Web Linking-Based Protocols for Guiding
RESTful M2M Interaction

Jesus Bellido, Rosa Alarcon, and Cristian Sepulveda

Computer Science Department
Pontificia Universidad Catolica de Chile
jbellido@uc.cl, ralarcon@ing.puc.cl, cmsepul@uc.cl

Abstract. The Representational State Transfer (REST) style has be-
come a popular approach for lightweight implementation of Web ser-
vices, mainly because of relevant benefits such as massive scalability, high
evolvability, and low coupling. It was designed considering the human-
user as the one who drives service invocation and discovery. Attempts
to provide machine-clients a similar autonomy have been proposed and
recently, interesting discussion evaluate explicit semantics in the form of
well-defined media types but introducing higher levels of coupling. We
explore Web linking as a lightweight mechanism for representing link
semantics and guiding machine-clients in the execution of well-defined
choreographies and illustrate our approach with the OAuth and Openld
protocols exploring asynchrony and machine expectations as the inter-
action moves forward.

1 Introduction

The web has become a platform not only for the delivery of content, but also
for the provision of services. Diverse functionality is made available to massive
amount of users, and new services are built on top of others offering aggregated
value. Popular service interfaces are generally classified into WSDL-based or
REST based services, although other variants such as XML-RPC, Atom, JSON-
RPC, etc. are also availabld]. In addition, the reuse of services into compounds
(service composition) is highly desirable not only because it reduces costs and
provides aggregated value, but also because it allows the creation of enriched
applications, leveraging the Web as a services platform.

A REST service is a web of interconnected resources identified with URIs,
that can be manipulated through a wniform interface (e.g. HT'TP operations),
whose state is served through representations (e.g. an HTML page) embedding
links and controls (e.g. a form indicating a POST operation), which define the
underlying hypermedia model that determines not only the relationships among
resources but also the possible net of resource state transitions. REST consumers
discover and decide which links/controls to follow/execute at run-time. This
constraint is known as HATEOAS (Hypermedia As The Engine Of Application

! see http://www.programmableweb.com/apis/directory

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 74-[85] 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.programmableweb.com/apis/directory

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 75

State). A composition of REST services can be seen not only as the availability
of new resources but also of new navigation paths (links/controls) that allow
clients to traverse the hypermedia model corresponding to various independent
REST services.

Providing support for automatic composition is also desirable since it may
reduce development time and costs, but is far from trivial since REST services
lack a standard machine-readable description, so that REST service providers
describe their APIs in natural language (e.g. HTML pages) forcing machine-
client developers to interpret the intended way of use of the API, to identify any
change manually and to program the clients accordingly; most often, old APIs
version are not supported. REST suppose humans as its principal consumer and
they are expected to drive resource discovery and state transition by understand-
ing the representation’s content semantics, i.e. the links/controls embedded in
representations such as HTML pages. The lack of explicit domain-level seman-
tics in current media-types (e.g. HTML), makes harder for machine-clients to
select, among the available links and controls, those they must follow in order
to accomplish a specific navigation path or to engage in a predetermined way
with various resources, as is the case for instance, of business processes, chore-
ographies or authentication protocols. Some [I], propose the definition of domain
specific media-types that portray the resource’s state and the related hyperlinks.
A machine-client that is aware of such custom media-types could then under-
stand such representations and proceed accordingly. However, this requires that
both client and servers agree on the media-types meaning, which introduces a
strong coupling.

We are interested in exploring Web Linking [2] as a mechanism for specifying
application-domain semantics for complex interaction such as business processes.
In this paper we analyze the OAuth [3] and OpenID [4] protocols as case stud-
ies that implement Web choreographies, including control flow, asynchronous
calls, out-of-band interactions and various media-types. The proposal allows a
machine-client to understand resources’ representation and to dynamically de-
termine a navigation path, enacting the expected choreography. The paper is
organized as follows, section [l discuss related work, section [J] presents our ap-
proach, and finally section [present our conclusions.

2 Related Work

A few languages have been proposed to create machine readable RESTful ser-
vices description. The Web Application Description Language (WADL) [5] de-
scribes RESTful services as resources identified by URI patterns, media types
and the schemas of the expected request and response as well as representations.
The latter supports parameters that can contain links to another resources.
WADL, however, does not support link discovery or link generation for new re-
sources, the resulting model is operation-centric and introduces additional com-
plexity with unclear benefits for both human and machine-clients.

In [6], we proposed ReLL (Resource Linking Language), a hypermedia-centric
REST service description. A ReLL description considers not only resources and

76 J. Bellido, R. Alarcon, and C. Sepulveda

representations, but fundamentally links and the mechanisms for identifying
changes in the described REST service (e.g. changes in the URIs). ReLL allows
machine-clients to retrieve, on run-time, links and state information embedded
in representations so that a simple Web machine-client (a crawler) is able to
traverse and discover the interlinked resources of a REST service. A ReLL de-
scription requires to annotate described resources and links/controls with types,
serving as the basis for generating a semantic model. This approach made pos-
sible to semantically integrate independent REST services and execute queries
that traverse the integrated web [7I8]. ReLL was used also as the basis for build-
ing machine-clients that traverse the Web enacting a predetermined workflow
defined by a Petri Net[9]. The latter approach delegates on the Petri Net the re-
sponsibility of determining, at design time, the navigation path a machine-client
must follow, resources, however, are dynamically bound. One of the main draw-
backs of this approach is that, even though separation of concerns facilitates the
design of workflows, it introduces coupling between the ReLL and Petri layers
(horizontal interfaces [10]), so that changes on the ReLL description would make
clients fail since the Petri Net is unaware of such changes.

Other approaches [I], avoid the need of a description by defining domain
specific media-types (e.g. an XML schema for a company’s bills) that portray the
resource’s state and the related hyperlinks. Authors define a Domain Application
Protocol (DAP) as a collection of media types, URI entry points, HTTP idioms
and the link relations portrayed in the representations. The DAP determines the
set of legal interactions between a consumer and a set of resources involved in a
business process and is also an implicit contract between the disparate parties
in the composition, it is not clear though, how a machine-client may understand
how to comply the DAP, unless both client and servers agree on the media-types
meaning, which introduces a strong coupling.

In [II], Steiner and Algermissen acknowledge the limitations of relying on
media-types to portray both content for human-consumption (that may require
human-friendly formats such as HTML) and semantics directed to machine-
clients (that may require RDF) and they propose content-negotiation (HTTP
Options) to dynamically find out the appropriate media type. They propose
also an extension of the RDF HTTP Vocabulary in order to become the media-
type intended for machine-clients as well as the usage of links served as HTTP
Headers annotated according to the Web linking standard [2].

The standard specifies relation types for Web links, defines a registry for them,
and regulates its usage in HTTP headers (Link headers). A link is a typed
connection between two resources, that involves a context URI (the origin re-
source URI), a link relation type, a target IRI, and optionally, target attributes.
No restrictions are placed on cardinality or relative ordering of the links. Tar-
get attributes are key/value pairs that further describe the link or its target
(e.g. media="text"). A link relation type identifies the semantics of a link (e.g.
rel="copyright") and there are two kind of relation types, registered and ex-
tension. The former are well-defined, registered tokens; while extension relation
types are URIs that uniquely identify the relation type. Steiner [I1] relies on

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 7

registered tokens and media-types that lack domain-level semantics which intro-
duces less coupling but makes impossible for a machine-client to make sense of
the presented information and decide which link to follow and which information
may be relevant for such decision. In addition the proposed media-type do not
allow to dynamically discover links and controls to related resources.

3 REST Services Composition and Interaction Protocols

We are interested in the development of machine-clients that enable service com-
position involving REST services. Statelessness is a key REST constraint that
dictates not to store the state of the interaction between clients and servers
on the server side. This constraint has two consequences, stateless servers are
much less complex than stateful ones, providing massive levels of scalability and
fault tolerance (e.g. hardware replicas); but this also requires that each request
to the server must contain all the information needed to provide a response.
Service composition has traditionally focused on stateful approaches where a
central component orchestrates the dialogue between the parties and store all
the necessary information to move forward the interaction.

A stateless, RESTful scenario where there is no such orchestrator but a co-
operation of the involved resources, that is a choreography, requires that the
representations served to each other mediate the interaction. The HATEOAS
constraint is fundamental in this scenario, provided that machine-clients can
understand the semantics of the links and controls served in the representations,
and they have the required semantics to move forward the interaction.

We could argue that at a very general level, Web linking registered relation
types such as start, previous, next, first, last [2], could be used to embed
instructions within the served representations and add basic semantics to guide
resources interaction. However, interaction have explicit semantics in particular
domains that can be exploited for servers to steer machine-clients. For instance,
let’s consider the REST APIs implementing the OAuth and Openld protocols;
callbacks and redirection are part of the interaction; they implement an inter-
rupted, asynchronous conversation where third parties (out-of-band) later affect
resources’ state and dynamically generate pieces of information that are expected
to be carried out at various steps of the interaction.

3.1 Security Domain: OAuth 2.0 and Openld

Modeling non functional aspects of services have captured the attention of re-
searchers as a medium for enriching and constraining automatic compositions
and one of these aspects is security. In [I2], a survey determines that most
Web APIs use one of five authentication mechanisms, namely, they use creden-
tials (API key or username and password) to restrict access to a service, Web
authentication protocols (HTTP Basic Authentication, HT'TP Digest Authen-
tication and OAuth), or even ad-hoc authentication mechanisms (parts of the
HTTP request). OAuth accounts for a mere 6% of the APIs surveyed, however

78 J. Bellido, R. Alarcon, and C. Sepulveda

recent adoption of stronger security capabilities such as OAuth and HTTPS for
mayor players in the industry (e.g. Facebook, Twitter) will have an influence on
applications developed on top of these platforms.

OAuth 2.0. The OAuth 2.0 authorization protocol allows to grant third-party
applications limited access to an HTTP service on behalf of a user, by orchestrat-
ing an approval interaction protocol between the user and the HTTP service.
OAuth defines four grant types: authorization code, implicit, resource owner
password credentials, and client credentials, and provides an extension mecha-
nism for defining additional grant types. Each grant type defines an authoriza-
tion interaction flow between four parties, the client, the resource owner, the
authorization server and the resource server.

The authorization code grant type flow is illustrated in Figure[ll The client ob-
tain some credentials (1, 2) and requests authorization from the resource owner
directly, or preferably through an authorization server (A). The server authen-
ticates the resource owner through a user-agent (e.g. a form displayed in a Web
browser). This communication occurs out-of-band between the Resource Owner
(e.g. LinkedIn) and the user. Once the resource owner grants access to the re-
quired resources, the authorization server redirects the user-agent to the callback
and includes an authorization code provided to the client (C). The authorization
code is used to request an access token (D) from the authentication server, once
the token is granted (E), the client application can use it to access resources
stored in the resource server (F, G).

Auth Auth Resource || Resource
Server ' Server Owner Server
(1) GET http://[authServer]

[
Payload: Credentials :
201 Created 1 !
(2 "
1
1

Payload: RequestToken Out of Band
Interaction

GET http://[AuthServer] | e |

(A) Payload: Credentials, requestToken, callback |
301 Redirélct [Location]
GET http://[Location] |
n . T

(B) 301 Redirect [callback, authorizatipn_code] Santaccess

|
(C GET http:/[callback]/?authorizatjon_code
I
(D) POST hitp://[AuthServer]] !
Payload: Credentials, authorizatior|_code
E) 200 ok I

Payload: access_token T
| -

(F) GET http://[ResourceServerUri]/[re#ource] !
(G) 20x ok : :
- Payload: representation of resourée

Fig. 1. OAuth 2.0 Abstract protocol sequence diagram

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 79

Relying Openld
Part Provider

=T
POST http:/[OpenldServerUri]
303 Redirect OpenldProvidel

GET http://[OpenldProvider | .
B 1
200 Ok |
POST http:/[OpenldProvider] credentials
c T
2000k | OAuth interaction
POST http://[OpenldProvider] authprize response
D I
303 Redirect HelyingPar‘ty; callback
GET http:/[ReliyingParty] :
E !
- 20X Ok |
l

Fig. 2. OpenlD abstract protocol sequence diagram

>

OpenlID. The OpenlID protocol allows consumers to present, to a service, claims
about their identity that have been authenticated by an identity provider trusted
by that service. OpenID allows a service to delegate the responsability for stor-
ing consumer credentials to one or more OpenlD providers. The providers are
responsible for checking a consumers credentials and informing a service if an
identity claim is valid.

Figure 2 shows the protocol for a client to register an OpenID URI that they
claim to own to a Relying Party (e.g. LiveJournal). In an Initiation step (A), the
Party redirects the client to the proper Openld Provider (e.g. Blogger) (B) that
requires the user to provide both, credentials (user, password) and optionally to
choose a preferred authentication server (C). With that information, the OpenID
provider validates user credentials and if necessary may redirect the client to the
appropriate Openld provider (e.g. Google, PayPal, Yahoo, etc.), this in turn
verifies the consumer credentials and confirms the registry of the user OpenlID,
otherwise, it redirects the consumer to the OAuth server in order to grant access
to identity information (e.g. Google, Facebook, etc.).

3.2 Linking Requirements: Modeling Stateless Choreographies

In order to design stateless interaction, state (client-server interaction) must be
explicitly modeled either as a different resource [10], as cookies, or be embedded
in the representations so that clients can build later the subsequent requests
properly. As seen in Figure 3, the latter approach can be accomplished without
requiring extensive changes in the representations by exploiting Web Linking.
The text in italics (red) shows our proposal for Link Headers, the URI part
represents the URI of the resource to be retrieved. The semantics of the link
are explicitly presented by the rel parameter as an extension relation type (an
abbreviated URI in our case) that refers to a particular realm, process or appli-
cation domain, a target attribute identify the expected state that can be achieved

80 J. Bellido, R. Alarcon, and C. Sepulveda

(0) Link: <https://api.linkedin.com/uas/oauth/requestToken>; rel="oauth:start";
state="[oauth:started | oauth:denied]"; method="GET"

(1) GET https://api.linkedin.com/uas/oauth/requestToken
Authorization=OAuth
oauth_consumer_key= ...,
oauth_nonce="180098101",
oauth_timestamp="1284497324",
oauth_signature=...,
oauth_callback="oob",
oauth_signature_method="HMAC-SHA1",
oauth_version="1.0"

(2) HTTP/1.1 201 Created
Content-Length=236, null=HTTP/1.1 201 Created, Date=Tue, 14 Sep 2010 20:52:18 GMT,
Content-Type=text/plain, Server=Apache-Coyote/1.1
Link: <https://api.linkedin.com/uas/oauth/authorize>; rel="oauth:grant";

state="[oauth:granted | oauth:denied]"; method="GET";

Params:
oauth_token=142e1172-aca0-40e8-9a3f-163f52969cda
oauth_token_secret=b795c3ae-bf72-4451-baaf-eb31b6b024e1
oauth_callback_confirmed=true
oauth_request_auth_url=https://api.linkedin.com/uas/oauth/authorize
oauth_expires_in=599

(A) GET https://api.linkedin.com/uas/oauth/authorize?oauth_token=142e1172-
aca0-40e8-9a3f-163f52969cda

(C) HTTP/1.1 200 OK
Link: <https://api.linkedin.com/uas/oauth/accessToken>; rel="oauth:accessToken";
state="[oauth:authorized | oauth:unauthorized]"; method="POST";
https://www.linkedin.com/uas/oauth/authorize/oob?
oauth_token=4be35e7e-9d5b-4cb9-82fa-3dfd6b694fdc

(D) POST https://api.linkedin.com/uas/oauth/accessToken
Authorization=OAuth
Params:
oauth_consumer_key="..."
oauth_nonce="-46807422"
oauth_timestamp="1284754819"
oauth_signature="UCgAG4ueyGRcSZIuUwz8dhOYCOk%3D"
oauth_verifier="92577"
oauth_callback="oob"
oauth_signature_method="HMAC-SHA1"
oauth_token="ae98a651-36a0-41c8-ab24-e2a2e1672bcb"
oauth_version="1.0"

Fig. 3. Messages exchanged during OAuth 2.0 protocol, for a LinkedIn implementation

by the machine-client if the link is followed, as well as the method to be per-
formed. Control flow operators that are common in service composition such
as conditional invocation, selection of the best result, parallel execution, etc.
[13], should be also considered. We model such controls as XPath expressions
(operators) that are evaluated at run-time with the assistance of a ReLL de-
scription. For the OAuth case, the choreography starts with a first link (Figure
[Bl0). For a more general case, such as a business process, this will indicate that a
process initiates a subtask at a particular entry-point (which can be dynamically
discovered). The request (1) to the URI changes the state of the oauth:start
resource. The new served response (2) is processed by the machine-client using
ReLL as a means to derive some hints from the content.

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 81

For instance, it verifies that the URI matches clients’ expectancy (no changes
in the URI); it retrieves the representation expecting to be encoded as text/plain,
and verifies whether a regular expression is contained. In such case, it determines
wether the expected state oauth:started (a 201 HTTP code indicates, in the
LinkedIn implementation, that a new Request Token was created) was achieved
and prepares to discover the next step of the orchestration. The link request
grant is followed in order to obtain an oauth:grant resource, the link is re-
trieved from the representation by executing a select expression that can be
encoded as a regular expression or as an XPath expression depending on the
content media type. Since Web Linking determines rules to transform links to
XML, we decided to transform the link to XML and use XPath expressions
for illustrating the dependance on the media-type. The method can be also re-
trieved from the content. Once the link is followed (A), the new served response
includes instructions to force a redirection on the machine-client which will lose
control of the interaction, and could either wait for an asynchronous message
to regain control, look for an answer later, or stop its execution and trust that
the next message will contain the necessary information for resuming the in-
teraction without losing information. We implemented the latter alternative in
the machine-client by sending all which is necessary to continue the interaction,
since the OAuth protocol allows for an extra parameter for such kind of pur-
poses. Eventually, the interaction is resumed by a message received through a
callback (http://darwin.ing.puc.cl ...). Figure [presents a snippet of a
ReLL description for an Linkedin OAuth implementation shown in figure [3

<resource xml:id="oauth:start">
<uri match="https://api.linkedin.com/uas/oauth/requestToken" type="regex"/>
<representation xml:id="requestToken-text" type="iana:text/plain">
<name>oauth_token request parameters</name>
<state name="oauth:started" select="HTTPV1\.1\ 201" type="regex"/>
<link type="request_grant" target="oauth:grant" minOccurs="0" maxOccurs="1">
<selector name="href" select="//Link/@href" type="xpath"/>
<selector name="state" select="//Link/@state" type="xpath"/>
<protocol type="http">
<request>
<selector name="method" select="//Link/@method" type="xpath"/>
</request>
<response media="iana:text/plain"/>
</protocol>
</link>
</representation>
</resource>
<resource xml:id="oauth:grant">
<uri match="http://darwin.ing.puc.c\?oauth_token=[a-zA-Z0-9\-]*" type="regex"/>

</resource>

Fig.4. ReLL snippet describing the RequestToken resource according to LinkedIn
implementation (step 1 in Figure [2))

82 J. Bellido, R. Alarcon, and C. Sepulveda

On run-time and starting from a seed, a machine-client retrieves a resource
(e.g. an HTML form indicating that the user must authenticate by clicking a but-
ton), such page (e.g. https://api.linkedin.com/uas/oauth/requestToken)
is described as an oauth:start resource, and the corresponding ReLL decla-
rations are applied; that is, the XPath expressions or selectors, retrieve both
state variables (state), and links. Since a control flow operator is omitted, the
request grant link determines that the next link to be retrieved corresponds
to the oauth:grant category (target). State variables are carried along and
stored by the machine-client.

It is also possible to dynamically generate new Links from the state vari-
ables and (part of ReLL dynamic late binding characteristics) add cardinal-
ity constraints for links. In Figure 2 step D indicates a REST composition of
both Openld service (e.g. Blogger’s Openld) and OAuth service (e.g. LinkedIn’s
OAuth). Again, this interaction is triggered by the Openld Provider sending a
GET message to LinkedIn in order to access a resource. The message is directed
to the resource URI and a state variable (security token) is sent in the body of
the message. If valid, LinkedIn will confirm user authorization, if not, the user
will follow OAuth from step 1.

3.3 Coupling Facets in Our Approach

One of the risks of supporting REST services descriptions is the increasing of
coupling between clients and servers. Coupling has been described as a mul-
tidimensional property [10], where dimensions or facets include relevant design
aspects that determine the degree of coupling in a system. In our approach ReLL
serves as an abstraction layer between RESTful services and a machine-client.
According to the defined coupling facets, ReLL will not increase the coupling
degree between RESTful Web services and machine-clients as detailed below:

— Discovery. RESTful web services can be discovered by decentralized referrals
exchanging hyperlinks. Services are not registered in any standardized way
(e.g. UDDI). ReLL allows a machine client to discover resources by following
the links encountered in resource representations. ReLL’s select expression
allows the machine client to retrieve embedded links, and generate-uri al-
lows to dynamically mint new URIs from expressions embedded in a resource
representation. The latter feature allows a designer to compensate the lack
of hypermedia on current RESTful APIs.

— Identification. A URI globally identifies RESTful web services, URIs however
are not constrained only to the http scheme. URIs identify services in dif-
ferent contexts and services are free to use different identifications schemes.
ReLL allows a machine-client to follow a link that leads to discover another
URI under any scheme (i.e. any protocol).

— Binding. Dynamic binding resolves at run-time the URI to be invoked, the
binding is established only when it becomes necessary. ReLL allows a ma-
chine client to follow and resolve, at run-time, the URI of the link encoun-
tered in a representation obtained as a result of an invocation.

https://api.linkedin.com/uas/oauth/requestToken

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 83

— Platform. Platform independency requires that services built using different
and heterogeneous platforms can interact with each other without a bridge.
ReLL describes resources using XML in a platform independent way. XPath
expressions are also well known and standard.

— Interaction. Asynchronous interaction allows two services to interact without
being available at the same time. HT'TP is a synchronous communication
protocol, and ReLL supports both synchronous scenarios and asynchronous
scenarios which, in the Web context, requires to perform callbacks to a URI.
This is not trivial, since servers (instead of clients) redirect user-agents to the
callback URI which causes machine-clients a loss of context of the previous
interaction. For the case of REST, this is solved by carrying out context in-
formation along the interchanged messages, hence, no state of the interaction
is stored on the served side (session). ReLL supports this feature by injecting
links and context information (through the generate-uri expression) that
restores the interaction sequence obtained from the resource representations
only when it is required.

— Interface Orientation. Vertical interfaces rely on using protocols for allowing
components to directly communicate between them, horizontal interfaces
or layered architectural styles introduce a stronger dependency among the
layers which makes the architecture more coupled. ReLL relies on protocols
to allow client machines to interact with services, protocols are described in
terms of methods to be invoked and the media-types to be expected when a
link is followed. Our previous version, used a Petri Net layer that introduced
a stronger coupling between the ReLL description and the Petri Net making
it hard to support server evolution without breaking the machine-client.

— Model. Self describing messages do not require to share a model for marshal-
ing and unmarshaling messages. ReLL do not require any particular message
format (i.e. a canonical media-type), instead it allows a client machine to
recover information from representations by using XPath or regular expres-
sions. However, if the server changes the representations, the machine-client
will fail to retrieve information embedded in the content and proceed with
its intended interaction. By using Web Linking however, servers can change
arbitrarily the URLs of the resources involved in the choreography without
causing machine-clients to break.

— State. Stateless services keep the state in the messages that are passed be-
tween cooperating services instead of storing the client-server interaction on
the server side. ReLL discovers a cooperating service URI and its parameters
from the served resource representation, and then, it generates the link to
be invoked as well as the protocol and method. That is, it assumes that the
message contains the state information, and it is even capable of extracting
part of the message and mint context and links.

— Generated Code. A service description can be used to generate code, auto-
matically (stub), that represents the service facade, either on the server or
the client side. It introduces a strong contract between clients and servers and
hence strong coupling. Code generation only works if the communications
requirements are completely specified in a machine-readable form. It is not

84 J. Bellido, R. Alarcon, and C. Sepulveda

possible to generate code from a ReLL service description, because it does
not have a full detail of the URIs (i.e. do not register all the available URIs,
nor a URI pattern), nor a full detail of the representations (i.e. it annotates
the expected media-type and expected patterns in the representations, but
not the content itself). A ReLL document is a partial, arbitrary (since it
represents a particular client view of the service) description of a REST ser-
vice. Such description expresses the expectations of a generic machine-client
when interacting with a REST service but do not force servers to comply
with the description, allowing then servers to freely evolve.

— Conwversation. A reflective inspection mechanism enables clients to interact
with the service by inquiring it about the possible future steps of the interac-
tion. In our proposal, servers have full control of the links and representation
served and can change them at any time, ReLL descriptions represent the
expectancies of a machine-client but do not constraint in any way the server
actions, instead, it contains the mechanisms (select expressions) to discover
on run-time the hyperlinks. By enriching the links with Web Linking features
(rel and target expressions such as state), the server explicitly indicates to
its clients what state could be achieved when following a link.

4 Conclusions

A set of media-types determined a priori (e.g. XML) allow machine-clients to
make sense of the contents and proceed accordingly, however, application-domain
media types evolve continuously, sometimes media-types with no support for
links or structure (e.g. binary) are required, and furthermore, they require an
agreement between clients and servers, introducing stronger coupling and lim-
iting service evolvability. By relying in well formed REST representations that
fully support the HATEOAS constraint, it is possible for a machine-client to
pursue a series of operations that transform the resource state.

Service descriptions (e.g. ReLL), increase coupling between clients and servers
but in less degree. ReLL allows machine-client designers to encode rules and
assumptions for the understanding and processing of the resources without lim-
iting service evolvability. It facilitates to detect whether some assumptions have
changed (e.g. more links than expected are served, the URIs have changed, the
protocol have changed etc.), and take a proper action. Web Linking relations
can be formally described as vocabularies with well-defined semantics so that
machine-clients can make complex assumptions and derive plans dynamically.
As for future work, we are interested in the definition of business processes
enabled by lightweight infrastructures that steer a machine-client dynamically
through the underlying hypermedia, so a vocabulary for Web Linking that ex-
tends relation types for Business Processes will be our next endeavor. This goal is
quite challenging because it requires also to deal with conversation state [10], but
also with user interaction, events, complex control flow and complex information
transformation. OAuth and Openld features such as asynchronous communica-
tion, callbacks, and state handling shed some lights for facing events and user

Web Linking-Based Protocols for Guiding RESTful M2M Interaction 85

interaction as out-of-band communication, delegating control on third parties
and resuming later the navigation provided that state can be carried along the
interaction.

Acknowledgment. Research supported by the Center for Research on Educa-
tional Policy and Practice (CONICYT), Grant 11080143.

References

10.

11.

12.

13.

. Webber, J., Parastatidis, S., Robinson, I.: REST in Practice: Hypermedia and

Systems Architecture. O’Reilly & Associates, Sebastopol (2010)

. Nottingham, M.: Web linking. Internet RFC 5988 (October 2010)
. Barnes, R., Lepinski, M.: The oauth security model for delegated authorization.

Internet Draft draft-barnes-oauth-model-01 (2009)

. Recordon, D., Reed, D.: Openid 2.0: a platform for user-centric identity manage-

ment. In: Juels, A., Winslett, M., Goto, A. (eds.) Digital Identity Management,
pp. 11-16. ACM (2006)

. Hadley, M.: Web application description language. World Wide Web Consortium,

Member Submission SUBM-wadl-20090831 (August 2009)

. Alarcén, R., Wilde, E.: Restler: Crawling restful services. In: Rappa, M., Jones, P.,

Freire, J., Chakrabarti, S. (eds.) 19th International World Wide Web Conference,
pp. 1051-1052. ACM Press, Raleigh (2010)

. Alarcon, R., Wilde, E.: Linking data from restful services. In: Third Workshop on

Linked Data on the Web, Raleigh, North Carolina (April 2010)

. Alarcén, R., Wilde, E.: From restful services to rdf: Connecting the web and the

semantic web. School of Information, UC Berkeley, Berkeley, California, Tech. Rep.
2010-041 (June 2010)

. Alarcén, R., Wilde, E., Bellido, J.: Hypermedia-driven restful service composition.

In: Feuerlicht, G., Lamersdorf, W., Ortiz, G., Zirpins, C. (eds.) 6th Workshop on
Engineering Service-Oriented Applications (WESOA 2010), San Francisco, Cali-
fornia (December 2010)

Pautasso, C., Wilde, E.: Why is the web loosely coupled?: a multi-faceted metric
for service design. In: Proceedings of the 18th International Conference on World
Wide Web, WWW 2009, pp. 911-920. ACM, New York (2009),
http://doi.acm.org/10.1145/1526709.1526832

Steiner, T., Algermissen, J.: Fulfilling the hypermedia constraint via http options,
the http vocabulary in rdf, and link headers. In: Pautasso, C., Wilde, E., Alarcén,
R. (eds.) Second International Workshop on RESTful Design (WS-REST 2011),
pp. 11-14 (March 2011)

Maleshkova, M., Pedrinaci, C., Domingue, J., Alvaro, G., Martinez, 1.: Using Se-
mantics for Automating the Authentication of Web APIs. In: Patel-Schneider, P.F.,
Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.)
ISWC 2010, Part I. LNCS, vol. 6496, pp. 534-549. Springer, Heidelberg (2010)
Hamadji, R., Benatallah, B.: A petri net-based model for web service composition.
In: Schewe, K.-D., Zhou, X. (eds.) Fourteenth Australasian Database Conference
(ADC 2003), CRPIT, vol. 17, pp. 191-200. ACS, Adelaide (2003),
http://crpit.com/confpapers/CRPITV1i7Hamadi.pdf

http://doi.acm.org/10.1145/1526709.1526832
http://crpit.com/confpapers/CRPITV17Hamadi.pdf

	Web Linking-Based Protocols for Guiding
RESTful M2M Interaction
	Introduction
	Related Work
	REST Services Composition and Interaction Protocols
	Security Domain: OAuth 2.0 and OpenId
	Linking Requirements: Modeling Stateless Choreographies
	Coupling Facets in Our Approach

	Conclusions
	References

