
Inferring Affordances Using Learning Techniques

Amel Bennaceur1, Richard Johansson2, Alessandro Moschitti2,
Romina Spalazzese3, Daniel Sykes1, Rachid Saadi1, and Valérie Issarny1

1 INRIA, Paris-Rocquencourt, France
2 University of Trento, Italy

3 University of L’Aquila, L’Aquila, Italy

Abstract. Interoperability among heterogeneous systems is a key
challenge in today’s networked environment, which is characterised by
continual change in aspects such as mobility and availability. Automated
solutions appear then to be the only way to achieve interoperability with
the needed level of flexibility and scalability. While necessary, the tech-
niques used to achieve interaction, working from the highest application
level to the lowest protocol level, come at a substantial computational
cost, especially when checks are performed indiscriminately between sys-
tems in unrelated domains. To overcome this, we propose to use ma-
chine learning to extract the high-level functionality of a system and
thus restrict the scope of detailed analysis to systems likely to be able to
interoperate.

1 Introduction

We live in a world populated by highly heterogeneous, networked, mobile and
pervasive systems and services. Such heterogeneity may span the application
layer, the middleware layer, and the underlying communication infrastructure.
Interaction between these systems, where feasible, is customarily achieved
through diverse ad hoc means for specific pairs of systems in a particular envi-
ronment. Principled automatic composition can bring a labour-saving benefit–
through generalisation over classes of systems–and can provide the flexibility
needed to cope with rapidly changing contexts, dynamic service availability and
user mobility.

Automatic service composition has three main phases: discovery of what ser-
vices exist in the current scope; finding pairs or sets of services which are compat-
ible, so as to make composition possible; and the actual process of connecting one
system to another. The second step of finding matching pairs of systems can be a
computationally costly procedure, both in terms of the number of combinations
of systems which have been discovered, but also in terms of the deep behavioural
(or protocol) analyses used to determine if a single pair is compatible.

Hence it is unreasonable to perform matching with all systems every time a
new system is discovered. Indeed, detailed matching between heterogeneous sys-
tems working in wildly different application domains is nonsensical: the word pro-
cessor on a traveller’s laptop need not be compared against the air-traffic control

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 79–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 A. Bennaceur et al.

infrastructure simply because he is situated inside the airport. On the other hand,
matching against a document translation service may in fact be of some use.

What is required is a notion of category of systems ; things that speak about
the same domain. Then matching can be restricted to combinations falling within
a given category. For this purpose, we define an affordance which represents
the high-level functionality (capability) of a given system with reference to an
ontology which specifies the domain of interest. A system may have several
affordances, representing different facets of its functionality, each of which may
even relate to a different domain.

In addition to restricting the scope of matching, affordances can further in-
crease the efficiency of composition by exploiting a structured repository wherein
system descriptions are stored according to the matching relation. Structuring
the repository in this manner reduces the number of comparisons which need to
be made when a new system is discovered, even within a given domain. Figure 1
illustrates the linear speed up of matching when affordances are used.

Fig. 1. Time of matching with and without using affordances

These benefits can only be reaped, however, when all systems are annotated
with their respective affordances: a substantial effort for the great numbers of
legacy systems, which provide only their interface description. However, it is
worthwhile considering what process the programmer may go through when
assigning an affordance. Given a set of “universally” agreed concepts in the
ontology, the programmer can examine the interface and its documentation to
determine which concepts best describe the broad category and functionality of
the system. It goes without saying that to achieve this, the natural language
descriptions and identifiers (such as method names) present in the interface will
be used to make the classification.

We propose to use machine learning to automate the extraction of affordances
from the interface description by classifying the natural-language text according
to a pre-defined ontology of systems. Such an approach can fill the gap when a
discovered system does not have a programmer-assigned affordance.

Inferring Affordances Using Learning Techniques 81

In the following, we set out in more detail the context of our problem, focussing
on services, and discuss techniques that may be used to realise the approach.

2 Automatic Service Composition

To compose services automatically we can make use of a theory [5] for the auto-
mated synthesis of mediating connectors (also called mediators) that has been
defined elsewhere [1]. That is, the service composition problem can be seen as
an instance of the kind of problems the theory is able to model and solve.

More specifically, to compose services we need to: (i) discover the available
ones, (ii) find matching pairs among them, and (iii) synthesise mediators that
adapt the services behaviours allowing them to interoperate.

Our approach to dynamic service composition and interoperability is illus-
trated in Figure 2.

Adaptation

Exact matchingPartial Matching
No Matching

Mediator Synthesis

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS1)

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS2)

Yes

Domain-specific
Ontology

1

2

3

Mediator

4

Semantic Matching

Behavioral Matching

Failure

Fig. 2. Approach to dynamic interoperability

Two descriptions of networked systems (NSs) are given, including their in-
terface, behaviour, non-functional properties and affordance descriptions. The
first step consists of checking the compatibility of their affordances, high-level
functionality, through the use of semantic matching (❶). Then, in the successful
cases, a behavioural matching (❷) is performed by reasoning about both the
NSs descriptions and the ontologies characterising their actions. In the case of
exact behavioural matching, a mediator is synthesised (❸) based on the results
of the reasoning in the previous step, while in the case of partial matching, a
protocol adaptation (❹) is needed before the mediator synthesis. This process
highlights the central role of the semantic matching of affordances in reducing the
overall computation by acting as a kind of filter for the subsequent behavioural
matching.

82 A. Bennaceur et al.

2.1 Affordances

An affordance denotes a high-level functionality provided to or required from
the networked environment. Concretely, an affordance is specified as a tuple:

Aff = 〈Type, F, I, O〉
where:

– Type stands for a required (noted Req), provided (noted Prov) or required
and provided (noted Req Prov) affordance.

– F gives the semantics of the functionality associated with the affordance in
terms of an ontology concept.

– I (resp. O) specifies the set of inputs (resp. outputs) of the affordance, which
is defined as a tuple 〈i1, ..., in〉 (resp. 〈o1, ..., om〉) with each il (resp. ok) being
an ontology concept.

For example, 〈Prov,AuctionHouse, 〈Goods〉 , 〈Money〉〉 is an affordance describ-
ing the provision of AuctionHouse functionality with an input of Goods and an
output of Money.

The first step in identifying the possible compatibility of two networked sys-
tems is to assess whether they respectively provide and require semantically
matching affordances. For example, a Procurement application, being a kind of
Buyer, may match the above AuctionHouse, as a specific kind of Seller. Once
a functional match is found at the affordance level, the more costly behavioural
and non-functional matching can be performed.

2.2 Legacy Applications

Unfortunately, legacy applications do not normally provide affordance descrip-
tions. We must therefore rely upon an engineer to provide them manually, or
find some automated means to extract the probable affordance from the interface
description. Note that it is not strictly necessary to have a guaranteed correct
affordance since falsely-identified matches will be caught in the subsequent de-
tailed checks.

In this paper we focus on using machine learning to extract affordances from
interface descriptions. Moreover we focus on the functional concept F of the
affordance, rather than the inputs and outputs, though the overall approach
would be notionally unchanged. Learning the inputs and outputs would require
a straightforward division of the interface into parts which refer to data and
those which refer to the functionality, and performing the learning procedure on
each independently.

3 Affordance Learning

This section provides an example interface description to bring the affordance
learning problem into focus.

Inferring Affordances Using Learning Techniques 83

3.1 Typical Interface

Listing 1.1 shows a small fragment of the WSDL interface description of the
popular eBay [2] web service.

Listing 1.1. Ebay WSDL interface description

<!−− Cal l : AddItem −−>
<xs : element name=”AddItemRequest”

type=”ns : AddItemRequestType”/>
<xs : complexType name=”AddItemRequestType”>

<xs : annotation>
<xs :documentation>

Def ine s a s i n g l e new item and l i s t s i t on a s p e c i f i e d eBay s i t e .
 Also f o r Hal f . com.
Returns the item ID f o r the new l i s t i n g , and r e tu rn s f e e s
the s e l l e r w i l l incur f o r the l i s t i n g (not i n c l ud ing the Fina l
Value Fee , which cannot be c a l c u l a t e d un t i l the item i s so l d) .

</xs :documentation>
<xs : appinfo>
<RelatedCalls>

AddFixedPriceItem , AddItems , AddToItemDescription , GetItem ,
GetItemRecommendations , Ge tSe l l e rL i s t , Re l i s t I tem , ReviseItem ,
VerifyAddItem

</RelatedCalls>
<SeeLink>

<Title>L i s t i n g an Item</Title>
<URL>http : // deve loper . ebay . com/. . . </URL>

</SeeLink>
<SeeLink>

<Title>L i s t i n g Items</Title>
<URL>http : // deve loper . ebay . com/. . . </URL>

</SeeLink>
. . .

This example provides extensive English text in both the documentation
and the terms used in message and type names. Note that the complete descrip-
tion is approximately 130k lines long. In order to handle less verbose
descriptions, documentation acquired from alternative sources such as
http://webservices.seekda.com/ can be used. It would not take an engi-
neer, or indeed a layperson, long to determine the approximate purpose of the
service, relying on key words such as ‘item’, ‘seller’ and ‘fee’. A concept from a
pre-determined ontology, such as AuctionHouse, could then be assigned. Given
such a description we propose to use machine learning to infer the appropriate
affordance for the service.

3.2 Learning Problem

The problem we are considering, then, is to find a function f which, given a
parsed interface description with only the natural-language terms remaining,
determines with some confidence the concept most appropriate for that service:

f : Interface → (Concept× Confidence)

To achieve this, we provide a number of examples as training data relating inter-
faces to concepts: Interface×Concept. These examples are acquired by searching

http://webservices.seekda.com/

84 A. Bennaceur et al.

for web service descriptions in online repositories, e.g., webservicelist.com and
xmethods.com, and manually assigning to each a concept. The learning technique
employed should then be able to generalise from the examples to produce an f
to classify new examples. It is necessary to have a number of example interfaces
for each concept we wish to assign to services.

Note that the problem could be tackled at (at least) two levels of granularity:
the concepts could indicate the broad category of service within a “universal”
ontology (taxonomy), or they could indicate a more specific service type within
an ontology restricted to a specific domain. The learning problem is the same
for both; all that changes is the breadth of automation we can achieve versus
the depth of the domain. Arbitrarily increasing the breadth and depth of the
ontology will impact confidence as it becomes increasingly likely that concepts
are ambiguous.

4 Potential Solution: Machine Learning of Categorisers

We believe that the problem of affordance learning can draw many lessons from
the long tradition of research in text categorisation: the problem of assigning a
given document to one or more categories. The complexity of the system of cat-
egories may be low in some cases, such as a binary set {Positive, Negative}
when classifying a customer review as positive or negative [12], and higher in
other cases, such as the various structured classification systems used in library
science. The main tool for implementing modern systems for automatic docu-
ment classification systems is machine learning based on vector space document
representations.

4.1 Introduction to Machine Learning

In general, we define machine learning as the problem of inducing a function (or
system of functions) from a given data set. We may discern two main strands of
machine learning methods: supervised and unsupervised methods.

The most archetypical problem setting in machine learning is the supervised
setting. In supervised learning, the learning mechanism is provided with a (typ-
ically finite) set of labelled examples: a set of pairs T = {〈x, y〉}. The goal is
to make use of the example set T to induce a function f such that generally
f(x) = y for future, unseen instances of (x, y) pairs. Supervised learning meth-
ods in most cases learn much more accurate classifiers than their unsupervised
counterparts, but require a human-annotated training set of significant size: the
bigger the better. Examples of supervised learning methods commonly used in-
clude Support Vector Machines [3], which have been extensively studied for the
problem of text categorisation [6]. For the problem of automatic association of
WSDL interface descriptions with concepts, we thus need to gather a large set
of interface descriptions and manually assign one or more concepts to every
description.

As opposed to the supervised setting, the problem definition in unsupervised
learning instead assumes the examples to be unlabelled, i.e. T = {x}. In order

webservicelist.com
xmethods.com

Inferring Affordances Using Learning Techniques 85

to be able to come up with anything useful when no supervision is provided,
the learning mechanism needs a bias that guides the learning process. The most
well-known example of unsupervised learning is probably k-means clustering [8],
where the learner learns to categorise objects into broad categories even though
the categories were not given a priori. More complex examples include grammar
induction methods from raw text.

In addition to two main subfields of learning methods there are of course out-
liers and hybrids, such as semisupervised learning: Since it is costly to produce
manually labelled training data, in some situations only a small labelled exam-
ple set Ts = {〈x, y〉} is provided, while there is also available a larger unlabelled
example set Tu = {x}. Semisupervised learning methods are able to make use of
the labelled data Ts in combination with the unlabelled data Tu in order to im-
prove over a plain supervised learner making use of Ts only. Another interesting
learning paradigm is active learning, where the learning mechanism is able to
select particularly informative unlabelled examples from an unlabelled dataset
and ask an oracle (a human annotator or some sort of automatic mechanism) for
a labelling. Typically, active learners are able to achieve a more efficient use of
the training data than normal supervised learners, since their behaviour is more
targeted towards distinguishing the difficult cases.

4.2 Representations for Categorisation

In order to be able to apply standard supervised or unsupervised machine learn-
ing methods for building categorisers, we need to represent the objects we want
to classify by extracting informative features. For categorisation of documents,
the standard representation method maps every document into a vector space
using the bag-of-words approach [13]. In this method, every word in the vocabu-
lary is associated with a dimension of the vector space, allowing the document to
be mapped into the vector space simply by computing the occurrence frequencies
of each word. The bag-of-words representation is considered the standard repre-
sentation underlying most document classification approaches, and attempts to
incorporate more complex structural information have mostly been unsuccessful
for the task of categorisation of single documents [10] although more successful
for complex relational classification tasks [9].

However, the task of classifying WSDL interface descriptions is different from
classifying raw documents: the interface descriptions are semi-structured rather
than unstructured, and the representation method clearly needs to take this fact
into account, for instance by separating the vector space into regions representing
the respective parts of the WSDL description. For instance, the description in
Figure 1.1 contains a general documentation part in free text, as well as a number
of textual descriptions of the methods defined by the interface.

In addition to the text, we believe that the various semi-structured iden-
tifiers should be included in the feature representation, most importantly the
names of the methods defined by the interface but also the methods listed
in the RelatedCalls section. The inclusion of identifiers will be important
since 1) the textual content of the identifiers is often highly informative of the

86 A. Bennaceur et al.

functionality provided by the respective methods; 2) the free text documentation
is not mandatory and may not always be present. Extracting useful bag-of-words
representations from the identifiers will likely have to use splitting heuristics re-
lying on the presence of indicators such as underscores or CamelCase.

5 Conclusions

Principled automatic composition is the only means to overcome the manifold
difficulties inherent in the problem of interoperability of diverse, heterogeneous
systems. In contrast to incidental ad hoc solutions, automatic composition brings
such benefits as scalability, self-adaptation, flexibility, resilience to faults, and tol-
erance of dynamic availability and user mobility. Affordances are the first weapon
in attacking the problem, by categorising systems and so avoiding unnecessarily
deep checks on systems whose high-level functionality is utterly different.

Affordances need not be especially precise—we are not looking for a surgical
strike—since the detailed work is handled by behavioural and other compatibility
checks. For this reason we are able to take advantage of machine learning to pro-
vide us with affordances when they have not been provided by the programmer.
Techniques such as support vector machines can categorise free text according
to a pre-defined ontology of systems, however it may be beneficial to treat the
WSDL interface description as a semi-structured document, by, for example,
separating method, input and output identifiers from pure documentation.

In addition to experimenting with different categorisers and the structure of
the input, the provision and the generality of the ontology of systems poses a
challenge. While we do not wish to limit the scope of the approach to a partic-
ular domain, having overly general concepts will again lead to unnecessary deep
compatibility checks.

A number of similar approaches exist, particularly in the field of web services,
such as [11,7,4], from which we can draw guidance. However, their aims and
context often differ. In our case, the extraction of an affordance to categorise
systems promises to bring such benefits as well-targeted compatibility checking,
efficient storage of descriptions, and a potential for decentralisation.

Acknowledgments. This work is done as part of the European FP7 ICT FET
CONNECT project (http://connect-forever.eu/).

References

1. CONNECT Annex I: Description of Work. FET IP CONNECT EU project, FP7
grant agreement number 231167, http://connect-forever.eu/

2. eBay WSDL, http://developer.ebay.com/webservices/latest/ebaySvc.wsdl
3. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-

fiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (1992)

http://connect-forever.eu/
 http://connect-forever.eu/
http://developer.ebay.com/webservices/latest/ebaySvc.wsdl

Inferring Affordances Using Learning Techniques 87

4. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

5. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Con-
nectors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp.
236–250. Springer, Heidelberg (2010)

6. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer
Academic Publishers (2002)

7. Klusch, M., Kapahnke, P., Zinnikus, I.: Sawsdl-mx2: A machine-learning approach
for integrating semantic web service matchmaking variants. In: ICWS (2009)

8. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability (1967)

9. Moschitti, A.: Kernel methods, syntax and semantics for relational text categoriza-
tion. In: Proc. of CIKM (2008)

10. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification:
A Comprehensive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS,
vol. 2997, pp. 181–196. Springer, Heidelberg (2004)

11. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: Meteor-s Web Service Annota-
tion Framework with Machine Learning Classification. In: Cardoso, J., Sheth, A.P.
(eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 137–146. Springer, Heidelberg (2005)

12. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing (2002)

13. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Tech. Rep. TR74-218, Cornell University (1974)

	Inferring Affordances Using Learning Techniques
	Introduction
	Automatic Service Composition
	Affordances
	Legacy Applications

	Affordance Learning
	Typical Interface
	Learning Problem

	Potential Solution: Machine Learning of Categorisers
	Introduction to Machine Learning
	Representations for Categorisation

	Conclusions
	References

