

Communications
in Computer and Information Science 255

Alessandro Moschitti
Riccardo Scandariato (Eds.)

Eternal Systems

First International Workshop, EternalS 2011
Budapest, Hungary, May 3, 2011
Revised Selected Papers

13

Volume Editors

Alessandro Moschitti
University of Trento
Department of Information Engineering and Computer Science
Via Sommarive 14, 38123 Povo, Italy
E-mail: moschitti@disi.unitn.it

Riccardo Scandariato
Katholieke Universiteit Leuven
Department of Computer Science
Celestijnenlaan 200A, 3001 Heverlee, Belgium
E-mail: riccardo.scandariato@cs.kuleuven.be

ISSN 1865-0929 e-ISSN 1865-0937
ISBN 978-3-642-28032-0 e-ISBN 978-3-642-28033-7
DOI 10.1007/978-3-642-28033-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2011945327

CR Subject Classification (1998): I.2, I.2.11, H.3-4, C.2, D.2, H.5.2

© Springer-Verlag Berlin Heidelberg 2012
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Methods to make systems capable of adapting to changes in user requirements
and application domains are key ICT research areas. Adaptation and evolution
depend on several dimensions, e.g., time, location, and security conditions, which
express the diversity of the context in which systems operate. A design based on
effective modeling of these dimensions constitutes a meaningful step toward the
realization of trustworthy eternal systems.

The First International Workshop on Eternal Systems (EternalS 2011) was
held on May 3, 2011, in Budapest, Hungary. The workshop was affiliated with the
European Future Technologies Conference and Exhibition (fet11) and sponsored
by the European Coordination Action EternalS: Trustworthy Eternal Systems
via Evolving Software, Data and Knowledge (www.eternals.eu).

EternalS 2011 aimed at creating the conditions for mutual awareness and
cross-fertilization among broad ICT areas such as learning systems for knowl-
edge management and representation, software systems, networked systems and
secure systems, by focusing on their shared objectives such as adaptation, evolv-
ability and flexibility for the development of long-living and versatile systems.

The workshop issued a call for high-quality contributions in the above-
mentioned areas and selected them by means of a peer review process, carried
out by the major experts of the areas above. Out of the 15 submissions received,
six full papers and four short papers were accepted for inclusion in this volume.

The Workshop Chairs would like to thank the authors who provided the con-
tent for this volume, and express their appreciation to the Program Committee
members for their valuable work.

November 2011 Alessandro Moschitti
Riccardo Scandariato

Workshop Chairs

Organization

Workshop Organizers

Alessandro Moschitti Università di Trento, Italy
Riccardo Scandariato Katholieke Universiteit Leuven, Belgium

Program Committee

Roberto Basili University of Rome Tor Vergara, Italy
Götz Botterweck Lero, Ireland
Sofia Cassel University of Uppsala, Sweden
Krishna Chandramouli Queen Mary University of London, UK
James Clarke Waterford Institute of Technology, Ireland
Anna Corazza University of Naples Federico II, Italy
Sergio Di Martino University of Naples Federico II, Italy
Michael Felderer University of Innsbruck, Austria
Fausto Giunchiglia University of Trento, Italy
Reiner Hähnle Chalmers University, Sweden
Falk Howar TU Dordtmund, Germany
Valerie Issarny INRIA, France
Richard Johansson University of Trento, Italy
Jan Jürjens TU Dortmund, Germany
Paul Lewis University of Southampton, UK
Ilaria Matteucci CNR, Italy
Wolfgang Nejdl L3S - University of Hannover, Germany
Claudia Niederee L3S Research Centre, Germany
Julien Masanès European Archive, France
Alessandro Moschitti University of Trento, Italy
Animesh Pathak INRIA, France
Tomas Piatrik Queen Mary University of London, UK
Hongyang Qu University of Oxford, UK
Rick Rabiser JKU Linz, Austria
Riccardo Scandariato Katholieke Universiteit Leuven, Belgium
Ina Schaefer TU Braunschweig, Germany
Bernhard Steffen TU Dortmund, Germany
Massimo Tivoli University of L’Aquila, Italy
Daniel Varro Budapest University of Technology, Hungary
Gerhard Weikum Max-Planck-Institut fr Informatik, Germany
Qianni Zhang Queen Mary University of London, UK

Table of Contents

Software and Secure Systems

Comparing Structure-Oriented and Behavior-Oriented Variability
Modeling for Workflows . 1

Anna-Lena Lamprecht, Tiziana Margaria, Ina Schaefer, and
Bernhard Steffen

Towards Verification as a Service (Short Paper) . 16
Ina Schaefer and Thomas Sauer

Requirements-Driven Runtime Reconfiguration for Security
(Short Paper) . 25

Koen Yskout, Olivier-Nathanael Ben David,
Riccardo Scandariato, and Benoit Baudry

Machine Learning for Software Systems

Large-Scale Learning with Structural Kernels for Class-Imbalanced
Datasets (Short Paper) . 34

Aliaksei Severyn and Alessandro Moschitti

Combining Machine Learning and Information Retrieval Techniques for
Software Clustering . 42

Anna Corazza, Sergio Di Martino, Valerio Maggio, and
Giuseppe Scanniello

Reusing System States by Active Learning Algorithms 61
Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar

Ontology and Knowledge Representations

Inferring Affordances Using Learning Techniques (Short Paper) 79
Amel Bennaceur, Richard Johansson, Alessandro Moschitti,
Romina Spalazzese, Daniel Sykes, Rachid Saadi, and Valérie Issarny

Predicting User Tags Using Semantic Expansion . 88
Krishna Chandramouli, Tomas Piatrik, and Ebroul Izquierdo

VIII Table of Contents

LivingKnowledge: A Platform and Testbed for Fact and Opinion
Extraction from Multimodal Data . 100

David Dupplaw, Michael Matthews, Richard Johansson, and
Paul Lewis

Behaviour-Based Object Classifier for Surveillance Videos 116
Virginia Fernandez Arguedas, Krishna Chandramouli, and
Ebroul Izquierdo

Author Index . 125

Comparing Structure-Oriented

and Behavior-Oriented Variability
Modeling for Workflows

Anna-Lena Lamprecht1, Tiziana Margaria2,
Ina Schaefer3, and Bernhard Steffen1

1 Chair for Programming Systems,
Technical University Dortmund, Germany

{anna-lena.lamprecht,bernhard.steffen}@cs.tu-dortmund.de
2 Chair for Service and Software Engineering,

University Potsdam, Germany
tiziana.margaria@cs.uni-potsdam.de

3 Institut für Software Systems Engineering,
Technische Universität Braunschweig, Germany

i.schaefer@tu-bs.de

Abstract. Workflows exist in many different variants in order to adapt
the behavior of systems to different circumstances and to arising user’s
needs. Variability modeling is a way of keeping track at the model level
of the currently supported and used workflow variants. Variability mod-
eling approaches for workflows address two directions: structure-oriented
approaches explicitly specify the workflow variants by means of linguis-
tic constructs, while behavior-oriented approaches define the set of all
valid compositions of workflow components by means of ontological an-
notations and temporal logic constraints. In this paper, we describe how
both structure-oriented and behavior-oriented variability modeling can
be captured in an eXtreme Model-Driven Design paradigm (XMDD). We
illustrate this via a concrete case (a variant-rich bioinformatics workflow
realized with the jABC platform for XMDD), and we compare the two
approaches in order to identify their profiles and synergies.

1 Introduction

Workflows [1] express how to do things in practice, thus they are often subject
to ad-hoc changes, induced by evolving environments or needs, and resulting
in numerous related variants that address these slightly different needs. This
may easily lead to huge numbers of distinct workflows, which can be hardly
maintained individually. Hence, workflow modeling tools have to support the
variant-rich development of workflows. Accordingly, means for variability mod-
eling and variability control help to systematically support the arising product
lines of processes in an economic and manageable fashion.

In order to reason about workflow variability and workflow configurations, ex-
plicit variability modeling concepts are necessary. Variability modeling provides

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 1–15, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

2 A.-L. Lamprecht et al.

a precise overview of the currently supported and used workflow variants and
allows to reason about the consistency and correctness of these variants. Two
dimensions can be distinguished here in how to capture variability:

– structure-oriented methods specify explicitly variation points, i.e. those points
of the model where functionality (workflow components) or parameter val-
ues have several alternatives. At each variation point, the attached variants
represent different possibilities to realize the variation point. Concrete work-
flows arise then through selection of variants at given variation points. This
is a very explicit way of handling variability.

– behavior-oriented methods instead constrain the combination of workflow
components in a workflow through semantic annotations of the components,
as well as rules and constraints that govern the proper combination of these
components in terms of their semantic annotations. This is a more liberal,
declarative, and indirect way of handling variability.

Clearly, the structure-oriented hierarchical variability modeling approach is a
variability modeling concept originating from software product line engineer-
ing [2] and similar to the feature models [3, 4] in use in that community.

The behavior-oriented variability modeling approach has a semantic and
decision-management touch that is in good alignment with the XMDD paradigm
of [5, 6]. There, one tends to manage decisions by using properties (expressed
as constraints) that must hold on process models, and tools that either check
(for instance by model checking) or enforce (by automatic generation and syn-
thesis) those properties on the artifacts (hierarchical process models) and their
transformations (e.g. from models to code). The jABC [7] is a framework for
service-oriented modeling and design of processes and workflows that supports
semantic annotations, model checking, and automatic synthesis of workflows ac-
cording to the loose programming paradigm of [8].

While the structure-oriented approach is mainstream, the behavioral approach
is conceptually new in this context (see Sect. 5). In this paper, we explore
for the first time both approaches, with the goal of understanding their pro-
files (strengths and weaknesses) and identifying possible synergies. The XMDD
paradigm should in principle be able to accommodate both approaches, and the
jABC should be able to offer both after some extensions with functionality to
capture the structural description of variation points and variants explicitly.

The remainder of the paper is structured as follows: In Section 2, we describe
the case example used throughout this paper. We present a structural and behav-
ioral approach to modeling workflow variability in Sections 3 and 4, respectively.
Subsequently, Section 5 briefly reviews related work, and Section 6 elaborates
on the profile of the two considered approaches to variability and provides some
perspectives.

2 Case Example

We use the bioinformatics workflow of [9], which is variant-rich and has been
already implemented in the jABC, as a case example for our investigations.

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 3

Fig. 1. Simple bioinformatics workflow, computing a multiple sequence alignment

In its basic form, the user selects a file containing a molecular sequence, that
is, a DNA or protein sequence. The content of the file is then read and sent
to the ClustalW web service of the DDBJ [10]. (ClustalW [11] is a popular
algorithm for computing multiple alignments from molecular sequences.) Finally,
the computed alignment is displayed to the user in a text dialog window. As
there are naturally different ways to obtain input data (e.g., from local files,
from remote databases, via manual input), different ways to compute alignments
(different algorithms as well as different service providers), and different ways
to handle the obtained results (e.g., direct display, saving as a file, storage to a
database, using it as input for subsequent computations), several variations of
this workflow can be directly derived (cf. [9]). In this paper, we use the variability
of this example workflow to illustrate the difference between the structural and
the behavioral variability modeling concepts.

The concrete modeling we use is shown in Figure 1 for the basic workflow. The
basis for the model in jABC are libraries of semantically annotated workflow
components, called SIBs (Service Independent Building Blocks). SIBs provide
units of functionality. The first SIB (read sequence file, at the left) displays
a file chooser dialog window, where the user selects the file of the molecular se-
quence to be processed. SIBs can be freely combined into flowchart-like workflow
structures called Service Logic Graphs, or SLGs. The SLG of this simple work-
flow contains four SIBs: it starts at the left SIB (the underlined name denotes
that this is the Start SIB of the process), the selected file is then read (SIB read
sequence file), sent to the ClustalW web service of the DDBJ platform in
Japan, and the result is displayed to the user in a text dialog window (SIB show
alignment).

3 Structure-Oriented Variability Modeling

Structure-oriented variability modeling uses linguistic constructs that extend the
modeling language to describe all possible variants of a workflow. We apply here
the concept of hierarchical variability modeling [12] to express the variability of
(nested) workflows. Hierarchical variability modeling was developed in the con-
text of software product line engineering [2]. There, it expresses via syntactic
constructs the variability of the artifacts that are reused to build the different
products of a product line. Hierarchical variability modeling separates the vari-
ability description of the artifacts in different hierarchical layers in order to allow
for a structured and modular representation of the artifacts and their (nested)
variations.

4 A.-L. Lamprecht et al.

In a hierarchical variability model now applied to workflows, on each hier-
archical layer we need to capture and make explicit in the model what is the
commonality and what is the variability of the considered workflow instances at
that layer. Accordingly, a common core workflow represents the commonality of
all defined workflow instances. The common core workflow, as every ordinary
jABC workflow, is an SLG. It contains workflow components, i.e., SIBs, and
connections between these SIBs. Additionally, the core workflow may contain
variable workflow components, i.e., SIBs that represent variation points in the
workflow. Variation points describe steps where the workflow execution may vary.
The variation point SIBs in the common core workflow are therefore ’placehold-
ers’ for one of the alternatives. A workflow containing variation points is called
a variable workflow, otherwise the workflow is concrete.

Each variable workflow component has a set of associated variants which rep-
resent how the variability introduced by the variation points can be realized. A
variant can be a concrete workflow component or a subworkflow that may con-
tain variable workflow components itself, such that it creates a new hierarchical
layer in the variability model. Given a variable workflow description, a concrete
workflow instance can be derived from it by selecting the variants for each vari-
able workflow component. The set of all workflow instances that can be derived
by variant selection is the variability space defined by the structure-oriented
hierarchical variability model.

Of course, not all selections of variants at all variation points give rise to a sen-
sible workflow instance, due to dependencies. Often certain variants can only be
combined with specific other variants, while some variants require the selection
of other variants at particular variation points. In hierarchical variability model-
ing, these diversity constraints are specified by requires- and excludes-constraints
between variants associated to different variation points. A requires-constraint
between two variants states that one variant requires the selection of the other
variant. An excludes-constraint between two variants states that the selection of
one variant prevents the selection of another variant. Additionally, the selection
of some variants may be optional.

In order to ensure that a hierarchical variability model only defines executable
workflows, it has to satisfy certain well-formedness constraints. The common
core workflow containing variable workflow components has to ensure that the
allowed compositions of the workflow components have compatible inputs and
outputs. A simple means to ensure the input/output constraints is to require
that all variants have the same inputs and outputs, a constraint which is easily
checkable. A less restrictive alternative is to consider the diversity constraints
when checking the input and output constraints. This is more flexible, but it
is also more difficult to check, because in the worst case all possible workflow
instances satisfying the diversity constraints must be checked.

In the following, we illustrate how the hierarchical variability model described
above can elegantly express variants of the simple alignment workflow of Fig-
ure 1. In order to stay within the graphical modeling style proposed by XMDD,
we extend the graphical notation of the jABC with constructs that represent

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 5

Fig. 2. Variable workflow

variation points by variable workflow components and the associated variants.
As mentioned before, the common core workflows are ordinary jABC workflows
possibly containing variable workflow components that specify variation points.
Thus, we need to show how to express common core workflows, how to repre-
sent variable workflow components, and how to show the association between a
variable workflow component and its variants.

Fig. 3. Read from file variant

In our example, Figure 2 depicts the top hierarchical level of the variable
bioinformatics workflow. The common core workflow is the connected portion of
the SLG. It consists of three major steps: input, processing, and output. Each of
these three steps offers variants, which is expressed by the three variation points
that we identify on this level, named Input VP, Processing VP, and Output VP.
The variants associated to each variation point are graphically included inside a
dashed rounded box. In this example, the cardinality annotation [1,1] for each
variation point specifies that exactly one of the respective variants has to be

6 A.-L. Lamprecht et al.

selected. Variants are workflows themselves, and they can again contain variation
points. For the input variation point, for instance, we see that it is either possible
to read the input sequences from a local file (with the concrete workflow of
Figure 3, as chosen in the simple workflow of Fig. 1), or to retrieve a set of
sequences from a remote database.

Fig. 4. Single algorithm variant

For the processing variation point, there are variants that use a single al-
gorithm, that let the user choose an algorithm at runtime, or that evaluate
different parameter configurations of an alignment algorithm. The variant for
using a single algorithm is depicted in Figure 4: It does not contain a common
core workflow, but only another variation point with associated variants for the
ClustalW and the Mafft alignment algorithms. In contrast, the parameter eval-
uation variant shown in Figure 5 contains a common core workflow, expressing
that the alignment is carried out with all possible values for a particular pa-
rameter in order to determine which value leads to the best alignment. Within
this variant, the single algorithm variation point defined above is reused in or-
der to make the evaluate parameters variant parametric in the actually used
alignment algorithm.

Finally, for the output variation point, the different variants available offer
the choice between viewing the alignment, viewing the implied phylogenetic
tree, and saving the alignment result to a file. As we see in Fig. 2, the tree
visualization variant is only applicable when the ClustalW variant is selected
for the algorithm variation point, because only the ClustalW result contains the
information necessary for the tree visualization steps - the other alignment al-
gorithms do not provide this information. This dependency is captured by the

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 7

Fig. 5. Evaluate parameters variant

requires constraint attached to the view tree variant. As we described previ-
ously, these constraints restrict the freedom in choosing individual variants to
those alternatives that make sense in the global context.

As we see, the structure-oriented hierarchical variability modeling approach
facilitates the explicit representation of variability within the workflow defini-
tion. Using this approach, the variability contained in a workflow definition can
be intuitively specified. The common structures of all workflow instances can
be easily understood by considering only the common core workflows at each
hierarchical layer. By focusing on the different variants, it is easy to see which
concrete workflow components are required to realize the specified set of work-
flow instances.

The modular variability representation (simply ”next to each other” on the
canvas) increases the scalability of the modeling approach towards large and
complex workflows by allowing the separate modeling of variable nested sub-
workflows associated to different variation points. Reused (variable) workflows
are indeed modeled only once. The hierarchical model structure further allows
compositional reasoning: one can ensure workflow properties by analyzing each
hierarchical level in isolation, due to some restrictions on their global interplay in
terms of diversity constraints. Hierarchical variability modeling also supports the
evolution of workflow descriptions, since variants that become newly available
can be added to variation points without changing other parts of the variability
model.

In this sense, structure-oriented variability modeling is in good alignment
with the principles of XMDD, including the ”One-Thing-Approach” [6], which
enforces a global view on the modeled system that goes from the overview to the
details, down the workflow hierarchy, and strictly reuses available sub-workflows
and SIBs (the well known ”write things once” commandment).

8 A.-L. Lamprecht et al.

4 Behavior-Oriented Variability Modeling

The XMDD paradigm has been designed to support a semantics-based approach
for service-oriented modeling and design of processes and workflows. Aiming at
a service-oriented implementation that uses libraries of artifacts (services, or
component libraries, or APIs of existing legacy code), the basis for the behavioral
models are libraries of semantically annotated workflow components, (in the case
of jABC, the SIBs), that provide particular units of functionality. These units
can be orchestrated into flowchart-like workflow structures (the SLGs in the
jABC case). In XMDD, the semantics helps to define a space of legal behavioral
variants, by enhancing the model layer with a second kind of description, in
terms of properties. At any time, the current design can be checked against
those properties, which express the envelope of the desired or legal behaviors.
The conceptual idea of the semantics-oriented variability modeling approach
builds on this philosophy: start with all possible combinations of the available
workflow components, and restrict them by adding constraints, thereby defining
the variability space.

This definition of the admissible workflows in the behavior-oriented approach
is based on the loose programming paradigm (see [8] for a detailed introduc-
tion). Loose programming enables developers to design their application-specific
workflows in an intuitive style. Key to this approach is the concept of loose
specification, a graphical formalism that allows expressing workflows just by
sketching them as flow graphs without caring initially about input/output com-
patibility (because there is a mechanism in the background that inserts type
converters and adapters if necessary), or precise knowledge about the available
workflow components or the availability of resources (meaning here the availabil-
ity of data provided by previous components). Developers only have to specify a
rough process flow graphically in terms of a combination of ontologically defined
workflow components. Concretely, SIBs as well as data types are semantically
classified, and their use and instantiation must respect the consistency at the
semantic level, too. This way, one is guaranteed to obtain SLGs (manually or
with synthesis support) that are ”correct” with respect to the current ontology
of components and data and to the current set of constraints.

These loose specifications are then concretized to fully executable workflows
automatically by means of a combination of 1) data-flow analysis, ensuring the
availability of the required resources, 2) temporal logic-based process synthesis,
resolving type conflicts and taking care of correct component instantiation, and
3) model checking, to ensure global intents and invariants expressed in temporal
logic.

In order to support the loose programming paradigm [8], the jABC contains
tool support for formal methodology (provided by the GEAR model check-
ing plugin [13] and the PROPHETS plugin for logic-based process synthesis
[14]) to ensure that the SLGs do not violate the constraints that character-
ize the intended variability space, that is, the set of all valid workflows. Loose

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 9

Fig. 6. Alignment worfklow with a loosely specified branch

programming seems thus best equipped to allow also variability to be expressed
as a constraint, and treated with the existing tools as a new dimension of con-
straints and knowledge.

As an example for the semantics-oriented variability modeling approach, con-
sider the loosely specified workflow in Figure 6, where the SIBs read sequence
file and show alignment are connected by a (red-colored, bold) loose branch.
In order to handle this loose specification by the formal methodology described
above, the loose specification is translated into a set of temporal logic formulas1.
More specifically, these constraints are expressed in terms of the Semantic Linear
Time Logic (SLTL) [15], a variant of Linear Time Logic (LTL) that combines
the usual operators for relative time (next, eventually, until, ...) with ontologi-
cal classifications of types and services: atomic propositions and actions are not
simply ”labels” but range over the ontology associated with the components.

Fig. 7. Alignment worfklow with variants according to vertical constraints (ontological
terms)

1 Additional constraints for loose specifications that further restrict the admissible
compositions can simply be given by additional formulas. The set of constraints is
in this sense compositional.

10 A.-L. Lamprecht et al.

Fig. 8. Alignment worfklow with variants according to horizontal constraints (temporal
logic formulas)

Accordingly, in this setup, two dimensions of constraints can be distinguished:

– Vertical constraints are basically abstract type or service descriptions in
terms of ontologies, that is, constraints that specify which components can
be instantiated at a certain variation point2. The semantic annotations of the
SIBs in the jABC are provided in terms of simple ontologies. For instance,
the ClustalW SIB from our example is classified as alignment algorithm in
the ontology. The SLTL constraint

F < alignment algorithm > true

(intuitively, this translates to ”finally, there is an alignment algorithm step”)
uses this ontological term to express that the workflow has to comprise a SIB
from this ontological class. This is de facto a description of the variation point
for single algorithms that now is described using terms of the ontology. The
result is shown in Figure 7.

– Orthogonally, the horizontal constraints typically constrain the temporal and
causal relationship between components and variation points and are given
in terms of temporal logics. Adapting the examples given above, a horizontal
constraint could, for instance, express that every computed ClustalW align-
ment has to be stored to the local file system (for later use). Formally, this
can be expressed as

G(< ClustalW > true ⇒ X(F (< write file > true)))

(presence of ClustalW at any point implies that subsequently the workflow
must contain also a file writing step). Thus, concretizations for the loose
branch that only consist of ClustalW would not be sufficient to meet this
constraint, whereas those that incorporate also the file-saving steps would
be valid (cf. Figure 8).

2 A variation point in structure-oriented variability modeling has essentially the same
meaning.

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 11

Both kinds of constraints can be combined in order to express more complex
specifications. This allows for a very flexible fine-tuning of valid variations:

– The intent of a workflow can be comfortably specified in terms of temporal
logic formulas without unnecessarily constraining the concrete realization.
For instance, a possible combination of constraints similar to those shown
above is needed when requiring to save the results of any kind of alignment
algorithm to a file - that is, the different possible variants do not have to be
stated explicitly and the specification does not have to be changed if, e.g.,
new SIBs are added to the ontology.

– Frame conditions and type-constraints can be either modeled in terms of
so-called local constraints (for specifying allowed components in an intended
workflow), or in terms of temporal formulas (for global properties, like in-
tents).

Due to the power of temporal logics, this constraints-based descriptive style
allows specifications ranging from very coarse requirements, like ”no business
object should be used that has not been introduced”, to very tight constraints
that determine the workflow up to bisimulation [16]. Thus, it is possible to
describe the intended range of workflows in a very flexible fashion, while at the
same time it can be formally proved whether a certain concrete workflow satisfies
the variability constraints via model checking [17, 18].

The approach is, however, not limited to validate workflow instances relative
to the corresponding variability model. Rather, it is also possible to validate
general properties of the variability model itself. In fact, once properly set up, it is
possible to guarantee that each workflow refining the constraint-based variability
model is immediately executable, or that it obeys a certain important policy.

More elaborate is the use of temporal synthesis [19, 20] to automatically treat
constraint violations either by proposing possible repairs or by directly repairing
the workflow based on defaults. This approach has been successfully applied
already in the ’90s for the variation management of so-called value-added services
[21]. In the meantime it has been generalized and improved to cover less rigidly
designed application domains like bioinformatics [22–24].

5 Related Work

There is very little related work on behavioral variability modeling, even though
there was already an industrially successful solution in the mid-’90s for the varia-
tion management of so-called value-added services. There, libraries of constraints
specified the according variability space, and led to drastically reduced times to
market. Most advanced was the approach presented in [21], where the idea of
modal transition systems was used to intuitively constrain the variability space,
and to guarantee that newly created variants can be deployed without any fur-
ther testing.

In contrast, the amount of related work on structural variability modeling is
vast. Variability in requirements analysis is predominately captured by features

12 A.-L. Lamprecht et al.

models [4], whose features are end-user visible product functionalities. Using
a special syntax for denoting mandatory and optional features and additional
selection constraints, the set of valid feature combinations is defined. This set
relates to the set of admissible products, but features are only labels relating to
functionalities [3]. Alternatively, at the level of requirements analysis variability
is represented by decision-oriented variability modeling [25].

The existing syntax-oriented approaches to represent variability on the ar-
tifacts level can be classified into three main directions [26]. First, annotative
approaches consider one model representing all products of a product line. Vari-
ant annotations, e.g., using UML stereotypes [27, 28], presence conditions [29],
or separate variability representations, such as orthogonal variability models [2],
define which parts of the model have to be removed to derive the model of a
concrete product.

Second, compositional approaches associate product fragments with product
features which are composed for particular feature configurations. A prominent
example for the compositional approach is AHEAD [30], where a product is built
by stepwise refinement of a base module with a sequence of feature modules. In
[26, 31, 32], models are constructed by aspect-oriented modeling techniques. [33]
applies model superposition to compose model fragments.

Third, transformational approaches, such as [34], represent variability by rules
determining how modeling elements of a base model have to be replaced for a
particular product model. Delta modeling [35] is another instance of transfor-
mational variability modeling where a set of systems is described by a designed
core system and a set of system deltas modifying the core system.

Hierarchical variability modeling, as presented in this paper, generalizes the
ideas of the Koala component model [12] for the implementation of variant-rich
component-based systems to the requirements and design phase. In Koala, the
variability of a component is described by the variability of its sub-components
which can be selected by so called switches via explicit diversity interfaces, infor-
mation about selected variants is communicated between sub- and supercompo-
nents. Diversity interfaces and switches in Koala can be understood as concrete
language constructs targeted at the implementation level to express variation
points and associated variants. Plastic partial components [36] are an archi-
tectural modeling approach where component variability is defined by extend-
ing partially defined components with variation points and associated variants.
However, variants cannot contain variable components, so that this modeling
approach is not truly hierarchical.

6 Conclusion and Perspectives

We have presented a structure-oriented and behavior-oriented variability mod-
eling approach, and illustrated that they both can be elegantly captured in an
eXtreme Model-Driven Design paradigm (XMDD) by considering the variant-
rich bioinformatics workflow realized in [9] with the jABC platform. It is

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 13

apparent that the two approaches have complementary strength, which we will
briefly summarize according to expressive power, analyzability, and support of
evolution.

In the structure-oriented approach, the variability space is modeled explicitly
in an architectural or ”shoe-box”-style by explicitly listing the valid alternatives
for the variation points, which is very intuitive and immediately understandable.
Essentially, this turns the corresponding analysis into a combinatorial problem,
where the various instances are checked explicitly. The number of these checks
is typically reduced by a locality principle: vital dependencies are only allowed
to appear at a given level within a certain (sub)model. Evolution is typically
simply realized by adding more alternatives for certain variation points, or by
extending the variability model, e.g., by adding further variation points.

In contrast, in the behavior-oriented approach the variability space is de-
scribed via temporal constraints and loose ontological component specifications,
which defines the set of possible workflows extensionally. As a consequence, prop-
erties of variability models can be verified via logical implication, and the validity
of a certain concrete workflow instance via model checking. Evolution of a vari-
ability model is simply a matter of varying the defining constraints.

From a broader perspective, these different profiles lead to another significant
difference: whereas structural variability models can only be sensibly related
when they are structurally similar, behavioral variability models can flexibly
be related according to logical implication, which leads to powerful variation
libraries, and to the fact that established properties are automatically inherited
along the implication chains. This has already been exploited more than 10
years ago for the modeling of value-added telecommunication services for a fast
development of new product lines, which required strong structural changes, but
whose behavioral specifications remained quite similar [21].

Currently we are investigating how the advantages of the two variability
approaches can be combined in order to arrive at an easy-to-understand, yet flex-
ible variability modeling framework. For example, we have found that behavior-
oriented variability modeling can in fact simplify feature modeling [37]. In this
line, we also consider other structure- oriented variability-modeling approaches,
such as delta modeling [35], and methods for supporting the generation of con-
crete workflow instances, for instance using temporal logic synthesis in the fash-
ion described in [8].

References

1. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods and
Systems. MIT Press (2002)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering -
Foundations, Principles, and Techniques. Springer, Heidelberg (2005)

3. Czarnecki, K., Eisenecker, U.W.: Generative Programming: Methods, Tools, and
Applications. Addison-Wesley (2000)

4. Kang, K., Lee, J., Donohoe, P.: Feature-Oriented Project Line Engineering. IEEE
Software 19(4) (2002)

14 A.-L. Lamprecht et al.

5. Margaria, T., Steffen, B.: Agile IT: Thinking in User-Centric Models. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Methods, Verification and
Validation. CCIS, vol. 17, pp. 490–502. Springer, Heidelberg (2009)

6. Margaria, T., Steffen, B.: Business Process Modelling in the jABC: The One-Thing-
Approach. In: Handbook of Research on Business Process Modeling. IGI Global
(2009)

7. Steffen, B., Margaria, T., Nagel, R., Jörges, S., Kubczak, C.: Model-Driven De-
velopment with the jABC. In: Bin, E., Ziv, A., Ur, S. (eds.) HVC 2006. LNCS,
vol. 4383, pp. 92–108. Springer, Heidelberg (2007)

8. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Synthesis-Based Loose
Programming. In: Proceedings of the 7th International Conference on the Quality
of Information and Communications Technology, QUATIC (September 2010)

9. Lamprecht, A.-L., Margaria, T., Steffen, B.: Seven Variations of an Alignment
Workflow - An Illustration of Agile Process Design and Management in Bio-jETI.
In: Măndoiu, I., Wang, S.-L., Zelikovsky, A. (eds.) ISBRA 2008. LNCS (LNBI),
vol. 4983, pp. 445–456. Springer, Heidelberg (2008)

10. Kwon, Y., Shigemoto, Y., Kuwana, Y., Sugawara, H.: Web API for biology with a
workflow navigation system. Nucl. Acids Res. 37(suppl 2), W11–W16 (2009)

11. Larkin, M., Blackshields, G., Brown, N., Chenna, R., McGettigan, P., McWilliam,
H., Valentin, F., Wallace, I., Wilm, A., Lopez, R., Thompson, J., Gibson, T.,
Higgins, D.: Clustal W and Clustal X version 2.0. Bioinformatics 23(21), 2947–
2948 (2007)

12. van Ommering, R.C.: Software reuse in product populations. IEEE Trans. Software
Eng. 31(7), 537–550 (2005)

13. Bakera, M., Margaria, T., Renner, C., Steffen, B.: Tool-supported enhancement of
diagnosis in model-driven verification. Innovations in Systems and Software Engi-
neering 5, 211–228 (2009), doi:10.1007/s11334-009-0091-6

14. Naujokat, S.: Automatische Generierung von Prozessen im jABC. Diplomarbeit,
TU Dortmund (September 2009)

15. Steffen, B., Margaria, T., Freitag, B.: Module Configuration by Minimal Model
Construction. Technical report, Fakultät für Mathematik und Informatik, Univer-
sität Passau (1993)

16. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle
River (1989)

17. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. The MIT Press (1999)

18. Müller-Olm, M., Schmidt, D., Steffen, B.: Model-Checking - A Tutorial Introduc-
tion. Static Analysis, 848 (1999)

19. Manna, Z., Wolper, P.: Synthesis of Communicating Processes from Temporal
Logic Specifications. ACM Trans. Program. Lang. Syst. 6(1), 68–93 (1984)

20. Steffen, B., Margaria, T., von der Beeck, M.: Automatic synthesis of linear process
models from temporal constraints: An incremental approach. In: ACM/SIGPLAN
Int. Workshop on Automated Analysis of Software, AAS 1997 (1997)

21. Braun, V., Margaria, T., Steffen, B., Yoo, H., Rychly, T.: Safe service customiza-
tion. In: Intelligent Network Workshop, IN 1997, vol. 2, p. 4. IEEE (1997)

22. Lamprecht, A.L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-
based service composition. BMC Bioinformatics 10(suppl.10), S8 (2009)

23. Lamprecht, A.L., Naujokat, S., Margaria, T., Steffen, B.: Semantics-based com-
position of EMBOSS services. Journal of Biomedical Semantics 2(suppl. 1), S5
(2011)

Comparing Structure-Oriented and Behavior-Oriented Variability Modeling 15

24. Lamprecht, A.L., Naujokat, S., Steffen, B., Margaria, T.: Constraint-Guided Work-
flow Composition Based on the EDAM Ontology. In: Burger, A., Marshall, M.S.,
Romano, P., Paschke, A., Splendiani, A. (eds.) Proceedings of the Workshop on
Semantic Web Applications and Tools for Life Sciences, CEUR Workshop Proceed-
ings, Berlin, Germany, December 10, vol. 698 (2010)

25. Schmid, K., Rabiser, R., Grünbacher, P.: A comparison of decision modeling ap-
proaches in product lines. In: VaMoS, pp. 119–126 (2011)

26. Völter, M., Groher, I.: Product Line Implementation using Aspect-Oriented and
Model-Driven Software Development. In: SPLC, pp. 233–242 (2007)

27. Ziadi, T., Hélouët, L., Jézéquel, J.M.: Towards a UML Profile for Software Product
Lines. In: Workshop on Product Familiy Engineering (PFE), pp. 129–139 (2003)

28. Gomaa, H.: Designing Software Product Lines with UML. Addison Wesley (2004)
29. Busch, C.: Overview of Generative Software Development. In: Banâtre, J.-P.,

Fradet, P., Giavitto, J.-L., Michel, O. (eds.) UPP 2004. LNCS, vol. 3566, pp. 326–
341. Springer, Heidelberg (2005)

30. Batory, D., Sarvela, J., Rauschmayer, A.: Scaling Step-Wise Refinement. IEEE
Trans. Software Eng. 30(6), 355–371 (2004)

31. Heidenreich, F., Wende, C.: Bridging the Gap Between Features and Models. In:
Aspect-Oriented Product Line Engineering, AOPLE 2007 (2007)

32. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Management. In:
SPLC (2008)

33. Apel, S., Janda, F., Trujillo, S., Kästner, C.: Model Superimposition in Software
Product Lines. In: Paige, R.F. (ed.) ICMT 2009. LNCS, vol. 5563, pp. 4–19.
Springer, Heidelberg (2009)

34. Haugen, Ø., Møller-Pedersen, B., Oldevik, J., Olsen, G., Svendsen, A.: Adding
Standardized Variability to Domain Specific Languages. In: SPLC (2008)

35. Clarke, D., Helvensteijn, M., Schaefer, I.: Abstract delta modeling. In: GPCE.
Springer, Heidelberg (2010)

36. Pérez, J., Dı́az, J., Soria, C.C., Garbajosa, J.: Plastic Partial Components: A so-
lution to support variability in architectural components. In: WICSA/ECSA, pp.
221–230 (2009)

37. Schaefer, I., Lamprecht, A.L., Margaria, T.: Constraint-oriented Variability Mod-
elin. In: Rash, J., Rouff, C. (eds.) 34th Annual IEEE Software Engineering Work-
shop (SEW-34). IEEE CS Press (to appear, 2011)

Towards Verification as a Service

Ina Schaefer1 and Thomas Sauer2

1 Technische Universität Braunschweig,
Braunschweig, Germany
i.schaefer@tu-bs.de

2 rjm business solutions GmbH,
Lampertheim, Germany

t.sauer@rjm.de

Abstract. Modern software systems are highly configurable and evolve
over time. Simultaneously, they have high demands on their correctness
and trustworthiness. Formal verification technique are a means to en-
sure critical system requirements, but still require a lot of computation
power and manual intervention. In this paper, we argue that formal ver-
ification processes can be cast as workflows known from business process
modeling. Single steps in the verification process constitute verification
tasks which can be flexibly combined to verification workflows. The ver-
ification tasks can be carried out using designated services which are
provided by highly scalable computing platforms, such as cloud com-
puting environments. Verification workflows share the characteristics of
business processes such that well-established results and tool support
from workflow modeling, management and analysis are directly applica-
ble. System evolution causing re-verification is supported by workflow
adaptation techniques such that previously established verification re-
sults can be reused.

1 Introduction

Modern computer systems are getting more and more complex. They exist in
several different variants at one point in time in order to adapt to different cus-
tomer needs. Furthermore, modern software systems are extremely long-lived and
evolve in order to adjust to changing user or environment requirements. Addi-
tionally, software systems are designed to dynamically adapt their behavior and
internal structure according to changes in the environment, e.g., to recover from
failures or to optimize their functionality with respect to the available resources.
At the same time, these systems have are high requirements on their correct-
ness and trustworthiness, since they control essential functionality in medical,
automotive or industrial-control applications. Hence, despite system diversity, it
is crucial to ensure that in every possible system configuration at any point in
time, critical safety and security requirements are met.

Formal methods are a means to rigorously ensure these requirements [12].
However, formal verification still requires a lot of manual effort and computa-
tion power. One particular problem is that automatic verification techniques,

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 16–24, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Towards Verification as a Service 17

such as model checking [5], do not scale for large and complex systems. To
counter this problem, verification complexity reduction techniques, such as com-
positional reasoning [7] or model transformations [4], have been proposed. These
techniques increase the applicability of formal verification, but require manual
intervention. Thus, formal verification of modern large-scale software systems
that allows to keep up with the market pressure has not yet been achieved.

In this paper, we argue that formal verification processes involving the appli-
cation of verification complexity reduction techniques can be cast as workflows.
Workflows describe the execution of process activities in a structured way and
are a well-known concept from business process modeling [13]. The steps in
the verification process, i.e., the application of different verification complexity
reductions and the actual calls to verification tools, can be captured as veri-
fication tasks. These verification tasks may then be flexibly composed into a
verification workflow, which describes the best possible way to achieve a reduc-
tion of verification complexity. The verification workflow is executed via services
that carry out the individual verification tasks. When these services are pro-
vided by a service-oriented computing environment, such as a highly scalable
cloud computing platform, computation resources are in many cases no longer
an issue. The formulation of verification processes as verification workflows has
the following benefits:

– Verification workflows share the same characteristics as business process,
such that existing techniques and tools from workflow modeling, manage-
ment and analysis [13] can be directly applied. This eases the specification
and verification of complex verification processes and facilitates automated
workflow execution.

– Verification processes can be executed as flexible services in service-oriented
computing environments, such as cloud computing platforms [14]. Cloud
computing platforms provide sheer unlimited computing resources on de-
mand at reasonable cost. This alleviates restrictions for completing compu-
tationally expensive analyses. The large-scale distribution of the verification
tasks is taken care of by the service-oriented computing environment which
allows flexibly replacing services if more efficient ones become available.

– If the system and the properties to be verified evolve over time, workflow
adaptation and re-planning techniques [10] can be applied to reuse previously
established verification results. The flexibility provided by service-oriented
computing environments further simplifies re-planning of verification pro-
cesses.

This paper is structured as follows: In Section 2, we review related work on work-
flows as well as on service-oriented computing and model-based verification. In
Section 3, we present the novel verification as a service approach. Section 4 illus-
trates the proposed approach at the model-based verification of adaptive embed-
ded systems. Finally, Section 5 summarizes this paper with an outlook to future
work.

18 I. Schaefer and T. Sauer

2 Related Work

The term workflow commonly refers to the automation of a business process [6].
A business process describes a structured approach for reaching a commercial
goal, e.g., for producing goods. A workflow is formed by a set of self-contained
tasks and their interdependencies, such that information can be passed among
the participants as required.

Design, analysis, and reuse of workflows have been subject to intense research
in the last years [13]. For workflow design, a rich variety of process descrip-
tion languages is available which allows specifying individual tasks as well as
their compositions. Besides control flow aspects, such as parallelism and syn-
chronization, workflow design typically covers a common representation of task
results and resource allocation aspects. Workflow analysis techniques allow en-
suring consistency and correctness of the specified workflows, e.g., the absence
of dead-locks or live-locks [13]. Most approaches translate workflow descriptions
to a formal representation, such as Petri nets, and apply formal reasoning tech-
niques in order to ensure properties of the workflows. Workflow evolution due
to changing requirements has been discussed in the context of adaptive or agile
workflows [10] in order to provide methodologies for syntactically and semanti-
cally correct workflow adaptation.

Workflows can be executed in service-oriented computing environments which
abstract from the concrete task scheduling and distribution. The Service-Oriented
Architecture (SOA) approach perceives all computational resources as services
that can be dynamically discovered and composed [15]. The individual tasks
of a workflow can be conceived as such services. The SOA approach eases the
integration of heterogeneous systems and applications built using different tech-
nologies or software infrastructures. In particular, this allows flexibly allocating
the most suitable services to execute tasks and alleviates the complexity in case
of workflow evolution. A common approach for implementing a SOA uses web
services which make the desired functionality programmatically accessible over
standard Internet protocols.

Cloud computing is a recent trend to implement service-oriented computing
environments [14]. Cloud computing refers to a shared, extremely powerful pro-
cessing infrastructure provided over an abstract interface, such that the actual
location and management of processing nodes is of no concern. Ideally, many or-
ganizations share the same infrastructure such that it can be used economically.

A concept similar to verification workflows that are presented in this pa-
per are scientific workflows describing structured activities and computations
that arise in scientific problem-solving [9], for instance in bioinformatics [8]. The
SAL [2] and IF [3] verification frameworks, similar to the model-based verifica-
tion framework presented in [11], apply various verification complexity reduction
techniques, such as slicing and abstractions, in order to enable the formal ver-
ification of large-scale system. However, neither of these approaches presents a
workflow for capturing how the different reduction techniques should be carried
out, but leave this as a manual activity.

Towards Verification as a Service 19

3 Verification as a Service

Verification as a Service (VaaS) is a novel approach based on the notion of
verification workflows, which can be executed on a service-oriented computing
environment. The VaaS approach is illustrated in Figure 1. Starting from a sys-
tem and properties to be verified, a verification workflow is devised, arranging
verification tasks in a suitable ordering. This verification workflow can be ex-
ecuted on a service-oriented computing environment providing analysis as well
as verification complexity reduction services. In the following, we explain the
different steps in detail.

3.1 Verification Workflows

For specifying verification processes as workflows, we first identify the verifi-
cation tasks that are part of the process. The concrete tasks depend on the
considered application scenario. In general, verification tasks are characterized
by their inputs and outputs and a functional description. If verification tasks
refer to verification complexity reductions, property-preservation theorems are
required which ensure that only the size of the verification problem is changed,
but the validity of the property to be established is not affected. The tasks
involved in a verification process are usually the following:

1. Decomposition/Composition: Using compositional reasoning, the verification
of a global property over a complete system can be decomposed into a set
of smaller verification problems requiring verification of local properties over
parts of the system. The validity of the local properties implies the validity
of the global property. If the decomposition yields additional constraints,
such as assumptions in case of assume-guarantee reasoning [7], also for dis-
charging these constraints verification problems are generated. In case the

System / Properties

Verification

workflow

t1

t2 t3

t4

Workflow execution

Model
checker ...

Decom-
position

...

Fig. 1. Verification as a Service

20 I. Schaefer and T. Sauer

validity of the global property depends on the local properties, the local veri-
fication results are combined to the global verification result in a composition
verification task.

2. Projection: Usually, not all parts of a system contribute to the validity of a
property such that the complete system can be reduced only to the relevant
parts, e.g., a subset of components in a component-based system.

3. Abstraction: If a system is too large to be verified directly, abstraction pro-
vides a means to reduce this complexity while retaining the essential system
behavior for the validity of the property. If computations are performed on
a large and infinite data domain, system data and computations can be ab-
stracted to a finite abstract domain that is sufficiently precise to establish
the desired property.

4. Translation: If the verification complexity reductions are carried out on an
intermediate system representation, the verification problems have to be
translated to the input language of the used verification tools. Similarly, the
results returned from the verification tools have to be translated back to the
intermediate representation language in order to allow the system developer
to trace back failures, e.g., error traces produced by model checkers.

5. Analysis: The verification problems are solved by verification tools, such as
model checkers, static analyzers or theorem provers, which represented by
analysis tasks. In order to facilitate the automatic execution of the verifica-
tion workflows, these analyses have to be automatized.

The verification tasks can be flexibly composed to form a verification workflow
by using a process description language, e.g., the one used in [10]. Within a
verification workflow, the individual verification tasks may be arranged in se-
quence such that one task is executed after the other. Further, an AND-split
construct allows for parallel execution of verification tasks, e.g., when a decom-
position results in several independent verification problems. A corresponding
AND-join then yields that the workflow execution is synchronized at this point.
In addition, verification workflows may contain XOR-split constructs to express
case distinctions in the workflow execution. Finally, loops enable the repetitive
execution of verification tasks.

The concrete ordering in which the verification tasks can be composed de-
pends on the application scenario. The composition of the verification tasks can
be optimized to maximize the parallel execution of sub-workflows or the amount
of the verification complexity reduction that can be achieved. Alternatively, the
computational resources required can be minimized. In general, the workflow
composition has to ensure that the outputs provided and the inputs required by
the verification tasks are compatible. Furthermore, the result of the completed
verification workflow has to be correct, which means that the obtained verifi-
cation result is correct. These properties can be verified by applying existing
workflow analysis and verification technique to the verification workflow itself,
which constitutes another verification workflow which can be handled by the
same means.

Towards Verification as a Service 21

3.2 Workflow Execution

Once the verification workflow is fully specified, it can be executed by an service-
oriented execution environment which takes care of distribution and scheduling
of verification tasks. Each of the verification tasks are executed by designated
service in the execution environment. The services are specified by service de-
scriptions. A service description, amongst others, contains a name, a specification
of the service functionality and a specification of the required inputs and pro-
vided outputs. Service descriptions typically comprise a service level agreement
(SLA) stating the provided service quality. For instance, in an SLA it could be
captured that the service provides a certificate that the computed results are
correct.

The execution platform determines appropriate services capable for carrying
out each of the verification tasks by comparing service descriptions with the
respective task characterizations. For example, analysis tasks are mapped to
services which encapsulate calls to verification tools. Depending on the actu-
ally used execution platform, automatic service discovery by means of semantic
matchmaking is enabled. This allows to flexibly add and remove services based
on their availabilty, which greatly simplifies deployment of both platform and
services.

It is important that the result of executing a verification workflow is correct.
This includes that the verification tasks are executed in the exact ordering as
specified by the verification workflow and that the services are appropriately
selected for the verification tasks and compute correct results. To ensure this,
service-oriented computing environments often adhere to SLAs which ensure
the quality of the provided services. Additionally, the certificates provided by
the services can be checked after verification workflow execution to validate the
computed results. If the service-oriented computing environment is implemented
on a cloud computing platform, trust in the verification results can be guaranteed
by using a private cloud where full control over the services and the execution
ordering is ensured.

3.3 Evolution

When the system and the properties to be verified evolve due to changing re-
quirements, the verification workflow must be adapted accordingly. For example,
additional tasks or further case distinctions may become necessary, while others
get obsolete. Techniques for workflow adaptation [10] support re-planning of the
verification workflow such that the resulting workflow is again syntactically and
semantically correct.

In many cases the workflow adaptation can be optimized such that previously
obtained verification results can be reused. Instead of having to repeat all verifi-
cation steps, only the changed portions of the verification workflows are executed.
This leads to significant performance gains if, e.g., only single components have
been modified.

22 I. Schaefer and T. Sauer

4 Application Scenario

In the following, we illustrate the verification as a service approach at the model-
based verification of adaptive embedded systems [11]. Adaptation (or graceful
degradation) is used in modern cars in order to improve safety and reliability
in case of sensor failure. Adaptive embedded systems are designed by a com-
position of reconfigurable components. Each of these components has a num-
ber of pre-determined functional configurations that are selected depending on
the component’s environment. The adaptation behavior of the complete system
emerges from the composition of the reconfigurable components. An adaptation
in one component may trigger adaptations in other components which in turn
may cause further adaptations. An important property of the adaptation behav-
ior is that adaptation stabilizes after a finite number of adaptation steps if the
quality of the system inputs stays stable.

In [11], a model-based verification framework for ensuring critical properties
of the adaptation behavior is proposed where design-level models of adaptive
embedded systems are translated to a formal semantics-based intermediate rep-
resentation. Critical properties of the adaptation behavior can be formulated
in temporal logics and verified by existing model checkers [1]. In general, the
considered systems are too complex to be directly amenable to automatic veri-
fication. Hence, a set of verification reduction techniques are applied. Composi-
tional reasoning strategies, including assume-guarantee reasoning, allow splitting
large and complex verification problems into a set of smaller verification prob-
lems for components of the system. Slicing techniques enable reductions to only
those components that contribute to the validity of a property. Data domain
abstraction facilitate reducing infinite data domains to finite abstract domains.
Finally, property-preservation theorems ensure for all above mentioned reduction
strategies that the properties to be verified are preserved under the performed
transformations.

The verification process for adaptive embedded systems suggested in [11] can
be stated as a verification workflow. In order to obtain the best possible verifi-
cation complexity reduction, it is advisable to perform decompositions as early
as possible followed by slicing and abstraction steps. Figure 2 depicts a work-
flow for an exemplary verification process. The first step is a decomposition of
the system S0 into two separate system parts S1 and S2, for which two inde-
pendent properties have to be established. For the first property, the verifica-
tion complexity is reduced via a slicing task, before the verification problem is
translated to the input of a verification tool and analyzed. For the second prop-
erty, an abstraction step is performed followed by a translation and an analysis
task.

While in [11], the verification process is a manual effort guided by a wizard-
like GUI, the verification as a service approach enables the automatic execution
of the verification process by a service-oriented computing environment. When
realized by cloud computing, the significant computational resources required
especially for the analysis tasks can be provided in the cloud at affordable cost.

Towards Verification as a Service 23

Decom-
pose

Slice Translate Analyze

Abstract Translate Analyze

S1

S2

S2' t(S2)'

S0

Fig. 2. Example Verification Workflow

5 Conclusion and Future Work

In this paper, we argued that verification processes should be cast as workflows.
This allows using existing techniques for workflow design and analysis to specify
and verify verification processes leading to the best possible reduction of verifica-
tion complexity. Based on service-oriented computing environments, verification
workflows can be automatically executed with the necessary computation re-
sources. Workflow adaptation techniques provide a means to re-plan verification
processes to accommodate system and property evolution.

A prerequisite for formulating verification processes as workflows is that the
verification goal can be split into a number of tasks that can be solved dis-
tributedly by a number of verification services. Furthermore, verification has to
be as automatic as possible in order to minimize user interactions. In particu-
lar, this makes the verification as a service approach useful for the model-based
model-based verification of adaptive embedded systems. However, the proposed
approach is not restricted to such systems, but is rather applicable to any domain
sharing similar characteristics.

There are many directions for future work. First, in order to ensure the cor-
rectness of verification workflows, existing workflow analysis techniques have to
be adapted to reason over verification tasks. For increasing trust in the obtained
verification results, strategies for certifying verification services as well as infras-
tructure and platform providers need to be investigated. In order to support the
automatic construction of verification workflows from a set of given verification
tasks, semantics-oriented modeling approaches following the loose programing
paradigm [8] can be applied. According workflow evolution, further research is
planned on the systematic reuse of verification results.

24 I. Schaefer and T. Sauer

References

1. Adler, R., Schaefer, I., Schuele, T., Vecchié, E.: From Model-Based Design to For-
mal Verification of Adaptive Embedded Systems. In: Butler, M., Hinchey, M.G.,
Larrondo-Petrie, M.M. (eds.) ICFEM 2007. LNCS, vol. 4789, pp. 76–95. Springer,
Heidelberg (2007)

2. Bensalem, S., Ganesh, V., Lakhnech, Y., Munoz, C., Owre, S., Ruess, H., Rushby,
J., Rusu, V., Saidi, H., Shankar, N., Singerman, E., Tiwari, A.: An Overview of
SAL. In: Fifth NASA Langley Formal Methods Workshop (LFM), pp. 187–196
(2000)

3. Bozga, M., Graf, S., Ober, I., Ober, I., Sifakis, J.: The IF Toolset. In: Bernardo,
M., Corradini, F. (eds.) SFM-RT 2004. LNCS, vol. 3185, pp. 237–267. Springer,
Heidelberg (2004)

4. Clarke, E., Grumberg, O., Long, D.: Model Checking and Abstraction. ACM Trans.
Prog. Lang. Syst. 16(5), 1512–1542 (1994)

5. Clarke, E., Grumberg, O., Peled, D.: Model Checking. MIT Press (1999)
6. Hollingsworth, D.: The workflow reference model. Technical report, WfMC, Docu-

ment TC-1003 (1995)
7. Kupferman, O., Vardi, M.: Modular Model Checking. In: Compositionality: The

Significant Difference, Int’l Symposium, pp. 381–401 (1997)
8. Lamprecht, A.-L., Margaria, T., Steffen, B.: Bio-jETI: a framework for semantics-

based service composition. BMC Bioinformatics (2009)
9. Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee,

E.A., Tao, J., Zhao, Y.: Scientific workflow management and the kepler system.
Concurrency and Computation: Practice & Experience 18, 1039–1065 (2006)

10. Sauer, T., Minor, M., Bergmann, R.: Inverse workflows for supporting agile busi-
ness process management. In: Proceedings of the 6th Conference on Professional
Knowledge Management. LNI, vol. 182, pp. 204–213 (2011)

11. Schaefer, I.: Integrating Formal Verification into the Model-based Development for
Adaptive Embedded Systems. PhD thesis, University of Kaiserslautern (2008)

12. Schaefer, I., Hähnle, R.: Formal methods in software product line engineering.
IEEE Computer 44(2), 82–85 (2011)

13. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods and
Systems. MIT Press (2002)

14. Wei, Y., Blake, M.B.: Service-oriented computing and cloud computing: Challenges
and opportunities. IEEE Internet Computing 14(6), 72–75 (2010)

15. Zhang, L.-J., Zhang, J., Cai, H.: Services Computing. Springer, Heidelberg (2007)

Requirements-Driven Runtime Reconfiguration

for Security

Koen Yskout1, Olivier-Nathanael Ben David2,
Riccardo Scandariato1, and Benoit Baudry2

1 IBBT-DistriNet, Katholieke Universiteit Leuven, Belgium
koen.yskout@cs.kuleuven.be

2 INRIA, France
olivier-nathanael.ben david@inria.fr

Abstract. The boundary between development time and run time of
eternal software intensive applications is fading. In particular, these sys-
tems are characterized by the necessity to evolve requirements continu-
ously, even after the deployment. In this paper we focus on the evolution
of security requirements and introduce an integrated process to drive
runtime reconfiguration from requirements changes. This process relies
on two key proposals: systematic strategies to evolve architecture mod-
els according to security requirements evolution and the combination of
reflective middleware and models@runtime for runtime reconfiguration.

Keywords: security, evolution, software architecture, requirements,
runtime.

1 Introduction

The requirements of a system are subject to continuous change. For instance,
changes occur when the stakeholders of the system request new functionality,
when new technologies appear or when the system has to adapt to new cate-
gories of users. Also, the reuse of the system in a different environment or context
can lead to changes in the requirements. These changes are even more promi-
nent in open, eternally running systems that have to continuously adapt to new
environments.

A change in the requirements ultimately leads to changes in the running
system. Sometimes, small changes in the implementation of the system suffice to
cover the updated requirements. Often, however, a change in the requirements
has a deep impact on the structure of the system. Additionally, the boundary
between development time and runtime is fading [3] in the context of eternal
software intensive systems. In front of all these constraints, we are interested
in two major challenges: (i) systematically reflect requirements changes in the
system’s architecture and (ii) automatically reconfigure the system according to
architectural changes, without stopping it.

In this paper we focus on security requirements that will represent a major
challenge for open eternal systems that integrate complex interaction between

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 25–33, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

26 K. Yskout et al.

Fig. 1. Overview

users, mobile devices and sensitive data and services. We sketch an integrated
solution to deal with dynamic system reconfiguration driven by requirements
changes. The proposed solution relies on two key elements: (1) the introduction
of change patterns to reflect security requirements changes in component-based
models and (2) models@runtime to dynamically reconfigure the running system
according to changes in the architecture. Figure 1 graphically displays this global
process.

The top part of Figure 1 illustrates a change in the requirements that triggers
an update in the architecture model. Evolving an architecture in order to satisfy
new requirements is an extremely difficult problem. In this work we want to
rely on the notion of change patterns as principled strategies to update the
architecture according to recurring change scenarios in security requirements.

The bottom part of Figure 1 illustrates a system reconfiguration that is driven
by the architecture update. This reconfiguration is based on a (Diff) operation
that computes the difference between two architectures. As a result of this opera-
tion, it is possible to know how a system that conforms to the initial architecture
must be changed in order to satisfy the target architecture. On this basis it is
possible to generate a sequence of middleware commands to performs the recon-
figuration.

In the rest of this paper we present more details that support the feasibility
of such an integrated process. Section 2 introduces the notion of change patterns
and Section 3 presents a possible mechanism for reconfiguration based mod-
els@runtime. Section 4 summarizes some related work and Section 5 discusses
challenges for future work that will aim at realizing this integrated security re-
configuration process.

Requirements-Driven Runtime Reconfiguration for Security 27

(a) Requirements before change (Req) (b) Requirements after change (Req’)

(c) Architecture before change (Arch) (d) Architecture after change (Arch’)

Fig. 2. Sample requirements change and corresponding adaptation

2 Change Patterns

As an illustration for this paper, consider a simple system that consists of a
database (DB) and a client application (e.g., a GUI) for this database. More-
over, the data from the database is used by a data miner. The client is initially
trusted, as it is used only by a single, trusted user. Therefore, the client has per-
mission to access all data in the database. Similarly, the data miner is trusted
with its permission to access the data. This situation is represented in the ini-
tial requirements model Req in Figure 2(a) using the Si* notation [4], which is
particularly suited to express trust relationships.

Assume that, over time, additional users begin to work with the client ap-
plication. In such scenario, the client can no longer be trusted by the database.
Therefore, the system needs to change in order to deal with the new situation,
and the trust relationship from the requirements model should be modified to
a distrust relationship. For the sake of illustration, assume that the data miner
coincidentally abuses the data it receives, and becomes distrusted as well.

In order to reconcile the architecture with the requirements, at least two
options exist. The most drastic solution is to completely deny access to the
data, which amounts to removing (or blocking) the communication path with
the database. In the example, this solution is applied to the data miner.

28 K. Yskout et al.

For the client application it would be unacceptable, as the client’s sole purpose
is to communicate with the database. Therefore, a second solution is chosen
for the client, namely limiting its possibilities for misbehavior by monitoring
access to the database and enforcing an access control policy. The client only
gets permission to access a specific subset of the data, based on the identity of
the user and other constraints. The resulting requirements model Req’, after
introducing both solutions, is shown in Figure 2(b).

Figure 2(c) represents the initial architecture Arch of the example. This is
the architecture that fulfills the initial requirements Req, and contains three
components: ‘Client’, ‘Data Miner’ and ‘DB’. The ‘Client’ component connects
to the ‘DB’ component to allow the end user to work with the database. The
‘Data Miner’ component connects to the database as well, in order to extract
data for data mining purposes.

The updated architecture Arch’ is shown in Figure 2(d), and corresponds to
the updated requirements Req’ from before. The ‘Client’ and ‘DB’ components
are kept in place. However, an ‘AccessMonitor’ component is added between
them, to check whether a client is authorized to access the requested data. If
access is granted, and only then, a binding between ‘AccessMonitor’ and ‘DB’ is
added and the ‘AccessMonitor’ provides (forwards) the information to the client.
This binding is represented in blue between the ports Pam2 and Pdb3. Since the
communication path between the ‘Data Miner’ and ‘DB’ component is removed,
as discussed before, the ‘Data Miner’ component is also removed from Arch’.

Numerous types of changes can occur at the requirements level, one of which
is the decreasing trust in the preceding example. This type of change is not only
relevant for the given example, but will occur in the context other systems as
well. Moreover, it is likely that the solutions given above are also applicable in
these other contexts.

The combination of a change at the requirements level and one or more ar-
chitectural updates can be bundled in the form of a change pattern. It is related
to a specific kind of change at the requirements level, which is described in a
generic manner, i.e., using templates. In the example, this change is the change
of a trust to a distrust relationship between the system (the DB) and an ex-
ternal actor (the Client and Data Miner). The pattern also offers guidance on
how the described change impacts the architecture, again in a generic way based
on templates. The generic description of the change between Arch and Arch’

in the example is ‘disconnect and remove the component that corresponds to
the distrusted actor’ (used for the data mining), or ‘introduce an access con-
trol monitor’ (used for the client application). Like well-known design patterns,
change patterns thus inform a software architect about common, proven solu-
tions for specific problems. Additionally, the patterns should provide information
regarding their applicability, benefits and possible pitfalls when applying them.

Of course, the update of the architecture needs to be propagated to the run-
ning system. This is done using reconfiguration, which is discussed in the follow-
ing section.

Requirements-Driven Runtime Reconfiguration for Security 29

3 Reconfiguration

In this section we introduce an automated mechanism to dynamically recon-
figure a system that implements an initial architecture, according to a target
architecture model. Starting from both architectural models Arch and Arch’,
we propose to leverage models@runtime and the reconfiguration process pro-
posed by Morin [6]. The process leverages reflective middleware capabilities and
allows to generate and apply a reconfiguration script to adapt a system that
conforms to Arch into a system that conforms to Arch’.

The first step in the reconfiguration process consists of comparing the reflec-
tive model of the running system with Arch. If they are different, it means that
the initial architectural model does not correspond to the running system, and
thus that the system cannot be updated according to the update from Arch to
Arch’. If the models are the same, the second step consists of comparing Arch

and Arch’. This comparison allows to understand which reconfiguration opera-
tions (i.e., change a binding, or add / remove a component) must be performed
on the system so that it conforms to Arch’. When performing the update, it
needs to be ensured that:

– All the elements of the source model that have a matching counter part in
the target model are kept;

– All elements of the source model that have no matching counter part in the
target model will be removed;

– All the elements of the target model that have no matching counter part in
the reflection model will be added.

On the basis of this comparison, the third step consists in generating a sequence
of reconfiguration commands. The exact command language available for dy-
namic reconfiguration depends on the possibilities provided by the reflective
dynamic middleware platform (e.g., OSGi, OpenCOM or Fractal). Morin has
implemented this process in Kermeta [8] to generate a reconfiguration script
for the OSGi component platform. During the model comparison, the compara-
tor uses an abstract factory to instantiate atomic reconfiguration commands.
These commands are not directly executed, and so the running system is not
adapted during the model comparison. The commands are temporarily stored
and sorted, before the whole sequence of commands is actually executed. That
allow to use planning algorithms to sort them. A simple heuristic is used to sort
the reconfiguration commands :

1. Components (that should be stopped) are stopped;
2. Bindings are removed;
3. Components are removed;
4. Attributes (of already present components) are updated;
5. Components are added (and their attributes are set);
6. Bindings are added;
7. Components are (re-)started.

30 K. Yskout et al.

Fig. 3. Generation of reconfiguration command

In addition, each type of command is associated with a real value defining
its priority. By default, the priority is a natural integer following the above enu-
meration. However, it is possible to modify this priority by adding a real value
in [0..1[to the default value for fine-tuning the order of the commands within
a given category without modifying the overall ordering. This topological sort
ensures that the life-cycle of the components is correctly handled. The order in-
side a given type of commands is arbitrary, except for start and stop commands.
These commands are ordered according to the client/server dependencies of com-
ponents.

After the model comparison, and all the commands have be instantiated, the
whole sequence of commands is executed. A command is only executed if the
previous one correctly terminates. In the case a command encounters a problem,
the reconfiguration process stops and a report is properly logged. A roll-back
mechanism allows to undo the command that crashes, as well as all the previous
ones to avoid cascades of errors.

4 Related Work

The term ‘change pattern’ is already established in the context of business pro-
cess modeling [5,11]. There, however, a change pattern is used to capture mod-
ifications to a single process model, whereas we use it to co-evolve different
models.

Requirements-Driven Runtime Reconfiguration for Security 31

The presented approach is related to techniques aimed at, on the one hand,
updating the architectural model of a system in reaction to a change request, and
on the other hand, adapting the running system to a new architecture. References
to related work in both areas are given in the following two subsections.

4.1 Architectural Evolution

To guide the gradual transition from one architecture to another, Garlan et al.
[2] propose the concept of ‘evolution styles’. An evolution style is a pattern that
can be used by the architect to plan incremental evolution paths (orthogonal to
the evolution of functional requirements) from an initial architecture to some
target architecture.

Graph transformations have also been used to model architectural evolution.
In [10], Tamzalit and Mens describe how architectural restructuring can be de-
scribed using graph transformations. In particular, the approach is tailored for
defining generic restructurings that introduce an architectural style, called evo-
lution patterns.

Ráth et al. [9] describe an approach for incremental model synchronization,
based on change-driven model transformations. The technique is not specific
to architectural models, but nevertheless applicable to them. When the source
model (e.g., a requirements model) is modified, a description of this change
(called the ‘change history model’) is created. This change history model is trans-
formed to a different change history model, specific for the target metamodel,
and then applied to the target model (e.g., the architectural model).

4.2 Run-Time Adaptability

Bencomo et al. in [1] present Genie, a tool that offers DSLs for the design of
models of component configurations and transition diagrams. These models de-
scribe the architecture of reconfigurable applications and the conditions of the
environment and context that trigger the reconfiguration of the architecture.

Morin et al. in [7] describe how to unify design evolution and runtime adap-
tion of dynamically adaptive systems in order to build consistent adaptation
decisions. On the conceptual side, their approach combines Complex Event Pro-
cessing, Model Driven Engineering and Context-aware systems. Thus they have
presented a monitoring framework able to deal with both design evolution events
and run-time platform events in a homogeneous manner.

5 Conclusion and Outlook

In summary, change patterns provide principled strategies for evolving an ar-
chitecture in response to a security change in the corresponding requirements.
By leveraging reconfiguration, we illustrated how change can be systematically
propagated beyond the architectural design, that is, from the requirements level
to the runtime environment. As a key outcome, the end-to-end traceability links

32 K. Yskout et al.

provide an infrastructure to validate that the runtime system complies with the
security requirements over time.

In general, this is a very challenging problem due to the intellectual gap that
exist between the problem and the solution domains. In this respect, the use of
the change patterns reduces the scope of the problem, as compliance needs to
be demonstrated for a limited, fixed set of configurations. Namely, the system’s
architecture after the change (Arch’) needs to be constrained so that it fulfills
the changed requirements (Req’). In many cases, no precise semantics are defined
for this fulfillment relationship, and hence the validation mostly needs to be done
manually. However, for the cases where such precise definition is available, it is
possible to formally prove that some architectural update, when applied to an
architecture Arch that fulfills the original requirements Req, will result in an
architecture Arch’ that fulfills the updated requirements Req’, perhaps under
some additional assumptions.

In the horizontal dimension, the system’s architecture after the change also
needs to be constrained, in ways that are independent from the specific require-
ments. In particular, architectural properties need to be preserved by the change.
In these cases, the verification relies on invariant checking in Arch’. Invariants
can take the form of OCL constraints, which in turn can be checked thanks to
the Kermeta metamodeling language. It should also be possible to define dif-
ferent checking levels, depending of what invariants are intended to be checked.
Examples are invariants related to the architecture, the specific platform, or the
application.

The end result of combining the validation in both the vertical and the hor-
izontal dimensions is a more rigorous change management infrastructure for
security that goes beyond assurance and approach correctness. Our ongoing and
future work will progress along this very trajectory.

Acknowledgements. This research is partially funded by the NESSoS FP7
project, the Interuniversity Attraction Poles Programme Belgian State, Belgian
Science Policy, and by the Research Fund K.U.Leuven.

References

1. Bencomo, N., Grace, P., Flores, C., Hughes, D., Blair, G.: Genie: Supporting the
model driven development of reflective, component-based adaptive systems. In:
Proceedings of the 30th International Conference on Software Engineering, pp.
811–814. ACM (2008)

2. Garlan, D., Barnes, J., Schmerl, B., Celiku, O.: Evolution styles: Foundations and
tool support for software architecture evolution. In: Proceedings of the Joint Work-
ing IEEE/IFIP Conference on Software Architecture 2009 & European Conference
on Software Architecture 2009, pp. 131–140 (2009)

3. Ghezzi, C.: The fading boundary between development time and run time. Invited
talk for the 6th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems (2011)

Requirements-Driven Runtime Reconfiguration for Security 33

4. Giorgini, P., Massacci, F., Zannone, N.: Security and Trust Requirements Engi-
neering. In: Aldini, A., Gorrieri, R., Martinelli, F. (eds.) FOSAD 2005. LNCS,
vol. 3655, pp. 237–272. Springer, Heidelberg (2005)

5. Kim, D., Kim, M., Kim, H.: Dynamic business process management based on
process change patterns. In: International Conference on Convergence Information
Technology, pp. 1154–1161. IEEE (2007)

6. Morin, B.: Leveraging Models from Design-time to Runtime to Support Dynamic
Variability. Ph.D. thesis, cole doctorale Matisse (2010)

7. Morin, B., Ledoux, T., Ben Hassine, M., Chauvel, F., Barais, O., Jézéquel, J.M.:
Unifying runtime adaptation and design evolution. In: IEEE 9th International Con-
ference on Computer and Information Technology (CIT 2009), Xiamen, China (Oc-
tober 2009)

8. Muller, P.-A., Fleurey, F., Jézéquel, J.-M.: Weaving Executability into Object-
Oriented Meta-Languages. In: Briand, L.C., Williams, C. (eds.) MoDELS 2005.
LNCS, vol. 3713, pp. 264–278. Springer, Heidelberg (2005)

9. Ráth, I., Varró, G., Varró, D.: Change-Driven Model Transformations. In: Schürr,
A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 342–356. Springer, Hei-
delberg (2009)

10. Tamzalit, D., Mens, T.: Guiding Architectural Restructuring through Architectural
Styles. In: 2010 17th IEEE International Conference andWorkshops on Engineering
of Computer-Based Systems, pp. 69–78. IEEE (2010)

11. Weber, B., Rinderle, S., Reichert, M.: Change Patterns and Change Support Fea-
tures in Process-Aware Information Systems. In: Krogstie, J., Opdahl, A.L., Sin-
dre, G. (eds.) CAiSE 2007 and WES 2007. LNCS, vol. 4495, pp. 574–588. Springer,
Heidelberg (2007)

Large-Scale Learning with Structural Kernels

for Class-Imbalanced Datasets

Aliaksei Severyn and Alessandro Moschitti

Department of Computer Science and Engineering,
University of Trento,

Via Sommarive 5, 38123 POVO (TN), Italy
{severyn,moschitti}@disi.unitn.it

Abstract. Much of the success in machine learning can be attributed to
the ability of learning methods to adequately represent, extract, and ex-
ploit inherent structure present in the data under interest. Kernel meth-
ods represent a rich family of techniques that harvest on this principle.
Domain-specific kernels are able to exploit rich structural information
present in the input data to deliver state of the art results in many ap-
plication areas, e.g. natural language processing (NLP), bio-informatics,
computer vision and many others. The use of kernels to capture rela-
tionships in the input data has made Support Vector Machine (SVM)
algorithm the state of the art tool in many application areas. Neverthe-
less, kernel learning remains a computationally expensive process. The
contribution of this paper is to make learning with structural kernels,
e.g. tree kernels, more applicable to real-world large-scale tasks. More
specifically, we propose two important enhancements of the approximate
cutting plane algorithm to train Support Vector Machines with structural
kernels: (i) a new sampling strategy to handle class-imbalanced problem;
and (ii) a parallel implementation, which makes the training scale al-
most linearly with the number of CPUs. We also show that theoretical
convergence bounds are preserved for the improved algorithm. The ex-
perimental evaluations demonstrate the soundness of our approach and
the possibility to carry out large-scale learning with structural kernels.

Keywords: Machine Learning, Kernel Methods, Structural Kernels,
Support Vector Machine, Natural Language Processing.

1 Introduction

Different domain-specific kernels have been successfully applied to various Nat-
ural Language Processing (NLP) tasks, e.g. [10,13,9,1]. However, previous work
scales poorly to the real-world datasets, where the number of examples is typi-
cally in the order of millions. Indeed, kernel methods require to carry out learning
in dual spaces, where training complexity is typically quadratic in the number
of instances.

To reduce such training time [16] proposed an approximate version of the
cutting plane algorithm (CPA) [14] for training SVMs with general kernels. [12]

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 34–41, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 35

showed that the same algorithm can be successfully applied to train SVMs with
structural kernels on very large data obtaining speedup up factors up to 10.
These studies employ 1-slack optimization problem reformulation [5], which is
much faster than conventional cutting plane methods on large-scale datasets and
produces sparser solutions.

Unfortunately, the 1-slack reformulation prevents to accomplish cost-sensitive
classification using a standard approach in SVMs, i.e. outweighing the positive
or negative errors. This is a critical drawback for applications in NLP where data
is often imbalanced, which requires optimization of Precision/Recall measures.

In this paper, we provide two important improvements of the approximate
CPA that enable the use of structural kernels, e.g. tree kernels, for large-scale
learning: (i) an effective and sound method for tuning up Precision and Recall
on imbalanced datasets and (ii) parallelization of the training algorithm improv-
ing its scalability even further. Regarding the application side, we show that
our method allows for experimenting with tree kernels on very large real-world
datasets such as Yahoo! Answers.

The experimental results confirm the validity of our approach as (i) it greatly
outperforms previous approximate CPA when tuning of P/R is needed and (ii) it
still matches the F1-score of exact SVMs. Regarding the running time evaluation:
our approach is as fast as CPA with sampling and, when parallelized, the speedup
scales almost linearly with the number of available CPUs.

2 Cutting Plane Algorithm with Sampling

Let us consider an equivalent reformulation of SVM QP training problem, known
as a 1-slack reformulation, which produces a much more efficient version of the
CPA [5]:

minimize
w,ξ≥0

1

2
‖w‖2 + Cξ

subject to
∀c∈{0,1}n

1

n

n∑
i=1

ciyiw · xi ≥ 1

n

n∑
i=1

ci − ξ,
(1)

where each vector c ∈ {0, 1}n forms all possible linear combinations of the
classical constraints yi(w · xi) ≥ 1− ξi.

The key benefit of this reformulation is that there is only a single slack variable
ξ that is now shared across all the constraints. Even though the number of
constraints swelled up to 2n, the cutting plane method (Alg. 1) requires only a
sufficient subset of constraints S to solve the problem (1). It works by iteratively
resolving QP (line 4) over the current set S and adding a new constraint c(t)

violated the most by the current solution w (lines 5-7) until no constraints are
violated by more than ε (line 10).

When using kernels, examples are mapped to the feature space via a mapping
φ(·) and finding the most violated constraint (lines 5-7) involves computing an

36 A. Severyn and A. Moschitti

Algorithm 1. Cutting Plane Algorithm (primal)

1: Input: (x1, y1), . . . , (xn, yn), C, εAlg.
2: S ← ∅; t = 0
3: repeat
4: (w, ξ)← optimize (1) over the constraints in S

/* find a cutting plane */
5: for i = 1 to n do

6: c
(t)
i ←

{
1 yi(w · xi) ≤ 1
0 otherwise

7: end for
/* add a constraint to the set of constraints */

8: S ← S ∪ {c(t)}
9: t = t+ 1
10: until 1

n

∑n
i=1 c

(t)
i (1− yiw · xi) ≤ ξ + ε

11: return w, ξ

inner product between the weight vector and each training example: w ·φ(xi). In
the dual space, where w expands over the dual variables α, this inner-product
renders as:

w · φ(xi) =

n∑
k=1

(|S|∑
t=1

1

n
αtc

(t)
k yk

)
K(xi,xk), (2)

where K(xi,xk) = φ(xi) · φ(xi) is a kernel1. Computing (2) for each training
example requires O(n2) kernel evaluations which makes the CPA training of
non-linear SVMs no better than conventional decomposition methods.

To address this limitation [16] proposed to approximate the expensive com-
putation of the most violated constraint over the full set of training examples
n by using a smaller sample r. In this case the expensive double sum of kernel
evaluations at each iteration reduces from

∑n
i,j=1 K(xi,xj) to a more tractable:∑r

i,j=1 K(xi,xj), such that the most violated constraint is effectively computed
over a smaller set of examples uniformly sampled from the original training set.
Even though at each step we compute only an approximation of the exact cut-
ting plane, the sampling approach has been shown to provide accurate solutions
and converge in a finite number of steps irrespective of the training set size.

3 Improving CPA with Sampling

In this section we present two improvements to the CPA with sampling: (i) we
propose an alternative sampling strategy that is effective for tuning up Precision
and Recall and (ii) we parallelize the training algorithm.

1 due to the space constraints, for a more careful treatment of the dual version of CPA
with kernels we refer the reader to [8] or [12].

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 37

3.1 Sampling Strategy for Imbalanced Data

To address the problem of the imbalanced data one idea can be to use different
penalty factors [15] C+ and C− for examples from positive and negative classes.
This modification is easy to incorporate into the standard soft-margin SVM
formulation where we have individual slack variables ξi for each constraint.

However, when using the 1-slack formulation (1), we have a single slack vari-
able shared across all the constraints, while in the dual each αi no longer cor-
responds to the individual example but to a linear combination of examples.
This makes the task of controlling class imbalance through different margin pa-
rameters C+ and C− non-trivial. On the other hand the idea of sampling to
approximate (2) at each iteration suggests a straight-forward solution. Instead
of uniformly sampling r examples to compute the most violated constraint at
each step, we can use cost-proportionate rejection sampling technique. This

Algorithm 2. Rejection sampling

1: Pick example (xi, yi, qi) at random
2: Flip a coin with bias qi/q

′

3: if heads then
4: keep the example
5: else
6: discard it
7: end if

technique is presented in Alg. 2, where qi is the importance weight of the i-th
example and q′ is an upper bound on any importance value in the dataset. This
process is repeated until we sample the required number of examples. This modi-
fication enables the control over the proportion of examples from different classes
that will form a sample used to compute the most violated constraint. Unlike
the conventional approaches for addressing the class-imbalance problem, that
either under-sample the majority class or over-sample the minority class from
the training data, the rejection sampling coupled with cutting plane algorithm
does not discard any examples from the training set. At each iteration we form a
sample according to the pre-assigned importance weights for each example, such
that examples from both the majority and minority classes enter the sample in
the desired proportion. This process is repeated until the algorithm converges.
So no information is lost during the optimization process.

Another benefit of this approach is that by increasing the importance weight
of the minority class, we give its examples more chance to end up in the most
violated constraint and hence, become potential support vectors. This way the
imbalanced support-vector ratio is automatically tuned to include more examples
from the minority class, which gives more control over the imbalance of classes.

It can be easily shown that the new sampling technique preserves the con-
vergence bounds proven in [16]. Note that drawing examples using rejection
sampling (Alg. 2) simply re-weights the original distribution D according to
the importance weights of the examples. This means that we are effectively

38 A. Severyn and A. Moschitti

training a cost insensitive classifier under the new transformed distribution D̂.
By invoking Translation Theorem [17], we establish that, to obtain a cost-
sensitive classifier that minimizes the expected risk under the original distri-
bution D, it is sufficient to learn a cost-insensitive classifier under the trans-
formed distribution D̂. The CPA that draws examples fromD using the sampling
scheme in Alg. 2 is equivalent to the original CPA applying uniform sampling to
the transformed distribution D̂. This allows us to invoke the proof in [16], thus
establishing similar convergence bounds.

3.2 Parallelization

The modular nature of the cutting plane algorithm suggests easy parallelization.
In fact, in our experiments we observed that at each iteration 95% of the total
learning time is spent in the double loop (2), which involves double sum of
kernel evaluations over r examples in the sample. This observation suggests
high parallelizability of the code. Using p processors the complexity of this pre-
dominant part can be brought down from O(r2) to O(r2/p).

4 Experimental Evaluation

The goal of our experiments is to study how the problem of imbalanced datasets
can be effectively tackled by the new sampling technique that we propose to
integrate into the CPA. To do so, we carry out learning on complex text clas-
sification tasks where addressing class-imbalance problem plays an important
role to obtain the optimal classification performance. In the first set of experi-
ments we compare the accuracy one can get by better parametrizing the model
using our proposed method against the cutting plane algorithm with uniform
sampling and the conventional SVM. Below we refer to the capability to control
the penalty factors for examples from different classes as simply j option (as im-
plemented in SVM-light software). Secondly, we bring the capability of cutting
plane algorithm with rejection sampling to alleviate the class-imbalance problem
to the large-scale, where training of conventional SVMs soon becomes too time-
consuming. We also demonstrate the speedup factors after parallelization. This
feature becomes especially appealing nowadays, when shared memory parallel
architectures, i.e. multi-processor and multi-core CPUs, are becoming available
for general use.

We modified the implementation of the approximate CPA with uniform
sampling[16] with SVM-Light-TK[11] to include cost-proportionate sampling
strategy. For brevity, we refer to the original CPA with uniform sampling as
uSVM, CPA + rejection sampling as uSVM+j, and SVM-light as SVM. In all
our experiments we used the subset tree (SST) kernel [2]. For uSVM+j and SVM
we report the best results for the optimal value of j parameter that controls Pre-
cision/Recall ratio.To measure the classification performance we use Precision,
Recall and F 1-score. All the experiments were run on machines equipped with
Intel R© Xeon R© 2.33GHz CPUs carrying 6Gb of RAM under Linux.

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 39

We used two different natural language datasets: TREC 10 QA2 (training:
5,483, test: 500) and Yahoo! Answers (YA)3(train: up to 300k, test: 10k) to
perform two similar tasks of QA classification. The task for the first dataset is
to select the most appropriate type of the answer from a set of given possibilities.
The training set consists of 5,483 questions and the test set is composed of 500
questions for each class. The goal of the experiments on these relatively small
datasets is to demonstrate that rejection sampling is able to effectively handle
class imbalance similar to SVM.

The second corpus is a large subset of Yahoo! Answers dataset. The dataset
contains a set of 142,627 non-factoid, i.e. “how to” questions, and 364,419 an-
swers. Testing was carried out on the 10k subset. The classification task was set
up as follows. Given pairs of questions and corresponding answers learn if in a
given pair the answer is the ’best’ answer for a question. The goal of this exper-
iment is to have a large-scale classification task (300k examples in our experi-
ments) to demonstrate that class-imbalance problem can be handled effectively
at this scale.

Results on TREC 10 and YA. Experimental results on six different categories
of TREC corpus and on YA dataset are reported in Table 1(a) and Table 1(b)
respectively. One can see that uSVM algorithm with uniform sampling obtains
high precision trying to minimize the training error dominated by examples from
negative class and is not able to adjust in the presence of class imbalance. This
results in lower values of the recall. On the other hand uSVM+j is able to achieve
a better tradeoff between precision and recall resulting in higher F1 scores. Also
the P/R ratio of SVM with the optimal set of parameters suggests that uSVM+j
has a better capacity to control the imbalance problem.

(a)

Data Ratio uSVM uSVM+j SVM

F-1 P/R F-1 P/R F-1 P/R

ABBR 60:1 87.5 100.0/77.8 84.2 80.0/88.9 84.2 80.0/88.9

DESC 4:1 96.1 95.0/97.1 96.1 95.0/97.1 94.8 97.7/92.0

ENTY 3:1 72.3 91.8/59.6 79.1 79.6/78.7 80.4 82.2/78.7

HUM 3:1 88.1 98.1/80.0 90.3 94.9/86.2 87.5 88.9/86.2

LOC 5:1 81.4 96.6/70.4 87.0 87.5/86.4 82.6 86.5/79.0

NUM 5:1 86.0 98.9/76.1 91.2 96.1/86.7 89.9 98.9/82.3

(b)

10k 1.5:1 37.4 33.5/42.2 39.1 29.6/57.7 37.9 24.2/87.7

50k 2.0:1 36.5 36.0/36.9 40.6 30.0/62.5 39.6 25.7/86.9

100k 2.4:1 33.4 36.2/31.1 40.2 30.2/59.9 40.3 26.6/83.5

150k 2.8:1 33.5 36.9/30.7 41.0 30.2/64.0 - -

300k 3.4:1 23.8 40.1/16.9 41.4 30.7/63.8 - -

Fig. 1. Results on TREC-10 (a) YA (b)
datasets. Ratio - proportion of negative exam-
ples with respect to positive; P/R - precision
(P) and recall (R).

sp
ee

du
p

1

2

3

4

5

6

7

number of CPUs
87654321

sample size = 100
sample size = 250
sample size = 500
sample size = 1000

Fig. 2. Speedups vs number of CPUs
after parallelization of CPA on Ya-
hoo! Answers (50k)

2 http://l2r.cs.uiuc.edu/cogcomp/Data/QA/QC/
3 retrieved through the Yahoo! Webscope program.

40 A. Severyn and A. Moschitti

Parallelization. To test the effects of parallelization we carried out experiments
on 50,000 subset of YA dataset on 1 to 8 CPUs. The achieved speedups are
reported in Fig. 2, where each curve corresponds to training using different
sample sizes. Increasing the sample size leads to an increase in the time spent
inside the double loop (2), which makes the speedup for larger sample sizes
even more significant. Using 8 CPUs gives the speedup factor of about 7.0 using
sample size equal to 1000. Since classification can also be easily parallelized it
allows one to experiment with larger sample sizes to obtain a more accurate
model or carry out training on larger data.

To better demonstrate the advantage of the parallel implementation we repli-
cated the large-scale experiment in [12] on Semantic Role Labeling dataset4

using 1 million examples. The reported training time was 4 hours for uSVM and
7.5 days for SVM, while our parallel implementation took about 30 minutes for
learning on 8 CPUs.

5 Related Work

The most popular method to address class-imbalance problem in SVMs is to
introduce cost factors in the primal problem [15]. It is implemented in SVM-
light [4] that has a super-linear scaling behavior, which prohibits the experiments
on very large datasets.

To improve the scaling properties of SVM-light, a number of CPA-based meth-
ods have been proposed (for example, SVMperf [5]). [3] have further improved the
convergence rate of the underlying CPA. Another approach to directly optimize
for F1-score, was proposed in [7]. While the aforementioned algorithms deliver
fast and accurate solutions, they scale well only when linear kernels are used. An-
other approach to iteratively extract basis vectors as a part of a cutting plane
algorithm is studied in [6]. This, however, leads to a non-trivial optimization
problem when arbitrary kernel functions are used.

6 Conclusions

In this paper we proposed a method that combines the benefits of CPA with
sampling for training non-linear SVMs on large-scale data together with the
flexibility to control the problem of imbalanced data. This improvement becomes
particularly significant when learning on large text classification datasets, where
class-imbalance plays an important role to obtain the optimal balance between
precision and recall. The proposed sampling strategy has shown superior ability
to parametrize the model with respect to conventional approach implemented in
SVM-light on two Question/Answer classification tasks. We also take advantage
of the possibility to parallelize the code to make learning even faster.

The distinctive property of the proposed method is that it directly integrates
the cost-proportionate sampling into the CPA optimization process, unlike the

4 http://danielepighin.net/ cms/research/MixedFeaturesForSRL

Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets 41

other sampling approaches based on the reductions idea of [17]. In other words,
sampling is carried out iteratively, such that no information is discarded from
training examples as in “one-shot” sampling methods.

Acknowledgements. This work has been partially supported by the EC project
FP247758: Trustworthy Eternal Systems via Evolving Software, Data and Knowl-
edge (EternalS).

References

1. Cancedda, N., Gaussier, E., Goutte, C., Renders, J.M.: Word sequence kernels.
Journal of Machine Learning Research 3, 1059–1082 (2003)

2. Collins, M., Duffy, N.: New ranking algorithms for parsing and tagging: Kernels
over discrete structures, and the voted perceptron. In: ACL, pp. 263–270 (2002)

3. Franc, V., Sonnenburg, S.: Optimized cutting plane algorithm for support vector
machines. In: ICML, pp. 320–327 (2008)

4. Joachims, T.: Making large-scale SVM learning practical. In: Advances in Kernel
Methods - Support Vector Learning, ch. 11, pp. 169–184. MIT Press, Cambridge
(1999)

5. Joachims, T.: Training linear SVMs in linear time. In: KDD (2006)
6. Joachims, T., Yu, C.N.J.: Sparse kernel svms via cutting-plane training. Machine

Learning 76(2-3), 179–193 (2009); European Conference on Machine Learning
(ECML) (Special Issue)

7. Joachims, T.: A support vector method for multivariate performance measures. In:
ICML, pp. 377–384 (2005)

8. Joachims, T., Finley, T., Yu, C.-N.J.: Cutting-plane training of structural svms.
Machine Learning 77(1), 27–59 (2009)

9. Kate, R.J., Mooney, R.J.: Using string-kernels for learning semantic parsers. In:
ACL (July 2006)

10. Kudo, T., Matsumoto, Y.: Fast methods for kernel-based text analysis. In: Pro-
ceedings of ACL 2003 (2003)

11. Moschitti, A.: Making tree kernels practical for natural language learning. In:
EACL. The Association for Computer Linguistics (2006)

12. Severyn, A., Moschitti, A.: Large-Scale Support Vector Learning with Structural
Kernels. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag, M. (eds.) ECML PKDD
2010. LNCS, vol. 6323, pp. 229–244. Springer, Heidelberg (2010)

13. Shen, L., Sarkar, A., Joshi, A.k.: Using LTAG Based Features in Parse Reranking.
In: Proceedings of EMNLP 2006 (2003)

14. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods
for structured and interdependent output variables. Journal of Machine Learning
Research 6, 1453–1484 (2005)

15. Veropoulos, K., Campbell, C., Cristianini, N.: Controlling the sensitivity of support
vector machines. In: Proceedings of the International Joint Conference on AI, pp.
55–60 (1999)

16. Yu, C.-N.J., Joachims, T.: Training structural svms with kernels using sampled
cuts. In: KDD, pp. 794–802 (2008)

17. Zadrozny, B., Langford, J., Abe, N.: Cost-sensitive learning by cost-proportionate
example weighting. In: Proceedings of ICDM (2003)

Combining Machine Learning and Information

Retrieval Techniques for Software Clustering

Anna Corazza1, Sergio Di Martino1,
Valerio Maggio1, and Giuseppe Scanniello2

1 University of Naples “Federico II”
{anna.corazza,sergio.dimartino,valerio.maggio}@unina.it

2 Università della Basilicata, Potenza, Italy
giuseppe.scanniello@unibas.it

Abstract. In the field of Software Maintenance the definition of effective
approaches to partition a software system into meaningful subsystems
is a longstanding and relevant research topic. These techniques are very
important as they can significantly support a Maintainer in his/her tasks
by grouping related entities of a large system into smaller and easier to
comprehend subsystems.

In this paper we investigate the effectiveness of combining information
retrieval and machine learning techniques in order to exploit the lexical
information provided by programmers for software clustering. In partic-
ular, differently from any related work, we employ indexing techniques
to explore the contribution of the combined use of six different dictionar-
ies, corresponding to the six parts of the source code where programmers
introduce lexical information, namely: class, attribute, method and pa-
rameter names, comments, and source code statements. Moreover their
relevance is estimated on the basis of the project characteristics, by ap-
plying a machine learning approach based on a probabilistic model and
on the Expectation-Maximization algorithm. To group source files accord-
ingly, two clustering algorithms have been compared, i.e. the K-Medoids
and the Group Average Agglomerative Clustering, and the investigation
has been conducted on a dataset of 9 open source Java software systems.

Keywords: Expectation-Maximization algorithm, Information Retrie-
val, Probabilistic Model, Remodularization, Software Clustering, Soft-
ware Evolution.

1 Introduction

One of the most demanding activities of the maintenance process is the Program
Comprehension. It can take up to 60% of the total maintenance effort [18]. The
main reasons are: (I) some pieces of knowledge on the specific domain covered by
the application to maintain are not explicitly stated in the documentation [16];
(II) the documentation is missing or not up-to-date. In order to support a soft-
ware Maintainer, source files which are in some way related could be grouped
together into clusters, thus being easier to comprehend [35].

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 42–60, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Combining Machine Learning and Information Retrieval Techniques 43

Many research efforts have been devoted to address this issue. A number of
these approaches generally attempt to discover clusters by analyzing structural
dependencies between software artifacts [2, 3, 36]. However, if the analysis is
based on the sole structural aspect, a key source of information about the an-
alyzed software system may be lost, i.e. the domain knowledge that developers
embed by means of code comments, names of methods, classes, and identifiers.
As a consequence, some efforts are being devoted to investigate the use of lexical
information for software clustering [6, 16, 20, 29].

In this paper, we describe an approach towards software clustering, falling in
the lexical-based group. The main contribution of the proposal is in the way we
exploit this lexical information. Indeed, all the similar approaches treat all the
terms in the source code as equally important. This means, for example, that a
term coming from a comment is considered as informative as a term in a class
name. However, in our opinion, developers may place different care in choosing
words for the various code elements (class names, attribute names, comments,
etc...), and then the associated relevance in the conveyed information may be
different.

As a consequence, we investigated the effects of considering separately the
contribution of six vocabularies, composed of terms extracted by the different
parts, or zones, where a programmer can add lexical information, namely: (I)
Class Names, (II) Attribute Names, (III) Method Names, (IV) Parameter Names
(V) Comments and (VI) Source Code Statements. Thanks to this separation, we
applied an automatic weighting mechanism to exploit the contribution of each
vocabulary. Since each software system has its own development peculiarities,
no general weighting schema can be defined, but rather it should be suited for
each specific system at the hand.

To this aim, we introduced a probabilistic model of the data, whose param-
eters, including the zone weights, are optimized by means of an iterative algo-
rithm, namely the Expectation-Maximization (EM) [24]. Then, these automati-
cally computed weights have been used as multipliers in a Vector Space Model
representation [22] of the software system, useful to compute similarity among
classes.

Finally, once given this similarity, to group software entities we compared
the results of two well-known clustering algorithms, namely K-Medoids [14], and
Group Average Agglomerative Clustering (GAAC) [22] which we have properly
customized to make them more suitable for the software clustering domain.

To evaluate whether the introduction of the probabilistic model as well as
the use of different clustering algorithms improved the resulting partitions, the
approach has been assessed in a case study. Since no “gold-standard” partition
is available in the software clustering domain [35], we selected 9 well-known
open source software systems implemented in Java and we assessed whether
the proposed approach was able to automatically group classes in a fashion
resembling an authoritative partition, i.e. the original partition of the system
(intended as classes in packages) defined for these systems, as done in other
works (e.g.: [4, 29, 37]).

44 A. Corazza et al.

The results we got indicate that the introduction of the probabilistic model
highly enhances the process, leading to clusters significantly more similar to the
authoritative partitions. With respect to such improvement in the design of input
features the choice of the clustering algorithm showed to have a much smaller
effect on performance.

2 Related Works

The most expensive activity in the software life cycle is the maintenance [18].
It starts after the delivery of the first version and ends when the system is
discarded. The costs concerning the software maintenance decrease in case the
software architecture documentation is properly managed and updated. Unfor-
tunately, the common practice in the software industry is far from consistently
maintaining documentation with the changes made to the source code [5, 11]. In
this typical scenario, the partitioning of a software system into small and eas-
ier to comprehend subsystems represents a longstanding and relevant research
topic [1–3, 36].

The greater part of of the proposed approaches generate clusters by analyzing
only the structural dependencies between software entities [2, 3, 8, 21, 23, 26, 36].
More recently a number of techniques have been proposed that exploit lexical
information provide by developers within source code [6, 16, 20, 30].

In particular, Kuhn et al. in [16] describe a language independent approach
to group software artifacts based on Latent Semantic Indexing (LSI) [9]. This
approach tries to group source code containing similar terms in the comments
and is implemented on top of the Moose re-engineering environment [28]. Lin-
guistic topics are also associated to each cluster of a given partition of documents
(e.g., classes or methods). To identify how the clusters are related to each other
a correlation matrix is used. The authors perform a qualitative analysis of the
clustering results, while no quantitative analysis is executed. Our approach is
different as we introduce the concept of the zones where to mine information ex-
tracted from source code and we automatically weight them using a probabilistic
model.

Furthermore, Scanniello et al. [30] present an approach to automate the soft-
ware system partitioning. This approach first analyzes the software entities (e.g.,
programs or classes) and uses LSI to get the dissimilarity between the entities,
which are grouped using iteratively the K-Means clustering algorithm. To assess
the validity of the approach a case study on open source software systems has
been conducted. The main difference with respect to the approach presented
here is that there is no distinction among the zone where lexical information is
gathered.

Similarly to the present work, many are the comparative studies among
different clustering algorithms proposed in literature. Wiggerts [36] analyzes the
clustering algorithms commonly used to group software entities and provides a
theoretical background for applying them in the software remodularization. An
extension of this work is presented by Anquetil and Lethbridge in [3]. In par-

Combining Machine Learning and Information Retrieval Techniques 45

ticular, they present a comparative study of different hierarchical clustering al-
gorithms and analyze their properties with respect to the remodularization of
software systems. Similarly, Maqbool and Babri in [23] highlight hierarchical clus-
tering research in the context of software architecture recovery and remodulariza-
tion. The main contribution of their work is the analysis of two clustering based
approaches and their experimental assessment on some large software systems.
Also, Tzerpos and Holt in [32] study a number of software clustering algorithms
and compare their performance. The comparison is conducted generating ran-
domly “perturbed” versions of an example system. Differences between the parti-
tion identified by the clustering algorithms and the original partition of the system
are measured by using the MoJo distance [31], that will be described in Section 4.

Wu et al. in [37] present a comparative study of four clustering algorithms:
two agglomerative clustering algorithms based on the Jaccard coefficient and on
the complete and the single linkage update rules respectively; an algorithm based
on program comprehension patterns to recover subsystems that are commonly
found in manually-created decompositions of large software systems; and a cus-
tomized configuration of an algorithm implemented in Bunch [21]. Five large
C/C++ open source systems are used to compare the performance of these
algorithms. In particular, the performance is analyzed with respect to the au-
thoritativeness of the identified clusters (using the MoJo) and the non-extremity
of distribution of the size of these clusters using the NED (Non-Extreme Distri-
bution). Similarly, in [4] an empirical study is presented to evaluate four differ-
ent clustering algorithms, namely (I) Edge betweenness clustering, (II) K-Means
clustering, (III) modularization quality clustering, and (IV) design structure ma-
trix clustering, in a case study of four Java systems. Differently from [37], the
authoritativeness of the clustering results is computed by using the MoJoSim, a
normalized version of MoJo [34], also described in Section 4, that is the measure
employed in the assessment of this work.

3 The Proposed Approach to Cluster Software Systems

The definition of our software clustering approach encompasses the following
three steps: (I) the identification of a proper set of features based on the different
parts occurring in each software entity (Section 3.1); (II) the definition of a
probabilistic model able to account for the different relevance of such zones with
an a-priori probability (Section 3.2) and (III) the use of a clustering algorithm
properly suited for the specific domain (Section 3.3).

3.1 Feature Extraction and Zones

The first task towards the definition of our software clustering approach regards
the definition of a technique that is able to extract the lexical information from
the source code and to organize it into some meaningful structures, suitable for
further processing. Since we are interested in the processing of lexical informa-
tion, we assume that each source file can be treated as a common plain-text

46 A. Corazza et al.

document to which text mining and information retrieval (IR) techniques are
applied. Therefore we start by considering the class as the document unit [22],
namely the granularity at which each processed source file must be segmented.
Then, for each document (class), we collect the lexical information provided in
the six zones of code considered in [6], namely Class Names (CN), Attribute
Names (AN), Function Names (FN), Parameter Names (PN), Comments (Co)
and Source Code Statements (SCS). These zones represent the six different parts
into which a developer can add lexical information. Therefore, in our approach,
the content of each document is defined by the combination of six different vo-
cabularies of terms, one for each zones. In particular the CN zone contains the
name of the class associated to the document together with terms occurring in
class annotations. The AN zone contains the names of attributes and constants
of the class while the FN and PN zones contain respectively the words occur-
ring in method names and annotations, and those contained in the names of
parameters (and their types in case they are not primitive). The fifth and the
sixth zones, namely the Co and the SCS zones, contain all the terms extracted
from comments and from the body of methods, such as the names of local vari-
ables, passed parameters, etc.... As for the fifth zone, it is worth noting that if
the source file starts with a copyright disclaimer as a beginning comment, we
removed it since it does not convey any useful information.

Once all the documents have been collected and all their vocabularies have
been gathered, the next step is to construct a dictionary[22] defined by the union
of all these vocabularies. As a consequence, the resulting dictionary collects all
the terms appearing in at least one document. Although the dictionary con-
struction is similar to the one employed on natural language text, it has some
specificities connected to the fact that it works on text extracted from source
code. First of all, there is to tackle the problem that usually identifiers are made
of many concatenated words. Thus, we remove all punctuations characters and
numbers, and then we tokenize the identifiers according to various naming con-
ventions. In particular we handle the use of Camel-case (capitalized letters used
to divide words) and of underscores as word separators. Afterwards we lowercase
all the terms, and then remove all the ones appearing in a list of common terms,
known as stop words (e.g.: the, a, is, etc...) as these terms do not provide any
useful information for the analysis. To take into account the peculiarities of the
considered domain, we apply different stop words lists to the six different zones.
In particular, we remove the most common English terms1 occurring from the
first four zones. As for the fifth and sixth zones, we remove also all the key-
words of the programming language. Then, all the remaining terms are gathered
in equivalence classes according to their morphological root or stem. Finally,
following an approach widely adopted by information retrieval systems, we rep-
resent our documents by the bag-of-words model [22]. This model regards each
document as a collection of words whose orders and positions are completely
disregarded. Indeed, in our approach, we slightly modified the latter assumption
as we are interested to the particular zone of the document in which each terms

1 http://www.textfixer.com/resources/common-english-words.txt

Combining Machine Learning and Information Retrieval Techniques 47

occur. Thus if the same term appears in two different zones, it is handled as two
distinct terms. Within the bag-of-words model, each document is represented by
an array of real numbers, where each element is associated to the corresponding
term in the dictionary. From a different point of view, this is equivalent to con-
sidering each document as a point in a multi-dimensional geometrical space: the
so-called vector space model. In more details, for each term of the dictionary and
for each document, the tf-idf score is computed. It is defined as follows: given a
collection of N documents, namely the number of classes of the system under in-
vestigation, the tf(t, d) (term frequency) is defined as the number of occurrences
of the term t in the document d. The idf(t) (inverse document frequency) is given
by log N

df(t) , where df(t) (document frequency) returns the number of documents

in which the term t occurs. Finally the tf-idf is then defined on the pair (t, d) by

tf-idf(t, d) = tf(t, d) · log
N

df(t)
(1)

The tf-idf scoring is adopted in a large number of information retrieval appli-
cations because of the good compromise between simplicity and effectiveness in
describing the relevance of the term with respect to the document. In fact, its
corresponding value increases with the number of occurrences of the term in
the document and decreases with the number of documents in which the term
appears. Note that the inverse correlation with the document frequency has the
effect of lowering the score for terms appearing in all or nearly all documents.
The rationale underlying the idf is that, when computing similarity among doc-
uments as during the clustering process, if a term belongs to all documents, then
its discriminative contribution is irrelevant. In this case, its df = N , and its idf
is zero as the its tf-idf. Conversely, idf augments when the number of documents
in which the term appears decreases and attains its maximum (log N) when the
term occurs in a unique document.

Concluding, each document is therefore represented by a vector having size
equal to the dictionary size, where each element corresponds to the tf-idf score
for the term in the document. For all the terms not belonging to the document,
the corresponding element in the vector is zero.

3.2 Probabilistic Model

In this approach, we investigate the conjecture that the considered zones of the
code could convey information of different relevance starting from the observa-
tion that developers may place different care in writing code as well as comments.
Therefore, the informative contribution of the different zones should be correctly
weighted to best exploit the conveyed information. Moreover since these weights
strongly depend on the specificities of each project, their choice can not be made
subjectively, but should be automatically estimated from the data. To this aim
we define an automatic technique that is able to estimate such “relevance” on the
basis of the lexical characteristics of each considered project. In particular, we

48 A. Corazza et al.

are interested in determining the weights of the zones to be used as multiplica-
tive factors for the tf-idf values of the terms during the similarity computation
among documents.

A well founded framework to solve such a problem is given by probabilistic
approaches, where different sources of information are combined by an a-priori
probability distribution. The Maximum Likelihood Estimation (MLE) is one of
the most widely adopted approaches to estimate parameters of a probabilistic
model. This approach aims at finding the parameters of the considered model
which maximize the probability of the set of samples. In other words, we ought
to maximize the probability assigned by the model to all the documents in the
project.

If we look at the Z zones (six in our case) as a partition of documents, the
probability of each document is given by the product of the joint probabilities
of the zones, assuming that the tf-idf values of the terms in each of them are
produced by a random variable having a Gaussian distribution. In such a model,
the probability of a document di is defined as follows:

P (di) =
Z∏

z=1

P (di, zi) =
Z∏

z=1

λzG(μz , σz) (2)

Thus, our probabilistic model is expressed by a mixtures of multivariate Gaussian
distributions, combined by the a-priori probability of each zone, namely λz. Our
goal consists in finding the parameters λz , μz and σz that maximize the (Log)
Likelihood of the project:

logL =
N∑

i=1

log
Z∑

z=1

λzG(μz , σz) (3)

However, such parameters can not be found directly because the probability of
each document depends on all the considered Gaussians: whenever one of the
priors increases, the resulting logLikelihood could also increase. On the other
hand, if we know the values of each prior, we are able to find the values of
the other parameters. In this conditions, the Expectation - Maximization (EM)
algorithm [10] is probably the most largely used choice.

EM is an iterative algorithm whose name refers to the corresponding two
main steps it alternates during the execution: in the Expectation step, the weights
corresponding to each pair (document, zone) are (re)computed on the basis of the
parameters values. On the other hand, the Maximization step (re)computes the
model parameters in a way that the likelihood does not decrease. The algorithm
halts when the increase in likelihood corresponding to a given iteration is smaller
than a given threshold, or when a maximum number of iterations has been
performed.

Finally, among all the resulting parameters, the algorithm returns the values
of the zone priors: a large value of λz suggests that the z-th zone contribution
is important for the model. Therefore, we want to combine the zone scores with
weights proportional to these priors. As both weights and priors ought to sum
to one, we choose priors exactly equal to weights.

Combining Machine Learning and Information Retrieval Techniques 49

However, it is worth noting that one of the problems of the EM algorithm
is that it can attain a local maximum rather than a global one. Therefore, the
choice of the initial values for the parameters is very critical for the optimiza-
tion results [25]. To this aim, two different initialization strategies have been
experimentally compared. In particular the first strategy (we named random)
chooses the initial weights randomly (EMRnd), while the second one (we named
frequentist) estimates them by the rate between the number of tokens in the
zones and the total number of tokens (EMFreq). The idea underlying the lat-
ter choice is that it assigns more importance to regions containing more lexical
information.

3.3 Clustering

The Software Clustering problem, within the Software Maintenance field, can
be defined as the clustering of related software entities. Even if this definition is
quite simplistic, it points out the fact that this problem has a lot of aspects in
common with typical clustering tasks. First of all, it belongs to the category of
hard clustering tasks in which all the entities, namely the classes of the system
in our case, can be associated to only one cluster. Moreover, as any other unsu-
pervised machine learning approach, one of the key issues of the technique is the
choice of the similarity measure, which is crucial for the clustering performance
since it states criteria to decide whether two software entities are similar enough
to be put into the same cluster. In the defined vector space model, the similarity
between two classes could be estimated by means of the cosine similarity[22],
expressed as the cosine of the angle determined by the two vectors represent-
ing them. In addition to that, clustering of software entities introduces some
constraints imposed by the specific domain. The most important one is that an
automatically produced partition should not be either too huge (i.e. containing
hundreds of software entities) nor too tiny (i.e. containing very few software
entities) [37].

For this reason, standard algorithms may not be effective unless they are
modified to impose such constraints. Therefore in this paper we discuss how two
well-known clustering algorithms, namely the K-Medoids (Section 3.4) and the
Group Average Agglomerative Clustering (Section 3.5), that have been slightly
customized to be more suitable to the specificity of software clustering tasks.

3.4 K-Medoids

The K-Medoids is a clustering algorithm similar to the classical K-Means [14],
except that each cluster is built around a really existing entity of the dataset,
namely the medoid, rather than around the mean of the cluster elements, which
could correspond to no actual element. This aspect has the effect to make the
algorithm more robust with respect to outliers. Moreover, since the resulting
clustering strongly depends on the initial choice of medoids, which is random, to
avoid that such randomness leads to unbalanced solutions, we introduced a novel

50 A. Corazza et al.

halting criterion to avoid the risk of resulting in extremely small or extremely
large clusters, which makes sense in the context of Software Clustering.

Indeed, the original K-Medoids algorithm starts with a random choice of the
k medoids and iterates assigning at each step all the entities to the most similar
medoids, and then recomputing the medoids. Finally the algorithm returns the
desired partitions of the system organized as a set of k different clusters. However,
the main drawback of the algorithm is that resulting clusters strongly depends on
the initial configurations. Thus, unlucky configurations could result in a partition
including too small clusters: in the variant of the algorithm proposed in [7], the
whole procedure is repeated until a final solution with no extreme clusters is
attained or a maximum number of iterations are performed. Even when the
procedure halts due to the latter condition, the algorithm provides the best
solution among all the ones found in each iteration.

3.5 Group Average Agglomerative Clustering

In addition to the K-Medoids algorithm, we considered also the Group Average
Agglomerative Clustering (GAAC) [22].

This algorithm belongs to the category of the so-called Hierarchical Agglom-
erative Clustering (HAC) [27] that agglomerates all the clusters according to
a Bottom-Up strategy. In particular, the algorithm starts by treating each en-
tity as a singleton cluster, and then iteratively merges the most similar pairs of
clusters, until all the clusters have been merged [13]. The resulting hierarchy of
clusters is visualized as a dendrogram in which leaf nodes represent singletons
and each horizontal line corresponds to a merge between two clusters.

The core of each HAC algorithm is represented by the linkage phase which
is responsible to determine the pair of clusters to be merged at each iteration.
Indeed, different linkage strategies correspond to different HAC algorithms and
their choice is crucial as for the properties of resulting clusters [22]. In our ap-
proach, we employ the Group Average Linkage method that agglomerates two
clusters based on the the average similarity of all pairs of entities belonging to
them. This strategy has the main advantages of being more robust with respect
to outliers and tends to produce more balanced dendrograms [22].

The main feature of this clustering algorithm is that it is deterministic and
does not require several random initialization as the K-Medoids. Moreover, al-
though the asymptotic time complexity of the HAC approach is worse than the
K-medoids, in the experiments we performed the K-medoids was slower because
it was applied a large number of times on different initial points.

Conversely, from a software clustering point of view, the main drawback of
the HAC is that it does not provide a flat partition of the system due to its
agglomerative nature, but to get these partitions of the classes, the dendrogram
has to be properly cut. Therefore in [6] we defined a cutting strategy criterion
that optimizes the non extremity distribution of the partition aiming to generate
at most k clusters in order to make the two clustering strategies comparable.

Combining Machine Learning and Information Retrieval Techniques 51

4 Experimental Assessment

The potentiality of the approach as been experimentally assessed, with special
attention to the clustering algorithm contribution. Also the choice of the EM
initialization strategy, either random or frequentist, has been part of the empir-
ical investigation. Since the trend effect should be independent of the clustering
algorithm, we only considered the GAAC in this experiment. Therefore, the first
issue we consider in this section is the choice of a suitable clustering performance
measure. A brief description of the employed data sets follows, while Section 5
is devoted to the discussion of the assessment results.

4.1 Measures

The assessment of a clustering is usually based on an annotated test set, usually
referred as gold standard, in which each item of the dataset is labeled with the
corresponding cluster. In case of software clustering tasks, this gold standard
could be represented by a set of large and publicly available software systems with
well-understood decomposition that can be used as benchmark [35]. However,
from one hand, there is no publicly annotated dataset available; on the other
hand, the manual generation of such partitions by software architects may be
too subjective to represent a benchmark.

Therefore, following other similar works [4, 6, 29, 37], we adopted a fair and
repeatable procedure for constructing the gold case clustering which is built
on the original source folder structure of the system under investigation. The
idea behind this protocol is the following: given the bunch of classes of a well-
engineered system (such as for instance JHotDraw, widely used to teach Software
Design issues) without any structure, if the approach is able to automatically
arrange them in a partitioning that resembles the packages proposed by the
developers of the system, then the approach will likely perform well also on other
software systems. From the software engineering point of view, this measure is
called Authoritativeness (Auth) [37].

The authoritative partition is automatically derived in accordance with the
following three steps:

1. create the subsystem hierarchy based on the directory (package) structure
(each directory represents a single subsystem);

2. merge a subsystem with its parent if it contains less than five source files;
3. create a cluster for each resulting subsystem.

Given such authoritative partition, the next challenge is to determine a measure
that is able to compare clustering results to this partition. Several researchers
in literature have attempted to tackle this problem [3, 15, 17, 34].

One of the first proposed approach was the measure presented by Lakhotia
and Gravely [17]. However this measure could be used only on dendrograms of
hierarchical clusterings which in practice strongly limits its applicability to other
not-hierarchical clustering algorithms.

52 A. Corazza et al.

Afterwards Anquetil and Lethbridge proposed the use of the well known
measures of Precision and Recall for the evaluation of clustering results [3]. In
particular, let A be the automatically identified source partition and B the au-
thoritative partition, they defined the Precision as the percentage of intra-pairs,
i.e. pairs of items in the same cluster, in A that are also intra-pairs in B. On the
other hand, the Recall is defined as the percentage of intra-pairs in B that are
also intra-pairs in A. The main drawback of this measure is that it is too much
“sensitive” to the number and the size of considered clusters. As a consequence,
few misplaced entities in a cluster could produce very different results.

Koschke and Eisenbarth presented in [15] a complex measure which extends
and removes limitations of the approach proposed by Lakhotia and Gravely and
that is loosely based on the Precision and Recall measures employed by Anquetil
and Lethbridge. The KE measure is built on the definition of GOOD and OK
matches. Assuming that p is a threshold parameter and that Ai and Bj are two
clusters in the source and authoritative partition respectively, the following two
definitions hold:

(GOOD match) Ai ≈p Bjiff
|Ai ∩ Bj |
|Ai ∪ Bj | ≥ p

(OK match) Ai ⊆p Bjiff
|Ai ∩ Bj |

|Ai| ≥ p

These two matching definitions are then used to split the set of clusters in two
distinct classes, one for each relationship. Next, once all the clusters have been
classified, the GOOD class is enlarged by joining all the OK matches in which
one of the two cluster is already in the GOOD class. All the remaining clusters
that are neither in GOOD or in OK matches are referred as false positives or
true negatives in case they belong to the source or to the authoritative partition,
respectively.

Finally the overall similarity metric is defined as follows:

KE(A, B) =

∑
(a,b)∈GOOD

|a ∩ b|
|a ∪ b| +

∑
(a,b)∈OK

|a ∩ b|
|a ∪ b|

|GOOD| + |OK| + |truenegatives|
The KE metric is particularly good when the source partition is close to the
authoritative partition. Conversely it is not as good in more extreme cases as its
definition takes into account only the union and the intersection between clusters,
without applying any penalty for the join operations. Last but not least, it relies
on the specification of a threshold parameter which could inevitably bias the
results.

More recently, Tzerpos and Holt presented in [31] the MoJo distance, which
is the measure this work builds on. In particular, let A be the automatically
identified source partition and B the authoritative partition, MoJo(A, B) is
defined as:

MoJo(A, B) = min(mno(A, B), mno(B, A))

Combining Machine Learning and Information Retrieval Techniques 53

corresponding to the minimum number of Move and Join operations necessary to
transform either the first partition A to the second partition B or vice versa [31].
The lower the value of MoJo between two partitions is, the more the clustering
algorithm is effective in creating the software partition.

Differently from the KE measure, this metric explicitly introduce the calcu-
lation of a penalty to the join operations but it has a couple of drawbacks that
make its original formulation useless for the assessment of our approach. First
of all we are interested in determining how the automatically defined partition
resembles the authoritative one and not vice versa. Thus we need to calculate
only the mno(A, B). Furthermore, the measure does not make the results com-
parable among different software systems as its value strongly depend on the
size of their authoritative partitions.

Therefore, to overcome those limitations, we used a normalized version of
MoJo, namely the MoJoSim [4] defined as follows:

MoJoSim(A, B) = 1 − mno(A, B)
N

(4)

where N is the number of entities of the software system to be clustered.
In conclusion, the Auth measure gives an estimate of the similarity between

the clustering proposed by our approach and those in an authoritative partition.
However, this aspect is not sufficient to evaluate the quality of the solution. In-
deed, we also require that the obtained clustering does not include too small or
too large clusters. To this aim, a measure called Non-extremity cluster distribu-
tion (NED) has been introduced by [37]. NED is defined as follows:

NED =
1
N

∑
ci∈C:MinSize≤|ci|≤MaxSize

|ci|

where N is the number of classes of the analyzed software system and C rep-
resents the set of clusters. In accordance to other similar researches, we limited
cluster size to be included between MinSize= 5 and MaxSize= 100. In other
words, clusters with less than 5 or more than 100 software entities are consid-
ered as extreme lower and upper limits, respectively [37]. The larger the NED
value is, the more non-extreme the size distribution of the clusters is.

4.2 Data Sets

For the evaluation of the proposed approach we used a dataset with the following
nine Java projects:

– EasyMock is a tool for Test-Driven Development. It provides Mock Objects
for interfaces by generating them on the fly using Java proxy mechanism.

– JabRef is an open source bibliography reference manager.
– JHotDraw is a GUI framework for technical and structured graphics.
– JFreeChart is a tool supporting the visualization of bar charts, pie charts,

line charts, scatter plots, histograms, simple Gantt charts,bubble plots, and
more.

54 A. Corazza et al.

– PMD is a Java source code analyzer. It finds unused variables, empty catch
blocks, unnecessary object creation, and so forth.

– FindBugs is a system that uses static analysis to look for bugs in Java code.
– ArgoUML is an open source UML modeling tool that includes support for

all standard UML 1.4 diagrams.
– EclipseJdt is the Java infrastructure of the Java Editor included in Eclipse

IDE.
– JdkSwing is the primary Java GUI widget toolkit that provides an API for

creating and manipulating graphical user interfaces for Java programs.

All these software systems can be freely downloaded from SourceForge 2. Some
descriptive statistics of these systems are shown in Table 1. In particular, this
table shows names of the software systems and the analyzed versions. The third
column shows the number of classes, together with the number of thousand of
lines of code (KLOCs) and thousands of lines of comments (KCLOCs) of each
considered software reported in the last two columns.

Table 1. Descriptive statistics of the authoritative partitions

System Version Classes KLOCs KCLOCs

EasyMock 2.4 65 4.16 1.9
JabRef 2.4B2 1082 75.19 21.31
JHotDraw 7.4.1 953 86.13 35.84
JFreeChart 1.0.13 610 122.58 107.6
PMD 4.2.5 702 59.38 9.42
FindBugs 1.3.9 243 13.06 3.26
ArgoUML 0.3.2 1928 161.43 117.67
EclipseJdt 3.2 341 55.30 65.64
JdkSwing 1.4.0 1552 115.37 102.35

5 Results and Discussion

The assessment is based on the two measures introduced in Section 4.1, namely
Auth and NED. However, their role in the discussion of the assessment results
is different. From one hand, the Auth provides an indication of the external
“quality” of the clusters identified by the approach. On the other hand, the
NED provides an indication of the internal quality of the resulting partition
of the system. As a consequence, even if we aim at the definition of clustering
strategies obtaining acceptable NED values, larger NED does not always imply
that the clustering is better.

To this aim, although we always report both Auth and NED, we mainly
discuss the Auth trend, while we evaluate NED values only to control that the
constructed partition fulfills the non extremity requirement.

2 http://sourceforge.net

Combining Machine Learning and Information Retrieval Techniques 55

The first issue considered by the experimental assessment regards the choice of
the initialization strategy in the EM algorithm. Indeed, as discussed in Section 3
two strategies are possible: the initial parameters can be either randomly set or
estimated by the frequency of the corresponding event. A disadvantage of the
former strategy is that the final results are not deterministic and the algorithm
ought to be run a number of times to eventually choose the best likelihood
maximum and this obviously affect the approach computational complexity.

Table 2. Authoritativeness and NED Values for the different EM initialization strate-
gies using GAAC

System
Authoritativeness NED
EMRnd EMF req EMRnd EMF req

EasyMock 0.725 0.815 0.701 0.792
JabRef 0.668 0.749 0.921 0.981
JHotDraw 0.544 0.757 0.951 0.978
JFreeChart 0.47 0.57 0.988 0.992
PMD 0.475 0.595 0.915 0.989
FindBugs 0.877 0.877 0.923 0.947
ArgoUML 0.521 0.711 0.959 0.987
EclipseJdt 0.731 0.765 0.909 0.962
JdkSwing 0.732 0.762 0.933 0.992

Experimental results for the comparison of the two strategies are presented
in Table 2 from which it clearly results that with no exception frequentist ini-
tialization performs better than the random one for both Auth and NED. This
has also a good impact on computational complexity.

Furthermore, we assumed that the choice of the EM initialization should be
independent from the rest of the system pipeline, including the clustering algo-
rithm. This hypothesis is confirmed by the experimental results comparing the
effect of the EM introduction on the two clustering algorithms we are consid-
ering, namely GAAC and K-Medoids, presented in Table 3. Indeed, as better
discussed in the following, GAAC nearly always works better than K-Medoids,
both with and without the EM algorithm.

Tables 3 and 4 report the performance obtained for the two clustering algo-
rithms both with and without EM. Auth is nearly always larger for GAAC, inde-
pendently on whether the input representation considers the EM or not. When
considering the baseline without EM, the only project on which K-Medoids per-
forms better is the EclipseJdt software system. Also in this case, however, Auth
values obtained by the two clustering algorithms are very close. The same trend
in the results still holds in case both the zones and EM are introduced. In par-
ticular the K-Medoids performs better only for the ArgoUML software systems,
while in all other cases, the Auth values obtained by GAAC are always better
than the ones obtained by K-Medoids.

56 A. Corazza et al.

Table 3. Authoritativeness for GAAC and K-Medoids Clustering with and without
the use of EM

System
Authoritativeness

GAAC K-Medoids
NO-EM EMF req NO-EM EMF req

EasyMock 0.631 0.815 0.572 0.812
JabRef 0.589 0.749 0.392 0.735
JHotDraw 0.361 0.757 0.257 0.753
JFreeChart 0.402 0.570 0.361 0.577
PMD 0.373 0.595 0.325 0.571
FindBugs 0.840 0.877 0.790 0.874
ArgoUML 0.376 0.711 0.331 0.659
EclipseJdt 0.551 0.765 0.574 0.742
JdkSwing 0.601 0.762 0.399 0.737

Table 4. NED for GAAC and K-Medoids Clustering with and without the use of EM

System
NED

GAAC K-Medoids
NO-EM EMF req NO-EM EMF req

EasyMock 0.938 0.792 0.998 0.920
JabRef 0.986 0.981 0.501 0.496
JHotDraw 0.980 0.978 0.752 0.751
JFreeChart 0.980 0.992 0.918 0.924
PMD 0.986 0.989 0.571 0.524
FindBugs 0.947 0.947 0.342 0.351
ArgoUML 0.994 0.987 0.809 0.801
EclipseJdt 0.962 0.962 0.890 0.881
JdkSwing 0.983 0.992 0.618 0.609

As for the NED values, all the achieved results are always acceptable but this
was quite expected as we modified the two algorithms in order to respect the
requirement on the size of resulting clusters.

Last but not least, the most evident conclusion we can draw from the exper-
imental assessment is that the introduction of zones with weights estimated by
EM on a probabilistic model always heavily improves performance. Indeed, the
boost introduced is often very relevant. We judge this result very encouraging,
showing how approaches taken from information retrieval and machine learning
can be adapted and successfully applied to the mining of software repositories.

6 Conclusions

A common scenario that has to be faced during the maintenance of a software
system is the lack of reliable documentation, that often is missing or not properly
up-to-date. In this situation, reverse engineering tools have to be employed to

Combining Machine Learning and Information Retrieval Techniques 57

align it with the actual implemented software architecture [1, 23, 33]. These
tools usually rely on clustering-based approaches to group sets of related classes,
exploiting some structural-based measures of similarity among software artifacts.

In this paper we have investigated the use of a similarity measure based on
lexical information for clustering related software artifacts. In particular, we have
explored the effects of mining the lexical information as if they come from six
different vocabularies: Class Names, Attributes Names, Function Names, Param-
eter Names, Comments, and Source Code Statements.

However we investigate the hypothesis that each project has its own peculiar-
ities as for the distribution and the relevance of the terms within these zones.
Thus, to exploit at its best the potentials of the lexical information embedded
in a software system, a mechanism to automatically weight the importance of
each vocabulary is absolutely required.

To this aim, we used the Expectation-Maximization algorithm in order to
maximize the (Log)Likelihood of the data according to a probabilistic model of
the data defined on the basis of the characteristics of each analyzed software
system. Moreover, as the choice of the initial values of the model parameters is
a key issue, we explored two different initialization strategies based on a random
choice and on the frequencies of the terms within the zones.

The results of the clustering on these features have been then evaluated using
two criteria: Authoritativeness and Non-Extremity Distribution (NED). These
have been applied on 9 open source Java systems.

The first key finding we got is that the introduction of a weighting technique
highly improves results, with a mean enhancement of 40% in terms of author-
itativeness, on the considered dataset. Moreover we got the empirical evidence
that the frequency based initialization strategy for the EM algorithm always led
to better results with respect to a random initialization.

Finally, to understand whether the introduction of the EM and of the prob-
abilistic model always improve the achieved results, regardless the choice of the
particular clustering strategy, we compared the performance of two different al-
gorithms, i.e. the K-Medoids and the Group Average Agglomerative Clustering
(GAAC).

Even if the latter provided nearly worse results in terms of NED if com-
pared with the results we got with the K-Medoids, GAAC has the great point
of strength of being deterministic, so each time a Maintainer will run the whole
approach, he/she will get the same clusters. Moreover, we got the empirical
evidence that results are largely comparable in terms of Authoritativeness.

Several are the possible future direction for our work. A first direction could
be the investigation of software systems implemented in different object oriented
programming languages. Moreover, we will investigate the use of commercial
software systems, rather than open source ones. At the same time, it will be
very interesting to investigate the possibility to infer potential relationships be-
tween the relevance of each zone, and some process-specific elements, such as the
adopted development methodology. We also plan to investigate the possibility
of extending the preprocessing phase using an approach to recognize words from

58 A. Corazza et al.

abbreviated identifiers, such as [12], [19], and to automatically associate labels to
the clusters. In addition to that, it will very interesting to investigate if different
probabilistic model defined on the data would lead to different results. In par-
ticular, instead of considering the values of the tf-idf of terms as associated to a
random variable that follows a Guassian distribution, we should explore different
distributions such as the Multinomial or the Bernoulli distributions. Finally, the
possibility of merging lexical information with the structural one, coming from
the original structure of the classes within the packages will be investigated.

References

1. Andreopoulos, B., An, A., Tzerpos, V., Wang, X.: Clustering large software systems
at multiple layers. Information & Software Technology 49(3), 244–254 (2007)

2. Andritsos, P., Tzerpos, V.: Information-theoretic software clustering. IEEE Trans.
Software Eng. 31(2), 150–165 (2005)

3. Anquetil, N., Fourrier, C., Lethbridge, T.C.: Experiments with clustering as a soft-
ware remodularization method. In: WCRE 1999: Proceedings of the Sixth Working
Conference on Reverse Engineering, p. 235. IEEE Computer Society, Washington,
DC (1999)

4. Bittencourt, R.A., Guerrero, D.D.S.: Comparison of graph clustering algorithms
for recovering software architecture module views. In: CSMR 2009: Proceedings of
the 2009 European Conference on Software Maintenance and Reengineering, pp.
251–254. IEEE Computer Society, Washington, DC (2009)

5. Bowman, I.T., Holt, R.C., Brewster, N.V.: Linux as a case study: its extracted soft-
ware architecture. In: ICSE 1999: Proceedings of the 21st International Conference
on Software Engineering, pp. 555–563. ACM, New York (1999)

6. Corazza, A., Di Martino, S., Maggio, V., Scanniello, G.: Investigating the use of
lexical information for software system clustering. In: 15th European Conference
on Software Maintenance and Reengineering (CSMR 2011), pp. 35–44 (2011)

7. Corazza, A., Di Martino, S., Scanniello, G.: A probabilistic based approach towards
software system clustering. In: 14th European Conference on Software Maintenance
and Reengineering (CSMR 2010), pp. 89–98 (2010)

8. De Lucia, A., Scanniello, G., Tortora, G.: Identifying similar pages in web appli-
cations using a competitive clustering algorithm: Special issue articles. J. Softw.
Maint. Evol. 19(5), 281–296 (2007)

9. Deerwester, S.C., Dumais, S.T., Landauer, T.K., Furnas, G.W., Harshman, R.A.:
Indexing by latent semantic analysis. Journal of the American Society of Informa-
tion Science 41(6), 391–407 (1990)

10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39(1), 1–38 (1977)

11. Eick, S.G., Graves, T.L., Karr, A.F., Marron, J.s., Mockus, A.: Does code de-
cay? assessing the evidence from change management data. IEEE Transactions on
Software Engineering 27, 1–12 (2001)

12. Enslen, E., Hill, E., Pollock, L.L., Vijay-Shanker, K.: Mining source code to auto-
matically split identifiers for software analysis. In: MSR, pp. 71–80 (2009)

13. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: A review (1999)
14. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data An Introduction to Cluster

Analysis. Wiley Interscience (1990)

Combining Machine Learning and Information Retrieval Techniques 59

15. Koschke, R., Eisenbarth, T.: A framework for experimental evaluation of clustering
techniques. In: IWPC, pp. 201–210. IEEE Computer Society (2000)

16. Kuhn, A., Ducasse, S., Ĝırba, T.: Semantic clustering: Identifying topics in source
code. Information & Software Technology 49(3), 230–243 (2007)

17. Lakhotia, A., Gravley, J.M.: Toward experimental evaluation of subsystem classi-
fication recovery techniques. In: Working Conference on Reverse Engineering, pp.
262–269 (1995)

18. Lehman, M.M.: Program evolution. Inf. Process. Manage. 20(1-2), 19–36 (1984)
19. Madani, N., Guerrouj, L., Di Penta, M., Guéhéneuc, Y., Antoniol, G.: Recognizing

words from source code identifiers using speech recognition techniques. In: 14th
European Conference on Software Maintenance and Reengineering (CSMR 2010),
pp. 69–78 (2010)

20. Maletic, J.I., Marcus, A.: Supporting program comprehension using semantic and
structural information. In: ICSE, pp. 103–112 (2001)

21. Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y., Gansner, E.R.: Using auto-
matic clustering to produce high-level system organizations of source code. In:
IWPC 1998: Proceedings of the 6th International Workshop on Program Compre-
hension, p. 45. IEEE Computer Society, Washington, DC (1998)

22. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to Information Retrieval.
Cambridge University Press, New York (2008)

23. Maqbool, O., Babri, H.: Hierarchical clustering for software architecture recovery.
IEEE Trans. Softw. Eng. 33(11), 759–780 (2007)

24. McLachlan, G.J., Krishnan, T.: The EM Algorithm and Extensions (Wiley Series
in Probability and Statistics), 2nd edn. Wiley Interscience (March 2008)

25. Mclachlan, J., Krishnan, T.: The EM algorithm and Extensions. Wiley interscience
(1996)

26. Mitchell, B.S., Mancoridis, S.: On the automatic modularization of software sys-
tems using the bunch tool. IEEE Trans. Softw. Eng. 32(3), 193–208 (2006)

27. Murtagh, F.: A survey of recent advances in hierarchical clustering algorithms. The
Computer Journal 26(4), 354–359 (1983)

28. Nierstrasz, O., Ducasse, S., Ĝırba, T.: The story of moose: an agile reengineering
environment. In: ESEC/SIGSOFT FSE, pp. 1–10 (2005)

29. Scanniello, G., D’Amico, A., D’Amico, C., Teodora, D.: Using the kleinberg algo-
rithm and vector space model for software system clustering. In: ICPC 2010: Pro-
ceedings of the 18th International Conference on Program Comprehension, IEEE
Computer Society, Washington, DC (2010)

30. Scanniello, G., Risi, M., Tortora, G.: Architecture recovery using latent semantic
indexing and k-means: an empirical evaluation. In: SEFM 2010: Proceedings of the
2010 IEEE International Conference on Software Engineering and Formal Methods,
pp. 103–112. IEEE Computer Society (2010)

31. Tzerpos, V., Holt, R.C.: Mojo: A distance metric for software clusterings. In:
WCRE, pp. 187–193 (1999)

32. Tzerpos, V., Holt, R.C.: On the stability of software clustering algorithms. In:
IWPC 2000: Proceedings of the 8th International Workshop on Program Compre-
hension, p. 211. IEEE Computer Society, Washington, DC (2000)

33. van Deursen, A., Hofmeister, C., Koschke, R., Moonen, L., Riva, C.: Symphony:
View-driven software architecture reconstruction. In: WICSA, pp. 122–134 (2004)

34. Wen, Z., Tzerpos, V.: An optimal algorithm for mojo distance. In: IWPC 2003:
Proceedings of the 11th IEEE International Workshop on Program Comprehension,
p. 227. IEEE Computer Society, Washington, DC (2003)

60 A. Corazza et al.

35. Wen, Z., Tzerpos, V.: An effectiveness measure for software clustering algorithms.
In: IWPC, pp. 194–203. IEEE Computer Society (2004)

36. Wiggerts, T.A.: Using clustering algorithms in legacy systems remodularization.
In: WCRE 1997: Proceedings of the Fourth Working Conference on Reverse Engi-
neering, p. 33. IEEE Computer Society, Washington, DC (1997)

37. Wu, J., Hassan, A.E., Holt, R.C.: Comparison of clustering algorithms in the con-
text of software evolution. In: ICSM 2005: Proceedings of the 21st IEEE Interna-
tional Conference on Software Maintenance, pp. 525–535. IEEE Computer Society,
Washington, DC (2005)

Reusing System States by Active Learning
Algorithms�

Oliver Bauer, Johannes Neubauer, Bernhard Steffen, and Falk Howar

Technical University Dortmund,
Chair for Programming Systems,
Dortmund, D-44227, Germany

{oliver.bauer,johannes.neubauer,
steffen,falk.howar}@cs.tu-dortmund.de

Abstract. In this paper we present a practical optimization to active
automata learning that reduces the average execution time per query as
well as the number of actual tests to be executed. Key to our optimiza-
tion are two observations: (1) establishing well-defined initial conditions
for a test (reset) is a very expensive operation on real systems, as it
usually involves modifications to the persisted state of the system (e.g.,
a database). (2) In active learning many of the (sequentially) produced
queries are extensions of previous queries. We exploit these observations
by using the same test run on a real system for multiple “compatible”
queries. We maintain a pool of runs on the real system (system states),
and execute only suffixes of queries on the real system whenever possible.
The optimizations allow us to apply active learning to an industry-scale
web-application running on an enterprise platform: the Online Confer-
ence Service (OCS) an online service-oriented manuscript submission
and review system.

1 Introduction

The evolution of the internet – in particular trends like web 2.0 and cloud com-
puting – moves the research focus from systematic and well-founded system de-
sign to methods for orchestrating and controlling loosely coupled heterogeneous
systems including (third party) components that lack proper specification. As
an example, the Connect Integrated Project [15, 10] aims at overcoming the
interoperability barrier between independently provided systems and services
by synthesizing required connectors on the fly. In this context, active automata
learning [3] is applied in order to complement and complete available knowledge
about the involved peers, typically given in terms of (semantically annotated)
interface descriptions by means of test-based experimentation. Dependability is-
sues at the system level are mainly addressed in Connect at the model-level by
means of verification, which abstracts from all the pitfalls that may arise when
deploying a system on a realistic enterprise environment facilitating features of
application servers like:
� This work is supported by the European FP 7 project CONNECT (IST 231167).

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 61–78, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

62 O. Bauer et al.

– concurrency via threads,
– synchronization and event-handling via messages,
– persistence of the state and business objects.

Learning the emergent overall user-level behavior on an enterprise platform dras-
tically changes the rules of the game: The problem here is not so much the size of
the arising models. Focusing on the user level at an adequate level of abstraction
keeps the arising models in manageable size. Rather, due to the very complex
system landscape, the required test-based experimentation becomes extremely
expensive: individual test case may run for many seconds if not minutes, and the
system resets for establishing the required independence of individual test cases
causes a major problem. Keeping in mind that even learning a very small model
with only 30 states easily requires 10,000 tests, and that this number grows
quadratically, even in very ‘friendly’ cases, it is clear that special techniques are
required that exploit the characteristics of the chosen setting.

In this paper we propose a new method based on maintaining the states
of the overall ‘enterprise’ system resulting from the tests, with the effect that
system resets can be avoided, whenever a new test case is a continuation of a
previous test. This optimization is very powerful, in particular when combined
with domain-specific knowledge in terms of actions that do not have any effect
on the observable behavior (e.g., read-only actions). In our real-life case study
on the basis of Springer’s Online Conference System OCS (see Section 2), which
we will discuss in the following in more detail, we observed significant savings:

– without any prerequisite, maintaining the system states saved significantly
many resets and executions of many expensive actions,

– additionally taking domain-specific knowledge into account, these savings
have been typically tripled.

The reason for this strong impact is the fact that the OCS , like many similar
services, has a number of actions that do not change state:

– actions that are known to have no observable effect in any state, like a typical
read-only action, and

– actions that fail in a certain state, so that the further behavior of the system
does not change due to the OCS-inherent roll back mechanism.

All this will be explained in detail in Section 5 and illustrated in Section 6.

Related Work: The optimization of active automata learning has been subject
to extensive studies. Different learning algorithms for various kinds of automata
have been developed, like for Mealy Machines [12, 22, 13, 24], I/O automata [2],
Petri nets [7] or Timed automata [9].

Diverse optimizations have been suggested by researchers from the field of
active learning theory, most of them for the DFA case from the seminal paper of
Angluin [3]. Improvements reach from the algorithmic approach from different
data structures like discrimination trees [16] or usage of several local observation
tables [4] to a better handling of evidences (counterexamples) that describe how

Reusing System States by Active Learning Algorithms 63

the algorithm refines its hypothesises, c.f. [17, 23] or [14] for an overview of some
techniques.

Finding evidence that the algorithm needs to refine its hypothesis is in general
undecidable for black-box-systems, however, if the number of states from the
unknown system is known, the W-method [5] or Wp-method [8] may be applied.
A recent approach for finding such evidences is taken by the ZULU challenge,
c.f [11, 6].

Since the number of queries during learning may easily exceed tenth of thou-
sands, different optimizations for usage of domain-specific knowledge have been
developed to answer queries that consists of, e.g., symmetric actions. Filters may
reduce the number of needed queries by several orders of magnitude [12, 19].

Realizing reset of the System Under Test (SUT) by means of abstraction has
been introduced in [26, 1]. To our knowledge, there have been no former attempts
to reuse system states in order to save resets.

Outline: The rest of the paper is organized as follows. Section 2 presents a web-
based system supporting manuscript submission and review processes as it is
facilitated for the case study in Section 6. In Section 3 we provide some theoret-
ical background on query learning and describe briefly the setup to extrapolate
Mealy machine models from black-box systems in practice. Section 4 presents the
technical basis for our optimization, i.e., reusing system states in detail, while in
Section 5 we discuss that domain-specific knowledge can be exploited to further
optimize reuse of system states. Section 6 reviews the results of evaluating our
optimization in a series of experiments on the OCS . Finally, Section 7 provides
a conclusion and plans for our further research on this topic.

2 Online Conference Service

The OCS is an online manuscript submission and review service. It is part of
a product line for the Springer Verlag that started in 1999 and evolved over
time to include also journal and volume production preparation services. The
OCS acts as a decision support system facilitating the process of approving and
refusing submissions. Hence, the service follows a well-defined workflow, that is
customized for different applications like conferences or journals. Its aim is to
assist the efficient cooperation of the different participants in this collaborative
process.

In 2009 the OCS underwent a complete redesign and re-implementation, in
order to have a more flexible and adaptable system being better suited to verifi-
cation at the same time. Figure 1 shows a screenshot of the current user interface.
It uses industry standard technology and runs on an application server. The new
version of the OCS is already in use for real conferences and has proven that it
models the work-flow for various conference types effectively. During the prepa-
ration of a conference the participants in the decision process have diverse tasks,
depending on the progress of the conference schedule. The central purpose of the
OCS is the adequate handling of a wealth of independent, but often indirectly

64 O. Bauer et al.

Fig. 1. The start screen of a real conference service for CIRP IPS2 2011

related, user interactions. From this point of view the OCS is a reactive system
with a graphical user interface provided as a web application. Users can decide
when they execute their tasks and, in case of multiple tasks, the order in which
they process them. They might even reject tasks. Therefore the system has a
complex and dynamic user and rights management.

On that note, the OCS is a candidate for a case study for automata learning
of reactive systems. Since the OCS has an interface to the business logic offering
all functionality being used by the web frontend of the service, we are able to de-
fine an abstract alphabet calling the business logic methods via remote method
invocation on the real running system. We use a dedicated and isolated installa-
tion, without polluting a productive system by learning data and the absence of
unintended interference from outside the learning process can be assumed.

As mentioned before, the application to be learned is very complex and as we
are conducting actual system invocations instead of resorting to simulation, the
amount of tests leads to inacceptable execution time. Furthermore a resulting
automaton with hundreds of states is not comprehensible for a human being. The
result can be steered with the choice of abstraction in the alphabet. In addition
we use filters facilitating domain-specific knowledge in order to have tractable
learning procedures.

Reusing System States by Active Learning Algorithms 65

3 Active Learning

Query learning (or active learning) attempts to construct a deterministic finite
representation, e.g., a Mealy machine, that matches the behavior of a given
target system on the basis of observations of the target system and perhaps
some further information on its internal structure. Here, we only summarize the
basic aspects of our realization L∗M for Mealy machines [22], which is based on
Angluin’s learning algorithm L∗ for finite state acceptors [3]. A more elaborate
version of this summary and an extended discussion of the practical aspects of
active learning is given in [26, 25].

Definition 1. A Mealy machine is defined as a tuple M = 〈Q, q0, Σ, Γ, δ, γ〉
where

– Q is a finite nonempty set of states (be n = |Q| the size of M),
– q0 ∈ Q is the initial state,
– Σ is a finite input alphabet,
– Γ is a finite output alphabet,
– δ : Q×Σ → Q is the transition function, and
– γ : Q×Σ → Γ is the output function.

Intuitively, a Mealy machine evolves through states q ∈ Q, and whenever one
applies an input symbol (or action) a ∈ Σ, the machine moves to a new state
according to δ (q, a).1

Query learning is also referred as active learning as it constructs automata
by actively querying the target system using two kinds of queries. Membership
queries (MQs) test whether a word (sequence of actions) is in language of the
target system (i.e., its set of runs). In practice MQs are realized as test runs
on a system to be learned. Equivalence queries (EQs) compare intermediately
constructed hypothesis automata for equivalence with the target system. They
will usually be approximated by means of testing, i.e., by MQs.

In its basic form, active learning starts with a hypothesis automaton with
only one state and refines this automaton on the basis of query results iterating
two main steps: refining the hypothesis and testing equivalence until a state-
minimal deterministic (hypothesis) automaton consistent with the target system
is produced. Key to achieving this result is the Nerode-like dual characterization
of states:

– by a set, S ⊂ Σ∗, of access sequences. L∗M will construct such a set S,
containing access sequences s ∈ Σ∗ to all states of the hypothesis automaton.
This characterization of state is too fine, as different words s1, s2 ∈ S may
lead to the same state in the target system. Hence L∗M will maintain a second
set, SA, which together with S will cover all transitions of the hypothesis
(SA will during the course of learning always be SA = (S ·Σ) \ S).

1 To ease presentation, we extend transition- and output function to words in the usual
way. For the remainder of the paper, we assume δ : Q×Σ∗ → Q and γ : Q×Σ∗ → Γ .

66 O. Bauer et al.

– by an ordered set, D ⊂ Σ∗, of distinguishing sequences. L∗M realizes the
characterization of hypothetical states q simply in terms of vectors row(s) =
〈r1, . . . , rk〉 (with ri ∈ Γ and s ∈ S ∪SA), characterizing states by means of
subsequent outputs: For row(s), let ri = γ(δ(q0, s), di) with di ∈ D.

L∗M maintains its observations in an observation table (OT) that consists of these
sets. The sets, of course, are constructed by means of MQs. The set S will be
initialized as {λ}, containing only the access sequence to the initial state; SA
will accordingly be initialized as Σ, covering all transitions originating in the
initial state. The ordered set D will be initialized as Σ, allowing to identify a
state by the output that is produced along the transitions starting in this state.

The learning procedure then continues by refining the hypothesis. This step
iterates two phases. The first phase checks whether the constructed automaton is
closed under the one-step transitions, i.e., each transition from each state of the
hypothesis automaton ends in a well defined state of this very automaton. This is
the case if for every t ∈ SA there exists a s ∈ S with row(s) = row(t). Otherwise,
S will be extended by the corresponding t until closedness is established (and
SA will be extended accordingly). This extension is guaranteed to result in a
unique fixpoint, independent of the order in which the rows are processed.

The second phase then checks whether two access sequences s1, s2 ∈ S with
the same bit vector, row(s1) = row(s2), have also the same outgoing transitions,
a necessary precondition for them to represent the same state. Formally, an OT
holding this condition is called consistent and needs to satisfy:

row(s1) = row(s2)⇒ row(s1a) = row(s2a)

for all s1, s2 ∈ S and a ∈ Σ. Inconsistencies can be removed by elaborating
the set D: the distinguishing future that separates the two target states on
the distinguishing transition has simply to be prefixed by the label of this very
transition.

Successive iteration of these two phases until closedness and consistency hold
is guaranteed to result in an OT from which a unique, well-defined, closed, and
complete hypothesis automaton can be derived, whose states are characterized
by the bit vectors.

– Every state q ∈ Q of the hypothesis automaton is reachable by at least one
word s ∈ S, i.e., row(s) corresponds to q,

– There exists a transition δ(q, a) = q′ iff there exists s ∈ S with s reaching q
(or with row(s) corresponding to q) and row(s · a) corresponding to q′,

– The output function can be constructed from the row()-vectors as well. As
D is initialized as Σ, the values for all λ(q, a), where a ∈ Σ, are contained
in the row(s) vector corresponding to q.

Using an EQ, the learning algorithm tests whether this hypothesis is equivalent
to the unknown target system. As soon as an EQ signals success, learning termi-
nates successfully. Otherwise, the EQ will return a counterexample, i.e., a word

Reusing System States by Active Learning Algorithms 67

which distinguishes the hypothesis from the target automaton. All prefixes of a
counterexample will be added to S (SA will be extended accordingly). This will
lead to inconsistency, which in turn will lead to a new distinguishing suffix [18].

Algorithm 1 summarizes the described procedure of L∗M in pseudo code. Lines
1-5 depict the initialization-phase, lines 10-13 close the OT , lines 16-18 ensure
consistency and through lines 23-27 the default handling of counterexamples is
pictured.

The time complexity of learning algorithms is usually measured in terms of
consumed MQs and EQs. In practice, however, even the execution of a single
action may be time-consuming, since actions can trigger expensive operations
on a SUT , e.g., database reads and writes. We will thus always consider both,
the number of MQs and the accumulated number of actions executed on a SUT .

Algorithm 1. Learner L∗M
1: S ← λ
2: SA← Σ
3: D ← Σ
4: for u ∈ S ∪ SA, e ∈ D do
5: OT [u, e]← MQ(ue)
6: repeat
7: while OT not closed or not consistent do
8: // check for closure
9: if ∃ t ∈ SA : ∀s ∈ S : row(t) �= row(s) then

10: S ← S ∪ {t}
11: SA← (SA\{t}) ∪ {ta | a ∈ Σ}
12: for e ∈ D, a ∈ Σ do
13: OT [ta, e]← MQ(tae)
14: // check for consistency
15: if ∃s1, s2 ∈ S, a ∈ Σ : row(s1) = row(s2) ∧ row(s1a) �= row(s2a) then
16: D ← D ∪ {ae} // e ∈ D s.t. OT [s1a, e] �= OT [s2a, e]
17: for u ∈ S ∪ SA do
18: OT [u, ae]← MQ(uae)
19: AHyp ← constructHypothesis(S, SA,D)
20: ce← EQ(AHyp)
21: // check for conformance
22: if ce �=
 then
23: P ← {s | s ∈ prefix(ce) ∧ s �∈ S}
24: S ← S ∪ P
25: SA← (SA\S) ∪ {ta | t ∈ P, a ∈ Σ, ta �∈ S}
26: for u ∈ (P ∪ PΣ\S), e ∈ D do
27: OT [u, e]← MQ(ue)
28: until ce =

29: return AHyp

68 O. Bauer et al.

In the remainder of the paper we will use a small running example to illustrate
the presented ideas. The example is a small model of the OCS , restricted to
submitting a paper to a conference (SP) and further uploading a document (UD)
or download a document (DD) from a paper if one exists.

Example 1. Consider the model and the corresponding OT , which are shown
in Figure 2. In this model, the user is allowed to submit a paper exactly once,
while uploads and downloads are unlimited. In addition the user may delete his
paper (DP) and start over with a new paper. The output alphabet Γ = {√,�}
indicates successful and unsuccessful actions. The execution of an action may
be unsuccessful as it is not allowed by the system or simply because it fails,
e.g., a document upload is not possible before a corresponding paper has been
submitted. We omit the output in the Mealy automaton for better readability. All
edges shown are labeled with ‘success’ implicitly and the (reflexive) unsuccessful
edges are not shown. The OT contains 52 entries. The accumulated length of all
MQs is 148 actions.

q0

q1

q2

SPDP

UD

DP

DD UD

SP UD DD DP
λ

√
� � �

SP �
√

�
√

SPUD �
√ √ √

UD
√

� � �

DD
√

� � �

DP
√

� � �

SPSP �
√

�
√

SPDD �
√

�
√

SPDP
√

� � �

SPUDSP �
√ √ √

SPUDUD �
√ √ √

SPUDDD �
√ √ √

SPUDDP
√

� � �

Fig. 2. Simple Mealy Automaton

4 Reusing System States

In this section we will present our main technical contribution, the reuse algo-
rithm, that allows using the same actual test run for a number of MQs. One
important prerequisite of active learning is the independent execution of MQs,
i.e., the execution of all tests under identical initial conditions. As discussed in
[26], the ‘same’ initial system state can be provided by different means like ex-
ecuting homing sequences [23], creating new instances of the SUT or its whole
environment (e.g., a virtual machine), or resetting the persistent storage of the
SUT .

Reusing System States by Active Learning Algorithms 69

The latter approaches could be characterized by the notion of snapshot. All
these procedures have in common, that they are expensive. Using abstraction
can be a less expensive alternative providing observational independence between
queries (cf. observational equivalent states in [26]). For the OCS , e.g., every test
can be executed in a unique conference. This way, instead of reinitializing the
whole OCS , it suffices to create a new conference.

For the remainder of the paper we will assume systems that allow resets to
provide independent initial conditions for queries. We will provide an algorithm
for such systems that is able to reuse system states on the SUT and save exe-
cution time by means of the reduction of:

– resets due to the novel approach of reusing system states,
– actions by memorizing the output of already executed queries,
– test runs by exploiting domain-specific knowledge to be executed on the

SUT .

In the course of learning, as exploration proceeds, the length of access sequences
will grow, so a newly MQ is likely to contain a prefix for that the output is already
known and that was executed on a unique system state. If the abstraction allows
us to execute the remaining suffix on this system state we are able to save the
otherwise required reset and also the execution of the already executed prefix
on this state.

A system state s ∈ S is a mapping from abstract names to unique identifiers
of business objects in the real system. This way s can refer to specific conference,
paper, user and document objects, and access them trough their abstract names,
so that they are interchangeable. Since the OCS uses a relational database for
persistent storage, the primary keys of the business entities are used as unique
identifiers. In this paper we write ‘conf’ for the abstract name for the mapping of
the conference object and ‘c1’, ‘c2’, . . . for the unique identifiers. An analogous
denotation is used for paper, user and document objects.

We maintain a tree-like data structure T which we will call the reuse tree (see
Figure 5). It keeps track of all existing system states in the corresponding state
pool S. The reuse tree consists of edges that are directed top down and labeled
with input behavior regarding input actions a ∈ Σ. We omit the output for sake
of simplicity. The ‘missing’ information can be found in the OT in Figure 5.
Nodes nw ∈ T can contain at most one sw ∈ S, where w ∈ Σ∗ is a path from
the root node containing the corresponding input in the respective order. We
will denote such nodes with symbol � and, if no system state is available, we
will denote it by ♦. Our data structure allows simple operations like inserting
a path, adding and removing system states at nodes or getting an output word
for a given input word already inserted in the tree.

The reuse algorithm is combined with the learning algorithm as shown in
Figure 3. The learner uses the reuse algorithm as a membership oracle: it poses
an MQ w ∈ Σ∗ to the reuse algorithm, which searches for a reference to an
already executed prefix ρ ∈ Σ∗ of w in its pool of states S that could be reused.

70 O. Bauer et al.

L∗M

Reuse

If

sρ ∈ S

MQ(σ) on sρ

s∅ ← Reset

MQ(w) on s∅

∃ ρ, σ ∈ Σ∗ : w = ρσ ∧ sρ ∈ S

MQ woutput w

true

T ← (T \〈sρ〉) ∪ 〈sw〉

false

T ← T ∪ 〈sw〉

Fig. 3. Workflow of the reuse algorithm

In case such a prefix has been found, it is sufficient to execute the remaining
suffix σ ∈ Σ∗ on the system state corresponding sρ and observe the output
oσ ∈ Γ ∗ on the SUT . Afterwards, sρ can be regarded as sρσ, i.e., sw. The state
will be moved from the node nρ to nw. We call this procedure state forwarding.
The output from executing σ will be returned to L∗M as an observed behavior for
w.

If no such prefix exists, the reuse algorithm will first perform a reset, e.g., by
setting up a new conference as mentioned before. Then, it will execute the MQ
and store a reference to the system state sw in its state pool S, before returning
the output to L∗M.

Algorithm 2 illustrates this idea as pseudo code. Since in the course of learn-
ing redundant queries may be created, the algorithm contains a simple caching
facility (depicted in lines 2 and 3). Suppose T is able to find some prefix ρ such
that sρ contains the mapping of abstract identifiers to the corresponding busi-
ness objects on the target system. If such a sρ exists, we could reuse this state
by executing the remaining suffix σ updating the data structure, otherwise we
have to provide an initial system state by means of a reset.

Table 1. Excerpt from the OT of Example 1

SP UD DD DP
λ 1 2 3 4
SP 5 6 7 8
UD . . .
DD
DP

Reusing System States by Active Learning Algorithms 71

Algorithm 2. Reuse Algorithm
Require: w ∈ Σ∗, data structure T
Ensure: output ∈ Γ ∗
1: // Check for cached queries
2: if T contains w then
3: return get output for w from T
4: // Check for reusable system state
5: sρ ← get reuseable system state for some ρ with w = ρσ from T
6: if sρ �= ⊥ then
7: sρσ ←MQ(σ) on sρ
8: T ← (T ∪ 〈sρσ〉) \ 〈sρ〉
9: return output from sρσ

10: // Perform normal reset
11: s∅ ← Reset
12: sw ←MQ(w) on s∅
13: T ← T ∪ 〈sw〉
14: return output from sw

Example 2. We will demonstrate the presented reuse algorithm for the model
from Example 1. We describe how the reuse tree evolves for our running example
on the first six MQs from the initialization-phase of L∗M. The first four MQs need
a reset since no prefix exists for which we can reuse an instance (Figure 4). The
fifth MQ w = SP SP, can reuse the system state from the first query SP. To
answer the query we execute the suffix SP on state sSP only and save the first
reset. State sSP will be updated to sSPSP and forwarded from nSP to nSPSP. The
sixth MQ w = SP UD again needs a reset, since sSP has been forwarded.

1 ♦

�
SP

2 ♦

� �
SP UD

3 ♦

� � �
SP UD DD

4 ♦

� � � �
SP UD DD DP

5 ♦

♦

�

� � �
SP UD DD DP

SP

6 ♦

♦

� �

� � �
SP UD DD DP

SP UD

Fig. 4. Reuse trees for the first six queries for Example 1

Figure 6 exemplifies how we save the first reset. For the first query SP we
create a new conference c1 and a new submitter u1. The action itself submits
(successfully) a paper p1 to the available conference. The system state s1 ∈ S
consists of three keys to the available instances. The system state corresponding

72 O. Bauer et al.

to the execution of the second MQ UD, which fails, because there is no paper to
upload to. So it will result in only two keys for the created conference c2 and
user u2. Finally the fifth query SP SP reuses the available system state s1 with its
identifier c1, u1 and p1 and querying the remaining suffix will result in a failure
output � ∈ Γ since only one paper submission per conference is allowed in our
example.

♦

♦ ♦ ♦ ♦
UD DD DP SP

♦ ♦ ♦ ♦
UD DD DP SP

♦ ♦ ♦ ♦
UD DD DP SP

�� ���� ���� ��

�� ���� ���� ��

�� ���� ���� ���� ��

Fig. 5. Final reuse tree for Example 1

Figure 5 illustrates the final reuse tree for Example 1. An instance of a system
state is used at most once. Hence, all system states are situated in the leaves of
the tree. This result leads to a saving of 12 of originally 52 resets. In addition
we saved 24 of 148 actions to be executed on the SUT , i.e. besides saving resets
we also accomplish a significant reduction of actions.

5 Domain-Specific Reuse of System States

The reuse algorithm introduced in the previous section is a generic optimization
to active learning. In this section we will discuss how domain-specific knowledge
can be exploited to further improve reusage of system states. For most systems to
be learned, important global properties of the system, or at least of single actions
are known prior to learning. The OCS , e.g., is a transaction secure system. If an
action fails at some point, the system state will be rolled back. Executing the
action will have no persistent effect on the system’s state. On the other hand, it
could be known that certain actions never influence the behavior of the system
on the given level of abstraction. In the case of the OCS , e.g., downloading
papers is known to be such an action. Information of this kind can be exploited
to optimize the reuse tree.

Let us properly define failure invariance. We partition the output alphabet in
success and failure outputs Γ = Γs ∪ Γf with Γs ∩ Γf = ∅.

Reusing System States by Active Learning Algorithms 73

1 ♦

�
SP

〈conf,c1〉
〈user,u1〉
〈paper,p1〉

2 ♦

� �
SP UD

〈conf,c2〉
〈user,u2〉

. . .

5 ♦

♦

�

� � �
SP UD DD DP

SP

〈conf,c1〉
〈user,u1〉
〈paper,p1〉

Fig. 6. Evolution of system states S in Example 1

Definition 2. We call a SUT failure invariant, iff

∀a ∈ Σ : ∀q ∈ Q : γ(q, a) ∈ Γf ⇒ δ(q, a) = q.

Intuitively, a SUT is failure invariant if all transitions with failure outputs are
reflexive, i.e., do not change the system’s state.

We further define a set Σi ⊆ Σ of actions, for which the observable system
behavior is invariant.

Definition 3. We call a SUT action invariant for an action a iff

∀q ∈ Q : δ(q, a) = q.

Key to exploiting these properties in the reuse algorithm is the idea that in the
case of an observed failure output or after executing an action invariant action
it is not necessary to move the system state downwards in the reuse tree. We
relax the tree properties of our data structure to allow reflexive edges. Instead
of forwarding a state in the tree after executing an action a that resulted in a
failure or that is from Σi, the state now remains in its node and is reusable for
the next query sharing the same prefix. This is indicated by adding a reflexive
edge if the output symbol is contained within Γf .

This optimization may sometimes even allow answering not yet posed MQs
without even executing any action on the SUT . Suppose a ∈ Σi, and a word
w = abcac ∈ Σ∗ with sw. Then sw could be reused not only for ww′, w′ ∈ Σ∗,
but also, e.g., for bcc or bcaac. We denote a query that can be answered by the
tree due to such an unfolding of reflexive edges as a pumped query.

Example 3. Figure 7 illustrates how the tree evolves for the first eight queries
if we use domain-specific knowledge on failure outputs. The remaining twelve
queries from the initialization phase of the OT (c.f. Table 1) will be answered
directly because an output can be extruded from the tree facilitating a pumped
query.

74 O. Bauer et al.

1 ♦

�
SP

2 �

�
SP

UD 3 �

�
SP

UD
DD 4 �

�
SP

UD
DD
DP

5 �

�
SP

UD
DD
DP

SP

6 �

♦

�

SP

UD

UD
DD
DP

SP

7 ♦

�

�

SP

UD

UD
DD
DP

SP
DD

8 ♦

♦

� �

SP

UD DP

UD
DD
DP

SP
DD

Fig. 7. Pumped queries in Example 1

Figure 8 depicts the final reuse tree corresponding to Example 1 if we exploit
outputs that indicate failure. Note that in Figure 8 not only the leaves contain
system states. We achieve a reduction from 52 resets down to 10. Only 50 of 148
actions need to be executed on the SUT .

♦

♦ SP,DD
SP

UD
DD
DP

♦SP �
UD DP UD

DD
DP

♦SP �
UD
DD
DP

♦ SP �
UD DP DD SP

� � � � � � �
UD DP DD SP UD DP DD

Fig. 8. Reusage with failure exploitation

♦

♦ SP,DD
SP

UD
DD
DP

♦SP,DD �
UD DP UD

DD
DP

♦SP,DD �
UD
DD
DP

♦ SP �
UD DP DD SP

� � � � � � �
UD DP DD SP UD DP DD

Fig. 9. Reusage with failure and action invariance

Reusing System States by Active Learning Algorithms 75

Figure 9 pictures the effect of using domain-specific knowledge on both action
and failure invariance. It shows the effect of using the knowledge, that the system
is invariant under the download action DD. Compared to Figure 8 two branches
(shaded in light gray) have been collapsed and are now represented through
reflexive edges. Both branches represent the reflexive edge δ(q2, DD) = q2 in
Example 1. Exploiting the latter property further reduces the necessary resets
from 10 to 6 and the executed actions from 50 to 35.

6 Case Study

The reuse algorithm is implemented as an addition to the NGLL [20], an au-
tomata learning framework2. For our case study the real world application OCS
serves as SUT3 (please refer to [21]).

Hence, MQs are realized via test runs on the OCS , utilizing method calls
on the business interface as input actions. In order to provide identical condi-
tions for all tests, the reset is achieved by means of abstraction: every test is
executed using a new conference and a new user (invisible to the learning algo-
rithm). The system state s maps abstract identifiers like ‘conference’ and ‘user’
to unique database identifiers. Submitting a paper additionally adds a mapping
from ‘paper’ to the unique identifier of the corresponding paper in the SUT .

We learned various models with a growing number of actions. Starting with
a test case nearly the same as described in Example 1 (only without the DP ac-
tion), we added more actions successively, e.g., for interrupting phases, reviewer
assignment, report submission or accepting or refusing submissions. We chose
six different setups, using L∗M in conjunction with the reuse algorithm for ex-
trapolating behavioral models from the OCS . Each experiment was performed
on a dedicated instance of the running application server with an initially empty
database.

Table 2 states statistics on the effect of reusing system states with different
settings. The table is organized into columns for the number of states in the
final model |Q|, the number of actions |Σ| and the number of required MQs.
The MQs are subdivided into resets, reuses and pumped queries. The remaining
three columns depict the average time for a reset, the estimated running time
for resets without reusing system states and the observed runtime of the whole
experiment (note that this also includes the execution of actions corresponding
to the execution of the MQs).

For case (a) we learned Example 1 (the DP action was not included) with-
out EQs and with direct reusage only. Since we did not exploit domain-specific
knowledge in this experiment we get no pumped queries. In case (b) we used the

2 NGLL is available at http://www.learnlib.de
3 The test runs have been executed on a Sun Fire X2200 with two dual core AMD

Opteron 2214 CPUs clocked at 2.2GHz and 8GB DDR2/667 ECC memory. Ubuntu
10.04 served as the operating system. The OCS has been deployed on a JBoss-
5.1.0.GA with the Java Runtime Environment SUN JVM 1.6.0_18 for 64-bit systems.

76 O. Bauer et al.

Table 2. Statistics on some extrapolated models

membership queries
|Q| |Σ| MQs Resets Reuses Pumped Avg. reset Est. reset Observed runtime

(a) 3 3 30 21 9 0 1.8s. 56s. 40s.
(b) 11 5 280 31 84 165 2.3s. 10m 1m 25s.
(c) 11 5 280 17 78 185 2.1s. 9m 48s.
(d) 40 9 3882 137 757 2988 3.2s. 3h 27m 10m 30s
(e) 66 13 12210 646 2514 9050 4.1s. 13h 52m 53m 50s
(f) 160 18 56284 5598 12168 38518 12.7s. over 8 days ≈ 22h

same actions as before and added two additional actions. We exploited knowl-
edge about failure invariance only. Nearly 90 percent of resets have been saved,
whereas the most significant savings have been done by pumping queries. To show
the impact of invariant actions we marked the download action correspondingly
in case (c). The resets have been reduced further. Although the reuses have been
reduced the runtime of the experiment decreases. For case (d) we have enhanced
the alphabet where we refined the first hypothesis by a hand tailored counterex-
ample (to consider necessary MQs only). The second EQ was skipped in this
case. As we can see, about 96.5% resets have been saved. Since the database
and the system load has grown to previous experiments the average reset time
also has been increased. In case (e) an automaton with even more states has
been learned in less than one hour. About 94.7% of resets have been saved. The
time reduction on the experiment already shows the impact of this savings. In
the last case we learned a almost complete workflow in the OCS , considering
different phases, e.g., the submission-, review- and final-phase, as well as the
different participating roles, e.g., pc chairs, pc members or reviewers. Using five
additional actions to case (e) results in an increased amount of queries for case
(f). As in case (e) we provided the same hand tailored counterexample.

As the statistics show, reusing system states drastically reduces the overall
running time of learning realistic systems like the OCS . Infering system behavior
is a time consuming task and reusing system states can help archieving this
extrapolation in a reasonable time.

7 Conclusions

In this paper we have presented an optimization to active learning that is able
to reuse existing system states for several membership queries and saves the
execution of resets on the SUT . Our implementation results in considerable
savings on execution time on real systems, where resets tend to be expensive
operations. We have discussed, how domain-specific knowledge can be applied
to further improve reusage of prefixes of MQs, i.e actions. This comprises failure
and action invariances of a system as well as an advanced cache facility enabling
to omit complete test runs by pumping posed queries. We have evaluated our

Reusing System States by Active Learning Algorithms 77

approach in a series of experiments on a real-word enterprise application, the
Online Conference Service.

We are planning to work on heuristics that improve reusage of system states
even further. The reuse algorithm could then ‘learn’, e.g., action invariances of
the system.

References

[1] Aarts, F., Blom, J., Bohlin, T., Chen, Y.-F., Howar, F., Jonsson, B., Merten,
M., Nagel, R., Sabetta, A., Soleimanifard, S., Steffen, B., Uijen, J., Wilk, T.,
Windmuller, S.: Establishing basis for learning algorithms (2010)

[2] Aarts, F., Vaandrager, F.: Learning I/O Automata. In: Gastin, P., Laroussinie, F.
(eds.) CONCUR 2010. LNCS, vol. 6269, pp. 71–85. Springer, Heidelberg (2010)

[3] Angluin, D.: Learning Regular Sets from Queries and Counterexamples. Informa-
tion and Computation 75(2), 87–106 (1987)

[4] Balcázar, J.L., Díaz, J., Gavaldà, R.: Algorithms for Learning Finite Automata
from Queries: A Unified View. In: Advances in Algorithms, Languages, and Com-
plexity, pp. 53–72 (1997)

[5] Chow, T.S.: Testing Software Design Modeled by Finite-State Machines. IEEE
Trans. on Software Engineering 4(3), 178–187 (1978)

[6] Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: An Interactive Learning Com-
petition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP
2009. LNCS, vol. 6062, pp. 139–146. Springer, Heidelberg (2010)

[7] Esparza, J., Leucker, M., Schlund, M.: Learning Workflow Petri Nets. In: Lilius, J.,
Penczek, W. (eds.) PETRI NETS 2010. LNCS, vol. 6128, pp. 206–225. Springer,
Heidelberg (2010)

[8] Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test Se-
lection Based on Finite State Models. IEEE Trans. on Software Engineering 17(6),
591–603 (1991)

[9] Grinchtein, O., Jonsson, B., Pettersson, P.: Inference of Event-Recording Au-
tomata Using Timed Decision Trees. In: Baier, C., Hermanns, H. (eds.) CONCUR
2006. LNCS, vol. 4137, pp. 435–449. Springer, Heidelberg (2006)

[10] Howar, F., Jonsson, B., Merten, M., Steffen, B., Cassel, S.: On Handling Data in
Automata Learning - Considerations from the CONNECT Perspective. In: Mar-
garia, T., Steffen, B. (eds.) ISoLA 2010, Part II. LNCS, vol. 6416, pp. 221–235.
Springer, Heidelberg (2010)

[11] Howar, F., Steffen, B., Merten, M.: From ZULU to RERS - Lessons Learned in the
ZULU Challenge. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010, Part I. LNCS,
vol. 6415, pp. 687–704. Springer, Heidelberg (2010)

[12] Hungar, H., Niese, O., Steffen, B.: Domain-Specific Optimization in Automata
Learning. In: Hunt Jr., W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol. 2725, pp.
315–327. Springer, Heidelberg (2003)

[13] Hungar, H., Steffen, B.: Behavior-based model construction. Int. J. Softw. Tools
Technol. Transf. 6(1), 4–14 (2004)

[14] Irfan, M.N., Oriat, C., Groz, R.: Angluin style finite state machine inference with
non-optimal counterexamples. In: Proceedings of the First International Workshop
on Model Inference In Testing (2010)

78 O. Bauer et al.

[15] Issarny, V., Steffen, B., Jonsson, B., Blair, G.S., Grace, P., Kwiatkowska, M.Z.,
Calinescu, R., Inverardi, P., Tivoli, M., Bertolino, A., Sabetta, A.: CONNECT
Challenges: Towards Emergent Connectors for Eternal Networked Systems. In:
ICECCS, pp. 154–161 (2009)

[16] Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory.
MIT Press, Cambridge (1994)

[17] Maler, O., Pnueli, A.: On the Learnability of Infinitary Regular Sets. Information
and Computation 118(2), 316–326 (1995)

[18] Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model genera-
tion for legacy reactive systems. In: HLDVT 2004: Proceedings of the High-Level
Design Validation and Test Workshop, Ninth IEEE International, pp. 95–100.
IEEE Computer Society, Washington, DC (2004)

[19] Margaria, T., Raffelt, H., Steffen, B.: Knowledge-based relevance filtering for effi-
cient system-level test-based model generation. Innovations in Systems and Soft-
ware Engineering 1(2), 147–156 (2005)

[20] Merten, M., Steffen, B., Howar, F., Margaria, T.: Next Generation Learnlib. In:
Abdulla, P.A., Leino, K.R.M. (eds.) TACAS 2011. LNCS, vol. 6605, pp. 220–223.
Springer, Heidelberg (2011)

[21] Neubauer, J., Margaria, T., Steffen, B.: The ocs case study. In: FMICS Handbook
on Industrial Critical Systems (to appear, 2011)

[22] Niese, O.: An Integrated Approach to Testing Complex Systems. PhD thesis,
University of Dortmund, Germany (2003)

[23] Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences.
Inf. Comput. 103(2), 299–347 (1993)

[24] Shahbaz, M., Groz, R.: Inferring Mealy Machines. In: Cavalcanti, A., Dams, D.R.
(eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009)

[25] Steffen, B., Howar, F., Merten, M.: Introduction to Active Automata Learning
from a Practical Perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011.
LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011)

[26] Steffen, B., Howar, F., Merten, M., Margaria, T.: Practical aspects of active au-
tomata learning. In: FMICS Handbook on Industrial Critical Systems (to appear,
2011)

Inferring Affordances Using Learning Techniques

Amel Bennaceur1, Richard Johansson2, Alessandro Moschitti2,
Romina Spalazzese3, Daniel Sykes1, Rachid Saadi1, and Valérie Issarny1

1 INRIA, Paris-Rocquencourt, France
2 University of Trento, Italy

3 University of L’Aquila, L’Aquila, Italy

Abstract. Interoperability among heterogeneous systems is a key
challenge in today’s networked environment, which is characterised by
continual change in aspects such as mobility and availability. Automated
solutions appear then to be the only way to achieve interoperability with
the needed level of flexibility and scalability. While necessary, the tech-
niques used to achieve interaction, working from the highest application
level to the lowest protocol level, come at a substantial computational
cost, especially when checks are performed indiscriminately between sys-
tems in unrelated domains. To overcome this, we propose to use ma-
chine learning to extract the high-level functionality of a system and
thus restrict the scope of detailed analysis to systems likely to be able to
interoperate.

1 Introduction

We live in a world populated by highly heterogeneous, networked, mobile and
pervasive systems and services. Such heterogeneity may span the application
layer, the middleware layer, and the underlying communication infrastructure.
Interaction between these systems, where feasible, is customarily achieved
through diverse ad hoc means for specific pairs of systems in a particular envi-
ronment. Principled automatic composition can bring a labour-saving benefit–
through generalisation over classes of systems–and can provide the flexibility
needed to cope with rapidly changing contexts, dynamic service availability and
user mobility.

Automatic service composition has three main phases: discovery of what ser-
vices exist in the current scope; finding pairs or sets of services which are compat-
ible, so as to make composition possible; and the actual process of connecting one
system to another. The second step of finding matching pairs of systems can be a
computationally costly procedure, both in terms of the number of combinations
of systems which have been discovered, but also in terms of the deep behavioural
(or protocol) analyses used to determine if a single pair is compatible.

Hence it is unreasonable to perform matching with all systems every time a
new system is discovered. Indeed, detailed matching between heterogeneous sys-
tems working in wildly different application domains is nonsensical: the word pro-
cessor on a traveller’s laptop need not be compared against the air-traffic control

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 79–87, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

80 A. Bennaceur et al.

infrastructure simply because he is situated inside the airport. On the other hand,
matching against a document translation service may in fact be of some use.

What is required is a notion of category of systems ; things that speak about
the same domain. Then matching can be restricted to combinations falling within
a given category. For this purpose, we define an affordance which represents
the high-level functionality (capability) of a given system with reference to an
ontology which specifies the domain of interest. A system may have several
affordances, representing different facets of its functionality, each of which may
even relate to a different domain.

In addition to restricting the scope of matching, affordances can further in-
crease the efficiency of composition by exploiting a structured repository wherein
system descriptions are stored according to the matching relation. Structuring
the repository in this manner reduces the number of comparisons which need to
be made when a new system is discovered, even within a given domain. Figure 1
illustrates the linear speed up of matching when affordances are used.

Fig. 1. Time of matching with and without using affordances

These benefits can only be reaped, however, when all systems are annotated
with their respective affordances: a substantial effort for the great numbers of
legacy systems, which provide only their interface description. However, it is
worthwhile considering what process the programmer may go through when
assigning an affordance. Given a set of “universally” agreed concepts in the
ontology, the programmer can examine the interface and its documentation to
determine which concepts best describe the broad category and functionality of
the system. It goes without saying that to achieve this, the natural language
descriptions and identifiers (such as method names) present in the interface will
be used to make the classification.

We propose to use machine learning to automate the extraction of affordances
from the interface description by classifying the natural-language text according
to a pre-defined ontology of systems. Such an approach can fill the gap when a
discovered system does not have a programmer-assigned affordance.

Inferring Affordances Using Learning Techniques 81

In the following, we set out in more detail the context of our problem, focussing
on services, and discuss techniques that may be used to realise the approach.

2 Automatic Service Composition

To compose services automatically we can make use of a theory [5] for the auto-
mated synthesis of mediating connectors (also called mediators) that has been
defined elsewhere [1]. That is, the service composition problem can be seen as
an instance of the kind of problems the theory is able to model and solve.

More specifically, to compose services we need to: (i) discover the available
ones, (ii) find matching pairs among them, and (iii) synthesise mediators that
adapt the services behaviours allowing them to interoperate.

Our approach to dynamic service composition and interoperability is illus-
trated in Figure 2.

Adaptation

Exact matchingPartial Matching
No Matching

Mediator Synthesis

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS1)

Interface

Non-Functional Properties

Affordance

Behavior

Networked System (NS2)

Yes

Domain-specific
Ontology

1

2

3

Mediator

4

Semantic Matching

Behavioral Matching

Failure

Fig. 2. Approach to dynamic interoperability

Two descriptions of networked systems (NSs) are given, including their in-
terface, behaviour, non-functional properties and affordance descriptions. The
first step consists of checking the compatibility of their affordances, high-level
functionality, through the use of semantic matching (❶). Then, in the successful
cases, a behavioural matching (❷) is performed by reasoning about both the
NSs descriptions and the ontologies characterising their actions. In the case of
exact behavioural matching, a mediator is synthesised (❸) based on the results
of the reasoning in the previous step, while in the case of partial matching, a
protocol adaptation (❹) is needed before the mediator synthesis. This process
highlights the central role of the semantic matching of affordances in reducing the
overall computation by acting as a kind of filter for the subsequent behavioural
matching.

82 A. Bennaceur et al.

2.1 Affordances

An affordance denotes a high-level functionality provided to or required from
the networked environment. Concretely, an affordance is specified as a tuple:

Aff = 〈Type, F, I, O〉
where:

– Type stands for a required (noted Req), provided (noted Prov) or required
and provided (noted Req Prov) affordance.

– F gives the semantics of the functionality associated with the affordance in
terms of an ontology concept.

– I (resp. O) specifies the set of inputs (resp. outputs) of the affordance, which
is defined as a tuple 〈i1, ..., in〉 (resp. 〈o1, ..., om〉) with each il (resp. ok) being
an ontology concept.

For example, 〈Prov,AuctionHouse, 〈Goods〉 , 〈Money〉〉 is an affordance describ-
ing the provision of AuctionHouse functionality with an input of Goods and an
output of Money.

The first step in identifying the possible compatibility of two networked sys-
tems is to assess whether they respectively provide and require semantically
matching affordances. For example, a Procurement application, being a kind of
Buyer, may match the above AuctionHouse, as a specific kind of Seller. Once
a functional match is found at the affordance level, the more costly behavioural
and non-functional matching can be performed.

2.2 Legacy Applications

Unfortunately, legacy applications do not normally provide affordance descrip-
tions. We must therefore rely upon an engineer to provide them manually, or
find some automated means to extract the probable affordance from the interface
description. Note that it is not strictly necessary to have a guaranteed correct
affordance since falsely-identified matches will be caught in the subsequent de-
tailed checks.

In this paper we focus on using machine learning to extract affordances from
interface descriptions. Moreover we focus on the functional concept F of the
affordance, rather than the inputs and outputs, though the overall approach
would be notionally unchanged. Learning the inputs and outputs would require
a straightforward division of the interface into parts which refer to data and
those which refer to the functionality, and performing the learning procedure on
each independently.

3 Affordance Learning

This section provides an example interface description to bring the affordance
learning problem into focus.

Inferring Affordances Using Learning Techniques 83

3.1 Typical Interface

Listing 1.1 shows a small fragment of the WSDL interface description of the
popular eBay [2] web service.

Listing 1.1. Ebay WSDL interface description

<!−− Cal l : AddItem −−>
<xs : element name=”AddItemRequest”

type=”ns : AddItemRequestType”/>
<xs : complexType name=”AddItemRequestType”>

<xs : annotation>
<xs :documentation>

Def ine s a s i n g l e new item and l i s t s i t on a s p e c i f i e d eBay s i t e .

 Also f o r Hal f . com.

Returns the item ID f o r the new l i s t i n g , and r e tu rn s f e e s

the s e l l e r w i l l incur f o r the l i s t i n g (not i n c l ud ing the Fina l

Value Fee , which cannot be c a l c u l a t e d un t i l the item i s so l d) .

</xs :documentation>
<xs : appinfo>
<RelatedCalls>

AddFixedPriceItem , AddItems , AddToItemDescription , GetItem ,

GetItemRecommendations , Ge tSe l l e rL i s t , Re l i s t I tem , ReviseItem ,

VerifyAddItem

</RelatedCalls>
<SeeLink>

<Title>L i s t i n g an Item</Title>
<URL>http : // deve loper . ebay . com/. . . </URL>

</SeeLink>
<SeeLink>

<Title>L i s t i n g Items</Title>
<URL>http : // deve loper . ebay . com/. . . </URL>

</SeeLink>
. . .

This example provides extensive English text in both the documentation
and the terms used in message and type names. Note that the complete descrip-
tion is approximately 130k lines long. In order to handle less verbose
descriptions, documentation acquired from alternative sources such as
http://webservices.seekda.com/ can be used. It would not take an engi-
neer, or indeed a layperson, long to determine the approximate purpose of the
service, relying on key words such as ‘item’, ‘seller’ and ‘fee’. A concept from a
pre-determined ontology, such as AuctionHouse, could then be assigned. Given
such a description we propose to use machine learning to infer the appropriate
affordance for the service.

3.2 Learning Problem

The problem we are considering, then, is to find a function f which, given a
parsed interface description with only the natural-language terms remaining,
determines with some confidence the concept most appropriate for that service:

f : Interface → (Concept× Confidence)

To achieve this, we provide a number of examples as training data relating inter-
faces to concepts: Interface×Concept. These examples are acquired by searching

http://webservices.seekda.com/

84 A. Bennaceur et al.

for web service descriptions in online repositories, e.g., webservicelist.com and
xmethods.com, and manually assigning to each a concept. The learning technique
employed should then be able to generalise from the examples to produce an f
to classify new examples. It is necessary to have a number of example interfaces
for each concept we wish to assign to services.

Note that the problem could be tackled at (at least) two levels of granularity:
the concepts could indicate the broad category of service within a “universal”
ontology (taxonomy), or they could indicate a more specific service type within
an ontology restricted to a specific domain. The learning problem is the same
for both; all that changes is the breadth of automation we can achieve versus
the depth of the domain. Arbitrarily increasing the breadth and depth of the
ontology will impact confidence as it becomes increasingly likely that concepts
are ambiguous.

4 Potential Solution: Machine Learning of Categorisers

We believe that the problem of affordance learning can draw many lessons from
the long tradition of research in text categorisation: the problem of assigning a
given document to one or more categories. The complexity of the system of cat-
egories may be low in some cases, such as a binary set {Positive, Negative}
when classifying a customer review as positive or negative [12], and higher in
other cases, such as the various structured classification systems used in library
science. The main tool for implementing modern systems for automatic docu-
ment classification systems is machine learning based on vector space document
representations.

4.1 Introduction to Machine Learning

In general, we define machine learning as the problem of inducing a function (or
system of functions) from a given data set. We may discern two main strands of
machine learning methods: supervised and unsupervised methods.

The most archetypical problem setting in machine learning is the supervised
setting. In supervised learning, the learning mechanism is provided with a (typ-
ically finite) set of labelled examples: a set of pairs T = {〈x, y〉}. The goal is
to make use of the example set T to induce a function f such that generally
f(x) = y for future, unseen instances of (x, y) pairs. Supervised learning meth-
ods in most cases learn much more accurate classifiers than their unsupervised
counterparts, but require a human-annotated training set of significant size: the
bigger the better. Examples of supervised learning methods commonly used in-
clude Support Vector Machines [3], which have been extensively studied for the
problem of text categorisation [6]. For the problem of automatic association of
WSDL interface descriptions with concepts, we thus need to gather a large set
of interface descriptions and manually assign one or more concepts to every
description.

As opposed to the supervised setting, the problem definition in unsupervised
learning instead assumes the examples to be unlabelled, i.e. T = {x}. In order

webservicelist.com
xmethods.com

Inferring Affordances Using Learning Techniques 85

to be able to come up with anything useful when no supervision is provided,
the learning mechanism needs a bias that guides the learning process. The most
well-known example of unsupervised learning is probably k-means clustering [8],
where the learner learns to categorise objects into broad categories even though
the categories were not given a priori. More complex examples include grammar
induction methods from raw text.

In addition to two main subfields of learning methods there are of course out-
liers and hybrids, such as semisupervised learning: Since it is costly to produce
manually labelled training data, in some situations only a small labelled exam-
ple set Ts = {〈x, y〉} is provided, while there is also available a larger unlabelled
example set Tu = {x}. Semisupervised learning methods are able to make use of
the labelled data Ts in combination with the unlabelled data Tu in order to im-
prove over a plain supervised learner making use of Ts only. Another interesting
learning paradigm is active learning, where the learning mechanism is able to
select particularly informative unlabelled examples from an unlabelled dataset
and ask an oracle (a human annotator or some sort of automatic mechanism) for
a labelling. Typically, active learners are able to achieve a more efficient use of
the training data than normal supervised learners, since their behaviour is more
targeted towards distinguishing the difficult cases.

4.2 Representations for Categorisation

In order to be able to apply standard supervised or unsupervised machine learn-
ing methods for building categorisers, we need to represent the objects we want
to classify by extracting informative features. For categorisation of documents,
the standard representation method maps every document into a vector space
using the bag-of-words approach [13]. In this method, every word in the vocabu-
lary is associated with a dimension of the vector space, allowing the document to
be mapped into the vector space simply by computing the occurrence frequencies
of each word. The bag-of-words representation is considered the standard repre-
sentation underlying most document classification approaches, and attempts to
incorporate more complex structural information have mostly been unsuccessful
for the task of categorisation of single documents [10] although more successful
for complex relational classification tasks [9].

However, the task of classifying WSDL interface descriptions is different from
classifying raw documents: the interface descriptions are semi-structured rather
than unstructured, and the representation method clearly needs to take this fact
into account, for instance by separating the vector space into regions representing
the respective parts of the WSDL description. For instance, the description in
Figure 1.1 contains a general documentation part in free text, as well as a number
of textual descriptions of the methods defined by the interface.

In addition to the text, we believe that the various semi-structured iden-
tifiers should be included in the feature representation, most importantly the
names of the methods defined by the interface but also the methods listed
in the RelatedCalls section. The inclusion of identifiers will be important
since 1) the textual content of the identifiers is often highly informative of the

86 A. Bennaceur et al.

functionality provided by the respective methods; 2) the free text documentation
is not mandatory and may not always be present. Extracting useful bag-of-words
representations from the identifiers will likely have to use splitting heuristics re-
lying on the presence of indicators such as underscores or CamelCase.

5 Conclusions

Principled automatic composition is the only means to overcome the manifold
difficulties inherent in the problem of interoperability of diverse, heterogeneous
systems. In contrast to incidental ad hoc solutions, automatic composition brings
such benefits as scalability, self-adaptation, flexibility, resilience to faults, and tol-
erance of dynamic availability and user mobility. Affordances are the first weapon
in attacking the problem, by categorising systems and so avoiding unnecessarily
deep checks on systems whose high-level functionality is utterly different.

Affordances need not be especially precise—we are not looking for a surgical
strike—since the detailed work is handled by behavioural and other compatibility
checks. For this reason we are able to take advantage of machine learning to pro-
vide us with affordances when they have not been provided by the programmer.
Techniques such as support vector machines can categorise free text according
to a pre-defined ontology of systems, however it may be beneficial to treat the
WSDL interface description as a semi-structured document, by, for example,
separating method, input and output identifiers from pure documentation.

In addition to experimenting with different categorisers and the structure of
the input, the provision and the generality of the ontology of systems poses a
challenge. While we do not wish to limit the scope of the approach to a partic-
ular domain, having overly general concepts will again lead to unnecessary deep
compatibility checks.

A number of similar approaches exist, particularly in the field of web services,
such as [11,7,4], from which we can draw guidance. However, their aims and
context often differ. In our case, the extraction of an affordance to categorise
systems promises to bring such benefits as well-targeted compatibility checking,
efficient storage of descriptions, and a potential for decentralisation.

Acknowledgments. This work is done as part of the European FP7 ICT FET
CONNECT project (http://connect-forever.eu/).

References

1. CONNECT Annex I: Description of Work. FET IP CONNECT EU project, FP7
grant agreement number 231167, http://connect-forever.eu/

2. eBay WSDL, http://developer.ebay.com/webservices/latest/ebaySvc.wsdl
3. Boser, B., Guyon, I., Vapnik, V.: A training algorithm for optimal margin classi-

fiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning
Theory (1992)

http://connect-forever.eu/
 http://connect-forever.eu/
http://developer.ebay.com/webservices/latest/ebaySvc.wsdl

Inferring Affordances Using Learning Techniques 87

4. Heß, A., Kushmerick, N.: Learning to Attach Semantic Metadata to Web Services.
In: Fensel, D., Sycara, K., Mylopoulos, J. (eds.) ISWC 2003. LNCS, vol. 2870, pp.
258–273. Springer, Heidelberg (2003)

5. Inverardi, P., Issarny, V., Spalazzese, R.: A Theory of Mediators for Eternal Con-
nectors. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6416, pp.
236–250. Springer, Heidelberg (2010)

6. Joachims, T.: Learning to Classify Text Using Support Vector Machines. Kluwer
Academic Publishers (2002)

7. Klusch, M., Kapahnke, P., Zinnikus, I.: Sawsdl-mx2: A machine-learning approach
for integrating semantic web service matchmaking variants. In: ICWS (2009)

8. MacQueen, J.B.: Some methods for classification and analysis of multivariate ob-
servations. In: Proceedings of 5th Berkeley Symposium on Mathematical Statistics
and Probability (1967)

9. Moschitti, A.: Kernel methods, syntax and semantics for relational text categoriza-
tion. In: Proc. of CIKM (2008)

10. Moschitti, A., Basili, R.: Complex Linguistic Features for Text Classification:
A Comprehensive Study. In: McDonald, S., Tait, J.I. (eds.) ECIR 2004. LNCS,
vol. 2997, pp. 181–196. Springer, Heidelberg (2004)

11. Oldham, N., Thomas, C., Sheth, A.P., Verma, K.: Meteor-s Web Service Annota-
tion Framework with Machine Learning Classification. In: Cardoso, J., Sheth, A.P.
(eds.) SWSWPC 2004. LNCS, vol. 3387, pp. 137–146. Springer, Heidelberg (2005)

12. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing (2002)

13. Salton, G., Wong, A., Yang, C.S.: A vector space model for automatic indexing.
Tech. Rep. TR74-218, Cornell University (1974)

Predicting User Tags Using Semantic Expansion

Krishna Chandramouli, Tomas Piatrik, and Ebroul Izquierdo

Multimedia and Vision Research Group
School of Electronic Engineering and Computer Science

Queen Mary, University of London, Mile End Road, E1 4NS, London
{krishna.chandramouli,tomas.piatrik,ebroul.izquierdo}@eecs.qmul.ac.uk

Abstract. Manually annotating content such as Internet videos, is an
intellectually expensive and time consuming process. Furthermore, key-
words and community-provided tags lack consistency and present numer-
ous irregularities. Addressing the challenge of simplifying and improving
the process of tagging online videos, which is potentially not bounded
to any particular domain, we present an algorithm for predicting user-
tags from the associated textual metadata in this paper. Our approach
is centred around extracting named entities exploiting complementary
textual resources such as Wikipedia and Wordnet. More specifically to
facilitate the extraction of semantically meaningful tags from a largely
unstructured textual corpus we developed a natural language processing
framework based on GATE architecture. Extending the functionalities
of the in-built GATE named entities, the framework integrates a bag-of-
articles algorithm for effectively searching through the Wikipedia articles
for extracting relevant articles. The proposed framework has been evalu-
ated against MediaEval 2010 Wild Wild Web dataset, which consists of
large collection of Internet videos.

Keywords: tag prediction, video indexing, user-contributed metadata,
speech recognition, evaluation.

1 Introduction

With the advances in computer technologies and the advent of World Wide Web
(WWW), there has been an explosion in the amount and complexity of digital
media that is being generated, stored, transmitted, analysed and accessed. Much
of this information is multimedia in nature, which includes digital images, video,
audio, graphics and textual data. These so-called “online video repositories” en-
able the users to creatively share thoughts, ideas not only among social peers,
but rather enable them to publish these resources to a much wider audience. As
a consequence, every online user has been transformed into the role of a broad-
caster. In efforts to be heard, there is an increasing interest in associating these
media items with free-text annotations. These free-text annotations commonly
range from a simple video title to much more detailed description of the video
content. Often these textual descriptions are aimed at summarising the content
of the video in addition to contextualising the video content. Indexing these

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 88–99, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Predicting User Tags Using Semantic Expansion 89

large-amount of video datasets has been a challenging research issue which until
now has been heavily relied up on “user-tags”. The disadvantages of manual
textual tagging has been studied over the years and the three main problems
associated with it include (i) manual labour; (ii) differences in the interpretation
of the media items; (iii) inconsistency of the keyword assignments among tags.

Addressing this research challenge, in this paper we present an algorithm that
is aimed at predicting user-tags from the associated textual metadata. Despite
significant research developments in the area of video processing towards seman-
tic tagging, much of these techniques are bounded to the a-priori knowledge of
the video domain. Since, by nature Internet videos are not bounded to anything
particularm, and could potentially range from sports or software tutorials to
religious lectures, we considered textual metadata to provide a more reliable
source of information which does not require the need for training based on
a-priori knowledge. Therefore, the associated textual information is identified
as a rich source of information for extracting high-level semantics. However, in
order to effectively and efficiently index these media items, the free-text descrip-
tion needs to be analysed and corresponding tags with semantic meaning should
be extracted. From the analysis of the associated descriptions, we realised that
authors in general provide a summary of the video content along with briefly
contextualising the video, and these textual metadata often contains specific
references to places, people and other related semantic information commonly
referred to as named entities. Hence, our approach is based on exploiting the
complementary resources such as Wikipedia and Wordnet in order to extract
semantically meaningful tags from a largely unstructured textual resource. To
this end, we developed a user-tag prediction framework in which the GATE NLP
tools for named entity extraction are utilised. The proposed framework has been
tested in the ”MediaEval2010 Tagging Task”, more specifically, for both ”closed
set” and ”open set” annotation of internet videos. For effective performance
evaluation of the framework, a filename-based classifier has been developed as
an additional source for predicting video tags.

The rest of the paper is organised as follows. In Section 2, an overview of the
named entity recognisers are briefly presented folowed by rationale for choosing
“Wikipedia” as a source of information in Section 3. Section 4 outlines in details
the proposed extension to the GATE NLP framework along with the developed
Bag-of-Article (BOA) classifier. In addition, alternative methods used in the
evaluation of predicting user-tags has been briefly outlined in Section 5. Finally
the evaluation results are presented in 6 which is followed by conclusion and
future work in Section 7.

2 Related Research

Most research in this field has so far focused on non-statistical approaches, par-
ticularly on the lexico-syntactic patterns (Hearst patterns) first introduced in
[1]. While purely statistical approaches such as Latent Semantic Indexing (LSI)
are prevalent in other fields of natural language processing, until recently they

90 K. Chandramouli, T. Piatrik, and E. Izquierdo

were only suitable for discovering symmetrical relations between words. The
closest task to hypernym discovery mentioned in the seminal text book on sta-
tistical natural language processing [2] is unsupervised disambiguation, in which
k meanings of a term are determined automatically. This approach has however
the limitation that meaning is not represented by a single word (term) but by
a context. Recent research [3] introduced one of the first statistical methods to
hypernym discovery. Their work utilizes Principal Component Analysis (PCA)
for discovering term taxonomies (hierarchies of hypernyms). The algorithm pre-
sented here is closest to the research of Cimiano et al [4], who use lexico-syntactic
patterns also codified in a JAPE transducer grammar. The focus is however dif-
ferent, their framework Text2Onto tries to learn the whole ontology, while the
work presented here tries to discover only hypernyms for the given query.

Query expansion is probably the most typical application of hypernym (tax-
onomy) discovery. Query expansion is a method for improving recall and possibly
the precision of information retrieval by expanding the query with other terms
related to the original query. These terms are usually weighted. Query expansion
has not been found to provide any significant objective improvement, although
it is perceived positively by the users [5], [6]. Query refinement is a related tech-
nique that essentially recommends new terms that replace the original query or
lengt- hen it. In practice, a user typically types a search query and then the
search results are shown with possible new refined queries. Query refinement
alone suffers from several problems. Particularly, the user cannot easily compare
two candidate refinements as the result totally changes when he/she clicks on the
refined query. In our research, we use hypernyms for query refinement. Refined
queries are, however, used for on-the-fly clustering of search results rather than
for giving the user the opportunity to issue a new query. Clustering does not
suffer from the above-mentioned problem of query refinement as the user sees
all the refinements on one screen.

3 Wikipedia as the Source of Knowledge

A gold standard dataset for training and testing hypernym discovery algorithms
is WordNet ([7], [8]). WorldNet has structured nature and general coverage makes
it a good choice for general disambiguation tasks. The focus of work presented
here is on specialized domain (the test domain is football), which makes the use
of WordNet less appealing. Most existing lexical resources including WordNet
will have difficulty finding hypernyms for specialized search queries such as the
name of a footballer or football arena. In experiments with automatically learned
rather than hand-crafted lexico-syntactic patterns [8], using TREC dataset and
Wiki- pedia as the training corpus gave a significant improvement to the best
WordNet classifier (F-Measure from 0.2339 to 0.3592).

Our previous work relied on WordNet thesaurus [9], but it turned not to be
exhaustive enough and we decided to search for another source of information.

Predicting User Tags Using Semantic Expansion 91

In this sense Wikipedia turned out to be convenient as we needed a closed corpus
of texts where the duplicity of articles describing the distinctive semantic cate-
gory of the given word is minimal. In this regard the general web cannot serve as
a good source while Wikipedia tries to cover most of the semantic meanings using
only limited number of pages (usually only one page). Therefore, we found the
first section of Wikipedia articles as particularly suitable for hypernym discovery
and use it as the sole source of information.

4 Overview of the Proposed Framework

The proposed framework consists of two stages. The first stage is the tag pre-
processing where each tag from the list of all tags is processed and further
expanded if needed. The algorithmic workflow is presented in Figure 1. As tags
in general can contain any keyword which the author might consider as relevant,
it was important to contextulise the tags. To this end, the pre-processing frame-
work developed is aimed at categorising the tags into two general categories,
namely, (i) common tags and (ii) named entity tags. Common tags are those
which correspond to either an action, country or as depicted in the figure have
a synset associated to it in WordNet. On the other hand, named entity tags
are those tags which do not have a WordNet synset and depends on external
resources to contextulise them. The objective of this pre-processing is to ensure
that named entity tags are disambiguated enough to enable a match semantic
similarity search.

Fig. 1. Overview of the tag pre-processing phase

An overview of the second stage of processing is presented in Figure 2. As
we considered the metadata (i.e. video title, video description, automatic speech
recognition (ASR) transcripts) to be of value in determining the nature of tags,
we first processed the metadata with GATE1 NLP framework. The framework
includes a tokeniser, sentence splitter, and Part-of-Speech (POS) tagger. In ad-
dition to the basic text components, we also included a Gazetteer in order to
1 http://gate.ac.uk/

http://gate.ac.uk/

92 K. Chandramouli, T. Piatrik, and E. Izquierdo

identify entity names in the text based on lists of predefined words. Also, for
extraction of additional semantic information we included the Java Annotation
Pattern Engine (JAPE) to extract hypernyms from Wikipedia. Finally, we also
included OpenCalais2 plugin for extraction of named entities from the textual
metadata.

Fig. 2. Overview of the proposed system

One of the significant contributions of this paper is the integration of Bag-of-
Articles (BOA) algorithm in to the framework as an extension to GATE NLP
tools. Briefly, the module locates a Wikipedia article using the unlabeled entity
through media wiki API. The similarity measure for determining the article’s
relevance to the tag is obtained through text relevance with popularity of the
articles [10]. From the selected article, a JAPE implementation of Hearst patterns
was used to extract a hypernym. This hypernym was then looked up in Wordnet,
thus establishing a link between the entity and a Wordnet synset.

As previously mentioned, Wikipedia presents a much larger data resource
compared to Wordnet for named entity extraction such as people, places, organ-
isation and events to name a few. In order to exploit Wikipedia resources, the
BOA classifier has been developed. The proposed BOA is an extension of the
well-known Bag-of-Words (BOW) approach [11]. The input for the BOA classi-
fier is the classified entity represented as a noun chunk and a set of class entities,
represented with a Wikipedia page title. For unlabeled entities, the BOA clas-
sifier locates articles in Wikipedia that might define the entity and selects one
of them using a disambiguation function. Subsequently, it uses link analysis to
try to identify related articles falling into the same semantic category, and then
creates a BOA term weight vector by aggregating their BOWs vectors. The class
is assigned by choosing the closest class entity, also a BOA term weight vector,
with cosine similarity or other suitable metric.
2 http://www.opencalais.com/

http://www.opencalais.com/

Predicting User Tags Using Semantic Expansion 93

4.1 Bag-of-Articles Classifier

Formally, the input of a BOA classifier is a set of t labeled instances (titles
of Wikipedia articles) C and a set of u unlabeled instances (noun phrases) E.
Wikipedia article titles provide an unanimous mapping between the labeled in-
stance and a Wikipedia article. We use symbol W to denote a collection of all
pages in Wikipedia at a given time. Each article is described by its title, term
weight vector, outbound links, a list of categories it belongs to and type (arti-
cle page, disambiguation page, category page,...). The BOA representation, as
proposed here, does not process Wikipedia infoboxes.

For an unlabeled instance ex ∈ E, it is first necessary to determine the articles
that may be defining its various senses. The ranking function ρ maps it onto the
vector of its n possible senses sx = ρ(ex, W) = 〈sx,1 . . . sx,l . . . sx,n〉. The senses –
titles of Wikipedia article pages – are sorted in the vector in the decreasing order
of relevance. The sense l of an unlabeled instance ex is represented by article
title sx,l. The fact that there are multiple senses for the unlabeled instance gives
space for disambiguation function δ. In the base scenario, we use disambiguation
function δmfs, which assigns the most frequent sense:

δmfs(sx) = sx,1. (1)

Now, both a disambiguated unlabeled instance and a labeled instance is a
Wikipedia article title and can be mapped to a Wikipedia article. In the fol-
lowing, we will use the variable a to refer to a Wikipedia article to which an in-
stance (labeled or unlabeled) is mapped. The bag of articles β(a) is constructed
by aggregating related article across the set of modalities M with the help of the
modality membership function μ, article term-weighting function τ and recursive
term-weight aggregation function θ.

Modality membership μ. Modality membership function μ(a, ar)
→ {0, 1}
expresses if article ar is considered related to a (μ = 1) or not (μ = 0). Several
modality membership functions are suggested below. Article a is evaluated as
related to ar (a �= ar) if

– μoutlink(a, ar) = 1 iff a links to ar,
– μbacklink(a, ar) = 1 iff ar links to a,
– μrelated outlink(a, ar) = 1 iff a links to ar and there is an article ac linking to

a and ar, ar �= a �= ac,
– μbacklinking outlink−firstpara(a, ar) = 1 iff a links to ar, ar links to a and the

link from a to ar is contained in the first paragraph of a,
– μshared category outlink(a, ar) = 1 iff a links to ar and a and ar share the

same category.

Other modality membership function definitions are also possible and various
have been in fact suggested in the literature, albeit under a different name. This
applies e.g. to μbacklinking outlink−firstpara [12] or μrelated outlink, which is used
in the Lucene Search Mediawiki Extension (refer to Section 4.1). We use the

94 K. Chandramouli, T. Piatrik, and E. Izquierdo

symbol Aa
µm

to denote the set of all articles ar that are related to a with respect
to modality membership function μm:

Aa
µm

= {ar|ar ∈ W, μm(a, ar) = 1}. (2)

Article term-weighting τ . The weight function τ(a)
→ Rn represents the
article a as a vector of term weights. The parameter wm,d is a weight assigned
to term vectors τ(a) in modality m and depth d. The term weight functions
considered are:

– term frequency (TF),
– term frequency - inverse document frequency (TF-IDF) computed over entire

Wikipedia,
– term frequency - inverse document frequency computed over articles included

in bag of articles of labeled instances C,
– term frequency with first paragraph3 boost.

Other term-weight function definitions can be also considered.

Recursive term-weight aggregation θ. The function θm(a, d, maxdm) → Rn

recursively aggregates term-weight vectors of articles related to a according to
the modality membership function μm:

θm =

{∑
ar∈Aa

µm
[wm,d τ(ar) + θm(ar, d + 1, maxdm)] if d < maxdm

0 if d = maxdm.
(3)

Bag of articles β. Function β(a)
→ Rn creates the bag of articles for article
a:

β(a) = τ(a) +
∑

m∈M

θm(a, 1, maxd). (4)

The formula aggregates the term-weight vector for article a with term-weight
vectors of articles recursively related to it up to level maxdm, maxdm ∈ N . The
articles (directly) related to it have level 1.

The classification is done by comparing the BOA vector of the unlabeled
instance β(ax) with BOA term vectors of labeled instances β(ac) with the simi-
larity metrics sim and selecting the class with the highest similarity:

BOAclass(ax) = arg max
c

sim(β(ax), β(ac)). (5)

A BOA classifier implementation needs to make decisions as of the selection
of the ranking function ρ, modality membership functions μm, term weighting
3 The first paragraph of a Wikipedia article contains usually the definition of the

article subject, it can be therefore expected to contain more relevant words than the
rest of the text.

Predicting User Tags Using Semantic Expansion 95

function τ and the BOA similarity function sim. The weights wm,d and the
maximum depth maxdm for gathering related pages in modality m are externally
set. Except for the function sim, all these settings are made separately for labeled
and unlabeled instances.

Implementation. This section describes an experimental implementation of
the BOA-based classification system. As the ranking function ρ, the implemen-
tation uses a composite metric, which combines text-based similarity between the
noun chunk and article text and article popularity as measured by the number of
backlinks. As modality membership function μm, there is one option - outlinks,
implementation of backlinks is in progress. For the term weighting function τ ,
there is a TF and TF-IDF support. As the BOA similarity metrics sim, the
implementation uses cosine similarity.

A BOA classifier requires a Wikipedia index containing the following pieces
of information about each article:

– term vectors with term frequencies,
– outlinks,
– popularity ranking (for mostfrequent sense relevance ranking).

Given the current size of English Wikipedia and the fact that it is constantly
updated, meeting these data acquisition requirements results in a considerate en-
gineering effort and in fact a reimplementation of an existing software as these
functions are from the most part performed by the existing Lucene-Search Me-
diawiki Extension4. This Lucenef5-based Mediawiki search engine indexes the
Mediawiki article database and creates four Lucene indexes: the main index,
the links index, the related index, the headlines index and spellcheck index. For
the BOA classifier, the main index containing term vectors and the links index
containing links leading out of each article are the most important. This exten-
sion provides two additional vital functions for the BOA classifier - parsing of
wikitext and prospectively the ability to perform incremental updates.

The main wiki index contains the following important fields: title, key
with a numeric article identifier, the term vectors are saved in the contents
field, category stores article’s categories, related stores titles of articles that
were determined as related during indexing6. The wiki.links index contains
the following fields: Article key containing concatenated article title, Article
PageID with a unique numeric identifier that binds the entry with the main
index key field, links with a list of article titles to which the article links.
The index differentiates between different types of links (article/image) using
a namespace (prefix), redirect contains the title of the article to which the
current article is redirected, rank contains the number of backlinking articles.
In the BOA classifier implementation, these indexes are exploited as follows.
4 http://www.mediawiki.org/wiki/Extension:Lucene-search
5 http://lucene.apache.org
6 A is said to be related to B, if A links to B, and there is some C that links to both

A and B (source: Lucene-Search Extension documentation).

http://www.mediawiki.org/wiki/Extension:Lucene-search
http://lucene.apache.org

96 K. Chandramouli, T. Piatrik, and E. Izquierdo

Term vectors. Indexed Wikipedia articles are stored in the wiki.main index,
however the Lucene-Seach extension does not store term vectors. For the purpose
of the BOA classifier, it was necessary to modify the extension with code for
storing the term vectors.

Outlinks. This information can be obtained from the links field of the article
entry in the wiki.links index.

Popularity ranking. The Lucene-Search Extension contains a search engine,
which uses sophisticated relevance ranking involving the number of backlinks.
The BOA implementation uses the first-ranked article as the MFS baseline.

The Lucene Mediawiki Indexer as used in the BOA classifier system has several
changes in code, the most marked one is the extension of the index with stored
term vectors. The term vector computations are done with a sparse matrix toolkit
java library7.

5 Alternative Approaches for Predicting User-Tags

In order to have a fair evaluation of the proposed framework and as we couldn’t
find any related articles for predicting user-tags we developed the following two
approaches to study the performance of different algorithms on the MediaEval
2010, Wild Wild Web (WWW) dataset. The first approach is based on expanding
known entities with Wordnet and performs a similarity matching function by
constructing TF/IDF matrix. The latter approach is based on the logical analysis
of replicating the user-behaviour when assigning video file names to tagging
online-videos.

5.1 Wordnet-Based Classification

In a conventional sense Wordnet resources have been exploited for disambigua-
tion purposes. In this paper, for the evaluation of the proposed framework, we
used the Lin similarity metric between the Wordnet synset representing an entity
with each of the target tags. The Lin similarity measure has sound theoritical
foundation stated in the Similarity Theorem [13] and is defined as

simL(c1, c2) =
2 ∗ log p(lso(c1, c2))
log p(c1) + log p(c2)

(6)

The function lso returns the lowest common subsumer from the hierarchy, and
the value −log(p(c)) is called information content (IC). The value p(c) denotes
the probability of encountering an instance of concept c, which is estimated from
frequencies from a large corpus. Our implementation uses the Java Wordnet Sim-
ilarity Library8 (JWSL), which automatically derives the values of IC from the
Wordnet structure by exploiting the hyponymy relations among synsets. Entities
for which no synset is found and/or they are categorized as ”unknown”, were
further processed using a JAPE hypernym extraction system using Wikipedia
as the corpus.
7 http://code.google.com/p/matrix-toolkits-java/
8 http://grid.deis.unical.it/similarity

http://code.google.com/p/matrix-toolkits-java/
http://grid.deis.unical.it/similarity

Predicting User Tags Using Semantic Expansion 97

5.2 Filename-Based Classification

As previously mentioned, this approach exploits the human reasoning behind
naming video files and is aimed at transforming the user-behaviour towards
predicting user-tags. In addition, the video file name contains intrinsic semantic
information, in particular when multiple file names starting with or containing a
major portion of the file name. This approach is based on the implementation of
a filename based classifier for which the development set from MediaEval 2010
dataset was used as a training set. The file-name based classifier was developed
based on Weka statistical signal processing library.

6 Evaluation

In this section, we present an overview of the evaluation methodology we adopted
for the evaluation of the proposed framework with other alternate methods pre-
sented. The evaluation consists of two parts, namely “closed-set annotation” and
“open-set annotation”. On one hand, the objective of closed-set annotation is
to predict user-tags only from a list of tags provided. Although it should be
noted that there are no restrictions on the data domain. On the other hand, in
the “open-set annotation” there are no restrictions assigned to the list of tags
that could be associated with the media items. In the rest of the paper, a de-
tailed analysis of experimental results from all algorithms presented until now is
discussed in details.

6.1 Closed Set Annotation

For the closed-set annotation, the evaluation was treated as a retrieval problem
and using the TRECVID evaluation tool, we obtained MAP measure for different
runs.

Fig. 3. MAP results from closed set annotation results

98 K. Chandramouli, T. Piatrik, and E. Izquierdo

In Figure 3, although 1727 videos are present in the dataset, due to either the
absence of title and/or description or the absence of named entities from these
textual resources, tags were extracted only for 1671 videos. Therefore, the first set
of evaluation namely “tags detected” was evaluated against the tags generated
for 1671 videos and the second set of evaluation namely “whole dataset” was
evaluated against the ground truth (tags for 1727 videos). The description of
runs is as follows: run1 - includes ACR, video description and video title; run2 -
includes only video description and video title; run3 - complete framework, run4
- filename based classifier.

6.2 Open Set Annotation

In order to provide a fair evaluation on the open-set annotation, we randomly
selected 40 videos and had seven annotators to manually label if the tags asso-
ciated to each video are “relevant” or “irrelevant”. As a measure of relevance,
we considered the “inter-annotator” agreement [3] among any three or more
annotators and the results are summarized in Figure 4.

Fig. 4. Inter annotator agreement on the tags

A total of 296 tags were generated for the 40 videos considered for the eval-
uation and among them, 35.8% tags were considered to be irrelevant by all
annotators. As shown in Figure 2, approximately 20% of the tags generated
were considered to be relevant by all seven members of the annotators. Consid-
ering a tag with more than 3 inter-annotator agreement, then 47.3% of the tags
generated were considered to be relevant and with 4 inter-annotator agreement,
the percentage drops to 37.5%. For the total dataset of 1727 videos we obtained
6095 unique tags.

Predicting User Tags Using Semantic Expansion 99

7 Conclusion and Future Work

In this paper a framework for predicting user-tags has been presented. The
framework is an extension of the GATE NLP tools and furthermore the Bag-Of-
Article is an extension of Bag-Of-Words. The performance analysis of the results
for closed set annotation shows that filename based classifier outperforms the
proposed framework. This indicates that a filename can be used as a strong
tag predictor. On the other hand, proposed framework proved successful on the
open-set annotation with almost 40% generated tags being considered relevant
by 4 out of 7 manual annotators. The future work will focus on developing multi-
modal techniques for effectively combining visual features and with file-named
based classifier.

Acknowledgements. The research was partially supported by the European
Commission under contract FP7-216444 PetaMedia.

References

1. Hearst, M.: Automatic acquisition of hyponyms from large text corpora. In: Four-
teenth International Conference on Comput. Linguistics, pp. 539–545 (1992)

2. Manning, C., Schütze, H.: Foundations of Statistical Natural Language Processing.
MIT Press (1999)

3. Bast H., Dupret G., Majumdar D., Piwowarski B.: Discovering a Term Taxonomy
from Term Similarities Using Principal Component Analysis. Semantic Web Mining
(2006)

4. Cimiano, P., Völker, J.: Text2onto - A Framework for Ontology Learning and Data-
Driven Change Discovery. In: Montoyo, A., Muńoz, R., Métais, E. (eds.) NLDB
2005. LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg (2005)

5. Nemeth, Y., Shapira, B., Taeib-Maimon, M.: Evaluation of the real and perceived
value of automatic and interactive query expansion. In: SIGIR (2006)

6. Shapira B., Taieb-Maimon M., Nemeth Y.: Subjective and objective evaluation of
interactive and automatic query expansion. Online Information Review (2005)

7. Gong, Z., Cheang, C.W., Hou, U.L.: Web Query Expansion by WordNet. In: An-
dersen, K.V., Debenham, J., Wagner, R. (eds.) DEXA 2005. LNCS, vol. 3588, pp.
166–175. Springer, Heidelberg (2005)

8. Snow, R., Jurafsky, D., Ng, A.: Learning syntactic patterns for automatic hypernym
discovery. In: NIPS (2005)

9. Nemrava, J.: Refining search queries using WordNet glosses. In: EKAW (2006)
10. Kliegr, T., Chandramouli, K., Nemrava, J., Svatek, V., Izquierdo, E.: Combining

Captions and Visual Analysis for Image Concept Classification. In: Proceedings of
the 9h International Workshop on Multimedia Data Mining (2008)

11. Kliegr, T.: Entity Classification by Bag of Wikipedia Articles. In: Doctoral Con-
sortium, CIKM (2010)

12. Cucerza, S.: Large-scale named entity disambiguation based on Wikipedia data. In:
Proc. of Joint Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning (2007)

13. Budanitsky A., Hirst G.: Evaluating wordnet-based measures of lexical semantic
relatedness. Comput. Linguist. (2006)

LivingKnowledge: A Platform and Testbed

for Fact and Opinion Extraction
from Multimodal Data

David Dupplaw1, Michael Matthews2, Richard Johansson3, and Paul Lewis1

1 University of Southampton, UK
{dpd,phl}@ecs.soton.ac.uk

2 Barcelona Media, Spain
mikemat@yahoo-inc.com

3 University of Trento, Italy
johansson@disi.unitn.it

Abstract. In this paper, we describe the work we are undertaking in
producing a truly multimedia platform for the analysis of facts and opin-
ions on the web. The system integrates the analysis of multimodal data
(images, text and page layout) into a distributable platform that can
be built upon for various applications. We give an overview of the nat-
ural language processing tools that have been developed for extracting
facts and opinions from the textual content of articles, the image analysis
techniques used to extract facts and to help support the opinions found
in the contextually related written information, as well as other mul-
timodal tools developed for the analysis of online articles. We describe
two applications that have been developed as part of ongoing work of
the LivingKnowledge project: the News Media Analysis application for
the semi-automation of the work of a media analysis company and the
Future Predictor application which allows exploration of claims that are
made through time.

1 Introduction

Extraction of knowledge from multimodal data on the web is a challenging
prospect as any articulations of knowledge are strongly influenced by diversity
(e.g. cultural influences or geographical location). Also, facts that are expressed
within information may be subject to biases that mean the facts are distorted
due to the claimant’s position on some axis of diversity. In the LivingKnowledge
project we aim to enhance the current state of search and knowledge manage-
ment on the web by advancing the use of sentiment or opinion analysis within
applications that combine text and images.

To realise the goal of recognising bias within web articles, it is first necessary
to have strong fact and opinion extraction algorithms that can work in synergy
and at a web-scale.

In this paper we will describe the platform that we have developed that allows
the extraction of facts and opinions from large-scale crawls of web multimedia

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 100–115, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 101

with the aim of providing a basis on which bias and diversity-aware applications
may be built. We begin by describing the platform and the functionality it
provides to developers of analytical algorithms. We will then briefly give an
overview of the natural language processing tools, the image analysis tools and
the holistic analysis tools that we are using to extract facts and opinions on the
testbed. Finally we will illustrate how these facts and opinions are being used in
two applications that we are developing as part of our project.

2 Testbed Analysis Platform

2.1 Data Representation

The central task in a project such as ours is to create automatic systems that
extract structured information from unstructured sources – textual documents
and media. This is a process that gradually adds annotation to the data collec-
tion. As has been previously observed, the structure of the data annotation is
best modeled as an annotation graph[1,7]: a graph of interconnected annotation
entities containing pieces of data where the lowest-level entities are grounded in
raw data. In addition, to facilitate modularization and conceptual organization,
annotation entities are grouped into annotation layers.

Text 1

[...]
PER

NEs

Image 1

[...] PER

[...]

[...]

Tokens

Images in
documents

Persons
in images

Fig. 1. Example of a graph of annotation entities over a data collection

Figure 1 shows an example of a collection of data and the representation of
its annotations. The figure shows how complex annotation data – the connection
between a person named in a document and an image, for example – is built on
top of lower-level annotations: named entities (NEs), tokens (words), and image
location annotation.

The platform has tools for dealing with the marshalling of this data into and
out of an XML representation of this annotation graph. Annotation entities are

102 D. Dupplaw et al.

given unique identifiers within the scope of the annotation file and may refer
to other annotation types by reference to the document on which the annota-
tions are made and a unique annotation type name. This allows annotations to
have relations with other annotations thereby building the graphical represen-
tation. To maximise the openness of the annotation file format, each annotation
may contain any structured information. Although this adds burden to modules
wishing to reuse annotations, it means that no annotations are excluded from
representation in the graph.

2.2 Testbed Architecture

To build bias aware applications, facts and opinions must first be extracted
from the documents for which we are trying to determine bias. This requires a
multitude of different multimodal extraction routines to be executed together
on the same large set of documents and in a certain order to allow dependencies
between analysis routines to be resolved.

To achieve this we have built the LivingKnowledge Testbed. It is a planned
open source toolkit that allows for annotating document collections with anal-
ysis tools and provides methods for indexing, searching, and visualizing these
annotations using the Solr search engine1.

The major components of the testbed, shown in Figure 2, are the docu-
ment collections, the annotation pipeline, the indexing and searching system,
the provenance storage model and the evaluation framework.

Fig. 2. Testbed Platform Architecture

The modular nature of the system allows for combining the analysis tools in
different configurations and doing analysis on any document collection that has
implemented a converter from the native collection format to the base annotation
format. Modularisation of analysis algorithms is such that the algorithms can
be written in any underlying programming language that is best for their imple-
mentation. Module execution is controlled by the testbed main core and allows
1 http://lucene.apache.org/solr/

http://lucene.apache.org/solr/

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 103

for the execution of modules in whichever order is necessary. Each module out-
puts an annotation in XML that conforms to a defined annotation interchange
format (see section 2.1).

As the testbed core is written in Java, any modules that are also written in
Java can make use of tools that the core provides. The core provides automatic
traversal of directories and documents and automatic parsing of the annotation
interchange files. This means that the analysis code need not be bogged down
with XML parsing functionality. External analysis modules are also supported
by the testbed but these must marshal the annotation files themselves. In this
way we have integrated Matlab, Python and native executables for analysing
documents.

The testbed’s analysis pipeline is internally divided into two - one pipeline
specifically deals with analysis of images, while the main pipeline deals with
the analysis of whole articles including their text. The rationale behind this
is that individual images will have annotations that are not dependent on the
context in which they appear (such as their colour distributions) and so these
can be executed just once avoiding duplication. However, the images may also
be analysed in the main pipeline in the context of the whole article allowing the
image analysis routines to reduce their search space by utilising cues in the rest
of the article (for example, recognition of faces that are mentioned within the
article text).

One of the important parts of the testbed core is to extract information from
the diverse set of document types that we encounter in various datasets to allow
the analysis tools a consistent view of the incoming data. We have approached
this problem with the use of the Apache Tika toolkit2 which supports many
common document formats, such as Word documents and PDFs, and converts
their content into a consistent format that we subsequentally publish as a base
annotation layer for the analysis tools. However, we found Tika was not accurate
enough when extracting the information from web-pages: we found the output
was cluttered with inconsequential words and images that appeared from the
web-site template or decoration. Thus, we developed an HTML analysis tool that
uses heuristics and an element voting mechanism that attempts to determine the
important information from a cluttered page; that is, the main article text, the
images which form part of the article (rather than decorative images), the main
article title, section and sub-headings, links that form part of the article (rather
than site navigation) and the article date. This tool has shown empirically that
it is robust and extracts important information from many major online news
and media outlets. The advantage of the tool is that the analysis algorithms
will not, in the majority of cases, receive spurious text or images as their input,
as text or images that appear in multiple pages on a single site (as navigation
or decoration) are removed. This increases the accuracy of the analysis and,
perhaps more importantly, the accuracy of any dataset summarisation. It has an
additional advantage that it determines the important co-lateral text for images.

2 http://tika.apache.org/

http://tika.apache.org/

104 D. Dupplaw et al.

The testbed core also provides the automatic generation of provenance graphs
for analysis chains. These graphs are generated and represented in the standard
Open Provenance Model3 (OPM) and injected into the analysis output as OPM
XML in the annotation interchange format. After the analysis is complete, these
graphs can be merged at the application level to produce a graphical represen-
tation of the complete analysis trail such as that shown in Figure 3. It allows
an application to have a provenance of where a particular final annotation was
constructed from and to be able to trace the value back through the annotation
layers to the original document.

User

Annotator: URL

Testbed

triggered by Original source
for document doc2

used

Document doc2

used

Annotator: 'FACE-LOCATION'

triggered byDocument doc.png

used

Annotator: CODEBOOK

triggered by

Faces in image doc.png

used

'readability4J' annotations
for document doc2

used

Image metadata
for image doc.png

used

used

'URL' annotations
for document doc2

used

controlled by

Annotator: readability4J

triggered by

used used

generated by generated by

generated by

generated by

'CODEBOOK' annotations
for document doc2

generated by

Fig. 3. Provenance graph for an analysis trail automatically generated by the testbed

The integration of image and text analysis tools in the same framework facil-
itates the creation of annotations based on input from diverse media formats. A
simple XML format is used to control which document collection to use, which
text and image analysis tools to apply and to specify which resulting annotations
should be made available for search.

The testbed additionally provides an evaluation framework for measuring the
performance of the system components against gold standard data. For each an-
notation module, a gold standard set is provided such that the module’s perfor-
mance can be automatically tested against the set via a standard cross-validation
procedure. For annotations where fuzzy matches are necessary (such as image
feature vector comparisons), plugin distance calculation functions can be written
and re-used within the framework.

3 http://openprovenance.org

http://openprovenance.org

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 105

In order to process large numbers of documents, we have created a Hadoop
mapper tailored to processing the documents on a Hadoop cluster. Using 100
machines on a Hadoop cluster we are able to process millions of documents per
day. The independent nature of the document processing means that the docu-
ment throughput will increase linearly as the number of machines are increased.

Finally, there are various HTML visualization components that have been de-
signed specifically to highlight the types of annotations provided by the analysis
tools. Currently, the testbed supports several different document collections in-
cluding the New York Times Annotated Collection4, the MQPA dataset, BBN
collection5 and the Internet Archive (ARC) format6. Furthermore, there are visu-
alization components included that support trends over time, facet aggregation,
and facet correlations.

3 Extracting Facts and Opinions

Before axes of diversity, and hence bias, can be detected in articles, individual
subjective and factual “objects” must first be extracted which can then be ag-
gregated to form an overall view of the article. These “objects” may be explicit
in the form of a claim in the text although they may also be somewhat more
nebulous and only hinted at with specific use of imagery or juxtaposition of
layout elements. It is therefore necessary to analyse not only the written text
within an article, but also other elements such as images.

Below we briefly describe some of the modules that we have developed and
used within the testbed platform for fact and opinion extraction. Firstly, we give
an overview of the natural language processing that we use to extract explicit
subjective statements from text within the page. We will then describe the image
analysis and holistic page-based techniques that we aim to use to support or
oppose the subjectivity that is being extracted from the textual content. By
combining these analyses, we gather a more complete view of the context in
which the claims are being expressed.

3.1 Text Analysis

The LivingKnowledge project aims to find expressions of opinions and track
their diversity and evolution. The opinion analysis functionality in the
LivingKnowledge platform consists of two parts: a very fast coarse-grained opin-
ion extractor that finds sentences containing some expression of opinion, and a
fine-grained system that extracts detailed information about the opinions: the
person holding the opinion, whether the opinion is positive or negative (polarity),
and the intensity of the opinion.

4 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19
5 http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33
6 http://www.archive.org/web/researcher/ArcFileFormat.php

http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2008T19
http://www.ldc.upenn.edu/Catalog/CatalogEntry.jsp?catalogId=LDC2005T33
http://www.archive.org/web/researcher/ArcFileFormat.php

106 D. Dupplaw et al.

Linguistic Processing. The fact and opinion analysis functionality is built
on top of the information that we extract using a chain of natural language
processing tools. As a first step, we apply the OpenNLP tool7 to split the raw text
into sentences and tokens and to assign a part-of-speech tag to each token. We
extract named entities and coarse-grained word sense tags using the SuperSense
tagger[2]. Grammatical and shallow semantic structures[10] are extracted by
the LTH-SRL tool[9]. Finally, we use the TARSQI Toolkit8 for annotating the
temporal expressions in the document in the TimeML format9.

Coarse-Grained Opinion Analysis. For processing large quantities of text,
we apply a very fast classifier to quickly extract sentences containing some ex-
pression of opinion. Following earlier work in coarse-grained opinion analysis,
we frame the problem of finding opinionated sentences as a text categorization
problem: assigning every sentence to the category of subjective or objective. This
allows us to apply well-established techniques for text categorization[6] using a
bag-of-words representation of the sentences[11]. In addition to the words, we
added extra features for words listed in a lexicon of common subjective words[17].
The classifier is implemented as a linear support vector machine that we trained
using LibLinear[4].

Fine-Grained Opinion Analysis. While the coarse-grained opinion extractor
allows us to find opinionated sentences in text, many applications require more
detailed information about the opinion, such as identifying the entity holding the
opinion and determining its polarity and intensity. This analysis is carried out by
the fine-grained opinion analysis system[8], which we implemented as a sequence
of statistical systems trained on the MPQA dataset10. The representation used
in MPQA is based on the psychological theory of private states[16]. The core
concept in this representation is the opinion expression: a piece of text that
makes us understand that some entity (such as an individual or organization)
has a feeling towards some subject.

The system consists of four components:

– a sequence labeler that finds opinion expressions,
– an opinion holder extractor finds the entity holding the opinion,
– a classifier that determines the polarity of the opinion (positive, neutral, or

negative),
– a classifier that determines the intensity of the opinion (low, medium, or

high).

7 http://opennlp.sourceforge.net
8 http://www.timeml.org/site/tarsqi/
9 http://www.timeml.org/site/index.html

10 http://www.cs.pitt.edu/mpqa/databaserelease

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 107

3.2 Image Analysis

We believe that analysing images within articles can provide some hooks that
will strengthen or weaken the opinions that are more explicitly stated within the
text of the article.

High level image understanding has yet to be solved in the general case ex-
cept for some specific application areas where the concepts can be more readily
extracted. So it seems pertinent that we may utilise these existing higher-level
analysis techniques where we can extract “facts” from the image which we can
then interpret in the context of the article. For example, face detection and recog-
nition have well established implementations that are relatively robust[18] and
we have developed modules that we are training on politicians that we expect
to see in the news crawls we are analysing.

It is very difficult to infer whether a standalone image is intended to harbour
a sentiment and subsequentally influence the reader’s opinion[20] due to the
implicit nature of the concepts that are expressed within the image. However, it
has been shown in [14] that colour features (spatial colour histograms) correlate
with sentiment by crawling Flickr for images with tags containing words with
negative or positive connotations from SentiWordNet and training a classifier:
blue colours show negative connotations as compared to reds and yellows that
are positive. Similarly, certain interest point features, like SIFT, have also been
shown to correlate although the intuition is less obvious than the colour features.
These correlations may show attempts to influence the reader’s opinion on the
subject depicted in the article.

We could, for example, combine these analyses with the text analysis of the
article to find people in the image that match actors in the article text. Cou-
pled with sentiment analysis of the image this may help to confirm opinions
extracted from the text. For example, suppose the text of an article is found to
be negative about Barack Obama and positive about John McCain and we are
able to identify Obama in an associated image and that the image has negative
sentiment values, then we see that the image supports or helps to confirm the
interpretation from the text.

Conversely, we may be able to determine information about the image from it’s
textual context. On the web, images will have co-located text, either in explicit
captions that appear in a visual cluster with the image (we can determine this by
page analysis) or by the relative placement of the image within the main article.
Analysing this text can provide some evidence towards the intended meaning of
the image; if the claimant’s opinion in the text is negative, an inference we make
is that the image is illustrating that opinion. Using the graph-theoretic domi-
nant set clustering algorithm, we annotate images with sentiment scores from
SentiWordNet11[19]. The essence is that we extract important sentiment words
or phrases from the collateral text of images in the training set and organise the
images around these categories. Each category is clustered using the dominant

11 http://sentiwordnet.isti.cnr.it/

108 D. Dupplaw et al.

set clustering algorithm. Images for which we wish to obtain a sentiment score
are placed in the feature space and are annotated with the category in which
the nearest appears.

However, we have to be aware that co-located text may not be of the same
opinion as the image. For example, the author’s intended association may be
for contrast and deliberately juxtaposed in opinion. When this is considered, it
becomes a very difficult task to attempt to determine the intended sentiment
behind an image.

In the project we are also investigating image forensics. It must be assumed
that for specific types of image manipulations, the author of the image intended
to project a particular opinion by using the manipulations. Manipulations such
as face or sub-image replacement can be detected[12] and clearly indicate an
attempt to influence opinion. Image alterations such as brightness and contrast
enhancement can also be detected which may indicate an attempt to project
an opinion; for example, a more colourful and vibrant visual may be associated
with an intent to project a positive opinion.

3.3 Page Layout Analysis

Determining which images are related to which parts of the article text is an
important analysis step to ensure that appropriate correlations are made. The
HTML analyser that the testbed provides will ensure that only the important
images are passed on for analysis, however, the positioning of those images within
the page determines what text is co-located. To find this out, we must render
web-pages in a controlled browser environment because alterations made by
cascading style sheets can mean that page elements are drawn in places that
the HTML alone would not make apparent. Text block elements that are both
near an image and part of the main article text are marked as being co-lateral
text for that image. It may be possible to go further with the analysis of a
page at the structural or layout level and we are currently investigating whether
web-sites that are more prone to bias in general (for example, websites of tabloid
newspapers versus broad-sheet newspapers) have particular layout features. This
requires determining features vectors that represent the page layout as a whole
such as the area ratio of visual versus textual elements or determining types of
header layout and size.

4 Multimedia Applications

The goal of creating a platform that provides web-scale multimodal analysis
of web-based articles is to improve the user experience in knowledge retrieval
applications. Clearly, the range of such applications is unfathomable, so the
project has applied the system to two main application case studies which are
designed to show how automatically annotating articles with opinion-led features
can help particular tasks as well as producing new and interesting services. The
applications we have built on top of the analysis platform aim to show these two
advances.

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 109

4.1 Media Content Analysis

In modern media societies, public communication is very often mediated in a
technical sense and the research carried out to facilitate such communication is
focussed on what mediated public discourse concerning particular topics looks
like. Media Content Analysis (MCA) methods can be used to study trends in
public perceptions and the impact of some particular event, policy, or media
strategy on the media discourse. By analysing written text and photographs from
different webpages, an attempt is made to address the question of who says what
to whom with what interest and in which channel. This is done by formulating
the analysis on a hierarchy of domain, article, claims (or statements), subject
actors, addressees, object actors, issues and frames. For each of these levels, a
codebook is conceptualised in order to capture indicators and variables at each of
the levels. These codings are populated by a human (the coder) who looks behind
the article, inquires into the social reality and nonmanifest context that is being
constructed by an article’s manifest, written text and other meaningful matters.
While this approach requires a deep reading of the article, automatic methods
have a large potential to speed up this process and there is consequently a long
history of computer-assisted MCA. However, these analysis tools have generally
been based on simple word-spotting techniques, such as the famous General
Inquirer system[15] and there is obviously a need to study the feasibility of
applying modern methods in automatic text and multimedia analysis instead.

With our Media Content Analyser application we provide a web-based system
to enhance the research goals of the human coders who are coding an article.
Enhancements are provided in the form of automatic coding of fields or sets
of fields within the coding sheet that represents the article. These are inferred
or generated by the underlying analysis modules that exist in the testbed. A
special module in the testbed takes the results of the text and image analysis
modules and outputs a coding sheet which can then be used by the web-based
application. Although this is batch-mode analysis of articles (rather than on-
demand analysis), it means that it is possible to scale the analysis to web-scale
and using a customised search engine to select articles to code. This allows much
better coverage by providing better selection of appropriate articles to code than
the the current method where articles must be searched for by hand.

The automatic extraction of subjective statements (described above in section
3.1) is used to suggest to the coder possible statements that they may wish to
add to the codebook. The coder can choose one of the extracted statements and a
new coding sheet will be generated that has been automatically completed with
the information available from the extracted statement such as the claimant, the
addressee, or the time and date it was made. This is clealy a time-saving measure
as the coder can use the automatically extracted list to get an overview of the
statements made in the article without concern of missing any. We are currently
evaluating the accuracy and usefulness of the extracted statements against a
manually coded ground-truth set.

110 D. Dupplaw et al.

Clearly, the introduction of coding support by the insertion of automatic
codings into the coding sheet is good for productivity. An important aspect
of the application is that any automatic information codings have their prove-
nance stored and made available for viewing. Tracing the source of certain cod-
ings allows the human coder to build trust in certain automatic codings. The
testbed has been built so that Open Provenance Model (see section 2) graphs
are automatically stored alongside annotations (see Figure 3). When annotators
are able to provide confidence values for the automatic annotations, these can
be also presented to the coder such that they can make an informed decision
about whether to accept the provided field value. Indeed, it is possible to reduce
the coder’s work by avoiding the verification step and automatically confirming
field values that have been derived from annotations that have high confidence
values.

The hierarchical nature of the coding sheets means that higher-level sheets
can be shared between coders. For example, the very top-level domain coding
sheet contains indicators and variables that are specific to the article publisher
(e.g. the online news site). As this is static for all articles from that publisher,
this only need be filled in once, saving time for subsequent coding tasks.

The coding sheets are also augmented with semantic information; that is,
some of the indicators within a coding sheet must contain specific conceptual
types. The codebook that is used to generate the coding sheets is defined in
XML and allows for fields to be given specific data types. These are URIs and
so may refer to any conceptual entity on the linked open data cloud. We have
created a web-service that automatically augments the web-article with URIs for
conceptual entities in RDFa. The entities are matched against available entities

Fig. 4. Media Content Analysis Application

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 111

within ontologies (currently we’re using DBPedia12) and the service returns an
XHTML+RDFa version of the original page. The MCA application then uses
the RDFa information to highlight entities and form links between the coding
sheet variables and the displayed entities in the article.

Figure 4 shows a screenshot of the web-based MCA application. The left-hand
side of the application displays the original article augmented with the RDFa
tags. The right-hand side of the application displays the coding sheet.

4.2 Future Predictor

The Future Predictor builds on all of the analysis tools to give users a glimpse
into the future. The first prototype of the system, the Time Explorer, was de-
signed to enable the users to understand how news stories evolve over time and
how they might evolve. Time Explorer was developed using the New York Times
Annotated Corpora[13] and the output of a subset of the analysis tools avail-
able in the testbed including OpenNLP, the SuperSense tagger and the TARSQI
Toolkit. The resulting analysis is used to extract from each document all of the
person, location and organization entities and all time expressions that can be
resolved to a specific day, month or year. The temporal expressions extracted
are both explicit as in “September 2010” and relative as in “next month”. The
relative dates are resolved based on the publication date of the article and all
dates are associated as event dates with the corresponding documents.

From these extractions, two indices are created, one for each document in the
collection and one for each sentence in the collection. For the sentence level index,
a content date is computed as one or more of the event dates found in the doc-
ument or the publication date if there are no event dates. For example, given
the following hypothetical document with publication date of May 1st, 1999:

Slobodan Milošević became president of Yugoslavia in 1997. Slobodan
Milošević will run for president again next year.

Fig. 5. Searching the Future of Iraq

Two sentences will be found. Slobodan Milošević will be extracted as a person
in both sentences and Yugoslavia will be extracted as a location in the first
sentence. 1997 will be extracted as a time expression in the first sentence and
next year will be extracted as an expression in the second sentence and resolved
to 2000. The publication date for both sentences will be May 1st, 1999 while
the content date of the first sentence will be 1997 and the content date of
the second sentence will be 2000. The resulting indices can be used to construct
12 http://www.dbpedia.org/

http://www.dbpedia.org/

112 D. Dupplaw et al.

very powerful queries, including queries about possible future events. For exam-
ple, Figure 5, shows the results for a search on Iraq which allows for looking at
predictions such as the one shown suggesting that Iraq could develop missiles
capable of hitting the U.S by 2015. The Future Predictor builds on Time Ex-
plorer by incorporating the opinion-based annotations provided both on the text
and images. In order to take advantage of images, it is necessary to move from
the NYT corpus to a corpus that contains both text and images. For this, we
have custom crawled a set of 7 million documents including associated images
focused around European elections. Adapting the Future Predictor to make use
the new corpus and incorporate new annotations is a simple matter of changing
the configuration XML file to point to the new corpus and adding the opinion
annotators to the pipeline.

Fig. 6. Snippet for query on Russia with negative image associated

Fig. 7. Opinion Summary for Iraq

To take advantage of these changes required some additional visualization
components specific to the opinion extraction and images. The primary visu-
alization summarizes both the polarity and intensity dimensions of opinion for
a given query as shown Figure 7 which aggregates the opinions for the query
Iraq. The user is able to drill into documents that contain a particular type of
opinion by clicking on the appropriate part of the graph. This combination of
features allows the user to both see the aggregate opinion on a particular query,
and also to quickly view documents reflecting a particular opinion. Finally, there
is trend view of the opinions that allows users to view how opinions evolve over
time and allows them to drill into periods of interest. Images with positive and
negative sentiment are associated with the corresponding documents and thus

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 113

can be incorporated in document summaries on the result page to provide a
visual summary of content that compliments the textual summary. For exam-
ple, Figure 6 displays a snippet generated for a document matching a query for
documents containing the keyword Russia containing negative images. This doc-
ument is discussing the cost of a gas war between Russia and the Ukraine and
the picture complements the summary by showing an empty gas vat. We plan on
also integrating the bias aware components of the LivingKnowledge project to
gain further insights into whether similar opinions are expressed across groups or
if different groups express different opinions. In elections, for example, it would
be interesting to note differences of opinion between left and right wing news
sources on the future of important topics such as global warming, immigration
and terrorism.

5 Conclusion

In this paper we have given an overview of the analysis platform that we have
built as part of the LivingKnowledge project that is working towards building
bias and diversity aware applications. We have described how the platform inte-
grates diverse analysis tools and provides the analysis pipeline, the provenance
model, the evaluation framework and the HTML analyser that extracts impor-
tant text and images from articles. The testbed augments the platform with data
that allows these analysis tools to be evaluated. While flexible infrastructures
for text analysis application development have been developed previously, such
as GATE [3] and UIMA [5], the LivingKnowledge platform is the first one to
be explicitly designed with multimodality in mind and to seamlessly integrate
text and image analysis into a single architecture. Unlike other frameworks, our
platform is also program language agnostic.

We use the testbed to create applications to showcase both the testbed and
the analysis modules for fact and opinion extraction. The natural language and
image analysis modules take forward the research in their respective areas; in
their overviews we have given pointers here to where the reader can find more
information about this research. However, the aggregation of multimodal data,
including holistic page analysis, is certainly a new and interesting way to look
at information extraction and the MCA application and the Future Predictor
applications, although still in development, already show promise in their use of
this diverse data.

As the LivingKnowledge project continues to develop, we will begin to show
that bias and diversity aware applications will improve the user experience when
searching, analysing and presenting information from the web.

Acknowledgements. This work was supported by the European Union under
the Seventh Framework project LivingKnowledge (IST-FP7-231126). We would
also like to thank all our partners who contributed to the LivingKnowledge
project on which this work has been built.

114 D. Dupplaw et al.

References

1. Bird, S., Liberman, M.: A formal framework for linguistic annotation. Speech Com-
munication 33(1,2), 23–60 (2001)

2. Ciaramita, M., Altun, Y.: Broad-coverage sense disambiguation and information
extraction with a supersense sequence tagger. In: Processings of the 2006 Confer-
ence on Empirical Methods in Natural Language Processing, Sydney, Australia,
pp. 594–602 (2006)

3. Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V.: GATE: A framework
and graphical development environment for robust NLP tools and applications. In:
Proceedings of the ACL (2002)

4. Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J.: Liblinear: A
library for large linear classification. JMLR 9, 1871–1874 (2008)

5. Ferrucci, D., Lally, A.: UIMA: an architectural approach to unstructured infor-
mation processing in the corporate research environment. Natural Language Engi-
neering 10(3-4), 327–348 (2004)

6. Joachims, T.: Learning to Classify Text using Support Vector Machines.
Kluwer/Springer (2002)

7. Johansson, R., Moschitti, A.: A flexible representation of heterogeneous annota-
tion data. In: Proceedings of the Seventh conference on International Language
Resources and Evaluation (LREC 2010), Valetta, Malta, pp. 3712–3715 (2010)

8. Johansson, R., Moschitti, A.: Reranking models in fine-grained opinion analysis.
In: Proceedings of the 23rd International Conference of Computational Linguistics
(Coling 2010), Beijing, China, pp. 519–527 (2010)

9. Johansson, R., Nugues, P.: Dependency-based syntactic–semantic analysis with
PropBank and NomBank. In: CoNLL 2008: Proceedings of the Twelfth Conference
on Natural Language Learning, Manchester, United Kingdom, pp. 183–187 (2008)

10. Palmer, M., Gildea, D., Kingsbury, P.: The proposition bank: An annotated corpus
of semantic roles. Computational Linguistics 31(1), 71–106 (2005)

11. Pang, B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using
machine learning techniques. In: Proceedings of the 2002 Conference on Empirical
Methods in Natural Language Processing, Philadelphia, United States, pp. 79–86
(2002)

12. Rosa, A.D., Uccheddu, F., Costanzo, A., Piva, A., Barni, M.: Exploring image
dependencies: a new challenge in image forensics. SPIE, vol. 7541, p. 75410X (2010),
http://link.aip.org/link/?PSI/7541/75410X/1

13. Sandhaus, E.: The New York Times annotated corpus. Linguistic Data Consortium
(2008)

14. Siersdorfer, S., Hare, J., Minack, E., Deng, F.: Analyzing and predicting senti-
ment of images on the social web. In: ACM Multimedia 2010, pp. 715–718. ACM
(October 2010), http://eprints.ecs.soton.ac.uk/21670/

15. Stone, P.J., Dunphy, D.C., Smith, M.S., Ogilvie, D.M.: Associates: The General
Inquirer: A Computer Approach to Content Analysis. MIT Press (1966)

16. Wiebe, J., Wilson, T., Cardie, C.: Annotating expressions of opinions and emotions
in language. Language Resources and Evaluation 39(2-3), 165–210 (2005)

17. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-
level sentiment analysis. In: Proceedings of Human Language Technology Con-
ference and Conference on Empirical Methods in Natural Language Processing,
Vancouver, Canada, pp. 347–354 (2005)

http://link.aip.org/link/?PSI/7541/75410X/1
http://eprints.ecs.soton.ac.uk/21670/

LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction 115

18. Zhao, W., Chellappa, R., Phillips, P.J., Rosenfeld, A.: Face recognition: A literature
survey. ACM Comput. Surv. 35, 399–458 (2003),
http://doi.acm.org/10.1145/954339.954342

19. Zontone, P., Boato, G., Hare, J., Lewis, P., Siersdorfer, S., Minack, E.: Image
and collateral text in support of auto-annotation and sentiment analysis. In:
TextGraphs-5: Graph-based Methods for Natural Language Processing, pp. 88–
92. The Association for Computational Linguistics (July 2010),
http://eprints.ecs.soton.ac.uk/21514/

20. Zontone, P., Boato, G., Natale, F.G.B.D., Rosa, A.D., Barni, M., Piva, A., Hare, J.,
Dupplaw, D., Lewis, P.: Image diversity analysis: Context, opinion and bias. In: The
First International Workshop on Living Web: Making Web Diversity a true asset,
vol. 515, CEUR-WS (October 2009), http://eprints.ecs.soton.ac.uk/18168/

http://doi.acm.org/10.1145/954339.954342
http://eprints.ecs.soton.ac.uk/21514/
http://eprints.ecs.soton.ac.uk/18168/

Behaviour-Based Object Classifier

for Surveillance Videos

Virginia Fernandez Arguedas, Krishna Chandramouli, and Ebroul Izquierdo

Multimedia and Vision Research Group
School of Electronic Engineering and Computer Science

Queen Mary, University of London, Mile End Road, E1 4NS, London, UK
{virginia.fernandez,krishna.chandramouli,

ebroul.izquierdo}@eecs.qmul.ac.uk

Abstract. In this paper, a study on effective exploitation of geometri-
cal features for classifying surveillance objects into a set of pre-defined
semantic categories is presented. The geometrical features correspond to
object’s motion, spatial location and velocity. The extraction of these fea-
tures is based on object’s trajectory corresponding to object’s temporal
evolution. These geometrical features are used to build a behaviour-based
classifier to assign semantic categories to the individual blobs extracted
from surveillance videos. The proposed classification framework has been
evaluated against conventional object classifiers based on visual features
extracted from semantic categories defined on AVSS 2007 surveillance
dataset.

Keywords: Object classification, geometrical models, surveillance
videos, object tracking, motion features.

1 Introduction

Fully automatic object and event detection and classification is crucial in a so-
ciety where surveillance systems are pervasive and monitored 24 hours a day.
This is especially true in countries like UK where Norris and McCahill [1] has
estimated to house more than 4.2M Closed Circuit Television (CCTVs). The
ubiquitousness of CCTV cameras generates everyday a huge amount of data
that is constantly supervised by humans for detecting abnormal activities. Hu-
man supervision would cause a huge need of resources as well as a huge depen-
dency on surveillance officers. To mitigate the responsibilities of the surveillance
officers, numerous computer vision techniques on object and event classification
are proposed in the literature [2].

The techniques presented in the literature can be largely classified into two
categories based on the features used to construct the classification model namely
appearance and object behaviour. Appearance-based classifiers rely on the visual
features as the main source of information for representing and recognizing ob-
jects, which includes features such as colour, texture and/or shapes [3,4]. How-
ever, these techniques are affected by the object size and resolution paving way

A. Moschitti and R. Scandariato (Eds.): EternalS 2011, CCIS 255, pp. 116–124, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

Behaviour-Based Object Classifier for Surveillance Videos 117

towards sparsely represented problem. On the other hand, behaviour based clas-
sifiers exploit temporal and geometrical characteristics to distinguish between
semantic categories. Geometrical features such as motion, spatial location and
velocity are used to represent the object category’s behaviour, providing infor-
mation that is more robust to the common challenges encourted in surveillance
video applications, for example changes in illumination, occlusions and/or shape
distortion [5,6].

In this work, our goal is to present a novel set of geometrical features to define
each object category’s behaviour. Such geometrical features are extracted using
object trajectories and further processed towards building a behaviour-based
object classifier. The proposed technique offers invariance to external factors and
general changes in the objects appearance. The proposed object classification
approach procure a real time surveillance video analysis applied over realistic
scenarios.

The rest of the paper is organised as follows. In Section 2, the proposed
behaviour-based object classification framework is presented, followed by an
analysis on the extraction of geometrical features in Section 3. The behaviour-
based object classifier is briefly outlined in Section 4, as well as the evaluation
results. Section 5 presents conclusions and some of the potential future work for
the paper.

2 Object Classification Based on Geometrical Features

Our surveillance object classification approach is based upon extracting each
object’s geometrical features to compute its representation. The framework in-
tegrates three intermediate modules (as shown in Figure 1). First, a Motion
analysis component is applied on the raw surveillance video to extract tempo-
ral evolution of blobs and motion features. Second, a set of novel geometrical
features are calculated in an invariant view based extractor (see Section 3). Fi-
nally, a behaviour based object classifier is proposed exploiting the geometrical
features previously extracted. The classifiers assigns labels to each blob from a
set of pre-defined semantic labels considering the object behaviour rather than
its appearance.

Fig. 1. The proposed behaviour-based object classifier framework

118 V. Fernandez Arguedas, K. Chandramouli, and E. Izquierdo

The first stage of the framework integrates the motion analysis component.
The component aims to reduce the redundant information contained in surveil-
lance videos [7]. This objective is fulfilled with the use of background substrac-
tion technique followed by spatial segmentation of moving objects and finally
tracking the moving objects and assigning objects labels using Kalman filters.
As a result, a set of bounding boxes, coordinates and temporal information have
been extracted per each moving object that appeared in the surveillance video.
This information is used subsequently to calculate the previously mentioned be-
havioural features. Despite the performance of the motion analysis component,
several open challenges remain such as noisy and low quality images, lack of
contrast or image blurring due to camera movement, as shown in Figure 2.

(a) Merge of blobs due to noisy
images and shadows

(b) Appearance of new infor-
mationless blobs due to camera
movement

Fig. 2. Effect of external factors over the objects appearance

3 Geometrical Features Extraction

For each object a temporal evolution set, corresponding to the coordinates and
temporal information is obtained from the Motion analysis component. Object
classifiers are based on the idea that objects can be represented by their appear-
ance but also by their behaviour. However, while an object appearance might
change for different reasons like a noisy image, changes in illumination, image
blurring or other external factors, its behaviour model remains largely intact
and often has shown to be invariant to previously mentioned problems.

All behaviour models are subjected to satisfy two necessary constraints: (i) a
small intra-object variance and (ii) a high inter-object variance. In other words,
features extracted should be highly representative of a given object category
and at the same time easily distinguishable between different object categories.
Extrapolation from realistic scenarios and from further analysis of surveillance
dataset has led to the selection of a set of geometrical features whose patterns
satisfied these constraints: shape ratio, trajectory and velocity (see Sections 3.2,
3.1 and 3.3 respectively).

Behaviour-Based Object Classifier for Surveillance Videos 119

Fig. 3. Different views of the same object, depending on the trajectory followed by the
object its semantic concepts vary

The behavioural features are directly affected by object trajectory and also on
the position of the camera, for instance, the object size varies if it is going away
from the camera but remains constant if the object only passes by in perpen-
dicular direction to the camera. Considering this, a pre-processing step, called
composed-trajectories division algorithm, analyses each object trajectory and di-
vides it into independent trajectories if any temporal and/or spatial breakpoints
occur. A temporal breakpoint is considered when an object is stopped for a long
time and therefore is more likely to change its direction. While a spatial break-
point is a strong diversion in an object trajectory. Any of these breakpoints show
a change in the trajectory, hence, a change in the object geometrical features (as
shown in Figure 3). Every time a breakpoint is found, the object information is
subdivided into two different and independent objects.

3.1 Trajectory

The main geometrical feature is trajectory. All the other concepts would rely on it
in the rule-based analysis since shape ratio and velocity are trajectory-dependant
measurements. Its calculation is directly related to composed-trajectories division
algorithm, due to its calculation based on trajectory angle, θ, which is the basis
to compute all the other measurements, where trajectory angle is:

θ = atan
Δy

Δx
= atan

|yt2 − yt1 |
|xt2 − xt1 |

(1)

Trajetory representation involves several measurements: (1) trajectory angle, cal-
culated per object’s sample θ = {θ1, θ2, ..., θn−1}, (2) global trajectory angle to
describe the general movement of the object along time, (3) vertical object di-
rectionality to depict whether the object moves vertically or not, (4) horizontal
object directionality to represent whether the object moves horizontally or not,
(5) quadrant which is a condense depiction of the general directionality of the
object’s movement whose values are 1, 2, 3, 4 as shown in Figure 4, (6) statistical
measurements, which include maximum maxT , minimum minT , average μT and
standard deviation σT , to consider the variety of the object’s samples within the
object classification and indexing.

120 V. Fernandez Arguedas, K. Chandramouli, and E. Izquierdo

Fig. 4. Quadrant measurement scheme

3.2 Shape Ratio

After the application of the composed-trajectories division algorithm, each new
object, B, is composed by a set of representations, B = b1, b2, ..., bn which have
the same physical properties.

Shape ratio concept reflects not only the object general size but also its shape
and proportion. The former is determined by the number of pixels composing the
object’s representation bounding box. While, the latter is pictured as the bound-
ing box dimentions ratio. These geometrical features compute the behaviour of
an object representation, in order to consider all the object’s samples, several
statistical measurements, which include maximum maxSR, minimum minSR, av-
erage μSR and standard deviation σSR, are computed and considered as part of
the object index.Shape ratio concept is highly dependant of the object trajectory
and, therefore, dependant of its behaviour.

3.3 Velocity

Velocity feature procures a highly valuable information about the object category
for classification in certain situations, i.e., when an object velocity overpasses a
certain threshold, the object is classified as a car, due to the real-world physical
constraints placed on the concept Person. However, there are ranges of values
where object categories are not so easily distinguishable. For that reason, velocity
feature is used to discard in case of ambiguity between concepts.

A geometric-based method is applied to calculate velocity feature. Considering
each object, B, consists on a set of visual representations, B = b1, b2, ..., bn, the
geometric-based method follows the scheme shown in Figure 5 to calculate: (i) the
visual distance between consecutive object’s samples and (ii) the visual object
velocity. To take all the object samples into consideration, several statistical
measurements, which include maximum maxV , minimum minV , average μV

and standard deviation σV , are computed and considered as part of the object
index.

Behaviour-Based Object Classifier for Surveillance Videos 121

Fig. 5. Velocity calculation scheme

4 Experimental Results

The performance analysis of the proposed geometrical features is achieved by
constructing a behaviour-based object classifier. First, the presented geometri-
cal features are extracted and constitute the basis for the behaviour-based rule
classifier. Since, each behaviour model depicts the object characteristics, a set of
rule based membership functions are created. These membership functions are
extrapolated from the marginal training sample created from the manually anno-
tated dataset. The membership functions for different geometrical features have
been calculated and are similar to one shown in Figure 6, calculated for shape
ratio. In order to evaluate the performance of this object classification approach
and the proposed geometrical features, behaviour-based object classification was
applied to a variety of outdoor video sequences provided by IEEE International
Conference on Advance Video and Signal based Surveillance, AVSS 2007.

Fig. 6. Shape ratio membership function

Through a careful examination of the dataset, two object categories were
noted to be highly repetitive in the sequences, namely Person and Vehicles (or
Car). The proposed object classifier categorises each extracted bounding box
region as person, vehicle or unknown depending on its geometrical features and
the behaviour model established in the object classifier. In order to study the

122 V. Fernandez Arguedas, K. Chandramouli, and E. Izquierdo

efficiency of the proposed object classifier, a ground truth has been manually
annotated. A total of 1376 objects were included, a 6% were person while a
94% were vehicle. Due to the imposed guidelines for the manual annotation
and the challenges introduced by the motion analysis component, objects pre-
senting certain constraints such as small blob size, partial occlusion of the ob-
ject over a 50% or multiple objects coexisting in a blob, were annotated as
unknown.

The proposed approach classifies objects depending on their behaviour model
and is independent of the object’s appearance. As previously stated behaviour
features are extracted from the analysis of motion trajectory. Velocity feature
provides a highly valuable information when an object overpasses a certain speed,
however, in limited-speed roads, velocity cannot differentiate between object cat-
egories. Similarly, Shape Ratio feature considers not only the bounding box ratio
but also the real size of the object. A fuzzy distance measure was assigned for the
behaviour-based classifier to each object, to represent the certainty of the classi-
fier. The experimental evaluation of the proposed behaviour-based classification
is compared with appearance-based classification as depicted in Figure 8. How-
ever, prior to a comparative analysis, an evaluation of the discriminative power
of the proposed geometrical features is shown in Figures 7(a),7(b). Figure 7(a)
shows an average 35% performance for the concept vehicle, which outperforms
in 20% the performance obtained for concept person. While for the feature Size
(refer to Figure 7(b)), the concept vehicle outperforms the concept person in an
average of 40%. The results obtained for person can be related to the sparseness
of this object category within the ground truth, generating a less accurate model.
On the other hand, the results for the concept Vehicle, generally exceed 30% and
35% for the geometrical features shape ratio and size, respectively. Vehicle re-
sults are limited for two reasons: (i) the road appearing in the surveillance video
dataset has speed limitation and vehicles do not exceed person’s speed and (ii)
the appearance of vehicles with different silhouettes and shape ratios, some of
them really similar to a person’s shape ratio. The improvement of the anomalies
between the interannotated agreements shows a 30% precision increase over 10%
recall.

In [8], an exhaustive evaluation of appearance based feature study has been
performed. In Figure 8, the presented behaviour-based object classifier is evalu-
ated against an appearance-based object classifier built over multiple low-level
visual primitives namely MPEG - 7 Colour Layout Descriptor, Edge Histogram
Descriptor, Colour Structure Descriptor and Dominant Colour Descriptor. From
the results presented in Figure 8, the behaviour-based models provide improved
results for recall greater than 0.7. This characteristic is significant in case of
both Vehicle/Car and Person. The results indicate the average performance of
the multiple visual primitives from the appearance-based classifier. Similarly the
behaviour-based feature model is an average of performance obtained on pixel
and shape ratio features.

Behaviour-Based Object Classifier for Surveillance Videos 123

(a) Shape Feature (b) Size Feature

Fig. 7. Retrieval performance of the shape and size features

Fig. 8. Comparison of retrieval performance for appearance and behaviour based fea-
ture models

5 Conclusions and Future Work

In this paper, an investigation into the non-appearance based classification mod-
els is presented. The behaviour model based classifier is largely dependent on
the motion trajectories exhibited by different objects, which are used to classify
objects into semantic categories. The future work will focus on videos with non-
speed-limited vehicles to be analysed to prove the importance of velocity concept
for concept disambiguation. Moreover, a comprehensive object taxonomy will be
developed to represent relationship between semantic categories. In addition, the
object taxonomy will be formalised using semantic web languages to establish
correlation with behavioural features with geometrical properties. Such an ob-
ject representation is intended to enhance the inherent reasoning and inference
process of the semantic media repositories containing surveillance videos.

124 V. Fernandez Arguedas, K. Chandramouli, and E. Izquierdo

Acknowledgments. The research was partially supported by the European
Commission under contract FP7-SEC 261743 VideoSense.

References

1. McCahill, M., Norris, C.: Estimating the extent, sophistication and legality of CCTV
in London. In: CCTV, pp. 51–66 (2003)

2. Piciarelli, C., Micheloni, C., Foresti, G.: Trajectory-based anomalous event detec-
tion. IEEE Transactions on Circuits and Systems for Video Technology 18(11),
1544–1554 (2008)

3. Schiele, B., Crowley, J.: Recognition without correspondence using multidimensional
receptive field histograms. International Journal of Computer Vision 36(1), 31–50
(2000)

4. Pontil, M., Verri, A.: Support vector machines for 3D object recognition. IEEE
Transactions on Pattern Analysis and Machine Intelligence 20(6), 637–646 (1998)

5. Bashir, F., Khokhar, A., Schonfeld, D.: Real-time motion trajectory-based indexing
and retrieval of video sequences. IEEE Transactions on Multimedia 9(1), 58–65
(2007)

6. Javed, O., Shah, M.: Tracking and Object Classification for Automated Surveillance.
In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS,
vol. 2353, pp. 343–357. Springer, Heidelberg (2002)

7. Stauffer, C., Grimson, W.: Learning patterns of activity using real-time tracking.
IEEE Transactions on Pattern Analysis and Machine Intelligence 22(8), 747–757
(2000)

8. Fernandez Arguedas, V., Zhang, Q., Chandramouli, K., Izquierdo, E.: Multi-feature
fusion for surveillance video indexing. In: 12th International Workshop on Image
Analysis for Multimedia Interactive Services (April 2011)

Author Index

Baudry, Benoit 25
Bauer, Oliver 61
Ben David, Olivier-Nathanael 25
Bennaceur, Amel 79

Chandramouli, Krishna 88, 116
Corazza, Anna 42

Di Martino, Sergio 42
Dupplaw, David 100

Fernandez Arguedas, Virginia 116

Howar, Falk 61

Issarny, Valérie 79
Izquierdo, Ebroul 88, 116

Johansson, Richard 79, 100

Lamprecht, Anna-Lena 1
Lewis, Paul 100

Maggio, Valerio 42
Margaria, Tiziana 1
Matthews, Michael 100
Moschitti, Alessandro 34, 79

Neubauer, Johannes 61

Piatrik, Tomas 88

Saadi, Rachid 79
Sauer, Thomas 16
Scandariato, Riccardo 25
Scanniello, Giuseppe 42
Schaefer, Ina 1, 16
Severyn, Aliaksei 34
Spalazzese, Romina 79
Steffen, Bernhard 1, 61
Sykes, Daniel 79

Yskout, Koen 25

	Title
	Preface
	Organization
	Table of Contents
	Software and Secure Systems
	Comparing Structure-Oriented and Behavior-Oriented Variability Modeling for Workflows
	Introduction
	Case Example
	Structure-Oriented Variability Modeling
	Behavior-Oriented Variability Modeling
	Related Work
	Conclusion and Perspectives
	References

	Towards Verification as a Service
	Introduction
	Related Work
	Verification as a Service
	Verification Workflows
	Workflow Execution
	Evolution

	Application Scenario
	Conclusion and Future Work
	References

	Requirements-Driven Runtime Reconfiguration for Security
	Introduction
	Change Patterns
	Reconfiguration
	Related Work
	Architectural Evolution
	Run-Time Adaptability

	Conclusion and Outlook
	References

	Machine Learning for Software Systems
	Large-Scale Learning with Structural Kernels for Class-Imbalanced Datasets
	Introduction
	Cutting Plane Algorithm with Sampling
	Improving CPA with Sampling
	Sampling Strategy for Imbalanced Data
	Parallelization

	Experimental Evaluation
	Related Work
	Conclusions
	References

	Combining Machine Learning and Information Retrieval Techniques for Software Clustering
	Introduction
	Related Works
	The Proposed Approach to Cluster Software Systems
	Feature Extraction and Zones
	Probabilistic Model
	Clustering
	K-Medoids
	Group Average Agglomerative Clustering

	Experimental Assessment
	Measures
	Data Sets

	Results and Discussion
	Conclusions
	References

	Reusing System States by Active Learning Algorithms
	Introduction
	Online Conference Service
	Active Learning
	Reusing System States
	Domain-Specific Reuse of System States
	Case Study
	Conclusions
	References

	Ontology and Knowledge Representations
	Inferring Affordances Using Learning Techniques
	Introduction
	Automatic Service Composition
	Affordances
	Legacy Applications

	Affordance Learning
	Typical Interface
	Learning Problem

	Potential Solution: Machine Learning of Categorisers
	Introduction to Machine Learning
	Representations for Categorisation

	Conclusions
	References

	Predicting User Tags Using Semantic Expansion
	Introduction
	Related Research
	Wikipedia as the Source of Knowledge
	Overview of the Proposed Framework
	Bag-of-Articles Classifier

	Alternative Approaches for Predicting User-Tags
	Wordnet-Based Classification
	Filename-Based Classification

	Evaluation
	Closed Set Annotation
	Open Set Annotation

	Conclusion and Future Work
	References

	LivingKnowledge: A Platform and Testbed for Fact and Opinion Extraction from Multimodal Data
	 Introduction
	 Testbed Analysis Platform
	Data Representation
	Testbed Architecture

	 Extracting Facts and Opinions
	 Text Analysis
	 Image Analysis
	 Page Layout Analysis

	 Multimedia Applications
	 Media Content Analysis
	 Future Predictor

	 Conclusion
	References

	Behaviour-Based Object Classifier for Surveillance Videos
	Introduction
	Object Classification Based on Geometrical Features
	Geometrical Features Extraction
	Trajectory
	Shape Ratio
	Velocity

	Experimental Results
	Conclusions and Future Work
	References

	Author Index

