maximum Matching in O∗(4k) time.

Proof. Let I = (G = (V, E), k) be a Vertex Cover above Maximum Match-

ing instance. We construct a Node Multiway Cut instance I ′ = (G′, T, k′)
as follows. For each v ∈ V we create a terminal tv and connect it to v, thus
T = {tv : v ∈ V } and each terminal in G′ is of degree one. Moreover we take
k′ = μ(G) + k.

We claim that X ⊆ V is a vertex cover in G if and only if each connected
component of G′[(V \X)∪T ] contains at most one terminal. If X ⊆ V is a vertex
cover in G, G[V \ X ] is an independent set, thus every edge in G′[(V \ X) ∪ T ]
is of type tvv. In the other direction, note that if uv ∈ E and u, v /∈ X , then tu
and tv are connected in G′[(V \ X) ∪ T ].

We now show that LP (I ′) ≥ μ(G). Let M be a maximum matching in G
and let (dv)v∈V be an optimal solution to the LP-relaxation (1) for I ′. For
each uv ∈ M , the path consisting of vertices tu, u, v and tv is in P(I ′), thus
du + dv ≥ 1. As M is a matching, we infer that

∑
v∈v dv ≥ |M | = μ(G).

Since LP (I ′) ≥ μ(G) and k′ = k + μ(G), we have L(I ′) ≤ k. We apply
algorithm from Theorem 5 to the instance I ′ and the time bound follows.

We now reproduce the reduction from Almost 2-SAT to Vertex Cover

above Maximum Matching to prove the following theorem.

Theorem 9. There exists an algorithm that solves Almost 2-SAT in O∗(4k)
time.

Proof. Let I = (Φ, k) be an Almost 2-SAT instance. First, we replace each
clause C ∈ Φ that consists of a single literal l with a clause (l ∨ l). From now we
assume that each clause of Φ consists of two, possibly equal, literals.
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Let x be a variable of Φ. By n(x) we denote the number of occurrences of
the variable x in the formula Φ (if l = x or l = ¬x, a clause (l ∨ l) counts
as two occurrences). Let us arbitrarily number those occurrences and for any
1 ≤ i ≤ n(x), by C(x, i) we denote the clause where x occurs the i-th time.

We now construct a Vertex Cover above Maximum Matching instance
I ′ = (G, k). For each variable x and for each 1 ≤ i ≤ n(x) we create two vertices
v(x, i) and v(¬x, i). For l ∈ {x,¬x} we denote V (l) = {v(l, i) : 1 ≤ i ≤ n(x)}.
For each variable x and for each 1 ≤ i, j ≤ n(x) we connect v(x, i) and v(¬x, j)
by an edge, i.e., we make a full bipartite subgraph with sides V (x) and V (¬x).

Furthermore, if C(x, i) = C(y, j) for some variables x, y and indices 1 ≤ i ≤
n(x), 1 ≤ j ≤ n(y) (possibly x = y, but (x, i) 
= (y, j)), we introduce an edge
v(lx, i)v(ly, j), where C(x, i) = C(y, j) = (lx ∨ ly), lx is the i-th occurrence of
x and ly is the j-th occurrence of y. Such an edge is called a clause edge. Note
that we introduce exactly one clause edge for each clause of Φ and no two clause
edges share an endpoint in G.

We claim that I is an Almost 2-SAT YES-instance if and only if I ′ is a
Vertex Cover above Maximum Matching YES-instance. First note that
G has a perfect matching consisting of all edges of the type v(x, i)v(¬x, i).

Assume I is a YES-instance. Let X ⊆ Φ be a set of clauses, such that there
exists a truth assignment φ of all variables of Φ that satisfies all clauses of Φ\X .
We now construct a vertex cover Y of G. For each variable x and for each index
1 ≤ i ≤ n(x), we take into Y the vertex v(x, i) if x is true in the assignment
φ, and v(¬x, i) otherwise. Moreover, for each clause C ∈ X we take into Y any
endpoint of the clause edge for C.

Clearly |Y | ≤ μ(G) + |X |. Each non-clause edge v(x, i)v(¬x, j) is covered
by Y , as v(x, i) ∈ Y if x is true in φ, and v(¬x, j) ∈ Y otherwise. Let eC =
v(lx, i)v(ly, j) be a clause edge for clause C = (lx ∨ ly). If C ∈ X , then one of
the endpoints of eC is chosen into Y . Otherwise, lx or ly is true in φ and the
corresponding vertex is chosen into Y .

In the other direction, let us assume that I ′ is a YES-instance and let Y be
a vertex cover of G. We construct a truth assignment φ as follows. Let x be a
variable of Φ. Recall that G has a complete bipartite subgraph with sides V (x)
and V (¬x). Thus V (l) ⊆ Y for some l ∈ {x,¬x}, and we take l to be true in φ (if
V (x)∪V (¬x) ⊆ Y , we choose whether x is true or false arbitrarily). Let X be the
set of clauses of Φ that are not satisfied by φ. We claim that |X | ≤ |Y | − μ(G).

Let Y1 be the union of all sets V (l) for which l is true under φ. Obviously
Y1 ⊆ Y and |Y1| = μ(G). Let Y2 = Y \ Y1. Take any C ∈ X . As C is not
satisfied by φ, the clause edge eC corresponding to C does not have an endpoint
in Y1. Since Y is a vertex cover in G, eC has an endpoint in Y2. Finally, recall
that no two clause edges share an endpoint. This implies that |Y2| ≥ |X | and
|X | ≤ |Y | − μ(G).

We infer that the instances I and I ′ are equivalent. As the above construction
can be done in polynomial time, the running time follows from Theorem 8.
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4 Hardness of Node Multicut Parameterized above
LP-Relaxation

Recall the definition of Node Multicut, which is a natural generalization of
Node Multiway Cut .

Node Multicut

Input: A graph G = (V, E), a set T of pairs of terminals, and an integer k.
Question: Does there exist a set X of at most k non-terminal vertices,
whose removal disconnects all pairs of terminals in T ?

The LP-relaxation (1) for Node Multiway Cut naturally generalizes to Node

Multicut as follows. Let T be the set of all terminals in the given Node

Multicut instance I = (G, T , k). In the LP-relaxation we ask for an assignment
of non-negative weights (dv)v∈V \T , such that for each pair (s, t) ∈ T the distance
between s and t with respect to the weights (dv)v∈V \T is at least one. Clearly,
if X is a solution to I, an assignment that takes dv = 1 if v ∈ X and dv = 0
otherwise, is a feasible solution to the LP-relaxation. Let LP (I) be the cost of
an optimal solution to this LP-relaxation. We denote by NMC-a-LP the Node

Multicut problem parameterized by L(I) = k − LP (I), i.e., parameterized
above LP lower bound.

In this section we prove that NMC-a-LP does not even belong to XP , by
the following lemma.

Lemma 10. NMC-a-LP, restricted to instances where L(I) = 0, is NP-hard.

Proof. We reduce from Multicoloured Independent Set which is NP-
complete (see [6]). In this problem we are given a graph G = (V, E) together
with a partition of the vertex set into sets V1, V2, . . . , Vr, such that G[Vi] is a
clique for 1 ≤ i ≤ r, and we are to decide whether G contains an independent
set of size r. Note that such an independent set needs to take exactly one vertex
from each set Vi. W.l.o.g. we may assume that |Vi| ≥ 2 for each 1 ≤ i ≤ r. Let
|V | = n and let I be the given Multicoloured Independent Set instance.

We construct a Node Multicut instance I ′ = (G′, T , n) as follows. We start
with the graph G. Then, for each v ∈ V we create a vertex v′ and connect it
to v. For each set Vi, we connect the vertices {v′ : v ∈ Vi} into a path Pi in an
arbitrary order. We now add terminal pairs. Each terminal will be of degree one
in the graph G′.

First, for each v ∈ V we create a terminal tv connected to v and we include
in T all pairs (tv, tu) for u, v ∈ V , u 
= v. Second, for each v ∈ V we create
terminals sv and s′v, connected to v and v′ respectively, and include (sv, s

′
v) in T .

Finally, for each set Vi, we create terminals ai and bi, connected to two endpoints
of the path Pi, and include (ai, bi) in T . This finishes the construction of the
instance I ′.

First note that for each (s, t) ∈ T , we have N(s) ∩ N(t) = ∅, due to the
assumption |Vi| ≥ 2 for each 1 ≤ i ≤ r. Thus an assignment that takes dv =
dv′ = 1/2 for each v ∈ V is a feasible solution to the LP-relaxation of cost n.
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Moreover, it is an optimal solution, as dv + dv′ ≥ 1 for each v ∈ V due to the
terminal pair (sv, s′v). Thus LP (I ′) = n.

Assume I is a YES-instance and let X ⊆ V be an independent set of size r in
G. Take X ′ = {v′ : v ∈ X} and Y = (V \ X) ∪ X ′. Clearly |Y | = n. To see that
Y is a solution to the instance I ′ observe that V \ X is a vertex cover of G.

In the other direction, let Y be a solution to the instance I ′. Y needs to include
v or v′ for each v ∈ V , due to the terminal pair (sv, s′v). Thus |Y | = n and Y
includes exactly one vertex from the set {v, v′} for each v ∈ V . Moreover, for
each Vi, if u′, v′ ∈ Y , u, v ∈ Vi, then Y does not disconnect tu from tv. On the
other hand, if Vi ⊆ Y , then Y does not intersect Pi and the pair (ai, bi) is not
disconnected by Y . We infer that for each 1 ≤ i ≤ r there exists a vertex vi ∈ Vi,
such that (Vi \ {vi}) ∪ {v′i} ⊆ Y . Moreover, if vivj ∈ E for some 1 ≤ i < j ≤ r,
then the pair (tvi , tvj ) is not disconnected by Y . We infer that {vi : 1 ≤ i ≤ r}
is an independent set in G, and the instances I and I ′ are equivalent.

5 Conclusions

In this paper, building upon work of Xiao [20] and Guillemot [9], we show that
Node Multiway Cut is fixed-parameter tractable when parameterized above
two lower bounds: largest isolating cut and the cost of the optimal solution of the
LP-relaxation. We also believe that our results may be of some importance in re-
solving the question of an existence of a polynomial kernel for Node Multiway

Cut .
One of the tools used in the parameterized complexity is the notion of im-

portant separators introduced by Marx in 2004 [13]. From that time important
separators were used for proving several problems to be in FPT, including Mul-

tiway Cut [13],Directed Feedback Vertex Set [3], Almost 2-SAT [19]
and Multicut [14,1]. In this paper we show that in the Node Multiway Cut

problem half-integral solutions of the natural LP-relaxation of the problem can
be even more useful than important separators. Is it possible to use linear pro-
gramming in other graph separation problems, for example to obtain a O∗(ck)
algorithm for Directed Feedback Vertex Set?

We have shown that Node Multicut parameterized above LP-relaxation is
not in XP . Is the edge-deletion variant similarly difficult?

Acknowledgements. We thank Saket Saurabh for pointing us to [9].
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Abstract. The Firefighter problem is to place firefighters on the ver-
tices of a graph to prevent a fire with known starting point from lighting
up the entire graph. In each time step, a firefighter may be permanently
placed on an unburned vertex and the fire spreads to its neighborhood
in the graph in so far no firefighters are protecting those vertices. The
goal is to let as few vertices burn as possible. This problem is known to
be NP-complete, even when restricted to bipartite graphs or to trees of
maximum degree three. Initial study showed the Firefighter problem
to be fixed-parameter tractable on trees in various parameterizations. We
complete these results by showing that the problem is in FPT on general
graphs when parameterized by the number of burned vertices, but has no
polynomial kernel on trees, resolving an open problem. Conversely, we
show that the problem is W[1]-hard when parameterized by the number
of unburned vertices, even on bipartite graphs. For both parameteriza-
tions, we additionally give refined algorithms on trees, improving on the
running times of the known algorithms.

1 Introduction

The Firefighter problem concerns a deterministic model of fire spreading
through a graph via its edges. The problem has recently received considerable
attention [9,14]. In the model, we are given a graph G with a vertex s ∈ V (G).
At time t = 0, the fire breaks out at s and vertex s starts burning. At each step
t ≥ 1, first the firefighter protects one vertex not yet on fire—this vertex remains
permanently protected—and the fire then spreads from burning vertices to all
unprotected neighbors of these vertices. The process stops when the fire cannot
spread anymore. The goal is to find a strategy for the firefighter that minimizes
the amount of burned vertices, or, equivalently, maximizes the number of saved,
i.e. not burned, vertices.

It is known that the Firefighter problem is NP-hard, even when restricted
to bipartite graphs [14] or trees of maximum degree three [10]. However, it is
polynomial-time solvable on such trees if the root has degree two [14]. We refer
to the survey [11] for an overview of further combinatorial results on the prob-
lem. The study of the problem from the perspective of parameterized complexity
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was initiated by Cai, Verbin, and Yang [6]. They considered the following pa-
rameterized versions of the problem and obtained a number of parameterized
algorithms on trees.

The first parameterization considered by Cai et al. in [6] is by the number of
saved vertices.

Saving k Vertices Parameter: k
Input: An undirected graph G, a vertex s, and an integer k.
Question: Is there a strategy to save at least k vertices when a fire breaks
out at s?

Cai et al. proved that Saving k Vertices on trees has a kernel with O(k2)
vertices. They also gave a randomized algorithm solving Saving k Vertices

on trees in time O(4k + n), which can be derandomized to a O(n + 2O(k))-time
algorithm.

The second parameterization is by the number of burned vertices.

Saving All But k Vertices Parameter: k
Input: An undirected n-vertex graph G, a vertex s, and an integer k.
Question: Is there a strategy to save at least n − k vertices when a fire
breaks out at s?

For Saving All But k Vertices on trees, Cai et al. gave a randomized algo-
rithm of running time O(4kn), which can be derandomized to a O(2O(k)n log n)-
time algorithm. They left as an open problem whether Saving All But k
Vertices has a polynomial kernel on trees.

The last parameterization is by the number of protected vertices, i.e. the
number of vertices occupied by firefighters.

Maximum k-Vertex Protection Parameter: k
Input: An undirected graph G, a vertex s, and an integer k.
Question: What is a strategy that saves the maximum number of vertices
by protecting k vertices when a fire breaks out at s?

For Maximum k-Vertex Protection on trees, Cai et al. gave a random-
ized algorithm of running time O(kO(k)n), which can be derandomized to a
O(kO(k)n log n)-time algorithm. They left open whether the problem has a poly-
nomial kernel on trees, and asked whether there is an algorithm solving the
problem on trees in time 2o(k log k)nO(1).

We will sometimes consider the decision variant of Maximum k-Vertex

Protection.

k-Vertex Protection Parameter: k
Input: An undirected graph G, a vertex s, an integer k, and an integer K.
Question: Is there a strategy that saves at least K vertices by protecting k
vertices when a fire breaks out at s?

The unparameterized version of this problem is obviously NP-hard on trees of
maximum degree three from the hardness of the Firefighter problem.

Our Results. We resolve several open questions of Cai, Verbin, and Yang [6].
We also refine and extend some of the results of [6].
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– In Section 2, we give a deterministic algorithm solving Saving k Vertices

on trees in time O(2kk3 + n), improving the running time O(4k + n) of the
randomized algorithm from [6]. We also observe that on general graphs the
problem is W[1]-hard, which was independently observed by Cai (private
communication), but is in FPT when parameterized by k and the treewidth
of a graph. Based on that we derive that Saving k Vertices is in FPT
on graphs of bounded local treewidth, including planar graphs, graphs of
bounded genus, apex-minor-free graphs, and graphs of bounded maximum
vertex degree.

– In Section 3, we provide deterministic algorithms solving Saving All But

k Vertices in time O(2kn) on trees, and in time O(3kn) on general graphs.
The algorithm on trees improves the O(4kn) running time of the randomized
algorithm from [6]. We also answer the open question of Cai et al. by showing
that Saving All But k Vertices has no polynomial kernel on trees of
maximum vertex degree four.

– For Maximum k-Vertex Protection, we answer both open questions of
Cai et al.: We give a deterministic algorithm solving Maximum k-Vertex

Protection on trees in time O(2kkn) in Section 2, and show that the
problem has no polynomial kernel on trees in Section 3. The no-poly-kernel
result was independently obtained by Yang [15]. Based on the parameter-
ized algorithm, we also give an exact subexponential-time algorithm, solving
the Firefighter problem on an n-vertex tree in time O(2

√
2nn3/2), thus

improving on the 2O(
√

n log n) running time from [6]. On general graphs, we
show that the Maximum k-Vertex Protection problem is W[1]-hard,
but is solvable in f(k, t) · nO(1) time, where t is the treewidth of the graph.

Recently, and independent of our work, Bazgan, Chopin, and Fellows [2] proved
several of the results mentioned above. This includes the W[1]-hardness of Sav-

ing k Vertices, as well as its membership of FPT on graphs of bounded
treewidth, and the membership of FPT of Saving All But k Vertices on
general graphs, as well as it not having a polynomial kernel on trees. In addition,
they consider the parameterization by the vertex cover number of a graph, and
the extension of the problem to being able to protect b vertices at any time step.
However, they do not consider Maximum k-Vertex Protection, algorithms
on trees, or exact algorithms.

2 Saving and Protecting Vertices

In this section, we consider the complexity of Saving k Vertices and Maxi-

mum k-Vertex Protection. These problems are known to be fixed-parameter
tractable on trees, but their complexity on general graphs was hitherto unknown.
We resolve this open problem by giving a W[1]-hardness result for both prob-
lems. At the other end of the spectrum, we extend the boundary where Saving

k Vertices and Maximum k-Vertex Protection remain fixed-parameter
tractable by giving parameterized algorithms on graphs of bounded treewidth.
Finally, we improve the algorithms known to exist for trees.
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2.1 W[1]-Hardness on General Graphs

We show that Saving k Vertices and the decision variant of Maximum k-

Vertex Protection are W[1]-hard, even on bipartite graphs. We reduce from
the k-Clique problem, which is well known to be W[1]-hard [7].

Theorem 1. Saving k Vertices is W[1]-hard, even on bipartite graphs.

Proof. Let (G, k) be an instance of k-Clique. We can assume that G has at
least k + 1 vertices that are not isolated, or we can easily output a trivial Yes-
or No-instance. We construct the following bipartite graph G′ (see Figure 1).
For each edge (u, v) ∈ E(G), we add a vertex suv, and for each vertex v ∈ V (G),
we add a vertex sv. Call these two sets of vertices E and V respectively. Now
add an edge from suv to both su and sv for each (u, v) ∈ E(G). Add a root
vertex s, and add vertices ai,j for all 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ k. Connect ai,j

to ai′,j′ (i′ = i + 1) for all i, j, j′, connect a1,j to s for all j, and connect ak−1,j

to each vertex of V for all j. Now set k′ = k +
(
k
2

)
+ 1.

We claim that Saving k Vertices on (G′, s, k′) is a Yes-instance if and
only if k-Clique on (G, k) is a Yes-instance. Suppose that G has a k-clique K.
Then the strategy that protects the vertices sv for all v ∈ K saves the vertices
suv for all u, v ∈ K. Since K is a clique, these vertices suv are indeed present
in G′. Additionally, we can protect (and thus save) a vertex sxy for some edge
xy 
∈ E(G[K]). This edge exists, as G is assumed to have at least k+1 nonisolated
vertices. It follows that this strategy saves at least k′ vertices.

Suppose that P = {p1, . . . , p�} is a strategy for (G′, s, k′) that chooses vertex
pt at time t and saves at least k′ vertices. First observe that if pt = ai,j for some
i, j, then this vertex is not helpful, as there is always a vertex ai,j′ that will be
burned at time t and has the same neighborhood as ai,j . Hence we can assume
that no vertex ai,j is protected by the strategy. This implies that all vertices
of V will be burned, except those that are protected by the strategy. But then
protecting vertices of E does not save any further vertices. Since the fire will
reach V in k time steps, and thus E in k + 1 time steps, the vertices in S ∩ V
are responsible for saving

(
k
2

)
vertices, which is only possible if the vertices of

S ∩ V induce a k-clique in G. �

Observe that essentially the same construction works for the decision variant of
Maximum k-Vertex Protection.

Theorem 2. k-Vertex Protection is W[1]-hard, even on bipartite graphs.

Proof. We again reduce from k-Clique and construct the same bipartite graph
as in the proof of Theorem 1. We set k′ = k+1 and K ′ = k+

(
k
2

)
+1. Correctness

now follows straightforwardly from the arguments in the proof of Theorem 1. �

The above reduction also implies an NP-hardness reduction, which is simpler
than the earlier reduction for the Firefighter problem on bipartite graphs [14].
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Fig. 1. An instance of k-Clique and the corresponding graph G′ constructed in the
proof of Theorem 1 for k = 3

2.2 Improved Algorithm on Trees

We show that Saving k Vertices and Maximum k-Vertex Protection have
a deterministic O(n + 2kk3) and O(2kkn) algorithm, respectively, on trees. This
resolves an open question of Cai et al. [6]. As a consequence, we also obtain a
refined subexponential algorithm for the Firefighter problem on trees, running
in time O(2

√
2nn3/2).

The following observation is by MacGillivray and Wang [14, Sect. 4.1].

Lemma 1. For any optimum strategy for an instance of the Firefighter prob-
lem on trees, there is an integer � such that all protected vertices have depth at
most �, exactly one vertex pi at each depth 1 ≤ i ≤ � is protected, and all
ancestors of each pi are burned.

We need the following notation. Let T be any rooted tree. Use a pre-order
traversal of T to number the vertices of T from 1 to n. We say that u ∈ V (T )
is to the left of v ∈ V (T ) if the number assigned to u is not greater than the
number of v in the order. It is then easy to define what the leftmost or rightmost
vertex is.

Theorem 3. Maximum k-Vertex Protection has an O(2kkn)-time algo-
rithm on trees.

Proof. Let (T, s, k) be an instance of Maximum k-Vertex Protection on a
tree T . Assume that T is rooted at s. By Lemma 1, we can define a characteristic
vector χv of length k for each vertex v of the tree, which has a 1 at position
i if and only if the optimal strategy protects a vertex at depth i in the part
of the tree to the left of v. We use these vectors as the basis for a dynamic
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programming procedure. However, the vector cannot ensure that no ancestors of
a protected vertex will be protected. To ensure this, we add another dimension
to our dynamic programming procedure. The pre-order numbering ensures that
no descendant is protected.

The dynamic programming algorithm is then as follows. Let L be the set
of vertices in T that are at depth at most k. For each v ∈ L, let Pv denote
the path in T between v and s. For each vector χ ⊆ {0, 1}k and each integer
0 ≤ i ≤ k, we compute Av(χ, i), the maximum number of vertices one can save
when protecting at most one vertex at depth j for each j for which χ(j) = 1
and no vertex otherwise, where protected vertices must lie to the left of v but at
depth greater than i when lying on Pv, and no protected vertex is an ancestor
of another. Observe that s is the leftmost vertex of L. Now set As(χ, i) = 0 for
any χ and i. Then

Av(χ, i) = max
{

Al(v)(χ, min{depth(v) − 1, i}),
[χ(depth(v)) = 1 ∧ depth(v) > i] ·
(r(v) + Al(v)(χv, depth(v) − 1))

}
Here depth(v) is the depth of a vertex v, l(v) is the rightmost vertex in L which
has strictly smaller value in the pre-order than v, and r(x) is the number of
vertices saved when protecting only x. Moreover, χv is the 0-1 vector obtained
from χ by setting the number at the index of χ corresponding to depth(v) to 0.
In the formula we use Iverson’s bracket notation, where [φ] is equal to one if φ
is true and zero otherwise.

To see that the above formula is correct, observe that we can either protect
the considered vertex v or not. If we do not protect v, then we must ensure
that the value for the second dimension of our dynamic programming procedure
does not exceed the length of Pv, yet still captures the same forbidden part
of Pv. Correctness then follows from the fact that the parent of v is always
on Pl(v). If we do protect v, we can protect v only if we are allowed to do so,
i.e. if χ(depth(v)) = 1 and depth(v) > i. Furthermore, we need to ensure that
no ancestor of v is protected later. Therefore, we set the value for the second
dimension of our dynamic programming procedure to depth(v) − 1.

To get the solution for the whole tree T , return Av∗(1k, 0), where v∗ is the
rightmost vertex of L. To obtain the claimed running time, first find L, and
then l(v) for each vertex v ∈ L. This can be done in linear time by a depth-first
search. We can also compute r(x) for each x ∈ V (T ) in linear time, as r(x)
equals one plus the number of descendants of x. By traversing the vertices of L
from left to right, the total running time is O(2kkn). �

Corollary 1. Saving k Vertices has an O(2kkn)-time algorithm on trees.

Proof. Let (T, s, k) be an instance of Saving k Vertices on a tree T . We run
the above algorithm for Maximum k-Vertex Protection for all k′ = 1, . . . , k.
Observe that it is possible to save k vertices of the tree if and only if the algorithm
saves at least k vertices for some value of k′. Furthermore, we note that
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k∑
i=1

(2iin) ≤ kn
k∑

i=1

2i = (2k+1 − 2)kn,

implying that the worst-case running time of the algorithm is O(2kkn). �

Using the known kernel of size O(k2) [6], we can improve running time of the
above algorithm for Saving k Vertices to O(n + 2kk3).

To obtain a good subexponential algorithm, we use the following lemma. A
similar idea appeared independently in [12].

Lemma 2. If a vertex at depth d burns in an optimum strategy for an instance
of the Firefighter problem on trees, then at least 1

2 (d2 + d) vertices are saved.

Proof. Let (T, s) be an instance of the Firefighter problem on trees, and let
v be a vertex of depth d that burns in an optimum strategy. Then the strategy
protects a vertex at depth d, and by Lemma 1 it thus protects a vertex pi at
each depth i for 1 ≤ i ≤ d. For any i, the subtree rooted at pi should contain
at least d − i + 1 vertices, or it would have been better to protect the vertex
at depth i that is on the path from v to s. But then the strategy saves at least∑d

i=1(d − i + 1) = 1
2 (d2 + d) vertices. �

Theorem 4. The Firefighter problem has an O(2
√

2nn3/2)-time algorithm
on trees.

Proof. Let (T, s) be an instance of the Firefighter problem on trees. Suppose
that a vertex v at depth

√
2n burns in an optimum strategy. Then, by Lemma 2,

the strategy saves at least n+
√

n/2 > n vertices, which is not possible. It follows
that all vertices at depth

√
2n are saved in any optimum strategy. Since in any

optimum strategy every protected vertex has a burned ancestor by Lemma 1, all
protected vertices are at depth at most

√
2n. Hence there is an optimum strategy

that protects at most
√

2n vertices, and we can find the optimum strategy by
running the algorithm of Theorem 3 with k =

√
2n. �

2.3 Tractability on Graphs of Bounded Treewidth

We generalize the above results by showing that Maximum k-Vertex Pro-

tection and Saving k Vertices remain fixed-parameter tractable when pa-
rameterized by k and the treewidth of the underlying graph. To this end, we
use Monadic Second Order Logic (MSOL). The syntax of MSOL of graphs in-
cludes the logical connectives ∨, ∧, ¬, ⇔, ⇒, variables for vertices, edges, sets
of vertices, and sets of edges, the quantifiers ∀, ∃ that can be applied to these
variables, and the following four binary relations:

1. u ∈ U , where u is a vertex variable and U is a vertex set variable.
2. d ∈ D, where d is an edge variable and D is an edge set variable.
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3. adj(u, v), where u, v are vertex variables, and the interpretation is that u
and v are adjacent.

4. Equality, =, of variables representing vertices, edges, sets of vertices, and
sets of edges.

For Maximum k-Vertex Protection, we actually need Linear Extended
MSOL [1], which allows the maximization over a linear combination of the size of
unbound set variables in the MSOL formula. (The definition of LEMSOL in [1]
is slightly more general, but this suffices for our purposes.)

Theorem 5. Maximum k-Vertex Protection is solvable in f(k, t) · nO(1)

time, where t is the treewidth of the graph.

Proof. Let (G, s, k) be an instance of Maximum k-Vertex Protection such
that the treewidth of G is t. Use Bodlaender’s Algorithm [3] to find a tree
decomposition of G of width at most t. Consider the following MSOL formulae.

NextBurn(Bi−1, Bi, p1, . . . , pi) :=

∀v
((

v ∈ Bi−1 ∨ ∃u
(
u ∈ Bi−1 ∧ adj(u, v) ∧

( ∧
1≤j≤i v 
= pj

)))
⇔ v ∈ Bi

)
This expresses is that if the vertices of Bi−1 are burning by time step i−1, then
the vertices of Bi burn by time step i, assuming that vertices p1, . . . , pi have
been protected so far.

Saved(S, B, p1, . . . , p�) :=

∀u
(
u ∈ S ⇒

(
u 
∈ B ∧ ∀v

(
adj(u, v) ⇒ v ∈ S ∨

∨
1≤i≤�

pi = u
)))

This expresses that S is a set of saved vertices when B is a set of burned vertices
and vertices p1, . . . , p� are protected.

Protect(S, �) := ∃p1, . . . , p� ∃B, B0, . . . , B�−1

∀u (u ∈ B0 ⇔ u = s) (1)

∧
∧

1≤i≤�−1

NextBurn(Bi−1, Bi, p1, . . . , pi) (2)

∧
∧

1≤i≤�

pi 
∈ Bi−1 (3)

∧ ∀u
(( ∨

0≤i≤�−1

u ∈ Bi

)
⇒ u ∈ B

)
(4)

∧ Saved(S, B, p1, . . . , p�) (5)

This expresses that S can be saved by protecting � vertices. The sets Bi contain
all vertices that are burned by time step i, which is ensured by the formulas in
lines 1 and 2. The set B contains vertices that are not saved (line 5) and all
vertices of the sets Bi (line 4). The vertices p1, . . . , p� are the vertices that are



Parameterized Complexity of Firefighting Revisited 21

protected. Line 3 ensures that the vertices we want to protect are not burned by
the time we pick them. Then we want to find the largest set S such that

Protectk(S) :=
∨

1≤�≤k

Protect(S, �)

is true. Following a result of Arnborg, Lagergren, and Seese [1], this can be done
in f(k, t) · nO(1) time using the above formula. �

In the same way as Corollary 1, we then obtain the following.

Corollary 2. Saving k Vertices is in FPT when parameterized by k and the
treewidth of the graph.

Observe that this algorithm also works on graphs of bounded local treewidth,
because if the graph has a vertex at distance more than k from the root, then
any strategy that protects a vertex at distance i from the root in time step i will
save at least k vertices, and we can answer Yes immediately.

Corollary 3. Saving k Vertices is in FPT on graphs of bounded local treewidth.

The class of graphs having bounded local treewidth coincides with the class of
apex-minor-free graphs [8], which includes the class of planar graphs.

Corollary 4. Saving k Vertices is in FPT on planar graphs.

3 Burning Vertices

In this section, we consider the Firefighter problem when parameterized by
the number of burned vertices, which we call the Saving All But k Vertices

problem. We improve on results of Cai et al. [6] by showing an O(2kn)-time
deterministic algorithm for trees and an O(3kn)-time deterministic algorithm for
general graphs. Furthermore, we prove that the Saving All But k Vertices

problem has no polynomial kernel for trees, resolving an open problem from [6].

3.1 Algorithms

In this subsection, we show an O(2kn)-time algorithm for the Saving All But

k Vertices problem on trees, and an O(3kn)-time algorithm on general graphs.

Theorem 6. The Saving All But k Vertices problem for trees can be solved
in O(2kn) time and polynomial space.

Proof. If the root s has at most one child, then we immediately answer Yes.
We may assume that the root has exactly a ≥ 2 children, and k ≥ a − 1 since
otherwise we simply answer No. We use Lemma 1 and branch on every child of
the root s. In each branch, we cut the subtree rooted at the protected vertex,
identify all the vertices that are on fire after the first round, and decrease the
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parameter by a − 1. In this way, we obtain a new instance of the Saving All

But k Vertices problem with parameter value equal to k − (a− 1). The time
bound follows from the inequality

T (k) ≤ aT (k − (a − 1)) + O(n)

which is worst when a = 2. �

Before we present the algorithm on general graphs, we need to reformulate the
Firefighter problem to an equivalent version. Consider a different version of
the Firefighter problem, where in each round an arbitrary number of vertices
may be protected under the following restrictions:

– each protected vertex must have a neighbor which is on fire,
– after i rounds of the process at most i vertices are protected.

By Saving All But k Vertices II we denote the Saving All But k Ver-

tices problem where vertices are protected subject to the above rules.

Lemma 3. An instance (G, s, k) of the Saving All But k Vertices problem
is a Yes-instance if and only if it is a Yes-instance of the Saving All But k
Vertices II problem.

Proof. Assume that (G, s, k) is a Yes-instance of the Saving All But k Ver-

tices problem. Let P be the set of protected vertices of an optimum strategy
S. We construct a strategy S′, which in the i-th round of Saving All But k
Vertices II protects exactly those vertices of P which have a neighbor which
is on fire. Clearly after i rounds at most i vertices will be protected, since each
vertex of P is protected by the strategy S′ not earlier than by the strategy S.

In the other direction assume that (G, s, k) is a Yes-instance of the Saving

All But k Vertices II problem and P is the set of protected vertices of an
optimum strategy S′. We construct a strategy S as follows. Let (v1, . . . , v|P |) be
a sequence of vertices of P sorted by the round in which a vertex is protected
by S′ (breaking ties arbitrarily). In the i-th round of strategy S we protect the
vertex vi. The vertex vi is not on fire in the i-th round, because in the strategy
S′ it is protected not earlier than in the i-th round. �

Theorem 7. There is an O(3kn)-time and polynomial-space algorithm for the
Saving All But k Vertices II problem on general graphs.

Proof. We present a simple branching algorithm. Assume that we are in the i-th
time step and let B be the set of vertices which are currently on fire. Moreover,
let P be the set of already protected vertices (in the first round we have B = {s}
and P = ∅). Let a = i−|P | and r = |N(B)\P |. The algorithm does the following:

1. If |B| > k, then we immediately answer No.
2. Observe that in the i-th round we are allowed to protect at most min(a, r)

vertices. If a ≥ r, then we can greedily protect the whole set N(B)\P . Hence
in this case we answer Yes.
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3. In the last case, when a < r, we branch on all subsets of N(B) \P of size at
most a. Observe that the number of branches is equal to

∑a
j=0

(
r
j

)
≤ 2r − 1,

since we have a < r.

The running time of the algorithm is as follows. We introduce a measure α =
(k−|B|)+(i−|P |) which we use in our time bound. At the beginning of the first
round of the burning process we have α = (k−1)+(1−0) = k. By T (α) we denote
the upper bound on the number of steps that our algorithm requires for a graph
with measure value α. Observe that for α ≤ 0, we have T (α) = O(n). Let us
assume that the algorithm did not stop in step 1 or 2, and it branches into at most
2r − 1 choices of protected vertices. Observe that no matter how many vertices
the algorithm decides to protect, the value of the measure decreases by exactly
r− 1. Consequently, we have the inequality T (α) ≤ (2r − 1)T (α− r + 1) + O(n).
Since the algorithm did not stop in steps 1 or 2, we infer that r ≥ 2. The
time bound follows from the fact that the worst case for the inequality occurs
when r = 2. �

Corollary 5. There is an O(3kn)-time and polynomial-space algorithm for the
Saving All But k Vertices problem on general graphs.

3.2 No Poly-kernel for Trees

The aim of this subsection is to prove the following theorem.

Theorem 8. Unless NP ⊆ coNP/poly, there is no polynomial kernel for the
Saving All But k Vertices problem, even if the input graph is a tree of
maximum degree four.

Before we prove Theorem 8 we describe the necessary tools. We use the cross-
composition technique introduced by Bodlaender et al. [5], which is based on the
previous results of Bodlaender et al. [4] and Fortnow and Santhanam [13]. We
recall the crucial definitions.

Definition 1 (Polynomial Equivalence Relation [5]). An equivalence re-
lation R on Σ∗ is called a polynomial equivalence relation if (1) there is an algo-
rithm that given two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1)

time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R partitions the
elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 2 (Cross-Composition [5]). Let L ⊆ Σ∗, and let Q ⊆ Σ∗ × N
be a parameterized problem. We say that L cross-composes into Q if there is
a polynomial equivalence relation R and an algorithm which, given t strings
x1, x2, . . . xt belonging to the same equivalence class of R, computes an instance
(x∗, k∗) ∈ Σ∗ ×N in time polynomial in

∑t
i=1 |xi| such that (1) (x∗, k∗) ∈ Q iff

xi ∈ L for some 1 ≤ i ≤ t; (2) k∗ is bounded polynomially in maxt
i=1 |xi|+ log t.

Theorem 9 ([5], Theorem 9). If L ⊆ Σ∗ is NP-hard under Karp reductions
and L cross-composes into the parameterized problem Q that has a polynomial
kernel, then NP ⊆ coNP/poly.
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We apply Theorem 9, where as the language L we use Saving All But k
Vertices in trees of maximum degree three, which is NP-complete [10]. To
finish the proof of Theorem 8, we present a cross-composition algorithm.

Lemma 4. The unparameterized version of the Saving All But k Vertices

problem on trees with maximum degree three cross-composes to Saving All But

k Vertices on trees with maximum degree four.

Proof. Observe that any polynomial equivalence relation is defined on all words
over the alphabet Σ and for this reason we should also define how the rela-
tion behaves on words that do not represent instances of the problem. For the
equivalence relation R we take a relation that puts all malformed instances into
one equivalence class and all well-formed instances are grouped according to the
number of vertices we are allowed to burn.

If we are given malformed instances, we simply output a trivial No-instance.
Thus in the rest of the proof we assume we are given a sequence of instances
(Ti, si, k)t

i=1 of the Firefighter problem, where each Ti is of maximum degree
three. Observe that in all instances we have the same value of the parameter
k. W.l.o.g. we assume that t = 2h for some integer h ≥ 1. Otherwise we can
duplicate an appropriate number of instances (Ti, si, k).

We create a new tree T ′ as follows. Let T ′ be a full binary tree with exactly t
leaves rooted at a vertex s′. Now for each i = 1, . . . , t, we replace the i-th leaf of
the tree by tree Ti rooted at si. Finally, we set k′ = k + h = k + log2 t. Observe
that since each tree Ti is of maximum degree three, the tree T ′ is of maximum
degree four. To prove correctness, it is enough to show that any strategy that
minimizes the number of burned vertices protects exactly one vertex at each
depth 1, . . . , h, which follows from Lemma 1.

Hence in any strategy that minimizes the number of burned vertices, there
will be exactly one vertex si which is on fire after h rounds. �

We can obtain a similar result for the decision variant of Maximum k-Vertex

Protection.

Theorem 10. Unless NP ⊆ coNP/poly, there is no polynomial kernel for the
k-Vertex Protection problem, even if the input graph is a tree of maximum
degree four.

Proof. There are only two differences compared to the proof for Saving All

But k Vertices.

– For the equivalence relation R, we take a relation that puts all malformed in-
stances into one equivalence class, and all well-formed instances are grouped
according to the number of vertices of the tree, the parameter value k, and
the value K.

– The value of k′ for the tree T ′ is k + h, and the value of K ′ is equal to
K + (t − 1)n + (t − h − 1), where n is the number of vertices in each of
the trees Ti. The additional summands are derived from the fact that any
optimal strategy will ensure that after h rounds exactly one vertex si will
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be on fire and hence we save t − 1 subtrees rooted at si, each containing n
vertices, and t − h − 1 vertices of the full binary tree.

This completes the proof. �

4 Open Problems

In this paper, we refined and extended several parameterized algorithmic and
complexity results about different parameterizations of the Firefighter prob-
lem. We conclude with the following open problems.

– We have shown that Saving k Vertices is in FPT on graphs of bounded
local treewidth , and thus on planar graphs, by showing that the problem is
in FPT parameterized by k and the treewidth of a graph. While Maximum

k-Vertex Protection is also solvable in f(k, t) ·nO(1) time, where t is the
treewidth of the graph, we do not know if the problem has an f(k)·nO(1)-time
algorithm on planar graphs, and leave it as an open problem.

– The Firefighter problem is solvable in subexponential time on trees. Is it
solvable in time 2o(n) on n-vertex planar graphs? Even the case of outerplanar
graphs is open.

– Finally, we do not know if any of the three parameterized versions of the
problem is solvable in parameterized subexponential time 2o(k)nO(1) on trees.
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Abstract. We show that several variants of the problem k-DOMINATING SET,
including k-CONNECTED DOMINATING SET, k-INDEPENDENT DOMINATING

SET, k-DOMINATING CLIQUE, d-DISTANCE k-DOMINATING SET, k-PERFECT

CODE and d-DISTANCE k-PERFECT CODE, when parameterized by the solution
size k, remain W[1]-hard in either multiple-interval graphs or their complements
or both.

1 Introduction

We introduce some basic definitions. The intersection graph Ω(F) of a family of sets
F = {S1, . . . , Sn} is the graph with F as the vertex set and with two different vertices
Si and Sj adjacent if and only if Si ∩ Sj 
= ∅; the family F is called a representation
of the graph Ω(F). Let t ≥ 2 be an integer. A t-interval graph is the intersection graph
of a family of t-intervals, where each t-interval is the union of t disjoint intervals in
the real line. A t-track interval graph is the intersection graph of a family of t-track
intervals, where each t-track interval is the union of t disjoint intervals on t disjoint
parallel lines called tracks, one interval on each track. Note that the t disjoint tracks for
a t-track interval graph can be viewed as t disjoint “host intervals” in the real line for
a t-interval graph. Thus t-track interval graphs are a subclass of t-interval graphs. If a
t-interval graph has a representation in which all intervals have unit lengths, then the
graph is a unit t-interval graph. If a t-interval graph has a representation in which the
t disjoint intervals of each t-interval have the same length (although the intervals from
different t-intervals may have different lengths), then the graph is a balanced t-interval
graph. Similarly we define unit t-track interval graphs and balanced t-track interval
graphs.

As generalizations of the ubiquitous interval graphs, multiple-interval graphs
such as t-interval graphs and t-track interval graphs have numerous applications, tra-
ditionally to scheduling and resource allocation [13,1], and more recently to bioin-
formatics [4,8]. For this reason, a systematic study of various classical optimization
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problems in multiple-interval graphs has been undertaken by several groups of re-
searchers. In terms of approximability, Bar-Yehuda et al. [1] presented a 2t-
approximation algorithm for MAXIMUM INDEPENDENT SET in t-interval graphs, and
Butman et al. [2] presented approximation algorithms for MINIMUM VERTEX COVER,
MINIMUM DOMINATING SET, and MAXIMUM CLIQUE in t-interval graphs with ap-
proximation ratios 2 − 1/t, t2, and (t2 − t + 1)/2, respectively.

Fellows et al. [7] initiated the study of multiple-interval graph problems from the per-
spective of parameterized complexity. In general graphs, the four problems k-VERTEX

COVER, k-INDEPENDENT SET, k-CLIQUE, and k-DOMINATING SET, parameterized
by the solution size k, are exemplary problems in parameterized complexity theory [6]:
it is well-known that k-VERTEX COVER is in FPT, k-INDEPENDENT SET and k-
CLIQUE are W[1]-hard, and k-DOMINATING SET is W[2]-hard. Since t-interval graphs
are a special class of graphs, all FPT algorithms for k-VERTEX COVER in general
graphs immediately carry over to t-interval graphs. On the other hand, the parameter-
ized complexities of k-INDEPENDENT SET, k-CLIQUE, and k-DOMINATING SET in
t-interval graphs are not at all obvious. Indeed, in general graphs, k-INDEPENDENT

SET and k-CLIQUE are essentially the same problem (the problem k-INDEPENDENT

SET in any graph G is the same as the problem k-CLIQUE in the complement graph G),
but in t-interval graphs, they manifest different parameterized complexities. Fellows
et al. [7] showed that k-INDEPENDENT SET in t-interval graphs is W[1]-hard for any
t ≥ 2, then, in sharp contrast, gave an FPT algorithm for k-CLIQUE in t-interval graphs
parameterized by both k and t. Fellows et al. [7] also showed that k-DOMINATING

SET in t-interval graphs is W[1]-hard for any t ≥ 2. Recently, Jiang [9] strengthened
the two hardness results for t-interval graphs, and showed that k-INDEPENDENT SET

and k-DOMINATING SET remain W[1]-hard even in unit t-track interval graphs for any
t ≥ 2. In particular, we have the following theorem on the parameterized complexity of
k-DOMINATING SET in unit 2-track interval graphs:

Theorem 1 (Jiang 2010 [9]). k-DOMINATING SET in unit 2-track interval graphs is
W[1]-hard with parameter k.

The lack of symmetry in the parameterized complexities of k-INDEPENDENT SET and
k-CLIQUE in multiple-interval graphs and their complements leads to a natural ques-
tion about k-DOMINATING SET, which is known to be W[1]-hard in multiple-interval
graphs: Is it still W[1]-hard in the complements of multiple-interval graphs? Our fol-
lowing theorem (here “co-3-track interval graphs” denotes “complements of 3-track
interval graphs”) gives a positive answer:

Theorem 2. k-DOMINATING SET in co-3-track interval graphs is W[1]-hard with
parameter k.

A connected dominating set in a graph G is a dominating set S in G such that the in-
duced subgraph G(S) is connected. An independent dominating set in a graph G is both
a dominating set and an independent set in G. A dominating clique in a graph G is both
a dominating set and a clique in G. With connectivity taken in account, the problem k-
DOMINATING SET has three important variants: k-CONNECTED DOMINATING SET,
k-INDEPENDENT DOMINATING SET, and k-DOMINATING CLIQUE. Recall the sharp
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contrast in parameterized complexities of the two problems k-INDEPENDENT SET and
k-CLIQUE in multiple-interval graphs and their complements. This leads to more nat-
ural questions about k-DOMINATING SET: Are the two problems k-INDEPENDENT

DOMINATING SET and k-DOMINATING CLIQUE still W[1]-hard in multiple-interval
graphs and their complements? Also, without veering to either extreme, how about k-
CONNECTED DOMINATING SET?

We show that our FPT reduction for the W[1]-hardness of k-DOMINATING SET in
co-3-track interval graphs in Theorem 2 also establishes the following theorem:

Theorem 3. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in co-
3-track interval graphs are both W[1]-hard with parameter k.

Similarly, it is not difficult to verify that the FPT reduction for the W[1]-hardness of
k-DOMINATING SET in unit 2-track interval graphs [9] also establishes the following
theorem:

Theorem 4. k-INDEPENDENT DOMINATING SET in unit 2-track interval graphs is
W[1]-hard with parameter k.

For the two problems k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE

in multiple-interval graphs, we obtain a weaker result:

Theorem 5. k-CONNECTED DOMINATING SET and k-DOMINATING CLIQUE in unit
3-track interval graphs are both W[1]-hard with parameter k.

Another important variant (indeed a generalization) of k-DOMINATING SET is called
d-DISTANCE k-DOMINATING SET, where each vertex is able to dominate all vertices
within a threshold distance d. Note that k-DOMINATING SET is simply d-DISTANCE

k-DOMINATING SET with d = 1. For this distance variant of k-DOMINATING SET, we
obtain the following theorem:

Theorem 6. d-DISTANCE k-DOMINATING SET for any d ≥ 2 in balanced 3-interval
graphs is W[1]-hard with parameter k.

The last variant of k-DOMINATING SET that we study in this paper is called k-PERFECT

CODE. A perfect code in a graph G = (V, E), also known as a perfect dominating set
or an efficient dominating set, is a subset of vertices V ′ ⊆ V that includes exactly
one vertex from the closed neighborhood of each vertex u ∈ V . Recall that the open
neighborhood of u is N(u) = {v | {u, v} ∈ E}, and that the closed neighborhood of
u is N [u] = N(u) ∪ {u}. The problem k-PERFECT CODE is that of deciding whether
a given graph G has a perfect code of size exactly k. It is known to be W[1]-complete
with parameter k in general graphs [5,3]. Since every graph of maximum degree 3 is
the intersection graph of a family of unit 2-track intervals [10, Theorem 4], it follows
that k-PERFECT CODE is NP-complete in unit 2-track interval graphs. In the following
theorem, we show that k-PERFECT CODE is indeed W[1]-hard in unit 2-track interval
graphs:

Theorem 7. k-PERFECT CODE in unit 2-track interval graphs is W[1]-hard with
parameter k.
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The distance variant of k-PERFECT CODE, denoted as d-DISTANCE k-PERFECT CODE,
is also studied in the literature [12]. We show that d-DISTANCE k-PERFECT CODE is
also W[1]-hard in unit 2-track interval graphs:

Theorem 8. d-DISTANCE k-PERFECT CODE for any d ≥ 2 in unit 2-track interval
graphs is W[1]-hard with parameter k.

We refer to [11] for some related results. All proofs of W[1]-hardness in this paper
are based on FPT reductions from the W[1]-complete problem k-MULTICOLORED

CLIQUE [7]: Given a graph G of n vertices and m edges, and a vertex-coloring κ :
V (G) → {1, 2, . . . , k}, decide whether G has a clique of k vertices containing ex-
actly one vertex of each color. Without loss of generality, we assume that no edge in G
connects two vertices of the same color.

2 Dominating Set

In this section we prove Theorem 2. We show that k-DOMINATING SET in co-3-track
interval graphs is W[1]-hard by an FPT reduction from the W[1]-complete problem
k-MULTICOLORED CLIQUE [7].

Let (G, κ) be an instance of k-MULTICOLORED CLIQUE. We will construct a family
F of 3-track intervals such that G has a clique of k vertices containing exactly one
vertex of each color if and only if the complement of the intersection graph GF of F
has a dominating set of k′ vertices, where k′ = k +

(
k
2

)
.

Vertex selection: Let v1, . . . , vn be the set of vertices in G, sorted by color such that
the indices of all vertices of each color are contiguous. For each color i, 1 ≤ i ≤ k,
let Vi = {vp | si ≤ p ≤ ti} be the set of vertices vp of color i. For each vertex
vp, 1 ≤ p ≤ n, let 〈vp〉 be a vertex 3-track interval consisting of the following three
intervals on the three tracks:

〈vp〉 =

⎧⎨⎩ track 1 : (p − 1, p)
track 2 : (p − 1 + m + 1, p + m + 1)
track 3 : (p − 1 + m + 1, p + m + 1).

For each color i, 1 ≤ i ≤ k, let 〈Vi〉 be the following 3-track interval:

〈Vi〉 =

⎧⎨⎩
track 1 : (ti, m + n + 1)
track 2 : (0, si − 1 + m + 1)
track 3 : (m, m + 1).

Edge selection: Let e1, . . . , em be the set of edges in G, also sorted by color such that
the indices of all edges of each color pair are contiguous. For each pair of distinct colors
i and j, 1 ≤ i < j ≤ k, let Eij = {er | sij ≤ r ≤ tij} be the set of edges vpvq such
that vp has color i and vq has color j. For each edge er, 1 ≤ r ≤ m, let 〈er〉 be an edge
3-track interval consisting of the following three intervals on the three tracks:

〈er〉 =

⎧⎨⎩ track 1 : (r − 1 + n + 1, r + n + 1)
track 2 : (r − 1, r)
track 3 : (r − 1, r).
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For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let 〈Eij〉 be the following
3-track interval:

〈Eij〉 =

⎧⎨⎩
track 1 : (0, sij − 1 + n + 1)
track 2 : (tij , n + m + 1)
track 3 : (m, m + 1).

Validation: For each edge er = vpvq such that vp has color i and vq has color j, let
〈vper〉 and 〈vqer〉 be the following 3-track intervals:

〈vper〉 =

⎧⎨⎩ track 1 : (p, sij − 1 + n + 1)
track 2 : (tij , p − 1 + m + 1)
track 3 : (r − 1, r),

〈vqer〉 =

⎧⎨⎩ track 1 : (q, sij − 1 + n + 1)
track 2 : (tij , q − 1 + m + 1)
track 3 : (r − 1, r).

Let F be the following family of n + m + k +
(
k
2

)
+ 2m 3-track intervals:

F =
{
〈vp〉 | 1 ≤ p ≤ n

}
∪

{
〈er〉 | 1 ≤ r ≤ m

}
∪

{
〈Vi〉 | 1 ≤ i ≤ k

}
∪

{
〈Eij〉 | 1 ≤ i < j ≤ k

}
∪

{
〈vper〉, 〈vqer〉 | er = vpvq ∈ Eij , 1 ≤ i < j ≤ k

}
.

This completes the construction. We refer to Figure 1 for an example. The following
five properties of the construction can be easily verified:

1. For each color i, 1 ≤ i ≤ k, all 3-track intervals 〈vp〉 for vp ∈ Vi are pairwise-
disjoint.

2. For each color i, 1 ≤ i ≤ k, 〈Vi〉 intersects all other 3-track intervals except the
vertex 3-track intervals 〈vp〉 for vp ∈ Vi.

3. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, all 3-track intervals 〈er〉 for
er ∈ Eij are pairwise-disjoint.

4. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, 〈Eij〉 intersects all other
3-track intervals except the edge 3-track intervals 〈er〉 for er ∈ Eij .

5. For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, for each edge er ∈ Eij and
each vertex vp incident to er, 〈vper〉 intersects all other 3-track intervals except the
vertex 3-track interval 〈vp〉 and the edge 3-track intervals for the edges in Eij other
than 〈er〉.

Lemma 1. G has a k-multicolored clique if and only if GF has a k′-dominating set,
where k′ = k +

(
k
2

)
.

Proof. For the direct implication, if K ⊆ V (G) is a k-multicolored clique in G, then
the following subset D ⊆ F of 3-track intervals is a k′-dominating set in GF :

D =
{
〈vp〉 | vp ∈ K

}
∪

{
〈er〉 | vp, vq ∈ K, er = vpvq

}
.

To verify this, check that each 〈vp〉 /∈ D is dominated by 〈vp′〉 ∈ D for some vertex vp′

of the same color as vp (Property 1), each 〈er〉 /∈ D is dominated by 〈er′〉 ∈ D for some
edge er′ of the same color pair as er (Property 3), each 〈Vi〉 is dominated by 〈vp〉 ∈ D
for some vp ∈ Vi (Property 2), each 〈Eij〉 is dominated by 〈er〉 ∈ D for some er ∈ Eij
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Fig. 1. Top: A graph G of n = 4 vertices v1, v2, v3, v4 and m = 4 edges e1 = v1v3, e2 =
v1v4, e3 = v2v4, e4 = v3v4, with k = 3 colors κ(v1) = κ(v2) = 1, κ(v3) = 2, and κ(v4) = 3.
V1 = {v1, v2}, V2 = {v3}, V3 = {v4}; E12 = {e1}, E13 = {e2, e3}, E23 = {e4}. K =
{v1, v3, v4} is a 3-multicolored clique. Bottom: A family F of n + m + k +

(
k
2

)
+ 2m = 22 3-

track intervals. D = {〈v1〉, 〈v3〉, 〈v4〉, 〈e1〉, 〈e2〉, 〈e4〉} is a 6-dominating set in the complement
of the intersection graph of F .

(Property 4), and each 〈vper〉 is dominated either by 〈vp〉 ∈ D, when vp ∈ K , or by
〈er′〉 ∈ D for some edge er′ of the same color pair as er, when vp /∈ K (Property 5).

For the reverse implication, suppose that D ⊆ F is a k′-dominating set in GF . We
will find a k-multicolored clique K ⊆ V (G) in G. For each color i, 1 ≤ i ≤ k, D
must include either 〈Vi〉 or at least one of its neighbors in GF . Thus by Properties 1 and
2, we can assume without loss of generality that D does not include 〈Vi〉 but includes
at least one vertex 3-track interval 〈vp〉 for some vp ∈ Vi. Similarly, for each pair of
distinct colors i and j, 1 ≤ i < j ≤ k, we can assume by Properties 3 and 4 that D does
not include 〈Eij〉 but includes at least one edge 3-track interval 〈er〉 for some er ∈ Eij .
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Since k′ = k+
(
k
2

)
, it follows that D includes exactly one vertex 3-track interval of each

color, and exactly one edge 3-track interval of each color pair. For each pair of distinct
colors i and j, 1 ≤ i < j ≤ k, let er = vpvq be the edge whose 3-track interval 〈er〉
is included in D. By Property 5 of the construction, the two 3-track intervals 〈vper〉
and 〈vqer〉 cannot be dominated by 〈er〉 and hence must be dominated by 〈vp〉 and
〈vq〉, respectively. Therefore the vertex selection and the edge selection are consistent,
and the set of k vertex 3-track intervals in D corresponds to a k-multicolored clique
K in G.

3 Connected Dominating Set, Independent Dominating Set, and
Dominating Clique

In this section we prove Theorems 3, 4, and 5.
For Theorem 3, to show the W[1]-hardness of k-CONNECTED DOMINATING SET

and k-DOMINATING CLIQUE in co-3-track interval graphs, let us review our FPT re-
duction for Theorem 2, in particular, the proof of Lemma 1, in the previous section.
Observe that for the direct implication of Lemma 1, our proof composes a dominat-
ing set D of pairwise-disjoint 3-track intervals, and that for the reverse implication
of Lemma 1, our proof uses only the fact that D is a dominating set without any as-
sumption about its connectedness. This implies that our FPT reduction for Theorem 2
also establishes Theorem 3. By a similar argument, it is not difficult to verify that the
FPT reduction for the W[1]-hardness of k-DOMINATING SET in unit 2-track interval
graphs [9] also establishes the W[1]-hardness of k-INDEPENDENT DOMINATING SET

in unit 2-track interval graphs in Theorem 4.
For Theorem 5, to show the W[1]-hardness of k-CONNECTED DOMINATING SET

and k-DOMINATING CLIQUE in unit 3-track interval graphs, we use the same construc-
tion as in the previous FPT reduction for the W[1]-hardness of k-DOMINATING SET

in unit 2-track interval graphs [9] for the first two tracks. Then, on track 3, we use the
same (coinciding) unit interval for all multiple-intervals in

F ′ =
{
ûi | u ∈ Vi, 1 ≤ i ≤ k

}
∪

{
ûivj left, ûivj right | uv ∈ Eij , 1 ≤ i < j ≤ k

}
,

and use a distinct unit interval disjoint from all other unit intervals for each of the re-
maining multiple-intervals. Now the dominating set composed in the direct implication
of the proof in [9] becomes a clique. Since the reverse implication of the proof in [9]
does not depend on the additional intersections between the multiple-intervals in F ′,
the modified reduction establishes Theorem 5.

4 Distance Dominating Set

In this section we prove Theorem 6. We show that d-DISTANCE k-DOMINATING SET

is W[1]-hard in 3-interval graphs for any d ≥ 2 by an FPT reduction again from k-
MULTICOLORED CLIQUE.

First we consider the case d = 2. Let (G, κ) be an instance of k-MULTICOLORED

CLIQUE. We will construct a family F of 3-intervals as illustrated in Figure 2 such
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that G has a k-multicolored clique if and only if the intersection graph GF of F has a
2-distance k′-dominating set, where k′ = k +

(
k
2

)
. For convenience, we specify some

3-intervals in F as 2-intervals or intervals, and assume an implicit extension of each
2-interval or interval to a 3-interval by adding extra intervals that are disjoint from the
other intervals in F . We use (u, v, w) to denote a 3-interval that is the union of three
disjoint intervals u, v, w, in no particular order. Similarly, we use (u, v) for a 2-interval.

x u1 u2 u′
1 u′

2

e′1 e′2 e′3 e′4

e1,1 e1,2

e2,1 e2,2

e3,1 e3,2

e4,1 e4,2

y e1 e2 e3 e4

Fig. 2. The vertex gadget for Vi (left) is connected to the edge gadget for Eij (right) by a valida-
tion gadget (middle)

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
Write |Vi| = φ. There are 2φ+1 disjoint intervals labeled with x, u1, . . . , uφ, u′

1, . . . , u
′
φ

in the vertex selection gadget for Vi. For each vertex u = us ∈ Vi, we add two 2-
intervals 〈u〉1 = (x, us) and 〈u〉2 = (us, u

′
s) to F . We also add four dummy intervals

to F : two dummy intervals intersect with x; the other two dummy intervals intersect
with the first two dummy intervals, respectively.

Edge Selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be
the set of edges uv such that u has color i and v has color j. Write |Eij | = ψ. There are
ψ + 1 disjoint intervals labeled with y, e1, . . . , eψ in the edge selection gadget for Eij .
For each edge e = es ∈ Eij , we add a 2-interval 〈e〉 = (y, es) to F . We also add four
dummy intervals to F in the same way as in each vertex selection gadget.

Validation: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we construct two
validation gadgets that connect the two vertex gadgets for Vi and Vj , respectively, to
the edge gadget for Eij . In the following we describe the validation gadget between the
vertex gadget for Vi and the edge gadget for Eij ; the construction of the other validation
gadget is similar. Write |Eij | = ψ. There are 3ψ intervals in this validation gadget. First,
there are ψ disjoint intervals labeled with e′1, . . . , e

′
ψ. Then, for each e′s, there are two

disjoint intervals es,1 and es,2 intersecting with all intervals e′t with t 
= s. For each edge
e = es ∈ Eij , we add a 2-interval 〈e, i〉 = (es, e

′
s) to F . For each vertex u = ut ∈ Vi

incident to some edge e = es ∈ Eij , we add a 3-interval 〈u, e〉 = (u′
t, es,1, es,2) to F .

In summary, the construction gives us the following family F of 3-intervals:

F =
{
〈u〉1, 〈u〉2 | u ∈ Vi, 1 ≤ i ≤ k

}
∪

{
〈e〉 | e ∈ Eij , 1 ≤ i < j ≤ k

}
∪

{
〈e, i〉, 〈e, j〉, 〈u, e〉, 〈v, e〉 | e = uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of 4k + 4
(
k
2

)
dummy intervals.
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Observe that for each pair of disjoint intervals es,1 and es,2 in the validation gad-
gets, we can extend es,1 to the left and extend es,2 to the right until they have the same
length. This does not change the intersection pattern of the intervals. Therefore F can
be transformed into a family of balanced 3-intervals, where 〈e〉, 〈e, i〉, 〈e, j〉 and DUM-
MIES use intervals of length 1, and 〈u〉1, 〈u〉2, 〈u, e〉 use intervals of length m, where
m is the number of edges in G.

Lemma 2. G has a k-multicolored clique if and only if GF has a 2-distance k′-
dominating set, where k′ = k +

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then it is easy to verify the following subfamily D of 3-intervals is a
2-distance k′-dominating set in GF :

D =
{
〈u〉1 | u ∈ K

}
∪

{
〈e〉 | e = uv, u, v ∈ K

}
.

We next prove the reverse implication. Suppose that D is a 2-distance k′-dominating
set in GF . In order to dominate the dummies we can assume without loss of generality
that D includes at least one 〈u〉1 from each vertex gadget and at least one 〈e〉 from each
edge gadget. Since D has size k′ = k +

(
k
2

)
, we must have exactly one 〈u〉1 from each

vertex gadget and exactly one 〈e〉 from each edge gadget in D. Consider 〈e〉 from the
edge gadget for Eij , where e = uv. Note that 〈e〉 dominates all multiple-intervals in
the two validation gadgets for Eij except 〈u, e〉 and 〈v, e〉, which must be dominated
by 〈u〉 and 〈v〉, respectively, in the corresponding vertex gadgets. Therefore the subset
of vertices K = {v ∈ V (G) | 〈v〉1 ∈ D} is a k-multicolored clique in G. �

The above construction can be easily generalized to handle the case d > 2. To do this,
extend each vertex gadget to include d pairs of dummy intervals instead of two pairs,
and to include d disjoint intervals for each vertex u (instead of only the two labeled with
u and u′) such that there is a path of length d− 1 from 〈u〉1 to 〈u〉d in GF . Extend each
edge gadget in a similar way. Then the same argument applies.

5 Perfect Code

In this section we prove Theorem 7. We show that k-PERFECT CODE in unit 2-track
interval graphs is W[1]-hard by a reduction from k-MULTICOLORED CLIQUE.

Let (G, κ) be an instance of k-MULTICOLORED CLIQUE. We will construct a family
F of unit 2-track intervals such that G has a k-multicolored clique if and only if the
intersection graph GF of F has a k′-perfect code, where k′ = k + 2

(
k
2

)
.

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
We construct a vertex-selection gadget for Vi as illustrated in Figure 3. Write |Vi| = φ.
On each track, we start with 2φ unit intervals arranged in φ rows and two (slanted)
columns. The φ intervals in each column are pairwise-intersecting. The two intervals
in each row slightly overlap such that each interval in the left column intersects with
all intervals in the same or higher rows in the right column. For the rth vertex u in Vi,
1 ≤ r ≤ φ, we add a vertex 2-track interval 〈u〉 = (u1, u2) to F , where u1 and u2
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u1u′
1

dummy

track 1

u2u′
2track 2

dummy

Fig. 3. An illustration of a vertex-selection gadget

are the intervals in the rth row and the right column on tracks 1 and 2, respectively.
Denote by u′

1 and u′
2 the intervals in the rth row and the left column on tracks 1 and

2, respectively; they will be used for validation. Besides the φ vertex 2-track intervals
〈u〉, we also add two dummy 2-track intervals to F . The first (resp. second) dummy
2-interval consists of a unit interval on track 1 (resp. track 2) that intersects all intervals
in the right column and no interval in the left column, and a unit interval on track 2
(resp. track 1) that is disjoint from all other intervals.

u1u′
1

u2u′
2

u′′
1û1

u′′
2û2

v′′
1v̂1

v′′
2v̂2

v1v′
1

v2v′
2

Fig. 4. An illustration of an edge-selection gadget (middle) and the corresponding vertex-
selection gadgets (left and right). Two edge 2-track intervals (û1, v̂2) and (û2, v̂1) are represented
by dashed lines. Dummy 2-track intervals are omitted from the figure.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij

be the set of edges uv such that u has color i and v has color j. We construct an edge
selection gadget for Eij as illustrated in Figure 4. We start with four disjoint groups of
intervals, two groups on each track, with two columns of intervals in each group. Write
|Vi| = φi and |Vj | = φj . The two groups on the left correspond to color i and have
φi rows; the two groups on the right correspond to color j and have φj rows. Different
from the formation in the vertex selection gadgets, here in each group each interval in
the left column intersects with all intervals in higher rows in the right column but not
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the interval in the same row. In the two groups on the left, for the rth vertex u ∈ Vi,
1 ≤ r ≤ φi, denote by û1 and û2 the intervals in the rth row and the left column on
tracks 1 and 2, respectively, and denote by u′′

1 and u′′
2 the intervals in the rth row and the

right column on tracks 1 and 2, respectively. Similarly, for each vertex v ∈ Vj , denote by
v̂1, v̂2, v

′
1, v

′
2 the corresponding intervals in the two groups on the right. For each edge

uv ∈ Eij , we add two edge 2-track intervals 〈uv〉1 = (û1, v̂2) and 〈uv〉2 = (û2, v̂1) to
F . Besides these edge 2-track intervals, we also add four dummy 2-track intervals to F ,
one for each group of intervals. The dummy 2-track interval for each group consists of
a unit interval that intersects all intervals in the left column and no interval in the right
column in the group, and a unit interval on the other track that is disjoint from all other
intervals.

Validation: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we add 2|Vi| +
2|Vj | validation 2-track intervals to F as illustrated in Figure 4. Specifically, for each
vertex u ∈ Vi, we add 〈u∗ij〉1 = (u′

1, u
′′
2) and 〈u∗ij〉2 = (u′

2, u
′′
1), and for each vertex

v ∈ Vj , we add 〈∗vij〉1 = (v′1, v
′′
2 ) and 〈∗vij〉2 = (v′2, v

′′
1 ).

In summary, the construction gives us the following family F of unit 2-track inter-
vals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪

{
〈uv〉1, 〈uv〉2 | uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪

{
〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of 2k + 4
(
k
2

)
dummy 2-track intervals.

Lemma 3. G has a k-multicolored clique if and only if GF has a k′-perfect code,
where k′ = k + 2

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then it is easy to verify that the following subfamily D of unit 2-track
intervals is a k′-perfect code in GF :

D =
{
〈u〉 | u ∈ K

}
∪

{
〈uv〉1, 〈uv〉2 | u, v ∈ K

}
.

We next prove the reverse implication. Suppose D is a k′-perfect code in GF . Observe
that the dummy 2-track intervals in our construction are pairwise-disjoint. Moreover,
the two dummies in each vertex gadget share the same open neighborhood which is not
empty, and the same is true about the two dummies associated with the two groups of
intervals, the left group on track 1 and the right group on track 2 (resp. the right group on
track 1 and the left group on track 2) of each edge gadget. It follows that these dummies
cannot be included in D. In order to perfectly dominate the dummies, D must include
exactly one vertex 2-track interval 〈u〉 from each vertex selection gadget and two edge
2-track intervals 〈uv〉1 and 〈xy〉2 from each edge selection gadget. Consider an edge 2-
track interval 〈uv〉1 = (û1, v̂2) from the edge selection gadget for Eij , and observe the
validation 2-track intervals dominated by 〈uv〉1. To perfectly dominate the validation
2-track intervals 〈w∗ij〉2 for all w ∈ Vi, D must include 〈u〉 from the vertex selection
gadget for Vi. Similarly, to perfectly dominate the validation 2-track intervals 〈∗wij〉1
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for all w ∈ Vj , D must include 〈v〉 from the vertex selection gadget for Vj . Then, to
perfectly dominate the validation 2-track intervals 〈w∗ij〉1 for all w ∈ Vi, and 〈∗wij〉2
for all w ∈ Vj , the two intervals û2 and v̂1 must be used. This implies that the other
edge 2-track interval from the same edge selection gadget must be 〈uv〉2 = (û2, v̂1).
Therefore the subset of vertices K = {u ∈ V (G) | 〈u〉 ∈ D} is a k-multicolored clique
in G. �

6 Distance Perfect Code

In this section we prove Theorem 8. We show that d-DISTANCE k-PERFECT CODE

is W[1]-hard in unit 2-interval graphs for any d ≥ 2 by an FPT reduction from k-
MULTICOLORED CLIQUE.

We consider the case d = 2 first. Let (G, κ) be an instance of k-MULTICOLORED

CLIQUE. We will construct a family F of unit 2-intervals as illustrated in Figure 5 such
that G has a k-multicolored clique if and only if the intersection graph GF of F has a
2-distance k′-perfect code, where k′ = k +

(
k
2

)
.

x

u

û1 u′

û2u′′

e

y

Fig. 5. The vertex gadget for Vi (left) is connected to the edge gadget for Eij (right) by a valida-
tion gadget (middle)

Vertex selection: For each color i, 1 ≤ i ≤ k, let Vi be the set of vertices of color i.
We construct a vertex-selection gadget for Vi as illustrated in Figure 5. Write |Vi| = φ.
On track 1 there is an interval labeled by x. On track 2 there are φ disjoint intervals, one
for each vertex in Vi. For the rth vertex u in Vi, 1 ≤ r ≤ φ, we add a 2-track interval
〈u〉 = (x, u) to F . We also add four dummy 2-track intervals to F : two dummy 2-track
intervals intersect with x; the other two dummy 2-track intervals intersect with the first
two dummy 2-track intervals, respectively. In figure 5, only one interval (on track 1) of
each dummy 2-track intervals is drawn.

Edge selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, let Eij be the
set of edges uv such that u has color i and v has color j. Write |Eij | = ψ. There are ψ
disjoint intervals on track 1, one for each edge in Eij . There is an interval labeled by y
on track 2. For each edge e ∈ Eij , add a 2-track interval 〈e〉 = (y, e) to F . We also add
four dummy 2-track intervals to F in the similar way as in each vertex selection gadget.
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Validation selection: For each pair of distinct colors i and j, 1 ≤ i < j ≤ k, we
construct two validation gadgets that connect the two vertex gadgets for Vi and Vj ,
respectively, to the edge gadget for Eij . First we describe the validation gadget between
the vertex gadget for Vi and the edge gadget for Eij . Write |Vi| = φ and |Eij | = ψ.
On track 1, there are 2φ interval arranged in φ rows and two (slanted) columns. The φ
intervals in each column are pairwise-intersecting. Moreover, each interval in the left
column intersects with all intervals in higher rows in the right column but not the interval
in the same row. For the rth vertex u ∈ Vi, 1 ≤ r ≤ φ, denote by û1 and u′ the
left and right intervals, respectively, in the rth row. On track 2, the arrangement of the
2φ intervals are similar except that each interval in the left column intersects with all
intervals in the higher rows and the interval in the same row. Denote by u′′ and û2 the
left and right intervals, respectively, in the rth row. We add 2φ + ψ validation 2-track
intervals to F . For each vertex u ∈ Vi, add 〈u∗ij〉1 = (u, u′) and 〈u∗ij〉2 = (û1, û2)
to F . For each edge e = uv ∈ Eij , add 〈u, e〉 = (e, u′′) to F .

The validation gadget between the vertex gadget for Vj and the edge gadget for
Eij (not shown in Figure 5) is constructed similarly. For each vertex v ∈ Vj , we add
〈∗vij〉1 = (v, v′) and 〈∗vij〉2 = (v̂1, v̂2) to F . For each edge e = uv ∈ Eij , we add
〈v, e〉 = (e, v′′) to F .

In summary, the construction gives us the following family F of unit 2-track inter-
vals:

F =
{
〈u〉 | u ∈ Vi, 1 ≤ i ≤ k

}
∪

{
〈e〉 | e ∈ Eij , 1 ≤ i < j ≤ k

}
∪

{
〈u∗ij〉1, 〈u∗ij〉2, 〈∗vij〉1, 〈∗vij〉2 | u ∈ Vi, v ∈ Vj , 1 ≤ i < j ≤ k

}
∪

{
〈u, e〉, 〈v, e〉 | e = uv ∈ Eij , 1 ≤ i < j ≤ k

}
∪ DUMMIES,

where DUMMIES is the set of 4k + 4
(
k
2

)
dummy 2-track intervals.

Lemma 4. G has a k-multicolored clique if and only if GF has a 2-distance k′-perfect
code, where k′ = k +

(
k
2

)
.

Proof. We first prove the direct implication. Suppose G has a k-multicolored clique
K ⊆ V (G), then one can verify that the following subfamily D of 2-track intervals is a
2-distance k′-perfect code in GF :

D =
{
〈u〉 | u ∈ K

}
∪

{
〈e〉 | e = uv, u, v ∈ K

}
.

We next prove the reverse implication. Suppose that D is a 2-distance k′-perfect code
in GF . By a similar argument as in the proof of Lemma 3, the dummies cannot be
included in D. In order to perfectly dominate the dummies, D must include exactly one
〈u〉 from each vertex gadget and exactly one 〈e〉 from each edge gadget. For the rth
vertex u and tth vertex w in Vi, we write u ≤i w if r ≤ t and u >i w if r > t. Consider
〈e〉 from the edge gadget for Eij , where e = uv. Observe that in the validation gadget
between the vertex gadget for Vi and the edge gadget for Eij , the 2-track intervals
{〈w∗ij〉2 | w ∈ Vi, w ≤i u} are within distance 2 from 〈e〉. Then, to perfectly dominate
the 2-track intervals {〈w∗ij〉2 | w ∈ Vi, w >i u}, the 2-track interval 〈u〉 from the
vertex gadget for Vi must be included in D. Similarly, to perfectly dominate the 2-track
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intervals 〈∗wij〉2 in the other validation gadget, the 2-track interval 〈v〉 from the vertex
gadget for Vj must also be included in D. Therefore the subset of vertices K = {u ∈
V (G) | 〈u〉 ∈ D} is a k-multicolored clique in G. �

The above construction can be generalized to handle the case d > 2. We postpone the
details to the full version of this paper.

Concluding Remarks. A general direction for extending our work is to strengthen
the existing W[1]-hardness results for more restricted graph classes. For example, we
showed in Theorem 2 that k-DOMINATING SET in co-3-track interval graphs is W[1]-
hard with parameter k. Is it still W[1]-hard in co-2-track interval graphs or co-unit
3-track interval graphs? Many questions can be asked in the same spirit. In particular,
are k-INDEPENDENT DOMINATING SET and k-PERFECT CODE W[1]-hard in co-t-
interval graphs for some constant t?
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Abstract. Measure and Conquer is a recently developed technique to
analyze worst-case complexity of backtracking algorithms. The tradi-
tional measure and conquer analysis concentrates on one branching at
once by using only small number of variables. In this paper, we extend the
measure and conquer analysis and introduce a new analyzing technique
named “potential method” to deal with consecutive branchings together.
In potential method, the optimization problem becomes sparse; there-
fore, we can use large number of variables. We applied this technique to
the minimum dominating set problem and obtained the current fastest
algorithm that runs in O(1.4864n) time and polynomial space. We also
combined this algorithm with a precalculation by dynamic programming
and obtained O(1.4689n) time and space algorithm. These results show
the power of the potential method and possibilities of future applications
to other problems.

1 Introduction

Backtracking is one of the ways to solve NP-hard problems exactly and is widely
used for various problems. Despite the practical efficiency of backtracking al-
gorithms, the analysis of their worst-case complexity is difficult, and there is
a large gap between the proved upper and lower bounds of the complexity for
many backtracking algorithms.

Worst-case complexity of backtracking algorithms is typically analyzed by
solving linear recurrences on problem size. Recently Fomin, Grandoni, and
Kratsch have made a breakthrough by developing a new analyzing technique
named “Measure and Conquer” [2]. In measure and conquer analysis, we define
the problem size as the sum of local weights by using variables, and then solve
an optimization problem to minimize the proved upper bound. This can be con-
sidered as the extension of univariate linear recurrences to multivariate linear
recurrences [1].

In this paper, we extend the measure and conquer analysis and introduce a
new analyzing technique named “potential method.” In measure and conquer
analysis, linear recurrences are solved for each branchings separately. We no-
ticed that some of worst-case branchings cannot occur consecutively in many
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applications. Therefore, if we deal with the consecutive branchings together, we
can prove better complexity. In our method, we introduce variables that capture
the state of the algorithm, and for each branchings, we consider not only the
reduction of the problem size but also the transition of the state. We call these
type of variables “potentials.” This can be considered as an extension to sys-
tems of linear recurrences. Because each subproblem is assigned only one of the
potentials, the optimization problem becomes sparse; therefore, we can use large
number of variables. There are several papers using variables in a similar way.
For example, Robson [8] and Wahlstrom [13] used potentials to deal with con-
secutive branchings for independent set and minimum transversals, respectively,
without using measure and conquer analysis. For max-2-CSP, Gaspers [5] used
potentials corresponding to the maximum degree and regularity with measure
and conquer analysis. However, ours can use many more variables and capture
the state of the algorithm in more detail. Actually, we used about a thousand
variables while in the previous researches, only about ten variables are used.

We apply this method to the minimum dominating set problem. This is a
well-studied NP-hard graph optimization problem on which many papers have
been published.

In 2004, the first algorithms breaking the trivial 2n-barrier were proposed by
three sets of authors [4,6,7]. Among them, Grandoni’s algorithm [6] is based on
the reduction to the minimum set cover problem and runs in O(1.9053n) time.
He applied the memorization to this branching algorithm and proved the run-
ning time of O(1.8019n) using exponential space. In 2005, Fomin, Grandoni, and
Kratsch applied measure and conquer technique to Grandoni’s algorithm and
proved the running time of O(1.5259n) using polynomial space and O(1.5132n)
using exponential space [2]. This result was improved by van Rooij and Bod-
laender to O(1.4969n) time and polynomial space [9,10,11]. They obtained this
result by introducing the reduction rules to deal with the smallest worst case ef-
ficiently, and they concluded that it is difficult to improve the complexity under
O(1.4952n) by this approach. We note that this algorithm cannot be improved
by the memorization. There is another branching algorithm combined with in-
clusion/exclusion which can count the number of dominating set for each size in
O(1.5048n) time [12].

Our algorithm is also based on Grandoni’s algorithm. We modified the algo-
rithm to branch on the same element consecutively. By using potential method,
we can deal with consecutive branchings together, and obtained the current
fastest algorithm that runs in O(1.4864n) time and polynomial space. This re-
sult breaks the limit of O(1.4952n) [11], and if we analyze the same algorithm
by the traditional measure and conquer without potentials, we can only obtain
the running time of O(1.5040n). Therefore we can conclude that the potential
method has the power to refine the analysis and break the limit of traditional
measure and conquer analysis.

We also combined the algorithm with dynamic programming on elements to
precalculate the solutions of subproblems with small number of elements. In
the previous researches, the algorithm memorizes the solutions of subproblems
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with respect to the remaining sets and elements. In this approach, however, we
can focus on the elements only. This combined version of the algorithm can be
analyzed to run in O(1.4689n) but needs exponential space.

2 Definitions

Let G = (V, E) be an undirected graph, where V is the vertex set and
E is the edge set. The neighborhood of a vertex v is denoted by N(v) =
{u ∈ V | {u, v} ∈ E}, and the closed neighborhood by N [v] = N(v) ∪ {v}. A
subset D ⊆ V is called a dominating set if

⋃
v∈D N [v] = V . In the minimum

dominating set problem, we are given an undirected graph G and asked to find
a dominating set of minimum cardinality.

A set cover instance consists of a collection of sets S. We call US =
⋃

S∈S S as
a universe of S. A subset C ⊆ S is called a set cover if

⋃
S∈C S = US . By imposing

S = {N [v] | v ∈ V }, a minimum dominating set instance with n vertices can be
reduced to a minimum set cover instance with n sets and n elements.

We denote sets containing an element e ∈ US by S(e) = {S ∈ S | e ∈ S}, the
frequency of an element e ∈ US by |e| = |S(e)|, and the deletion of S ∈ S from
S by del(S, S) = {R \ S | R ∈ S, R 
⊆ S}.

3 Potential Method

3.1 Main Idea

In the measure and conquer analysis by Fomin et al. [2], the worst-case re-
currences corresponds to very special cases such as branching on a set S of
cardinality 5 and all of the elements of S have frequency 6 and all of the sets
intersecting with S have cardinality 5. Because this is a feasible condition, we
cannot neglect it; however, we can avoid the consecutive worst-case branchings.
Thus it seems that better complexity can be proved by dealing with consecutive
branchings together.

One of the ways to deal with consecutive branchings is to merge the recur-
rences. For example, consider that there are N worst-case branchings, which
generates 2 subproblems with the reduction of the problem size by xi and yi.
Let T (k) be the maximum number of leaf nodes in a search tree generated from
a problem with size k, then for every i, the following recurrences should be
satisfied: T (k) ≤ T (k − xi) + T (k − yi). In addition, assume that in the first
subproblems, the algorithm can always do one of the M better branchings with
recurrences of T (k) ≤ T (k − x′

i) + T (k − y′
i). We can merge these N + M recur-

rences to NM recurrences: T (k) ≤ T (k−xi−x′
j)+T (k−xi−y′

j)+T (k−yi). This
technique is called “addition of branching vectors” [3]. However, this technique
is difficult to combine with measure and conquer analysis. The optimal weights
may change by merging the recurrences; therefore, it is not effective to merge
the recurrences after assigning values to the weight variables. If we merge the
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recurrences with weight variables remaining, the number of recurrences grows
exponentially and becomes too large to deal with.

This exponential growth can be avoided by introducing one more variable.
Consider the previous case. If we want to upper-bound T (k) by λk for some
real λ, the merged recurrences require the following constraints: 1 ≥ λ−xi−x′

j +
λ−xi−y′

j +λ−yi . Now, we introduce a new variable φ that satisfies λ−φ ≥ λ−x′
j +

λ−y′
j for every j. By using φ, we can rewrite the constraints as follows:

1 ≥ λ−xi−x′
j + λ−xi−y′

j + λ−yi

= λ−xi

(
λ−x′

j + λ−y′
j

)
+ λ−yi

≥ λ−xi−φ + λ−yi .

As a result, we obtain the following N + M constraints:

1 ≥ λ−xi−φ + λ−yi ,

1 ≥ λ−x′
j+φ + λ−y′

j+φ .

We do not know the actual value of φ, however, by considering it as a kind of
weight variables, we can optimize it with other variables used in measure and
conquer analysis.

In measure and conquer analysis, the problem size is measured as the sum of
local weights. On the other hand, this variable φ can be considered as a global
weight corresponding to the state that the algorithm can do a better branching.
In our method, we split the states with respect to the branchings the algorithm
can do in the next step, and for each state i, we introduce the variable φi. For
each branching, we consider not only the reduction of the problem size but also
the transition of the state, and if the state changes from s to t, the reduction of
the problem size changes from Δ to Δ + φt − φs. This technique is analogous to
the potential method used in the amortized analysis; therefore, we also call this
type of variables as potentials and this technique as potential method.

3.2 Algorithm

Before presenting our algorithm, we introduce some notations and lemmas. For
a given collection of sets S and a set S ∈ S, a set R ∈ S \ {S} is called an
alternative set of S if R shares an element of frequency two with S, and we
denote the alternative sets of S by A(S). Note that if a set cover of S doesn’t
contain S, it must contain all of A(S). For a given set S ∈ S, a set R ∈ S \ {S}
is called a mirror of S if there exists an alternative set T ∈ A(S) \ {R} that
is completely covered by S and R. We denote the mirrors of S by M(S), and
the closed mirrors of S by M[S] = M(S) ∪ {S}. For a given set S ∈ S, a
set R ∈ S \ {S} is called a quasi-subset of S if there exists an alternative set
T ∈ A(S) \ {R}, and R is completely covered by S and T . For mirrors and
quasi-subsets, we prove the following lemmas. We denote the cardinality of a
minimum set cover of S by α(S).
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Lemma 1 (mirroring). For any collection of sets S and for any set S ∈ S,

α(S) =
{

min(α(S \M[S]), 1 + α(del(S, S))) (US\M[S] = US) ;
1 + α(del(S, S)) (US\M[S] ⊂ US) .

(1)

Proof. It is sufficient to show that, if S is not contained in any minimum set
cover, the same holds for any mirror of S. If S does not have any mirrors, the
equation holds. Otherwise, let R be one of the mirrors of S. From the definition
of mirror, there is a set T ∈ A(S) \ {R} with T ⊆ S ∪ R. Assume that S is
not contained in any minimum set cover and there is a minimum set cover that
contains R. Because this set cover must contain T , by removing T and adding
S, we obtain a minimum set cover that contains S. Thus the assumption is false.

�

Lemma 2 (quasi-subset). For any collection of sets S and for any quasi-
subset R, there is a minimum set cover of S that doesn’t contain R.

Proof. Let S′ ⊆ S be one of the minimum set cover that contains R. From the
definition of quasi-subset, there are sets S and T with T ∈ A(S) \ {R} and
R ⊆ S ∪ T . Because S′ must contain at least one of S and T , S′ ∪ {S, T } \ {R}
is also a minimum set cover. �

Now, we describe our algorithm. We modified Grandoni’s algorithm [6] to ex-
tract the power of potential method effectively. This algorithm consists of two
functions msc and seq-msc.

Algorithm 1. msc(S)
1: if ∃S, R ∈ S with S ⊆ R then
2: return msc(S \ {S})
3: else if ∃e ∈ US with |e| = 1 then
4: return 1 + msc(del(S , S)), where S(e) = {S}
5: else if ∀S ∈ S .|S| = 2 then
6: return poly-msc(S)
7: else if ∃e ∈ US contained in at most one set of non-maximum cardinality then
8: choose an element t ∈ US of the smallest frequency which satisfies the above

condition
9: return seq-msc(S , t)

10: end if
11: choose the largest set S ∈ S
12: return min(msc(S \ {S}), 1 + msc(del(S , S)))

The function msc is almost the same as Grandoni’s algorithm [6] except for
the case where there is an element which is contained in at most one set of
non-maximum cardinality (line 7-9). In this case, we can sequentially branch on
these sets and reach to the branching on a set containing an element of frequency
two. The branching with elements of frequency two is efficient because after the
algorithm discards a set S, all of the alternative sets of S must be contained
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Algorithm 2. seq-msc(S, t)
1: choose the largest set S ∈ S with t ∈ S and

∑
e∈S |e| is minimum

2: if |t| ≥ 3 then
3: return min(seq-msc(S \ {S} , t), 1 + msc(del(S , S)))
4: else if there exists a quasi-subset R of S then
5: if R contains an element of frequency two then
6: return msc(S \ {R})
7: else
8: return seq-msc(S \ {R} , t)
9: end if

10: else if US\M[S] ⊂ US then
11: return 1 + msc(del(S , S))
12: else
13: return min(msc(S \M[S]), 1 + msc(del(S , S)))
14: end if

in the set cover. Thus we can distribute its efficiency among all the branchings
through potentials.

The function seq-msc receives the target element t and sequentially branches on
a set containing t. First, the algorithm chooses the largest set S that contains t and
has the smallest sum of the frequency (line 1). In the case of |t| ≥ 3, the algorithm
branches on S and generates two subproblems corresponding to the cases where S
is discarded or selected, and for the former case, it continues the sequential branch-
ings on t (line 3). Otherwise the frequency of t is two. If there is a quasi-subset R of
S, there is a minimum set cover that doesn’t contain R from Lemma 2, then the
algorithm removes R. If R contains an element of frequency two, the algorithm
finishes the sequential branchings and returns to the function msc (line 6). Other-
wise, it continues the sequential branchings on t (line 8). If there is no quasi-subset
of S, the algorithm branches on S and finishes the sequential branchings. When
algorithm discards S, the mirrors of S can be also removed from Lemma 1 (line
11,13).

3.3 Analysis

Theorem 1. Algorithm msc solves the minimum dominating set problem with
n vertices in O(1.4864n) time and polynomial space.

Proof. In the analysis, we use the following measure:

k(S) =
∑
S∈S

α|S| +
∑

e∈US

β|e| , (2)

where αi, βi ∈ [0, 1] are weight variables. We use the following notations: Δαi =
αi − αi−1, Δβi = βi − βi−1. For the weight variables, we assume the followings:
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0 ≤ Δαi ≤ Δαi−1 ,

0 ≤ Δβi ,

αi = α8, βi = β8 for i ≥ 8 ,

α8 + β8 = 1 .

In this measure, an instance of the minimum dominating set problem with
n vertices is reduced to an instance of the minimum set cover problem with
k(S) ≤ n.

We introduce the potential variables φ|S|,|t|,s corresponding to the state where
the algorithm runs in seq-msc with

∑
e∈S |e| = s. For the other states, we set

their potentials to 0. For the potentials, we assume the followings:

0 ≤ φi,j,k ≤ φi,j,k+1 ,

φi,j,k = 0 for i ≥ 9 or j ≥ 8 or k < (j − 1)i ,

φi,j,k = φi,j,8i for k ≥ 8i .

These assumptions are used to bound the number of the variables and simplify
the analysis.

We denote the reduction of the problem size including the difference of poten-
tials by ΔkOUT and ΔkIN for discarded and selected cases, respectively. Let ri

be the number of elements of S of frequency i, and s be the sum of the frequency
of elements in S.

1. Reduction at Msc. (line 2,4,9) For each case, the size corresponding to the
sets and elements does not increase, and the potential does not change for line
2,4, or changes from 0 to nonnegative for line 9. Thus the total problem size
never increases.

2. Branching at Msc. (line 12) In this case, S does not contain an element
of frequency two and all the elements of S are contained in at least 2 sets of
non-maximum cardinality. Therefore the reduction of the problem size due to
the reduction of cardinality of the sets intersecting with S is at least (|e| −
3)Δα|S| + 2Δα|S|−1 for each element e of S. Therefore for any 3 ≤ |S| ≤ 9, and∑9

i=3 ri = |S|:

ΔkOUT ≥ α|S| +
9∑

i=3

riΔβi ,

ΔkIN ≥ α|S| +
9∑

i=3

ri(βi + (i − 3)Δα|S| + 2Δα|S|−1) .

Note that it is enough to consider only the cases of |S| ≤ 9 and |e| ≤ 9 by the
assumption of αi and βi.
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3. Reduction at Seq-Msc. (line 6, 8) For line 6, the sequential branchings
are finished and the potential changes from φi,2,k to 0. By the removal of R, its
alternative sets are added to a set cover, then the problem size is reduced by at
least 2α2 + 2β2. Thus the overall reduction is at least 2α2 + 2β2 − φi,2,k. For
line 8, the sequential branchings continue and the potential changes from φi,2,k

to φi,2,k′ . By the removal of R, the minimum sum of the frequency is decreased
by at most |R| − 1 ≤ i − 1; therefore, k′ is at least k − i + 1. Thus the overall
reduction is at least α2 +φi,2,k−i+1−φi,2,k. Therefore if the following constraints
are satisfied for any i and k, the problem size does not increase:

2α2 + 2β2 − φi,2,k ≥ 0 ,

α2 + φi,2,k−i+1 − φi,2,k ≥ 0 .

4. Branching at Seq-Msc with |t| ≥ 3. (line 3) For an element e with
|e| < |t|, it must be contained in at least two sets of non-maximum cardinality;
therefore, all the element of S have frequency at least three. When the algorithm
discards S, the sequential branchings continue and the potential changes from
φ|S|,|t|,s to φ|S|,|t|−1,s′ . Let c = maxR∈S,|R|=|S| |S ∩ R|. Because the algorithm
chose the set S with the smallest sum of the frequency, s′ is at least s− c. When
the algorithm selects S, the sequential branchings are finished and the potential
changes from φ|S|,|t|,s to 0. For an element e with |e| < |t|, e is contained in at
least two sets of non-maximum cardinality; therefore, the problem size is reduced
by at least (|e|−3)Δα|S| +2Δα|S|−1. Additionally, because there is a set sharing
c elements with S, the problem size is reduced by at least α|S|−α|S|−c. In total,
for any 3 ≤ |S| ≤ 9, 3 ≤ |t| ≤ 9, 1 ≤ c ≤ |S| − 1,

∑9
i=3 ri = |S|, and r|t| ≥ 1:

ΔkOUT ≥ α|S| +
9∑

i=3

riΔβi + φ|S|,|t|−1,s−c − φ|S|,|t|,s ,

ΔkIN ≥ α|S| +
9∑

i=|t|
ri(βi + (i − 1)Δα|S|)

+
|t|−1∑
i=3

ri

(
βi + (i − 3)Δα|S| + 2Δα|S|−1)

)
+α|S| − α|S|−c − cΔα|S| − φ|S|,|t|,s .

5. Branching at Seq-Msc with |t| = 2. (line 13) This case is very important
because our algorithm is based on the distribution of the efficiency of this case;
therefore, we carefully analyze it by considering about the alternative sets and
mirrors of S. We denote the reduction due to the alternative sets and the mirrors
by Δk′

OUT and Δk′
IN , and describe ΔkOUT and ΔkIN as follows for any 3 ≤

|S| ≤ 9,
∑9

i=2 ri = |S|, and r2 ≥ 1:
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ΔkOUT ≥ α|S| +
9∑

i=2

riΔβi − φ|S|,2,s + Δk′
OUT ,

ΔkIN ≥ α|S| +
9∑

i=2

riβi +
9∑

i=3

ri(i − 1)Δα|S| − φ|S|,2,s + Δk′
IN .

We analyze Δk′
OUT and Δk′

IN by dividing into the following subcases.

(a) A(S) = {R} and |R \ S| = 1,
(b) A(S) = {R} and |R \ S| ≥ 2,
(c) |A(S)| ≥ 2 and there exists a set R ∈ A(S) with |R \ S| = 1,
(d) |A(S)| = 2 and for any set R ∈ A(S), |R \ S| ≥ 2,
(e) |A(S)| ≥ 3 and for any set R ∈ A(S), |R \ S| ≥ 2.

Note that if there is an alternative set R with R \ S = {f}, all of the sets which
shares f with R are the mirrors of S. Also note that any alternative set of S
cannot be a mirror of S, because in this case, there must be a quasi-subset of S.
We use the following notation for convenience: [condition] = 1 if the condition
is true and [condition] = 0 otherwise.

(a) A(S) = {R} and |R \ S| = 1. Let R \ S = {f}. The cardinality of R is
at least r2 + 1; therefore, r2 must be at most |S| − 1. In the case of r2 = |S| − 1,
the frequency of f must be at least s − 2r2 because the algorithm chose the set
S with the smallest sum of the frequency. When the algorithm discards S, R is
added to a set cover and the problem size is reduced by at least αr2+1 + β|f |.
Moreover, the mirrors of S are removed. Because all of the set which shares f
with R are the mirrors of S, |M(S)| = |f | − 1. Therefore the corresponding
reduction is at least (|f | − 1)α2. When the algorithm selects S, R becomes a set
of single element. Then, R is removed and the frequency of f is reduced by one.
Therefore the problem size is reduced by αr2+1 +Δβ|f |. Moreover, in the case of
|f | = 2, the algorithm must select the remaining set T which shares f with R.
T cannot be a single element set, because in this case, T becomes a quasi-subset
of S. Therefore this leads to an additional reduction of at least α2 +β2. In total,
for any 3 ≤ |S| ≤ 9, 1 ≤ r2 ≤ |S| − 1, |f | ≥ 2, and r2 = |S| − 1 ⇒ |f | ≥ s − 2r2:

Δk′
OUT ≥ αr2+1 + β|f | + (|f | − 1)α2 ,

Δk′
IN ≥ αr2+1 + Δβ|f | + [|f | = 2] (α2 + β2) .

(b) A(S) = {R} and |R \ S| ≥ 2. Let |R \ S| = d. Because the cardinality
of R is at least r2 + d, 2 ≤ d ≤ |S| − r2. When the algorithm discards S, R is
added to a set cover and the problem size is reduced by at least αr2+d + dβ2.
In addition, the cardinality of the sets intersecting with R is reduced. Because
these sets are not a subset of R, the corresponding reduction is at least dΔα|S|.
Moreover, in the case of r2+d = |S|, it must be at least (s−2r2−d)Δα|S| because
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the algorithm chose the set S with the smallest sum of the frequency. When the
algorithm selects S, R becomes a set of cardinality d, and the problem size is
reduced by αr2+d−αd. In total, for any 3 ≤ |S| ≤ 9, r2 ≥ 1, and 2 ≤ d ≤ |S|−r2:

Δk′
OUT ≥ αr2+d + dβ2

+
{

dΔα|S| (r2 + d < |S|);
(s − 2r2 − d)Δα|S| (r2 + d = |S|) ,

Δk′
IN ≥ αr2+d − αd .

(c) |A(S)| ≥ 2 and there exists a set R ∈ A(S) with |R \ S| = 1. Let
R \ S = {f}. Because there are at least two alternative sets of S, r2 must be
at least 2. When the algorithm discards S, alternative sets of S are added to a
set cover. Because each set of A(S) must contain at least one element outside
S, the sum of the cardinality of A(S) is at least r2 + 2. Therefore the total size
of alternative sets is at least α2 + αr2 . Note that f cannot be contained in an
alternative set other than R, because in this case, R becomes a quasi-subset of S.
Therefore the reduction of the problem size due to the removal of the elements
is at least β|f | + β2. In addition, the mirrors of S are removed and the problem
size is reduced by at least (|f | − 1)α2. When the algorithm selects S, almost the
same argument as the subcase (a) holds. In this case, there are alternative sets
other than R; therefore, the reduction of the problem size due to the decrease
of the cardinality is at least α2 + (r2 − 1)Δα|S|. In total, for any 3 ≤ |S| ≤ 9,
r2 ≥ 2, and |f | ≥ 2:

Δk′
OUT ≥ α2 + αr2 + β|f | + β2 + (|f | − 1)α2 ,

Δk′
IN ≥ α2 + (r2 − 1)Δα|S| + Δβ|f | + [|f | = 2] (α2 + β2) .

(d) |A(S)| = 2 and for any set R ∈ A(S), |R \ S| ≥ 2. Because there are
two alternative sets of S, r2 must be at least 2. Moreover, in the case of |S| = 3,
r2 must be 2. Let A(S) = {R1, R2}. Because R1 and R2 must contain at least
two elements outside S, |R1| + |R2| ≥ r2 + 4. Therefore the total size of R1 and
R2 is at least α3 + αr2+1. In the case of r2 = |S|, there are no set of cardinality
r2 + 1, then the total size is at least α4 + αr2 . When the algorithm discards S,
R1 and R2 are added to a set cover. R1 and R2 must have at least three distinct
element outside S, because otherwise R1 becomes a quasi-subset of S. Therefore
the reduction of the problem size due to the removal of the elements is at least
3β2. In addition, the cardinality of the sets which contains these elements is
reduced, and the problem size is reduced by at least min(2Δα|S|, α2). When the
algorithm selects S, the cardinality of R1 and R2 is reduced by at least r2 in
total. Therefore the problem size is reduced by at least:
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Δα|S| +Δα|S| +Δα|S|−1 + . . .+Δα|S|−� r2−1
2 � = 2α|S|−α|S|−� r2

2 � −α|S|−� r2
2 � .

In total, for any 3 ≤ |S| ≤ 9, r2 ≥ 2, and |S| = 3 ⇒ r2 = 2:

Δk′
OUT ≥ 3β2 + min(2Δα|S|, α2) +

{
α3 + αr2+1 (r2 < |S|) ;
α4 + αr2 (r2 = |S|) ,

Δk′
IN ≥ 2α|S| − α|S|−� r2

2 � − α|S|−� r2
2 � .

(e) |A(S)| ≥ 3 and for any set R ∈ A(S), |R \ S| ≥ 2. Because there are
at least three alternative sets of S, r2 must be at least 3. When the algorithm
discards S, alternative sets of S are added to a set cover. Because each set of A(S)
must contain at least two elements outside S, the sum of the cardinality of A(S)
is at least r2 + 6. Therefore the total size of alternative sets is at least 2α3 +αr2 .
By the same argument as the subcase (d), alternative sets must contain at least
three distinct element outside S. Due to the removal of these elements, problem
size is reduced by at least 3β2. When the algorithm selects S, the cardinality of
the alternative sets is reduced by at least r2 in total; therefore, the problem size
is reduced by at least r2Δα|S|. In total for any 3 ≤ |S| ≤ 9, r2 ≥ 3:

Δk′
OUT ≥ 2α3 + αr2 + 3β2 ,

Δk′
IN ≥ r2Δα|S| .

We solve the optimization problem to minimize λ under the constraints of
1 ≥ λ−ΔkOUT + λ−ΔkIN for all reductions (ΔkIN , ΔkOUT ) by implementing
Eppstein’s smooth quasiconvex programming [1]. Although this optimization
problem has many variables (actually it has 908 variables), it is very sparse,
and thus the values are converged in a few minutes. The obtained values of αi

and βi are listed in Table 1. Because there are too many potentials to be listed
here, we provide them in our webpage 1. Also, we provide a program to check
the constraints 2. These values give λ < 1.4864; therefore, the algorithm runs in
O(1.4864n). �

If we analyze the same algorithm by the traditional measure and conquer without
potentials, we obtained the weights listed in Table 2. These weights only give
λ = 1.5039 . . . < 1.5040.

1 http://www-imai.is.s.u-tokyo.ac.jp/~y.iwata/ipec2011/potentials.txt
2 http://www-imai.is.s.u-tokyo.ac.jp/~y.iwata/ipec2011/check.cpp

http://www-imai.is.s.u-tokyo.ac.jp/~y.iwata/ipec2011/potentials.txt
http://www-imai.is.s.u-tokyo.ac.jp/~y.iwata/ipec2011/check.cpp
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Table 1. The obtained values of the weights

i 2 3 4 5 6 7 8

αi 0.251502 0.459931 0.550662 0.597567 0.620987 0.632065 0.635804

βi 0.074109 0.263740 0.339850 0.361289 0.364195 0.364196 0.364196

Table 2. The obtained values of the weights without potentials

i 2 3 4 5 6 7 8

αi 0.227607 0.455213 0.551209 0.596609 0.618020 0.626422 0.627064

βi 0.066561 0.261058 0.332901 0.360645 0.370450 0.372936 0.372936

4 Exponential Space

4.1 Algorithm

We denote the intersection of a collection of sets S and a set U by SU =
{S ∩ U | S ∈ S, S ∩ U 
= ∅}, and the cardinality of a minimum set cover of S
by α(S). By dynamic programming on elements, we can compute α(SU ) for all
of the subsets U ⊆ US of cardinality at most h(≤ n

2 ) in O∗ ((
n
h

))
time and space.

We combine the algorithms as follows. We precalculate the solutions of SU

with small |U | by the dynamic programming. And then, we start to run the
algorithm msc. During the execution, if |US′ | becomes at most h, the algorithm
returns the precalculated solution of SUS′ . This may not be the solution for S′

because the algorithm may have discarded some of the sets of the minimum set
cover of SUS′ ; however, the union of the selected sets and the minimum set cover
of SUS′ is also a set cover of S; therefore, the algorithm returns the value at least
α(S). On the other hand, α(SUS′ ) is at most α(S′); therefore, the returned value
is at most α(S). Thus the algorithm computes the cardinality of the minimum
set cover correctly. Note that some reduction rules such as “subsumption” used
in [11] make this approach impossible because in this case, the union of the
selected sets and the minimum set cover of SUS′ may not be a set cover of S.

4.2 Analysis

Theorem 2. Algorithm msc, combined with the dynamic programming precalcu-
lation, solves the minimum dominating set problem with n vertices in O(1.4689n)
time and space.

Proof. In the analysis, we use the same weights as the previous section.
We consider the subproblem S′ generated during the execution of the algo-

rithm. If there is a set of cardinality one or an element of frequency one, the
algorithm applies one of the reduction rules without branching. Therefore we can
assume that all of the sets have cardinality at least two and all of the elements
have frequency at least two. Let h = |US′ |, and we consider about the minimum
possible problem size with h elements.
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If there is a set of cardinality at least 10, the corresponding recurrences give
λ < 1.4434. Otherwise, all of the sets have cardinality at most 9. If there is a
set of cardinality 9, the corresponding recurrences give λ < 1.4744. Because all
of the elements in S′ have frequency at least two, the corresponding size is at
least hβ2. Moreover, because all of the sets have cardinality at most 9, the size
corresponding to the sets is at least min2≤i≤9

2h
i αi. Thus the overall size is at

least:
k(S′) ≥ hβ2 + min

2≤i≤9

2h

i
αi ≥ 0.2153h . (3)

When all of the sets have cardinality at most 8, the corresponding recurrences
give λ < 1.4864, and in this case, the problem size is at least:

k(S′) ≥ hβ2 + min
2≤i≤8

2h

i
αi ≥ 0.2330h . (4)

Consider that we precalculate the solutions of SU with |U | ≤ h. For this
precalculation, it takes O∗ ((

n
h

))
time, and for the execution of msc, it

takes O(max
{

1.4434n, 1.4744n−0.2153h, 1.4864n−0.2330h
}

) time. By setting h =
0.1290n, we obtain O(1.4689n) of total running time. �

5 Conclusion

In this paper, we developed a new analyzing technique “potential method.” By
applying it to the minimum dominating set problem, we obtained the current
fastest algorithm that runs in O(1.4864n). Therefore we conclude that the po-
tential method has the power to refine the analysis of traditional measure and
conquer analysis.

In the analysis, we used about a thousand potential variables. If we can use
more variables, better complexity can be proved. Therefore a faster implemen-
tation of quasi-convex programming solver will be needed. Also, it might be
possible to improve the complexity by using a different strategy. By introduc-
ing the potential method, more complicated algorithm can be analyzed, and the
choice of the strategy grows wider.

Potential method is not a specific tool for dominating set or set cover, and
applications to other problems are left as a future work.
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Abstract. Vertex deletion and edge deletion problems play a central
role in Parameterized Complexity. Examples include classical problems
like Feedback Vertex Set, Odd Cycle Transversal, and Chordal

Deletion. The study of analogous edge contraction problems has so far
been left largely unexplored from a parameterized perspective. We con-
sider two basic problems of this type: Tree Contraction and Path

Contraction. These two problems take as input an undirected graph
G on n vertices and an integer k, and the task is to determine whether
we can obtain an acyclic graph or a path, respectively, by a sequence of
at most k edge contractions in G. We present an algorithm with run-
ning time 4.98knO(1) for Tree Contraction, based on a variant of the
color coding technique of Alon, Yuster and Zwick, and an algorithm with
running time 2k+o(k) + nO(1) for Path Contraction. Furthermore, we
show that Path Contraction has a kernel with at most 5k+3 vertices,
while Tree Contraction does not have a polynomial kernel unless NP
⊆ coNP/poly. We find the latter result surprising, because of the connec-
tion between Tree Contraction and Feedback Vertex Set, which
is known to have a kernel with 4k2 vertices.

1 Introduction

For a graph class Π , the Π-Contraction problem takes as input a graph G
and an integer k, and the question is whether there is a graph H ∈ Π such that
G can be contracted to H using at most k edge contractions. In early papers
by Watanabe et al. [29,30] and Asano and Hirata [2], Π-Contraction was
proved to be NP-complete for several classes Π . The Π-Contraction problem
fits into a wider and well studied family of graph modification problems, where
vertex deletions and edge deletions are two other ways of modifying a graph.
Π-Vertex Deletion and Π-Edge Deletion are the problems of deciding
whether some graph belonging to graph class Π can be obtained from G by
at most k vertex deletions or by at most k edge deletions, respectively. All of
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these problems are shown to be NP-complete for most of the interesting graph
classes Π [25,31,32,33]. However, whereas Π-Vertex Deletion and Π-Edge

Deletion have been studied in detail for several graph classes Π with respect
to fixed parameter tractability (e.g., [3,5,10,17,19,21,22,23,26,28]), this has not
been the case for Π-Contraction. Note that every edge contraction reduces the
number of vertices of the input graph by one, which means that the parameter
k of Π-Contraction is never more than n − 1.

Here we study Π-Contraction when Π is the class of acyclic graphs and
when Π is the class of paths. Since edge contractions preserve the number of con-
nected components, we may assume that the input graph is connected, justifying
the names Tree Contraction and Path Contraction. Both problems are
NP-complete [2,9]. We find these problems of particular interest, since their ver-
tex deletion versions, widely known as Feedback Vertex Set and Longest

Induced Path, are famous and well-studied. These two problems are known to
be fixed parameter tractable and have polynomial kernels, when parameterized
by the number of deleted vertices.

The question whether a fixed parameter tractable problem has a polynomial
kernel or not has attracted considerable attention during the last years, espe-
cially after the establishment of methods for proving non-existence of polynomial
kernels, up to some complexity theoretical assumptions [6,7,8]. During the last
decade, considerable effort has also been devoted to improving the parameter de-
pendence in the running time of classical parameterized problems. Even in the
case of a running time which is single exponential in k, lowering the base of the
exponential function is considered to be an important challenge. For instance,
the running time of Feedback Vertex Set has been successively improved
from 37.7knO(1) [18] to 10.57knO(1) [15], 5knO(1) [12], 3.83knO(1) [11], and ran-
domized 3knO(1) [14].

In this paper, we present results along these established lines for Tree Con-

traction and Path Contraction. It is easy to see that if a graph G is
contractible to a path or a tree (i.e., a graph with treewidth 1) with at most
k edge contractions, then the treewidth of G is at most k + 1. Consequently,
when parameterized by k, fixed parameter tractability of Tree Contraction

and Path Contraction follows from the well known result of Courcelle [13],
as both problems are expressible in monadic second order logic. However, this
approach yields very unpractical algorithms whose running times involve huge
functions of k. Here, we give algorithms with running time 2k+o(k) + nO(1) for
Path Contraction, and 4.98k nO(1) for Tree Contraction. To obtain the
latter result, we use a variant of the color coding technique of Alon, Yuster
and Zwick [1]. Combined with a recent result of Cygan et al. [14], our results
also imply a randomized algorithm for Tree Contraction with running time
4k+o(k) nO(1). Furthermore, we show that Path Contraction has a linear ver-
tex kernel. On the negative side, we show that Tree Contraction does not
have a polynomial kernel, unless NP ⊆ coNP/poly. This is a contrast compared
to the corresponding vertex deletion problem Feedback Vertex Set, which
is known to have a quadratic kernel [27].
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2 Definitions and Notation

All graphs in this paper are finite, undirected, and simple, i.e., do not contain
multiple edges or loops. Given a graph G, we denote its vertex set by V (G) and
its edge set by E(G). We also use the ordered pair (V (G), E(G)) to represent G.
We let n = |V (G)|. Let G = (V, E) be a graph. The neighborhood of a vertex v in
G is the set NG(v) = {w ∈ V | vw ∈ E} of neighbors of v in G. Let S ⊆ V . We
write NG(S) to denote

⋃
v∈S NG(v)\S. We say that S dominates a set T ⊆ V if

every vertex in T either belongs to S or has at least one neighbor in S. We write
G[S] to denote the subgraph of G induced by S. We use shorthand notation G−v
to denote G[V \ {v}] for a vertex v ∈ V , and G−S to denote G[V \ S] for a set
of vertices S ⊆ V . A graph is connected if it has a path between every pair of
its vertices, and is disconnected otherwise. The connected components of a graph
are its maximal connected subgraphs. We say that a vertex subset S ⊆ V is
connected if G[S] is connected. A bridge in a connected graph is an edge whose
deletion results in a disconnected graph. A cut vertex in a connected graph is
a vertex whose deletion results in a disconnected graph. A graph is 2-connected
if it has no cut vertex. A 2-connected component of a graph G is a maximal
2-connected subgraph of G.

We use P� to denote the graph isomorphic to a path on � vertices, i.e.,
the graph with ordered vertex set {p1, p2, p3, . . . , p�} and edge set {p1p2, p2p3,
. . . , p�−1p�}. We will also write p1p2 · · · p� to denote P�. A tree is a connected
acyclic graph. A vertex with exactly one neighbor in a tree is called a leaf. A
star is a tree isomorphic to the graph with vertex set {a, v1, v2, . . . , vs} and edge
set {av1, av2, . . . , avs}. Vertex a is called the center of the star.

The contraction of edge xy in G removes vertices x and y from G, and replaces
them by a new vertex, which is made adjacent to precisely those vertices that
were adjacent to at least one of the vertices x and y. A graph G is contractible
to a graph H , or H-contractible, if H can be obtained from G by a sequence
of edge contractions. Equivalently, G is H-contractible if there is a surjection
ϕ : V (G) → V (H), with W (h) = {v ∈ V (G) | ϕ(v) = h} for every h ∈ V (H),
that satisfies the following three conditions: (1) for every h ∈ V (H), W (h) is
a connected set in G; (2) for every pair hi, hj ∈ V (H), there is an edge in G
between a vertex of W (hi) and a vertex of W (hj) if and only if hihj ∈ E(H); (3)
W = {W (h) | h ∈ V (H)} is a partition of V (G). We say that W is an H-witness
structure of G, and the sets W (h), for h ∈ V (H), are called witness sets of W .

If a witness set contains more than one vertex of G, then we call it a big
witness set; a witness set consisting of a single vertex of G is called small. We
say that G is k-contractible to H , with k ≤ n − 1, if H can be obtained from G
by at most k edge contractions. The next observation follows from the above.

Observation 1. If a graph G is k-contractible to a graph H, then |V (G)| ≤ |V (H)|
+ k, and any H-witness structure W of G satisfies the following three properties:
no witness set of W contains more than k+1 vertices, W has at most k big witness
sets, and all the big witness sets of W together contain at most 2k vertices.
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A 2-coloring of a graph G is a function φ : V (G) → {1, 2}. Here, a 2-coloring
of G is merely an assignment of colors 1 and 2 to the vertices of G, and should
not be confused with a proper 2-coloring of G, which is a 2-coloring with the
additional property that no two adjacent vertices receive the same color. If all
the vertices belonging to a set S ⊆ V (G) have been assigned the same color by
φ, we say that S is monochromatic with respect to φ, and we use φ(S) to denote
the color of the vertices of S. Any 2-coloring φ of G defines a partition of V (G)
into two sets V 1

φ and V 2
φ , which are the sets of vertices of G colored 1 and 2 by φ,

respectively. A set X ⊆ V (G) is a monochromatic component of G with respect
to φ if G[X ] is a connected component of G[V 1

φ ] or a connected component of
G[V 2

φ ]. We say that two different 2-colorings φ1 and φ2 of G coincide on a vertex
set A ⊆ V (G) if φ1(v) = φ2(v) for every vertex v ∈ A.

3 Tree Contraction

Asano and Hirata [2] showed that Tree Contraction is NP-complete. In this
section, we first show that Tree Contraction does not have a polynomial
kernel, unless NP ⊆ coNP/poly. We then present a 4.98knO(1) time algorithm
for Tree Contraction.

A polynomial parameter transformation from a parameterized problem Q1 to
a parameterized problem Q2 is a polynomial time reduction from Q1 to Q2 such
that the parameter of the output instance is bounded by a polynomial in the
parameter of the input instance. Bodlaender et al. [8] proved that if Q1 is NP-
complete, if Q2 is in NP, if there is a polynomial parameter transformation from
Q1 to Q2, and if Q2 has a polynomial kernel, then Q1 has a polynomial kernel.

Theorem 1. Tree Contraction does not have a kernel with size polynomial
in k, unless NP ⊆ coNP/poly.

Proof. We give a polynomial parameter transformation from Red-Blue Dom-

ination to Tree Contraction. Red-Blue Domination takes as input a
bipartite graph G = (A, B, E) and an integer t, and the question is whether
there exists a subset of at most t vertices in B that dominates A. We may as-
sume that every vertex of A has a neighbor in B, and that t ≤ |A|. This problem,
when parameterized by |A|, has been shown not to have a polynomial kernel,
unless NP ⊆ coNP/poly [16]. Since Tree Contraction is in NP, the existence
of the polynomial parameter transformation described below implies that Tree

Contraction does not have a kernel with size polynomial in k, unless NP ⊆
coNP/poly.

Given an instance of Red-Blue Domination, that is a bipartite graph
G = (A, B, E) and an integer t, we construct an instance (G′, k) of Tree Con-

traction with G′ = (A′∪B′, E′) as follows. To construct G′, we first add a new
vertex a to A and make it adjacent to every vertex of B. We define A′ = A∪{a}.
We then add, for every vertex u of A, k + 1 new vertices to B that are all made
adjacent to exactly u and a. The set B′ consists of the set B and the |A|(k + 1)
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newly added vertices. Finally, we set k = |A| + t. This completes the construc-
tion. Observe that k ≤ 2|A|, which means that the construction is parameter
preserving. In particular, we added |A|(k + 1) + 1 ≤ 2|A|2 + |A| + 1 vertices
to G to obtain G′, and we added |B| edges incident to a and then two edges
incident to each vertex of B′ \ B. Hence the size of the graph has increased by
O(|B| + |A|2). We show that there is a subset of at most t vertices in B that
dominates A in G if and only if G′ is k-contractible to a tree.

Assume there exists a set S ⊆ B of size at most t such that S dominates A
in G. Vertex a is adjacent to all vertices of S, so the set X = {a} ∪ S ∪ A is
connected in G′. Note that all the vertices of G′ that do not belong to X form
an independent set in G. Consider the unique witness structure of G′ that has X
as its only big witness set. Contracting all the edges of a spanning tree of G[X ]
yields a star. Since X has at most 1 + t + |A| = 1 + k vertices, any spanning tree
of G[X ] has at most k edges. Hence G′ is k-contractible to a tree.

For the reverse direction, assume that G′ is k-contractible to a tree T , and let
W be a T -witness structure of G′. Vertex a is involved in k + 1 different cycles
with each vertex of A through the vertices of B′ \B. Hence, if a and a vertex u of
A appear in different witness sets, we need more than k contractions to kill the
k + 1 cycles containing both a and u. Consequently, there must be a witness set
W ∈ W that contains all the vertices of A∪{a}. Since all the vertices of G′−W
belong to B′, they form an independent set in G′. This means that W is the only
big witness set of W , and T is in fact a star. Since G′ is k-contractible to T , we
know that |W | ≤ k+1 by Observation 1. Suppose W contains a vertex x ∈ B′\B.
By construction, x is adjacent only to a and exactly one vertex a′ ∈ A. Let b′ be
a neighbor of a′ in B. Then we have NG′(x) ⊆ NG′(b′), so W ′ = (W \{x})∪{b′}
is connected and |W ′| ≤ |W |. The unique witness structure of G′ that has W ′

as its only big witness set shows that G′ can be k-contracted to a tree T ′ on at
least as many vertices as T . Thus we may assume that W contains no vertices
of B′ \B. Let S = W \A′. The set W is connected and A′ is an independent set,
so S dominates A′. Moreover |S| = |W | − |A| − 1 ≤ k − |A| = t. We conclude
that S is a subset of at most t vertices in B that dominates A in G. �

As a contrast to this negative result, we present below an algorithm for Tree

Contraction with running time 4.98knO(1). The straightforward proof of the
following lemma has been omitted due to page restrictions.

Lemma 1. A connected graph is k-contractible to a tree if and only if each of
its 2-connected components can be contracted to a tree, using at most k edge
contractions in total.

The main idea for our algorithm for Tree Contraction is to use 2-colorings
of the input graph G. Let T be a tree, and let W be a T -witness structure of
G. We say that a 2-coloring φ of G is compatible with W (or W-compatible) if
the following two conditions are both satisfied: (1) every witness set of W is
monochromatic with respect to φ, and (2) if W (u) and W (v) are big witness
sets and uv ∈ E(T ), then φ(W (u)) 
= φ(W (v)). In Lemma 2, we will show
that if we are given a 2-coloring φ of G that is W-compatible, then we can
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use the monochromatic components of G with respect to φ to compute a T ′-
witness structure of G, such that T ′ is a tree with at least as many vertices as T .
Informally, we do this by finding a “star-like” partition of each monochromatic
component M of G, where one set of the partition is a connected vertex cover
of G[M ], and all the other sets have size 1. A connected vertex cover of a graph
G is a subset V ′ ⊆ V (G) such that G[V ′] is connected and every edge of G has
at least one endpoint in V ′.

Proposition 1 ([4]). Given a graph G, it can be decided in 2.4882tnO(1) time
whether G has a connected vertex cover of size at most t. If such a connected
vertex cover exists, then it can be computed within the same time.

Lemma 2. Let φ be a 2-coloring of a 2-connected graph G. If φ is compatible
with a T -witness structure of G whose largest witness set has size d, where T is
a tree, then a T ′-witness structure of G can be computed in time 2.4882d nO(1),
such that T ′ is a tree with as at least as many vertices as T .

Proof. Suppose φ is compatible with a T -witness structure W of G, such that T
is a tree, and the largest witness set of W has size d. The 2-connectedness of G
implies that, if a witness set W (v) ∈ W is small, then v is a leaf of T .

Let X be the set of monochromatic components of G with respect to φ. Every
witness set of W is monochromatic by property (1) of a W-compatible 2-coloring,
and connected by definition. Hence, for every W ∈ W , there exists an X ∈ X
such that W ⊆ X . Moreover, since every X ∈ X is connected, there exists
a vertex subset Y ⊆ V (T ) such that T [Y ] is a connected subtree of T and
X =

⋃
y∈Y W (y). Hence, X is a T ′′-witness structure of G for a tree T ′′ that has

at most as many vertices as T . We now show how to partition the big witness
sets of X in such a way, that we obtain a T ′-witness structure of G for some tree
T ′ with at least as many vertices as T .

Suppose there exists a set X ∈ X that contains more than one witness set of
W , say W (v1), . . . , W (vp) for some p ≥ 2. We know that at most one of these sets
can be big, due to properties (1) and (2) of a W-compatible 2-coloring and the
observation that every small witness set corresponds to a leaf of T . If all the sets
W (v1), . . . , W (vp) are small, then all the vertices v1, . . . , vp are leaves in T . This
means that p = 2 and T consists of only two vertices; a trivial case. Suppose one
of the sets, say W (p1), is big. Since each of the sets W (v2), . . . , W (vp) is small,
the vertices v2, . . . , vp are leaves in T . This means that the vertices v1, . . . , vp

induce a star in T , with center v1 and leaves v2, . . . , vp. Note that W (v1) is a
connected vertex cover in the graph G[X ]; this observation will be used in the
algorithm below. Also note that the sets W (v1), . . . , W (vp) define an S-witness
structure S of the graph G[X ], where S is a star with p − 1 leaves.

We use the above observations to decide, for each X ∈ X , if we can partition
X into several witness sets. Recall that, given φ, we only know X , and not W .
We perform the following procedure on each set X ∈ X that contains more than
one vertex. Let X̂ = X ∩ NG(V \ X) be the set of vertices in X that have at
least one neighbor outside X . A shatter of X is a partition of X into sets, such
that one of them is a connected vertex cover C of G[X ] containing every vertex
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of X̂ , and each of the others has size 1. The size of a shatter is the size of C. A
shatter of X of minimum size can be found as follows. Recall that we assumed
the largest witness set of W to be of size d. Construct a graph G′ from the graph
G[X ] by adding, for each vertex x ∈ X̂, a new vertex x′ and an edge xx′. Find
a connected vertex cover C of minimum size in G′ by applying the algorithm of
Proposition 1 for all values of t from 1 to d. Since φ is W-compatible and each
witness set of W has size at most d, such a set C will always be found. Observe
that a minimum size connected vertex cover of G′ does not contain any vertex
of degree 1, which implies that X̂ ⊆ C. Hence C, together with the sets of size
1 formed by each of the vertices of X \ C, is a minimum size shatter of X . If,
in X , we replace X by the sets of this minimum size shatter of X , we obtain
a T̃ -witness structure of G, for some tree T̃ with at least as many (or strictly
more, if |C| < |X |) vertices as T ′′. We point out that the size of C is at most as
big as the size of the only possible big witness set of W that X contains. Hence,
after repeating the above procedure on each of the sets of X that contain more
than one vertex, we obtain a desired T ′-witness structure of G, where T ′ is a
tree with at least at many vertices as T .

By Proposition 1, we can find a minimum size shatter in 2.4882dnO(1) time
for each set of X . Since all the other steps can be performed in polynomial time,
the overall running time is 2.4882dnO(1). �

The idea of our algorithm for Tree Contraction is to generate a number of
2-colorings of the input graph G, and to check, using the algorithm described
in the proof of Lemma 2, whether any of the generated 2-colorings yields a T -
witness structure of G for a tree T on at least n − k vertices. Using the notion
of universal sets, defined below, we are able to bound the number of 2-colorings
that we need to generate and check.

The restriction of a function f : X → Y to a set S ⊆ X is the function
f|S : S → Y such that f|S(s) = f(s) for every s ∈ S. An (n, t)-universal set F is
a set of functions from {1, 2, . . . , n} to {1, 2} such that, for every S ⊆ {1, 2, . . . , n}
with |S| = t, the set F|S = {f|S | f ∈ F} is equal to the set 2S of all the functions
from S to {1, 2}.

Theorem 2 ([24]). There is a deterministic algorithm that constructs an (n, t)-
universal set F of size 2t+O(log2 t) log n in time 2t+O(log2 t)n log n.

Theorem 3. Tree Contraction can be solved in time 4.98knO(1).

Proof. Let G be an n-vertex input graph of Tree Contraction. We assume
that G is 2-connected, by Lemma 1. Our algorithm has an outer loop, which
iterates over the values of an integer d from 1 to k + 1. For each value of d, the
algorithm constructs an (n, 2k− d + 2)-universal set Fd, and runs an inner loop
that iterates over all 2-colorings φ ∈ Fd. At each iteration of the inner loop,
the algorithm computes a minimum size shatter for each of the monochromatic
components of G with respect to φ, using the 2.4882dnO(1) time procedure de-
scribed in the proof of Lemma 2 with the value d determined by the outer loop.
If this procedure yields a T ′-witness structure of G for a tree T ′ with at least
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n − k vertices at some iteration of the inner loop, then the algorithm outputs
yes. If none of the iterations of the inner loop yields a yes-answer, the outer
loop picks the next value of d. If none of the iterations of the outer loop yields
a yes-answer, then the algorithm returns no.

To prove correctness of the algorithm, suppose G is k-contractible to a tree
T . Let W be a T -witness structure of G whose largest witness set has size
d∗. Note that d∗ ≤ k + 1 by Observation 1. Let ψ be a 2-coloring of G such
that each of the big witness sets of W is monochromatic with respect to ψ,
such that ψ(W (u)) 
= ψ(W (v)) whenever uv is an edge in T , and such that
the vertices in the small witness sets are all colored 1. Observe that ψ is a W-
compatible 2-coloring of G, as is any other 2-coloring of G that coincides with ψ
on all the vertices of the big witness sets of W . The largest witness set requires
d∗−1 edge contractions, after which our remaining budget of edge contractions is
k−(d∗−1) = k−d∗+1. As a result of Observation 1, the total number of vertices
contained in big witness sets is thus at most d∗ + 2(k − d∗ + 1) = 2k − d∗ + 2.
Consequently, if we generate an (n, 2k − d∗ + 2)-universal set Fd∗ , then, by
Theorem 2, Fd∗ contains at least one 2-coloring φ of G that coincides with ψ on
all the vertices of the big witness sets of W . Note that such a 2-coloring φ that is
W-compatible. Recall that our algorithm iterates over all values of d from 1 to
k + 1, and that d∗ ≤ k + 1. Hence, at the correct iteration of the outer loop, i.e.,
the iteration where d = d∗, our algorithm will process φ. As a result of Lemma 2,
the algorithm will then find a T ′-witness structure of G for some tree T ′ with
at least n − k vertices. This means that the algorithm correctly outputs yes if
G is k-contractible to a tree. Since the algorithm only outputs yes when it has
detected a T ′-witness structure for some tree T ′ with at least n − k vertices, it
correctly outputs no if G is not k-contractible to a tree.

For each d, the size of Fd is 22k−d+2+log2(2k−d+2) log n, and Fd can be con-
structed in 22k−d+2+log2(2k−d+2)n log n time, by Theorem 2. Summing |Fd| ·
2.4882dnO(1) over all values of d from 1 to k + 1 shows that this determinis-
tic algorithm runs in time 4.98knO(1). �

We would like to remark that due to recent developments in the field, our result in
fact implies a randomized 4k+o(k)nO(1) time algorithm for Tree Contraction.
Cygan et al. [14] give a Monte Carlo algorithm with running time 2t nO(1) for
deciding whether a graph on n vertices has a connected vertex cover of size at
most t and finding such a set if it exists. Summing |Fd| · 2d nO(1) over all values
of d from 1 to k + 1, as it was done in the last line of the proof of Theorem 3,
we obtain total running time 4k+o(k) nO(1) for a randomized algorithm.

4 Path Contraction

Brouwer and Veldman [9] showed that, for every fixed � ≥ 4, it is NP-complete
to decide whether a graph can be contracted to the path P�. This, together
with the observation that a graph G is k-contractible to a path if and only if
G is contractible to Pn−k, implies that Path Contraction is NP-complete.
In this section, we first show that Path Contraction has a linear vertex
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kernel. We then present an algorithm with running time 2k+o(k) + nO(1) for this
problem. Throughout this section, whenever we mention a P�-witness structure
W = {W1, . . . W�}, it will be implicit that P� = p1 · · · p�, and Wi = W (pi) for
every i ∈ {1, . . . , �}.

Rule 1. Let (G, k) be an instance of Path Contraction. If G contains a
bridge uv such that the deletion of edge uv from G results in two connected
components that contain at least k + 2 vertices each, then return (G′, k), where
G′ is the graph resulting from the contraction of edge uv.

The proof of the following lemma has been omitted due to page restrictions.

Lemma 3. Let (G′, k) be an instance of Path Contraction resulting from
the application of Rule 1 on (G, k). Then G′ is k-contractible to a path if and
only if G is k-contractible to a path.

Theorem 4. Path Contraction has a kernel with at most 5k + 3 vertices.

Proof. Let (G, k) be an instance of Path Contraction. We repeatedly test, in
linear time, whether Rule 1 can be applied on the instance under consideration,
and apply the reduction rule if possible. Each application of Rule 1 strictly
decreases the number of vertices. Hence, starting from G, we reach in polynomial
time a reduced graph, on which Rule 1 cannot be applied anymore. By Lemma 3,
we know that the resulting reduced graph is k-contractible to a path if and only
if G is k-contractible to a path.

We now assume that G is reduced. We show that if G is k-contractible to
a path, then G has at most 5k + 3 vertices. Let W = {W1, . . . , W�} be a P�-
witness structure of G with � ≥ n−k. We first prove that � ≤ 4k+3. Assume that
� ≥ 2k+4, and let i be such that k+2 ≤ i ≤ �−k−2. Suppose, for contradiction,
that both Wi and Wi+1 are small witness sets, i.e., Wi = {u} and Wi+1 = {v}
for two vertices u and v of G. Then uv forms a bridge in G whose deletion
results in two connected components. Each of these components contains at
least all vertices from W1, . . . , Wk+2 or all vertices from W�−k−1, . . . , W�. Hence
they contain at least k + 2 vertices each. Consequently, Rule 1 can be applied,
contradicting the assumption that G is reduced. So there are no consecutive
small sets among Wk+2, . . . , W�−k−1. By Observation 1, W contains at most k
big witness sets, so we have (�−k−1)− (k +2)+1 ≤ 2k +1 implying � ≤ 4k +3.
Combining this with the earlier assumption that � ≥ n−k yields n ≤ 5k +3. �

The existence of a kernel with at most 5k + 3 vertices easily implies a 32k+o(k) +
nO(1) time algorithm for Path Contraction, which tests for each 2-coloring
φ of the reduced input graph G′ whether the monochromatic components of G′

with respect to φ form a P�-witness structure of G′ for some � ≥ n − k. The
natural follow-up question, which we answer affirmatively below, is whether this
running time can be significantly improved.

Theorem 5. Path Contraction can be solved in time 2k+o(k) + nO(1).
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Proof. Given an instance (G, k) of Path Contraction, our algorithm first
constructs an equivalent instance (G′, k) such that G′ has at most 5k+3 vertices.
This can be done in nO(1) time by Theorem 4. For the rest of the proof, we assume
that the input graph G has n ≤ 5k + 3 vertices. Suppose G is k-contractible
to a path P�, and let W = {W1, . . . , W�} be a P�-witness structure of G. We
distinguish two cases, depending on whether or not � is larger than

√
k.

Suppose � ≤
√

k. Then n ≤ k +
√

k. We define X∗ = W1 ∪ W3 ∪ W5 ∪ . . .
and Y ∗ = W2 ∪ W4 ∪ . . .. Then X∗ and Y ∗ form a 2-partition of V (G), and
the connected components of the graphs G[X∗] and G[Y ∗] form a P�-witness
structure of G. If we contract every edge of G that has both endpoints in the
same connected component of G[X∗] or G[Y ∗], we end up with the path P�.
Hence, for every given partition of V (G) into two sets X and Y , we can check
in kO(1) time whether the connected components of G[X ] and G[Y ] constitute a
P�′ -witness structure of G for some �′ ≥ n − k. Based on this analysis, if G has
at most k +

√
k vertices, the algorithm checks for each 2-partition X, Y of V (G)

whether this 2-partition yields a desired witness structure. Note that if G is k-
contractible to a path on more than

√
k vertices, then it is also k-contractible to

a path on exactly
√

k vertices, since G has at most k +
√

k vertices. Since there
are at most 2k+

√
k partitions to consider, the running time of the algorithm in

this case is 2k+o(k)kO(1) = 2k+o(k).
Now suppose � >

√
k. For each integer i with 1 ≤ i ≤ �

√
k�, we define

W ∗
i = Wi ∪ Wi+�√k� ∪ Wi+2�√k� ∪ . . .. Since n ≤ 5k + 3, there is at least one

index j such that |W ∗
j | ≤ (5k + 3)/

√
k. Let G∗

1, . . . , G
∗
p denote the connected

components of G − W ∗
j , where p ≤ (5k + 3)/

√
k. Note that each connected

component G∗
i has a P ∗-witness structure W∗

i for some path P ∗ on at most√
k − 1 vertices, such that the union of these witness structures W∗

i , together
with the vertex sets of G∗

1, . . . , G
∗
p, forms a P�-witness structure of G. Moreover,

each connected component G∗
i has at most k +

√
k−1 vertices by Observation 1.

Based on this analysis, if G has more than k+
√

k vertices, the algorithm searches
for the correct set W ∗

i by generating all subsets W ⊆ V (G) of size at most
(5k + 3)/

√
k, and performing the following checks for each subset W . If the

graph G−W has more than (5k +3)/
√

k connected components, or if one of the
connected components has more than k +

√
k − 1 vertices, then W is discarded.

For each W that is not discarded, we run the algorithm of the previous case on
each connected component Gi of G−W to check whether Gi has a P�′-witness
structure with �′ ≤

√
k−1. Since in that algorithm we check every 2-partition of

V (Gi), we can check whether Gi has a P�′ -witness structure with the additional
constraint that precisely the vertices in the first and the last witness sets have
neighbors in the appropriate connected components of G[W ], and pick such a
P�′ -witness structure Wi for which �′ is a large as possible. Finally, we check if
all these witness structures Wi, together with the vertex sets of the connected
components of G[W ], form a P -witness structure of G for some path P on at least
n − k vertices. If so, the algorithm outputs yes. Otherwise, the algorithm tries
another subset W , or outputs no if all subsets W have been considered. For each
generated set W , we run the algorithm of the previous case on each of the O(

√
k)
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connected components of G − W , so we can check in 2k+o(k)O(
√

k) = 2k+o(k)

time whether we get a desired P -witness structure of G. Since we generate no
more than (5k + 3)(5k+3)/

√
k = 2o(k) subsets W , we get a total running time of

2k+o(k) also for this case. �

5 Concluding Remarks

The number of edges to contract in order to obtain a certain graph property is a
natural measure of how close the input graph is to having that property, similar
to the more established similarity measures of the number of edges or vertices to
delete. The latter measures are well studied when the desired property is being
acyclic or being a path, defining some of the most widely known and well studied
problems within Parameterized Complexity. Inspired by this, we gave kerneliza-
tion results and fast fixed parameter algorithms for Path Contraction and
Tree Contraction. We think these results motivate the parameterized study
of similar problems, an example of which is Interval Contraction. It is not
known whether the vertex deletion variant of this problem, Interval Vertex

Deletion, is fixed parameter tractable. Is Interval Contraction fixed pa-
rameter tractable?

Acknowledgments. The authors would like to thank Martin Vatshelle, Saket
Saurabh, and Erik Jan van Leeuwen for valuable suggestions and comments.
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Abstract. The Degree Contractibility problem is to test whether
a given graph G can be modified to a graph of minimum degree at least
d by using at most k contractions. We prove the following three results.
First, Degree Contractibility is NP-complete even when d = 14.
Second, it is fixed-parameter tractable when parameterized by k and d.
Third, it is W[1]-hard when parameterized by k. We also study its vari-
ant where the input graph is weighted, i.e., has some edge weighting and
the contractions preserve these weights. The Weighted Degree Con-

tractibility problem is to test if a weighted graph G can be contracted
to a weighted graph of minimum weighted degree at least d by using at
most k weighted contractions. We show that this problem is NP-complete
and that it is fixed-parameter tractable when parameterized by k.

1 Introduction

We consider undirected finite graphs that have no loops and no multiple edges. A
graph modification problem has as input a graph G and an integer k. The ques-
tion is whether G can be modified to belong to some specified graph class that
satisfies further properties by using at most k operations of a certain specified
type such as deleting a vertex or deleting an edge. In our paper the permitted
operation is the contraction of an edge, which removes both end-vertices of the
edge and replaces them by a new vertex adjacent to precisely those vertices to
which the two end-vertices were adjacent.

We continue a very recent study [14,15,16] of the following graph modification
problem called Π-Contractibility, where Π is some prespecified graph class.

Π-Contractibility

Instance: a graph G and an integer k.
Question: Can G be modified to a graph in Π by at most k contractions?
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This research was started by Watanabe, Ae and Nakamura [24,25] who showed
that Π-Contractibility is NP-complete whenever Π is finitely characterizable
by 3-connected graphs. Their result was generalized by Asano and Hirata [2] who
showed that Π-Contractibility is NP-complete whenever Π is a graph class
that fulfills the following conditions. First, Π must be closed under contractions.
Second, Π must be described by a property that is satisfied by infinitely many
connected graphs and violated by infinitely many other connected graphs. Third,
a graph belongs to Π if and only if each of its biconnected components belong
to Π . Examples [2] of such graph classes Π include planar graphs, outerplanar
graphs, series-parallel graphs, and also forests, chordal graphs, or more generally,
graphs with no cycles of length at least � for some fixed integer � ≥ 3.

The problem Π-Contractibility is closely related to the problem H-
Contractibility, which is to test whether a given graph G can be contracted
to a fixed graph H (i.e., which is not part of the input). Brouwer and Veldman [7]
showed that the H-Contractibility problem is NP-complete whenever H is
a triangle-free graph that contains no vertex adjacent to all the other vertices.
Their work has been extended by a series of other papers [17,21,22] showing both
polynomial-time solvable and NP-complete cases. Determining a full complexity
classification for H-Contractibility is open, although such results restricting
the input graph G to be in a special graph class have been obtained [3,4,19].

If Π is the class of paths or cycles, then Π-Contractibility is polynomially
equivalent to the problems of determining the length of a longest path and
a longest cycle, respectively, to which a given graph can be contracted. The
first problem has been shown to be NP-complete by van ’t Hof, Paulusma and
Woeginger [18] even for graphs with no induced path on 6 vertices; they use
the aforementioned NP-completeness result of Brouwer and Veldman [7] for the
special case when H is the 4-vertex path. The second problem has been shown
to be NP-complete by Hammack [13].

Recently, more papers appeared that study the Π-Contractibility prob-
lem, and in particular, its parameterized complexity where the parameter is
the number k of edges that may be contracted. Heggernes et al. [16] gave an
4k+O(log2

k) + nO(1) time algorithm for Π-Contractibility if Π is the class
of paths. Moreover, they showed that in this case the problem has a linear
kernel. When Π is the class of trees, they showed that the problem can be
solved in 4.88knO(1) time and that a polynomial kernel does not exist unless
coNP ⊆ NP \ poly. When the input graph is a chordal graph with n vertices
and m edges, Heggernes et al. [14] could show that Π-Contractibility can
be solved in O(n + m) time when Π is the class of trees and in O(nm) time
when Π is the class of paths. When Π is the class of bipartite graphs, Heggernes
et al. [15] observed that Π-Contractibility is NP-complete and showed that
Π-Contractibility is fixed-parameter tractable when parameterized by k. Fi-
nally, due to a close relationship with the problem that is to test whether a given
graph contains a so-called disconnected cut set, Martin and Paulusma [20] could
show that Π-Contractibility is NP-complete if Π is the class of bicliques
Kp,q with p, q ≥ 2.
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Bodlaender, Koster and Wolle [6] introduced the related notion of contraction
degeneracy as a useful tool to improve lower bound heuristics for treewidth.
The contraction degeneracy of a graph G is the largest minimum degree of any
minor of G. When G is connected, the contraction degeneracy of G is equal
to the largest minimum degree of any graph to which G can be contracted [6].
The Contraction Degeneracy problem is to test whether the contraction
degeneracy of a given graph is at least d for some given integer d. Bodlaender,
Koster and Wolle [6] proved that this problem is NP-complete, even for bipartite
graphs, and that it is is fixed-parameter tractable when parameterized by d. They
also evaluated a number of heuristics for computing the contraction degeneracy.

Our Results. We study the Π-Contractibility problem where Π is the class
of graphs of minimum degree at least d for some integer d. In this case we call
the problem the Degree Contractibility (DC) problem. Note that this class
does not satisfy the first and third property of Asano and Hirata [2]. Moreover,
for connected graphs G = (V, E) and k ≥ |E|, the Degree Contractibility

problem is equivalent to the Contraction Degeneracy problem. In Section 3
we show that Degree Contractibility is fixed-parameter tractable when
parameterized by k and d. However, as we show in Section 3 as well, when either
k or d is part of the input Degree Contractibility becomes hard in the
following sense. First, Degree Contractibility is NP-complete even when
d is assumed to be fixed (and k is part of the input). We prove that a value
of d = 14 already suffices. Second, Degree Contractibility is W[1]-hard
when parameterized by k. These results complement the result of Amini, Sau
and Saurabh [1] who showed that detecting a subgraph with at most k vertices
and of minimum degree at least d is W[1]-hard for every fixed d ≥ 4 when
parameterized by k.

In Section 4 we study the weighted version of Degree Contractibility. In
order to define this variant, let G = (V, E) be a weighted graph, i.e., with some
edge weighting w : E → N. The weighted degree dw

G(u) of a vertex u is the sum
of the weights of the edges incident with u in G, i.e., dw

G(u) =
∑

v∈N(u) w(uv)
where N(u) denotes the set of neighbors of u. The weighted contraction of an
edge e = uv is a contraction of e where the weights on the edges incident with
the new vertex xuv are defined as follows:

• w(xuvy) = w(uy) if y is adjacent to u and not adjacent to v;
• w(xuvy) = w(vy) if y is adjacent to v and not adjacent to u;
• w(xuvy) = w(uy) + w(vy) if y is adjacent to u and v.

The Weighted Degree Contractibility (WDC) problem is to test if a
weighted graph G can be modified to a weighted graph of minimum weighted
degree at least d by using at most k weighted contractions. Note that since the
weight of an edge xuvy with y adjacent to both u and v is the accumulated
weight of the two original edges uy and vy, Degree Contractibility is not a
special (unweighted) case of Weighted Degree Contractibility. We show
that Weighted Degree Contractibility problem is still NP-complete, even
when k ≥ |E|. However, contrary to the aforementioned W[1]-hardness result for
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Degree Contractibility when parameterized by k, accumulating the weights
after contracting an edge results in the problem not being hard anymore, i.e., we
prove that Weighted Degree Contractibility is fixed-parameter tractable
when parameterized by k. Table 1 summarizes our results. The (only) open case
in this table is denoted “?”.

Table 1. An overview of our results

input parameter DC WDC

d, k NP-complete NP-complete

d k W[1]-hard FPT

k d para-NP-complete ?

d, k FPT FPT

2 Preliminaries

We denote the vertex set and edge set of a graph G by VG and EG, respectively.
If no confusion is possible, we may omit subscripts. Recall that we only consider
undirected finite graphs with no loops and no multiple edges. We refer to the
text book of Diestel [9] for undefined graph terminology and to the monographs
of Downey and Fellows [11] and Niedermeier [23] for more on parameterized
complexity.

Let G be a (weighted) graph. A vertex v is a neighbor of a vertex u if uv ∈ EG.
We let NG(u) = {uv | v ∈ VG} denote the neighborhood of u. The degree of a
vertex u is denoted dG(u) = |NG(u)|. In the case that G is a weighted graph
with an edge weighting w, recall that the weighted degree of u is dw

G(u) =∑
v∈N(u) w(uv). A subset U ⊆ V is a clique if there is an edge in G between any

two vertices of U , and U is an independent set if there is no edge in G between
any two vertices of U . We write G[U ] to denote the subgraph of G induced by
U ⊆ V , i.e., the graph on vertex set U and an edge between any two vertices
whenever there is an edge between them in G. We let G/e denote the (weighted)
graph obtained from G by the (weighted) contraction of e. If a (weighted) graph
H is obtained from G by a sequence of (weighted) contractions, then H is a
(weighted) contraction of G.

Let G and H be two graphs. An H-witness structure W is a vertex partition
of G into |VH | (nonempty) sets W (x) called H-witness bags, such that

(i) each W (x) induces a connected subgraph of G;
(ii) for all x, y ∈ VH with x 
= y, bags W (x) and W (y) are adjacent in G if and

only if x and y are adjacent in H ;

By contracting all bags to singletons we observe that H is a contraction of G if
and only if G has an H-witness structure such that conditions (i)-(ii) hold. Note
that a graph may have more than one H-witness structure.
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3 Contractions

First, we observe that Degree Contractibility is FPT when parameterized
by k and d.

Proposition 1. Degree Contractibility can be solved in time O(dk(n+m))
for graphs with n vertices and m edges.

Proof. Let G be a graph with n vertices and m edges. We give the following
branching algorithm. Let dG(u) < d for some vertex u ∈ VG. We consider all
edges e incident with u, and call our algorithm recursively for G/e and the
parameter k′ = k − 1. The algorithm returns Yes, if for at least one of the new
instances the answer is Yes, and it returns No otherwise. Since for each recursive
call of our algorithm, we create at most d− 1 instances of the problem, and the
depth of the recursion is at most k, the algorithms runs in time O(dk(n + m)).

�

If we parameterize only by d or only by k, then Degree Contractibility

becomes hard. We first prove that the problem is NP-complete even if d = 14.

Theorem 1. For any fixed d ≥ 14, Degree Contractibility is NP-complete.

Proof. The inclusion of the problem in NP is obvious. For simplicity, we prove
NP-hardness for d = 14. We reduce from the NP-complete Set Cover prob-
lem [12]. This problem is defined as follows.

Given a set U = {u1, . . . , um}, a family of subsets X1, . . . , Xn ⊆ U and an
integer r, are there at most r subsets that cover U , i.e., their union is U?

It is known [12] that this problem remains NP-complete even if

(i) each Xi has cardinality 3, and
(ii) each uj is included in at least two and at most three subsets of X1, . . . , Xn.

q
(2)
ij

s t

p
(1)
i

uj

p
(2)
i

q
(1)
ij

w1 w13

xi

Fig. 1. Construction of G
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We consider an instance (U, X1, . . . , Xn) of Set Cover with restrictions (i) and
(ii). We construct a graph G in the following way; also see Fig. 1. We say that
we connect a vertex with some other vertex if we add an edge between them.

• Construct a clique with 13 vertices w1, . . . , w13.

• Add two new vertices s, t and connect each of them with w1, . . . , w13.

• For i = 1, . . . , n, add a vertex xi and connect it with s, t.

• For i = 1, . . . , n, add two adjacent vertices p
(1)
i , p

(2)
i , connect p

(1)
i with

s, w1, . . . , w11, xi, and connect p
(2)
i with s, w3, . . . , w13, xi.

• For j = 1, . . . , m, add a vertex uj and connect it with t.

• Connect xi and uj whenever uj ∈ Xi. In that case also add two adjacent
vertices q

(1)
ij , q

(2)
ij , connect q

(1)
ij with xi, uj , w1, . . . , w11 and connect q

(2)
ij with

xi, uj, w3, . . . , w13.

• For j = 1, . . . , m, connect uj with w1, . . . , w8 if uj occurs in two subsets of
X1, . . . , Xn, and connect uj with w1, . . . , w6 if uj occurs in three subsets.

We set k = n + r and claim that U can be covered by at most r subsets of
{X1, . . . , Xn} if and only if G can be modified to a graph with minimum degree
at least d = 14 by at most k contractions.

First suppose that Xi1 , . . . , Xir is a set cover of U , i.e., U = Xi1∪. . .∪Xir . For
j = 1, . . . , r, we contract the edges sxij and p

(1)
ij

p
(2)
ij

. We also contract the edge
xit for every i /∈ {i1, . . . , ir}. The total number of contractions is 2r + (n− r) =
n+ r = k. Moreover, the resulting graph is readily seen to have minimum degree
at least 14, as desired.

Now suppose G can be modified to a graph H with minimum degree at least
d = 14 by at most k contractions. Let W be an H-witness structure of G. For
each bag W of W , we choose an arbitrary spanning tree of G[W ]. Let A ⊆ EG

denote the union of the sets of edges of these trees. Because H is obtained by
contracting the edges of A, we find that |A| ≤ k.

For each Xi, we define a set of edges Ei ⊆ EG as follows. The set Ei includes
all edges incident with xi, p

(1)
i , p

(2)
i , and all edges incident with q

(1)
ij , q

(2)
ij for every

uj ∈ Xi. Moreover, we choose one vertex uj ∈ Xi and also add all (other) edges
incident with uj to Ei. The sets E1, . . . , En have the following properties.

1. Ei ∩ Ej = ∅ for 1 ≤ i < j ≤ n.
2. Ei ∩ A 
= ∅ for i = 1, . . . , n.
3. The number of sets Ei with |Ei ∩ A| ≥ 2 is at most r.

Property 1 is true by definition. Property 2 follows from the fact that dG(xi) =
13 < 14 = d; therefore, at least one edge incident with xi must be contracted.
Property 3 follows from properties 1 and 2 and the aforementioned observation
that |A| ≤ k = n + r.

Let I = {i | |Ei ∩ A| ≥ 2}. We claim that ∪i∈IXi = U . In order to obtain
a contradiction, assume that there is a vertex uj ∈ U \ ∪i∈IXi. Then, for each
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Xi with uj ∈ Xi, we find that Ei contains a unique edge ei ∈ Ei ∩ A. Because
dG(xi) = 13 < d, ei is incident with xi. If ei = sxi, then contracting ei decreases
the degree of p

(1)
i and p

(2)
i . Because they both have degree 14, at least one edge

incident with them must be contracted as well. Hence, ei 
= sxi. Similarly, if
ei = xip

(1)
i then contracting ei decreases the degree of p

(2)
i . Hence, ei 
= xip

(1)
i .

We apply the same arguments on the other edges in Ei and conclude that the
only possibility is ei = xit. Now we consider two cases.

Case 1. uj is included in exactly two sets Xi1 , Xi2 . Then edges xi1t, xi2t are
contracted, whereas all other edges incident with xi1 , xi2 and also edges p

(1)
i1

p
(2)
i1

,
p
(1)
i2

p
(2)
i2

, q
(1)
i1jq

(2)
i1j , q

(1)
i2jq

(2)
i2j are not contracted. Moreover, no edges incident with uj

are contracted, because these belong to Ei1 ∪ Ei2 . However, then uj has degree
at most 13 < d in H , a contradiction.

Case 2. uj is included in three sets Xi1 , Xi2 , Xi3 . By the same arguments as in
Case 1, we find that the degree of uj in H is at most 13 < d, a contradiction.

We conclude that {Xi | i ∈ I} is a set cover, which contains at most r sets due
to Property 3. This completes the proof of Theorem 1. �

While it can be easily seen that for any fixed d ≤ 3, Degree Contractibility

can be solved in polynomial time, determining the complexity for 4 ≤ d ≤ 13 is
an open question.

We observe that Degree Contractibility is in XP when parameterized by
k; it can be solved in nO(k) time for n-vertex graphs by checking all sequences
of at most k contractions. However, it is unlikely to be solvable in FPT-time.

Theorem 2. Degree Contractibility parameterized by k is W[1]-hard.

Proof. The problem Multicolored Clique is to test whether a graph with
a proper k-coloring contains a clique of size k with exactly one vertex from
each color class. Fellows et al. [10] proved that this problem is W[1]-hard when
parameterized by k. Consequently, its dual, the problem Multicolored In-

dependent Set, which is to test whether a graph with a partition X1, . . . , Xk

of the vertex set has an independent set of size k with exactly one vertex from
each Xi, is W[1]-hard as well when parameterized by k. This is the problem we
reduce from.

Let (G, k) with a partition X1, . . . , Xk of VG be an instance of Multicolored

Independent Set. Let Xi = {xi1, . . . , xini} for i ∈ {1, . . . , k} where we assume
without loss of generality that ni ≥ 2. Let d = n(4k + 3) + 1. From G we
construct a graph G′ in the following way. Recall that connecting two vertices
means adding an edge between them.

1. Modify each set Xi into a clique.
2. Construct a clique W with vertices w1, . . . , wd+1.
3. Connect every xij with w1, . . . , wtij where tij = d − dG(xij) − ni − 4k − 2.
4. Add vertices y1, . . . , yk.
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C

W

xi1

xij

xini

w1 wd+1

rij

a
(1)
ij

a
(2k+1)
ij b

(2k+1)
ij

W

w1 wd+1

XiXi

X1 Xk
yi

Qij

z1

zi

zk

c1 ck+2

a) b)

Fig. 2. Construction of G

5. For every xij , construct a clique Qij with vertices rij , a
(1)
ij , . . . , a

(2k+1)
ij ,

b
(1)
ij , . . . , b

(2k+1)
ij and connect every vertex of Qij with xij and yi. Moreover,

connect every rij with w1, . . . , wd−(4k+3), every a
(s)
ij with w1, . . . , wd−(4k+3),

and every b
(s)
ij with w4k+5, . . . , wd+1.

6. Construct a clique C with vertices c1, . . . , ck+2, z1, . . . , zk.
7. For h = 1, . . . , k + 2, connect ch with w1, . . . , wd−2k+1

8. For i = 1, . . . , k, connect zi with every vertex of Xi.

Stages 1–5 of the construction are shown in Fig. 2 a), and Stages 6–8 are shown
in Fig. 2 b). We let k′ = k(2k +3) and claim that G has an independent set with
exactly one vertex from each Xi if and only if G′ can be modified to a graph H
with minimum degree at least d by at most k′ contractions.

First suppose that {x1j1 , . . . , xkjk
} is an independent set in G. For i = 1, . . . , k,

let Ai = {a(1)
iji

b
(1)
iji

, . . . , a
(2k+1)
iji

b
(2k+1)
iji

, rijiyi, xijizi} be a set of 2k + 3 edges in G′.
We contract every edge in every Ai. Then the total number of contractions is
k(2k + 3) = k′. Moreover, the resulting graph has minimum degree at least d.

Now suppose that G′ can be modified to a graph H with minimum degree at
least d by at most k′ contractions. Let W be an H-witness structure of G′. For
each bag W of W , we choose an arbitrary spanning tree of G′[W ]. Let A ⊆ EG′

denote the union of the sets of edges of these trees. Because we obtain H by
contracting the edges of A, we find that |A| ≤ k′.

Claim 1. A = A1 ∪ . . .∪Ak, where each Ai = {xijzi, yif, g1h1, . . . , g2k+1h2k+1}
with {f, g1, . . . , g2k+1, h1, . . . , h2k+1} = Qij.

We prove Claim 1 as follows. Let 1 ≤ i ≤ k. Because dG′(yi) < d, at least one
edge incident with yi must be included in Ai. Assume that yif ∈ Ai for some
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f ∈ Qij . Note that after contracting yif , all 4k + 2 vertices of Qij \ {f} have
degrees less that d. Hence, at least 2k + 1 edges incident with these vertices
must be contracted. We also note that dG′(zi) < d. Therefore, at least one edge
incident with zi must be in A. Suppose that zit ∈ A for some t ∈ C. Then, after
contracting zit, all other 2k vertices of C have degrees less than d. Hence, we
must contract at least k edges incident with these vertices. Because the total
number of contractions is k′ = k(2k + 3) and we also need to contract at least
2k + 3 edges for every h 
= i, this is not possible. We conclude that zixij′ ∈ A
for some 1 ≤ j′ ≤ ni and that Ai = {xij′zi, yif, g1h1, . . . , g2k+1h2k+1} with
{f, g1, . . . , g2k+1, h1, . . . , h2k+1} = Qij . We now consider xij and observe that
by contracting the edges g1h1, . . . , g2k+1h2k+1 we decreased the degree of xij by
2k + 1. Hence, j′ = j and Claim 1 follows.

Due to Claim 1, we can define the set {x1j1 , . . . , xkjk
} with xijizi ∈ Ai for

i = 1, . . . , k. We prove that this is an independent set in G. In order to ob-
tain a contradiction, assume that there is an edge xijixi′ji′ ∈ EG. Recall that
dG′(xij j) = dG(xijj) + (ni − 1) + (4k + 3) + 1 + tij = d + 1. Contracting those
edges of Ai that have both end-vertices in Qij decreases the degree of xijj by
2k + 1. Moreover, after contracting the edges in Ai and Ai′ , the edges zizi′ and
xijixi′ji′ have been replaced by one edge. Because zi is adjacent to all vertices in
C \ {zi}, this means that the degree of the vertex of H obtained by contracting
xijjzi is at most d + 1 − (2k + 1) − 2 + (2k + 1) = d − 1. This is not possible.
Hence, {x1j1 , . . . , xkjk

} is an independent set in G with a vertex, namely xijj ,
from each Xi, as desired. This completes the proof of Theorem 2. �

4 Weighted Contractions

We first show that Weighted Degree Contractibility is FPT when param-
eterized by k. Recall that xuv denotes the vertex obtained from u and v after
contracting an edge uv in a graph.

Theorem 3. Weighted Degree Contractibility can be solved in time
O(2kk2k(n + m)) for weighted graphs with n vertices and m edges.

Proof. Let G be a weighted graph with n vertices and m edges. Let U = {u ∈
VG | dw

G(u) < d} and let r = |U |. Trivially, if r = 0, then the answer is Yes. If
r ≥ 1, then we branch according to the following four cases.

Case 1. r > 2k.
The algorithm returns No. The reason is that at least one edge incident with
each vertex of U must be contracted to get a graph of minimum weighted degree
at least d, and every edge is incident with at most two vertices of U .

Case 2. r ≤ 2k and there is a vertex u ∈ U with dG(u) ≤ k.
At least one edge incident with u must be contracted to obtain a graph of
minimum degree at least d. Hence, for each edge e incident with u, we call our
algorithm recursively for G/e and parameter k′ = k − 1. The algorithm returns
Yes if for at least one of the new instances the answer is Yes, and No otherwise.
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Case 3. k < r ≤ 2k and dG(u) ≥ k + 1 for all u ∈ U .
If G can be contracted to a graph of minimum weighted degree at least d, then
at least one edge with both its end-vertices in U must be contracted. Note
that there at most k(2k − 1) such edges. If there are no such edges, then the
algorithm returns No. Otherwise, for each e = xy with x, y ∈ U , we call our
algorithm recursively for G/e and parameter k′ = k − 1. The algorithm returns
Yes if for at least one of the new instances the answer is Yes, and No otherwise.

Case 4. r ≤ k and dG(u) ≥ k + 1 for all u ∈ U .
Let U = {u1, . . . , ur}. Each ui is adjacent to at least two vertices in VG \ U .
For i = 1, . . . , r, we do the following. Let y, z be two neighbors of u in VG \ U ,
where we assume that w(uiy) ≤ w(uiz). Let G′ = G/uiy. Then we deduce that
dw

G′(xuiy) = dw
G(ui) + dw

G(y) − 2w(uiy) ≥ w(uiy) + w(uiz) + dw
G(y) − 2w(uiy) =

dw
G(y) − w(uiy) + w(uiz) ≥ dw

G(y) ≥ d. Hence, we contract uiy and recursively
proceed with G′ and U ′ = U \ {ui}. Note that the weighted contraction of uiy
does not change the weighted degrees of the other vertices. Consequently, each
vertex in U ′ is adjacent to at least two vertices of weighted degree at least d in
G′, and U ′ is the set of vertices of weighted degree at most d − 1 in G′. Then
after processing ur, we obtain a graph of minimum degree at least d by using
r ≤ k weighted contractions. Hence, our algorithm always returns Yes in this
case.

To estimate the running time, observe that for each recursive call of our algo-
rithm, we create at most k(2k−1) instances of the problem, and the depth of the
recursion is at most k. Hence, the algorithm runs in time O(2kk2k(n + m)). �

We call the special case of Weighted Degree Contractibility in which
there is no upper bound on the number of weighted contractions, i.e., in which
k = |EG|, the Weighted Contraction Degeneracy problem. Our next
result shows that already this special case is NP-complete.

Theorem 4. Weighted Contraction Degeneracy is NP-complete.

5 Concluding Remarks

Our results are summarized in Table 1. We leave the only missing case in this
table, i.e., determining the complexity of Weighted Degree Contractibil-

ity when parameterized by d, as an open problem. We conclude our paper with
some additional results.

Weighted Face Degree Subgraph. First, we introduce a problem on plane
(multi)graphs and show how to solve it in FPT time by reducing it to Weighted

Degree Contractibility; for the definition of a plane graph and other no-
tions, see Diestel [9].

The weighted face degree of a face f of a plane weighted graph G is the sum of
all the weights of the edges of G incident with f . The Weighted Face Degree

Subgraph problem is to test if a plane weighted graph G can be modified to
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a plane weighted graph of minimum weighted face degree at least d by using at
most k edge removals.

Theorem 5. Weighted Face Degree Subgraph is FPT when parameter-
ized by k.

Proof. Given an instance of Weighted Face Degree Subgraph with a plane
weighted graph G and an integer d we do as follows. Let G∗ denote the geometric
dual of G. There is a one-to-one correspondence between the edges of G and the
edges of G∗. Let e∗ be the edge of G that corresponds to the edge e in G. We
assign weights to the edges of G∗ in the following way: wG∗(e∗) = wG(e).

An embedded contraction of an edge e of a plane graph is a contraction of
e that respects the embedding and keeps multiple edges if they appear (that
is, if the endpoints of e have common neighbors). We observe that the dual of
the graph obtained from a plane graph G by removing an edge e is the graph
obtained from G∗ by an embedded contraction of e∗.

We apply our algorithm from Theorem 3 for Weighted Degree Con-

tractibility for G∗ and degree d. Note that there is a one-to-one corre-
spondence between the faces of G and the vertices of G∗. Therefore, weighted
contractions can simulate the face degree transformations of a graph with em-
bedded contractions and multiple edges. Due to the equivalence between edge
removals in a plane graph and embedded edge contractions in its dual, the se-
quence of k edges of G∗ that is a solution to the Weighted Degree Con-

tractibility problem can be transformed into a sequence of k edge removals
in G. Hence, Weighted Face Degree Subgraph can be solved in FPT time.

�

Weighted Contraction Degeneracy. Recall that the Contraction Degen-

eracy problem is NP-complete, even for bipartite graphs, and that it is FPT
when parameterized by d [6]. Due to Theorem 4, Weighted Contraction

Degeneracy is NP-complete. We prove the following proposition.

Proposition 2. Weighted Contraction Degeneracy is FPT when param-
eterized by d.

Proof. Let G be a weighted graph. We use Bodlaender’s algorithm [5] to check
in linear time whether the treewidth of G is at most 2d − 2.

Suppose that the treewidth of G is at most 2d − 2. Then, because we can
express the problem in monadic second order logic, we may apply the well-known
result of Courcelle [8] to solve it in linear time. Suppose that the treewidth of G
is at least 2d − 1. We note that there exists a tree decomposition in which the
bags are the sets of vertices incident with some minimal edge cut of G. Hence,
G has a minimal edge-cut C = E(U, U) for some U ⊆ VG with at least d edges.
Contracting the edges of G[U ] and G[U ] yields a graph with two vertices and one
edge having weighted degree at least d. So, this case leads to a Yes-answer. �

Acknowledgements. We thank Hans Bodlaender for useful comments.
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Abstract. We introduce Planar Disjoint Paths Completion, a comple-
tion counterpart of the Disjoint Paths problem, and study its parame-
terized complexity. The problem can be stated as follows: given a plane
graph G, k pairs of terminals, and a face F of G, find a minimum-size
set of edges, if one exists, to be added inside F so that the embedding
remains planar and the pairs become connected by k disjoint paths in
the augmented network. Our results are twofold: first, we give an explicit
bound on the number of necessary additional edges if a solution exists.
This bound is a function of k, independent of the size of G. Second, we
show that the problem is fixed-parameter tractable, in particular, it can
be solved in time f(k) · n2.

Keywords: Completion Problems, Disjoint Paths, Planar Graphs.

1 Introduction

Suppose we are given a planar road network with n cities and a set of k pairs of
them. An empty area of the network is specified and we wish to add a minimum-
size set of intercity roads in that area so that the augmented network remains
planar and the pairs are connected by k internally disjoint roads. In graph-
theoretic terms, we are looking for a minimum-size edge-completion of a plane
graph so that an infeasible instance of the Disjoint Paths problem becomes
feasible without harming planarity. In this paper we give an algorithm that solves
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this problem in f(k)·n2 steps. Our algorithm uses a combinatorial lemma stating
that, whenever such a solution exists, its size depends exclusively on k.

The renowned Disjoint Paths Problem (DP) is defined as follows.

DP(G, s1, t1, . . . , sk, tk)

Input: An undirected graph G and k pairs of terminals s1, t1, . . . , sk, tk ∈ V (G).
Question: are there k pairwise internally vertex-disjoint paths Q1, . . . Qk in G such
that path Qi connects si to ti?
(By pairwise internally vertex-disjoint we mean that two paths can only intersect at
a vertex which is a terminal for both.)

DP is NP-complete even on planar graphs [9] but, when parameterized by k,
the problem belongs to the parameterized complexity class FPT, i.e., it can be
solved in time f(k)·nO(1), for some function f. More precisely, it can be solved in
O(f(k) ·n3) time due to the celebrated algorithm of Robertson and Seymour [11]
from the Graph Minors project. For planar graphs, the same problem can be
solved in f(k) · n [10]. We write DP(G, s1, t1, . . . , sk, tk) for the disjoint paths
problem on input G with terminals s1, t1, . . . , sk, tk.

We introduce a completion counterpart of this problem, Planar Disjoint

Paths Completion (PDPC), which is of interest on infeasible instances of DP,
and we study its parameterized complexity, when parameterized by k. We are
given an embedding of a, possibly disconnected, planar graph G in the sphere,
k pairs of terminals s1, t1, . . . , sk, tk ∈ V (G), a positive integer �, and an open
connected subset F of the surface of the sphere, such that F and G do not
intersect (we stress that the boundary of F is not necessarily a cycle). We want
to determine whether there is a set of at most � edges to add, the so-called patch,
so that

(i) the new edges lie inside F and areincident only toverticesof Gon the boundary
of F,
(ii) the new edges do not cross with each other or with G, and
(iii) in the resulting graph, which consists of G plus the patch, DP has a solution.

PDPC is NP-complete even when � is not a part of the input and G is planar
by the following simple reduction from DP: add a triangle T to G and let F be
the interior of T. That way, we force the set of additional edges to be empty and
obtain DP as a special case.

Notice that our problem is polynomially equivalent to the minimization prob-
lem where we ask for a minimum-size patch: simply solve the problem for all
possible values of �. Requiring the size of the patch to be at most � is the pri-
mary source of difficulty. In case there is no restriction on the size of the patch
and we simply ask whether one exists, the problem is in FPT by a reduction to
DP, which is summarized as follows. For simplicity, let F be an open disk. Let
G′ be the graph obtained by ”sewing” along the boundary of F an O(n)×O(n)-
grid. By standard arguments, PDPC has a solution on G if and only if DP has
a solution on G′. A similar, but more involved, construction applies when F is
not an open disk.
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Parameterizing completion problems. Completion problems are natural to de-
fine: take any graph property, represented by a collection of graphs P , and ask
whether it is possible to add edges to a graph so that the new graph is in P .
Such problems have been studied for a long time and some of the most promi-
nent are the following: Hamiltonian Completion [3, GT34], Path Graph

Completion [3, GT36] Proper Interval Graph Completion [4] Minimum

Fill-In [12] Interval Graph Completion [3, GT35].
Kaplan et al. in their seminal paper [7] initiated the study of the parame-

terized complexity of completion problems and showed that Minimum Fill-In,
Proper Interval Graph Completion and Strongly Chordal Graph

Completion are in FPT when parameterized by the number of edges to add.
Recently, the problem left open by [7], namely Interval Graph Completion

was also shown to be in FPT [6]. Certainly, for all these problems the testing
of the corresponding property is in P, while for problems such as Hamiltonian

Completion, where P is the class of Hamiltonian graphs, there is no FPT algo-
rithm, unless P=NP. For the same reason, one cannot expect an FPT-algorithm
when P contains all YES-instances of DP, even on planar graphs. We consider
an alternative way to parameterize completion problems, which is appropriate
for the hard case, i.e., when testing P is intractable: we parameterize the prop-
erty itself. In this paper, we initiate this line of research, by considering the
parameterized property Pk that contains all YES-instances of DP on planar
graphs with k pairs of terminals.

Basic concepts. As open sets are not discrete structures, we introduce some for-
malism that will allow us to move seamlessly from topological to combinatorial
arguments. The definitions may look involved at first reading, but this is war-
ranted if one considers, as we do, the problem in its full generality where the
input graph is not necessarily connected.

Let G be a graph embedded in the sphere Σ0. Given an open set X ⊆ Σ0,
let clos(X) and ∂X denote the closure and the boundary of X, respectively. We
define V (X) = V (G) ∩ ∂X. A noose is a Jordan curve of Σ0 that meets G only
on vertices. Let D be a finite collection of mutually non-intersecting open disks
of Σ0 whose boundaries are nooses and such that each point that belongs to
at least two such nooses is a vertex of G. We define ID =

⋃
D∈D D and define

ΓD as the Σ0-embedded graph whose vertex set is V (ID) and whose edge set
consists of the connected components of the set ∂ID \V (ID). Notice that, in the
definition of ΓD, we permit multiple edges, loops, or vertex-less edges.

Let J be an open subset of Σ0. J is a cactus set of G if there is a collection
D as above such that J = ID, all biconnected components of the graph ΓD are
cycles, and G ⊆ clos(J). Given such a J, we define ΓJ = ΓD. Two cactus
sets J and J′ of G are isomorphic if ΓJ and ΓJ′ are topologically isomorphic.
Throughout this paper we use the standard notion of topological isomorphism
between planar embeddings, see Section 2. Given a cactus set J, we define for
each vertex v ∈ V (J) its multiplicity μ(v) to be equal to the number of connected
components of the graph ΓJ\{v} minus the number of connected components of
ΓJ plus one. We also define μ(J) =

∑
v∈V (J) μ(v). Observe that, given a cactus
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set J of G, the edges of G lie entirely within the interior of J. The boundary
of J corresponds to a collection of simple closed curves such that (i) no two of
them intersect at more than one point and (ii) they intersect with G only at
(some of) the vertices in V (G). Cactus sets are useful throughout our paper as
“capsule” structures that surround G and thus they abstract the interface of a
graph embedding with the rest of the sphere surface.

We say that an open set F of Σ0 is an outer-cactus set of G if Σ0 \ clos(F)
is a cactus set of G. See Fig. 1.(ii). For example, if G is planar, any face F of
G can be used to define an outer-cactus set, whose boundary meets G only at
the vertices incident to F. Our definition of an outer-cactus set is more general:
it can be a subset of a face F, meeting the boundary of F only at some of its
vertices.

Let G be an input graph to DP, see Fig. 1.(i). Given an outer-cactus set F
of G, an F-patch of G is a pair (P,J) where (i) J is a cactus set of G, where
Σ0 \ clos(J) ⊆ F and (ii) P is a graph embedded in Σ0 without crossings such
that E(P ) ⊆ Σ0 \clos(J), V (P ) = V (J) (see Figures 1.(iii) and 1.(iv)). Observe
that the edges of P will not cross any edge in E(G). In the definition of the F-
patch, the graph P corresponds to the new edges we add. The vertices in V (F)
define the vertices of G which we are allowed to include in P. V (J) is meant
to contain those vertices of V (F) that eventually become incident with a new
edge. In terms of data structures, we assume that a cactus set J is represented
by the (embedded) graph ΓJ. Similarly an outer-cactus set F is represented by
the (embedded) graph ΓΣ0\clos(F).

We restate now the definition of the Planar Disjoint Paths Completion

problem as follows:

PDPC(G, s1, t1, . . . , sk, tk, �,F)

Input: A graph G embedded in Σ0 without crossings, terminals s1, t1, . . . , sk, tk ∈
V (G), a positive integer �, and an outer-cactus set F of G.
Parameter: k
Question: Is there an F-patch (P,J) of G, such that |P | ≤ � and DP(G ∪
P, s1, t1, . . . , sk, tk) has a solution? Compute such an F-patch if it exists.

If such an F-patch exists, we call it a solution for PDPC. In the corresponding
optimization problem, denoted by min-PDPC, one asks for the minimum � for
which PDPC has a solution, if one exists. See Fig. 1 for an example input of
PDPC and a solution to it.

Our results. Notice that in the definition of PDPC the size of the patch does
not depend on the parameter k. Thus, it is not even obvious that PDPC belongs
to the parameterized complexity class XP, i.e., it has an algorithm of time nf(k)

for some function f. Our first contribution, Theorem 2, is a combinatorial one:
we prove that if a patch exists, then its size is bounded by k2k

. Therefore, we can
always assume that � is bounded by a function of k. This bound is a departure
point for the proof of the main algorithmic result of this paper:
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(i)

s1

t2
t1

t3

s3

s2 s2

s3

(ii)

s1

F

t1

F

F

t3

t2

F

J3

(iii)

J2
J1

(iv)

t3

s2

s3

t2

s1

t1

Fig. 1. An example input of the PDPC problem and a solution to it when � = 8: (i)
The graph embedding in the input and the terminals s1, t1, s2, t2, s3, t3. The closure of
the grey area contains the graph G and the big vertices are the terminals. The white
area is a face of G. (ii) The input of the problem, consisting of G, the terminals and the
outer-cactus set F. The solid black vertices are the vertices of G that are also vertices
of V (F). (iii) The solution of the problem consisting of the F-patch (P,J) where the
edges of P are the dashed lines and J = J1 ∪ J2 ∪ J3. (iv) The input and the solution
together where the validity of the patch is certified by 3 disjoint paths.

Theorem 1. PDPC ∈ FPT. In particular, PDPC can be solved in f(k) · n2

steps, where f is a function that depends only on k. Therefore, min-PDPC can
be solved in g(k) · n2 steps.

We present now the proof strategy and the ideas underlying our results.

1.1 Proof Strategy

Combinatorial Theorem. In Theorem 2, we prove that every patch whose size
is larger than k2k

, can be replaced by another one of strictly smaller size. In
particular, we identify a region B of F that is traversed by a large number of
segments of different paths of the DP solution. Within that region, we apply a
global topological transformation that replaces the old patch by a new, strictly
smaller one, while preserving its embeddability. The planarity of the new patch is
based on the fact that the new segments are reflections in B of a set of segments
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of the feasible DP solution that previously lied outside B. This combinatorial
result allows us to reduce the search space of the problem to one whose size
is bounded by min{�, k2k}. The construction of the corresponding collection of
“candidate solutions” can be done in advance, for each given k, without requiring
any a priori knowledge of the input graph G.

We note that the proof of our combinatorial result could be of independent
interest. A simpler variant of it, has been subsequently used in [1].

The algorithm for PDPC. As the number of patches is bounded by a function
of k, we need to determine whether there is a correct way to glue one of them
on vertices of the boundary of the open set F so that the resulting graph is a
YES-instance of the DP problem. For each candidate patch P̃ , together with
its corresponding candidate cactus set J̃, we define the set of compatible graphs
embedded in J̃. Each compatible graph H̃ consists of unit-length paths and
has the property that P̃ ∪ H̃ contains k disjoint paths. Intuitively, each H̃ is
a certificate of the part of the DP solution that lies within G when the patch
in F is isomorphic to P̃ . It therefore remains to check for each H̃ whether it
can be realized by a collection of actual paths within G. For this, we set up
a collection H of all such certificates. Checking for a suitable realization of a
member of H in G is still a topological problem that depends on the embedding
of G: graphs that are isomorphic, but not topologically isomorphic, may certify
different completions. For this reason, our next step is to enhance the structure of
the members of H so that their realization in G reduces to a purely combinatorial
check. (Cf. Section 4.1 for the definition of the enhancement operation). We show
in Lemma 5 that for the enhanced certificates, this check can be implemented
by rooted topological minor testing. For this check, we can apply the recent
algorithm of [5] that runs in h1(k) · n3 steps and obtain an algorithm of overall
complexity h2(k) · n3.

We note that the use of the complicated machinery of the algorithm in [8]
can be bypassed towards obtaining a simpler and faster f(k) · n2 algorithm.
This is possible because the generated instances of the rooted topological minor
problem satisfy certain structural properties. This allows the direct application
of the Irrelevant Vertex Technique introduced in [11] for solving, among others,
the Disjoint Paths Problem. The details of this improvement will appear in
the full version of a paper.

2 Preliminaries

We consider finite graphs. For a graph G we denote the vertex set by V (G) and
the edge set by E(G). If G is Σ0-embedded we also refer to the edges of G and
the graph G as the corresponding sets of points in Σ0. Clearly the edges of G
correspond to open sets and G itself is a closed set. We denote by F (G) the
set of all the faces of G, i.e. all connected components of Σ0 \ G. Given a set
S ⊆ V (G) we say that the pair (G, S) is a graph rooted at S. We also denote as
P(G) the set of all paths in G with at least one edge. Given a path P ∈ P(G),
we denote by I(P ) the set of internal vertices of P . Given a vertex v ∈ V (G),
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and a positive integer r we denote by N r
G(v) the set of all vertices in G that are

within distance at most r from v.

Rooted Topological Minors. Let H and G be graphs, SH be a subset of
vertices in V (H), SG be a subset of vertices in V (G), and ρ be a bijection from
SH to SG. We say that (H, SH) is a ρ-rooted topological minor of (G, SG), if
there exist injections ψ0 : V (H) → V (G) and ψ1 : E(H) → P(G) such that

1. ρ ⊆ ψ0,
2. for every e = {x, y} ∈ E(H), ψ1(e) is a (ψ0(x), ψ0(y))-path in P(G), and
3. all e1, e2 ∈ E(H) with e1 
= e2 satisfy I(ψ1(e1)) ∩ V (ψ1(e2)) = ∅.

In words, when H is a topological minor of G, G contains a subgraph which is
isomorphic to a subdivision of H.

Contractions. Let G and H be graphs and let σ : V (G) → V (H) be a surjective
mapping such that

1. for every vertex v ∈ V (H), the graph G[σ−1(v)] is connected;
2. for every edge {v, u} ∈ E(H), the graph G[σ−1(v) ∪ σ−1(u)] is connected;
3. for every {v, u} ∈ E(G), either σ(v) = σ(u), or {σ(v), σ(u)} ∈ E(H).

We say that H is a σ-contraction of G or simply that H is a contraction of G if
such a σ exists.

Observation 1. Let H and G be graphs such that H is a σ-contraction of G.
If x, y ∈ V (G), then the distance in G between x and y is at least the distance
in H of σ(x) and σ(y).

We also need the following topological lemma.

Lemma 1. Let G be a Σ0-embeddable graph and let J be a cactus set of it. Let
also M be a Σ0-embedded graph such that M ∩ J = ∅ and V (M) ⊆ V (J). Then
there is a closed curve K in Σ \ clos(J) meeting each edge of M twice.

Topological Isomorphism. Given a graph G embedded in Σ0, let f be a face
in F (G) whose boundary has ξ connected components A1, . . . , Aξ. We define the
set π(f) = {π1, . . . , πξ} such that each πi is the cyclic ordering of V (Ai), possible
with repetitions, defined by the way vertices are met while walking along Ai in
a way that the face f is always on our left side. Clearly, repeated vertices in this
walk are cut-vertices of G.

Let G and H be graphs embedded in Σ0. We say that G and H are topologically
isomorphic if there exist bijections φ : V (G) → V (H) and θ : F (G) → F (H) such
that

1. φ is an isomorphism from G to H , i.e. for every pair {x, y} of distinct
vertices in V (G), {x, y} ∈ E(G) iff {φ(x), φ(y)} ∈ E(H).

2. For every face f ∈ F (G), φ(π(f)) = π(θ(f)).

In the definition above, by φ(π(f)) we mean {φ(π1), . . . , φ(πξ)}, where, if πi =
(x1, . . . , xζi , x1), then by φ(πi), we mean (φ(x1), . . . , φ(xζi), φ(x1)). Notice that
it is possible for two isomorphic planar graphs to have embeddings that are
not topologically isomorphic (see [2, page 93] for such an example and further
discussion on this topic).
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Treewidth. A tree decomposition of a graph G is a pair (X , T ) where T is a
tree with nodes {1, . . . , m} and X = {Xi | i ∈ V (T )} is a collection of subsets
of V (G) (called bags) such that:

1.
⋃

i∈V (T ) Xi = V (G),
2. for each edge {x, y} ∈ E(G), {x, y} ⊆ Xi for some i ∈ V (T ), and
3. for each x ∈ V (G) the set {i | x ∈ Xi} induces a connected subtree of T .

The width of a tree decomposition ({Xi | i ∈ V (T )}, T ) is maxi∈V (T ) {|Xi| − 1}.
The treewidth of a graph G denoted tw(G) is the minimum width over all tree
decompositions of G.

3 Bounding the Size of the Completion

In this section we show:

Theorem 2. If there is a solution for PDPC(G, s1, t1, . . . , sk, tk, �,F), then
there is a solution (P,J) with |E(P )| ≤ k2k

.

For the proof, we use the following combinatorial lemma.

Lemma 2. Let Σ be an alphabet of size |Σ| = k. Let w ∈ Σ∗ be a word over
Σ. If |w| > 2k, then w contains an infix y with |y| ≥ 2, such that every letter
occurring in y occurs an even number of times in y.

Proof sketch of Theorem 2. Let (P,J) be a solution for PDPC(G, s1, t1, . . . , sk,
tk, �,F) with |E(P )| minimal. Consider the embedding of G∪P in the sphere Σ0,
and let Q1, . . . , Qk be the paths of a DP solution in G∪P . By the minimality of
|E(P )| we can assume that the edges of P are exactly the edges of

⋃
i∈{1,...,k} Qi

that are not in G. For the same reason, two edges in P have a common endpoint
x that is not a terminal only if x is a cut-vertex of ΓJ.

Let P ∗ denote the graph obtained by the dual of P ∪ ΓJ, after removing the
vertices corresponding to the faces of ΓJ. We show that the maximum degree of
P ∗ is bounded by k and the diameter of P ∗ is bounded by 2k. Then |E(P ∗)| =
|E(P )| ≤ k2k

and we are done. Note that every edge in E(P ∗) corresponds to
an edge in exactly one path of Q1, . . . , Qk. Hence, every path R = r0, . . . , rζ in
P ∗ corresponds to a word w ∈ {Q1, . . . , Qk}∗ in a natural way. It is enough to
prove the following claim.

Claim. The word w contains no infix y with |y| ≥ 2, such that every letter
occurring in y occurs an even number of times in y.

Proof of Claim. Towards a contradiction, suppose that w contains such an infix
y. We may assume that w = y. Let ER ⊆ E(P ) be the set of edges corresponding
to the edges of path R ⊆ P ∗. Then |ER| ≥ 2 because u (and hence R) has length
at least 2. Let B ⊆ Σ0 be the open set defined by the union of all edges in
ER and all faces of the graph P ∪ ΓJ that are incident to them. Clearly, B is a
connected subset of F with the following properties:
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(a) B contains all edges in ER and no other edges of P ,
(b) the ends of every edge in ER lie on the boundary ∂B, and
(c) every edge in E(P ) \ ER has empty intersection with B.

We consider an ‘up-and-down’ partition (U = {u1, . . . , ur}, D = {d1, . . . , dr}) of
the endpoints of the edges in ER as follows: traverse the path R in P ∗ in some
arbitrary direction and when the ith edge ei ∈ ER is met, the endpoint ui of e
on the left of this direction is added to U and the right endpoint di is added to
D. Notice that U and D may be multisets because some vertices in P may have
bigger degree. Indeed, if x ∈ V (P ) has degree larger than one, then either x is a
terminal and has degree at most k or x is a cutpoint of ΓJ and has degree exactly
2. For each i ∈ {1, . . . , r} we say that ui is the counterpart of di and vice versa.

By assumption, every path Qi crosses R an even, say 2ni, number of times.
Now for every path Qi satisfying E(Qi) ∩ ER 
= ∅, we number the edges
in E(Qi) ∩ ER by ei

1, . . . , e
i
2ni

in the order of their appearance when travers-
ing Qi from si to ti and we orient them from si to ti. We introduce shortcuts
for Qi as follows: for every odd number j ∈ {1, . . . , 2ni}, we replace the subpath
of Qi from tail(ei

j) to head(ei
j+1) by a new edge f i

j in D.
After having done this for all odd numbers j ∈ {1, . . . , 2ni}, we obtain a new

path Q′
i from si to ti that uses strictly less edges in B than Qi. Having replaced

all paths Qi with E(Qi) ∩ ER 
= ∅ in this way by a new path Q′
i, we obtain

from P a new graph P ′ by replacing every pair of edges ei
j , e

i
j+1 ∈ E(P ) by

f i
j for all i ∈ {1, . . . , k} with E(Qi) ∩ ER 
= ∅, and for all j ∈ {1, . . . , 2ni}, j

odd. We denote by E′
R the set of all replacement edges f i

j . We also remove every
vertex that becomes isolated in P ′ during this operation. Then it is easy to verify
that: 1) None of the edges of ER survives in E(P ′), 2) |E(P ′)| < |E(P )|, and 3)
DP(G ∪ P ′, s1, t1, . . . , sk, tk) has a solution.

If we show that, for some suitable cactus set J′ of G, (P ′,J′) is an F-patch, then
we are done, because |E(P ′)| < |E(P )|. In what follows, we prove that P ′ can also
be embedded without crossings in clos(F) such that E(P ′) ⊆ Σ0 \ ∂(F). For this
it suffices to prove that the edges in E′

R can be embedded in B without crossings.
For every path Qi with E(Qi)∩ER 
= ∅ let F i

j denote the subpath of Qi from
head(ei

j) to tail(ei
j+1), for j ∈ {1, . . . , 2ni}, j odd (this path may be edgeless

only in the case where head(ei
j) = tail(ei

j+1) is a cut-vertex of ΓJ). We replace
F i

j by a single edge ci
j (when the corresponding path is edgeless, the edge ci

j is
a loop outside B). We consider the graph C with vertex set V (P ) and edge set
{ci

j | i ∈ {1, . . . , k}, E(Qi) ∩ ER 
= ∅, j ∈ {1, . . . , 2ni}, j odd}.
Our strategy consists of a two-step transformation of this embedding. The

first step creates an embedding of C inside clos(B) without moving the vertices.
Indeed, notice that C is embedded in Σ0 \B without crossings such that all the
endpoints of the edges in C lie on the boundary of B. Moreover, because none
of the endpoints of F i

j can be a terminal, no two edges of C have a common
endpoint. By standard topological arguments, we consider a new non-crossing
embedding of C where all of its edges lie inside B. (Recall that all edges of ER

have been deleted.) This transformation maps every edge ci
j to a new edge inside

B with the same endpoints.
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Fig. 2. Example of the transformation in the proof of the Claim; P is on the left and
P ′ is shown on the right. The dashed lines represent the edges of C.

The second step “reflects” the resulting embedding along the axis defined
by the path R such that each vertex is exchanged with its counterpart. Now
define (ci

j)′ so that it connects tail(ei
j) and head(ei

j+1) – these are exactly the
counterparts of head(ei

j) and tail(ei
j+1). Due to symmetry, the (ci

j)′ are pairwise
non-crossing, and none of them crosses a drawing of an edge in E(P ) \ ER.
Hence the (ci

j)′ together with the drawing of edges in E(P ) \ ER provide a
planar drawing of P ′ (where (ci

j)′ is the drawing of f i
j). We finally define (up

to isomorphism) the cactus set J′ of G such that ΓJ′ is obtained from ΓJ after
dissolving the vertices that became isolated during the construction of P ′. It is
easy to verify that (P ′,J) is an F-patch of G and this concludes the proof of the
Claim.

Indeed, if the above claim holds, then, by Lemma 2, it follows that n ≤ 2k,
and hence the diameter of P ∗ is bounded by 2k. Notice also that the degree of
any v ∈ V (P ∗) is bounded by k. Otherwise, v ∈ V (P ∗) is incident to two edges
e1, e2 ∈ E(P ∗) that correspond to the same letter Qi ∈ {Q1 . . . , Qk} and the
path e1, e2 contradicts the claim. �

Let L be a list of all simple planar graphs with at most min{�, k2k} edges and no
isolated vertices. We call a graph in L a completion. As a first step, our algorithm
for PDPC computes the list L. Obviously, the running time of this process is
bounded by a function depending only on k.

4 The Algorithm for Planar-Dpc

The fact that the size of L is bounded by a function of k implies that PDPC

is in XP. Indeed, given the list L, for each completion P̃ ∈ L we define the
graph QP̃ = (V (P̃ ), ∅) and we consider all cactus sets J̃ of QP̃ where (P̃ , J̃) is
a (Σ0 \ clos(J̃))-patch of QP̃ and V (J̃) = V (P̃ ). We denote the set of all such
pairs (P̃ , J̃) by J and observe that the number of its elements (up to topological
isomorphism of the graph P̃ ∪ ΓJ̃) is bounded by a function of k.

For each pair (P̃ , J̃) ∈ J , we check whether there exists an F-patch (P,J)
of G such that P̃ ∪ ΓJ̃ and P ∪ ΓJ are topologically isomorphic and DP has a
solution in the graph G ∪ P . As there are nz(k) ways to choose (P,J) and each
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check can be done in O(z1(k) ·n3) steps, we conclude that PDPC can be solved
in nz2(k) steps. In the remainder of the paper, we will prove that the problem is
actually in FPT.

The main bottleneck is that there are too many ways to identify V (J̃) with
vertices of V (F), because we cannot bound |V (F)| by a function of k. To over-
come this, we characterize the positive instances of PDPC by a rooted topo-
logical minor (H̃, T̃ ) of the original graph G, that witnesses the fact that (P̃ , J̃)
corresponds to the desired F-patch of G.

Given a pair (P̃ , J̃) ∈ J , we say that a rooted simple graph (H̃, T̃ = {a1, b1, . . . ,
ak, bk}) embedded in Σ0, is compatible with (P̃ , J̃) when

1. for every e ∈ E(H̃), e ⊆ J̃,
2. H̃ has at most 2(|E(P̃ )| + k) vertices,
3. V (H̃) \ T̃ ⊆ V (J̃) ⊆ V (H̃),
4. DP(P̃ ∪ H̃, a1, b1, . . . , ak, bk) has a solution.

We define H = {(J̃, H̃, T̃ ) | there exists a (P̃ , J̃) ∈ J such that (H̃, T̃ ) is com-
patible with (P̃ , J̃)}.

And notice that |H| is bounded by some function of k. Assuming that (P,J)
is a solution for PDPC(G, s1, t1, . . . , sk, tk, �,F), consider the parts of the cor-
responding disjoint paths that lie within G. The intuition behind the definition
above is that H̃ is a certificate of these “partial paths” in G. Clearly, the num-
ber of these certificates is bounded by |H| and they can be enumerated in f0(k)
steps, for some suitable function f0. For example, for the solution depicted in
Fig. 1.(iv), H̃ consists of 7 disjoint edges, one for each subpath within G. Our
task is to find an FPT-algorithm that for every such certificate checks whether
the corresponding partial paths exist in G.

Given an open set O, a weakly connected component of O is the interior of
some connected component of the set clos(O). Notice that a weakly connected
component is not necessarily a connected set.

Let F̄1, . . . , F̄λ be the weakly connected components of the set Σ0 \ clos(F).
We call such a component F̄i active if clos(F̄i)∩T 
= ∅. We denote the collection
of all active components by FF. A crucial observation is that if an F-patch exists
we can always replace it by one that bypasses the inactive components.

Lemma 3. Let (G, s1, t1, . . . , sk, tk,F) be an instance for the PDPC problem
and let G′ = G[

⋃
F̄i∈FF

clos(F̄i) ∩ V (G)] and F′ = Σ0 \
⋃

F̄i∈FF
clos(F̄i). Then

(G′, s1, t1, . . . , sk, tk,F′) is an equivalent instance.

By Lemma 3, we can assume from now on that λ ≤ 2k. Also we restrict H so that
it contains only triples (J̃, H̃, T̃ ) such that the weakly connected components of
the set J̃ are exactly λ.

4.1 The Enhancement Operation

Consider the triple τ = (J̃, H̃, T̃ ) ∈ H. Let J̃1, . . . , J̃λ be the weakly connected
components of the set J̃. Then we define C̃i = ΓJ̃i ∪ (clos(J̃i) ∩ H̃) for i ∈
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{1, . . . , λ} and we call them parts of τ . Also we set T̃ i = T̃ ∩ V (C̃i), 1 ≤ i ≤ λ.
We now apply the following enhancement operation on each part of τ : For i =
1, . . . , λ, we consider the sequence Rτ = (R1

τ , . . . , Rλ
τ ) where Ri

τ is the rooted
graph (R′i

τ , T̃ i∪{xi
new}) such that R′i

τ is defined as follows: Take the disjoint union
of the graph C̃i and a copy of the the wheel Wμ(J̃i) with center xi

new and add
μ(J̃i) edges, called i-external between the vertices of V (J̃i) and the peripheral
vertices of Wμ(J̃i) such that the resulting graph remains Σ0-embedded and each
vertex v ∈ V (J̃i) is incident to μ(v) non-homotopic edges not in J̃. As the graph
ΓJ̃i is connected and planar, the construction of R′i

τ is possible. Observe also
that R′i

τ \ J̃i is unique up to topological isomorphism. To see this, it is enough
to verify that for every two vertices in R′i

τ \ J̃i of degree ≥ 3 there are always 3
disjoint paths connecting them.

We define R = {Rτ | τ ∈ H} and observe that |R| is bounded by a function
We now define (C1, . . . , Cλ) such that Ci = ΓF̄i∪(clos(F̄i)∩G), i ∈ {1, . . . , λ}.

We call the graphs in (C1, . . . , Cλ) parts of G and let T i = T ∩ V (Ci), 1 ≤
i ≤ λ, where T = {s1, t1, . . . , sk, tk}. As above we define the enhancement of
the parts of G as follows. For each i = 1, . . . , λ we define the rooted graph
G∗i = (G′i, T i ∪ {x∗i

new}) where G′i is defined as follows: take the disjoint union
of Ci and the wheel W ∗

μ(F̄i)
with center x∗i

new and add μ(F̄i) edges, called ∗i-
external, between the vertices of V (F̄i) and the peripheral vertices of W ∗

μ(F̄i)

such that the resulting graph remains Σ0-embedded and each vertex v ∈ V (F̄i) is
incident to μ(v) non-homotopic edges. As above, each G′i is possible to construct
and G′i \ F̄i is unique up to topological isomorphism.

The purpose of the above definitions is twofold. First, they help us to treat
separately each of the parts of G and try to match them with the correct parts of
τ . Second, the addition of the wheels to each part gives rise to a single, uniquely
embeddable interface, between the part and its “exterior” and this helps us to
treat embeddings as abstract graphs. Therefore, to check whether a part of τ is
realizable within the corresponding part of G, we can use the rooted version of
the topological minor relation on graphs as defined in Section 2.

4.2 The Stretching Lemma

A bijection ρ from T̃ = {a1, b1, . . . , ak, bk} to T = {s1, t1, . . . , sk, tk} is legal if
for every i ∈ {1, . . . , k}, there exists some j ∈ {1, . . . , k} such that ρ((ai, bi)) =
(sj , tj).

Let τ ∈ H and let ρ be a legal bijection from T̃ to T and let ρi be the
restriction of ρ in T̃i. We say that Rτ = (R1

τ , . . . , Rλ
τ ) is ρ-realizable in G if there

exists a bijection φ : {1, . . . , λ} → {1, . . . , λ} such that for i = 1, . . . , λ, Ri
τ is a

ρ̂i-rooted topological minor of G∗φ(i) were ρ̂i = ρi ∪ {(xi
new, x

∗φ(i)
new )}.

By enumerating all possible bijections φ, we enumerate all possible correspon-
dences between the parts of of G and the parts of τ . In order to simplify notation,
we assume in the remainder of this section that φ is the identity function.

The following lemma is crucial. It shows that when Ri
τ is a topological minor

of G∗i we can always assume that all vertices and edges of C̃i are mapped via
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ψ0 and ψ1 to vertices and paths in clos(F̄i); the wheel Wμ(J̃i) is mapped to a
“sub-wheel” of Wμ(F̄i) while i-external edges are mapped to ∗i-external edges.
This proves useful in the proof of Lemma 5 as the i-external edges represent the
interface of the completion P̃ with C̃i. The topological minor relation certifies
that the same interface is feasible between the corresponding part Ci of G and
its “exterior”. Lemma 4 establishes also that the image of ΓJ̃i can be “stretched”
so that it falls on ΓF̄i . As all the vertices in V (F̄i) are within distance 2 from the
artificial terminal x∗i

new in G∗i, this allows us to locate within G∗i the possible
images of V (R′i

τ ) in a neighborhood of the terminals. It is then safe to look for
an irrelevant vertex far away from this neighborhood.

Lemma 4. Let Ri
τ be a ρ̂i-rooted topological minor of G∗i were ρ̂i = ρi ∪

{(xi
new, x∗i

new)}, for i = 1, . . . , λ. Let also ψi
0 and ψi

1 be the functions (cf. Sec-
tion 2) certifying this topological minor relation. Then ψi

0 and ψi
1 can be modified

so that the following properties are satisfied.

1. if ẽ is an edge of the wheel Wμ(J̃i) incident to xi
new, then ψi

1(ẽ) is an edge
incident to x∗i

new.
2. if ẽ is an edge of the wheel Wμ(J̃i) not incident to xi

new, then ψi
1(ẽ) is an

x∗i
new-avoiding path of W ∗

μ(F̄i)
.

3. if ẽ is an i-external edge between V (J̃i) and V (Wμ(J̃i)) \ {xi
new}, then ψ1(e)

is a path consisting of an ∗i-external edge between V (F̄i) and V (Wμ(F̄i)) \
{x∗i

new}.
4. ψi

0(V (J̃i)) ⊆ V (F̄i).

4.3 Reducing PDPC to Topological Minor Testing

Lemma 5. PDPC(G, t1, s1, . . . , tk, sk, �,F) has a solution if and only if there
exists a τ = (J̃, H̃, T̃ ) ∈ H and a legal bijection ρ : T̃ → T such that Rτ is
ρ-realizable in G.

In [8], Grohe, Kawarabayashi, Marx, and Wollan gave an h1(k) · n3 algorithm
for checking rooted topological minor testing. Combining their algorithm with
Lemma 5, we obtain an h2(k)·n3 algorithm for PDPC. Therefore, PDPC ∈ FPT.

5 Further Extensions and Open Problems

We chose to tackle the disjoint-paths completion problem with the topological
restriction of having non-crossing patch edges. A natural extension of this prob-
lem is to allow a fixed number ξ > 0 of crossings in the patch. Using the same
techniques, we can devise an f(k) · n2 algorithm for this problem as well. The
only substantial difference is a generalization of our combinatorial result (The-
orem 2) under the presence of crossings. The proof is omitted in this extended
abstract.

An interesting topic for future work is to define and solve the disjoint-paths
completion problem for graphs embedded in surfaces of higher genus. A necessary
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step in this direction is to extend Theorem 2 for the case where the face to be
patched contains handles.

Another issue is to extend the whole approach for the case where the patched
faces are more than one. This aim can be achieved without significant deviation
from our methodology, in case the number of these faces is bounded. However,
when this restriction does not apply, the problem seems challenging and, in our
opinion, it is not even clear whether it belongs to FPT.

Acknowledgement. We wish to thank the anonymous reviewers of an earlier
version of this paper for valuable comments and suggestions.
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Abstract. A vector with at most k nonzeros is called k-sparse. We show
that enumerating the support vectors of k-sparse solutions to a system
Ax = b of r-sparse linear equations (i.e., where the rows of A are r-
sparse) is fixed-parameter tractable (FPT) in the combined parameter
r, k. For r = 2 the problem is simple. For 0, 1-matrices A we can also
compute an O(rkr) kernel. For systems of linear inequalities we get an
FPT result in the combined parameter d, k, where d is the total number
of minimal solutions. This is achieved by interpeting the problem as a
case of group testing in the complex model. The problems stem from the
reconstruction of chemical mixtures by observable reaction products.

1 Introduction

Let A be an m × n matrix with entries aij ≥ 0 (1 ≤ i ≤ m, 1 ≤ j ≤ n), and let
b be a vector of length m with entries bi ≥ 0. A vector with at most k nonzero
entries is k-sparse. Given a number k, usually much smaller than n, we want to
determine the k-sparse nonnegative solutions x of Ax = b, where the rows of A
are r-sparse. We pose the same problem for systems of linear inequalities, where
both relations ≤ and ≥ may appear mixed in the different rows.

This is certainly a fundamental problem, appearing in machine learning and
related areas like inference or reconstruction problems in computational biology,
see [12] for an example. A particular application we have in mind is the quan-
tification of proteins in an unknown mixture. (For some background information
on protein inference see [7,15].) There the columns of A correspond to candi-
date proteins, and the rows correspond to peptides, i.e., products of enzymatic
digestion, or just masses of peptides. Entry aij is the number of occurrences of
peptide i in protein j. The aij are, of course, nonnegative integers, moreover
they are mostly 0, and the nonzeros are typically just 1. The real-valued vector
b indicates the measured amounts of peptides, obtained by mass spectroscopy.
We want to infer which proteins are in the mixture, and their amounts.

A is a matrix of simulated digestion results with several 100,000 rows and
colums. However, some other input parameters are small, which suggests the
question of parameterized complexity: After separation procedures some small
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number k of proteins are present, and a peptide typically appears in a small
number r of candidate proteins, thus the rows of A are r-sparse. Due to these
facts, only some hundreds of entries of b are nonzero. Of course, we can ignore
rows i with bi = 0, and we immediately know xj = 0 if some i exists with bi = 0
but aij > 0. After deletion of these trivial rows and columns there remains a
submatrix of manageable size. We still denote the resulting system Ax = b, where
b is now strictly positive. Simulations with protein data suggest that many rows
are only 2-sparse. By solving Ax = b we work under the idealized assumption
that b has been accurately measured. Under experimental conditions with much
noise it is more realistic to consider inequalities, in the simplest case just with
a reliable lower und upper bound for each bi (so that every peptide gives rise to
two inequalities).

Formal Notation and Results. Let R be any set of rows, and let C be any
set of columns of matrix A. We denote by b[R] and x[C] the vector b and x
restricted to its entries corresponding to R and C, respectively. A[R] and A[C]
denotes the submatrix of A restricted to R and C, respectively, and A[R, C]
denotes the submatrix of A being the intersection of A[R] and A[C]. Sometimes
we identify row and column sets with the sets of their indices, without risk of
confusion. For any vector y, as usual, yi is the entry at index i. The support of
a vector is the set of indices with nonzero entries. A column set C �= ∅ is called
feasible if the system A[C] · x[C] = b has some solution where all entries of x[C]
are positive. A column set C is minimal feasible if C is feasible but no C′ ⊂ C
is. The definition applies similarly to a system of linear inequalities.

A problem with input size n and some other parameter k is fixed-parameter
tractable (FPT) if it is solvable in f(k) · p(n) time, where f is any computable
function but p is a polynomial. When the polynomial factor is not in the focus,
the time bound is often expressed as O∗(f(k)).

Finding a sparsest solution to a linear system is NP-hard in general [10,14].
In Section 2 we show that enumerating all minimal feasible sets of at most k
columns, for systems of linear equations with r-sparse rows, is an FPT problem
in the combined parameter r, k. For r = 2 the problem is polynomial, even very
simple, and this observation can be extended to a heuristic to speed up the
branching in cases where we have r > 2 but many 2-sparse rows appear in the
matrix. In Section 3 we compute an O(rkr) size full kernel, i.e., set of columns
that includes all minimal feasible sets, by adaptation of an earlier result for
hitting sets. In Section 4 we show that the same problem for systems of linear
inequalities is in FPT, in the combined parameter d, k, where d is the number
of minimal feasible sets. This result is an application of a strategy for the more
abstract group testing problem in the complex model (also known as searching
for defective hyperedges; we shall give the necessary definitions later). Section 5
concludes the paper with some discussion. While the algorithmic techniques are
standard and some proofs elaborate on earlier ones for related problems, they
are not just straightforward extensions. Some combination of linear algebra and
FPT techniques is used. We also remark that d may be exponential in k, but
due to known uniqueness results for sparse solutions there is hope for small d in
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real data sets, and even if a system has many solutions, one is not forced to list
them all. Anyway, the algorithms need exponential (FPT) time.

Related Literature. Our problem is close to hitting set enumeration in hyper-
graphs. This problem asks to enumerate the hitting sets of size at most k, that
is, vertex sets that intersect all hyperedges, in a hypergraph of rank r, where
the rank is the maximum size of the hyperedges. (The connection between the
two problems will be explained in Section 2.) Trivially, hitting set enumeration
is in FPT in the combined parameter r, k. However it is not trivial to improve
the time bound O∗(rk), and quite some work has been devoted to this, see [8,9].
While our branching approach is superficially similar to that for hitting set enu-
meration, it is not an immediate generalization. Despite some connections to
hypergraphs and graphs we hope to bring here some fresh contribution to the
“not about graphs” direction of parameterized algorithms research that seems
to be somewhat neglected. For certain classes of matrices, such as those used
in compressive sensing/sampling [2], sparsest solutions are unique and can be
computed surprisingly simply, by a linear program that minimizes the sum of
entries of x [1,6,13,17]. However, in our case the matrices A are part of the inpput
and cannot be chosen, thus we cannot assume special structural properties of A,
instead we have to consider the worst case. In general, the sparsest solution is
not unique, as the vector b may be in the convex hulls of various small sets of
columns of A. (Still we may first test for a given matrix A whether the linear
program already yields some sparse solution.)

2 Row-Sparse Linear Systems of Equations

In this section we address the problem of enumerating all minimal feasible sets
of at most k columns, thus also determining all k-sparse nonnegative solutions
x, to a system Ax = b where every row of A is r-sparse.

Lemma 1. Let C denote any set of columns in A. If C is minimal feasible then
C is linearly independent.

We omit the simple proof. Geometrically the lemma says that a vector being
in the convex hull of other vectors is already in the convex hull of a linearly
independent subset of them.

Proposition 1. Every feasible set of columns is the union of some minimal
feasible sets.

Proof. Consider any feasible set C. If C itself is minimal, there is nothing to
prove. Otherwise let D ⊂ C be minimal feasible. Clearly, there exist positive
solutions to A[C] ·x[C] = b and A[D] · y[D] = b. With a slight abuse of notation,
let y[C] be the vector obtained from y[D] by filling all entries in C \ D with
zeros. Note that still A[C] · y[C] = b. Since the two matrix-vector products
above are equal to b, all numbers are nonnegative, and D ⊂ C, there must
exist some index i ∈ D where yi > xi. Let t be the largest number such that
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x[C]− t ·y[C] is still nonnegative. Due to the previous observation we have t < 1,
hence A[C] · (x[C]− t ·y[C]) = (1− t)b, and multiplication with 1/(1− t) yields a
nonegative solution z to Az = b whose support C′ fulfills C′ ⊂ C, C′ �⊃ D (since
zi = 0), and C \ C′ ⊆ D (since zj > 0 for all j ∈ C \ D). In words: All columns
that we removed from the C belong to some minimal feasible set. We repeat
this procedure with C′ in the role of C, and so on. By an inductive argument,
eventually every column of C is in some minimal feasible set. 
�

Proposition 1 and Lemma 1 imply that the minimal feasible sets have the role
of vertices of the (convex) space of nonnegative solutions to Ax = b. For each
minimal feasible set C, the solution vector x with support C is unique (since
the columns of C are linearly independent), and trivially, any convex linear
combination of any nonegative solutions is a nonnegative solution, too. In this
sense we have characterized all nonnegative solutions once we know the minimal
feasible sets. This motivates the problem of enumerating these sets.

A tempting idea of a branching algorithm for this task is the following. Pick
a row i and decide exactly which of the xj , aij > 0, shall be positive. At least
one of them must be positive, and since the rows are r-sparse, we get an O(r)
branching number. When all rows are treated, check whether the columns j of
all positive xj are linearly independent (cf. Lemma 1), and if so, compute the
unique nonnegative solution, or find that there is none. But the catch is that, in
rows i where some xj , aij > 0, are already deemed positive, there is an option
not to select further positive variables, and then this branch does not reduce the
parameter k. It may happen that the above branching rule has to stop, but the
obtained set C of columns is not yet feasible. At this point we have to identify
a “small” set of candidates to be added to C. The following lemma is the key.

Lemma 2. Let C be a set of linearly independent columns such that A[C]·x[C] =
b lacks a nonnegative solution. Then there exists a set R of at most |C|+ 1 rows
such that A[R, C] · x[C] = b[R] lacks a nonnegative solution, too. Moreover, we
can find such R in polynomial time.

Proof. Since the columns in C are linearly independent, there is a set R′ of |C|
rows such that A[R′, C] has full rank, and R′ can be computed in polynomial
time, e.g., by Gauss elimination. Note that A[R′, C] · x[C] = b[R′] has at most
one solution, which can be computed in polynomial time. If x[C] does not exist,
or if x[C] exists but has some negative entry, we set R := R′. Suppose that x[C]
does exist and is nonnegative. Due to the assumption on C, this x[C] does not
solve A[C] · x[C] = b. Hence there is a row index i with A[i, C] · x[C] �= bi, and
we can trivially find such i. Finally set R := R′ ∪ {i}. Since already the solution
to A[R′, C] · x[C] = b[R′] was unique, A[R, C] · x[C] = b[R] has no alternative
solution either. 
�

Now we get the first main result of this section.

Theorem 1. For systems Ax = b where all rows of A are r-sparse, we can enu-
merate all minimal feasible sets of size at most k in O∗(rkk!) time. In particular,
this problem is in FPT, in the combined parameter r, k.
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Proof. Starting from a family with one member C = ∅ we generate a family
of sets C of linearly independent columns. It evolves as follows. We pick any C
from this family. For C �= ∅ we check in polynomial time, by linear programming,
whether A[C] ·x[C] = b has a nonnegative solution. If so, we remove C from the
family and put it aside. (We know that C contains some feasible set, hence we
also know that extending C by further columns cannot generate new minimal
feasible sets.) If not, or if C = ∅, it is clear that C does not include any feasible
subset. Then we find a small family E of columns, with the property that every
feasible set containing C as a subset must also contain some of the columns
from E. (This step will be detailed below.) Then we check linear independence
of every such set C ∪{j}, j ∈ E, and we replace C in our family with all C ∪{j}
that pass this test.

Since we are only interested in minimal feasible sets of size at most k, we
also throw away sets that exceed the size limit. It is easy to see that we cannot
miss any solution: By Lemma 1, only linearly independent column sets need to
be considered, and their subsets are linearly independent as well. We keep all
column sets that are candidates for being extendible to a minimal feasible set.

In order to find a set E as specified above, we apply Lemma 2. With c := |C|,
we determine a set R of at most c + 1 rows such that A[R, C] · x[C] = b[R] lacks
a nonnegative solution. Since the rows of A are r-sparse, A[R] has nonzeros in a
set E of at most (c + 1)r columns. We extend C with any one column from E,
that is, we generate at most (c + 1)r new column sets. Note that at least some
column of E must be inserted in C to make A[R, C] ·x[C] = b[R] solvable, which
is a necessary condition for feasibility.

On every path of the search tree generating our sets C, their cardinalities c
grow from 0 to at most k − 1. Since the outdegrees of search tree nodes are at
most (c+ 1)r, the number of leaves of the search tree is bounded by (r)(2r)(3r) ·
. . . · (kr) = rkk! This bounds the number of column sets C we have put aside,
and all minimal feasible sets of size at most k are among them. It remains to
check the minimality of every candidate C. Recall that C is linearly independent,
hence it comes with a unique solution to A[C] · x[C] = b. Thus C is minimal if
and only if x[C] has only positive entries. 
�

So far we have silently assumed a model of computation with precise real num-
bers. To turn the algorithm into a practical method, note that a vector b being
in the convex hull of some set C of columns is, after a small perturbation, still
close to a point in the convex hull. Instead of looking for an exact solution to
A[C] · x[C] = b we append all unit vectors to the matrix and compute, still by a
linear program, a solution that minimizes the coefficients of these extra vectors,
and we accept solutions within some tolerance. Similarly we relax the equality
tests by some tolerance. This way we can still recover minimal feasible sets after
small perturbations of b. Solutions are changed only if, roughly speaking, the
noise is comparable to the distance to the next candidate solutions.

The k! term in the time bound is somewhat unsatisfactory. Before we give an
alternative branching strategy avoiding that, we introduce the following notion.
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Definition 1. We define the hypergraph H associated with the system Ax = b
to be the hypergraph whose vertices and hyperedges are the columns and rows of
A, respectively, and vertex j belongs to edge i iff aij �= 0.

Observe that every minimal feasible set of columns of A contains some minimal
hitting set of H (but is not necessarily equal to some minimal hitting set of
H). Therefore we may first enumerate the minimal hitting sets C of H , which
can be trivially done with branching number r, and then start the procedure of
Theorem 1 from these sets C rather than from the empty set. The associated
hypergraph is not only useful in this heuristic. We also use it in:

Theorem 2. For systems Ax = b where all rows of A are r-sparse, we can
enumerate all minimal feasible sets of size at most k in O∗(r2k) time.

Proof. For the ease of presentation we first describe a simpler algorithm with a
worse time bound of O∗((r + 1)2k), and then we refine it to achieve O∗(r2k).

We generate a family of records, where every record consists of a set C of
columns and a system of linear equations Qx = s, such that the rows of Q are
linearly independent, and Q has nonzeros in Q[C] only. Note that, consequently,
Q has at most |C| rows. We start from a family with one record where C and
the row set of Q are empty; then the above condition is vacuously true. The
family evolves as follows. We pick any record (C, Qx = s). If C �= ∅, we check in
polynomial time, by linear programming, whether A[C]·x[C] = b, Q[C]·x[C] = s
has a nonnegative solution. If so, we remove C from the family and put it aside.
(As before, we know that C contains some feasible set and needs no further
extension.) If not, or if C = ∅, clearly C does not include any feasible subset
that also satisfies the extra system Qx = s. Then we find a small family E of
columns and a new linear equation, with the property that every feasible set
of the compound system Ax = b, Qx = s containing C as a subset must also
contain some of the columns from E or must have a solution that fulfills the
new equation. (This step will be detailed below.) Then we extend our record in
all possible ways, that is, we either replace C with some C ∪ {j}, j ∈ E, or we
keep C but insert the new linear equation. Again we abandon records where C is
not linearly independet or exceeds the size limit k, and again, the “exhaustive”
branching ensures that we cannot miss any solution.

Specifically, in order to do the branching we fix some row i of A that has some
nonzero outside C. (Such a row exists, as we can w.l.o.g. assume that no column
of A is the zero vector, and we can trivially stop if C is already the full set of
columns.) Let E be the set of columns j /∈ C where aij > 0 in this fixed row
i. If we decide to append none of the j ∈ E to C, the equation in row i must
be fulfilled already by nonzero variables in C, formally A[i, C] · x[C] = bi. We
append this equation to the extra system Qx = s, provided that it is linearly
independent of those already being in Qx = s. In the opposite case it follows
xj = 0 for all j ∈ E (since the equation is already enforced, and everything is
nonnegative). Then we fix a another row i and repeat the procedure until we
either find an i and E for branching, or all variables outside C are fixed to 0, and
thus C is a dead end. Since the rows of A are r-sparse, obviously the branching
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number is at most r + 1, where the worst case is that the selected row i has all
its r nonzeros outside C.

The minimality of every candidate C is checked as before. For the time anal-
ysis we use an auxiliary parameter that is initially 2k. We deduct 1 from this
parameter, for every column inserted in C and for every equation inserted in
Qx = s. Since Q has at most |C| ≤ k rows, in fact we deduct never more than
2k. We also remark that the extra equations have been introduced only for the
sake of a simple analysis. Of course, it is equivalent to fix the variables xj , j ∈ E
to 0 in the affected branches.

Now we give the improvement to O∗(r2k). Instead of starting from scratch,
we first take the hypergraph associated with Ax = b and enumerate all minimial
hitting sets C of size at most k. Every feasible set must contain some of them,
and the branching number is trivially r. For all these C, the extra system Qx = s
is still empty. After that we continue as above. Since now every row has at most
r − 1 nonzeros outside C, the branching number is r. 
�

Obviously O∗(r2k) beats O∗(rkk!) when k grows, in relation to r. Still the former
branching strategy could be faster for k close to r, as one can see from Stirling’s
formula. A direct comparison in theory is difficult, as the hidden polynomial
factors depend on implementation details. Moreover, additional heuristics may
be applied that sometimes allow cheaper branchings also in Theorem 1. We
discuss some observation below.

We may look for pairs of rows i, i′ where bi > bi′ but aij ≤ ai′j for all j ∈ C.
Then we add a column j with aij > ai′j , clearly some of them must be put in
C. Note that these are at most r columns. When all these conditions for pairs
of rows are fulfilled, we similarly look for branchings based on triples of rows,
etc. If we are lucky, we can grow our sets C by moderate branchings. Another
improvement comes from the special case r = 2 which is interesting in itself.

Theorem 3. For systems Ax = b where all rows of A are 2-sparse, we get an
implicit enumeration of all minimal feasible sets in polynomial time.

Proof. Every 1-sparse row is a linear equation with only one variable, and its
unique solution value is obtained instantly. Hence we can remove all 1-sparse
rows from A, as well as all columns where these rows have their nonzero entries.
That is, these columns must appear in every minimal feasible set. Now we have
exactly two positive entries in each row.

We construct a graph with every column being a vertex, and every row being
an edge that joins the vertices representing the columns of the two nonzeros.
(The graph formulation is not really needed algorithmically, but we use it in
order to have the notion of connectivity; see below.) Solving Ax = b is now
equivalent to a graph problem: Given a graph where the edges e are labeled with
real numbers be and the vertex-edge pairs (v, e), v ∈ e, are weighted with real
numbers aev, the task is to label the vertices with real numbers xv ≥ 0, such
that aeuxu + aevxv = be holds on every edge e = uv.

But this graph problem is rather simple, too, as we discuss now. First assume
that the graph is connected. Then any label xv determines, by propagation,
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the xu labels of all vertices u. Hence it suffices to try every vertex v and set
its label zero, and check whether the unique solution forced by that choice is
nonnegative. This yields all minimal feasible sets, unless the test fails for every
v. In the latter case, the entire vertex set is the only candidate feasible solution.
If so, by Lemma 1, the columns are linearly independent, hence we can determine
the unique solution by Gauss elimination and check for nonnegativity.

Finally, if the graph is not connected, the reasoning applies to every connected
component independently, and all combinations of minimal feasible sets of the
components are exactly the minimal feasible sets in the whole instance. In this
way we can implicitly describe all solutions in polynomial time, although their
number is, of course, not polynomial in general. 
�

The proof also reveals the structure of the solution space: In every connected
component Y of the graph, there exist pairwise disjoint subsets Z ⊂ Y so that
exactly the sets Y \ Z appear as intersections of Y with minimal feasible sets.

When matrix A is r-sparse for some r > 2, we can still begin and apply the
method in Theorem 3 to the 2-sparse rows, temporarily ignoring the other rows,
to find all possible solutions on the affected entries of x. Then we may branch
on these solutions, remove the settled rows and columns, and apply the method
iteratively to the remaining systems, as long as new 2-sparse rows are obtained.
From the aforementioned structure of the solution space of 2-sparse systems one
can derive that the branching number in this phase is only 2, or better. (The
worst case is graphs consisting of isolated edges.) We have to skip details here.

3 A Problem Kernel for Binary Matrices

In [4] we introduced the notion of a full kernel of an FPT enumeration problem,
which is a set that contains all minimal solutions. For the minimal hitting sets of
size at most k in hypergraphs with hyperedges of size r there is an (r− 1)kr + k
size full kernel [4]. In order to establish a similar bound for the present problem
we have to adapt the proof in [4], i.e., the next theorem is not a consequence of
the old result. The following result holds when all entries in A are 0 or 1.

Theorem 4. For systems Ax = b with 0-1-matrices A where all rows are r-
sparse, all minimal feasible sets of at most k columns are contained in a set of
(r − 1)kr + k columns.

Proof. First we need some notation: The hyperedges are those of the associated
hypergraph defined above. With respect to a solution vector x, we call a vertex
positive if the corresponding variable xj is positive. The sum s(C) of a set C of
vertices is defined by s(C) :=

∑
j∈C xj .

As an inductive hypothesis we suppose that every set C of r − i vertices (i.e.,
columns) is contained in at most ki hyperedges, or there is no feasible set at all.
To establish the induction base i = 0, note that a set of r vertices can be in only
one hyperedge, due to r-sparsity. (Otherwise the system Ax = b has identical
rows, and all copies but one can be deleted.)
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For the induction step, with a fixed i, assume that some set C of r− i vertices
belongs to ki + 1 or more hyperedges. By the inductive hypothesis, every set
C ∪ {v} is in at most ki−1 hyperedges. It follows that k vertices outside C
would not be enough to hit all R \ C, for the hyperedges R ⊃ C. In a k-
sparse nonnegative solution we cannot have s(C) < s(R) for every hyperedge
R ⊃ C, since then we need a positive vertex in every R \ C, but these would
be more than k positive vertices, due to the previous observation. Furthermore,
in a nonnegative solution, s(C) > s(R) is not possible either, for any R ⊃ C.
Thus, in every k-sparse nonnegative solution, s(C) must be equal to the (given)
smallest s(R), R ⊃ C. This establishes a new equation for a new hyperedge C,
whereas all hyperedges R ⊃ C can be replaced with R \ C, where the required
sums are adjusted in the obvious way. In summary, if some set C of r− i vertices
belongs to ki + 1 or more hyperedges, we get a system with the same k-sparse
nonnegative solutions, where C is no longer a subset of other hyperedges, and
the total size of all hyperedges, i.e., the number of 1 entries in A, has strictly
decreased. Hence this transformation can be done only finitely many times, and
eventually the inductive hypothesis holds for i, in the transformed system.

For i = r − 1 the inductive hypothesis says that every vertex is contained in
at most kr−1 hyperedges. Since every feasible solution is also a hitting set, and
at most k positive vertices are permitted, at most kr hyperedges remain, or no
feasible set can exist. Now the size bound follows obviously. 
�

Note that the proof also describes an efficient method to obtain a full kernel of
the claimed size, and that only subsets C of the given hyperedges need to be
examined; these are at most 2r per hyperedge. But the proof does not apply to
matrices A with arbitrary positive coefficients, because then the step where new
equations on smaller hyperedges are enforced does not work.

4 Sparse Nonnegative Solutions of Systems of Linear
Inequalities via the Complex Model of Group Testing

Our FPT result for systems of linear equations do not immediately generalize to
inequalities. In this section we give a completely different approach for systems
of linear inequalities. Recall the notion of a minimal feasible column set, and
the basic fact that, given the support of x, some solution x can be computed
by linear programming. Hence we have a test that tells us, for any given set C
of columns, whether C contains some minimal feasible set. The goal is to find
all minimal feasible sets. This is a problem known elsewhere, as the complex
model of group testing or searching for defective edges: In a set, an unknown
family of subsets are defective, and a group test (for brevity: test) on a subset C
answers positively if C contains (entirely) some defective set, otherwise it answers
negatively. Accordingly, a tested set C is also called a positive or negative pool.
Instead of defective set we also speak of a complex.

It follows from [3] that all complexes can be found using kd log2 n + kk/2dk +
o(dk) tests, where n is the number of elements, k the maximum size of a complex,
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and d the number of complexes. No previous knowledge of d is assumed. However,
it is assumed that all complexes have at most a prescribed number k of elements.
In our application the problem is slightly more general: For a given k we wish to
enumerate all complexes of size at most k, but there may exist larger complexes
as well, and clearly they can affect the test results. Therefore the algorithm from
[3] does not carry over to our problem, moreover, the algorithm and its analysis
are intricate. Below we give an algorithm that has a somewhat worse dependency
on parameters k and d, but it also works in our case and is conceptually simpler.
We start with an adaptation of the Triesch-Johann procedure [16,11] used in [3].
In the following, a k-complex is either a complex with at most k elements, or a
k-element subset of a larger complex.

Lemma 3. Some k-complex can be found by k log2 n tests.

Proof. First consider the problem of finding a complex, rather than a k-complex.
We index the elements arbitrarily by v1, . . . , vn. By binary search using log2 n
tests we determine the largest j such that {vj, . . . , vn} is a positive pool. Note
that j = n if {vn} is still a positive pool, and then this is also a complex.
In the following consider j < n. Clearly {vj, . . . , vn} contains a complex while
{vj+1, . . . , vn} does not. Hence all complexes in {vj , . . . , vn} necessarily contain
vj , and such a complex does exist. In order to find a complex of this form, we
fix vj , that is, we henceforth add vj to every pool, and we search for a complex
in {vj+1, . . . , vn} relative to that. (In other words, we search for a positive pool
such that removal of any element vl, l > j, yields a negative pool. We know
already that removal of vj yields a negative pool.)

Iterating this reasoning, we successively fix elements, each by at most log2 n
tests, that together form a subset of a complex. After each round we test the
current subset C. If C is a negative pool, we continue the search on the suffix
after the last inserted element. If C is a positive pool, we have finished a complex.

When searching for a k-complex we proceed in the same way, we just stop
after k rounds if the complex is not yet completed. 
�

Now we are using this routine in our enumeration algorithm.

Theorem 5. Given an integer k we can determine all complexes of size at most
k using kd log2 n + min(kkdk+1, dkd) tests, if d complexes exist. No previous
knowledge of d is assumed.

Proof. Let V denote the set of all elements. We maintain a family C of k-
complexes and their union U . Initially, C and U are empty.

In each round of the algorithm we probe all sets S that have the following
properties: (1) S ⊆ U , (2) |S| ≤ k, (3) S contains none of the C ∈ C as a subset.
To probe S means to test S ∪ (V \ U). If this pool is positive, it contains a
complex which is not already in C nor extends any k-complex from C, due to (3).
Thus, by applying Lemma 3 we find either another complex (of size at most k) or
another k-complex C′. In the latter case we have C′ ⊂ C′′ for some complex C′′

not already “covered” by C, as said before. This fact is important, as it implies
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that every round deals with some new complex, hence the routine of Lemma 3 is
called at most d times. If all probes give a negative answer, then every complex
C of size at most k appears already in C: If not, then S := C ∩U fulfills (1)–(3),
hence S would be probed and answer positively, a contradiction.

All calls of Lemma 3 need at most kd log2 n tests. Since |C| ≤ k for all C ∈ C,
we always have |U | ≤ kd. Due to (1) and (2) we probe fewer than (kd)k sets S
in every round, furthermore each S is probed at most d times. This yields the
first bound kd log2 n + kkdk+1.

An extension of this strategy gives the second part of the bound. In case d ≤ k
we can bound the number of probes in a round by kd, which is smaller than (kd)k:
Property (3) requires that some element from each C ∈ C be excluded from S.
In the worst case we have kd different choices, and then we take S as U minus
the excluded elements. Now S can be larger than k, however, property (2) above
was only used to bound the number of probes.

Thus, we finally proceed as follows: In the first k rounds we apply the probing
strategy that excludes a hitting set of C, and then we switch to the former
strategy that guesses the intersection of a new complex with U . 
�

Corollary 1. For systems of linear inequalities with d minimal feasible sets, the
problem of enumerating all minimal feasible sets of size at most k is in FPT, in
the combined parameter d, k. 
�

A concern is that the parameter d could be too large to be practical. But the
famous results about unique sparsest solutions for some natural classes of random
matrices [1,6,13,17] give hope that one would actually encounter small d in real
data. This question needs experimental research.

5 Conclusions

It would be interesting to prove even better FPT time bounds and a kernel
bound for the general case, and to extend the polynomial result for 2-sparse
equations. We also remark that we improved in [5] the full kernel size bound
for hitting set enumaration to essentially kr, using more sophisticated counting
arguments. A natural question is whether these techniques can be applied also
to r-sparse linear systems. For the case of inequalities we used complex group
testing where the tests correspond to linear programs. Other than that, our
current algorithm does not further use the mere fact that we are working on
linear systems. Whereas this modularity of our algorithm might be appealing,
some clever use of polyhedral combinatorics instead of group testing might lead
to more efficient algorithms. One could also think of other meaningful problem
versions that bridge between strict equations, arbitrary inequalities, and the
Boolean case (hitting set problem). Finally, implementation of the methods,
taking the numerical issues into account, and experiments on protein mixture
data would give important insights.
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Abstract. MAX-2-SAT and MAX-2-CSP are important NP-hard op-
timization problems generalizing many graph problems. Despite many
efforts, the only known algorithm (due to Williams) solving them in less
than 2n steps uses exponential space. Scott and Sorkin give an algorithm

with 2n(1− 2
d+1 ) time and polynomial space for these problems, where d is

the average variable degree. We improve this bound to O∗(2n(1− 10/3
d+1 )) for

MAX-2-SAT and O∗(2n(1− 3
d+1 )) for MAX-2-CSP. We also prove stronger

upper bounds for d bounded from below. E.g., for d ≥ 10 the bounds im-

prove to O∗(2n(1− 3.469
d+1 )) and O∗(2n(1− 3.221

d+1 )), respectively. As a byprod-
uct we get a simple proof of an O∗(2

m
5.263 ) upper bound for MAX-2-CSP,

where m is the number of constraints. This matches the best known up-
per bound w.r.t. m due to Gaspers and Sorkin.

Keywords: algorithm, satisfiability, maximum satisfiability, constraint
satisfaction, maximum constraint satisfaction.

1 Introduction

1.1 Problem Statement

The maximum satisfiability problem (MAX-SAT) is, given a boolean formula in
conjunctive normal form (CNF), to find a maximum number of simultaneously
satisfiable clauses of this formula. MAX-2-SAT is restricted MAX-SAT, where
each clause contains at most two literals. MAX-SAT and MAX-2-SAT are NP-
hard problems. Moreover, it is still not known whether MAX-2-SAT can be
solved in less than O∗(2n)1 with polynomial memory.

MAX-2-SAT is a special case of the maximum 2-constraint satisfaction prob-
lem (MAX-2-CSP). In MAX-2-CSP problem one is given a graph G = (V, E)
along with sets of functions Sv : {0, 1} → Z for each vertex v and Se : {0, 1}2 → Z
for each edge e. The goal is to find an assignment φ : V → {0, 1} maximizing
the sum ∑

e=(v1,v2)∈E

Se(φ(v1), φ(v2)) +
∑
v∈V

Sv(φ(v)). (1)

� Research is partially supported by Yandex, Parallels and JetBrains.
1 As usual, O∗(·) suppresses polynomial factors.
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It is easy to see that MAX-2-SAT corresponds to the case when all functions
from Se are disjunctions (of variables and their negations). MAX-2-SAT and
MAX-2-CSP are important NP-hard optimization problems generalizing many
graph problems.

1.2 The Main Definitions

Let F be an instance of MAX-2-SAT or MAX-2-CSP. By n(F ), m(F ) we denote,
respectively, the number of vertices (variables) and the number of edges (clauses)
of the formula F . By the degree deg(x) of a vertex x we mean the number of
edges incident to x. We say variable y is the neighbor of variable x if there is
an edge (x, y) in the graph (i.e. there is a 2-clause with these variables in F ).
By Δ(F ) we denote the maximum vertex degree. d(F ) = 2m/n is the average
vertex degree. We omit F if it is clear from the context. By the length |F | of a
formula F we mean its number of clauses.

Note that in case of MAX-2-CSP one can assume without loss of generality
that the corresponding graph does not contain multiple edges (as any two parallel
edges can be replaced by their “sum”). At the same time one cannot exclude
multiple edges from a MAX-2-SAT graph by the same argument (e.g., the graph
of a formula (x ∨ y)(¬x ∨ y)(y ∨ z) has two edges between x and y).

By (n, Δ)-MAX-2-SAT and (n, Δ)-MAX-2-CSP we denote, respectively, MAX-
2-SAT and MAX-2-CSP problems restricted to instances in which each variable
appears in at most Δ 2-clauses. By Opt(F ) we denote the maximal value of (1)
for F over all possible assignments (for MAX-2-SAT, this is the maximal number
of simultaneously satisfiable clauses of the formula F ).

Let F be an instance of MAX-2-SAT or MAX-2-CSP, l be a literal of F . By
F [l] we denote a formula resulting from F by replacing l by 1 and ¬l by 0. Under
this assignment, all 2-clauses containing l or ¬l become 1-clauses.

1.3 Known Results

In this subsection, we review some known results for the considered problems.
Williams [9] proved that MAX-2-CSP can be solved in time O∗(2

ωn
3 ), where

ω ≈ 2.376 is the matrix multiplication exponent. Williams’ algorithm beats the
2n barrier at the cost of requiring exponential space. It is a big challenge of
the field to solve MAX-2-CSP in less than 2n steps with only polynomial space.
However the trivial 2n upper bound was improved for several special cases of
the considered problems. Dantsin and Wolpert [3] showed that MAX-SAT for
formulas with constant clause density can be solved faster than in O∗(2n) time
with exponential space. Kulikov and Kutzkov [7] developed an algorithm for
MAX-SAT with polynomial space (and all the algorithms mentioned below use
polynomial space) and running time cn for formulas with constant clause density,
where c < 2 is a constant.

Fürer and Kasiviswanathan [4] developed an algorithm for MAX-2-SAT
with the running time O∗(2n(1− 1

d−1 )). Scott and Sorkin [8] improved this bound
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to O∗(2n(1− 2
d+1 )). For (n, 3)-MAX-2-SAT, Kojevnikov and Kulikov [6]

proved O∗(2
n
6 ) bound. This was later improved to O∗(2

n
6.7 ) by Kulikov and

Kutzkov [7].
Concerning the number of clauses m, the best known upper bound O∗(2

m
2.465 )

for MAX-SAT was given by Chen and Kanj [1]. For MAX-2-SAT and MAX-2-
CSP, Gaspers and Sorkin [5] proved O∗(2

m
6.321 ) and O∗(2

m
5.263 ) bounds, respec-

tively.
MAX-CUT is a special case of MAX-2-CSP. Della Croce, Kaminski

and Paschos [2] developed an algorithm for MAX-CUT with the running time
O∗(2n(1− 2

Δ )).

1.4 New Upper Bounds

In this paper, we present an elementary algorithm solving MAX-2-SAT and
MAX-2-CSP in time O∗(2n(1− 10/3

d+1 )) and O∗(2n(1− 3
d+1 )), respectively. We show

also how to improve these bounds for d bounded from below. E.g., for d ≥ 5
we get upper bounds O∗(2n(1− 3.40

d+1 )) and O∗(2n(1− 3.15
d+1 )) and for d ≥ 10 we get

O∗(2n(1− 3.469
d+1 )) and O∗(2n(1− 3.221

d+1 )). The key point of our algorithm is branching
on a vertex of maximal degree that has at least one neighbor with smaller degree.

From these improved upper bounds w.r.t. the average degree d we can derive
an upper bound O∗(2

m
5.263 ) w.r.t. the number of clauses for MAX-2-CSP. This

bound matches the best known upper bound by Gaspers and Sorkin [5]. We
also show that any improvement of upper bound for (n, Δ)-MAX-2-CSP for any
Δ ≤ 5 would improve this record bound.

Since MAX-CUT is s special case of MAX-2-CSP, we also get an improved
upper bound O∗(2n(1− 3

d+1 )) for MAX-CUT (again, the bound decreases when d
increases).

1.5 Organization of the Paper

In Section 2, we construct a simple algorithm for MAX-2-SAT and MAX-2-CSP.
The main idea of the algorithm is branching on a vertex of maximal degree.
We prove O∗(2n(1− 10/3

Δ+1 )) and O∗(2n(1− 3
Δ+1 )) upper bounds for this algorithm.

Section 3 generalizes upper bounds w.r.t. Δ to upper bounds w.r.t. d. Also, we
apply this theorem to the algorithm from Section 2. In Section 4, we slightly
change the algorithm and get stronger upper bounds for it.

2 A Simple Algorithm for MAX-2-SAT and MAX-2-CSP

In this section, we present a simple algorithm for (n, Δ)-MAX-2-SAT and (n, Δ)-
MAX-2-CSP with upper bounds O∗(2n(1− 10/3

Δ+1 )) and O∗(2n(1− 3
Δ+1 )), respectively.

To solve an instance of the maximal degree Δ, our algorithm branches on a
variable of maximal degree until it gets an instance of maximal degree Δ − 1.
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2.1 Removing Variables of Degree 2

Lemma 1. Let F be an instance of MAX-2-SAT or MAX-2-CSP containing a
vertex u of degree at most 2. Then F can be transformed in polynomial time into
a formula F ′ s.t.

1. degF ′(u) = 0,
2. for all v, degF ′(v) ≤ degF (v),
3. Opt(F ) can be computed from Opt(F ′) in polynomial time.

This lemma is proved for MAX-2-SAT in [6, Lemma 3.1], and for MAX-2-CSP
in [5, Section 5.9]. It allows us to assume that a simplified formula contains
variables of degree at least 3 only.

2.2 An Algorithm

The algorithm branches on a vertex of maximal degree Δ until it gets a graph
of maximal degree 3. It then calls a known algorithm for (n, 3)-MAX-2-SAT or
(n, 3)-MAX-2-CSP, respectively.

Denote by ni the number of vertices of degree i for i ∈ {3, . . . , Δ}. Consider the
problem (n, Δ)-MAX-2-SAT ((n, Δ)-MAX-2-CSP). We use the following formula
complexity measure:

μ = α3n3 + . . . + αΔnΔ,

where αi denotes the weight of a variable of degree i. The values of αi’s will be
determined later. We would like to find αi’s such that for any formula F the
algorithm has the running time poly(|F |) · 2μ(F ).

Assume that an algorithm A solves (n, Δ−1)-MAX-2-SAT ((n, Δ−1)-MAX-
2-CSP) in time 2α3n3+...+αΔ−1nΔ−1 . Consider the following algorithm for (n, Δ)-
MAX-2-SAT ((n, Δ)-MAX-2-CSP).

MetaAlg

Parameter: Algorithm A for (n, Δ − 1)-MAX-2-SAT ((n, Δ − 1)-MAX-
2-CSP).
Input: F – instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F ).
Method.

1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the maximal vertex degree of F is less than Δ, then return A(F ).
4. Choose a vertex x of maximal degree Δ.
5. Return max(MetaAlg(A, F [x]),MetaAlg(A, F [¬x])).

Lemma 2. Let Δ > 3, αi < 1, for all i. If

δ = min(αΔ − αΔ−1, αΔ−1 − αΔ−2, . . . , α4 − α3, α3) ≥ 1 − αΔ

Δ
, (2)

then the running time of the algorithm MetaAlg for (n, Δ)-MAX-2-SAT
((n, Δ)-MAX-2-CSP) is 2α3n3+...+αΔnΔ .
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Proof. Denote by T (n3, . . . , nΔ) the running time of the algorithm on a formula
that has ni vertices of degree i, for all 3 ≤ i ≤ Δ. If there are no vertices of
degree Δ (i.e., nΔ = 0), then MetaAlg just calls A. Then, clearly,

T (n3, . . . , nΔ) ≤ 2α3n3+...+αΔ−1nΔ−1 = 2α3n3+...+αΔnΔ .

Assume now that there exists a vertex x of degree Δ. Then MetaAlg at step
4 branches on a vertex of degree Δ. We show that in both branches F [x] and
F [¬x], μ is reduced at least by 1.

Indeed, the measure decreases by αΔ, because the algorithm branches on a
vertex of degree Δ. The degree of each neighbor of x is reduced, so the complexity
is decreased at least by δ (as δ is the minimal amount by which μ is decreased
when the degree of a vertex is reduced). This causes a complexity decrease of
Δ · δ. Lemma 1 guarantees that removing variables of degree 2 does not increase
μ. It follows from (2) that Δ · δ + αΔ ≥ 1. Therefore μ decreases at least by 1.
Then

T (n3, . . . , nΔ) ≤ 2 · 2α3n3+...+αΔnΔ−1 + poly(|F |) ≤ 2α3n3+...+αΔnΔ + poly(|F |).

Thus, the running time of the algorithm MetaAlg is O∗(2α3n3+...+αΔnΔ). 
�

As easy consequence of the just proved lemma is an upper bound O∗(2αn), where
α = max(αΔ, . . . α3). From αi < 1 and (2) we conclude that αi’s increase with
i, which means that α = αΔ.

It is known [7] that (n, 3)-MAX-2-SAT can be solved in time O∗(2n/6.7). Also,
the fact that vertices of degree at most 2 can be removed implies that (n, 3)-
MAX-2-CSP can be solved in O∗(2n/4). Indeed, when branching on a vertex of
degree 3 we can remove all its neighbors in both branches (so, the number of
vertices is decreased at least by 4).

Corollary 1. The following algorithm solves MAX-2-SAT (MAX-2-CSP) in
O∗(2n(1− 10/3

Δ+1 )) (O∗(2n(1− 3
Δ+1 ))) time.

SimpleAlg

Input: F – an instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F ).
Method.

1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the maximal vertex degree of F is 3, then call the known algorithm

for (n, 3)-MAX-2-SAT or (n, 3)-MAX-2-CSP, respectively.
4. Choose a vertex x of maximal degree Δ.
5. Return max(SimpleAlg(F [x]),SimpleAlg(F [¬x])).

Proof. SimpleAlg is obtained from MetaAlg. As a parameter A SimpleAlg

takes himself if i > 3 and described algorithms if i = 3. We will choose αi

satisfying (2).
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As mentioned above, (n, 3)-MAX-2-SAT ((n, 3)-MAX-2-CSP) can be solved by
SimpleAlg in O∗(2n/6.7) (O∗(2n/4)) time. Hence, to minimize max(α3, α4),
according to (2), we can choose α3 and α4 as follows:

MAX-2-SAT: α3 =
1
6
, α4 =

1
3

MAX-2-CSP: α3 =
1
4
, α4 =

2
5
.

Thus, we get upper bounds O∗(2n/3) and O∗(22n/5) for (n, 4)-MAX-2-SAT and
(n, 4)-MAX-2-CSP, respectively. Now let Δ > 4. To (2) to hold we can set αi as
follows:

αi =
1 + i · αi−1

i + 1
. (3)

Below we state several simple properties of αi’s that will be needed in further
analysis.

• αi = 1 − 4 1−α3
i+1 .

By expanding (3), one gets:

αi =
1 + i · αi−1

i + 1
=

1 + i · 1+(i−1)αi−2
i

i + 1
=

2 + (i − 1)αi−2

i + 1
= . . . =

i − 3 + 4α3

i + 1
= 1 − 4

1 − α3

i + 1
. (4)

• αi < 1.
This follows immediately from the previous property and the fact that α3 < 1.

• αi increases with i.
This follows immediately from αi = 1 − 4 1−α3

i+1 .
• αi − αi−1 = 1−αi

i .
This follows from (3).

For MAX-2-SAT (α3 = 1
6 ) we get: αΔ = 1 − 10/3

Δ+1 . For MAX-2-CSP (α3 = 1
4 ):

αΔ = 1 − 3
Δ+1 .

Show that these αi satisfy the condition of the lemma. First, SimpleAlg

solves (n, Δ − 1)-MAX-2-SAT ((n, Δ − 1)-MAX-2-CSP) in 2α3n3+...+αΔ−1nΔ−1

time by induction.
It remains to show that (2) holds. First, show that α3 ≥ 1−αΔ

Δ , for Δ ≥ 4.

1 − αΔ

Δ
≤

1 − 1 + 10/3
Δ+1

Δ
≤ 10

3Δ(Δ + 1)
≤ 10

3 · 4 · (4 + 1)
≤ 1

6
≤ α3.

Now show that αi − αi−1 ≥ 1−αΔ

Δ for i ≤ Δ.
From properties of αi we know that αi − αi−1 = 1−αi−1

i+1 . αi increases, so for
i < Δ, 1−αi−1

i+1 > 1−αΔ

Δ . Hence, αi − αi−1 = 1−αi−1
i+1 > 1−αΔ

Δ for i < Δ.
For i = Δ, αi − αi−1 = 1−αΔ

Δ . 
�
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The described algorithm has the running time O∗(2n(1− 10/3
Δ+1 )) and O∗(2n(1− 3

Δ+1 ))
for MAX-2-SAT and MAX-2-CSP, respectively. Note that our algorithm is based
on upper bound 2n/6 [6], while a stronger bound 2n/6.7 [7] is known. The latter
bound would not improve our algorithm as for smaller α3 one needs a larger α4

to satisfy α3 ≥ 1−α4
4 from (2).

The presented algorithm already improves the known bounds O∗(2n(1− 1
Δ−1 ))

[4] and O∗(2n(1− 2
Δ+1 )) [8] w.r.t. Δ. In Section 4, we further improve these bounds

by changing the algorithm slightly.

3 Going from the Maximal Degree to the Average Degree

In this section, we generalize the results of the previous section from the maximal
degree to the average degree. Informally, we show that the worst case of the
considered algorithm is achieved in case when all the vertices have the same
degree (and so d = Δ). In this section we consider only simplified formulas (i.e.
formulas without vertices of degree less than 3).

Theorem 1. If an algorithm X solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2α3n3+...+αΔnΔ) and for all i > 3,

2αi ≥ αi+1 + αi−1, (5)

then the algorithm X solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2n(αD+ε(αD+1−αD))), where D = �d�, ε = d − D and d = 2m

n is the aver-
age vertex degree.

Proof. As d is the average degree of the simplified graph,

3n3 + 4n4 + . . .ΔnΔ = nd. (6)

Subtract from (6) the equation n3 + n4 + . . . + nΔ = n multiplied by d:

Δ∑
i=3

(i − d)ni = 0.

By substitution d by D + ε in this equality, we get

Δ∑
i=3

(i − D)ni = εn. (7)

Let σ = αD+1 − αD. Show that

niαi ≤ niαD + ni(i − D)σ. (8)

Condition (5) can be written as follows:

αi − αi−1 ≥ αi+1 − αi.
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Then, for all i ≤ D,

αi+1 − αi ≥ αi+2 − αi+1 ≥ . . . ≥ αD+1 − αD = σ.

Hence
αi ≤ αi+1 − σ ≤ αi+2 − 2σ ≤ . . . ≤ αD + (i − D)σ.

Therefore αini ≤ αDni + σ(i − D)ni, for all i ≤ D. By the same argument,
αini ≤ αDni + σ(i − D)ni, for all i ≥ D.

Then the exponent of the running time of the algorithm is

α3n3 + . . . + αΔnΔ ≤ αDn3 + σ(3 − D)n3 + . . . + αDnΔ + σ(Δ − D)nΔ =

αD(n3 + n4 + . . . + nΔ) + σ

Δ∑
i=3

(i − D)ni = αDn + σ

Δ∑
i=3

(i − D)ni
(by(7))

=

αDn + σεn = n(αD + ε(αD+1 − αD)).


�
It can be shown that this bound holds also for formulas containing variables of
degree less than 3 for MAX-2-CSP with average degree d ≥ 3 and for MAX-2-
SAT with average degree d ≥ 4.

Corollary 2. The algorithm SimpleAlg solves MAX-2-SAT (MAX-2-CSP) in
time O∗(2n(1− 10/3

d+1 )) (O∗(2n(1− 3
d+1 ))).

Proof. From (3):

αi+1 =
1 + αi(i + 1)

i + 2
, αi−1 =

αi(i + 1) − 1
i

.

Then

αi+1 + αi−1 =
αi(i + 1) + 1

i + 2
+

αi(i + 1) − 1
i

=

2αi +
1 − αi

i + 2
+

αi − 1
i

= 2αi − (1 − αi)(
1
i
− 1

i + 2
) < 2αi.

Therefore (5) holds. From Theorem 1 it follows that the exponent of the running
time is αD + ε(αD+1 − αD).

To prove O∗(2n(1− 10/3
d+1 )) and O∗(2n(1− 3

d+1 )) upper bounds for MAX-2-SAT
and MAX-2-CSP it remains to show that αD + ε(αD+1 − αD) ≤ 1 − 4 1−α3

d+1 .
We know that αi = 1 − 4 1−α3

i+1 .

αD + ε(αD+1 − αD) = (1 − ε)αD + εαD+1 =

1 − ε − 4
(1 − ε)(1 − α3)

D + 1
+ ε − 4

ε(1 − α3)

D + 2
= 1 − 4

(1 − α3)(D + 2 − ε)

(D + 1)(D + 2)
=

1 − 4
(1 − α3)(D + 2 − ε)(D + 1 + ε)

(D + 1)(D + 2)(D + 1 + ε)
= 1 − 4

(1 − α3)((D + 1)(D + 2) + ε − ε2)

(D + 1)(D + 2)(D + 1 + ε)
<

1 − 4
1 − α3

D + 1 + ε
= 1 − 4

1 − α3

d + 1
.


�
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4 An Algorithm for MAX-2-SAT and MAX-2-CSP

Recall that δ = min(αΔ − αΔ−1, αΔ−1 − αΔ−2, . . . , α4 − α3, α3) is the minimal
amount by which μ is decreased when the degree of a vertex is decreased. The
algorithm from Section 2 at each iteration branches on a vertex of maximal
degree Δ. Therefore the complexity measure decreases at least by αΔ + Δ · δ.
In Corollary 1 we showed that δ = αΔ − αΔ−1, and in accordance with this we
choose αΔ such that

αΔ + Δ · δ = αΔ + Δ(αΔ − αΔ−1) = 1.

Therefore we get αΔ = 1+ΔαΔ−1
Δ+1 .

We now improve these bounds. To do this, at each iteration we choose a
branching vertex such that it has a neighbor with degree less than Δ. Then we
can choose αΔ based on the following equation:

αΔ + (Δ − 1)(αΔ − αΔ−1) + (αΔ−1 − αΔ−2) = 1.

Then

αΔ =
1 + αΔ−2 + (Δ − 2)αΔ−1

Δ
. (9)

We present an algorithm for which the recurrence (9) holds.

Max2Alg

Input: F – instance of MAX-2-SAT or MAX-2-CSP.
Output: Opt(F ).
Method.

1. Remove all vertices of degree < 3 (using Lemma 1).
2. If F does not contain 2-clauses, then return the result.
3. If the formula F has connected components F1 and F2, then

return Max2Alg(F1) + Max2Alg(F2).
4. If the maximal vertex degree of F is 3, then call the known algorithm

for (n, 3)-MAX-2-SAT or (n, 3)-MAX-2-CSP, respectively.
5. If F contains a vertex of maximal degree Δ that has at least

one neighbor whose degree is not maximal, then let x be
this vertex. Otherwise, let x be any vertex of maximal degree.

6. Return max(Max2Alg(F [x]),Max2Alg(F [¬x])).

The algorithm Max2Alg is SimpleAlg extended by two steps (given in bold).

Lemma 3. If

1. Algorithm called at step 4 solves (n, 3)-MAX-2-SAT ((n, 3)-MAX-2-CSP) in
time O∗(2α3n),

2. δi = min(αi − αi−1, . . . , α4 − α3, α3),
for each i:

αi + (i − 1)δi + δi−1 ≥ 1, (10)
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then the algorithm Max2Alg solves MAX-2-SAT (MAX-2-CSP) in time
O∗(2α3n3+...+αΔnΔ+τ ), where τ =

∑
i(1 − τi),

τi = αi + iδi.

Proof. We prove this by induction on the number of vertices. Again we use
the formula complexity measure μ =α3n3 + . . . + αΔnΔ. By T (n3, . . . , nΔ) we
denote the running time of the algorithm on formula with ni vertices of degree
i, 3 ≤ i ≤ Δ.

It is clear that connected components of an input formula can be handled
independently. This is done at the step 4 of the algorithm. So, below we assume
that the graph of the formula is connected.

If there is both a vertex of degree Δ and a vertex of degree less than Δ, then
recursive calls decrease μ at least by 1. Indeed, we branch on a vertex x of degree
Δ and we decrease μ by αΔ. We choose x such that x has a neighbor of degree
less than Δ. This neighbor causes a complexity decrease of at least δΔ−1. Each
of the remaining Δ− 1 neighbors decrease μ at least by δΔ. It follows from (10),
that αΔ + (i − 1)δΔ + δΔ−1 ≥ 1. Therefore,

T (n3, . . . , nΔ) ≤ 2·2α3n3+...+αΔnΔ+τ−1+poly(|F |) ≤ 2α3n3+...+αΔnΔ+τ+poly(|F |),

Now assume that the graph contains degree Δ variables only. Since during the
work of the algorithm the degrees of variables can only decrease such a graph
cannot appear in this branch again. So, at this iteration the algorithm makes two
recursive calls for formulas whose complexity measure is less than the complexity
of the initial formula at least by τΔ.

T (n3, . . . , nΔ) ≤ 2 · 2k · 2α3n3+...+αΔnΔ−k−τΔ+
∑Δ−1

i=3 (1−τi) + poly(|F |)
= 2α3n3+...+αΔnΔ+

∑ Δ
i=3(1−τi) + poly(|F |),

where k is the number of iterations of the algorithm while maximal degree is
Δ. 
�
Corollary 3. If for all i > 3,

2αi ≥ αi+1 + αi−1, αi − αi−1 ≤ α3,

then the running time of Max2Alg is

O∗(2n(αD+ε(αD+1−αD))),

where D = �d�, d = D + ε, d = 2m
n is the average degree of the vertices.

Proof. It can be shown by induction on i, that αi ≥ 1 − 4
i+1 = i−3

i+1 From the
corollary condition it follows that αi−αi−1 decreases with increasing i. Therefore
δi = αi − αi−1. Then

τ =
Δ∑

i=3

(1 − τi) =
Δ∑

i=3

(1 − αi − iδi) =
Δ∑

i=3

(1 − αi − iαi + iαi−1) =

Δ − 2 − (Δ + 1)αΔ = Δ(1 − αΔ) + O(1) = Δ(1 − Δ − 3
Δ + 1

) + O(1) = O(1).
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We use Theorem 1 to complete the proof. 
�

It is easy to show that αi’s, chosen by (9), satisfy the condition of Corollary 3,
so we have the bounds w.r.t. d. We get the following sequence for MAX-2-SAT:
α3 = 1/6, α4 = 1/3, α5 = 13/30, α6 = 23/45, and the following sequence for
MAX-2-CSP: α3 = 1/4, α4 = 3/8, α5 = 19/40, α6 = 131/240. At each step we
can continue computing αi’s with weaker equality (4). This gives us an explicit
formula for αi for all i, if αk is already computed from a stronger equality (9):

αi =
i − k + (k + 1)αk

i + 1
=

1 − k + 1 − (k + 1)αk

i + 1
= 1 − k + 1

i + 1
(1 − αk). (11)

The values of the first αk for MAX-2-SAT and MAX-2-CSP are shown in Table
1. According to the table we can calculate the running time of Max2Alg for
graphs with the average degree i. The running time is O∗(2nαi).

Table 1. The values of αk for 3 ≤ k ≤ 10

d MAX-2-SAT MAX-2-CSP

3 1/6 ≈ 0.1666 1/4 ≈ 0.2500

4 1/3 ≈ 0.3333 3/8 ≈ 0.3750

5 13/30 ≈ 0.4333 19/40 ≈ 0.4750

6 23/45 ≈ 0.5111 131/240 ≈ 0.5458

7 359/630 ≈ 0.5698 1009/1680 ≈ 0.6005

8 1553/2520 ≈ 0.6162 8651/13440 ≈ 0.6436

9 14827/22680 ≈ 0.6537 82069/120960 ≈ 0.6784

10 155273/226800 ≈ 0.6846 855371/1209600 ≈ 0.7071

Consider, e.g., the case k = 5. From (11) for MAX-2-SAT αi = 1 − 3.4
d+1 , for

MAX-2-CSP αi = 1 − 3.15
d+1 , if d ≥ 5. For k = 8, αi = 1 − 3.45

d+1 for MAX-2-SAT,
αi = 1 − 3.20

d+1 for MAX-2-CSP, if d ≥ 8. So, the running time of Max2Alg for

MAX-2-SAT (MAX-2-CSP) is O∗(2n(1− 3.45
d+1 )) (O∗(2n(1− 3.20

d+1 ))), if d ≥ 8.
The upper bounds w.r.t. d imply upper bounds w.r.t. m. Indeed, n = 2m

d , so

the running time is O∗(2
2m(αD+ε(αD+1−αD))

d ). For MAX-2-CSP, the minimum of
this function is at d = 5 and is equal to O∗(2

m
5.263 ). This matches the best known

upper bound for MAX-2-CSP w.r.t. m [5].

5 Further Directions

To improve the upper bounds for MAX-2-SAT it is enough to improve any αi,
i ≥ 4. All the subsequent αi’s will also be improved recursively. We can improve
bounds from Section 4 for (n, Δ)-MAX-2-SAT by using item 5 of Lemma 4.1
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in [7], saying that a neighbor of a variable x of degree 3 in at least one of two
branches F [x] and F [¬x] is not just eliminated by simplification rules, but is
assigned a constant. Using this lemma and Lemma 3 we can get α4 = 1/3.43.
Also for small i, αi can be chosen using the algorithm from [5].

Also, as shown in Section 4, improving an upper bound for either (n, 3)-,
(n, 4)-, or (n, 5)-MAX-2-CSP w.r.t. n, gives an improved upper bound for MAX-
2-CSP w.r.t. m (the number of clauses).

Acknowledgments. I would like to thank my supervisor Alexander S. Kulikov
for help in writing this paper and valuable comments.
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Abstract. For many constraint satisfaction problems, the algorithm
which chooses a random assignment achieves the best possible approxi-
mation ratio. For instance, a simple random assignment for Max-E3-Sat

allows 7/8-approximation and for every ε > 0 there is no polynomial-
time (7/8+ε)-approximation unless P=NP. Another example is the Per-

mutation CSP of bounded arity. Given the expected fraction ρ of the
constraints satisfied by a random assignment (i.e. permutation), there is
no (ρ+ε)-approximation algorithm for every ε > 0, assuming the Unique
Games Conjecture (UGC).

In this work, we consider the following parameterization of constraint
satisfaction problems. Given a set of m constraints of constant arity, can
we satisfy at least ρm+ k constraint, where ρ is the expected fraction of
constraints satisfied by a random assignment? Constraint Satisfac-

tion Problems above Average have been posed in different forms in
the literature [18,17]. We present a faster parameterized algorithm for de-
ciding whether m/2+k/2 equations can be simultaneously satisfied over
F2. As a consequence, we obtain O(k)-variable bikernels for boolean

CSPs of arity c for every fixed c, and for permutation CSPs of arity 3.
This implies linear bikernels for many problems under the “above aver-
age” parameterization, such as Max-c-Sat, Set-Splitting, Between-

ness and Max Acyclic Subgraph. As a result, all the parameterized
problems we consider in this paper admit 2O(k)-time algorithms.

We also obtain non-trivial hybrid algorithms for every Max c-CSP: for
every instance I , we can either approximate I beyond the random assign-
ment threshold in polynomial time, or we can find an optimal solution
to I in subexponential time.

1 Introduction

The constraint satisfaction problem (CSP) is a general language to express many
combinatorial problems such as graph coloring, satisfiability and various permu-
tation problems. An instance of a CSP is a set V of variables, a domain D for
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the variables and C a set of constraints. The objective is to assign a value from
D to each variable of V so as to maximize the number of satisfied constraints.
For example, 3-Coloring can be seen as a CSP over a three-element domain,
and the constraints correspond to edges (thus the arity of each constraint is 2),
indicating that values assigned to the endpoints of an edge must differ. In this
work, we are interested in two types of CSPs. In a boolean CSP, the domain D
is {−1, +1}. In a permutation CSP, the size of the domain equals |V | and we
request that the assignment is a bijection.

As solving CSPs is NP-hard in general, the next question is whether they
allow efficient approximation algorithms. Interestingly, many constraint satis-
faction problems exhibit a hardness threshold, where it is relatively easy to ob-
tain a feasible solution that satisfies a certain fraction of the optimum number
of constraints, yet it is difficult to find a solution that is even slightly better.
Perhaps the best known example is Max-E3-Sat, where we are given a CNF
formula in which all clauses have exactly three literals, and wish to find a truth
assignment satisfying as many clauses as possible. Although a uniform random
assignment satisfies 7/8 of the clauses, H̊astad [14] proved that it is NP-hard
to satisfy 7/8 + ε for every ε > 0. The list of problems exhibiting a hardness
threshold contains Max-Ec-Sat for c ≥ 3, Max-Ec-Lin-2 for c ≥ 3, and Ec-
Set Splitting for c ≥ 4. For all these problems, a uniform random assignment
achieves the best approximation ratio based on P �= NP. Furthermore, for these
problems the lower bounds on the optimum are also tight in the sense that they
are optimal for an infinite sequence of instances.

For permutation CSPs, similar results have been identified, conditioned on the
Unique Games Conjecture (UGC) of Khot [15]. In the Betweenness problem,
we have a set of betweenness constraints of the form “vi is between vj and vk”
for distinct variables vi, vj , vk ∈ V and the task is to find a permutation of
the variables that satisfies the maximum number of constraints. More formally,
constraints have the form

(π(vj) < π(vi) < π(vk)) ∨ (π(vk) < π(vi) < π(vj))

and the task is to find a bijection π : V → {1, . . . , |V |} that satisfies the maxi-
mum. We can satisfy one-third of the constraints in expectation by choosing a
uniform random permutation. Moreover, it is hard to achieve a better approxi-
mation ratio, assuming UGC [5]. Hardness thresholds under UGC were known
for permutation CSPs of arity 2 and 3 [9,5]. Recently these results were general-
ized to arbitrary fixed arity [8]. Here, the lower bounds on the optimum obtained
by a random assignment is tight as well: consider, for example, an instance of
Betweenness in which we have all possible three constraints for triplets of
variables.

These threshold phenomena are fascinating in that they provide a sharp
boundary between feasibility and infeasibility: while the average is easy to obtain,
satisfying an “above average” fraction is intractable. While the identification of
such thresholds is extremely interesting, it does not end the story but rather
initiates another one. As it is likely that practitioners will require feasible solu-
tions that exceed these easy thresholds, it is important to understand how much



120 E.J. Kim and R. Williams

computational effort is required to solve a problem beyond its threshold. One
way of cleanly formalizing this question uses parameterized complexity.

A parameterized problem is a subset L ⊆ Σ∗×N over a finite alphabet Σ. L is
fixed-parameter tractable if the membership of (x, k) in Σ∗×N can be decided in
time |x|O(1) ·f(k) where f is a computable function of the parameter [7]. Given a
pair of parameterized problems L and L′, a bikernelization is a polynomial-time
pre-processing algorithm that maps an instance (x, k) to an instance (x′, k′) (the
bikernel) such that (i) (x, k) ∈ L if and only if (x′, k′) ∈ L′, (ii) k′ ≤ f(k), and
(iii) |x′| ≤ g(k) for some functions f and g. The function g(k) is called the size of
the bikernel. A parameterized problem is fixed-parameter tractable if and only if
it is decidable and admits a bikernelization [7]. A kernelization of a parameterized
problem is a bikernelization to itself. For an overview of kernelization, see the
recent survey [3].

Motivated by the discussion above, our work focuses on the following question:

(permutation) Max-c-CSP Above Average: We are given a param-
eter k and a set of constraints with at most c variables per constraint.
Each constraint has a positive integer weight. Determine if there is a vari-
able assignment (or permutation) that satisfies a subset of constraints
with total weight at least ρ·W +k, where W is the total weight of all con-
straints and ρ is the expected fraction of weighted constraints satisfied
by a uniform random assignment.

Previous Work. Parameterizations above a guaranteed value were first consid-
ered by Mahajan and Raman [16] for the problems Max-Sat and Max-Cut. In
a recent paper [17], Mahajan, Raman and Sikdar argue, in detail, that a prac-
tical (and challenging) parameter for a maximization problem is the number of
clauses satisfied above a tight lower bound, which is (1− 2−c)m for Max-Sat if
each clause contains exactly c different variables. In the monograph by Neider-
meier [18], an open problem attributed to Benny Chor [25, p.43] asks whether
Betweenness Above Average is fixed parameter tractable.

A way for systematic investigation of above-average parameterization was
recently presented by Gutin et al. [12]. They presented reductions to quadratic
(bi)kernels (i.e., (bi)kernels with O(k2) variables) for the above-average versions
of problems such as Maximum Acyclic Subgraph and Max-c-Lin-2. Alon
et al. [1] pushed forward the idea of representing a CSP instance algebraically,
presenting a quadratic kernel for Max-c-CSP using a similar method. This
method was used to give a fixed-parameter algorithm for Betweenness Above

Average [11], in which the idea of a coarse ordering is used. This result was
later generalized in [13] to obtain a quadratic bikernel for Permutation Max-

3-CSP.

Our Contribution. We show that every Max-c-CSP and Permutation Max-

3-CSP admits a problem bikernel with only O(k) variables in the above-average
parameterization. More precisely, we prove that essentially any hard instance
of Max-c-CSP must have less than c(c + 1)k/2 variables; instances with more
variables are yes-instances for which good assignments can be generated in
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polynomial time. This improves over the main results of Alon et al. [1] who gave
kernels of O(k2) variables, Crowston et al. [6] for Max-c-CSP with O(k log k)
variables and [13] for Permutation Max-3-CSP of O(k2) variables. This im-
plies linear variable bikernels for the above-average versions of many different
problems, such as Max-c-Lin-2, Max-c-Sat, Set Splitting when the sets
are of size ≥ 4, Maximum Acyclic Subgraph, Betweenness, Circular

Ordering, and 3-Linear Ordering. As a result, both Max-c-CSP and Per-

mutation Max-3-CSP admit 2O(k)-time algorithms.
The key to our results is a fixed-parameter algorithm for the following

problem:

Max-c-Lin-2 Above Average: We are given a parameter k and a sys-
tem of linear equations over F2 with at most c variables per equation.
Each equation e has a positive integer weight, and the weight of an as-
signment in the system is defined to be the total sum of weights of equa-
tions satisfied by the assignment. Determine if there is an assignment of
weight at least W/2 + k/2, where W is the total weight of all equations.

Note the random assignment algorithm yields W/2 weight, and it is famously
NP-hard to attain W/2+εW for every ε > 0 [14]. Our proofs imply the stronger
result that every constraint satisfaction problem admits a hybrid algorithm, in
the following sense:

Theorem 1. For every Boolean Max-c-CSP, there is an algorithm with the
property that, for every ε > 0, on any instance I, the algorithm outputs either:

– an optimal solution to I within O�(2c(c+1)εm/2) time, or
– a (ρ + ε/2c)-approximation to I within polynomial time, where ρ is the ex-

pected fraction of weighted constraints satisfied by a uniform random assign-
ment to the CSP.

This resolves an open problem of Vassilevska, Williams, and Woo [20], who asked
if Max-3-Sat had an algorithm of this form.

2 Preliminaries

We define the Boolean Max-c-CSP and Max-c-Permutation CSP. A
boolean constraint satisfaction problem is specified by the domain {−1, +1}
and a set of predicates P, called payoff functions as well. A predicate P ∈ P is a
function from {−1, +1}c′ to {0, 1} for c′ ≤ c. The maximum number c of inputs
to the predicates in P is the arity of the problem. We interpret −1 as the value
True and +1 as False.

An instance of boolean CSP is specified as a set of variables V along with
a collection of triples C = {(f1, S1, w1), . . . , (fm, Sm, wm)}, where fi ∈ P, every
Si is an ordered tuple from V of size at most c, every wi is a positive integer.
A variable assignment φ : V → D satisfies a constraint (fi, (s1, . . . , sc′), wi)
provided that f(φ(s1), . . . , φ(sc′)) = 1. Our goal is to find an assignment φ :
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V → {−1, +1} of maximum weight. Here the weight of an assignment φ is defined
to be the total sum of weights wi of constraints (fi, Si, wi) satisfied by φ. For
example, Max-E3-Sat is specified by a single predicate P : {−1, +1} → {0, 1},
where P (x, y, z) = 0 if and only if x = y = z = +1.

We consider the following parameterization of boolean CSP.

Max-c-CSP Above Average (c-CSPAA)

Input: A variable set V and constraints C = {(f1, S1, w1), . . . , (fm, Sm, wm)}
with |Si| ≤ c for every i, an integer k ≥ 0.
Parameter: k
Goal: Determine if there is an assignment with weight at least ρ·W+k/2c,
where W is the total weight of all constraints and ρ is the expected frac-
tion of weighted constraints satisfied by a uniform random assignment.

In the permutation CSP problem, the domain D is [n] = {1, . . . , n} and a
predicate P ∈ P is a function from Sc′ to {0, 1} for c′ ≤ c, where Sc′ is
the set of permutations on {1, . . . , c′}. Let P be a set of predicates. An in-
stance of permutation CSP is given as a variable set V and a collection C =
{(f1, S1, w1), . . . , (fm, Sm, wm)}, where every Si is an ordered tuple from V of
size at most c, every wi is a positive integer, fi ∈ P is applied to the tuple Si.
In a permutation CSP, a variable assignment φ : V → D is required to be a
bijection, or equivalently, a permutation. A permutation φ satisfies a constraint
(fi, (s1, . . . , sc′), wi) provided that f(φ(Si)) = 1, viewing the local permutation
φ(Si) as an element of Sc′ . Our goal is to find an assignment φ : V → [n] of max-
imum weight, where the weight of φ is the total sum of weights of constraints
satisfied by φ. For example, Betweenness is specified by a single predicate of
arity 3, i.e. P : S3 → {0, 1}, where P (x, y, z) = 1 if and only if xyz ∈ {123, 321}.

In the full version of the paper, we also consider the following parameterization
of permutation CSP:

Max-c-Permutation CSP Above Average

Input: A variable set V and constraints C = {(f1, S1, w1), . . . , (fm, Sm, wm)},
an integer k ≥ 0.
Parameter: k
Goal: Determine if there is an assignment with weight at least ρ · W +
k/(c!4c), where W is the total weight of all constraints and ρ is the ex-
pected fraction of weighted constraints satisfied by a uniform random
permutation.

In what follows, we omit Above Average and simply say Max-c-Lin-2, Max-

c-CSP and Max-c-Permutation CSP to refer to the parameterized problems.
For Max-c-Permutation CSP, let P be the associated set of predicates.

For each predicate P ∈ P, we can identify the set ΠP = {π ∈ Sc : P (π) = 1}.
Notice that φ satisfies (fi, Si = (v1, . . . , vc′), wi) if and only if there is a π ∈ Πfi

s.t. φ(v1)φ(v2) · · ·φ(vc′) ∼= π(1)π(2) · · ·π(c′), and thus if and only if there is
π ∈ Πfi s.t. φ(vπ−1(1)) < φ(vπ−1(2)) < · · · < φ(vπ−1(c′)). The folklore result
below allows us to focus on the case when P contains a single predicate P such
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that ΠP = {12 · · · c}, which we denote c-Linear Ordering. The proof for the
case c = 3 and |P| = 1 can be found in [13] and its extension for arbitrary fixed
c is straightforward. As the proof of [13] considers only the case when P has
a single predicate, we sketch the proof here even though its generalization is
immediate.

Proposition 1. Let (V, C, k) be an instance of c-OCSPAA. There is a poly-
nomial time transformation R from Max-c-Permutation CSP to c-Linear

Ordering such that an instance (V, C, k) of Max-c-Permutation CSP is a
yes-instance if and only if R(V, C, k) is a yes-instance of c-Linear Ordering.

Proof. From an instance (V, C, k) of Max-c-Permutation CSP, we construct
an instance (V, C0, k) of c-Linear Ordering as follows. We shall express a
constraint (fi, Si, wi) by a set of constraints R(fi, Si, wi) such that (fi, Si, wi)
is satisfied if and only if exactly one of R(fi, Si, wi) is satisfied. Let Si be
(v1, v2, . . . , vc′).

For every element π of Πfi = {π ∈ Sc : fi(π) = 1}, we add to the instance of c-
Linear Ordering the constraint (Pid, (vπ−1(1), vπ−1(2), . . . , vπ−1(c′)), wi). Here
Pid is a function mapping identity permutation to 1 and other permutations to
0. Notice that (fi, Si, wi) is satisfied if and only if exactly one of the constraints
(Pid, (vπ−1(1), vπ−1(2), . . . , vπ−1(c′)), wi) for π ∈ Πfi is satisfied. Hence the weight
of a linear ordering φ remains the same in the original and transformed in-
stances. Moreover, the expected satisfied fraction of the constraint (fi, Si, wi)
is |Πfi |/(c′)! and the expected satisfied fraction of the new constraints is the
same. Hence, the instance of Max-c-Permutation CSP has a linear ordering
of weight ρ·W +k if and only if the constructed instance of c-Linear Ordering

a linear ordering of weight ρ · W + k. 
�

It is well-known that for every function f : {1,−1}n → R can be uniquely
expressed as a multilinear polynomial

f(x) =
∑

S⊆[n]

f̂(S)χS(x),

where f̂(S) is the fourier coefficient of f on S, defined as

f̂(S) := E
x∈{1,−1}n

[f(x)χS(x)]

and the character function χS(x) is defined as χS(x) :=
∏

i∈S xi. Given the truth
table of f , the fourier coefficients of f can be computed via the inverse fourier
transform (one reference is [19]).

3 Max-c-Lin-2 above Average

We now turn to describing improved parameterized algorithms for maximum
constraint satisfaction problems with a constant number of variables per con-
straint, including the problems of satisfying a maximum subset of linear equa-
tions and maximum CNF satisfiability. At the heart of our approach is a faster
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algorithm for Max-c-Lin-2 Above Average that can be applied in a general
way to solve other CSPs.

Theorem 2. For every c ≥ 2, Max-c-Lin-2 Above Average can be solved in
O(2(c(c+1)/2)k · m) time.

In [20], the authors gave a “hybrid algorithm” for the unweighted problem Max-

E3-Lin-2 (where exactly three variables appear in each equation), with the
property that, after a polynomial time test of the instance, the algorithm either
outputs an assignment satisfying (1/2 + ε)m equations in polynomial time, or
outputs the optimal satisfying assignment in 2O(εm) time. The algorithm works
by finding a maximal subset of equations such that every pair of equations share
no variables; based on the size of this set, the hybrid algorithm decides to either
approximately solve the instance or solve it exactly. Our algorithm is in a similar
spirit, but requires several modifications to yield a parameterized algorithm for
the weighted case, to deal with any c ≥ 2, and to deal with “mixed” equations
that can have different numbers of variables.

Let F be a set of equations over F2, where each equation e contains at most c
variables and has a positive integral weight w(e). For a single equation e ∈ F , let
var(e) be the set of all variables appearing in e. Let var(F ) =

⋃
e∈F var(e). For

a set of equations F ′, the weight w(F ′) is the sum of weights w(e) over e ∈ F ′.
The weight of an assignment is the total weight of equations that are satisfied
by the assignment.

Note that Max-2-Lin-2 Above Average is a generalization of Max Cut

Above Average on weighted graphs: by simulating each edge {u, v} of weight
w with an equation xu + xv = 1 of weight w, the Max-2-Lin-2 problem easily
captures Max Cut.

We assume that the given instance is reduced in the sense that there is no
pair of equations e, e′ with e ≡ e′ + 1 (mod 2). (Such an equation e is said to be
degenerate in [20].) If such a pair exists, one can remove the equation of lesser
weight (call it e′) and subtract w(e′) from w(e). Note the weight of every variable
assignment has now been subtracted by w(e′).

Proof of Theorem 2. It is convenient to view an equation e as a set var(e).
We first find a maximal independent (i.e. disjoint) collection Sc ⊆ F of c-sets.
More precisely, we treat each equation as a set of variables, ignore those sets of
cardinality less than c, and find a maximal disjoint set over the c-sets using the
standard greedy algorithm. All remaining equations in F now have at most c−1
variables if we remove all occurrences of variables in var(Sc) from F .

Next, we pick another collection Sc−1 ⊆ F of sets with the property that, after
we remove all variables in var(Sc) from F , Sc−1 forms a maximally independent
collection of (c − 1)-sets in the remaining set system. In general, for j = c − 2
down to 1, once the variables in var(Sc ∪ · · · ∪ Sj+1) have been removed from
the remaining equations, a maximal independent set of j-sets is chosen greedily,
and we set Sj to be a collection of corresponding original sets in F (with the
variables in var(Sc ∪ · · · ∪ Sj+1) added back). We continue until S1, in which
each set in the collection has exactly one variable after those in var(Sc∪· · ·∪S2)
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have been removed. For convenience, let Sc+1 = var(Sc+1) = ∅. By properties
of maximal disjoint sets, we have:

Observation 1. For every 1 ≤ j ≤ c, eliminating the variables appearing in
var(Sc ∪ · · · ∪ Sj+1) leaves at most j variables in every equation of F .

Now, either (1) w(Sj) < k for every j = 1, . . . , c, or (2) there is a j such that
w(Sj) ≥ k.

Case (1) is easily handled: for every j, each equation in Sj contains j variables
which do not appear in Sc ∪ · · · ∪ Sj+1. Hence, |var(F )| = |var(

⋃c
i=1 Si)| <

ck +(c−1)k + · · ·+k < (c(c+1)/2) ·k. By trying all O(2(c(c+1)/2)k) assignments
to var(F ), we can find an optimal assignment for F .

Case (2) is more delicate and is handled by the two claims below. We will
show that in this case, F is a yes-instance of the problem and we can efficiently
recover a solution for it. Recall an equation e ∈ F is non-degenerate if there is
no e′ ∈ F such that e ≡ e′ + 1 (mod 2). As mentioned earlier, we may assume
without loss of generality that every equation in F is non-degenerate.

Claim. For every 1 ≤ j ≤ c, a random assignment satisfying all equations in
Sj will satisfy every non-degenerate equation in F − Sj with probability 1/2.
Moreover, we can output such a random assignment in polynomial time.

Proof. To prove the first part of the claim, it suffices to show that no equation
e ∈ F − Sj (or its negation e + 1) can be expressed as a linear combination of
one or more equations in Sj . Put another way, we will show that every equation
in e ∈ F − Sj is linearly independent of the equations in Sj .

Suppose there are equations e1, . . . , em from Sj such that their summation
(modulo 2) results in a variable subset that is equal to the set of variables in
another equation e ∈ F . That is, viewing e1, . . . , em and e as indicator n-bit
vectors (one bit for each of the n variables, omitting the constant terms in the
equations), we have e =

∑m
i=1 ei (mod 2). Recall that every equation in Sj

has j variables which do not appear in var(Sc ∪ · · · ∪ Sj+1), and every pair
of equations in Sj involves disjoint sets of variables, by construction. Hence, if
m > 1, then the equation e (composed of variables from e1, . . . , em) has more
than j variables which do not appear in var(Sc ∪· · ·∪Sj+1), which is impossible
by Observation 1. Therefore m = 1, and every subset {e1, . . . , em} of equations
from Sj whose modulo sum is the same as another equation e ∈ F − Sj has
cardinality 1. But then the equation e is degenerate, which is a contradiction to
the non-degeneracy assumption. Therefore no non-degenerate equation in F (or
its negation) can be represented as a linear combination of one or more equations
from Sj .

Now, given that every non-degenerate equation in e ∈ F − Sj is linearly
independent of the equations in Sj, we claim that a random assignment that is
consistent with the equations in Sj will satisfy e with probability 1/2. This is
a simple consequence of linear algebra over F2. Put the system of equations Sj

in the form Ax = b, where A ∈ F|Sj |×n
2 , x ∈ Fn

2 , and b ∈ F|Sj|
2 . Let e ∈ F − Sj .

Define Be ∈ F(|Sj|+1)×n
2 to be identical to A in its first |Sj | rows, and in the last
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row, Be contains the indicator vector for the variables of e. Define ce ∈ F|Sj|+1
2

to be identical to b in its first |Sj | components, and c contains the constant term
of e in its last component. Saying that e ∈ F − Sj is linearly independent of Sj

is equivalent to saying rowrank(Be) = rowrank(A) + 1, and the set of solutions
to Ax = b contains the set of solutions to Bex = ce. The number of solutions
to a system of rank r is 2n−r. Therefore a uniform random variable assignment
that satisfies Ax = b will also satisfy Bex = ce with probability 1/2.

Finally, we describe how to produce a uniform random assignment over all
assignments that satisfy the equations in Sj. Produce a random assignment to
the variables in var(Sc+1 ∪ · · · ∪ Sj+1), then produce a random assignment to
those variables in the maximal independent collection of j-sets obtained after
removing var(Sc+1 ∪ · · · ∪ Sj+1), in such a way that every equation in Sj is
satisfied. (Exactly one variable in each equation of Sj will be “forced” to be
a certain value, but note that none of these forced variables appear in more
than one equation of Sj , by construction.) The remaining variables are set to
0 or 1 uniformly at random. Note that if j = 1 and some equation e ∈ S1 has
|var(e)| = 1, the assignment to the variable of e is decided uniquely. 
�

Claim. If there is a j with w(Sj) ≥ k, then we can find an assignment with
weight at least W/2 + k/2 in polynomial time.

Proof. Suppose that j ≥ 1 is the largest integer with w(Sj) ≥ k. By Claim 3,
a random assignment satisfying all equations in Sj will satisfy every other non-
degenerate equation with probability 1/2. Hence the weight of such an assign-
ment is at least (W −w(Sj))/2+w(Sj) ≥ W/2+k/2 on average. An assignment
can also be found deterministically using conditional expectation. 
�
This completes the proof of Theorem 2. 
�
The above proof shows that the following stronger statement is also true.

Theorem 3. For every c ≥ 2, let I be an instance of Max-c-Lin-2 Above Av-

erage. If |var(F )| ≥ (c(c+1)/2)k, then I is an yes-instance and an assignment
satisfying equations with at least W/2 + k/2 weight can be found in polynomial
time.

Observe that the running time of our algorithm is optimal up to constant factors
in the exponent, assuming the Exponential Time Hypothesis:

Theorem 4. If Max-3-Lin-2 Above Average can be solved in O(2εk2εm)
time for every ε > 0, then 3SAT can be solved in O(2δn) time for every δ > 0,
where n is the number of variables.

Proof. First, by the improved Sparsification Lemma of [4], for every δ > 0 we can
reduce 3SAT on n variables and m clauses in 2δn time to 3SAT on n variables
and m′ = (1/δ)cn clauses, for some fixed constant c > 1. This 3SAT instance on
n variables and m′ clauses can further be reduced to Max-3-Lin-2 on n variables
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and O(m′) clauses using the reduction of Lemma 1 (proved below). Provided
that we can determine whether m′/2 + k/2 equations can be satisfied in 2εk2εm′

time, then by trying each k in the interval [1, m′] we can solve the Max-3-Lin-2
instance exactly in at most 22εm′ ≤ O(22ε(1/δ)cn) time.

This results in an O(2δn+2ε(1/δ)cn) algorithm for 3SAT. Setting ε = δc+1, we
obtain O(23δn) time. As this reduction works for every δ > 0, the conclusion
follows. 
�

4 Boolean MAX-c-CSP above Average

To apply our algorithm to general CSPs, we use the following reduction.

Lemma 1 ([1],[6]). There is a polynomial time reduction from Max-c-Csp

Above Average with n variables and parameter k to Max-c-Lin-2 Above

Average with n variables and parameter k.

The proof of the lemma for unweighted c-CSP is sketched in [1], and a full
proof is given in [6]. An alternative proof which also covers the weighted case is
provided in the full version of this paper.

Theorem 5. For every c ≥ 2, Max-c-CSP Above Average can be solved in
O(2(c(c+1)/2)k · m) time.

Proof of Theorem 5. Using the reduction of Lemma 1, reduce an instance of
Max-c-CSP Above Average with m constraints to Max-c-Lin-2 Above

Average with O(2c ·m) equations. Using the algorithm of Theorem 2 we solve
the obtained instance of Max-c-Lin-2 Above Average. Thus we can deter-
mine if the given c-CSP has an assignment with weight at least AV G + k in
O(2(c(c+1)/2)k · 2c · m) = O(2(c(c+1)/2)k · m) time. To finding an actual solution
for Max-c-CSP Above Average, we can simply use the transformation given
in the proof of Lemma 1. 
�
Theorem 3 and Lemma 1 show in fact that every CSP admits a hybrid algo-
rithm [20].
Reminder of Theorem 1. For every Boolean Max-c-CSP, there is an algo-
rithm with the property that, for every ε > 0, on any instance I, the algorithm
outputs either:

– an optimal solution to I within O�(2c(c+1)εm/2) time, or
– a (ρ + ε/2c+1)-approximation to I within polynomial time, where ρ is the

expected fraction of weighted constraints satisfied by a uniform random as-
signment to the CSP.

Proof. Given an instance I of Max-c-CSP with m constraints, Lemma 1 shows
that we can reduce I to an weighted instance I ′ of Max-c-Lin-2 with O(2cm)
equations, in polynomial time, such that at least ρm + δk constraints can be
satisfied in I if and only if at least W/2+k/2 weight of equations can be satisfied
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in I ′, where δ ≥ 1/2c and depends on the underlying constraints. Now set k =
εm and run the algorithm of Theorem 3. If |var(I ′)| ≥ (c(c + 1)/2)k, then an
assignment satisfying at least W/2+k/2 ≥ W/2+εm/2 weight of equations can
be found in polynomial time, hence we obtain an assignment for I satisfying at
least ρm+δεm/2 constraints. Otherwise, exhaustive search over the c(c+1)εm/2
variables of I ′ will uncover an exact solution to I in O�(2c(c+1)εm/2) time. 
�

We close this section with showing how our algorithm can provide linear size
kernels for Max-c-Lin-2 Above Average and a kernel for Max-c-CSP Above

Average.

Corollary 1. For every c ≥ 3, the problem Max-c-Lin-2 Above Average can
be reduced to a problem kernel with at most (c(c+1)/2)k variables in polynomial
time.

Proof. Consider executing the algorithm of Theorem 2, up to the point before
it performs an exhaustive search of assignments. At this point, the algorithm
has taken only polynomial time. If there is a Sj with weight at least k, the
algorithm outputs an assignment with weight at least W/2 + k/2 in polynomial
time. Otherwise, for all j = c, c − 1, . . . , 1, Sj has weight less than k. It follows
(from Case (1) in the proof of Theorem 2) that the total number of variables in
the instance is at most (c(c + 1)/2)k. 
�

Note that the size of the kernel in Corollary 1 matches the prior work for c = 2 [1].

Corollary 2. For every c ≥ 3, the problem Max-c-CSP Above Average can
be reduced to a problem kernel with at most (c(c+1)/2)k variables in polynomial
time.

Proof. In the proof of Theorem 1 in [1], a procedure P is given that reduces any
instance of Max-c-Lin-2 Above Average with total sum of weights W and
parameter k into an instance of Max-c-CSP Above Average

1 with (a multiset
of) 2c−1W constraints and parameter 2c−1k. More precisely, the procedure P
considers an instance of Max-c-Lin-2 Above Average in which each equation
has weight 1 and the multiplicity of an equation may be larger than one. P maps
an equation into a set of 2c−1 clauses.

Given a Max-c-CSP Above Average instance on n variables and m con-
straints, we first perform the transformation given by Lemma 1 and obtain a
Max-c-Lin-2 Above Average instance, with O(2cm) equations and n vari-
ables. By applying the kernelization of Theorem 2 we obtain an equivalent in-
stance with at most (c(c + 1)/2)k variables and no more than (c(c + 1)k/2)c

(weighted) equations. Finally, apply procedure P to reduce the problem back
into a Max-c-CSP Above Average instance, having (c(c + 1)/2)k variables,
O(2c−1 · (c(c + 1)k/2)c) constraints and parameter 2c−1k. 
�

1 In [1], the transformed instance is in fact a Max-c-SAT instance.
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5 MAX-c-Permutation CSP above Average

In Section 3, we proved that every reduced instance of Max-c-Lin-2 either has
an assignment satisfying W/2+k weight of equations, or has at most (c(c+1)/2)k
variables. This result can be applied to the problems Max-c-Permutation CSP

for c = 2, 3 to obtain a bikernel with O(k) variables. By Proposition 1, it suffices
for us to focus on the problem 3-Linear Ordering instead of considering
general Max-c-Permutation CSP. Due to lack of space, we only have room to
state the main theorems, and must defer the rest to the full paper. For 3-Linear

Ordering we give a series of reduction rules to run on a given instance, and we
prove that “irreducible” instances (those instances which are unaffected by the
rules) have special properties:

Theorem 6. Let I = (V, C, k) be an irreducible instance of 3-Linear Order-

ing. If I is a no-instance (i.e., less than ρW + k constraints in I can be simul-
taneously satisfied), then the number of variables in I is less than 15k variables.

Corollary 3. Let I = (V, C, k) be an irreducible instance of 2-Linear Order-

ing. If I is a no-instance, we have |V | < 10k variables.

Theorem 7. The problem Max-c-Permutation CSP Above Average can
be solved in time 2O(k) for c = 2, 3.

Proof. Using Proposition 1, Max-c-Permutation CSP Above Average in-
stances can be transformed into an equivalent instance of c-Linear Ordering.
Due to the result stated as Theorem 6 and Corollary 3, we either know the
instance is a yes-instance or attain an equivalent instance with less than 15k
variables for c = 3 (or an instance with less than 10k variables for c = 2). Hence,
a O�(2n)-algorithm to exactly compute the maximum number of satisfiable con-
straints on a n-variable instance of Exact 3-Linear Ordering will yield a
desired result. Here, an instance I of Exact 3-Linear Ordering is given as a
pair (V, C) and the task is to find a linear ordering on V so as to maximize the
number of satisfied constraints in C. We give an exposition of such an algorithm
for c = 3. An analogous observation applies to c = 2.

Bodlaender et. al [2] presents algorithms for Vertex Ordering problems
which runs in O�(2n) time and O�(2n) space, or O�(4n) time and polynomial
space. Let V be a set of elements, which may be vertices in graph problems
or variables in our permutation CSP context. For a linear ordering π on V , we
denote the set {w ∈ V : π(w) < π(v)} by π<,v. Consider a function f from the
domain of triples (G, S, v) to an integer, where G is a graph, S ⊆ V (G) and
v ∈ V (G). It is shown in [2] that if f is polynomial time computable, the value

min
π

∑
v∈V

f(G, π<,v, v),

where π is taken over all possible linear orderings, can be computed either in
O�(2n) time and O�(2n) space, or in O�(4n) time and polynomial space. Alerted
readers might notice that the former uses dynamic programming in Held-Karp
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style and the latter employs recursion instead. We point out that although they
describe the algorithms in the context of graph problems, the validity does not
depend on whether the relations on V are of arity two or not. It remains to
formulate the Exact 3-Linear Ordering problem to fit in the setting.

We take f(I, S, v) := |{e = (a, v, c) ∈ C : a ∈ S, c ∈ V \ (S ∪ {v}}| and note
that f can be computed in polynomial time given a triple I = (V, C), S ⊆ V and
v ∈ V . To see that minπ

∑
v∈V −f(I, π<,v, v) = maxπ

∑
v∈V f(I, π<,v, v) equals

the optimal value of the Exact 3-Linear Ordering instance I, it suffices to
observe the followings: given a linear ordering π, (a) the family {e = (a, v, c) ∈
C}, v ∈ V partitions the constraint set C, (b) a constraint e = (a, v, c) ∈ C
contributes one to f(I, π<,v, v) if and only if π satisfies e. Finally, we note that
the extension of the formulation to weighted instances and instances with (some)
constraints of arity two is straightforward. 
�

Closing this section, we point out that the recent work in [10], independently
of our paper, also explores the idea of ensuring a monomial which represents a
variable in the multilinear polynomial. They consider the c-Linear ordering

problem in which every variable occurs in a bounded number of constraints
and show that approximation beyond the random assignment threshold 1/c! is
achievable. It is interesting to note as well that their motivation is to gain over
the random assignment threshold.

Acknowledgement. The authors would like to thank Daniel Gonçalves for
valuable discussion which inspired the results of Section 5.
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Abstract. The Odd Cycle Transversal problem (oct) asks whether
a given graph can be made bipartite (i.e., 2-colorable) by deleting at
most � vertices. We study structural parameterizations of oct with re-
spect to their polynomial kernelizability, i.e., whether instances can be
efficiently reduced to a size polynomial in the chosen parameter. It is a
major open problem in parameterized complexity whether Odd Cycle

Transversal admits a polynomial kernel when parameterized by �.
On the positive side, we show a polynomial kernel for oct when

parameterized by the vertex deletion distance to the class of bipartite
graphs of treewidth at most w (for any constant w); this generalizes the
parameter feedback vertex set number (i.e., the distance to a forest).

Complementing this, we exclude polynomial kernels for oct param-
eterized by the distance to outerplanar graphs, conditioned on the as-
sumption that NP � coNP/poly. Thus the bipartiteness requirement for
the treewidth w graphs is necessary. Further lower bounds are given for
parameterization by distance from cluster and co-cluster graphs respec-
tively, as well as for Weighted oct parameterized by the vertex cover
number (i.e., the distance from an independent set).

1 Introduction

Odd Cycle Transversal (oct), also called Graph Bipartization, is the
task of making an undirected graph bipartite by deleting as few vertices as
possible; such a set is a transversal of the odd-length cycles in the graph. The oct

problem has applications in computational biology [27,29], amongst others. It
is NP-complete and admits a polynomial-time O(

√
log n)-factor approximation

algorithm [1]; no constant-factor approximation is possible unless Khot’s Unique
Games Conjecture fails [20,29].

In this work we study the parameterized complexity [9] of oct, focusing on
data reduction and kernelization. Parameterized analysis measures the complex-
ity of an algorithm in two dimensions, the input size |x| and an additional pa-
rameter k ∈ N which expresses some property of the instance, such as the size of
the desired solution. A parameterized problem is a language Q ⊆ Σ∗×N, and Q
is (strictly uniformly) fixed-parameter tractable (FPT) if there is an algorithm
� This work was supported by the Netherlands Organization for Scientific Research

(NWO), project “KERNELS: Combinatorial Analysis of Data Reduction”.
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that decides whether (x, k) ∈ Q with running time bounded by f(k)|x|O(1) for
some computable function f .

In the standard parameterization of Odd Cycle Transversal which we
call �-oct, the parameter k := � measures the number of allowed vertex dele-
tions �: an instance is a tuple ((G, �), k := �) where G is a graph and � ∈ N, and
the question is whether there is a set S ⊆ V (G) of size at most � such that G−S
is bipartite. The �-oct problem has been very important to the development
of parameterized algorithmics, since the algorithm given by Reed, Smith and
Vetta [26] to solve �-oct in O(4
�mn) time1 introduced the technique of iter-
ative compression which has turned out to be a key ingredient in finding FPT
algorithms for Directed Feedback Vertex Set [7] and Multicut [6,24],
amongst others. There has been a significant amount of work on improved exact
and parameterized algorithms for oct and related problems [25,14,11,16,19,23].

Kernelization is an important subfield of parameterized complexity which
studies polynomial-time preprocessing [15]. A kernelization algorithm (or ker-
nel) for a parameterized problem Q is a polynomial-time algorithm which trans-
forms an input (x, k) ∈ Σ∗ ×N into an equivalent reduced instance (x′, k′) such
that |x′|, k′ ≤ f(k) for some computable function f , which is called the size
of the kernel. All problems in FPT admit kernels for some suitable function f ,
but polynomial kernels (where f(k) ∈ kO(1)) are of particular interest. It is a
famous open problem whether or not �-oct admits a polynomial kernel [16,14].
At the 2010 workshop on kernelization WORKER, this was stated as one of the
two main open problems in kernelization to date (recent work of Kratsch and
Wahlström [21] gives a randomized polynomial kernelization). Even finding a
polynomial kernel for �-oct restricted to planar graphs was listed as an open
problem by Bodlaender et al. in the full version of their work [3], despite the
fact that planarity makes it significantly easier to obtain polynomial kernels.

Our Contribution. We study the existence of polynomial kernels for various
structural parameterizations of the oct problem. While we have not been able
to settle the question of whether �-oct admits a polynomial kernel, we do give
several upper- and lower bound results for kernel sizes that we believe are im-
portant steps towards resolving the main problem. All parameterized problems
we consider fit into the following scheme, where F is a class of graphs:

Odd Cycle Transversal parameterized by vertex-deletion dis-
tance to F [(F)-OCT]
Input: A graph G, an integer � and a set X such that G − X ∈ F .
Parameter: k := |X |.
Question: Is there a set S ⊆ V (G) of size at most � such that G − S is
bipartite?

We give kernelization upper- and lower bounds for such parameterized problems.
Upper bounds. Our initial goal was to study oct parameterized by the size of a
feedback vertex set (FVS) of the input graph. Recall that a FVS can be defined

1 Hüffner [16] re-analyzed the algorithm and showed it has time complexity O(3��mn).
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as a set of vertices whose deletion turns the graph into a forest, and hence this
is the (forest)-oct problem. After having obtained a polynomial kernel for
this problem, we considered generalizations and were able to extend our result
significantly. Let bip denote the class of all bipartite graphs, and let Gtw(w)

denote the graphs of treewidth at most w. It is well-known that forest =
bip ∩ Gtw(1). We extended our result for feedback vertex number by showing
that for every constant w, the problem (bip ∩ Gtw(w))-oct has a polynomial
kernel. Using an approximation algorithm to compute the set X we can even
drop the requirement that the set X is given in the input; the size of the reduced
instance will then be bounded polynomially in the minimum-size of such a set X .
Our result can therefore be stated as follows: for every fixed w ≥ 1 there is a
polynomial-time algorithm that transforms an instance (G, �) of oct into an
equivalent instance whose size is bounded by a polynomial in |X |, where X ⊆
V (G) is a smallest vertex set such that G − X ∈ bip ∩ Gtw(w).

We believe that the ingredients of our kernelization will be useful for solving
the main open problem of whether �-oct admits a polynomial kernel. Our kernel
uses several powerful techniques from the area of parameterized algorithmics;
here is a brief overview. We introduce an annotated version of the problem
and show that using these annotations the problem essentially reduces to a
connectivity problem with respect to the vertices of the deletion set X . We
give a lemma which shows that the main structure of the problem instance lies
within an |X |O(1)-sized set of connected components of the graph G−X . Using a
technique originating in the study of protrusion-based kernelization [3] we show
the fact that G−X ∈ Gtw(w) implies that the number of vertices from V (G)\X
on the boundary of such regions can be bounded by a constant. We analyze the
structure of a solution inside such a region in terms of combinatorial properties
of separators in labeled graphs. Using the concept of important separators as
introduced by Marx [22] we prove that the number of separators which are
relevant to the problem can be bounded polynomially in |X |. To obtain the
polynomial kernel we then show how to get rid of vertices which do not belong
to any relevant separator.
Lower bounds. As described in the previous paragraph, we show the existence of
polynomial kernels for (bip∩Gtw(w))-oct. We can also prove that the bipartite-
ness condition cannot be dropped (under a reasonable complexity-theoretic as-
sumption). Observe that Gtw(1) coincides with the class of forests, and
hence only contains bipartite graphs. But Gtw(2) is the first class of bounded-
treewidth graphs which contains non-bipartite graphs, and we prove using cross-
composition [4] that (Gtw(2))-oct does not admit a polynomial kernel unless
NP ⊆ coNP/poly, which implies a collapse of the polynomial-time hierarchy to
the third level (PH = Σp

3 ) and further. We actually prove that (outerplanar)-
oct does not admit a polynomial kernel under this assumption, which is a
stronger statement since outerplanar ⊆ Gtw(2). We also show that if we
take F to be a class of non-bipartite but very simply structured graphs (such as
cluster graphs, the union of cliques, or their edge-complements co-cluster graphs)
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then we cannot obtain polynomial kernels: (cluster)-oct and (co-cluster)-
oct do not admit polynomial kernels unless NP ⊆ coNP/poly. Since (co)cluster
graphs have a very limited structure, the vertex-deletion distance to these graph
classes will often be very large; our results show that even for such a large
parameter one should not expect to find a polynomial kernel. Finally we look
at the vertex-weighted version of oct and prove that in the presence of vertex
weights we cannot even obtain a polynomial kernel measured by the vertex
deletion distance to an edgeless graph: (edgeless)-Weighted Odd Cycle

Transversal (which is equivalent to Weighted Odd Cycle Transversal

parameterized by the cardinality of a vertex cover) does not admit a polynomial
kernel unless NP ⊆ coNP/poly. All parameterizations for which we prove kernel
lower bounds can be seen to be fixed-parameter tractable because the classes F
have bounded cliquewidth [8] and therefore the cliquewidth of the input graphs
is bounded by a function of the parameter.

Related Work. Recent work of Kratsch and Wahlström [21] gives a random-
ized polynomial kernel for �-oct, using matroid theory. However, this result is
not combinatorial in the sense of not providing actual reduction rules. Instead,
instances are converted into a (small) matroid representation relating to the ver-
tex cuts between certain sets of terminal vertices. To the best of our knowledge
no deterministic (and combinatorial) polynomial kernel is known for �-oct or
for any non-trivial parameterizations of the oct problem. Wernicke [29] used
several reduction rules for oct as part of his branch-and-bound algorithm, but
these rules were not analyzed within the framework of kernelization and do not
give provable bounds on the size of reduced instances with respect to any graph
parameter. Kernelization with respect to structural parameterizations has been
studied by a handful of authors, e.g., [10,4,5,17,28].

Organization. We start by giving some preliminaries. In Section 3 we give
combinatorial bounds for separators in labeled graphs, which will be used in
the kernelization algorithm. Section 4 presents the polynomial kernel for (bip ∩
Gtw(w))-oct. We briefly discuss the kernelization lower bounds in Section 5 and
conclude in Section 6.

2 Preliminaries

All graphs considered in this work are simple, undirected, and finite. If G is
a graph then V (G) and E(G) denote the vertex- and edge set, respectively.
We let length and parity of a path refer to the number of its vertices. For a
vertex v ∈ V (G) the open neighborhood is denoted by NG(v) and the closed
neighborhood is NG[v] := NG(v)∪{v}. The open neighborhood of a set S ⊆ V (G)
is NG(S) :=

⋃
v∈S NG[v]\S. The graph G−S is the result of removing all vertices

in S and their incident edges from G. We use [n] as a shorthand for {1, . . . , n}.
The term

(
X
n

)
denotes the collection of all size-n subsets of the finite set X ,

whereas
(

X
≤n

)
represents the collection of size at most n subsets of X . The sizes

of these collections are denoted by
(|X|

n

)
and

(|X|
≤n

)
, respectively.
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3 Combinatorial Properties of Separators in Labeled
Graphs

An important part of our kernelization relies on a combinatorial bound on the
number of essentially distinct ways to separate terminals from labeled vertices in
a graph: we prove that if the number of terminals and the size of the separators is
taken as a constant, then the number of distinct ways to separate the labels grows
polynomially with the number of labels. We believe this to be of independent
interest. Some definitions are needed to formalize these claims.

Definition 1. A labeled graph is a tuple (G, L, f) where G is a graph, L is a
finite set of labels, and f : V (G) → 2L is a labeling function which assigns to
each vertex a (possibly empty) subset of the labels. For a subset S ⊆ V (G) and
terminal t ∈ V (G) we denote by R(t, S) the vertices of V (G)\S reachable from t
in G − S. The labels reachable from t in G − S are L(t, S) :=

⋃
v∈R(t,S) f(v).

Definition 2. Let (G, L, f) be a labeled graph and let T = t1, . . . , tn be a se-
quence of distinct terminal vertices in G. The cut characteristic K(S, T ) of
a set S ⊆ V (G) with respect to the terminals T is an n-dimensional vector
K(S, T ) := (L(t1, S),L(t2, S), . . . ,L(tn, S)) whose elements are subsets of L. The
set of distinct cut characteristics Km(T ) for separators of size at most m ≥ 1
is Km(T ) :=

{
K(S, T )

∣∣∣ S ∈
(
V (G)
≤m

)}
.

Marx [22] introduced the notion of important separators, and proved their num-
ber to be bounded, independently of the graph size. An involved argument which
relates important separators to distinct cut characteristics yields the following
theorem; the interested reader is referred to the full version [18].

Theorem 1. Let κ(n, m, r) denote the maximum of |Km(T )| over all labeled
graphs (G, L, f) with |L| ≤ r and over all sets of terminals T = {v1, v2, . . . , vn} ⊆
V (G), i.e., the maximum number of distinct cut characteristics induced by m-
vertex separators in an n-terminal graph labeled with r different labels. Then
κ(n, m, r) ∈ O(m2n · rnm(m+3)/2 · 4nm), which is polynomial in r for fixed n, m.

4 Polynomial Kernelization for (BIP ∩ Gtw(w))-OCT

In this section we describe our polynomial kernelization for (bip ∩ Gtw(w))-oct.
Note that the definition of (bip∩Gtw(w))-oct assumes a deletion set to be given
in the input, and our kernelization will relate to its size. We will discuss the
approximability of the deletion set at the end of the section, which will extend
our kernelization to the case that no deletion set is given.

To simplify the formulation of the reduction process, we will actually work
with an annotated version of the problem. To obtain the final reduced instance
we will later undo these annotations at a small cost.
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Annotated (BIP ∩ Gtw(w))-OCT
Input: A graph G, a set X ⊆ V (G) such that G − X ∈ (bip ∩ Gtw(w)),
a set M ⊆

(
X
2

)
, and an integer �.

Parameter: k := |X |.
Question: Is there a set S ⊆ V (G) of size at most � such that G − S is
bipartite, and there is a proper 2-coloring c of G−S such that c(p) = c(q)
for all {p, q} ∈ M?

We call vertex pairs {p, q} ∈ M monochromatic, and these annotations allow
us to easily talk about vertices which are constrained to have the same color
in G − S. Observe that the dual notion, vertices p, q ∈ X which must receive
different colors in the bipartite graph G − S, is expressed simply through the
existence of an edge {p, q}. We will therefore refer to vertices p, q ∈ X which are
adjacent as vertices to be annotated as bichromatic. There is no reason a priori
that a pair {p, q} cannot be constrained to be simultaneously bichromatic and
monochromatic; this condition implies that any valid solution has to delete at
least one vertex of the pair before a proper coloring 2-coloring can be found. A
coloring is said to respect all annotations if it respects all edges between vertices
of X as well as the monochromatic pairs given by the set M .

The following straightforward lemma will be used in a number of proofs
throughout this section. It shows that any partial 2-coloring of a graph whose
uncolored parts are bipartite can either be extended to a 2-coloring of the whole
graph, or one finds a path between two already colored vertices whose parity
does not match their colors (e.g., the path has an odd number of internal ver-
tices but the color of the endpoints is different). Due to space restrictions all
proofs of this section are deferred to the full version [18].

Lemma 1. Let G be a graph, let S ⊆ V (G) be such that G − S is bipartite,
and let c : S → {0, 1} be a proper 2-coloring of G[S]. Then in polynomial time
one finds either an extension of c to a proper 2-coloring of G, or a connected
component C of G− S and vertices p, q ∈ NG(C) ⊆ S as well as a p− q path P
such that either

– P has an odd number of internal vertices and c(p) �= c(q), or
– P has an even number of internal vertices and c(p) = c(q).

Furthermore, all internal vertices of P are from V (G)\S and P is simple except
possibly for p = q (in the latter case P is in fact an odd cycle through p).

Now, for instructive purposes, consider an instance (G, X, M, �) of the annotated
problem and assume that there is a connected component C of G−X such that
the parity of all paths between vertices of X which run through C matches
annotations: e.g., if there is an odd p − q path, p, q ∈ X , with internal vertices
from C then p and q are annotated as monochromatic, {p, q} ∈ M (resp. for
an even path we already have {p, q} ∈ E(G)). Since C is bipartite, Lemma 1
now implies that any 2-coloring of G[X ] that respects all annotations can be
extended to a proper 2-coloring of G[X ∪ V (C)], i.e., extended onto C.
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X

G − X

P1

P2

p

q

r

s

Fig. 1. A graph G and an odd cycle transversal X. Suppose M = {{r, s}}. The dashed
path P1 is an important p− q X-path. The dashed path P2 is a non-important r−s X-
path. Further, the two vertices marked by gray boxes intersect all important X-paths.

Thus, since the components of G−X are already bipartite, we are only inter-
ested in paths between vertices of X that they provide, in particular in paths that
do not match annotations. The following definition formalizes these as X-paths
and important X-paths ; see also Figure 1.

Definition 3. An X-path of length r between (not necessarily distinct) ver-
tices p, q ∈ X in an instance of the annotated problem is a simple path P =
{v1, . . . , vr} in G − X such that there are distinct edges {p, v1}, {vr, q} ∈ E(G).
A p − q X-path is important if (a) its length is odd, p �= q, and {p, q} �∈ M , or
(b) its length is even and {p, q} �∈ E(G).

Observe that the definition of a p−q X-path excludes the possibility where p = q
and the odd p− p X-path P consists of only one vertex v1 = vr, because in that
case the edges {p, v1} and {vr, q} are not distinct.

With the following lemma we begin to explore the structure of the impor-
tant X-paths. Given a graph G and a set X such that G − X is bipartite we
count vertex-disjoint odd and even length p − q X-paths for all p, q ∈ X . For
each pair and parity the lemma will provide in polynomial time either a small
hitting set intersecting all important X-paths, or point out that the number of
paths exceeds our budget of � vertex deletions (this is indicated by the sets A, B,
and C which will later be turned into annotations, edges, and vertex deletions);
Algorithm 2 shows this in detail. We remark that both the lemma and the algo-
rithm can also be applied to any other parameterization of oct, given that X
is a deletion set to any class of bipartite graphs (it is easy to see that � < |X | in
all interesting cases); in particular it can be applied to the standard parameter-
ization whose kernelizability is still open.

Lemma 2. Let G be a graph, � be an integer, and X ⊆ V (G) such that G−X is
bipartite. Then ComputeHittingSet(G, X, �) computes sets A, B ⊆

(
X
2

)
, a set C ⊆

X, and a set H ⊆ V (G)\X of size at most 4�·|X |2 such that for all {u, v} ∈
(
X
2

)
:

1. If {u, v} ∈ A (resp. {u, v} ∈ B) then there are at least � + 1 vertex-disjoint
X-paths of even (odd) length between u and v.
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Algorithm 1. VertexCut(G, P, Q; u, v, S, T )
Input: A graph G such that G[P∪Q] is bipartite with bipartition P∪Q, vertices u, v ∈

V (G) \ (P ∪ Q), and sets S, T ∈ {P, Q}.
Output: A cut Y ⊆ P ∪ Q separating NG(u) ∩ S from NG(v) ∩ T in G[P ∪ Q] − Y .

Let G′ := G[P ∪ Q]
Add a source s with NG′(s) := NG(u) ∩ S and a sink t with NG′ (t) := NG(v) ∩ T
Compute a minimum-size s − t vertex-cut Y in G′ using a flow algorithm
return Y

2. The set H intersects all even (odd) length u − v X-paths with {u, v} /∈ A
(resp. {u, v} /∈ B).

If v ∈ C then there are at least �+1 vertex-disjoint even v−v X-paths (i.e., odd
cycles that intersect only in v), and H intersects all such paths for v ∈ X \ C.

Now, let us see how to turn the sets A, B, and C into annotations, edges, and
vertex deletions such that H is a hitting set for all important X-paths in the
resulting annotated instance, i.e., H will intersect each important X-path.

Lemma 3. Let (G, X, �) be an instance of (bip ∩ Gtw(w))-oct and let A, B ⊆(
X
2

)
, let C ⊆ X, and let H ⊆ V (G)\X as given by Lemma 2. Then in polynomial

time one can find an equivalent instance (G′, X ′, M, �′) with X ′ ⊆ X and �′ ≤ �
of the annotated problem such that H intersects all important X ′-paths in G′.

We will now turn our attention to the relation between the connected components
of G − X and the set H intersecting all important X-paths. It is obvious that
no component of (G − X) − H contains an important X-path. However, to use
the fact that each such path needs to leave the component via a vertex of H and
cross at least one other component before returning to X , we need to restrict the
number of neighbors that any such component has in H . This is also the point
from which on we need to use that G−X has bounded treewidth. The following
lemma, following along the lines of the protrusion partitioning lemma [3, Lemma
2] of Bodlaender et al., permits us to extend the set H slightly while decreasing
the neighborhood size of the components obtained.

Lemma 4. Let G be a graph, let T be a tree decomposition of G of width w,
and let S ⊆ V (G). There is a polynomial-time algorithm that, given (G, T , S),
computes a superset S′ ⊇ S of size at most 2(w + 1)|S| such that for each
connected component C of G − S′ it holds that |NG(C) ∩ S′| ≤ 2w.

The following lemma bounds the number of components of (G − X) − H , re-
gardless of the structure of the set H ; similar but simpler than Lemma 2.

Lemma 5. Let (G, X, M, �) be an instance of the annotated problem and let H
be a set of vertices of G. By deleting connected components of (G−X)−H one
can in polynomial time create an equivalent instance (G′, X, M, �) such that (G′−
X) − H has at most 2 · (� + 1) · (|X | + |H |)2 connected components.
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Algorithm 2. ComputeHittingSet(G, X, �)
Input: A graph G and vertex subset X ⊆ V (G) such that G − X is bipartite.
Output: Three sets of annotations A, B, and C as well as a hitting set H .

Initialize H,A, B, C := ∅
Let P ∪ Q be a bipartition of G − X {Computable by BFS}
for each {u, v} ∈ (

X
2

)
do

PP := VertexCut(G,P, Q; u, v, P, P )
QQ := VertexCut(G,P, Q; u, v, Q, Q)
PQ := VertexCut(G,P, Q; u, v, P, Q)
QP := VertexCut(G,P, Q; u, v, Q, P )
if |PQ| > � or |QP | > � then {> � disjoint even-length u − v X-paths}

A := A ∪ {{u, v}}
else {Set PQ ∪ QP intersects all even-length u − v X-paths}

H := H ∪ (PQ ∪ QP )
if |PP | > � or |QQ| > � then

B := B ∪ {{u, v}}
else {Set PP ∪ QQ intersects all odd-length u − v X-paths}

H := H ∪ (PP ∪ QQ)
for each v ∈ X do

PQ := VertexCut(G,P, Q; v, v, P, Q)
if |PQ| > � then {> � disjoint even-length v − v X-paths}

C := C ∪ {v}
else {Set PQ intersects all even-length v − v X-paths}

H := H ∪ PQ
return (A, B, C, H)

With the next lemma, we prepare the ground for applying the combinatorial
bounds on the number of cut characteristics in labeled graphs. It formalizes and
proves the fact that we may freely modify any given odd cycle transversal by
replacing its intersection with a connected component with a separator of the
same cut characteristic. It is crucial that all important paths must intersect the
hitting set H and that each component is adjacent to only few vertices of H ; the
hitting set will correspond to terminals of certain labeled graphs, whose labels
express adjacency to X .

Lemma 6 (Separator replacement lemma). Let (G, X, M, �) be an instance
of the annotated problem. Let H ⊆ V (G) \ X be a set of vertices that intersects
all important X-paths of the instance. Let R be a solution to the problem, i.e.,
an odd cycle transversal such that G − R has a proper 2-coloring respecting
the annotations. Consider a connected component C of the graph (G − X) − H
and consider the terminal vertices NG(C) \ X. Define D as the subgraph of G
induced by the set NG[C] \ X. Let T = t1, . . . , tn be a sequence containing the
terminals NG(C)\X in an arbitrary order. We define a labeling for the graph D
as follows. The set of labels is the set of vertices in the modulator X augmented
with one label per terminal in T , and the labeling function f is defined as follows
for v ∈ V (D):
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f(v) :=

{
NG(v) ∩ X If v �∈ T .
(NG(v) ∩ X) ∪ {v} If v ∈ T .

Let S := V (C)∩R be the vertices from C chosen in the solution R. If S′ ⊆ V (C)
is a subset such that S and S′ have the same cut characteristic in the labeled
graph (D, X ∪ T, f) with respect to the terminals T , then R′ := (R \ S) ∪ S′ is
also a valid solution, or more formally: if K(S, T ) = K(S′, T ) with respect to the
labeled graph (D, X ∪ T, f) then G − R′ has a proper 2-coloring respecting the
annotations.

Now, we will use the Separator Replacement Lemma and the combinatorial
bound on the number of cut characteristics (Theorem 1) to limit the choice of
vertices that may be deleted from the connected components. The idea is that it
suffices to have one separator for each cut characteristic; vertices outside these
separators need not be considered for deletion. To this end we introduce a re-
stricted version of the annotated odd cycle transversal problem. As an additional
restriction a set Z of vertices is provided, and the task is to find a (small) odd
cycle transversal that is a subset of Z.

Restricted Annotated (BIP ∩ Gtw(w))-OCT
Input: A graph G, a set X ⊆ V (G) such that G − X ∈ (bip ∩ Gtw(w)),
a set Z ⊆ V (G) of deletable vertices, a set M ⊆

(
X
2

)
, and an integer �.

Parameter: k := |X |.
Question: Is there a set S ⊆ Z of size at most � such that G − S is
bipartite, and there is a proper 2-coloring c of G−S such that c(p) = c(q)
for all {p, q} ∈ M?

Lemma 7. Let (G, X, M, �) be an instance of Annotated (bip∩Gtw(w))-oct

and let H ⊆ V (G) \ X be a set of vertices such that:

1. H intersects all important X-paths of G,
2. (G − X) − H has at most α connected components,
3. and each connected component of (G−X)−H has at most δ neighbors in H.

For each fixed value of δ it is possible to compute in polynomial time an equiv-
alent instance (G, X, M, �, Z) of Restricted Annotated (bip ∩ Gtw(w))-oct

where |Z| ≤ |X |+ |H |+α ·δ ·κ(δ, δ−1, |X |+ δ), with κ as defined in Theorem 1.

This final lemma provides the reduction from the restricted annotated problem
back to (bip∩Gtw(w))-oct. The number of vertices in Z in the restricted instance
determines the size of the vertex set in the new (equivalent) instance.

Lemma 8. An instance (G, X, M, �, Z) of Restricted Annotated (bip ∩
Gtw(w))-oct can be transformed in polynomial time into an equivalent instance
(G′, X ′, �) of (bip ∩ Gtw(w))-oct with |V (G′)| bounded by |Z| + (� + 1) · |Z|2.

Now we can wrap up our kernelization with the following theorem. The kernel-
ization follows the lemmas and motivation given so far.

Theorem 2. For each fixed integer w ≥ 1 the problem (bip∩Gtw(w))-oct admits
a polynomial kernel with O(kO(w3)) vertices.



142 B.M.P. Jansen and S. Kratsch

Approximating a Minimum-Size Deletion Set. For our kernelization we
have assumed that a deletion set X to the class (bip ∩ Gtw(w)) is given. If G is
a graph for which the minimum size of such a deletion set is opt, then we can
compute in polynomial time a deletion set of size O(opt · log3/2

opt) as follows.
Observe that Gtw(w) is characterized by a finite set of forbidden minors, and
excludes at least one planar graph as a minor. We can use the recent approxi-
mation algorithm by Fomin et al. [12] to approximate a deletion set Stw(w) to
a graph of treewidth at most w. Then we may find a minimum-size odd cycle
transversal Soct in the bounded-treewidth graph G− Stw(w) which can be com-
puted in polynomial time using Courcelle’s theorem, since w is a constant. The
union X := Stw(w) ∪ Soct is then a suitable deletion set, which we can use to
run our kernelization. This procedure is formalized in the following lemma.

Lemma 9. Let w ≥ 1 be a fixed integer. There is a polynomial-time algorithm
which gets as input a graph G, and computes a set X ⊆ V (G) such that G−X ∈
bip ∩ Gtw(w) with |X | ∈ O(opt · log3/2

opt), where opt is the minimum size of
such a deletion set.

5 Lower Bounds for Kernelization

In this section we state the lower bound results for various structural kerneliza-
tions of oct. All results use the recent notion of cross-composition introduced
by Bodlaender et al. [4]. Cross-composition is a frontend to the lower bound
framework via compositions based on work of Bodlaender et al. [2] as well as
Fortnow and Santhanam [13]. It extends the notion of a composition, showing
that a reduction of the OR of any NP-hard problem into an instance of the
target parameterized problem with small parameter value excludes polynomial
kernels, assuming that NP �⊆ coNP/poly.

The following theorem states the obtained kernelization lower bounds (with
proofs deferred to the full version [18]) ; all problems are FPT by having bounded
cliquewidth, as briefly discussed in the introduction.

Theorem 3. Assuming NP �⊆ coNP/poly the following parameterized problems
do not admit polynomial kernels:

– (outerplanar)-oct,
– (cluster)-oct,
– (co-cluster)-oct,
– Weighted Odd Cycle Transversal parameterized by the size of

a vertex cover.

6 Conclusion

We have studied the existence of polynomial kernels for structural parameter-
izations of oct. We have shown that in polynomial time the size of an in-
stance (G, �) of oct can be reduced to a polynomial in the minimum number
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of vertex deletions needed to transform G into a bipartite graph of constant
treewidth. We also gave several kernelization lower bounds when the parameter
measures the vertex-deletion distance to a non-bipartite graph with a simple
structure. These lower bounds show that even for very large parameters such
as the deletion distance to a cluster graph, it is unlikely that oct admits a
polynomial kernel.

The important open problem remains to determine whether the natural pa-
rameterization �-oct admits a deterministic polynomial kernel. Encouraged by
the recent randomized kernelization result [21], we believe this to be the case. We
think that several components we introduced in this work, such as the notion of
important X-paths and the algorithm to find a small hitting set for these paths,
will be useful ingredients for a deterministic kernelization. These ingredients do
not rely on our structural parameterization and are therefore directly applicable
to the general �-oct problem.
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Abstract. Connectivity problems like k-Path and k-Disjoint Paths

relate to many important milestones in parameterized complexity, namely
the Graph Minors Project, color coding, and the recent development of
techniques for obtaining kernelization lower bounds. This work explores
the existence of polynomial kernels for various path and cycle problems,
by considering nonstandard parameterizations. We show polynomial ker-
nels when the parameters are a given vertex cover, a modulator to a clus-
ter graph, or a (promised) max leaf number. We obtain lower bounds via
cross-composition, e.g., for Hamiltonian Cycle and related problems
when parameterized by a modulator to an outerplanar graph.

1 Introduction

Connectivity problems such as k-Path and k-Disjoint Paths play important
theoretical and practical roles in the field of parameterized complexity. On the
practical side, k-Path [16, ND29] has applications in computational biology [22]
where the involved parameter is fairly small, thus giving an excellent opportunity
to apply parameterized algorithms to find optimal solutions. On the theoretical
side, these problems have triggered the development of very powerful algorith-
mic techniques. The k-Disjoint Paths problem [21] lies at the heart of the
Graph Minors Algorithm, and is the source of the irrelevant-vertex technique.
The color coding technique of Alon et al. [1] to solve k-Path has found a wide
range of applications and extensions [20,7], and new methods of solving k-Path

are still developing [2]. Despite the success stories of parameterized algorithms
for these problems, the quest for polynomial kernels has resulted in mostly neg-
ative results. Indeed, the failure to find a polynomial kernel for k-Path was one
of the main motivations for the development of the kernelization lower-bound
framework of Bodlaender et al. [3]. Using the framework it was shown that k-

Path does not admit a polynomial kernel unless NP ⊆ coNP/poly, even when
restricted to very specific graph classes such as planar cubic graphs. It did not
take long before related connectivity problems such as k-Disjoint Paths [6],
k-Disjoint Cycles [6], k-Connected Vertex Cover [10], and restricted
variants of k-Connected Dominating Set [9] were also shown not to admit
polynomial kernels unless NP ⊆ coNP/poly.
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Thus it seems that connectivity requirements in a problem form a barrier
to polynomial kernelizability when it comes to the natural parameterization by
solution size k. Driven by the desire to obtain useful preprocessing procedures
for such problems, we may therefore investigate the kernelization complexity for
nonstandard parameters. Early work by Fellows et al. [13] shows that such a
different perspective can yield polynomial kernels: they proved that Hamilto-

nian Cycle parameterized by the max leaf number of the input graph G, i.e.,
the maximum number of leaves in a spanning tree for G, admits a linear-vertex
kernel. In this work we study the existence of polynomial kernels for various
structural parameters such as the max leaf number, the size of a vertex cover,
and the vertex-deletion distance to simple graph classes such as cluster graphs
and outerplanar graphs. Our results:

1. We introduce a widely applicable technique based on matchings in bipartite
graphs to show that the problems Long Cycle, its directed and path vari-
ants, Disjoint Paths, and Disjoint Cycles, admit kernels with O(|X |2)
vertices when parameterized by a vertex cover X .

2. For Long Cycle and Long Path we generalize to the stronger parameter
“vertex-deletion distance to a cluster graph” (see Fig. 1) and obtain a poly-
nomial kernel. An essential step in this kernelization is the use of a weighted
version of the problem, using the observation that either the binary repre-
sentation of the weights has size polynomial in the problem parameter, or
we can solve the problem in polynomial time.

3. Using the same binary encoding trick we give a polynomial kernel for Long

Cycle parameterized by the max leaf number, generalizing the result of
Fellows et al. [13] for Hamiltonian Cycle.

4. We give contrasting kernelization lower bounds using the recently introduced
technique of cross-composition [4]: (a) Directed Hamiltonian Cycle pa-

rameterized by a modulator to Bi-paths does not admit a polynomial
kernel unless NP ⊆ coNP/poly, where the parameter measures the vertex-
deletion distance to a digraph whose underlying undirected graph is a path,
and (b) we modify the construction to prove that Hamiltonian Cycle

parameterized by a modulator to Outerplanar graphs does not
admit a polynomial kernel; both results assuming NP �⊆ coNP/poly. These
results carry over to Long Path, Long Cycle and related variants.

5. We initiate the parameterized complexity study of finding paths respect-
ing forbidden pairs [16, GT54] under various parameterizations. We obtain
W[1]-hardness proofs, FPT algorithms, kernel lower bounds and para-NP-
completeness results.

Related Work. Chen, Flum and Müller studied various forms of kernelization
lower bounds, and showed amongst others that k-Pointed Path (with given
startpoint) does not admit a parameter non-increasing polynomial kernelization
unless P = NP, and that k-Path does not have a polynomial kernel on connected
planar graphs unless NP ⊆ coNP/poly [8]. Very recently, Hermelin et al. [18] gave
evidence that k-Colored Path does not have a polynomial Turing kernel by
proving it complete for the class WK[1] of kernelization hardness.
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Fig. 1. The hierarchy of parameters used in this work. Arrows point from larger pa-
rameters to smaller parameters: an arc P → P ′ signifies that every graph G satis-
fies P (G) + 2 ≥ P ′(G). For a graph class G, the vertex-deletion distance from G to G
(written as G #) is the minimum number of vertices whose removal from G results in a
graph in G. The vertex cover # is the size of a minimum vertex cover. Feedback vertex
# and max leaf # are defined analogously.

Structural Parameterizations. Throughout this paper we use structural pa-
rameterizations of the path and cycle problems under consideration: we choose
a graph parameter, and ask whether the size of an instance can efficiently be
reduced to a polynomial in this parameter without changing the answer. To
understand the relevance of our results it is important to consider the relation-
ships between various graph parameters. Fig. 1 therefore organizes the relevant
parameters in a hierarchy. Section 2 contains definitions of various graph classes.

Most proofs had to be omitted from this extended abstract due to space
restrictions. They can be found in the full version of this work [5].

2 Preliminaries

Graphs. All graphs are finite and simple, unless indicated otherwise. An undi-
rected graph G has a vertex set V (G) and an edge set V (G) ⊆

(
V (G)

2

)
. A directed

graph D has a vertex set V (D) and a set of directed arcs A(D) ⊆ V (D)2. The
minimum size of a vertex cover in a graph G is denoted by vc(G). A match-
ing M in a graph covers a set of vertices U if each vertex in U is endpoint of an
edge in M . For a digraph D and vertex v we write N+

D (v) and N−
D (v) for the in-

neighbors and out-neighbors of v, respectively. The underlying undirected graph
of a digraph D is the result of disregarding the orientation of the arcs and elimi-
nating parallel edges. Let Bi-paths (for bi-orientations of paths) be the class of
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digraphs whose underlying undirected graph is a path. Outerplanar graphs are
those graphs which can be drawn in the plane without crossings such that all
the vertices lie on the outer face; such graphs have treewidth at most two. Clus-
ter graphs are disjoint unions of cliques; their edge-complements are cocluster
graphs. A linear forest is an undirected forest of maximum degree at most two,
i.e., a collection of paths. For a graph class G and a vertex set X ⊆ V (G) of a
graph G such that G−X ∈ G, we say that X is a modulator to the class G. We
use [n] as a shorthand for {1, 2, . . . , n}. If X is a finite set then

(
X
n

)
denotes the

set of all size-n subsets of X .

Parameterized Complexity and Kernels. A parameterized problem Q is a
subset of Σ∗ × N, the second component being the parameter which expresses
some structural measure of the input. A parameterized problem is (strongly
uniform) fixed-parameter tractable if there exists an algorithm to decide whether
(x, k) ∈ Q in time f(k)|x|O(1) where f is a computable function [11].

A kernelization algorithm (or kernel) for a parameterized problem Q is a
polynomial-time algorithm which transforms an instance (x, k) into an equivalent
instance (x′, k′) such that |x′|, k′ ≤ f(k) for some computable function f , which
is the size of the kernel. If f is a polynomial then this is a polynomial kernel [17].

Cross-Composition. To prove our lower bounds we use the framework of
cross-composition [4], which builds on earlier work by Bodlaender et al. [3],
and Fortnow and Santhanam [15].

3 A Property of Maximum Matchings in Bipartite
Graphs

The following theorem simplifies the correctness proofs of our reduction rules.

Theorem 1. Let G = (X ∪Y, E) be a bipartite graph. Let M ⊆ E(G) be a max-
imum matching in G. Let XM ⊆ X be the set of vertices in X that are endpoint
of an edge in M . Then, for each Y ′ ⊆ Y , if there exists a matching M ′ in G
that covers Y ′, then there exists a matching M ′′ in G[XM ∪ Y ] that covers Y ′.

Proof. Let G, M , and XM be as stated in the theorem. Suppose the theorem
does not hold for Y ′ ⊆ Y , and let M ′ be a matching in G that covers Y ′. Over all
such matchings M ′, take one that covers the largest number of vertices in XM .
By assumption M ′ is not a matching in G[XM ∪Y ], so there is a vertex y0 ∈ Y ′

that is matched in M ′ to a vertex in X \XM , say x0. We use an iterative process
to derive a contradiction, maintaining the following invariants:

– x0 �∈ XM .
– {xj , yj} ∈ M ′ for 0 ≤ j ≤ i.
– {yj, xj+1} ∈ M for 0 ≤ j < i.
– The vertices xj for 0 ≤ j ≤ i are distinct members of X , and vertices yj

for 0 ≤ j ≤ i are distinct members of Y .

It is easy to verify that given our choice of x0, y0 these invariants are initially
satisfied for i = 0. We now continue the process based on a case distinction:
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1. If yi is not matched under M , then the sequence (x0, y0, . . . , xi, yi) is an
M -augmenting path in G since x0 and yi are not matched under M , and
all edges {yj, xj+1} for 0 ≤ j < i are contained in M . Hence M ′′ := M \
{{yj, xj+1} | 0 ≤ j < i} ∪ {{xj, yj} | 0 ≤ j ≤ i} is a matching in G larger
than M , contradicting that M is maximum.

2. In the remaining cases we may assume yi is matched under M , say {yi, xi+1}
∈ M . If there is an index 0 ≤ j ≤ i such that xi+1 = xj then j > 0
(since x0 �∈ XM ) and the edges {yi, xi+1} and {yj−1, xj} are both contained
in M and are distinct edges since yj−1 �= yi, contradicting the fact that M
is a matching. Hence xi+1 is distinct from xj for 0 ≤ j ≤ i.

3. If xi+1 is not covered by M ′ then the matching M ′′ := M ′ \ {{xj, yj} |
0 ≤ j ≤ i} ∪ {{yj, xj+1} | 0 ≤ j ≤ i} contains as many edges as M ′ but
covers more vertices of XM , contradicting the choice of M ′. Hence xi+1 is
covered by M ′, say {xi+1, yi+1} ∈ M ′. If there is an index 0 ≤ j ≤ i such
that yi+1 = yj then {xi+1, yi+1} and {xj , yj} are two distinct edges in M ′

incident on yi+1, contradicting that M ′ is a matching. Hence yi+1 is distinct
from yj for 0 ≤ j ≤ i. Now observe that the invariant holds for i + 1, and
we may proceed with the next step of the process.

By the last property of the invariant, the process must end. Hence the assumption
that there is no matching in G[XM ∪Y ] which covers Y ′ leads to a contradiction,
which concludes the proof. 
�

4 Polynomial Kernels for Path and Cycle Problems

4.1 Long Cycle Parameterized by a Vertex Cover

In this section, we consider the Long Cycle problem parameterized by the
size � of a given vertex cover and present a kernel with O(�2) vertices.

Long Cycle parameterized by a vertex cover

Input: A graph G, an integer k, and a vertex cover X ⊆ V (G) (which
implies that G − X is an independent set).
Parameter: � := |X |.
Question: Does G contain a cycle of length at least k?

We need only one reduction rule to get a kernelization, it uses a bipartite con-
nection graph H = H(G, k, X): One color class consists of the vertices in the
independent set I = V (G) \ X , and the other consists of all (unordered) pairs
of distinct vertices in X . We take an edge from a vertex v ∈ I to a vertex
representing the pair {p, q} ⊆ X , if and only if v is adjacent to p and to q.

Reduction Rule 1. Given (G, k, X), if k ≤ 4 then solve the problem (e.g. by
the trivial O(n4) algorithm) and return an equivalent dummy instance. Other-
wise, construct the connection graph H = H(G, k, X). Let M be a maximum
matching in H. Let J ⊆ I be the vertices touched by an edge in M . Remove all
vertices in I \ J and their incident edges from G. Let G′ be the resulting graph,
and return the instance (G′, k, X).
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Observation 1. In Rule 1, |J | is at most the number of pairs of distinct vertices
in X, and hence after applying the rule, G′ has at most � +

(


2

)
∈ O(�2) vertices.

Correctness of the rule follows from the following lemma.

Lemma 1. Let (G, k, X) be an instance of Long Cycle parameterized by

a vertex cover, and let (G′, k, X) be the instance returned by Rule 1. Then G
has a cycle of length at least k if and only if G′ has a cycle of length at least k.

Proof. If k ≤ 4 then the lemma holds trivially. Otherwise, we have that G′ is an
induced subgraph of G so cycles (in particular those of length at least k) in G′

exist also in G. It remains to look at the converse.
Let C be a cycle of length at least k ≥ 5 in G. Clearly, as I = V \ X is

an independent set, any vertices of I which are in C must be neighbored by
vertices of X on C. Let v1, . . . , vr be all vertices of I contained in C and let pi

and qi be the predecessor and successor of vi on C, respectively (clearly r ≤ �
but there might be far fewer vertices of I on C). Since C has length at least 5,
it follows that {pi, qi} �= {pj , qj} for all i, j ∈ [r] with i �= j (else it would have
length 4). To show that G′ contains a cycle of length at least k, it suffices to
find replacements for all vertices vi which are not in J (and hence not in G′);
for this we will use the matching.

Clearly, in H = H(G, k, X) there is a matching M covering W := {{p1, q1},
. . . , {pr, qr}}, namely matching each pair to the corresponding vertex vi. Further,
by Rule 1, J is the set of endpoints in I of some maximum matching of H . Hence,
by Theorem 1, there is a matching M ′ covering W in H [J ∪ W ].

Let v′i denote the vertex matched to {pi, qi} by M ′, for i ∈ {1, . . . , r}. It is
easy to see that we may replace each vi on C by v′i since v′i is adjacent to pi

and qi in G, obtaining a cycle C′ which intersects I only in vertices of J . Also,
as all pairs {pi, qi} are different, no vertex v′i is required twice. Hence, C′ is also
a cycle of G′, and of length at least k. 
�

The kernelization result now follows from Lemma 1 and Observation 1, and
noting that Rule 1 can be easily performed in polynomial time.

Theorem 2. Long Cycle parameterized by a vertex cover has a kernel
with O(�2) vertices.

4.2 Other Path and Cycle Problems Parameterized by Vertex
Cover

The same technique can be used for a number of additional problems, all pa-
rameterized by the size of a vertex cover. For Long Path, Disjoint Paths,
and Disjoint Cycles polynomial kernels with O(�2) vertices with respect to
the size � of a given vertex cover can be obtained. The basic argument is that
the matching strategy allows us to reroute any paths or cycles such that they
use only matched vertices (which are kept).

For Hamiltonian Path and Hamiltonian Cycle it is easy to see that any
vertex cover of a yes-instance must have size at least least � |V |

2 �, since vertices
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of the remaining independent set cannot be adjacent on a Hamiltonian path or
cycle. Thus all nontrivial instances (G, X) have |V (G)| ≤ 2|X | + 1.

4.3 Parameterization by Max Leaf Number

In this section we consider path and cycle problems parameterized by the max
leaf number, i.e., the maximum number of leaves in any spanning tree of the
graph. Deviating slightly from the standard use, we will take the max leaf num-
ber of a disconnected graph to be the sum of max leaf numbers taken over all
connected components. We will use Long Cycle as a running example, but as
in Section 4.2 it is easy to generalize the arguments to further problems. As the
max leaf number of a graph cannot be verified in polynomial time, we consider
the parameterization in the sense of a promise problem, e.g.:

Long Cycle parameterized by max leaf number (LCML)

Input: A graph G and two integers k and �.
Parameter: �.
Question: If G has max leaf number at most �, then decide whether G
contains a cycle of length at least k. Else the output may be arbitrary.

Although we need the concept of a promise-problem to cast LCML in a proper
formal setting, knowing the exact value is not needed in practice. We can devise
an algorithm that reduces the size of an instance with max leaf number � to
poly(�), by using our kernel with an approximation algorithm for Max Leaf.

It is well known that a large graph having small max leaf number must contain
long paths of degree two vertices and few vertices of degree at least three. The
following bound was obtained by Fellows et al. [13] based on work by Kleitman
and West [19]; it can be easily seen to hold for each connected component.

Lemma 2 ([13]). If a graph G has max leaf number at most � then it is a
subdivision of some graph H of at most 4� − 2 vertices. In particular, G has at
most 4� − 2 vertices of degree at least three.

It is not hard to devise an FPT-algorithm for LCML.

Lemma 3. Long Cycle parameterized by max leaf number can be solved
in time 2O(
)nc.

The main idea for the kernelization is that one of two good cases must hold:
Either all the path lengths are small enough such that a binary encoding of their
length has size polynomial in �, or the total number n of vertices is large enough
such that the 2O(
)nc is in fact polynomial in n.

Theorem 3. Long Cycle parameterized by max leaf number admits a
polynomial kernel.

Proof. Given an instance (G, k, �) of LCML, we first check that k does not exceed
the number of vertices and that there are at most 4� vertices of degree at least
three, or else return no. If G has more than 2O(
) vertices (using the concrete
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bound resulting from an implementation of Lemma 3), then we solve the instance
in time 2O(
) ·nc = O(nc+1), and answer yes or no accordingly. Otherwise let B
denote the set of vertices of degree at least three. If there are more than � disjoint
paths connecting any two vertices of B, then the max leaf number of G exceeds �,
and we return no.

We replace each path connecting two vertices b, b′ ∈ B, with internal vertices
from V (G) \ B, by a single edge with an integer label denoting the number of
internal vertices of the replaced path. We obtain a multigraph G′ in which some
edges have an integer label. It is easy to see that cycles in G correspond to cycles
in G′ of the same length, when taking the integer labels into account (i.e. labeled
edges are simply worth as much as that many internal vertices). Clearly, each
label can be encoded in binary by at most log 2O(
) = O(�) bits. Furthermore, we
delete all paths that start in a vertex of B, have internal vertices from V (G)\B,
and end in a vertex of degree one; clearly those cannot be used by cycles in G.

We obtain a multigraph G′ with at most 4� vertices in B and with at most �
edges between any two B-vertices. Thus we have O(�) vertices and O(�3) integer
labels of size O(�), for a total size of O(�4) (this could be easily tightened, but
it would not affect the result); clearly k can also be encoded in O(�) bits.

We obtain an equivalent instance of a slightly different Long Cycle prob-
lem on multigraphs in which some edges may be labeled, but which is in NP. By
the implied Karp reduction to LCML we obtain the claimed polynomial kernel
(cf. [6]). Deviating from Bodlaender et al. [6] we do not use the versions with
parameter encoded in unary, but observe the following: All instances of Long

Cycle with k exceeding the number of vertices are trivially no and may be
replaced by smaller dummy no-instances, so the parameter value of the remain-
ing instances is indeed polynomial in � (as is the instance size, due to the Karp
reduction). 
�

Further Problems. A polynomial kernel for Hamiltonian Cycle was already
found by Fellows et al. [13]. Kernels for Hamiltonian Path as well as Disjoint

Cycles can be obtained in a similar way, by observing that the paths of degree-
2 vertices can be reduced to having only one internal vertex. For Long Path it
is again necessary to use the binary encoding trick for the path lengths.

Corollary 1. Long Path, Hamiltonian Path, and Disjoint Cycles pa-
rameterized by max leaf number admit polynomial kernels.

For Disjoint Paths, i.e., finding k disjoint paths connecting k terminal pairs
(s1, t1), . . . , (sk, tk), some more work is necessary on the paths between B ver-
tices, and on paths between B vertices and the at most � leaves.

Theorem 4. Disjoint Paths parameterized by max leaf number admits a poly-
nomial kernel.

4.4 Parameterization by a Modulator to Cluster Graphs

In this section, we consider path and cycle problems parameterized by vertex-
deletion distance from cluster graphs. To this end, alongside the input graph
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(and possibly further inputs) a modulator X is provided such that G − X is a
cluster graph. Technically this requires both a marking (or matching) strategy to
identify a small set of important vertices and cliques together with the encoding
trick, used in the previous section, to handle large cliques. For space reasons, we
only state the main result of the section.

Theorem 5. Long Cycle parameterized by a modulator to cluster

graphs admits a polynomial kernel.

5 Lower Bounds for Path and Cycle Problems

In this section we present kernelization lower bounds for the directed- and undi-
rected variants of Hamiltonian Cycle with structural parameters. The pa-
rameterizations we use are at least as large as the treewidth of the input graphs
(or the underlying undirected graph, in the directed case) which shows that the
parameterized problems for which we prove a kernel lower bound are indeed con-
tained in FPT. Our proofs use the technique of cross-composition [4], in which
a kernel lower bound is obtained by showing that the logical OR of a series of
instances of an NP-hard problem, can be embedded in a single instance of the
parameterized target problem at a small parameter cost.

5.1 Directed Hamiltonian Cycle with a Modulator to Bi-paths

We start by defining the NP-hard problem which we will use in the cross-
composition.

Hamiltonian s − t Path in Directed Bipartite Graphs

Input: A bipartite digraph D with color classes A = {a1, . . . , anA}
and B = {b1, . . . , bnB} with nB = nA + 1 such that N−

D (b1) = ∅
and N+

D (bnB ) = ∅.
Question: Does D contain a directed Hamiltonian path which starts
in b1 and ends in bnB ?

It is not difficult to show that this problem is NP-complete. Now we formally
define the parameterized problem for which we will prove a kernel lower bound.

Directed Hamiltonian Cycle parameterized by a modulator

to Bi-paths

Input: A digraph D and a modulator X ⊆ V (D) such that D − X ∈
Bi-paths.
Parameter: The size |X | of the modulator.
Question: Does D have a directed Hamiltonian cycle?

We can now give the cross-composition.

Theorem 6. Directed Hamiltonian Cycle parameterized by a modu-

lator to Bi-paths does not admit a polynomial kernel unless NP ⊆ coNP/poly.
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(a) Input instance (D1, A1, B1)
of Hamiltonian s − t Path in
Directed Bipartite Graphs.
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(b) Output instance of Directed Hamiltonian Cycle parameterized by a
modulator to Bi-paths.

Fig. 2. An example of the lower-bound construction of Theorem 6 when composing r =
2 inputs with nA = 4 and nB = 5. (a) The first input instance. (b) Resulting output
instance. The arcs between {b∗1, . . . , b∗5} and {a′

2,j , a
′′
2,j , a

′′′
2,j | j ∈ [4]} which encode the

second input (D2, A2, B2) have been omitted for readability.

Proof. By an earlier result of the authors [4, Corollary 10] and the NP-complete-
ness of the introduced classical problem, it is sufficient to show that Hamil-

tonian s − t Path in Directed Bipartite Graphs cross-composes into
Directed Hamiltonian Cycle parameterized by a modulator to Bi-

paths. We use a polynomial equivalence relationship (see [4, Definitions 3-4])
under which two well-formed instances (D1, A1, B1) and (D2, A2, B2) of Hamil-

tonian s − t Path in Directed Bipartite Graphs are equivalent if |A1| =
|A2| and |B1| = |B2|. It suffices to give an algorithm which composes a sequence
of instances of Hamiltonian s − t Path in Directed Bipartite Graphs

which are equivalent under R into one instance of Directed Hamiltonian

Cycle parameterized by a modulator to Bi-paths. In the remainder we
may assume that the input contains r well-formed instances (D1, A1, B1), . . . ,
(Dr, Ar, Br), that |Ai| = nA and |Bi| = nB for i ∈ [r] with nB = nA + 1. La-
bel the vertices in each set Ai as ai,1, . . . , ai,nA and the vertices of a set Bi

as bi,1, . . . , bi,nB for i ∈ [r]. Recall that instance i asks whether Di has a
Hamiltonian path from bi,1 to bi,nB . We construct a digraph D∗ as follows.



Kernel Bounds for Path and Cycle Problems 155

1. For i ∈ [r], for j ∈ [nA] add vertices a′
i,j , a

′′
i,j , a

′′′
i,j to D∗, and add arcs

(a′
i,j , a

′′
i,j), (a′′

i,j , a
′
i,j), (a′′

i,j , a
′′′
i,j), (a′′′

i,j , a
′′
i,j).

2. As the next step we add one-directional arcs to connect adjacent triples.
For i ∈ [r], for j ∈ [nA − 1] add the arc (a′′′

i,j , a
′
i,j+1).

3. For each instance i ∈ [r] add two special vertices xi and yi, together with
arcs (xi, a

′
i,1) and (a′′′

i,nA
, yi). For i ∈ [r − 1] add the arcs (yi, xi+1).

4. Observe that at this stage, D∗ ∈ Bi-paths. All vertices we add from this
point on will go into the modulator X∗ such that D∗−X∗ will be a member
of Bi-paths.

5. We add a special vertex z with arcs (xi, z) and (z, yi) for i ∈ [r].
6. For j ∈ [nB ] add a vertex b∗j to the graph D∗, and let B∗ be the set of these

vertices. Add arcs (yr, b
∗
1) and (b∗nB

, x1).
7. As the last step of the construction we re-encode the behavior of the input

graphs Di into the instance. For i ∈ [r], for all arcs (ai,j , bi,h) in A(Di) add
the arc (a′

j , b
∗
h) to D∗. For all arcs (bi,j , ai,h) ∈ A(Di) add (b∗j , a

′′′
h ) to D∗.

This concludes the description of D∗, which is illustrated in Fig. 2.

Now define X∗ := {z} ∪ B∗. The output of the cross-composition is the in-
stance (D∗, X∗) of Directed Hamiltonian Cycle parameterized by a

modulator to Bi-paths. It is easy to verify that D∗ − X∗ ∈ Bi-paths, and
that the construction can be carried out in polynomial time. The parameter |X∗|
is bounded by 1 + nB which is sufficiently small. It remains to prove that D∗ is
yes if and only if one of the input instances is yes; the proof is deferred to the
full version. 
�

The proof of Theorem 6 can be adapted to give a kernel lower bound for the
variant where we are looking for a Hamiltonian path instead of a Hamiltonian
cycle; these bounds in turn imply that the versions where we are looking for a
long path or cycle (instead a Hamiltonian one) are at least as hard to kernelize,
as is the case for finding a long s− t path or a long cycle through a given vertex.

5.2 Hamiltonian Cycle with a Modulator to Outerplanar Graphs

Using a domino-type gadget to simulate the behavior of directed edges, we can
modify the lower bound of the previous section to work for undirected graphs,
at the expense of modulating to a slightly more complex graph class.

Theorem 7. Hamiltonian Cycle parameterized by a modulator to

Outerplanar graphs admits no polynomial kernel unless NP ⊆ coNP/poly.

6 Finding Paths with Respect to Forbidden Pairs

In this section we study multiple parameterizations of several path problems
involving forbidden pairs. The first version we consider is defined as follows.
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s − t Path with Forbidden Pairs Parameterized by a Vertex

Cover of G
Input: A graph G, distinct vertices s, t ∈ V (G), a set H ⊆

(
V (G)

2

)
of

forbidden pairs, and a vertex cover X of G.
Parameter: � := |X |.
Question: Is there an s− t path in G which contains at most one vertex
of each pair {u, v} ∈ H?

A straight-forward reduction from k-Multicolored Clique [12] shows that
this problem is W[1]-hard. Let us now consider some related problems. In Short-

est s − t Path With Forbidden Pairs and Longest s − t Path With

Forbidden Pairs there is an extra integer k in the input and we are asking
for an s − t path containing at most or at least k vertices. In Longest Path

With Forbidden Pairs we omit the inputs s and t, and are looking for any
sufficiently long path, regardless of its endpoints. The related problem Short-

est Path With Forbidden Pairs is not interesting, since its solution always
consist of a path containing a single vertex.

The W[1]-hardness result easily carries over to all these variants. Clearly, the
hardness of the path problems with forbidden pairs stems from the extra struc-
ture of the forbidden pairs H , which is not taken into account when considering
structural parameters of G. In the following we consider the effect of parameter-
izing by the structure of the graph G ∪ H (i.e., G with an added edge for every
forbidden pair).

Using the optimization version of Courcelle’s Theorem applied to structures
of bounded treewidth (cf. [14, Section 11.4]), it is not difficult to obtain an FPT
result parameterized by the treewidth of G∪H by building a formula in Monadic
Second Order Logic over an appropriate structure to test for the existence of
an s− t path respecting the forbidden pairs. Using standard extensions of MSOL
we may also maximize or minimize the size of a set of edges which forms an s− t
path respecting forbidden pairs, extending the fixed-parameter tractability to
the variants for short- and long paths.

For the case of Shortest s− t Path With Forbidden Pairs the structure
of G is actually not so important for the complexity of the problem: it is sufficient
to parameterize by a vertex cover of the graph on the edge set H to obtain fixed-
parameter tractability, by trying all ways in which the vertex set of the path could
intersect the vertex cover. For Longest s − t Path With Forbidden Pairs

a parameterization by vc(H) is not fruitful, since the latter problem is already
NP-complete when there are no forbidden pairs. We mention without proof that
s − t Path with Forbidden Pairs is NP-complete when the graph induced
by H is a matching, showing that we cannot improve the parameterization by a
vertex cover of H to the treewidth of H .

Finally let us consider the kernelization complexity of forbidden path prob-
lems. Using an intricate cross-composition we obtain a super-polynomial lower
bound on the kernel size of s − t Path with Forbidden Pairs Parameter-

ized by a Vertex Cover of G ∪ H . This hardness proof carries also carries
over to the other problem variants. Table 1 contains a summary of the results.
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Table 1. Complexity of path problems with forbidden pairs. Each column represents a
different parameterization. F.P. abbreviates “with Forbidden Pairs”. The classifica-
tion “No poly” means “no polynomial kernel unless NP ⊆ coNP/poly”, and “Para-NP-
c” means “NP-complete for a constant value of the parameter”. For a parameterization
in FPT, we either list “FPT” or “No poly”, depending on which of the two is more rel-
evant: all parameterizations listed as “No poly” are in FPT, and none of the problems
listed “FPT” admit polynomial kernels. Shortest Path F.P. is trivially in P .

vc(G) vc(H) tw(H) tw(G ∪ H) vc(G ∪ H)

s − t Path F.P. W[1]-hard FPT Para-NP-c FPT No poly
Shortest s − t Path F.P. W[1]-hard FPT Para-NP-c FPT No poly
Longest s − t Path F.P. W[1]-hard Para-NP-c Para-NP-c FPT No poly
Longest Path F.P. W[1]-hard Para-NP-c Para-NP-c FPT No poly

7 Conclusion

In this work we have shown that for sufficiently strong structural parameteriza-
tions, many path and cycle problems admit polynomial kernels even though their
natural parameterizations do not. The marking technique using bipartite match-
ing yields quadratic-vertex kernels for many problems parameterized by the size
of a vertex cover. We introduced a binary encoding trick which gives polynomial
kernels for problems parameterized by the max leaf number. On the negative
side, we also exhibited smaller structural parameters which provably do not lead
to polynomial kernels for Hamiltonian Cycle unless NP ⊆ coNP/poly. Let
us reflect briefly on the parameters used for the upper- and lower bounds.

Recall that the vertex cover number of a graph can also be interpreted as the
number of vertex-deletions needed to reduce the graph to an independent set,
i.e., the vertex-deletion distance to a graph of treewidth 0. Hence Theorem 2
shows that Long Cycle admits a polynomial kernel parameterized by vertex-
deletion distance to treewidth 0. On the other hand, Theorem 7 shows that
if NP �⊆ coNP/poly then Hamiltonian Cycle does not have a polynomial
kernel parameterized by the deletion distance to treewidth two (since outerplanar
graphs have treewidth at most two), and of course this carries over to the harder
problem Long Cycle. It is interesting to settle what happens for treewidth one,
i.e., forests: does Hamiltonian Cycle parameterized by a feedback vertex set
admit a polynomial kernel? To generalize the result of Theorem 5 by distance
to a cluster graph, one could consider the distance to cographs.

The kernelization complexity of compound parameterizations remains largely
unexplored: for example, how does the Long Cycle problem behave when
parameterized by the solution size plus the vertex-deletion distance to an out-
erplanar graph? It follows from the work of Bodlaender, Thomassé and Yeo [6]
that Disjoint Paths and Disjoint Cycles do not admit polynomial kernels
parameterized by the target value k plus the deletion distance to a path. We
hope that a search for polynomial kernels of structural parameterizations leads
to reduction rules which are useful in practice.
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Abstract. Let η ≥ 0 be an integer and G be a graph. A set X ⊆ V (G) is
called a η-transversal in G if G\X has treewidth at most η. Note that a 0-
transversal is a vertex cover, while a 1-transversal is a feedback vertex set
of G. In the η/ρ-transversal problem we are given an undirected graph
G, a ρ-transversal X ⊆ V (G) in G, and an integer � and the objective
is to determine whether there exists an η-transversal Z ⊆ V (G) in G
of size at most �. In this paper we study the kernelization complexity
of η/ρ-transversal parameterized by the size of X. We show that for
every fixed η and ρ that either satisfy 1 ≤ η < ρ, or η = 0 and 2 ≤ ρ, the
η/ρ-transversal problem does not admit a polynomial kernel unless
NP ⊆ coNP/poly. This resolves an open problem raised by Bodlaender
and Jansen in [STACS 2011]. Finally, we complement our kernelization
lower bounds by showing that ρ/0-transversal admits a polynomial
kernel for any fixed ρ.

Keywords: η-transversal, kernelization upper and lower bounds,
polynomial parameter transformation.

1 Introduction

The last few years have seen a surge in the study of kernelization complexity of
parameterized problems, resulting in a multitude of new results on upper and
lower bounds for kernelization [1,2,6,7,9]. Bodlaender and Jansen [11] initiated
the systematic study of the kernelization complexity of a problem parameterized
by something else than the value of the objective function.

The problem (or parameter) that received the most attention in this regard
is vertex cover. A vertex cover of a graph G is a vertex set S such that all edges
of G have at least one endpoint in S, and the vertex cover number of G is the
size of the smallest vertex cover in G. In the Vertex Cover problem we are
given a graph G and an integer k and asked whether the vertex cover number
of G is at most k. Over the last year we have seen several studies of problems
parameterized by the vertex cover number of the input graph [3,4,12], as well
as a study of the Vertex Cover problem parameterized by the size of the
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smallest feedback vertex set of the input graph G. A feedback vertex set of G is
a set S such that G \ S is acyclic and the feedback vertex number of G is the
size of the smallest feedback vertex set in G.

The reason parameterizing Vertex Cover by the feedback vertex number of
the input graph is interesting is that while the feedback vertex number is always
at most the vertex cover number, it can be arbitrarily smaller. In particular, in
forests the feedback vertex number is zero, while the vertex cover number can
be arbitrarily large. Hence a kernel of size polynomial in the feedback vertex
number is always polynomial in the vertex cover number, yet it could also be
much smaller. Bodlaender and Jansen [11] show that Vertex Cover parame-
terized by the feedback vertex number admits a polynomial kernel. At this point
a natural question is whether Vertex Cover has a polynomial kernel when
parameterized by even smaller parameters than the feedback vertex number of
the input graph. Bodlaender and Jansen [11] ask a particular variant of this
question; whether Vertex Cover admits a polynomial kernel when parame-
terized by the size of the smallest ρ-transversal (see below) of the input graph,
for any ρ ≥ 2.

Definition 1. Let η ≥ 0 be an integer and G be a graph. A set X ⊆ V (G) is
called an η-transversal in G if G \ X has treewidth at most η.

Observe that a 0-transversals of G are vertex covers, while 1-transversals are
feedback vertex sets. In the η-Transversal problem we are given a graph G
and integer � and asked whether G has a η-transversal of size at most �. In
this paper we consider the kernelization complexity of η-Transversal, when
parameterized by the size of the smallest ρ-transversal of the input graph G, for
fixed values of η and ρ. Specifically, we consider the following problem.

η/ρ-transversal Parameter: |X |
Input: An undirected graph G, a ρ-transversal X ⊆ V (G) in G, and an
integer �.
Question: Does there exist an η-transversal Z ⊆ V (G) in G of size at most
�?

Fomin et al. [8] recently proved that ρ-transversal admits a O((log OPT )
3
2 ) ap-

proximation. Therefore, we could relax the condition of giving the ρ-transversal
X along with the graph, as the algorithm can always approximate this set. This
shows equivalence of existence of polynomial kernels for η/η-transversal and
the classical η-Transversal parameterized by the solution size.

The result of Bodlaender and Jansen [11] can now be reformulated as fol-
lows; 0/1-transversal admits a polynomial kernel. We settle the kernelization
complexity of η/ρ-transversal for a wide range of values of η and ρ. In par-
ticular we resolve the open problem of Bodlaender and Jansen [11] by showing
that unless NP ⊆ coNP/poly, 0/ρ-transversal does not admit a polynomial
kernel for any ρ ≥ 2. Finally, we complement our negative results by showing
that ρ/0-transversal admits a polynomial kernel for every fixed ρ. A concise
description of our results can be found in Table 1.
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Table 1. Kernelization complexity of the η/ρ-transversal problem. YES means that
the problem admits a polynomial kernel, NO means that the problem does not admit
a polynomial kernel and ? means that the status of the kernelization complexity of the
problem is unknown. Boldface indicates results proved in this paper.

η \ ρ 0 1 2 3 4 5 · · ·
0 YES YES NO NO NO NO NO · · ·
1 YES YES NO NO NO NO NO · · ·
2 YES ? ? NO NO NO NO · · ·
3 YES ? ? ? NO NO NO · · ·
4 YES ? ? ? ? NO NO · · ·
5 YES ? ? ? ? ? NO · · ·
...

...
...

...
...

...
...

... · · ·

The diagonal entries of the table - the η/η-transversal problems are par-
ticularly interesting. Note that 0/0-transversal and 1/1-transversal are
equivalent to the classical Vertex Cover and Feedback Vertex Set prob-
lems, respectively, parameterized by the solution size. Furthermore, let F be
a finite set of graphs. In the F -Deletion problem, we are given an n-vertex
graph G and an integer k as input, and asked whether at most k vertices can be
deleted from G such that the resulting graph does not contain any graph from
F as a minor. It is well known that η/η-transversal can be thought of as a
special case of the F-Deletion problem, where F contains a planar graph. It is
conjectured in [8] that F-Deletion admits a polynomial kernel if and only if F
contains a planar graph. Notice that a polynomial kernel for η/η-transversal

automatically implies a polynomial kernel for η/ρ-transversal for η ≥ ρ. The
conjecture of [8] implies, if true, that η/η-transversal does admit polynomial
kernel and that therefore, all the empty slots of Table 1 should be “YES”.

Notation. All graphs in this paper are undirected and simple. For a graph G we
denote its vertex set by V (G) and edge set by E(G). For a vertex v ∈ V (G) we
define its neighbourhood NG(v) = {u : uv ∈ E(G)} and closed neighbourhood
NG[v] = NG(v)∪{v}. If X is a set of vertices or edges of G, by G \X we denote
the graph G with all vertices and edges in X deleted (when deleting a vertex, we
delete its incident edges as well). We use a shortened notation G \ v for G \ {v}.
If u, v ∈ V (G), u �= v and uv /∈ E(G), then G ∪ {uv} denotes the graph G with
added edge uv. A set S ⊆ V (G) is said to separate u from v, if u, v ∈ V (G) \ S
and u and v lie in different connected components of G \ S.

2 η-Transversal Parameterized by Vertex Cover

In this section we show that for any η ≥ 0 the η/0-transversal problem has
a kernel with O(|X |max(η+1,3)) vertices.

Let η ≥ 0 be a fixed integer. We provide a set of reduction rules and assume
that at each step we use an applicable rule with the smallest number. At each
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reduction rule we discuss its soundness, that is, we prove that the input and
output instances are equivalent. All presented reductions can be applied in poly-
nomial time in a trivial way. If no reduction rule can be used on an instance
(G, X, �), we claim that |V (G)| is bounded polynomially in |X |.

Recall that in an η/0-transversal instance (G, X, �) the set X is a vertex
cover of G. As a vertex cover is an η-transversal for any η ≥ 0, we obtain the
following rule.

Reduction 1. If |X | ≤ �, return a trivial YES-instance.

Thus, from this point we can assume that |X | > �.

Reduction 2. Let x, y ∈ X , x �= y and xy /∈ E(G). If |NG(x)∩NG(y)| ≥ |X |+η,
then add an edge xy, that is, return the instance (G ∪ {xy}, X, �).

Lemma 2. Reduction 2 is sound.

Proof. Let G′ = G ∪ {xy}. First note that any η-transversal Z in G′ is an
η-transversal in G too, as G \ Z is a subgraph of G′ \ Z.

In the other direction, let Z be an η-transversal in G of size at most �, and let
T be a tree decomposition of G \Z of width at most η. If either x ∈ Z or y ∈ Z
then clearly Z is also a transversal for G′. Hence we assume that x, y /∈ Z. In
this case we claim that there exists a bag that contains both x and y. If this is
not the case, there exists a separator S of size at most η that separates x from
y in G \ Z. Thus S ∪ Z separates x from y in G. Any such a separator needs to
contain NG(x) ∩ NG(y). However,

|NG(x) ∩ NG(y)| ≥ |X | + η > � + η ≥ |Z| + η ≥ |S ∪ Z|,

a contradiction. Thus there exists a bag with both x and y, and T is a tree
decomposition of G′ \ Z. 
�

Definition 3. A vertex v ∈ V (G) \ X is a simplicial vertex if G[NG(v)] is a
clique.

Observe that because of our definition a vertex v ∈ X is not called simplicial
even if G[NG(v)] is a clique.

Lemma 4. Let (G, X, �) be an η/0-transversal instance. There exists a min-
imum η-transversal in G that does not contain any simplicial vertex.

Proof. Let Z be a minimum η-transversal in G with minimum possible number
of simplicial vertices. Assume that there exists a simplicial vertex v ∈ Z. If
NG(v) ⊆ Z, then v is an isolated vertex in G \ (Z \ {v}) and Z \ {v} is an
η-transversal in G, a contradiction to the assumption that Z is minimum. Thus
let x ∈ NG(v) \ Z. Note that x ∈ X , as X is a vertex cover of G and v /∈ X by
the definition of a simplicial vertex.

We claim that Z ′ = Z∪{x}\{v} is an η-transversal in G. As v was simplicial,
NG[v] ⊆ NG[x]. Let φ : V (G) \ Z ′ → V (G) \ Z, φ(v) = x and φ(u) = u if u �= v.
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Note that φ is an injective homomorphism of G \ Z ′ into G \ Z, thus G \ Z ′

is isomorphic to a subgraph of G \ Z. We infer that G \ Z ′ has not greater
treewidth than G \ Z, and Z ′ is a minimum η-transversal in G with smaller
number of simplicial vertices than Z, a contradiction. 
�

Reduction 3. For every set A ⊆ X of size η + 1 such that G[A] is a clique, let
SA be the set of simplicial vertices v satisfying A ⊆ NG(v). For every such A
with nonempty SA, mark one simplicial vertex from SA (vertices can be marked
multiple times). If there are any unmarked simplicial vertices, delete them, i.e.,
return the instance (G \ U, X, �), where U is the set of unmarked simplicial
vertices.

Lemma 5. Reduction 3 is sound.

Proof. We argue that deleting a single unmarked simplicial vertex v results in an
equivalent instance. The claim follows by applying this argument consecutively
for all the unmarked simplicial vertices.

Let G′ = G\{v}. First note that G′ is a subgraph of G, so every η-transversal
Z of G gives raise to an η-transversal Z \ {v} of G′ that is not larger.

In the other direction, let Z be an η-transversal of G′ and let T be the tree
decomposition of G′ \ Z of width at most η. By Lemma 4 we can assume that
Z ⊆ X . Consider R = N(v) \ Z. Observe that R induces a clique in G′ \ Z.
Therefore, as G′\Z has treewidth at most η, it follows that |R| ≤ η+1. Consider
the case when |R| = η + 1. As R induces a clique of cardinality η + 1 in G[X ]
and there is an unmarked simplicial vertex v such that R ⊆ N(v), it follows
that there exists another simplicial vertex v′ with R ⊆ N(v′) that was actually
marked for R. Recall that Z ⊆ X , so v′ /∈ Z. Thus, R ∪ {v′} induces a clique of
size η + 2 in G′ \ Z, a contradiction with G′ \ Z having treewidth at most η.

We conclude that |R| ≤ η. As R induces a clique in G′ \Z, there exists a bag
B in the decomposition T such that R ⊆ B. Consider tree decomposition T ′

obtained from T by introducing a bag R ∪ {v} as a leaf attached to the bag B.
It is easy to check that T ′ is a tree decomposition of G \ Z, while its width is
bounded by η due to |R ∪ {v}| ≤ η + 1. Therefore, Z is an η-transversal in G
as well.

We now claim that if none of the above reduction rules are applicable, the
remaining instance is small.

Lemma 6. Let (G, X, �) be an η/0-transversal instance. If Reductions 1–3
are not applicable, then

|V (G)| ≤ |X | +
(
|X |
2

)
(|X | + η − 1) +

(
|X |

η + 1

)
= O(|X |max(η+1,3)).

Proof. Any vertex of G is of one of three types: either in X , or not in X and
simplicial, or not in X and not simplicial. The number of vertices of the first
type is trivially bounded by |X |.
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Let v ∈ V (G) \ X be a non-simplicial vertex. Then there exist x, y ∈ NG(v)
such that x �= y and xy /∈ E(G). However, for fixed x, y ∈ X with x �= y and
xy /∈ E(G) we may have at most |X | + η − 1 vertices in NG(x) ∩ NG(y), since
Reduction 2 is not applicable. We infer that there are at most

(|X|
2

)
(|X |+ η− 1)

vertices in V (G) \ X that are not simplicial.
Since reduction 3 is not applicable, the number of simplicial vertices in the

graph is bounded by the number of subsets of X of size η + 1. Therefore, there
are at most

( |X|
η+1

)
simplicial vertices in the graph. 
�

We conclude this section with the following theorem.

Theorem 7. There exists a polynomial-time algorithm that takes as an in-
put an η/0-transversal instance (G, X, �) and outputs an equivalent instance
(G′, X, �) with |V (G′)| ∈ O(|X |max(η+1,3)).

Proof. First note that our reductions do not change the set X nor the required size
of the η-transversal, i.e., the integer �. All our reductions work in polynomial time
for fixed η and each of them either decreases the number of vertices of the graph
or introduces new edges where there was no edge before. Therefore, the number of
applications of the rules is bounded polynomially in the size of the graph. Lemma
6 provides the claimed bound on |V (G)| when no reduction is applicable. 
�

3 Lower Bounds

In this section we first prove that under reasonable complexity assumptions the
0/2-transversal problem does not have a polynomial kernel, which resolves an
open problem by Bodlaender et al. [11]. Next we generalize this result and prove
that for any η, ρ such that ρ ≥ η + 1 and (η, ρ) �= (0, 1) the η/ρ-transversal

problem does not have a polynomial kernel. To prove the non-existence of a
polynomial kernel we use the notion of polynomial parameter transformation.

Definition 8 ([5]). Let P and Q be parameterized problems. We say that P is
polynomial parameter reducible to Q, if there exists a polynomial time computable
function f : Σ∗×N → Σ∗×N and a polynomial p, such that for all (x, k) ∈ Σ∗×N
the following holds: (x, k) ∈ P iff (x′, k′) = f(x, k) ∈ Q and k′ ≤ p(k). The
function f is called a polynomial parameter transformation.

Theorem 9 ([5]). Let P and Q be parameterized problems and P̃ and Q̃ be the
unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard
and Q̃ is in NP. Assume there is a polynomial parameter transformation from
P to Q. Then if Q admits a polynomial kernel, so does P .

To show that 0/2-transversal does not have a polynomial kernel we show
a polynomial parameter transformation from CNF-SAT parameterized by the
number of variables.
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CNF − SATn Parameter: n
Input: A formula φ on n variables.
Question: Does there exist an assignment Φ satisfying the formula φ?

Theorem 10 ([10]). The CNF − SATn problem does not have a polynomial
kernel unless NP ⊆ coNP/poly.

Theorem 11. The 0/2-transversal problem does not have a polynomial ker-
nel unless NP ⊆ coNP/poly.

Proof. We show a polynomial parameter transformation from CNF-SAT param-
eterized by the number of variables. Let φ be a formula on n variables x1, . . . , xn.
Without loss of generality we may assume that each clause of φ consists of an
even number of literals since we can repeat an arbitrary literal of each odd size
clause. We create the following graph G. First, we add a set X of 2n vertices
xi,¬xi for 1 ≤ i ≤ n. Moreover, we add n edges connecting xi with ¬xi for each
1 ≤ i ≤ n. Furthermore, for each clause C of the formula φ we add a clause
gadget Ĉ to the graph G. Let {l1, l2, . . . , lc} be the multiset of literals appearing
in the clause C. For each literal li we make a vertex ui. Next we add to the
graph G two paths P1 = v1, . . . , vc and P2 = v′1, . . . , v′c having c vertices each,
and connect vi with v′i for every 1 ≤ i ≤ c. We add a pendant vertex to both
vertices v1 and vc. Finally, for each 1 ≤ i ≤ c we make the vertex ui adjacent to
vi, v

′
i and also to the vertex x ∈ X corresponding to the negation of the literal

li (see Fig. 1). We would also like to remark that the clause gadget used here
is the same as the one used in [13], for showing algorithmic lower bounds on
the running time of an algorithm for Independent Set parameterized by the
treewidth of the input graph.

Observe that G \X is of treewidth two and consequently (G, X, �) is a proper
instance of 0/2-transversal, where we set � = n +

∑
C∈φ 2|C|. We show that

(G, X, �) is a YES-instance of 0/2-transversal iff φ is satisfiable. Let us assume
that φ is satisfiable and let Φ be a satisfying assignment. Since |V (G)| = � + n +∑

C∈φ(|C| + 2), instead of showing a vertex cover of size � it is enough to show
an independent set of size n +

∑
C∈φ(|C| + 2). For each variable we add to the

set I one of the vertices xi,¬xi which is assigned a true value by Φ. For each
clause C = {l1, . . . , lc} we add to the set I an independent set of vertices from
Ĉ containing one vertex ui0 corresponding to the literal satisfying the clause C,
two pendant vertices adjacent to v1 and vc, and exactly one vertex from {vi, v

′
i}

for each 1 ≤ i ≤ c, i �= i0 (see Fig. 1). It is easy to check that I is an independent
set in the graph G of size n +

∑
C∈φ(|C| + 2), which shows that (G, X, �) is a

YES-instance of the 0/2-transversal problem.
In the other direction, assume that (G, X, �) is a YES-instance of the 0/2-

transversal problem. Hence there exists an independent set I in G of size
n +

∑
C∈φ(|C| + 2). Since for each clause C the independent set I contains at

most |C| + 2 vertices from the clause gadget Ĉ, we infer that I contains ex-
actly |C|+2 vertices out of each gadget Ĉ and exactly one vertex from each pair
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xi,¬xi. Let Φ be an assignment such that Φ(xi) is true iff xi ∈ I. Consider
a clause C = {l1, . . . , lc} of the formula φ. Observe that since C has an even
number of literals the set I, contains at least one vertex ui from the clause
gadget Ĉ. Since I is independent we infer that the vertex ¬li ∈ X is not in I
and hence li ∈ I, which shows that the clause C is satisfied by Φ.

Since CNF-SAT is NP-hard and 0/2-transversal is in NP, by Theorem 9
the claim follows. 
�

x1

¬x1

x2

¬x2

x3

¬x3

x4

¬x4

x5

¬x5
X

u1 u2 u3 u4

Fig. 1. A graph G for a formula consisting of a single clause C = {¬x1, x2, x3,¬x4}.
The encircled vertices belong to an independent set I corresponding to an assignment
setting to true literals {x1,¬x2, x3, x4,¬x5}.

We generalize this result by showing a transformation from 0/2-transversal

to η/ρ-transversal for η ≤ ρ + 1 and (η, ρ) �= (0, 1).

Theorem 12. For any non-negative integers η, ρ satisfying η ≤ ρ + 1 and
(η, ρ) �= (0, 1) the η/ρ-transversal problem does not admit a polynomial kernel
unless NP ⊆ coNP/poly.

Proof. Observe that by Theorem 11 and trivial transformations it is enough to
prove the theorem for ρ = η + 1, where η ≥ 1. We show a polynomial parameter
transformation from 0/2-transversal to η/(η+1)-transversal. Let (G, X, �)
be a 0/2-transversal instance. Initially set G′ := G. Now for each edge uv of
the graph G we add to the graph G′ a set of η vertices Vuv and make the set
Vuv ∪ {u, v} a clique in G′.

First we show that (G′, X, �) is a proper instance of η/η + 1-transversal,
that is we need to prove that G′ \X has treewidth at most η +1. Let T be a tree
decomposition of width at most 2 of the graph G \X . Consider each edge uv of
the graph G. If u, v �∈ X then there exists a bag Vt of the tree decomposition T
containing both u and v. We create a new bag Vt′ = {u, v} ∪ Vuv and connect
it, as a leaf, to the bag Vt. If u, v ∈ X , then we create a bag Vt′ = Vuv and
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connect it, as a leaf, to any bag of T . In the last case w.l.o.g. we may assume
that u ∈ X and v �∈ X . Then we create a new bag Vt′ = {v} ∪ Vuv and connect
it, as a leaf, to any bag of T containing the vertex v. After considering all edges
of G the decomposition T is a proper tree decomposition of G′ \ X of width at
most max(2, η + 1) = η + 1.

Now we prove that (G, X, �) is a YES-instance of 0/2-transversal iff
(G′, X, �) is a YES-instance of η/(η + 1)-transversal. Let Y be a vertex cover
of G of size at most �. Observe that each connected component of G′ \ Y con-
tains exactly one vertex from the set V (G) and after removing this vertex, this
connected component decomposes into cliques of size η. For this reason G′ \ Y
has treewidth at most η and consequently (G′, X, �) is a YES-instance of η/
(η + 1)-transversal.

Finally assume that there exists a set Y ⊆ V (G′) of size at most � such that
G′ \ Y has treewidth at most η. Let uv be an edge of the graph G. Recall that
Vuv ∪ {u, v} is a clique in G′ and hence Y ∩ (Vuv ∪ {u, v}) is nonempty. Observe
that if Y ∩ Vuv is nonempty, then Y \ Vuv ∪ {u} is also a solution for (G′, X, �).
Thus we may assume that for each edge uv we have Y ∩{u, v} �= ∅, which means
that Y is a vertex cover of G of size at most �.

Since η/(η + 1)-transversal is in NP and the unparameterized version of
0/2-transversal is NP-hard, the claim follows. 
�

4 Conclusions and Perspectives

In this paper we showed that for every fixed η and ρ that either satisfy 1 ≤ η < ρ,
or η = 0 and 2 ≤ ρ, the η/ρ-transversal problem does not admit a polynomial
kernel unless NP ⊆ coNP/poly. Finally, we complemented our negative result
by showing that ρ/0-transversal admits a polynomial kernel for any fixed ρ.
Several problems still remain open. The most notable ones are:

– Does η/η-transversal admit a polynomial kernel?
– Does F-Deletion admit a polynomial kernel when F contains a planar

graph?
– Does there exist a kernel for η/0-transversal of degree independent of η?

Another set of natural questions are obtained by restricting the input graphs. For
example: does η/ρ-transversal admit a polynomial kernel on planar graphs,
or on a graph class excluding a fixed graph H as a minor, or on graphs of
bounded degree? Surprisingly, the answer to many of these questions is positive.
One can easily show that the techniques from [9] imply that for every fixed η and
ρ, η/ρ-transversal admits a linear kernel on H-minor free graphs. Moreover,
going along the lines of [8] proves that η/ρ-transversal admits a linear vertex
kernel on graphs of bounded degree or on graphs excluding K1,t as an induced
subgraph. Here K1,t is a star with t leaves.



168 M. Cygan et al.

References

1. Bodlaender, H.L., Downey, R.G., Fellows, M.R., Hermelin, D.: On problems with-
out polynomial kernels. J. Comput. Syst. Sci. 75(8), 423–434 (2009)

2. Bodlaender, H.L., Fomin, F.V., Lokshtanov, D., Penninkx, E., Saurabh, S.,
Thilikos, D.M.: (Meta) kernelization. In: FOCS, pp. 629–638 (2009)

3. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Cross-composition: A new technique
for kernelization lower bounds. In: STACS, pp. 165–176 (2011)

4. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Preprocessing for Treewidth: A
Combinatorial Analysis through Kernelization. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 437–448. Springer, Heidelberg (2011)

5. Bodlaender, H.L., Thomasse, S., Yeo, A.: Analysis of data reduction: Transfor-
mations give evidence for non-existence of polynomial kernels, technical Report
UU-CS-2008-030, Institute of Information and Computing Sciences, Utrecht Uni-
versity, Netherlands (2008)
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Abstract. We introduce a notion of approximation, called safe approx-
imation, for minimization problems that are subset problems. We first
study the relation between the standard notion of approximation and
safe approximation, and show that the two notions are different unless
some unlikely collapses in complexity theory occur. We then study the
relation between safe approximation and kernelization. We demonstrate
how the notion of safe approximation can be useful in designing ker-
nelization algorithms for certain fixed-parameter tractable problems. On
the other hand, we show that there are problems that have constant-
ratio safe approximation algorithms but no polynomial kernels, unless
the polynomial hierarchy collapses to the third level.

1 Introduction

Studying the relation between parameterized complexity and approximation the-
ory has attracted the attention of researchers from both areas. Cai and Chen
initiated this study by showing that any optimization problem that has a fully
polynomial time approximation scheme (FPTAS) is fixed-parameter tractable
(FPT) [8]. This result immediately places a large number of optimization prob-
lems in the class FPT. Cesati and Trevisan [10] refined Cai and Chen’s result
by relaxing the condition that the problem has an FPTAS. A problem is said to
have an efficient polynomial time approximation scheme (EPTAS), if the prob-
lem has a PTAS whose running time is of the form f(1/ε)nO(1) (n is the input
size and ε is the error bound). By definition, an FPTAS for a problem is also an
EPTAS. Cesati and Trevisan [10] showed that having an EPTAS is a sufficient
condition for a problem to be in FPT. Cai and Chen also showed in [8] that
the class MaxSNP of maximization problems, defined by Papadimitriou and
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Yannakakis [24], and the class Min F
+Π1 of minimization problems, defined by

Kolaitis and Thakur [19], are subclasses of the class FPT.
In [13], Chen et al. introduced the notion of efficient fixed-parameter tractabil-

ity, and gave a complete characterization of the relation between the class FPTAS
and the class FPT. They showed that a parameterized problem has an FPTAS if
and only if it is efficient fixed-parameter tractable [13], which complements the
earlier result by Cai and Chen [8]. Moreover, to study the relation between EP-
TAS and FPT, Chen et al. [13] introduced the notion of the planar W -hierarchy,
and showed that all problems in the planar W -hierarchy, which contains several
known problems such as planar vertex cover and planar independent

set, have EPTAS.
We note that the parameterized complexity framework has also been used to

obtain negative approximation results (see [9,12,21], to name a few). For exam-
ple, the above relations between approximation and parameterized complexity
have been used to rule out the existence of EPTAS for certain problems that
admit PTAS (see [9,21]). For an extensive overview on the relation of parame-
terized complexity and approximation, as well as on combinations of these two
paradigms, we refer the interested reader to the recent survey of Marx [22].

More recently, Kratsch [20] studied the relation between kernelization and ap-
proximation. He showed that two large classes of problems having constant-ratio
approximation algorithms, namely MIN F

+Π1 and MaxNP, the latter includ-
ing MaxSNP, admit polynomial kernelization for their parameterized versions.
His result extends Cai and Chen’s results [8] mentioned above.

In this paper we investigate further the relation between approximation and
kernelization. We focus our attention on minimization problems that are subset
problems (i.e., the solution is a subset of the search space), and define the notion
of safe approximation for subset minimization problems. Informally speaking, an
approximation algorithm for a subset minimization problem is safe if for every
instance of the problem the algorithm returns a solution that is guaranteed to
contain (subset containment) an optimal solution. We note that many natural
subset minimization problems admit safe approximation algorithms. We start
by showing that the notion of safe approximation is different from the stan-
dard notion of approximation, in the sense that there are problems that admit
approximation algorithms with certain ratios but do not admit safe approx-
imation algorithms even with much worse ratios, under standard complexity
assumptions. For example, we show that there are natural problems that have
PTASs but do not even have constant-ratio safe approximation algorithms unless
W [1] = FPT. We then proceed to study the relation between safe approximation
and kernelization. We demonstrate, through some nontrivial examples, that the
notion of safe approximation can be very useful algorithmically: we show how
safe approximation algorithms for certain problems can be used to design ker-
nelization algorithms for their associated parameterized problems. On the other
hand, we show that safe approximation does not imply polynomial kernelization
by proving that there are problems that have constant-ratio safe approximation
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algorithms but whose associated parameterized problems do not have polynomial
kernels, unless the polynomial hierarchy collapses to the third level.

Due to the lack of space, most proofs are deferred to the full version of the
paper.

2 Preliminaries

Parameterized complexity and kernelization. A parameterized problem Q is a
subset of Σ∗ × N, where Σ is a finite fixed alphabet and N is the set of non-
negative integers. Therefore, each instance of the parameterized problem Q is a
pair (x, k), where the second component, i.e., the non-negative integer k, is called
the parameter. We say that the parameterized problem Q is fixed-parameter
tractable [16], shortly FPT, if there is an algorithm that decides whether an
input (x, k) is a member of Q in time f(k)|x|O(1), where f(k) is a recursive
function of k. Let FPT denote the class of all fixed-parameter tractable problems.
A parameterized problem Q is kernelizable if there exists a polynomial-time
reduction, the kernelization, that maps instances (x, k) of Q to other instances
(x′, k′) of Q such that: (1) |x′| ≤ g(k), (2) k′ ≤ g(k), for some recursive function
g, and (3) (x, k) is a yes-instance of Q if and only if (x′, k′) is a yes-instance of Q.
The instance (x′, k′) is called the kernel of (x, k). A kernelization is polynomial
if g(k) is bounded by a polynomial in k.

A hierarchy of fixed-parameter intractability, the W -hierarchy
⋃

t≥0 W [t], has
been introduced. Here, W [t] ⊆ W [t + 1] for all t ≥ 0 and the 0-th level W [0]
is the class FPT. The hardness and completeness notions have been defined for
each level W [i] of the W -hierarchy, for i ≥ 1 [16]. It is commonly believed that
collapses in the W -hierarchy are unlikely (i.e., W [i] �= W [i − 1], for any integer
i ≥ 1), and in particular, W [1] �= FPT (see [16]).

NP-optimization problems and approximability. An NP optimization problem Q
is a 4-tuple (IQ, SQ, fQ, gQ), where: IQ is the set of input instances, which is
recognizable in polynomial time. For each instance x ∈ IQ, SQ(x) is the set of
feasible solutions for x, which is defined by a polynomial p and a polynomial-
time computable predicate π (p and π depend only on Q) as SQ(x) = {y : |y| ≤
p(|x|) ∧ π(x, y)}. The function fQ(x, y) is the objective function mapping a pair
x ∈ IQ and y ∈ SQ(x) to a non-negative integer. The function fQ is computable
in polynomial time. The function gQ is the goal function, which is one of the
two functions {max, min}, and Q is called a maximization problem if gQ = max,
or a minimization problem if gQ = min. We will denote by optQ(x) the value
gQ{fQ(x, z) | z ∈ SQ(x)}, and if there is no confusion about the underlying
problem Q, we will write opt(x) to denote optQ(x).

In this paper we restrict our attention to optimization problems in NP that
are minimization problems. An algorithm A is an approximation algorithm for
a minimization problem Q if for each input instance x ∈ IQ the algorithm A
returns a feasible solution yA(x) ∈ SQ(x). The solution yA(x) has an approxi-
mation ratio r(|x|) if it satisfies the following condition:

fQ(x, yA(x))/optQ(x) ≤ r(|x|).
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The approximation algorithm A has an approximation ratio r(|x|) if for every
instance x in IQ the solution yA(x) constructed by the algorithm A has an
approximation ratio bounded by r(|x|).

An optimization problem Q has a constant-ratio approximation algorithm if it
has an approximation algorithm whose ratio is a constant (i.e., independent from
the input size). An optimization problem Q has a polynomial time approximation
scheme (PTAS) if there is an algorithm AQ that takes a pair (x, ε) as input, where
x is an instance of Q and ε > 0 is a real number, and returns a feasible solution
y for x such that the approximation ratio of the solution y is bounded by 1 + ε,
and for each fixed ε > 0, the running time of the algorithm AQ is bounded by
a polynomial of |x|. Finally, an optimization problem Q has a fully polynomial
time approximation scheme (FPTAS) if it has a PTAS AQ such that the running
time of AQ is bounded by a polynomial of |x| and 1/ε.

Definition 1. Let Q = (IQ, SQ, fQ, gQ) be a minimization problem. The param-
eterized version of Q is Q≤ = {(x, k) | x ∈ IQ ∧ optQ(x) ≤ k}. A parameterized
algorithm AQ solves the parameterized version of Q if on any input (x, k) ∈ Q≤,
AQ returns “yes” with a solution y in SQ(x) such that fQ(x, y) ≤ k, and on any
input not in Q≤, AQ simply returns “no”.

The above definition allows us to consider the parameterized complexity of a
minimization problem Q, which is the parameterized complexity of Q≤.

The problems discussed in the current paper all share the property that they
seek a subset, of a given set (a “search space”), that satisfies certain proper-
ties. We call such problems subset problems. Most of the problems studied in
parameterized complexity and combinatorial optimization are subset problems.1

3 Safe Approximation

In this section we define a notion of approximation for subset minimization prob-
lems that we call safe approximation, and we study its relation to the standard
notion of approximation.

Definition 2. Let Q be a subset minimization problem. An approximation al-
gorithm A for Q is said to be safe if for every instance x of Q, A returns a
solution yA(x) such that there exists an optimal solution Sopt(x) of x satisfying
Sopt(x) ⊆ yA(x). The notions of constant-ratio safe approximation algorithm,
safe PTAS, and safe FPTAS are defined in a natural way.

Informally speaking, an approximation algorithm for a minimization subset prob-
lem is safe if the solution that it returns is guaranteed to contain an optimal
solution.
1 In the case of optimization problems the subset sought is one that mini-

mizes/maximizes the objective function, among all subsets satisfying the required
properties. For most problems considered in this paper, the objective function is the
cardinality of the subset sought.
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Some natural questions to ask are the following: (1) Are there (NP-hard)
subset minimization problems that admit safe approximation algorithms with
“small” ratios? (2) Does every problem that has a constant-ratio approxima-
tion algorithm (resp. PTAS/FPTAS) have a constant-ratio safe approximation
algorithm (resp. safe PTAS/FPTAS)?

The answer to question (1) is positive: many minimization problems ad-
mit safe approximation algorithms with “small” ratios (e.g., constant ratios).
Those problems include vertex cover (follows from a well-known theorem of
Nemhauser and Trotter [4,23]), many subset minimization problems on bounded-
degree graphs (for many such problems we can simply return the whole set of
vertices as the approximate solution), and many subset minimization problems
on planar graphs (e.g., planar dominating set).

We show next that, unless some unlikely collapses in complexity theory or
parameterized complexity occur, the answer to question (2) is negative. First,
we define the following problems.

A vertex cover in an undirected graph is a subset of vertices C such that
every edge in the graph is incident to at least one vertex in C. The connected

vertex cover problem is: Given an undirected graph G, compute a subset of
vertices C of minimum cardinality such that C is a vertex cover of G and the
subgraph of G induced by C is connected.

A dominating set in an undirected graph is a subset of vertices D such that
every vertex in the graph is either in D or has a neighbor in D. The dominating

set problem is: Given an undirected graph G, compute a subset of vertices D
of minimum cardinality such that D is a dominating set of G. A unit disk graph
(UDG) is a graph on n points/vertices in the Euclidean plane such that there is
an edge between two points in the graph if and only if their Euclidean distance
is at most 1 (unit). The dominating set problem on UDGs, denoted udg-

dominating set, is the dominating set problem restricted to UDG’s.
We answer question (2) negatively by showing that the dominating set

problem, which has an approximation ratio lg n + 1 [17] (n is the number of the
vertices in the graph), is unlikely to have a safe approximation algorithm of ratio
c lg n, for any constant c > 0:

Theorem 1. Unless FPT = W [2], dominating set does not have a safe ap-
proximation algorithm of ratio ρ ≤ c lg n, for any constant c > 0.2

Proof. Let (G, k) be an instance of dominating set≤. Suppose that dominat-

ing set has a safe approximation algorithm A of ratio c lg n. We run A on G
to obtain a solution D of G such that |D|/|opt(G)| ≤ c lg n. If |D| > ck lg n,
it follows that opt(G) > k, and we can reject the instance (G, k); so assume
|D| ≤ ck lg n. Since A is a safe approximation algorithm, D contains a minimum
dominating set. Therefore, in time

∑k
i=1

(
ck lg n

i

)
n2 we can enumerate all subsets

of D of size at most k, and check whether any of them is a dominating set.
2 As a matter of fact, under the same complexity hypothesis, we can rule out (using

a similar proof) the existence of a safe approximation algorithm of ratio no(1) for
dominating set.
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If we find any, then we accept the problem instance (G, k); otherwise, we reject
it. This shows that dominating set≤ is solvable in f(k)nc time for some con-
stant c and completes the proof. �	

By a similar argument, it follows that there are problems that have a PTAS but
that are unlikely to have even a safe constant-ratio approximation algorithm:

Theorem 2. The udg-dominating set problem admits a PTAS but does not
admit a constant-ratio safe approximation algorithm unless W [1] = FPT .

Finally, the connected vertex cover problem, which has an approximation
algorithm of ratio 2 [25], does not admit a constant-ratio safe approximation
algorithm unless the polynomial time hierarchy collapses to the third level:

Theorem 3. Unless the polynomial time hierarchy collapses to the third level,
the connected vertex cover problem does not have a constant-ratio safe
approximation algorithm.3

4 Kernelization and Safe Approximation

At the surface, the notion of safe approximation seems to be closely related to
the notion of kernelization in parameterized complexity. We clarify some of the
differences between the two notions in the following remark.

Remark 1. It seems intuitive that problems with a safe approximation algorithm
should have kernels of matching size. Of course, the two notions are not equiv-
alent: The safe approximation solution is not necessarily a kernel, as simply
“forgetting” everything outside the solution cannot be guaranteed to give an
equivalent instance. Furthermore, kernelizations are not restricted to subprob-
lems of the original instance and, hence, do not have to return a safe approx-
imation. Still, even if one aims to compute a safe approximation and cleverly
reduce the part outside the solution to small size, it can be showed (Theorem 4)
that there are problems with constant-factor safe approximation but without
polynomial kernels (assuming that the polynomial hierarchy does not collapse).

Remark 2. If a subset minimization problem has a constant-ratio safe approx-
imation algorithm (in fact, any ratio of the form f(opt) suffices, where f is a
nondecreasing efficiently computable function) then its parameterized version
must be FPT (enumerate all subsets of the solution returned by the safe ap-
proximation algorithm in FPT time).

The hitting set problem is defined as follows. Given a pair (S,F) where S is
a set of elements and F is a family of subsets of S, compute a smallest subset
H of S that intersects every set in F .
3 Under the same complexity hypothesis, we can strengthen this result to rule out

the existence of a safe approximation algorithm of ratio opt(G)O(1) for connected

vertex cover.
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Theorem 4. Unless the polynomial-time hierarchy collapses to the third level,
there are problems that have constant-ratio safe approximation algorithms but
no polynomial kernels.

Proof. Consider the following restriction of hitting set, denoted paired-HS,
consisting of the set of all instances of hitting set of the form (S,F), where
|S| = 2N for some natural number N , and F contains, in addition to other sets,
N pairwise disjoint sets, each of cardinality 2, whose union is S. It is not diffi-
cult to see that the instances of paired-HS are recognizable in polynomial time
(e.g., by computing maximum matching). Moreover, it follows easily from the
definition of paired-HS that it has a safe approximation algorithm of ratio 2
(the algorithm returns the set S as the solution to the instance (S,F)). Note also
that paired-HS≤ is FPT, since any instance in which the parameter is smaller
than |S|/2 can be rejected immediately, otherwise, a brute force algorithm enu-
merating all subsets of S and checking whether each subset is a solution, is an
FPT algorithm that solves the problem.

We claim that paired-HS≤ does not have a polynomial kernel4, unless the
polynomial hierarchy collapses to the third level. To prove this claim, consider
the d-sat problem that consists of the set of instances of CNF-SAT in which
each clause has at most d literals, where d ≥ 3 is an integer constant. It was
shown in [15] that, unless the polynomial time hierarchy collapses to the third
level, the d-SAT problem parameterized by the number of variables n, has no
oracle communication protocol of cost at most O(nd−ε), for any ε > 0; this can
be easily seen to exclude also kernels as well as compressions into instances of
other problems of size O(nd−ε) (cf. [15]).

Now proceed by contradiction. Assume that paired-HS≤ has a polynomial
kernel of size O(kc) for some integer constant c > 1, and consider the d-sat
problem where d = c + 1. We can reduce d-sat to paired-HS as follows. For
each instance F on n variables, construct the instance (S,F , n) (with parameter
n) of paired-HS≤ where S consists of the set of n variables in F and their
negations; thus, S has 2n elements. For each variable in F we associate a set
of two elements in F containing the variable and its negation. Finally, for each
clause in F we associate a set in F containing the literals in the clause. Clearly,
the resulting instance is an instance of paired-HS≤. Moreover, F is a yes-
instance of d-sat if and only if (S,F , n) is a yes-instance of paired-HS≤; the
key observation is that the paired elements and the maximum size of n encode
the selection of a truth assignment, the other sets check that it is satisfying. It
follows that this reduction compresses instances of d-sat into instances of size
O(nc) = O(nd−1), which implies a collapse of the polynomial hierarchy to the
third level. This completes the proof. �	

In the remainder of this section we study further the relation between safe ap-
proximation and kernelization. We show that the notion of safe approximation
can be useful for obtaining kernelization algorithms for FPT problems. The
vertex cover problem is a trivial example showing how a safe approximation
4 The kernel size for hitting set≤ is the sum of the cardinalities of all sets in F .
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algorithm can be used to obtain a kernelization algorithm: no edge has both
endpoints outside the safe approximation solution, and if an edge has one, we
may safely take the other.5 The NT-theorem [4,23], which is a local-ratio ap-
proximation algorithm of ratio 2 for vertex cover, is at the same time a safe
approximation algorithm. This algorithm has been used in [14] to obtain a kernel
for vertex cover of size at most 2k, which currently stands as the best upper
bound on the kernel size for vertex cover.

It is not always as simple to get a kernelization from a safe approximation
algorithm as in the case of vertex cover. Therefore, it is interesting to inves-
tigate which safe approximation algorithms (for subset minimization problems)
can be turned into kernelization algorithms. In addition to its theoretical impor-
tance, this question has an interesting algorithmic facet: given a solution to the
instance that contains an optimal solution (the “important” part), can we “deal
with” the remaining part of the instance (the “left overs”)?

We illustrate next, through a few examples, how the existence of safe approx-
imation algorithms implies the existence of kernelization algorithms for certain
problems. These results should mainly be seen as illustrative examples of using
safe approximation as a technique for obtaining kernelization algorithms; in most
cases matching or better kernels are known. The problems under consideration
are: edge multicut, vertex multicut, planar dominating set, planar

feedback vertex set, feedback vertex set, and a generalization of feed-

back vertex set, called feedback vertex set with blackout vertices.
Both planar dominating set and planar feedback vertex set admit
PTAS [3], and feedback vertex set and its generalization with blackout ver-
tices admit approximation algorithms of ratio 2 [2]. Both planar dominating

set≤ [1] and planar feedback vertex set≤ [6] have linear kernels, and
feedback vertex set has a quadratic kernel [26].

4.1 Planar Dominating Set

The planar dominating set problem is the dominating set problem re-
stricted to planar graphs. We show next that any safe approximation algorithm
of ratio ρ for planar dominating set can be used to design a kernelization
algorithm for planar dominating set≤ that computes a kernel with at most
10ρk vertices. For a vertex v in a graph, we denote by N(v) the set of neighbors
of v. Two vertices u and v in a graph are said to be twins if N(u) = N(v).

Theorem 5. If planar dominating set has a safe approximation algorithm
A of constant ratio ρ then planar dominating set≤ has a kernelization algo-
rithm A′ that computes a kernel with at most 10ρk vertices.

Proof. Given an instance (G, k) of planar dominating set≤, the kernelization
algorithm A′ starts by invoking the algorithm A to compute a set of vertices
S of G whose cardinality is at most ρ|opt(G)|, and that contains a minimum
5 This is also true for the d-hitting set; we may forget all elements that are outside

the safe approximation solution, and shrink the sets accordingly.
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dominating set of G. If |S| > ρk then clearly opt(G) > k and the algorithm A′

rejects the instance (G, k); so assume |S| ≤ ρk. Let S = V (G)\S. The algorithm
A′ applies the following reduction rules to G in the respective order.

Reduction Rule 1. Remove all the edges in G[S].

Reduction Rule 2. For any set of degree-1 vertices (degree taken in the cur-
rent graph) in S that are twins, remove all of them except one vertex.

Reduction Rule 3. For any set of degree-2 vertices in S that are twins (i.e.,
all of them are twins), remove all of them except two vertices.

Let G′ be the resulting graph from G after the application of the above rules.
Note that S ⊆ V (G′). The algorithm A′ returns the instance (G′, k). Since
S contains an optimal solution, it is not difficult to verify that (G′, k) is an
equivalent instance of (G, k). Next, we upper bound the number of vertices
in G′.

Let I = V (G′)\S, and note that I is an independent set by Reduction Rule 1.
We partition I into three sets: I1 is the set of degree-1 vertices (degree taken in
G′), I2 is the set of degree-2 vertices, and I≥3 is the set of vertices in I of degree
at least 3. Next, we upper bound the cardinality of each of these three sets.

To upper bound the cardinality of I≥3, we define the multihypergraph H as
follows. The vertex-set of H is S. A subset of vertices e is an edge in H if and only
if there exists a vertex u ∈ I≥3 such that N(u) = e. Since the incidence graph
of H is a subgraph of G′, and hence is planar, the multihypergraph H is planar.
It follows from Lemma 4.4 in [18] that H has at most 2|V (H)| − 4 = 2|S| − 4
edges. Since the number of edges in H is exactly the number of vertices in I≥3, it
follows that |I≥3| ≤ 2|S|− 4. By Reduction Rule 2, we have |I1| ≤ |S|. To upper
bound |I2|, we construct a planar multigraph G whose vertex set is S, and such
that there is an edge between two vertices u and v in G if and only if there exists
a vertex w ∈ I2 whose neighbors are u and v. Since G′ is planar, G is planar,
and by Reduction Rule 3, there are at most 2 edges between any two vertices in
G. It follows from Euler’s formula that the number of edges in G, and hence the
number of vertices in I2, is at most 2(3|V (G)| − 6) = 6|S| − 12.

Thus |V (G′)| = |I| + |S| ≤ 10|S| − 16 < 10ρk, completing the proof. �	

4.2 Feedback Vertex Set

Let G be an undirected graph. A set of vertices F in G is a feedback vertex set
of G if the removal of F breaks all cycles in G, that is, if G − F is acyclic. The
feedback vertex set problem is to compute a feedback vertex set of minimum
cardinality in a given graph. The planar feedback vertex set problem is the
restriction of the feedback vertex set problem to planar graphs. We show
first that a constant-ratio safe approximation for feedback vertex set gives a
kernel with a cubic number of vertices for feedback vertex set≤, using only
one reduction rule plus a simple marking procedure. We then consider a gener-
alization of feedback vertex set≤, which allows for the presence of blackout
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vertices, and asks for a feedback vertex set excluding all blackout vertices. We
call this problem feedback vertex set with blackout vertices, fvsbv

for short. This problem was introduced by Bar-Yehuda [5], and has applications
in Bayesian inference. We show that the cubic kernel can be improved for this
generalization to match the known quadratic kernel by Thomassé [26], as the
blackout annotation allows a more efficient processing of the trees that are out-
side the safe approximation, using simpler and different arguments. (Note that
the quadratic upper bound does not carry to the standard feedback vertex

set≤ problem due to the presence of blackout vertices.) Finally, we show that
a ratio ρ safe approximation for planar feedback vertex set gives a kernel
with at most 3ρk vertices for planar feedback vertex set≤.

Theorem 6. If feedback vertex set has a constant-ratio safe approxima-
tion, then feedback vertex set≤ has a cubic kernel.

Corollary 1. If fvsbv has a constant-ratio safe approximation, then fvsbv≤
admits a quadratic kernel.

Theorem 7. If planar feedback vertex set has a safe approximation al-
gorithm with constant ratio ρ then planar feedback vertex set≤ has a
kernel with at most 3ρk vertices.

4.3 Multicut Problems

The edge multicut problem is defined as follows: Given a graph G = (V, E)
and a set of pairs T = {(s1, t1), . . . , (s
, t
)} of vertices in G, compute a set of
edges E′ in G of minimum cardinality whose removal disconnects all pairs in T
(i.e., there is no path from si to ti, for i = 1, . . . , �, in (V, E \ E′)).

Theorem 8. If edge multicut has an f(opt) safe approximation
algorithm, where f is a nondecreasing efficiently computable function, then edge

multicut≤ has a polynomial kernel with at most 3f(k) vertices.

A similar result holds for vertex multicut≤, where the task is to delete at
most k non-terminal vertices to disconnect all given terminal pairs.

Theorem 9. If vertex multicut has an f(opt) safe approximation algo-
rithm, where f is a nondecreasing efficiently computable function, then vertex

multicut≤ has a polynomial kernel with at most 2f(k) vertices.

5 Conclusion

We presented the notion of safe approximation and studied its relation to the
notion of kernelization in parameterized complexity.

Even though we have shown that the notions of safe approximation and ker-
nelization are different for subset minimization problems, we illustrated through
some nontrivial examples how safe approximation can be useful for obtaining
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kernelization algorithms. Some of those results imply linear kernelization algo-
rithms for the problems under consideration. For example, it can be shown that
planar dominating set has a constant-ratio safe approximation algorithm,
which, when combined with Theorem 5, gives a linear kernelization algorithm
for planar dominating set≤. Unfortunately, the obtained upper bound on the
kernel size does not come close to the currently-best upper bound on the kernel
size for planar dominating set≤ [11]. This, however, may not be discourag-
ing due to the mere fact that kernelization algorithms for planar dominating

set≤ have been extensively studied, whereas the notion of safe approximation
was not considered before. Maybe a celebrated example that can be used to
illustrate how safe approximation can be useful for designing kernelization algo-
rithms is the example of vertex cover. An approximation algorithm of ratio
2, the NT-theorem, for vertex cover existed since 1975 [23]. Buss and Gold-
smith [7], in 1993, presented a kernelization algorithm that gives a quadratic
(2k2) kernel for vertex cover≤. This upper bound on the kernel size was sub-
sequently used in several parameterized algorithms for vertex cover≤, until
Chen et al. [14] observed in 2001 that the approximation algorithm given by the
NT-theorem is safe (this notion was not defined at that point), and implies a 2k
kernel for vertex cover≤. We believe that the existence of the notion of safe
approximation may bridge the gap between approximation and kernelization.

Several interesting questions arise from the current research. Many parame-
terized problems admit polynomial kernels and their optimization versions have
constant-ratio approximation algorithms. Do these optimization versions admit
constant-ratio safe approximation algorithms? For example, feedback vertex

set has a ratio 2 approximation algorithm [2] and a quadratic kernel [26], does
it have a constant-ratio safe approximation algorithm? One can ask whether a
sufficient condition (based on parameterized complexity) exists, such that if a
problem satisfying this condition has an approximation algorithm then it must
have a safe approximation algorithm.

Acknowledgment. The authors would like to thank Bart Jansen for suggesting
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Abstract. We describe a linear-time algorithm that inputs a planar
graph G and outputs a planar graph of size O(k) and with domina-
tion number k, where k is the domination number of G, i.e., the size
of a smallest dominating set in G. In the language of parameterized
computation, the new algorithm is a linear-time kernelization for the
NP-complete Planar Dominating Set problem that produces a ker-
nel of linear size. Such an algorithm was previously known (van Bevern
et al., these proceedings), but the new algorithm and its analysis are
considerably simpler.

1 Introduction

A current trend in the area of parameterized computation is the quest for ker-
nelization algorithms for hard computational problems. Briefly stated, a kernel-
ization algorithm is a polynomial-time procedure that transforms an instance of
the problem under consideration into an equivalent instance whose size depends
only on the value of the chosen parameter. More formally, a kernelization for a
parameterized problem L ⊆ Σ∗×N, where Σ is an alphabet and N = {1, 2, . . .},
is an algorithm A for which there exists a polynomial p : N → N and a function
f : N → N such that, applied to an instance I = (G, k) ∈ Σ∗ × N, A computes,
within p(|I|) steps, an instance I ′ = (G′, k′) ∈ Σ∗×N with |I ′| ≤ f(k) and k′ ≤ k
such that I ∈ L ⇔ I ′ ∈ L. Here |I| and |I ′| denote the number of symbols in
the representation of I and I ′, respectively, according to some suitable encoding
scheme.

A kernelization can be valuable in the solution of a hard parameterized prob-
lem because, used as a preprocessing routine, it allows the instance size to be
reduced, perhaps significantly, before an exponential-time algorithm is applied
to the remaining, reduced instance. From the outset, much importance was at-
tached to the kernel size, f(k), and for some problems a series of results suc-
cessively lowered the smallest upper bound on the size of a kernel known to be
computable in polynomial time. This was the case for the problem of interest
in this paper, the NP-complete Planar Dominating Set problem, formally
defined as the language

{(G, k) : G is an undirected planar graph, k ∈ N and Dom(G) ≤ k} ,

D. Marx and P. Rossmanith (Eds.): IPEC 2011, LNCS 7112, pp. 181–193, 2012.
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where Dom(G) is the domination number of G, i.e., the size of a smallest dom-
inating set in G, a smallest subset D of the vertex set V of G such that every
vertex in V \ D is adjacent in G to a vertex in D. Alber et al. [1] described
a first kernelization for Planar Dominating Set, whose kernel is of size at
most 335k, where k is the domination number of the input graph. The bound
was subsequently lowered to 67k by Chen et al. [4], who also proved that no ker-
nelization can yield a kernel of size bounded by (2−ε)k, for arbitrary fixed ε > 0,
unless P = NP. Other, more general, approaches [3,5] yield kernels of linear size
for several problems defined on planar graphs, including Planar Dominating

Set.
Only more recently has the kernelization time, p(|I|), come into focus. The

kernelizations for the Planar Dominating Set problem mentioned above both
operate in cubic time, and so are rather slow. Traditionally, this has been largely
ignored, the reasoning being that since the polynomial-time preprocessing is fol-
lowed by an exponential-time computation anyway, there is little point in wor-
rying about the degree of the polynomial. Whereas there is much truth in this
argument, it is hardly advisable to be dogmatic about the issue. From the stand-
point of theory, one might object that the polynomial is applied to the original
instance size, n, whereas exponential means exponential in the kernel size, which
may be substantially smaller than n. In practice, one can observe that the run-
ning time of a polynomial-time procedure is not always a negligible fraction of
the time consumed by an exponential-time computation. In summary, it seems a
worthwhile goal to try to reduce both the kernel size and the kernelization time.

At present, linear-time kernelizations are known for only few problems. Ver-

tex Cover is a case in point: The classic Buss’ kernelization that yields a
kernel of size O(k2) works in linear time (more powerful kernelizations for Ver-

tex Cover that produce kernels with O(k) vertices are known [9, Section 7.4],
but none of these runs in linear time). Other problems for which linear-time ker-
nelizations were described in the literature include certain problems on planar
graphs [8], Cluster Editing [11] and Rooted Leaf Outbranching [7]; as
in the case of Vertex Cover, kernels of linear size are not obtained in linear
time. An exception concerns the Weighted Max Leaf problem investigated
by Jansen [6], who states without giving all details that a linear-sized kernel
can be obtained in linear time. For the Planar Dominating Set problem, a
first kernelization algorithm that yields a kernel of linear size in linear time was
described by van Bevern et al. [2]. It is based on the region decomposition of
the earlier cubic-time kernelization algorithm of [1] and can be viewed to some
extent as a more efficient implementation of that algorithm. Here we take a fresh
look at the problem and develop a second linear-time kernelization for Planar

Dominating Set that yields a kernel of linear size. Compared with the result
of van Bevern et al., the advantage of the new result is that the algorithm and
its analysis, while not trivial, are considerably simpler. On the other hand, the
approach based on region decomposition may have applications to other prob-
lems defined on planar graphs, while the techniques described here are more
problem-specific.
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In terms of kernel size, the new algorithm, at least with its present analysis,
is not competitive with the earlier algorithms mentioned above. Moreover, there
is a certain trade-off between simplicity and small kernel size. For these reasons,
we refrain from calculating the exact kernel size and demonstrate only as simply
as we can that it is O(k). Of course, if the algorithm of [4] is applied after the
new algorithm, a kernel of size at most 67k is obtained in O(n + k3) time.

Our result is slightly more than a kernelization. As is a standard requirement
for kernelizations although usually not considered part of the formal definition,
our arguments imply an efficient and in fact linear-time procedure for obtaining
from an arbitrary dominating set in the kernel a dominating set of the same size
in the original input graph. Moreover, similarly as the algorithm of van Bevern
et al. [2], our algorithm actually does not need to know the parameter k. Rather,
it inputs a graph G and computes a graph G′ with Dom(G′) = Dom(G), so that
(G, k) ∈ Planar Dominating Set ⇔ (G′, k) ∈ Planar Dominating Set

for every k ∈ N. Correspondingly, a step in the kernelization that inputs a graph
G and outputs another graph G′ will be called correct if Dom(G) = Dom(G′).

Subsequently to the work described here, it was demonstrated that the same
techniques can be employed to obtain linear-time kernelizations with linear ker-
nel size for more general domination problems in planar graphs. These include
Planar Annotated Dominating Set, i.e., given an undirected planar graph
G = (V, E), a set B ⊆ V and an integer k ∈ N, decide whether there is a set
D ⊆ V with |D| ≤ k such that every vertex in B \D is adjacent in G to a vertex
in D. A few of the ideas in this paper suffice to give a linear-time kerneliza-
tion with linear kernel size for the Planar Edge Dominating Set problem,
i.e., given an undirected planar graph G = (V, E) and an integer k ∈ N, decide
whether there is a subset D ⊆ E with |D| ≤ k such that every edge in E shares
an endpoint with an edge in D. This ongoing work will be reported elsewhere.

1.1 Overview of the New Algorithm

The starting point for the kernelization described here was the observation that
if two vertices x and y in an n-vertex planar graph G with small domination
number k have many joint neighbors, then most of these neighbors have no
neighbors other than x and y that are not also neighbors of x or y. Then an
optimal dominating set contains x or y, and most joint neighbors of x and y are
without influence on the domination number and can be removed. It therefore
makes sense to search for a small vertex set A such that many vertices have two
neighbors in A. A good candidate for A is a smallest set P of vertices in G with
total degree at least n − |P |.

It may not be the case that there are many vertices with two neighbors in
P . Then, however, most vertices have exactly one neighbor in P , and the union
Q of P with the set of vertices without neighbors in P is still small. Think of
the vertices in Q as the centers of stars that include all vertices in G. If it is
not optimal to dominate a star from its center, every vertex in the star must be
dominated by a vertex that also dominates at least one vertex in a different star.
By planarity, only few vertices dominate parts of three or more stars. As for
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vertices that dominate parts of exactly two stars, at most two such dominating
vertices are needed for each pair of stars, since otherwise the two stars in question
could be dominated more cheaply from their centers. We cannot know which two
vertices are present in an optimal solution, but for each of the two stars we can
pick a single vertex that dominates a maximum number of vertices in that star
and at least one vertex in the other star. By planarity, adding the vertices that
were picked and those that dominate parts of more than two stars to Q still
results in a small set R.

Let S be the set of centers x of stars for which the vertices in R \ {x} do not
have enough edges to the star of x to dominate it completely. A dominating set
can be assumed to be a superset of S, and therefore every vertex in the set T
of vertices at distance 1 from S can be removed unless it is needed to dominate
vertices outside of S ∪ T . This is the case only if it has two or more neighbors
outside of S ∪T , a condition that, by planarity, holds for only few vertices in T .

If most vertices belong to stars whose centers are not in S, there may not be
many vertices in T to remove. In that case, however, R is a small set such that
many vertices have two neighbors in R, and we can pick A = R and remove many
vertices outside of R as described above. In every situation, if G contains more
than Ck vertices for a suitable constant C, a constant fraction of the vertices in
G can be removed in linear time, and all that remains is to repeat the process
until the number of vertices no longer drops as fast as established for graphs
with more than Ck vertices.

2 Preliminaries

2.1 Definitions and Notation

Throughout this subsection, let G = (V, E) be an undirected graph.
When U ⊆ V , G[U ] denotes, as usual, the subgraph of G induced by U , i.e.,

(U, {{u, v} ∈ E : u, v ∈ U}).
For u ∈ V , we denote by NG(u) the set {v ∈ V : {u, v} ∈ E} of neighbors

of u in G and write NG[u] for NG(u) ∪ {u}. For U ⊆ V , NG(U) =
⋃

u∈U NG(u)
and NG[U ] =

⋃
u∈U NG[u]. A vertex u ∈ V dominates the vertices in NG[u] in

G, and a vertex set U ⊆ V dominates the vertices in NG[U ] in G and G itself if
NG[U ] = V .

For A ⊆ V and i ≥ 0, we denote by N i
G(A) the set {u ∈ V \A : |NG(u)∩A| =

i} of vertices in V \ A that have precisely i neighbors in A, and N≥i
G (A) =⋃∞

j=i N j
G(A).

2.2 Properties of Planar Graphs

The facts stated in Lemma 1 below are well-known. For proofs see, e.g., [10]. The
remaining lemmas in this section are straightforward consequences of Lemma 1.
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Lemma 1. Let G = (V, E) be an undirected planar graph and take n = |V | and
m = |E|. Then

(a) m ≤ 3n.
(b) If G is bipartite, then m ≤ 2n.
(c) No three distinct vertices in G have three common neighbors.

Lemma 2. Let G = (V, E) be an undirected planar graph and let A ⊆ V . Then

(a) For i = 3, 4, . . . , let ni = |N i
G(A)|. Then

∑∞
i=3(i − 2)ni ≤ 2|A|.

(b) |N≥3
G (A)| ≤ 2|A|.

(c) Let F be a set of faces in a planar embedding of G, the boundary of each of
which contains 3 or more vertices in N≥2

G (A). Then at most 6|A| vertices in
N≥2

G (A) lie on the boundary of one or more faces in F .

Proof. (a) Applying Lemma 1(b) to the subgraph of G induced by the edges
with one endpoint in A and one endpoint in N≥3

G (A) yields
∑∞

i=3 ini ≤
2(|A| +

∑∞
i=3 ni).

(b) Since |N≥3
G (A)| =

∑∞
i=3 ni ≤

∑∞
i=3(i− 2)ni, the claim follows from part (a).

(c) Apply part (a) to the graph obtained from G by, for each F ∈ F , adding
a new vertex vF and a new edge from vF to each vertex in N≥2

G (A) on
the boundary of F . If the number of new edges is m, this shows that m ≤
2(|A| + |F|) ≤ 2(|A| + m/3) and therefore that m ≤ 6|A|. �	

Lemma 3. Let G = (V, E) be an n-vertex undirected planar graph, let A ⊆ V
and assume that

∑
x∈A |NG[x]| ≥ n. For i = 0, 1, . . . , let ni = |N i

G(A)|. Then
n0 ≤ n2 + 10|A|.

Proof. The total degree in G of the vertices in A is at least n − |A| and, by
Lemma 1(a), at most 3|A| edges have both endpoints in A. Therefore

∞∑
i=0

ini ≥ n − |A| − 2 · 3|A| =
∞∑

i=0

ni − 6|A|

and

n0 ≤ n2 +
∞∑

i=3

(i − 1)ni + 6|A| ≤ n2 + 6|A| + 2
∞∑

i=3

(i − 2)ni .

By Lemma 2(a),
∑∞

i=3(i − 2)ni ≤ 2|A|. The claim follows. �	

3 Near-Twin Reduction

A central part of our kernelization is a procedure called near-twin reduction
that is applied to an undirected planar graph G = (V, E) and parameterized by
a vertex set A ⊆ V .
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3.1 Description

With G and A as above, define the A-neighborhood of a vertex u ∈ V as the set
NG(u) ∩ A. For all x, y ∈ A with x �= y, call u ∈ V introspective with support
{x, y} if u �∈ A, the A-neighborhood of u is {x, y}, and the A-neighborhood of
every vertex at distance at most 2 from u in G[V \ A] is a nonempty subset
of {x, y}. A near-twin reduction in G with support A returns the graph G′ =
(V ′, E′) obtained from G by the following operation: For all {x, y} ⊆ A with
x �= y such that the set I{x,y} of introspective vertices with support {x, y} is of
size at least 4, replace the vertices in I{x,y} by two new degree-2 vertices with
neighbors x and y (see Fig. 1). G′ is clearly planar. In Section 4, we write an
application of the near-twin reduction with support A to G as a function call
NearTwin Reduce(G, A) that returns the graph G′ resulting from the near-twin
reduction.

x y
⇒

G = (V, E) G′ = (V ′, E′)

x y

: ∈ A: ∈ I{x,y} ⊆ V \ V ′ : ∈ V ′ \ V

Fig. 1. A near-twin reduction with support A transforms G into G′

3.2 Correctness

Suppose that D is a dominating set in G and consider the set D′ ⊆ V ′ obtained
from D as follows: For all {x, y} ⊆ A with x �= y such that |I{x,y}| ≥ 4 and
D ∩NG[I{x,y}] �⊆ {x, y}, replace the vertices in D ∩NG[I{x,y}] by x and y. Note
that NG[I{x,y}] ∩ NG[I{x′,y′}] = Ø for all {x′, y′} ⊆ A with x′ �= y′ and {x, y} �=
{x′, y′}, so that the replacement can actually be carried out as described. Since
NG[NG[I{x,y}]] ⊆ NG[{x, y}] for all {x, y} ⊆ A with x �= y, D′ still dominates
G, and since D ∩ NG[I{x,y}] �= Ø, it is easy to see that D′ dominates G′. By
Lemma 1(c), the vertices in a set I{x,y} with |I{x,y}| ≥ 4 cannot be dominated in
G by any single vertex other than x or y. Therefore, if D ∩ NG[I{x,y}] �⊆ {x, y},
then |D ∩ NG[I{x,y}]| ≥ 2. This shows that |D′| ≤ |D|.

Suppose, conversely, that D′ is a dominating set in G′ and consider the set
D ⊆ V obtained from D′ by replacing the vertices in D′ ∩ (V ′ \ V ) by their
neighbors. D clearly dominates G, and |D| ≤ |D′| since for every vertex in
D′∩(V ′\V ) without neighbors in D′ there is another vertex in D′∩(V ′\V ) with
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the same two neighbors. Altogether, we have shown that Dom(G) = Dom(G′),
i.e., the near-twin reduction is correct.

3.3 Execution Time

The near-twin reduction with support A can be applied to G in O(|V |) time
as follows: First each vertex u ∈ V \ A computes the set U , where U is the
A-neighborhood of u if the latter is of size 1 or 2 and U = {⊥} for a special
symbol ⊥ otherwise. Then, in each of two successive rounds, each vertex in V \A
broadcasts its set to all its neighbors in V \ A and forms the new value of its
own set as the union of the old value and the sets received, except that every
union that contains ⊥ or is of size 3 or more is replaced by {⊥}. A vertex is
introspective exactly if its stored set is of size 2 throughout this process. The
introspective vertices can be sorted by their supports in O(|V |) time with radix
sort, after which it is a simple matter to construct G′.

3.4 Reduction Progress

Lemma 4. Let G = (V, E) be an undirected planar graph, let A ⊆ V and let
G′ = (V ′, E′) be the graph obtained by carrying out a near-twin reduction in G
with support A. Then |N2

G′(A)| = O(|A| + Dom(G)).

Proof. We first show that in G′, no four introspective vertices have a common
support {x, y}. Otherwise some vertex u ∈ (V ∩ V ′) \ A with A-neighborhood
{x, y} would be introspective in G′, but not in G. This can happen only if the
near-twin reduction in G removes a vertex v at distance at most 2 from u in
G[V \ A] whose A-neighborhood is not {x, y}. But this is impossible since the
A-neighborhood of u is {x, y} and u is within distance 2 of v in G[V \ A]—the
presence of u would prevent v from being introspective, and therefore from being
removed.

Since clearly there is a planar graph on the vertex set A that contains an edge
{x, y} if there is an introspective vertex with support {x, y}, Lemma 1(a) shows
that the number of introspective vertices in U = N2

G′(A) is bounded by 3 · 3|A|.
To bound the number of the remaining vertices in U , fix a planar embedding of
G′ and its restriction φ to the subgraph of G′ induced by the set of edges with
one endpoint in A and one endpoint in U . Denote by F the set of faces of φ.
We can clearly assume that |U | ≥ 3. Then F = F2 ∪ F≥3, where F2 and F≥3

are the sets of faces in F whose boundary contains exactly 2 and ≥ 3 distinct
vertices in U , respectively. Moreover, every face in F whose boundary contains
three distinct vertices in A belongs to F≥3.

Let x, y ∈ A be distinct and let u be a vertex in U whose A-neighborhood is
{x, y}. If u is not introspective, there is a path π in G[V \A] of length at most 2
from u to a vertex v whose A-neighborhood is not a nonempty subset of {x, y}.
Choose π as a shortest such path. Then one of the following holds (see Fig. 2):

– v ∈ U , and every face in F whose boundary contains both v and the last
vertex in U that precedes v on π belongs to F≥3, since its boundary includes
the A-neighborhoods of both u and v.
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: ∈ F∗

: ∈ A

: ∈ U∗

: introspective
: ∈ NG′(U∗) ∩ (U \ U∗)

: ∈ N0
G′(A) ∪ N≥3

G′ (A) : ∈ N1
G′(A)

Fig. 2. Vertices in U sufficiently far from the faces in F∗ are introspective

– v ∈ N1
G′(A), and the face in F whose interior contains v belongs to F≥3,

since its boundary includes the A-neighborhoods of both u and v.
– v ∈ N0

G′(A) ∪ N≥3
G′ (A).

Let F∗ be the union of F≥3 with the set of faces in F2 whose interior contains
a vertex in N0

G′(A) ∪ N≥3
G′ (A) and let U∗ be the set of vertices in U on the

boundary of a face in F∗. The considerations above show that every vertex in
U that is not introspective is at distance at most 1 in G′ from a vertex in U∗.

Let F be a face in F2 whose interior contains a vertex v ∈ N0
G′(A). A vertex

that dominates v must lie in the interior of F or be one of its two boundary
vertices in U , each of which can dominate vertices in at most one face other
than F . This shows the number of vertices in U on the boundaries of faces in F2

whose interiors contain a vertex in N0
G′(A) to be at most 3Dom(G′) = 3Dom(G).

By Lemma 2(b), the number of vertices in U on the boundaries of faces in F2

whose interiors contain a vertex in N≥3
G′ (A) is bounded by 2 · 2|A|. And, finally,

Lemma 2(c) shows the number of vertices in U on the boundaries of faces in
F≥3 to be at most 6|A|. In summary, |U∗| ≤ 10|A| + 3Dom(G). Each vertex in
U∗ lies on the boundary of at most one face in F \F∗ ⊆ F2 and therefore has at
most one neighbor in U \U∗. Altogether, U contains at most 9|A| introspective
vertices and at most 2(10|A|+3Dom(G)) vertices that are not introspective. �	
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4 Shrinking Iterations

4.1 Description

The main part of the kernelization is the shrinking iteration detailed below. It
takes as input an undirected planar graph G = (V, E), goes through three phases
that successively transform G into G1, G2 and G3, and returns G3. Take n = |V |
and, for i = 1, 2, 3, write Gi = (Vi, Ei).

The first two phases are simply near-twin reductions with different supports.
The support used in Phase 1 is a smallest set P ⊆ V with

∑
x∈P |NG[x]| ≥ n.

To describe the support used in Phase 2, we need some additional notation.
First, let Q be the union of P with the set of vertices in V1 without neighbors

in P . Q dominates G1, so we can form a partition {Star(x) : x ∈ Q} of V1 with
x ∈ Star(x) ⊆ NG1 [x] for all x ∈ Q. For all x ∈ Q, we call Star(x) a star and
x its center. For all u ∈ V1, let L(u) = {x ∈ Q : NG1 [u] ∩ Star(x) �= Ø} be
the set of centers of stars represented in NG1 [u]. Moreover, for all x, y ∈ Q with
x �= y, let wy(x) be the supremum, over all u ∈ V1 \ {x} with L(u) = {x, y},
of |NG1 [u] ∩ Star(x)| (equal to −∞ if there are no such u) and let gy(x) be a
vertex u that realizes the supremum (undefined if wy(x) = −∞). Phase 2 is a
near-twin reduction with support

R = Q ∪ {gy(x) : x, y ∈ Q, x �= y and wy(x) > 0} ∪ {u ∈ V1 : |L(u)| ≥ 3} .

Let w(x) =
∑

y∈R\{x} |NG1 [y] ∩ Star(x)| for all x ∈ Q, S = {x ∈ Q : w(x) <

|Star(x)|} and T = NG2(S) \ S. Phase 3 consists in removing every vertex in T
with at most one neighbor outside of S ∪ T and, for each x ∈ S, adding a new
degree-1 vertex with neighbor x. A nonobvious point is that since the definition
of S refers to G1, S is best computed before the near-twin reduction in Phase 2.

The three phases are summarized below in pseudo-code.

// Phase 1
P := a smallest subset of V with

∑
x∈P |NG[x]| ≥ n;

G1 := (V1, E1) := NearTwin Reduce(G, P );

// Phase 2
Q := P ∪ N0

G1
(P );

{Star(x) : x ∈ Q} := a partition of V1 with x ∈ Star(x) ⊆ NG1 [x] for all x ∈ Q;
R := Q ∪ {gy(x) : x, y ∈ Q, x �= y and wy(x) > 0} ∪ {u ∈ V1 : |L(u)| ≥ 3},

where L(u) = {x ∈ Q : NG1[u] ∩ Star(x) �= Ø} for all u ∈ V1,
wy(x) = sup{|NG1[u] ∩ Star(x)| : u ∈ V1 \ {x} and L(u) = {x, y}}

for all x, y ∈ Q with x �= y and
gy(x) = some u ∈ V1 \ {x} with L(u) = {x, y}

and |NG1(u) ∩ Star(x)| = wy(x)
for all x, y ∈ Q with x �= y and wy(x) > 0;

S := {x ∈ Q : w(x) < |Star(x)|},
where w(x) =

∑
y∈R\{x} |NG1 [y] ∩ Star(x)| for all x ∈ Q;

G2 := (V2, E2) := NearTwin Reduce(G1, R);
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// Phase 3
T := NG2(S) \ S;
V ′

3 := V2 \ {u ∈ T : |NG2(u) \ (S ∪ T )| ≤ 1};
G3 := (V3, E3) := the graph obtained from G2[V ′

3 ] by adding,
for each x ∈ S, a new degree-1 vertex with neighbor x;

return G3;

4.2 Correctness

It was proved already in Section 3.2 that near-twin reductions preserve the dom-
ination number. Demonstrating the correctness of a shrinking iteration therefore
boils down to showing that Dom(G2) = Dom(G3).

Let D3 be a dominating set in G3. Since NG3(V3 \ V2) = S and V2 \ V3 ⊆
NG2(S), D2 = (D3 ∩ V2) ∪ S is a dominating set in G2. And since every vertex
in S has a degree-1 neighbor in G3 that does not belong to V2, |D2| ≤ |D3|.

Conversely, let D1 be a minimum dominating set in G1 (not in G2), chosen
to maximize |D1 ∩ Q| among all such sets. D1 does not contain any vertex
u ∈ V1 \ Q with |L(u)| = 1, since every such vertex could be replaced in D1

by the center of its star to obtain a minimum dominating set with one more
element in Q. Likewise, for all x, y ∈ Q with x �= y, D1 contains at most one
vertex u ∈ V1 \{x} with L(u) = {x, y}, since two such vertices could be replaced
by x and y in D1 to obtain a minimum dominating set with at least one more
element in Q. R contains all u ∈ V1 with |L(u)| ≥ 3 and, for all x, y ∈ Q with
x �= y such that L(u) = {x, y} for some u ∈ V1 \{x}, one such vertex u for which
|NG1 [u] ∩ Star(x)| is maximal. Because of this, it is not difficult to see that for
all x ∈ Q, w(x) =

∑
y∈R\{x} |NG1 [y]∩Star(x)| is an upper bound on the number

of vertices in Star(x) that are dominated by D1 \ {x}. If w(x) < |Star(x)| for
some x ∈ Q, therefore, x ∈ D1. Hence S ⊆ D1.

The argument in Section 3.2 that shows that Dom(D2) ≤ Dom(D1) also
proves that there is a minimum dominating set D2 in G2 with D1 ∩R ⊆ D2 ∩R
and therefore S ⊆ D2. Let D2 be such a set and obtain D3 ⊆ V3 from D2 by
replacing each vertex u ∈ D2 \V3 by the vertices in NG2(u) \ (S ∪ T ). In G3, D3

dominates the vertices in V3∩(S∪T ) (because S ⊆ D3), the vertices in V2\(S∪T )
(by the way D3 is obtained from D2), and the vertices in V3 \V2 (again because
S ⊆ D3). Therefore D3 is a dominating set in G3. Since |NG2(u) \ (S ∪ T )| ≤ 1
for each u ∈ V2 \ V3, |D3| ≤ |D2|. Thus Dom(G2) = Dom(G3).

4.3 Execution Time

It was proved already in Section 3.3 that a near-twin reduction can be executed
in linear time. To compute P , sort the vertices by their degrees and pick a
suitable suffix of the sorted sequence. To compute Q, let each vertex determine
membership in P for itself and its neighbors to know whether it should enter Q.
The computation of T from S and of V ′

3 from S and T are similar, and the
construction of G3 from G2, V ′

3 and S is easy.
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In order to compute the partition {Star(x) : x ∈ Q}, let each vertex in V1 \Q
choose a neighbor x ∈ Q and mark itself as belonging to Star(x). Subsequently
each vertex u ∈ V1 can determine the number |L(u)| of stars represented in
NG1 [u] and enter R if |L(u)| ≥ 3. If |L(u)| = 2, instead let u generate the tuples
(x, y, rx, u) (unless u = x) and (y, x, ry , u) (unless u = y), where L(u) = {x, y},
rx = |NG1 [u]∩Star(x)| and ry = |NG1 [u]∩Star(y)|. Sorting the tuples generated
in this way lexicographically with radix sort allows us to compute the final
constituent {gy(x) : x, y ∈ Q, x �= y and wy(x) > 0} of R in O(n) time: For all
x, y ∈ Q with x �= y and wy(x) > 0, gy(x) is the fourth component of the last
tuple in the sorted sequence with first component x and second component y.
The computation of S, finally, is made easy by the alternative characterization
w(x) =

∑
u∈Star(x) |NG1 [u]∩(R\{x})|, for all x ∈ Q, which shows that w(x) can

be obtained for all x ∈ Q by summing over the vertices in Star(x) a quantity that
is computable for all vertices in V1 in O(n) time. The application of a shrinking
iteration to an n-vertex graph therefore takes O(n) time.

4.4 Reduction Progress

Take k = Dom(G) and note that |P | ≤ k. Let z = |V | − |V1| = |N2
G(P )| −

|N2
G1

(P )| ≥ 0 be the decrease in the number of vertices achieved by Phase 1. By
Lemma 4, |N2

G1
(P )| = O(k), so |N2

G(P )| = z + O(k). Lemma 3 now shows that
|N0

G(P )| ≤ |N2
G(P )|+O(k) = z+O(k). And then |Q| = |P |+|N0

G(P )| = z+O(k).
Let R≥3 = {u ∈ V1 \ Q : |L(u)| ≥ 3}. We want to show that |R≥3| = O(|Q|),

which, by Lemma 1(a), will imply that |R| ≤ |Q|+ 6|Q|+ |R≥3| = O(z + k). To
this end, recall that for t ∈ N, a t-coloring of an undirected graph H = (VH , EH)
is a mapping h : VH → {1, . . . , t} such that for every {u, v} ∈ EH , h(u) �= h(v).
Lemma 1(a) can easily be used to show that every undirected planar graph has
a 6-coloring, and the famous four-color theorem (see, e.g., [10]) states that every
undirected planar graph in fact has a 4-coloring. Therefore let h be a t-coloring
of G1 for some t ≤ 6 and fix j ∈ {1, . . . , t}. Consider the graph obtained from G1

by merging each vertex u ∈ V1 \ Q with h(u) �= j into the center of its star. In
the resulting graph every vertex u ∈ R≥3 with h(u) = j has at least 3 neighbors
in Q. Therefore, by Lemma 2(b), |{u ∈ R≥3 : h(u) = j}| ≤ 2|Q|, and altogether
|R≥3| ≤ 2t|Q| = O(|Q|).

Let W =
∑

x∈Q w(x). Intuitively, W is (approximately) the number of vertices
that, by virtue of having a neighbor in R other than the center of their star, can
be “saved” from entering T . Under the assumption that z is small, so that
Phase 1 removes only few vertices, the following holds: If W is small, T is large,
and Phase 3 succeeds in removing a large number of vertices in T . On the other
hand, if W is large, then many vertices have two neighbors in R, and the near-
twin reduction with support R in Phase 2 removes many vertices. The rest of
this section serves to formalize and prove these claims. First note that
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|NG1 [S]| ≥
∑

x∈Q: w(x)<|Star(x)|
|Star(x)| ≥

∑
x∈Q: w(x)<|Star(x)|

(|Star(x)| − w(x))

≥
∑
x∈Q

(|Star(x)| − w(x)) = |V1| − W .

Thus at most W vertices in G1 do not belong to NG1 [S]. This implies that at
most W vertices in G2 do not belong to NG2 [S] = S∪T . And this in turn means
that |V2 \ T | ≤ W + |S|. A vertex in T is included in V ′

3 only if it has at least
two neighbors outside of T in addition to the center of its star. By Lemma 2(b),
therefore, |V ′

3 | ≤ |V2 \ T | + 2|V2 \ T | ≤ 3(W + |S|) and |V3| = |V ′
3 | + |S| ≤

3W + O(z + k). This concludes the analysis for small W . Take U = V1 \R. The
analysis for large W depends on the following characterization of W .

W =
∑
x∈Q

∑
y∈R\{x}

|NG1 [y] ∩ Star(x)| =
∑
y∈R

∑
x∈Q\{y}

|NG1 [y] ∩ Star(x)|

=
∑
y∈R

|NG1 [y]| −
∑
y∈Q

|Star(y)| =
∑
y∈R

|NG1(y)| − |U | .

Let H be the bipartite subgraph of G1 induced by the set of edges with one
endpoint in R and one endpoint in U . The total degree

∑
y∈R |NG1(y)| in G1

of the vertices in R overcounts the number of edges in H by twice the number
of edges between vertices in R, i.e., according to Lemma 1(a), by at most 6|R|.
Therefore H has at least |U | + W − 6|R| edges. Every vertex in U has at least
one incident edge in H , namely to the center of its star. With ni = |N i

G1
(R)|

for i = 1, 2, . . . , this means that
∑∞

i=1(i − 1)ni ≥ W − 6|R|. But then, by
Lemma 2(a),

∞∑
i=2

ni ≥ W − 6|R| −
∞∑

i=3

(i − 2)ni ≥ W − 6|R| − 2|R| = W − O(z + k) .

After Phase 2, by Lemmas 4 and 2(b), the number of vertices with two or more
neighbors in R is O(z+k). Phase 2 therefore reduces the number of vertices with
two or more neighbors in R from W −O(z+k) to O(z+k), i.e., by W −O(z+k).

In summary, for a certain constant c > 0, Phase 1 and Phase 2 reduce the
number of vertices by z and by at least max{W −c(z +k), 0}, respectively, while
the number of vertices left after Phase 3 is bounded by 3W + c(z + k). The
complete shrinking iteration therefore reduces the number of vertices by at least

max{z, W − c(z + k), n − 3W − c(z + k)} .

A simple case analysis shows that if n ≥ 16ck, then one of the three arguments
of the maximum above is Ω(n): Without loss of generality, z ≤ n/(16c) and
therefore c(z + k) ≤ n/16 + n/16 = n/8. If W ≥ n/4, the second term is at least
n/4 − n/8 = n/8, and if not, the third term is at least n − 3n/4 − n/8 = n/8.

A shrinking iteration that starts with at least 16ck vertices therefore reduces
the number of vertices by at least a constant factor.
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5 The Complete Algorithm

The complete kernelization inputs an undirected n-vertex planar graph G and
consists in applying repeated shrinking iterations to G until the number of ver-
tices no longer drops at least at the rate established in the analysis in the previous
section. Since our upper bound on the running time of successive iterations forms
a geometric series, the total running time is O(n). Every iteration preserves the
domination number, so the final graph has domination number Dom(G), and it
is planar and contains O(Dom(G)) vertices.
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Abstract. We present a linear-time kernelization algorithm that trans-
forms a given planar graph G with domination number γ(G) into a planar
graph G′ of size O(γ(G)) with γ(G) = γ(G′). In addition, a minimum
dominating set for G can be inferred from a minimum dominating set
for G′. In terms of parameterized algorithmics, this implies a linear-size
problem kernel for the NP-hard Dominating Set problem on planar
graphs, where the kernelization takes linear time. This improves on previ-
ous kernelization algorithms that provide linear-size kernels in cubic time.

1 Introduction

This work lies in the intersection of two active lines of research:
1. NP-hard problems on planar graphs and the exploitation of their structural

properties to obtain better algorithms (approximation or fixed-parameter) [4,
5, 14], and

2. polynomial-time data reduction and problem kernelization [6, 14], an impor-
tant subfield of parameterized complexity analysis.

Indeed, planar graph problems played an important role in the development of
several lines of research in parameterized complexity analysis. More specifically,
the topic of subexponential time fixed-parameter algorithms was first studied for
the Dominating Set problem on planar graphs [1, 10]. The linear-size problem
kernel for Dominating Set on planar graphs [2] may be considered as a nu-
cleus for the recent, rapid growth of results on problem kernels [6, 14], and planar
graph problems led to the first tractability results for the local search paradigm
in the context of parameterized complexity [11]. In our work, again Dominat-

ing Set serves as a starting example, now for studying the issue of linear-time
kernelizability as a natural goal within polynomial-time data reduction.

In a nutshell, a kernelization algorithm transforms in polynomial time an
instance of a (typically NP-hard) problem into an equivalent instance whose size
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is bounded from above by a function of a problem-specific parameter. Nowadays,
it has become a standard challenge to minimize the size of problem kernels [6, 14].
As to Dominating Set on planar graphs (given an undirected planar graph G
and a positive integer k, select at most k vertices such that each unselected vertex
in G has at least one selected neighbor1), there first was a 335k-vertex problem
kernel [2], which was further refined into a 67k-vertex problem kernel [8], both
computable in cubic time.2 In this previous work, the focus was on “engineering”
data reduction rules in order to gain a small provable kernel size. Here, we aim
at engineering the usage of known (and “established”) ones in terms of improved
time complexity instead of heading for new data reduction rules.

Following up the work on problem kernels for Dominating Set on planar
graphs, we shift the focus from improving the kernel size to improving the run-
ning time (from cubic to linear) while still maintaining a linear-size problem
kernel. Since this turns out to be a demanding task; for the sake of improv-
ing readability, we do not measure the constant factor for the problem kernel
size.3 In this sense, our work parallels other classification work related to Dom-

inating Set, where the goal was to extend the considered graph class and/or
class of problems [7, 12, 13]. Finally, we conjecture and already found some evi-
dence that our data reduction approach also extends to other problems on planar
graphs [13], again leading to linear-time linear-size problem kernels.

A similar result was achieved with a different approach by Hagerup [15]. He
presents a linear problem kernel that can be computed in linear time by providing
completely new reduction rules that are tailored for Dominating Set. On the
one hand, this may lead to smaller constants in the running time or the kernel
bound and less complex analysis thereof. On the other hand, our approach of
recycling the old reduction rules of Alber et al. [2] has the advantage of greater
versatility: It can likely be applied to a variety of NP-hard problems on planar
graphs (see [13]) and bears the possibility of improving the kernel-size in analogy
to the work of Chen et al. [8] and Wang et al. [16].

Our Contributions. Revisiting previous data reduction rules for Dominating

Set on planar graphs [2], we shift focus to the execution time of data reduction,
improving it from cubic to linear time. To this end, we “rework” the known
rules and their mathematical analysis and carefully analyze their interaction.
1 In what follows, knowledge of the parameter value k, that is, the maximum allowed

size of a dominating set, will not be explicitly used in our algorithms. However, to
formulate our results in a parameterized algorithmics setting, we need the parame-
ter k.

2 Experimental work showed that the corresponding data reduction rules are useful
on several real-world data sets [3].

3 A more or less standard analysis leads to large constants—however, on the one
hand, with a more refined analysis they can be significantly improved and on the
other hand, it is just a worst-case bound saying little about the effect on real-world
instances. The goal of this paper is clearly of classification nature, affirmatively
answering a question posed independently by Jiong Guo and Saket Saurabh at
WorKer’2010 held in Leiden, Netherlands; that is, a linear-time linear-size kernel
for Dominating Set in planar graphs is possible.
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Our central observation is that one can significantly gain efficiency by a non-
exhaustive application of data reduction rules. More specifically, implementing
the known data reduction rules [2] in the natural and straightforward way would
“unavoidably” lead to cubic running time: The reason for this is that one has
to inspect a quadratic number of so-called (potential) regions that a planar
embedding of the graph may have. Thus, one of our major technical contributions
is to restrict the region decomposition concept in such a way that the inspection
(and, thus, the data reduction) can be done much faster. In this way, we achieve
an O(k)-vertex problem kernel for Dominating Set on planar graphs in linear
time. Notably, our kernel size analysis is not as fine-grained as the previous
ones [2, 8], meaning that we did not analyze the constant factor for the upper
bound on the number of problem kernel vertices. Note, however, since multiple
kernelization algorithms can be run on top of each other (this makes them quite
different from approximation algorithms), using our algorithm as spear-head in
combination with Chen et al.’s algorithm [8], for an n-vertex planar graph we can
trivially achieve a problem kernel with 67k vertices in O(n+k3) time, somewhat
attenuating the quest for a sharper kernel size analysis. Due to the lack of space,
most proofs are deferred to a full version of the paper.

Notation. We only consider undirected graphs G = (V, E), where V (G) := V is
the set of vertices and E(G) := E is the set of edges. Furthermore, let n := |V |
and m := |E|. The open neighborhood NG(v) of a vertex v ∈ V in G is the
set of vertices that are adjacent to v in G. The closed neighborhood NG[v]
is NG(v)∪{v}. For a vertex set S ⊆ V we set NG(S) :=

⋃
v∈S NG(v). We use the

joint neighborhood NG(v, w) of two vertices to denote (NG(v)∪NG(w))\{v, w}
and the closed joint neighborhood NG[v, w] := NG[v] ∪ NG[w]. A v1-v�-path
in G is a sequence P := (v1, v2, . . . , v�) ∈ V � of vertices with {vi, vi+1} ∈ E
for i ∈ {1, . . . , � − 1} and vi �= vj for i �= j, where � − 1 is the length of the
path. We use V (P) to denote the set of vertices of the path P . We call two ver-
tices v and w connected in G if there is a v-w path in G. We use distG(v, w) to
denote the length of a shortest path between v and w in G, also called distance.
The superscript G is omitted if G is clear from the context. The domination
number γ(G) of a graph G is the size of a smallest dominating set of G.

For a language L ⊆ Σ∗ × N, a kernelization algorithm takes as input an
instance (x, k), where k is called parameter and, computes in time polynomial in
|x| + k an instance (x′, k′) such that (x′, k′) ∈ L ⇔ (x, k) ∈ L, |x′| ≤ f(k), and
k′ ≤ k. Here, f is a computable function solely depending on k which measures
the size of the problem kernel (x′, k′).

2 Comparison to Previous Kernelizations

To obtain a linear-size problem kernel for Dominating Set on planar graphs,
we employ a framework developed by Alber et al. [2]. They showed that a pla-
nar graph G with domination number γ(G) can be decomposed into O(γ(G))
so-called “regions”. Data reduction ensures that each of these regions has con-
stant size and that O(γ(G)) vertices are not contained in any region. We follow
a similar approach, modifying data reduction rules to run in linear time.
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v w

Fig. 1. Illustration of a region. The boundary path is shown as path of bold edges.

Basically, a region R of a planar graph G is a part of an embedding of G
into the plane. Each region contains two vertices v and w such that N [v, w]
contains all vertices of R and a boundary that separates R from the rest of G,
as illustrated in Figure 1.

Definition 1. Let G be a plane graph.4 A region R(v, w) between two vertices v
and w is a closed bounded subset S of the plane such that:
1. the boundary of R(v, w) is formed by two simple paths5 between v and w,

each of which has length at most three and
2. all vertices inside S are from N [v, w].

We denote by R(v, w) also the set of vertices in a region R(v, w) and by ∂R(v, w)
the set of vertices on the boundary paths of a region R(v, w). The vertices in
R(v, w) \ ∂R(v, w) are the inner vertices of R(v, w).

Alber et al. [2] showed that each dominating set D of a planar graph G yields a
so-called maximal D-region decomposition with O(|D|) regions.

Definition 2. For a plane graph G and D ⊆ V (G), a D-region decomposition
of G is a set R of regions between pairs of vertices in D such that
1. ∀v, w ∈ D and R(v, w) ∈ R, it holds that D ∩ R(v, w) = {v, w} and
2. for two distinct regions R1, R2 ∈ R, it holds that (R1 ∩ R2) ⊆ (∂R1 ∩ ∂R2).

For a D-region decomposition R, we define V (R) :=
⋃

R∈R R. A D-region de-
composition R is maximal if there is no region R /∈ R such that R′ := R∪ {R}
is a D-region decomposition with V (R) � V (R′).

Using data reduction, Alber et al. [2] shrink to constant size all regions that
may potentially be part of a D-region decomposition for a minimum dominating
set D of the input graph G. Since |D| = γ(G), such a region decomposition
comprises O(γ(G)) regions. Together with an O(γ(G))-bound on the number of
vertices that are not in regions, this shows the linear size of the kernel.

Our goal is to modify the data reduction rules of Alber et al. [2] so that
they can be applied in linear time instead of cubic time. Unfortunately, we have
to make some sacrifices regarding the effectiveness of the data reduction rules,
which we explain in Section 3. Alber et al. [2] employ two data reduction rules:

4 A plane graph is a particular embedding of a planar graph.
5 This also includes degenerated cases where the two paths have common vertices.
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one that shrinks the neighborhood of vertices, and one that shrinks regions.
To shrink the neighborhood of vertices, we use a slightly modified version of
Reduction Rule 1 of Alber et al. [2] that can be applied exhaustively in linear
time. To shrink regions, we show that we can find all regions whose inner vertices
have at most a constant number of neighbors. Furthermore, we provide means
to ensure that regions do not contain vertices with more neighbors. This enables
us to find and shrink regions in linear time.

3 Data Reduction Rules

In this section, we first describe two data reduction rules and show that they
are correct, that is, they maintain planarity and do not change the domination
number of the input graph. Then, we show how to execute them in linear time.
Whenever we introduce new vertices into a graph, we call them dummy ver-
tices. Moreover, we assume that our data reduction rules can check in O(1) time
whether a vertex is a dummy vertex. This can be achieved by marking dummy
vertices accordingly. Note that these marks will be removed from the final output
graph in order to obtain a proper Dominating Set instance (where unmarked
graphs are required as input).

3.1 Private Neighborhood Rule

As Alber et al. [2], we partition the neighborhood of a vertex v in a graph G
into three subsets:

NG
1 (v) := {u ∈ NG(v) | NG(u) \ NG[v] �= ∅},

NG
2 (v) := {u ∈ NG(v) \ NG

1 (v) | NG(u) ∩ NG
1 (v) �= ∅},

NG
3 (v) := NG(v) \ (NG

1 (v) ∪ NG
2 (v)).

We now give our variant of Rule 1 of Alber et al. [2] for planar graphs.

Reduction Rule 1. Let v ∈ V (G) be a vertex such that |NG
3 (v)| > 1 or

|NG(NG
3 (v))| > 1. Then, remove NG

3 (v) from G and attach a new degree-one
dummy vertex v′ to v.

The correctness of Reduction Rule 1 follows from the correctness of Reduction
Rule 1 of Alber et al. [2], as we only delete a subset of the vertices of which
each was shown to be safely removable by Alber et al. [2]. By removing only a
subset of the removable vertices, we can show that, for an exhaustive application
of Reduction Rule 1, it is sufficient to apply Reduction Rule 1 once for every
vertex. In this way, we can prove Lemma 1 below. In the following, we say that
a graph G is reduced with respect to Reduction Rule 1 if Reduction Rule 1 is
not applicable to G.

Lemma 1. For planar graphs, Reduction Rule 1 can be applied exhaustively
in O(n) time.
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Proof. Let G be a planar graph, and let v ∈ V (G) be a vertex that does not
satisfy the conditions of Reduction Rule 1, that is, neither |NG

3 (v)| > 1 nor
|NG(NG

3 (v))| > 1. We show that, in the graph G′ that results from applying
Reduction Rule 1 to a vertex u ∈ V (G) \ {v}, the vertex v still does not sat-
isfy the conditions of Reduction Rule 1. This implies that, in order to apply
Reduction Rule 1 exhaustively to G, it is sufficient to apply Reduction Rule 1
at most once to each vertex. As shown by Alber et al. [2, Lemma 2], this can be
done in O(n) time for planar graphs.

Towards a contradiction, assume that Reduction Rule 1 is applicable to v
in G′. Then, because Reduction Rule 1 does not add edges between vertices
in V (G), it must hold that NG′

3 (v)∩(NG
1 (v)∪NG

2 (v)) �= ∅. However, we show that
the contrary is true. To this end, recall that each vertex in NG

2 (v) is adjacent to a
vertex in NG

1 (v). Thus, in order to show NG′
3 (v)∩(NG

1 (v)∪NG
2 (v)) = ∅, it is suf-

ficient to show that for each vertex x ∈ NG
1 (v) it holds that NG[x]∩NG′

3 (v) = ∅.
We distinguish the following two cases:

First, assume that x ∈ NG′
2 (v)∪NG′

3 (v). This is only true if Reduction Rule 1,
when applied to u, deletes all neighbors of x that are nonadjacent to v. Let y ∈
NG

3 (u) ∩ NG(x) \ NG[v] be one such neighbor. Since y ∈ NG
3 (u), we know that

x ∈ NG[u]\NG
1 (u) and thus NG′

[x] ⊆ NG′
[u]. Hence, u is adjacent to v. Because

u has a degree-one dummy neighbor in G′, no vertex from NG′
[u] is contained

in NG′
3 (v). Since NG(x) ∩ V (G′) ⊆ NG′

[u], this implies NG[x] ∩ NG′
3 (v) = ∅.

In the second case, assume that x /∈ NG′
2 (v) ∪NG′

3 (v). Thus, we only have to
show that the vertices in NG(x) are not in NG′

3 (v). If x ∈ NG′
1 (v), then, obvi-

ously, none of the vertices in NG(x) is in NG′
3 (v). Hence, consider the subcase

where x /∈ NG′
1 (v). This implies x /∈ NG′

(v) and thus x would have been deleted
by Reduction Rule 1. Therefore, we have x ∈ NG

3 (u), that is, NG[x] ⊆ NG[u],
implying v ∈ NG(u). Again, because u has a degree-one dummy neighbor in G′,
no vertex from NG′

[u] is contained in NG′
3 (v), implying NG[x]∩NG′

3 (v) = ∅. �	

3.2 Joint Neighborhood Rule

In this section, we present a data reduction rule that shrinks regions to constant
size. The presented data reduction rule is based on Reduction Rule 2 by Alber
et al. [2]. However, we modify it as follows: Reduction Rule 2 of Alber et al.
[2] removes certain vertices from the sets N(v, w) for vertices v, w ∈ V . Since
we cannot compute N(v, w) for all vertex pairs v, w ∈ V in linear time, we
will show that it is sufficient to only remove vertices from efficiently-computable
subsets N0(v, w) ⊆ N(v, w) for a linear number of vertex pairs. More specifically,
N0(v, w) contains vertices on short low-degree v-w-paths.

Definition 3. A vertex v with deg(v) ≤ 78 is called low-degree vertex.6 A v-w-
path consisting only of v, w, and low-degree vertices is called low-degree path.

Note that all low-degree paths of constant length c starting at some vertex v
can be found in O(deg(v)) time by starting a breadth-first search at v, only
6 Herein, the constant 78 results from the mathematical analysis and can be improved

using a more intricate analysis.
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v w

/∈ N0(v, w)
∈ N1(v, w)
∈ N2(v, w)
∈ N3(v, w)

Fig. 2. An illustration of Definition 4

descending on low-degree vertices and stopping at depth c. It can be checked in
O(1) time whether a vertex is a low-degree vertex by iterating over its adjacency
list, aborting when a 79th neighbor is found.

Observation 1. For a vertex v, all constant-length low-degree paths starting
at v can be listed in O(deg(v)) time.

To present our data reduction rule, we need the following definition of joint neigh-
borhoods. It strongly resembles the definition used by Alber et al. [2, Section 2.2].
However, our sets NG

i (v, w) for i ∈ {1, 2, 3} are defined with respect to NG
0 (v, w)

instead of NG(v, w). The following definition is illustrated in Figure 2.

Definition 4. Let v, w be vertices in a planar graph G. We define

NG
0 (v, w) := {u ∈ NG(v, w) | u is on a low-degree v-w-path of length at most

four that only consists of vertices in NG[v, w]},

NG
1 (v, w) := {u ∈ NG

0 (v, w) | NG(u) \ NG
0 [v, w] �= ∅},

NG
2 (v, w) := {u ∈ NG

0 (v, w) \ NG
1 (v, w) | NG(u) ∩ NG

1 (v, w) �= ∅},
NG

3 (v, w) := NG
0 (v, w) \ (NG

1 (v, w) ∪ NG
2 (v, w)).

Using Definition 4, we present our second data reduction rule in form of
Algorithm 1, which we now explain. Algorithm 1 basically corresponds to Re-
duction Rule 2 of Alber et al. [2]. For each pair v, w ∈ V with NG

0 (v, w) �= ∅,
Algorithm 1 removes a subset of NG

0 (v, w) from the graph G and, if applicable,
attaches degree-one dummy vertices to v or w. We first explain the data reduc-
tion between lines 5 and 10 and then explain the purpose of the EnsurePaths
procedure called in line 4. The set N3 introduced in line 5 of Algorithm 1 is
the set of vertices that may possibly be removed. We will see that N3 can be
efficiently computed and updated. Moreover, the choice of N3 ensures the cor-
rectness of the data reduction executed by Algorithm 1, which can be seen by
comparing it to Reduction Rule 2 of Alber et al. [2]: it is straightforward to
observe that, if the condition in line 6 is satisfied, then the corresponding con-
dition for Reduction Rule 2 of Alber et al. [2] is also satisfied. Moreover, in this
case, we remove only a subset of vertices that Alber et al. [2] show to be safely
removable. Note that the vertices z, z′ chosen in line 7 exist:
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Algorithm 1: Reduce Vertices in Regions

Input: A planar graph G = (V, E).
Output: A planar graph G′ = (V ′, E′).

1 compute NG
0 (v, w) for all v, w ∈ V with NG

0 (v, w) �= ∅;
2 G′ ← G;

3 foreach (v, w) such that v and w are non-dummy vertices and NG
0 (v, w) �= ∅ do

4 EnsurePaths(G′, v, w, NG
0 (v, w));

5 N3 ← NG′
3 (v, w) ∩ NG

0 (v, w);
6 if |N3| ≥ 4 and N3 cannot be dominated by a single vertex u /∈ {v, w} then

7 if N3 ⊆ NG′
(v) ∩ NG′

(w) then remove the vertices in N3 \ {z, z′}
from G′, for arbitrary z, z′ ∈ N3 with (NG′

(z) ∩ NG′
(z′)) \ N3 ⊆ {v, w}

and {z, z′} /∈ E(G′);
8 else if N3 ⊆ NG′

(v) and N3 � NG′
(w) then remove N3 from G′ and

(unless already done before) attach a degree-one dummy vertex v′ to v;

9 else if N3 � NG′
(v) and N3 ⊆ NG′

(w) then remove N3 from G′ and
(unless already done before) attach a degree-one dummy vertex w′ to w;

10 else if N3 � NG′
(v) and N3 � NG′

(w) then remove N3 from G′ and
(unless already done before) attach a degree-one dummy vertex v′ to v
and a new degree-one dummy vertex w′ to w;

11 return G’

Lemma 2. Let v, w be vertices of a planar graph G′ and let N3 ⊆ NG′
3 (v, w) ∩

NG′
(v) ∩ NG′

(w) with |N3| ≥ 4. Then, N3 contains vertices z, z′ with {z, z′} /∈
E(G′) and (NG′

(z) ∩ NG′
(z′)) \ N3 ⊆ {v, w}.

We now explain the EnsurePaths procedure called in line 4 for a vertex pair (v, w).
Observe that the graph G′ considered in the for-loop in line 3 of Algorithm 1
is not necessarily reduced with respect to Reduction Rule 1 since previous it-
erations of the loop might have deleted vertices. However, an application of
Reduction Rule 1 might become necessary: it might happen that some vertex
u ∈ NG

0 (v, w) is not in NG′
0 (v, w) when the pair (v, w) is considered in line 3.

Such a situation is illustrated in Figure 3 and could arise if all vertices on u’s low-
degree v-w-paths are deleted by data reduction executed for some other vertex

Procedure. EnsurePaths(G′, v, w, NG
0 (v, w))

// for x, u ∈ V (G′), let B(x, u) := {u′ ∈ V (G′) \ {x} | distG′−{x}(u, u′) ≤ 2}
1 N ldv

3 (v) ← {u ∈ NG′
3 (v) ∩ NG

0 (v, w) | B(v, u) only has low-degree vertices};
2 N ldv

3 (w) ← {u ∈ NG′
3 (w) ∩ NG

0 (v, w) | B(w,u) only has low-degree vertices};
3 if |NG′

(v)| > 1 ∧ N ldv
3 (v) �= ∅ then remove N ldv

3 (v) from G′ and (unless
v already has one) attach a new degree-one dummy vertex v′ to v;

4 if |NG′
(w)| > 1 ∧ N ldv

3 (w) �= ∅ then remove N ldv
3 (w) from G′ and (unless

w already has one) attach a new degree-one dummy vertex w′ to w;
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v wu

/∈ N0(v, w)
∈ N1(v, w)
∈ N2(v, w)
∈ N3(v, w)

B(v, u)

Fig. 3. The vertex u is not on a v-w-path of length at most four. Therefore, u and
its neighbors are not deleted by a call of Algorithm 1. However, u ∈ N3(v). Hence,
Reduction Rule 1 would delete u. Moreover, since B(v, u) (surrounded by the dashed
line) only contains low-degree vertices, EnsurePaths will delete u as well.

pair. As in Figure 3, this could prevent u or some of its neighbors from being re-
moved from G′. In the situation shown, Reduction Rule 1 would delete u. Hence,
in order to ensure that a vertex in G′ that is in NG

0 (v, w) has a low-degree v-w-
path in G′, it could help to apply Reduction Rule 1 to v and w. However, doing so
for each considered pair (v, w) might be too time-consuming. This is the reason
why EnsurePaths is employed, which in lines 3 and 4 deletes a subset of NG′

3 (v)
and NG′

3 (w) in a case where Reduction Rule 1 would completely delete NG′
3 (v)

and NG′
3 (w). Namely, those vertices u ∈ NG′

3 (v) (or NG′
3 (w)) are deleted for

which B(v, u) (or B(w, u), respectively) only contains low-degree vertices—a
condition which merely ensures that we can efficiently check whether u ∈ NG′

3 (v)
or u ∈ NG′

3 (w). Since EnsurePaths deletes only vertices which Reduction Rule 1
deletes, EnsurePaths is correct. Moreover, observe that, in Figure 3, the vertex u
would be deleted from G′ by EnsurePaths.

To execute Algorithm 1 one can compute all sets NG
0 (v, w) in linear time using

Algorithm 2. Also, one frequently has to check whether a vertex is in NG′
3 (v, w).

The following lemma shows that this can be done efficiently.

Lemma 3. For a planar graph G and vertices u, v, w of G, it is O(1)-time-
decidable whether u ∈ NG

3 (v, w). Moreover, all sets NG
0 (v, w) can be enumerated

in O(n) total time for all vertices v, w ∈ V (G) with NG
0 (v, w) �= ∅.

Since we can efficiently check membership of a vertex in NG
3 (v, w) and how to

compute all sets NG
0 (v, w), we have all ingredients to prove the running time of

Algorithm 1.

Lemma 4. On planar graphs, Algorithm 1 can be executed in O(n) time.

4 Problem Kernel

This section presents our kernelization algorithm based on the data reduction
rules shown in the previous section. We explain how, given a planar graph G,
the algorithm computes a graph G′ with γ(G) = γ(G′) whose size is linear
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Algorithm 2: Compute NG
0 (v, w) for all v, w ∈ V (G) with NG

0 (v, w) �= ∅
Input: A planar graph G = (V, E) with vertices numbered V := {1, . . . , n}.
Output: NG

0 (v, w) for all v, w ∈ V with NG
0 (v, w) �= ∅.

1 D ← empty list; /* (v, w, u) ∈ D will be equivalent to u ∈ NG
0 (v, w) */

2 for v ∈ V and each low-degree path p of length at most four starting at v do
3 w ← ending vertex of p;

4 if all vertices of p are in NG[v, w] then
5 foreach vertex u ∈ V \ {v, w} of p do append (v, w, u) to D;

6 sort D in lexicographical order using radix sort;

7 foreach (v, w, u) ∈ D in lexicogr. order do /* collect NG
0 (v, w) from D */

8 (v′, w′, u′) ← previous element in D;
9 if v �= v′ ∨ w �= w′ then /* we encounter the pair (v, w) the first time */

10 new set NG
0 (v, w) ← {u};

11 else if u �= u′ then add u to NG
0 (v, w); /* avoids duplicates */

12 return NG
0 (v, w) for all v, w ∈ V with NG

0 (v, w) �= ∅;

in γ(G). The kernelization algorithm runs in three phases. Each phase applies
Reduction Rule 1 or Algorithm 1 to finally output G′.

Phase 1. Exhaustively apply Reduction Rule 1 to G. Let G1 denote the re-
sulting graph. By Lemma 1, G1 is computable in O(n) time and is reduced with
respect to Reduction Rule 1.

Phase 2. Apply Algorithm 1 to G1, then Reduction Rule 1 exhaustively, then
again Algorithm 1 and, finally, Reduction Rule 1 exhaustively. Let the result be
denoted by G2. By Lemmas 1 and 4, G2 is computable in O(n) time. We will
see that most vertices in G2 have degree at most 78.

Phase 3. Apply Algorithm 1 and exhaustively apply Reduction Rule 1 to G2,
resulting in a graph G3. Using the fact that in G2 most vertices have at most
78 neighbors and that G2 is reduced with respect to Reduction Rule 1, we can
show that, using Algorithm 1, Phase 3 removes enough parts from G2 to obtain
a linear-size problem kernel.

To show that G3 has size O(γ(G)), we transfer structural observations from G1

to the graphs G2 and G3 using a maximal D-region decomposition of G1 with
respect to an arbitrary embedding. Herein, we choose D as a dominating set of
size at most 2γ(G) for G1 that contains the set D′ of vertices in V (G1)∩ V (G3)
to which dummy vertices have been attached by data reduction rules, that is,
D′ := {v ∈ V (G1) ∩ V (G3) | NG3(v) \ V (G1) �= ∅}. Note that we may not be
able to efficiently compute D. However, D and the embedding of G1 are only
required for the analysis. We first show that D exists and, thereafter, we show
how a maximal D-region decomposition helps us to transfer structure from G1

to G2 and G3.
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Lemma 5. There is a dominating set D ⊇ D′ for G1 with |D| ≤ 2γ(G).

For the remainder of this section, we base our reasoning on a fixed maximal D-
region decomposition R of G1 with D ⊇ D′. Notice that if a degree-one dummy
vertex is attached to a vertex v, then neither Reduction Rule 1 nor Algorithm 1
can delete v. Instead, v is in G3, where it also has a (possibly different) dummy
neighbor. The choice of R and the definition of a D-region-decomposition for G1

then leads to the following:

Observation 2. Let R(v, w) ∈ R be a region. Reduction Rule 1 and Algorithm 1
do not attach dummy vertices to any vertex in R(v, w) \ {v, w}.

Observation 2 ensures that, in none of the graphs G1, G2, and G3, the inner
vertices of a region R ∈ R have neighbors that are not in R. In this way,
Observation 2, to a certain extent, preserves the region structure of G1 in G2

and G3.
As shown by Alber et al. [2, Proposition 1], |R| ∈ O(|D|) = O(γ(G)). The

proof of the problem kernel size now works as follows: Proposition 1 shows that
Phase 2 shrinks the number of vertices that are not in any region of R to O(γ(G)).

Proposition 1. |(V (G1) \ V (R)) ∩ V (G2)| ∈ O(γ(G)).

Lemma 6 shows that, as a result of Phase 2, inner vertices of regions in G1 that
are also present in G2 have constant degree in G2.

Lemma 6. Let R(v, w) ∈ R, and let u ∈ V (G2) \ {v, w}. If {v, w} ⊆ V (G2),
then |NG2(u) ∩ R(v, w)| ≤ 78.

Exploiting Lemma 6, Proposition 2 shows that, using Algorithm 1, Phase 3
shrinks each region R ∈ R to O(1) vertices.

Proposition 2. Let R(v, w) ∈ R. Then, |V (G3) ∩ R(v, w)| ∈ O(1).

Finally, we bound the number of vertices added by our kernelization algorithm
(dummy vertices). Since |D′| ∈ O(γ(G)) is shown by Lemma 5 and to each such
vertex at most one dummy vertex is added, it follows that there are at most
O(γ(G)) vertices in V (G3)\V (G1). We conclude that G3 consists of O(γ(G)) ver-
tices, yielding our central theorem:

Theorem 1. On planar graphs, a linear-size problem kernel for Dominating

Set is computable in linear time.

5 Conclusion

Our work is meant to provide a first case study, using the well-known kernel-
ization of Dominating Set on planar graphs, on how known kernelization al-
gorithms can be tuned for better time performance by carefully analyzing the
interaction and costs of the underlying data reduction rules. Clearly, on the prac-
tical side it is important to further improve on the upper bound for the kernel
size to be achieved in linear time.
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Informally speaking, the analysis of our problem kernel shows that “knowing
when to stop” may be a source of performance gain. This is particularly true for
kernelization algorithms since faster algorithms with worse kernel bounds can
be combined with slower algorithms yielding better kernel bounds in order to
achieve an overall improvement.

As to future challenges, there are a lot of possibilities in revisiting known
kernelization results and re-engineering them in terms of algorithmic efficiency.
As to Dominating Set on planar graphs, we left open whether there is a linear-
time problem kernel that can be achieved by an exhaustive application of data
reduction rules (and not stopping their application for reasons of efficiency). In
this work, we computed an O(γ(G))-size problem kernel in O(n) time. For other
problems, it might be helpful to alleviate the quest from O(n)-time computability
to O(p(k) + n)-time or O(p(k) · n)-time computability, where p is a polynomial
solely depending on a parameter k. For instance, Chor et al. [9] presented an
almost linear-time kernelization for a variant of the Clique Covering problem.
Finally, we leave it as a challenge for future research to investigate the complexity
classes of fixed-parameter tractable problems that allow for kernels of any size
computable in (almost) linear running time.
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WG 2004. LNCS, vol. 3353, pp. 257–269. Springer, Heidelberg (2004)

[10] Dorn, F., Fomin, F.V., Thilikos, D.M.: Subexponential parameterized algorithms.
Computer Science Review 2(1), 29–39 (2008)

[11] Fellows, M.R., Rosamond, F.A., Fomin, F.V., Lokshtanov, D., Saurabh, S.,
Villanger, Y.: Local search: Is brute-force avoidable? In: Proc. 21st IJCAI, pp.
486–491 (2009)



206 R. van Bevern et al.

[12] Fomin, F.V., Lokshtanov, D., Saurabh, S., Thilikos, D.M.: Bidimensionality and
kernels. In: Proc. 21st SODA, pp. 503–510. ACM/SIAM (2010)

[13] Guo, J., Niedermeier, R.: Linear Problem Kernels for NP-Hard Problems on Planar
Graphs. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007.
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Abstract. We give tight algorithmic lower and upper bounds for some
double-parameterized subgraph problems when the clique-width of the
input graph is one of the parameters. Let G be an arbitrary input graph
on n vertices with clique-width at most w. We prove the following results.
– The Dense (Sparse) k-Subgraph problem, which asks whether

there exists an induced subgraph of G with k vertices and at least q
edges (at most q edges, respectively), can be solved in time kO(w) ·n,
but it cannot be solved in time 2o(w log k) ·nO(1) unless the Exponen-
tial Time Hypothesis (ETH) fails.

– The d-Regular Induced Subgraph problem, which asks whether
there exists a d-regular induced subgraph of G, and the Minimum

Subgraph of Minimum Degree at least d problem, which asks
whether there exists a subgraph of G with k vertices and minimum
degree at least d, can be solved in time dO(w) · n, but they cannot
be solved in time 2o(w log d) · nO(1) unless ETH fails.

1 Introduction

The notion of clique-width introduced by Courcelle and Olariu [14] (we refer
the reader to the survey [24] for further information on different width parame-
ters) has now become one of the fundamental parameters in Graph Algorithms.
Many problems which are hard on general graphs can be solved efficiently when
the input is restricted to graphs of bounded clique-width. The meta-theorem
of Courcelle, Makowsky, and Rotics [13] states that all problems expressible
in MS1-logic are fixed parameter tractable (FPT), when parameterized by the
clique-width of the input graph (see the books of Downey and Fellows [18] and
Flum and Grohe [21] for a detailed treatment of parameterized complexity). In
other words, this theorem shows that any problem expressible in MS1-logic can
be solved for graphs of clique-width at most w in time f(w) · |I|O(1), where |I| is
the size of the input and f is a computable function depending on the parameter
w only. Here, the superexponential function f is defined by a logic formula, and
it grows very fast.

The basic method for constructing algorithms for graphs of bounded clique-
width is to use dynamic programming along an expression tree (the definition
� This work is supported by EPSRC (EP/G043434/1 and F064551/1).
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is given in Section 2). Computing clique-width is an NP-hard problem [20], but
it can be approximated and a corresponding expression tree can be constructed
in FPT-time [23,30]. In our paper it is always assumed that an expression tree
is given. In this case dynamic programming algorithms can be relatively effi-
cient: usually single-exponential in the clique-width. A natural question to ask
is whether the running times of such algorithms are asymptotically optimal up
to some reasonable complexity conjectures.

The Exponential Time Hypothesis has proved to be an effective tool for es-
tablishing tight complexity bounds for parameterized problems, but there are
still not many results of this nature in the literature. The Exponential Time
Hypothesis (ETH) [25] asserts that there does not exist an algorithm for solving
3-SAT running in time 2o(n) on a formula with n variables; this is equivalent
to the parameterized complexity conjecture that FPT �= M[1] [17,21]. Chen et
al. [8,9,10] showed that there is no algorithm for k-Clique running in time
f(k)no(k), for n-vertex graphs, unless ETH fails (on the other hand it is eas-
ily seen that k-Clique can be solved in time nO(k)). The lower bound on the
k-Clique problem can be extended to some other parameterized problems via
linear FPT-reductions [9,10]. In particular, for problems parameterized by clique-
width, Fomin et al. [22] proved that Max-Cut and Edge Dominating Set

cannot be solved in time f(w)no(w) on n-vertex graphs of clique-width at most
w, unless ETH collapses. For FPT problems, Cai and Juedes [6] proved that the
parameterized version of any MaxSNP-complete problem cannot be solved in
time 2o(k) · |I|O(1) if ETH holds. Here k is the natural parameter of an MaxSNP-
complete problem with the instance I, i.e. the maximized function should have
a value at least k.

Lokshtanov, Marx and Saurabh [28] considered several FPT problems solvable
in time 2O(k log k) · |I|O(1) and showed that a 2o(k log k) · |I|O(1)-time algorithm for
these problems would violate ETH. To do this, they introduced special restricted
versions of some basic problems like k-Clique on graphs with k2 vertices (and
with some other restrictions) and proved that these problems cannot be solved
in time 2o(k log k) · kO(1) unless ETH collapses. These results open the possibil-
ity of establishing algorithmic lower bounds for natural problems. We use this
approach to prove asymptotically tight bounds for some double-parameterized
subgraph problems when the clique-width of the input graph is one of the pa-
rameters. These results give the first known bounds for such types of problems
parameterized by clique-width.

First, we consider the Dense k-Subgraph problem (also known as the k-

Cluster problem). This problem asks whether, given a graph G and positive
integers k and q, there exists an induced subgraph of G with k vertices and at
least q edges. Clearly, Dense k-Subgraph is NP-hard since it is a generalization
of the k-Clique problem. It remains NP-hard, even when restricted to compa-
rability graphs, bipartite graphs and chordal graphs [12], as well as on planar
graphs [26]. Polynomial algorithms were given for cographs, split graphs [12],
and for graphs of bounded tree-width [26]. Considerable work has been done on
approximation algorithms for this problem [3,4,15,19,27].
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Next, we consider some degree-constrained subgraph problems. The objective
in such problems is to find a subgraph satisfying certain lower or upper bounds on
the degree of each vertex. Typically it is necessary to either check the existence
of a subgraph satisfying the degree constraints or to minimize (maximize) some
parameter (usually the size of the subgraph).

The d-Regular Subgraph problem, which asks whether a given graph con-
tains a d-regular subgraph, has been intensively studied. We mention here only
some complexity results. Chvátal et al. [11] proved that this problem is NP-
complete for d = 3. It was shown that the problem with d = 3 remains NP-
complete for planar bipartite graphs with maximum degree four, and that when
d ≥ 3, it is NP-complete even for bipartite graphs with maximum degree at most
d + 1. Some further results were given in [7,32,33,34]. We consider a variant of
this problem called d-Regular Induced Subgraph, where we ask whether
a given graph G contains a d-regular induced subgraph. This variant of the
problem has also been studied. In particular, the parameterized complexity of
different variants of the problem was considered by Moser and Thilikos [31] and
by Mathieson and Szeider [29]. Observe that, trivially, d-Regular Induced

Subgraph can be solved in polynomial time for d ≤ 2, and it easily follows
from the known hardness results for d-Regular Subgraph that d-Regular

Induced Subgraph is NP-complete for any fixed d ≥ 3.
In [2] Amini et al. introduced the Minimum Subgraph of Minimum De-

gree at least d problem. This problem asks whether, given a graph G and
positive integers d and k, there exists a subgraph of G with at most k vertices
and minimum degree at least d. The parameterized complexity of the problem
was considered in [2]. Some other hardness and approximation results can be
found in [1].

Our Main Results and the Organization of the Paper. In Section 2 we
give some basic definitions and some preliminary results. In Section 3 we consider
the Dense k-Subgraph and Sparse k-Subgraph problems. The Sparse k-

Subgraph problem is dual to Dense k-Subgraph and it asks whether, given
a graph G and positive integers k and q, there exists an induced subgraph of G
with k vertices and at most q edges. We prove that these problems can be solved
in time kO(w) · n for n-vertex graphs of clique-width at most w if an expression
tree of width w is given, but they cannot be solved in time 2o(w log k) · nO(1)

unless ETH fails even if an expression tree of width w is included in the input.
In Section 4 we consider the d-Regular Induced Subgraph and Minimum

Subgraph of Minimum Degree at least d problems. We construct dynamic
programming algorithms which solve these problems in time dO(w) ·n for n-vertex
graphs of clique-width at most w if an expression tree of width w is given, and
then prove that these problems cannot be solved in time 2o(w log d) ·nO(1) unless
ETH fails even if an expression tree of width w is provided. We conclude the
paper with some open problems.
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2 Definitions and Preliminary Results

Graphs. We consider finite undirected graphs without loops or multiple edges.
The vertex set of a graph G is denoted by V (G) and its edge set by E(G). A set
S ⊆ V (G) of pairwise adjacent vertices is called a clique. For v ∈ V (G), EG(v)
denotes the set of edges incident with v. The degree of a vertex v is denoted by
dG(v). For a non-negative integer d, a graph G is called d-regular if all vertices
of G have degree d. For a graph G, the incidence graph of G is the bipartite
graph I(G) with vertex set V (G) ∪ E(G) such that v ∈ V (G) and e ∈ E(G) are
adjacent if and only if v is incident with e in G. We denote by G the complement
of a graph G, i.e. the graph with vertex set V (G) such that any two distinct
vertices are adjacent in G if and only if they are non-adjacent in G. For a set of
vertices S ⊆ V (G), G[S] denotes the subgraph of G induced by S, and by G−S
we denote the graph obtained from G by the removal of all the vertices of S, i.e.
the subgraph of G induced by V (G) \ S.

Clique-Width. Let G be a graph, and let w be a positive integer. A w-graph
is a graph whose vertices are labeled by integers from {1, 2, . . . , w}. We call
the w-graph consisting of exactly one vertex v labeled by some integer i from
{1, 2, . . . , w} an initial w-graph. The clique-width cwd(G) is the smallest integer
w such that G can be constructed by means of repeated application of the
following four operations: (1) introduce: construction of an initial w-graph with
vertex v labeled by i (denoted by i(v)), (2) disjoint union (denoted by ⊕), (3)
relabel: changing the labels of each vertex labeled i to j (denoted by ρi→j) and
(4) join: joining all vertices labeled by i to all vertices labeled by j by edges
(denoted by ηi,j).

An expression tree of a graph G is a rooted tree T of the following form.

– The nodes of T are of four types: i, ⊕, η and ρ.
– Introduce nodes i(v) are leaves of T , and they correspond to initial w-graphs

with vertices v, which are labeled i.
– A union node ⊕ stands for a disjoint union of graphs associated with its

children.
– A relabel node ρi→j has one child and is associated with the w-graph result-

ing from the relabeling operation ρi→j applied to the graph corresponding
to the child.

– A join node ηi,j has one child and is associated with the w-graph resulting
from the join operation ηi,j applied to the graph corresponding to the child.

– The graph G is isomorphic to the graph associated with the root of T (with
all labels removed).

The width of the tree T is the number of different labels appearing in T . If a
graph G has cwd(G) ≤ w then it is possible to construct a rooted expression
tree T of G with width w. Given a node X of an expression tree, the graph GX

is the graph formed by the subtree of the expression tree rooted at X .

Parameterized Reductions. We refer the reader to the books [18,21] for a
detailed treatment of parameterized complexity. Here we only define the notion
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of parameterized (linear) reduction, which is the main tool for establishing our
results. For parameterized problems A, B, we say that A is (uniformly many:1)
FPT-reducible to B if there exist functions f, g : N → N, a constant α ∈ N
and an algorithm Φ which transforms an instance (x, k) of A into an instance
(x′, g(k)) of B in time f(k)|x|α so that (x, k) ∈ A if and only if (x′, g(k)) ∈ B.
The reduction is called linear if g(k) = O(k).

Capacitated Domination. For our reductions we use a variant of the Ca-

pacitated Dominating Set problem. The parameterized complexity of this
problem, with the tree-width of the input graph being the parameter, was con-
sidered in [5,16].

A red-blue capacitated graph is a pair (G, c), where G is a bipartite graph
with a vertex bipartition into sets R and B, and c : R → N is a capacity function
such that 1 ≤ c(v) ≤ dG(v) for every vertex v ∈ R. The vertices of the set R
are called red and the vertices of B are called blue. A set S ⊆ R is called a
capacitated dominating set if there is a domination mapping f : B → S which
maps every vertex in B to one of its neighbors such that the total number
of vertices mapped by f to any vertex v ∈ S does not exceed its capacity
c(v). We say that for a vertex v ∈ S, vertices in the set f−1(v) are dominated
by v. The Red-Blue Capacitated Dominating Set (or Red-Blue CDS)
problem asks whether, given a red-blue capacitated graph (G, c) and a positive
integer k, there exists a capacitated dominating set S for G containing at most
k vertices. A capacitated dominating set S ⊆ R is called saturated if there is a
domination mapping f which saturates all vertices of S, that is, |f−1(v)| = c(v)
for each v ∈ S. The Red-Blue Exact Saturated Dominating Set problem
(Red-Blue Exact Saturated CDS) takes a red-blue capacitated graph (G, c)
and a positive integer k as an input and asks whether there exists a saturated
capacitated dominating set with exactly k vertices.

The next proposition immediately follows from the results proved in [22].

Proposition 1. The Red-Blue CDS and Red-Blue Exact Saturated

CDS problems cannot be solved in time f(w) · no(w), where n is the number
of vertices of the input graph G and w is the clique-width of the incidence graph
I(G), unless ETH fails, even if an expression tree of width w for I(G) is given.

The proof of Proposition 1 uses the result of Chen et al. [8,9,10] that there is no
algorithm for k-Clique (finding a clique of size k) running in time f(k) · no(k)

unless there exists an algorithm for solving 3-SAT running in time 2o(n) on a
formula with n variables. Proposition 1 was proved via a linear reduction from
the k-Multi-Colored Clique problem (see [5,22]). The k-Multi-Colored

Clique problem asks for a given k-partite graph G = (V1 ∪ · · · ∪ Vk, E), where
V1, . . . , Vk are sets of the k-partition, whether there is a k-clique in G. It should be
noted that the construction of an expression tree of bounded width is part of the
reduction and it is done in polynomial time. Lokshtanov, Marx and Saurabh [28]
considered a special restricted variant of k-Multi-Colored Clique called k×
k-Clique. In this variant of the problem |V1| = . . . = |Vk| = k. They proved the
following.
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Proposition 2 ([28]). The k × k-Clique problem cannot be solved in time
2o(k log k) · nO(1), where n is the number of vertices of the input graph G, unless
ETH fails.

By replacing k-Multi-Colored Clique by the k × k-Clique problem in the
reductions used for the proof of Proposition 1, we obtain the following corollary.

Corollary 1. The Red-Blue CDS and Red-Blue Exact Saturated CDS

problems cannot be solved in time 2o(w log n) · nO(1), where n is the number of
vertices of the input graph G and w is the clique-width of the incidence graph
I(G), unless ETH fails, even if an expression tree of width w for I(G) is given.

Observe that Corollary 1 gives a slightly stronger claim than Proposition 1: while
o(w) · log n = o(w log n), it is not so the other way around.

3 Sparse and Dense k-Subgraph Problems

In this section we consider the Dense k-Subgraph and Sparse k-Subgraph

problems. The aim of this section is the proof of the following theorem.

Theorem 1. The Sparse k-Subgraph problem can be solved in time kO(w) ·n
on n-vertex graphs of clique-width at most w if an expression tree of width w is
given, but it cannot be solved in time 2o(w log k) · nO(1) unless ETH fails, even if
an expression tree of width w is given.

Clearly, Sparse k-Subgraph and Dense k-Subgraph are dual, i.e. Sparse

k-Subgraph is equivalent to Dense k-Subgraph for the complement of the
input graph. Since for any graph G, cwd(G) ≤ 2 · cwd(G) (see e.g. [14,35]), we
can immediately get the following corollary.

Corollary 2. The Dense k-Subgraph problem can be solved in time kO(w) ·n
on n-vertex graphs of clique-width at most w if an expression tree of width w is
given, but it cannot be solved in time 2o(w log k) · nO(1) unless ETH fails, even if
an expression tree of width w is given.

3.1 Algorithmic Upper Bounds for Sparse k-Subgraph

We sketch a dynamic programming algorithm for solving Sparse k-Subgraph

in time kO(w) ·n on graphs of clique-width at most w. We describe what we store
in the tables corresponding to the nodes in an expression tree.

Let G be a graph with n vertices and let T be an expression tree for G of
width w. For a node X of T , let U1(X), . . . , Uw(X) be the sets of vertices of
GX labeled 1, . . . , w, respectively. The table of data for the node X contains
entries which store a positive integer p ≤ q and a vector (s1, . . . , sw) of non-
negative integers such that s = s1 + . . . + sw ≤ k for i ∈ {1, . . . , w}, for which
p is the minimum number of edges of an induced subgraph H with s vertices
such that for i ∈ {1, . . . , w}, si = |Ui(X) ∩ V (H)|. If X is the root node of T
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then G contains an induced subgraph with k vertices and at most q edges if and
only if the table for X contains an entry with the parameter p ≤ q and vector
(s1, . . . , sw) such that s1 + . . . + sw = k.

The details how the tables are created and updated are omitted here because
of the space restrictions. Correctness of the algorithm follows from the descrip-
tion of the procedure.

Since for each X , the table for X contains at most (k + 1)w vectors and for
each vector only one value of the parameter p is stored, the algorithm runs in
time kO(w) · n. This proves that Sparse k-Subgraph can be solved in time
kO(w) · n on graphs of clique-width at most w.

3.2 Lower Bounds

To prove our lower bounds we give a reduction from the Red-Blue CDS prob-
lem parameterized by the clique-width of the incidence graph of the input graph.

Construction. Let (G, c, k) be an instance of Red-Blue CDS with R =
{u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr} being the set
of blue vertices. Let m be the number of edges of G. We assume without loss of
generality that G has no isolated vertices. Hence, m ≥ n, r.

First, we construct the auxiliary gadget F (l) for a positive integer l.

Auxiliary gadget F (l): Construct an l+m+1-partite graph K2,...,2 and denote
by xi1, xi2 the vertices of the i-th set of the partition (see Figure 1).

Reduction: Now we describe our reduction.

1. A copy of a gadget F (k) is constructed. Denote this graph by FR and let
V (FR) = {xR

i1, x
R
i2|1 ≤ i ≤ k + m + 1}.

2. For each i ∈ {1, . . . , n}, a copy of a gadget F (c(ui)) is created. Denote this
graph by Fui and let V (Fui) = {xui

j1 , x
ui

j2 |1 ≤ j ≤ c(ui) + m + 1}.
3. For each i ∈ {1, . . . , r}, a copy of a gadget F (1) is created. Denote this graph

by Fvi and let V (Fvi ) = {xvi

j1, x
vi

j2|1 ≤ j ≤ m + 2}.
4. For each e ∈ E(G), the vertex we is constructed.
5. For each i ∈ {1, . . . , n}, let {e1, . . . , edi} = E(ui) for di = dG(ui). We con-

sider the vertices we1 , . . . , wedi
; these vertices are joined by edges to the

vertices xR
i1, x

R
i2 of FR, and for each j ∈ {1, . . . , di}, wej is joined by edges to

the vertices xui

j1 , xui

j2 of Fui .
6. For each i ∈ {1, . . . , r}, let {e1, . . . , edi} = E(vi) for di = dG(vi). We consider

the vertices we1 , . . . , wedi
and for each j ∈ {1, . . . , di}, wej is joined by edges

to the vertices xvi

j1, x
vi

j2 of Fvi .
7. Create 2m + 1 vertices z1, . . . , z2m+1 and join them to all vertices we for

e ∈ E(G).

Denote the obtained graph by H (see Figure 1).
Due the space restrictions the proof of the following lemmas are omitted.

Lemma 1. The red-blue graph G has a capacitated dominating set of size at
most k if and only if H contains an induced subgraph with 2(m + 1)(n + r+ 1) +
2m + 1 + r vertices and at most 2m(m + 1)(n + r + 1) + r(2m + 1) edges.
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ui

vj

FR

Fui
Fvj

z1 z2m+1

Graph F (l) for l = 2 and m = 2

x11 x21 x31 x41 x51

x22 x32 x42 x52x12

Fig. 1. Construction of H

We prove an upper bound for the clique-width of H as a linear function in the
clique-width of the incidence graph I(G) of G.

Lemma 2. We have cwd(H) ≤ 9 · cwd(I(G)) + 1 and an expression tree of
width at most 9 · cwd(I(G)) + 1 for H can be constructed in polynomial time
given an expression tree of width cwd(I(G)) for I(G).

To complete the proof of Theorem 1, notice that the number of vertices of H and
the parameter k are polynomial in n + r. Therefore, log k is linear in log(n + k),
and if we could solve Sparse k-Subgraph in time 2o(cwd(H) log k) · |V (H)|O(1)

then Red-Blue CDS could be solved in time 2o(cwd(I(G)) log |V (G)|)) · |V (G)|O(1).
By Corollary 1, it cannot be done unless ETH fails.

4 Degree-Constrained Subgraph Problems

The first aim of this section is the proof of the following theorem.

Theorem 2. The d-Regular Induced Subgraph problem can be solved on
n-vertex graphs of clique-width at most w in time dO(w) · n if an expression
tree of width w is given for the input graph, but it cannot be solved in time
2o(w log d) ·nO(1) unless ETH fails, even if an expression tree of width w is given.

Proof. The algorithmic upper bounds are proved by constructing a dynamic
programming algorithm for solving d-Regular Induced Subgraph in time
dO(w) · n on graphs of clique-width at most w. To prove our complexity lower
bound, we give a reduction from the Red-Blue Exact Saturated CDS prob-
lem, parameterized by the clique-width of the incidence graph of the input graph,
to the d-Regular Induced Subgraph problem. The proof is organized as fol-
lows: we first give a construction, then prove its correctness and finally bound
the clique-width of the transformed instance.

Construction. Let (G, c, k) be an instance of Red-Blue Exact Saturated

CDS with R = {u1, . . . , un} being the set of red vertices and B = {v1, . . . , vr}
being the set of blue vertices. Let d = n+r+1 if n+r is even and let d = n+r+2
otherwise; notice that d is odd. We need an auxiliary gadget.
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Auxiliary gadget F (x): Let x be a vertex. We construct d−1
2 copies of Kd+1,

subdivide one edge of each copy, and glue (identify) all these vertices of degree
two into one vertex y. Finally we join x and y by an edge. We are going to
attach gadgets F (x) to other parts of our construction through the vertex x.
This vertex is called the root of F (x). The gadget F (x) for d = 5 is illustrated
in Figure 2.

Reduction: Now we describe our reduction. Let s = d− r−1 and t = d−k−1.

1. Vertices u1, . . . , un are created.
2. A clique of size r with vertices v1, . . . , vr is constructed.
3. For each edge e = uivj of G, a vertex we is added, joined by edges to ui and

vj , and d − 2 copies of F (we) are constructed.
4. A clique of size s with vertices a1, . . . , as is created, all vertices ai are joined

to vertices v1, . . . , vr, and for each i ∈ {1, . . . , s}, a copy of F (ai) is added.
5. A vertex x is introduced and joined by edges to v1, . . . , vr and a1, . . . , as.
6. A vertex y is added and joined by an edge to x, and k− 1 copies of F (y) are

added.
7. A clique of size t with vertices b1, . . . , bt is constructed, the vertex y is joined

by edges to all vertices of the clique, and for each j ∈ {1, . . . , t}, k copies of
F (bi) are added.

8. A vertex z is introduced and joined by edges to vertices y and b1, . . . , bt.
9. For each i ∈ {1, . . . , n}, we let li = d − c(ui) − 1 and do the following:

• Add a vertex pi, join it to z by an edge, and construct c(ui) − 1 copies
of F (pi).

• Construct a clique of size li with vertices ci1, . . . , cili , join them to the
vertex pi by edges, and for each j ∈ {1, . . . , li}, introduce c(ui) copies of
F (cij).

• Join the vertex ui to the vertices pi and ci1, . . . , cili by edges.

Denote the obtained graph by H . The construction of H is illustrated in Figure 2.
The proof of the following lemmas are omitted.

Lemma 3. The red-blue graph G has an exact saturated capacitated dominating
set of size k if and only if H contains an induced d-regular subgraph.

Now we show that the clique-width of H is bounded from above by a linear
function in the clique-width of the incidence graph I(G) of G.

Lemma 4. We have that cwd(H) ≤ 3 · cwd(I(G)) + 6 and an expression tree
of width at most 3 · cwd(I(G)) + 6 for H can be constructed in polynomial time
assuming we are given an expression tree of width cwd(I(G)) for I(G).

To conclude this part of the proof of Theorem 2, we observe that the num-
ber of vertices of H and the parameter d are polynomial in n + r, and there-
fore if we could solve d-Regular Induced Subgraph in time 2o(cwd(H) log d) ·
|V (H)|O(1) then the Red-Blue Exact Saturated CDS could be solved in
time 2o(cwd(I(G)) log |V (G)|)) · |V (G)|O(1). By Corollary 1, this cannot be done un-
less ETH fails. �	
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Fig. 2. Construction of H

In the d-Regular Induced Subgraph problem we ask about the existence of a
d-regular induced subgraph for a given graph. It is possible to get similar results
for some variants of this problem. The Minimum d-Regular Induced Sub-

graph problem and the Maximum d-Regular Induced Subgraph problem
are respectively the problems of finding a d-regular induced subgraph of mini-
mum and maximum size. For the Counting d-Regular Induced Subgraph

problem, we are interested in the number of induced d-regular subgraphs of the
input graph. Using Theorem 2 we get the following corollary.

Corollary 3. The Minimum d-Regular Induced Subgraph, Maximum d-
Regular Induced Subgraph and Counting d-Regular Induced Sub-

graph problems can be solved on n-vertex graphs of clique-width at most w in
time dO(w) ·n if an expression tree of width w is given, but they cannot be solved
in time 2o(w log n) · nO(1) unless ETH fails, even if an expression tree of width w
is given.

We conclude this section by considering the Minimum Subgraph of Minimum

Degree at least d problem.

Theorem 3. The Minimum Subgraph of Minimum Degree at least d
problem can be solved on n-vertex graphs of clique-width at most w in time
dO(w) ·n if an expression tree of width w is given, but it cannot be solved in time
2o(w log d) ·nO(1) unless ETH fails, even if an expression tree of width w is given.

5 Conclusion

We established tight algorithmic lower and upper bounds for some double-
parameterized subgraph problems when the clique-width of the input graph is
one of the parameters. We believe that similar bounds could be given for other
problems. Another interesting task is to consider problems parameterized by
other width-parameters. Throughout the paper, in all our results we assumed
that an expression tree of the given width is part of the input. This is crucial,
since — unlike the case of tree-width — to date we are unaware of an efficient
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(FPT or polynomial) algorithm for computing an expression tree with a con-
stant factor approximation of the clique-width. The algorithm given by Oum
and Seymour in [30] provides a constant factor approximation for another graph
parameter — rank-width [24,30]. Hence, it is natural to ask whether it is possible
to establish tight algorithmic bounds for Dense k-Subgraph, d-Regular In-

duced Subgraph and Minimum Subgraph of Minimum Degree at least

d parameterized by the rank-width of the input graph. Also it would be inter-
esting to consider problems parameterized by the tree-width. For example, it
can be shown that d-Regular Induced Subgraph and Minimum Subgraph

of Minimum Degree at least d can be solved in time dO(t) · n for n-vertex
graphs of tree-width at most t. Is this bound asymptotically tight?
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Finding Good Decompositions for Dynamic
Programming on Dense Graphs�
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Abstract. It is well-known that for graphs with high edge density the tree-width
is always high while the clique-width can be low. Boolean-width is a new pa-
rameter that is never higher than tree-width or clique-width and can in fact be as
small as logarithmic in clique-width. Boolean-width is defined using a decompo-
sition tree by evaluating the number of neighborhoods across the resulting cuts
of the graph. Several NP-hard problems can be solved efficiently by dynamic
programming when given a decomposition of boolean-width k, e.g. Max Weight
Independent Set in time O(n2k22k) and Min Weight Dominating Set in time
O(n2 + nk23k). Finding decompositions of low boolean-width is therefore of
practical interest. There is evidence that computing boolean-width is hard, while
the existence of a useful approximation algorithm is still open. In this paper we
introduce and study a heuristic algorithm that finds a reasonably good decom-
position to be used for dynamic programming based on boolean-width. On a set
of graphs of practical relevance, specifically graphs in TreewidthLIB, the best
known upper bound on their tree-width is compared to the upper bound on their
boolean-width given by our heuristic. For the large majority of the graphs on
which we made the tests, the tree-width bound is at least twice as big as the
boolean-width bound, and boolean-width compares better the higher the edge
density. This means that, for problems like Dominating Set, using boolean-width
should outperform dynamic programming by tree-width, at least for graphs of
edge density above a certain bound. In view of the amount of previous work on
heuristics for tree-width these results indicate that boolean-width could in the
future outperform tree-width in practice for a large class of graphs and problems.

1 Introduction

Many NP-hard graph problems become polynomial-time solvable when restricted to
graphs of bounded tree-width or bounded clique-width. These algorithms usually have
two stages, a first stage finding a decomposition of width k of the input graph, and
a second stage of dynamic programming along the decomposition. The dynamic pro-
gramming is typically exponential in k, e.g. given a decomposition of tree-width k
it solves Maximum Weight Independent set in time O(n2k) and Minimum Weight
Dominating set in time O(n3kk2) [20]. It is therefore important to have fast algo-
rithms for the first stage, i.e. to find decompositions of small width. For clique-width
such algorithms are not known, apart from the 2OPT approximation achieved through
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rank-width [13]. For tree-width there is an O(f(n)2O(k3)) algorithm for finding a de-
composition of tree-width k, if it exists [3]. This algorithm is not practical [17], but
much work has been done on finding decompositions of low tree-width in practical set-
tings, see the overviews [5,4]. The web site TreewidthLIB [19] has been established
to provide a benchmark and to join the efforts of people working in experimental set-
tings to solve graph problems using tree-width and branch-width [12,16]. This includes
problems from computational biology [18,21,22], constraint satisfaction [9,11], and
probabilistic networks [15]. However, tree-width and branch-width are unsuitable for
non-sparse graphs, as a decomposition of tree-width or branch-width k means the graph
has O(k2n) edges. Clique-width, on the other hand, can be low for dense graphs, but
so far no experimental study has been done for clique-width or similar notions. To our
knowledge this paper is the first case of an experimental study on computing a notion
of width that works also for non-sparse graphs.

Boolean-width is a recently introduced graph parameter motivated by algorithms
[8]. It is defined by a decomposition tree that minimizes the number of different unions
of neighbourhoods across resulting cuts of the graph. This decomposition is natural
to solve problems where vertex sets having the same neighborhoods across the cuts
can be treated as equivalent. This includes problems related to Independent Set, Dom-
inating Set, Perfect Code, Induced k-Bounded Degree Subgraph, H-Homomorphism,
H-Covering, H-Role Assignment etc [1]. Similarly to treewidth, dynamic programming
algorithms to solve these problems using boolean-width employ a table at each node of
the decomposition tree, to store solutions to partial problems. In contrast to treewidth,
the dynamic programming for boolean-width involves a non-negligible pre-processing
phase computing indices of the tables, the so-called ’representatives’. Regardless, the
total runtimes are in many cases close to those for treewidth, e.g. given a decomposi-
tion of boolean-width k Max Weight Independent Set is solved in time O(n2k22k) and
Min Weight Dominating Set in time O(n2 + nk23k) [8]. These boolean-width-based
algorithms are straightforward and have been implemented in Java, without much ef-
fort, using only the description in [8]. Let us compare dynamic programming based on
tree-width versus boolean-width, to solve Independent Set and Dominating Set, with
focus on exponential factors. For Independent Set the exponential factor in the runtimes
are 2tw versus 22boolw, given decompositions of treewidth tw or boolean-width boolw,
and boolean-width becomes preferable when tw > 2boolw. For Dominating Set the
exponential factor in the runtime is 3tw versus 23boolw and the cutoff is a bit lower, i.e.
when tw ≥ 1.9boolw.

It is known that boolean-width is never higher than tree-width or clique-width and
it can be as low as logarithmic in clique-width [8]. For example, any interval graph
or permutation graph has boolean-width O(logn) [2] while there exist such graphs of
clique-width Ω(

√
n) and tree-width Ω(n). Also, a random graph with constant edge

probability will almost surely have boolean-width Θ(log2 n) [1] but linear clique-width
and tree-width. While these theoretical results favor boolean-width over tree-width, the
cutoff tw ≥ 2boolw that we arrived at above applies when we are given a decompo-
sition of treewidth tw or boolean-width boolw, as the output of a first stage algorithm.
It is unknown if computing boolean-width is FPT or W-hard. In this paper we give a
heuristic for the first stage, taking as input a graph G and finding a decomposition of G
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having reasonably low boolean-width. We tried various heuristics and present the one
with best performance, which is a local search algorithm where the search for new solu-
tions is based on interweaving between greedy choices and random choices. Theoretical
evidence that random choices are useful for boolean-width, at least for random graphs,
comes from the analysis of [1] showing that any decomposition of a random graph is
expected to be a decomposition of relatively low boolean-width. On a set of graphs of
practical relevance, specifically graphs in TreewidthLIB, the best known upper bound
on their tree-width is compared to the upper bound on their boolean-width given by
our heuristic. For 78% of those graphs in TreewidthLIB where both tree-width and
boolean-width upper bounds were encountered, the tree-width bound is at least twice
the boolean-width bound, thus meeting the tw ≥ 2boolw bound mentioned above. A
drawback of tree-width is that it is always high when edge density is high. In contrast,
boolean-width is typically low for dense graphs and our experiments show that within
reasonable time we can find decompositions witnessing this. Our results indicate that,
for problems like Dominating Set, using boolean-width will outperform dynamic pro-
gramming by tree-width, at least for graphs of edge density above a certain bound. In
view of the amount of previous work on heuristics for tree-width we expect that fur-
ther work on boolean-width heuristics will substantially increase the class of graphs for
which boolean-width outperforms tree-width, also for other problems besides Indepen-
dent Set and Dominating Set.

The rest of the paper is organized as follows. In Section 2 we define partial and full
decomposition trees and boolean-width. In Section 3 we describe the heuristic finding a
decomposition of low boolean-width. In Section 4 we describe the experimental results
on graphs in TreewidthLIB, and also on small grid graphs. In Section 5 we draw some
conclusions.

2 Boolean-Width

We consider undirected graphs G = (V, E) without loops. We denote the neighborhood
of a vertex v by N(v) and the union of neighborhoods of a vertex subset A by N(A) =
∪v∈AN(v). The complement of A ⊆ V is denoted by Ā = V \A and we call (A, Ā) a
cut of G. A partition of a set S consists of non-empty and disjoint subsets of S whose
union is S. We follow custom by referring to vertices of a graph and nodes of a tree.

Definition 1 (Full and partial decomposition trees). A partial decomposition tree of
a graph G = (V, E) is a pair (T, δ), where T is a full binary tree and δ is a mapping
from the nodes of T to non-empty subsets of V , satisfying the following: if x is the root
of T then δ(x) = V and if nodes y and z of T are children of a node x then (δ(y), δ(z))
is a partition of δ(x). If a subtree of T rooted at x has |δ(x)| leaves then it is called a
full decomposition subtree. If T has |V | leaves then (T, δ) is called a full decomposition
tree.

Note that in a partial decomposition tree (T, δ) of a graph G, if L is the set of leaves
of T then {δ(x) : x ∈ L} is a partition of V . Hence in a full decomposition tree there
will for each vertex v of G be a unique leaf x of T with δ(x) = {v}. Likewise for each
vertex of δ(x) in a full decomposition subtree rooted at x.
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Definition 2 (Unions of neighborhoods and boolean-width). Let (T, δ) be a partial
decomposition tree of a graph G. Let V (T ) be the nodes of T . Every node x ∈ V (T )
defines a cut (δ(x), δ(x)) of G. The set of unions of neighborhoods of subsets of A
across the cut (A, A) is UN(A) = {N(X) ∩ A : X ⊆ A}. The boolean-width of
(T, δ) is

boolw(T, δ) = max
x∈V (T )

{log2|UN(δ(x))|}

The boolean-width of a graph G is the minimum boolean-width over all its full decom-
position trees boolw(G) = min

full (T,δ) of G
{boolw(T, δ)}.

Note that UN(A) are the subsets of A for which there exists an X ⊆ A with N(X)∩A
being that subset, so we always have ∅ ∈ UN(A). It is known from boolean matrix
theory [14] that |UN(A)| = |UN(A)| and this is sometimes used by our code. Let us
consider some examples. If |UN(A)| = 2 then the set of edges crossing the cut (A, A)
induce a complete bipartite graph. If the set of edges crossing the cut (A, A) induce a
perfect matching of G then |UN(A)| = 2|V/2|. In the definition of boolean-width we
take the logarithm base 2 of |UN(A)| which ensures that 0 ≤ boolw(G) ≤ |V |. If a
graph has boolean-width one then it has a full decomposition tree such that, for every
cut defined by a node of the tree, the edges crossing the cut, if any, induce a complete
bipartite graph. From this it follows that the graphs of boolean-width one are exactly
the distance-hereditary graphs [7].

Definition 3 (Split). A split of a set P is a partition into two subsets A and B, with the
constraint that min{|A|, |B|} ≥ 1

3 |P |.

3 Heuristic Algorithm

We present a local search heuristic that given a graph G computes a full decomposition
tree of G. The search for new solutions in the space of candidate solutions is based
on a fine balance between greedy choices and random choices. The heuristic, given
in Algorithm 1, runs for a pre-defined length of time and then returns the best full
decomposition found. Each heuristic pass iterates over all decomposition nodes of the
current partial decomposition tree, including the children created by this heuristic pass.
A newly created tree node always starts out as a leaf node, which δ maps to a set of
vertices of G that may be larger than one. We keep track of the best full decomposition
subtrees found for each P ⊆ V encountered so far and call it Best(P ).

3.1 Greedy Initialization

Step 1 of Algorithm 1 greedily generates a full decomposition tree, to serve as the start-
ing tree for the local search in Step 2. The greedy initialization starts with T containing
a single node x (as both root and leaf) with δ(x) = V and repeatedly calls the Split
subroutine until we get a full decomposition tree. The Split(P ) subroutine returns a
split (A, B) of P and is given in Algorithm 2. Starting with A being a random half of
the vertices of P (unless P=V ), it adds new vertices to A one by one in a greedy fashion
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Algorithm 1. Generate a full decomposition of a given graph
Input: a graph G
Output: a full decomposition tree (T, δ) of G
Step 1: /∗Greedily generate initial full decomposition tree∗/

Initialize T with V (T ) = {root}, δ(root) = V
while ∃ leaf x of T with |δ(x)| > 1

(A,B) = Split(δ(x));
Add leaves y and z as children of x with δ(y) = A and δ(z) = B

for all x ∈ V (T ) store Best(δ(x)), the subtree rooted at x
Step 2: /∗Local Search for better trees∗/

for fixed amount of time do
TryToImproveSubtree(root)
if (T, δ) is a full decomposition tree then Best(V ) = (T, δ)

return Best(V )

while minimizing |UN(A)| and |UN(P \ A)|, and returns the best split found along
the way complying with the split constraint. The call of Split(V ) at the root sets the
initial conditions for the later splits and for this root-case we start with A = ∅, rather
than a random half of the vertices, to allow the full benefit of the greedy choices. The
local search in TryToImproveSubtree will for leaves of the current tree make calls to
Split(P ) but not for P = V , since the root of T will never again become a leaf and
instead the RandomSwap subroutine described in the next subsection will be applied
to the root.

Algorithm 2. Split(P )
Input: Set of vertices P ⊆ V .
Output: a partition (A,B) of P s.t. min{|A|, |B|} ≥ 1

3
|P |.

if P = V then A1 ← ∅
else A1 ← random half of the vertices in P
i = 1
while |P \ Ai| ≥ 1

3
|P | do

find x ∈ P \ Ai s.t. max{UN(Ai ∪ {x}), UN((P \ Ai) \ {x})} is minimized.
Ai+1 = Ai ∪ {x}.
i = i + 1.

end while
find i such that max{UN(Ai), UN(P \ Ai)} is minimized and |Ai| ≥ 1

3
|P |.

return (Ai,P \ Ai).

The objective function optimized locally in Split is |UN(A)|, the number of unions
of neighborhoods of A, which directly relates to boolean-width, see Definition 2. The
computation of |UN(A)| is done in a separate subroutine called UN(A) given in Al-
gorithm 3. This subroutine starts by restricting from the cut (A, A) to the subsets of
vertices (S1, S2) having an edge going across the cut (A, A). The list LN is used to
accumulate the set UN(A) in a straightforward way. Correctness is easy to show by
induction on |S1|. Early termination of the UN(A) subroutine is not shown in Algo-
rithm 3 but is done if it is determined that |LN | is too large for the cut (A, A) to be
interesting.
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Algorithm 3. UN(A)
Input: Set of vertices A ⊆ V .
Output: |UN(A)|, the number of unions of neighborhoods of the cut (A, A)

if |UN(A)| has already been computed return the stored value
S1 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
S2 = {v ∈ A : ∃u ∈ A ∧ (u, v) ∈ E}
LN ← {∅} /∗neighborhood set accumulator∗/
for all u ∈ S1 do

for all Y ∈ LN do
X ← (N(u) ∩ S2) ∪ Y
if X /∈ LN then add X to LN

return The number of elements in LN

3.2 Local Search

The local search used to improve the current decomposition tree is initiated at the root
of the tree T , in Step 2 of Algorithm 1. In the subroutine TryToImproveSubtree(x),
given in Algorithm 4, x is a node of the current partial decomposition tree (T, δ) and
the goal is to improve the subtree of T rooted at x. That subroutine has four main parts.

(1) if x leaf then find candidate for split of its subset
(2) if x non-leaf then find candidate for swap of its two children subsets
(3) conditionally update (T, δ)
(4) for each child of x either use stored subtree or recurse

For (1) we use the Split subroutine described earlier. For (2) we use the Random-
Swap(A,B) subroutine given in Algorithm 5 that randomly swaps vertices between A
and B while complying with the split constraint. At the very onset of the local search,
the current (T, δ) is the full decomposition tree found by the greedy initialization. How-
ever, the current decomposition tree ceases to be full as soon as the split given by
RandomSwap(δ(y), δ(z)) in (2) is a good one and (3) updates (T, δ) so that y and
z become leaves. If the new δ(y) is a subset of vertices for which a full decomposition
subtree has never been stored, or the stored one is not good enough, then in (4) a recur-
sive call is made to TryToImproveSubtree(y), with y a leaf of the current tree. If in
that recursive call the split found in (1) is not good then in (3) we will return with y a
leaf of the current (T, δ) having |δ(y)| > 1, which explains the if-statement at the very
end of Algorithm 1.

Note that the local improvements made in the local search are based on randomly
swapping vertices between δ(y) and δ(z) for two nodes y and z with the same parent.
As usual in local search, there is a fine balance to trying new splits versus sticking with
old splits. The goal is to neither get stuck in local minima nor to swap so many nodes
that we re-randomize completely and don’t get a hill-climbing effect. Note in (4) that we
store for each subset P of vertices encountered so far the best found full decomposition
subtree Best(P ). The decision of when to try new splits and when to use the old splits is
tied to the boolean-width of the best subtrees, and to the upper bound on boolean-width
of G given by Best(V ).
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Algorithm 4. TryToImproveSubtree(x)
Input: a node x of T with |δ(x)| > 1

(1) if x is a leaf then (A,B) = Split(δ(x))
(2) else

Let y and z be the children of the node x.
(A,B)=RandomSwap(δ(y), δ(z))

(3) if max{UN(A), UN(B)} < boolw(Best(V ))
then Set y and z as new leaf children of x with δ(y) = A and δ(z) = B

else if x is still a leaf then return /* in case we came from (1) */

(4) if max{UN(δ(y)), UN(δ(z))} < boolw(Best(V )) then
for w ∈ {y, z}

if subtree for δ(w) is stored and boolw(Best(V )) > boolw(Best(δ(w)))
then use root of Best(δ(w)) as w.

else if |δ(w) > 1| call TryToImproveSubtree(w)
if the subtree Tx rooted at x is a full subtree of δ(x)

then update Best(δ(x)) to Tx

Algorithm 5. RandomSwap(δ(y), δ(z))
Input: δ(y), δ(z) ⊆ V for sibling nodes y and z of T .
Output: split (A, B) of δ(y) ∪ δ(z).
Let x be the parent of y and z.
choose randomly i in 0..(|δ(y)| − |δ(x)|

3
) and j in 0..(|δ(z)| − |δ(x)|

3
).

choose randomly Mi ⊂ δ(y) and Mj ⊂ δ(z) with |Mi| = i and |Mj | = j.
A = (δ(y) \ Mi) ∪ Mj

B = (δ(z) \ Mj) ∪ Mi

return (A, B).

3.3 Discussion and Implementation Details

We made our implementations in Java. Subsets of vertices are stored as bitvectors of
length n, i.e. the number of vertices in the graph. We expect most of the subsets we
store to be of size at least n

2 so this is an efficient way to store subsets. We also limited
the boolean-width to 31, i.e. |UN(A)| ≤ 231, but none of the graphs tested reached this
limit. The bottleneck is rather the memory available on our machines. Let us explain.
Our implementation of subroutine UN(A) uses memory proportional to n ∗ |UN(A)|
bits. Since |UN(A)| ≤ 2min(|A|,|A|) the ’boolean-width ≤ 31’ becomes a bottleneck
only if the graph has at least 64 vertices. In that case the implementation is handling a
list of neighborhoods of size 64 ∗ 231 bits which is 16 GB of memory and that is more
memory than our desktop had. It is part of future research to find memory efficient
methods to compute |UN(A)|.

As described, we are currently storing the best full decompositions of subtrees. Since
bitvectors are easy to compare they are stored in a binary search tree for quick look-up.
Storing all these solutions eats up memory, and for some big graphs this is the limiting
factor. In the future we will consider more advanced schemes for storing the partial
solutions encountered. In particular one should throw out elements that are no longer
below the upper bound.
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The search for new solutions in the space of candidate solutions is based on a fine
balance between greedy choices and random choices, a balance that was arrived at
mainly through experimentation. This appears e.g. in the choice of letting the Split
subroutine start with a random half of the nodes on one side before trying vertices
one-by-one in the more costly greedy stage. Similarly for the fully random choice of
swapping in subroutine RandomSwap, and in the conditional tests in (3) and (4) of
TryToImproveSubtree.

Although not specified in the pseudocode, for small subtrees we just return an ar-
bitrary one, since if |δ(x)| ≤ boolw(Best(V )) then any full subtree at x will have
boolean-width at most boolw(Best(V )). The Split(P ) subroutine given in Algorithm
2 could be stopped as soon as a subset Ai with low |UN(Ai)| and |UN(P \Ai)| values
has been found. It is not clear that this is always better and currently it is not done.
There are many calls of UN(A) for many subsets A that only differ in a few vertices. A
possible improvement is to store the sets of unions of neighborhoods UN(A) and use
these e.g. when computing UN(A∪{v}) for a single added vertex v, allthough it is not
clear how to do this efficiently. The UN(A) subroutine given in Algorithm 3 does not
recompute known values, but otherwise it may seem naive. It forms the inner loop of
the heuristic and it is the bottleneck for running on graphs with many vertices. We tried
different approaches such as randomly sampling subsets to approximate |UN(A)| and
exploiting a correlation between the degree of a vertex and its contribution to |UN(A)|.
These tests led to only insignificant improvements so for the moment we kept the naive
algorithm. There are other, similar, improvements to UN(A) that can be attempted, and
although they may not asymptotically improve the running-time of the heuristic they
could potentially be of big help.

The balance between trying new splits and sticking to old splits is guided by the
conditional test in (3) of Algorithm 4. We did try imposing stronger conditions in order
to arrive at better splits sooner, but only minor improvements were seen, and only in
some cases.

The heuristic ran for a predefined amount of time for each graph but there are several
ways of experimenting with the stopping criteria, for example based on the size of the
input graph, or on the fraction of time since an improved tree was last found.

4 Experimental Results

All presented results have been carried out on a Linux machine with 2.33 GHz Intel
Core 2Duo CPU E6550 and 2 GB RAM. Our aim was not fast benchmark results, but
to explore heuristics for finding decompositions of low boolean-width. TreewidthLIB is
an online depository containing a collection of 710 graphs, to be used as a benchmark
for the comparison of algorithms computing treewidth. TreewidthLIB provides selected
instance graphs, for which computing the treewidth is relevant, originating from appli-
cations like probabilistic networks, vertex coloring, frequency assignment and protein
structures [5]. We ran our heuristic on the graphs in TreewidthLIB.

TreewidthLIB contains 710 graphs. For 482 graphs a tree-width bound is given in
TreewidthLIB, and for 426 graphs we give a boolean-width bound using our heuristic.
For the comparison we concentrate on the 300 graphs for which we have a bound on
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both tree-width and boolean-width, but let us first discuss the remaining 410 graphs.
Among these 410 graphs, there are 126 having only a boolean-width bound, 182 having
only a tree-width bound, and 102 having neither. Among the 182 graphs having only a
tree-width bound there are some in a graph format not supported by our implementation,
but for the majority of these graphs our heuristic simply timed out already at the greedy
initialization stage. Note that for these 182 graphs, if we were given the decomposition
of low tree-width k, we could easily have produced a decomposition of boolean-width
at most k, using the O(nk2) algorithm which can be deduced from [1].

We now summarize our findings for the 300 graphs having both a tree-width bound
and a boolean-width bound. Firstly, the boolean-width bound is always better than the
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tree-width bound, with the ratio of the tree-width bound divided by the boolean-width
bound ranging from 1.15 to 29, with an average of 3.13. Not surprisingly, the ratio
increased with higher edge density. In Fig.1 we have plotted this ratio against the edge
density of the graphs for a total of 300 graphs. The trend line shows the growth of ratio
with edge density.

Our heuristic algorithm starts with greedily finding a full decomposition tree giv-
ing an Initial Bound on boolean-width and then improves this bound iteratively. In the
experiments we kept track of the decrease in the boolean-width over time. In Fig. 2
and Fig. 3 the upper bounds on boolean-width, i.e. the values of boolw(BEST (V )),
are shown as they decrease over time, for the two graphs called eil51.tsp (V =51 and
E=140) and miles1500 (V=128,E=5198). For the graph eil51.tsp the Initial Bound was
9.1 after less than a second, then at the ’knee’ of the curve before the improvement
decays we found a Fast Bound of 6.2 after 4 seconds, and finally the Best Bound of 5.8
was found after 124 seconds. For each graph, we can likewise speak of three bounds: i)
the Initial Bound given by the greedy initialization, ii) a Fast Bound found at the ’knee’
of the curve, and iii) the Best Bound found possibly after a long runtime.

In Table 1 we summarize results for 8 selected graphs having a good variety of
number of vertices V , edge density density, Time in seconds to find Initial Bound,
Fast Bound, and Best Bound on boolean-width, its best known treewidth upper bound
TWUB, and Ratio=TWUB/BWUB(Best Bound). The graphs are sorted by this Ratio.
The miles1500 graph is translated from the Stanford GraphBase. The zeroin.i.1 and
mulsol.i.5 graphs originate from the 2nd DIMACS implementation challenge [10] and
are generated from a register allocation problem based on real code. The queen8 12 also
comes from the DIMACS[10] graph coloring problems and is an example of n-queens
puzzle. The graph 1awd is from the field of computational biology with each vertex
representing a single side chain and each edge representing the existence of a pairwise
interaction between the two side chains. The graph celar06-wpp is a frequency assign-
ment instance. The graph BN 28 originates from Bayesian Network from evaluation of
probabilistic inference systems at UAI 2006. The graph eil51.tsp is a Delauney triangu-
lation of a traveling salesman problem.

Table 1. Results for selected graphs

Edge Initial Bound Fast Bound Best Bound
Graph name V density BWUB Time(s) BWUB Time(s) BWUB Time(s) TWUB Ratio
miles1500 128 0.64 5.5 32.6 4.9 345.7 4.8 609.6 77 15.85
zeroin.i.1 211 0.19 4.0 74.1 3.8 116.2 3.7 168.0 50 13.51
mulsol.i.5 186 0.23 6.4 55.3 5.4 130.0 4.9 365.2 31 6.25
queen8 12 96 0.30 16.7 3055 16.7 3055 16.7 3055 65 3.91
1awd 89 0.27 13.3 67.5 11.1 521.1 10.8 702.9 38 3.52
celar06-wpp 34 0.28 4.5 0.1 3.2 0.8 3.0 4.8 11 3.37
BN 28 24 0.18 3.3 0.02 2.3 0.05 2.0 0.3 5 2.50
eil51.tsp 51 0.11 9.1 0.9 6.2 4.1 5.8 124.6 9 1.55
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4.1 Small Grid Graphs

We also ran our heuristic on graphs corresponding to the n×n grid. However, for square
grids the current implementation of UN(A) is too memory-intensive and we had to limit
the size to n ≤ 9. These are sparse graphs having tree-width n and the upper bound we
find on boolean-width is below this. See Figure 4. The boolean-width of square n × n
grids is a topic we are investigating and our current guess is that the optimal upper
bound, holding for all n, is about 0.8 ∗ n. If this is correct, the value computed by the
heuristic is close to optimal, which is somewhat interesting as it is our understanding
that the heuristics for finding decompositions of low tree-width do not perform well on
grid graphs.
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Fig. 4. Upper-bound on boolean-width, as computed by our heuristic, for the n × n grid, with n
ranging from 2 to 9. Tree-width is given by the dotted line x = y.

5 Conclusion

We presented the first experimental study on computing a notion of width that works
also for non-sparse graphs, based on the boolean-width parameter. Experiments with
the graphs in TreewidthLIB show the strength of boolean-width versus tree-width, in a
practical setting, in particular for graphs of edge density above a certain value. For more
examples of real-world graphs of high edge density and high tree-width we could also
look beyond the TreewidthLIB library. There are a number of open problems related
to boolean-width heuristics and some have already been discussed in subsection 3.3.
Firstly, we need a fast heuristic that directly constructs a reasonable upper bound on
the boolean-width for any graph, regardless of how big the graph is or what its edge
density is. The main issue will be to give a fast heuristic for the computation of a
good upper bound on |UN(A)|. Secondly, we need to consider heuristics for computing
lower bounds on boolean-width, just as it has been done for tree-width [6]. Thirdly, we
should explore pre-processing to simplify the graph instances, again this has been done
extensively for tree-width [4]. These problems are of interest since our results indicate
that using boolean-width could in the future outperform the use of tree-width in practice
for a large class of graphs and problems.
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Abstract. We study the well-known Max Path Coloring problem
from a parameterized point of view, focusing on trees and low-treewidth
networks. We observe the existence of a variety of reasonable parameters
for the problem, such as the maximum degree and treewidth of the net-
work graph, the number of available colors and the number of requests
one seeks to satisfy or reject. In an effort to understand the impact of each
of these parameters on the problem’s complexity we study various pa-
rameterized versions of the problem deriving fixed-parameter tractability
and hardness results both for undirected and bi-directed graphs.

1 Introduction

The Path Coloring (PC) and Maximum Path Coloring (MaxPC) prob-
lems are two well-known and widely studied combinatorial problems with appli-
cations in the field of optical networks. In PC we are given a graph representing
the optical network and a set of paths on that graph and are asked to find a
coloring of the paths such that any two paths which share an edge have distinct
colors and the number of colors used is minimized. In the MaxPC problem
on the other hand we are given a specified number of colors and must select
a maximum cardinality set of paths which can be properly colored with the
available colors. If the graph contains cycles we may alternatively be given the
endpoints of the communication requests only, with the flexibility to choose the
most suitable path for each. Then the problem is often called Routing and

Path Coloring (RPC and MaxRPC). Of course, if the underlying graph is
a tree the two versions of the problems are equivalent.

PC is unfortunately known to be hard to solve exactly even on very simple
topologies and therefore the same holds for MaxPC. As a consequence the vast
majority of research on the two problems has focused on coming up with good
approximation algorithms for either minimizing the number of colors or maxi-
mizing the number of accepted requests. In this paper, however, we investigate
the complexity of solving MaxPC on trees and tree-like graphs exactly, from
the point of view of parameterized complexity theory. (For an introduction to
parameterized complexity theory and the theory of fixed-parameter tractable
(FPT) algorithms see [4,16,9]).

The main observation we want to exploit is that MaxPC is a problem rich
with reasonable parameters. For example in practical situations one may often
expect that the network will have moderate maximum degree and it will be a
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tree or perhaps “tree-like”. Furthermore, technological limitations mean that the
number of available colors on each edge is also likely to be moderate. Also, as
observed in [1], communications networks are often built with maximum capacity
in mind, meaning that typically the available resources should be enough to
satisfy all or almost all requests. Interestingly, nothing prevents several of these
facts from happening together. This motivates the study of the problem through
a parameterized lens: one identifies a parameter (or set of parameters) expected
to be small and then attempts to design an FPT algorithm for this particular
parameterization or prove that none exists. For example, if one is interested in
instances with moderate maximum degree Δ, the goal is to design an algorithm
with running time f(Δ) · nc, for some moderately exponential function f or to
prove that no such algorithm exists (but perhaps an algorithm running in time
ng(Δ) is possible).

Of course, the observation that Δ or some other parameters may be small in
practice is not new; in fact the traditional complexity of PC has been investi-
gated for bounded degree trees for example. The contribution of this paper is
that, in addition to giving new results it puts these known results under the
light of parameterized complexity, where f(Δ) ·nc and ng(Δ) algorithms are con-
sidered completely different cases with only the first called tractable, whereas
for traditional complexity both are “polynomial for fixed Δ”. This allows us to
more systematically enter more parameters into the problem and better assess
their impact on complexity. Interestingly, it also leads us to discover some inter-
esting gaps between the complexity of PC and MaxPC which were previously
overlooked in the literature.

Previous Work. PC and MaxPC are very well-studied problems, starting
from the 1980s (see [12]). As mentioned, when the network graph contains cycles
one may consider either the case where requests are pre-routed or where routing
is part of the problem. Furthermore, the communication network can either be
assumed to be undirected or bi-directed, where in the second case every request
has a direction and two requests with the same color can share an edge if they
use it in opposite directions.

PC is known to be hard even in very restricted topologies, from which fact
the hardness of MaxPC also follows trivially. Specifically, PC is NP-hard for
undirected stars by equivalence to edge coloring in multi-graphs [6], undirected
rings (here the problem is equivalent to coloring circular-arc graphs [10]) and
bi-directed binary trees [6,15]. However, it is known to be FPT in undirected
trees when parameterized by the maximum degree of the tree Δ [6,15], and also
to be FPT in bi-directed trees when parameterized by the maximum number of
requests touching any node [6]. A 4/3-approximation algorithm is known for PC

in undirected trees [6] and a 5/3-approximation for bi-directed trees [8].
For MaxPC a 2.22-approximation is known for bi-directed trees [5] and a

1.58-approximation is known for undirected trees [17]. For bi-directed trees it is
also known that MaxPC is solvable in polynomial time if both the maximum
degree and the number of colors are constant [5], a result which can be extended
to undirected trees in a straightforward manner. Note though that this is an XP,
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not an FPT algorithm, a fact that we will return to later. For the special case
where only one color is available the problem is also known as Maximum Edge

Disjoint Paths (MaxEDP), and is known to be NP-hard for bi-directed trees
[7] but in P for undirected trees [11].

To the best of our knowledge PC and MaxPC have not been explicitly stud-
ied before from a parameterized perspective, though there are results in the
literature which can be translated to the fixed-parameter tractability terminol-
ogy, such as the algorithm for PC on bounded degree undirected trees mentioned
above. For the related Call Control problem however there has been an inves-
tigation of its complexity when parameterized by the number of rejected requests
[1], which is one of the parameters we consider in this paper as well. Note though
that the situations for Call Control and MaxPC are quite different for this
parameter, as MaxPC is usually hard even when no requests can be rejected
(this is the PC problem), while Call Control is easy in that case. Thus, for
MaxPC this parameter can only be useful in combination with other parameters
that make PC fixed-parameter tractable.

Contributions of This Paper. In this paper we study several parameterized
versions of MaxPC mainly on trees. First, we study parameterizations which do
not involve the objective function, that is, the number of requests to be satisfied
or rejected. Specifically, for trees the parameters we consider are the maximum
degree Δ and the number of available colors W . As mentioned, for undirected
trees PC is FPT parameterized by Δ alone while for bi-directed trees PC is FPT
parameterized by Δ and W , from the FPT result when parameterized by the
maximum number of requests touching a node. However, for MaxPC all that is
known is an XP algorithm running in roughly nΔW time. From the traditional
complexity perspective it is easy to overlook the difference as in both cases we
have algorithms polynomial for fixed Δ and W . However, from the parameterized
complexity perspective it is natural to ask why no FPT algorithm is known for
MaxPC and whether this can be fixed by designing an algorithm that would
take at least one or ideally both of the parameters out of the exponent of n. We
resolve this question fully by showing that neither parameter can be removed
from the exponent of n, under standard complexity assumptions, even if the other
is a small constant. This points out the existence of a (previously unknown) gap
between the complexity of PC and MaxPC. In particular our results imply
that MaxPC is NP-complete even on binary trees (where PC is solvable in
polynomial time), which to the best of our knowledge was not known before.
They also show that the complexity of MaxPC grows much faster as Δ and W
grow than the complexity of PC.

Continuing this line of reasoning we observe that the nΔW algorithm can be
extended in a straightforward way to graphs of treewidth t1, running in time
roughly nΔWt. This poses the new problem of whether at least t can be moved
out of the exponent which we again resolve negatively.

1 The treewidth of a graph is a measure which estimates how “tree-like” the graph is;
for more information see [2].
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One intuitive explanation for the complexity gap between PC and MaxPC

is that in the instances of our reductions a large fraction of the requests must be
rejected, making the situation very different from PC where all requests must be
satisfied. Thus, we are led to add as another parameter the number of rejected
requests. In this case the complexity gap (at least partially) closes again: we
show that for both undirected and bi-directed trees the MaxPC problem is
FPT if one considers as parameters Δ, W and the number of requests which
can be rejected. Also we show that for undirected binary trees MaxPC is FPT
parameterized by the number of rejected requests.

Finally, we consider the naturally parameterized version of MaxPC (that
is, parameterized by the size of the solution) and show that it is FPT on any
topology where the naturally parameterized version of MaxEDP is FPT, using
a color-coding technique. From this, it immediately follows that this parame-
terization of MaxPC is FPT for undirected trees and for rings, since in those
cases MaxEDP is solvable in polynomial time. For bi-directed trees, where
MaxEDP is NP-hard, we show that its naturally parameterized version is FPT,
a result which may be of independent interest, thus settling the fixed-parameter
tractability of MaxPC in this case as well.

2 Definitions and Preliminaries

In this paper we discuss the Path Coloring problem (PC) and its correspond-
ing maximization problem MaxPC. Our main topic is their restriction to trees.
The input we are given in this case consists of an undirected tree G(V, E) and
a multi-set of demands D ⊆ V × V , each demand corresponding to the unique
path in G that connects its two vertices. We are also given two integers W (the
number of colors) and B (the number of demands we seek to satisfy). The ques-
tion is whether there exist W mutually disjoint subsets D1, D2, . . . , DW ⊆ D
s.t. no set Di contains two demands that share an edge and

∑W
i=1 |Di| ≥ B.

In other words we are asked if there exists a W -colorable set of at least B paths
from the set of the given demands. This problem, where we seek to maximize B
is usually called MaxPC, while PC is simply the special case when B = |D|.
The graph G can either be considered undirected, in which case the ordering
of each demand pair is irrelevant, or bi-directed, in which case two satisfied
demands with the same color are allowed to use the same edge but only in
opposite directions (another way to think of this is as replacing every undirected
edge with two parallel arcs of opposite directions). In this paper we will deal
with both undirected and bi-directed graphs.

The problems can be generalized to graphs that contain cycles. Here, we will
focus on the case where for each demand we are given the path that it must
follow on the graph, but also briefly mention how our results can be extended
to the case where routing is part of the problem.
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We will use Δ to denote the maximum degree of G, n to denote the number
of vertices, t to denote the treewidth of G (which is of course 1 if G is a tree)
and T = |D| − B to denote the number of demands we are allowed to reject.
We will consider various tractable special cases and parameterizations of MaxPC,
for example on trees of bounded degree, or in instances with a small number of
colors (we assume here that the reader is familiar with the basic definitions of
parameterized complexity theory, such as the class FPT). The candidate parame-
ters we are interested in are Δ, t, W, B and T . To keep the presentation short and
concise we will use a notation where different parameterizations of MaxPC are
denoted by prepending it with the list of variables we consider constant or pa-
rameters. For example, the (pΔ)−MaxPC problem is the parameterized version
of MaxPC when Δ is our only parameter, while (pB)−MaxPC is the parame-
terized version where B is the parameter (the “naturally” parameterized version
of MaxPC). The reason for this notation is that we will consider various combi-
nations of parameters and also cases where some values are parameters and some
others are fixed constants. For example (pW, cΔ)−MaxPC is the special case of
(pW )−MaxPC restricted to bounded degree trees. Observe that this is not the
same as the problem (pW, pΔ)−MaxPC since a hypothetical algorithm running
in time say 2W nΔ is FPT for the first problem but not for the second.

Our aim here is to investigate how different parameters (and combinations of
parameters) affect the complexity of the problem. Table 1 contains a summary
of some of the already known results on the complexity of PC and MaxPC and
the results of this paper. Worthy of note is the contrast between some already
known tractable cases of PC ((pΔ)-PC for undirected trees and (pΔ, pW )-PC

for bi-directed trees) and the hardness we establish for the corresponding cases
of MaxPC. Interestingly, tractability returns if we add T as a parameter to
(pW, pΔ)-MaxPC in both bi-directed and undirected trees, which makes in-
tuitive sense since T quantifies the “distance” between a PC and a MaxPC

instance. We can also prove that (pT )-MaxPC is FPT on undirected binary
trees.

Table 1. Summary of results. All results concern trees, except those where the graph’s
treewidth t is included in the problem description.

Undirected Bi-Directed

Problem Result Comment Problem Result Comment

(cW )-PC, W = 3 NP-h (edge 3-coloring) [6] (cW )-PC, W = 1 NP-h [6]
(pΔ)-PC FPT [6] (cΔ)-PC, Δ = 3 NP-h [6]

(pW, pΔ)-PC FPT [6]
(cΔ, ct)-PC NP-h (PC on rings) [10] (cΔ, ct)-PC NP-h [10]

(cW, cΔ)-MaxPC P [5] (cW, cΔ)-MaxPC P [5]
(cW, cΔ, ct)-MaxPC P Theorem 1 (cW, cΔ, ct)-MaxPC P Theorem 1
(pW, cΔ)-MaxPC W[1]-h Theorem 2 (pW, cΔ)-MaxPC W[1]-h Theorem 2
(cW, pΔ)-MaxPC W[1]-h Theorem 3 (cW, pΔ)-MaxPC W[1]-h Theorem 3
(cW, cΔ, pt)-MaxPC W[1]-h Theorem 4 (cW, cΔ, pt)-MaxPC W[1]-h Theorem 4
(pW, pΔ, pT )-MaxPC FPT Theorem 5 (pW, pΔ, pT )-MaxPC FPT Theorem 5
(pT )-MaxPC, Δ = 3 FPT Theorem 6
(pB)-MaxPC FPT Corollary 1 (pB)-MaxPC FPT Corollary 2
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3 Structural Parameterizations

In this section we investigate parameterizations which do not involve the ob-
jective function. The candidate parameters will be the maximum degree Δ, the
input graph’s treewidth t and the number of available colors W . Some fixed-
parameter tractability results are known in the case of PC for these cases, but
unfortunately for the corresponding cases of MaxPC only XP algorithms are
known and as we will show this can probably not be improved.

First, recall that in [5] it was shown that MaxPC can be solved in polyno-
mial time on bi-directed trees if both Δ and W are constant. The basic idea
is a bottom-up dynamic programming technique which can be extended in a
straightforward way to undirected trees also. Our first observation is that this
idea can in fact be extended to graphs of bounded treewidth as well.

Theorem 1. (cW, cΔ, ct)-MaxPC can be solved in polynomial time for both
undirected and bi-directed graphs.

Theorem 1 essentially applies common dynamic programming techniques asso-
ciated with treewidth to obtain an XP algorithm. The algorithm is likely to be
extremely impractical though, even for small values of the parameters, since the
exponent relies on all three. So the natural, and more important question to ask
is whether any kind of fixed-parameter tractability result can be obtained.

Ideally, one would like an FPT algorithm running in time f(W, Δ, t) ·nc, that
is, an FPT algorithm for (pW, pΔ, pt)-MaxPC. Barring that, it would still be
helpful if any one of the three parameters could be moved out of the exponent
of n, even by itself. Unfortunately, we resolve this problem in a negative way,
showing that even if any two of the parameters are small fixed constants (and
are therefore allowed to appear in the exponent of n in an FPT algorithm) it
is still impossible to obtain an FPT algorithm for the problem, under standard
complexity assumptions. We prove this by using three parameterized reductions.

The reductions presented here will use a slightly more general problem we will
call CapMaxPC. In this problem, for each edge e ∈ E we are given an integer
capacity 1 ≤ c(e) ≤ W and have the additional constraint that in a feasible
solution at most c(e) satisfied demands may be using e. For parameterizations
not involving the objective function this problem is shown FPT-reducible to
MaxPC by using a simple trick where limited edge capacity on an edge is
simulated by adding an appropriate number of length 1 demands going through
the edge.

We will also use another intermediate problem in our reductions, which we
will call Disjoint Neighborhoods Packing (DNP). In DNP we are given
an undirected graph G(V, E) and are asked to find a maximum cardinality set
V ′ ⊆ V such that ∀u, v ∈ V ′ we have N(u) ∩ N(v) = ∅ (we denote by N(u) the
set that contains u and all its neighbors, that is, the closed neighborhood of u).
The parameter we consider is the size of V ′. This problem is sometimes referred
to in the literature as 2-Independent Set, see [14].

Overall our strategy is to start from the well-known W[1]-hard problem
Independent Set and present reductions to our problems through the two
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intermediate problems described above, that is, we aim to prove that IS ≤FPT

DNP ≤FPT CapMaxPC ≤FPT MaxPC. The trickiest step in this process will
be the second reduction, where we will show three different versions, one for each
parameterization of MaxPC we are interested in.

Lemma 1. For both undirected and bi-directed graphs we have

– (pW, cΔ)-CapMaxPC ≤FPT (pW, cΔ)-MaxPC ‘
– (cW, pΔ)-CapMaxPC ≤FPT (cW, pΔ)-MaxPC

– (cW, cΔ, pt)-CapMaxPC ≤FPT (cW, cΔ, pt)-MaxPC

Lemma 2. DNP is W[1]-hard.

Proof. We present a reduction from the Independent Set problem. Given a
graph G(V, E) and assuming without loss of generality that it has no isolated
vertices and we are looking for an independent set of size k > 2 in G, we will
construct an equivalent instance of DNP. First, subdivide every edge of G, that
is, replace each (u, v) ∈ E with a path of length 2. Connect all newly added
vertices into a clique. We will argue that the new graph has a packing of k
disjoint neighborhoods iff the original graph has an independent set of size k.

If the original graph has an independent set of size k this immediately gives
us a packing of the same size on the new graph by selecting the same vertices.
The packing is valid since the only way two of the original vertices could have
a common neighbor in the new graph is if one of the vertices introduced in
the subdivisions is connected to both and that can only happen if an edge was
connecting them in the original graph.

If the new graph has a packing of k > 2 disjoint neighborhoods given by the
set of vertices V ′, then we can immediately infer that V ′ cannot include two or
more of the vertices introduced in the subdivisions, since they are all connected
in a clique. If V ′ contains one of these new vertices, say the one introduced in
the subdivision of (u, v) (call that vertex w) then it cannot contain any vertices
in V \ {u, v} because every original vertex is connected to at least one new
vertex and that vertex is connected to w. V ′ may also contain at most one of
{u, v}, so its total size cannot be more than 2 in this case. We conclude that a
packing of k > 2 disjoint neighborhoods must consist entirely of vertices found
in the original graph. To see that these form an independent set in the original
graph, observe that if two were originally connected they would have a common
neighbor in the new graph, violating the feasibility of the packing. �	

Theorem 2. (pW, cΔ)-MaxPC is W[1]-hard for both undirected and bi-directed
trees.

Proof. Given Lemma 1 and Lemma 2 the only thing left to prove is that DNP

≤FPT (pW, cΔ)-CapMaxPC. Given an instance of DNP, that is a graph G(V, E)
and a target size for the DNP set k, we construct a CapMaxPC instance as de-
scribed below. We first show the reduction for undirected trees and then describe
how it can be made to work for bi-directed trees as well.
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First, let |V | = n and we construct a “backbone”, which is simply a path on
n + 2 vertices. We take n + 2 disjoint copies of a path on n vertices and attach
one of the endpoints of each to one of the vertices of the backbone so that each
backbone vertex now has a path hanging from it. Label the backbone vertices
bi, 0 ≤ i ≤ n+1 and the vertices of the other paths pi,j , 0 ≤ i ≤ n+1, 1 ≤ j ≤ n,
so that the path vertex connected to bi is called pi,1, its other neighbor is pi,2 and
so on. Finally, for each 1 ≤ i, j ≤ n we add three vertices in the graph vi,j , ui,j

and wi,j and the edges (vi,j , wi,j), (ui,j , wi,j) and (wi,j , pi,j). In other words, we
construct a path on three vertices and connect the middle vertex to pi,j . This
completes the description of the graph, which is a tree of maximum degree 3.

Now let us describe the demands. Suppose that the vertices of the original
graph are numbered {1, 2, . . . , n}. For each i ∈ V we consider the closed neigh-
borhood N(i) in increasing order and let N(i) = {j0, j1, j2, . . . , jd(i)}, where
d(i) is the degree of i. We add a demand from p0,i to uj0,i. Then, for each
l, 0 ≤ l < d(i) we add a demand from vjl,i to ujl+1,i. We also add a demand
from vjd(i),i to pn+1,i. We add all these demands for each i ∈ V and call these
demands global demands. Finally, for each 1 ≤ i, j ≤ n we add a demand from
vi,j to ui,j . We call these demands local.

The only thing left is to specify W , which we set to W = 2k, and the capacities.
We leave all capacities unconstrained except for the edges (bi, pi,1), 1 ≤ i ≤ n,
which have a capacity of 2 and the edges (ui,j , wi,j) and (vi,j , wi,j) which have
a capacity of 1. The construction is now complete.

To give some intuition about this construction, notice the interaction between
local and global demands. Each local demand intersects exactly two global de-
mands in edges of capacity 1. Thus, if the local demand is satisfied the global
demands are rejected. Furthermore, if exactly one of the global demands is sat-
isfied in a solution we can exchange it with the local demand, therefore this
gadget ensures that either both global demands will be taken or both will be
rejected in some optimal solution. Observe also that from all the local demands
found in a branch attached to the backbone at most one will be rejected, since
the edge (bi, pi,1) acts as a bottleneck allowing at most two global demands to
go through. The idea will be that if a vertex i is in the neighborhood packing
then we will select the global demand starting at p0,i and satisfy one after the
other pairs of demands that go into branches that correspond to its neighbors,
making these branches unusable for other global demands.

For a more precise argument, suppose that the original graph has a packing
V ′ of size k, we will construct a CapMaxPC solution of size n2 +k. Start with a
solution of size n2 by selecting all the local demands of the instance and nothing
else. Now for each i ∈ V ′ we will inrease the size of the solution by 1. We do
this by satisfying all the global demands associated with i, that is, all demands
touching a vertex pj,i for any j. Each time we perform this improvement step we
use two new colors (the two colors are sufficient to color the global demands since
they form essentially a path) and remove from the solution all local demands
that intersect with these global demands (it is not hard to see that this gives a
profit of exactly one demand). Since we are using different colors in each step the
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only way this process could run into a problem is in an edge where fewer than
2k colors can be used. For that to happen we must be trying to satisfy more
than two requests going through an edge (bj , pj,1) but that would imply that j
is a common neighbor of two vertices of the packing, violating its feasibility.

For the other direction, suppose that a solution of size n2 + k exists. As
mentioned, if in a set of one local and its two intersecting global demands the
solution satisfied exactly one of the global demands, we exchange it with the
local demand. This means that for each edge (bi, pi,1) we are either satisfying
two of the demands crossing it or none and furthermore that if we are satisfying
two, one of them is going “left” (that is, its other endpoint is towards bi−1)
and the other is going “right” (so its other endpoint is towards bi+1). Therefore,
the number of satisfied requests going through each edge (bi, bi+1) is constant
for all i; call this number L. We will establish that L = k. Pick an arbitrary
satisfied demand which uses a backbone edge and delete it from the solution.
This will reduce the size of the solution by one, but it will also allow us to reduce
L by one, since by the same arguments used before we can make the number
of satisfied demands on each backbone edge the same without affecting the size
of the solution2. Repeat this process L times and now we have a solution which
satisfies only local demands and has size n2 + k − L. Since there are exactly n2

local demands it must be the case that k = L. Now we can conclude that there
are k vertices in the branch connected to b0 whose demands are satisfied and all
subsequent global demands associated with them are also satisfied. These give
us a neighborhood packing in the original graph because if two of them had
a common neighbor the solution would be exceeding some branch’s bottleneck
capacity of 2.

It is not hard to modify this reduction to also work for bi-directed trees. The
only difference in the network is that edges (bi, pi,1) are given a capacity of 1,
since they are intended to be traversed twice but in different directions, and that
it is now sufficient to have W = k since all the global demands corresponding
to a vertex are non-intersecting. Other than that we remain consistent with the
ordering that we have implied in our description, that is, every global demand
is ordered towards the vertex that lies further to the right (the vertex closer to
pn+1,n so to speak). We also make sure that the local demands are directed in
such a way that they intersect both global demands with which they share an
edge and the rest of the arguments of the reduction go through unchanged. �	

Theorem 3. (cW, pΔ)-MaxPC is W[1]-hard for both undirected and bi-directed
trees. The result holds even for instances where all the vertices but one have
degree bounded by 3.

Proof. Once again we will describe a reduction from DNP, but now the produced
instance will have maximum degree depending on k and constant W . We will
reuse some of the ideas of Theorem 2, properly adjusted. Again we will first

2 This is implicitly relying on the fact that all global demands must intersect some
local demand, which is true if the original graph had no isolated vertices.
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describe a construction for undirected graphs and then discuss how it can be
modified for bi-directed graphs.

Take k copies of a path on n vertices and label the vertices Si,j , 1 ≤ i ≤ k, 1 ≤
j ≤ n. Take k more copies and label the vertices Ti,j, 1 ≤ i ≤ k, 1 ≤ j ≤ n. Add a
new vertex to the graph, call it C, and connect it to all Si,n and Ti,n for 1 ≤ i ≤ k.
Set the capacities of all edges to 1. Also, for each i, j, 1 ≤ i ≤ k, 1 ≤ j ≤ n add
a demand from S(i, j) to T (i, j).

Before we go on, let us examine the construction so far. It should be clear that
the optimal solution satisfies k paths by selecting k vertices in the S branches
and their corresponding vertices in the T branches. The k selected vertices will
eventually encode the vertices we will pick for our neighborhood packing. What
is of course missing is some machinery to ensure that our selection is indeed a
packing in the original graph.

The constraints of a valid packing can be broken down as follows: for each of
the

(
k
2

)
pairs of vertices selected for the packing we must make sure that they do

not share common neighbors. Thus, our basic tool will be a gadget that takes two
of the k choices we have made and checks their compatibility. We will make

(
k
2

)
copies of that gadget, attach them to C and then properly reroute the demands
from S to T vertices through these gadgets.

To describe the pairwise consistency gadget, consider the instance constructed
in the proof of Theorem 2. We modify it as follows: First, we add local requests
gadgets, identical as those used in vertices pi,j , 1 ≤ i, j ≤ n to the vertices of
the paths p0 and pn+1. We extend all demands which currently had an end-
point in p0,j or pn+1,j for some j ∈ {1, . . . , n} to the vertices v0,j and un+1,j

respectively, so that they intersect the new local demands. Now we make an
exact copy of the branch p0 and all its connected gadgets (i.e. the vertices
p0,j, u0,j , v0,j , w0,j , 1 ≤ j ≤ n). We call the new branch p′0 (and the new ver-
tices respectively p′0,j , u

′
0,j, v

′
0,j , w

′
0,j , 1 ≤ j ≤ n) and attach it also to b0. We also

make sure to replicate all demands that existed between the branch p0 and the
rest of the graph so that corresponding demands are placed between the branch
p′0 and the rest of the graph. We perform another full copy for the branch pn+1

producing the branch p′n+1 with identical vertices and demands and attach this
to bn+1. Now the whole gadget has n(n + 4) local demands overall. We set the
capacities of all backbone edges to 4, all edges used by local demands to 1 and
all other edges to 2.

To demonstrate the use of this gadget we will connect one such gadget on our
initial construction and use it to ensure that in the optimal solution the choices
encoded in the paths S1 and S2 (i.e. the encoding of the first two choices for
the packing) are compatible. Take a gadget as described and connect its b0 to
C by an edge of capacity 4. Recall that for all j ∈ {1, . . . , n} there is a demand
from S1,j to T1,j. Remove these n demands and for all j ∈ {1, . . . , n} add a
demand from S1,j to u0,j and a demand from vn+1,j to T1,j (in other words
we are rerouting the S1 → T1 demands through the gadget). Do the same for
demands from S2 to T2, only reroute them through the p′0 and p′n+1 branches.
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A solution of size n(n+4)+k can be achieved now iff the selections for active
vertices in S1 and S2 are compatible, that is, the corresponding vertices of the
initial graph have no common neighbors. This follows from the analysis of the
properties of our gadget performed in Theorem 2.

It is now possible to complete the construction by adding more of the con-
sistency gadgets so as to make sure that all

(
k
2

)
pairs of choices are compatible.

The final graph consists of the
(
k
2

)
gadgets plus the 2k paths all attached to a

single vertex of degree
(
k
2

)
+ 2k. The total number of vertices is O(n2k2) and

a solution of size
(
k
2

)
n(n + 4) + k can be achieved iff the original graph has a

packing of size k.
Modifying this construction to bi-directed trees is again strightforward, since

a direction was implicit in our description. Again the only major difference is
that we change edges with capacities 4 and 2 to capacities 2 and 1 respectively.
For the last remark of the theorem, notice that the only vertex of high degree is
C. All other vertices have degree at most 3, except the b0 vertices of the gadgets,
but even this can easily be fixed since it is not necessary for the reduction to
attach p′0 and p0 to the same vertex. We can simply subdivide the (b0, b1) edge
and attach p′0 there. �	

Theorem 4. (cW, cΔ, pt)-MaxPC and (cW, cΔ, pt)-MaxRPC are W[1]-hard
for both undirected and bi-directed graphs.

As a final note in this section, note that it is known that assuming standard
complexity assumptions (specifically the Exponential Time Hypothesis which
states that 3-SAT cannot be solved in time 2o(n), see [13]) it is not possible to find
an independent set of size k on an n-vertex graph in time no(k). The reductions
in Theorems 2 and 4 are linear in the parameter, meaning that assuming the
ETH we know there is no no(W ) algorithm for MaxPC even for binary trees and
there is no no(t) algorithm, even when W = 2, Δ = 4. The reduction in Theorem
3 is quadratic in the parameter, meaning that no no(

√
Δ) algorithm is possible

(see [3]). Putting these results together tells us that no no(Wt
√

Δ) algorithm is
possible. Contrasting this with the algorithm of Theorem 1 we see that the only
small gap left to close here is the complexity as a function of Δ.

4 Parameterizations Involving the Objective Function

In this section we investigate parameterizations of MaxPC where the number of
satisfied demands is involved in the parameters. In addition to the parameters of
the previous section we consider cases where either one wishes to reject a small
number T of requests or one wishes to satisfy at least a small number of requests
B. Note that T cannot possibly lead to tractability results if considered as the
only parameter as the case T = 0 is exactly the PC case which is known to be
NP-hard even for simple graph topologies. Thus, T is considered as a parameter
together with W and Δ, a combination known to make PC tractable, but for
which MaxPC is still intractable after the results of the previous section.
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More specifically, for bi-directed trees PC is known to be hard even when
Δ = 3 for unbounded W , or for W = 1 for unbounded Δ. Therefore, any
parameterization involving T would have to include both Δ and W as parameters
if it were to be tractable for such trees. Here we show that (pW, pΔ, pT )-MaxPC

is indeed fixed-parameter tractable for bi-directed and also for undirected trees.

Theorem 5. (pW, pΔ, pT )-MaxPC is FPT for both undirected and bi-directed
trees.

Thus, for the three parameters Δ, W, T the problem is now settled for bi-directed
trees: if all three are part of the parameter the problem is FPT, if we drop T the
problem is W[1]-hard from the results of the previous section and if we drop any
of the other two the problem is NP-hard. For undirected trees it is an interesting
question what happens if one drops only W from the list of parameters (the
problem (pΔ, pT )-MaxPC). Here we will resolve a special case of this problem
by showing that (pT )-MaxPC is FPT when restricted to undirected binary
trees.

Theorem 6. (pT )-MaxPC is FPT on undirected trees of maximum degree 3.

Proof. (Sketch) The algorithm relies on the fact that PC on undirected trees can
be decomposed into PC on stars. We first apply this step and locate good (i.e.
locally colorable) and bad stars, pruning away parts of the tree where everything
is good. Now, a kernelization-like argument shows that the resulting tree cannot
have more than O(T ) leaves, otherwise it will be impossible to touch all bad
stars by dropping only T requests. By extension, there can be no more than
O(T ) internal vertices of degree 3 without attached leaves. So, we are left with
a graph such that if we remove all leaves most vertices have degree 2 and there
is a small number (O(T )) of “special” other vertices (degree 3 or 1).

Now, to select the first endpoint of a request to be dropped we simply pick
one of the bad leaves. The last crucial ingredient is that for the second endpoint
we can either guess the other endpoint among the O(T ) “special” vertices, or if
the other endpoint is a non-special vertex we can use a provably optimal greedy
criterion of picking the endpoint that is furthest away.

We remark that this last step is the only part of the algorithm that crucially
relies on Δ = 3, as all previous arguments work generally when Δ is a parameter.

�	

Let us now move on to consider the “natural” parameterization of MaxPC,
that is, the case where the parameter is simply the number of demands B one
seeks to satisfy. In this case the hardness results for PC are of course irrelevant.
Here we solve the problem for any topology where the naturally parameterized
version of MaxEDP is FPT using a randomized color-coding technique.

Theorem 7. In any graph topology where (pB)-MaxEDP is FPT,
(pB)-MaxPC is also FPT.
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Corollary 1. (pB)-MaxPC is FPT on undirected trees and rings.

For bi-directed trees it is known that MaxEDP is NP-hard ([7]), so we cannot
immediately apply Theorem 7. Here we will prove that its naturally parameter-
ized version is FPT, a result which may be of independent interest.

Theorem 8. (pB)-MaxEDP is FPT on bi-directed trees.

Corollary 2. (pB)-MaxPC is FPT on bi-directed trees.

5 Conclusions and Open Problems

A short way to summarize the results of this paper is the following: it was known
that having small (or moderate) Δ and W can help solve PC on trees. We showed
that in general this cannot help us much to solve MaxPC, but it does still help
if we only want to reject a small (or moderate) number of requests. This short
summary captures to a large extent our results for bi-directed trees, while for
the undirected case, where it is known that small Δ alone suffices to make PC

tractable, we have left the complexity of (pΔ, pT )-MaxPC as an interesting
open problem, though settling the special case of Δ = 3 (recall that even this is
known to be intractable for the bi-directed case).

Much else could be done in the general direction of this work by experiment-
ing with more parameters for the MaxPC problem and their combinations. In
particular, all the structural parameters we considered here have to do with the
network only. It would be nice to also explore parameters that have to do with
the structure of the demands, for example limiting the maximum number of
demands touching a vertex, or the maximum length of a demand. Also, many
variations of MaxPC have been proposed in the past (e.g. multi-fiber networks,
networks with limited hops where color conversion is allowed) and each is likely
to have its own reasonable parameters to be exploited.
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Abstract. We study the Cutwidth problem, where input is a graph G,
and the objective is find a linear layout of the vertices that minimizes the
maximum number of edges intersected by any vertical line inserted be-
tween two consecutive vertices. We give an algorithm for Cutwidth with
running time O(2knO(1)). Here k is the size of a minimum vertex cover of
the input graph G, and n is the number of vertices in G. Our algorithm
gives an O(2n/2nO(1)) time algorithm for Cutwidth on bipartite graphs
as a corollary. This is the first non-trivial exact exponential time algorithm
for Cutwidth on a graph class where the problem remains NP-complete.
Additionally, we show that Cutwidth parameterized by the size of the
minimum vertex cover of the input graph does not admit a polynomial
kernel unless NP ⊆ coNP/poly. Our kernelization lower bound contrasts
the recent result of Bodlaender et al.[ICALP 2011] that Treewidth pa-
rameterized by vertex cover does admit a polynomial kernel.

1 Introduction

In the Cutwidth problem we are given an n-vertex graph G together with
an integer w. The task is to determine whether there exists a linear layout of
the vertices of G such that any vertical line inserted between two consecutive
vertices of the layout intersects with at most w edges. The cutwidth (cw(G))
of G is the smallest w for which such a layout exists. The problem has nu-
merous applications [8,19,20,25], ranging from circuit design [1,23] to protein
engineering [4]. Unfortunately Cutwidth is NP-complete [14], and remains so
even when the input is restricted to subcubic planar bipartite graphs [24,10] or
split graphs [16] where all independent set vertices have degree 2. On the other
hand, the problem has a factor O(log2(n))-approximation on general graphs [22]
and is polynomial time solvable on trees [28,9], graphs of constant treewidth
and constant degree [27], threshold graphs [16], proper interval graphs [29] and
bipartite permutation graphs [15].

In this article we study the complexity of computing cutwidth exactly on
general graphs, where the running time is measured in terms of the size of the
smallest vertex cover of the input graph G. A vertex cover of G is a vertex

D. Marx and P. Rossmanith (Eds.): IPEC 2011, LNCS 7112, pp. 246–258, 2012.
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set S such that every edge of G has at least one endpoint in S. We show that
Cutwidth can be solved in time 2knO(1) where k is the size of the smallest vertex
cover of G. An immediate consequence of our algorithm is that Cutwidth can
be solved in time 2n/2nO(1) on bipartite graphs. This is the first non-trivial
exact exponential time algorithm for Cutwidth on a graph class where the
problem is NP-complete. Furthermore, our algorithm improves considerably over
the previous best algorithm for Cutwidth parameterized by vertex cover [11],
whose running time is O(22O(k)

nO(1)) (however, it was not the focus of [11] to
optimize the running time dependence on k).

Additionally, we show that Cutwidth parameterized by vertex cover does
not admit a polynomial kernel unless CoNP ⊆ NP/poly. A polynomial kernel
for Cutwidth parameterized by vertex cover is a polynomial time algorithm
that takes as input a Cutwidth instance (G, w), where G has a vertex cover
of size at most k and outputs an equivalent instance (G′, w′) of Cutwidth

such that G′ has at most kO(1) vertices. We show that unless NP ⊆ coNP/poly
such a kernelization algorithm can not exist. This contrasts a recent result of
Bodlaender et al. [6] that Treewidth parameterized by the vertex cover number
of the input graph does admit a polynomial size kernel.

Context of our work. The Cutwidth problem is one of many graph layout
problems, where the task is to find a permutation of the vertices of the in-
put graph that optimizes a problem specific objective function. Graph layout
problems, such as Treewidth, Bandwidth and Hamiltonian Path are not
amenable to “branching” techniques, and hence the design of faster exact ex-
ponential time algorithms for these problems has resulted in several new and
useful tools. For example, Karps inclusion-exclusion based algorithm [21] for
Hamiltonian Path was the first application of inclusion-exclusion in exact al-
gorithms. Another example is the introduction of potential maximal cliques as
a tool for the computation of treewidth. Most graph layout problems (with the
exception of Bandwidth) admit an O(2nnO(1)) time dynamic programming al-
gorithm [2,17]. For several of these problems, faster algorithms with running time
below O(2n) have been found [3,12,26], a stellar example is the recent algorithm
by Björklund [3] for Hamiltonian Path. The Cutwidth problem is perhaps
the best known graph layout problem for which a O(2nnO(1)) time algorithm
is known, yet no better algorithm has been found. Hence, whether such an im-
proved algorithm exists is a tantalizing open problem. While we do not resolve
this problem in this article, we make considerable progress; hard instances of
Cutwidth can not contain any independent set of size cn for any c > 0.

The study of kernelization for problems parameterized by vertex cover has re-
cently received considerable attention [5,6,18]. The existence of a O(2kO(1)

nO(1))
time algorithm is a necessary, but not sufficient condition for Cutwidth param-
eterized by vertex cover to have a polynomial kernel. Hence our O(2knO(1)) time
algorithm makes it natural to ask whether such a kernel exists. In particular, the
recent result of Bodlaender et al. [6], that Treewidth parameterized by vertex
cover admits a polynomial kernel suggests that Cutwidth might have one as
well. We show that this is not the case, unless NP ⊆ coNP/poly.
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Organization of the paper. In Section 2 we present a dynamic programming
algorithm which computes cutwidth in time O(2knO(1)) for a given vertex cover
of size k, whereas in Section 3 we show that Cutwidth parameterized by vertex
cover does not admit a polynomial kernel unless NP ⊆ coNP/poly. Section 4 is
devoted to concluding remarks.

Notation. All graphs in this paper are undirected and simple. For a vertex
v ∈ V we define its neighbourhood NG(v) = {u : uv ∈ E(G)} and closed
neighbourhood NG[v] = NG(v) ∪ {v}. If G is clear from the context, we might
omit the subscript. For X ⊆ V we denote NG[X ] =

⋃
v∈X NG(v) \ X .

2 Faster Cutwidth Parameterized by Vertex Cover

In this section we show that given a graph G = (C∪I, E) such that C is a vertex
cover of G of size k, we can compute the cutwidth of G in time O(2knO(1)), using
a dynamic programming approach. We start by showing that there always exists
an optimal ordering of a specific form.

For an ordering σ = v1 . . . vn of V = C ∪ I we define Vi = {vj : j ≤ i}. For
vertices u and v ∈ V we say that u ≤σ v if u occurs before v in σ. Denote by
δ(Vi) the number of edges between Vi and V \ Vi. The cutwidth of the ordering,
cwσ(G), is defined as the maximum of δ(Vi) for i = 1, 2, . . . , |V | − 1. The rank
of a vertex vi with respect to σ is denoted by rankσ(vi) and it is equal to
|N(vi) \ Vi| − |N(vi)∩ Vi|. Notice that δ(Vi+1) = δ(Vi) + rankσ(vi+1) and hence
δ(Vi) =

∑
j≤i rankσ(vj). Moving a vertex vp backward to position q with q < p

results in the ordering

σ′ = v1v2 . . . vq−2vq−1vpvqvq+1 . . . vp−2vp−1vp+1vp+2 . . . vn.

Moving vp forward to a position q with q > p results in the ordering

σ′ = v1v2 . . . vp−2vp−1vp+1vp+2 . . . vq−2vq−1vpvqvq+1 . . . vn.

Notice that any vertex with odd degree must have (nonzero) odd rank.

Lemma 1. If moving vp backward to position q results in an ordering σ′ such
that rankσ′ (vp) ≤ 0 then cwσ′(G) ≤ cwσ(G). If moving vp forward to position q
results in an ordering σ′ such that rankσ′ (vp) ≥ 0 then cwσ′(G) ≤ cwσ(G).

Proof. Suppose moving vp backward to position q results in an ordering σ′ such
that rankσ′ (vp) ≤ 0. For every non-negative integer i define V ′

i to contain the
first i vertices of σ′. Then, for every i < q and i ≥ p we have V ′

i = Vi and hence
δ(V ′

i ) = δ(Vi). For every i such that q ≤ i < p we have that V ′
i = Vi−1 ∪ {vp}.

Observe that for any other vertex vj , j �= p, rankσ′ (vj) ≤ rankσ(vj), while
rankσ′ (vp) ≤ 0. Thus δ(V ′

i ) = rankσ′(vp) +
∑

j≤i−1 rankσ′ (vj) ≤ δ(Vi−1) and
cwσ′(G) ≤ cwσ(G). The proof that if moving vp forward to position q results in
an ordering σ′ such that rankσ′ (vp) ≥ 0 then cwσ′(G) ≤ cwσ(G) is analogous.

�	
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Lemma 1 allows us to rearrange optimal orderings. Let σ be an optimal cutwidth
ordering of G, c1c2 . . . ck be the ordering which σ imposes on C and Ci =
{c1, . . . , ci} for every i. Observe that if u and v are both in I then moving u
does not affect the rank of v. In particular, if moving u yields the ordering
σ′, then rankσ′ (v) = rankσ(v). For every vertex u ∈ I with odd degree and
rankσ(u) < 0 we move u backward to the leftmost position where u has rank
−1. For every vertex u ∈ I with odd degree and rankσ(u) > 0 we move u forward
to the rightmost position where u has rank 1. For every vertex of the set I with
even degree we move it (forward or backward) to the rightmost position where
u has rank 0. This results in an optimal cutwidth ordering σ′ with the following
properties.

1. For every vertex v ∈ I of even degree rankσ′ (v) = 0 and every vertex v ∈ I
of odd degree rankσ′ (v) ∈ {−1, 1}.

2. For every vertex v ∈ I such that rankσ′ (v) ≥ 0 and ci ∈ C we have ci ≤σ′ v
if and only if |N(v) ∩ Ci| ≤ |N(v) \ Ci|.

3. For every vertex v ∈ I such that rankσ′ (v) < 0 and ci ∈ C we have ci ≤σ′ v
if and only if |N(v) ∩ Ci−1| < |N(v) \ Ci−1|.

Define I ′0 and I ′k to be the set of vertices in I appearing before c1 and after ck

in σ′, respectively. For i between 1 and k − 1 we denote I ′i the set of vertices in
I appearing between ci and ci+1 in σ′. For any i, if I ′i contains any vertices of
rank −1, we move them backward to the position right after ci. This results in
an ordering σ′′ where for every i, all the vertices of I ′i with negative rank appear
before all the vertices of I ′i with non-negative rank. By Lemma 1 and the fact
that moving a vertex from independent set does not affect the rank of another
vertex from the independent set we have that σ′′ is still an optimal cutwidth
ordering. Also, σ′′ satisfies the properties 1 − 3. We say that an ordering σ is
C-good if it satisfies properties 1 − 3 and orders the vertices between vertices of
C in such a way that all vertices of negative rank appear before all vertices of
non-negative rank. The construction of σ′′ from an optimal ordering σ proves
the following lemma.

Lemma 2. Let G = (C ∪ I, E) be a graph and C be a vertex cover of G. There
exists an optimal cutwidth ordering σ of G which is C-good.

In a C-good ordering σ, consider a position i such that ci ∈ C. Because of the
properties of a C-good ordering we can essentially deduce Vi ∩ I from Vi ∩ C
and the vertex ci. We will now formalize this idea. For a set S ⊆ C and vertex
v ∈ S we define the set X(S, v) ⊆ I as follows. A vertex u ∈ I of even degree is
in X(S, v) if |N(u)∩ S| > |N(u) \ S|. A vertex u ∈ I of odd degree is in X(S, v)
if |N(u)∩ (S \{v})| > |N(u)\ (S \{v})|. Now we define the set Y (S, v). A vertex
u ∈ I is in Y (S, v) if uv ∈ E and |(N(u)\{v})∩S| = |(N(u)\{v})\S|. Note that
the vertices in Y (S, v) have odd degrees and Y (S, v) is disjoint with X(S, v). The
following observation follows directly from the properties of a C-good ordering.

Observation 3. In a C-good ordering σ let i be an integer such that ci ∈ C
and let S = Vi ∩ C. Then X(S, ci) ⊆ Vi ∩ I ⊆ X(S, ci) ∪ Y (S, ci).
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A prefix ordering φ is a set Vφ ⊆ C ∪ I together with an ordering of Vφ. The
size of the prefix ordering φ is just |Vφ|. Similarly to normal orderings we define
V φ

i = {v1 . . . vi}. Let c1c2 . . . c|Vφ∩C| be the ordering imposed on Vφ ∩ C by φ,
and for every i ≤ |Vφ ∩C| we set Cφ

i = {c1, . . . , ci}. The rank of a vertex v ∈ Vφ

with respect to φ is defined as rankφ(vi) = |N(vi) \V φ
i | − |N(vi)∩V φ

i |. We now
extend the notion of being C-good from orderings of G to prefix orderings of G
in such a way that that the restriction of any C-good ordering σ of G to the
first t vertices, where vt ∈ C, must be C-good. We say that a prefix ordering
φ = v1 . . . vt of size t with vt ∈ C is C-good if the following conditions are
satisfied.

1. For every vertex v ∈ Vφ∩I of even degree, rankφ(v) = 0 and for every vertex
v ∈ Vφ ∩ I of odd degree, rankφ(v) ∈ {−1, 1}.

2. X(Vφ ∩ C, vi) ⊆ Vφ ∩ I ⊆ X(Vφ ∩ C, vi) ∪ Y (Vφ ∩ C, vi)
3. For every vertex v ∈ X(Vφ ∩ C, ci) such that rankφ(v) ≥ 0 and ci ∈ Vφ ∩ C

we have ci ≤φ v if and only if |N(v) ∩ Cφ
i | ≤ |N(v) \ Cφ

i |.
4. For every vertex v ∈ X(Vφ ∩ C, ci) such that rankφ(v) < 0 and ci ∈ Vφ ∩ C

we have ci ≤φ v if and only if |N(v) ∩ Cφ
i−1| < |N(v) \ Cφ

i−1|.
5. Between two vertices ci, ci+1 ∈ C ∩ Vφ, all vertices with rankφ(v) < 0 come

before all vertices with rankφ(v) ≥ 0.

Comparing the properties of C-good orderings and C-good prefix orderings it is
easy to see that the following lemma holds.

Lemma 4. Let σ = v1 . . . vn be a C-good ordering and let φ be the restriction
of σ to the first t vertices, such that vt ∈ C. Then φ is a C-good prefix ordering.

For a prefix ordering φ define the cutwidth of G with respect to φ to be cwφ(G) =
maxi≤|Vφ| δ(V φ

i ). For a subset S of C and vertex v ∈ S, define T (S, v) to be the
minimum value of cwφ(G) where the minimum is taken over all C-good prefix
orderings φ with Vφ ∩ C = S and v being the last vertex of φ. Notice that
property 5 of C-good prefix orderings implies that in a C-good prefix ordering
φ there must be some i with vi ∈ C ∩Vφ such that cwφ(G) = δ(Vi) or cwφ(G) =
δ(Vi−1). Also, notice that for any set S ⊆ C and vertices u, v ∈ S we have
that X(S \ {v}, u) ⊆ X(S, v) and Y (S \ {v}, u) ⊆ X(S, v). Finally, observe that
for any set S ⊆ C and vertex v ∈ S, every vertex u ∈ Y (S, v) is adjacent
to v and satisfies |(N(u) \ {v}) ∩ S| = |(N(u) \ {v}) \ S|. Thus, for any set
I ′ ⊆ I with X(S, v) ⊆ I ′ ⊆ X(S, v) ∪ Y (S, v) the value of δ(S ∪ I ′) depends
only on |Y (S, v) ∩ I ′| and not on Y (S, v) ∩ I ′ in general. We let Yi(S, v) be
an arbitrary subset of Y (S, v) of size i. The discussion above yields that the
following recurrence holds for T (S, v), where S ⊆ C and v ∈ S.

T (S, v) = min
u∈S

min
0≤i≤|Y (S,v)|

max

⎧⎨⎩ δ(S ∪ X(S, v) ∪ Yi(S, v))
δ((S \ {v}) ∪ X(S, v) ∪ Yi(S, v))

T (S \ {v}, u)

⎫⎬⎭ .
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Observe that cw(G) = minv∈C T (S, v) because in any ordering σ all vertices of
I appearing after the last vertex of C must have negative rank. Thus the recur-
rence above naturally leads to a dynamic programming algorithm for Cutwidth

running in time O(2knO(1)). This proves the main theorem of this section.

Theorem 5. There is an algorithm that given a graph G = (C ∪ I, E) such
that C is a vertex cover of G, computes the cutwidth of G in running time
O(2|C|(|C| + |I|)O(1)). Thus, Minimum Cutwidth on bipartite graphs can be
solved in time O(2n/2nO(1)), where n is the number of vertices of the input graph.

3 Kernelization Lower Bound

In this section we show that Cutwidth parameterized by vertex cover does not
admit a polynomial kernel unless NP ⊆ coNP/poly.

3.1 The Auxiliary Problem

We begin with introducing an auxiliary problem, namely Hypergraph Mini-

mum Bisection. Let H = (V, E) be a multihypergraph with |V | = n, where
n is even. A bisection of V is a colouring B : V → {0, 1} such that |B−1(0)| =
|B−1(1)| = n/2. For a hyperedge e let us define the cost of e with respect
to a bisection B as cost(e,B) = min

(∣∣e ∩ B−1(0)
∣∣ ,

∣∣e ∩ B−1(1)
∣∣). The cost of

a bisection is defined as the sum of the contributions of the hyperedges, i.e.,
cost(B) =

∑
e∈E cost(e,B).

Hypergraph Minimum Bisection Parameter: n
Input: Multihypergraph H with n vertices, where n is even; an integer k
Question: Does there exist a bisection of H with cost at most k?

In the case when all the hyperedges are in fact edges (have cardinalities 2) and
there are no multiedges, the problem is equivalent to the classical Minimum

Bisection problem. As Minimum Bisection is NP-hard, Hypergraph Min-

imum Bisection is also NP-hard, so NP-complete as well.
The goal now is to prove that Cutwidth parameterized by the size of ver-

tex cover does not admit a polynomial kernel, unless NP ⊆ coNP/poly. We do
it in two steps. First, using the OR-distillation technique of Fortnow and San-
thanam [13] we prove that Hypergraph Minimum Bisection does not admit a
polynomial kernel, unless NP ⊆ coNP/poly. Second, we present a parameterized
reduction of Hypergraph Minimum Bisection to Cutwidth parameterized
by vertex cover.

3.2 No Polykernel for Hypergraph Minimum Bisection

We use the OR-distillation technique by Fortnow and Santhanam [13], put into
framework called cross-composition by Bodlaender et al. [5]. Let us recall the
crucial definitions.
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Definition 6 (Polynomial equivalence relation [5]). An equivalence rela-
tion R on Σ∗ is called a polynomial equivalence relation if (1) there is an algo-
rithm that given two strings x, y ∈ Σ∗ decides whether R(x, y) in (|x| + |y|)O(1)

time; (2) for any finite set S ⊆ Σ∗ the equivalence relation R partitions the
elements of S into at most (maxx∈S |x|)O(1) classes.

Definition 7 (Cross-composition [5]). Let L ⊆ Σ∗ and let Q ⊆ Σ∗ × N
be a parameterized problem. We say that L cross-composes into Q if there is
a polynomial equivalence relation R and an algorithm which, given t strings
x1, x2, . . . xt belonging to the same equivalence class of R, computes an instance
(x∗, k∗) ∈ Σ∗ ×N in time polynomial in

∑t
i=1 |xi| such that (1) (x∗, k∗) ∈ Q iff

xi ∈ L for some 1 ≤ i ≤ t; (2) k∗ is bounded polynomially in maxt
i=1 |xi|+ log t.

Theorem 8 ([5], Theorem 9). If L ⊆ Σ∗ is NP-hard under Karp reductions
and L cross-composes into the parameterized problem Q that has a polynomial
kernel, then NP ⊆ coNP/poly.

Lemma 9. Hypergraph Minimum Bisection does not admit a polynomial
kernel, unless NP ⊆ coNP/poly.

Proof. As Minimum Bisection is NP-hard under Karp reductions, it suffices
to prove that it cross-composes into the Hypergraph Minimum Bisection

problem. Let R be an equivalence relation on Σ∗ defined as follows:

– all words that do not correspond to instances of Minimum Bisection form
one equivalence class;

– all the well-formed instances are partitioned into equivalence classes hav-
ing the same number of vertices, the same number of edges and the same
demanded cost of the bisection.

It is straightforward, that R is a polynomial equivalence relation. Therefore,
we can assume that the composition algorithm is given a sequence of instances
(G0, k), (G1, k), . . . , (Gt−1, k) of Minimum Bisection with |V (Gi)| = n and
|E(Gi)| = m for all i = 0, 1, . . . , t − 1 (n is even). Moreover, by copying some
instances if necessary we can assume without losing generality that t = 2l for
some integer l. Note that in this manner we do not increase the order of log t.

We now proceed to the construction of the composed Hypergraph Minimum

Bisection instance (H, K). Let N = 2m · ((l + 2)2l−1 − 1) + 2k + 1 and M =
N(l2− l)+N . We begin with creating two sets of vertices A0 and A1, each of size
2nl. We introduce each set A0, A1 as a hyperedge of the constructed hypergraph
M times.

Then, we introduce 2l vertices s0
i , s

1
i for i = 0, 1, . . . , l − 1 and denote the

set of all these vertices by S. For every i �= j we put N times each hyperedge
{s0

i , s
0
j}, {s0

i , s
1
j}, {s1

i , s
0
j}, {s1

i , s
1
j}. Thus, the hypergraph induced by S is a

clique without a matching, repeated N times. Furthermore, for every p = 0, 1
and i = 0, 1, . . . , l − 1 we construct a set Sp

i of n − 1 vertices and put Sp
i ∪ {sp

i }
as a hyperedge of the constructed hypergraph M times.
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Fig. 1. The constructed hypergraph H for l = 3; encircled vertices indicate the hyper-
edge e0 constructed for e = v5

1v5
2 ∈ E(G5)

Now, we construct a set of n vertices v1, v2, . . . , vn and denote it by W . For
every instance Ga we arbitrarily choose an ordering of its vertices va

1 , va
2 , . . . , va

n.
Let bl−1bl−2 . . . b1b0 be the binary representation of a, with trailing zeroes added
so that its length is equal to l. For every edge e = va

gva
h ∈ E(Ga) we create two

hyperedges:

– e0, consisting of vertices vg, vh, sbi

i for all i = 0, 1, . . . , l − 1 and l vertices
from A1, chosen arbitrarily;

– e1, consisting of vertices vg, vh, s1−bi

i for all i = 0, 1, . . . , l − 1 and l vertices
from A0, chosen arbitrarily.

Finally, we set the expected cost of the bisection to K = M − 1 = N(l2 − l) +
2m · ((l + 2)2l−1 − 1) + 2k.

Now, assume that some graph Ga has a bisection B having cost at most k. Let
bl−1bl−2 . . . b1b0 be the binary representation of a, as in the previous paragraph.
We now construct a bisection B′ of H as follows:

– for each u ∈ A0 we set B′(u) = 0, for each u ∈ A1 we set B′(u) = 1;
– for each u ∈ Sp

i ∪ {sp
i } for p = 0, 1, i = 0, 1, . . . , l − 1 we set B′(u) = p + bi

(mod 2);
– for each vj ∈ W we set B′(vj) = B(va

j ).

Observe that B′ bisects each of the sets A0 ∪ A1, S and W , so it is a bisection.
We now prove that its cost is at most K. Let us count the contribution to the
cost from every hyperedge of H .

Each copy of hyperedges A0, A1 and Sp
i ∪{s

p
i } for p = 0, 1, i = 0, 1, . . . , l−1 has

zero contribution, as it is monochromatic. The edges of H [S] have contribution 0
or 1, depending whether the endpoints are coloured in the same or in a different
way in B′. There are l vertices sp

i that map to 0 in B′ and l that map to 1, so
there are l2 pairs of vertices coloured in a different way. Between every pair of
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vertices there are N edges, apart from pairs (s0
i , s

1
i ). Note that all these pairs

are coloured differently; therefore, there are exactly N(l2 − l) edges in H [S]
contributing 1 to the cost.

Take c ∈ {0, 1, . . . , t − 1} such that c �= a. Let dl−1dl−2 . . . d0 be the binary
representation of c. For e ∈ E(Gc) let us count the contribution to cost(B′) of
hyperedges e0 and e1. Suppose that q = |{i : bi �= di}| > 0. Among vertices of
e0, l from A1 are coloured 1, q from S are coloured 1 as well and l − q from S
are coloured 0. In total, we have l + q vertices coloured 1 and l− q coloured 0, so
regardless of the colouring of the remaining two vertices from W , the contribution
is equal to the number of vertices coloured 0 in e0, namely l−q+|e0∩W∩B′−1(0)|.
Analogously, the contribution of the hyperedge e1 is equal to the number of
vertices of e1 coloured 1, namely l− q + |e1 ∩W ∩B′−1(1)|. As there are exactly
two vertices in e0∩W = e1∩W , cost(e0,B′)+cost(e1,B′) = 2(l−q)+2. Thus, the
total contribution of hyperedges e0, e1 for e ∈ E(Gc) is equal to 2m(l− q) + 2m.

Now we count the contribution of edges e0 and e1 for e ∈ E(Ga). Analogously
as in the previous paragraph, both edges e0, e1 contain l vertices coloured 0, l
vertices coloured 1 plus two vertices from W . If both these vertices are coloured
in the same way, the sum of contributions of e0 and e1 is equal to 2l; however,
if the vertices are coloured differently, the sum is equal to 2l + 2. As the cost of
bisection B was at most k, the total contribution of edges e0, e1 for e ∈ E(Ga)
is at most 2ml + 2k.

Finally, we sum up the contributions:

cost(B′) ≤ N(l2 − l) + 2m

l∑
q=1

(l − q + 1)
(

l

q

)
+ 2ml + 2k

= N(l2 − l) + 2m · (2l − 1) + 2m

l∑
q=0

(l − q)
(

l

q

)
+ 2k

= N(l2 − l) + 2m · (2l − 1) + 2ml2l−1 + 2k

= N(l2 − l) + N − 1 = K.

We proceed to the second direction. Assume that we have a bisection B′ of H such
that cost(B′) ≤ K. Observe that as M > K, both the sets A0, A1 are monochro-
matic with respect to B′. Moreover, they have to be coloured differently, as they
contain more than half of the vertices of the graph in total. Without losing gen-
erality we can assume that A0 is coloured in colour 0, while A1 is coloured in
colour 1, by flipping the colours if necessary.

Now consider the set Si
p ∪ {si

p} for p = 0, 1, i = 0, 1, . . . , l − 1. Analogously
as in the previous paragraph, Si

p ∪{si
p} has to be monochromatic. Furthermore,

observe that exactly l such sets have to be coloured 0 in B′ and the same number
have to be coloured 1, as every set Si

p∪{s
p
i } contains the same number of vertices

as the set W and B′ is a bisection. Therefore, B′ has to bisect each of the sets
A0 ∪ A1, S and W .

Exactly l vertices sp
i are coloured 0 in B′ and exactly l are coloured 1. Let r be

the number of indices i, such that s0
i and s1

i are coloured differently. Observe that
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analogously as previously, the contribution of the edges of H [S] to cost(B′) is
equal to N(l2−r) = N(l2−l)+N(l−r). If r < l, then cost(B′) ≥ N(l2−l)+N >
K, a contradiction. Therefore, all the pairs (s0

i , s
1
i ) are coloured differently.

Let a be a number with binary representation B′(s0
l−1)B′(s1

l−2) . . .B′(s1
0). Con-

sider a bisection B of Ga defined as follows: B(va
i ) = B′(vi). We claim that the

cost of B is at most k. Indeed, the same computations as in the previous part of
the proof show that

cost(B′) = N(l2 − l) + 2m((l + 2)2l−1 − 1) + 2cost(B)

Therefore, as cost(B′) ≤ K, then cost(B) ≤ k. �	

3.3 From Hypergraph Minimum Bisection to Cutwidth

Let us briefly recall the notion of polynomial parameter transformations.

Definition 10 ([7]). Let P and Q be parameterized problems. We say that P is
polynomial parameter reducible to Q, written P ≤p Q, if there exists a polynomial
time computable function f : Σ∗ × N → Σ∗ × N and a polynomial p, such that
for all (x, k) ∈ Σ∗ × N the following holds: (x, k) ∈ P iff (x′, k′) = f(x, k) ∈ Q
and k′ ≤ p(k). The function f is called a polynomial parameter transformation.

Theorem 11 ([7]). Let P and Q be parameterized problems and P̃ and Q̃ be the
unparameterized versions of P and Q respectively. Suppose that P̃ is NP-hard
and Q̃ is in NP. Assume there is a polynomial parameter transformation from
P to Q. Then if Q admits a polynomial kernel, so does P .

We apply this notion to our case.

Lemma 12. There exists a polynomial-time algorithm that, given an instance of
Hypergraph Minimum Bisection problem with n vertices, outputs an equiv-
alent instance of Cutwidth problem along with its vertex cover of size n.

Proof. Let (H = (V, E), k) be an instance of Hypergraph Minimum Bisec-

tion given in the input, where |V | = n (n is even) and |E| = m. We construct
a graph G as follows.

Let us denote N = mn + 1. We begin with taking the whole set V to the set
of vertices of G. For every distinct u, v ∈ V we introduce N new vertices xi

u,v

for i = 1, 2, . . . , N , each connected only to u and v. Then, for every e ∈ E we
introduce a new vertex ye connected to all v ∈ e. Denote the set of all vertices
xi

u,v by X and the set of all vertices ye by Y . This concludes the construction.
Observe that V is a vertex cover of G of size n. We now prove that H has a
bisection with cost at most k if and only if G has cutwidth at most n2N/4 + k.

Assume that H has a bisection B with cost at most k. Let us order the
vertices of the graph G as follows. Firstly, we order the vertices from V : we
place B−1(0) first, in any order, and then B−1(1), in any order. Then, we place
every xi

u,v anywhere between u and v. At the end, for every e ∈ E we place ye
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at the beginning if at least half of the vertices of e is in B−1(0), and in the end
otherwise. Vertices ye at the beginning and at the end are arranged in any order.

Now, we prove that the cutwidth of the constructed ordering is at most
n2N/4+k. Consider any cut C, dividing the order on V (G) into the first part V1

and second V2. Suppose that |V1 ∩ V | = n/2 − l for some −n/2 ≤ l ≤ n/2, thus
|V2∩V | = n/2+l. Observe that C cuts exactly N(n/2−l)(n/2+l) = n2N/4−l2N
edges between V and X . Note that there are not more than nm < N edges be-
tween V and Y . Therefore, if l �= 0, then C can cut at most n2N/4−N + nm <
n2N/4 + k edges.

We are left with the case when l = 0. Observe that V1 ∩ V = B−1(0) and
V2 ∩ V = B−1(1). Moreover, the cut C cuts exactly n2N/4 edges between sets
V and X . As far as edges between V and Y are concerned, for every hyperedge
e ∈ E cut C cuts exactly cost(e,B) edges incident with ye. As cost(B) ≤ k, the
cut C cuts at most n2N/4 + k edges.

Now assume that there is an ordering of vertices of G that has cutwidth at
most n2N/4 + k. We construct a bisection B of H as follows. Let B(v) = 0
for every v appearing among the first n/2 vertices from V with respect to the
ordering, and B(v) = 1 for v among the second n/2 vertices. We now prove that
the cost of this bisection is at most k.

Let C be any cut dividing the order into the first part V1 and the second part
V2, such that V1 ∩ V = B−1(0) and V2 ∩ V = B−1(1). As the cutwidth of the
ordering is at most n2N/4 + k, C cuts at most n2N/4 + k edges. Observe that
C needs to cut at least n2N/4 edges between sets V and X , therefore it cuts at
most k edges between sets V and Y . For every hyperedge e ∈ E, C cuts at least
cost(e,B) edges incident to ye, thus cost(B) ≤ k. �	

From Lemmata 9, 12 and Theorem 11 we can easily conclude the following.

Theorem 13. Cutwidth parameterized by the size of vertex cover does not
admit a polynomial kernel, unless NP ⊆ coNP/poly.

4 Conclusions

In this paper we studied the complexity of computing cutwidth of the graph
in terms of the size of given vertex cover. We have shown an algorithm with
running time O(2knO(1)), where k is the cardinality of the vertex cover and n is
the number of vertices of the graph. Moreover, we have proven that polynomial
kernelization of the problem is unlikely, thus counterpoising the recent result of
Bodlaender et al. [6].

The thrilling and natural question is whether the insight we gave into the
problem can be a starting point to breaking the 2n barrier for an exact algorithm
computing cutwidth. Our result implies that one can assume that in the hard
instance all the independent sets are small, i.e., of size not larger than cn for
arbitrarily small constant c > 0.
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Abstract. Parameterized algorithms are a very useful tool for dealing
with NP-hard problems on graphs. In this context, vertex cover is used as
a powerful parameter for dealing with problems which are hard to solve
even on graphs of bounded tree-width. The drawback of vertex cover is
that bounding it severely restricts admissible graph classes. We introduce
a new parameter called twin-cover and show that it is capable of solving
a wide range of hard problems while also being much less restrictive than
vertex cover and attaining low values even on dense graphs.

The article begins by introducing a new FPT algorithm for Graph
Motif on graphs of bounded vertex cover. This is the first algorithm
of this kind for Graph Motif. We continue by defining twin-cover and
providing some related results and notions. The next section contains a
number of new FPT algorithms on graphs of bounded twin-cover, with a
special emphasis on solving problems which are hard even on graphs of
bounded tree-width. Finally, section five generalizes the recent results of
Michael Lampis for MS1 model checking from vertex cover to twin-cover.

1 Introduction

One very successful approach to dealing with NP-hard problems on graphs is
the use of parameterized algorithms. The idea is that in real-life applications
it is usually not necessary to solve problems on general graphs, but rather on
graphs with some kind of structure present. It is then possible to use a structural
parameter k to describe this structure and use it to design algorithms which run
in polynomial time as long as k is bounded. Specifically, we are interested in so-
called Fixed Parameter Tractable (FPT) algorithms, i.e. those with a runtime of
O(f(k)·poly(n)). We refer to [6] for an introduction to parameterized complexity.

It is well known that FPT algorithms exist for a large number of NP-hard
problems on graphs of bounded tree-width. However, for those problems where
tree-width does not help, it is necessary to use more powerful parameters – ver-
tex cover being the most successful one to date. A wide range of such problems
have been solved in FPT time on graphs of bounded vertex cover, including Eq-
uitable Coloring[12], Equitable Connected Partition[7], Boxicity[1], Precoloring
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Extension[12], and various graph layout problems such as Imbalance, Cutwidth,
Distortion and Bandwidth [10].

So, if vertex cover is so powerful in parameterized algorithmics, why even
bother with other parameters at all? The answer is that any good structural
parameter needs to balance between being as powerful as possible (i.e. useful in
designing algorithms) while also being as little restrictive as possible (the class of
graphs with the parameter bounded should be rich). The greatest disadvantage
of vertex cover is that it is very restrictive, and this severely limits its practical
usefulness.

The main contribution of the article lies in introducing twin-cover as a much
more general alternative to vertex cover. Almost all interesting problems solvable
on graphs of bounded vertex cover also become easy on cliques, and so it was a
natural question to ask if one can take the best of the two worlds. We show that
twin-cover is capable of dealing with a very wide range of problems of practical
interest, some of which are hard even on graphs of bounded tree-width. In fact,
the contribution of twin-cover is twofold: it directly generalizes the best known
parameterized algorithms for problems where vertex cover is the most general
parameter for which the problem is FPT, and at the same time provides an
alternative to tree-width so that problems hard on clique-width can be solved
on dense graphs.

Additionally, the article contains a new parameterized algorithm for solving
the Graph Motif problem of graphs of bounded vertex cover. The algorithm is
located in the second section of the article, and we use it to familiarize the reader
with parameterized algorithm design on graphs of bounded vertex cover. Section
three introduces and discusses twin-covers, and includes a comparison with other
popular parameters as well as an algorithm for computing a twin-cover when its
size is bounded – a very useful property for structural parameters to have.

Sections four and five deal with algorithmic applications of the new parameter.
Specifically, section four contains several parameterized algorithms for graphs of
bounded twin-cover. Four of the solved problems are hard or open on graphs
of bounded tree-width, and vertex cover was the best (and sometimes only)
known parameter which could be used – until now. The remaining five problems
are hard on graphs of bounded clique-width, and in most cases the presented
parameterized algorithms allow them to be solved on dense graphs for the first
time. Section five shows how to extend a recent result for MS1 on graphs of
bounded vertex cover to twin-cover. The concluding notes also discuss alternative
ways of defining a similar parameter, and why they fail in algorithmic design.

2 An FPT Algorithm for Graph Motif

Definition 2.1 (Graph Motif)
Input: A vertex-colored1 undirected graph G and a multiset M of colors.
Question: Does there exist a connected subgraph H of G such that the multiset
of colors col(H) occurring in H is identical to M?
1 This coloring need not be proper – neighboring vertices may have the same color.
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The Graph Motif problem was introduced in [16] and arises naturally in bioin-
formatics, especially in the context of metabolic network analysis. Its complexity
has been studied in [8] and [2], the latter proving that the problem remains NP-
hard even on graphs of path-width 2, superstar graphs and other very restricted
classes of graphs. Our first new result is an FPT algorithm for Graph Motif on
graphs of bounded vertex cover. This is the first parameterized algorithm for
Graph Motif which only bounds the structure of the graph and not M . We will
later show how to extend this result to the much more general class of graphs of
bounded twin-cover.

Theorem 2.2. The Graph Motif problem can be solved in time O(2k+2k ·
(
√
|V ||E|)) on graphs of vertex cover number at most k.

Proof: We begin by finding a vertex cover C in time O(1.2738k +k|V |) [4]. For
any non-cover vertex v we say its type t(v) ⊆ C is equal to its neighborhood in G.
Notice there are 2k possible types and that all non-cover vertices are partitioned
into sets Tc⊆2k containing all vertices of the same type.

Next, we run over all possible 2k subsets C′ of C and try to find a Motif H
which intersects with C exactly in C′. If this is done correctly for all C′ and no
admissible H is found, it is clear H does not exist. What remains is to decide
whether there exists a motif H for a given C′. This is easy if C′ is already
connected, since we may simply add any adjacent non-cover vertex to H if their
color is in M − col(H) (non-existence of a vertex with this color indicates that
no H exists for given C′).

On the other hand, if C′ is not connected, then it is necessary to add up to k−1
non-cover vertices to H before it becomes connected. One needs to be careful
here, since trying |V |k−1 possible vertices requires too much time, and e.g. using
some red vertex to connect two components may prevent the use of red vertices
elsewhere. However, notice that it suffices to select at most one vertex from each
type to make H connected. So, we may run over all possible (at most 22k

) sets
of types which are used to make H connected. Each type contains vertices with
various colors, and we need to make sure to select a color in each type so that
its occurrence in H does not exceed that in M .

This final subproblem may be solved by simply finding a maximum matching
between all colors remaining in the multiset M and all types in the selected set
– with edges between colors and types containing that color. Such a bipartite
graph may be constructed in time |E|, has at most |V | vertices and allows a
maximum matching to be found in time O(

√
|V ||E|). If the resulting matching

does not include all type-vertices we try the next set of types.
So, the whole algorithm constructs H by first trying all possible subsets of C

in time O(2k), then trying all possible ways to make H connected by selecting
at most O(22k

) possible sets of types, and then deciding which vertices to use
from these types based on a maximum matching algorithm in time O(

√
|V ||E|)

– if the matching does not exist, we skip to the next set of types. At this point
we have some “skeleton” of H such that col(H) ⊆ M , and we may simply
run through all neighbours of H and add everything that is missing from M .
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This can be done in time O(|V |) and either results in a yes answer or we skip to
the next selection of C’.

3 Introducing Twin-Covers

It has already been said that the usefulness of vertex cover in practice is severely
limited by how restrictive it is. However, practically all interesting problems
where vertex cover is used are easy to solve on cliques, in spite of cliques having
a high vertex cover number. This suggests that there should exist a parameter
which
1. attains low values on a significantly more general class of graphs, including

cliques and graphs of bounded vertex cover, and
2. is capable of solving “most” problems which are solvable by vertex cover.

Note that the sought parameter cannot solve all of these problems, since Cour-
celle, Makowski and Rotics have shown the existence of problems which are hard
on cliques and yet solvable in FPT time on graphs of bounded tree-width [5].
However, known problems of this kind are of mostly theoretical interest and have
little practical importance.

Definition 3.1. X ⊆ V (G) is a twin-cover of G if for every edge e = {a, b} ∈
E(G) either
1. a ∈ X or b ∈ X, or
2. a and b are twins, i.e. all other vertices are either adjacent to both a and b,

or none.

We then say that G has twin-cover number k if k is the minimum possible size
of a twin-cover of G.

Fig. 1. The twin-cover of a graph

The underlying idea is to allow large cliques in graphs of bounded twin-cover,
but restrict the number of vertices with out-edges from each clique. Notice that
the relation of “being twins” is transitive, and that twin vertices form cliques
in a graph. In fact, there exists another, perhaps more intuitive definition for
twin-cover:

Definition 3.2. X ⊆ V (G) is a twin-cover of G if there exists a subgraph G′ of
G such that

1. X ⊆ V (G′) and X is a vertex cover of G′.
2. G can be obtained by iteratively adding twins to non-cover vertices in G′.
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We note that complete graphs indeed have a twin-cover of zero. Section 6 dis-
cusses an alternative – less restrictive – approach to defining a similar parameter,
and why it fails. Let us conclude this section with a brief comparison of twin-
cover to other graph parameters and an algorithm to compute twin-cover when
its size is bounded. The latter result is especially important, since otherwise we
would need to rely on an oracle to provide the twin-covers before running our
parameterized algorithms (as is the case with clique-width [11]).

Proposition 3.3 (cf. full version for proof)

1. The vertex cover of graphs of bounded twin-cover may be arbitrarily large.
2. There exist graphs with arbitrarily large twin-cover and bounded tree-width,

and vice-versa.
3. The clique-width of graphs of twin-cover k is at most k + 2.
4. The rank-width [14] and linear rank-width [13] of graphs of twin-cover k are

at most k + 1.

Vertex cover

Twin-coverPath-width

Tree-width Linear rank-width [13]

Rank-width/Clique-width
≥

≥

≥

≥

≥

≥

≥

Fig. 2. Relationships between selected graph parameters

Theorem 3.4. It is possible to find a twin-cover of size k in time O(|E||V | +
k|V | + 1.2738k) (c.f. [4]).

Proof: To compute the twin-cover, we remove all edges between twins (which
need not be covered) and then compute the vertex cover of the remaining graph.
The first step simply requires running through all |E| edges and marking those
which form twins (i.e. both incident vertices have the same neighborhood minus
each other), and then deleting all marked edges. The second step can be done
in time O(1.2738k + k|V |) [4].

4 Algorithms on Twin-Cover

In this section we intend to show how twin-cover can be used to solve various
NP-hard problems. In some cases it suffices to slightly adjust the parameterized
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algorithms for graphs of bounded vertex cover, whilst in others the situation is
more complicated. We first focus on problems where FPT algorithms are not
known even when the tree-width is bounded: Graph Motif, Boxicity, Equitable
Coloring and Precoloring Extension. In the last part of this section we also sketch
a few algorithms for problems which can be solved in FPT time on tree-width,
but which are hard on clique-width.

4.1 Graph Motif

Theorem 4.1. The Graph Motif problem can be solved in time O(|V | · |M | +
2k+2k · (

√
|V ||E| + |V |)) on graphs of twin-cover at most k.

Proof: Given a twin-cover X , we first try whether it is possible to find H
in V − X ; this is easy to do since all that remains are disconnected cliques.
Specifically, we compute the multiset of colors contained in each clique and
check whether M is a subset of this multiset, with a total time requirement of
|V | · |M |.

The important finding is that if any solution H contains at least one cover
vertex, then removing all the edges between non-cover vertices in G does not
affect the existence of a solution. To see this, consider any vertex v in H which is
not a cover vertex nor a neighbor of a cover vertex in H . Since H is connected,
it contains at least one cover vertex x such that there is a path of non-cover
vertices between x and v in H . Every edge on this path (except the first) is an
edge between twins, and since one non-cover vertex on this path is adjacent to
x, all the other vertices need to be adjacent to x as well. This means that there
exists another solution H ′ which uses {x, v} instead of the original edge incident
to v.

So, if we find no solution in G which does not contain any cover vertices, we
simply remove all the edges between non-cover vertices and run the algorithm
from Theorem 2.2. If this algorithm finds a solution, it will also apply to the
original G before the edge deletions, and if no solution is found then no solution
exists in the original G either.

4.2 Equitable Coloring

Definition 4.2 (Equitable Coloring)
Input: A graph G = (V, E) and a positive integer r.
Question: Is there a proper vertex coloring c using at most r colors, with the
property that the sizes of any two color classes differ by at most one?

The notion of Equitable Coloring first appeared in 1973 as part of an application
for scheduling garbage trucks [18], and has since appeared as a subproblem in
various scheduling applications. Fellows, Fomin, Lokshtanov et al. proved that
it remains W[1]-hard on graphs of bounded tree-width [9], and Kratochv́ıl, Fiala
and Golovach introduced an FPT algorithm solving the problem on graphs of
bounded vertex cover [12].
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Theorem 4.3. The Equitable Coloring problem can be solved in time O(|V |3r ·
( 0.792k

ln(k+1) )k · 2k) on graphs of twin-cover at most k.

Proof: Unfortunately, the presence of large cliques in our graph class requires
a new approach to solve the problem. Notice that if the number of colors c is
fixed, then the numbers of color classes of size s and of size s+1 become fixed as
well. Unlike coloring, it is not true that equitable colorability by r color implies
colorability by r + 1 colors – for example Kn,n is equitably 2-colorable but not
3-colorable. To account for this we run our algorithm for all r possible values of
c, and so we may assume that the numbers of s- and s+1-classes are fixed.

The algorithm begins by considering all possible ways of coloring the k cover
vertices. However, we do not care about which colors are actually used to color
the cover vertices, only whether they are colored by distinct colors and whether
that color class has size s or s + 1 – specifically, we will account for all possible
partitions of the twin-cover into color classes and all possible total sizes of these
color classes, without distinguishing between cases which are isomorphic up to
color swapping. The number of different partitions of k vertices into sets is called
the Bell number Bk. A recent result of Berend and Tassa provides an upper
bound of Bk < ( 0.792k

ln(k+1) )k [3]. For each such partition it remains to decide which
of the (at most k) color sets containing a cover vertex have size s and which
have size s+ 1. This amounts to at most 2k possibilities per partition. Note that
we discard all precolorings which are not proper.

Now that we have a precoloring of the cover vertices, all that needs to be
colored in G are disconnected cliques of various sizes, and all the vertices in each
uncolored clique have the same neighbors in the cover. This means that for each
clique, we know exactly which colors may or may not be used in that clique,
and that each color may be used there only once. This information allows us
to construct a network flow instance to color the remaining vertices in G, as
follows.

We have a source which is connected by arcs to r vertices representing colors,
and the capacity of these arcs is equal to the number of vertices which still need
to be colored by that color – for example s−2 if the class was of size s and 2
cover vertices already have this color. Then we create a vertex to represent every
uncolored clique in G, and arcs from these vertices to the sink with capacities
equal to the size of the clique. Finally, we add arcs of capacity 1 from color
vertices to clique vertices if the color may be used in that clique. After computing
the maximum flow, we check whether it is equal to the number of uncolored
vertices in G (also equal to the sum of arcs outgoing from the source), and if
this is the case we immediately obtain a solution in G. This flow subproblem
can be solved in time O(|V (G)|3).

To recapitulate, we run through all c ≤ r allowed numbers of colors for G.
Then we run through all possible ways of partitioning the cover vertices into
color classes of sizes s and s + 1. Finally, we use network flow to decide whether
the remaining vertices can be equitably colored with respect to this selection of
c, partitioning of cover vertices, and sizes of color classes in this partitioning.
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4.3 Precoloring Extension

Precoloring Extension is a natural problem where we are given a partial proper
coloring of a graph G and the task is to extend it into a proper coloring of G with
r colors. Similarly to Equitable coloring, it is W[1]-hard on graphs of bounded
tree-width [9] and FPT when the vertex cover is bounded [12]. Unfortunately, the
algorithm of [12] cannot be directly applied to graphs of bounded twin-cover due
to them containing large cliques. Instead, several tricks are required to obtain
an FPT algorithm – showcasing the kind of tools available for solving similar
problems on graphs of bounded twin-cover.

Theorem 4.4. The Precoloring Extension problem can be solved in time
2O(k32k) · |V | on graphs of twin-cover at most k.

Proof: Recall that two non-cover vertices have the same type if they are adja-
cent to the same vertices in the cover. The vertices in each type Ti are organized
into cliques of various sizes and some vertices are precolored. Note that we will
consider isolated vertices in the type as cliques of size 1. Any color which is
precolored at least in one vertex of this type cannot occur in any cover vertex
adjacent to this type, and so it can never hurt the optimality of the solution
to add this color into some non-precolored vertex in every clique of this type
(i.e. use it as much as possible within the type). In this way we can extend the
precoloring so that all cliques of the same type are precolored with the same
colors; the smaller ones may be fully precolored with a subset of the colors.
Cliques now only differ by the number of non-precolored vertices still available.
Since their precolorings match, the coloring of any of the largest cliques in the
optimal solution can simply be taken and copied onto smaller or equal cliques
of the same type. So, if any vertices remain uncolored in the given type, we can
delete everything except for one clique of maximum size. All of this may be done
in O(|V |) time.

Next we will need color types. While the number of colors r may be large, we
will divide all colors into color types based on the set of types they are precolored
in (additionally, the at most k colors precoloring cover vertices may be handled
as separate types). There can be at most 22k

+ k color types, and for each color
type we remember the number of colors in that type (which may be large). Notice
that colors of the same type are completely symmetric on the cover vertices, i.e.
may be arbitrarily swapped in the cover without creating conflicts.

This allows us to use a similar trick to the one in precoloring extension –
we consider all possible colorings of the cover vertices, but do not distinguish
between colors of the same color type. There are 2O(k2k) ways of dividing cover
vertices into color types, and for each we need to consider all possible pairs of
cover vertices which will be assigned the same color if they are in the same color
type – at most 2k2

possibilities.
Now the algorithm is clear. The first step runs through all the 2O(k32k) pos-

sibilities for color types on the cover vertices. The second step then assigns any
colors in the appropriate type to cover vertices with respect to the selected types
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and color equalities, and checks whether any conflicts occur (non-proper coloring
or not enough colors of the given type) and whether it is possible to color the
remaining vertices in the various types, all of which can be done by a greedy
algorithm in O(|V |) time.

4.4 Boxicity

Definition 4.5 ([1]). A k-box is a Cartesian product of closed intervals
[a1, b1] × [a2, b2] . . . [ak, bk]. A k-box representation of a graph G is a mapping
of the vertices of G to k-boxes in the k-dimensional Euclidean space such that
two vertices in G are adjacent iff their corresponding k-boxes have a non-empty
intersection. The boxicity of a graph G is the minimum integer k such that G
has a k-box representation.

Alternatively, boxicity may be defined as the minimum positive integer b such
that the graph can be represented as the intersection of b interval graphs. The
notion was first introduced by Roberts [19] in 1969 and has found applications in
social sciences and biology. Determining whether the boxicity of a given graph is
at most 2 is already NP-hard [15], and it is believed that computing the Boxicity
of graphs of bounded tree-width is NP-hard, however the problem remains open
[1]. An FPT algorithm for Boxicity on graphs of bounded vertex cover was
recently introduced in [1] and this may be easily used to prove:

Theorem 4.6. The Boxicity problem can be solved in time 2O(2kk2)|V | on
graphs of twin-cover at most k.

Proof: We first prove the following statement: For any graph G and any pair
of twins a, b ∈ V (G), deleting b and all of its incident edges does not change the
boxicity of G.

Consider a minimal k-box representation of a graph G′ which was obtained
by removing b from G. We may simply add b and all of its incident edges back
into G′, and map b to a k-box identical to the k-box of a in G′. Thus the boxicity
of G is equal to the boxicity of G′.

This allows us to simply delete non-cover twin vertices until we obtain a graph
of vertex cover k with no edges between non-cover vertices. Afterwards it suffices
to run the algorithm from [1], which has a runtime of 2O(2kk2)|V | if the vertex
cover is at most k.

4.5 Additional algorithms

So far we have only considered problems which are hard on trees or graphs
of bounded tree-width. Additionally, any parameterized algorithm on rank-
width/clique-width will work on graphs of bounded twin-cover (since their clique-
width is bounded). We include a few algorithms for problems which are known
to be hard on clique-width and yet can be solved in FPT time on twin-cover
bounded graphs.
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Proposition 4.7 (cf. full version for proof). Hamiltonian Path, Chromatic
Number, Vertex-Disjoint Paths, Edge-Disjoint Paths and Max-Cut can be solved
in FPT time on graphs of twin-cover at most k.

5 Monadic Second-Order Logic

Monadic second-order logic is often used in algorithmic graph theory to describe
a wide range of problems on graphs. We distinguish between the so-called MS2

logic, which allows quantification over (sets of) vertices and edges, and the weaker
MS1 logic, which only allows quantification over (sets of) vertices. It is well
known that all MS2-definable problems can be solved in FPT time on graphs of
bounded tree-width, and the same is true for MS1-definable problems on graphs
of bounded rank-width.

Unfortunately, in both of these cases the height of the tower of exponents
grows with the number of quantifier alternations in the formula. This means
that while complicated formulas are still solvable in FPT time on these graph
classes, the time complexity would be enormous in practice.

The work of Michael Lampis in ESA 2010 [17] explains the problem in detail
and, more importantly, shows how to overcome it for MS1 logic on graphs of
bounded vertex cover (note that MS2 can also be solved in FPT time on graphs
of bounded vertex cover, but the tower of exponents may grow arbitrarily). We
will sketch how the approach of Lampis can be extended to graphs of bounded
twin-cover.

5.1 MS1 on Graphs of Bounded Vertex Cover

First, let us briefly recapitulate Lampis’ results. Given is a first-order sentence
(an MS1 sentence without set quantification) with q quantifiers and a graph with
vertex cover k. It is not hard to prove that for any vertex variable x and any two
vertices of the same type a, b which have not been assigned any vertex variable
yet, the evaluations of the sentence with x assigned to a and x assigned to b are
identical. What this means is that as long as vertices are variable-free and of the
same type, they are completely indistinguishable. Additionally, since the logical
sentence cannot distinguish between vertices in any other way than by assigning
quantified vertex variables to them, it can only “count” up to q. Thus, if there
are over q vertices of any type in G, we may delete them and obtain a kernel of
size at most k + 2k · q. To evaluate satisfiability of the first-order sentence it now
suffices to try all combinations of assigning these vertices to q variables, which
results in a time complexity of 2O(kq+q log q)[17].

For MS1 logic the idea is similar, however now we must also deal with set
quantifiers. Consider an MS1 sentence with q vertex quantifiers, s set quantifiers
and a graph with vertex cover k. The indistinguishability argument still holds,
however each set quantifier now multiplies the number of “countable” vertices
by two – for all yet-unassigned vertex variables it is necessary to allow for them
being assigned to vertices in the set or to vertices outside of the set. Still, this
allows us to limit the number of vertices of each type to q ·2s, resulting in a kernel
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of size at most k+2k ·q ·2s. Satisfiability evaluation of the MS1 sentence requires
trying all possible assignments of set and vertex quantifiers on this graph; it is
not hard to verify that this can be done in time 22O(s+q+k)

[17].

5.2 MS1 on Graphs of Bounded Twin-Cover

The difficulty with adapting these results to twin-cover stems from the fact that
vertices of the same type (i.e. adjacent to the same cover vertices) may be divided
into many cliques of various sizes. While it is still true that two vertices of the
same type and in the same clique are indistinguishable with respect to MS1, this
does not hold for vertices of the same type in different cliques. Luckily, this may
be dealt with by properly utilizing the “counting” limitations of first-order and
MS1 logic.

Consider a first-order sentence with q quantifiers and a graph with twin-
cover k. Dividing the vertices into (k + 2k) indistinguishable classes will not
work this time due to the presence of cliques. However, since it only has q
variables available, a first-order sentence cannot distinguish between a graph
which has q cliques of type A and size i and one with more than q cliques
of type A and size i. In other words, it can only “count” to up to q as far
as the number of cliques of a certain type and size goes. The same argument
also holds for the size of the cliques – a first-order sentence with q variables
cannot distinguish between cliques of size q and larger cliques as long as they
contain vertices of the same type. We use this to obtain a kernel of size at most
k + 2k · (q + 2q + · · · + q2) = O(2k · q3), for which we need to try all options of
assigning q vertex variables.

Corollary 5.1. There exists an algorithm which, given a first-order sentence φ
with q variables and a graph G with twin-cover at most k, decides if G |= φ in
time 2O(kq+q log q).

MS1 can be dealt with in much the same way. We will need 2k types, in each type
the sentence can distinguish between up to q · 2s cliques of the same size, and
the maximum size of a clique we need to consider is q · 2s. All in all the required
kernel has a size of at most k + 2k · (q2s + 2q2s + · · · + (q2s)2) = O(q32k+3s).
Again, all options of assigning vertex and set variables need to be tried, with a
runtime of O

((
2q32k+3s)s ·

(
q32k+3s

)q).

Corollary 5.2. There exists an algorithm which, given an MS1 sentence φ with
q vertex variables and s set variables and a graph G with twin-cover at most k,
decides if G |= φ in time 22O(s+q+k)

.

6 Concluding notes

For a new parameter to be accepted by the computer science community, it needs
to make a strong case. We firmly believe that the presented algorithmic results
provide more than enough evidence that twin-cover is a useful and powerful
parameter.
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Potential applications of twin-cover include:

1. Replacing vertex cover in parameterized algorithms for various problems
hard on tree-width and path-width.

2. Providing a more viable alternative to tree-width for dense graph classes and
problems which are hard on clique-width.

3. Significantly faster MS1 model checking on certain graph classes.

Future work should focus on the practipal aspects of twin-cover. How much
smaller is the twin-cover of various graphs compared to their vertex cover, and
how does it compare to tree-width? How much of a speed-up does it actually
provide over vertex cover? One would expect the runtime differences to be huge,
however the actual numbers are yet to be seen.

Lastly, we would like to comment on the definition of twin-cover. Michael
Lampis uses an auxiliary parameter called neighborhood diversity to obtain his
results for vertex cover [17]. While the parameter is also low on cliques, its size
can be exponentially higher than the size of the vertex cover. Additionally, it
is open whether neighborhood diversity can actually be used to solve various
problems instead of vertex cover.

An inquisitive reader might be wondering why it is necessary to bound the
vertices with outgoing edges from cliques. Why not just bound the number of
cliques, and require that all edges are incident to some clique in the cover? The
problem with this approach is that such a parameter would be low on split graphs
(graphs which may be partitioned into a clique and an independent set). It is
known that several interesting problems are already NP-hard on split graphs,
and as a final result we show that Graph Motif is one such problem.

Theorem 6.1 (cf. full version for proof). The Graph Motif problem is NP-
hard on split graphs.
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Bodlaender, Hans L. 145
Broersma, Hajo 207

Cygan, Marek 1, 13, 159, 246

Damaschke, Peter 94

Fomin, Fedor V. 13

Ganian, Robert 259
Golovach, Petr A. 67, 207
Golovnev, Alexander 106
Guo, Jiong 169

Hagerup, Torben 181
Hartung, Sepp 194
Heggernes, Pinar 55
Hof, Pim van ’t 55
Hvidevold, Eivind Magnus 219

Iwata, Yoichi 41

Jansen, Bart M.P. 132, 145
Jiang, Minghui 27
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