
Chapter 1
Computation of Green’s Functions
for Ocean Tide Loading

M. S. Bos and H.-G. Scherneck

The devil is in the details

1 Introduction

This chapter will discuss the computation of the deformation of the solid Earth due
to external forces. It is a classical problem that was studied more than a century ago
by famous people such as Thomson and Tait (1867) and Lamb (1895). They were
followed by Love (1911) and Hoskins (1920) in the beginning of the twentieth
century. Since then it has been studied extensively by seismologists who are
interested in modelling the free oscillations of the Earth that occur after large
earthquakes. Important contributions to this area were made by Pekeris and Jarosch
(1958) and Alterman et al. (1959) which still forms the basis of what we will
describe in this chapter. A thorough description of the the theory of the free
oscillations of the Earth can be found in the textbook by Dahlen and Tromp (1998).
An older but still good reference is the review article by Takeuchi and Saito (1972).

The reader could therefore accuse us of writing about a topic that has already
been described. However, we feel that current literature does not pay much
attention to the practical details of how a given profile of the density and elastic
properties of the Earth are to be used to compute these deformations and it is our
objective to fill this gap. We hope that a researcher or Ph.D. student who wants to
learn more about this topic finds in our chapter a good starting point where all
assumptions are clearly explained and where enough details are given to imple-
ment the equations into a computer program.
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We will only look at deformations caused by the varying weight of the ocean
tides, also known as ocean tide loading (OTL). With the current accuracy by which
these tidal deformations can be observed at the surface, we can ignore the ellip-
ticity of the Earth and its rotation and assume that the mechanical properties of the
Earth are the same for all orientations and only vary along the radius of the Earth.
With sufficient accuracy we can also assume that the deformation is elastic or at
least deviates only slightly from a pure elasticity.

Next, the weight of the ocean tides is normally decomposed into a sum of point
loads. The advantage is that, once you know the deformation of the Earth under a
single point load, and assuming that the deformations are small enough so that the
principle of superposition holds, you can compute the deformation of all point
loads in a similar way and add them up to get the total. The deformation due to a
point load, which is a Dirac delta function, is called a Green’s function. One of the
first attempts to compute such a Green’s function was given by Slichter and
Caputo (1960) although they used a circular disc load instead of the actual limit of
reducing the radius of the disc to zero and they ignored any gravity effects due to
the mass distribution inside the Earth.

Longman (1962, 1963) was the first to develop the point load into a sum of
Legendre polynomials and computed this sum up to degree 40. Farrell (1972)
continued the work of Longman and extended the summation up to a degree of
10,000. Farrell’s contribution was also a better understanding of the problem at
degree 1 where the deformation is invariant with respect to a simple translation of
the whole Earth. He also emphasised the use of the analytical solution of the
deformation of a half-space as the asymptotic solution of the deformations of
the spherical Earth. These asymptotic solutions can not only be used to check the
numerical solutions but are also essential to find the value of the infinite sum of
Legendre polynomials.

Longman and Farrell used the elastic properties and density profiles of the Earth
that were computed by seismologists. An example is the Preliminary Reference
Earth Model (PREM) published by Dziewonski and Anderson (1981). The earth-
quakes that are being studied by seismologists have periods of several seconds and,
since tides have a period of several hours, one can wonder whether the same elastic
properties should be used. So far, no observations that challenge this assumption
have ever been presented.

In this chapter we explain how the these elastic properties and density profiles
can be transformed in so-called Love numbers. These numbers can be used to
compute the necessary Green’s functions. The summation of Love numbers has
already been described in detail by, among others, Farrell (1972), Francis and
Mazzega (1990), Jentzsch (1997), Guo et al. (2004) and recently by Agnew
(2007), and therefore will only be discussed briefly. It is the computation of the
Love numbers that we will focus on. We will start at the very beginning, which
means we need to start by deriving the set of differential equations that govern the
deformation of the solid Earth.
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2 Equations of Motions and Rheology

This section will derive the linearized equations of motion in the same way as
Dahlen (1974) although we give more attention to the interpretation of all the terms.

We restrict our discussion to models of the Earth that are symmetric, non-
rotating and elastic isotropic (SNREI) and everywhere in hydrostatic equilibrium.
The positions of the mass particles of the Earth are denoted by x: At the same time
we will use these initial locations to label the particles. Let rðx; tÞ be the position
of particle with label and initial position x after the deformation at time t. Now we
can write the Lagrangian displacement sLðx; tÞ as (Dahlen 1974)

rðx; tÞ ¼ xþ sLðx; tÞ ð1:1Þ

Instead of following the deformation of a particle with label x that was initially
at position x; one may describe the deformation over time one finds at the fixed
position r inside the Earth. This is the Eulerian description of the deformation.

It will be convenient to write the changes in density q and potential / as small
perturbations from a reference state. We have (Dahlen 1974)

qLðx; tÞ ¼ q0ðxÞ þ qL
1ðx; tÞ ð1:2Þ

qEðr; tÞ ¼ q0ðrÞ þ qE
1 ðr; tÞ ð1:3Þ

/Lðx; tÞ ¼ /0ðxÞ þ /L
1ðx; tÞ ð1:4Þ

/Eðr; tÞ ¼ /0ðrÞ þ /E
1 ðr; tÞ ð1:5Þ

The subscript or superscript L and E indicate whether we are dealing with a
Lagrangian or a Eulerian function. Generally, the coefficients of the functions qL

and qE are not equal, neither those of /L and /E; because they depend on a
different set of variables, the Lagrangian or Eulerian positions. Nevertheless, they
describe the same changes in density and potential in the Earth. The subscript 0
represents the reference state. The subscript 1 indicates that it is a perturbed
quantity.

It is good to be aware of the difference between the Lagrangian and Eulerian
description, especially at the boundaries. However, we will derive here a linearized
set of equations that describe small perturbations from the reference state. As a
result, we will encounter many situations where this difference of description is of
no importance. An example is the case where the reference density is multiplied by
a small value �: In these case we have q0ðxÞ� � q0ðrÞ�; where x and r are related
through (1.1). In addition, for the perturbed density we have qE

1 ðx; tÞ � qE
1 ðr; tÞ.

Similar relations hold for the reference potential /0 and the perturbed potential /1:
We will assume that no mass is created or destroyed which leads to the

following equation of continuity:
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qE
1 ðr; tÞ þ q0ðrÞr � sLðx; tÞ þ sLðx; tÞr � q0ðrÞ ¼ 0

qE
1 ðr; tÞ ¼ �r � q0ðxÞsLðx; tÞ½ �

ð1:6Þ

Note the change of q0ðrÞ to q0ðxÞ in the second line of this equation which is
allowed as long as s is small.

In words, the first line of (1.6) states that the sum of the perturbed density in a
small element plus the density change caused by the deformation of the element
plus moving the element to another position where the reference density is dif-
ferent is constant.

Note that we have written the changes in density as the sum of the reference
state plus a small perturbation. The small element can thus be considered to have a
density q1 and to be floating through a reference density field of q0:

The gradient in density can be smooth or abrupt. At a layer interface the
gradient is abrupt. A vertical displacement of the interface implies a density
perturbation in the Eulerian system, and this density perturbation appears in
Poisson’s equation as the source of the perturbed potential to be discussed next.

Poisson’s equation relates the gravitational potential to the density inside the
Earth. Before we present this equation, the sign convention of the potential must
be discussed. Normally, a potential /0 of a particle represents the amount of
energy it contains. Thus, if we consider a particle above the Earth’s surface, then
the higher it is, the more gravitational potential energy it will have.

To get the reference gravitational force per unit mass, g0; at a fixed point inside
the Earth, one must take the negative gradient of the potential /0 :

g0ðrÞ ¼ �r/0ðrÞ ð1:7Þ

The perturbed gravity force per unit volume:

q0ðrÞgE
1 ðr; tÞ ¼ �q0ðrÞr/E

1 ðr; tÞ � qE
1 ðr; tÞr/0ðrÞ

¼ �q0ðxÞr/E
1 ðx; tÞ � r � q0ðxÞsLðx; tÞ½ �g0ðxÞ

ð1:8Þ

Here we have made use of (1.6) to substitute q1 and again replaced r vectors for
x vectors.

In geodesy, one sometimes inverses the sign of / to make the force equal to the
gradient of the potential, without adding a minus sign (Jekeli 2007). Depending on
the sign convention of /; Poisson’s equation is

r2/0ðrÞ ¼ �4pq0ðrÞG ð1:9Þ

r2/E
1 ðr; tÞ ¼ �4pqE

1 ðr; tÞG ð1:10Þ

where G is the gravitational constant. Farrell (1972), Dahlen (1974), Wu and
Peltier (1982) and Dahlen and Tromp (1998) all use the plus sign while Pekeris
and Jarosch (1958) and Alterman et al. (1959) used the minus sign in (1.9). Since
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the work of Alterman et al. was very influential, their convention has been fol-
lowed by many people such as Kaula (1963), Okubo (1988), Sun and Sjöberg
(1999) and Guo et al. (2004). In this chapter we will follow the definition of
Dahlen (1974) which means that we keep the potential energy interpretation of /
and use the plus sign in (1.9) and (1.10).

Next, since we assume that the Earth is in hydrostatic equilibrium, there is a
uniform pressure p0 at each depth layer in the reference state. This pressure p0

inside the Earth increases with depth because the weight of the layers of rock
above increases. A particle that is displaced to a deeper layer will therefore
experience an upward buoyancy force bL: Remembering that we have to take the
negative gradient to compute the force of our potential, the buoyancy force per unit
volume to first order is

bLðx; tÞ ¼ r sLðx; tÞ � q0ðxÞg0ðxÞ½ �
¼ �r sLðx; tÞ � q0ðxÞr/0ðxÞ½ �

ð1:11Þ

In addition, a force is required in a solid body to change the relative distances
between the particles. In fact, it is the gradient of the change in distances between
the particles, the strain, that relates linearly with the elastic force. This is called
Hooke’s law, and it is a linear law for small displacements. In three dimensions
this linear relation for an isotropic material is given by the Cauchy stress tensor
TL: It requires a constant for the change in volume, the bulk modulus j; and
another constant for the amount of shearing called l: For our purpose we will
assume that we can use the adiabatic bulk modulus. The relation of the Cauchy
stress tensor TL with the deformations sLðx; tÞ; also known as the constitutive law,
is given by

TLðx; tÞ ¼ j� 2l
3

� �
ðr � sLðx; tÞÞIþ l rsLðx; tÞ þ rsLðx; tÞð ÞT

� �
ð1:12Þ

where I is the identity tensor. We again add a subscript L to T to indicate it is
Lagrangian: The elastic forces act on the deforming body. We implicitly assume
that these deformations are so small that there is no significant change in the
surface of the body. Otherwise the amount of pressure that is acting on the body
would be different before and after the deformation. It is convenient to introduce
another variable k which is defined as k ¼ j� 2l=3: The pair k and l are called
the Lamé parameters. The elastic parameters are the entry point where—more
generally speaking—the rheology of the Earth can enter. Rheology is the umbrella
concept under which elasticity may be generalised to comprise a range of prop-
erties of solids describing how they deform, either instantaneously, by creep, or, in
the extreme limit, by fluid-like flow or brittle failure. We will remain in the realm
of linear laws (ignore stress-dependence of the moduli), avoid the brittle regime,
and also ignore heat flow, convective instabilities and phase changes.

From (1.12) it is clear that when there are no displacements, there is no elastic
force. However, the Earth is already in a strained situation even without external
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forcing because of the weight of the layers inside the Earth that are pressing on
the layers beneath them (Love 1911). This weight causes the hydrostatic pressure
p0 discussed before for the buoyancy force. Therefore, (1.12) must be interpreted
as the deviatoric stress tensor, which is the stress difference with respect to the
reference stress state T0: Any additional stresses introduced into the Earth due to,
for example, earthquakes, plate tectonics or mantle convection, which would
create a 1

3trðT0Þ 6¼ p0; are neglected.
The last equation we need is Newton’s second law of motion, linearised, that

states that the acceleration of a small element is determined by the sum of the
gravity force of (1.8), the buoyancy force bL of (1.11), the divergence of the stress
tensor TL and a body force f: It is also known as the momentum equation

q0ðxÞD2
t sLðx; tÞ ¼ �q0ðxÞr/E

1 ðx; tÞ�
r � q0ðxÞsLðx; tÞ½ �g0ðxÞ�
r sLðx; tÞ � q0ðxÞg0ðxÞ½ � þ r � TLðx; tÞ þ fðx; tÞ

ð1:13Þ

The term D2
t on the left is the second order material (or Lagrangian) derivative

with respect to time t. The fðx; tÞ is body force per volume and assumed to be
small enough so that fðx; tÞ ¼ fðr; tÞ:

Equations 1.10 and 1.13 are the same as those presented by Farrell (1972). Note
that /E

1 is the only Eulerian variable which will require some attention at the
boundaries.

3 Spheroidal and Toroidal Motions

The tensor equations derived in Sect. 1.2 are concise and clear but they are not
very convenient for numerical computations. To solve the tensor equations of
motions we will chose a reference frame with the origin at the centre of mass of the
undeformed Earth and use spherical coordinates ðr; h; kÞ containing the radius, co-
latitude and longitude, and unit direction vectors er; eh and ek: This will produce
expressions for the gradient, divergence and Laplacian that are more complicated
than for a Cartesian coordinate system but it will facilitate the definition of the
boundary conditions that will be discussed in Sect. 1.6

Since the east, north and up direction are always orthogonal to each other, one
can avoid the theory of general curvilinear tensor components and use the more
straightforward method described by Malvern (1969, App. II), Arfken (1985,
Chap. 2) and Dahlen and Tromp (1998, App. A) to derive the desired expressions.
Malvern and Dahlen and Tromp also list the expression for the Cauchy stress
tensor in spherical coordinates. Hoskins (1910, 1920) and Pekeris and Jarosch
(1958) present a complete set of all equations of motion expressed in spherical
coordinates.
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We will now repeat their derivation of these equations, but to do so we first
need to put some limits on the shape of our deformation. According to Helmholtz’s
theorem, any differentiable vector field, thus also our deformations s; can be
represented as the sum of an irrotational vector field which is the gradient of a
scalar potential f plus a solenoidal (equivoluminal) vector field which is the curl of
a vector potential A; see Arfken (1985, Chap. 1) and Malvern (1969, Chap. 8):

s ¼ rf þr � A ð1:14Þ

with r � A ¼ 0: In the presence of a body force b the equation of motion in terms
of the potentials is

ðkþ 2lÞr r2f þ lr�r2Aþ qb ¼ qr o2f

ot2
þ qr�r o2A

ot2
ð1:15Þ

This equation is separable into a solenoidal part, independent of f, and a
spheroidal part, independent of A; if we know how to partition the body force b
into a curl-free and a divergence-less component (Lamb 1895). If the body force is
zero, then (1.15) decouples into the two seismic wave equations, compressional

waves with speed va ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðkþ 2lÞ=q

p
and shear waves with speed vb ¼

ffiffiffiffiffiffiffiffi
l=q

p
:

The division of s into a spheroidal part which is both compressible and curl-
free, and a complementary solenoidal part affords us a road fork in our story.
Before we start to walk down the spheroidal road, let us remind ourselves of the
decomposition of the vector potential A into a poloidal and a toroidal part
according to Backus (1986):

r� A ¼ r2ðgrÞ þ r � ðhrÞ ¼ Sþ T ð1:16Þ

where

S ¼ r o

or
ðr gÞ

� �
� rr2g ð1:17Þ

T ¼ �r� ðrhÞ ð1:18Þ

It shows that the divergence-free displacements can themselves be related to
scalar potentials g and h. The poloidal part, S; will take part in the deformation due
to a gravitating surface load with traction along the surface normal; the toroidal
part, T; is insensitive to potential forces but susceptible to surface shear tractions.

In a radially symmetric planet the body force is due to the gravity potential of
the load, and thus the curl of this force is zero. However, this part can be regarded
as a particular solution of a non-homogeneous problem. The general problem with
zero boundary conditions contains both the spheroidal and the toroidal part, and its
solution the full array of free oscillations. We will restrict ourselves to the sphe-
roidal part:

s ¼ rf þr2ðgrÞ ð1:19Þ
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For deformations due to traction, see Merriam (1985, 1986). Expanding (1.19)
into its spherical coordinates gives us

s ¼
u
v
w

0
@

1
A ¼

df

dr
� 1

r

d2g

dh2 �
1

r tan h
dg

dh
� 1

r sin2 h

d2g

dk2

1
r

df

dh
þ 1

r

dg

dh
þ d2g

drdh
1

r sin h
df

dk
þ 1

sin h
1
r

dg

dk
þ d2g

drdk

� �

0
BBBBBB@

1
CCCCCCA

ð1:20Þ

Owing to radial symmetry, the spheroidal deformation can be decomposed with
spherical harmonics as angular base functions and radial factor functions for the
depth-dependence:

u ¼
X1
n¼0

Xn

m¼�n

Um
n ðrÞYm

n ðh; kÞ ð1:21Þ

v ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞ

dYm
n ðh; kÞ
dh

ð1:22Þ

w ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞ

dYm
n ðh; kÞ

sin h dk
ð1:23Þ

We can see that UðrÞ is associated with the radial deformation and VðrÞ with
the horizontal deformation. We may regard

W ¼
X1
n¼0

Xn

m¼�n

Vm
n ðrÞYm

n ðh; kÞ ð1:24Þ

as a potential of horizontal displacement, delivering the vectorial components

when we let the horizontal gradient operator ½ĥdh; k̂ðsin hÞ�1dk� act on it.
The perturbed potential /1 that appeared in (1.13) can also be written as the

sum of spherical harmonics and, following tradition, the part containing the radial
function will be represented by PðrÞ: Note that for the horizontal displacement we
need to differentiate the spherical harmonics by h or k:

As we will argue below, we can restrict our treatment of the Spherical Har-
monics of order m ¼ 0; i.e. Legendre Polynomials of the first kind. At the same
time we can avoid discussing normalisation and in particular the different variants
that you may encounter in the literature.

The restriction to m ¼ 0 comes without any sacrifice as to physics, since the
physically relevant properties relate only to the spherical harmonic degree, while
the spherical harmonic order carries information about such arbitrary things like
pole location and azimuthal orientation; after all our model planet is radially
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symmetric (Phinney and Burridge 1973). Thus, for (1.21) we can equally well
write

u ¼
X1
n¼0

Um
n ðrÞ

Xn

m¼�n

CnmYm
n ðh; kÞ

and mutatis mutandis for v and w, where the dimensionless coefficients Cnm come
from the expansion of the forcing field (so the same set applies to u, v and w). We
are only interested in the radial functions, so contemplating the simplest case for
m, m ¼ 0 suffices.

If we now fill in (1.20) for given degree n and order 0 into the equations of
motion, (1.10) and (1.13), in spherical coordinates and drop the subscript n and
superscript 0 from the coefficients U0

n ; V0
n and P0

n; we get (Alterman et al. 1959;
Wu and Peltier 1982)

x2q0U � q0
dP

dr
þ g0q0X � q0

d

dr
ðg0UÞ þ d

dr
ðkX þ 2l

dU

dr
Þþ

l
r2

4
dU

dr
r � 4U þ nðnþ 1Þð�U � r

dV

dr
þ 3VÞ

� �
¼ 0

ð1:25Þ

q0x
2Vr � q0P� g0q0U þ kX þ r

d

dr
l

dV

dr
� V

r
þ U

r

� �� �

þ l
r

5U þ 3r
dV

dr
� V � 2nðnþ 1ÞV

� �
¼ 0

ð1:26Þ

d2P

dr2
þ 2

r

dP

dr
� nðnþ 1Þ

r2
P ¼ 4pGðdq0

dr
U þ q0XÞ ð1:27Þ

with

X ¼ dU

dr
þ 2

r
U � nðnþ 1Þ

r
V ð1:28Þ

Equation 1.28 represents the dilatation of the material. Due to the sign differ-
ence in Poisson’s equation, Alterman et al. use �P in (1.25)–(1.27). In addition,
we have assumed that the deformation is periodic with an angular velocity of x:
The second time derivative of the deformation s can in this case be written as
�x2s:

Next, (1.25) and (1.27) have been divided by Y0
n and (1.26) has been divided by

dY0
n=dh: This is important to remember for the case n ¼ 0 which results in

dY0
n=dh ¼ 0: For n ¼ 0 one should simply set V ¼ 0 and discard (1.26).
To derive (1.25)–(1.27) from (1.10) and (1.13) we not only needed the

expressions of the gradient and divergence in spherical coordinates but also made
use of the following relation:
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d2Y0
n

dh2 þ cot h
dY0

n

dh
¼ �nðnþ 1ÞY0

n ð1:29Þ

The result is that we have reduced the set of coupled differential equations from
three to one dimensions, although one has to compute them repetitively for all
values of degree n. In addition, since we are using spherical coordinates, we can
more easily define the boundary conditions.

While some numerical methods, such as the spectral method discussed in Sect.
1.9, may integrate the second-order differential equations (1.25)–(1.28) with suf-
ficient accuracy, we also give the six equations of first order in or; using the
auxiliary variables

a ¼ jþ 4
3
l b ¼ j� 2

3
l g ¼ 3jþ 2l

R ¼ srr S ¼ srh

ð1:30Þ

where a and b relate to the seismic longitudinal (compressional) and shear
velocities

va ¼
ffiffiffiffiffiffiffiffi
a=q

p
vb ¼

ffiffiffiffiffiffiffiffi
b=q

p
ð1:31Þ

respectively, parameters that are normally tabulated by seismologists for vari-
ous depths of the Earth. As before, j is the bulk modulus, which is the inverse of
the compressibility, and l is the shear modulus or rigidity. R and S are two
components from our Cauchy stress tensor TL and represent the radial and shear
stress. Rewriting their definition provides us with two of the six first order dif-
ferential equations:

dU

dr
¼ 1

a
� 2b

r
U þ nðnþ 1Þb

r
V þ R

� �
ð1:32Þ

dV

dr
¼ � 1

r
U þ 1

r
V þ 1

l
S ð1:33Þ

Note that to here we deviate from (Dahlen and Tromp 1998, p. 271) who define
our scalar V as nðnþ 1ÞV : The third equation is provided by rewriting the defi-
nition of the auxiliary variable Q which denotes the perturbed gravity plus a term
ðnþ 1ÞP=r :

dP

dr
¼ �4pGqU � nþ 1

r
P þ Q ð1:34Þ

In Sect. 1.6 we will see that this auxiliary variable will facilitate defining the
boundary condition at the surface. Filling in the definitions of R, S and Q into
(1.25, 1.26, 1.27) gives us (Dahlen and Tromp 1998):
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dR

dr
¼ �x2qþ 12jl

ar2
� 4gq

r

� �
U þ nðnþ 1Þ � 6jl

ar2
þ gq

r

� �
V

� 4l
ar

R þ nðnþ 1Þ
r

S þ qQ

ð1:35Þ

dS

dr
¼ � 6jl

ar2
þ gq

r

� �
U � x2qþ lðn2 þ n� 2Þ

r2

� �
V

þ q
r

P � b
ar

R � 3
r

S

ð1:36Þ

dQ

dr
¼ � 4pGq

r
ðnþ 1ÞU � nðnþ 1ÞV½ � þ n� 1

r
Q ð1:37Þ

Gravity acceleration g ¼ gðrÞ can be computed from the density model. To
derive these equations we also made use of the relation:

dg0

dr
¼ � 2g0

r
þ 4pGq0 ð1:38Þ

Outside the Earth, only the first term on the right side of (1.38) would be
necessary. However, inside the Earth to the second term is also necessary. With the

usual notation y ¼ ½U; V ; P; R; S; Q�T :

dy

dr
¼ Ay ð1:39Þ

Another convention followed, for example, by Alterman et al. (1959), Long-
man (1962, 1963) and Farrell (1972) is to label vector y as ½y1; . . .; y6�: However,
note that the definition of y6 by Alterman et al. (1959) is different from our
Q because it lacks the ðnþ 1ÞP=r part and represents the true perturbed gravity
value. We prefer our semi-perturbed gravity parameter Q because it simplifies the
formulation of the boundary condition at the surface.

At large n the radial functions run over many orders of magnitude, so that the
equation system needs stabilisation. One method is to replace r and Y as follows

~r ¼ r

a
; q ¼ ðnþ 1Þ log~r and Y ¼ LZ ð1:40Þ

respectively, where a is the mean radius of the Earth and

L ¼ exp diag a
ffiffi
~r
p
; na

ffiffi
~r
p
; agðaÞ

ffiffi
~r
p
;

jð0Þ
ffiffiffiffi
~r3
p

ðnþ 1Þ ; jð0Þ
ffiffiffiffi
~r3
p

; gðaÞ
ffiffiffiffi
~r3
p

" #( )

ð1:41Þ
where j0 is the maximum incompressibility in the Earth, and to transform (1.39)
according to Lyapunov (Gantmacher 1950) into
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dZ

dq
¼ BZ ð1:42Þ

where

B ¼ L�1 a

nþ 1
exp

q

nþ 1

� �
AL� dL

dq

� �
ð1:43Þ

in which

L�1 dL

dq
¼ 3

2ðnþ 1Þ diag 1; 1; 1; 3; 3; 3½ � ð1:44Þ

Matrix B has been given in full in Appendix 1. This scaling is particularly
useful when one uses a numerical integration method such as Runga–Kutta to
solve the differential equations; see Sect. 1.9

4 Fluid Core

So far we have assumed that the Earth is a solid body but seismologists tell us that
the Earth has a fluid core. A fluid differs from a solid by having zero rigidity. Thus,
by setting the shear modulus l to zero in the Cauchy stress tensor, the equations
presented in Sect. 1.3 continue to be applicable and we are treating the fluid as a
very weak solid.

However, problems arise when the forcing period is taken to infinity to simulate
static forcing. This phenomenon has received a relatively large amount of attention
in the literature. We will now try to point out some main conclusions that have
been derived.

It was Longman (1963) who showed that, for the case of x ¼ 0; the (1.25) and
(1.26) are no longer independent in the fluid core. This can be seen by writing
these two equations in the following form:

d

dr
q0ðP� g0UÞ þ kX½ � þ q0g0X � ðP� g0UÞ dq0

dr
¼ 0 ð1:45Þ

q0ðP� g0UÞ þ kX ¼ 0 ð1:46Þ

From (1.46) one can deduce that the term within the square brackets of (1.45)
must be zero. If (1.46) is then used to rewrite (1.45) we have:

g0q0

k
þ 1

q0

dq0

dr

� �
X ¼ 0 ð1:47Þ

�N2

g0
X ¼ 0 ð1:48Þ
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Here we made use of the definition of the Brunt–Väisälä frequency NðrÞ that is
related to the stratification of the fluid:

N2ðrÞ ¼ � g2
0q0

j
� g0

q0

dq0

dr
ð1:49Þ

In a fluid k ¼ j: As was explained before, X is the dilatation of the material; see
(1.28). For a real Earth the dilatation is not always zero which leads us to the
conclusion that N ¼ 0 in (1.47) and this puts a new condition on the properties of
the fluid that was not needed before. This situation corresponds to the so-called
Adams–Williamson or neutral buoyancy condition. It means that the compress-
ibility of the fluid is such that, when a small parcel of liquid is pushed to a deeper
and denser layer, it will compress exactly to a volume with the same density as the
surrounding fluid. If, however, the parcel afterwards rises up again, then the
stratification of the fluid is stable, N [ 0: If the parcel continues to sink the
stratification is unstable, N\0:

The fact that the fluid core can only be in neutral buoyancy seems strange and is
called the Longman paradox (Dahlen 1974; Wunsch 1974; Chinnery 1975). One part
of the solution of this paradox is that one should be careful when taking the limit of
x! 0: The result of this limit also depends on the real stratification of the fluid.

If the stratification is unstable, a boundary layer develops that gets thinner for
increasing forcing period. In the extreme case of x ¼ 0; it represents an infinitely
thin layer but it still has a finite influence on the dynamics. The radial stress
experiences a jump in the boundary layer and is zero in the fluid. Because in a fluid
the radial stress is proportional to the dilatation, this means that X is zero in fluid
after all and that the Adams–Williams condition, or neutral buoyancy, is no longer
necessary to satisfy (1.47). In Sect. 1.7 we will discuss a homogeneous fluid which
means dq0=dr ¼ 0 and N\0: Thus, the stratification is unstable and, near the
boundary of the fluid core with the mantle, such a boundary layer develops.
Pekeris and Accad (1972) also discuss the results for a fluid with N ¼ 0: In this
case no boundary layer develops. For a stable stratified fluid, N [ 0; core oscil-
lations develop which get shorter and shorter wave-lengths for x! 0:

Although Pekeris and Accad (1972) provide analytically correct solutions for
the static deformation of the Earth with a fluid core, the fact that for an unstable
stratification the horizontal displacement goes to infinity in the boundary layer and
the fact that for a stable stratification an infinite amount of core oscillations are
produced, indicates that there are still some problems.

Dahlen and Fels (1978) opposed the notion of trying to solve a Fourier-trans-
formed problem in a fluid at the limit x ¼ 0 from extrapolating solutions for small
jxj[ 0: Before we revisit the arguments of Dahlen and Fels (1978) we give our
conclusion and recommendation. The static response cannot be obtained from
sinusoidal load responses as a limit x! 0; we endorse the use of a non-zero
frequency when solving the load problem.

Stripping the problem down to the essentials, Dahlen and Fels (1978) showed
that the same problem occurs in a stratified fluid in a box with hard side walls and a
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deformable lid exposed to a laterally homogeneous gravity field. The normal
modes of this system pile up around zero frequency. The inverse Fourier transform
employs the Cauchy principal value theorem for cases like this; however, as the
open interval (0, X) contains infinitely many poles, albeit countably many, the
principal value does not converge. In fact, if you expect a finite displacement to
result, the Fourier integral of such a signal does not exist, since it is not square-
integrable. Thus, if you expect a finite response at zero frequency (a doubtful
concept per se), or, alternately, a finite response at infinite time, in Fourier the time
is indistinguishable whether it is þ1 or �1: Thus, you need to involve causality.
Thus, Laplace transform and a Heaviside load history is the concept that is
applicable, not Fourier transform.

Our task is perhaps not to estimate the time it takes for the system to reach the
finite state within a given margin, but rather to determine the finite state. For that
purpose, Dahlen and Fels (1978) suggest that an ad hoc viscosity be used for the
core fluid. This will displace the poles of the inviscid system from the real fre-
quency axis, giving them a slight imaginary part. The system can now be solved
using the residual value theorem. The bottom line is that you would continue to
exploit the 6� 6 differential equations, changing the role of the shear modulus into
a viscosity and Laplace-transform the equations such that the constitutive relation
is expressed by

r ¼ 2l_� � � 	 ~r ¼ 2sl~� ð1:50Þ

and the �x2 factors are replaced by s2; s being the Laplace transform parameter.
Farrell (1972) circumvented these difficulties by setting x equal to the tidal

period of harmonic M2 (12.42 h). Since our main interest is to compute Green’s
functions for ocean tide loading, this approach is sufficient for us. Thus, it seems
more instructive to represent the problem for non-vanishing x; and again we
follow Dahlen and Tromp (1998, Chap. 8).

The vanishing shear stress in a fluid region has the consequence that horizontal
displacement becomes directly related to vertical displacement, potential pertur-
bation, and vertical stress:

V ¼ q0gðrÞU þ q0P� R

x2q0r
ð1:51Þ

This equation has been derived from (1.26) by setting l ¼ 0 and using the fact
that the radial stress R is in this case equal to kX: One can use (1.51) to substitute V
in (1.25) and (1.27) after which we are left with two second order differential
equations.

When we use the six first order differential equations, then in the fluid we lose
two rows from the differential equations, which reduce to
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dU

dr
¼ x2g0nðnþ 1Þ

r2
� 2

r

� �
U þ 1

j
� nðnþ 1Þ

x2q0r2

� �
R

þ nðnþ 1Þ
x2r2

P

ð1:52Þ

dR

dr
¼ �x2q0 �

4q0g0

r
þ nðnþ 1Þq0g2

0

x2r2

� �
U � nðnþ 1Þg0

x2r2
R

þ nðnþ 1Þq0g0

x2r2
� q0ðnþ 1Þ

r

� �
Pþ q0Q

ð1:53Þ

dP

dr
¼ �4pGq0U � nþ 1

r
Pþ Q ð1:54Þ

dQ

dr
¼ 4pGq0

nðnþ 1Þg0

x2r2
� nþ 1

r

� �
U � 4pG

nðnþ 1Þ
x2r2

R

þ 4pGq0
nðnþ 1Þ

x2r2
Pþ n� 1

r
Q

ð1:55Þ

At n ¼ 0; the matrix elements on the right-hand side simplify considerably. The
outcome being fairly obvious, we do not write it out. Since V ¼ 0 for n ¼ 0 the
Earth just inflates or deflates a bit but remains spherically symmetric (Dahlen and
Tromp 1998). As a result, the perturbed gravity is zero. If this is so, then we have
the following relation for our semi-perturbed gravity parameter Q :

Q ¼ � 1
r

P ð1:56Þ

which also provides us with the relation that states that no potential perturbation
is possible except for the Bouguer effect due to vertical displacement:

dP

dr
¼ �4pGq0U

If we do not suppose a solid inner core, the differential equations for the fluid
interior can for n ¼ 0 be shortened to a 2� 2 system in U and R (Longman 1963):

dU

dr
¼ � 2

r
U þ 1

j
R ð1:57Þ

dR

dr
¼ � x2q0 þ

4g0q0

r

� �
U ð1:58Þ

The general solution in a homogeneous sphere (constant j) is
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UðrÞ ¼ r exp
�i x

k
r

� �
C2 L �2� 2 i g

k x
; 3;

2 i x
k

r

� �	

þC1 U 2þ 2 i g

k x
; 4;

2 ix
k

r

� �
 ð1:59Þ

RðrÞ ¼ j exp
�i x

k
r

� �
2 C2 j r L �2� 2 i g

k x
; 3;

2 i x
k

r

� �	

þC1 � 2� i
x
k

r
� �

U 2þ 2 i g

k x
; 4;

2 i x
k

r

� �
 ð1:60Þ

where k ¼
ffiffiffiffiffiffiffiffi
j=q

p
the compressional wave speed in the fluid, La

nðzÞ ¼ Lðn; a; zÞ is
the generalised Laguerre polynomial and Uða; b; zÞ the Confluent Hypergeometric
function of the second kind. The latter is singular at r ¼ 0 so we only need the Ls.

5 Resonance Effects

We will tacitly assume that the Earth–Moon system has reached a stationary
situation. If you assume for the moment that there is no Moon and it suddenly
appears, you will have some start up effects, among others starting seismic free
oscillations which, owing to internal friction, slowly die out, resulting in the
periodic tidal deformations that we experience today. So, when we say that we
solve the tidal loading problem, we assume that the load acts on the surface with a
temporal periodicity sufficiently different from the resonance frequencies that
mode excitation can be neglected. In a purely elastic Earth, resonance occurs at
sharply defined frequencies; however, in a visco-elastic mantle the resonance loses
quality and the susceptible frequencies widen to finite intervals. As much as we are
aware of this complication, we will avoid it by restricting the claims of our
simplified approach to load frequencies well below one cycle per hour.

However, there is one resonance that needs attention, and it comes from the
shape and fluidity of the core in a rotating planet. The core and the mantle rotate
around slightly different axes, and the relative motion is known as Free Core
Nutation or Nearly-Diurnal Free Wobble. Both astronomical tides of degree two
and order one with a nearly-diurnal frequency and the associated ocean tides are
able to excite the resonance although none of the forcing frequency exactly
matches the 1 ? 1/435 cycles per sidereal day frequency of the resonance. Wahr
and Sasao (1981) have solved this problem by separating out the resonance in the
load Love numbers and adding the effect to the normal Love numbers h2; k2 and l2

(see Sect. 1.7 for their definition). This is possible since the resonance effects are
primarily in the degree n ¼ 2; order m ¼ 1 spherical harmonics, and the excitation
is due to the corresponding pro-grade ocean tide harmonic coefficients Cþ21 for
amplitude and �þ21 for phase; see Lambeck and Balmino (1974) for the notations. It
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adds a complex-valued contribution that can conveniently be computed for dif-
ferent ocean models with the parametrisation in Scherneck (1991):

Dh2ðxÞ
Dl2ðxÞ
Dk2ðxÞ

9=
; ¼ �i

4pGqwaX
5ðx� XRÞ

Cþ21

Un
expði�þ21Þ

S0h
S0l
S0k

8<
: ð1:61Þ

where XR is the angular rate of the resonance, Un the potential coefficient of the
luni-solar tide that generated the ocean tide whose pro-grade order-1 surface height
is represented by ðCþ21; �

þ
21Þ and the S0 coefficients signify the resonance strength in

the respective load Love numbers (Wahr and Sasao specified S0h ¼ �2:88 � 10�4;

S0l ¼ 9:16 � 10�6 and S0k ¼ �1:45 � 10�4Þ: Further modification is needed unless
an observed tide at the exact frequency x has been used to compute ðCþ21; �

þ
21Þ: If

we are forced to resort to frequency-domain interpolation, a factor is needed to
take the effect of resonance in the body and load tide Love numbers into account at
the instance of ocean tide generation, and possibly we have additional knowledge
of the variation in ocean dynamics across the resonance band. These are the factors
Rðx;x0Þ and Dðh; k;x;x0Þ in Wahr and Sasao (1981, Eqs. 4.5 and 4.6).

6 Boundary Conditions

Now that the differential equations are in place, we will address the boundary
conditions that they have to fulfil. Since our set of equations are only valid in
material that shows smooth variations in density and elastic properties (their radial
derivative must exist), we need to divide our Earth into spherical layers in order to
cope with the jumps in density and elastic properties. As a result, we must pre-
scribe boundary conditions at the Earth’s centre, at the boundaries between the
layers and at the Earth’s surface. We will start with the boundary conditions at
the centre of the Earth where the solutions are regular. This means that, for n 6¼ 1;
the displacements and perturbed potential are zero. Mathematically this statement
can be presented as

Uð0Þ ¼ 0; Vð0Þ ¼ 0; Pð0Þ ¼ 0 ð1:62Þ

In the case n ¼ 1 we have a situation where displacements and potential per-
turbation require an additional constraint owing to the fact that a rigid translation
can be added to the displacements. The only effect of this translation is a gravity
term dP ¼ �g=uc: While this will be dealt with in detail in Sect. 1.8, we note for
the conditions in the centre that the particular displacement field that causes no
perturbation of gravity potential at both r ¼ 0 and r ¼ a does imply a shift of the
figure and thus of its centre. The relation with the normal-stress function S is as
follows:
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Uð0Þ ¼ � 48pGqþ 3x2

ð8pGqÞ2q� 80pGq2x2 � 3qx4
Sð0Þ ð1:63Þ

at n ¼ 1 if x 6¼ 0 and

Uð0Þ ¼ 3
4Gpq2

Sð0Þ ð1:64Þ

if x ¼ 0: That Uð0Þ ¼ Vð0Þ ¼ 0 may be deduced from the fact that we have a
symmetric loading for n 6¼ 1 which cannot affect the position of the origin. The
reason Pð0Þ=0 can be seen from Poisson’s equation

r2 PðrÞY0
n ðcos hÞ

� �
¼ �4pGr � q UðrÞY0

n ðcos hÞr̂ þ VðrÞohY0
n ðcos hÞĥ

h i� �

ð1:65Þ

Lifting the divergence from this equation and working out the components of
the gradient, the h-component of the equation tells us that

1
r

PðrÞohY0
n ðcos hÞ ! Vð0ÞohY0

n ðcos hÞ for r ! 0 ð1:66Þ

If Vð0Þ would some how settle at a non-zero value, the left-hand side would
grow to infinity, which is a contradiction. And obviously, horizontal displacement
cannot grow as Oð1=rÞ when r ! 0: Thus, both Vð0Þ and Pð0Þ are zero.

Next, at the interface of two solid layers we have continuity in radial and
horizontal displacements, in radial and horizontal stresses and in semi-perturbed
gravity and potential. Mathematically this is represented as

RðrþÞ ¼ Rðr�Þ; SðrþÞ ¼ Sðr�Þ; QðrþÞ ¼ Qðr�Þ
UðrþÞ ¼ Uðr�Þ; VðrþÞ ¼ Vðr�Þ; PðrþÞ ¼ Pðr�Þ

ð1:67Þ

where r denotes the radius of the interface, rþ just above it and r� just below it. Of
course the true perturbed gravity is also continous over the boundary, y6ðrþÞ ¼
y6ðr�Þ: At the boundary of a solid and fluid layer the situation is a little different. If
we indicate the radius of this mantle core boundary by c and assume the mantle
lies above the core, we have SðcþÞ ¼ 0 while shear stresses in the fluid core are
undefined because l ¼ 0: Furthermore, continuity in the horizontal displacement
V is no longer required, so this equation disappears. Another relation we have at
the mantle-core boundary for n ¼ 0 is

QðcþÞ ¼ dP

dr






r¼c�
þ4pGqUðc�Þ þ 1

r
Pðc�Þ

¼ 1
r

Pðc�Þ
ð1:68Þ
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Finally, we need to describe the boundary conditions at the surface which
depend on the type of loading is applied. Since we are interested in ocean tide
loading, we assume that we have a parcel of tide-water lying on the Earth’s
surface. This parcel has a mass that generates a perturbation in the potential field
of the solid Earth. Due to its weight, this parcel also presses on the ocean bottom.
Therefore, in the ocean loading problem we must prescribe at the surface a per-
turbation in the potential and a normal stress. For the tidal deformation of the Earth
caused by the Moon and Sun, this surface stress is zero.

Now it becomes important to distinguish between the Lagrangian and Eulerian
descriptions that were explained in Sect. 1.2 The perturbed potential is a Eulerian
function, evaluated at the undeformed boundary layers. Since deformation moves
mass, the perturbed potential sees a ‘Bouguer’ effect. The stresses and displace-
ments are evaluated at the deformed boundaries (Lagrangian) but to second order
one can also just evaluate them at the undeformed boundaries.

To define our boundary conditions at the Earth’s surface, it is convenient to
assume that we have a unit point mass mu at a distance R away from the Earth’s
centre; see Fig. 1.1. The external potential /e of this unit point mass mu can be
written as a sum of spherical harmonics:

/eðr; hÞ ¼ �
G

d
¼ �G

a

X1
n¼0

r

a

� �n
Y0

n ðcos hÞ for r\R ð1:69Þ

We have added a minus sign because the potential should increase, become less
negative, with increasing distance. Since the Earth is not completely rigid, it
deforms due to the presence of this external potential, creating an additional
internal potential /i: Outside the Earth this internal perturbed potential can also be
written as a sum of spherical harmonics:

/iðr; hÞ ¼ �
G

a

X1
n¼0

knðaÞ
a

r

� �nþ1
Y0

n ðcos hÞ for r [ a ð1:70Þ

where knðaÞ are some unknown constants which will be determined later. Inside
the Earth (1.70) is not valid. The total perturbed potential is /1 ¼ /e þ /i: In Sect.
1.3 we have shown that for each degree n the radial part of /1 can be written as a
function PðrÞ: Using the same scaling of Sect. 1.3 and setting r ¼ a we have
Pe ¼ G=a and Pi ¼ k0nðaÞG=a: At the surface the radial derivatives of these
functions are

e

i

R

d
r

Earth

a

Fig. 1.1 In the left panel the
definition of angle and
distances is given. In the right
panel we schematically show
the behaviour of the external
and internal perturbed
potential
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dPeðrÞ
dr

¼ n

r
PeðrÞ underneath the load ð1:71Þ

dPiðrÞ
dr

¼ � nþ 1
r

PiðrÞ above the surface ð1:72Þ

The perturbed gravity just below (�) and above (þ) the surface should be equal.
Remembering that the Earth’s surface has been displaced due to the deformation
our equation of continuity of perturbed gravity is

r/E
1 ðx; tÞ

� þ sLðx; tÞ� � r2/0ðx; tÞ� ¼ r/E
1 ðx; tÞ

þ þ sLðx; tÞþ � r2/0ðx; tÞþ

ð1:73Þ

Using Poisson’s relation, one can replace the r2/�0 on the left side of the
equation with 4pGq0 while the same term on the right is zero because we neglect
the density of the atmosphere and put q0 ¼ 0 outside the Earth.

To first order, we will only need to consider the radial derivative and can
replace the r operator by d=dr: If we again decompose (1.73) into spherical
harmonics, then for each degree n we have

dP�

dr
þ 4pGq0U ¼ dPþ

dr
ð1:74Þ

If for the moment we assume that there is no external potential Pe and use (1.72)
to substitute the term on the right:

dPi

dr
þ nþ 1

r
Pi þ 4pGq0U ¼ 0 ð1:75Þ

If we add the both the internal and external potential in (1.74), we get at the
surface

dP

dr
þ nþ 1

r
Pþ 4pGq0U 
 Q ¼ � 2nþ 1

a

G

a

� �
ð1:76Þ

Equation 1.76 provides the boundary condition for the semi-perturbed gravity
Q at the surface. The beauty of (1.76) is that it does not contain the unknown
internal potential /i explicitly.

Now we will derive the expression for a unit point load r: According to
Longman (1962), the Legendre expansion of the Dirac d-function on a sphere with
radius a is

r ¼
X1
n¼0

2nþ 1
4pa2

Y0
n ðcos hÞ

¼ G

a

� �X1
n¼0

2nþ 1
4pGa

Y0
n ðcos hÞ

ð1:77Þ
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Our unit mass exerts a point load of magnitude �g at the surface which means
that the boundary condition for the normal stress R for degree n is

R ¼ � 2nþ 1
a

g

4pG

G

a

� �
ð1:78Þ

Together with the boundary condition that the horizontal stress is zero, S ¼ 0;
(1.76) and (1.78) provide three boundary conditions at the surface.

7 Simple Earth Models and Love Numbers

At this point it is instructive to discuss the deformation of an elastic solid Earth
with constant density and constant elastic properties. For this particular situation
there exist three analytical solutions for each parameter which, combined, describe
the radial and horizontal deformation and perturbed potential throughout the Earth.
These analytical solutions are provided by Dahlen and Tromp (1998) and are
reproduced in Appendix 2. For example, the radial displacement, for degree n, is

UðrÞ ¼ UþðrÞ þ U�ðrÞ þ U�ðrÞ
¼ y11 jnðcþrÞ þ y12 jnðc�rÞ þ y13 rn ð1:79Þ

Note that these solutions automatically produce zero displacements and dis-
turbed gravity at the Earth’s centre.

In the second line of (1.79), we have factored out the terms containing the
spherical Bessel functions jn and rn and formed new coefficients y11; y12 and y13

(Okubo 1988). This is not necessary but has been done to emphasise the fact that
each term depends on a different function. The solutions for the horizontal dis-
placement V and perturbed potential P can be written in the same format. All these
coefficients can be grouped in a matrix:

D ¼
y11 y12 y13

y31 y32 y33

y51 y52 y53

8<
:

9=
; ð1:80Þ

The displacement vector s can now be computed as DJh where J is a 3� 3
matrix with our jnðcþrÞ; jnðc�rÞ and rn terms on the diagonal. Vector h contains
scale factors because each separate solution can be multiplied with an arbitrary
constant.

From the solutions for U, V and P, we can derive the analytical solutions for the
radial stress R, tangential stress S and semi-perturbed gravity Q. Again we can
factor out the jnðcþrÞ; jnðc�rÞ and rn terms and form a new matrix E in such a way

that the vector ðR; S;QÞT is EJh: Matrix E is defined in a similar ways as matrix D:
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E ¼
y21 y22 y23

y41 y42 y43

y61 y62 y63

8<
:

9=
; ð1:81Þ

Each row of matrix E is associated with the radial stress, tangential stress and
semi-perturbed gravity. For example, the radial stress is written as

RðrÞ ¼ y21 jnðcþrÞ þ y22 jnðc�rÞ þ y23 rn ð1:82Þ

Our next task is to estimate the scale factors h in order to fulfil the boundary
conditions at the surface described in Sect. 1.6 Following Okubo (1988) we will
compute the scaling factors for the three solutions for the body tide and load tide
simultaneously. These boundary conditions, for degree n, at the surface are stored
in the columns of the following matrix x :

x ¼ 2nþ 1
a

0 g
4pG

0 0
1 1

0
@

1
A ð1:83Þ

The first column of x shows that for the body tide, only the potential is non-zero
at the surface. In the second column, one can see that for the load tide there is an
additional radial stress. Note that the factor �G=a has disappeared. Instead of a
unit-mass, we are computing the deformation due to a unit-potential.

The scale factors h are determined with ðEJðaÞÞ�1x: Since the matrix EJ can be
ill-conditioned, it makes sense to scale each row of EJ in such a way that the
largest entry is 1. This will not change the value of h if vector x is scaled by the
same factors, but will improve its numerical accuracy.

Now that these scale factors are known, we can compute the deformations
U and V and the perturbed potential P at any radius r using DJðrÞh: Remember that
we have computed the radial deformations UðrÞ for a unit potential load on the
Earth’s surface. It was Love who represented these deformations as the product of
a function hnðrÞ divided by g. For any other external potential /e; that again can be
developed into spherical harmonics with a radial function at the surface PeðaÞ; the
radial deformations are, for degree n

UðrÞ ¼ �hnðrÞ
PeðaÞ

g
ð1:84Þ

For the tangential displacements a similar function lnðrÞ is defined:

VðrÞ ¼ �lnðrÞ
PeðaÞ

g
ð1:85Þ

The same can be done for the perturbed potential although it is customary to
introduce a function kn that is only associated to the internal perturbed potential /i :

PðrÞ ¼ ð1þ knðrÞÞPeðaÞ ð1:86Þ
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The minus sign in (1.84) and (1.85) is the result of our definition of the potential
with the opposite sign as Love (1911) and Alterman et al. (1959). The definitions
of the functions hnðrÞ and lnðrÞ already have a long tradition and it would cause too
much confusion if we were to define new Love numbers with the opposite sign.
Wu and Peltier (1982) follow the same sign convention of the potential as we use
here but compute the deformation of the Earth due to a negative unit potential.
This causes the minus sign to disappear in the definition of hnðrÞ and lnðrÞ but then
it reappears in (1.86).

Normally, the values of hnðrÞ; lnðrÞ and knðrÞ are only given for the Earth’s
surface which turns them into numbers instead of functions. The lnðaÞ Love
number is also called the Shida number. The Love numbers are needed to compute
our Green’s functions to compute the ocean tide loading as we announced in Sect.
1.1 and which we will explain in more depth in Sect. 1.11

Love (1911) studied the deformation of the Earth due to the tidal force of the
Moon and thus had no pressure forces on the surface. To distinguish between load
Love numbers and the body tide Love numbers, the former are normally written as
h0n; l0n and k0n; a notation that was introduced by Munk and MacDonald (1960). As
an example, we give the values of normal Love numbers and load Love numbers
for a homogeneous Earth, called model b: The values for the Gravitational con-
stant G, the mean radius of the Earth a and the angular velocity of the forcing x
(corresponding to the main tidal period of 12.42 h) are given in Table 1.1. The
properties of the homogeneous Earth are listed in Table 1.2 and were taken from
Alterman et al. (1959). The results are listed in Table 1.3 where we have multi-
plied the l, l0, k and k0 numbers by degree n, just to get a convenient size. The
functions h0nðrÞ and k0nðrÞ are plotted in Figs. 1.2 and 1.3 for various degrees
n. Note that for high values of degree n, the functions h0nðrÞ and k0nðrÞ are very
small throughout the Earth and only increase near the surface. As a result, the

Table 1.1 General constants Constant Unit Value

G m3kg�1s�2 6.673�10�11

a m 6.371�106

x rad=s 1.40526�10�4

Table 1.2 Properties of a
homogeneous Earth (model
b) and an Earth with a
homogeneous mantle and a
fluid core with a radius of
0:55a (model a)

Model b Model a

Constant Unit All Core Mantle

Mean density q (kg=m3) 5517 11020 4460
Shear modulus l (GPa) 146 0 174
Lamé parameter k (GPa) 347 950 231

1 Almost ignore; you need to assume that gðrÞ=r ¼ const: in order to retain the structure of the
analytical solution (Vermeersen et al. 1996).
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properties of the Earth just underneath the station increase in importance for
increasing degree n.

Another interesting case is the deformation of an Earth with homogeneous
mantle and a homogeneous liquid core. Following Alterman et al. (1959), we will
call this model a: Its density and elastic properties are given in Table 1.2 . In each
layer, analytical solutions for the deformation can be derived; see Appendix 2.
However, in contrast to the case of the completely homogeneous Earth, in the
mantle we now also need spherical Bessel functions of the second kind and
solutions that contain 1=rn terms. Therefore, we must extend our D;E and J
matrices discussed before to include these terms; see Martinec (1989).

As we discussed in Sect. 1.4 and Appendix 2, in a fluid we can derive the
tangential displacement and stress from the other parameters: U, R, P and Q. In

Table 1.3 The normal and load Love numbers for Earth model b for several degrees

Degree hn nln nkn h0n nl0n nk0n
1 -18.22448 -18.22448 -18.22448 -0.18599 0.14700 0.00000
2 0.52221 0.28413 0.60384 -0.58502 -0.02167 -0.44057
10 0.10622 0.01229 0.14818 -0.88125 0.14981 -0.91403
100 0.01167 0.00014 0.01736 -1.00537 0.22378 -1.14968
1000 0.00118 0.00000 0.00177 -1.02022 0.23250 -1.17926

-1.0

-0.5

0.0

 0  0.2  0.4  0.6  0.8  1

h’

r/a

n=    2
n=  10
n=100

Fig. 1.2 The load love
numbers h0n for n ¼ 2; 10 and
100 for a homogeneous Earth
as a function of the Earth’s
radius
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Fig. 1.3 The same as
Fig. 1.2 but for k0n
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addition, we only have one solution of the spherical Bessel functions of the first
kind. As a result, our E becomes a 2� 2 matrix.

We will ignore the fact that the gravity can no longer be described as 4pGq0r=3
throughout the Earth, which was one of the assumptions in deriving these ana-
lytical solutions.1

Of course we can generalise this procedure and divide the Earth into multiple
layers with constant density and constant elastic properties. Describing the prob-
lem of the deformation of the Earth as a set of propagating matrices is called the
Thomson–Haskell method (Gilbert and Backus 1966) and is popular among post-
glacial rebound modellers although they use something more complicated than just
constant elastic properties.

Returning to our model a; the normal Love numbers for several values of the
forcing period are given in Table 1.4 and the radial stress R is plotted in Fig. 1.4. In
this last figure one can see that, for decreasing period, a boundary layer develops
underneath the core–mantle boundary. Since in the fluid core the radial stress is
related to dilatation through R ¼ kX; one can see that in the limit x! 0;X ¼ 0
throughout the core and that the Adams–Williams condition is not needed as an
extra condition (Pekeris and Accad 1972).

It is interesting to see what these Love numbers would be when the limit of
x! 0 is taken. Now we should remember that the stratification of our homoge-
neous fluid is unstable and that a boundary layer develops (Pekeris and Accad
1972). If the jump through the boundary layer is taken into account, then we get
the Love numbers listed in the last line of Table 1.4.

Table 1.4 Love numbers for our model a Earth for degree n ¼ 2 for different periods of forcing
(T ¼ 2p=x)

T h2 2l2 2k2 h02 2l02 2k02
6 h 0.69216 0.27579 0.72544 -0.87766 -0.08390 -0.65887
12 h 0.68037 0.27254 0.71343 -0.86444 -0.08128 -0.64730
24 h 0.67741 0.27174 0.71048 -0.86035 -0.08067 -0.64433
1 0.67633 0.27148 0.70949 -0.85782 -0.08051 -0.64316
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Fig. 1.4 The radial stress
R inside the Earth for
different values of the forcing
period
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8 Degree-1 Response and Translational Invariance

At this point we take the opportunity to look at much discussed problem of
separating displacement into a whole-body rigid translation and deformation
notably at spherical harmonic degree 1; see, for instance, Blewitt (2003).

For degree 1 the situation is a little different because the load is not symmetric
and this causes the Earth to move in space, in addition to deforming it. First, we
will discuss the translation of the Earth in space which is equivalent to a constant
sL: As a result, rsL ¼ 0: Looking at the Cauchy stress tensor, (1.12), we see that a
translation of the Earth in space does not introduce any stress.

As a side note, assume for the moment that we have a homogeneous Earth with
constant density. In this case, the gradient of the reference density q0 is zero. From
the continuity equation, (1.6), it follows that a translation of the solid Earth cannot
perturb the density: q1 ¼ 0: Applying Poisson’s equation we see that the perturbed
potential /E

1 is also zero and we can conclude that for a homogeneous Earth, a
translation of the whole Earth does not affect our equations although it will have an
effect on our boundary conditions.

For a non-homogeneous Earth, a translation will create a non-zero perturbed
density q1 and perturbed potential /E

1 field. This is the consequence of defining a
reference density q0 and potential /0 field at the origin of the undeformed Earth,
fixed in space, and describing the deformations as perturbations with respect to this
reference field. A translation z along the h ¼ 0 direction causes a perturbation in
the potential equal to

/1 ¼ ðrx2 � g0Þz cos h ð1:87Þ

Here we have added the potential produced by the acceleration of the trans-
lation. For tidal periods, rx2 is much smaller than g0 and has therefore probably
been neglected by Farrell (1972).

So far we have only discussed a translation of the whole Earth. However, there
also exists a degree one deformation that will generate a perturbed potential in the
same way as we described in the previous sections. The only difference is that, due
to the asymmetric loading, we no longer have zero displacements and a zero
perturbed gravity value at the centre of the Earth and require three new boundary
conditions.

To find these three new boundary conditions at the centre, we must realise that
in a small ball with radius d around this centre the Earth can be considered to be
homogeneous. Repeating the results presented in Sect. 1.7 and invoking the
associated mathematics from Appendix 2, we note that only the analytical solution
that depends on rn can produce displacements that are non-zero at the centre. This
solution has been reproduced here (for n ¼ 1Þ :
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U� ¼ cr
n

r
r ¼ cr

V� ¼ cr
1
r

r ¼ cr

P� ¼ crðx2r � 4p
3

GqrÞ ¼ crðx2r � g0Þ

R� ¼ cr
2nðn� 1Þl

r2
r ¼ 0

S� ¼ cr
2ðn� 1Þl

r2
r ¼ 0

Q� ¼ cr
ð2nþ 1Þx2 � 8pGqnðn� 1Þ=3

r
r ¼ 3crx

2

ð1:88Þ

where cr is to be determined from the boundary condition at the surface. From
(1.88) we can see that three new possible boundary conditions are: Uð0Þ ¼
Vð0Þ;Rð0Þ ¼ 0 and Sð0Þ ¼ 0: The other analytical solutions for a homogeneous
sphere containing the spherical Bessel functions j1 produce zero displacements and
stresses at the Earth’s centre. The solutions containing terms with 1=r or the
spherical Bessel functions y1 are infinite at the Earth’s centre and therefore need to
be set to zero.

Now that we know our new boundary conditions at the Earth’s centre, let us
discuss the Love numbers for our a and b Earth models discussed in Sect. 1.7 For
the homogeneous Earth one can see in Table 1.3 that all normal Love numbers are
the same. Because the Earth is homogeneous, no differential forces occur and the
Earth does not deform but only oscillates back and forth in space. The amplitude of
these oscillations is larger the longer the period of forcing. These forces produce
the motion of the Earth around the solar system and are not of interest us here
where we want to study tidal phenomena and our equations are only valid for small
perturbations from the undeformed reference state.

The situation for the load Love numbers is different because, in addition to the
gravitational attraction of the unit potential, it exerts a load on the surface in
the opposite direction. That this produces a zero internal perturbed potential at the
surface is just a peculiarity of a homogeneous Earth. For our Earth with a
homogeneous mantle and fluid core the Love numbers for degree one are given in
Table 1.5 . One can see that now the normal Love numbers are not all the same
because the Earth is no longer homogeneous. Also the k01 load Love number is now
different from zero.

Table 1.5 The same as Table 1.3 but for Earth model a:

Degree hn ln kn h0n l0n k0n
1 -12.80564 -14.38607 -13.12949 -0.52853 -0.27453 -0.32385

Computation of Green’s Functions for Ocean Tide Loading 27



It is customary to keep the origin of the reference frame fixed to the centre of
mass of the deformed solid Earth. For n 6¼ 1 this always coincided with the
position of the origin of the undeformed solid Earth which was the origin of our
reference frame in the previous sections. However, now we must shift the frame.
The centre of mass of the solid Earth has the property that it has a zero value for
the perturbed potential at the surface. To achieve this we need to adjust our load
Love numbers as follows (Farrell 1972):

½h01�CE ¼ h01 � k01
½l01�CE ¼ l01 � k01
½k01�CE ¼ k01 � k01 ¼ 0

ð1:89Þ

For other choices for the origin of the reference frame, see Blewitt (2003). We
only want to point out that all associated translations of the reference frame and
modifications of the load Love numbers can be derived from our original load
Love numbers h01; l01 and k01:

9 Numerical Methods

In Sect. 1.7 we computed the deformation of the Earth using the Thomson–Haskell
method that uses the analytical solutions of the deformation inside each layer with
constant density and constant elastic properties. We have already briefly men-
tioned that we ignored the fact that the gravity can no longer be described by
4=3pGq0r throughout the Earth. Although there are ways to minimise this last
problem, one would still face problems that the deeper layers in most recent Earth
models, such as PREM (Dziewonski and Anderson 1981), have density and elastic
properties that vary inside each layer. Instead of also trying to minimise this
problem, for example by sub-dividing these layers into layers with constant
properties, we will now present methods that solve the differential equations
numerically. These numerical methods are slightly more elaborate to implement
than the Thomson–Haskell method but provide more flexibility. The most popular
method of solving the six differential (1.32)–(1.37) is the Runge–Kutta method
(Alterman et al. 1959). As with the Tomson-Haskell method, these equations are
solved in each layer separately. One starts by integrating the equations from the
centre of the Earth upwards to the boundary of the first layer. The computed values
for the six parameters U, V, P, R, S and Q at the upper boundary are the starting
values for the integration in the next layer. This process is repeated until one
reaches the surface.

Starting at the centre of the Earth sounds simple. However, inspection of the
differential equations shows that they are singular at r ¼ 0: Secondly, we should
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not forget that the high spherical harmonic degrees for which we seek the load
Love numbers imply extremely small deformation in the deep interior. Factoring
out a scaling function and mapping the radial coordinate on a logarithmic scale
helps to overcome the numerical problems. This is the Lyapunov transformation
mentioned in Sect. 1.3. However, the convenience the trick gives with one hand it
takes away with the other: we need starting solutions for a tiny homogeneous
sphere in order to avoid the singularity problem. This has already been discussed
in Sect. 1.7 but we would like to add that because of the small radius, the spherical
Bessel functions of the first kind, jn; may be approximated for radii\epsilon in the
range 1–10 km,

jnð�Þ ¼
ffiffiffi
p
p

2Cðnþ 3=2Þ
�

2

� �n
ð1:90Þ

where C represents the Gamma function if ��
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nþ 3=2

p
; which is always ful-

filled except at a few small values of n. Below n ¼ 10 the spherical Bessel
functions are unproblematic.

For the case of an Earth model with a fluid core at its centre we can also
compute these analytical solution using a power-series ansatz. First, we replace g0

in (1.52)–(1.55) with 4pGq0r=3: With power series

UðrÞ
RðrÞ
PðrÞ
QðrÞ

0
BB@

1
CCA ¼

X1
j¼1

uj=r
sj

pj

qj=r

0
BB@

1
CCArnþj�1 ð1:91Þ

the differential equations produce a set of coupled recursion relations:

�jq ½4p G q nðnþ 1Þ � 3 ðjþ nÞx2� uj þ 3 ½n ðnþ 1Þ j ðsj � q pjÞ� ¼ 3 qx2 sj�2

q ½ð4p G qÞ2 nðnþ 1Þ � 48p G q x2 � 9 x4� uj

� 3 ½4p G q nðnþ 1Þ þ 3 ðjþ n� 1Þx2� sj

� 3q ½ðnþ 1Þ ð4p Gq n � x2Þ pj þ 3 x2 qj� ¼ 0

4p G q uj þ ð2nþ jÞ pj � qj ¼ 0

4p
3

G q ðnþ 1Þ ð4p G qn � 3 x2Þ uj

� 4p G nðnþ 1Þ ðsj � q pjÞ þ ð1� jÞx2 qj ¼ 0
ð1:92Þ

with starting equations
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q ½ð4p G qÞ2 nðnþ 1Þ � 48p G qx2 � 9 x4�
� 3n ½4p G q ðnþ 1Þ þ 3 x2� s1

� 3q ½ðnþ 1Þð4p G q n � x2Þ p1 þ 3 x2 q1� ¼ 0

q ð4p G q n � 3 x2Þ u1 � 3 n ðs1 � q p1Þ ¼ 0 ð1:93Þ

The resolved equations are shown in Appendix 3. The recursion starts with
u1 ¼ 0; an arbitrary s1 and a compatible p1 ¼ s1=q: From this, q1 can be com-
puted, and the recursion can step ahead to j ¼ 3; 5; . . .:

For degree n 6¼ 1; we know that at the Earth’s centre U ¼ V ¼ P ¼ 0: How-
ever, we do not know the starting values of the radial and tangential stresses R and
S, nor the starting value of the semi-perturbed gravity Q. The solution of this
problem is to solve the differential equations three times and each time set another
one of these three unknowns to 1 and the other two to zero. These three solutions
have to be scaled afterwards to fit the boundary conditions. If we remember that in
Sect. 1.3 we had written our six first order linear differential equations as, 1.39:

dy

dr
¼ Ay ð1:94Þ

with y ¼ ½U; V ; P; R; S; Q�T ¼ ½y1; . . .; y6�; then for the case of ocean tide
loading we can write the three solutions yð1Þ; yð2Þ and yð3Þ at the surface as:

yð1Þ2 c1 þ yð2Þ2 c2 þ yð3Þ2 c3 ¼
2nþ 1

a

g

4pG
ð1:95Þ

yð1Þ4 c1 þ yð2Þ4 c2 þ yð3Þ4 c3 ¼ 0 ð1:96Þ

yð1Þ6 c1 þ yð2Þ6 c2 þ yð3Þ6 c3 ¼
2nþ 1

a
ð1:97Þ

Solving (1.95)–(1.97) provides us the scale factors c1; c2 and c3:
We would like to emphasise that we are solving a set of non-homogeneous

differential equations. In principle, we can add to these the solutions for the homo-
geneous differential equations that correspond to the free-oscillation of the Earth.
In fact, the procedure described above is exactly how these free-oscillations of the
Earth are computed. One computes the solutions of the homogeneous differential
equations for various values of the forcing period T ¼ 2p=x until (1.95)–(1.97)
become linearly dependent, which indicates that a resonance period has been found.

As before, complications arise due to the existence of a fluid core. If we for the
moment we assume that there is no solid inner core, then only need to integrate U,
P, R and Q from the centre of the Earth to the core–mantle boundary as was
explained in Sect. 1.4. This involves only two unknowns: R and Q. At the bottom
of the mantle the tangential stress S is zero, and only the horizontal displacement
V is unknown and takes the place of S in the procedure described above. If we have
a solid inner core, then the situation is a little more complicated. As before, we
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need to compute three solutions for unit values of R, S and Q at the Earth’s centre.
Since we know that the tangential stress is zero at the boundary of the inner and
outer core, one of the scale factors can already be written as a function of the other
two. Again, we are left with three unknowns and the rest of the procedure remains
the same as before.

For degree n ¼ 1 we have different conditions at the Earth’s centre which
causes other problems because now we no longer know the values of Uð0Þ;Vð0Þ
and Pð0Þ: However, now Rð0Þ ¼ Sð0Þ ¼ 0 and we know that Uð0Þ ¼ Vð0Þ which
is sufficient information to solve the equations.

Another numerical method that is very suitable to solve the differential equa-
tions is the spectral method where the solution is approximated by a sum of basis
functions (Boyd 2000). In our case, we will use Chebychev polynomials as basis
functions and our method is thus better described as the Chebychev collocation
method. Its use to compute the deformation of the Earth was pioneered by Guo
et al. (2001, 2004).

To explain its principles, assume that the radial displacement function UðrÞ can
be approximated by:

UðrÞ � UNðrÞ ¼
XN

i¼0

aiwiðrÞ ð1:98Þ

where wi is a Chebychev polynomial of degree i and ai is a constant. Similar
approximations can be made for VðrÞ and PðrÞ: Since polynomials are easily
differentiated, we can insert these approximations into our second order differential
equations (1.25)–(1.27). If we evaluate these equations at N þ 1 positions inside
the Earth, called nodes, we have created 3ðN þ 1Þ equations with 3ðN þ 1Þ
unknowns: the coefficients ai of UN ; VN and PN : This system of linear equations
can be solved and, once we know the values of the coefficients ai; we have an
approximation for the solution of the differential equations.

The distribution of these nodes should be done in such a way so as to optimize
the accuracy of the approximation. It turns out that there are two good distribu-
tions, called Gauss-Radau and Gauss-Lobbato (Boyd 2000). The only significant
difference between the two is that the Gauss-Radau distribution includes the end
points while Gauss-Lobbato does not. Guo et al. (2001) advocate the use of the
latter to avoid the singularities at the Earth’s centre. However, it is convenient to
replace the differential equations at these start and end nodes with the boundary
conditions. At the same time singularity problems are avoided. Thus, we will use
the Gauss-Radau distribution of nodes:

xj ¼ cos
pj

N
; j ¼ 0. . .N ð1:99Þ

where x lies between -1 and 1. We must thus scale the radius r in each layer to fit
this interval. This scaling should not be forgotten when one takes the derivatives
of wi:
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A disadvantage of using the three second-order differential equations is that
these include the radial derivative of the elastic properties. However, these
properties are normally given as low-degree polynomials, which ensures us that
these derivatives can be computed easily. Another detail that might require some
attention occurs again in the fluid core. Since in a fluid only four boundary con-
ditions are needed, we must evaluate (1.26) on all nodes and not substitute the start
and end points with boundary conditions. At the Earth’s centre we know that for
n 6¼ 1;U ¼ V ¼ 0 so one can make an exception and replace the differential
equation on the start node at r ¼ 0 with the boundary condition. For degree n ¼ 1
we know that U ¼ V which removes any remaining singularities in a fluid at the
Earth’s centre.

As a final remark, we note that for high values of degree n; the core hardly
deforms and one could in principle set the boundary conditions U ¼ V ¼ P ¼ 0 at
the core–mantle boundary.

10 Rheology: Viscosity and Anelasticity

When the temperature of rock materials is high enough yet still safely below the
melting point, elastic stress will relax with time. The material will creep under
stress. Whether or not this deformation recovers determines whether the material is
termed anelastic or inelastic, respectively (Nowick and Berry 1972).

Basic properties can be illustrated with rheological circuit diagrams. Consider
for instance the Maxwell body (Fig. 1.5a) as an example of irreversible deforma-
tion. When stress is applied, the viscous element starts creeping, but when the stress
is removed it remains in the deformed position. Application of a single Maxwell
model to explain delayed recovery from deformation is commonly proposed in the
problem of Glacial Iostatic Adjustment (GIA). This is a phenomenon on a time
scale of 1,000–100,000 years. At the time scale of tides the viscosity that is inferred
from GIA studies produces very small effects of inelasticity, and we may wonder

1

2

(a) (b)Fig. 1.5 Elementary
rheological models, a the
Maxwell body, b the Zener
body
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whether other approaches viable in long-period seismology might not be better
suited.

We serve ourselves from developments in seismology that were set out to
explain Q, the quality factor that describes the attenuation of seismic waves along
their paths, or, if you wish, the decay of free oscillations over time (Knopoff 1964).
The recipes that follow below will end in what is known in seismology as Gen-
eralised Maxwell rheology and the Standard Linear Solid.

Parallel connection of the dash-pot with a spring element is a simple model for
recoverable strain, since now elastically stored energy is left to do work on the
viscous element. By the same token the body shows stress relaxation when a strain
is prescribed as a step. In the model referred to as Zener body or, alternatively,
Standard Linear Solid (Fig. 1.5b), shortly after deformation, much force is put on
the viscous element. As time goes by, the viscous element relaxes and stress is
shared by two elastic elements in series.

We leave the solid state physics of stress relaxation or strain retardation aside
and concentrate instead on how rheology enters into our differential equations.

First of all, the temporal aspect adds a phase-shifted relation between stress and
strain. Fourier-transforming the shear deformation

r
2l
¼ �

(elastic), respectively

_r
2l
þ r

2g
¼ _�

(Maxwell) gives

ix
2l
þ 1

2g

� �
r ¼ ix� ð1:100Þ

or

lðixÞ ¼ ixlg
ixgþ l

ð1:101Þ

which, at x!1; displays unaltered elasticity l; but at x! 0; the resistance to
shear is zero. The quantity g=l is called relaxation time or Maxwell time. Thus,
the only effect is that the equations need to be doubled with an imaginary part. The
stress and gravity boundary conditions remain real-valued.

Slightly more complicated, the following exercise considers the Zener body.
Here

lðs; ixÞ ¼ l2ðl1 þ ixgÞ
l1 þ l2 þ ixg

¼ l1l2ð1þ ixsÞ
l2 þ l1ð1þ ixsÞ

Computation of Green’s Functions for Ocean Tide Loading 33



with relaxation time s ¼ g=l1: Its zero- and infinite-frequency responses are the
relaxed compliance 1=lr ¼ 1=l1 þ 1=l2 and the unrelaxed one lu ¼ 1=l2;
respectively.

In order to widen the discrete circuitry to a continuum, we may imagine a
spectrum of relaxation times distributed over an infinite chain of Zener elements.
The resulting model body is designated as the Standard Linear Solid (Fig. 1.6).
Strain is now described as the integral over this infinite number of elements given
the stress

�ðixÞ ¼
Z s2

s1

AðsÞ ds
2lðs; ixÞ

� �
rðixÞ ð1:102Þ

For normalisation of AðsÞ; the compliance—the integral in (1.102)—is to
evaluate the relaxed and unrelaxed values at zero and infinite frequency, respec-
tively, which amounts to demanding

Z s2

s1

AðsÞ ds ¼ 1

Zschau (1983) gave an expression for the shear compliance of the absorption band
model:

1 2

1 2

oo

(a)

(b)

Fig. 1.6 Continuous rheological models, a an infinite chain of Zener elements, b the Generalised
Maxwell Body. If the range of relaxation times is finite, the bodies may serve as models for the
seismic absorption band. Extrapolation to non-seismic frequencies might be daring

34 M. S. Bos and H.-G. Scherneck



1
lðixÞ ¼

1
l1

(
1þ D


� ixa
1þ a

D


sa
2 � sa

1

s1þaFð1þ a; 1; 2þ a;�ixsÞ
� �s2

s1


 ð1:103Þ

where F is the hypergeometric function, D
 the creep strength of the body

D
 ¼ �ðt!1Þ � �ðt ¼ 0Þ
�ðt ¼ 0Þ

(the ratio of after-effect strain to initial strain) and l1 the shear modulus at ultra-
seismic frequencies. The elegance of this model lies in the parsimony with three
parameters, a;D
 and l1:

Let us end this section by mentioning another generalised body, this time based
on an infinite parallel coupling of Maxwell bodies with a spectrum of relaxation
times, the Generalised Maxwell Body (b in Fig. 1.6). Instead of prescribing stress
we now prescribe strain and formulate how the stress relaxes

rðixÞ ¼ 2
Z

AðsÞlðix; sÞ ds

� �
�ðixÞ

where lðix; sÞ is now taken from (1.101). Closed formulas for the Generalised
Maxwell Body are generally not possible; however Müller (1983) has shown such
expressions for fractional integer exponents A / s1=n: The banded nature of A as it
appears limited between two finite relaxation times might appear as rather artifi-
cial. However, this so-called high-temperature background or absorption-band
model has been shown to own some realism in laboratory studies of rock samples
(Kampfmann and Berckhemer 1985). It can be argued that the absorption band
model has an upper limit where Maxwell rheology (irreversible deformation)
exceeds the relaxation that the generalised Zener body accomplishes, so that it is
the lower band edge that is more critical to determine, but at the same time it is
more accessible to observation owing to studies of seismic wave propagation.

11 Green’s Functions

Computation of loading effects at a field point due to the tide loads distributed over
the ocean surfaces of the planet is conveniently carried out using convolution with
a Green’s kernel function. The method and its alternative decompose the load into
surface spherical harmonics and multiplication of the wave number spectrum with
the load Love number spectrum has been presented comprehensively in Agnew
(2007), including the extension to infinite harmonic degree in the point load
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problem and the generation of Green’s functions using Kummer transforms. We
refer to this work as seminal.

Farrell (1972) also considered disk loads in order to avoid the Gibbs phe-
nomenon when loads are treated as if condensed to singular mass points. This
creates a problem particularly when the loads are known at a few locations or on
sparse grids only. As it turned out, the assumption of loading mass distributed over
a circular disk of certain size attenuates the high-degree terms when summing over
the load Love numbers and helps to speed up the convergence of the infinite sums
in the Green’s functions. The ever increasing spatial resolution of modern ocean
tide models render this approach mostly obsolete today. However, the assumption
of disk-distributed masses might still be necessary in a few cases.

In gravity, near-by masses exert a notable attraction effect if gravimeter and
load mass are located at different heights, more specifically when a big correction �
is required in the equation

cos /
d2
¼ �1

4a2 sin h=2
þ �

where d is slope distance, / the zenith angle under which the gravimeter ‘‘sees’’
the load, and h the arc distance of the two points after mapping them on the sphere.
An example of this effect is described by Bos et al. (2002). However, cylindrical
disk loads will in general be inept to represent the actual mass distribution, and
consequently, the specific geometry of the load needs to be accounted for. This
amounts to have to sample the land-sea distribution with high resolution while the
details of tide height in the wet areas will be uncritical.

In tilt as measured by vertical pendulums or fluid-filled tubes (Ruotsalainen
2001), loads at close distance have both a strong direct attraction effect and sen-
sible influence due to deformation. As a third complication, the infinite sum in the
Green’s function converges most slowly among those considered by Farrell (1972)
and Agnew (2007), even when the Kummer trick is utilised (numerical precision in
the then final sums becoming critical).

We exemplify Green’s function computation only in the case of tilt. The
function is given as

GtiltðhÞ ¼
G Ml

g a2
t0
X1
n¼1

ðt�n � h0n þ k0nÞ
dPnðcos hÞ

dh

with t the station height ratio ðaþ hÞ=a and t0 ¼ t if h\0 else t0 ¼ 1: With the
disc factor included, the sum terms receive a factor Dn ¼ DnðdÞ according to
Farrell (1972):

Dn ¼ �
1þ cos d

nðnþ 1Þ sin d
dPnðcos dÞ

dd

and the sum
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X1
n¼0

DnPnðcos hÞ ¼ 0; h [ d
1; h� d

	

Ultimately, the point load problem cannot avoid dealing with the deformation
in the asymptotic limit of an infinitely large pressure on an infinitely small surface
area. This is the point where the analytical half-space solutions of Farrell (1972)
come into play. The load Love numbers obtained are h01 and ðNl0Þ1; and

ðNk0Þ1 �
3q0ðaÞ

2�q
ðh01 þ ðNl0Þ1Þ ð1:104Þ

appears to be a good approximation (�q is the mean density of the Earth). For
exercising the Kummer transformation we utilise that

h0n ! h01 nk0n ! ðNk0Þ1
as n!1; so we need evaluations or expressions of the infinite sums

X1
n¼1

t�nDn
dPnðcos hÞ

dh

X1
n¼1

Dn
dPnðcos hÞ

dh

X1
n¼1

Dn

n

dPnðcos hÞ
dh

S

L

’

’

Fig. 1.7 Geometry when
integrating over a disk load
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Instead of scanning volumes of forgotten lore for analytical expressions, we can
evaluate these sums without the disk factor and disk-integrate the resulting ana-
lytical expressions numerically (not forgetting the cosine of the azimuth):

X1
n¼1

t�nDn Pnðcos hÞ ¼
Z d

0

Z 2p

0

cos a sin d0 dk0 dd0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2t cos h0 þ t2
p

Since we deal with short distances, the spherical trigonometric relations between
the angles h0; a0 and d0; k0 (see Fig. 1.7) can be approximated with plane
trigonometry.

X1
n¼1

t�n dPnðcos hÞ
dh

¼ � t sin h

ð1� 2t cos hþ t2Þ3=2 ð1:105Þ

X1
n¼1

1
n

dPnðcos hÞ
dh

¼ � 1
2

cotðh=2Þ 1þ 2 sinðh=2Þ
1þ sinðh=2Þ ð1:106Þ

To be complete, we now give the definitions of the Green’s function for the
other type of deformations; see also Agnew (2007). In all cases we assume a
distribution of mass elements dm0 over the oceanic areas O and a solution to a
deformation problem where radial symmetry of the planet’s properties causes
deformation under the load depending only on the the arc distance h0 ¼ \r; r0

between load and field point.
Vertical displacement

uðrÞ ¼ G

g a

Z
O
Guðh0Þ dm0

GuðhÞ ¼
X1
n¼0

h0n Pnðcos hÞ
ð1:107Þ

Horizontal displacement in the directions n̂ (north) and ê (east)

vnðrÞ
veðrÞ



¼ G

g a

Z
O
Gvðh0Þ

cos a0

sin a0

	 

dm0

GvðhÞ ¼
X1
n¼1

l0n
dPnðcos hÞ

dh

ð1:108Þ

Gravity on deforming surface
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DgðrÞ ¼ G

a2

Z
O
GDgðh0Þ dm0

GDgðhÞ ¼
X1
n¼0

½2h0n � ðnþ 1Þk0n� Pnðcos hÞ

� z=aþ 2 sin2 h=2

½ðz=aÞ2 þ 4ð1þ z=aÞ sin2 h=2�3=2

ð1:109Þ

where z is the topographic height of the station, (error in Agnew (2007), who has

½ �3=2 instead of ½ �3=2 in the denominator; see also Appendix 4).
Geoid height

NðrÞ ¼ G

g a

Z
O
GNðh0Þ dm0

GNðhÞ ¼
X1
n¼0

ð1þ k0nÞ Pnðcos hÞ
ð1:110Þ

Tide raising potential

PðrÞ ¼ G

a

Z
O
GPðh0Þ dm0

GPðhÞ ¼
X1
n¼0

ð1þ k0n � h0nÞ Pnðcos hÞ
ð1:111Þ

Tilt in the directions n̂ (north) and ê (east)

tnðrÞ
teðrÞ



¼ � G

g a2

Z
O
Gtðh0Þ

cos a0

sin a0

	 

dm0

GtðhÞ ¼
X1
n¼1

ð1þ k0n � h0nÞ
dPnðcos hÞ

dh

ð1:112Þ

Astronomical deflection of the vertical in n̂ (north) and ê (east)

g ¼ inðrÞ
n ¼ ieðrÞ



¼ � G

g a2

Z
O
Gtðh0Þ

cos a0

sin a0

	 

dm0

GiðhÞ ¼
X1
n¼1

ð1þ k0n � l0nÞ
dPnðcos hÞ

dh

ð1:113Þ

Strain in n̂ (north) and ê (east)
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�nnðrÞ �neðrÞ
�neðrÞ �eeðrÞ

� �
¼ G

g a2

Z
O

T
Ghhðh0Þ 0

0 Gaaðh0Þ

� �
T>dm0

GhhðhÞ ¼
X1
n¼0

½h0n � nðnþ 1Þl0n � l0n cot h
d

dh
� Pnðcos hÞ

GaaðhÞ ¼
X1
n¼0

ðh0n þ l0n cot hÞ Pnðcos hÞ

ð1:114Þ

T ¼
cos a0 sin a0

� sin a0 sin a0

� �
ð1:115Þ

We give useful formulas for arc distance h0 and azimuth a0 :

h0 ¼ 2 arcsin

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sin2 b0 � b

2

� �
þ sin2 k0 � k

2

� �
cos b cos b0

s
ð1:116Þ

a0 ¼ atan2
sin b0 � cos h0 sin b

cos h0
; cos b0 sinðk0 � kÞ

� �

¼ atan2ðcos a0; sin a0Þ
ð1:117Þ

where b is latitude, k longitude, the dashed coordinates are associated with the
load points and the undashed with the field point.

12 Final Remarks

We have presented here the derivation of the differential equations for the elastic-
gravitational deformation of the Earth. As we have noted in our introduction, this
is a classic topic that has been discussed extensively in the literature. However, we
felt that current literature does not provide much information on how these
equations can be implemented into a computer program. For that reason, we have
tried to put more emphasis on the differences in sign conventions and definitions of
variables that one may find in various publications. We also have presented here
all boundary conditions explicitly and have paid particular attention to the prob-
lems related to the existence of a fluid core. Although we have focussed on ocean
tide loading, where the period of the forcing is finite, we have shown which
problems occur in the fluid core when the forcing period becomes infinite. We
recalled the results of Pekeris and Accad (1972) who showed that for a fluid with
an unstable stratification, an infinitely thin boundary layer develops that has a finite
influence on the deformation. However, we pointed out that one is interested in
computing the static deformation of the Earth, and some kind of dissipation should
be taken into account (Wunsch 1974; Dahlen and Fels 1978).
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Next, we put more emphasis than usual on the degree 1 deformation. This
deformation differs from the other degrees by the fact that it causes a shift of the
whole Earth in space. We also explicitly described the new boundary conditions at
the centre of the Earth for this degree which is rarely done.

As examples, we presented the deformation of a homogeneous Earth and an
Earth with a homogeneous mantle and fluid. For these simple cases analytical
solutions exist that involve spherical Bessel functions of the first and second kind.
Since we are interested in ocean tide loading where we need to compute load Love
numbers up to degree 10,000, we have presented in Appendix 2 an algorithm to
achieve this. The results can be used to validate the implementation of other
numerical methods such as Runge–Kutta and Chebychev collocation. The case of
a homogeneous Earth is also used to solve the singularity problem at the Earth’s
centre for the Runge–Kutta method.

In our short treatise the ocean tide loading response of the Earth is still assumed
to be completely elastic. However, we showed how the elastic properties need to
be changed to represent more realistic rheology. Finally, we discussed the for-
mulas that transform the set of Love numbers into Greens functions.

Appendix 1: Lyapunov-Transformed Matrices

The Lyapunov-transformed matrix designated B in (1.43) is

�2ð3 j�2 lÞ
ðnþ1Þ ð3 jþ4 lÞ

n2 ð3 j�2 lÞ
3 jþ4 l 0 3 j0 Z2

ð1þnÞ2 ð3jþ4 lÞ 0 0

�1
n ðnþ1Þ

1
nþ1 0 0 j0 Z2

l nðnþ1Þ 0
�4 p q a G Z

g0 ðnþ1Þ 0 �1 0 0 Z2

nþ1

a2

j0

� 36 j l
a2 ð3 jþ4 lÞ Z2 � x2q� 4 g q

a Z

� n2 ðnþ1Þ
j0 Z2

�
a g q Z � 18 j l

3jþ4 l

� �a g0 ð1þnÞq
j0 Z

�12 l
ðnþ1Þ ð3jþ4 lÞ n ðnþ 1Þ a g0 q Z

j0

1
ðnþ1Þj0 Z2

�
a g q Z � 18 jl

3jþ4 l

�
a2 n

ðnþ1Þ j0

� 6 ð2 n ðnþ1Þ�1Þj lþ4 ðnðnþ1Þ�2Þ l2

a2 ð3 jþ4 lÞZ2 � x2q
� a g0 q

ðnþ1Þ j0 Z
�3 jþ2 l

ðnþ1Þ2 ð3 jþ4 lÞ
�3

nþ1 0

� 4p q a G
g0 Z

4pq a G n2

g0 Z2 0 0 0 n�1
nþ1

0
BBBBBBBBBBB@

1
CCCCCCCCCCCA

ð1:118Þ

where Z ¼ exp q
nþ1, and j and l have been made dimensionless by scaling with

respect to j0 at the centre.
The matrix for the fluid case in the variables U, S, P and Q is

� 5
2 ð1þnÞ þ

g n x2

a Z

Z2
j �

n ð1þnÞ
a2 qx2

� �
ðnþ1Þ2

n
a2 x2 0

a2 q � 4 g
a Z þ

g2 n ð1þnÞ
a2 Z2 x2 � x2

� �
� 3

2 ð1þnÞ�
g n

a Z x2

ð1þnÞ q �1þ g n

a Z x2

� �
a g0 Z q

� 4 a2 G p q
ð1þnÞ 0 �1� 3

2 ð1þnÞ
a g0 Z
1þn

4 G pq ðg n�a Z x2Þ
g0 Z2 x2 � 4 G n p

a g0 ð1þnÞ Z x2
4 G n pq
a g0 Z x2 1� 7

2 ð1þnÞ

0
BBBBBBB@

1
CCCCCCCA

ð1:119Þ
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Appendix 2: Analytical Solution for a Homogeneous Earth

In Sect. 1.7 we discussed the computation of the Love numbers for a homogeneous
Earth. In this case there exist, for each degree n, analytical solutions for the radial
and tangential displacements U and V and for the perturbed potential P. These
were presented for degree 2 by Love (1911) and Pekeris and Jarosch (1958). For
all degrees n these were presented by Okubo (1988) and Dahlen and Tromp (1998)
although they both contain small sign errors. Therefore, we will present them
again, hopefully without errors, in this appendix.

The analytical solutions contain spherical Bessel functions which are defined as

jnðzÞ ¼
ffiffiffiffiffi
p
2z

r
Jnþ1=2ðzÞ ð1:120Þ

where n is our usual degree, z a complex number and J the normal Bessel function
of the first kind. For n ¼ 0 and n ¼ 1; these spherical Bessel functions are

j0ðzÞ ¼
eiz � e�iz

2iz
¼ sin z

z
ð1:121Þ

j1ðzÞ ¼
eiz � e�iz

2iz2
� eiz þ e�iz

2z
¼ sin z

z2
� cos z

z
ð1:122Þ

As it turns out, we shall only be using values of z that are real or purely
imaginary. In the first case we are dealing with fractions containing trigonometric
functions. In the second we are dealing with fractions containing exponentials. To
avoid numerical problems for large values of z, it is convenient to work with the
logarithm of jnðzÞ: Higher orders of jnðzÞ can in principle be computed using the
following recurrence relation:

jnþ1ðzÞ ¼
2nþ 1

z
jnðzÞ � jn�1ðzÞ ð1:123Þ

However, this recursive equation is numerically unstable for increasing values
of n. To compute the higher orders, we should use the algorithm of Rothwell
(2008) who introduced the ratio Rn :

Rn ¼
jn�1ðzÞ
jnðzÞ

¼ 1
ð2n� 1Þ=z� Rn�1

ð1:124Þ

RnðzÞ ¼
2nþ 1

z
� 1

Rnþ1ðzÞ
ð1:125Þ

The continued fraction can for each degree n be computed using Lentz’s
method which is numerically stable (Press et al. 1988). After Rn has been com-
puted using Lentz’s method for the largest value of n, the other values of Rn can be
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computed using (1.125). The logarithm of jnðzÞ; with n� 1; can now be computed
as

log jnðzÞ ¼ log j0ðzÞ �
Xn

k¼1

log Rk ð1:126Þ

Note in these equations that the logarithm functions include their analytical
continuation in the complex plane because Rn can be complex valued. Since the Rn

are either purely real or purely complex in our application we have

log ijxj ¼ log jxj þ i
p
2

log�jxj ¼ log jxj þ ip
ð1:127Þ

so the sum in (1.126) accumulates a factor of �ðinÞ: A gain in accuracy can be
achieved if the summation in (1.126) is carried out separately on the characteristic
and the mantissa.

We will now assume that the solutions are of the form

U ¼ Aur�1jnðcrÞ þ Bucjnþ1ðcrÞ ð1:128Þ

V ¼ Avr�1jnðcrÞ þ Bvcjnþ1ðcrÞ ð1:129Þ

P ¼ ApjnðcrÞ ð1:130Þ

That the solutions contain a combination of jn and jnþ1 makes sense because
you can write the first and second derivatives of these two functions again as a sum
of parts containing jn and jnþ1. Furthermore, one has to use jn=r and jnþ1 to ensure
that both are of the same order of r. That the perturbed potential solution does not
contain a jnþ1 part seems odd at first glance. However, from Poisson’s equation,
(1.10), we know that the Laplacian of the perturbed potential depends on the
perturbed density. The latter depends on the divergence of the displacement and
one can prove that the jnþ1 terms cancel out in the divergence (1.28).

Our task is to determine the six constants: Au; Bu; Av; Bv; Ap and c: This can be
done using a computer algebra program such as Mathematica or Maxima. How-
ever, we will directly present the answer in the same format as that of Dahlen and
Tromp (1998, Chap. 8) who introduced the following auxiliary variables and
solution for c :

k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
nðnþ 1Þ

p
ð1:131Þ

c2 ¼ x2

2v2
b

þ
x2 þ 16

3 pGq

2v2
a

� 1
2

x2

v2
b

�
16
3 pGq

v2
a

 !2

þ 8pGkq
3vavb

� �2
2
4

3
5

1=2

ð1:132Þ

f ¼ 3
4
ðpGqÞ�1v2

bðc2 � x2=v2
bÞ ð1:133Þ
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n ¼ f� ðnþ 1Þ ð1:134Þ

where va and vb are the compressional and shear wave velocities, respectively.
Besides solutions that contain spherical Bessel function, there exist solutions
containing terms with rn: To summarise, for each of the radial and tangential
displacements U and V and the perturbed potential P we have three independent
solutions:

U� ¼ nn
r

jnðcrÞ � fcjnþ1ðcrÞ ; U� ¼ nrn�1 ð1:135Þ

V� ¼ n
r

jnðcrÞ þ cjnþ1ðcrÞ ; V� ¼ rn�1 ð1:136Þ

P� ¼ �4pGqfjnðcrÞ ; P� ¼ ðx2 � 4
3
pGqnÞrn ð1:137Þ

As explained by Dahlen and Tromp the symbol � needs to be understood as two
solutions, one for each solution of c: The � symbol is associated with solutions
containing an rn term. For the radial and tangential stresses, R and S, and perturbed
gravity Q we have the following three solutions:

R� ¼ � ðjþ 4
3
lÞfc2 � 2nðn� 1Þlnr�2

h i
jnðcrÞ

þ 2lð2fþ k2Þcr�1jnþ1ðcrÞ
ð1:138Þ

R� ¼ 2nðn� 1Þlrn�2 ð1:139Þ

S� ¼ l c2 þ 2ðn� 1Þnr�2
� �

jnðcrÞ � 2lðfþ 1Þcr�1jnþ1ðcrÞ ð1:140Þ

S� ¼ 2ðn� 1Þlrn�2 ð1:141Þ

Q� ¼ �4pGqr�1 k2 þ ðnþ 1Þf
� �

jnðcrÞ ð1:142Þ

Q� ¼ ð2nþ 1Þx2 � 8
3
pGqnðn� 1Þ

h i
rn�1 ð1:143Þ

Sometimes it is assumed that the Earth is built up of spherical layers with
constant properties. In this case the solutions listed above apply but in addition we
need spherical Bessel functions of the second kind, also called spherical Neumann
functions yn; and solutions that depend on 1=rn (represented by the � superscript).
The two solutions associated with the spherical Neuman functions can be found by
simply replacing the jn terms with yn. We indicate this with superscripts �j and
�y; respectively in (1.148). These functions may be computed using the relation

ynðzÞ ¼ ð�1Þn�1j�n�1ðzÞ: Equation 1.123 may be used to compute j�n�1ðzÞ
because the index of j is now decreasing. The solutions associated with 1=r are
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U� ¼ � nþ 1
rnþ2

V� ¼ 1
rnþ2

P� ¼ �
x2 þ 4

3pGqðnþ 1Þ
� �

rnþ1
ð1:144Þ

R� ¼ 2l
ðnþ 1Þðnþ 2Þ

rnþ3

S� ¼ �2l
nþ 2
rnþ3

Q� ¼ 4pGqðnþ 1Þ
rnþ2

ð1:145Þ

If the Earth is divided up into spherical layers with constant properties, the
gravity inside this Earth is mostly different from that of a homogeneous Earth. To
keep using the presented above equations, one therefore scales in each layer the
term 4

3pGq to the mean value of g=r inside this layer (Vermeersen et al. 1996).
At this point the concept of Haskell propagator matrices (Haskell 1953) can be

invoked. We have an analytical expression that relates the values of the radial
solution functions between two consecutive interfaces j and jþ 1 :

yðrjþ1Þ ¼ Pðrjþ1; rjÞ yðrjÞ ð1:146Þ

and

yðrÞ ¼ A a ð1:147Þ

where A is the 6� 6 layer matrix composed of solutions ðU;V;P;R; S;QÞ> where

A ¼
U� U� Uþj Uþy U�j U�y

V� V� . . .
. . .
. . . Q�y

0
BB@

1
CCA ð1:148Þ

The propagator matrix is then

Pðrjþ1; rjÞ ¼ Aðrjþ1ÞA�1ðrjÞ ð1:149Þ

so it can be stepped from j ¼ 1 to the surface. The a vector is finally determined
from the boundary conditions. The reader will realise at this point that the account
needs substantially more detail, for instance how the layer matrix can be inverted
with elegance. We therefore refer him or her to the original source where the
method is described at necessary depth, Martinec (1989). We only repeat Marti-
nec’s advice on how to treat a fluid layer. In this case, V and S are taken out of the
equations, and the characteristic root is single-valued,

c2 ¼ 1
v2
a

x2 þ 16p
3

Gq� 4pGkq
3x

� �2
" #

ð1:150Þ

so we obtain a 4� 4 matrix for A:
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When x! 0; these equations no longer hold in the fluid. Pekeris and Accad
(1972) showed that a boundary layer develops at the core–mantle interface that
becomes infinitely thin but still has a finite effect on the dynamics. Instead of fol-
lowing their derivation, we will compute the jumps in U, R and Q (there is no jump in
P) in the boundary layer for x! 0 by taking the limit of our equations involving
spherical Bessel functions of the first kind. To do so, it will be convenient to define

A ¼ 4
3
pGq ð1:151Þ

Using (1.150), one can derive the limit value of c :

lim
x!0

c ¼ kAi

va

1
x

ð1:152Þ

Using this result, we can compute the limit of the spherical Bessel function:

lim
x!0

jnðcrÞ ¼ � vax
2kAr

ekAr=ðvaxÞ ð1:153Þ

The sign of the limit depends on the degree n. Of course the exponential grows
fast to infinity but we are allowed to scale our solutions with any constant so we
choose it in such a way to make the jnðbcÞ ¼ 1 at the boundary, where b is the
radius of the boundary (Pekeris and Accad 1972). Below the core–mantle inter-
face, jnðrcÞ ¼ 0 and it thus nicely represents the jump through the boundary layer.
Other results are

f ¼ �x2

A
n ¼ �ðnþ 1Þ ð1:154Þ

0 20000 40000 60000 80000 100000
n

0

100

200

300

400

500

Fig. 1.8 The characteristic roots cþ and Im(c�Þ; also providing the radial scale for the spherical
Bessel functions vs spherical harmonic degree n Both functions are similar and difficult to discern
in the diagram
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If we now collect all terms which are not zero when x! 0, then we have the
following solutions for our jump:

U�ðbÞ ¼ � nðnþ 1Þ
b

ð1:155Þ

R�ðbÞ ¼ �4
3
pGqk

j
v2
a

ð1:156Þ

Q�ðbÞ ¼ � 4pGqk2

b
ð1:157Þ

These equations should be added to the � solutions to fulfil the boundary
conditions at the core–mantle interface. Inside the fluid core, only the + solutions
apply.

Finally, we would like to remark that the roots c� are nicely bounded. For our
homogeneous Earth, model b; their values have been plotted in Fig. 1.8.

Appendix 3: Analytical Solution for a Homogeneous Fluid
Inner Sphere

In a fluid the shear modulus l ¼ 0: Here we distinguish four cases n ¼ 0; n [ 0;
and x ¼ 0;x 6¼ 0: First n [ 0: Since the region includes r ¼ 0; we can dismiss the
irregular solutions involving the Neumann yn-functions and the � functions.

Dahlen and Tromp (1998) give the solution for n [ 0. The matrix of the dif-
ferential equation simplifies to a 4� 4 system in the same variable as before
except for horizontal displacement and shear stress.

Dahlen and Tromp (1998) give the solution for n [ 0. The matrix of the dif-
ferential equation simplifies to a 4 9 4 system in the same variable as before
except for horizontal displacement and shear stress.

d
dr

U
R
P
Q

0
BB@

1
CCA ¼

4pqGnðnþ1Þ
3rx2 � 2

r
1
j�

nðnþ1Þ
r2qx2

nðnþ1Þ
r2x2 0

� q
9 48pGq� 16p2G2q2nðnþ1Þ

x2 þ 9x2
� �

� 4pGqnðnþ1Þ
3r2x2

ðnþ1Þqð4npG�3x2

3rx2 q

�4pq 0 � nþ1
r 1

�4pGqðnþ1Þð4npGq�3x2Þ
3r2x2 � 4pGnðnþ1Þ

r2x2 � 4pGqnðnþ1Þ
3r2x2 � nþ1

r

0
BBBB@

1
CCCCA:

U
R
P
Q

0
BB@

1
CCA

ð1:158Þ
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with the solutions

Uþ ¼ nn
r

jnðcrÞ � fcjnþ1ðcrÞ ð1:159Þ

Rþ ¼ �jfc2jnðcrÞ ð1:160Þ

Pþ ¼ �4pGqfjnðcrÞ ð1:161Þ

Qþ ¼ � 4pGq
r
ðnþ 1Þðnþ fÞjnðcrÞ ð1:162Þ

and

U� ¼ nrnþ1; P� ¼ ðx2 � 4p
3

GqnÞrn ð1:163Þ

R� ¼ 0; Q� ¼ ½ð2nþ 1Þx2 � 8p
3

Gqnðnþ 1Þ�rn�1 ð1:164Þ

where c was given in (1.150) and

f ¼ � 3x2

4pGq
n ¼ f� ðnþ 1Þ ð1:165Þ

These equations follow from what what discussed before, but it becomes
interesting when one takes the limit of x! 0. Unfortunately, these solutions
cannot be used for x! 0. Instead, we refer to Longman (1963) who solves a
2� 2 system in the gravity variables only. At the core–mantle boundary, vertical
and horizontal displacement start with arbitrary values into the mantle, horizontal
shear stress is zero, vertical normal stress starts as

R ¼ qgðrÞU � qP ð1:166Þ

and the gravity variable Q as

Q ¼ H � qU ð1:167Þ

The 2� 2 system in the core is

d

dr
P
H

� �
¼ 0 1

nðnþ1Þ
r2 � q2

j � 2
r

� �
� P

H

� �
ð1:168Þ

The solution of this system is

P ¼ C

ffiffiffiffiffiffiffi
2c0

r

r
jnðc0rÞ ð1:169Þ

H ¼ C

ffiffiffiffiffiffiffi
2c0
p

r

nffiffi
r
p jnðc0rÞ þ c0

ffiffi
r
p

jnþ1ðc0rÞ
� �

ð1:170Þ
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where

c0 ¼ q

ffiffiffiffiffiffiffiffiffi
4pG

j

r
ð1:171Þ

and C is an arbitrary constant.

Appendix 4: Tiny Fluid Sphere

The recursion relations for a tiny homogenous fluid sphere in the variables U, S, P
and Q (1.91) are

u1 ¼ 0; p1 ¼ s1=q ¼ c ð1:172Þ

q1 ¼
ð�8 G n ð1þ nÞ p qþ ð1� 2 nÞx2Þ p1

3 x2
ð1:173Þ

with an arbitrary c as a start. Then, for j ¼ 3; 5; . . .

qj ¼ 4 G ð1þ nÞ pq 32 G2 n2 ð1þ nÞ p2 q2 � 4 G n ð4� jþ j2
�

þ2 nþ 2 j nÞ p qx2 þ 3 ðj� 1Þ ðjþ 2 nÞx4Þ
�
sj�2

1
3 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ð1þ nÞ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:174Þ

uj ¼ 32 G2 n2 ð1þ nÞ2 p2 q2 � 4 G n ð1þ nÞ ½4þ j2
n

�10 nþ j ðþ2 n � 7Þ� pq x2

�3 ðj� 1Þ ½j2 þ 2 ðn� 1Þ nþ j ð3 n � 1Þ�x4
�

sj�2

1
3 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ð1þ nÞ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:175Þ

sj ¼ q 128 G3 n2 ðnþ 1Þ2 p3 q3 � 16 G2 n ðnþ 1Þ ½22þ j2
n

� 4 nþ j ð2 n � 1Þ� p2 q2 x2 þ 24 G ½2 j2 þ 3 j ðn� 1Þ
�4 n ð2þ nÞ� pq x4 þ 9 ðj� 1Þ ðjþ 2 nÞx6

�
sj�2

1
9 ðj� 1Þ ðjþ 2 nÞ jx2 ½8 G n ðnþ 1Þ p q� ðj� 1Þ ðjþ 2 nÞx2�

ð1:176Þ

pj ¼ �
4 G p q

ðj� 1Þ ðjþ 2 nÞ j sj�2 ð1:177Þ
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Appendix 5: Gravity Green’s Function and Kummer
Transform

We noted another error in Agnew (2007) where he specified the Kummer trans-
formation of the Green’s function for surface gravity. With our notation,

GDgðhÞ ¼
X1
n¼0

½2h0n � ðnþ 1Þk0n� Pnðcos hÞ � z=aþ 2 sin2 h=2

½ðz=aÞ2 þ 4ð1þ z=aÞ sin2 h=2�3=2

ð1:178Þ

Since

lim
n!1

nk0n ¼ ðNk0Þ1 6¼ 0

the Kummer transformation of the sum term should read

2h00 þ
X1
n¼1

2ðh0n � h01Þ � ðnþ 1Þ k0n �
ðNk0Þ1

n

� �� �
Pnðcos hÞ

þ h01
sin h=2

� ðNk0Þ1
1

2 sin h=2
� 1� log sin

h
2
þ sin2 h

2

� �� � ð1:179Þ
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