Task-Based Recommendation
of Mashup Components

Vincent Tietz*, Gregor Blichmann**, Stefan Pietschmann, and Klaus Meifiner

Technische Universitat Dresden, Faculty of Computer Science
01062 Dresden, Germany
{vincent.tietz,gregor.blichmann,stefan.pietschmann,
klaus. meissner}@tu—dresden .de

Abstract. Presentation-oriented mashup applications are usually de-
veloped by manual selection and assembly of pre-existent components.
The latter are either described on a very technical, functional level, or
using informal descriptors, such as tags, which bear certain ambigui-
ties. With regard to the increasing number and complexity of available
components, their discovery and integration has become a challenge for
non-programmers. Therefore, we present a novel concept for the task-
based recommendation of mashup components, which comprises a more
natural, task-driven description of user requirements and a correspond-
ing semantic matching algorithm for universal mashup components. By
its realization and integration with an composition platform, we could
prove the feasibility and sufficiency of our approach.

Keywords: Requirements specification, task modeling, mashup compo-
nent recommendation, semantics, methodology.

1 Introduction

Presentation-oriented mashups introduce the user interface (SWS) as a new in-
tegration layer for service-based applications and have become a prominent ap-
proach for the lightweight integration of distributed and decoupled web
resources. Originally, mashups have been developed by manual, script-based
integration of heterogeneous application programming interfaces (SWSs). Ad-
dressing non-programmers, mashup tools like Yahoo! Pipes, JackBe Presto or the
mashArt editor [7] have emerged to support the visual composition of technology-
independent web services, SWSs and SWS components.

Despite the simplicity of composition metaphors, the discovery of compo-
nents remains difficult. The search is occasionally facilitated by recommenda-
tions based on keywords, interface descriptions and community feedback, e. g.,
in programmableweb.com and IBM Mashup Center. However, in the light of grow-
ing repositories and ambiguous tags, the identification of proper search criteria
becomes an increasing challenge for unexperienced users.

* Funded by the European Social Fund (ESF), Free State Saxony (Germany) and
Saxonia Systems AG (Germany, Dresden), filed under ESF-080939514.
** Funded by the ESF and Free State Saxony (Germany), filed under ESF-080951805.

A. Harth and N. Koch (Eds.): ICWE 2011 Workshops, LNCS 7059, pp. 25 2011.
© Springer-Verlag Berlin Heidelberg 2011

26 V. Tietz et al.

Instead of coping with technical details, users — typically domain experts —
need to express their requirements in a more natural way. Since task analysis is
considered as an intuitive way to gather user requirements for interactive sys-
tems [12], we strive for a task-based elicitation of user requirements. Thereby,
user activities can be identified at design-time, avoiding low-level implementa-
tion details and using intuitive decomposition into smaller parts as well as the
identification of used domain and application objects [16].

Fig.] shows an exemplary task description for planning a conference partic-
ipation. In order to receive suggestions for routes of the public transportation
services, a participant needs to input start and destination location as well as cor-
responding temporal constraints. In addition he or she needs information about
available hotels and the weather near the conference location. Therefore, the
task “Conference Participation” is decomposed into “Specify Criteria”, “Calcu-
lation” and “Read Travel Information”. Mashup components can be considered
as self-contained entities solving these tasks. As an example, a map component
could be used to specify start and destination location (interaction task). Sim-
ilarly, list components can display routes and hotels. In contrast, for “Search
Hotels” and “Search Routes” components encapsulating web services could be
employed, as these tasks are performed by the system (system task).

Conference
Participation
Specify /I\ Read Travel
Criteria . Information
Calculation
Specify Specify Specify Search Search Read Read Read
Starttime Start Destination Routes Hotels Hotels Weather Routes
s 3 £ 2 £ 3
[e—r——][== e Wetter am Zielort
1) = -
5 .
—————

Fig. 1. Travel planning scenario

In this paper, we present a concept for the task-based recommendation of
mashup components. It comprises a formal task model, whose instances serve
as requirements descriptions, and a corresponding semantic matching algorithm
that enables recommendation during design-time. The basis of our approach
is the idea of universal mashup composition that we outline in Section [2 In
Section Bl we summarize the related work for task modeling and task-based
web service discovery. Building on that, we describe our ontology-based task
model in Section [and our approach for task-based recommendation of mashup
components in Section Bl Finally, we discuss the results in Section [l and outline
further work in Section [

Task-Based Recommendation of Mashup Components 27

2 Model-Driven Semantic Mashup Composition

As mashup components are considered as task-solving entities, a component de-
scription beyond the exposure of interface signatures is needed, representing both
functional and data semantics. Therefore, our concept builds on the component
model of the CRUISe project [19], as it provides a universal semantic interface
to heterogeneous web resources, ranging from Ul widgets to SOAP and RESTful
web services. Additionally, automatic and semi-automatic encapsulation of web
content and applications is gradually improved by ongoing work.

The central idea of CRUISe is the extension of the service-oriented paradigm
to the presentation layer supporting universal composition [7]. Therein, mashups
are built from uniform constituents residing on all application layers. Back-end
services can be seamlessly integrated with Ul components using the same princi-
ples and abstract interface descriptors. Thus, we denote a mashup application as
a composition of uniform components encapsulating distributed web resources,
i.e., services providing data, business logic, or user interface parts. With re-
spect to this paper, all of those components represent tasks or subtasks — either
involving user interaction or application logics.

CRUISe proposes a model-driven development process for building mashup
applications from these components. It includes a platform-independent compo-
sition model as well as a service-oriented infrastructure for the dynamic, context-
aware composition and adaptation at runtime. As our concept employs the same
component models and covers the design-time phase of this process, we briefly
outline the most relevant conceptual foundations for our work in the following.

2.1 Semantic Component Model

The universal composition of a mashup requires that all constituent parts adhere
to a generic component model [20]. In the following, we highlight the semantic
annotations, as they form the basis for our task-based recommendation.

In our conceptual space, every component — representing a service, applica-
tion logic, or UI — is a black-box of independent software with an internal state.
All components are described using three abstractions, namely property, event,
and operation. The set of properties resembles the visible state and allows the
configuration of components. Whenever the internal state changes, events are is-
sued to inform the runtime system and other components. Finally, state changes,
calculations and other arbitrary functionality of a component can be triggered
by invoking their operations with the help of events. Events and operations may
themselves contain parameters, realizing the data flow within the mashup.

The Semantic Mashup Component Description Language (SWS) allows the
description of a component interface — comparable to WSDL for web services
— and the semantic annotation of a component descriptor C, at three different
levels by linking certain parts with semantic models: typing of properties and
parameters (data semantics), the definition of functional semantics of compo-
nents A., operations OP,, and events EV,, as well as non-functional semantics,
e.g., for pricing, licensing, and other metadata M,.

28 V. Tietz et al.

Listing [[T] shows a partial description of a SWS component “RouteHotel-
Comp” (C1), which facilitates the search for public transportation service routes
(using start/destination location and start/destination time) and hotels in a cer-
tain area. As a result, the component displays routes and hotels using sortable
lists. The semantic annotation of its interface is realized by linking it to semantic
descriptors for “functionality” and data “type”. The prefix “to” denotes concepts
of the travel domain as part of a domain ontology T'O, while “ao” is used for
concepts of the action ontology AO, which currently represents actions through
a combination of specializations out of ao:Input, ao:Output and ao:Manipulate
via inheritance. Since the functionality of sortable lists is not represented by the
component interface (because it is triggered only by user interaction), the cor-
responding semantic concept ao:Sort is annotated at component level (line 1).
The data semantics of the parameter location in the operation setStart is related
to the concept to:Location (line 3). The functional semantics of setStart (line 2),
setDest (line 5), setStartTime (line 8), setDestTime (line 11) and rSearched (line
14) is equally ao:SearchRoute, because all this pieces are necessary to realize the
search of routes. The attribute “trigger” (e.g., line 14) indicates the source of
the event, which is either system, operation, or interaction.

1 <mcdl ... name="RouteHotelComp" functionality="ao:Sort">

2 <operation name="setStart" functionality="ao:SearchRoute">

3 <parameter name="location" type="to:Location"/>

4 </operation>

5 <operation name="setDest" functionality="ao:SearchRoute ao:SearchHotel">
6 <parameter name="location" type="to:Location"/>

7 </operation>

8 <operation name="setStartTime" functionality="ao:SearchRoute">

9 <parameter name="time" type="to:StartTime"/>

10 </operation>

11 <operation name="setDestTime" functionality="ao:SearchRoute">

12 <parameter name="time" type="to:DestinationTime"/>

13 </operation>

14 <event name="rSearched" trigger="operation" functionality="ao:SearchRoute">
15 <parameter name="result" type="to:RoutelList"/>

16 </event>

17 <event name="hSearched" trigger="operation" functionality="ao:SearchHotel">
18 <parameter name="result" type="to:HotelList"/>

19 </event>

20 <event name="rSelected" trigger="interaction" functionality="ao:Input">
21 <parameter name="result" type="to:Route"/>

2 </event> ... </mcdl>

Listing 1.1. Example mashup component C; for searching routes and hotels

2.2 Semantic Mashup Composition

In CRUISe, a platform-independent composition model [20] specifies the com-
ponents to be integrated, incorporating information from their descriptors and
defining aspects like the data and control flow, the visual layout, the adap-
tive behavior of the overall composition. It is interpreted by a runtime environ-
ment, which further integrates all components from a repository and executes
the mashup, correspondingly. This infrastructure and integration process as well
as the adaptivity concepts have been realized and validated. Yet, it is impor-
tant to realize the crucial role of the design-process, i.e., the authoring, in this

Task-Based Recommendation of Mashup Components 29

context. They key challenge in rapid mashup development — especially with re-
gard to end-user development — is the discovery and seamless integration of the
right components in a certain context. Hence, the remaining paper addresses the
question, how non-programmers may be able to find components and build such
models. Before we get more into details, we discuss related efforts from the fields
of task modeling and task-based service discovery.

3 Related Work

As already stated, our work envisions the recommendation of mashup compo-
nents from task descriptions. Therefore, the latter must feature a formal repre-
sentation with semantic references, so that actions and data of the tasks can be
semantically matched with functionality and data of mashup components.

In this context, the lack in using semantic technologies and in formalism
of action and domain modeling impede the use of traditional task modeling
approaches (e.g., HTA [1], GOMS [5], GTA [22] and K-MAD [3]). A prominent
task modeling approach is CTT [17] that is used in many model-based user
interface development approaches, e. g., MARIA [I8] and UsiXML [I4]. However,
based on the CAMELEON reference framework [4], which includes a four-stage
transformation starting with a task model and ending up with the final SWS,
only the manual identification of presentation items and sets is utilized.

With regard to the semantic matching of data and functional concepts, seman-
tic web service (SWS) discovery utilizes logic-based, e.g., [6], non-logic-based,
e.g., [9], or hybrid matchings [10]. While logic-based approaches use deduction
to decide if concepts are equal (exact match), part of each other (subsume) and
(plug-in) or distinct (fail), non-logic-based ones rely on syntactic, structural and
numerical analysis, and hybrid approaches combine both. Overall, the major
drawback of SWS is the use of technical service templates for discovering web
services, which impedes non-expert users from expressing and satisfying their
business demands [21].

Task-based recommendation usually involves the mapping of an interaction
or system task to a SWS or non-SWS component, whereas also sets of tasks and
components need to be considered. Corresponding task-based discovery mecha-
nisms are supported by an extension of MARIA [I1] and the SeTEF framework
[21]. However, the former only supports the discovery of web services for sys-
tem tasks, while the latter uses an ontology-based task description OWL-T that
is transformed to SAWSDL and, therefore, is restricted to non-UI components.
Furthermore, the description of tasks highly depends on knowledge about avail-
able service operations, and only one-on-one mapping between tasks and service
operations are supported, which impedes the search for combinations of oper-
ations. In contrast, our approach facilitates the task-based recommendation of
SWS and non-SWS mashup components during design-time by using semantic
annotations in tasks and components across operations and events.

In the following, we introduce the underlying ontology-based task model and
the matching algorithm employed for component recommendation.

30 V. Tietz et al.
4 Ontology-Based Task Model

Based on specific [I5I7] and uniforming [8/T3] task models, we derived a mini-
malistic task ontology — illustrated in Fig.[21— to support user-centered analysis
and description of a specific domain problem. Since mashup components are
considered as black-boxes, we focus rather on the expression of required data
and functional semantics than on conditions and effects in order to recommend
components. Therefore, a task is mainly characterized by its inputs (hasInputOb-
ject), outputs (hasOutputObject), manipulating actions (hasAction) and category
(hasCategory). A composite task consists of at least two subtasks (hasChildTask),
whereas, subtasks are always a specialization of a parent task. Grouping enables
the temporal relations sequence, arbitrary sequence, choice and parallel between
subtasks of a composite task [2]. Both, task hierarchy and grouping facilitate
task analysis and description at different abstraction levels.

In order to express what is intended to be done, actions can be assigned to
composite and atomic tasks. Because, atomic tasks comprises only one action,
we can specify exactly the data objects involved to realize the functionality rep-
resented by the action (e.g., the search of a list of hotels based nearby a certain
location). Data objects (hasInputObject and hasOutputObject) are represented
as ontology concepts or individuals from a domain ontology. Actions are formal-
ized by the independent classification AO to represent the task’s functionality
(e.g., ao:Sort and ao:Search in Fig. B]).

hasID:String I
hasID:String

. RasName:String TaskDescription (" Condition hasExpression:String
‘/c N hasDescription:String B N

| |
lass
NG
: linstance > : oneof ’/Category\\ \’/Grouping\\ oneof
o \) hasTask hasPostCondition \ / = —
I $I \\ ,7,// hasPreCondition \\,,,77// -
: Object Property : ? hasCategory A subClassOf
| |
| |
| |
|

<
Datatype Property isCategoryFrom hasChildTask

_— ¥ . / hasGrouping g s o
oneOf Instance e subClassOf | Task J™ ischildTaskFrom Qi@‘f

| @Action Ontology Interaction rrhasRolc:URI - —— hasID:String QParalIel
| [9Pomain ontology| - [BG--hasinputobject:URI hasName:String |1 T

I [R]Rote ontology | ‘/Atomic Sk\‘ B9}~ hasoutputobject:uri hasDescription:String l(CompositeTask >
——————— \\\77777;// [a0}-hasAction:URI hasMinlter:Integer ~

hasMaxlter:Integer
Fig. 2. Task ontology

Since mashups provide SWS and non-SWS components, we follow [I7] and
distinguish the task categories: system, interaction, user and abstract. System
tasks are exclusively performed by components. For example, “Search Routes” in
our scenario could be modeled as a system task. Whereas, interaction indicates
that an interaction between humans and an SWS is required, e.g., setting a
marker on a map in order to specify the start location. User tasks require no
interaction with the system, e.g., fetching a folder. An abstract task groups
heterogeneous subtasks (e.g., “Conference Participation”) and is the default
task category providing all kinds of components during recommendation.

Task-Based Recommendation of Mashup Components 31

Finally, we formalize tasks as a tuple Ty = (M, At, i, INy, OUTY, Ry, Cy)
defined by metadata M; like name and description, a set of actions A; C
AO, a category c¢; € {interaction, system, user, abstract}, a set of inputs and
outputs INy, OUT; C DO, roles R; and conditions C;. Considering our sce-
nario, an example task “Search Routes” requires a start and a destination lo-
cation as well as a start time to search a list of routes. Therefore, the task
T, is defined as ({“Search Routes”}, {ao:Search}, system, {to:StartLocation,
to:DestinationLocation, to:StartTime}, {to:RouteList}, (),). Because roles and
conditions are required neither in the scenario nor to explain the recommenda-
tion algorithm, these sets are empty. However, a role could be Administrator,
represented by a concept of a role ontology. The restriction that to:StartLocation
needs to be a European city is a possible pre-condition.

Using semantic technologies this ontology-based task model enables the task-
based recommendation of previously introduced mashup components which is
presented in the following section.

5 Task-Based Recommendation

Our approach aims to fill the gap between a user-centered requirements speci-
fication and semantic mashup component discovery. In order to match different
semantic concepts annotated in task and component descriptions, we propose
the two subsumption-based functions CoreMatch and SetMatch. Further, we
consider the mapping of inputs and outputs between tasks and components as
well as their functional semantics. Building on that, we present our task-based
recommendation algorithm.

5.1 Calculation of Subsumption-Based Similarity

In order to compare and rate different semantic annotations used in tasks and
components, we propose a subsumption-based matching, referring to logic-based
web service matchings [0].

The core matching degrees CoreMatch(r,a) between the request r and the
advertisement a are defined by exact (5 < r = a), plug-in (‘s1 < r Coa), sub-
sume (3 < a C r) and fail (0 & else), where s is the number of sibling nodes
s (with s > 1) at the same distance. Fig. [3] shows an example for request-
ing ao:SearchRoute. Therein, the advertisement ao:SearchBusRoute subsumes
ao:SearchRoute and, therefore, the result is 3. The distance dist(r,a) is defined
by the number of inheritances related from the request r to the advertisement a.
In the case of a plug-in, we divide the result by s in order to consider partial con-
cepts, e. g., the advertisement of ao:Sort represents only one part of the requested
functionality and can be potentially combined with other sub-functionalities. For
example, the functionality represented by ao:Search is a specialization of ao:Sort
and ao:Calculate. Therefore, ao:Sort and ao:Calculate are siblings at the distance
2 and CoreM atch(ao:SearchRoute, ao:Sort) = § = 2.

Further, we define the function SetMatch(R, A) that calculates the rank of R
and A as sets of requested and advertised ontology concepts. First, this function

32 V. Tietz et al.

Distance

1 0 1 2 n
ity - - > a0Sort) e —3(J
| ‘/\BDZACUOH /\‘ | //‘/7 e x,_}// " NN — ~
| | (QonearBuRONE > (FoiSearchRoute L EOBRIN D)
| —nheritance | —— ao:CaIcuIate>—> ver —>/\ }
— i —
Subsume Exact Plugln = 4/(1 Sibling) Plugln = 4/(2 Siblings)
-3 -5 -4 -2
Rating Requested Action

Fig. 3. Rating and distances related to a request of ao:SearchRoute

groups all best core matches of each member of R and A and, finally, returns the
average of all best matching degrees. For example, SetMatch({ao:SearchRoute,
ao:SearchHotel} {to:Search}) = 2.0, because ao:SearchRoute builds the best as-
signment with ao:Search as subsumption (4) and ao:SearchHotel could not be
further matched because A has no concepts left. The final result is 2.0, the aver-
age of 4.0 and 0.0. In the following, we use SetMatch(R, A) for rating different
aspects (e. g. data and functional semantics) of tasks and components.

5.2 Mapping Data Semantics of Components with Tasks

In general, component descriptions include events representing output and op-
erations representing input (cf. Section [2). In order to match tasks and compo-
nents, a task-aligned interpretation of these descriptions is required. From the
perspective of user interaction, a SWS component signalizes the input of data
by triggering an event, e.g., as result of a user selecting a location on a map
component. On the other hand, the output of data, e. g., its visualization on the
map, is realized by an operation. Therefore, inputs of an interaction task must
be mapped to the data semantics of events IN; — d(EV.), while its outputs
must be mapped to operations of a component OUT; — d(OPF,), accordingly.

While this applies to interaction tasks, it does not for system tasks. In this
case, inputs are mapped naturally to operations (IN; — d(OP.)), e. g., to invoke
a search for hotels based on a location as parameter, and the outputs are mapped
to events (OUT; — d(EV,)). If the task category is abstract, it cannot be decided
how to map inputs and outputs. Therefore, the mapping and rating needs to be
carried out for both, whereas the maximum of both ratings is returned.

5.3 Task-Based Recommendation

In the following, we describe the algorithm Match(T, C) that returns an ordered
list of rated recommendations out of a set of components C for a task instance
T that is compliant with the proposed task ontology. The algorithm exploits the
previously mentioned matching principles in order to rate CRUISe components
for each task.

Task-Based Recommendation of Mashup Components 33

Reducing complexity. In the first step, the complexity of the task model is
reduced in order to optimize the matching performance. Therein, user tasks are
omitted, because no component is required. Next, parent tasks are removed,
because subtasks are an equal or more detailed representation of their parents
regarding actions, inputs, and outputs. Finally, the amount of component candi-
dates is reduced for each task based on its category. If the category is interaction,
service and logic components are excluded, because they offer no SWS.

Interim ratings and data structure. In the second step, we compare each
task T; with each component candidate C.. The final rating rtcs;, of a compo-
nent, is the maximum of the two interim ratings rtc; and rtcy. rtc; reflects the
matching of the overall semantic annotation of the component and rtce considers
the semantics of operations and events (including data and functionality) of the
component. In order to calculate the interim rating rtco, a data structure similar
to Table[lis created that represents a task-like interpretation of each component
description. With the help of the table, the ratings of the functional semantics
m! ., and the data semantics m! and m¢ , of the component are determined. In
the following, we describe in detail, how the table is filled and how both interim
ratings are calculated. For this, we use the previously introduced task Ty (cf.
Section M) and component C; (cf. Section [2]).

Table 1. Intermediate results of the matching algorithm Match(T1,Ch)

i dyg act; my., Dy, (act;) m;, Doy (act;) mey,, Ti
1 -1 ao:SearchRoute 3.0 to:Location 4.33 to:RouteList 5.0 3.83
to:Location
to:StartTime
to:DestinationTime
2 -1 ao:SearchHotel 3.0 to:Location 1.67 to:HotelList 0.0 1.92
3 oo ao:Input 0.0 0 0.0 to:Route 0.0 0.0

rtce 3.83

Functional semantics of components. The first interim rating rtc; reflects
the matching of the overall semantic annotation of the component A, requesting
the actions of the task A;. Using our example, this is rtc; = SetMatch(As, A:) =
SetMatch({ao:Search},{ao:Sort}) = 2.0 (cf. Fig. Bl). Because we define that
functional and data semantic are equally weighted and no data semantic is an-
notated at this level, rtc; is divided by 2 which results in 1.0.

Functional semantics of operations and events. In order to calculate the
ratings of the functional semantics m’_,, each annotated action act; of all op-
erations and events is added to a distinct action list. If an interaction task
is requested, only events with the trigger “interaction” are considered (e.g.,
line 20 in Listing [LT)). Then, the rating for the functional semantics m?_, is
calculated by SetMatch(As,act;). This means that all actions of the task A,
are requested for each functionality act; of the component. In our example,

mp., = SetMatch({ao:Search},{ao:SearchRoute}) = 3.0.

34 V. Tietz et al.

Data semantics. The rating of the data semantics m!, and m? , is based on
both columns D;,(act;) and Dyyi(act;) as advertisements and the input IV
and output OUT; of the task as requests. According to our example, the task
category equals system, therefore, D;, (act;) gets filled with the data semantics
of all operations annotated by the functionality act; and D,y (act;) gets filled
with the data semantics of all events annotated the functionality act; (cf. Sec-
tion B2). In general, m!, is calculated by SetMatch(INy, Dy, (act;)) and mé,,
by SetMatch(OUTy, Doyt(act;)).

For example, m) = SetMatch({to:StartLocation, to:DestinationLocation,
to:StartTime}, Din(act;)) = 4.33. Further, m},, = SetMatch ({to:RouteList},

Doyi(actr)) = 5.0. Because we weight functional and data semantics equally, the
rating for each row (r;) is the average of m? ., and the average of m{, and m?,,.
For example, r1 = (3.0 + }(4.33 +5.0)) = 3.83.

Detecting sub-functionalities. As mentioned in Section (1] it is possible to
detect and merge associated sub-functionalities like ao:Calculate and ao:Sort.
For this, we use the distance d;; between the requested A; and advertised act;
and group all subsumes (where 0 < d < o0) having the same distance.

Then, we sum their functional semantics rating and build the average of their
data semantic rating, to end up in one new row including all sub-functionalities.
This allows us to handle functionalities across multiple operations and events. In
our example, no grouping is necessary, because we get two subsuming concepts
(ao:SearchRoute, ao:SearchHotel) and two fails (ao:Input, ao:Output).

Final rating result. As previously mentioned, rtc; considers the overall func-
tionality of the component and rtce represents the best match for functional and
data semantics of all operations and events. Therefore, rtcy is the maximum of
all r;. Finally, the highest value out of rtc; and rtcp is the final result ry;, of
the matching algorithm for a task and a component. In our example 74, equals
3.83, because this is the maximum of rtc; = 1.0 and rtco = 3.83. The match-
ing is done for all tasks € T and all components € C. In the end, the result
tuple RT = (T3, {(Ce,rtcsin)}) includes for every task T a set of component
proposals, represented by their id and rating.

6 Implementation and Discussion

We have successfully implemented the proposed algorithm as a part of a service-
oriented and Java-based component repository of CRUISe. The repository regis-
ters, manages, matches and ranks components and offers a web service interface.
The matching can be based on a SMCDL template or, as used in this case, on
an instance of the task ontology. The repository and the matching algorithm use
the semantic web framework Jena (http://jena.sourceforge.net/) in order
to access OWL knowledge bases using plain Java.

We have tested the algorithm with a task model representing our scenario and
a set of components such as generic and specific input and output components
(e. g., for locations, time and routing) getting expected ranks. However, in order

http://jena.sourceforge.net/

Task-Based Recommendation of Mashup Components 35

to get reliable results we plan to evaluate the algorithm within a broad user
study utilizing more scenarios and components.

Since we address the design-time, performance is negligible to a certain degree.
However, the current response time is about 1s for one task and 50 components and
tends to be more than proportional with the increasing number of components and
tasks. Therefore, we plan to implement caching and other optimizations.

Regarding the use of ontologies, we assume that component developers and
task modelers have a common understanding of how functionalities and data
are semantically represented. Currently, we use self-developed travel and action
ontologies on the basis of the introduced scenario. In principle, any knowledge
base can be used and matching as well as aggregating ontology concepts can be
applied in future.

7 Conclusion and Further Work

The contribution of this work is twofold. First, we presented an ontology-based
task model that allows formal and lightweight modeling of user’s requirements
for composite mashup applications on the basis of existing knowledge bases. This
addresses our key requirements regarding the formalization and abstraction of
any specific service operation or user interface component. Second, we provide
a matching algorithm based on semantically annotated mashup components in
order to support discovery for task-based requirements. The key feature is the
proposal and rating of components realizing specific as well as partly supported
functionalities across services and components during the design-time.
Regarding the discussion in Section [6] further work addresses the optimiza-
tion and evaluation of the recommendation algorithm particularly by utilizing
a user study. Further, we explore the opportunity of semi-automatic compo-
sition utilizing the proposed task model and recommendation of components.
Currently, we work on the design and the implementation of an authoring tool
in order to allow task modeling for non-programmers and to determine concepts
for ontology-based modeling. Finally, this work is an important step towards a
task-based development approach for composite mashup applications.

References

1. Annett, J., Duncan, K.: Task analysis and training design. Hull Univ. (England).
Dept. of Psychology (1967)

2. Betermieux, S., Bomsdorf, B.: Finalizing Dialog Models at Runtime. In: Baresi,
L., Fraternali, P., Houben, G.-J. (eds.) ICWE 2007. LNCS, vol. 4607, pp. 137-151.
Springer, Heidelberg (2007)

3. Caffiau, S., Scapin, D.L., Girard, P., Baron, M., Jambon, F.: Increasing the ex-
pressive power of task analysis: Systematic comparison and empirical assessment
of tool-supported task models. Interacting with Computers 22(6), 569-593 (2010)

4. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L., Vanderdonckt,
J.: A Unifying Reference Framework for multi-target user interfaces. Interacting
with Computers 15, 289-308 (2003)

5. Card, S., Moran, T., Newell, A.: The Psychology of Human-Computer Interaction.
Lawrence Erlbaum, Hillsdale (1983)

36

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

V. Tietz et al.

Chabeb, Y., Tata, S., Ozanne, A.: YASA-M: A Semantic Web Service Matchmaker.
In: 24th IEEE International Conference on Advanced Information Networking and
Applications (AINA 2010), pp. 966-973 (2010)

Daniel, F., Casati, F., Benatallah, B., Shan, M.-C.: Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt. In: Laender, A.H.F., Castano,
S., Dayal, U., Casati, F., de Oliveira, J.P.M. (eds.) ER 2009. LNCS, vol. 5829, pp.
428-443. Springer, Heidelberg (2009)

Goschnick, S., Sonenberg, L., Balbo, S.: A Composite Task Meta-Model as a Ref-
erence Model. In: Forbrig, P., Paternd, F., Mark Pejtersen, A. (eds.) HCIS 2010.
IFIP Advances in Information and Communication Technology, vol. 332, pp. 26-38.
Springer, Heidelberg (2010)

Klein, M., Koénig-Ries, B.: Coupled Signature and Specification Matching for Au-
tomatic Service Binding. In: Zhang, L.-J., Jeckle, M. (eds.) ECOWS 2004. LNCS,
vol. 3250, pp. 183-197. Springer, Heidelberg (2004)

Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service
Coordination in the Semantic Web. Whitestein Series in Software Agent Tech. and
Autonomic Computing, Birkh&user, pp. 59-104 (2008)

Kritikos, K., Paterno, F.: Service discovery supported by task models. In: 2nd ACM
SIGCHI Symp. on Engineering Interactive Computing Systems, EICS 2010 (2010)
Limbourg, Q., Vanderdonckt, J.: Comparing task models for user interface design.
In: The Handbook of Task Analysis for Human-Computer Interaction, pp. 135-154.
Lawrence Erlbaum Associates (2003)

Limbourg, Q., Pribeanu, C., Vanderdonckt, J.: Towards Uniformed Task Models
in a Model-Based Approach. In: Johnson, C. (ed.) DSV-IS 2001. LNCS, vol. 2220,
pp. 164-182. Springer, Heidelberg (2001)

Limbourg, Q., Vanderdonckt, J., Michotte, B., Bouillon, L., Lépez-Jaquero, V.:
USIXML: A Language Supporting Multi-Path Development of User Interfaces. In:
Feige, U., Roth, J. (eds.) DSV-IS 2004 and EHCI 2004. LNCS, vol. 3425, pp. 134—
135. Springer, Heidelberg (2005)

Mahfoudhi, A., Abid, M., Abed, M.: Towards a user interface generation approach
based on object oriented design and task model. In: Proc. of the 4th Intl. Worksh.
on Task Models and Diagrams, pp. 135-142. ACM (2005)

Mori, G., Paterno, F., Santoro, C.: CTTE: Support for developing and analyzing
task models for interactive system design. IEEE Trans. Software Eng. 28(8) (2002)
Paterno, F., Mancini, C., Meniconi, S.: ConcurTaskTrees: A diagrammatic notation
for specifying task models, pp. 362-369. Chapman & Hall (1997)

Paterno, F., Santoro, C., Spano, L.D.: MARIA: A universal, declarative, multiple
abstraction-level language for service-oriented applications in ubiquitous environ-
ments. ACM Trans. Comput.-Hum. Interact. 16(4), 1-30 (2009)

Pietschmann, S.: A model-driven development process and runtime platform for
adaptive composite web applications. Intl. Journal On Advances in Internet Tech-
nology (IntTech) 4(1), 277-288 (2010)

Pietschmann, S., Tietz, V., Reimann, J., Liebing, C., Pohle, M., Meifiner, K.: A
metamodel for context-aware component-based mashup applications. In: Proc. of
the 12th Intl. Conf. on Information Integration and Web-Based Applications &
Service (iiWAS 2010), pp. 413-420 (2010)

Tran, V.X., Tsuji, H.: A task-oriented framework for automatic service composi-
tion. In: Proc. of the 2009 Congress on Services - I (SERVICES 2009), pp. 615-620.
IEEE (2009)

van Welie, M., van der Veer, G.C., Eliéns, A.: An ontology for task world models. In:
5th Int. Worksh. on Design, Specification, and Verification of Interactive Systems,
DSV-IS (1998)

	Task-Based Recommendation
of Mashup Components
	Introduction
	Model-Driven Semantic Mashup Composition
	Semantic Component Model
	Semantic Mashup Composition

	Related Work
	Ontology-Based Task Model
	Task-Based Recommendation
	Calculation of Subsumption-Based Similarity
	Mapping Data Semantics of Components with Tasks
	Task-Based Recommendation

	Implementation and Discussion
	Conclusion and Further Work
	References

